
Proofs and Programs about Open Terms

Francisco Ferreira Ruiz

School of Computer Science

McGill University, Montréal

December 2017

A thesis submitted toMcGill University in partial fulfillment of
the requirements of the degree of Doctor of Philosophy

Copyright© 2017 by Francisco Ferreira Ruiz

i

Abstract

Formal deductive systems are very common in computer sci-

ence. They are used to represent logics, programming languages,

and security systems. Moreover, writing programs that manipulate

them and that reason about them is important and common. Con-

sider proof assistants, language interpreters, compilers and other

software that process input described by formal systems. This thesis

shows that contextual types can be used to build tools for conve-

nient implementation and reasoning about deductive systems with

binders. We discuss three aspects of this: the reconstruction of

implicit parameters that makes writing proofs and programs with

dependent types easier, the addition of contextual objects to an ex-

isting programming language that make implementing formal sys-

tems with binders easier, and finally, we explore the idea of em-

bedding the logical framework LF using contextual types in fully

dependently typed theory. These are three aspects of the same mes-

sage: programming using the right abstraction allows us to solve

deeper problems with less effort. In this sense we want: easier to

write programs and proofs (with implicit parameters), languages

that support binders (by embedding a syntactic framework using

contextual types), and the power of the logical framework LF with

the expressivity of dependent types.

ii

Résumé

Les systèmes critiques comme les systèmes embarqués dans les

avions requièrent un niveau de sécurité élevé qui peut seulement

être obtenu par des systèmes formels. Les compilateurs certifiés

ainsi que les assistants de preuve sont des programmes qui ma-

nipulent et qui raisonnent sur ces systèmes. Dans cette thèse, nous

utilisons les types contextuels afin de construire de tels outils perme-

ttant notamment de raisonner sur des systèmes formels avec lieurs

(binders). En particulier, nous abordons les trois points suivants : la

reconstruction des paramètres implicites, ce qui simplifie l’écriture

des preuves et programmes avec types dépendants ; l’ajout d’objets

contextuels à un langage de programmation existant qui facilitent la

mise en œuvre des systèmes formels avec des lieurs ; et l’intégration

des types contextuels avec des types dépendants au-dessus du cadre

logique (logical frameworks) LF. Ces trois facettes reflètent le mes-

sage suivant : le choix d’une abstraction adéquate nous permet de

construire des outils capables de résoudre des problèmes plus com-

plexes plus facilement. Ceci se traduit par la construction de lan-

gages de programmation utilisant des paramètres implicites, sup-

portant des lieurs (en intégrant un cadre syntaxique utilisant des

types contextuels), et qui utilisent la puissance du cadre logique LF

jointe à une théorie des types a la Martin-Löf.

iii

A Juan, a la Nanana y a la Chongola.

iv

Acknowledgements

Oh, the places I’ve seen! But getting to this point in the adventure would not have
been possible or as much fun without the great people that supported me. First, I want
to thank my doctoral advisor Brigitte Pientka whose passion and drive will always be
examples to me. And Stefan Monnier for his confidence and always relevant guidance.
I want to thank Prakash Panangaden for showing me the excitement that new ideas can
provide. Laurie Hendren, a person that makes every interaction an insightful occasion,
and whose laughter can cheer you up even through two doors!

Andrew Cave and I started at the same time, I will be for ever in debt to all the
insights I get from each discussion. Andrew’s discipline and empathy are a treasure to
me. David Thibodeau, we shared so many discussions, pair programming, so many
ideas. I could have not asked for a better friend to share these adventures with.

Annie Ying who offered support and understanding that you can only get from
shared experiences. Pablo Duboue a dear friend that always has an interesting project
or two and he was kind enough to let me participate in some.

The many friends that kept me sane: Stefan Knudsen, Shawn Otis, Rohan Jacob-
Rao, Steven Thephsourinthone, Agata Murawska and François Thiré, Milena Scaccia,
Caroline Berger, Yam Chhetri, Gayane Petrosyan, Aïna Linn Georges, Vincent Foley,
Eric Lavoie, Larry Diehl, Alanna De Bortoli, Mathieu Boespflug, Tao Xue, . . .

I do not have space to enumerate my Argentine chosen family, your love and support
keep me going every day of my life!

Getting to this point was difficult. But when the night was darkest I knew that
Juan Buzzetti would be unconditionally there, no questions asked and that made all the
difference in the world.

Finally, I want to thank my fantastic defense comittee: Prakash Panangaden, Clark
Verbrugge, Stefan Monnier and Joerg Kienzle for their kind and insightful questions.
Finally, special thanks to the external reviewer James Cheney.

I could not have done it without all of you. Thank you, so very much!

v

Contributions of the Author

• Chapter 3 is an extended version [Ferreira and Pientka, 2014] where
I am first author and I developed the ideas under my co-author
supervision.

• Chapter 4 is an extended version [Ferreira and Pientka, 2017] where
I am also first author and where I developed the idea and prototype
under my advisor’s (also my co-author) supervision.

• Chapter 5 is a heavily extended version of [Ferreira et al., 2017],
work that I did with David Thibodeau and Brigitte Pientka. The
idea started as a consequence of the work on chapter 4 and we then
developed together the implementation and the ideas that lead to
the theory. This chapter spells out the theory for the first time.

Contents

Contents vi

List of Figures viii

1 Introduction 1

2 Deductive Systems with Binders 9
2.1 Introduction . 9
2.2 The Representation of Binders 10
2.3 Higher Order Abstract Syntax 11
2.4 Logical Framework LF . 14
2.5 Programming with Proofs: The Beluga System 20

3 Reconstruction of Implicit Parameters 28
3.1 Introduction . 28
3.2 Source Language . 31
3.3 Target Language . 46
3.4 Description of Elaboration 53
3.5 Soundness of Elaboration 73
3.6 Related Work . 74
3.7 Conclusion . 77

4 Contextual Types and Programming Languages 79
4.1 Introduction . 79
4.2 Main Ideas . 82
4.3 Core-ML: A Small Functional Language 95
4.4 A Syntactic Framework . 99
4.5 Core-ML with Contextual Types 106
4.6 Core-ML with GADTs . 111

vi

CONTENTS vii

4.7 Deep Embedding of SF . 115
4.8 From Contextual Types to GADTs 121
4.9 A Proof of Concept Implementation 128
4.10 Related Work . 131
4.11 Conclusion . 132

5 Contextual Types and Type Theory 134
5.1 Introduction . 134
5.2 Example: Translating Boolean Types 135
5.3 Orca’s Core Calculus . 142
5.4 Definitions and Pattern Matching 155
5.5 The Prototype Implementation 159
5.6 Related Work . 162
5.7 Conclusion . 164

6 Conclusion 166
6.1 Future Work . 166

A Proof of Soundness of Reconstruction 169

B Babybel’s Translation Meta-theory 178

C Translating Booleans in Beluga 182

Bibliography 187

List of Figures

2.1 The STLC in LF . 15
2.2 Well formed LF signatures and contexts 17
2.3 Well formed LF types and kinds 17
2.4 Typing LF . 18
2.5 Type Approximations . 19
2.6 Hereditary Substitutions on Types 20
2.7 Hereditary Substitutions on Terms 21
2.8 Type Uniqueness Proof . 24
2.9 The Beluga Language . 25
2.10 Contextual Objects . 25
2.11 Typing of Contextual Objects 26
2.12 Reasoning Language . 27

3.1 Well-formed Source Expressions 34
3.2 Well-formed Kinds and Types 35
3.3 Example: A Simply-typed λ-calculus 43
3.4 Target Language . 47
3.5 Typing of Computational Expressions 48
3.6 Elaborating Declarations . 54
3.7 Elaborating Kinds and Types in Declarations 61
3.8 Elaboration of Expressions (Checking Mode) 63
3.9 Elaboration of Expressions (Synthesizing Mode) 67
3.10 Branches and Patterns . 69
3.11 Elaboration of Patterns and Pattern Spines 72

4.1 Adding Contextual Types to ML 81
4.2 Closure Converted Language 90
4.3 Core-ML Typing Rules . 97

viii

List of Figures ix

4.4 Core-ML Big-Step Operational Semantics 98
4.5 First-order Matching . 100
4.6 Syntactic Framework Typing . 102
4.7 Typing Rules for SF Patterns . 107
4.8 Extended Operational Semantics 110
4.9 The Typing of Core-MLgadt . 113
4.10 Zip in Core-MLgadt . 115
4.11 Core-MLgadt Big-Step Operational Semantics 116
4.12 Syntactic Framework Definition 118
4.13 Translating Types, Signatures, and Contexts 126
4.14 Translating Computational Expressions 127

5.1 The Typing of the Source Language 136
5.2 The Typing of the Target Language 137
5.3 Computation Substitution . 146
5.4 Computation Substitution in Specifications 147
5.5 Computation Substitution in Contexts and Substitutions . . . 147
5.6 Specification Substitution . 148
5.7 Typing for Computations . 149
5.8 Typing Rules for Specifications (I) 151
5.9 Typing Rules for Specifications (II) 152
5.10 Equality Rules for Computations 153
5.11 Equality Rules for Specification Terms 153
5.12 Equality Rules for Specification Types and Kinds 154
5.13 Equality Rules for Contexts . 154
5.14 Typing Rules for Patterns . 157
5.15 Typing Equations . 158
5.16 The Orca Pipeline . 159
5.17 Boolean Translation After Box Inference 161

1 Introduction

Proofs are fundamental in mathematics and computer science. For the
purpose of this thesis we will consider that a proof is an irrefutable
argument in favour of a statement (i.e. a theorem). A formal proof is
one that is presented as a step by step argument in some foundational
system like ZFC set theory. The validity of a formal proof is reduced to
mechanically checking all of its steps in regards to the rules established in
its foundational system. On the one hand, formal proofs are, as one might
expect, very verbose and long to validate. On the other hand, because
they are a sequence of elementary steps in some theory, they are easy to
verify by computers.

A formal proof is straightforward to check but laborious to construct.
Therefore, proof assistant software was written as soon as computers
became fast enough to validate them. The AUTOMATH [de Bruijn, 1983]
system was a trailblazer in this field. The system was meant as a language
to formalize mathematics and it introduced many ideas that we take
for granted today. It pioneered, for example, ideas like using strongly
typed λ-calculi as a formalism. Today there are many proof assistants
that are in use. They are based on diverse formalisms, for example the
Isabelle [Paulson, 1988] system that can use ZFC or Higher-Order Logic,
or systems based in type theory like Coq The Coq Developement Team
[2016], or Agda [Norell, 2007] and others.

The job of a proof assistant is not only to validate proofs but also to as-
sist the user in describing the full formal proof. This is usually achieved
by allowing one to omit parts that can be automatically reconstructed,
invoking an automated decision procedure, or tactics (a mechanism for
defining programs that compute proofs). Mechanizing a theorem is de-
scribing a theorem in a way that a proof assistant is able to generate and
validate the complete formal proof.

1

CHAPTER 1. INTRODUCTION 2

The history of proof assistants or interactive theorem provers while
not long is rich and eventful. A good reference is offered by Harrison
et al. [2014]. As mentioned before, there are proof assistants based on
several formalisms, among them several variations on type theory. Some
(non-exhaustive) examples and their formalisms are:

• Church’s simple theory of types [Church, 1940]

– HOL4 [Slind and Norrish, 2008],

– HOL light [Harrison, 2009] and

– Isabelle/HOL [Nipkow et al., 2002]),

• Martin-Löf’s type theory [Martin-Löf, 1984] (MLTT)

– the Nuprl [Constable, 1986] proof assistant that is based on an
extension of MLTT.

– Coq [The Coq Developement Team, 2016] that uses an exten-
sion of the calculus of constructions [Coquand and Huet, 1988],

– Agda [Norell, 2007] roughly based on UTT [Luo, 1994]

• the logical framework LF [Harper et al., 1993]

– Twelf [Pfenning and Schürmann, 1999] that uses logic pro-
gramming with LF definitions

– Beluga [Pientka and Cave, 2015] that implements a reasoning
language based on first order logic with induction on LF spec-
ifications.

