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ABSTRACT

Recent applications of game theory to the oligopoly
have characterized the nature of the competition in an industry
by examining payoff matrices and the strategies chosen by the
players. In this study, a game-theoretic model of an oligopoly
is developed, wherein the marketing-mix decisions made by the
participating firms are represented as alternate strategic
options. Econometric methods are employed to estimate the
payoffs in the game matrices. Issues in model operationaliza-
tion are discussed; then the model is applied to two real
situations. In each case, the game matrix derived is used
to describe the competitive nature of the industry (by examin-
ing the strategic decisions made over time), to evaluate the
strategies chosen, given the intentions of the firms, and to
recommend desirable strategies for the future.



RESUME

Ia théorie des jeux, appliquée a 1'étude des oligopoles,
permet de caractériser la nature de la concurrence industrielle
gridce a l'examen des sommes a gagner et des stratégies suivies
par les joueurs. Cette étude développe un modele d'oligopole
basé sur la théorie des jeux et dans lequel les décisions de
marketing prises par les participants sont représentées par
des choix stratégiques. ILes sommes a gagner sont estimées par
des methodes économétriques. Ie modele est operationnel et
appliqué a deux situations réelles. Dans chaque cas, on par-
vient a décrire la nature de la concurrence dans l'industrie;

a evaluer les stratégies passées; et a recommander de meilleures

stratégies pour l'avenir.
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CHAPTER 1
INTRODUCTION

MAJOR_ISSUE

Recent application of game theory to the oligopoly (by
Shubik and Levitan 1980, e.g.) have indicated that it is possible
to characterize the nature of the competition in an industry by
examlnlng the payoff matrices and the strategies chosen by each.
player. Such work, however, is theoretical in nature, and is
not verified empirically. Also, its potential application in a
real decision-making situation has not jet been explored.

Translation of this game-theoretical model into a useful
decision model posed some interesting problems. 1In order to -
determine the behavioural intentions of the players by observing
which equilibrium point is reached requires that the modeller know
with certainty the appropriate payoffs and decision varlables w1th“
which to build the game matrix. It also requires that equlllbrlum be
reached, which may indeed not always be so. In addition, all players
should have perfect information with regard to the payoffs in the
‘matrix. (These considerations are examined in Chapter 5 of this
paper.)

This study takes the approach that such a level of know-
ledge and information is unreasonable to assume in a typical
industry; and thus that it is next to impossible to determine,
simply by examining the selected equilibrium points, what the
underlying behavioural intentions of the players are, or what in
fact motivates the players. The pattern, through time, of the players'
strategies (what marketing-mix decisions they made) is all that is lkmown
‘with certainty. However, if one knew both the pattern of strategies
with the resulting payoffs, and the players' intentions, a decision-
making model could be derived which would select the strategies most
conducive to attaining the intended results. In short, where Shubik
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and Levitan indicate how the intentions of the firms in an industry
are revealed through their behaviour, this paper adopts the viewpoint
that given the intentions of the players, appropriate strategies may
be recommended.

Despite this important philosophical difference, the theo-
retical model developed in this paper takes, as its base, these
recent applications of game theory to economic analysis of com-
petitive behaviour. The logical sequence used in developing the
- model from simple beginnings into a form which can treat adequately
complex carryover and interaction effects is the subject of Chapter 4.
This chapter also illustrates how up-to-date methods of econometric
analysis can be implemented in estimating the payoffs of the game
matrix.

GOALS OF STUDY

The reader will note that a clear distinction is‘made between
the theoretical, mathematical general model in Chapter L, and issues
concerning its operationalization to specific industries, discussed
in Chapter 5. This distinction is essential, as the goals of the
study (as well as its limitations; see concluding remarks) may be
divided this way.

A purely theoretical goal of this paper is the integration
of the game-theory model framework (useful in decision-making) with
econometric representation of the oligopoly. Such an integration
would include adequate treatment of joint marketing-mix decisions
(i.e., price and advertising decisions being made simultaneously by
each firm); and would provide for carryover effects of such variables
if and when appropriate. Ideally, the model should also be easily
adaptable to given marketing situations.
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Specific operational goals may also be spelled out. The
model is visualized as being, basically, a decision-making tool to
be used by a firm setting marketing-mix variable levels in an oli-
goproly. The operational 6bjectives of the study may be easily
conceptualized by considering the needs of such a firm. Najor
questions likely to be asked by the firm include:

1. Is it possible for us to understand better the competi-
-tive behaviour of the industry through analysis of previous stra-
tegic decisions? _

2. How effective have our firm's marketing-mix strategies
been in relation to those of our major competitors? ,

3. Can we make optimal marketing-mix decisions based upon
~an understanding of the nature of the competition and the payoffs
attached to the various strategic combinations? '

An ideal theoretical model, once operationalized (i.e.,
adapted to a specific industry situation), would thus be capable of
performing three tasks, corresponding to these three questions:

1. Description of the competitive nature of the industry
by examining the strategic marketing decisions taken over time;

2. Evaluation of the strategies chosen, given the inten-
.~ toins of the firms; and

3. Recommendation for future strategic choice.

The operational model should be able to achieve these
objectives. Note that determination of the intentions of the players
themselves is not one of the objectives, nor is prediction of
strategic choices in the future. The false assumption that econometric
analysis of past behaviour will indicate with any certainty what firms
will do in the‘future is not made, nor need it be. All that the model
purports to do is to indicate,based on analysis of past behaviour,

which strategies appear to be most in line with stated objectives.



THESIS FRAMEWORK

- Immediately foliowing this introductory chapter appear
two chapters devoted to a review of significant prior research.
Two separate literature review chapters are required, as concepts
derived from two distinct trains of thought are employed in the
develobment of the theoretical model.

_ Chapter 2, the literature review on game theory, traces
the milestones in the development of this theory from the early
work of von Neumann and Morgenstern (1947) to the more complex
industry models of Shubik (1959a) and Shubik and Levitan (1980),
among others. An illustration of the elementary cohcepts of game theory
is given, as are definitions of the basic terms and simple ‘solution
concepts based on the Minimax Principle. Possibilities of éooperation
among players in an n-player game (n2> 3) are explored and cooperative
. solutions are also presented. The issue of rationality in game theory
is examined: +this leads to a discussion of equilibrium solution
concepts for the oligopoly; and finally, to an illustration of how
market behaviour could be revealed by examination of selected equi-
- libria,

The literature on econometric modelling is exceedingly
large and varied. In Chapter 3, the history of this literature as
applied to marketing research is presented, from the classic articles
of Vidale and Wolfe (1957) and Nerlove and Arrow (1962) to the empi-
rical models developed by Palda (1964), Weiss (1968), Bass (1969),
Beckwith (1972) and others. Among the most current extensions dis-
cussed will be those of Jagpal, Sudit and Vinod (1979; 1982), who
illustrate the application of some very flexible and adaptable models.
Other topics introduced here are: dynamic-adjustment and Koyck-type
econometric models, stochastic modelling, pricing considerations,
and preliminary game-theory applications. |
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In Chapter L, the theoretical model is developed. This
chapter may be regarded as the guideline to follow in constructing
a game matrix appropriate for a given industry. After a discussion
of some preliminary observations, a basic duopoly model based on
Shubik and Levitan's game matrices is proposed as a starting point
for model development. Subsequent sections of Chapter 4 illustrate
how the model would be extended to cover a wider range of decision
variables (first, multichotomous, then continuous independent
variables); and how carryover effects could be incorporated into
the model (alternate approaches are proposed for different circum-
stances). Finally, extensions for the n-firm oligopoly (n2 3) are
developed. Chapter 4 retains a theoretical aspect throughout; prob-
lems of data availability and issues of parameter estimation are
dealt with in the following chapter. To improve readability, the
most complex mathematical manipulations are grouped into an appendix.

Chapter 5 investigates the operationalization of the general
model in specific industries. Questions regarding both application
and applicability of the theoretical model are raised here. Chapter 5
is divided into three parts. In Part 1, the impoertant distinction
between strategies and intentions (alluded to earlier in this intro-
duction) is clarified, and possible drawbacks and problem areas in
application are examined. Part 2 assumes that these problem areas
have been dispensed with, and shows how the theoretical model would
be developed and adapted to a given hypothetical industry. Part 2
culminates in the derivation of a game-matrix representation of the
industry. Finally, Part 3 indicates how preferred strategies would
be selected and recommended, and how the past behezviour of the firms
would be analyzed.

The theoretical model is empirically tested in Chapters
6 and 7. Two industries have been chosen which proved to be rela-
tively easily amenable to the analytical techniques described in
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Chapter 4 (problems and considerations in industry selection are

discussed in Part 1 of Chapter 5). These chapters also contain the
results of the empirical analyses. Complete regression details for
the analysis of Industry 1 are given in the appendix to Chapter 6.

Finally, in Chapter 8, the conclusions of the paper zre
collected and summarized. Difficulties which were enccuntered in
“model application are discussed, with implications for applicability
in other industries. Theoretical and practical contributicns mzde
by the paper are examined. The technical and crgsnizational
validity of the mcdel is also examined and practiczl considerations
are discussed. Finally, a number of potentially fruitful avenues
for future research are presented.



CHAPTER 2
LITERATURE SURVEY: GAME THEORY

GAME THEORY--INTRODUCTION

Origins and Areas of Development

Most writers on modern game theory trace the "genealogy"
of this discipline back to 1944, the year of the appearance of
the classic text by von Neumann and Morgenstern, Theory of Games
and Economic Behaviour (second edition, 1947). In fact, seminal
works by Borel (a series of notes, actually) appeared in a French-
language journal in 1927 (English versions available; see Borel
1953a; b; and c¢). This study spurred further research by von
Neumann, who gave his now-famous paper on game theory to the
Mathematical Society in GBttingen the following year (von Neumann,
1928).

Nevertheless, the landmark work remains that of von Neu-
mann and Morgenstern. A brief look at the authors' objectives
in writing this book is helpful.

"OQur problem is not to determine what ought to happen
in pursuance of any set of...a priori principles, but
to investigate where the equilibrium of forces lies...
We think that the procedure of the mathematical theory
of games of strategy gains definitely in plausibility
by the correspondence which exists between its concepts
and those of social organizations." (von Neumann and
Morgenstern 1947, pp. 42 - 43)

Thus, as might be expected of a text authored jointly
by a mathematician (von Neumann) and an economist (Morgenstern),
Theory of Games explored the applicability of a newly-developed
branch of mathematics, based on the behaviours and beliefs of

rational beings, to a social situation wherein rational indi-
viduals strive for the best possible outcomes under given cir-
cumstances. As is evidenced by Marshall's notion of utility
maximization, and by Pareto's comparative statics and "Pareto-
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optimality", the concept of optimization of satisfaction given
certain constraints has long been an area of investigation by
economists (see Hicks 1946 and 1956 for concise histories of
economic pursuit).

Economics is not the only discipline wherein the behaviour
of rational, payoff-optimizing individuals in studied, however.
Soon after the publication of Theory of Games, texts and journal
articles appeared applying game theory to political science,
warfare, international relations, urban planning and ecology.

In addition, a literature on the related topics of gaming and
simulation (see below) has emerged (for a pre-1975 literature
guide, see Shubik 1975). Indeed, as of the mid-'70's, "literally
thousands of articles and books" on game theory and gaming have
been published (Shubik 1975, p. 5), including many written from
an economic viewpoint. Evidently, clear definitions of all rele-
vant concepts form an essential background to any further dis-
cussion. This topic will be returned to later.

A review of the current game-theoretic literature gives
some indication of the breadth of application of this topic.
Stern (1978) has investigated its applications in simple finan-
cial decision processes. Selten and Guth (1982) employ game-
theoretical analysis in their business cycle model, developed to
evaluate the outcomes of wage bargaining. Smith and Case (1975)
model a two-firm sealed-bid auction as a nonconstant-sum game,
and determine optimal strategies under conditions of either
perfect or imperfect information. Other authors examine a wider
range of issues. In Simaan and Cruz (1975), an arms race between
two countries is modelled as a game and Nash-equilibrium strate-
gies (see below) are found. Bacharach (1977) models the Battle
of the Bismark Sea as a two-person, zero-sum game. This, in
fact, is an especially good illustration of an application of
game theory and will be returned to later. Bacharach also models
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management versus union strategies in a wage determination
situation using a game in normal form (see below). Batlin and
Hinko (1982) use game theory to determine optimal debtor and
creditor strategies in a cash-management situation. And Macrae
(1982) examines corruption and bribery in underdeveloped countries
using a game-theoretic approach.

Game Theory in Economics: a Historical Perspective

Most of the applications of game theory to be examined
in this chapter, however, are economic in nature. The history
of game theory in economics is interesting in that its popularity
among economists has not increased constantly over time. Rather,
at least three phases of interest among economists can be deline-
ated:

a) The von-Neumann-Morgenstern theory was immediately
applied (with great enthusiasm) to the oligopoly--and in fact
development stalled there.

"As soon as the theory was pigeonholed (as being relevant
to the oligopoly)...its popularity waned, for mathematical
theorists turned their attention toward the axiomatic
analysis of general equilibrium theory." (Schotter and
Schwddiauer (S & S) 1980, p. 480)

Luce and Raiffa (1957) present the theoretical developments up
to about this point.

b) Two works in the late '50's by Martin Shubik revived
interest and investigation. His text Strategy and Market Struc-
ture (1959a) was written as an attempt at "aunified approach to
the various theories of competition and markets, (where) the main
set of techniques employed to achieve this end (were) those of

game theory" (1959a, p. xi). A significant improvement of Shubik's
models of competition was that they were dynamic in nature. Von
Neumann and Morgenstern's theory of games was admittedly "tho-
roughly static, (although) a dynamic theory would unquestionably
(have been) more complete and therefore preferable"(von Neumann
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and Morgenstern 1947, p. 46). Note the parallel to neo-classical
economic theory: during the '30's and '40's, the "comparative
statics" of Pareto were being refined into the "comparative dy-
namics" of Hicks and Keynes (see Hicks 1946).

Shubik's article "Edgeworth Market Games" (1959b) showed the
equivalence between the “"core" solution concept (discussed below) and
the Edgeworth contract curve (see S & S 1980). This discovery sparked
-some activity in the investigation of the general equilibrium problem,
which largely fell from interest by the late '60's.

c¢) More recently, game theory has been applied to "the
design and operation of ‘'satisfactory' economic and social insti-
tutions" and to the “search for voting rules that yield satis-
factory results or 'implement' social choice rules": +these appli-
cations are not in the scope of this paper and the reader is
referred to S & S (1980). Additionally, Shubik has expanded and
extended his 1959 analysis of the oligopoly situation under linear
demand conditions (Shubik and Levitan 1980). Other recent develop-
ments are examined later in this paper. It is this latter application
- of game theory (to the econometric analysis of the oligopoly) which
is the starting point of the analysis conducted in this study.

Definitions

As a first step in reducing the huge valume of literature
to manageable proportions, formal definitions of game theory and
related disciplines are in order.

What is a game? Bacharach (1977) proposes a four-element
description of the properties of a game:
"], A well-defined set of possible courses of action for
each of a number of players.
' 2. Well-defined preferences of each player among possible
outcomes of the game and...among probability distributions or
mixtures of its outcomes.
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3. Relationships whereby the outcome (or at least a
probability distribution for it) is determined by the players'
choices of courses of action. ’

L. Knowledge of all of this by all the players.
Elements 1 and 3 are given in the rules of the game and 2 and 4 describe
the players." (Bacharach 1977)

One recognizes that these elements (especially 2 and L) may
become restrictive in that they may 1limit the scope of usefulness of
"pure" or von-Neumann-Morgenstern game theory. Knowing what a player
prefers (element 2) implies an understanding of what that player con-
siders "rational" behaviour, a major issue of which is returned to
later in this chepter, after the basic terms and concepts are discussed.

Game theory is defined by Lucas as "a collection of mathe-

matical models formulated to study decision making in situations in-
volving conflict and cooperation...It is concerned with finding optimal
solutions or stable outcomes vhen various decision makers have con-
flicting objectives in mind" (1972). Shubik adds that "it rrovides

a formal language for the description of conscious goal-oriented
decision-making processes involving one or more than one individual."®
It is also "a branch of mathematics which can be studied as such with
no need to relate it to behavioural problems, to applications, or to
actual games" (Shubik 1972b). This observation serves to differentiate
game theory from gaming although the two topics are closely interwoven.

Gaming "of necessity employs human beings in some role,
actual or simulated" (Shubik 1975). Gaming, then, is more concerned
with the actual preparation, implementation and analysis of games for
educational, experimental, operations, training, therapy or enter-
tainment purposes (for an excellent discussion of gaming, see
Shubik 1972a).

Simulation is frequently confused with gaming in the liter-
ature. Shubik makes the distinction that "simulation involves the rep-

resentation of a system or organization by another system or model which
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is deemed to have a relevant behavioural similarity to the original
system...(hence) all games are simulations. However, (one cannot make)
...the reverse categorization" (Shubik 1972b).

The Lucas definition of game theory, with its emphasis on
decision-making, conflict and cooperation, is especially suitable for
this study. Using this definition, it is clear that the models construc-
ted in this paper are game-theoretic models, and therefore, according to
Shubik (1972b) also simulations of oligopoly situations.

There are a number of game-theory models, distinguished by the
number of players, the nature of the competition, the distribution of the
players, et cetera. Most such models belong to one of three categories
or "formal descriptions”. An investigation of these categories is essen-
tial to the understanding of the workings and applicati on of game theory.

FORMAL DESCRIPTIONS OF A GAME

Shubik (1964) lists two categories for representing games:
the simple, compact normalized form, and the more detailed exten-
sive form. ILater writers (Rapoport 1970; Iucas 1972; S & S 1980,
e.g.) list a third category named the characteristic function form
or coalitional form. All are perfectly acceptable under game
theory, and the choice among them depends upon the information
requirements of the analyst.

"When a detailed description of a situation of strategic
interdependence is required, we may rely upon...the extensive
form of the game...At other times, however, we may...examine
~only the actions or strategies available to the players and
the payoffs associated with such strategies (normalized form)
...At yet other times...we may merely want to know what payoff
«..2 player or coalition of players can guarantee themselves
if they act in concert (characteristic function form)."

(S & s, 1980)

Rapoport (1970) elucidates this distinction among the
categories best. He views the three categories as "levels of abstrac-
tion™ achieved through "progressive generalization". At the first
(extensive) level of abstraction, the "rules of the game" are repre-
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sented; the extensive form “"concentrates on the description of the
game's dynamic sequential movement" (S & S, 1980). A game in extensive
form is represenfable by a game tree (see below), indicating all possi-
ble outcomes for all possible plays by each player.

The second level of abstraction, the normalized (or normal)
form, focuses not on the rules of the game and the game tree itself,
-but on the strategies available to each player. "The rules are impor-
tant only to the extent that they determine the structure of the game
tree and through it the available strategies and the outcomes associ-
ated with the combined strategy choices" (Rapoport 1970). A two-

person payoff matrix (see below) is an example of a normal-form
representation of a game.

Finally, at the characteristic function level, "the
strategies available to the players are also abstracted from. The
only givens in the game are now the payoffs which each the several
possible coalitions can assure for themselves respectively "(Rapo-
port 1970). If a three- (or more)- person game is being played,
the players can discover the best method of settling the "conflicts
of interest" which quite naturally arise, by examining the char-
acteristic functional forms.

"What then is left? Only the question of how to find
the best strategies...To answer this question, one must
study the normal form of the game. To describe the
strategies in terms of sequential choices conditioned on
situations, one must study the extensive form, for...(it
displays) the specific decisions which constitute a
strategy." (Rapoport 1970)

All analyses in this study are carried out at the second
level of abstraction (normal form), since it is at this level that
alternate strategies are compared and contrasted by the individual
players. However, all three forms are now briefly described.
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Games in Extensive Form

The extensive form representation of a game is used when
rules and details of play are to be examined. A game tree dia-
gram as is found in Figure 2.1 serves as the best illustration
of a game in extensive form. The game tree indicates that
players Pl and P2 both must choose one of two strategies. The
payoff (gain or loss) obtained by each player is given by the
ordered pairs found on the "branches". Reading top to bottom,
it can be seen that if Pl chooses Strategy 2 and P2 chooses
Strategy 1, Pl will gain 11 units while P2 will lose 9.

1 2 FIGURE 2.1

Source: Shubik
(L™ \Pz)

(1972b), p. P-41

(5;6) (-11,10) (110"9) ("8y‘8)

The game as drawn indicates that the players make their
choices simultaneously. To illustrate this effect,

"...both of the nodes marked P2 (are enclosed) by a curve
which portrays an information set. It implies that the
second player when called upon to move, cannot distinguish
between the two nodes...he does not know what the first
player has chosen." (Shubik 1972b)

If P2 were to have information concerning Pl's choice
before he were asked to move, the game tree would take on a
slightly different form (see Figure 2.2). The two P2 circles
represent two information sets in this case: i.e., either P2
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FIGURE 2.2

Source: Adapted from
Shubik (1975), p. 14

(5,6) (-11,10) (11,-9) (-8,-8)

knows that Pl has chosen Strategy 1, or that Pl has chosen
Strategy 2. This game may be said to consist of sequential

moves, whereas in that of Figure 2.1, the moves of each player
are made simultaneously. Kuhn and Tucker (1950) explain:

"(One may distinguish) between the occasion of the

~ selection of one among several alternatives, to be made
by one of the players or by some chance device, which
is called a move, and the actual choice made in a par-
ticular play." (Kuhn and Tucker 1950, p. V)

Evidently, fine detail can be worked into a game tree;
unfortunately, such trees tend to become large and complex very
quickly as the number of strategies and/or players increases
(try to imagine a game tree representing every possible strategy
in a game of chess, or, for that matter, tic-tac-toe).

Games in Normal Form

Strategies and not rules are represented in the normal
form. "The intuitive meaning of a strategy is that of a plan
for playing a game" (Owen 1968). A game in normal form is
typically represented by a payoff matrix. In a two-person

game, the strategies available to each player appear as rows and
columns of the matrix, with the outcomes appearing as the cor-
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responding matrix elements. The game tree of Figure 2.1 may thus
be rewritten in normal form as in Figure 2.3.

P2
STRATEGY
\\\\ - 2 FIGURE 2.3
. Source: Shubik (1972b),
11 5,6 -11,10 p. P-39
Pl STRATEGY
2 11,-9 -8,-8

Figure 2.3 illustrates a 2 x 2 game, whose properties
have been well studied. Of course, 3 x 3 or higher matrices
(representing more alternative strategies) and even n x n x n
matrices (for more than two players) are also conceivable and
follow the same pattern.

The normal form model can also capture the distinction
between simultaneous and sequential moves. To convert the game
tree of Figure 2.2 to normal form, one must recognize that Pl
has two possible strategies, but P2 in fact has four, thanks to
his advance knowledge of Pl's decision:

1. Choose Strategy 1 regardless of Pl's move.

2. Choose Strategy 1 if Pl chooses 1; otherwise choose 2.

3. Choose Strategy 2 if Pl chooses 1l; otherwise choose 1.

L., Choose Strategy 2 regardless of Pl's move.

The sequential-move game in normal form would appear as in
Figure 2.4,

P2 '
\\\\ L 2 3 N FIGURE 2.4
Source: Adapted from
1 5, 6 5, 6 -11,10 | -11,10 Shubik (1975), p. 15
Pl
2 11,-9 -8,-8 11,-9 -8,-8
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A sequential-move game formulation‘has been used, for example, to
model a duopoly with price leadership (see Basar and Haurie 1982).

A diagrammatical representation of a game in normal form
may be used in place of a matrix. The simultaneous-move game of
Figure 2.3 may be illustrated by the diagram of Figure 2.5, where
the vertices correspond to the cell entries. "Any point in or on
the boundary of the area enclosed by the four lines...may represent
the average payoff as a result of some extended series of play"
(Shubik 1972b, p. P-39).

-11,10 _ Payoff to

’ 10+ Player 2

5,6
FIGURE 2.5
Source: Shubik (1972b),

k- Payoff to i p. P-40

-10 Player 1 10
-8,-8
-10 - - IR 110‘9

Games in Characteristic Function Form

The same game may be modelled in such a way as to high-
light the coalitional possibilities available to the players.
The characteristic function form of a two-person game is somewhat
trivial: either the players work together or do not work together.
For this simple case, the relevant functions would be as appear
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in Figure 2.6.

v(€)= O ,
FIGURE 2.6
v(1) = -8; v(2) = -8 Source: Adapted from

~ Shubik (1975), p. 16
v(1,2) = 11

Figure 2.6 shows that "a coalition of no one" (&) is worth zero.
“"Player 1 acting by himself can guarantee no more for himself
than (-8). Similarly, Player 2 can guarantee no more than (-8).
If they act together then can obtain a total of 11." (Shubik
1975, p. 16)

To illustrate a somewhat more complex game: Figure 2.7
contains a 2 x 2 x 2 "matrix" representing the normal form of
‘a three-person game, while in Figure 2.8, the equivalent char-

acteristic function form is presented.

P2
1 2
l "‘1,"‘1’-1 "'l'-l""l
Pl
2] -1,-1,-1 5, 5, 5
P2 2
1 2 '
1{ 10,10,10 -1,-1,-1
Pl
2 -1,-1,-1 | -1,-1,-1 - FIGURE 2.7
Source: Shubik
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v(€)= O
v(l) = v(2) = v(3) = -1 FIGURE 2.8
v(1,2)= v(1,3) = v(2,3)= -2 Source: Shubik

- (1975)! po 16
v(l!2t3) = 30

Figure 2.8 clearly shows that cooperation of all three players
can result in as much as 30 units of worth to distribute.

Once the game has been modelled, the solution (if one
exists) may be found. A large literature has evolved regarding
the existence and determination of solutions for the simplest
case: the two-person, zero-sum game. By stripping away
restrictions (first allowing nonconstant-sum payoffs; then
considering more than two participants), succeedingly more
complex situations can be visualized, for which additional -
solution concepts must be developed. ~ o

The game matrices developed in later chapters are all in
n-person, nonconstant-sum form: +therefore, some of the solution
methods described in this section (Owen's mathematical method
and Vajda's graphical method, e.g.) were not subsequently
employed. However, a brief illustration of these and other
solution methods serves to introduce many of the essential
concepts (domination, equilibrium, stability, optimality)
and also to indicate the level of complexity of game analysis
to be applied herein.
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TWC-PERSCN GAMES

Pure Strategies

Consider a two-person zero-sum game; that is, a game
wherein one player loses exactly what the other wins, such that
the total of the payoffs is zero. The normal form of such a
game may be represented as a matrix with only one element in
each cell, that being the payoff to Player 1. (It is understood
ithat P2 wins the negative of this amount.) Such a game is
given in ¥Figure 2.9.

\\ P2
5 1 3
FIGURE42.9
Pl 3 2 L Source: Owen
-3 0 1

*1, the maximizing player, is at cross-purposes with the minimizer
I’2.  Each knows that the payoff depends both on his own and on his
opponent's strategic choice. Suppose that Pl and P2 are both
rztional and somewhat cautious players. Each may be thinking the
following: '

"For every choice that I can make, I must fear that
my opponent makes that choice which makes my gain...
the smallest possible under the circumstances. Hence,
if I make that choice which makes this smallest gain
as large as possible, then I am as safe as I can ever
reasonably expect to be." (Vajda 1956, p. 6)
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This amounts to Pl choosing, as his strategy, that row which has
the largest minimum value. 1In Figure 2.9, should Pl choose Row 2,
the worst that can happen is that P2 chooses Column 2 and he (Pl)
gains 2 units. One may say that Pl attempts to maximize his row
minima. Similarly, since P2's payoffs are the negatives of the
numbers in the matrix, he is trying to minimize his column maxima.
In Figure 2.9, P2 would choose Column 2, as the smallest column
maximum is 2. This game, then, is easily solved: Element a,,
(i.e., the second-row, second-column entry) is the largest value
in its corresponding column and also the smallest in its corres-
ponding row. It is thereby called a saddle point: +the strategy
pair chosen is said to be in equilibrium. "A game is in equi-.
1librium if no player has any positive reason for changing his

- strategy, assuming that none of the other players is goihg to
change strategies" (see Owen 1968, p. 7). The optimal strategies
for each player to employ are pure strategies: 1i.e., each player
plays the same strategy and obtains the same payoff no matter how

many times the game is played. The game may be said to be stable;
and its value, the payoff to Pl, is 2.

Mixed Strategies

Consider now the game of Figure 2.10. Here, there is no .
saddle point, as the largest row minimum (2) is not equal to the
srnallest column maximum (3). This does not imply, however, that
the game is not stable. A kind of stability can still be achieved,
but only if combinations of strategies, along with probabilities
of selection, are considered. These combinations are known as
mixed strategies, or "probability distributions on the set of...
pure strategies" (Owen 1968, p. 16). Thus a mixed strategy of
(.25, .75) for Pl indicates that, if the game of Figure 2.10
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P2
L 1 3 | FIGURE 2.10
Pl Source: Vajda (1956),
2 3 L p. 12

were repeated many times, he should choose Row 2 three times as
often as Row 1. (See also Vajda 1956, Chapter 1.)

In a mixed-strategy situation, Pl is trying to maximize
his "gain-floor" (the weighted average of his expected payoffs
against P2's pure strategies), while P2 is minimizing his "loss-
ceiling" (vice versa). (See Owen 1968, pp. 16 - 17.) It is easy
to show that Pl's gain-floor is less than or equal to P2's loss-
ceiling (Pl cannot win more than P2 if they are the only two
players). What is noteworthy (and in fact was the cornerstone
discovery of von Neumann and Morgenstern's Theory of Games) is
that these two values are equal. Stated algebraically,

MaxxMJ.ny B (x,y) = MlnyMaxx g (x,y),

where § (x,y) is the payment of P2 to Pl (see Kuhn and Tucker
1950, p. vi). The original proof of this so-called Minimax
Theorem or Principle is given in Owen (1968), with a short alter-

nate proof found in Weyl (1950). This theorem guarantees the
existence of an optimum strategy for a two-person game.

. In the game of Figure 2.10, the optimum solutions for
Pl and P2 are (.25, .75) and (.5, .5, 0) respectively (methods
for calculation of these proportions are given later). P2 there-
fore can flip a coin to determine which of pure strategies 1 or 2
to use at any play of the game. Note that he is advised never
to use Strategy 3. This is reasonable, as he can always do better
by playing Strategy 2. This illustrates the notion of domination;

P2's third strategy is dominated by his second. This kind of game
can also have a value; and it will be shown below that the value
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of the game in Figure 2.10 is 2.5 units (expected payoff to Pl
per play in the long run). See also Vajda (1956), p. 10.

Solution Methods

It is desirable to have a method of solution, therefore,
for two-person games, which would illustrate both a) the optimum
strategies (be they pure or mixed) for each player, and b) the
value of the game. A number of solution methods exist, and are
listed below (using the framework of Owen 1968).

‘a) Saddle points: of course, if the game has a saddle
point, the corresponding pure strategies are the optimum strate-
gies, and the saddle point's value is the value of the game.

b) Domination as outlined above may be used to simplify

a larger matrix. Owen (1968) gives the following example (p. 26).

P2
2 0 1 L
P1j1 2 5 3
L 1 3 2

- Clearly the fourth column is dominated by the second. If it is
discarded, one is left with the 3 x 3 matrix

P2
2 0 1 4
P1}i1 2 5
L 1 3

Note how domination may be used in repetitive fashion. Now Row 1
is dominated by Row 3, leaving behind
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P2

Pl

i~
=k R\ Ko
W

P A
[avAN S VAN 50° 5

»

where Column 3 is dominated by Column 2:

P2 |

Pl

£l
HiNv O

The remaining matrix is 2 x 2, which fortunately has a simple
algebraic solution.

c) Solution to 2 x 2 games (see Owen 1968, pp. 27 - 29,
for the full proof): Consider a 2 x 2 game,

where X=(x,, x3) and Y =(y,, y2) are the optimum strategies and
v is the value of the game. It can be shown that the following
theorem holds: "If A does not have a saddle point, its unique
optimal strategies and value will be given by

X =  JA* ; Y= axg® v= /A

JAxgT JA*JT JA*JT

where A* is the adjoint of A, /A/ the determinant of A, and
J, the vector (1,1)." (Owen 1968, p. 29)
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d) Graphical methods for 2 x n and m x 2 games: Vajda
(1956) provides a graphical solution for the matrix of Figure
2,10, which is applicable whenever at least one player has only

two pure strategies. Note in Figure 2.11 that three lines are
constructed: Q,R, , Q,R,, and Q3R3, each corresponding to one of
P2's strategies. Pl's mixed strategies are represenfed by
points along the iine between I and II. Suppose Pl uses a
mixed strategy represented by Point S. "Whatever (P2) does,
(P1) will then obtain at least the amount represented by the
height of the lowest intersection of the vertical through S
with a line corresponding to one of (P2)'s strategies" (Vajda
1956, P. 13). The heavy line therefore represents Pl's minimum
payoff for any combination of strategies; and Pl maximins this
value with mixed strategy M, where the heavy line reaches its
maximum. Pl's optimum strategy is represented by M, which is
at a point three-fourths of the way from I to II; thus, his
optimum mix is (.25, .75) as seen before. The value of the
game is the length of MV, which is 2.5 in this case.

FIGURE 2.11

Source: Vajda (1956),
p. 12

P2's optimum mix is represented by the ratio QoQ;/Q.Q-
(or, equivalently, RgR,;/RoR.) which equals 0.5 in this case.
P2 should therefore use his strategies 1 and 2 in equal pro-
portions. Since strategy 3 is always dominated (i.e., never
forms part of the heavy line), P2 will never choose it (as has
already been shown). Thus, P2's optimum mix is (.5, .5, 0).
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Vajda (1956, pp. 15 - 19) shows another slightly more complex
graphical solution for P2's optimum strategy.

e) Linear programming: If no simple method is applicable,

the optimum strategies and values of two-person games may be
determined using linear programming techniques. Both Vajda (1956)
and Owen (1968) demonstrate the use of the simplex method in sol-
ving complex games; Owen also describes the simplex algorithm
and gives suggested rules for the "pivoting" operation used in
the simplex technique. Both authors demonstrate adequately the
use of both algebraic and graphical linear-programming techniques.
(See Owen 1968, Chapter 3 and Vajda 1956, Chapter 4.)

An Illustration

Bacharach (1977) provides an application of game theory
to a military situation: the Battle of the Bismark Sea during the
Sscond World War. The Japanese were to move in a westerly direction
from a port in New Britain, sending troops and suppiles in a convoy.
They could travel either via a north or a south route. The
Americans had to decide whether to reconnoiter along the north
or south route. The south route had higher visibility and there-
fore the Japanese might be subject to an attack of longer dura-
tion if spotted immediately. The strategic combinations are
modelled as a zero-sum game, where the payoffs listed are the
durations of bombing attacks upon the Japanese (in number of days).

JAPANESE

\ NORTH SOUTH
NORTH 2 2
AN[ERICANS SOUTH 1 3

If the Americans play N (choose "north"), they receive a payoff
of 2 regardless of what the Japanese do. Playing S may result in
a gain of 1 or 3. The security level, or assured payoff, of S

is 1 in that this is the worst possible outcome for the Americans.
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Similar reasoning indicates that the security levels for the
Japanese are -2 and -3 for N and S respectively.

The Minimax Principle states that each player maximizes
his minimum payoff (i.e., maximizes his security level). By
this line of reasoning one would expect both players to play
their "north" strategies. This indeed is what happened in the
spring of 1942. "In military terms, (the Minimax Principle)
focuses on the enemy's capabilities rather than his intentions:
The former are known; the latter can at best be guessed. This
was the ruling doctrine in American tactics..." (Bacharach 1977)
The fact that the "enemy's" intentions are usually unknown in
an oligopoly situation also has important implications for the
theoretical model to be developed in this paper.

Non-Constant Sum Games

The above discussion of two-person games pertains
mainly to the constant-sum situation; that is, when the payoffs
of all strategy combinations are equal (in the zero-sum case, of
course, the constant is zero). The situation is markedly dif-
ferent when the payoffs are not all equal (as in Figure 2.3). In
such a situation, there may be motivation -for the players to co-
operate or collude (see next section); this may depend upon the
rules of the game as well as the players' "personalities". Should
they choose not to cooperate, a solution concept such as Nash's
Noncooperative Equilibrium Point may be applicable to determine
the outcome of the game (Nash 1951; also well-summarized in
Shubik 1972b). The main condition of this solution method states
that "a point (ET, s;) is an equiilibrium point if it satisfies...
Maxs'Pl(sl,Eg) implies sl='jI;
’

MaxSZPZ(sl,sz) implies s,= s

2 2
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where s; = any strategy of player i; and

E;E: a specific strategy of player i. (Shubik 1972b)

Shubik (1962) showed experimentally that if, in addition
to this main condition, certain "extra conditions" were also met,
the ability of this solution method to predict an equilibrium
point was enhanced. These conditions are: |

1. The equilibrium strategy for an individual should
dominate all other strategies.

2. The equilibrium should be socially rational or
Pareto-optimal. ,

3. The equilibrium should be unique.

L. The equilibrium should not employ mixed strategies.
(Shubik 1972b)

The game in Figure 2.3 satisfies all of these conditions
except the second, as both players would be better off if each
switched strategies (the game in Figure 2.3 is in fact a version
of the well-known "Prisoner's Dilemma"). The game in Figure 2.12
clearly satisfies all conditions and is therefore more likely
to reach an equilibrium at (5,5).