In this thesis, we will mostly discuss systems that take advantage of the
Curry-Howard correspondence [Howard, 1980], where propositions cor-
respond to types and proofs correspond to terms (some proof assistants
based on this idea are Agda, Coq and Beluga). In these systems, higher-
order statements become dependent functions, that is, functions where

CHAPTER 1. INTRODUCTION 3

the resulting type depends on the value of the parameter. Theorems
are then represented as function types and proofs by induction are repre-
sented by well-founded recursion and pattern matching for case analysis.
Because type theory can be seen as a programming language [Nordström
et al., 1990] these proof assistants can be used simultaneously as provers
and as programming environments. This is a key advantage of construc-
tive logics and type theory in particular, and it is instrumental to the
subject matter of this thesis.

Proof assistants based on MLTT or extensions of the Calculus of Con-
structions like Coq are highly expressive and significant mathematical
results have been formalized in them. For example the formalization of
the odd order theorem by Gonthier et al. [2013] not only fully mecha-
nizes the existing proof, but in order to do so it provides a library of
algebraic definitions and theorems. With many logics, expressivity is not
a problem; however, having the right setting and properties is crucial.
For example, inductive types can be internally encoded in the pure calcu-
lus of constructions [Pfenning and Paulin-Mohring, 1990]. Nevertheless,
the calculus of inductive constructions was designed to have inductive
types as a first-class construct in order to have nicer computational be-
haviour and better usability [Paulin-Mohring, 1993]. A theme of this
work is to take advantage of good representations (namely, using the log-
ical framework LF and contextual types) to allow for a straightforward
representation of theorems and programs about structures with binders
and hypothetical judgments.

The kind of systems we want to represent are deductive systems.
These are systems specified by axioms and deduction rules and they of-
ten include the notion of variables and binders. This class of systems is
very large, and includes, for example: programming languages, logics,
and their meta-theory together with their implementation. When deal-
ing with deductive systems we distinguish two related activities: the first

CHAPTER 1. INTRODUCTION 4

one is implementing formal proofs about deductive systems (e.g.: a lan-
guage is type safe, or a logic is normalizing). When talking about some
object language (i.e.: the programming language or logic under study)
we construct proofs about aspects of its meta-theory. We refer to this
as reasoning about the specification of the language or working on the meta-
theory of the specified deductive system. Second, we want to specify
and perform computations over these systems, for example: compilers,
evaluators and normalizers. We will refer to this as computing with spec-
ification language or simply writing programs that manipulate objects in
the deductive systems.

Deductive systems that represent programming languages and logics
typically have the idea of bound variables, that is some terms introduce
new variables. When writing proofs or programs about such specifi-
cations one usually needs to recursively inspect the expression under
a binder. Consider the first order formula: ∀x.P(x) where one finds the
predicate P that may contain free occurrences of x a variable that is bound
outside by the universal quantifier. In this situation the sub-term might
have free variables (i.e.: a variable bound outside of the term). Such terms
are called open terms. Implementing and reasoning about open terms
of systems with variables and binders is a common activity for com-
puter scientists. Some typical examples of this are implementing new
programming languages, reasoning about the meta-theory of languages
and logics, and implementing proof assistants. Therefore, when working
with open objects (terms with free variables) one finds oneself needing to
represent variables, binders and substitutions.

The meaning of free variables cannot be ignored. One solution com-
monly used while reasoning both on paper and formally with a proof
assistant, is to track free variables with a context that gives meaning to all
the free variables in the term. Here we say the context binds the variables.
This thesis explores a particular approach to this problem. Concretely,

CHAPTER 1. INTRODUCTION 5

we will explore the use of contextual types [Nanevski et al., 2008], that
represent the type of an expression together with the context that gives
meaning to all its free variables, to program and reason about higher-
order abstract syntax (HOAS). Higher-order representations like HOAS,
are used to represent binders reusing the function space, and function
application to represent substitution, this approach is exemplified by the
logical framework LF. While contextual types and the logical framework
LF provide support for specifying formal systems, one can reason about
these structures by implementing pattern matching and recursion over
them. This has been done before, for example languages like Beluga [Pien-
tka and Cave, 2015] and other languages like Delphin [Poswolsky and
Schürmann, 2009]. Actually, Delphin does not have an idea of first class
contexts but it does manipulate terms using HOAS.

This thesis shows that contextual types can be used to build tools for
convenient implementation and reasoning about deductive systems with
binders. We discuss the specification, reasoning and programming with
open terms from the following points of view:

• How to reconstruct types in dependently typed systems. This is
important to make the system accessible. Otherwise dependently
typed programs are very verbose. We describe a formal algorithm
for the sound reconstruction of implicit parameters (i.e.: parameters
that the user does not write and the system infers) in systems with
dependent types and a rich index domain like Beluga.

• How to integrate contextual types in an industrial strength func-
tional programming language (in this case OCaml [Leroy et al.,
2016b]) to allow for type safe programming with binders.

• How to extend Martin-Löf’s type theory [Martin-Löf, 1984] (MLTT)
as the reasoning/programming language for a system with contex-
tual types.

CHAPTER 1. INTRODUCTION 6

These three points of view are intimately related. The objective of im-
plicit parameter reconstruction is to simplify writing proofs about spec-
ifications and dependent pattern matching (which can be seen as case
analysis). Integrating contextual object with existing programming lan-
guages allows for ease in writing programs that manipulate objects with
variables and binders. To conclude, combining contextual objects and
specifications with fully dependently typed language allows for imple-
menting proofs about specifications, implementing programs over speci-
fications, and particularly for implementing proofs about said programs.

Main Contributions

Reconstruction of Implicit Parameters

This chapter presents the design of a source language with index types
and dependent pattern matching together with an elaboration phase that
reconstructs omitted arguments. We differentiate between implicit argu-
ments; those that the user does not write, and explicit arguments, which
must be provided by the user. This language and its elaboration describe
the corresponding reconstruction of the computational language of the
Beluga system.

The elaboration is type directed and it infers omitted arguments to
produce a closed well-typed program. Notably, we describe the recon-
struction of pattern matching expressions. Specifically, using the design
of pattern matching inspired by Beluga that provides nested dependent
pattern matching without type annotations. This is an important dis-
tinction from other systems that either do not provide nested dependent
matching statements (such as Agda [Norell, 2007] or Idris [Brady, 2013])
or require annotations for the return type (as the Coq [The Coq Devel-
opement Team, 2016] proof assistant).

CHAPTER 1. INTRODUCTION 7

Finally, we prove that this is sound, that is, that the successful elabo-
ration of a term implies that it is well-typed in the target language. Part
of this work was published in Ferreira and Pientka [2014].

Contextual Types and Programming Languages

Implementing contextual types in a current and existing programming
language brings some of the power of Beluga and HOAS or λ-tree def-
initions [Miller and Palamidessi, 1999] to existing (simply-typed) func-
tional programming languages. Using contextual types and a syntactic
framework (SF) based on modal S4 [Nanevski et al., 2008, Davies and
Pfenning, 2001], programmers can manipulate open objects by pattern
matching with a type system that guarantees the binders do not escape
their scopes. We show that this language extension can be translated into
a language that supports Generalized Abstract Data Types (i.e.: GADTs)
using a deep embedding of SF.

The other contribution is Babybel, a prototype implementation of
these ideas. Babybel is implemented as a syntax extension of the OCaml
language. It takes advantage of OCaml’s type system to ensure that the
translation is type preserving and allows the users to take advantage of
GADTs to represent some inductive predicates over syntax, like context
relations. Finally, part of this work was published in Ferreira and Pientka
[2017].

Contextual Types and Type Theory

The main contribution of this chapter is a calculus that integrates the log-
ical framework LF for specifications with Martin-Löf’s type theory as a
reasoning/computation language. This is achieved using contextual types
and it can be seen as an extension of the technique for adding contextual
types to programming languages. Morally it presents an extended ver-

CHAPTER 1. INTRODUCTION 8

sion of the Beluga language with fully dependent typing. MLTT does not
have a phase separation between type-checking and evaluation allow-
ing for the interleaving of computation and specification. Additionally,
because MLTT allows for reasoning about functions, the theory permits
writing computations and proving properties about the computations.

A further contribution, is the Orca prototype that implements these
ideas. The design of the Orca language also provides an interesting
type directed syntax reconstruction to be able to disambiguate between
computational terms and specification terms which provides a nicer user
experience. Some of these ideas were presented at Ferreira et al. [2017].

2 Deductive Systems with Binders

2.1 Introduction

Deductive systems presented using axioms and deduction rules are de-
signed to formally describe logics, programming languages, and proof
assistants. Therefore they are widely used in the study of programming
languages and their properties. Examples abound: from the description
of modal logic systems in Pfenning and Davies [2001], to the presenta-
tion of the core calculus of a reactive programming language [Cave et al.,
2014], to the specification of the addition of dependent types to Haskell,
a real world general purpose language [Weirich et al., 2017]

Most of the formal systems that we discuss in this thesis require vari-
ables and binders (the place where new variables are introduced). This a
delicate aspect of the presentation of a formal system, where one must be
aware of issues like variables not escaping their scopes, comparing terms
up-to the renaming of bound variables (i.e.: α-equivalent terms), and that
the substitution operation shall not capture free variables. Consider for
example, the untyped λ-calculus, its syntax is:

Terms M,N ::= x variables
| λ x.M function abstraction
| M N application

Note that x is a name from a set that contains countably many distinct
variable names. An important operation in the λ-calculus is that of sub-
stitution, that allows the instantiation of a variable with a term. We write
[M/x] N to say replace every occurrence of variable x for term M in term
N. The usual definition is done inductively on the structure of N in the
following way:

9

CHAPTER 2. DEDUCTIVE SYSTEMS WITH BINDERS 10

[M/x] y = M when x = y
[M/x] y = y when x , y
[M/x] λ z.N = λ z.[M/x] N with z not free in M
[M/x] N N′ = ([M/x] N) ([M/x] N′)

The definition is straightforward except that at first sight, the reader
might think that it is not a total operation. After all, in the abstraction case,
what is one supposed to do if z does appear free in M? (i.e.: a variable is
free if its binder is not part of the term). The answer is that the substitution
needs to be applied to a term where z has been renamed (i.e.: the sub-
stitution continues with an α-equivalent version of the term). This issue
is the central idea in capture avoiding substitution. While this is usually
left implicit in a description, it remains an issue in implementations and
mechanized formal presentations.

2.2 The Representation of Binders

Representing variables as string and adding side conditions when nec-
essary for substitution works well enough for paper or black-board pre-
sentations. However, names as strings are less common in computer
implementations. For example, N. G. de Bruijn, when designing Au-
tomath [de Bruijn, 1991] (one of the first proof assistants) proposed a
nameless representation [de Bruijn, 1972] where a variable is the dis-
tance, in number of binders, to the place where the variable is bound. On
one hand this eliminates issues with name capture, but on the other hand,
humans usually find these terms very difficult to understand. This idea
was later refined by Altenkirch [1993] as well-scoped de Bruijn indices
where they use dependent types to enforce scoping invariants.

An alternative approach is using nominal logic [Gabbay and Pitts,
1999] or categorical approaches such as [Fiore and Hur, 2008], to give a

CHAPTER 2. DEDUCTIVE SYSTEMS WITH BINDERS 11

precise mathematical definition the ideas of α-equality and name capture.
A final approach, and the one that is discussed in this thesis the most,

is using different versions of the λ-calculus as representation frameworks
and reusing their function space to introduce binders. This allows for a
simple implementation of substitution as one simply reuses the notion of
substitution of the underlying calculus. This was first used by Church in
[Church, 1940], but the logical framework LF [Harper et al., 1993] takes
full advantage of the idea. LF proposes a dependently typed typed λ-
calculus as a representation logic that is able to encode syntax together
with judgments. This technique is usually known as Higher-Order Ab-
stract Syntax (HOAS) because of the reutilization of the the function space
to implement binders. A related technique with similar presentation is
the use of λ-trees [Miller and Palamidessi, 1999].