AN P2
5 3,4
3 0,0

FIGURE 2.12

Source: Shubik (1972b),
p. P-45,

5
P1 It

’

The Nash noncooperative solution will be revisited later in this
chapter and in subsequent chapters.

COOPERATIVE GAMES

In two-person, nonconstant-sum games, and in n-person
games (n2>3), the possibility of cooperation among players must
be taken into account; that is, "binding contracts can be made,
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...correlated mixed strategies are allowed, and...utility can
be transferred from one player to the other (although not always
linearly)" (Owen 1968, p. 140).

Whole books have been written on the subject of coopera-
tion among players (see Rapoport 1970, e.g.), as the solution
methods are many and varied. For the purposes of this intro-
duction, some of the main concepts are summarized.

Enlarging the Attainable Set

If cooperation among players is illegal or impossible,
only a certain number of payoff pairs are attainable. If players
play only pure strategies, the attainable set would comprise the
payoffs read directly off the game matrix. Intermediate points
in the attainable set are added when mixed strategies are also
considered. Given a payoff matrix as appears in Figure 2.13,
the corresponding attainable set is the shaded region in Figure
2.14,

PLAYER 2
. 2 FIGURE 2.13
Source: Bacharach
PLAYER 1 ! 2 -1l (1977), p. 84
2} 2 -l,-—l l' 2

In Figure 2.14, the outcomes of playing pure strategies
are shown as points J, K and L. The derivation of the curved
line KFGJ is given in Bacharach and is based on consideration
of the possible mixed strategies. If each player tosses a fair
coin and plays Strategy 1 if it shows heads, the éxpected utility
of each player would be 0.25. Thus, (0.25, 0.25), which is
Point F, is on the curve. If each plays Strategy 1 with 0.67
probability, the utilities expected by Pl and P2 are 0.571 and
0.286 respectively: (0.571, 0.286) is the location of Point G.
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utility
(player 2) K

N
s

’ FIGURE 2.14
\ Source: Bacharach

* . (1977), p. 85

utility
% (player 1)

Cooperation between the players increases the size of the
attainable set. If the strategies of the two players are per-
fectly correlated, points on the line JK are attainable; imperfect
correlation results in the attainment of points in the intermediate
region KFJM. The attainable set under conditions of cooperation
between players is thus the convex hull or region enclosed by the
points J, K, L: i.e., the points corresponding to pure strategies.
One may construct the convex hull by placing pins at each pure-
strategy payoff pair and drawing a string around the pins.

"Equivalently, the convex hull...is the set of all
probability mixtures of pure-strategy payoff pairs;

or, finally, it is the set of payoff pairs obtained by
all probability mixtures of pure-strategy pairs...By
cooperation the players can achieve all such points, be-
cause they can mix strategy pairs in any way...without
cooperation correlated mixtures are ruled out." (Bach-
arach 1977).
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Bargains and the Nash Cooperative Solution

Such a game may be thought of as a simple kind of
bargaining game: a game in which the players wish to perform
some kind of trade or transaction, and in which the players may
choose to make "no trade" or "no transaction". If the players
so choose, then their payoffs would equal their security levels;
that is, the players "return home" with the same utilities that
they had when they started to bargain. Implicit in this line
of reasoning is that the players will not consummate a transaction
if at least one feels that he would be worse off than had the
transaction not taken place. The point in payoff space correspon-
ding to the no-trade situation may be called the status quo: the
status quo point is of fundamental importance in determining the

Nash bargaining solution.

Suppose that R is the cooperatively attainable region
and that (u,, u,) is a point in R. Nash's arbitration solution
to a bargaining game is the point (u,, u,) where (u;-s,)(uz-s;)
is maximized, s; and s, being the status quo levels of players
1l and 2 respectively; The quantities (u, -s,) and (u, -s;) may
be called the utility gains. Additionally, the optimum point is

subject to the constraints u,2 s,; uy2s,.

The Nash arbitration solution is appealing in that it is
the only such solution which satisfies all of the four following
conditions (adapted from Bacharach 1977):

1. Pareto-optimality (already mentioned); .

2. Interpersonal non-comparability: if one player's
utility function is rescaled, the solution is not affected;

3. Symmetry: if the game is symmetric, the solution
ought to give the players equal payoffs in terms of the sym-
metrizing utility indices;

L., Independence of irrelevant alternatives: adding or sub-
tracting irrelevant alternatives does not change the solution of
the game.
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Such an arbitration solution may be applicable in a

" situation where the players have a clear status quo level egual
to their utilities before the bargaining begins. If not, a more
general model would have to be constructed. Fortunately, Nash
has also provided a general cooperative solution to the two-
person game. The two basic ideas behind this solution are as
follows:

"1l. All cooperative games are in the final analysis non-
cooperative; there is always a latent non-cooperative
game behind the cooperative goings-on.

2. A bargaining game is a cooperative game in which it
is possible to define a determinate rational solution
by exploiting the fact that in a bargaining game the
strategies of the latent non-cooperative game are
singular." (Bacharach 1977)

One attempts therefore to find the latent non-cooperative game,
and then to solve it. (Note: much of. the following derives very
closely from Bacharach 1977, Chapter 5, which gives an excellent
description of two-person and n-person cooperative games.)

Interestingly, this non-cooperative game in the general
case corresponds to the status quo point in the Nash bargaining
case. In this simpler case, "no trade" could be viewed as a threat:
in fact, it is the only threat which either player can impose on the
other. Thus, the status-quo point is also the unigque threat point
in this case. In the Nash cooperative solution, this simple
threat point is no longer fixed. Each player has a range of
threats which he could impose on his opponent. If Players 1 and
2 choose threats t, and t, , and the resulting payoffs would be
v; and v, , then (v, ,v, ) may be considered the "status quo" of
a pseudo-bargaining game defined by threats t; and t2. This game

may be solved as if it were a typical Nash bargaining game, and
thereby it has a unique solution. All that remains is to determine
what the optimal threats t; and tz should be. Fortunately, this
threat game is non-cooperative--it is indeed the latent non-cooper-

ative game underlying the original cooperative game. Bacharach
concludes:
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"Nash shows that the present game--the general multi-threat
cooperative game metamorphosed into non-cooperative form--
always has as one of its equilibrium pairs a pair
((ti*,d,%*),(ta*,d2%*)) in which the demands 4, ¥, d,%* con-
stitute the Nash solution of the bargaining game whose
status quo is given by t%*, t,%#! Nash takes this starred
equilibrium pair to be his solution of the cooperative
game." (Bacharach 1977)

‘ Incidentally, Nash's solution suggests that the threats
should never be carried out. Under complete information and
assumptions of rational behaviour, players would never carry out
the threats because the agreed-upon demands d;¥* and d,* could
not by definition make either player any worse off than had the
threat been carried out.

Solutions for n Players: the Core Solution

The Nash cooperative solution is applicable in the two-
player case, Considering more than two players increases the
complexity of the game immensely as players may team up and form
factions in many different ways. The core solution method is
one of the easiest to apply to an n-person cooperative game and
is discussed first.

To understand the "core" solution concept, the term
imputation must be introduced. "An imputation is a utility
distribution exhausting the worth of (a) coalition and assigning
to each player at least the amount that he can guarantee for him-
self without cooperation" (S & S 1980). Thus, the actual payoff
to each player as a result of the coalition will be one of the
possible imputations, and will depend on the bargaining power and

behaviour of the players involved. Now "the core of a game...is
defined as a set of imputations (which)...are not dominated via
any coalition" (S & S 1980). Thus, if the core is non-empty, one
of its members is likely to be the cooperative solution (i.e.,

the "split" of payoffs agreed upon by all players in the coali-
tion). The core is best illustrated by numerical example. Figure
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2.15 lists a game in characteristic function form. If the players
are rational, they will not enter a coalition unless they can
assure themselves of at least the payoff each can obtain indi-
vidually (i.e., the security level); hence, all of the following
inequalities must hold:

a,+ ax Z 2;

a; + az Z 2;

az+ az =z 2;

a,+ ax + a.,= 6.
All imputations that can satisfy these inequalities are therefore
in the core: it is easily verified that there are many such impu-
tations: (2, 3, 1), for example (see Shubik 1972b).

v(1l)= v(2)= v(3)=0 ' : FIGURE 2.15
v(1l,2)=v(1,3)=v(2,3)= 2; Source: Shubik (1972b),
v(1,2,3)=6. p. P-51

S oo

-

Bacharach (1977) summarizes the above considerations into
a three-part definition of the core, which he views as a "genera-
lized (von Neumann-llorgenstern) solution set":

"1. (Pareto-optimality) The group must receive at least
its security level...

2. Each individual must receive at least his security
level...(and)

3. Each coalition must receive at least its security level."
(Bacharach 1977)
The similarity to the von Neumann-Morgenstern principle becomes
clear: "The principle of rationality...--that a decision-unit
should never accept less than its noncooperative security level--
is by no means new. All that is new is the application of this
idea to decision-units of arbitrary size." (Bacharach 1977) That
is the implication, at any rate, of part 3 of the abovementioned
definition. '
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Many games have an empty core. If the second condition
of Figure 2.15 were replaced by

v(1,2)=v(1,3)=v(2,3) = 5,

it can be shown that no division of the six "utils" could satisfy
all players at once. In such a situation, other solution concepts
must be applied. Among these are: stable sets, the Shapley value,
and the bargaining set.

Stable Sets

The stable sets solution, or von Neumann-Morgenstern
solution is sometimes applicable and is based on the notions of
internal and external stability. "Consider a set of imputations

= ((X3, Xz,¢++, Xn)) with the following properties:

1. No imputation in J dominates any other imputation in
J ('internal stability');

2. If x is an imputation not in J, then there exists at
least one imputation in J which dominates x ('external stability').
Such a set of imputations constitutes (a stable set)" (Rapcport
1970). Using an example again to illustrate, consider the game in
Figure 2.16.

1 v(ﬁ)?=? by v(3) FIGURE 2.16
v =-2; v(2)=-4; v(3)= - ,
v(2,3)=2; v(1,3)=4; v(1,2)=1 Source: Rapoport

v(1,2,3)= (1970), p. 97.

It can be shown that the set of imputations J where x,=-3
and x, + x5 =3 (x, and x,2 0) possess internal and external stability
and thus constitute a stable set, as does the set J' where X3= -1.5
and x, + Xz= -1.5 (see discussion in Rapoport 1970, pp. 97 - 98).
Thus, a game may have more than one stable set.



The Shapley Value

The Shapley value concept, unlike the stable sets method,
finds a unique distribution of the payoffs. Again, the starting
point of the analysis is the characteristic function form of the
game. An axiomatic development is given by Shapley (see Cwen 1968,
p. 180) which shall not be reproduced here. Rather, it is easier
to follow Shubik's simplified explanation:

"The value is calculated by considering all of the different
ways in which a player might enter a coalition. ZEach player
is assigned the increment of wealth that his presence brings
to the coalition...All of the increments for each player (are
summed)...and (arranged) over all of the coalitions. In
other words, the value is a measure of the average incre-
mental worth of each individuwal." (Shubik 1972b, p. P-51)

Consider the game of Figure 2.17. Also, assume that all
orders of forming coalitions are equally probable; 1i.e., the event
"P2 joins Pl first, then P3 joins the coalition" has a probability
(1/6), as does each other possible permutation.

v(1) = v ?:?' (3) FIGURE 2.17
1 O M 1; vi3)=1; Source: =apoport
V(Z 3) : §1 3%-2.' L”; V(l,2)=5; (1970)’ D. 106

Now, all the increments (values added) gained through
joining coalitions are calculated for each player. In this example,
Pl has probability (1/3) of joining an empty coalition (i.e., being
first in). The incremental value here is v(1) - v(g) = 0. He has a
(1/6) probability of joining P2, a (1/6) probability of joining P3,
and a (1/3) probability of joining the coalition P2-P3. The cor-
responding incremental values are, respectively,
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Player 1's Shapley value is therefore
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(1/3)(0) + (1/6)(4) + (1/6)(3) + (1/3)(13) = 5.5.
The other players' values are calculated similarly as
v(P2) = 5.5; v(P3) = 5.

Note that the sum of the Shapley values equals the value of the
"orand coalition" which is 16. (See Rapoport 1970, pp. 106 - 108.)

The Shapley value method thus yields a unique imputation
(in this case, (5.5, 5.5, 5)) which gives an indication of the
relative strengths of the bargaining positions of the players.
This solution concept "has built into it a certain equity princi-
ple...(and) might therefore be a strong contender for the status
of a 'normative' solution; i.e., one which 'rational players'
ought to accept." (Rapoport 1970)

- The Bargaining Set

The bargaining set, which is only mentioned in passing here,
is "the set of all individually rational payoff configurations
in which no player has a justified objection against any other
member of the same coalition" (Rapoport 1970, p. 119). Points in
the bargaining set possess "a certain form of stability or bargain-
ing stalemate" (Shubik 1972b, p. P-51). Further details are given
in Chapter 6 of Rapoport (1970).

This discussion shows that there are a number of ways in
which cooperative behaviour may be modelled. 1In an oligopoly
situation, cooperation (as collusion) is illegal. However, collu-
sive solutions are determined for both industries in the empirical-
results chapters. This study neither recommends the use of such
strategies in real-life situations, nor implies that such beha-
viour actually exists. Nevertheless, it is instructive to com-
pare the results obtained by the various noncooperative solution
concepts to that which could be attained allowing cooperation, to
determine how much of an improvement (if any) could be achieved.
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RATICONALITY AND THE MINIMAX THEOREHM

Rationality Reexamined

Up until now the assumption has been made that all players
act "rationally", which is taken to mean that they "maximize the
minimum possible gain" or "maximize the security level". The
Minimax Principle may be applied extensively to find equilibrium
strategies in situations of "rational behaviour".. However, as -

Shubik points out,

"('Game theory man') has no personality; he really does
not learn anything or change his opinion in the course
of play. He invariably knows all of the rules of the
gdme; he usually is able to compute and calculate accu-
rately at great speed. He is assumed always to know
what he wants and to know what the others want." (Shubik

1972b, p. P-52)

Clearly it is time to return to the unanswered question
asked earlier in the chapter: how in fact should rationality be
defined? Even neglecting the possibility of cooperation among
players, there are a number of conceivable alternative behavioural
patterns which may or may not result in the attainment of the so-
called minimax equilibrium point. The players may be "sadistically
minded” and seek to do as much damage to their opponents as possible
(presumably without ruining themselves in doing so). Or the play-
ers may play a "cut-throat" game where what matters is not how
well they do, but how much better they do than their opponents
(this is seen in industry where firms strive to "beat the average"
industry profit or market share). Other alternatives are also
possible (see Shubik and Levitan 1980, and also the last parts
of this chapter).

Evidently potential difficulties may arise from the implicit
assumption that the Minimax Principle governs players' actions,
or the equivalent assumption that players who do not seek to maxi-
mize their security level are acting irrationally.
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Bacharach (1977) regards the stringent limitations caused
by strict adherence to the Minimax Principle as one of the "so-
called failure(s) of game theory".

"It is possible that the theory has selected the wrong
criteria for deciding what is to count as 'rational’,
and thus as a solution...the reader must judge for him-
self in the end. What constitutes rational choice is
evidently a question a priori; it belongs to philosophy.
It certainly cannot be answered by game theory itself,
whose results are arrived at by deductive arguments
starting from criteria of rationality which have the

. status of postulates" (Bacharach 1977).

It is necessary, therefore, to take one further step
before a useful application of game theory (especially to the
oligopoly) can be developed; that is, to acknowledge the exis-
tence of alternate "solution concepts" which correspond to the
various possible behavioural patterns among players, of which
a few have been listed above. Thus, striving to beat-the-average
or to do as much damage as possible to the opponent (or even to
cooperate with him) are no longer seen as "irrational" tehaviour,
but entirely plausible rational alternatives under different
tehavioural assumptions.

Some authors have strived to incorporate further adjust-
ments or improvements to the basic theory. 1In the case of
Kadane and Larkey (1982a; 1982b), the rebuttal they receive from
one of the top game theorists is as enlightening (perhans more
so) as their original suggestion. Basing their work on that
of Savage (1971), they discuss the merits of implementaticn of
subjective probability in game theory analysis. The sutjectivist
viewpoint suggests that the "decision-maker has a subjective
probability opinion with respect to all of the unknown ccntin-
gencies affecting his payoffs" (Kadane and Larkey 1932a).
According to the subjectivist view, the game theorist employs
"rules-of-thumb (in)...forming (his) prior (probabilities) about
(his) opponent's likely behaviour in certain simple game situ-
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ations" (1982a). However, Harsanyi (1982a; 1982b) takes great
exception to such a position. He maintains that game theory's
strength lies in its use of "normative 'solution concepts®' based
on suitable rationality postulates and...(assumptions of players'
actions) in accordance with the relevant solution concept”, and
that the use of subjective methods in assigning priors " (amounts)
to throwing away essential information; viz., the assumption...
that the players will act rationally and will also expect each
other to act rationally." (Harsanyi 1982a). He continues:

"Indeed, their approach would trivialize game theory by
depriving it of its most interesting problem, that of
how to translate the intuitive assumption of mutually
expected rationality into mathematically precise beha-
vioura% forms (solution concepts)." (Harsanyi 1982a,

p. 121).

The disagreement is, as Harsanyi (1982b) puts it, "about
the very foundations of game theory”. The point of Kadane and
Larkey's paper, that "the empirical data...supports the conclu-
sions that opponents tend to be 'actually or potentially
irrational'" is well taken, as is their suggestion that "further
psychological research (be made) on actual behaviour of people
making decisions in game situations" (1982b). However, normative
game theory has been a useful and valuable decision-making model,
as Harsanyi points out.

Additional evidence has also been gathered which would
cast doubt on the usefulness of the Minimax Principle in finding
equilibrium points. Aumann and Maschler (1972) start by stating that
"arguments in favour of (the attainment of an equilibrium pair of
strategies) are sometimes less than convincing." "Taking the simple
game shown in Figure 2.18, the equilibrium strategies are easily
shown to be mixeds (.75, .25) for P1 and (.5, .5) for P2, with a
resulting payoff of (.5, .75). However, to guarantee himself of
a payoff of .5, Pl would be advised to play a non-equilibrium mixed
strategy, namely (.5, .5); similarly, P2 ought to play (.25, .75).
Thus, maximin strategies which are not in equilibrium appear to
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N P2____ . FIGURE 2.18

1,0 ; 0,1 Source: Aumann and
0,3 1,0 Maschler (1972),p. P-55

Pl

be preferred. Aymann and iaschler explain:

"The reason for the curious phenomenon...is that to
achieve equilibrium, each player must play against his
opponent rather than for himself...Each player's equi-
librium strategy depends chiefly on the magnitude of the
entries in the other player's matrix; whereas his maxi-
min strategy depends exclusively on his own matrix" (1972).

They also propose a lengthy example (see original paper)
which illustrates that if a time dimension is ignored in construc-
ting the normal form of a game (e.g., if Stackelberg-type price
leadership is ignored and players are assumed to make price deci-
sions simultaneously), the minimax solution will not necessarily
be the correct one. In their concluding remarks, Aumann and
Maschler acknowledge that previous authors have commented on the
importance of the time gap, especially in the context of cooper-
ative games. However, this example shows that even in the simplest
two-person game with incomplete information, wrong conclusions may
be generated if the time gap is not taken into account, or if other
behavioural tendencies are ignored.

Other Caveats to Game Theory

Aumann and Maschler have warned about the problems inherent
in accepting the behavioural assumptions of the Minimax Principle
at face value. Shubik (1975) lists additional precautions which
must be taken to ascertain whether a game-theoretic approach is
justified at all in a particular modelling situation. He describes,
in fact, five difficulties which may arise in the process of model-
ling strategies and behaviours of players by a game.

1. The definition of rules and problems of wording and
coding. Although strategies of play are easy to describe (or pre-
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scribe, given certain circumstances), other elements of play such
as verbal communication between players may be difficult to code
and therefore difficult to model.

2. The definition of rules, the meaning of rationality,

and problems of information and data processing ability. It has

been shown that "rationality" can have various meanings, depending
upon the players and the industry. Furthermore, what is "rational"
under incomplete information (or perhaps too much information!)
may be quite irrational under other assumptions.

. 3. The specification of payoffs, goals, and motivation.
It is possible that non-numeric goals or payoffs are more important,

in some circumstances, than the cell entries in a game matrix.
This again depends upon the nature of the players involved, and
what motivates them to play the game as they do.

4, The meaning of rationality and the concepts of solution
for multiperson games. Individual rationality and collective or
"social™ rationality are not necessarily consistent. "The dif-

Terent attempts to define a solution to an n-person, non-constant-
sun game amount to suggesting different criteria for social rational-
ity if they are offered as normative solutions" (Shubik 1975).

5. The specification of players as individuals or groups.
Difficulties may arise when considering the role of the indi-
vidual players as elements of a bureaucracy. Indeed, the struc-
tured firm or group may itself be the "player". Such distinctions
are not made explicit in a simple game-theoretic model.

In this study, the definition of what is "rational" given
the intentions of the players, and the specification of motivation
and payoffs (points 2 and 4) are potential trouble areas. Part 1
of Chapfer 5 discusses in detail the importance of careful selection
of payoff variables and addresses the issue of strategies versus
behavioural intentions.
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GAME THEORY AND THE OLIGOPOLY

The first section of this chapter described the scope
of 'game theory and introduced its application in economics. Now
that some of the fundamental concepts of game theory have been
exposed in detail, it is time to return to the game-theory
representation of the oligopoly.

The Oligopoly: Theoretical Background

Neoclassical economic theorists have strived to model
the behaviour of each of the elements in the exchange process:
the consumer and the firm. The consumer is thought of as
attempting to maximize his level of utility derived from the
purchase of products, subject to his income constraint. The
behaviour of the firm depends upon the competitive nature of the
industry it is part of: in this section, the oligopoly (and its
special two-firm case, the duopoly) will be examined.

Gould and Ferguson (1980) define the oligopoly as the
situation where "more than one seller is in the market but
(where) the number is not so large as to render negligible the
contributions of each"; also, in oligopoly and duopoly, "each
firm must almost surely recognize that its actions affect the
rival firm, which will react accordingly"(1980). It is possible
to test mathematically for the extent of influence of Firm A's
strategies on Firm B's sales by taking partial derivatives.

"If the influence of one seller's quantity decision upon the
profit of another, 3T i/d7j, is...of a noticeable order of mag-
nitude, (the industry) is duopolistic or oligopolistic...The
essential distinguishing feature (of the oligopoly) is the inter-
dependence of the various sellers' actions" (Henderson and

Quandt 1980). Econometric techniques may be used to estimate the
extent of such influences.
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How, though, can the various actions and reactions of the
competitors in an oligopoly be modelled, predicted, or explained?
Evidently "there is a very large number of possible reaction
patterns for duopolistic and oligopolistic markets, and as a
result there is a very large number of theories of duopoly and
- 0ligopoly." (Hendérson and Quandt 1980). Shubik and Levitan (1980)
describe four main branches of oligopoly theory: the mathematical
approach, the institutional approach (historically the two major
branches), a newer, technological-institutional approach (as
exemplified by Scherer 1970), and the behavioural approach (some
of Shubik's (1959a) work may be classified here). The authors'
conclusion indicates the diversity and uncoordinated nature of
the study of oligopoly.

"There is presently no single behavioural theory of the
firm...There is not even a single theory of the profit-
maximizing firm. In general there is no single theory
of oligopoly. There are a host of partially-developed
theories based on a mixture of analysis, insight, and to
a %r§at extent casual observation" (Shubik and Levitan
1980). :

A Game-theoretic Framework: Equilibrium Solution Concepts

As seen before, the classic work Theory of Games by von

Neumann and Morgenstern (1947) was an attempt to model mathe-
matically the behaviour of firms within an oligopoly. By now it
is evident that the particular mode of behaviour suggested by
von Neumann and Morgenstern's Minimax Principle may not zlways
be appropriate. One of the contributions made by Shubik (195%z)
in Strategy and Harket Structure was the explicit consideration

of different solution concepts representing different behavioural
patterns; +this contribution was returned to and expanded in
Shubik and Levitan (1980) and is a focal point of this paper.

First, consider the case of the duopoly where the quantity
produced is the only controllable variable. Shubik (1959a) illust-
rates four possible solution concepts in this situation.
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In the Cournot solution, the possibility of collusion
(explicit or implicit) is ruled out. Each producer operates
believing that the other will not change his current output level.
Under this assumption, each firm maximizes profit by adjusting its
output quantity accordingly. (For more information, see Henderson
and Quandt 1980.) The dynamic (through-time) interpretation of
this concept suggests that an equilibrium point may be found by
solving the equations |

o P,
1= o, i=(1,2), P.=> 0
dq. 1
i
simultaneously, where Pi= profit of Firm i, and q; = output. The

nature of the Cournot solution concept is such that read justment
after readjustment occurs until an equilibrium point is reached.
A variant of this solution concept is the Stackelberg solution,

where one firm is taken as the market leader and the other firm
ad justs its production level to the profit-maximizing quantity,
given this additional information: +this concept will be examined
again later. ‘

Another solution concept is called the joint maximal (or

Von Neumann-Morgenstern) solution. Here, “"the market situation is
treated as a two-person, zero-sum, cooperative game. It is assumed
that the two firms will cooperate in such a manner as to maximize
joint profits" (Shubik 1959a2). The two firms then "settle" or
divide the total take by using side payments, the amount of which

is determined to a great extent by the relative negociating power
of the firms involved. Evidently, points which are joint-maximal
solutions are also Pareto-optimal, as the players could not improve
on their outcome by changing strategies simultaneously.

The Nash cooperative game with side payments solution is

similar to the above, except that "the side payments are now deter-
mined by evaluating the threats of the duopolists in order to
determine a point from which they should agree to work out a 'fair



- 46 -

division' of profits" (Shubik 1959a). Here, as before, an abso-
lute joint maximum can be obtained.

Finally, in the Nash cooperative game without side payments,
the assumption is no longer made that unrestricted side payments
are illegal or acceptable. This does not restrict the firms from
reaching the Pareto-optimal surface, but does make attainment of

the absolute joint maximum impossible.

Shubik then further distinguishes among these solution
concepts by considering the relative threat position of each firm.
The outcome of this venture into duopoly theory is that, making
different assumptions about the behaviour of the firms, quantities
such as production rates, profits, joint profits and final market
prices may be calculated (see Shubik 1959a, Chapter 4).

Pricing Strategies for the Duopoly

The Cournot and other solutions described above take
quantity produced as the decision variable. Economists such as
Bertrand and Edgeworth argued that price variation is a more
reasonable strategic variable from an economic point of view. The
solution concepts proposed by these (and other) writers for the
price-variation and price-quantity-variation situations are also
more directly relevant to the marketer making marketing-mix decisions
and will be examined below. (A more complete investigation is found
in Shubik 1959a.) Furthermore, some of the above solution concepts
are capable of being modified into an advertising-expenditure-
variation situation. Various solution concepts proposed for this
situation are also illustrated in the literature (see, for example,
Shubik and Levitan 1980).

The Edgeworth solution is based on the assumptions of
"double idiocy" (each player assumes the other will not change his
price and adjusts his own accordingly) and "contingent demand",
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i.e., the leftover demand for the higher-priced product assuming
that the firm with the lower-priced product cannot meet all demand.
Note that in price variation one must consider the effects of
different demand caused by the different price levels: this effect
was ignored in the Cournot and other earlier solutions. The Edge-
worth solution provides an "Edgeworth range of (price) fluctuation
(rather than a single ideal price, which) depends explicitly upon
the structure of the contingent demand" (Shubik 1959a). However,
Shubik also proves the theorem that "if an Edgeworth duopoly has

a pure strategy equilibrium point, then it must be the efficient
point", the latter being defined as the "point at which the market
demand is just saturated by the quantities offered by the players
at that price" (1959a). 1In other cases, price fluctuations within
the given limits will occur. |

The Bertrand game or price game is characterized by simulta-
neous price decisions by each player. It can be shown that a similar
theorem as above holds for the Bertrand game as well: under certain
circumstances, the efficient point is easily determined zs the only
equilibrium point. However, in this case, one may alsc develor an
economic interpretation of a mixed-strategy equilibrium. "(ilthough)
the market is unstable in the usual sense of economic theory...if
each firm shows that it is willing to vary price in some range, a
more general equilibrium may be established." (Shubik 1$5%a)

Shubik and Tevitan (1980) also describe a price-leader

solution, where price decisions are not necessarily made sinul-
taneously. Although some of the numerical solutions they derive
are admittedly unrealistic, this solution may more adeguately
describe the price-setting behaviour in many industries than a
simultaneous-decision-making solution concept.

This solution has obvious similarities to the Stackelberg
solution, wherein each firm examines its own cost functions and
determines whether it would prefer to act as price leader or follower.
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A disequilibrium occurs when both players would prefer to lead.
Basar and Haurie (1982) illustrate how the Stackelberg solution
may be represented as a "well-defined" game in extensive form.
Given the game of Figure 2.19, with Pl the dominant player, it

is easily shown that Pl will choose strategy 2. It is left for

P2 to maximize his outcome given that he has this information;
thus, he will play Strategy 1 and the circled payoffs will be

the values of the game to the respective players. However, this

- situation can be equally well represented by the matrix (and
corresponding game tree) in Figure 2.20, which makes explicit

the sequential nature of the price-decision process. There is
really nothing new about this representation, as it has been
previously seen in Shubik 1975, e.g. What is notable is that,

if the game is modelled as shown, with each of the price-follower's
strategies made explicit, the Stackelberg price-leadership solution
emerges as one of the equilibria (it may not be the only one, as
other points may be Pareto-optimal; see discussion in an earlier
section).

P2
Nt 2 FIGURE 2.10
1 1,2 0,4 Source: Adapted from
P1 Basar and Haurie (1982)
2{ (1,1 2,0
FIGURE 2.20
Source:r Adapted from
Basar and Haurie (1982)
P2
1,1 1,2 2,1 2,2
1 1,2 1,2 0,4 0,4
Pl

1,1 | 2,0 @ 2,0
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Finally, two cooperative price game solutions are also
conceivable: mixed-strategy and pure-strategy solutions. They
differ from the cooperative quantity-variation games in that
contingent demand must be taken into account. In either case,
side payments are made to entice the players to cooperate; and
the relative threat positions of the players may be a determining
factor in deciding the size of the payment.

The Edgeworth game and the price game may both be extended
into price-quantity games. Additionally, the Cournot (quantity),
Bertrand (price) and price-quantity strategies have all been
extended by Shubik (1959a) to the n-player oligopoly, where n > 2,
The reader is referred to the original work for details.

Mathematical Representations of Solution Concepts

It is useful to categorize the above mentioned solution
concepts into cooperative (e.g., Nash-cooperative, joint-maximal

or cooperative price games) and noncooperative (Cournot, Edge-

worth or Bertrand games) groups. One may also further dis-
tinguish two kinds of noncooperative games: those in which each
player is intent on maximizing his own payoff, and those in which
each player seeks to do the best possible relative to his opponent.
This latter distinction is clarified mathematically. In the first
instance, the solution conditions may be expressed as

max P, (Sl,gz) implies S, =

w1

max P, (§I.Sz) implies S,=
where Pi== payoff to player i

8;= possible actions of player i.
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"These two conditions call for a type of circular stability:
If the first player is aware that the second player is going
to select S,, the first player will select S,= S, when he
maximizes his own payoff (and vice versa)." (Shubik and
Levitan 1980)

This solution is identical to that described by Shubik (1972b) as
the Nash noncooperative solution (see above).

In the second instance, each player essentially wants to
maximize the "spread"” between his payoff and his opponent's: i.e.,
to "maximize the difference between the scores". Mathematically,
this behaviour is given by

ﬁix. %i? [(Pl(sl,sz) - PZ(Sl'SZ))
Shubik and Levitan stress that this behaviour is diametrically
opposed to joint maximization. Rather than looking after each

other's welfare, each player tries to maximize his opponent's
"illfare”. This may be termed the maxmin or cutthroat solution.

An extension of this solution to the n-player oligopoly
(n=2) is the beat-the-average solution. "The idea (here)...is
that each firm looks at the rest of the market in aggregate and
asks itself: 'Am I doing better than the average?'" (Shubik and
Levitan 1980). Evidently this solution is most appropriate when

the firms in question are of approximately equal size. This
solution has the mathematical expression

1 jé;
maX [Pi(sl'SZ’ L '] '] Sn) - -~ Pj(slgsz, s e o0 ,Sn)

Si n -1 j#1

for all i. This expression reduces to the cutthroat solution when
n=—2., Maximization of profit share (and, with certain caveats, also
market-share maximization) may be approximated by beat-the-average
behaviour. |
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Therefore, solutions to noh-cooperative games may be
mathematically expressed as maximin, beat-the-average, or payoff-
maximization solutions. The mathematical representation of a
joint-maximal (cooperative) game is

max max Pl(Sl,Sz) + Pz(Sl,Sz) .
S Sy

These are the major situations to be considered, although
Shubik and Levitan illustrate how other (possibly less-likely)
behavioural situations may also be mathematically represented.
For example, the case where each player is sadistic and intent
on doing as much damage as possible may be represented by

min [PZ(SI'SZ)] : min [%1(31'82{] .
S| Sz

This section (and the preceding one) have focused on price
as the decision variable; thus the solutions obtained represent
price (or price-quantity) strategies. Shubik and Levitan provide
advertising-expenditure strategies as well (1980, pp. 194 - 197).
They are similar in concept to the joint-maximization, pure-strategy
noncooperative equilibrium, and beat-the-average price solutions
and will not be discussed at length here,

Clearly the number of possible game representations is
quite large. The above section indicated that the different beha-
vioural possibilities lead to the development of different mathe-
matical representations. Similarly, the behavioural alternatives
may in some cases manifest themselves as different matrix solutions.
Shubik and Levitan (1980) propose a step-by-step development of the
determination of market behaviour through the analysis of the normal-
form game matrix. Their investigation merits careful consideration
as it serves as the theoretical base for the development of the
general analytic model proposed in Chapter 4 (despite the philo-
sophical question raised in Chapter 1).
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Determination of Market Behaviour

Examine the payoff matrix of Figure 2.2la. The minimax
solution to this game is (6,4). However, what behavioural pattern
would have led to this solution? The cooperative equilibrium point
is clearly (6,4), as the sum of the payoffs is maximized. However,
if each player makes his choice on purely selfish grounds (non-
cooperative), each player will always choose his second strategy,
leading again to the (6,4) payoff. And if each player plays
“cutthroat" (i.e., maximizes the minimum difference in payoffs),
again equilibrium is reached at (6,4). "If such a market actually
exists, all forms of behaviour previously described are indistinguish-
able." (Shubik and Levitan 1980).

P2 P2
1 2 1 2
FIGURE 2.21
1121 | 24 11 5.5 0,2 | source: Shubik and
Pl Pl Levitan (1980),
2| 6,1 | 6.4 2| 2,0 | -3,-3] P %
(a) (b)

Now consider the game of Figure 2.21b. Here, cooperative
and noncooperative (joint-payoff-maximizing) behaviour both lead to
payoffs of 5 and 5. However, if both firms play cutthroat, the
resulting payoffs would be (-3, -3). If only one player tries to
do the other in, one of the other elements of the matrix will give
the corresponding payoffs. In this case, one form of behaviour
(maxmin or cutthroat) can be distinguished from the others. In a
larger-than-two-player oligopoly, the beat-the-average solution
would correspond to cutthroat behaviour.

It is also possible to construct a game wherein the cut-
throat and noncooperative solutions are identical, while the joint-
maximal solution is different; see Figure 2.22a. In this matrix,
payoffs may be interpreted as expected returns to each firm. Stra-
tegy 2 here may represent a commitment to heavy advertising or
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product-innovation expenditure. The matrix shows that if only one
firm commits itself to advertising or R & D, it gains an advantage
over the other; but if both firms commit themselves the payoff to
each is slightly lower than had the status quo been maintained (a
reasonable result if short-term profit is taken as the returns
variable).

"If both firms are *peaceful', they can each make a profit
of 10, However, there is the possibility of an extra
profit, some of which may be obtained by getting a larger
market share, for a firm that is willing to lead in sales
or innovation. The firm (thereby)...at least...increases
its profit expectation.” ({Shubik and Levitan 1980).