2.3 Higher Order Abstract Syntax

The idea of representing binders using the function space of λ-calculi to
represent binders and dependent types to represent judgments is a key
insight provided by LF and allows for the mechanization of deductive
systems in a direct and high-level way. The use of the function space
of LF frees the user from thinking about the representation of binders,
the implementation of substitution and even proving some substitution
lemmas as all this infrastructure is inherited from the framework itself.

CHAPTER 2. DEDUCTIVE SYSTEMS WITH BINDERS 12

In regular programming languages (that provide higher-order func-
tions) it is possible to represent binders using the function space of the
language, like in this OCaml example:

type exp =
| Lam of (exp → exp) (* abstractions *)
| App of exp * exp (* applications *)

let omega = Lam (fun x → App (x, x)) (* little omega *)

let rec eval : exp → exp = function
| Lam f → Lam f (* abstractions are values *)
| App (e1, e2) →

begin match eval e1 with
| Lam f → eval (f e2) (* function application is

substitution *)
| stuck → App (e1, e2)
end

This short example is enough to show two of the crucial aspects of
HOAS. The first appears in the declaration of the type exp, where the
constructor for abstractions uses a function to represent the body of the
λ-expression that contains a variable. For that reason it is introduced
as a higher-order function. The second aspect is that in this setting the
function application represents substitution, and we can notice this when
reducing applications. To perform the substitution it suffices to apply the
function because binders are implemented by functions.

This short example is also enough to show two important problems:
the first is that the OCaml function space is too rich and there are many
functions that do not represent terms in the λ-calculus. For example:

let exotic : exp =
Lam (fun x → match x with App (_, e) → e | e → e)

This exotic term pattern matches on the shape of its argument (dropping
all the terms in function position) while in the λ-calculus variables can

CHAPTER 2. DEDUCTIVE SYSTEMS WITH BINDERS 13

only be substituted for a term and cannot analyze the shape of any term.
Thus, this representation, while it might be convenient, is not adequate
and it is not a replacement for LF. The right framework should provide
an adequate representation (i.e. a function space that is weak enough so
that no exotic terms exist) and should allow for the intensional inspec-
tion of the represented functions. LF is designed with these features in
mind (together with the ability to represent judgments and completely
represent deductive systems).

The other problem is that because functions operate as black boxes, it
is not easy to operate on open terms as the only operation on functions is
application, and thus the only way to get to the body of the abstraction is
to perform a substitution. The issue is that the function space in OCaml
behaves like an extensional function (i.e.: one can only observe the result
of a function application). When operating with open terms one would
need an intensional function space that gives access to the structure of
the implementation of the function [Pfenning, 2001].

One possible solution is to separate the language that describes com-
putation from the language that is used for specifications. This approach
was started by Schürmann et al. [2001] when they proposed a computa-
tion language with primitive recursion and a simply typed language for
specifications. This idea was pushed forward in Delphin [Poswolsky and
Schürmann, 2009] when they added support for dependent types and
the logical framework LF. Finally, the Beluga [Pientka, 2008] system uses
contextual types together with logical framework LF. Contextual types
describe potentially open terms (terms with free variables) together with
their contexts (that provide a binding to all the free variables of a term).
This allows for proofs and programs about open objects and that inspect
terms under binders by keeping track of their contexts. This thesis ex-
plores some extensions and implementation concerns for these ideas.

CHAPTER 2. DEDUCTIVE SYSTEMS WITH BINDERS 14

2.4 Logical Framework LF

The logical framework LF provides the means to represent the syntax and
judgments of deductive systems through the use of a dependently typed
calculus related to Martin-Löf’s system of arities [Nordström et al., 1990].

In LF, judgment and syntactic categories are represented by types,
and constructors represent respectively the inference rules and terms of
the object language. For example Figure 2.1 shows how to represent the
simply typed λ-calculus (STLC) using the concrete syntax of the Beluga
system. There are two types, one for each syntactic category (i.e.: tp
for types and tm for term) and the typing judgment is represented by
a dependent type (oft). In the representation of lambda expressions in
terms, notice how binding is represented by a function (HOAS). The most
interesting case is the oft judgment that relates a term to its type. The
judgment contains three constructors that correspond to the typing rules
for applications, abstractions and the constant respectively. Because of
the use of HOAS, there is no need for a rule for variables, as the typing
assumptions for variables are added to the context by the rule t-lam.

The logical framework LF is a dependently typed theory related to the
λP vertex of the λ-cube [Barendregt, 1992]. The particular presentation
we use is often called Canonical LF because it only allows for normal
(i.e.: canonical) forms. Regular substitution might introduce non-normal
forms, so substitution is done in an “hereditary” way. Hereditary sub-
stitutions continue reducing to avoid the introduction of non-normal
forms. This technique was introduced in the context of Concurrent LF
by [Watkins et al., 2002] and [Cervesato et al., 2002]. In particular this
presentation is based on work by Harper and Licata [2007].

CHAPTER 2. DEDUCTIVE SYSTEMS WITH BINDERS 15

LF tp : type =
| b : tp
| arr : tp → tp → tp
;

LF tm : type =
| app : tm → tm → tm
| lam : (tm → tm) → tm
| c : tm
;

LF oft : tm → tp → type =
| t-app : oft M (arr S T) → oft N S → oft (app M N) T
| t-lam : ({x:tm} oft x S → oft (M x) T) →

oft (lam M) (arr S T)
| t-c : oft c b
;

Figure 2.1: The simply typed λ-calculus in LF

The syntax is as follows:

Kinds K ::= type | Π x : A.K
Base Types P ::= a | P M
Types A,B ::= P | Π x : A.B
Normal Terms M ::= λ x.M | R
Neutral Terms R ::= c | x | R M
Contexts Ψ ::= · | Ψ, x : A
Signature Σ ::= · | Σ, a : K | Σ, c : A

Kinds classify the types and are either type for non-dependent kinds
(used to represent our syntactic categories) and Π x : A.K for judgments.
Base types are either atomic types a or type constructors applied to terms
P M. Types classify terms and are: base types P, or Π x : A.B a dependent
function space, when x does not appear in B we write A→ B to indicate
the simply typed function space. Terms are split between normal and

CHAPTER 2. DEDUCTIVE SYSTEMS WITH BINDERS 16

neutral terms, with the objective of preventing β reducible terms. So
normal terms contain function abstractions λ x.M and neutral terms. And
neutral terms are constructors c, variables x bound in abstractions or
dependent functions, and applications of neutral terms to normal terms
R M. Finally, contexts Ψ store typing assumptions for bound variables,
and the signature Σ contains the user definitions (that represent the object
language as in Figure 2.1).

Well typed LF terms are defined by these judgments:

• Well formed signatures, contexts and kinds and types are given by:

– ` Σ sig : Σ is a valid signature.

– `Σ Ψ ctx : Ψ is a well formed context in signature Σ.

– Ψ `Σ K kind : Kind K is well formed in context Ψ.

– Ψ `Σ A type : Type A is well formed in context Ψ.

• Well kinded base types and well typed terms are given by:

– Ψ ` P⇒ K : Base type P synthesizes kind K in Ψ.

– Ψ `M⇐ A : Normal term M checks against type A in Ψ.

– Ψ ` R⇒ A : Neutral term P synthesizes type A in Ψ.

We assume signatures are well formed, and we omit them in the rules
because they do not change during typing. Similarly, for contexts, we
remark that the rules only extend contexts with well formed assump-
tions, so we assume that one starts with a well-formed context (empty
or otherwise) and the rules preserve that property. We refer to Harper
et al. [1993] and Harper and Licata [2007] for a more detailed discussion
of these issues.

Figures 2.2, 2.3, and 2.4 show the deduction rules for each judgment.
They are needed to establish when a term is well formed and well typed.
Logics and deductive systems are represented by the canonical forms (i.e.:

CHAPTER 2. DEDUCTIVE SYSTEMS WITH BINDERS 17

` Σ sig : Σ is a valid signature.

` · sig
s-empty

` Σ sig `Σ A type
` Σ, c : A sig

s-type

` Σ sig · `Σ K kind
` Σ, a : K sig

s-con

`Σ Ψ ctx : Ψ is a well formed context in signature Σ.

`Σ · ctx
c-empty

`Σ Ψ ctx · ` A type
`Σ Ψ, x : A ctx

c-hyp

Figure 2.2: Well formed LF signatures and contexts

Ψ `Σ K kind : Kind K is well formed in context Ψ.

Ψ `Σ type kind
k-type

Ψ `Σ A type Ψ, x : A `Σ K kind
Ψ `Σ Π x : A.K kind

k-pi

Ψ `Σ A type : Type A is well formed in context Ψ.

Ψ ` P⇒ type
Ψ `Σ P type t-base

Ψ `Σ A type Ψ, x : A `Σ B type
Ψ `Σ Π x : A.B type

t-pi

Figure 2.3: Well formed LF types and kinds

CHAPTER 2. DEDUCTIVE SYSTEMS WITH BINDERS 18

Ψ ` P⇒ K : Base type P synthesizes kind K in Ψ.

a : K ∈ Σ
Ψ ` a⇒ K

p-con Ψ ` P⇒ Π x : A.K Ψ `M⇐ A
Ψ ` P M⇒ [M/x]k

(A)−K
p-app

Ψ `M⇐ A : Normal term M checks against type A in Ψ.

Ψ, x : A `M⇐ B
Ψ ` λ x.M⇐ Π x : A.B t-lam Ψ ` R⇒ A

Ψ ` R⇐ A t-neu

Ψ ` R⇒ A : Neutral term P synthesizes type A in Ψ.

c : A ∈ Σ
Ψ ` c⇒ A t-con x : A ∈ Ψ

Ψ ` x⇒ A t-var

Ψ ` R⇒ Π x : A.B Ψ `M⇐ A
Ψ ` R M⇒ [M/x]a

(A)−B
t-app

Figure 2.4: Typing LF

normal forms) of LF terms. There are at least two approaches to compare
the normal forms:

• Defining a type directed equality to compare terms up-to β- reduc-
tion and η-expansion[Harper and Pfenning, 2005].

• Defining Canonical LF where all terms are in canonical form, and
using hereditary substitutions [Watkins et al., 2002] to preserve this
invariant. Harper and Licata [2007] explain this approach and show
a proof of adequacy for these encodings. As we already mentioned,
this is the approach we present here.

CHAPTER 2. DEDUCTIVE SYSTEMS WITH BINDERS 19

(Π x : A.B)− = (A)− → (B)−

(P M)− = (P)−

(a)− = a

Figure 2.5: Type Approximations

We define hereditary substitutions for kinds, types and terms. This
requires defining six operations:

• [M/x]k
α K = K′ : Hereditary substitution in kinds.

• [M/x]a
α A = A′ : Hereditary substitution in types.

• [M/x]p
α P = P′ : Hereditary substitution in base types.

• [M/x]m
α M′ = M′′ : Hereditary substitution in normal terms.

• [M/x]r
α R = M′ :α′ : Hereditary substitution in a neutral term pro-

ducing a normal term.

• [M/x]r
α R = R′ : Hereditary substitution in a neutral term producing

a neutral term.

The superscript in the substitution indicates the syntactic domain (and it
can often be omitted) where it applies, and the subscript is a type approx-
imation of the resulting types that guides the process and the termination
argument. The type approximation is defined in Figure 2.5. The com-
putation rules for the hereditary substitution in types are presented in
Figure 2.6 and Figure 2.7 presents the rules for terms. The definition is
similar to regular substitution, but it critically differs when applying a
substitution to a neutral term produces a normal term. In this situation, if
the neutral term is an application then the substitution needs to continue
until a normal form is reached (otherwise an unrepresentable β-reduction

CHAPTER 2. DEDUCTIVE SYSTEMS WITH BINDERS 20

[M/x]k
α K = K′ : Hereditary substitution in kinds.

[M/x]k
α type = type

[M/x]k
α Π y : A.K = Π y : ([M/x]a

αA).([M/x]k
αK)

with x , y and y < FV(M)

[M/x]a
α A = A′ : Hereditary substitution in types.

[M/x]a
α P = [M/x]p

αP
[M/x]a

α Π y : A.B = Π y : ([M/x]a
αA).([M/x]a

αB)
with x , y and y < FV(M)

[M/x]p
α P = P′ : Hereditary substitution in base types.

[M/x]p
α a = a

[M/x]p
α P M′ = ([M/x]p

αP) ([M/x]m
αM′)

Figure 2.6: Hereditary Substitutions on Types

would be created), notice how the type approximations get progressively
smaller.

2.5 Programming with Proofs:

The Beluga System

The Beluga [Pientka and Dunfield, 2010b] system1 is a proof assistant/pro-
gramming language that manipulates LF terms and inductive data to
implement proofs the meta-theory of formal systems specified in LF, and
to implement programs that manipulate these terms, shining examples
are translators and compilers, for example a type safe closure conversion

1Available at: https://github.com/Beluga-lang/Beluga

https://github.com/Beluga-lang/Beluga

CHAPTER 2. DEDUCTIVE SYSTEMS WITH BINDERS 21

[M/x]m
α M′ = M′′ : Hereditary substitution in normal terms.

[M/x]m
α λ y.M′ = λ y.([M/x]m

αM′)
with x , y and y < FV(M)

[M/x]m
α R = M′ where [M/x]r

αR = M′ :α′

[M/x]r
α R = M′ :α′ : H. subst. in a neutral producing a normal term.

[M/x]r
α x = M :α

[M/x]r
α R M1 = [([M/x]m

αM1)/y]m
α1

M2 :α2

when [M/x]r
αR = λ y.M2 :α1 → α2

[M/x]r
α R = R′ : H. subst. in a neutral producing a neutral term.

[M/x]r
α y = y with x , y

[M/x]r
α R M′ = R′ ([M/x]m

αM′)
when [M/x]r

αR = R′

Figure 2.7: Hereditary Substitutions on Terms

and hoisting implementation [Belanger et al., 2013], or normalization by
evaluation for the simply typed λ-calculus [Cave and Pientka, 2012].

Beluga is a dependently typed programming language where pro-
grams directly correspond to first-order logic proofs over a specific do-
main. More specifically, a proof by cases (and more generally by induc-
tion) corresponds to a (total) functional program with dependent pattern
matching. We hence separate the language of programs from the lan-
guage of our specific domain about which we reason. The language
is similar to indexed type systems (see [Zenger, 1997, Xi and Pfenning,
1999]); however, unlike these aforementioned systems, Beluga’s index do-
main is much richer (contextual LF terms) and it allows pattern matching
on index objects, i.e. we support case-analysis on objects in our domain.

Figure 2.8 shows the type uniqueness theorem for the calculus from

CHAPTER 2. DEDUCTIVE SYSTEMS WITH BINDERS 22

Figure 2.1. The property we want to establish is that if a term M has
a derivation for type S and one for type T then S and T are necessarily
equal. To be able to state the theorem first we define eq-tp to formally
say when two types are equal. And then we define a context schema
(that is the classifier or “type” of contexts) where we say that each entry
contains a variable together with its type derivation. The actual proof is
a total recursive function (following the Curry-Howard correspondence)
where the statement of the theorem is the type of the function, and the
proof is its implementation. In this case, the type is:

(g : ctx) [g ` oft M S[]] → [g ` oft M T[]] →
[`eq-tp S T]

That can be read as: give a context g where each variable is stored
together with its type derivation, and a proof that term M has type S and
T (where the square brackets around the types T and Smean that they are
closed objects and do not depend on the context) the function shows that
both types are equal. We see in Figure 2.8 that to implement the proof,
the function uses case analysis and well-founded recursion to implement
induction, recursive function calls on smaller arguments to appeal to the
induction hypothesis and let expressions, or irrefutable pattern matching
to implement inversion. The application case follows by inversion and
the invoking the induction hypothesis, the case for the constructor (i.e.:
t-c) is the base case and it just needs to perform inversion on the other
derivation. The more interesting cases are t-lam for functions and the
variable case (#p.u). The case forλderivation uses an inductive call done
in an extended context where we have to be careful extend the context
appropriately, which is what we do in the substitution we apply to the
variables D and E. The resulting recursive call is:

unique [g, b:block x:tm, u:oft x _ ` D[..,b.x,b.u]]
[g, b ` E[..,b.x,b.u]]

CHAPTER 2. DEDUCTIVE SYSTEMS WITH BINDERS 23

Finally, the variable case also follows by inversion using the information
stored in the context.

The Beluga language reasons about specifications in the logical frame-
work LF, by embedding them using contextual objects in a functional pro-
gramming language. The idea, illustrated in Figure 2.9, is that proofs
are represented by programs, as in the proofs as programs methodology
[Howard, 1980], and the specifications are embedded using contextual
objects [Nanevski et al., 2008] and contextual types that combine the type
of LF objects with the context they are valid in.

One of the crucial features of Beluga is that it handles open objects
(i.e.: objects with free variables bound in a context). The technical device
to achieve this is contextual objects and types and it is based on contex-
tual modal type theory [Nanevski et al., 2008]. A contextual object is a
term together with the context that describes all the free variables of the
term. In a sense, one could say that there are no free variables, just vari-
ables bound in some context. As a consequence, LF terms and types are
combined with a context (in the case of terms, the context just describes
the names of the assumptions that appear on the type, this is meant to
support α-conversions and it is denoted with the hatted contexts as in Ψ̂).

Figure 2.10 shows the syntax of the contextual objects, together with
the addition of meta-variables to be able to describe incomplete LF terms.
We use X to represent meta-variables, and u and #p when talking about a
specific one. Moreover, we use u [σ] where the substitution expresses how
u relates to its context. The case for #p is similar, but we use the sharp
sign to represent parameter variables that are a kind of meta-variable
that can only be instantiated by variables from the context Ψ. We write
contextual terms together with a context where types have been erased
and only names remain. The typing rule for contextual term indicated

CHAPTER 2. DEDUCTIVE SYSTEMS WITH BINDERS 24

LF eq-tp: tp → tp → type =
% two types are equal only if they are the same
| refl: eq-tp T T;

% the context stores together the variable x
% and its type derivation
schema ctx = some [t:tp] block (x:tm, u:oft x t);

% Thm: If a term M has types S and also T, then S = T
rec unique : (g : ctx) [g ` oft M S[]] → [g ` oft M T[]] →

[` eq-tp S T] =
/ total d (unique _ _ _ _ d _) / % requires well founded

recursive calls and totality
fn d ⇒ fn e ⇒ case d of

| [g ` t-app D1 D2] ⇒
% by inversion on the other derivation
let [g ` t-app E1 E2] = e in
let [` refl] = unique [g ` D1] [g ` E1] in % by i.h.
[` refl]

| [g ` t-c] ⇒
% by inversion
let [g ` t-c] = e in
[` refl]

| [g ` t-lam λx.λu. D] ⇒
let [g ` t-lam λx.λu.E] = e in % by inversion
let [` refl] =

% by i.h. in the extended ctx
unique [g, b:block x:tm, u:oft x _ ` D[..,b.x,b.u]]

[g, b ` E[..,b.x,b.u]]
in
[` refl]

| [g ` #p.u] ⇒ % a variable in the context
let [g ` #p.u] = e in % the type derivation in the context
[` refl];

Figure 2.8: Type Uniqueness Proof

CHAPTER 2. DEDUCTIVE SYSTEMS WITH BINDERS 25

LF Specifications

Contextual Objects

Compuational Language

Figure 2.9: The Beluga Language

Contextual Objects C ::= Ψ̂ `M | Ψ
Contextual Types U ::= Ψ ` A | Ψ ` #A | G
Contextual Schemas G ::= ∃

−−−−−→
(x : A) . B | G + ∃

−−−−−→
(x : A) . B

Substitutions σ ::= · | id | σ,M
Terms w/Meta vars. M ::= · · · | u [σ] | #p [σ]
Meta Substitutions θ ::= · | θ,C/X
Meta Context ∆ ::= · | ∆,X : U

Figure 2.10: Contextual Objects

that when a term: Ψ̂ ` M is matched against a contextual type: Ψ `

A, typing continues with the LF typing judgment using the adequate
contexts, namely: ∆; Ψ `M⇐ A.

Finally, contexts are also first-class objects, and they are classified by
contextual schemas2. Context schemas are formed by elements∃

−−−−→
(x : A) . B

where we say that assumptions are of type B. If B is a type family its
indices are provided by the existential. When schemas describe contexts
that may contain assumptions of different type, they appear as sum types.
Similarly one could, as the implementation has, add products to express
contexts that grow by blocks of assumptions. Figure 2.11 shows the
typing for contextual terms and contexts.

With the machinery to represent LF objects together with their con-
2Contextual schemas play the role of types for contexts.

CHAPTER 2. DEDUCTIVE SYSTEMS WITH BINDERS 26

∆ ` C : U : C is of type U in ∆

∆; Ψ `M⇐ A
∆ ` (Ψ̂ `M) : (Ψ ` A) ∆ ` · : G

∆ ` Ψ : G exists
−−−−→
(x : B′) . B ∈ G and ∆; Ψ `

−→
M :
−→
B s.t. A = B [

−→
M/−→x]

∆ ` Ψ, x : A : G

Figure 2.11: Typing of Contextual Objects

text we can describe now the reasoning language. This language can be
seen as as a term assignment of first-order logic with inductive types.
Its syntax is presented in Figure 2.12. It supports inductive type fami-
lies [Dybjer, 1994] where the indices come from the index domain and
two kinds of functions, dependent function space from contextual types
to computational types, an arrow type for computational functions, a
box type to represent contextual-LF objects and finally, the type for fully
applied type families from the context.

The terms contain abstractions and applications for each function
space and notable pattern matching through the case expressions to ana-
lyze inductive data and contextual objects.

Finally, the signature stores the definition of types and constructors
and recursive functions. Beluga supports general recursion, but it im-
plements a termination checker [Pientka and Abel, 2015] to ensure that
functions and therefore proofs are well founded.

CHAPTER 2. DEDUCTIVE SYSTEMS WITH BINDERS 27

Kinds K ::= Π X : U.K | ctype
Types T ::= Π X : U.T | T1 → T2 | [U] | a ~C

Expressions E ::= fn x⇒ E | mlamX⇒ E | E1 E2

| E1 [C] | [C] | caseEof ~B | E : T | x | c
Branches ~B ::= B | (B | ~B)
Branch B ::= Π∆; Γ.Pat :θ 7→ E
Pattern Pat ::= x | [C] | c

−−→
Pat

Signature Σ ::= c : T | a : K | rec f : T = E

Context Γ ::= · | Γ, x : T

Figure 2.12: Reasoning Language

3 Reconstruction of Implicit
Parameters

3.1 Introduction

Dependently typed programming languages allow programmers to ex-
press a rich set of properties and statically verify them via type checking.
To make programming with dependent types practical, these systems
provide a source language where programmers can omit (implicit) argu-
ments which can be reasonably easy inferred and elaborate the source
language into a well-understood core language, an idea going back to
Pollack [1990]. However, this elaboration is rarely specified formally
for dependently typed languages which support recursion and pattern
matching. For Agda, a full dependently typed programming language
based on Martin Löf type theory, Norell [2007, Chapter 3] describes a
bi-directional type inference algorithm, but does not treat the elabora-
tion of recursion and pattern matching. For the fully dependently typed
language Idris, Brady [2013] describes the elaboration between source
and target, but no theoretical properties such as soundness are estab-
lished. A notable exception is Asperti et al. [2012] that describes a sound
bi-directional elaboration algorithm for the Calculus of (Co)Inductive
Constructions (CCIC) implemented in Matita.