The reader can verify that the joint-maximization solution is
(10,10), whereas both noncooperative and cutthroat behaviours lead

to (7,7).

Pz Pz FIGURE 2.22
N 1 2 1 2 Source: Shubik and
1 10,10 6,12 1 2,1 3,0 Ievitan (1980),
P1 2 12.6 7.7 Pl 2| 1,2 N, -1 pp. 46 - 47,

(a) (b)

In the game of Figure 2.22b, the noncooperative and cut-
throat behaviour solutions are also identical: payoff (2,1). Note
however in this case that if the piayers choose to cooperate, none
of the four possible combinations is preferred as all yield the
same total payoff.

Finally, consider the game of Figure 2.23. Here, the joint-
maximal solution is (5,5), the cutthroat solution is (-3,-3), and
two noncooperative solutions are found: (-3,-3) and (2,2). "In
this market, it is always possible to distinguish between completely
cooperative behaviour and the others by observing the outcome. It
is sometimes possible to distinguish between noncooperative competi-
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tion and the rest depending upon which strategies are employed"
(Shubik and Levitan 1980, p. 48).

The matrix representation of a game is richer in information,
then, than one may be led to believe in considering simple game theory.
The "equilibrium points" discussed above for noncooperative games are
just that--they are applicable when noncooperative behaviour patterns
are predominant in the industry. Furthermore, the term "noncoopera-
tive" has taken on a more focused definition: in this section, its
usage has essentially been limited to payoff-mzximizing behavicur,
clearly distinguishable in definition from cutthroat (maxmin) beha-
viour. Cooperative solutions had been previously determined in
characteristic function form: this section has shown how a normal-
form analogue can be applied to find the solution to a game matrix
under cooperative behaviour.

Further work by Shubik has also examined the oligopoly from
a game-theory point of view. Nti and Shubik (1981) have investigated
the issue of entry costs into an oligopoly using a game-theoretic
model with price and quantity as the decision variables.
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The above discussion, then, summarizes the developments
leading up to the market behavioural model of Shubik and Levitan:
behavioural solution concepts may be represented mathematically
and thereby lead to the selection of certain strategies. It is
as this point that development of the theoretical model of this
paper begins: Chapter 4 picks up this development. Additionally,
Chapter 1 referred to an important philosophical difference
between Shubik and Levitan's viewpoint and that of this study:
this difference is clarified in Chapter 5. It has been the ain
of this last section to demonstrate how Shubik and Levitan's game-
theoretical oligopoly model derives directly from the consideration
of behavioural alternatives and their mathematical representations.

Before turning to the theoretical model, the other
literature branch relevant to this study is examined: nanely,
econometric modelling of pricing and advertising response and
related topics.



CHAPTER 3
LITERATURE SURVEY: ECONOMETRIC MODELLING

MODELLING MARKETING-MIX EFFECTS

The literature on the econometric modelling of sales or
market-share response to adjustments in price or advertising
expenditure is large and varied. The theoretical and empirical
models are too numerous to be all adequately discussed here. Resul-
tingly, this discussion of the historical development of marketing-
mix models is restricted to highlighted articles and to models which
will be employed in the upcoming section describing the theoretical
model of this paper. The chapter is organized as follows: theoretical
models, empirical econometric models, stochastic models, and pricing
considerations. "Quasi-game-theoretic" approaches to pricing and
advertising are also illustrated. A framework similar to that of
Sethi (1977) is used to organize and present the relevant theoretical
models,

Advertising in Oligopoly Theory

One often sees a tendency in neoclassical microeconomic
theory to treat price and quantity offered as the only variables to
consider. Complex market models are developed which essentially
allow the individual firms to make decisions on only a) whether they
choose to enter into, or exit from, the industry, and b) what price
they choose to set; in pure competition, of course, even this
second decision is never taken by the firm, but prices are instead
dictated by industry conditions.

As Shubik and Levitan (1980) rightly point out, there are
a number of "weapons in the arsenal" available to firms or producers
in the real world: these "weapons" are those strategic elements
which forms may take decisions upon, and include "distribution and
retailing; legal and institutional factors; production problems;
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advertising; public relations;...(and) consumer-information acti-~
vities™ (19380).

Clearly, firms can use advertising (and other elements) as
weapons of competition as well as price. In classical oligopoly
theory, advertising may be modelled "as a cost and as a method for
changing demand" (Shubik 1959a) which evidently is not the whole
picture. For one thing, the effects of advertising (as shall be
seen in succeeding sections) may be extremely complex and difficult
to model or even to understand at times. Secondly, there may be
more than one kind of advertising effect as well: Shubik (195%a),
using Chamberlin's terms, describes two classes of advertising:
manipulative and informative, and argues convincingly that it is
very difficult to distinguish between the two.

"...We have been unable to formulate an operational
distinction between the two (classes) because we do not
know what we mean by rational or economic action in situ-
ations involving incomplete information. What is manipu-
lative and what is informative is open to question.”
(Shubik 1959a) '

Thirdly, the distinction between advertising and other marketing-
mix elements (public relations, for example) is not always clear.
Quantitative analysis may thus be hindered, as the analyst may
have difficulty determining which expenses should be allocated to
advertising, and which to other marketing efforts.

Just as there are at least two classes of advertising,
there are at least two possible general opinions of advertising
effects., Informative advertising may have educational value,
thus making people aware of new products. Borrowing from social
psychologists, marketers know of the role which advertising plays
in the learning process with respect to products or brands. Zco-
nomists maykargue that advertising provides an "external economny"
to customers. "After all, information and advice in many arezs
have a cost attached" (Shubik and ILevitan 1980).
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Detractors of advertising argue that it may be unnecessary
or wasteful, "and not needed at all in a highly educated and
'rational' community. (However, these) opponents of advertising...
are referring implicitly to a world of complete information" (Shubik
1959a). Even when situations of incomplete or imperfect information
exist, advertising which misleads rather than informs may be used
to rectify the information gaps. "“The aid to the consumer given
by (some advertising) statements is rather dubious, yet it is
interesting to note that the value of supplying additional irrele-
vant, though correct, information is recognized in advertising"

(1959a).

This introduction is meant to forewarn the reader to some
of the difficulties inherent in the quantitative analysis of
advertising effects, as well as to highlight their importance.
"Features (such as advertising expenditures) considered merely
frictions that do not matter in the long run by many economists
have now been regarded as important. Abstract analysis is no
substitute for knowledge of the institutional and technological
facts of the business being analyzed" (Shubik and Levitan 1980,

p. 191). The rest of this chapter investigates the methods applied
over the years by various analysts and econometricians in search

of industry models which capture some of these "micro-micro"-level
advertising and pricing effects.

Note: the special attention paid to price and advertising
in this chapter does not imply that other marketing (or even non-
marketing) decision variables are irrelevant. However, these are
the major marketing decision variables used by the firms under
analysis in this study, and a review of the literature on sales
response to these particular variables is thereby appropriate.
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ADVERTISING CAPITAL MODEIS

Empirical analyses such as those of Palda (1964), Tull
(1965) and Kuehn, Mc Guire and Weiss (1966) indicate the presence
of a carryover advertising effect; that is, as one might expect,
the effect of advertising on sales persists through time, lessening
as time goes by. It is believed, then, "that advertising expendi-
tures affect the present and future demand for the product and,
hence, the present and future net revenue of the firm which adver-
tises"” (Sethi 1977). Some analysts have chosen to represent the
carryover advertising effect with a capital model, where the adver-
tisihg capital (or goodwill) is increased "by adding new customers
or by altering the tastes and preferences of consumers and thus
changing the shape of the demand curve as well as shifting it"
(1977). The goodwill can decrease or depreciate as time passes
due to brand-switching to competitors' brands, competitive adver-
tising, the entry of new brands to the marketplace, and so on.

A major early advertising-capital model is that of Nerlove
and Arrow (1962). They begin with an earlier model, that of
Dorfman and Steiner (1954), who maximized net revenue for a firm
where: "(a) price and advertising expenditures are the only variables
affecting the demand for the product; (b) current advertising
expenditures do not affect the future demand for the product; and
(c) the decision-maker is a monopolist who can determine both
price and advertising expenditures" (Nerlove and Arrow 1962). Their
model relaxes condition (b); that is, by specifically incorporating
the carryover effect of advertising, they have introduced a dynamic
component to the Dorfman-Steiner model.

In their model, "goodwill, a stock related to the flow of
current advertising expenditures...depreciates at a constant pro-
portional rate 9d, and...the future is discounted at a constant
rate of interest, X" (1962). If u is the current advertising expen-
diture, then the net addition to goodwill due to advertising
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investment A is

A=u - JA;

or, "the net investment in goodwill is the difference between
gross investment...and depreciation" (Sethi 1977).

Nerlove and Arrow use the calculus of variations to
determine optimal prices and advertising (goodwill) levels; the
reader is referred to the 1962 article or to Sethi (1977) for
numerical details. The major conclusions, however, are as follows:
*. ..changes in « and d affect the optimal goodwill (advertising
expenditure) in the same way" (1962); also, “"the ratio of goodwill
to sales revenue is directly proportional to the goodwill elasti-
city and inversely proportional to the price elasticity" (Sethi
1977), among other factors. Optimal stationary equilibrium is
also calculated for the long run.

The Nerlove-Arrow advertising capital model lends itself
to extension and generalization to situations of (a) stochastic
fluctuations in goodwill (Tapiero 1975a) and (b) uncertainty
(Tapiero 1979). Some of these considerations are revisited below
in a section on stochastic models.

The carryover advertising effect on sales is an important
consideration in the theoretical model and empirical analyses of
this study. Chapter 4 indicates a number of different approaches
by which lagged effects may be modelled, and Chapter 5 indicates
the scenarios in which each would be preferred. One of these,
the goodwill approach, is based on Nerlove and Arrov's advertising
capital model.

. Vhereas Nerlove and Arrow relaxed condition (b) of the
Dorfman and Steiner (1954) model, ILambin, Naert and Bultez (1975)
relaxed condition (c); that is, they considered the case of the
oligopoly. They also examined the distinction between direct
and indirect (multiple) reactions ("for example, a competitor
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may react to a change in price not just by changing his price, but
also by changing his advertising and possibly other marketing
instruments as well") (Lambin 1976). Their approach involves the
construction of a reaction matrix such as that appearing in
Figure 3.1.

2
\ Price Adv. FIGURE 3.1
Price r}P P l} - Source: Lilien and
1 ' 12 172 Kotler (1933),
. p. 667.
Adv. r}
Ale r}AlAZ

The entries in this figure are elasticities, defined as follows:

r)XY = percentage change in X resulting from a 1% change in Y.

Thus, r}mpz.ixﬂicates how strongly Firm 1's price is affected by
Firm 2's price, and so on.

These elasticities may be estimated using equations of
the following formn:

In P, == a, + 13 InP, + 13 In A
1 1 ip.P, 2 r}PlA2 2
In A

i

a. + A In P, + A In A
1 2 }Alpz 2 A4, 2

where the "hats" indicate estimated parameters (see Lilien and
Kotler 1983). The relevance of such a model to the present work
is clear in that the reaction matrix may be used to describe the
strategic decisions which have been taken through time by the
competitors (i.e., a significant Qth indicates that Firm 2's
price levels do affect price levels set by Firm 1). The reaction
matrix, then, is one way of representing the strategic interplay
among firms. The game matrices to be developed herein, on the
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other hand, use payoffs (rather than elasticities) as the entries;
but the intent is still to represent strategic interplay in
tabular form.

- Lambin et. al. also determine optimal marketing mixes for
the participants in an oligopoly, under conditions of both expan-
sible and non-expansible industry demand (see Lambin, Naert and
Bultez 1975 and ILambin 1976). Additionally, they show that the
Dorfman-Steiner model itself may be viewed as a special case of
their model (see discussion in Lilien and Kotler 1983). It should
also be noted that in the dynamic extensions of the optimality
equations, Lambin (1976) chooses a distributed-lag model based on
geometrically-declining weights to represent the carryover effect
of advertising, and also proposes the use of the Koyck (1954)
transformation. The Koyck carryover approach used in this study
(discussed in detail later) is similar to that proposed by Lambin
in his study of over 100 European branded goods (1976).

-SATES-ADVERTISING RESPONSE IODELS

In this class of models, the carryover effect of adver-
tising is not represented by a fluctuating stock of advertising
capital or goodwill. 1Instead, this "effect is modelled expli-
citly to obtain a direct relation between sales and advertising
in the form of a differential or difference equation" (Sethi

1977).

The operations-research study of Vidale and Wolfe (1957)
is one of the important early sales response models. They begin
by posing three questions of significance to marketers vhich mzy
be answered using quantitative means:
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"1, How does one evaluate the effectiveness of an advertising
campaign?
2. How should the advertising budget be allocated among
different products and media?
3. What criteria determine the size of the advertising
budget?" (1957)

The answers to these questions (especially the latter two)
can only be found if the effectiveness of advertising in improving
sales is better understood. With a series of controlled experiments,
they determined three parameters which appear to modify the effect of
advertising on sales-- the sales decay constant, the saturation level,
and the response constant: these parameters make up the basis of
their theoretical model. The sales decay constant repraesents the
"decrease (in sales) because of product obsolescence, competing
advertising, etc. (in the situation where the firm halts all adver-
tising expenditure). Under relatively constant market conditions, the
rate of decrease is, in general, constant: that is, a constant
percent of sales is lost each year" (1957). This constant, then,
represents the carryover effect of advertising. The saturation level
indicates the amount of sales which no amount of advertising could
greatly improve upon. The response constant is defined as "the sales
generated per advertising dollar when S (the sales level)=0" (1957).
It is incorporated to take into account product-to-product differ-
ences in sales behaviour. The mathematical model Vidale and Wolfe
presented and tested was '

&= rAM®) (M-s)/M-as,

where S = sales level at time t,
A(t) = advertising expenditure,
r = response constant,
A= sales decay constant,
M= saturation level.
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Note that the concept of a sales saturation level implies dimini-
shing returns to advertising (see Sethi 1977).

Despite the simple nature of their model, Vidale and Wolfe
claim that "it has proven useful in the analysis of advertising
campaigns" (1957). Further empirical studies have made major refine-
ments to the model such as the introduction of simultaneous-equation
techniques and the analysis of elasticities and cross-elasticities:
the upcoming section on econometric modelling investigates these
improvements. Furthermore, Saseini (1971) and Sethi (1973, 1974)
have offered optimal-control extensions of the basic model, and
Tapiero (1975b) has presented a stochastic generalization. This last
paper will be further discussed later.

Developers of more recent theoretical models have borrowed
from the contributions of both early theorists and econometricians.
An interesting model of new-product diffusion is proposed by Dodson
and Muller (1978). 1In it, the effects of different information
sources (advertising and word-of-mouth) on purchase are modelled, as
are repeat-purchase trends. In their model, the market at time t is
said to be made up of three types of people: "(those) who are unaware
of the existence of the product;...potential customers who are aware
of the product but have not yet purchased it; and...current customers
who have purchased the product." (Dodson and Muller, 1978) The authors
then propose a general model comprising three equations and showWw how
it would be modified in specific cases. What is perhaps most inter-
esting about this model is that Dodson and Muller demonstrate that
both the Vidale-Wolfe and the Nerlove-Arrow models are special cases
of their model. If trial and repurchase rates are equal, and word-
of-mouth effects are zero, then the Dodson-Muller model for repeat
sales simplifies to

ds(t) = (YN - S(t)) - $s(t),
at
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where
S(t) = sales at time t,
¢==the rate of brand switching,
M and 5‘= advertising effedts, and
N = size of the market.

Note the similarity between this equation and that which was
proposed by Vidale and Wolfe (see above).

In the econometric-modelling section below, Palda's (1964)
empirical model will be discussed. Dodson and Muller point out
that Horsky (1977) had already demonstrated the equivalence between
Palda's empirical model and the theoretical model of Vidale and
Wolfe; +thus, they claim that their model may be considered a
generalization of the Palda model as well.

Finally, to obtain the equivalence between the Dodson-Muller
and the Nerlove-~Arrow models, one must make two further substi-
tutions in the original form of the Dodson-Muller equation. These
ad justments result in the revised form

_b_gjﬂ.. - I(t) - (T)G('t)

ot
where
I(t) = investment in goodwill and
G(t) = amount in goodwill account.

Note that this expression states the Nerlove-Arrow proposition
mathematically: i.e., the overall change in goodwill over time
results from the increase due to investment in advertising and
the decrease due to loss of sales to other brands.
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Subsequent to Vidale and Wolfe's theoretical model,
a number of econometric sales- and market-share-response models
have been proposed and estimated in the literature. The empi-
rical econometric models literature has a twofold effect on this
study. First, the models estimated herein are similar in form
to those of Weiss (1968) or Jagpal et. al. (1979) (see below),
to name but two. Second, the Koyck and dynamic-ad justment
models, derived theoretically below, inspired alternate approaches
for capturing advertising carryover effects.

EMPIRICAL ECONOMETRIC MODEIS

Classic Models'

Important early sales-response models include those of
Palda (1964) and Telser (1962); while Banks (1961) provides an
early market-share model.

The Palda article was an early attempt to model sales-
adverfising response using a single-regression-equation model.
He used macro sales and advertising data obtained for a pro-
prietary medicine, Lydia Pinkham's Vegetable Compound. The
Pinkham data were especially amenable to economic treatment, as
the product had virtually no competitors and other marketing-mix
elements (e.g., price) were relatively stable through time:
many of the extraneous variables which could cause estimation
difficulties were thereby irrelevant or had negligible effects.

The Banks study (1961) also used a single-equation model
to relate market share of coffee and household cleaners to such
decision variables as price, advertising, sales effort, etc.
Telser's paper (1962) on cigarette advertising was in the same
vein, but with the improvement that advertising elasticities as
well as the nature of the returns to advertising (marginal
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product) were estimated. He accomplished this by proposing

four alternative regression forms for the effect of advertising
on cigarette sales, "(differing) in their implications regarding
the nature of the returns to advertising" (Telser 1962).

Refinements and Improvements

These early efforts encouraged all manner of extensions
and improvements, as econometricians and marketers strived to
apply better estimation procedures and to formulate more real-
istic response models. Some of the noteworthy improvements are
listed below. (Many of the examples cited are presented in more
complete form in Parsons and Schultz 1976.)

Weiss (1968) examined market shares of frequenily-
purchased consumer products and estimated a multiplicative
model, i.e.,

Brand Share = (RP)’S' X (RA)'@?— X e

where

RP= relative prlce, or flrm S price divided by average
industry price;

RA= relative advertising, or firm's advertising expen-
diture divided by average industry advertising level.

An advantage of a multiplicative model such as that of VWeiss

is that the parameters ;i may be interpreted as estimates of
elasticities, which may then be used in subsequent analyses. This
property may be easily demonstrated: +the above equation yields

a margihal productivity of advertising equal to

= O Share - (RP)'G' X /32'(RA)’32 -1
o Adv.

P4y
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and an average productivity equal to

AP gv = —-—-—S};gf;e = (RP)’Gl X (RA)/')'J"]' ,

so that advertising elasticity is

eadv = MPadv = (RP)ﬁ'x /82 (RA)/QZ ~
APjav  (RP)?'x  (Ra)P2!

=B

Similarly, the price elasticity may be shown to be 8,. Thus, the
obtained coefficients have an economic meaning which is a distinct
advantage. Lambin's (1970) market share model including carry-
over brand-share effects was also of this form and provided good
fit.

Kuehn, Mc CGuire and Weiss (1966) made an exteﬁsion to the
simple regression model such that lagged advertising expenditures
were incorporated. They defined "advertising shock" as the impact
of advertising in a specific period, and postulated that it is a
function of last period's advertising shock (carryover effect) and
this period's advertising expenditure. Some form of cumulative
advertising effect is expected. Advertising may not have immediate
effects on purchase behaviour though it may on brand loyalty which
‘may eventually affect purchase behaviour.

A few years later, Montgomery and Silk (1972) estimated the
dynamic effect on market share of the three elements of a "communi-
cations mix" for a particular product (ethical drugs): journal
advertising,'direct mail advertising and samples/literature. To

obtain the dynamic effect, they utilized a distributed lag model.
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This was an improvement on two fronts. Firstly, the effects of

each communications variable on market share individually were
determined and important differences were found among them. Secondly,
the length of the carryover effect of each advertising variable on
market share was estimated by determining the number of significant
parameters in the model. Short-run, intermediate and long-run
elasticities were also calculated for each vehicle.

Bass (1969) was the first to employ simultaneous-equation
regression in sales-response estimation. One of the difficulties of
earlier studies was their inability to reconcile adequately the
"identification prqblem"{- that is, they were inadequate in "identi-
fying the relationship that reflects the influence of sales on adver -
tising, as well as that which reflects advertising's influence on
sales" (Bass 1969). Thus, the simultaneous-equation model was
designed to deal with the "simultaneous nature of the relationship
between sales and advertising...Advertising decision rules, whether
rigid or flexible, certainly account for sales. Therefore, single-
equation regression models cannot adequately identify advertising-
sales and sales-advertising relationships" (Bass 1969).

Bass formed pairs of simultaneous equations made up of one
demand function and one advertising-behaviour equation. From these
efforts, it was possible to obtain, among other things, sales-adver-
tising cross-elasticities; that is, the effect on sales of one
product form of the advertising effort of another. A further benefit
of this approach was that optimal advertising expenditures for each
product were estimated and in fact were found to be very similar to
the actual expenditures. In a followup paper, Bass and Parsons (1969)
extended the model such that it was capable of testing aggregate sales
and advertising data.

By the time Beckwith (1972) published his article on the
multivariate analysis of sales-advertising responses, many authors
(Palda 1964 and Telser 1962 among them) had incorporated sales or
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market-share lag effects into the response function, thereby
accounting for repeat-purchase behaviour. Notable about his
approach, however, is his use of an iterative estimation procedure
(IZEF) and of a two stage estimator (ZEF), both defined earlier by
Zellner. He argues that both "are generally more efficient than OLS
(ordinary least squares)...the OLS estimators are not usually the
most efficient...unless the disturbances...are uncorrelated between
brands.” (Beckwith 1972). In any case, Beckwith's equation system
was "much simpler...to estimate than (that of) Bass's approach"
(Clarke 1973). Clarke correctly notes that Bass's equations are
underidentified and that the number of brands that could be ade-
quately .treated using his method is small,

Telser (1962) had addressed the issue of returns to adverti-
sing, and indeed found that "the level of advertising (in the ciga-
rette industry) was high enough to place the companies at the point
where there were diminishing returns" (1962). It is also possible
that demand may show increasing'returns to low levels of adver-
tising, and decreasing returns as advertising expenditure is in-
creased. Jagpal, Sudit and Vinod (1982) cite a study (Krugman 1977)
which provides empirical evidence of this effect. Johansson (1973)
devised a model which incorporated this modification. He fitted a
double-log logistic function to data on hair spray:

Brand share - proportion of repeaters| _
In l: Trial proportion - brand share ]“‘ an#o 43ﬂ, In (Adv.)...

Such a model yields a nonsymmetrical S-shaped curve which would allow
for the required shift in returns to advertising.

In his article on cross-elasticities, Clarke (1973) borrows
from the previously-cited articles of Bass (1969), Telser (1962) and
Beckwith (1972). He uses the independent variable "relative adver-
tising" introduced by Telser (brand's advertising divided by the
sum of the brand's competitors' advertising) in setting up his
partial-ad justment model, wherein the residuals are correlated. He
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treats the equation set as a system of seemingly-unrelated
regressions (they are all indeed related as market shares should
add up to one). He uses an estimation procedure known as
SURWADI which is abpropriaté for seemingly-unrelated equations
with autocorrelation. This method is an extension of IZEF

used by Beckwith}(l972). In a later paper, however, Clarke
concedes that "the seemingly-unrelated regression treatment

used (here)...had little effect on parameter estimates...A great
deal of complexity (was added) to an exploratory demonstration"
(Clarke 1978). Nonetheless, a better means of measurement of
cross-elasticities (effect of Brand i's advertising on Brand

j's sales) was presented.

The Lydia Pinkham data of Palda's (1964) study has
been frequently returned to in the literature, due to the
desirability of the data: for summaries and model development
information, see Weiss, Houston and Windal (1978). Two such
studies investigate the serial correlation issue raised by
Clarke's 1973 paper (Houston and Weiss 1975; Clarke and
_HMc Cann 1977). Both papers confirm the importance of the
inclusion of autocorrelated errors; however, the presence of
autocorrelation does not necessarily mean that the O0LS estimates
are biased ("although they may be somewhat less efficient than
GIS (generalized least-squares) estimation" (Montgomery and
Silk 1972)).

The above models have been developed ignoring the
possibility of interaction effects: among advertising media,
among marketing-mix variables, or through time. They are
clearly flexible enough for such modifications to be made:
Prasad and Ring (1976) provide an illustration in their
analysis of different communications vehicles and price
fluctuations.
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Not all of these papers are utilized directly in the
theoretical development or empirical analysis. At least some
relevant ideas are gained from each, however. The model deve-~
loped for Industry 1 resembles Weiss's (1968) model in that
both are multiplicative (although Weiss used shares whereas
dollar amounts were employed in this study). Kuehn et.al.'s
"advertising shock" (1966) is reminiscent of Nerlove and
Arrow's advertising capital model; the method Montgomery
and Silk (1972) used to decide upon the correct number to
include (determining the number of significant parameters)
is borrowed in this paper for the goodwill carryover approach.

Bass's 1969 papers warn about the simultaneocus sales-
advertising effect. This effect is not directly incor-
porated into the theoretical model; +this omission did not
turn out to be serious as empirical fit was still quite
acceptable. However, in certain industries where sales levels
are knowvn to be a deciding factor in determining future adver-
tising levels, appropriate adjustments might be necessary.

Finally, the issue of diminishing return to adver-
tising (as speculated on by Telser 1962 and examined empiri-
cally by Johansson 1973 and Krugman 1977) rlays an important
role in the discussion of the empirical results of Chapter 6
and has strategic ramifications for one of the firms of the
industry.

To conclude this section, note that many concepts
which have been examined empirically by the abovementioned
authors will be important considerations in the building of
the theoretical model of this study, and in its operationali-
zation.
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Advanced lMultiplicative Models

Jagpal, Sudit and Vinod (1979) developed a sales-response
function incorporating advertising interactions through time, by
applying a multiplicative nonhomogeneous functional form (MNH) to
the Lydia Pinkham data. As is Weiss's multiplicative model, MNH
regression coefficients may be interpreted directly as elasticities.
But in MNH, interactions between independent variables are modelled
explicitly and hypotheses concerning their existence may be tested.
A general MNH function may be written (as in Jagpal et. al., 1979):

X—+2|0( In A, 5 + Z: R i I Ap g In Ay S+ Vy,

where St = sales in period t,

Ay = advertising expenditure in period t,

o 0 /g 50 ¥ = parameters,

Vt = disturbance term.

(Note that in the Jagpal formulation, sales and advertising were
taken as the relevant variables in the general specification,
although other variables, such as market shares or prices, could
be substituted or added.)

Three properties of the MNH function are significant:
1. Marginal sales elasticity with respect t0 advertising
may be easily calculated as

d1n S,
Ej_ = 1 :0(4-2.)81:] in A

oln At—j 3 t-J

2. Marginal sales productivity (i.e., the marginal benefit
derived in sales due to advertising) may be determined using

WPy =€ 4| S
A

i

t-J
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3. The distributed-lag formulation mentioned earlier may be
viewed as a special case of the MNH function: 1i.e., if all‘Bij's
are set to zero, the function becomes

= 74 X,
Ins, =8 + le 3 ImAg

which is in Cobb-Douglas form.

An extension to the MNH function was applied to the same data
in 1982 by Jagpal, Sudit and Vinod. This was the transcendental-
logarithmic functional form (translog), which is similar to NNH
except that it contains quadratic terms. Thus, as in Johansson's
1973 model, marginal productivities are not held constant. It can
be shown that the translog function is simply a more general case
of INH, and in fact collapses to MNH form if all the «;; terms are .
set to zero. The translog form has the drawback of requiring an
unusually large number of parameters to be estimated and therefore
will not be returned to in this study.

Price main effects and price-advertising interaction effects
could not be studies using the Pinkham data, due to the stable
pricing policy used by the manufacturers. Jagpal et. al. admit,
though, that "when several mirketing-mix variables are included
simultaneously in the sales-response function, theory suggests that
the policy variables will interact both contemporaneously and over
time" (Jagpal, Sudit and Vinod 1982).

The Jagpal et. al. model (1979) illustrates the kind of
multiplicative interaction terms which are used in the construc-
tion of the theoretical model of Chapter 4.

Although multiplicative models have been used successfully by
many researchers, even the more advanced forms are not always appropri-
ate. In an important review article, Little (1979) discusses some
of their drawbacks:



_75_

", ..zero advertising produces zero sales, and, if lagged
advertising terms are included, zero advertising in any
lagged period produces zero sales in the current period.
The situation is particularly acute for applications with
short period lengths (e.g., months or weeks), since zero
advertising in such intervals is quite common...S-shaped
response (of sales to advertising) is precluded (in the
simplest forms; see discussion of translog form). Rise
and decay from steady state involve symmetric factors
(and the assumption that sales increases due to increasing
advertising and sales decreases due to decreasing adver-
tising are symmetrical is not always reasonable)."
(Little 1979{

Researchers have sometimes opted for a linear model (Bass
and Clarke 1972; Palda 1964). Although linear models avoid the
difficulties of modelling the effects of zero advertising, they
cause their own set of problems. IMost importantly, "linear res-
ponse is not credible over an indefinite range" (Iittle 1979).
Also, asymmetrical rise and decay times cannot be modelled, so no
improverment over the multiplicative form on this issue is gained.
Other modelling considerations are given in ILittle (1979). In this
study, some of the model inadequacies indicated by Little concerning
multiplicative and linear forms aré encountered and dealt with in
Chanters 6 and 7.

Koyck and Dynamic-Ad justment [lodels

The Palda (1964) study, and many other sales-advertising
response studies (Bass and Clarke 1972, e.g.) employed geometric
distributed lags of the form proposed by Koyck (1954). Also, in
many of the aforementioned works (Clarke and Ilc Cann 1973; liont-
gomery and Silk 1972; Houston and Weiss 1975, e.g.), lagged
dependent variables appear on the right-hand side of the equation.
This section provides a theoretical derivation of two closely-
related econometric models which incorporate lagged dependent
variables on the right-hand side: the Koyck and dynamic-
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ad justment models, both of which are developed into approaches
for handling advertising carryover. These derivations are due
to Johnston (1972).

The Koyck scheme is applicable where lagged independent
variables are significant; i.e., where the econometric model
is expected to take the form

Yo = BoXy 8% +B X o+ o Foug. (3.1)

Define a delay operator D such that -

DX, = X ;i

2 — °

DRy = Xg o

3 - .

DXy = Xy_qs
etc.

Also define a set of weights Wy which sum to one. Fquation

3.1 could thus be rewritten

I~
Y, = /Q(WO + wyD + w,D” + ceo) Xyp + U (3.2)

Now assume that the weights Wy decline geometrically, i.e.,
we = (1 = A) A%,
i
O< )< 10‘
With this assumption,

wy + WD + sz2+- eee = (1 =2)(1+2D 7‘-7\21)2—*-...)

. (3.3)
1 =D
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Substitution of 3.3 into 3.2 gives

Y = ,8(1—)) X u (3-1‘")
% % t + Y4

Rearranging 3.4 gives the generél Koyck form,
Yt = 3(1 -A) Xt + }Yt~l+ (ut = A ut-l) (305)

Using the geometric declining distribution of weights yields the
convenient relation for mean lag:

Mean lag — A .
1 -2

In sum, the Koyck scheme for estimating a relationship with lagged
independent variables results in a lagged dependent variable on the
right-hand side.

Dynamic (or partial) adjustment models are used in econometric
analysis in situations where an optimal value for the dependent
variable is specified. The optimal value for Y, denoted Y*, given a
certain value for an independent variable X, may be expressed by the

optimum equation
Y% = p o+ X+ uy (3.6)

where ug is an error term and <b;'s are parameters. However, note that:

"If the income change that has produced X+ has been a large
upward (or downward) one, the consumer may not have the
requisite knowledge of his utility surface to adjust imme-
diately to the new situation...A reaction or adgustment
function (is therefore postulated) which asserts that in

the current period he will probably move only part of the

way from his starting p031t10n (Y¢-y) to the optimum position
(Y*) * (Johnston 1972)

This ad justment function would take the form
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Y, - Y, = ¥(¥% -¥, ()te, (3.7)
where the parameter ¥ is the coefficient of dynamic adjustment. As
Johnston notes, "the closer ¥ is to unity, the greater is the
ad justment made in the current period." (1972) Combining equations
3.6 and 3.7 and performing the required rearrangements yields the
operational specification

Y, =¥, £ 3Px, + (1 =YY, ;4 W, ., (3.8)

where W, is the composite error term.

Notable about this specification is that it is quite similar
to a Koyck scheme, differing only in the inclusion of a constant
term. Koyck models have frequently been used in modelling sales-
advertising response functions, owing to their inclusion of a lagged
dependent variable on the right-hand side, as has been seen above.

A more complex model of this type, the adaptive expectations
model, deals with the situation where optimal Y# may vary over time.

These models shall not be considered here (see Johnston 1972).

STOCHASTIC MODELS

The Vidale-Wolfe and Nerlove-Arrow models as well as the
Sethi extension mentioned above are deterministic in nature. Tapiero
(1975b) makes a strong argument in favour of the application of
stochastic techniques to the study of advertising effect on sales.
- Rather than being able to determine uniquely a sales level "by solu-
tion of a difference equation", it is probably more accurate to
acknowledge that "the forgetting of past advertising effects and
sales response to advertising are in fact probabilistic with para-
meters that reflect empirical evidence and the time series of sales
and advertising effects" (Tapiero 1975b). In this spirit, Tapiero
has provided stochastic extensions of many of the impoftant
theoretical models.
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Although stochastic extensions of the theoretical model
of this paper are not within the mathematical scope of this
study, they are potentially an interesting avenue for further
research: +this issue is considered again in Chapter 8. Further-
more, Tapiero's work sometimes involves game-theoretic formulations
which merit close inspection here.

: Tapiero provides a diffusion approximation to a sto-
chastic, random-walk version of.the Vidale-Wolfe model (1975b),
and also provides extensions to the Nerlove-Arrow model (1975a;
1978; 1979). In the 1975a paver, he proposes that "additions to
goodwill by advertising and the depreciation of it by forgetting
are probabilistic effects" (Sethi 1977), and sets up an equation
which can be solved as a deterministic cptimal control problem.
In the 1973 paper, he proposes a stochastic extension of the
above model, again carried out by making a diffusion approxi-
mation of the relevant equation and by replacing certain proba-
bilities with Taylor expansions (a method also seen in 1975b).
He thereby constructs an approximation to the original equation
which is in stochastic differential equation fori. The mathe-
natical details are not reproduced here; however, some of
Tapiero's conclusions are significant:

"l. Advertising is a 'risky investment' in goodwill,
substituting current certain expenditures for uncertain profits;
2. Risk-averse firms will advertise less and risk-

taking firms more;
3. Iarge risk-aversion and forgetting rates both lead
.to the standard competitive result in advertising." (Tapiero,

1978).

Tapiero provides a further generalization of this model,
to the case where a number of firms are competing. In this paper
(1979), he demonstrates that a Poisson probability distribution may
be adequate in representing sales for each of the two firms in a
given market. Additionally, if aggregate market sales are Poisson
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distributed, the market-share advertising model obtained is also
Poisson distributed.

A large section of this paper (1979) is devoted to differ-
ential games formulations, which is of special relevance here. In
fact, a differential-game approach is used in selecting optimal
advertising levels under sales-maximization and profit-maximization
situations. While the method of differential games may not be
appropriate for this paper (more on this topic in Chapter L), the
preliminary observations Tapiero makes in formulating his game models
are relevant to this study.

Tapiero highlights some previously-discussed solution con-
cepts not treated in depth by Shubik and Levitan: Nash-equilibrium
and Pareto-optimality.

"...If firms have knowledge of cost structures and reach
decisions separately, then depending upon the behaviour and
goals of the firms, minimax, Nash, noninferior (Pareto-
optimal) or absolutely cooperative strategies may be
desirable." (Tapiero 1979)

Of these, Nash strategies are applicable in solving zero-sum games,
while the others may be applied to a simultaneous-decision non-
zero-sum situation. (The Stackelberg strategy solution would be
recommended in the sequential-decision case.)

Unlike Shubik and Levitan, Tapiero proposes strong arguments
which would limit the number of behavioural patterns which could
actually be manifested in an oligopoly situation.

"When both firms recognize that there are grounds for
cooperation, they may reach "enforced"...agreements...

Such solutions are called...Pareto-optimal solutions. When
both firms vie for an increase of their market share (when
the aggregate market sales remain relatively fixed...), the
conflict (or the threat of cutthroat and collusion practices)
inherent in the competition for market shares is not likely
to lead to these types of solutions." (Tapiero 1979)

Similarly, since firms in a given industry usually have similar
knowledge (or ignorance) levels regarding the cost structure, it
- may be unreasonable to anticipate Stackelberg behaviour, at least in
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the case of advertising expenditure. Tapiero concludes by considering
only minimax and Nash strategies in his paper. Because of the very
specialized circumstances which he assumes in his model (only one
independent variable, advertising; aggregate sales levels roughly
unaffected by advertising; sales or profit-maximizing behaviour),
Tapiero's simplifications most likely are valid for his paper,
although they may not all be transferable to this investigation. Still,
his analysis indicates the importance of considering the game models
and behavioural strategies in a realistic context.

In another article, Farley and Tapiero (1981) propose a
stochastic model of sales response to different timing patterns of
advertising outlay. A treatment similar to that employed before is
used to set up and to solve the model. This model is significant
in that it borrows elements from both the Vidale-Wolfe and the Nerlove-
Arrow models, and also provides a rationalization for the distributed
lag empirical models such as those of Palda (1964).

"These (models) generally involve patterms of market
response based on carryover effects and decay of a stock

of advertising...Decay effects explicitly due to forgetting
...have been suggested...to account for imperfect measures
of buyers and intervening external stimuli that prevent
complete extinction in a learning framework" (Farley and
Tapiero 1981).

Finally, Tapiero (1983) has also proposed a stochastic
diffusion model incorporating both advertising and word-of-mouth
effects. He shows that this model is a generalization of the pre-
viously-mentioned Dodson-Muller model, itself a generalization of
numerous earlier models.
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PRICING CONSIDERATIONS

Up until now, the emphasis in this chapter has been mostly
on the effects of advertising expenditure on sales. Granted, some
of the empirical studies mentioned (Banks 1961; Weiss 1968; Bass 1969
and others) included both price and advertising among the independent
variables. However, much of the attention in the literature has
been focused on the carryover effects of advertising (Tull 1964;
Jagpal, Sudit and Vinod 1979; etc.) or on the differing effects of
different media vehicles (Montgomery and Silk 1972).

This is not to say that price effects are of lesser import-
ance or can be ignored. On the contrary, an interesting literature
has been built up on the issue of the perceived relationship between
price and product quality. An early paper by Leavitt (1954), al-
though flawed by research design, suggested that customers tend to
choose a higher-priced brand when the relative qualities of different
brands are unknown. A followup study by Tull, Boring and Gonsior
(1964) supported this finding. Gabor and Granger (1966) found that
many of their "subjects trusted price rather more than the evidence
of their.senses" in determining product quality. They also suggested
the existence of an "acceptable" price range: products priced outside
this range are perceived by customers as being either of unacceptable
quality or simply too expensive. This notion of an acceptable price
range is returned to again later.

In his classic article of pricing psychology, Shapiro (1968)
reviews these and other studies, and concludes that there are four
reasons why price is frequently taken by customers as a measure of
quality. _
1. Ease of measurement: price is usually a known, fixed
quantity and as such is easily comparable across brands. Also it
serves as a proxy quality indicator if the consumer does not have
enough expertise to compare brands on "real" quality indices such as
durability.
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2. Effort and satisfaction: One line of reasoning (see
Cardozo 1965, e.g.) suggests that the consumer equates spending
more money on a product with expending more "effort". As more
satisfaction is derived (according to this theory) through a
greater expenditure of effort, the consumer would be most satis-
fied with his/her purchase if an expensive brand is chosen.

3. Snob appeal: some consumers gain satisfaction by demon-
strating that they can afford the most expensive brands.

L4, Perceptions of risk: "To reduce the risk of choosing a
product of significantly poorer quality, the consumer chooses the
higher-priced brand" (Shapiro 1968).

A recent behavioural study of a small-consumer-good product
(Mc Gill 1982) indicated that the two highest-priced, highest
market-share brands were also perceived by consumers as being the
highest in quality. It suggested that perceptions of differences
among brands are strongly influenced by marketing-mix variables:
the high-price, heavily-adveértised brands may be perceived as being
of higher quality, whether real quality differences exist or not.
By building reputations as "nationally advertised brands", the top
brands may effectively maintain high levels of distribution and
market share due to risk aversion on the part of some consumers.

Vanhonacker (1983a; 1983b) has recently reanalyzed the
nature of price-advertising effects. He notes the existence of
two diametrically-opposed schools of thought in the marketing
literature on this issue.

"On the one hand, Kotler (1971) argues that an increase

in advertising will have a positive impact on product
differentiation which will lead to decreased price sen-
sitivity. On the other hand, Chamberlain (1962) suggests
that as advertising expenditures increase, price awareness
will increase and ultimately result in higher price sen-
sitivity" (Vanhonacker 1983a).
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Interestingly, either viewpoint may be convincingly argued
for: +the actual effect of advertising on price sensitivity will
undoubtedly be product specific. It is therefore likely that it
will be difficult to predict, a priori, the direction of price-
advertising interaction effects.

Vanhonacker also indicates a potentially more troublesome
failing of the pricing literature: its failure to distinguish
between changes in price level and minor fluctuations about a
(basically stationary) price level. He notes that the abovemen-
tioned work of Gabor and Granger (1966), among others, on "acceptable
price ranges" examines the effect of setting prices relative to an
industry standard. Such works may be characterized as "price
perception studies”. Attitudinal research into price has focused
on the other price issue, namely that of varying price tenmporarily
around a basic level. "By design, experimental studies only capture
the interaction with respect to the price level aspect" (Vanhonacker
1983a). Any pricing conclusions drawn from empirical studies should
therefore be made with this potentially severe limitation in mind.

The pricing psychology literature can provide insight into
some of the results obtained in the empirical analysis of this
paper. Some of the results obtained in Chapter 6 concerning price
effects, for example, are interpretable using price psychology
rhenomena, such as that described by Shapiro (1968) and in the
fic Gill study (1982). Having examined some of the contributions
of previous writers on price effects will aid, therefore, in
explanation and interpretation of price observations made in this
study.

CANME-THEORY INMPLICATIONS

Rao and Shakun (1972) develop a "quasi-game-theoretic™
pricing model to determine entry price for a new product. The
framework is developed using the "acceptable price range" concept
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of Gabor and Granger and a series of working assumptions. 1In
the two-brand case, they assume the presence of two groups of
customers: (a) "quality-conscious" consumers who believe that
higher price (within the acceptable range) indicates higher
quality, and will therefore purchase the higher-priced brand;
abd (b) "price-conscious" consumers who find all products within
the acceptable range as of adequate quality, and thus purchase the
lower-priced brand. Similar assumptions are made for the three-
brand market case. They derive probabilities of purchase for
each of the brands as functions of price. They work in a gameQ
theory approach to their model by considering pcssible behaviour
concepts on the part of each brand, and calculating the optimal
entry price for the new brand under different combinations of
behaviour concepts (i.e., maximize payoffs (non-cooperative);
maximize Jjoint payoffs; maximize industry sales; minimize
opponent’'s payoffs). |

Rao and Shakun emphasize that their approach is only "quasi-
game-theoretic" as the extensive forms of the games being played
are not developed nor are the specific straﬁegies tc be employed
by each player. They do show, however, how game-theoretic con-
siderations may be used in modellinyg the behavious of vlayers
in a given market. -

Gane-theory models had becn applied to the issue of adver-
tieing expenditure long before Rao and Shakun's pricing model was
developed. Hontgomery and Urban (1963) trace this application of
game theory back to Friedman (1958), who developed five simplified
models designed to help answer the questions:

"1l. How much of the yearly budget should be allccated to
advertising?

2. How should the total advertising budget be a2llocated by
marketing area (if the product or service is distributed over many
areas?" (Friedman 1958)
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The various models are based on the assumption that the
nost significant factor in allocating advertising expenditure is
the activity of competitors (i.e., how much they spend in relative
terms). He demonstrates the potential use of game theory in this
regard. In the simplest of his models, for example, he concludes
that “the optimal allocation of funds in each area will be pro-
portional to the sales potential in the area" (Friedman 1958).

The reader is referred to the original article for details.

'An important theoretical extension to the Friedman model
was made by Shakun (1965). In this paper, a mathematical game-
theoretic approach is taken to develop a model for advertising
outlay in "coupled markets" (meaning that "advertising dollars
spent in generating sales for one product have an influence on
the sales of another product") (Shakun 1965). This model was
further extended to take into account dynamic effects (Shakun 1966)
and differing organizational structures (Shakun 1968). Although
the theoretical models used in these papers are not tested
ernpirically therein, the results are interesting in that the
rrescribed optimal advertising expenditures (for each player in
the industry) resemble those obtained by Friedman (1958). Shakun
had used an exponential sales-advertising response function of the
type mentioned by Vidale and Wolfe (1957) in his model estimations.

These last three examples have shown very simple appli-
cations of game theory to the issues of pricing and advertising,
respectively.

One may collect some general observations in summing up
this search through the econometric literature. Firstly, the
theoretical models of Nerlove and Arrow, and Vidale and Wolfe,
provide a starting point for the development of the sales-mar-
keting-mix models used in this study. Secondly, some of the
empirical models examined (Jagpal et. al., for example) illustrate

"~ ~how carryover and interaction effects may be easily accomodated
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through appropriately-specified functional forms. Thirdly,
different ways of accounting for carryover effects have been
suggested by Nerlove and Arrow, Koyck, and the dynamic-

ad justment formulation: each of these is developed into a
carryover approach in Chapter 4. Finally, important psycho-
logical considerations concerning the perceptions of price have
been discussed by such writers as Shapiro, Gabor and Granger, and
Vanhonacker. These considerations will be useful in the analysis
of the empirical results of this paper.



CHAPTER 4
THEORETICAL MODEL

INTRODUCTION-~-CHAPTER OUTLINE

In this chapter, the analytic framework is proposed and
the methods used in constructing the theoretical model are dis-
cussed. No doubt the reader by this time has become aware of
the possible range of economic and marketing territory which could
be included in the proposed study. It is not the author's intent
to develop and test empirically a model containing a bewildering
assortment of marketing, financial and other company-policy
variables (both quantitative and qualitative); nor to model all
of the "inner workings" of an (almost by definition) highly complex
modern industry. On the other hand, the empirical tests to be
employed should yield results which have some relevance to mar-
keting decision-making; in other words, the abstraction from
reality which is to be considered as "the industry" for empirical
testing should contain at least the most significant marketing-mix
variables. The problem of careful selection of variables for
empirical testing is approached in the next chapter. In any case,
in order to walk this middle ground between parsimony and relevance,
a stepwise approach is taken which serves to structure this chapter
and the next.

In this chapter, a general theoretical model is developed.
Herein, the theory considerations of Chapter 2 are expanded into
a general game representation where any number of marketing-mix
variables may be included, and their effect on any (unspecified)
dependent variable (i.e., objective or success measure) may be
modelled. Also, using the literature review of Chapter 3 as a
guide, general functional forms suitable for calculating the
payoffs in the general game representation will be developed.
This chapter therefore serves as a guideline for constructing a
game matrix appropriate for a given industry.

- 88 -
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Chapter 5 opens with a discussion of some of the major
problems in modelling which may be encountered. Then, an
illustration of how the model would be applied to a hypothetical
indusfry setting is presented, together with a discussion of
the relative merits of different proposed methods for treating
carryover effects. Finally, the gaming implications of the
model are examined. In other words, Chapter 4 shows how the
mathematical, theoretical model is developed in general,
while Chapter 5 illustrates what can be learned about a spe-
cific industry through the application of the game matrix -
technique.

In Chapteré 6 and 7, industries are chosen for empi-
rical analysis, and the general theoretical model of Chapter 4
is adapted and developed into industry-specific "reduced models".
Then, the interpretative methods of Chapter 5 are applied to
the chosen industries.

This framework allows the author to attain one of the
main objectives of the paper: +that is, to indicate how the
proposed theory may be put into practice in real decision-
making situations. The basic model is general enough for
application in other industries where data requirements are
larger or more marketing-mix (or extraneous) variables need
be considered; 1indeed, even in situations where the buying-
and-selling process may be quite different (although extra
information would probably be reQuired for the sealed-bid
situation; see remarks in concluding chapter). It is the
intent of this work to indicate the possible benefits of the
game-theoretic approach by keeping the empirical models
relatively parsimonious, and also to indicate how the basic
model could be extended and thereby perhaps made more appli-
cable.
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PRELIMINARY CONSTIDERATIONS

In this section, some of the loose ends of previous chapters
are reconciled; specifically, the importance of the research, as
outlined in Chapter 1l; +the determination of market behaviour through
matrices by Shubik and Levitan, introduced in Chapter 2; and Tapi-
ero's observaticns on the sales-advertising relationship in his
differential-games generalization of the Nerlove-Arrow model (Chap-
ter 3).

According to Chapter 1, an important objective of this paper
is to verify empirically the game-theoretical constructs of writers
such as Shubik, Levitan and Tapiero regarding the behaviour of firms
in an oligopoly, and to apply the concepts to a real decision-making
situation. To accomplish this requires firstly a "translation" of
the general strategies in the game matrices of Shubik and Levitan
into realistic, quantitative strategies for real marketing-mix
decision variables (i.e., pricing levels, advertising expenditures
and distribution costs). Secondly; an interpretation of the payoffs
associated with each strategic combination is required.

The work of Tapiero (1979) takes steps in-this direction:
he considers the simplest situation wherein the only strategic
variable controlled by the firms is advertising expenditure: fur-
thermore, advertising carryover effect is ignored. The problem is
thus reduced to finding the advertising level which optimizes payoff
(to be specified later). Through this simplification, Tapiero
justifies his use of differential games, which would allow exact
calculation of the optimal amount of advertising expenditure (under
certain assumptions, evidently, including complete knowledge of the
effect of adﬁertising on sales or profits, without uncertainty).
That is to say, advertising expenditure is treated as a continuous
variable over a given range. Other authors (see Jorgensen 1982a
and 1982b, e.g.) have also successfully employed a differential-
games approach to advertising and its effect on sales. As for
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specifying the interpretation of payoffs, Tapiero constructs two
models: a zero-sum game of sales optimization; and a non-zero-sum
game of profit optimization. (Note that, in assuming constant
aggregate sales, maximizing sales becomes identical to maximizing
market share.)

The work of Tapiero, although relevant for inclusion here,
elicits comments on two fronts. The concept of differential games
(as opposed to the discrete strategic options in typical games) is
intuitively appealing in that optimal levels can be calculated exactly;
however, the model would become extremely cumbersome upon the inclu-
sion of additional decision variables. Figure 4.1 is a conceivable
zero-sum market share differential game, where each firm chooses an
advertising budget between $0 and $M per period. To include even
one additional marketing-mix variable (e.g., price level) into the
model would add two dimensions, which assuming price and advertising
levels to be independent to each other, would have to be mutually
orthogonal and orthogonal to the original axes. Thus the market share
payoff function would be represented by a hypersurface in five-
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dimensional space. Adding in more decision variables would com-
plicate the situation even more, as would consideration of carry-
over advertising effects. Additionally, this representation con-
siders only the two-firm case: a three- or four-firm oligopoly
situation would require even more dimensions.

This is not to say that such differential games are theore-
tically unsolvable or unanalyzable. Rather, the mathematics required
would be enormously complex, and thereby not easily applicable in a
practical setting. Also, the data requirements needed to construct
a differential game with many continuous variables may be restric-
tive. An approach which uses discrete strategic options is more
easily interpretable and allows for independent manipulation of
marketing-mix variables with a minimum of complexity. Furthermore,
in theory one could approximate a continuous variable's distribu-
tion with that of a discrete variable by increasing sufficiently the
number of discrete possibilities. Therefore, a typical, normal-game-
matrix apprcach could theoretically be extended to approximate con-
tinuous distribution of the decision variables.

The second comment on Tapiero's work is a less severe criti-
cism. Whereas Shubik and Levitan appear to consider profit as the
relevant payoff variable, Tapiero constructs a model of profit maxi-
mization and also one of sales/market share maximization. The criti-
cism is that these possible objective variables or "success variables"
- are not the only conceivable ones: sales growth maximization or
growth in market share are other possibilities, e.g. In fact, one
might expect the relevant objective variable to change over time for
a given firm: a new entry into an industry may at. first wish to
maximize sales growth levels (through heavy investment in advertising
and product development) at the expense of short-term profit. As
time goes on, sales maximization or profit maximization would take
on greater importance (for example, a minimum acceptable target
market share may be reached and the firm may concentrate on maxi-
mizing profit while maintaining market share). Modelling a "growth"
firm into a game matrix havirg profits as payoffs would yield
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misleading conclusions (a topic returned to in Chapter 5). Further-
more, there is no guarantee that all firms in an n-firm industry
have the same objective. The market leader may very well be stri-
ving to maintain its profit levels, while its competitors may be
trying to carve out a larger market share. The ideal model, then,
would be flexible enough to allow for both changes in objectives
through time and divergent objectives across firms. Another
corollary of this line of reasoning is that, in setting up the
industry-specific game matrices, information concerning the objec-
tives of the various firms should be obtained (for example, through
interviews with product managers or industry experts). Resultingly,
the theoretical model developed in this chapter leaves the payoff
variable (Y) undefined: +the issue of choice of dependent variable
is returned to in Chapter 5.

Having stated these preliminary objectives, construction of
the theoretical model can begin. This step is coupled with the

delineation of the proposed econometric analytical techniques.

THE BASTC DUOPOLY MODEL: SIMPLEST FORMS

The simplest version of the general model is based upon
Shubik and Levitan's gamé matrices (despite the important philo-
sophical reservation discussed in Chapter 1 and expanded upon in
Chapter 5). Consider the two-firm case, where only one marketing-
mix variable is considered, X;. In this simplest model, carryover
effects are negligible, only two values are possible for X, (e.g.,
high/low), and the dependent variable Y is left unspecified (see
above). The model would appear as in Figure 4.2, where X,j= level
of variable X; chosen by player j, which may be either high (denoted
by X?j) or low (denoted by Xvj). Also, Y xX, x%2) represents the
payoff to player j resulting from player 1's choosing level K1 for
variable X, and player 2's choosing level K2 for variable X, .

Note that if the dependent variable is market share, it is
¢lear that Y,(x¥|, xf)= 1 - Yo (X, xi2): i.e., the game is
zero-sum. The basic model as stated above places no such restriction
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on the values of the(dependent variables, although it could be
adapted to a zero-sum situation.

The model as it stands is nothing more than a generalization
of Shubik and Levitan's 2 x 2 game matrices, such as those shown in
Figure 2.21a and 2.21b. As such it is hardly an improvement over the
differential-games approach of Tapiero and Jorgensen. It is the

nature of the extensions which are possible that lends adaptability
and applicability to this model.

The first such extension to be made allows for a second

P2
X3 X35 Xiz,Xzz  Xiz,X32 Xi2,X3h
|
K
* * e o e ® o @
Xli’ Yl'Yz o o0
K ‘ .
o1 : . FIGURE 4.3
P1 24 . .
oh . .
KoY . .
o7l ..
X3 .
* L oL
Note: ¥, ='Y1(X§1'X£1'X12'X22)
* L .IL L L
Y, = Y, (X775X57 %720 %55)
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decision variable X3 to be included. Suppose that X, can also take
on one of two values, high and low. ZEach player thus has four pos-
sible strategic pairings, assuming decisions are made simultaneously.
These strategic options may be represented by a game matrix such as
in Figure 4.3, where Xij= level of variable 1 chosen by player j.

As the model undergoes extensions and refinements, it will
become handy to think of the strategic pairings as packages. In
the above representation, package 1 would be the choice of low values
for both X, and X» . Figure 4.3 can thus be rewritten in a much less
cumbersome way, as in Figure 4.4. (The notation convention to be
used herein is that WQ; will represent the choice of package w by
player j.) Then, given a set of time-series data, one could cal-
culate average Y{ and Y2 values for each strategy combination.

Clearly, more marketing-mix variables (X3 , X4 ,...) may
also be added to the model. 1In this paper, a maximum of three
marketing-mix variables (corresponding, for example, to pricing,
advertising expenditure and distribution costs) will ‘be considered
for any industry.

P2
W2 W Wap W2
v Y‘ (VVI‘ 'Vlll) * * 9 e @ * o @
Wl vy (v, W)
FIGURE L.l
Wz' . ‘.
P1
W3 : "
Wﬂ‘i . . . .
Note: W..=xLT..xT.: w Lo oy =xt, % =x1 xE,
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MULT ICHOTOMOUS DISCRETE DECISION VARIABLES

As the introduction to the preceding section suggested, there
are still a number of quite limiting restrictions in the model. One
by one, extensions will herein be developed which make the model
more useful.

Firstly, the assumption of discrete, dichotomous decision
variables is restrictive and limits applicability in a realistic
setting. Reverting back to the two-decision-variable situation
(X; and X5 ), now consider three possible levels for each variable
(X% ’ Xﬁ and X§ corresponding to high, medium and low). Now nine
decision packages are available to each player, as in'Figure L.5.

If an immense data set were available, one could determine
the values of the Y('s and Y2's by taking averages as before.
However, considering that eighty-one Y 's and eighty-one Y2's
would have to be estimated, one would need a minimum of 81 x 5= 405
data points to avoid sparse cells (assuming even dispersion and five
elements minimum per cell): +this requirement could easily be doub-
led under circumstances of uneven distribution of data points.

This difficulty is overcome by estimating econometrically
the effects of variables X; and X3 on Y, and Y2.

P2
'wlz V\722 ) VJ92
Y"‘vl]- Yl’YZ L
) ) - =7 oy
W,q : . | FIGURE 4.5
P1
Tor | . | -
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In this chapter, a multiplicative response model is
developed, for the following reasons: (a) the parameters are
interpretable as elasticities, as indicated before, so the
effects of the different marketing instruments on the dependent
variable may be eﬁaluated and compared; (b) by taking loga-
rithms, a multiplicative model can be easily converted to a
linear form whose parameters may be estimated using ordinary-
least-squares regression or one of its modifications; (c¢) as it
is anticipated that advertising will be one of the major inde-
pendent variables to consider, it is necessary to construct models
which would adequately describe the expected advertising-sales
relationship. If, at "reasonable" levels of advertising, sales
shbw decreasing marginal returns to advertising, the model used
should be capable of capturing this effect. As is seen in the
following discussion, the multiplicative model permits this
flexibility.

However, as indicated in Chapter 3, a multiplicative
model may not be appropriate. For various reasons (to be con-
sidered in Chapter 7), a linear model may be preferred. Linear
equations which correspond to the multiplicative-form equaticns
presented in this chapter could easily be derived if necessary.
However, for consistency, it is the multiplicative form which
is developed in this chapter and the next.

The main effects of Xl and X2 on Yl and Yz may be

modelled by a pair of simultaneous equations in Cobb-Douglas
form:

X X /gn /321 '
Y =Xy X Xyp o X7 wy (4.1)
_ V X2 X2n Bia Bz2a
Yo= Xy o Xy Xpp T Xy W (4.2)

whereYQ‘l. sz = constants;
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Xypr Xppe /011./821 —cross main effects of decision variables;

°<11, 0<21, _,312. ,322 = own main effects of decision variables;

ul and u2 = error terms.

Note that if the A i

decreasing marginal returns to decision variables X2 and X455 .

's are less than one, sales will show

These equations could be transformed into linear form by
taking logarithms:

In ¥ = X+ Xqq In X;;+X 5y In X5, t /311 In X,

+8 57 In X, + Uy ;

(4.3)

(4.4)

If the interaction effects between decision variables X,

and X, are significant, multiplicative nonhomogeneous extensions
of these equations would be appropriate. The general MNH form -
(given in Chapter 3) would be adapted as follows:

1n le 0<l +~°<ll 1In Xll+<><21 1n X21+/3> 11 1n Xlz

. (4.5)
+,821 1n x22 +% 11 1n X4 1n X5y + ‘;21 1n Xy 1n x22+ ugs
In Y,= &, T &, In Xj,+ X 55 1In X0 + 845 1n X5 (4.6)

Ffap In Aot 55 In Xgg In Xp3 v 5o In Xgp In X, F o uy;

= own interaction effects between decision
variables;

s
=
o
H
o
WV, ol
[
-}
V)
=
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o o
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N
[

§21 and § 12 = cross interaction effects between decision
variables.

Note that "own interaction effects" refers to the effect on
Y, of the interaction between Firm 1's X, level and X, level, while
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"cross interaction effects" refers to the effect of this same
interaction on Y, (and vice versa). Other interactions could bte

included (such as the combined effect of Firm 1l's price and Firm 2's
advertising) but would be more difficult to interpret economicaily.
Therefore, for simplicity‘'s sake these extra interactions are

left out in the developments of this chapter.

The appropriateness of interaction terms for a given
industry is an application issue and is therefore left to Chapier 5.

~ A word about the rationale behind the model construction
is in order here. Game theory indicates that the decisions
~taken by a firm are not made in a vacuum. Both ovm- and com-
petitors'~ (cross-) effects should be modelled. The above simul-
taneous-equations representation indicates only one way in which
cempetitive effects may be worked into a model. An alternative
method (which would reduce the number of parameters to estimate
in the two-firm case) would be to use shares-of-aggregate expen-
diture as the independent variables. This procedure hzs a few
drawbacks, however., If Xy is advertising outlay, then share-

of advertising outlay is a meaningful variable: price cannot

be treated in this way. Also, if the aggregate outlay ver periocd
fluctuates considerably, then a share variable can become diffi-
cult to interpret; A firm holding to a stable advertising

policy when its competitors' expenditures are fluctuating

‘wildly may mistakenly appear to be deliberately changing its
share-of-aggregate expenditure from pericd to peried; or at
least it may become difficult to separate conscious strategic
changes from effects caused by aggregate fluctuations.

Assuming, then, that the proposed functional forms are
appropriate, there remains one step: +to fill in the Yl's and

Y,'s in the matrix of Figure 4.5. The high, medium and low

levels of variables Xll’ XZl' Xlz and X22 are substltuted into
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the appropriate equation derived through the econometric
analysis.

One possible criticism of the model which can be raised
at this time is as follows: The game matrix, even for only two
firms, two decision variables and three levels of each, is quite
large-- a2 9 x 9 matrix with 81 possible outcomes. Surely the
average decision maker does not follow such a procedure! The
answer here is simply that even if the game matrix is large, it is
still easily solved for likely equilibrium points using the
methods introduced in Chapter 2., Part 3 of Chapter 5 re-examines
this issue.

APPROACHING CORTINUITY IN DECISION VARIABLES

The notion that firms have only three possible levels of
variables X, and X, to choose from is still not satisfactory.

Most firms presumably have more flexibility in their decision-
making than this. Ideally, over a given acceptable range, the
distribution of possible levels is continuous.

The difficulties in using differential games in this z2ppli-
cation have already been discussed. Rather than modelling a conti-
nuous distribution for each variable, a discrete-approximation
method will be applied in this study. Suppose that the (continuous)
distribution of variable Xll (between extreme values of 0 and Xil)

is to be approximated by three discrete segments, to be called high,
medium and low. The distributions of the other variables may be
approximated similarly. Exactly the same econometric techniques as
outlined above would be employed to estimate the parameterscxl,!xll,
etc. All that remains is to ccnstruct the game matrix as in

Figure 4.5.
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To accomplish this,the relevant range of variable X;; 1is
divided into low, medium and high segments. The midpoint of each
segment is taken as the representative value for that segment. 1In
other words, three values for X, , representing the low, medium and
high segments, will be used to construct the game matrix: to be

consistent with previous notation, these values will be called X} ,
X" and XY respectively. Given the range of possible values
previously noted, it is easy to show that the representative values
would be (X%,/6, (X},/2) and (5X},/6), respectively. Similar
treatment is applied to each of the other decision variables. Then,
the payoffs are calculated according to the corresponding formulae
(Equations 4.3 and 4.4, e.g.). A game matrix identical in form to
that of Figure 4.5 would thus be obtained.

The distinction between this procedure and that of the
previous section is that, where before.XS ’ ng and X§ comprised
the entire set of decision possibilities (e.g., only price levels
of $0.80, $1.00 and $1.20 are considered), they now represent
ranges of decisions (i.e.; below $0.90; between $0.90 and $1.10;
and above $1.10). The reader who feels that such a representation
may be too crude to capture the essence of price fluctuation is
reminded that the number of discrete segments is not restricted
to three. Having more discrete segments would cause the continuous
distribution of possible decision-variable levels to be modelled more
closely. However, in defense of the simpler model, it may be
that a firm setting price levels for a new product might indeed
be considering as alternatives (a) the market average; (b) a
somewhat higher price (skimming policy); and (c) a somewhat
lower price (penetration policy). Having more than three levels
in the model might make the decision problem appear more complex
than it really is. In any case, the model can be extended to
include any number of levels, as the situation warrants.
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Up until now, carryover effects of decision variables have
been ignored. Three slightly different ways in which the model can
incorporate such effects have been considered, each applicable in
different situations. Each of these is developed theoretically here;
while their relative merits and operationalization considerations
are left until Chapter 5.

A GOODWILL MODEL OF CARRYOVER EFFECTS

Return to the two-firm, two-decision-variable, two-level
situation (Figure 4.3). Suppose that it is anticipated that variable
X2 will exhibit carryover effects, and that these effects last a

maximum of one period's duration. In other words, one need consider

only one lagged term, XLZ’ which is last period's level of decision

variable X,. The payoffs Yl'and Y, are now a function of six

variables:

Yy = L(Xy14%X570XDp7 0 X750 X550, XL55)

2 21’

Y, = f(X X

2 117%X217 X021, X12:X55,XL55)

The number of possible packages (W's) available to each player is
eight. Clearly this number would increase if (a) more than two
levels are permissible for either decision variable; (b) longer-
lasting carryover effects (i.e., more than one period in duration)
are significant; (c) more than one decision variable exhibits
carryover effects. A more parsimonious model containing most of
the relevant information would be preferred, considering the com-
plexity of the general framework. Two alternate methods are pro-
posed to account for significant carryover effects of one variable:
one based on a goodwill-account approach (described in this section);
and one employing a Koyck-form econometric approach (described in
the next section). Also, a dynamic-adjustment approach is briefly
described for the situation where both (or all) decision variables
are expected to exhibit carryover effects.
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The goodwill-account approach stems from the Nerlcve-
Arrow advertising capital model (see Chapter 3). The net effect cf
advertising (or any other decision variable which exhibits carryover
gffects) on decision variable Yj is the total of the effec
current- and previous-period levels of advertlslng, arprozr
weighted. The weights could be determined econometrically. For
example, the Cobb-Douglas equation pair (Equations 4.1 znd 4.2}
could be modified to include carryover effects of variabie Xj :

| | - | L .
= -+
In Yyp =Xy + &q3In Xy94 +XpIn Xy o+ 7 . g1 In X571 (4-2)
. 71 |
, L (&.7)
+ 1110 Xqpp vBo1In Xpop 4 3111 In Xa2(t- ,e + ¢

¥\

InY.,. =6¢_+0o. 1n X

24 =% 2 T RIn Xy F X501 Xoqy + f, o, 1n £2104-2)

(.8)
+B121n Xpop +8551n Xy *’2 /5’12 In X550 (4-2)F Y2t
j==

N

where c(?a and # : = lagged effects of variables Xoy ant Z55

L = the total number of significant lag pericds <c include;

and subscripts denote time periods. Now, the cunulztive effect of
variable X5, on ¥, is seen to be

A211n Xpy4 + 2, %110 %51 (4_g9

£Z=1

which upon rearrangement teccaes
. o L‘ h

« ¥
Xo1 | 1n let*‘é Z£1 In X519 (4_p
= l 0(21 Vi R4

-d

or

po

1.
X = % .
21 In %544 jé?ﬁ C{Il 1ln le(t-l)

b
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where ., %% *
Kg1 = %y
‘ X 21

One may similarly define:

3 % - . 23 * 3% +*
Kpo=%o ~ f1= P frz= Buz .
X2 B21 1822

Equations 4.7 and 4.8 may thus be rewritten as:

o, + & o 2, o 1nx
In Yjp= % 1110 Xap H Xy [ I Kot Fen I Kor (g

L g ww (£.9)
81110 Xppp + B oy |1n X22t+é’l Fo1 1n Xpp(popfiae

' L #*3%
= (4 4
In Y, =, + X ) In Xpp; + %, Hn X0 #5045 In X21(t-,8)]
£=1

L (4.1C;
FBip In Xppy + By |In Xy, = Bg5* 1n X22(t—.2)]+ Uy
L=1

Define a new variable Z; ., representing the cumulative effect of
variable X5, at time t, as follows:

L

IT x
£=1

CE I
)exp /zl

Z1¢ = Xo1¢ 21(t-1

so that by téking logarithms,

L
In 2 = 1n X +£, o ®#
21t 21t =1 4

) 1n XZl(t*l) N

The following variables could be similarly defined:
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| L
In 23, = In Xpput £ o 5% In Xzp(4-g)
L=1 ‘
L
In 237; = In Xyt = 3;’{ In Xo1(t-0)°
Z=1 |
L
In Zppp = In X+ <, ﬁ;; In Xoo(4-g) °
Z=1

Note that Z,j refers to the cumulative effect of firm j's decision
variable X5 on its own dependent variable; while Z;j represents
its cumulative effect on the competitor's dependent variable.
Making appropriate substitutions, Equations 4.9 and 4.10 are
simplified to:

In Yyu= o0y +ocyy In Xygg+Xpy In 2oy + £y In Xppy
+B 21 10 2354 *+ Uy
In Ypu= oCp+X1p In Xyyyt X pp In Zhyy +87, In Xyp,

+Bop N Zyoy + Uny

(4.11)

(4.12)

For game-matrix construction purposes, then, the two deci-
sion variables for firm j are taken to be X,; and Za»; , which is a
measure of cumulative effect of Xz;. The game matrix which would
be derived would have the form of Figure 4.6, and the Y, and Y»
values would be estimated using Equations 4.11 and 4.12. (Note:
Figure 4.6 assumes that both decision variables are dichotomous;
i.e., high/low: extensions for higher levels may easily be made. )

Equations 4.11 and 4.12, and Figure 4.6, are the Cobb-Douglas
functional forms with carryover effects and corresponding game matrix
(i.e., carryover extensions of Equationg 4.3 and 4.4). The situation
is only slightly more complex if interaction effects are significant.
The Appendix to this chapter shows the derivation of the carryover
extensions of the MNH functional forms (Equations 4.5 and 4.6).
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are thus used to construct the game matrices, in situztions where
carryover effects are significant. This makes the not unrezsonable
assumption that, when chocsing a level for decision variable XZJ,
firm j considers not only the instantaneous or short-term effect on
the dependent variable, but also the cumulative lag effect of 211
the previous-period levels. 1In doing so, the firm chooses tc main-
tain a desired level in the "goodwill account" of variable Xzj.

The immediate decision to be taken by the firm is how much must be
invested in X»j at the moment in order to maintain the desired
amount of goodwill.
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A KOYCK MODEL OF CARRYOVER EFFECTS

In situations where more than one or two lag periods are
signifibant, the goodwill model of carryover effects may not
be appropriate (see section on model application in Chapter 5).
The Koyck approach of this study is provided as an alternate
method for incorporating lag effects in such situations where
only one independent variable exhibits carryover.

The Koyck distributed-lag formulation discussed in
Chapter 3 assumes that the weights applied to the lag periods
decline geometrically. A similar assumption may be made

‘here as well, in order to simplify estimation of Equations
4,7 and 4.8.