In this chapter, we concentrate on a computational language with
index types. Specifically, our source language is inspired by the Beluga
language [Pientka and Cave, 2015, Pientka, 2008, Pientka and Dunfield,
2010b, Cave and Pientka, 2012] (presented in Section 2.5 where we specify
formal systems in the logical framework LF [Harper et al., 1993] (our index
language) and write proofs about LF objects as total recursive functions
using pattern matching.

28

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 29

More generally, our language may be viewed as a smooth extension
of simply typed languages, like Haskell or OCaml to nested dependent
pattern matching. Moreover, taking advantage of the separation between
types and terms, it is easy to allow impure programs, for example to
allow non-termination, partial functions, and polymorphism. All this
while reaping some of the benefits of dependent types.

Viewing our language through the Curry-Howard correspondence, it
closely corresponds to a proof term assignment for first-order logic over a
specific domain. Our dependent pattern matching construct corresponds
to case-analysis on predicates in first-order logic. Pattern matching on
index objects corresponds to case-analysis on an object from the domain.
Writing total functions in this language corresponds to inductive proofs
in first-order logic over a given domain. This domain is kept somewhat
abstract, but in the case of Beluga it is the logical framework LF. The
reconstruction algorithm for LF is presented in [Pientka, 2013]. However,
the logical framework LF is not a programming language and it does not
contain features like pattern matching that we consider in this work.

The main contribution of this chapter is the design of a source lan-
guage for dependently typed programs where we omit implicit argu-
ments together with a sound bi-directional elaboration algorithm from
the source language to a fully explicit core language. This language
supports dependent pattern matching without requiring type invariant
annotations, and dependently-typed case expressions can be nested as in
simply-typed pattern matching. Throughout our development, we will
keep the index language abstract and state abstractly our requirements
such as decidability of equality and typing. There are many interest-
ing choices of index languages. For example choosing arithmetic would
lead to a DML [Xi, 2007] style language ; choosing an authorization logic
would let us manipulate authorization certificates (similar to Aura [Jia
et al., 2008]); choosing LF style languages (like Contextual LF [Nanevski

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 30

et al., 2008]) we obtain Beluga; choosing substructural variant of it like
CLF [Watkins et al., 2002] we are in principle able to manipulate and work
with substructural specifications.

A central question when elaborating dependently typed languages
is what arguments may the programmer omit. In dependently-typed
systems such as Agda or Coq, the programmer declares constants of a
given (closed) type and labels arguments that can be freely omitted when
subsequently using the constant. Both, Coq and Agda, give the user
the possibility to locally override the implicit arguments and provide
instantiations explicitly.

In contrast, we follow here a simple, lightweight recipe which comes
from the implementation of the logical framework Elf [Pfenning, 1989]
and its successor Twelf [Pfenning and Schürmann, 1999]: programmers
may leave some index variables free when declaring a constant of a given type;
elaboration of the type will abstract over these free variables at the outside; when
subsequently using this constant, the user must omit passing arguments for those
index variables which were left free in the original declaration. Following this
recipe, elaboration of terms and types in the logical framework has been
described in Pientka [2013]. Here, we will consider a dependently typed
functional programming language which supports pattern matching on
index objects.

The key challenge in elaborating recursive programs which support
case-analysis is that pattern matching in the dependently typed setting
refines index arguments and hence refines types. In contrast to systems
such as Coq and Agda, where we must annotate case-expressions with
an invariant, i.e. the type of the scrutinee, and the return type, our source
language does not require such annotations. Instead we will infer the
type of the scrutinee and for each branch, we infer the type of the pat-
tern and compute how the pattern refines the type of the scrutinee. This
makes our source language lightweight and closer in spirit to simply-

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 31

typed functional languages. Our elaboration of source expressions to
target expressions is type-directed, inferring omitted arguments and pro-
ducing a closed well-typed target program. Finally, we prove soundness
of our elaboration, i.e. if elaboration succeeds our resulting program type
checks in our core language. Our framework provides post-hoc explana-
tion for elaboration found in the programming and proof environment,
Beluga [Pientka and Dunfield, 2010b], where we use as the index domain
terms specified in the logical framework LF [Harper et al., 1993].

We describe reconstruction as follows: We first give the grammar of
our source language. Showing example programs, we explain informally
what elaboration does. We then revisit our core language, describe the
elaboration algorithm formally and prove soundness.

3.2 Source Language

We consider here a dependently typed language where types are indexed
by terms from an index domain. Our language is similar to Beluga
a dependently typed programming environment where we can embed
LF objects into computation-level types and computation-level programs
which analyze and pattern match on LF objects. However, in our descrip-
tion, as in for example Cave and Pientka [2012], we will keep the index
domain abstract, but only assume that equality in the index domain is
decidable and unification algorithms exist. This will allow us to focus on
the essential challenges when elaborating a dependently typed language
in the presence of pattern matching.

The syntax of our source language that allows programmers to omit

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 32

some arguments is as follows:

Kinds k ::= ctype | {X : u} k

Atomic Types p ::= a
−→
[c]

Types t ::= p | [u] | {X : u} t | t1 → t2

Expressions e ::= fn x⇒ e | mlamX⇒ e | x | c | [c] |
e1 e2 | e1 [c] | e _ | case eof~b | e : t

Branches ~b ::= b | (b | ~b)
Branch b ::= pat 7→ e
Pattern pat ::= x | [c] | c

−→
pat | pat : t

Declarations d ::= rec f : t = e | c : t | a : k

As a convention we will use lowercase c to refer to index level objects,
lowercase u for index level types, and upper case letters X,Y for index-
variables. Index objects can be embedded into computation expressions
by using a box modality written as [c]. Our language supports functions
(fn x ⇒ e), dependent functions (mlamX ⇒ e), function application
(e1 e2), dependent function application (e1 [c]), and case-expressions. We
also support writing underscore (_) instead of providing explicitly the
index argument in a dependent function application (e _). Note that we
are overloading syntax: we write e [c] to describe the application of the
expression e of type [u] → t to the expression [c]; we also write e [c] to
describe the dependent application of the expression e of type {X : u}t to
the (unboxed) index object c.This ambiguity can be easily resolved using
type information. Note that in our language the dependent function
type and the non-dependent function type do not collapse, since we can
only quantify over objects of our specific domain instead of arbitrary
propositions (types).

We may write type annotations anywhere in the program (e : t and in
patterns pat : t); type annotations are particularly useful to make explicit
the type of a sub-expression and name index variables occurring in the

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 33

type. This allows us to resurrect index variables which are kept implicit.
In patterns, type annotations are useful since they provide hints to type
elaboration regarding the type of pattern variables.

A program signature Σ consists of kind declarations (a : k), type dec-
larations (c : t) and declarations of recursive functions (rec f : t = e). This
can be extended to allow mutual recursive functions in a straightforward
way.

One may think of our source language as the language obtained after
parsing where for example let-expressions have been translated into case-
expression with one branch.

Types for computations include non-dependent function types (t1 →

t2) and dependent function types ({X : u}t); we can also embed index
types into computation types via [u] and indexed computation-level types
by an index domain written as a

−→
[c]. We also include the grammar for

computation-level kinds which emphasizes that computation-level types
can only be indexed by terms from an index domain u. We write ctype
(that reads as “computational type”) for the base kind, since we will use
type for kinds of the index domain.

We note that we only support one form of dependent function type
{X : u}t; the source language does not provide any means for programmers
to mark a given dependently typed variable as implicit as for example in
Agda. Instead, we will allow programmers to leave some index variables
occurring in computation-level types free; elaboration will then infer their
types and abstract over them explicitly at the outside. The programmer
must subsequently omit providing instantiation for those “free” variables.
We will explain this idea more concretely below.

3.2.1 Well-formed Source Expressions

Before elaborating source expressions, we state when a given source ex-
pression is accepted as a well-formed expression. In particular, it will

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 34

`
d
wf

D
ec

la
ra

ti
on

d
is

w
el

l-
fo

rm
ed

·;
f
`

ew
f
·
`
f

tw
f

`
re

c
f:

t=
ew
f

wf
-r
ec

·
`
f

tw
f

`
c

:t
wf

wf
-t
yp
es

·
`
f

kw
f

`
a

:k
wf

wf
-k
in
ds

δ;
γ
`

N
ew
f

N
or

m
al

ex
pr

es
si

on
e

is
w

el
l-

fo
rm

ed
in

co
nt

ex
tδ

an
d
γ

δ;
γ
,x
`

N
ew
f

δ;
γ
`

N
fn

x
⇒

ew
f
wf
-f
n

δ,
X

;γ
`

N
ew
f

δ;
γ
`

N
ml

am
X
⇒

ew
f
wf
-m
la
m

δ
`

cw
f

δ;
γ
`

N
[c

]w
f
wf
-b
ox

δ;
γ
`

n
ew
f

fo
r

al
lb

n
in
~ b

.δ
;γ
`

b n
wf

δ;
γ
`

N
ca

se
eo
f
~ b
wf

wf
-c
as
e

δ;
γ
`

n
ew
f

δ;
γ
`

N
ew
f
wf
-n
eu

δ;
γ
`

n
ew
f

N
eu

tr
al

ex
pr

es
si

on
e

is
w

el
l-

fo
rm

ed
in

co
nt

ex
tδ

an
d
γ

δ;
γ
`

N
ew
f

δ
`

tw
f

δ;
γ
`

n
e:

tw
f

wf
-a
nn

δ;
γ
`

n
e 1
wf

δ;
γ
`

N
e 2
wf

δ;
γ
`

n
e 1

e 2
wf

wf
-a
pp

δ;
γ
`

n
ew
f

δ
`

cw
f

δ;
γ
`

n
e[

c]
wf

wf
-a
pp
e

δ;
γ
`

n
e 1
wf

δ;
γ
`

n
e 1

_
wf

wf
-a
pp
h

δ;
γ
`

pa
t7→

ew
f

Br
an

ch
is

w
el

l-
fo

rm
ed

in
δ

an
d
γ

δ′
;γ
′
`

pa
tw
f

δ,
δ′

;γ
,γ
′
`

n
ew
f

w
he

re
δ′
,γ
′

in
tr

od
uc

e
fr

es
h

va
rs

δ;
γ
`

pa
t7→

ew
f

wf
-b
ra
nc
h

δ;
γ
`

pa
tw
f

Pa
tt

er
n

pa
ti

s
w

el
l-

fo
rm

ed
in
δ

an
d
γ

δ;
x
`

x
wf

wf
-p
-v
ar

fo
r

al
lp

i
in
−−
→ Pa

t.
δ i

;γ
i
`

p i
wf

δ 1
,.
..
,δ

n;
γ

1,
..
.,
γ

n
`

c−
−→ Pa

tw
f
wf
-p
-c
on

δ
`

cw
f

δ;
·
`

[c
]w
f
wf
-p
-i

δ;
γ
`

pa
tw
f

δ
`

tw
f

δ;
γ
`

pa
t:

tw
f

wf
-p
-a
nn

Fi
gu

re
3.

1:
W

el
l-

fo
rm

ed
So

ur
ce

Ex
pr

es
si

on
s

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 35

δ ` kwf Kind k is well-formed and closed with respect to δ

δ ` ctypewf
δ ` uwf δ,X : u ` kwf

δ ` {X : u} kwf

δ ` twf Type t is well-formed and closed with respect to δ

δ; ` ci wf for all ci in −→c

δ ` a
−→
[c]wf

δ ` uwf
δ ` [u]wf

δ ` uwf δ,X : u ` twf
δ ` {X : u} twf

δ ` t1 wf δ ` t2 wf
δ ` t1 → t2 wf

Figure 3.2: Well-formed Kinds and Types

highlight that free index variables are only allowed in declarations when
specifying kinds and declaring the type of constants and recursive func-
tions. We use δ to describe the list of index variables and γ the list of
program variables. We rely on two judgments from the index language:

δ ` cwf Index object c is well formed and
closed with respect to δ

δ `f cwf Index object c is well formed with respect to δ
and may contain free index variables

We describe declaratively the well-formedness of declarations and
source expressions in Fig. 3.1. The distinction between normal and neutral
expressions forces a type annotation where a non-normal program would
occur. The normal vs. neutral term distinction is motivated by the
bidirectional type-checker presented in Section 3.3.1. The rules for well-
formed types and kinds are given in Figure 3.2.