In Equation 4.7, suppose a restriction is placed on
the o<¥'s and A/i's: instead of allowing them to vary
independently of each other, these parameters are restric+*ed
as follows:

3

- L
Xy = ¥ (- F)

% , v A
Beg1= Fon (L- 5507 5

where Xl and 52 vary between zero and one and indicate the
significance of -the lagged effects. Assuming for simplicity
that the lag effects of decision variable X2 are similar across
firms, one may set &, = 8 = §. Similar reasoning can be
applied to Equation 4.8 as well. Then, Equations 4.7 and 4.8
can be rewritten as
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L \ w f
In Yy, =& +X;; In Xyqq + %57 In X504 +ZQ’21(1—3) In X5y (4-g)
, <=1 y (4.13)
+Bq) In Xypp + A5 In XKpput 5 fpr (180710 X4 pytUgy
i 1: 1 ,
- L 1Y
In Yy, = 0, o, In X+ 55 In Xpqpt 2 o5 (1-8)"1n Xy 4y

; “4=1 (4.14)

7
+p1p In Xypp + A5, In Xzzt’;z Boo(1-8) In Xop(4_p)T Upyg
=1

. which may, of course, be simplified to:

L
= oL o
1n Yo, 1 + 11 In Xllt+ Nzl [[‘ZJ (1 - K)I In X21(t-—l)]
| =0

L
. Z
+/811 1n hlZ‘t + ,921 [é' (1 =% )% 1n XZZ(t—,[)]* U (4.15)
=0 -
' L £
1n Yz_t—_— 0<2 +o(12 1in Xllt+ 0(22 [Z (1 -9 )‘ in XZl(t-ﬁﬂ
=0
L
s
+B12 N Xypp + Ao [ Z, (1-%)" In Xzz(t-j}" Upt (4.16)
‘ =0 ‘

Intuitively, this specification makes sense. Since, by
definition, 0< ¥ < 1, it follows that (1-¥) is positive and less
than one. Hencé, the carryover effect of lagged independent vari-
ables becomes smaller and smaller as time goes on. If ¥= 0.8, say,
using the third part of Equation 4.15, the net (cumulative) effect
of decision variable X5, on Firm 1l's objective variable Y, is

L

Y
o5y zé'o (1 - 0.8)% 1n XZl(t-—g):!

= (
o 5y l:ln X574 + (0.2) In Xo1(t-1) + (0.04) 1n X271 (t-2)

+> ee. Tt (0.2)L In XZl(t"L).
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Now, Z variables representing cumulative effects of
decision variables may be defined, as had been done for the

goodwill approach:

L

Iz 2, (1-8% WXy e §=(1,2)
L4=0

}As before, X j

variables for game-matrix construction. The equations used

for this purpose would be obtained by making appropriate
substitutions in 4.15 and &4.16.

= . + ot
In Yo =) 7oy In Xqp * %5 In 2500 + By In X5y

* 81 In Zpop + Upys

= X v
In Yy = @p + G, In Xygp ¥, In 250 + 01, 1n X5y

+f3,, 1In 2 +u,,.

22 22t 2%

The estimation of the & 's of Equations 4.15 and 4.1

is an operational consideration, and therefore is left
for Chapter 5, where all aspects of model estimation and
application are dealt with.

13 and ZZ' would be taken as the relevant’

(&.17)

(4.18)

(&.19)
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A DYNAMIC-ADJUSTMENT CARRYOVER MODEL

Dynamic-ad justment models have been used in dividend policy
to model effects of cash flow on size of dividend (Feldstein 1970,
1972; Chateau 1974). The Chateau model yields parameters which
are directly interpretable as marginal effects, and also clearly
indicates the relative magnitudes of both short-term and long-term
effects. Note: This approach is not empirically tested in this
study, but is presented as an alternative model applicable where
both (or all) decision variables are expected to exhibit carryover.

In a marketing context, effects of decision variables Xl and

X, on dependent variable Y may be modelled using equations of dynamic-

2
ad justment form. One must make the assumption that each firm has an
optimum Y level (target level) which it wishes to attain. A firm
currently carrying 10 to 12% of the market may set a long-term
company target, say, of 15% market share: +this becomes the Y* of
the optimum equation (Equation 3.6). The actual value of Y#* does
not make any difference in the calculations as the Y# eventually
drops out of the model; but to permit application of a dynamic-

ad justment model, its existence must be assumed.

Ignoring competitive effects for the moment, a conceivable
marketing decision-variable adaptation of the optimum equation for
Firm j would be

In Y* = Poj* Doy InXygy + Dy In Xppp + u' 5y (4.20)

while the ad justment equation (Equation 3.7) could be adapted to

InY., -1InY

it j(t-l) = Kj (1n Y”f‘

Combining these equations gives
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1n th - 1n YJ(t l)'—- ¥ (4) +¢lJ let"—d)Zj in Xth

+u 56~ In Y )) + e

j(t-1 jt

which, upon rearrangement, yields the operational equation

It remains to incorporate competitive effects into the
model. As in the other approaches, firms do not make marketing
~decisions in a vacuum: Firm 1l's payoff depends upon Firm 2's |
decisions on, say, advertising and price, as well as upon its own.
Equation 4.20 must be refined in order to work in the relevant
competitive effects, as in Equation 4.23:

In ¥4, = § o5+ Pyiln Xppp + Pyiln Xy,
(L.23)
Combining Equation 4.23 with Equation 4.21 as before gives
*~€91j1n Xy o4 %—fa' 1n X, 4-u - 1n YJ(t 1))+-et ,
which yields, upon rearrangenent,
§= 85 Po5+ TyPygin Xy ot By Pyiin x50,
(L.2k)

+-Xjf7ljln Xth-+-§j<9 In X, (1 - -%5. )ln

2j “j(t-1)

+ v, .
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Up to here, the carryover effects of the decision variables
have not been modelled explicitly; however, an element of carry-
over has been introduced in a general sense with the inclusion of
the lagged dependent term. One additional step is required in
-order to model explicitly the carryover effect of both (or all)
decision variables: namely, the replacement of the lagged
dependent variable Yj(t-l)‘

In the Appendix to this chapter, Equation 4A.9 is derived
which models explicitly the desired carryover effects. It is given
below as Equation 4.25: +the reader is directed to the Appendix
for details of its derivation.

L
= £
I Ygp= boy #¥ybay =, (1 =307 I Xyp e

£=0
L
g (4.25)
£=0
L 2 L 7
+Kj61j12" (1-xj) 1n xlz(t_g)+yje2j%0 (1-¥)71n Xpp(4_ g
A =0

+ WL

In the Appendix are also found definitions of the cumulative
effects of the decision variables Xik at time t. These are:

. L

Using these substitutions, the alternate form of Equation 4.25 was
derived in the Appendix as Equation 4A.10:

- (3) (3)
In Yy = ‘bo;] + chplj n 293¢ + 534)23 n 2334 (4.26)
(3) (3)
+¥5995 In 2755 + ﬁjezj In Zpop+ W,

Equation 4.26 would be the form subsequently used to estimate the
payoffs in the game matrix.
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N-FIRM EXTENSIONS FOR THE OLIGOPOLY

The first model presented in this chapter was a tasic
duopoly model with exactly one discrete, dichotomous marketing-
mix variable, X,. No allowance was made for the possibility of
carryover effects; and, given only one decision variable, inter-
action effects were irrelevant. Succeeding models gradually
reduced the many restrictions of this basic model: first, mul-
tiple decision variables were permitted; then multichotomous
discrete distributions and interaction effects were considered;
continuous distributions were approximated; and three alternate
methods for representing carryover effects were discussed. All
that remains is to allow provision for considering more than two
firms at one time. ‘

The basic model for a three-player oligopoly would be a
three-dimensional analog of Figure 4.2, as shown in Figure 4.7.
This can easily be extended to the case of two independent,
multichotomous variables (see Figure 4.8).

The main effects of X, and X, on ¥; , j= (1,3) may be
modelled as before by Cobb-Douglas-form simultaneous equations:

In Yy=00; +0. In Xy;+ X, In X0 + 4, 1In X,
+B ;n Xpp+ ft1y In Xy3+ G5 In Xpg
In Yy= &, +o5, In X9+ X,, In X0+ 81, 1In X,

47022’ln Xpp + 1y, 1In X13-+!}22 1n X23
In Y3= 0{3 +°<13 1n X11+0<23 1n X21 +/813 1n Xl2

tB 25 In Xys + r}13 In X4 +q23 In X55 -

This can then be generalized to n firms (n=> 3) by the set of
equations
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- - r he T ’ I T
[ Q o (D) o[
In ¥, Xl %1 Xl In Xy 11 Ko1||In X,
< " (2) ()
In Yy _ %2 |, %12 22| | ™ Xa| 4| %120 az| | 1M %z
) r o () [
in Yn °(n O(ln °<Zn | 0<ln °<2n :
(N ") B
o) x| m xy Wy
) o
&3y XS In X, | M2 (#.27)
+ LA ‘+ N : . ’
™ )
_o(ln 0<2n | i Wn_

where Ofij's with superscripts are used instead of /Q's. ¥ 's, etc.
in order to make generalization to the n-firm case easier.

By making the obvious definitions, one could rewrite 4.27
in matrix motation:

) ) (o)
Y = &+ o In Xl+(><11n oA ee (o4 1an+W (4.28)

The MNH form, which would be appropriate where interactions
are significant, would appear in the n-firm case (ignoring carryover
effects for the moment) as the set of equations

i 1Tl To® ] [ ) ] 1
In Yy | (Xy]| %11 a1 ||l Xy 31 %1 ||In X1
aQ ) n )
In Yo 1_|¥2|, [¥12  “2z |[1" X2 {3 oy ||In Xpp
N : : : +¢ . o+ ] -~
o) ) . : " () ' n)
|n Y %n| [*In *%2n | Xn %X2n
- - . - ‘1 _ -
%1_1, Sa1 oo {n1| | 10 Xy In Xy ] [wy
§ In X,, 1In X W (4.29)
2 .,
s ‘ 12 1 Faz |, | V2
_jlln Son e gnnJ In X;, In x2rﬂ wnj
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. which would appear in matrix notation as

(n)

( .
1n Y== o+ (><‘)1n Xl+ ceot (><1an +S ln)(1 lnX2+W (4.30)

The goodwill model of carryover effects of variable X2 may
also be extended to the n-firm case. Suppose at first that

only one lag period is significant. The appropriate set of equations
would be

I ] [ Q) oﬂ B o) )
In Ylt‘l ] xy; Xy |fin Xq3 X11 °"21W In X9
) Q)] m) )
In Yo |_{%2 N 7z || 1n X3 Xy Hpa||1n Xy
SEE : : ARSI B :
) 2 () ™
_ln Yn't R O(n | D(ln b(Zn | L X1n O(Zn |
[ % o e ][ 1 Iy ]
11 X1 v X7 || Xoyp-n)| [ M2
(# DX (%
y| X12 iz cee Sz || Koz g | M2 | (4.31)
'(a);e ’ ()n (M ‘ .
) X'1n XIn  **- X1n | In X21'1(1:--1) "

— — -
~— L.

where the Off:?'s are employed as before, and Mf}t: parameters
corresponding to effect on Y, of Firm k's level of variable x

in period (t-2). Since in 4.3 only one lag period is considered,
all 4's are unity (1) in the second-last matrix.

The corresponding matrix-notation form would be

«) n) '3
mY, =+ &xmX, +...+ < mX . +e X, ;1) W (4.32)

where 1n X2(t_.|) refers to the matrix comprising each firm's Xj;

level last period. Similarly the matrix comprising the X, levels
A periods ago would be named In xz(t—z)-
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To accomodate more lag periods, additional matrices would
be added to 4.32. If the total number of significant lag periods
to include is L, this set of equations would be extended as follows:

() :
mm Y.~ o+ ¢><‘1nxlt+ +oé)1nxnt

(4.33)
+ o In Xz(t-l) 4...+&% In X 2(t-1)"

However, as before, the Koyck model may be more appropriate
where more than just a few lag periods are significant. The two-
firm model, as described by Equations 4.15 and 4.16, may be adapted
to the n-firm situation as follows:

1n v.1 .1 Toc® @ o 70 ]
O] (1_) m)
In Yol 19|« [ T2 S92 +-+ 12 || 1 Xy
) ) (n
' Yol [Pn] | %n e g | | In Koy | (4.34)
(o () 1) ] [ 17
*21 %21 o0 %2P| [42-5) i Xo1(4-2)| |"1
ofy Y. )| |k 2
L ; : :
Q) () <n) L -
o of cee X {4
2n 2n 2n | | Z2(1-8)" 1n Xon(t-2)] | ¥nl

In Equation 4.34, the second last term (of dimension
n x 1) may be simplified by rewriting it as the product of two
matrices, of dimensions n x L and L x 1 respectively. The
resulting explicit form is:



\)

1n X514

In X22t

- Oy | |1 Xip4
(n
. o<12 1n Xth
)
o Xn | |1 Xng
i _
1n Xth{ eee In X
ln$x22C4 eee In X
ln inc_z ® 00 ln X

2lz-«
2274

et

b

M2-5)°
(1-3)*

(i-v)L
i

(4.35)

An n-firm analog for the MNH functional form with carryover
effects appears in the Appendix to this chapter, as does an
n-firm extension to the dynamic-ad justment approach.
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CHAPTER 4: APPENDIX
MATHEMATICAL DERIVATIONS

IINH _FORM WITH CARRYOVER FOR THE DUOPOLY

The MNH functional forms (Equations 4.5 and 4.6) include
interaction effects, and are easily modified to 1nclude carryover
effects of variable Xz , giving Equation 4A.1.

L

1n Tig = & 5+ O_(ljln X114 T &5 s1n X21t+£lo<*.ln X201 (t-g)
L=1
+Byjin Xyt B pyin 2?t+2 85 in Kop(o-py+ 1510 Xapg In Xppy
1, 4=1
4 2, o' 3n Xy In Xy + S o500 Xppy In Xpp (4A.1)
=1
) >,
ZI B 2510 Xypp In Xppep g
=1

*
In this equation, «QJ and ﬂ);==interaction effect between
own firm's X.t and Xagy) levels; oy and,dz = interaction effect
between competitor's X;¢ and X2¢y) levels; and other parameters

are defined as bhefore.

Grouping terms as before, the cumulative effect of Xz; on

‘Yj is given by

L
o, 51n X21t+f§'l o F5In Koy gyt S131n Xypy In Xppy

o FgIn Kygg In Xpg(4og)

?FN\H
[

or
%25t erc*é_l oy M F21(t-0)
L e
x 3
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which, upon substituting
0(§§==0($j and C(}?? = Xyg3j
X2j | 13

gives

L

) + %
o5 %14 = %3 1 *ar(s-e)

+Z. o, X21(2-0)

+'§1j1n Xi1¢ |10 X ]

One may define also

33 & q [T [
Pri= By and B,y = B
A 23 5 2]
Equation 4A.1 would thus be written as
. L
In ¥, = + ) dn Xy + A, ]in X21t+£=10(:e"«-‘;1n L1 (509

L
v 3k ).
T8I0 Xypg |10 Xpyp 4 2, oI Xog gy | T 1500 Hagg

72=1 4
L
+B2; [1’“ Xzzt*zﬁ B, Xea(e-a) 5,510 Xypy l?m Ko24
-1
. |
e 3
+ZBM In Xp2(4-2)|.

Z=1

Cumulative-effect variables corresponding to the previously-
defined Z's could be introduced as follows:
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L |
in Zth = 1n o1t *ifid] o In £21(+_2)
}'-:. B
In Zo55 = In Xppp f, o< % In Xoy (47
In Zést = 1ln XZ

"% In X24(1:— )

,6’ *22(¢-2)
A

L
/
L

7919 — ~
In ZpN = In Xoop 2
A::

Equation LA.2 could thus be revwritten as

In th—:: (;v(j —Q-C\"ljln X114 ¥ Oz’zjln szt—-f%ljln Z5 (b}: )

#7510 Xpppt B, 0dn 234, 45,500 254

| In constructing the corresponding game matrix, #;, and
Z,, will be taken as Firm 1's decision variables, and X,; and 234
as Firm 2's decision variables, as these correspond to the X.j
and Z%i of the Cobb-Douglas solution.

DYNAMIC-ADJUSTHMERT FORM WITH EXPLICIT CARRYGVER EFFECTS

Equation 4.24 is the cperational form of the dynznic-
ad justment model previously derived. If this equation is lzgged
one period, the following is obtained:

+¥. b, dn X o,
In ¥y 9y = 85Po5 ¥05P15In Xay o1+ ¥5Pagin Kpq(yo)

' +¥ .9, .1In X,, ~(1-& )In Y., o T,
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Substitution into h.zh-yields the equation
In Yy = 5oy + (- W) (F 5o 0% 350510 Xy
+(1- b’j)( ?Sj ¢1j)1n X311 (t-1)F b’jd)zjln X514
+(1~'3j)('ﬁj<sz)ln x21(t-1)%-8j{}ljln Xyt
+(1- Uj)( B5015)In Xp(4 1)+ 359,510 x22t+(1-xj)(djﬂij)1n Xo2(4-1)
H(1-¥ )(1-8) In Yy, )+ Wy, (LA.4)
where W% is the appropriate error term, i.e.,

wp =w, t (1-% W, .

Lagging 4.24 another period yields

In Ysp 5)= B35Pos + 85D 3In Xpgp o)+ 35 ,50n Xy (4 o,

+ﬁjﬁljln XlZ(t-Z)“'Bj'e‘Zjln X22(t—2)+ (l-Xj)ln Yj(t-3)+ We o

and if the substitution for 1n Yj(t—z) is made in 4A.4, one obtains

In Y= 5,5+ (1-8) (85 - )+ (1-3,0%(3;0 )44y 5In Xyqy
H(1-3) (B, P 1 )In Xyp gy + (1-8)5(3,P 1)1 Xpg 45y
#3350 ,51n Xpp 0+ (130 (6,0 5010 X, oyt (1-5j)?(xjd>zj)1n Xp1(4-2)
¥ 59 51 Xppp+ (1-35) (X358 1 5)In Xpp(q qyt (1-Xj)2(zsjelj)1n X12(4-2)
F850 5500 Xppe t (1) (¥50 50010 Xpp 0 g+ (1-xj)2(zgjezj)1n Xy (4-2)

+(1-Kj)31n Yip-3)t Wi (4A.5)
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where W%' is again appropriately defined as

W'{:' = W%—l—(l _‘6:])'“

Equation L4A.4 is therefore appropriate where one lag
period is significant; and 4A.5 where two lag periods are sig-
nificant. By extension, one can determine the corresponding ex-
pression in the case where L lag periods are significant. This
expression is Equation 4A.6.

? (LA.6)

L 0 L
In Y, = éo(l-xj) ¥ Pys + é{,o(l-xj) ¥ by 5In X5 (4 _g

+

TMe

. g L - ,
(1)) ¥ ;$,51n xZI(t_[)+ZZ=O§l-Xj) ¥ 591510 X12(4-g)

N\L"

! VTHL N

N
‘

0

where W% is the corresponding error term. The reader may want to
check this equation by substituting L=1 and L=2, and verifying
that 4A.4 and 4A.5 are indeed obtained.

Equation 4A.6 may be suitably rearranged to yield

L 2 L 0. .
In Y =¥, . f{_,O(l-zgj) +¥ b éo(l-vj) In X1 (4_g)

-

(4A.7)

L L -
L £

L

L I+1 .
+‘53623 =‘0(1-?5‘_]) 1n X22(t-£)+(l—xj) 1n‘Yj(t-(1ﬁ-l))+wjé'

One may simplify the first term of 4A.7 easily, by using an
infinite-series theorem.

It can be shown (see Schwartz 1974, e.g.) that the sum of
a geometric series may be expressed as



- 124 -

SL_.a-\- ar 4+ ar + +arL
L L
==, ar‘z_eaz rZ
=0 2=0

i

a(l+r+r2+ cee +rL)

l--rL

l-r

i
»

If one takes r=(1 - % j), this expression becomes

L L .
aimrﬂ=a2_\;(1_5,)2= a 1--(1-‘6’.)L
=0 2= 0 J J

T - (1 -% )

J
~and a final simplification in the denominator yields
2 ¢
aZ, (1-39" =al1-@a-¥)tb
=0 J A
¥;

Finally, substitution into Part 1 of 4A.7 results in th
simplification:

e folleving

L 2 : 1 - (1 -%.)T
80052, (-3 = Y;b; ol L
£=0 ¥

With this substitution, 4A.7 becomes:

1, .
In Yy = ¥ 4’03 1 - (-807 L ¥y 2 (-4 % 10 %
3

11(t-£)

(44.8)
L
+¥. 4>2 Z: (1-¥, Y 1n X1 (4 1)+X%1JZ (1-3%. ) In X1504-0)
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Equation 4A.8 is therefore appropriate where the correct
number of lag periods to include is L. As L becomes significantly
large, the quantity (1- Xj)"' approaches zero, since, by definition
of the partial-ad justment variable ¥, 0< ¥ < 1l. If one were to
consider all the lagged effects of the independent variables over
a sufficiently long period of time (i.e., as L approached infinity),
the first term of 4A.8 would reduce to

45 <poj [1 %jo]

= &,

Furthermore, the last term of 4A.8 (i.e., that one containing the
lagged dependent variable Y j(¢-(L4y)) would vanish, as (1- % yett
would also approach zero. Thus, for a sufficiently large L,

4A,8 becomes

z ’
In Y, = o) 0 T chplj 4=o(l— 8507 In X394

L,
+ CDZJ-%O

L
+¥5925 2

£ L ¢
(1- ¥)7 In Xpy 4 py+ Xjeljlé,o(l - %) In Xy,
2 . s (4a.9)
(l"‘ ‘Gj) In 4{22(t_l) + N%. s

The four remaining terms containing summations zre not
reducible in the same way, but are still easily dealt with.
Consider the second term of 44.9. 1In expanded form, it could be
rewritten

0 1 A
Xj d)lj [(l-— ZSj) 1n Xll(t-0)+(l—5j) 1n Xll(‘t-—l) + ...

| L
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Define
L
1n z%i%: (Z:o (1 - Xj)4 In X11(4-4)
L
-~ 1n Zé%%:: ;5%?0 (1 - Xj)( 1n XZl(t—E)
L
In Zgg%:: é?ib (; -Xj)L in XlZ(t—l)
L
in Zé%i‘ =, (- Xj)k In X55(4-y)
L= 0

Substiting these variables into 4A.9 yields the equivalent

form

In thzq)oj + chplj In z§£%+ 753-4725 1n zé{%

(3) (3) (44.10)
$¥ 5015 In 2150+ 8 59,5 In Zpsy + W,

which may be used in game-matrix calculation. The ¥ 's in 4A.10
(j =1,2) are known to vary between zero and one, by definition.
Therefore, an incremental approach (like that used to estimate ¥
in the Koyck-type model) may be employed here as well to estimate
the most appropriate values for 5‘ and ¥, . This incremental
approach is discussed in Chapter 5 in the model application
section.
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N-FIR¥M MNH FORM WITH CARRYOVER

The n-firm MNH form, ighoring carryover effects, was
given previously as Equation 4.29. A set of terms would have to
be added to this set of equations, each term representing an
interaction between XU' and a lagged Xaj . Thus, if L lag periods
are significant, there would be L such terms. These terms would

take the form

-

C 1r
O YT 3 RGO Y

Ot‘e' 1‘ . sde MICC ln Xllt 11‘1 XZl(t’p)
y(NK W)k SYEOY

where the more general convention o()l(',),*, 0(’92*'

«$9* replaces the
convention (% , 8)% used previously in Equation 4A.1. If there
are L significant lag periods, the MNH carryover form would be

as appears in 4A.11.

[ 1 o1 [o0 ] " (n) o]
- oe)
In Yy | | [ X5 | Xy %7 ] Xint
(¢] @ (n ) 5
In Yool % |9 <21 X, Y 211 Xont
oc‘ . o .( . .
_ln Ynt_ ‘D(n | __O:lr? 0/2% ] 0(1?? 0(2?1:
W o ] [ o Gw el T T
X7 1 11| X214 % oG XTI Kor(s-r)
Ll @% . ¥ ik 3 M
+ %z %92 o] | LR CPYRRD NI U ol e SR 4 | B X22(t-1)
b : ; Lo : :
)% (& Wk 043 (©3 3 Q)
Xin %0 e XIn)f 1 in(t"lj M Kn e O(Lnj 1n in(t-,/;_)J
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S11 Y21 eee S | [In Xppyp In Xpqy
Y12 S22 ccc fnz | | In Xopp In Xy
%ln XZn cec gnn ~1n Xlnt in XZnt
[ Moz e | [ . 7]
) . CTT || In Xypq In X5y 049, (LA.11)
QL i (hy#
{2 : X1z || In Xypgp In Xpp04o1) 4 oce-
10)x ces &)x
X 1n XIn | [ Xing " Xon(4-1) |
ra‘g’f o("l',‘i* [ 1n Xy1¢ 1n le(t__L)- i wl-
L'} X
12 R £l B P T C S AN N
\’(n)¥ );n)‘. ’ '
| %1n oo ¥In || 1 Xing I Xon(eon)| | Ya

This form

evidently is a generalization of Equation 4.33 which was derived

This may also be written in matrix notation.
for the Cobb-Douglas functional form:

) (
mY; = o+ &Xm X, 4.+ X (44.12)

# *

' %

‘3%
+ 0(1 1n X 1t In X Z(t—l).‘“' '+0(L lnx 1t lnX 2(t_L)+\»Iv/ .



- 129 -

N-FIR¥M EXTENSICON TO THE DYNAMIC-ADJUSTMENT APPROACH

Consider at first the three-firm case. Ignoring the error
terms for simplicity, Equation 4.25 would be extended to the

following form:

L
In Yy =5+ ¥, Cb(‘) [lﬁj (1-53)'1 In Xll(t—l)]
=0

1 1 L -
1 -Q. 1 2
#8509 £, (=07 1n X 4| 4567 FZ (1-3:071n Xy5(4_p)
,l= 0 i ,e 0 J
('-) [ L )Q Q). L
+¥;0%y| =, (1-3° 1n X22(t—£) 5599 Z(l 8t 1 X300
N
+qu>(§)j LZ (1-95)7 In XZB(t—Z} (LA.13)
L AL=0

. (z ?) . .
where j = (1,3) and f'}, d):j) , §iy are used in place of §; and €

to permit simple extension to n firms (n> 3).

Two notational definitions will simplify the following .

manipulations greatly. Firstly, define
1 ~-Y¥. = . fo 11 j;
993 r all j
also define

7 %) - ©¢) for all j and ¥, and i = (1.2).

Thus, 4A.13 becomes

L L
) ¥ M
In Y Cpog 6‘13 é ¢j 1ln Xll(t—,@ +6‘2j leé"' {é% 1n X21(’C-Z)
=0 =0



[ L
] ) ¢
Pelj (é: /(03
(2) [ L {
+6lj 2_; )/03
L L= 0
= (1,3).

(LA.14)

To see how this can be converted into matrix notation,
consider first the situation where only one lag period is significant.
Equation 4A.1%4 then reduces to

1, .
*‘6%)3 @5 1n Xpoyt @y In "{2.?.(1:—1)']

If one were to write each equation explicitly (that

1
j In Xty In XZl(t-l)J 1

1

o
. +€} [99 1n Xllt+9p 1n Xll(t IJ

-

+6 )

o
-

+e“’

H j=(1’3)-

[ o 1
@3 In Ko +4;

0 1
9’3 1n let*';bj

od

™ f13(5-1)

(La,15)

is,

substituting for all j's), one would obtain the system of equations

P 1 e(l
In Yy, =P, +O7)
In Yq, <§>03 +e(‘

[ o}
%
(05

1

In Xy, +# 7 In

In Xy, + %1 1n
1147 # 2

1
Xllt-F993 In X

g&g 1ln

1

X.ll(t-1)J + e

X11(t-1)

-
-

11(t-1)f+ -
]

(44.16)

where only the first two terms on the right-hand side are shown. To
convert the equations into matrix form, notice that the matrix



r~

e“’

o)

.~

(o]
,(51 In X914+ 2]

1

o 1
¢2 In Xqy4+ &5

- 1
13 _{03 In X114+ @3
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-

In X34 (4-1)

-

in Xll(t-—l)J

In X

ll(t—ll

-

may be expressed as the product of two simple matrices,

- 1
) [ o 1 ]
©11 @1 In Xyqp @y In Xy 40
() O 1
o e o In Xyq4+ @ In X940y | -
) o] 1
| 0 ©13] | ¢3 1" fragt¥3 10 Xpa(4a1) |
Also notice that the right-hand matrix may be further simplified:
[, 0 1 ) 0 1Y} o
@1 In Xpppry In Xgy(4o) [ 43 i I RS Y
o} 1 — o} 1
@z In X4 ¢p In Xyg(4o1) 2 2 n X33 (¢-1)
o 1 o] 1
@5 1n X1a+f3 10 Xy (41 RZENE
One thereby obtains the desired relation
Q) 1]
e f”l In Xp3 4+ 10 Xy (g 1)
[
©f) [¢$ 1 xyp4 5”2 n X33(4- 1)
()
9713 F¢3 In X11t+¢3 In Xy9(t- 12u
1 o L1 ¥
re‘l"l 0 0 rf"l ¢ In Xyq4
= o] 1 .
0 <4, 0 2 2 In X131 (¢-1)
' o 1
0 0 o) Z [
L 13 ] "2 ’ ]
This allows the first parts of the equations in 4A.16 to be

translated into matrix form as follows:



= 1r T 1 .0 [/, 0 1
in Yo | [:] [€51 O o |1#1 1| %1
- _ ) o 1 +-
In Y, | 4302 o O o gy Yo Xppe-n]
) o 1
L”].l"l th.- —(POB~ L 0 0] _e§~3 JJL;& 3 gb BJ (4A.17)

It is convenient now to convert to matrix notation:
' Ga) :
(n yt = (po t 'e", ’(f In X“ + o (4A.18)

It is now possible to write 4A.15 completely in matrix
notation. Using the conventions set down in 4A.18, one obtains

nYe- Qo+ 0" L0 Xi+ O 00 Xt ©P%0X,,
+‘9(§)f(f‘“ X21+—G~(.9,(.//I“Xls+ e_c;_a;&,nng; (4A.19)
where the dimensions of the matrices are as follows:
m Ye, @, = G0
G;(j) = (3,3)s
£ = 03,2

1 Xij = (2,1).

Now, the model can be extended easily to include L significant
lag periods. The equation in matrix notation (4A.19) is still valid,
but the dimensions of ’4' and 1n )(ﬁ change. These two matrices
become

1 L] [ ..
(493 1 B 99]_ and n Xlat ’
In X, .
¢g % ¢£ l;a(t-l)
-1 L
¢35 ¢z (/3‘ | 10 X5 5(4-1)
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respectively. Finally, for the n-firm case with n> 3, 4A. 19 must
be extended to the following:

hYe= O + Ot X+ - + ©°L 1 Xy (4a.20
| + OV X+ + O L In Xan ;

where the dimensions of the matrices are:

1n Ytk, (bo = (n,1);
9—;"" = (n,n);

¢ - (n, L+1);
mm X = (L+1, 1);

and n and L are the number of firms and the number of significant
lag periods, respectively.



CHAPTER 5
ISSUES IN MODEL APPLICATION

INTRODUCTION--CHAPTER OUTLINE

Chapter &4 pfoposed an adaptable, general theoretical model
of marketing-mix effects on success variables for firms in a given
industry. Despite the level of mathematical sophistication, many
questions still remain, however: mostly, these are questions of
application. What are the relevant marketing-mix decision variables
in the industry? What measures of success are used by the firms in
question? Do all firms in the industry have the same objectives?
How, indeed, should the industry be defined? And what would be
reasonable expectations for application of the model? These are
some of the issues which shall be examined in this chapter.

Chapter 5 comprises three parts. In Part 1, various
problems which may be encountered in modelling are highlighted.
The important distinction between strategies and intentions is made.
Awareness of possible drawbacks to the model will aid in the selec-
tion of relatively "simple" industries for basic empirical testing.
Also, -potential problem areas which may be encountered in exten-
sions to more complex situations are discussed.

Part 2 investigates the application of the theoretical model
in a specific setting. The steps involved in the building of the
industry-specific model are illustrated. This section also considers
the appropriateness of including interaction effects, and indicates
how one may choose among the different approaches (described in
Chapter 4) for dealing with carryover effects. The result of Part 2 is
a game matrix representation of a hypothetical industry.

Finaily. in Part 3, issues regarding the interpretation of
the game matrix are addressed. A game matrix is "solved" for the
equilibrium points corresponding to the relevant behavioural pat-
terns; strategies through time by the players are examined; and
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decision-making implications are discussed. In short, Chapter 5
essentially outlines the development of an industry-specific

"theory-in-use” which can be tested empirically.

PART 1--PROBLEMS IN. APPLICATION

A number of potential hazards appear when attempting to
apply the theoretical model of Chapter 4 to an industry. At the
outset of Chapter’5 these pitfalls are introduced, for two reasons:
a) to help select industries where the analysis would not be unduly
complicated by a myriad of significant independent variables (i.e.,
"simpler" industries were selected for demonstration purposes); and
b) to indicate what difficulties would have to be faced in applying
the theoretical model to more complex situations in the future. One
may classify the potential hazards into three categories: those con-
cerning cheoice of dependent variables; those examining the proper spe-
cification of decision variables; and those pertaining to the beha-
viour of the firm.

Dependent Variables

In the discussion of the theoretical model, the payoff vari-
able Y was left undefined. It would require a thorough understanding
of the intentions of the firms to know what should be chosen as the
objective (i.e., the payoff or dependent variable) for game modelling

purposes. The importance of this clear distinction is easily shown.

Suppose that the modeller makes the assumption that both
firms in a consumer-goods duopoly are attempting to maximize sales
revenue. He also assumes that'there_is only one relevant decision
variable,which is price. (The next section discusses proper selection
of decision yapiables.)'Price is taken to be a trichotomous variable:
either firm may set a price of $0.80, $1.00 or $1.20 on its product.
He decides to find the non-zero-sum game matrix representation of
the industry with price as the decision variable, and the sales
revenues of Firms 1 and 2 as the payoffs. He may find that the
resulting game matrix would appear as in Figure 5.1.



P2
0.80 1.00 1.20 §
PL Y (305.8) | 512 518.4
0.80 |
FIGURE 5.1
Sales Revenue Maxi-
(:::> 540 5148 mization
1.00
— 808 950 1068
528 537.6
1.20 1 g3 960 1080

FEER

respectively;

Note: Upper and lower figures refer to Player 1 and Player 2
security levels are circled.

This indeed would be the sales-revenue game matrix obtained

if demand for Firm 1's products, expressed as a function of price,

were

Ql::

1000 - 500 P

1

+ 40 P2

and demand for firm 2's product were

Q, = 1200+ 50 P; - 300 P

2

(5.1)

(5.2)

Solving for sales revenue using standard microeconomic techniques
would yield

and

N
]

P

19

Pl(IOOO - 500 Pl + 40 P2)

1000 Pl

P> Q,

- 500 P

2
1

+ 4O P, P

1 f2 (5.3)

P2(1200 + 50 Pl - 300 PZ)

2

1200 P, + 50 P, P, - 300 P,“. (5.4)
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Equations 5.3 and 5.4 were used to construct Figure 5.1.

Now assume that both players play minimax. Player 1
maximizes his security level by playing the middle-price strategy,
while P2 prefers to set a high price (the preferred strategies are
indicated by arrows). Resultingly, Pl would earn a sales revenue
of $548; and P2 would receive $1068.

Suppose that the médeller had been wrong in selecting
sales revenue as the relevant payoff. The firms strive not to
maximize sales revenue, but to maximize profit. The variable and
fixed costs incurred by firms 1 and 2 may be as follows:

VC

i

$0.50 per unit;

1
FC; = $200; |
Ve, = $0.45 per unit;
FC, = $250.

If so, total cost expressions for Firms 1 and 2 would be

Tcl.= 200 + 0.50 Ql

and corresponding profits would be

'lTl" Sl - TC

1

= P;Q; - 200 -70.50 Q@ (5.5)
‘n'z = S2 - T02

= P,Q, - 250 - 0.45 Q, | (5.6)

One may solve for a game matrix with profits as the payoffs,
to obtain Figure 5.2.

If the firms were in fact using a minimax strategy, i.e.,
maximizing their profit security level, both firms would prefer
to set high prices. Here is the key issuns: if the modeller were
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0.80 1.00 . 1.20%

Pl -8 ~5.6

0.80 _ 110 FIGURE 5.2

Profit Maximization

70 h
1.00| -
103.5 - 272.5 417.5
- 108 113.6
- 1.20 1 499 278 25

faced with the game matrix of Figure 5.1 (sales maximization), and
noticed that the firms both preferred the high-price strategy, he
would have no way of knowing whether a) the firms were using sub-
optimal strategies for sales maximization, or b) he had misspecified
the model; i.e., chosen the wrong dependent variable. Hence the
importance of understanding the intentions of the firms, and

thereby of careful selection of the appropriate objective. 1In

order to test the model empirically, the modeller would be wisest to
check with industry experts or managers on this issue. (Note: the
issue of intentions is taken up again in a general discussion of
behavioural issues.)

Chapter 4 indicated the possibility that different firms
may have different objectives. This coincides with the view of
Porter (1980), who suggests that industries, like products, go through
a form of 1life cycle: he delineates emerging, mature and declining
industries. Among the characteristics of emerging industries are
uncertainty with regard to appropriate marketing strategies and the
tendency of firms to "induce substitution"; i.e., encourage first-
time buying. In such an industry, it may be likely that firms are
~ trying to maximize unit sales, in order to gain a share of the market.
The game matrix corresponding to the demand equatlons 5.1 and 5.2
appears in Figure 5.3,.
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P2
0:80 ‘ 1.00 1.20
P1 | 833 640 648
0.80 :
— 000 , 880
FIGURE 5.3
1.00 C:::> 5ho 548 Unit Demand HMaximization
' 1010 950 890
@32 uho N
1.20 }
1020 960 900 '

In this situation, yet another strategic combination would be
preferred: each player would choose to play his lowest price.

Competition in a mature industry is offen marked by in-
creased attention to market share and relatively low market growth.
Not inconceivably, a well-established firm may be satisfied with
its market share and attempt to increase profitability, while one
of its smaller competitors (or a new entry in the industry) may place
"prime importance upon sales growth. Fortunately, such divergent
goals may still be represented in the theoreticai model. Nowhere
is the restriction made that all the payoffs need represent the same
success variable. ‘

A further comment on dependent variables concerns short-term
versus long-term goals. A long-term objective of profit maximi-
zation might involve at first playing a strategy which appears to
yield lower short-term profits: for example, a high-advertising
strategy where short-term profitability is traded off for investment
in advertising which, it is hoped; would lead to even higher sales
and profits in the long run. At first this would appear to be a
drawback to- the model but two observations may be made. The first
concerns the issues of strategies versus behavioural intentions. It
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is not the goal of this research to determine the players'
intentions (i.e., what their short-run and long-run objectives are)
through examination of the game matrix, but rather, to construct
game matrices which will improve a firm's decision-making, given
what its intentions are. The discussion of behaviour of the par-
ticipants takes up this argument again.

The second observation is that the proposed model is
dynamic. The brief illustration given above represents a once-
only pricing decision. The players make only one decision each;
and if they follow minimax behaviour, their one decision is easy to
predict. However, having time-series data, the process of repeated
decision-making can be observed, and changes in preferred strategies
over time may be tracked. Favouring a'profit—maximization strategy
over time would lend support to the belief that a firm was indeed
committed to a long-term profit-maximization objective (even if
occasionally the firmwould choose another strategy which was po-
tentially more harmful to its competitor(s)).

Independent Variables

Like the success variables, the independent variables are
also left unspecified in the theoretical model. The functional forms
derived in Chapter 4 contain general independent variables Xi , X2
(and possibly X3). The chapter also illustrates the procedure
to follow when one (or both) of the decision variables is expected
to exhibit carryover effects, or if interactions prove significant.
It had been suggested at various points that X; (the non-carryover
decision variable) and X, (which exhibits significant carryover
effects) represent price and advertising levels, respectively.
Although this may be a reasonable first assumption in some situations,
one must ascertain that these are indeed the appropriate variables
to consider for the particular industry under study.
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First, consider the relative merits of studying a consumer-
goods versus an industrial-goods industry. It may be argued that
pricing and advertising strategies are crucial elements of the
competition among firms prbducing consumer goods; 1in fact, if
distribution policies and expenditures are approximately equal
(or constant), these two strategic variableswill capture much of
the interfirm compétition. However, the likelihood of extraneous
factors complicating the situation is high. Most obviously, the
direct effect of either price level or advertising expenditure on
sales may not be easy to determine. This may be due to a number
of reasons: if "dollars invested” is used to measure the adver-
tising variable, differences in quality of advertising are not
modelled explicitly; other promotional efforts (i.e., personal
selling and sales promotions) and word-of-mouth communication,
which may be just as important in determining brand choice as mass
advertising, are ignored; real quality differences across brands
are not measured and incorporated into the model; etc. Also,
consumers often do not have enough expertise to make the best

“brand selection (see Shapiro 1968, e.g.) and are liable to make

many purchases on impulse. All of these complicating factors make

it difficult to derive econometrically the direct effects of price
and advertising on sales of a consumer good. Erickson (1981), for
one, showed that different estimates for the effect of advertising

on sales for Lydia Pinkham's Vegetable Compound (see above) are
obtained, depending upon whether the data is reported weekly, monthly
or yearly. Given these difficulties, it may be heroic to assume

that the direct effects of any decision variables on sales or

market share (let alone profit!) are easily estimated.

One might feel somewhat more certain that extraneous factors
are less likely to cause difficulty in the case of industrial goods.
Industrial buyers are usually a smaller, well-defined group, and are
likely to be very well-informed on the relevant characteristics of
each firm's products. They would thus have more knowledge upon
which to make their choice rationally (i.e., to be less swayed by
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impulse that the average consumer). However, when studying industrial
goods, it is also very likely that marketing-mix variables other than
advertising and pricing are far more important in determining brand
choice. For instance, product quality or the existence of a well-
defined distributor channel may be crucial. Also, manufacturer's
advertising to middlemen (i.e., in trade journals) may be more rele-
vant in this context than manufacturer's advertising to final con-
‘:‘sumers; so some means of distinguishing among advertising targets

: may be necessary.

Although this paper takes a marketing approach, it should
be mentioned here that non-marketing variables may prove to be just
as relevant (or even more so) than those variables listed above.
The amount of vertical integration, for example, may be an important
variable in the industrial-goods market. Turning again to Porter
(1980), one sees quite an array of possible strategic variables:
these include specialization, brand identification, push-versus-
pull, channel selection, product quality, technolcgical leadership,
vertical integration, cost position, service, price policy, finan-
cial leverage, relationship with parent company, and relationship
to home (and host) government (Porter 1980, pp. 127 - 128). One
certainly should not be restricted to considering only marketing-
mix variables when developing a complete model of an industry.

However, here one must be judicious. Although the stra-
tegies represented in the theoretical model of Chapter 4 need not
be marketing strategies, the intent of this paper is to develop a
marketing-mix decision-making model using the constructs of game

- theory. Recognizing, then, that many non-marketing strategic
variables may be important determinants of a firm's success, one

is restricted (for this work, at least) to studying an industry
(either consumer-goods or industrial-goods) where the marketing-

mix variables are indeed significant. Careful selection of
industries is therefore recommended, and interviews with appropriate
managers would aid in determining which marketing services are of
the greatest importance. This is not to say that non-marketing vari-
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ables are ignored (see below). Also, this is not a case of "finding
data to suit the model"; rather, the industries selected Icr this
paper had the advantage of being relatively easily modelled using 2

small number of variables, thus facilitating demonstrztion of the
applicability of the theoretical model.

Interviews with management personnel should also help in
interpretation of the data. For example, any changes macde in the
reporting of data (due to accounting changes) should be pointed cut;
if advertlslng expenditures include sales promotion efforts or not;
etc. Also, there may be "hidden" internal constraints in the =etu1n5
of decision-variable levels which the modeller must be rade aware of:
e.g., advertising may be always set at 2% of last period's sales, or
the "affordable" method may be used to set the advertising budget
(i.e., "How much can we afford to spend this year?").

It may also be that the correct marketing-mix variables

are included in the model, but the specification of their effects

on the objective variable are wrong. One may assume that price levels
have an immediate effect on brand choice; i.e., that current Trices
are the only relevant price variables to consider. ZIven if such a
model provides good fit to the dzta, it cammot capture the corrtlete
effect on consumer demand as described by Vanhonacker (1%Z23z; 19830DJ).
He argues that there is an immediate effect of price fluctuzticn
about an essentially fixed price level, as well as a TCtg—ter: effect

\.‘

due to changes in this price level over time. A model which ignores
carryover effects of price cannot separate these different pricing
effects and essentially can only estimate the effect of the fluctu-

ation effect. It will be noted that the dynamic-ad justzeni aroroack
proposed in Chapter 4 allows for all the independent vzriabdles
exhibit a carryover effect on the dependent variable.

o

ck B

(o]

A final point regarding selection of independent varizbles
concerns the masking of a significant underlying variable due to
correlation. The modeller may believe, for example, thzt price znd
advertising are the relevant decision variables, and may ottain 2
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model with excellent interpretative ability using these variables;
but may not have considered that a firm's advertising may be highly
correlated to its level of research and development expenditure in
this industry. Having collected R & D expenditures at the same
time as the price-advertising data would allow the researcher to
determine whether R & D was in fact a more significant variable
than advertising in influencing sales. Also, sales or profits in
the industry méy be heavily affected by other, non-marketing vari-
ables such as up- and downturns in the economy. One must therefore
develop a list of variables (either controllable marketing-mix
variables or external variables such as economic indicators) which
are potentially significant, before commencing data collection, if
for no other reason.than to save time in recollection of prev1ously—
mlssed ‘data at a later stage of research.

Behaviour of the Participants

Careful choice of industry and consideration of what
strategic variables are likely to be important, in conjunction
with in-depth interviews with industry experts or manageément,
would simplify the selection of dependent and independent variables
and minimize the likelihood of problems arising from inappropriate
variable selection. But even once the model is correctly specified,
there still remain problems of interpretation of the results;
namely, what the results imply about the behaviour of the vartici-
pants. It is in this regard that the distinction between this work
and that of Shubik and Levitan becomes more pronounced.

In their introduction, Shubik and Levitan (1980) give the
following interpretation of their market model (presented above
in Chapter 2):

"It is shown that the sp601flcatlon of the payoffs to
each player is tantamount to the specification of the
market structure and the goals of the firms. A solution
concept may be regarded as the specification of the
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intents of each player. The solution is the outcome
resulting from the application of these intents to the
market structure." (Shubik and Levitan 1980, p. viii)

Their argument may be interpreted as follows: given a game

matrix with accurate, appropriate payoffs, and given perfect infor-
mation on the part of the players, one could determine the beha-
vioural intentions of the players by examining which equilibrium

point is reached.

In this paper, the argument is made that it is difficult,
if not impossible, to determine behavioural intentions of indi-

vidual managers, given only the payoffs of the game matrix. All
that is clearly revealed upon examining the game matrix is the
pattern, through time, of the'players' strategies. Opponent
reactions, i.e., analysis of each other's strategies as well as

choice of counterstrategies, are potentially partially masked in a
numerical game-theory analysis except in very extended gaming.
Behavioural factors such as the emotional makeup, intellectual
ability and skill of the players are also likely to be masked

when considering only the numerical payoffs.

One must therefore be careful in distinguishing between
behavioural intentions and strategies. The time-series data is
a running record of historical strategies taken by the players:

strategies here referring to that which has already been done by

theAplayers.v Intentions here will be taken to mean what the players
had in mind when they chose their strategies, or what they would

like to accomplish in the future. Given that the players probably
did not have perfect information about the marketplace when playing
their (historical) strategies, it is presumptuous.fo assume that
their intentions are clearly revealed by the strategies chosen.
Rather, an approach which is opposite to that of Shubik and Levitan
is taken. 1Instead of working backwards to determine behavioural
intentions from historical strategies, the intentions will be taken
as given through an understanding of the industry and/or inter-
viewing industry managers; thus the appropriateness of‘the selected
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‘strategies can be evaluated in thisllight.

The danger of taking the approach that intentions are
revealed through the players' behaviour is that it leaves
unanswered the question of what motivates the players. Players
'making repeated decisiohs under changing conditions and without
perfect information will not always choose the "optimal" strategies,
optimal here referring to that strategic combination which is
best suited to attaining the players' objectives or intentions.

To summarize, Shubik and Levitan propose that the intentions

of the firms in an industry are revealed through their behaviour;

this work takes the approach that given the intentions, strategies
which are most conducive to attaining the intended results may be

determined.

PART 2--lCDEL APPLICATION

Now that Part 1 has indicated some of the potential draw-
backs to the theoretical model, and some of the practical consider-
ations which must be made in its implementation, the operational
considerations (vhich were not dealt with in Chapter 4) are examined.
A hypothetical scenario is presented for exposition purposes.

In this hypothetical consumer-goods industry there are
two firms, A and B. Both firms are well-established and produce
many competing small consumer-branded items. One such small
consumer product having few substitutes is chosen for analysis.
The industry for this product is said to comprise the two firms.

Incidentally, this last statement answers one of the ques-
‘tions posed in the introduction to this chapter: that is, how
the industry should be defined. The last paragraph above implies
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that the industry for a given product is made up of the set

of firms which manufacture that product. In the case of some
products (small consumer items like peanut butter come to

mind), however, the efforts of firms producing close substitutes
(like jam) probably cannot be ignored.

. Returning to the scenario: Both firms, and the product
in quéstion, are in the maturity stages’ of their respective
life cycles. It is decided, through interviews with management
personnel, that the relevant marketing decision variables to con-
sider in this industry are pricing and advertising, and that
both firms are attempting to maximize sales. Therefore, monthly
sales (by firm and aggregate), prices and advertising expen-
ditures are collected for a sufficient number of years. It is
hypothesized that advertising may exhibit a carryover effect,
and that price-advertising interactions may be significant and
should be tested for.

The building of the game matrix involves two steps.
First, the functional form (from among those presented in
Chapter 4) which models the sales/marketing-mix-response beha-
viour in the industry most appropriately is determined empiri-
cally. Second, the econometric equations are adapted into
the forms which will be used to construct the game matrix.
These topics are examined here in Part 2.

Once the matrix is constructed, it will be solved for the
equilibrium points under the various behavioural assumptions. Then,
the relative merits of the strategic choices made by the players
over time will be examined, and recommendations on pricing and
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advertising strategies for the future are made. These issues will
be turned to in Part 3 of this chapter.

Determining the Best Functional Form

‘The first step in data treatment involves checking the’
distributions of the independent variables for normality. The
importance of bivariate normality is explained by Rummel:

"Although normal univariate distributions are not suf-
ficient for the bivariate distributions to be normal, they
increase the likelihood. A bivariate normal distribution
has the useful property that the relationship between the
two variables is linear;...a sufficient condition for the
correlation condition to be a true measure of statistical
independence is that the bivariate distribution be normal -
...finally, application of tests of significance assume
that the distributions of the variables &re all normal.”
(Rummel 1970)

' If the data are not univariate normally distributed, it
becomes necessary to perform an appropriate transformation. Norma-
lizing the univariate distributions by such means makes bivariate
normal distributions more likely; and it is bivariate normality
which must not be violated in order for the calculated correlations
and coefficients to be meaningful.

One may assume that the histograms of the natural loga-
rithms of the independent variables showed no great deviation
from normality. With the assurance that the data are amenable to
quantitative analysis, the comparison and selection of models
begins. Chapter 4 indicated that the main effects of decision
variables may be modelled by Cobb-Douglas-like equations, while
an VMNH extenéion would inéorporate interaction effects. Using
Equations 4.1 through 4.4 as guides, the appropriate functional
forms to consider are:
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(COBB—DOUGLAs )

In S4 = % +%1n Pyt 06 In Ay + Ay In Pyt RypIn Apys (5.7)

1n Sé;=d2+ 0(121n P1t+0(221n Alt-t-ﬂlzln P2t+,€221n Apyes (5;8)

and

(MNH)

In Sy &t Xn Pyt Xopln Ayt Prgin Poyt forln Apy (5.9)

+‘§111n Py In Alt4-§21ln Poy 1n Ay

In S, =&, +0(,1n Plt+0(2;1n Apy+ RioIn Pouk Booln Agy o

.10

+ 51,10 Pry In A, +55,1n Py In Agys

where Sjt": sales in dollars of Firm J in period t;
Ajt and Pjt = advertising expenditures and retail price level
set by Firm jJ in period t;

and «., &

5 i3 )Bij -deflned as previously.

It is hypothesized that MNH will be a more appropriate
functional form that Cobb-Douglas, because it incorporates the
postulated interaction terms. Thus, the hypothesis to be tested is

Hot 3 13 =_‘523=°;
H,: at least one ‘iij #0; i,j=(1,2),

where the SU 's are the interaction coefficients of 5.9 and 5.10.
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The addition of interaction terms necessarily improves
the fit of any model: more variables always explain more than
less variables. Thus, the benefit of increased explanatcry ability
obtained through the inclusion of interaction terms must be weighed
against'the corresponding loss of degrees of freedom. Fortunately,
standard methods (such as comparing overall-F statistics) are appli-
cable in determining the model with the best explanatory ability.

Suppose the Cobb-Douglas form is chosen (that is, the
interaction effects are not found to add significantly to the
explanatory ability of the model). As specified in Equations
5.7 and 5.8, carryover advertising effects are still ignored. The
next tests to be applied determine which (if any) of the apprcaches
derived in Chapter 4 for the treatment of carryover effects is
applicable. '

Wlodelling Advertising Carryover

The goodwill approach, as proposed in Chapter 4, accounts
for carryover of advertising by estimating individually each cof
the weights associated with the lagged variables. Thus, the Cobdb-
Douglas form is first compared to a similar form ccntaining one-
'lag—period carryover effects, which is obtained by adapting
Tquations 4.7 and 4.8: -

= (o ¢ 3
. (5.11)
PRy I Pap + Bog In App ¥ S5 In Aprp qy* Ve
where

i= (1,2).

If the advertising effects of period t-1 prove to be significantly
different than zero, additional carryover effects may be added in
and their significance checked.
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Should more “than one or two lagged periods be significant,
however, difficulties may arise for at least two reasons. First,
adding in many lagged effects may introduce substantial levels of
multicollinearity which would cause problems in parameter estima-
tion. Second, the number of parameters to estimate escalates
rapidly as the number of significant lag periods increases: too
many degrees of freedom may be lost with a resulting decrease in the
- ad justed R-square value and in model usefulness. In these situ-
fations, the Koyck approach may be more appropriate.

Chapter # derived a pair of general Koyck equations for
the two-firm case (Equations 4.18 and 4.19). These could be
adapted to the current situation as follows:

= (>4

(5.12)

vhere
j= (112)3
L 2
In Z), = 12’.0 (L -%)" In Al(t-Q) ; and
L 2
In Z,, = éi;o (L -38)" 1n Az(t—l) .

One is thereby left with the problem of estimating the
size of the J's. An incremental optimization procedure may be
used. The parameter § is known to be between 0 and 1; therefore,
as a first approximation, one-tenth intervals will be estimated
(§=0.9, 0.8, 0.7,...). Starting with §=0.9 (recall that high
levels of ¥ indicate that carryover effects are less important),
one could substitute for § in the definitions of 1n Zi4 and 1n Z
to obtain the following:

2%
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L

3 .,
In 25, = Z_. (1 -0.9)% In Ay(y_p
£L=0 |

= (0.1)9 In A, +(0.1) 1n Ay (4-1)

+(0.1)% In Ay g py+ -ee+ (0107 In Apey gy

and similarly for 1n Z2t' Terms would be summed as in the

expanded form above, until the point is reached where the inclu-
sion of an additional term causes an insignificant increment to
In th and 1n ZZt‘

Both 1In 2 and 1In Z would thus be calculated, then

1t 2t
used as independent variables in 5.12, which would then be

estimated. This procedure would be repeated for all other levels
of § (0.8, 0.7, etc.) until it is found that lowering ¥ no longer
improves the model. The value of ¥ which yields the best-fitting
econometric equation would be selected. The procedure could zlso
be fine-tuned to obtain even more precise estimation of j§.

. The two approaches which have been proposed for the situ-
ation where one independent variable exhibits significant carryover
effects may thus be compared. The Koyck-type approach allows the
modeller to incorporate any number of lagged periods with ease and
may therefore be preferable to the goodwill approach, esvecially
where more than one or two lag periods are significant. Eowever,
the goodwill approach estimates the carryover. effects independently
from each other (i.e., geometrically-declining significance of
carryover terms is not assumed); thus, if multicollinearity and
reduction in degrees of freedom are not serious problems, the
goodwill approach is more flexible. The third approach (dynanic-
ad justment) would be applicable in this hypothetical situation if
both price and advertising exhitited carryover effects (see
discussion in Chapter 4). |
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. L
= E: 2

- 0 : 1

+(O.l)2 in Al('t-—Z) t ...+ (O.I)L In Al(‘l:-L)

and similarly for 1ln ZZt' Terms would be summed as in the

N expanded form above, until the point is reached where the inclu-
sion of an additional term cazuses an insignificant increment to
In th and 1ln ZZt‘

Both 1n th and 1n ZZt would thus be calculated, then

used as independent variables in 5.12, which would then be
estimated. This procedure would be repeated for all other levels
of § (0.8, 0.7, etc.) until it is found that lowering ¥ no longer
improves the model. The value of ¥ which yields the best-fitting
econometric equation would be selected. The procedure could also
be fine-tuned to obtain even more precise estimation of J§.

. The two épproaches which have been proposed for the situ-
ation where one independent variable exhibits significant carryover
effects may thus be compared. The Koyck-type approach allows the
modeller to. incorporate any number of lagged periods with ease and
- may therefore be preferable to the goodwill approach, esvecially
where more than one or two lag periods are significant. However,
the goodwill approach estimates the carryover.effects independently
from each other (i.e., geometrically-declining significance of
carryover terms is not assumed); thus, if multicollinearity and
reduction in degrees of freedom are not serious problems, the
goodwill approach is more flexivle. The third approach (dynamic- .
ad justment) would be applicable in this hypothetical situation if
both price and advertising exhibited carryover effects (see
discussion in Chapter 4). '
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The so-called Koyck model is not, strictly speaking,

“in true Koyck form, as the final form of the classic Koyck model

has lagged dependent variables on the right-hand side (see Chapter 3).
Thus, obstacles normally encountered in using OLS to estimate a

Koyck model (inconsistency of the lagged-variable parameter, auto-
correlation of error terms) will not necessarily occur (see Taylor
and Wilson 1974, KMaddala and Vogel 1969, or Clarke 1973 for a dis-
cussion of these problems).

Testing for Significance of Effects

Suppose that in the hypothetical industry, only one lagged
advertising term was found to be significant, and that the good-
will-form model of Equation 5.11 was selected to represent the
industry. Now, hypotheses concerning the magnitude and direction
of all effects may be tested individually.

The main effects of own price, current advertising and
lagged advertising on A's sales are represented in Equation 5.11
as Xy, 04, and %% respectively. The corresponding effects of the
competitor's decision variable levels are A, fu and ,Bf. The
significance of each of these effects may be tested for indi-
vidually by determining whether the values estimated for these
parameters are significantly different than zero. . The signs
of the significant parameters may also be examined to determine
if there are any counterintuitive effects, which would cecrease
the credibility of the selected model. The procedure is then
repeated for Firm B. It is conceivable that not all effects
are significant for both brands.
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Estimation of Payoffs of the Game HMatrix

Once these preliminary implications have been drawn, the
decision game matrix (to be analyzed in Part 3 of this chapter)

may be calculated according to the instructions in the goodwill-
model section of Chapter 4. All the terms of Equation 5.11
involving Al are grouped, as are all terms involving_AZ, giving

e -

o ¥
1j In Plt+ 2j In Alt+~c<l. In A

i 1(t-1)

oo s i

o 2 s (5.13)
’ *

+/t?lj In Py + 3 25 In Apy+ 75 In Ayey_gyi»

) B2j

where j = (1,2). One may define new Z variables as in Chapter 4:

In S,

=X, 4+ X
Jt J .

=

_ *
1ln th- in Alt + 0(11 In Al(t—l)

In 2% = In Ao, + o1 1
n Zyy = An Ayy 12 M Ayig)
22

3*
' - +

B21

3 .
In Z2,, = In Ay, + /312 In Az(t-l)
P2z

Thus, 5.13 may be rewritten
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In S, =X_+X__ InP,, +0_ . 1n Z

17 71T T Pyt
tA11 In Poy + By In 23y

1t . (5.1L)

= (o4 -
In Syp = X, ¥, In Pyy v Xy, In 274

: | | 1
th1p In Pyy + By In 2y (5-15)

Notice that Z,, in the above equations would represent the total

1t
 cumulative effect of Firm A's advertising upon its ovn szles, while

Z2t would represent the total main effect of Firm B's advertising

upon its own sales. Both the Z variables must be calculated for
both firms. '

To construct the game matrix for the hypothetical firm,
the following further assumptions are made: ‘
_ 1. The prices in this industry generally range between
P% and PH;
2. The advertising expenditures of Firm A normally range
between Ai and N} per period;

3. The advertising expenditures of Firm B normally range
between AE and A; per period;

L. The range of pricing and advertising levels may each
be adequately represented by a trichotomous split; e.g., low,
medium and high. ’ '

Assumption I indicates that each firm essentially has nine
strategic packages (W's) to choose from. These may be defined
according to the diagram in Figure 5.4. With this, the "dumny"
game matrix (i.e., still without estimated payoffs) may easily

be constructed. It appears in Figure 5.5, where SA and SB are

the estimated sales levels for Firms A and B respectively under
each possible strategic comtination. In order to estimate the
SA and SB values, Equations 5.14 and 5.15 and Assumptions 1

through 3 are employed.
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Firm i's Price
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FIGURE 5.5
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Assumption 1 indicates the relevant price range for which
representative low, medium and high prices must be chosen. The
selection procedure described in Chapter 4 is employed. 1In this
procedure, the relevant range is divided into three segments of
equal size, and the midpoint of each segment is taken to be the
rebresentative value. It is easy to derive the following expres-
sions for the representative low, medium and high prices:

pl#* = pL +(1/6)(PH - pY)

P = pL +(1/2) (P - PD)

p* = pl 4 (5/6) (P! - P1)

Assumptions 2 and 3 indicate the ranges of advertising
expenditures of the firms. These variables will not be directly used
in the game matrix; rather, the previously-calculated advertising
effects (Zl and ZZ) are used. The representative values for each of

these variables may be selected as above:

EAUEIE A VT2 S0
20" = 2y 4+ (1/2)(2] - 2D)
T = 2y (5/6)(2) - 2Y)

N
-
!

and similarly for Z,e

One further observation on Equations 5.14 and 5.15 need
be made. By definition, the variable Zit is identical to th

with the exception of the multiplier for 1n Ay (t-1) (the defi-

‘nitions are given just prior to Equations 5.14 and 5.15). Thus,
as a first approximation, it can be assumed that when the cumu-
lative main effect (th) is "low", Zit is also "low"; medium and

high levels may be regarded similarly. The same statement may be
" made regarding Z,4 and Z5.. This assumption may be verified
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by checking the magnitudes of the parameters in the definiticnal
" equations.

‘One is ready now to estimate the payoffs in Figure 5.5
using Eguations 5.1% and 5.15. As an illustrative example, suppose
" that Firm A selects strategy whl (which, according to Figure 5.4,

represents medium price and low (cumulative) advertising), and
; Firm B selects W32 (low price, high advertising). The sales

; levels Sl and S, would be estimated using the equations

M
1t

I
1t

H#
.t -

1n Slt'-‘-0<1+°< In P, + In 2

11 21

. o
B In Py +A 5y In 2}
o L¥
1t

| 1 H*
+£31, In Pyi+ B ,, In 7y,

In these equations, all parameters and independent variables
marked with an asterisk have been estimated. This procedure
would be repeated for each cell of the game matrix of Figure 5.5.

In Part 3 of this chapter, a game matrix of simpler form
than Figure 5.5 is solved, to keep the explanation as clear as
possible. Nevertheless, exactly the same solution procedures
may be applied to the game matrix of Figure 5.5, as well as
even more complex situations.
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PART 3——TNTZRPRETX1ICN OF THE CAME MATRIX

Part 2 of this charter culminateq in the consiruc
a game matrix. Thls vart indicates the proposed inter:cre
method. Firstly,
those described in Shubik and Levitan 1980 and in Chza~ie
determine preferred strategies under different behavicural assuup-
secondly, the strategies actually chosen over time by the
and,

various solution concepts are arplisd

~tions;
players are examined in light of the various solutions;
thirdly, given'the firms' intentions, marketing-mix sirategic
recommendations are made for the future.

Solving the Game Matrix

To illustrate the application of different sclution
cents, a simple example employing one independent variztle
torrowed from Bacharach (1¢77) and adapted to a mar;eting conntext.

lle presents an exaaple of a game matrix applied to =z Zucnoly where

each firm adjusts its outout level (low, dium cr hzgn) to maxi-

mize profit. The scenario could be recast such thet the players

1aximize sales revenue through adjustment of price level. The
enly

nayoffs used hy qacharach are left essentially urichanzed;
3 m
“he

the definitions of the variables involved have been ziitcred.

resulting game matrix would ke as appears in Figure

P2's PRICE

N\__Lov ITDIV HIGH
% FIGUR®E 5.
103 3.1 (I 2.53 2.16 . Igu_ g i
E Source: 4 a”‘) e rom
' 1.06 1.38 1.26 2achzrach (1977), ©v.67.

Pl's
PRIC

MED 3.16 2.54 EQ 2.17

1.03 1.35 1.23

_ 0.85 1.01 0.73
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The letters in the upper-right-hand corners of the cells
refer to the different possible solutions which are examined
below. Two of these (equilibrium-pair and joint-maximum) were
obtained by Bachaiach; the others were calculated for this study,
following the example of Shubik and Levitan (1980). (Note: the
mathematical representations of all solution concepts to be con-
sidered herein have been presented and discussed in Chapter 2.)

The equilibrium-pair solution (EQ) is obtained if each
player plays the strategy which maximizes his minimum possible
gain. Pl's minimum sales revenues corresponding to low, medium
and high price levels are seen to be 2.16, 2.17 and 1.84 respec-
tiveiy; he would thereby choose his medium-price strategy.
Similarly, Player 2 would also choose his medium<price strategy.

This is clearly one of the conceivable noncooperati#e
solutions. It is worth noting that this equilibrium pair is not,
however, a Nash noncooperative equilibrium point (see Chapter 2)
because it is not dominant. Dominance would imply that, no matter
what P2 plays, Pl is always best off to choose a medium-price
strategy. This is easily refuted: if P2 plays low, Pl is better
off to play high. As Bacharach states, having a non-dominant,
noncooperative equilibrium point is "weak grounds for judging
(the outcome) to be rational, (and) weak grounds too for thinking
that it will come about." (1977)

Other noncooperative solutions, of course, are also
possible. The cutthroat solution corresponds to the assumption
that each player attempts to maximize the minimum distance or
"spread" between his payoff and his opponent's; hence the alter-
nate name "maximin-the-difference" (MD). In order to find the
MD solution, it is necessary to convert Figure 5.6 into a matrix
of differences between payoffs (Figure 5.7). Note that, for the
duopoly, this difference matrix essentially represents a zero-sum
game.
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P2's PRICE
LOW MED.  HIGH
LOW 2.08 1.15 0.90
Pl's
rRiop MED. 2.13 1.19 0.94 FIGURE 5.7
HIGCH | 2.36 1.43 1.06

Now, Player 1 maximizes his row minima, and Player 2
minimizes his column maxima. It is seen that a pure-strategy
equilibrium point is quickly reached, as the payoff 1.06 is a
saddle point; 1i.e., both players attain their desired objectives'
by playing their high-price strategies under this behavioural
assumption.

If more than two players are involved, the beat-the-
average solution (discussed in Chapter 2) would be applied in
place of the cutthroat solution. In this case, however, the game
would not reduce to an easily-soluble zero-sum game, as it did in
the two-player case. In subsequent discussion of this behavioural
assumption, the terms "cutthroat", "beat-the-average"” and "maximin-
the-difference” will be used interchangeably.

If the players were playing sadistically (i.e., choosing
strategies which would lead to the worst possible outcome for
their opponent), they would each choose their high-price strate-
gies (S). Refer again to Figure 5.6. The worst possible payoff
(sales revenue) which could be attained by P2 is 0.78; for this
outcome to occur, Pl would have to choose high price. Similarly,
P2 must also choose high price.

Thus, three conceivable noncooperative behavioural patterns
(EQ, MD and S) have been considered. If the players chose to
cooperate (or rather, if they were permitted to cooperate), they
would jointly choose the strategies which would result in the highest



- 162 -

total sales revenue. In Figure 5.6, this joint-maximal solution (JM)
occurs if both players choose low prices. Bacharach picks up the

discussion:

"The duopolists stand to gain from colluding to establish
this outcome (JM)...(however, Player 2) only stands to
gain from JM--he would actually gain only if there were
some kickback forthcoming from (Pl)." (Bacharach 1977)

This situation occurs because the "high-high" payoffs (3.14 and
1.01) are not "Pareto-better" than the noncooperative equilibrium
payoffs (2.54 and 1.35). If no "kickback" or deal is set up, P2
would still prefer not to cooperate. :

Strategies and Recommendations

The above game matrix would have been derived given the
information that the two firms have objectives of sales revenue
maximization. Now, the pattérn of the strategies they have used
through time can be evaluated for appropriateness, in light of
the solutions obtained above.

0f course, when dealing with firms operating in the real
world using perfect information, it is unlikely that an equi-
librium point (like EQ above) will be reached and adhered to. As
Bacharach (1977) argues,the fact that EQ may be nondominant (as
it was in his example), would make the likelihood of its attainment
even more remote. What is more likely to be seen is a pattern of
moves and countermoves, some of which make the firms better off and
some worse off,

Even under circumstances of perfect information, it is
unlikely that pure-strategy equilibria will be attained. Bacharach °
substantiates this observation in his discussion of the repeated
playing if the Prisoner's Dilemma game (as in Chapter 2, Figure 2.3)
~ as a supergame (a suggestion originated by Iuce and Raiffa 1957).
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"Suppose...the prisoner's dilemma is played 100 times in
succession...(Define the following supergame strategy:)
Pl plays Strategy 2 from (game) t on; up to t, he plays
Strategy 1, and as soon as P2 should deviate from Stra-
tegy 1, Pl switches to and thereafter sticks to Strategy
2...Notice that though there is a kind of ‘'temporal
collusion' within this 100-long sequence of games, the
sequence considered as a single 'supergame’ is entirely
noncooperative..."” (Bacharach 1977) (Note: in the above,
the names of the players and strategies have been adjusted
to conform to the usage of Chapter 2.)

Bacharach goes on to say that "the plausibility (of such
supergame strategies)...casts doubt on the worth of the equilibrium
notion for singling out 'solutions' of non-zero-sum games" (1977).

Given, then, that a pattern of moves over time is more
likely to occur than a stable equilibrium point, a plan for analysis
can be devised. It can be observed how frequently optimal and
inferior strategies are played. A firm may have, say, a stated
objective of sales revenue maximization, but may consistently
choose strategies which are suboptimal for this objective--or
which in fact may be better suited to an (implicit) goal of profit
maximization (this could be determined by calculating a new game
matrix for the industry with profits as the dependent variable).
Indeed, if "sales revenue" was the priority variable stated by both
firms represented in Figure 5.6, it is not clear whether each firm
wishes to maximin its own sales revenue, maximize the minimum
spread (cutthroat), or even to do as much harm as possible to the
competitor. Different strategies would have resulted in different
solution points as indicated in the diagram. Thus the frequencies
of selection of the various strategic packages are of interest
in analyzing the competition in the industry.

One can combine knowledge about the industry gained
extraneously to the results of the game-matrix solution. Suppose
it is known that Firm A typically makes marketing decisions which
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cause the most damage to its competitors (i.e., price undercutting,
heavy advertising, etc.) Does Firm A resultingly choose its
sadistic solution more often than its equilibrium-pair solution?
If the sadistic solution appears to be preferred, it is impossible
to tell, using only the game results, whether this preference

was intentional (i.e., the firm wanted to play sadistically), or
~whether ignorance of the market or other factors caused the
preference for this solution. However, combined with extraneous
information, such an observation would have strong implications
for strategic play. |

Also of interest is the temporal aspect of play. The
responses of Firm A to Firm B's decisions (and vice versa) may be
examined for any recurrent pattern, and the relative merits of
these response strategies may be judged by noting whether the
resulting payoffs to Firm A (or B) are improved.

A trivial example by Bacharach (1977) hlghllghts the
temporal aspect of decision-making.

"Suppose that (in the prisoner's dilemma game of Figure 5.8)
"the players had, somehow or other, gotten into an (N,N) -
groove. At the end of Game t, Pl contemplates double-
crossing P2 at t+1; but he argues that this will induce
(P2 to play) C at t4—2, so he would be forced to play C
himself at t+2. In one play, he would have more than
wiped out his transient gain...so he sticks to N."
(Bacharach 1977)

P2
FIGURE 5.8

\\\\\\ N C Source: Bacharach (1977),
p. 61.

N 9,9 0,10

Pl
c 10,0 1,1
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| Finally, marketing-mix recommendations for the future
may be made to both firms, bésed on preferred strategic com-
binations derived from the game matrix. In Figure 5.6, the
recommendation would be made to either firm to choose (and
adhere to) medium price levels in order to maximize future sales.
However, if a firm chooses high price, it can increase the

- spread between it and its opponent (the effect would be lessened
~if the opponent reacted to this move by raising his own price).
':Thus, a high-price strategy would be recommended as an alternate
choice should the out-distancing of the opponent be a more
desirable objective than simple sales maximization. Furthermore,
by constructing profit game matrices, strategic combinations
which maximize profit levels may also be determined and recom-
mended. ‘



CHAPTER 6
RESULTS AND DISCUSSION: INDUSTRY 1

INTRODUCTION .