In branches, pattern variables from γ must occur linearly while we
put no such requirement on variables from our index language listed in
δ. The judgment for well formed patterns synthesizes contexts δ and

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 36

γ that contain all the variables bound in the pattern (this presentation
is declarative, but algorithmically the two contexts result from the well-
formed judgment). Notice that the rules wp-p-i and wp-con look similar
but they operate on different syntactic categories and refer to the judgment
for well-formed index terms provided by the index level language. They
differ in that the one for patterns synthesizes the δ context that contains
the meta-variables bound in the pattern.

3.2.2 Some Example Programs

We next illustrate writing programs in our language and explain the main
ideas behind elaboration. We use Beluga syntax in our examples, in these
examples we want to focus on the elaboration of computations not the
index language.

3.2.2.1 Translating Untyped Terms to Intrinsically Typed Terms

We implement a program to translate a simple language with num-
bers, booleans and some primitive operations to its intrinsically typed
counterpart. This illustrates declaring an index domain, using index
computation-level types, and explaining the use and need to pattern
match on index objects. We translate a source language that we will call
Untyped into its typed counter part, we call this representation Typed. This
translation is basically a type-checker for terms written in Untyped.

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 37

We first define the syntax of Untyped using the recursive datatype
UTm. Note the use of the keyword ctype to define a computation-level
recursive data-type.

inductive UTm : ctype =
| UNum : Nat → UTm
| UPlus : UTm → UTm → UTm
| UTrue : UTm
| UFalse: UTm
| UNot : UTm → UTm
| UIf : UTm → UTm → UTm → UTm
;

Terms can be of type nat for numbers or bool for booleans. Our goal
is to define Typed our language of typed terms using a computation-level
type family Tm which is indexed by objects nat and bool which are
constructors of our index type tp. Note that tp is declared as having the
kind type which implies that this type lives at the index level and that
we will be able to use it as an index for computation-level type families.

LF tp : type =
| nat : tp
| bool : tp
;

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 38

Using indexed families we can now define the type Tm that specifies
only type correct terms of the language Typed, by indexing terms by their
type using the index level type [` tp]. The square brackets define a box
for index language terms and types and because Beluga’s index language
contains contextual types the empty turnstyle indicates that types are
closed.

inductive Tm : [` tp] → ctype =
| Num : Nat → Tm [` nat]
| Plus : Tm [` nat] → Tm [` nat] → Tm [` nat]
| True : Tm [` bool]
| False : Tm [` bool]
| Not : Tm [` bool] → Tm [` bool]
| If : Tm [` bool] → Tm [` T] → Tm [` T] → Tm [` T]
;

When the Tm family is elaborated, the free variable T in the If
constructor will be abstracted over by an implicit Π-type, as in the

Twelf [Pfenning and Schürmann, 1999] tradition. Because T was left
free by the programmer, the elaboration will add an implicit quantifier;
when we use the constant If, we now must omit passing an instantiation
for T. For example, we must write (If True (Num 3) (Num 4)) and
elaboration will infer that T must be nat.

One might ask how we can provide the type explicitly - this is possible
indirectly by providing type annotations. For example:

If e (e1:TM[` nat]) e2

will fix the type of e1 to be Tm [` nat].

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 39

Our goal is to write a program to translate an untyped term UTm to
its corresponding typed representation. Because this operation might fail
for ill-typed UTm terms we need an option type to reflect the possibility
of failure.

inductive TmOpt : ctype =
| None : TmOpt
| Some : {T : [` tp]} Tm [` T] → TmOpt
;

A value of type TmOptwill either be empty (i.e. None) or some term of
type T. We chose to make T explicit here by quantifying over it explicitly
using the curly braces. When returning a Tm term, the program must
now provide the instantiation of T in addition to the actual term.

So far we have declared types and constructors for our language.
These declarations will be available in a global signature. The next step
is to declare a function that will take Untyped terms into Typed terms if
at all possible. Notice that for the function to be type correct it has to
respect the specification provided in the declaration of the type Tm. We
only show a few interesting cases below.

rec typecheck : UTm → TmOpt =
fn e ⇒ case e of
| UNum n ⇒ Some [` nat] (Num n)
| UNot e ⇒ (case typecheck e of

| Some [` bool] x ⇒ Some [` bool] (Not x)
| other ⇒ None)

| UIf c e1 e2 ⇒ (case typecheck c of
| Some [` bool] c’ ⇒ (case (typecheck e1 , typecheck e2)
of
| (Some [` T] e1’ , Some [` T] e2’) ⇒
Some [` T] (If c’ e1’ e2’)

| other ⇒ None)
| other ⇒ None)

% ... the cases for UPlus, UTrue and UFalse are similar
;

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 40

In the typecheck function the cases for numbers, plus, true and false
are completely straightforward. The case for negation (i.e. constructor
UNot) is interesting because we need to pattern match on the result of
type-checking the sub-expression e to match its type to bool otherwise
we cannot construct the intrinsically typed term, i.e. the constructor Not
requires a boolean term, this requires matching on index level terms.

Additionally the case for UIf is also interesting because we not only
need a boolean condition but we also need to have both branches of the
UIf term to be of the same type. Again we use pattern matching on
the indices to verify that the condition is of type bool but notably we
use non-linear pattern matching to ensure that the type of the branches
coincides. Therefore, by using non-linear patterns we can force two meta-
variables to match against the same term. Notably, note that If has an
implicit argument (the type T) which will be inferred during elaboration
and the fact that it is used in both branches implies that in an if expression
the “then” branch and the “else” branch are of the same type.

In the definition of type TmOpt we chose to explicitly quantify over
T, however another option would have been to leave it implicit. When
pattern matching on Some e, we would need to resurrect the type of
the argument e to be able to inspect it and check whether it has the
appropriate type. We can employ type annotations, as shown in the code
below, to constrain the type of e.

| UIf c e1 e2 ⇒ (case typecheck c of
| Some (c’ : [` bool]) ⇒ (case (typecheck e1, typecheck e2
) of
| (Some (e1’ : [` T]) , Some (e2’ : [` T]) ⇒

Some (If c’ e1’ e2’)
| other ⇒ None)

| other ⇒ None)

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 41

In this first example there is not much to elaborate. The missing
argument in If and the types of variables in patterns are all that need to
be elaborated.

3.2.2.2 Type-preserving Evaluation

Our previous program used dependent types sparingly; most notably
there were no dependent types in the type declaration given to the func-
tion typecheck. We now discuss the implementation of an evaluator,
which evaluates type correct programs to values of the same type, to high-
light writing dependently typed functions. Because we need to preserve
the type information, we index the values by their types in the following
manner:

inductive Val : [` tp] → ctype =
| VNum : Nat → Val [` nat]
| VTrue : Val [` bool]
| VFalse: Val [` bool]
;

We define a type preserving evaluator below:

rec eval : Tm [` T] → Val [` T] = fn e ⇒ case e of
| Num n ⇒ VNum n
| Plus e1 e2 ⇒ (case (eval e1 , eval e2) of

| (VNum x , VNum y) ⇒ VNum (add x y))
| Not e ⇒ (case eval e of

| VTrue ⇒ VFalse
| VFalse ⇒ VTrue)

| If e e1 e2 ⇒ (case eval e of
| VTrue ⇒ eval e1
| VFalse ⇒ eval e2)

| True ⇒ VTrue
| False ⇒ VFalse
;

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 42

First, we specify the type of the evaluation function as:

Tm[` T] → Val [` T]

where T remains free. The user provided type has a free variable (i.e.
T) that elaboration will abstract over after inferring its type. The type of
the variable should be fixed by the places where it is used. Elaboration
will therefore abstract over it in the outside by adding it as an implicit
parameter (introduced by Πi, which is an abstraction that we indicate
as implicit since the user will not provide instantiations for and that
elaboration will reconstruct). We then elaborate the body of the function
against ΠiT:` tp. Tm [` T] → Val [` T]. It will first need to
introduce the appropriate dependent function abstraction in the program
before we introduce the non-dependent function fn x⇒ e. Moreover, we
need to infer omitted arguments in the pattern in addition to inferring
the type of pattern variables in the If case. Since T was left free in
the type given to eval, we must also infer the omitted argument in the
recursive calls to eval. Finally, we need to keep track of refinements
the pattern match induces: our scrutinee has type Tm [` T]; pattern
matching against Plus e1 e1which has type Tm [` nat] refines T to
nat.

3.2.2.3 A Certifying Evaluator

So far in our examples, we have used a simply typed index language.
We used our index language to specify natural numbers, booleans, and
a tagged enumeration that contained labels for the bool and nat types.
In this example we go one step further, and use a dependently typed
specification, in fact we take advantage of LF as our index level language
as used in Beluga. Using LF at the index language we specify the simply-
typed lambda calculus and its operational semantics in Figure 3.3. These
rules provide a call by name operational semantic chosen for no reason
other than to save one evaluation rule compare to call by value. Using

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 43

Types T ::= > | T1 → T2

Terms M,N ::= () | x | λx : T.M |MN

Context Γ ::= · | Γ, x : T

Values V ::= > | λx : T.M

Γ `M : T Term M has type T in context Γ

Γ ` () :>
x : T ∈ Γ
Γ ` x : T

Γ, x : T1 `M : T2

Γ ` λx : T1.M : T2

Γ `M : T1 → T Γ ` N : T1

Γ `MN : T

M ⇓ V Term M steps to value V

> ⇓ > λx : T.M ⇓ λx : T.M

M ⇓ λx : T.M′ [N/x]M′
⇓ N′

MN ⇓ N′

Figure 3.3: Example: A Simply-typed λ-calculus

these specifications we write a recursive function that returns the value
of the program together with a derivation tree that shows how the value
was computed. This example requires dependent types at the index
level and consequently the elaboration of functions that manipulate these
specifications has to be more powerful.

As in the previous example, we define the types of terms of our lan-
guage using the index level language. As opposed to the type preserving
evaluator, in this case we define our intrinsically typed terms also using
the index level language (which will be LF for this example). We take
advantage of LF to represent binders inλ-terms, and use dependent types
to represent well-typed terms only.

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 44

LF tp : type =
| unit : tp
| arr : tp → tp → tp
;

LF term : tp → type =
| one : term unit
| lam : (term A → term B) → term (arr A B)
| app : term (arr A B) → term A → term B
;

These datatypes represent an encoding of well typed terms of a
simply-typed lambda calculus with unit as a base type. Using LF we
can also describe what constitutes a value and a big-step operational
semantics. We use the standard technique in LF to represent binders
with the function space (usually called Higher Order Abstract Syntax,
HOAS [Pfenning and Elliott, 1988]) and type families to only represent
well-typed terms, thus this representation combines the syntax for terms
with the typing judgment from Figure 3.3.

LF value : tp → type =
| v-one : value unit
| v-lam : (term A → term B) → value (arr A B)
;

LF big-step : term T → value T → type =
| e-one : big-step one v-one
| e-lam : big-step (lam M) (v-lam M)
| e-app : big-step M (v-lam M’) →

big-step (M’ N) N’ →
big-step (app M N) N’

;

The value type simply states that one and lambda terms are values,
and the type big-step encodes the operational semantics where each
constructor corresponds to one of the rules in Figure 3.3. The constructors

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 45

e-one and e-lam simply state that one and lambdas step to themselves.
On the other hand rule e-app requires that in an application, the first
term evaluates to a lambda expression (which is always the case as the
terms are intrinsically well typed) and then it performs the substitution
and continues evaluating the term to a value. Note how the substitution
is performed by an application as we reuse the LF function space for
binders as typically done with HOAS.