The theoretical model, proposed in general form in Chapter 4
and explained and further discussed in Chapter 5, is applied to a
real-world setting in this chapter.‘ The rationale behind the selection
of the econometric model is discussed, as are the preliminary findings
of the quantitative analysis; then the game matriz is constructed,
solved and interpreted. The discussion follows the pattern of the
hypothetical industry analy31s of Chapter 5: determining functional
forms; discussing significance of effects; construction and inter-
pretation of game matrix.

_ NATURE OF DATA USED

The manufacturer of one brand of a frequentlybpurchaéed
small consumer good has provided bimonthly Nielsen sales audit fig-
ures (in units and dollars) and advertising expénditures for itself
and all competitors over the six-year period from August 1976 to
September 1982. Average market prices per bimonthly period were cal-
culated by dividing sales revenue by unit sales for each brand. (Note:
the price data actually employed in the analysis were normalized to
industry average, in order to adjust for inflation.) Sales in this
industry increased slowly for the first 24 bimonths; at this point sales
accelerated greatly for each brand, only levelling off near the end of
the period under study. To capture the industry sales trends, two
additional parameters were added to the estimated models (see ensuing
discussion of model building). ‘

' The industry is treated in this study as a triopoly. Two major
brands, A and B, account for 12% and 40% market share respectively and
" are premium priced, compared with the remainder of the brands on the
market (manufacturer's and store brands). These remaining brands are
combined into a third "brand" labelled "Others" ("0"); and average pri-
~ces and total advertising expenditures for Others have been estimated.
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Previous research by this author has indicated that price
and advertising expenditures are the marketing decision variables
which have the greatest effect on sales in this industry. Furthermore,
it is hypothesized that price carryover effects may be ignored for
this industry; i.e., that the theoretical representation discussed
in Chapter 4 for the goodwill and Koyck approaches is applicable (one
variable may - exhibit carryover while the other is assumed to have
~only current effects on sales).

SELECTION OF ECONOMETRIC MODEL

Prelimihary Testing

Chapter 4 dealt with the issue of choice between multi-
plicative and linear sales-response models. A multiplicative model
seemed more reasonable for this industry, as discussed previously,
since beyohd a "threshold" advertising level, sales would be expected
to show decreased marginal returns to increases in advertising. This
effect would be represented in a multiplicative model by advertising
parameters (exponents) less than one.

As described in Chapter 4, a building-up procedure is ﬁsed,
in determining the appropriate functional form for the industry; i.e.,
a simple model is proposed and successive refinements and extensions
to it are attempted.

The basic model tested is a slightly-modified version of
Equations 4,3 and 4.4. For each of the three firms (A, B, and Others),
the following model depicting sales as a multiplicative function of
- pricing and (current) advertising levels is taken as a base point.

= o + o
InS;, = o +0(Q +6,R +% ) In P, +,

t 1 t

1n A,
, : (6.1)
+o(22 1n ABt+°(23 1n Aot +wt;
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where

S;¢ = sales (in hundreds of thousands of dollars) of Firm i
at time t;

Pit = price of Firm i's brand at time t, normalized to industry
average, defined as firm i's price x 100 over industry
average; _

AAt’ ABt’ A0t==advertising expenditure (in thousands of dollars)

for Firms A, B and O (Others) at time t;
Wy = error term;

‘ . o .
o(i and o 1j s parameters;

and Q and R are sales adjustment parameters included to isolate
the noted industry sales trends, defined as follows:

Q = period number (starting from period 1 and taking on values

1, 2, 3, «eo ,» 37);
R = period number minus 24 (starting from period 25 and taking

on values 1, 2, 3, ... , 13).

Note that in this formulation, Firm i’s relative price, as
well as all firms' current expenditures, are specified as the inde-
pendent variables, and that carryover advertising (and price!) effects
are ignored, as are all other extraneous effects with the exception of
the sales trend (represented by Q and R) which is assumed to continue
for the short term.

Equation 4.1 was estimated for Firms A, B and O using simple
OIS regression. All other regressions reported in the analysis of this
“industry are OLS as well. To avoid repetition, it-is noted here that
all regressions were checked for autocorrelation using the Durbin-
Watson statistic and were found to be either free of autocorrelation
~or in the inconclusive range. Residual plots did not indicate any
' substantial levels of heteroscedasticity. The subject of multi-
collinearity is taken up in the discussion of the choice between the
Koyck and goodwill models). Note: all regressions reported in this study
were performed using the MASSAGER '73 package (Statistics Canada, 1973).
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This model was then compared to various other models using
standard partial F tests (see, e.g., Kleinbaum and Kupper 1978). The
significance of the price variable was tested by obtaining ANOVA tables
for each brand for both the model of Equation 6.1 and an identical model
lacking only the price variable. (Relevant ANOVA tztles and partial-F
statistics appear in the Appendix to this chapter: see Test 1 of the
Appendix for details of this test.) The model containing price was
- shown to be significantly better than that not containing it for both
Brand A and Brand B (F for Brands A and B = 44.27 and 4.40 respectively;
 both significant at o«= 0.05 with 1 and 29 degrees of freedom). Addi-
tionally, the partial t values for relative price zre significant for
both Brands A and B and should therefore be left in the model. (Note:
t-statistics for the regressions are listed with the corresponding

ANOVA tables, where appropriate.)

" However, the inclusion of competitors' prices into the model
'~ was not justified. The model of Equation 6.1 was next compared to a

similar model incorporating the prices of both competitors (e.g., Pnt

and POt in addition to PAt) for Brand A only, and the overall model was

not significantly improved (partial F = 0.08). This is not altogether
surprising, because raw prices were normalized to industry average to
account for the price trends in the industry (a raw-mzterials shortage
during 1980 caused prices suddenly to increase, and subsequently to fall
dramatically). In other words, the use of normalized, relative prices
accounts implicitly for competitive pricing (see Test 2 of Appendix).

This preliminary testing indicated that own advertising, com-
petitive advertising and own adjusted price level apvear to be signifi-
cant factors in determining sales. It still remains to test for the
significance of carryover advertising effects; and also for the pre-
sence of interaction effects between independent variables.
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Carryvover Effects: Goodwill Approach

First, the goodwill model (see Chapter 4) was applied. Eguation
6.1 was extended such that three new terms, corresponding to one-period
lag effects of each firm's advertising expenditure (AA(f_l), AB(t~l)’

Ao(t—l)) were intrcduced; and this new model was estimated and compared

to 6.1. It was judged to be an unsatisfactory improvement in explana-
tory ability due to the inclusion of the lag terms (for brands A, B, and
0, the partial F's obtained in Test 3 of the Appendix were 0.932, 0.283
and 0.160 with 3 and 25 degrees of freedom). Secondly, overall F vzlues
(indicating overall explanatory ability) as well as adjusted R-square
values either decreased substantially or remained unchanged upon intro-
duction of the lag variables. Thirdly, the Durbin-Watson statistics
showed that levels of autocorrelation were higher fcr the. lag model.
These developments can Be explained: the addition of new variables, of
course, always increases overall fit (as evidenced bty declining SSE
values in the ANWOVA tables); but at the expense of cdegrees of freedom
and at the risk of introducing multicollinearity intc the model. Given
‘that there are only 37 dats points to begin with, a mcdel which sacri-
fices the smallest number of degrees of freedom will, other things

being equal, bhe preferable.

A final indication that the goodwill model is unsatisfactory
for this industry: partial t statistical analysis shows none of the lag
advertising effects to be strongly significant for any of the three
brands (see Appendix). This may be because lagged effects are indeed not
‘significant themselves, or alternatively because high multicollinearity
between current and lagged advertising levels makes it impossible to
distinguish the effects of each. The goodwill model as described herein
cannot distinguish tetween these two possibilities; therefore, the in-
ability of this model to isolate lagged effects dces not necessarily
mean that such effects were insignificant; rather, that znother means
of representing carryover (i.e., the Koyck approach) may bte more
appropriate. |
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As a point of interest, another goodwill model,this one
containing one-period and two-period lagged effects, was also applied and
compared to the basic model. Similar disappointing results were obtained:
all partial F values were insignificant (F for brands A, B and O were,
respectively, 1.100, 1.096 and 1.110 with 6 and 22 degrees of freedom).
Also, many obtained advertising effects were in counterintuitive
directions indicating with great likelihood that multicollinearity had
‘become severe (see Test 4 of the Appendix).

This appeared to be a situation as described in Chapter 5:
compounding multicollinearity and degrees-of-freedom problems causing
difficulties with the goodwill approach. Of the remaining approaches,
Koyck is the more applicable, as it can be used where only one variable
exhibits carryover effects.

Carryover Effects: Koyck Approach

Central to the application of the Koyck approach is the
replacement of the advertising expenditure variable (A e, Age s, Age )
in Equation 6.1 with cumulative advertising expenditure variables (to
be described ZApe, ZAgc» ZAoc), Which are obtained by assuming a
geometrically-declining advertising effect (see Chapters 4 and 5).

The parameter ¥ indicates the pattern of the geometric sequence. As

defined in Chapter 4, high values of ¥ (i.e., near 1) indicate lower

significance of carryover effects; while lowering the value of ¥ in-
creases the effect of lagged advertising on current sales.

The process is easily visualized by converting Equation 6.1
to its Koyck-form equivalent:

1n Sit= 0(0'4- x;Q + LR +°(ll In Pit+o<21 1n ZAAt

(6.2)

<+ 0(22 in ZAB‘t+(X23 In ZAO‘t + Wis

where v 1 2
In ZA;, = 1n Ag, +’££' (1-3%)7 1n A3 (4_p- (6.3)
=] '
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If ¥ is set to 1, 6.2 collapses to 6.1 and carryover effects are
not introduced into the model.

The value of ¥ is estimated via an optimization procedure.

- In this study, the ¥ in 6.3 was assigned values at decreasing 0.1

intervals from 1.0 (no carxyover) to 0.4 (high carryover effects).

New independent variables (the ZA{c's) were calculated for each brand

;_according to the patterns as introduced in Chapter 4; i.e., for ¥=0.9,
in ZAs, = 1n Ay + (0.1) 1In Ai(t-l)‘* (0.01) 1n Ai(t—z)*' coe

It is seen that this is an infinite series which does not strictly

converge (since the values of 1ln A;(e-¢) keep changing). However, the

sumnation was truncated when adding extra terms increased the sum

total by less than 0.01. '

(Note: in all of the following, the same number of obser-
vations and total degrees of freedom were used in order to render the
various regression statistics comparable.)

A number of criteria can be used to compare the results of
these seven regressions ( ¥= 1.0, 0.9, ... , 0.4). Iliost importantly,
overall F values may be compared, as they indicate how well the inde-
pendent Variables (considered all at once) explain the dependent
variable (sales) (see Kleinbaum and Kupper 1978). Additionally,
ad justed R* values and error sums of squares (measures of strength of
overall relationship) may be compared. Finally, the independent
variables determined to have significant effects on szles may be
analyzed: +there are some g priori predictions as to probable directions
~of the effects of price and advertising, and, other things being equal,
a model which yields interpretable results is preferzble. »

Figure 6.1 shows the obtained overall F values for all
three brands and for all values of ¥ (including intermediates; see
below); while Figure 6.2 indicates the corresponding SSE values. For
Brand A, it is clear that, as a first approximation, a ¥ value of about
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FIGURE 6.1
F-values of regressions, ¥ varying from 1.0 to 0.4, 33 observations

F
2 geans 4
=
BRAND R
704
‘°<‘?62 22 ?3 s 64 63 63 67 ¢3
501
407
Jo+
20T ‘
o 2 CEND-S B A i
0 , . } ‘ _ ,

/o 0.9 08 075 07 045 0.6 o.5 o+ ¥
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FIGURE 6.2
Error sums of squares, § varying from 1.0 to 0.4, 33 observations

SSE, SSE, SSE,

f BRAND A BRAND B  OTHERS
1.0 0.166 0.350 1.055
0.9 0.160 0.347 1.055
0.8 0.155 0.343 1.052
0.75 0.153 0.341 1.050
0.7 0.153 = 0.339 1.047
0.65 0.153 0.336 1,041
0.6 0.153 0.333 1.035
0.5 0.158  0.323 1.018

0.4 0.175 0.317 0.995
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0.7 seems to be most appropriate. The F statistic reaches its highest
point, and the SSE statistic its lowest point, at about § = 0.7. (Note:
ad justed R-squares are not compared in this example because varying §
caused only insignificant fluctuations to this statistic.) All Durbin-
Watson statistics were in the acceptable region.

Having determined that the best combination of explanatory

variables appeared at about 0.7, intermediate values of 0.65 and 0.75

‘ were also tried (the results of these regressions also appear in Figures
6.1 and 6.2). The maximum F value for Brand A is obtained at y=0.65;
this value is 277.226 which is highly significant with 6 and 26 degrees
of freedom. SSE is alsc at a minimum here for Brand A (SSE=0.153).
Thus, . the carryover effect of advertising in this industry apparently
is best represented by a Koyck model with geometrically-declining
cumulative advertising ZAit' defined as follows:

L

I aAgy = In Ay é (1 - 0.65)¢ 1n As(£-2)

In A

I

(6.4)

+ 0.043 1n Aj(t-3) t 0.015 In As (4on)

+ ;
0.005 ln Ai(t—S) + o e 0 H
i = Brand A, Brand B, Others.

By performing a regression at every § value, the possibility
that the distribution of F's and SSE's are bimodal was investigated and
ruled out. There is a clear increase in model fit as ¥ decreases from
- 1.0 to 0.65 and a clear decrease afterwards, at least for Erand A. Test

5 of the Appendix compares the maaor statistics obtained for the
different ¥ values.

A value of approximately 0.65 for Y is reasonable for this
industry. Equation 6.4 shows that the effect of lagged advertising
expenditures drops off substantially beyond Acos (the coefficients of
1n At—B and 1n At-4 are only 0.0h3land 0.015, and subsequent effects
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are even lower). Since the data are bimonthly, three lagged periods
corresponds to five or six months. In the model as specified, then,
advertising which is "older" than about four months has a weak effect
on current sales, and ads "older" than six months have practically no
effect at all. It would be difficult to justify a model of this
industry with ¥= 0.9 or 1.0 (signifying almost no carryover advertising
effects at all); or with ¥= 0.4 or lower (at ¥ = 0.4, the coefficient’
of In A ¢-¢ is 0.043; effects of year-old advertising would be sub-

' stantial at this ¥ level).

- The clear maximum in F just described was observed only for
Brand A (See Figure 6.1). For neither of the other brands was a clear
maximum F value found: in fact, F and SSE statistics remained almost
constant, seemingly unaffected by changes in § . The advertising
expenditures of these brands have remained relatively constant, compared
to Brand A's: 1i.e., the variance in their advertising levéls'through
time has been less than that of Brand A. A glance at the original data
indicates that Brand B has maintained a relatively high, stable adver-
tising policy, and Others have advertised at consistently low levels,
while Brand A has shown great fluctuations in advertising over time.
Thus one cannot distinguish among the regressions (for B and 0thers)
because the advertising variables used (the ZA's) were not greatly
altered by altering the value of ¥. In any case, for Brand B and
Others, most of the estimated parameters do not vary much as ¥ is
ad justed, which is, again, as expected.

As a further confirmation of the regression model with
¥=0.65, the significant independent variables (as determined by partial
t values) were also examined. Figure 6.3 contains the major findings.
-For Brand A, all four decision variables proved strongly significant
regardless of the level of ¥ chosen; furthermore,'éll effects were
in the a priori expected directions: Brand A's sales are positively
influenced by its own advertising, and vary inversely with Brand A's
price, Brand B's advertising level and Others' advertising level. Only
two effects were significant for Brand B at ¥ = 0.65 (price and Others
advertising) but both were in the expected directions. (It may be



FIGURE 6.3

Parameters with significant effects on sales (with observed dlrectlon of effects) as

estimated for models with varying ¥ 1levels

8= 1.0 0.9 0.8 0.75 0.7 0.65 0.6 0.5 0.4
"PK Pi Pa PX Pl PX Px Pa Pa
A : AL At At At AT AL AT Aat"
BRAND A | 5 - Ag Ag A~ Ag A As As A
As As Ay Ay Ay Ay Ag Ag Ags
Py Px Pg (Pg™) (Pg") (Pg")
BRAND B A AS A As Ag A5 As As (As)
(A7) (AgD)  AsC N
3
OTHERS none (see text) I
Legend: P; = relative price of Brand i, i= A, B, O.
A} = cumulative advertising level of Brand i
-+,— =direction of effect
effect only weakly significant (&= 0.10); otherwise

Parentheses ( ) =

. understood strongly significant (o<= 0.05).

Unde'rlined effects are in counterintuitive directions.
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noted that although overall F was rising slightly as ¥ was lowered,

the results were simultaneously becoming harder to interpret: in
Figure 6.3, under ¥= 0.4, note the strongly-significant negative

effect on sales of Brand B's own advertising. This is likely caused
by excessive statistical weight being put on long-past lagged effects.)
(Note: a later section examines in detail the actual values of the
“estimated parameters.) |

: Figure 6.3 also indicates another observation made during

the data analysis. In none of the models estimated were any indi- |
vidual variables found significant in affecting Others®' sales. However,
all models were, overall, statistically significant (F values were
approximately 14 to 15, while adjusted R*'s ranged at about 0.72),
- though the fit was admittedly poorer than for either A or B. This is
also not unexpected. The "Others" brand is, of course, an amalgam of
all smaller brands in this industry, and the independent variables
(price and advertising) do not represent strategic choices made by one
decision maker. These are, rather, the smaller brands with smaller
advertising budgets, and are thereby at a disadvantage in the industry.
Their strategic choices may be dictated by either competitive pressures
or resource constraints (i.e., cannot advertise as mueh as desired).
Many of these brands are entirely unsupported by advertising, yet

still sell (one of the criticisms made by Little (1979) concerning
multiplicative models was their inability to explain sales at zero
advertising). Nevertheless, the overall model (as judged by overall F)
was significant.

To sum up: the Koyck carryover model, with ¥ set at 0.65,
was chosen to represent this data set. It was able to identify, and
estimate the size of, a carryover effect which (due to the compounding
of multicollinearity and degrees-of-freedom difficulties) the goodwill
model was unable to do. Furthermore, no resulting effects were in
counterintuitive directions, all overall models were significant with
satisfactory . adjusted R? values, and (in the case of Brand A, which
‘exhibited great variance in advertising expenditure), overall F and SSE
‘statistics were optimized.
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Investigating Interaction Effects

» Two extensions to the selected model were considered which
incorporated interaction effects between price and advertising. In the
"all interactions" model, three additional terms were added to Equation
6.2, each representing a price-advertising interaction (1n Pacln Aac;

In Paeln Age; 1n Pozln Aoc). Note that cross interactions were not

_ considered, in order not to sacrifice too many degrees of freedom.

_ These new regressions (each containing nine variables--the six in 6.2
and. the three interaction terms) were run. In each case, overall F was
adversely affected, and partial-F tests showed that the model fit was
only insignificantly improved by the addition of the interactions

(for Brands A, B and O respectively, the partial F's obtained were
0.368, 0.863 and 0.743 with 3 and 23 degrees: of freedom). Furthermore,
none of the interaction effects was individually significant for any

of the brands (nc t-values were significant); and the significant main
effects of some variables (e.g., Brand A's advertising on its own sales)
were no longer isolated. There are just too many insignificant variables
hindering accurate interpretation (see Test 6 of the Appendix).

Much the same results were obtained for a second model con-
taining only one set of interactions: those of the firm in question
(the "own interactions" model). The addition of only this one inter-
action term to 6.2 still causes substantial decreases in model appro-
priateness. (as measured by overall F values); furthermore, the partial
F values obtained for the addition of the interaction term were of the
same insignificant order of magnitude as were those reported above for
the "all interactions" case. As a result of these tests, both models
incorporating interaction effects were rejected and the model of the
form of Equation 6.2 with ¥=0.65 was selected as the most appropriate
for this industry. This last test is further discussed in Test 7 of
the Appendix to this chapter.
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EFFECTS AND THEIR SIGNIFICANCE

The parameters estimated for the model of Equation 6.2,
using OIS regression and setting ¥=0.65, are listed in Figure 6.4. All
standard errors are given, and all effects shown to be either strongly
(x¢= 0.05) or weakly (X=0.10) significant are marked.

For Brand A the fit is clearly the best. All main effects
are strongly significant and in expected directions, and overall F

and Durbin-Watson statistics are especially good, as is adjusted'Rz.

A section in Chapter 4 discussed the merits of the multi-
plicative model in a marketing-mix context. These models permit the
effect of a decision variable on the criterion variable to be nonlinear.
It was previously discussed that, over a normal range, advertising
ought to exhibit decreasing marginal returns on sales; and that such
an effect would be represented by advertising parameters (exponents)
which are less than one. All advertising parameters estimated by the
model used here are substantially smaller than one, and in the case
of Brand B, two of the three advertising parameters are not significantly
different from zero.

It should be remembered that the "advertising" variable
discussed here is a measure of cumulative advertising; the strength of

carryover effects being determined by the choice of level for parameter
8 . In other words, lagged advertising effects are being implicitly
included in these models via an advertising stock varizble which con-
siders period t's advertising levels affecting sales in period t, period
t+1, etc., with diminishing effect as time goes on.

The absolute values of the price parameters are much larger,
‘especially for Brands A and B. This does not necessarily mean, however,
that marginal effects of price on sales are higher than proportional
(e.g., cutting price in half should cause sales to increase by more
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FIGURE 6.4
Estimated coefficients and standard errors for selected model

+O(p, In ZAp, + X oy In ZAg, + Wy

Coeff. Brand A Brand B Others
oo 23.4358% 12.4012% -0.1671
(3.5447) (6.4100) (10.9228)
N 0.0560% 0.0358% 0.0391%
(0.0028) (0.0043) (0.0076)
oy 0.0230% 0.0219% -0.0052
(0.0067) (0.0097) (0.0169)
ol -l 5220% ~1.8330%% 0.8681
(0.7637) (1.4004) (2.3463)
o,  0.0192% 0.0136 0.0193
(0.0088) (0.0133) (0.0237)
e -0.1243% -0.0761 -0.0529
(0.0395) (0.0599) (0.1048)
-0.0257# ~0.0271% -0.0013
23 (0.0076) (0.0118) (0.2100)
F 277.226 6l. 716 15.204
R% (adj.) 0.98 0.92 0.73

Legend: Entries are estimates obtained by OLS regression
for each parameter, with standard errors given beneath in
parentheses. -

# -~ significant at 0.05 level.

##-- significant at 0.10 level.
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than double). Recall that prices are adjusted to an industry average
in this study, in order to allow for erratic price patterns due to
industry shortages and inflation. "Prices" essentially refers to
"relative prices". The range of relative prices is comparatively low:
at no time were any of the brands priced below 90% of the industry
average, nor above 110%. Perhaps, then, the larger values determined
for price parameters in this study are not only explicable, but
';indicative that small changes in relative price level do have a notice-
l;kable effect on sales, which is as might be expected.

- Also, note that for each brand, one (or both) of the time-~
series parameters is significant. As discussed earlier in this
chapter, industry sales exhibited moderate increases through the first
four years of observation, then showed large increases thereafter. The
results show the significance of these effects. The only time-series
" parameter which is not significantly different from zero is &, for
Others, indicating that Brands A and B experienced a larger acceleration
in sales in the last two years of the study than did their competitors.

Finally, note again that, except for the continuous sales trend
parameter (o ), none of the effects is significant for Others. This
result can be interpreted to mean that sales of these smaller brands
are not as greatly influenced by advertising as Brands A and B (which
they are not, as many Others brands employ little or no advertising);
nor by price levels (all Others brands are uniformly low priced and are
seen as "budget" alternatives to the heavily-advertised brands A and B
by consumers). Other possible explanations of the lack of significance
of individual effects have already been given.

ESTIMATION OF PAYOFFS OF THE GAME MATRIX

The parameters obtained by O0LS estimation and presented in
Figure 6.4 were then used to construct an estimated game matrix, which
indicates what the expected payoffs would be to each player under
different combinations of strategic choice.
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Chapter 4 described the theoretical rationale behind the
use of representative walues, and the decision concerning the appro-
priate number of choice options to employ for each independent
variable. In this industry, none of the brands exhibited high
variation in (adjusted) price level; thus, a dichotomous split (high/
low) was deemed sufficient to represent strategic price decisions. The
range of values taken on by the (cumulative) advertising variable was
- larger for Brand A than for either competitor (see previous section).
_:Thus, high, medium and low representative values were used for A,
while advertising strategies employed by B and O were to be repre-
sented as "high" or "low". |

Next, the ranges of price and cumulative advertising values
for each brand were used in order to determine representative values.
The procedure described in Chapter 4 (i.e., taking the median value
in each representative segment) was employed. Figure 6.5 shows the
ranges of each variable (in logarithmic form), as well as the assigned
representative values (and the cutoff values, which are not used until
a later section). (Note: if any of the observed values had been
extreme outliers, they would have been discarded before representative
value selection: +this situation did not occur with these data.)

The representative values (given as logarithms) were also
converted back to the original units using antilogs, for comparison
purposes. The range of prices employed by A and B is higher than that
of 0, and this is reflected in the representative values. The cumulative
advertising values selected illustrate an important point: what Brand B
considers "low" advertising is in fact higher than what either A or O
would consider "high" (this point is crucial to upcoming discussion).

The values also clearly show the wider range of Brand A's cumulative
advertising levels, and reemphasize the fact that, on the whole, Others
advertises comparatively less than either A or B.



FIGURE 6.5
Representative values and cutoffs

Brand, variable Range - Repr. Values e(valuej ' Cﬁtoffs e(cutoff)

BRAND A -- In P 4.607 - 4700 o T 831 1028 «——u.65u 105.0

BRAND B == In P 4.621 - 4,696 bw = ﬁ:gf;g o 1078 s 4.659 105.5

OTHERS -- 1n P 4.502 - 4.590 gf‘ :: ﬁ:ggg g%ﬁ'a-——-——- b, 546 4.3

BRAND A - 1n ZA 1.766 - 8.327 gE E ;EEIZL% 1:3%555: 3954 Wens é
BRAND B -- In ZA 6.793 - 8.740 A, = 020 ear ~———7.765 2356.7 '
OTHERS -- 1n ZA 0,000 - 7.021 ﬁ: T Lhe 193¢ < 3.511 33.5

Legend: Representative values and cutoffs are pure numbers since they are defined as
logarithms. To convert back to units of pricing and advertising, exponentials were
taken. Units of exponential values and cutoffs are as follows: for PRICE: percentage
of industry average; <for ADVERTISING: in thousands -of dollars per period.
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These representative values were then substituted into
Equation 6.2, using the parameter estimates as listed for each brand
in Figure 6.4. Specifically, the equations were solved for the next
ensuing period (since values had to be assigned to the trend terms in
Equation 6.2). A sample calculation illustrates. To determine Brand
A's expected sales in the next period for the situation where all firms
~employ low price levels and low advertising expenditures, the repre-
“sentative values corresponding to "low" choices are substituted into
T;Equatlon 6.2 together with the parameters estimated for Brand A, to |
obtain:(subscripts indicate the variable being substltuted)

1n § = 23.4358 —+ 0. 0560(38)-+-0 0230(14) - 4,5220(%.631)
ng Q in P,

—+0.0192(2, 860) - 0.1243(7. 279) - 0. 0257(1 755) -
1n AA in AB 1n AO

=14.050 -

1n S (4.050) '
e At _ S,., = e = 57,40,

At

Note that 38 and 14 were assigned to trend parameters Q and R,
as these would be the values associated with the next ensuing period.
(Note: except for the beat-the-average solution, the actual values
assigned to Q and R will make no difference in preferred strategies, as
varying Q and R unilaterally amounts to adding a constant to every
value in the game matrix. However, in order to convert back from
logarithm of sales to sales in $100,000's for purposes of this study,
the constants must be added in.)

This procedure was repeated for each combination of repre-
sentative values and for each brand: resultingly, all the values of the
sales-dollars game matrix (which appears in Figure 6.6) were generated:
this figure is entirely analogous to the three-dimensional dummy game
matrix of Figure 4.8.



FIGURE 6.6
Sales Dollars matrix (entries in hundreds of thousands of dollars per period)

BRAND

PLAL

PLAM

p-aH

PMAL

BRAND B:

P-A- P-A" PHaA- pHpn
57,40 50,86 57,40 50,86
148,41 137.83 138.38 128,51
126,60 120,18 -126.60 120.18
59,86 3.04 29.86 53,04
152,93 142,02 1h2,59 132,42
132,03 125.33 132.03 125.33
62.43 55,31 62,43 55.31
157.43 146.20 146,79 136.32
137.83 130.84 137.83 130.84
L6,.62 41,31 L6,62 41.31
148,41 137.83 138.38 128.51
126.60 120,18 126,60 120.18
48,62 43,08 48,62 43,08
152.93 142,02 142.59 132.42
132,03 . 125.33 132.03 ' 125,33
50,70 44,93 50.70 44,93
157,43  146.20 146.79 136.32
137.83 130.84 137.83 130.84

(continued next page)

OTHERS: P-A“-

BRAND

. P‘-AL

PLAH
PR A"

PHAM

PHaAH

BRAND B:
P-A- “phpf pHat PH M
- 52,46 L6.48 52,46 L6,48
134,96 125,34 125,84 116.86
125,96 119.58 125,96 119.58
54,71 4B.47 54,71 LB.47
139,07 129.15 129,67 120.42
131.37 124,71 131.37 124,71
57.05 50.55 57.05 50.55
143.17 132.95 133.49 123.97
137.14 130.19 137.14 130.19
42,61 37.75 42,61 37.75
134.96 125.3L 125.84 116.86
125.96 119.58 125.96 119.58
by, 43 39.37 Ly 43 39.37
139.07 129.15 129.67 120.h2
131,37 124,71  131.37 124.71
L6, 34 41,06 L6,34 Lb1,06
143,17 132.95 133.4 123.97
137.14  130.19 137.1 130.19
OTHERS: P-aM

- 98T -



FIGURE 6.6 (continued)

BRAND

P-AY

pP-aM

P-AH

BRAND B:

P-At p-aM pHa- PHAH
57,40 50,86 57,40 50.86
148,41 137.83 138.38 128,51
131.50 124,84 131.50 124.84
152.93 142,02 142.59 132.42
137.1F  130.19 137.14 130.19
62.43 55,31 62.43 55.31
157.43 146,20 146,79 . 136.32
143,17 135,91  143.17  135.91
46.62 41.31 46.62 41,31
148.41 137.83 138.38 128,51
131.50 124,84 131.50 124,84
L8.62 43,08 48,62 43,08
152.93 142,02 142.59 132.42
137.14  130.19 137.1% 130.19
50,70 4l .93 50,70 4h4,93
157.43 146,20 1h6.79 136.32
143.17  135.91 143,17 135.91
OTHERS: P"aA“

Brand A's choices are along the six rows;

Brand B's choices are along the four columns;
Others' choices are among the four matrices.

Each cell is to be interpretad as follows:

First entry: Brand A's sales
Second entry: Brand B's sales
‘Third entry: Others' sales

BRAND
A

P-A-

BRAND B: |
pla- pt AH pHAL pHa M
52,46 L6.48 52,46 L6.48
134,96 125.34 125.84 116.86
130.84 124,21 130.84 124,21
54,71 48,47 54,71 48,47
139.07 129.15 129.67 120.42
136.46 129.54 136.46 129.54
57.05 50.55 57.05 50.55
143,17 132.95 133.49 123.97
142.45 135.23 1hk2.45 135.23
42,61 37.75 2,61 37.75
134.96 125.34 125,84 116.86
130.84 124,21 130.84 124,21
Lly, 43 39.37 i 43 39.37
139.07 129.15 129.67 120.42
136.46 129.54 136.46 129.54
L6, 34 L41,06 L6, 34 41,06
143,17 132.95 133.49 123.97
142,45 135.23 142,45 135.23
OTHERS: PHAHN

- 48T -
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SOLUTION AND INTERPRETATION CF THE GAME MATRIX

Now that the game matrix has been estimated for this industry,
the various "ideal" solutions, each corresponding to different beha-
vioural assumptions, are determined, and their implications for stra-
tegic choice are examined.

Equilibrium-Pair Solution

'« The equilibrium-pair solution concept (EQ) corresponds to
a behavidural pattern similzr to that assumed by von Neumann and
Morgenstern: each player is assumed to maximize his minimum possible
payoff. This has been previocusly described as a risk-averse strategy.
Figure 6.7 shows the possible outcomes for each strategic cdmbination
and for each player. Minimum payoffs in each case are circled, and
the minimax solution is indicated with an arrow.

Brand A shows a clear preference for the low price, high
advertising strategic combiration (herein abbreviated P*a"). This
is expected, as regression znalysis showed that A's sales were
strongly influenced by its pricing and advertising levels. Note that
the effect of low prices or high advertising on company profits are
ignored in this analysis. 7his is as it should be, under the assumption
of sales optimization.

Brand B does not show appreciably improved sales as a result
of high advertising: in fesct, this brand is apparently slightly
better off at low levels of (cumulative) advertising than at high.-
This observation has stratezic implications. First; what had been
defined as "low" cumulative advertising for B (1n ZAE== 7.279) would
be, for any other brand (A included) considered quite high. Second,

~ _the range of variation in B's advertising is comparatively low; +thus

it is not possible to get a measure of how B's sales would be affected
by major cutbacks in advertising using these data. Third, in the
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FIGURE 6.7
Equilibrium-pair solution (EQ)

Each player maximizes minimum possible gain under this solution
concept. In the chart below, all the outcomes which could be
obtained for each possible strategy (depending on the opponents’
moves) are listed. The minimum outcome for each strategy is
circled, and the maximin solution is indicated with an arrow.

BRAND A:
- PtA%Y 57.40  50.86 52.46
- PYAM  59.86 53.04 s54.71

PtAH 62,43 55.31 57.05 (50.55) tmmmn
PHAL  46.62 41.31 42,61

PHAM  48.62 43.08 Ll 43
PHAR 50,70 L, 93 L6.34 41.06

W
O
L]

W
N

BRAND B:

P-A-  148.41 152.93 157.43 139.07 143,17 g
P-A®  137.83 142.02 146.20 . 129.15 132.95
P*A-  138.38 142.59 146.79 . 129.67 133.49

=~
SIS
W (W
ol W] o
|+

PHAR 128,51 132.42 136.32 116.86 120.42 123.97

OTHERS :

P-A" 126.60 (120.18 132.03 125.33 137.83 130.84

P AR 125.96 119.58 131.37 124.71 137.14 - 130.19
PHAt  131.50 124.84 137.14 130.19 143.17 135.91 4=
P"A"  130.84 124,21 136.46 129.54 142.45 135.23

i

Results: A selects PLAY and obtains a payoff of 62.43
B selects P-A- and obtains a payoff of 157.43
0 selects PYAL and obtains a payoff of 143.17
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econometric testing section, the effect of Brand B's advertising

on its own sales was not shown to be significant é6ver this narrow
range. Thus, B's sales may decrease substantially if a very low
level of advertising is maintained over a long enough period of time;
but over the narrow range of advertising expenditure employed by B,
only insignificant effects on sales were observed. Brand B is
therefore at a point where additional investment in advertising

does not increase sales significantly. Hence, B is better off at

- wlower" levels of advertising (still, recall, comparatively high)

than excessively high.

Brand B, like Brand A, in general, makes more sales if
prices are lower. For these two brands, "low" and "high" prices may
be intérpreted as, respectively, approximately 3%‘above, and appro-
ximately 7% above, industry average (see Figure 6.5). High prices
are detrimental to sales of either brand, possibly because of the
perception that the expensive brands are "pricing themselves out of
the market", and the existence of lower-priced alternatives.

Others apparently prefers high prices and lower advertising;
however, note that the minimum sales levels attainable for each of
the four possible strategic combinations are almost identical (they
range from 119.58 to 124.84). None of the four choices is really
preferential to Others (which is as it should be, since there is no
real "decision maker" nor real "marketing strategy" for Others.
However, Others' "decisions" can affect the resulting sales for A znd
B. For this analysis, assume that the difference among the four
outcomes is sufficiently large for Others to prefer P"al,

Others does appear, however, to be better off at higher prices
than at lower. To understand this, refer back to Figure 6.5. For
Others, "low" and "high" prices correspond to approximately 92% and
96%, respectively, of the industry average. If priced too low, Others
may be preceived as too cheap or "shoddy goods", with a resultant lcss
in sales. It may be better for the cheaper brands not to be perceived
as being "too" cheap, but to remain close to the industry average.
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A final point about the equilibrium-pair solution: the
solution point obtained is also a Nash noncooperative equilibrium
‘'solution point, because it is dominant; i.e., no matter what the
competitors choose, A woulé always pick low price/high advertising;
the same logic holds for 3 and 0. This theoretically would add an
extra measure of stability to the solution point: no player would

be motivated to change his strategy, even with the knowledge of
competitive intentions. As such, the equilibrium solution point
is more likely to be reached and adhered to than would be the case
without Nash stability (see discussion in Bacharach 1977 and in
Chapter 5).

3

Maximin—the—Difference (Cutthroat) Solution

The previous section assumed risk-averse behaviour on the"
part of all players. Now, each player tries a different strategy
whereby he tries to maximize the difference in sales level between
himself and the average of his two competitors. (This is the n-firm
analog of the cutthroat sclution described and worked out in Chapters
4 and 5.) The formula which expresses this behaviour in mathematical
terms was given in Chapter 2 as

l .
max [Pi (514550 «vv 4S,) - Z SUCHE T sn)J

For the hypothetical industry of Chapter 5, the payoff matrix
was replaced by a matrix giving differences between payoffs (Figure 5.7)
- in order to find the cutthkroat solution. With only two firms in this
industry, the matrix of Figure 5.7 was that of a zero-sum game. For
the industry studied in this chapter, a payoff-difference matrix was
also constructed (see Figure 6.8) using the above equation: since
three firms are involved, 211 three payoff-differences must be shown
- for each cell (for each strategic combination): note, however, that
the values in each cell aéd to zero, indicating the egquivalence
between this representation and the zero-sum game derived for the
duopoly.



FIGURE 6.8

Payoff-differences matrix for "beat-the-average" solution:
Sales revenue MINUS the AVERAGE of the two competitors' sales figures

BRAND B: - c BRAND B:

BRAND P-Al Ph AH PHA- PHAH BRAND plp- - pLaH P“AF PH M
Ad -80.11 -78.15 -=75.09 -73.49 Ad -78.00 -=75.98 -73.4Lk 71,74
PLA- 56,41 52,31 L6, 38 42,99 PCA- 45,75 42,31 36.63  33.83
23.70 25,84 28.71 30.50 32.25  33.67 36.81 © 37.91
-82,62 -80.64 -77.45 -75.84 -80.51 =78.46 -75.81 -74,10
pP-aM 56.99 52,84 46,65 43,24 P-aM 46,03 42,56 36.63 33.83
25,63 27.80 30,80 32.60 - 34,48 35.90 39,18 40,27

PLaH 57,30 53,13 46,66 43 25 PLaN 46,08 42,58 36. 0 33.60 \

27.90 30.08 33.22 35,02 | 37.03 38.44 41.87 L2,93 Ny

. \O

-90.89 -87.70 -85.87 -83.04 | -87.85 -84.71 -83.29 -80.47 n

PHA- 61.80 57.09 51.77 47,77 pHat 50.68 46,68 41.56 38.20 '
29.09 30.61 34,10 . 35.27 37.17 38.03 41,73 L2.27
-93.86 -90.60 -88.69 -85.80 -90.79 -87.56 -86.09 -83.20
PHAM 62.61 57.82 52,27 48,22 pHaM 51,17 47,11 41,77 38.38
31.25 32,78 36,42 37.58 39.62 40,45 L, 32 Ly, 82
pHaH 63.17 . 58.32 52,53 48,44 | PHA° 51,43 47.33  b1.75 38.35
33,76 35,27 39.08 40,21 k2,39 43,18 47,23 L7,67

OTHERS: P“A- OTHERS: P“"A"



FIGURE 6.8 (continued)

BRAND
Al

PEA-

BRAND B:
pha- phaH PHA- PHAM
-82.56 -80.48 -77.54 -75,82
53.96 49,98 43.93 40,66
28.60 30.50 33,61 35.16
-85.19 -83.07 -80.01 =-78.27
54,43 50,41 Ly, 09 40,81
30,76 32,66 35,92 37.46
-87.87 -85.75 -82.55 -80.81
54,63 50.59 43.99 40,71
33,2L 35,16 38.56 40,10
-93.34 -90.03 -88.32 -85.37
59.35 54,76 Lg9,32 L5, 4l
33.99 35.27 39.00 39.93
-96.42 -93,03 -91.25 -88.23
60.05 55.39 L9.71 L5.79
36.37 37.64 41,54 L2 .44
-99.60 -96.13 -94.28 -91.19
60. 50 55,78 49.86 45.90
39.10 40.35 Wiy 42 45,29
OTHERS: PHaL

BRAND
Al

P-A-

p-aM

. BRAND B: |
plat PLAH PHA- PHAH
-80.44 -78.30 -75.88  -74,06
43.31 L4L0.00 34.19 31.52
37.13 38.30 41,69 L2,54
43.49 Lo.15 34.09 31.42
39.57 40,73 Ly ,27 45,09
43,42 40.06 33. 74 31.08
42,34 L3.48 L7.18 h7.97
-90.29 -87.03 -85.73 -82.79
L8,.24 Li, 36 39.12 35.88
42.05 42,67 L6.61 46,91
'930 31"’ "89098 "88. 6"" "'85. 61
48,63 Li,70 39.23 35.97
bh,71 - 45,28 Lo, 41 Lo.64
-96.47 -93.03 -91.63 -88.54
48.78 43,34 39.10 35.83
47,69 49,69 52.53 52.71
OTHERS: PHAH

- €6T -
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Figure 6.9 gives the minimum payoff differences obtained for
each strategic choice, and selects the maximum value for each firm. Firm
B would still choose low price, low advertising under this second behavi-
oural pattern. This time, however, both A and 0 could be persuaded to
alter their advertising policies. Brand A's advertising especially
appears to have a negligible effect on payoff differences, and in fact,
lower advertising is slightly preferable to higher (82.56 below industry
average versus 87.87). Brand A's price level appears to have a greater
effect on payoff difference than does advertising (for P-A%, the payoff
difference is 82.56 below average; raising price to high level changes
'payoff difference to 93.34 below average). ‘

, . Notice also that, by playing cutthroat, Others could be per-
suaded to advertise more heavily. Its advertising was not shown to
have avsignificant effect on its own sales; but it did affect signi-
ficantly the sales of both A and B. Therefore, by advertising more,
Others could improve its sales position relative to A and B.

Finally, unlike the equilibrium-pair solution, the cutthroat
solution is not Nash-noncooperative: Firm B might choose to change its
strategy if oné or the other opponent would be expected to change. The
solution is still Pareto-optimal, though, since no conceivable strategic
change would be beneficial to all players involved. If A and O choose
to play cutthroat consistently, then B would have no reason to deviate
from P"A* , so the game would still be stable despite its lack of true
Nash stability. |

As an addendum, it was noted. in Chapter 2 that the "beat-
the-average" solution concept is best suited to industries where
the payoff levels are of approximately the same order of magnitude.
The results obtained here may be adversely affected by the discrepancy
in sales volume between Brands A and B, although to what extent this
discrepancy affects results cannot be determined.
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FIGURE 6.9
- Maximin-the-difference (cutthroat) solution (MD)

Using the payoff-differences matrix, the following minimum payoffs
are obtained. :

BRAND A: obtained if:

Pt A- e— B plays P'A" ; 0 plays PHaA“-
P A™ "

Pt AM "

Peg- :

PhaAM "

prian (299.60) .

BRAND B:

P-A~ (43.31)4— A plays P-A" ; O plays PHAH
praH  (50.00 "

PHAL A plays P“A" ; 0 plays PHa"
PHAN " |
OTHERS :

PLA* A plays P-A"- ; B plays P-A-
P-A* "

Pia- :

Pt (713)4— :

Results: Not a Nash equilibrium point, since B could be convinced
to change his strategy if A or 0 changed. However, if both A and
0 play their MD strategies, B would choose P-A-~., Therefore:

A selects P“A- and obtains a payoff of 52.46
B selects P-A- and obtains a payoff of 134.96
0 selects P"AY and obtains a payoff of 130.84
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Solutions for Sadistic Play

Under this behavioural assumption, each player chooses
strategies which lead to the worst possible outcome for his
opponents. Figure 6.10 indicates what these worst outcomes
are, and what strategic choices would lead to these outcomes.

Due to the symmetry of Figure 6.6, each firm has two
strategies which potentially lead to the same "bad" outcome for
its opponents. Brand A is indecisive between P“A“- and PHA-, if
only sadistic behaviour is taken into account. Similarly, B is
rindifferent between P-A"™ and PYA", and 0 is indecisive between
PtA" and PHAM. Under strict sadistic behaviour (i.e., not taking
into account what the payoff is to the firm itself, but bnly con-
sidering doing maximum damage to the opponents), one would expect
each firm to select each of its two preferred strategies with
equal probability. This would yield eight possible combinations,
and expected payoffs to each firm would be as calculated and
shown in Figure 6.11.

A modified sadistic solution is perhaps more realistic,
from a behavioural point of view. In this modification, A recog-
nizes that by playing either P-A- or PHAY, it can inflict the
same amount of damage on B and 0. Then, rather than being in-
different between these alternatives, it chooses the one which
simultaneously yields the higher level for its own sales. A
recognizes that it is always better for its own sales to set
prices at a lower level, no matter what the competition does.
Thus, PYA% would be preferred over PHA-., By similar reasoning,

B would prefer P*A" over P¥aY, and 0 would choose PHAY over PLAM.
Resultingly, only one combination (rather than the eight as before)
would be selected. The resulting payoffs would be as given in
Figure 6.11.
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FIGURE 6.10
Sadistic solution (S)

Each player chooses a strategy which would lead to the worst
possible outcome for his opponents.

A's worst outcome: 37.75

Reached only if: B plays P'A" or PHAH
0 plays P-AY or PHAH

B's worst outcome: 116.86

Reached only if: A plays P*A~ or PHA-
0O plays P-AH or PHA"

0's worst outcome: 119.58

Reached only if: A plays PSA- or P"A*-
' B plays P-AH or PHAH

Results: according to strict sadistic behaviour (see text),
A is indecisive between P“-A- and PHA“
B is indecisive between P-AM and PHAH
0 is indecisive between P-A* and PHAH

Payoffs for strict and modified sadistic behaviour calculated
and/or shown in Figure 6.11.
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FIGURE 6.11
Expected payoffs under strict and modified sadistic behaviour

Strict sadistic behaviour: 8 possible combinations, each
equiprobable: '

Brand Brand .

A B Others Payoff to Payoff to Payoff to
- _plays plays plays Brand A Brand B Others
- PLAt p-Af Pt AR 46.48 125.34 119.58
PtA- P“A" PhaH L6.48 125.34 124,21
P-A“ PHAH P-AR L6.48 116.86 119.58
P-At PHAH PHAM L6.48 116.86 124,21
PHAS . PN PLA™ 37.75 125.34 119.58
PHAF PtAH PHAH 37.75 125.34 124,21
PHAL PHAH P-AH 37.75 116.86 119.58
PHA-  PHAM PHAH 37.75 116.86 124.21

Average (expected) payoffs:
to Brand A: 42.12
to Brand B: 121.10
to Others: 121.90

Modified sadistic behaviour (see explanation in text)
A selects PA" and obtains a payoff of 46.48

B selects P-A" and obtains a payoff of 125.34
0 selects P"A" and obtains a payoff of 124.21
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Note that sadistic behaviour (as described in Shubik and
Levitan 1980 and in Chapters 2 and 5) would not explicitly lead
to this combination being preferred over the other seven, as
all are equally "sadistic". But it seems a reasonable expectation
that if a firm is faced with two strategic possibilities, each
causing identical damage to its opponents, it will choose the
one which is also the most beneficial to its own sales.

The expected sales levels for each firm obtained using
this modified sadistic solution are higher than had been determined
for the strictly sadistic solution, but are still lower than the
beat-the-average payoffs. These in turn were lower than the corres-
ponding equilibrium-point pzyoffs. The players cause themselves
the most damage if they choose to play sadistically. |

The most noticeable change resulting from the application
of the sadistic solution concept is that B can be convinced to
raise its (already high, by industry standards) advertising levels,
in order to capture as many szles away from its competitors as
possible (or to prevent them from improving their relative sales
position: this topic is returned to in the last section of this
chapter). Unfortunately for 3, other firms in the industry have
the same idea. This situation is reminiscient of a classic
economics scenario: +the four gas stations at a busy city inter-
section engaging in a mutuzlly detrimental price war. Suppose
all the players had somehow reached the equilibrium point and were
all playing maximin strategies. Now, suppose Firm B decides it wants
~ to play sadistically. Owinz to the Nash stability of the EQ solu-
tion, the competition woulé not change their selected strategies
(unless, of course, their behaviour patterns also changed). The
ksadistic strategy of Firm 3 would indeed cause Brand A's sales to
decrease from 62.43 to 50.55, and Others sales to decrease from
143.17 to 124.84; but would hurt itself as well (B's sales would
fall from 157.43 to 146.20, assuming low price were maintained).
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If Firm B does not want to sacrifice its own sales in order to
damage competitive sales levels, it would have no reason to
initiate sadistic behaviour in the industry.

Interestingly enough, if B nevertheless played sadistically,
A and O are better off not to retaliate as they would push their
own sales levels down even further. The effect is very similar
to that seen in the price-war situation in classical oligopoly
theory: sadistic behaviour hurts everyone in the industry in the
long run, and it is understood (even without explicit cooperation)
that it is in all participants' best interests to revert back
to a more risk-averse strategy (or better still, to leave well
enough alone and not to initiate the price war in the first place).

Joint Maximal Solution

So far the "best" noncooperative solution discussed is the
equilibrium-pair solution. It results in higher sales levels for
each player than any of the others. Could these sales levels be
improved upon if the players entered into a situation of explicit
collusion or cooperation?

One could visualize two possible scenarios: all three firms
could collude to obtain the maximum total industry sales level
(three-firm cooperation), or, two firms (A and B, say) could enter
into a cooperative agreement which excludes all other brands (two-.
firm cooperation).

a) Three-firm cooperative solution: Figure 6.12 contains
a game matrix which shows the total expected indﬁétry sales for
each strategic combination. The players, acting jointly, would
choose the strategies which lead to the maximum total sales level.
This level is 363.03, which occurs if each player plays his equi-
librium-pair strategy. In other words, the players would not do
better than the equilibrium-pair (noncooperative) solution even
with explicit collusion.



FIGURE 6.

12

Matrix for joint-maximal solution (three-firm-cooperative)

\\\\\\\T BRAND B:
[ TR [ By ¥]
BRAND A}| T A P-A

. BRAND B:
;;;;;\ZIT PCA p-aH PHA-  pHpM
P-A- 332.41 308.87 322.38 299.55
p-aM 344,82  320.39 334.48  310.79
P AH 357.69 332.35 347.05 322.47
PHAL 321.63 299.32 311.60 zgo.od
PHAM 333.58° 310.43 323.24  300.83
PHAH 345.96 321.97 335.32 312.09
OTHERS: P“A-
\\\\\\\\\ BRAND B:
BRAND A} P-A" p-A’ P A pHA
P A" 337.31 313.53 327.28 304.21
PoA |349.93 1 325.25  339.59  315.65
p-a” 337.42  352.39  327.54
pHA- 326.53 303.98 316.50 294,66
PHAM 338.69 315.29 328.35 305.69
PHAH . 351.30 327.04 340.66 317.16

OTHERS s

pPha-

PhA-
P-AM
P-Ar
PHAL
pPHAM
pHaH

P“A-
P-4
2\
PHA-
pHaM
pHaH

P A" p-aA™
313.38 291.40 304.26 282.92
325.15 302.33  315.75 293.60
337.36 313.69 327.68  304.71
303.53 282.67 294.41  274.19
314.87 293.23  305.47 284,50
326.65 304.20 316.97 295.22
OTHERS: P-A"
BRAND B:

;;;;;\Zﬂ P A P A" P A" PHa"
318.26 296.03 309.14  287.55
330.24  307.16 320.84 298,43
342.67 318.73 332.99 309.75
308.41 287.30 299.29 278.82
319.96 298.06 310.56 289.33
331.96 309.24 322.28  300.26

OTHERS : pHan A

- TO0C -
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b) Two-firm cooperative solution: Now consider possible
two-firm combinations, e.g., A and B team up and choose the best
combination for themselves. Of course, what they actually receive
depends on 0O's choice, so what A and B will try to do is to maxi-
mize the worst possible outcome. It can be shown that A and B
maximize the minimum joint payoff at their equilibrium-pair stra-
tegies; i.e., A would always choose PLAﬁ; B would always
choose P-A*.

0's choice is uncertain. If, however, 0 realizes that the
other firms are plotting against him, he can at least make the
best of a bad situation by playing the strategy which, in combi-
nation with the "known" strategies of A and B, yields the better
sales payoff to himself: +this is P*AH. Then, the expected payoffs
would be identical to the noncooperative and the three-firm co-
operative solution: 62.43, 157.43 and 143.17 respectively.

(Note that the above scenario is still somewhat hypo-
thetical, since, as stated before, Others does not actually make
price or advertising decisions.)

ANALYSTS AND RECONMMENDATIONS

The ideal solutions and corresponding payoffs which would
be obtained under the different behavioural assumptions are
summarized in Figure 6.13. As described in Chapter 5 and in
Bacharach (1977), of course, it i® not expected that one of these
ideal solutions will be reached and adhered to in a real-life
setting (even though the most preferential combination, the equi-
librium pair solution, has the added advantage of Nash stability).
This conclusion, indeed, would result from misinterpreting the
game matrix. All of the entries therein are estimated payoffs
derived from econometric analysis and as such contain a measure
of uncertainty. The estimated payoffs are not deterministic and
should not be interpreted as such. ‘
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FIGURE 6.13
Summary of solution concepts

: Strategy chosen by: Payoff to:
Solution
concept , A B Others A B Others
EQUIL. PtA Pt PMat 62.43  157.43  143.17
PAIR
MAXIMIN = pLpl  prpr pHpH 52.46  134.96  130.84
DIFF. |
STRICTLY P-aA*- PtaR PtpH
MODIFIED Lt L aH HaH
J-FIRM P A" P-A-  pHAt 62.43  157.43  143.17
COOP. -
gag%RM P'A"  pta-  PpFalw 62.43  157.43  143.17

* -~ preferred if Others realizes that A and B are cooperating.
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However, it is instructive to analyze the pattern of
strategic decisions as made by the players through time. Each
firm's price and cumulative advertising levels were classified
as low, medium or high. according to the cutoff values listed
in Figure 6.5. (These cutoff values are midway between the
corresponding representative values.) For example, all periods
where Brand A's pricing level fell below 105.0 were considered
"low price" periods.

Despite the expected fluctuations, each firm showed a
marked preference for the equilibrium-pair option. Brand A,
with six strategic options to choose from, picks low-price/high
advertising 11 out of 33 times (see Figure 6.14); another 11
observations were low price/medium advertising. (Note: the
first four periods were discarded for this analysis, since
cunulative advertising levels were only defined for periods 5
through 37.) The P'A" combination, solution under both the cut-
throat (MD) and sadistic (modified) (S) behavioural patterns, is
chosen only five times. Brand A recognizes the effects of com-
paratively high advertising and low price on its own sales, and
appears to make strategic choices with this in mind.

Brand B prefers low prices (still above industry average,
though), and the P“A- combination (EQ solution) is slightly pre-
ferred over the P'A"” combination (14 times chosen, compared to 12).
This latter combination is indeed the modified sadistic solution
but choice of this strategic option does not necessarily imply
that B is playing sadistically, As discussed before, there is
evidence that B is overadvertising (i.e., its "low"“advertising
level is high enough as it is). The high frequency of selection
of P*A" is possibly more an indication that B is unconsciously
overadvertising than an indication of deliberately sadistic beha-
viour‘ This example illustrates one major underlying concept
of this study: the selection of a strategic option corresponding
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FIGURE 6.14
Frequencies of strategy selection
BRAND A PtA“ 5 (s) (M)
P-AM 11
PLAH 11 (EQ)
PHAb 1
PHAM 2
PHAH 3
BRAND B P-A- 14 (EQ) (MD)
| pt-aH 12 (S)
pPHAL 2
PHAH 5
OTHERS PtAL 2
P-AH 3
PHA- 14 (EQ)
PHAH 14 (s) (MD)
Legend: (S) -- sadistic solution (modified)

(MD)-- maximin-the-difference (cutthroat) solution
(EQ)~- equilibrium-pair (minimax) solution
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to behavioural pattern X does not imply that .the firm intended to
play according to behavioural pattern X, although the firm is
playing as if it intended to follow that behavioural pattern.

This conclusion flows from the assertion introduced in Chapter 1
and explained in Chapter 4 and 5, where it was stated that the
proposed method of research does not attempt to determine, in
retrospect, what the behavioural intentions of the firms were.
Instead, the strategic choices made by the firms and . the resulting
sales levels ére used to gain a better understanding of the indus-
try and to make recommendations for the future.

; At least one piece of evidence, however, suggests that
Brand B had indeed been intentionally playing sadistically. An
industry expert had indicated in private communication with the
author (Cooper 1984) that B's entire product line is comprised
of mature products, usually with the largest market share in
their respective product classes. The firm which makes Brand 2
has not introduced a successful new product into the marketplace
in many years. Rather than using a product innovation strategy,
B has relied on protecting its big sellers from competitive
attack, partially by employing a large advertising budget.

Note that Brand O "selects" its equilibrium-pair
strategy 14 times out of 33, as well as its sadistic strategy.
The smaller firms appear not to undercut the big brands' prices
by too great an extent; but it is difficult to draw any more
specific conclusions as there is no unified advertising strategy
for the Others brand.

The firms appear to recognize the benefits of staying
near the industry average with regard to price. Very high price
levels are detrimental to sales for A and B; while very low
levels may hurt quality perceptions for the cheaper brands. Erand
A realizes that its advertising is effective in increasing sales
and thereby usually chooses at least medium advertising levels.
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" Brand B maintains cumulative advertising at higher levels than any
of its competitors do; its "low" advertising level appears to be
sufficient to maintain its sales level and should probably be
chosen more often. Smaller brands can detract from the sales of
A and B through the use of heavier advertising.

Selection of the equilibrium-pair strategieé in the future
would be highly recommended for Brands A and B. This combination
of strategies results in the highest level of sales for each
firm: even explicit collusion between some or all firms cannot
improve the resulting sales levels. Brand B may require review and
adjustment of its advertising policy: "high" advertising expen-
diture by B does not result in significantly higher sales than
"low".

Maintenance of a "high" cumulative advertising expenditure
level means: investing enough resources in advertising such that
the amount in the "advertising account" (i.e., this period's
investment plus the carried-over portions of previous-period
investments) is maintained at a minimum level. (Note that this
"advertising account" is similar to Nerlove and Arrow's "goodwill
account”, but since the term "goodwill approach" has already
been defined and used herein for another purpose, the tendency to
call any cumulative advertising account a "goodwill account” is
avoided.)

Smaller brands seem to have a choice. Sales levels of the
cheaper brands do not appear to be correlated with the total
cumulative advertising levels of these brands. However, if they
choose to play sadistically, they can successfully steal sales
away from both larger competitors with heavier investment in
advertising. It is worth noting that, since the equilibrium-
pair solution is also a Nash-noncooperative solution, the
preferred choice strategies of A and B do not depend (are not
affected) by the strategic choices made by Others: nelither would
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be tempted to change its choice if it had prior knowledge of

0's intentions. It is hard to make a case for either the equilib-
rium point or the sadistic strategic option for Others, but (as
has already been seen) this is purely an academic issue. First,
there is no real decision-maker for Others; second, the chosen
strategies of Others do not affect the preferences of either

A or B.
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CHAPTER 6: APPENDIX
REGRESSICN STATISTICS

FORMAT
‘Each test is presented according to the following plan:

. Reduced Model

A short description of the reduced model is given (e.g.,
“no price, no lag" indicates which independent variables had
been omitted), together with an expression which lists the inde-
pendent variables included, in the form

Y = f(A, B, C,e..)

The ANOVA tables are then given, as well as the adjusted
R-square value and the Durbin-Watson (DW) statistic, for each brand
(A, B, Others). Also listed are all independent variables which
were found to be significant, together with the corresponding
T-value. Significance is indicated as follows:

# —-- significant at o«= 0.05 level.
#*—- significant at o¢c=0.10 level.

Also, effects which are in counterintuitive directions are under-

lined. Note: the sales-trend adjustment factors (Q and R) were found
to be strongly significant in all regressions.

Full llodel

The description, ANOVA tables, and t-values are given for
the full model exactly as for the reduced model.

Partial-F Calculation

Finally, partial-F values are calculated to determine the
extent of the improvement on the regression model by the inclusion
of the extra variables in the full model. The formula used is as
given in Kleinbaum and Kupper (1978).

F = SSE (reduced model) — SSE (full model) - SSE._ (full mcdel)
DF (reduced model) - DF (full model) DF (full model)

where SSE = re51dual sum of squares and DF = degrees of freedom.
Partial-F values are marked (%) if 51gn1flcant at x=0. 05; other-
wise marked (n.s.) for "not significant".

Note: Test 5 is slightly different and is discussed sepa-
rately. _
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TEST 1: ° FOR_SIGNIFICANCE OF PRICE EFFECT

Reduced [lodel: no price, no lag

In 854 = £(K, Q, R, In Apy, In Apy, In Agy)

BRAND A ' DF SS WS F
Regression 5 "11.542 2.3084 162.221 2
Residual 30 0.h27  0.0142 © Ryq;=0.958
Total 35 11.969 . bW =1.757
Signif. Variables--t-valuet
In(Brand A adv.) 1.56%%
In(Brand B adv.) -2.65%
In(Others adv.) - -2,64%
BRAND B DF SS MS F
Regression 5 5,612 1.1225 79.216 R . =0 918
Residual 30 0.425 0.0142 adj *
Total ‘ 35 6.037 , Dd  =1.076
Signif. Variables--t-value: '
In(Brand B adv.) -2.24%
In(Others adv.) -1.99%
OTHERS DF SS MS F
Regression- 5 L,414 0.8827 2,673 P2 20,772
Residual . 30 1.073 0.0358 ‘ad j *
Total 35 5.487 : W =2.005
"~ Signif., Variables--none.
Fuil liodel: price, no lag
In 8;, = f(X, Q, R, In P.y» In Apios In Aggr In Aot)
BRAND A DF SS HS F
Regression 6 11.800 1.9666 336.751 R2.. =0 983
Residual 29 0.169 0.0058 adj :
Total 35 11.969 DW  =2.529

Signif. Variables--t-value:

In(Brand A price) -6.64%
In(Brand A adv.) 2.,22%
In(Brand B adv.)  -3.82%
In(Others adv.)  -4.,L9%
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BRAND B DF SS N
Regression 6 5.667 0.9445
Residual 29 0.369 0.0127
Total 35 6.036

Signif. Variables--t-value:
In(Brand B Price) -2,09%

In(Brand B Adv.) -2.06%
In(Others Adv.) -2.75%
- OTHERS DF . 8S 1S
) Regreésion 6 L, 420 0.7366
Residual 29 1.067 0.0368
Total 35 5.487
Signif. Variables--none.
Partial-F Calculation
BRAND A '
P = 0.427 - 0.169 / 0,169 _ . z72%
BRAND B |
F - 0.425 - 0.369 Oégzég ) tows
OTHERS :
F ~1.073 - 1.067 1.062 _
// 5 = 0.163(n.s.)

Conclusion: both advertising and own-price effects must be

included in the regression model (see text).

74.139

20.022

2 -
Radj = 0.926
DW =1.251
2
Radj =0.765
DWW =2.021
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.TEST 2; FOR SIGNIFICANCE OF COMPETITORS' PRICES

Reduced HModel:

price, no lag (as above)

Full Model: all prices, no lag

m Si‘t = f(K, Q, R, 1In PA'I:’ In PB‘I:’ In POt’ in AA't’ In AB‘b’ In AOt)

BRAND A VDF
Regression 8
Residual 27
Total 35

ss MS F
11.802  1.4752

0.168 0.0062
11.970

Partial-F Calcﬁlation

F - 0.169 - 0.168 //
>

Conclusion: do‘not include competitors' prices in model.

0.168 _ 4,080 (n.s.)

27

236.788

2

GOODWILI, APPROACH--LAGGED ADVERTISING EFFECTS (t - 1)

TEST 3:

Réduced llodel: price, no lag (first 2 observ's deleted)

BRAND A DF SS 1S F
Regression 6 11.023 1.8371
Residual 28 0.169 0.006
Trotal 34 11.192
Signif. Variables-~t-value:

In(Brand A Price) -6.53%
In(Brand A Adv.) 2.18%*
In(Brand B Adv.) -3.70%
In(Others Adv.) -1y, 23%

BRAND B DF SS , IS F
Regression 6 5.432 0.9053
Residual 28 0.365 0.0130
Total 34 5.797

Signif. Variables—--t-value:

In(Brand B Price)
In(Brand B Adv.)
In(Others Adv.)

-1,80%
-2.79%

304. 660

69.533

Radj = 0.982

DW = 2.580
2 _

D =2.526
2 - )

Radj =0.924

DW =1.242
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OTHERS DF SS MS F
Regression 6 L, 17k 0.6957 18.327 2 _ L
Residual 28 1.063 0.0330 Raqj = 0-75%
Total 34 5.237 DW = 2.022

Signif. Variables--none.

Full Kodel: price, 1 period lag.

BRAND A ' DF SS MS F
Regression 9 11.043 1.2270 202.478 RZ -~ 0.982
Residual 25 0.152 0.0061 adj~ :
Total 34 11.195 DWW =2.589
Signif. Variables--t-value
In(Brand A Price) -6.03%
In(Brand A Adv.) 2.25%
In(Brand B Adv.) =2.47%
In(Others Adv.) -1.91%
In(0th. Adv. t-1) -1.58%x

ERAND B - DF SS IS F
Regression 9 5.1 0.6046 L2,849 R . -0 917
Residual 25 . 0.353 0.0141 adj —
Total 30 5.79L DW  =1.254
Signif. Variables--none. '

OTHERS - DF SS IS F
Regression 9 : L,194 0.4661 11.171 2
Residual 25 1.043 0.0417 Ragj=0-729
Total 34 5.237 DW = 1.924

Signif. Variables--none.
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Partial-F Calculation

ERAND A |
F=0.169 - 0.152 / 0.152 = 0.932(n.s.)
' .3 25
BRAND B | -
F=0.365 - 0.353 0. - 0.283(n.s.)
50353/ 9353
~ OTHERS

F-1.063 : 1.043 / 1.043 = 0.160(n.s.)
25

Conclﬁsion: Goodwill model of carryover effects inappropriate
for this industry. Carryover not yet ruled out: try more lag
periods. .

TEST 4: GOODWILL APPROACH--TAGGED ADVERTISING EFFECTS (t¥l and t-2)

Reduced.Modelz price, no lag (as above)

Full HModel: price, 1 and 2-period lag

In Sit = f(X, @, R, 1In Pit' In AAt’ 1n AA(t-l)’ In AA(t—Z)’ In ABt’

1n AB(t~l)’ 1n AE(t-z)’ In Aoy ? In AO(t—l)' In AO(t~2))

3RAND A " DF ss MS F |
Regression 12 11.067 0.9222 155.522 R2 . 20.082
Residual . 22 0.130  0.0059 Raqj =0-9¢
Total 34 11.197 DV  =2.681

Signif. Variables--t-value:

In(Brand A Price) -4.82%
In(Brand A Adv.) . 2.74%
In(Br. A. Adv. t-2) 1.78%
In(Brand B Adv.) -2.16%

In(Others Adv.) -1.77%
BRAND B _ DF ss 1S F
Regression 12 5.513 0.4594 6.030 2
Residual 22 0.281 o.cisa 0% Raaj =0-925
Total 3 5.794 DV =1.320

Signif. Variables--t-value:

In(Brand B Adv.)  -1.59%ss
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OTHERS ' DF SS MS F
Regression 12 L. L21 0.3684 9.932 2 _
Residual 22 0.816 0.0371 _ Raaj=0-759
Total 34 5.237 DWw =2.108

Signif. variables--none.

Partial-F Calculation

BRAND A
"F= 0.169 - 0.130 - 0.130 = 1.100(n.s.)
22 :
BRAND B
F= 0.365 - 0.281 0.281 = 1.096(n.s.)
22
OTHERS
F = 1.063 - 0.816 0.816 - 1.110(n.s.)
6 22

Conclusion: Goodwill model still not appropriate, degrees-of-
freedom loss becoming a problem, yet evidence that lag effects
may be significant. Next test investigates approprlateness

of the alternative Koyck carryover model.

' TEST 5--KOYCK MODEL---OPTIMIZATION OF J

Note: This test is somewhat different. Nine different models were
estimated in order to obtain overall-F, SSE and adjusted-R-square
statistics. Partial-F tests are nct relevant, since there are no
"full" and "reduced" models (all models have the same number of vari-
ables). The only difference among these models is the assigned value
cf ¥, which is being optimized (see text).

Model Being Estimated: price, Koyck lag

In 554 = f(X, Q, R, 1n P.

it In ZA

in ZA

Bt’ Ot)

where In ZA,, is defined as in Equation 6.3 in the text.
Rather than giving all nine ANOVA tables for all three firms,

the summary statistics are compiled into the following table for
comparative purposes. _



BRAND B

| BRAND A
'8 F SSE Ridj. DW F SSE Ridj DU
1.0 254, 1 0.166 0.979 2.376 62.01 0.350 0.920 1.237
0.9 264.3 0.160 0.980  2.436 62.64  0.347 0.920 1.231
0.8 272.6 0.155 0.981 2.490 63.22 0.343 0.921 1.227
0.75 | 275.4 0.153 0.981 2.515 63.68 0.341 0.922 1.230
0.7 277.1 0.153 0.981 2.533 6. Ol 0.339 . 0.922 1.232
0.65 | 277.2 0.153 0.981 2.543 64.75 0.336 0.923 1.238
0.6 275.8 0.153 0.981 2.547 65.40 0.333  0.924 1.247
0.5 267.4 0.158 0.980 2.521 67.52 0.323 0.926 1.275
0.l 241, 3 0.175 0.978 2.381 68.89 0.317  0.927 1.314 |
N
| OTHERS I~
¥ F SSE Ridj DW !
!1.0 I 14,95 1.055  0.723 2.033
1 0.9 15.00 1.055 0.723 2.034
0.8 15.00 1.052 0.724 2.051
0.75 | 15.05 1.050 0.725 2,055
0.7 15.11 1.047 0.726 2.059
'0.65 | 15.20  1.041 0.727  2.064
0.6 15.32 1.035 0.729 2.071
0.5 15,6k 1.018 0.733 . 2.098
0.4 16.11 0.995 0.739 2.132
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TEST 6: FOR INTERACTION EFFECTS (ALL INTERACTIONS)

Reduced model: Koyck, §=0.65

In Sit = f(¥X, Q, R, 1n Piys 1n ZAAt’
vhere 1n ZAit
BRAND A " DF Ss
Regression ’ 6 9.764
Residual ‘ 26 0.153
Total 32 9.917
Signif. Variables--t-value:
In(Brand A Price) " =5,92%
In(Brand A Adv.) 2.18%
lngBrand B Adv.) -3.15%
In(Others Adv.) ~-3.39%
ERAND B DR . SS
Regression 6 5.019
Residual 26 0.336
Total 32 5.355
Signif. Variables--t-value:
In(Brand B Price) ~1.30%%
In(Others Adv.) ~-2.30%
OTHERS DF SS
Regression 6 3.654
Residual 26 1.041
Total 32 L.695

Signif. Variables--none.

In S

In ZA

MS

1.6273
0.0059

MS

Bt

0.8365

0.0129

1S

0.6089
0.0401

1n ZAot)

is defined as in Equation 6.4 in the text.

F

277.226

6L . 716

15.204

Full Model: Koyck, ¥ =0.65, all interactions

In zA

it = f(K, Q, R, In Pi AL?

-t’

In Pit X 1ln ZA

In ZA

AL’ In Pit X 1In ZA

Bt’

Bt

“1n ZA

ot,

In Pit

where In ZA;. is defined as in Equation 6.4 in the text.

2
= 1

Radj 0.981
DW = 2.543

2 _
Radj-0.923
DWW = 1.238

2 =
Radj 06.727
DW = 2.06L
In ZAOt)
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BRAND A DF ss NS
Regression 9 9.767
Residual 23 0.146
Total 32 9.913
Signif. Variables--t-value:
In{Brand A Price) -2.54%
BRAND B - DF SS MS
Regression 9 5.052
Residual 23 0.302
Total 32 5.354

Signif. Variables--t-value:

In(Brand A Adv.) ' ;:5%**
Interaction (In P x 1n A Adv) -1,56%%

OTHERS ’ DF SS KIS
Regression 9 3.745 .
Residual 23 0.949 0.0413
Total 32 b.694

Signif. Variables--none.

Partial-F Calculation

1.0852
0.0063

0.5613
0.0131

= 0.863 (n.s.)

F
171.173

F
L2,751

10.080

BRAND A |
F = 0.153 - 0.146 /// 0.146 = 0.368 (n.s.)
3 23
BRAND B
F = 0.336 - 0.302 __3_~
OTHERS
F = 1.041 - 0.949

3