To implement a certifying evaluator we want the eval function to
return a value and a derivation tree that shows how we computed this
value. We encode this fact in the Cert data-type that encodes an existen-
tial or dependent pair that combines a value with a derivation tree.

inductive Cert : [` term T] → ctype =
| Ex : {N: [` value T]} [` big-step M N] → Cert [` M]
;

In the Ex constructor we have chosen to explicitly quantify over N, the
value of the evaluation, and left the starting term M implicit. However
another option would have been to leave both implicit, and use type
annotations when pattern matching to have access to both the term and
its value.

Finally the evaluation function simply takes a term and returns a cer-
tificate that contains the value the terms evaluates to, and the derivation
tree that led to that value.

rec eval : {M : [` term T]} Cert [` M] =
mlam M ⇒ case [` M] of
| [` one] ⇒ Ex [` v-one] [` e-one]
| [` lam (λx.M)] ⇒ Ex [` v-lam (λx.M)] [` e-lam]
| [` app M N] ⇒

let Ex [` v-lam (λx. M’)] [` D] = eval [` M] in
let Ex [` N’][` D’] = eval [` M’[N]] in
Ex [` N’] [` e-app D D’]

;

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 46

Elaboration of eval starts by the type annotation. Inferring the type
of variable T and abstracting over it, resulting in:

ΠiT:[` tp]. {M : [` term T]} Cert [` M]

The elaboration proceeds with the body, abstracting over the inferred
dependent argument with mlam T ⇒ ... When elaborating the case
expression, the patterns in the index language will need elaboration. In
this work we assume that each index language comes equipped with an
appropriate notion of elaboration (described in [Pientka, 2013] for the
logical framework LF). For example, index level elaboration will abstract
over free variables in constructors and the pattern for lambda terms be-
comes [lam A B (λx. M)] when the types for parameters and body
are added. Additionally, in order to keep the core language as lean as pos-
sible we desugar let expressions into case expressions. For example,
in the certifying evaluator, the following code from eval:

let Ex [` v-lam M’] [` D] = eval [` M] in
let Ex [` N’][` D’] = eval [` M’ [N]] in
Ex [` N’] [` e-app D D’]

is desugared into:

(case eval [` M] of | Ex [` v-lam M’] [` D] ⇒
(case eval [` M’ [N]] of
| Ex [` N’][` D’] ⇒ Ex [` N’] [` λe-app D D’]))

We will come back to this example and discuss the fully elaborated
program in the next section.

3.3 Target Language

The target language is similar to the computational language described
in Cave and Pientka [2012] which has a well developed meta-theory
including descriptions of coverage [Dunfield and Pientka, 2009, Jacob-
Rao, 2017] and termination [Pientka and Abel, 2015]. The target language

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 47

Kinds K ::= ctype | ΠeX : U.K | ΠiX : U.K
Types T ::= ΠeX : U.T | ΠiX : U.T

P | U | T1 → T2 | a | T C

Expressions E ::= fn x⇒ E | mlamX⇒ E
| E1 E2 | E1 C | C |
caseEof ~B | x | E : T | c

Branches ~B ::= B | (B | ~B)
Branch B ::= Πi∆; Γ.Pat :θ 7→ E
Pattern Pat ::= x | C | c

−−→
Pat

Declarations D ::= c : T | a : K | rec f : T = E

Context Γ ::= · | Γ, x : T
Index-Var-Context ∆ ::= · | ∆,X : U
Refinement θ ::= · | θ,C/X | θ,X/X

Figure 3.4: Target Language

(see Fig. 3.4), which is similar to our source language, is indexed by fully
explicit terms of the index level language; we use C for fully explicit index
level objects, and U for elaborated index types; index-variables occurring
in the target language will be represented by capital letters such as X,Y.
Moreover, we rely on a substitution which replaces index variables X
with index objects. The main difference between the source and target
language is in the description of branches. In each branch, we make the
type of the pattern variables (see context Γ) and variables occurring in
index objects (see context ∆) explicit. We associate each pattern with a
refinement substitution θ which specifies how the given pattern refines
the type of the scrutinee.

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 48

`
D
wf

Ta
rg

et
de

cl
ar

at
io

n
D

is
w

el
l-

fo
rm

ed

·
`

T
⇐

ct
yp
e
·

;
f:

T
`

E
⇐

T
`
re
c

f:
T

=
E
wf

t-
re
c

·
`

T
⇐

ct
yp
e

`
c:

T
wf

t-
ty
pe

·
`

K
⇐

ki
nd

`
a

:K
wf

t-
ki
nd

∆
`

T
:K

T
is

a
w

el
l-

ki
nd

ed
ty

pe
of

ki
nd

K

∆
`

T 1
:c
ty
pe

∆
`

T 2
:c
ty
pe

∆
`

T 1
→

T 2
:c
ty
pe

k-
ar
r

∆
`

U
:t
yp
e

∆
,X

:U
`

T
:c
ty
pe

∆
`

Π
{e
,i}

X
:U
.T

:c
ty
pe

k-
pi

∆
`

U
:t
yp
e

∆
`

U
:c
ty
pe

k-
id
x

∆
`

C
⇐

U
∆
,X

:U
`

T
:K

∆
`

T
C

:Π
{e
,i}

X
:U
.K

k-
ap
p

Σ
(a

)=
K

∆
`

a
:K

k-
co
n

∆
;Γ
`

E
⇒

T
E

sy
nt

he
si

ze
s

ty
pe

T

∆
;Γ
`

E 1
⇒

S
→

T
∆

;Γ
`

E 2
⇐

S
∆

;Γ
`

E 1
E 2
⇒

T
t-
ap
p

∆
;Γ
`

E
⇒

Π
∗
X

:U
.T
∗

=
{i,

e}
∆
`

C
:U

∆
;Γ
`

E
C
⇒

[C
/X

]T
t-
ap
p-
in
de
x

Σ
(c

)=
T

∆
;Γ
`

c
⇒

T
t-
co
ns
t

Γ
(x

)=
T

∆
;Γ
`

x
⇒

T
t-
va
r

∆
;Γ
`

E
⇐

T
∆

;Γ
`

E
:T
⇒

T
t-
an
n

∆
;Γ
`

E
⇐

T
E

ty
pe

ch
ec

ks
ag

ai
ns

tt
yp

e
T

∆
;Γ
`

E
⇒

T
∆

;Γ
`

E
⇐

T
t-
sy
n

∆
;Γ
,x

:T
1
`

E
⇐

T 2
∆

;Γ
`

(f
n

x
⇒

E)
⇐

T 1
→

T 2
t-
fn

∆
,X

:U
;Γ
`

E
⇐

T
∗

=
{i,

e}
∆

;Γ
`

(m
la
m

X
⇒

E)
⇐

Π
∗
X

:U
.T

t-
ml
am

∆
;Γ
`

E
⇒

S
∆

;Γ
`
−→ B
⇐

S
→

T

∆
;Γ
`
ca
se

E
of
−→ B
⇐

T
t-
ca
se

∆
;Γ
`

Π
∆
′
;Γ
′
.P

at
:θ
7→

E
⇐

T
Br

an
ch

B
=

Π
∆
′
;Γ
′
.P

at
:θ
7→

E
ch

ec
ks

ag
ai

ns
tt

yp
e

T

∆
′
`
θ

:∆
∆
′
;Γ
′
`

Pa
t⇐

[θ
]S

∆
′
;[
θ

]Γ
,Γ
′
`

E
⇐

[θ
]T

∆
;Γ
`

Π
∆
′
;Γ
′
.P

at
:θ
7→

E
⇐

S
→

T
t-
br
an
ch

∆
;Γ
`

Pa
t⇐

T
Pa

tt
er

n
Pa

tc
he

ck
s

ag
ai

ns
tT

∆
`

C
⇐

U
∆

;Γ
`

C
⇐

U
t-
pi
nd
ex

Γ
(x

)=
T

∆
;Γ
`

x
⇐

T
t-
pv
ar

Σ
(c

)=
T

∆
;Γ
`
−−
→ Pa

t⇐
T
〉

S

∆
;Γ
`

c−
−→ Pa

t⇐
S

t-
pc
on

∆
;Γ
`
−−
→ Pa

t⇐
T
〉

S
Pa

tt
er

n
sp

in
e
−−
→ Pa

tc
he

ck
s

ag
ai

ns
tT

an
d

ha
s

re
su

lt
ty

pe
S

∆
`

C
⇐

U
∆

;Γ
`
−−
→ Pa

t⇐
[C
/X

]T
〉

S

∆
;Γ
`

C
−−
→ Pa

t⇐
Π

e X
:U
.T
〉

S
t-
sp
i

∆
;Γ
`

Pa
t⇐

T 1
∆

;Γ
`
−−
→ Pa

t⇐
T 2
〉

S

∆
;Γ
`

Pa
t−
−→ Pa

t⇐
T 1
→

T 2
〉

S
t-
sa
rr

∆
;Γ
`
·
⇐

S
〉

S
t-
sn
il

Fi
gu

re
3.

5:
Ty

pi
ng

of
C

om
pu

ta
ti

on
al

Ex
pr

es
si

on
s

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 49

3.3.1 Typing of the Target Language

The kinding and typing rules for our core language are given in Fig. 3.5.
We use a bidirectional type system [Pierce and Turner, 2000] for the target
language which is similar to the one in Cave and Pientka [2012] but we
simplify the presentation by omitting recursive types. Instead we assume
that constructors together with their types are declared in a signature Σ.
We choose a bi-directional type-checkers because it minimizes the need
for annotations by propagating known typing information in the checking
phase (judgment ∆; Γ ` E⇐ T) and inferring the types when it is possible
in the synthesis phase (judgment ∆; Γ ` E⇒ T).

We rely on the fact that our index domain comes with rules which
check that a given index object is well-typed. This is described by the
judgment: ∆ ` C : U.

We check the introductions forms for functions fn x ⇒ e and depen-
dent functions mlam x ⇒ e against their respective types. Dependent
functions check against both ΠeX : U.T and ΠiX : U.T where types are an-
notated with e for explicit quantification and i for implicit quantification
filled in by elaboration. Their corresponding eliminations, application
E1 E2 and dependent application E [C], synthesize their type. We rely in
this rule on the index-level substitution operation and we assume that it
is defined in such a way that normal forms are preserved1.

To type-check a case-expressions caseEof ~B against T, we synthe-
size a type S for E and then check each branch against S → T. A branch
Π∆′; Γ′.Pat :θ 7→ E checks against S → T, if: 1) θ is a refinement sub-
stitution mapping all index variables declared in ∆ to a new context ∆′,
2) the pattern Pat is compatible with the type S of the scrutinee, i.e. Pat
has type [θ]S, and the body E checks against [θ]T in the index context ∆′

and the program context [θ]Γ,Γi. Note that the refinement substitution
1In Beluga, this is for example achieved by relying on hereditary substitutions[Cave

and Pientka, 2012].

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 50

effectively performs a context shift.
We present the typing rules for patterns in spine format which will

simplify our elaboration and inferring types for pattern variables. We
start checking a pattern against a given type and check index objects and
variables against the expected type. If we encounter c

−−→
Pat we look up

the type T of the constant c in the signature and continue to check the
spine

−−→
Pat against T with the expected return type S. Pattern spine typing

succeeds if all patterns in the spine
−−→
Pat have the corresponding type in T

and yields the return type S.

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 51

3.3.2 Elaborated Examples

In Section 3.2.2.3 we give an evaluator for a simply typed lambda calculus
that returns the result of the evaluation together with the derivation tree
needed to compute the value. The elaborated version of function eval
is:

rec eval : Πi.T:[` tp]. {M : [` term T]} Cert [` T][` M] =
mlam T ⇒ mlam M ⇒ case [` M] of
| Πi.;. [` one]: unit/T ⇒ Ex [` unit] [` v-one] [` e-one]
| Πi.T1:[` tp], T2:[` tp], M : [x:T1`term T2];.

[` lam T1 T2 (λx.M)] : arr T1 T2/ T ⇒
Ex [` arr T1 T2]

[` v-lam T1 T2 (λx. M)]
[` e-lam (λx. M)]

| Πi.T1:[` tp], T2:[` tp],
M:[` term (arr T1 T2)], N:[` term T1];.
[` app T1 T2 M N]: T2/T ⇒

(case eval [` arr T1 T2] [` M] of
| Πi.T1:[` tp],T2:[` tp],M’:[x:T1`term T2],

D: [` big-step (arr T1 T2) M’
(v-lam (λx.M))];.

Ex [` arr T1 T2][` v-lam (arr T1 T2) M’][` D]:.⇒
(case eval [` T2] [` M’ [N]] of

| Πi.T2:[` tp], N’:[` val T2],
D’:[` big-step T2 (M’ [N]) N’];.
Ex [` T2] [` N’][` D’]:. ⇒

Ex [` T2] [` N’]
[` e-app M M’ N N’ D D’]))

;

To elaborate a recursive declaration we start by reconstructing the type
annotation given to the recursive function. In this case the user left the
variable T free which becomes an implicit argument and we abstract over
this variable with Πi.T:[` tp] marking it implicit. Notice however
how the user explicitly quantified over M this means that callers of eval

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 52

have to provide the termMwhile parameterTwill be omitted and inferred
at each calling point. Next, we elaborate the function body given the fully
elaborated type. We therefore add the corresponding abstraction
mlam T⇒ for the implicit parameter.

Elaboration proceeds recursively on the term. We reconstruct the case-
expression, considering first the scrutinee [M] and we infer its type to
be [term T]. We elaborate the branches next. Recall that each branch
in the source language consists of a pattern and a body. Moreover, the
body can refer to any variable in the pattern or variables introduced in
outer patterns. However, in the target language branches abstract over
the context ∆; Γ and add a refinement substitution θ. The body of the
branch refers to variables declared in the branch contexts only. In each
branch, we list explicitly the index variables and pattern variables. For
example in the branch for [lam M] we added T1 and T2 to the index
context ∆ of the branch, index-level reconstruction adds these variables
to the pattern. The refinement substitution moves terms from the outer
context to the branch context, refining the appropriate index variables
as expressed by the pattern. For example in this branch, the substitution
refines the type [T] to the type [arr T1 T2]. And in the [one] branch
it refines the type [T] to [unit].

As we mentioned before, elaboration adds an implicit parameter to the
type of function eval, and the user is not allowed to directly supply an
instantiation for it. Implicit parameters have to be inferred by elaboration.
In the recursive calls to eval, we add the parameter that represents the
type of the term being evaluated.

The output of the elaboration process is a target language term that
can be type checked with the rules from Figure 3.5.

If elaboration fails it can either be because the source level program
describes a term that would be ill-typed when elaborated, or in some
cases, elaboration fails because it cannot infer all the implicit parameters.

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 53

This might happen if unification for the index language is undecidable,
as is for example the case for contextual LF. In this case, annotations are
needed when the term falls outside the strict pattern fragment where
unification is decidable; this is rarely a problem in practice. For other
index languages where unification is decidable, we do not expect such
annotations to be necessary.

3.4 Description of Elaboration

Elaboration of our source-language to our core target language is guided
by the expected target type using a bi-directional algorithm. Recall that
we mark in the target type the arguments which are implicitly quan-
tified (e.g.: ΠiX : U.T). This annotation is added when we elaborate a
source type with free variables. If we check a source expression against
ΠiX : U.T we insert the appropriate mlam-abstraction in our target. When
we switch between synthesizing a type S for a given expression and check-
ing an expression against an expected type T, we will rely on unification
to make them equal. A key challenge is how to elaborate case-expressions
where pattern matching a dependently typed expression of type τ against
a pattern in a branch might refine the typeτ. Our elaboration is parametric
in the index domain, hence we keep our definitions of holes, instantia-
tion of holes and unification abstract and only state their definitions and
properties.

3.4.1 Elaboration of Index Objects

To elaborate a source expression, we insert holes for omitted index ar-
guments and elaborate index objects which occur in it. We characterize
holes with contextual objects as in [Nanevski et al., 2008, Pientka, 2009].
Contextual objects encode the dependencies on the context that the hole

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 54

·; · | · ` t T/Θ; ∆; · ∆i ` ε : Θ

` c : t Πi(∆i, ~ε�∆). ~ε�T
el-typ

·; · | · ` k K/Θ; ∆; · ∆i ` ε : Θ

` a : k Πi(∆i, ~ε�∆). ~ε�K
el-kind

·; · | · ` t T/Θ; ∆; ·
∆i ` ε : Θ

·; f : Πi∆i, ~ε�∆.T ` Pe ; ·Q : Πi(∆i, ~ε�∆). ~ε�T E/·; ·

` rec f : t = e rec f : Πi(∆i, ~ε�∆). ~ε�T = E
el-rec

Figure 3.6: Elaborating Declarations

might have. We hence make a few requirements about our index domain.
We assume:

1. A function genHole (?Y : ∆ ` U) that generates a term standing for
a hole of type U in the context ∆, i.e. its instantiation may refer to
the index variables in ∆. If the index language is first-order, then
we can characterize holes for example by meta-variables [Nanevski
et al., 2008]. If our index language is higher-order, for example if
we choose contextual LF as in Beluga, we characterize holes using
meta2-variables as described in Boespflug and Pientka [2011]. As is
common in these meta-variable calculi, holes are associated with a
delayed substitution θ which is applied as soon as we know what
Y stands for.

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 55

2. A typing judgment for guaranteeing that index objects with holes
are well-typed:

Θ; ∆ ` C : U Index object C has index type U in context ∆

and all holes in C are declared in Θ

where Θ stores the hole typing assumptions:

Hole Context Θ ::= · | Θ, ?X : ∆ ` U

3. Unification algorithm which finds the most general unifier for two
index objects. In Beluga, we rely on the higher-order unification;
more specifically, we solve eagerly terms which fall into the pattern
fragment [Miller, 1991, Dowek et al., 1996] and delay others [Abel
and Pientka, 2011]. A most general unifier exists if all unifica-
tion constraints can be solved. Our elaboration relies on unifying
computation-level types which in turn relies on unifying index-level
terms; technically, we in fact rely on two unification judgments: one
finding instantiations for holes in Θ, the other finding most general
instantiations for index variables defined in ∆ such that two index
terms become equal. We use the first one during elaboration when
unifying two computation-level types; the second one is used when
computing the type refinement in branches.

Θ; ∆ ` C1 � C2/Θ′;ρ where: Θ′ ` ρ : Θ
∆ ` C1 � C2/∆′;θ where: ∆′ ` θ : ∆

where ρ describes the instantiation for holes in Θ. If unification suc-
ceeds, then we have ~ρ�C1 = ~ρ�C2 and [θ]C1 = [θ]C2 respectively.

4. Elaboration of index objects themselves. If the index language is
simply typed, the elaboration has nothing to do; however, if as

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 56

in Beluga, our index objects are objects described in the logical
framework LF, then we need to elaborate them and infer omitted
arguments following [Pientka, 2013].

3.4.1.1 Index Language Elaboration

In this chapter we focus on the elaboration of the computational lan-
guage, therefore we assume the existence of the counter part for the
index domain. In this section we summarize the requirements on the
index domain.

Well-typed Index Objects (target)

∆ ` C : U Index object C has index type U in context ∆

Substitution C/X in an index object C′ is defined as [C/X]C′.

Well-typed Index Objects with Holes

Θ; ∆ ` C : U Index object C has index type U in context ∆

and all holes in C are well-typed wrt Θ

Hole types ::= ∆ ` U
Hole Contexts Θ ::= · | Θ, ?X : ∆ ` U
Hole Inst. ρ ::= · | ρ, ∆̂ ` C/?X

When we insert hole variables for omitted arguments in a given con-
text ∆, we rely on the abstract function genHole (?Y : ∆ ` U) which
returns an index term containing a new hole variable. When instanti-
ating a hole we only need the names of the variables in the context for
α-conversion, we represent this as ∆̂. We assume the existence of an op-
eration id(Θ) that computes the identity substitution on the hole context
Θ by replacing each variable with itself.

genHole (?Y : ∆ ` U) = C where C describes a hole.

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 57

Unification of index objects

The notion of unification that elaboration needs depends on the index
level language. As we mentioned, we require that equality on our in-
dex domain is decidable; for elaboration, we also require that there is a
decidable unification algorithm which makes two terms equal. In fact,
we need two forms: one which allows us to infer instantiations for holes
and another which unifies two index objects finding most general instan-
tiations for index variables such that the two objects become equal. We
use the first one during elaboration, the second one is used to make two
index objects equal as for example during matching.

Θ; ∆ ` C1 � C2/Θ′;ρ where: Θ′ ` ρ : Θ
∆ ` C1 � C2/∆′;θ where: ∆′ ` θ : ∆

where ρ describes the instantiation for holes in Θ. If unification suc-
ceeds, then we have ~ρ�C1 = ~ρ�C2 and [θ]C1 = [θ]C2 respectively.

3.4.1.2 Elaboration of index objects

We describe the elaboration of index objects themselves. There are two
related judgements of elaboration for index objects that we use:

Θ; ∆ ` c : U C/Θ′; ∆′;ρ
Θ; ∆ ` Pc ; θQ : U C/Θ′;ρ

The first judgment elaborates the index object c by checking it against
U. We thread through a context Θ of holes and a context of index variables
∆, we have seen so far. The object c however may contain additional free
index variables whose type we infer during elaboration. All variables
occurring in C will be eventually declared with their corresponding type
in ∆′. As we elaborate c, we may refine holes and add additional holes.
ρ describes the mapping between Θ and Θ′, i.e. it records refinement of
holes. Finally, we know that ∆′ = ~ρ�∆,∆0, i.e. ∆′ is an extension of ∆.

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 58

We use the first judgment in elaborating patterns and type declarations
in the signature.

The second judgment is similar to the first, but does not allow free
index variables in c. We elaborate c together with a refinement substitu-
tion θ, which records refinements obtained from earlier branches. When
we encounter an index variable, we look up what it is mapped to in θ
and return it. Given a hole context Θ and a index variable context ∆, we
elaborate an index term c against a given type U. The result is two fold:
a context Θ′ of holes is related to the original hole context Θ via the hole
instantiation ρ. We use the second judgment to elaborate index objects
embedded into target expressions.

3.4.2 Elaborating Declarations

We begin our discussion of elaborating source programs in a top-down
manner starting with declarations, the entry point of the algorithm. Types
and kinds in declarations may contain free variables and there are two
different tasks: we need to fill in omitted arguments, infer the type of
free variables and abstract over the free variables and holes which are left
over in the elaborated type / kind. We rely here on the fact that the index
language provides a way of inferring the type of free variables.

To abstract over holes in a given type T, we employ a lifting operation:
∆ ` ε : Θ which maps each hole to a fresh index variable.

· ` · : ·
∆ ` ε : Θ

∆,X : U ` ε, (` X)/X : Θ,X : (` U)

We require that holes are closed (written as ` U and ` X respectively
where the context associated with a hole is empty); otherwise lifting
fails. 2 In other words, holes are not allowed to depend on some local
meta-variables.

2In practice this seems to be not an important restriction, for instance none of Beluga’s
examples need to reconstruct open holes.

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 59

We use double brackets (i.e. ~ε�M) to represent the application of
the lifting substitutions and hole instantiation substitutions. We use this
to distinguish them from regular substitutions such as the refinement
substitutions in the target language.

Elaborating declarations requires three judgments. One for constants
and one for kinds to be able to reconstruct inductive type declarations,
and one for recursive functions. These judgments are:

` c : t T
` a : k K
` rec f : t = e rec f : T = E

The elaboration of declarations succeeds when the result does not
contain holes.

Figure 3.6 shows the rules for elaborating declarations. To elaborate
a constant declaration c : t we elaborate the type t to a target type T
where free index variables are listed in ∆ and the remaining holes in T are
described in Θ. We then lift all the holes in Θ to proper declarations in ∆i

via the lifting substitution ε. The final elaborated type of the constant c is:
Πi(∆i, ~ε�∆). ~ε�T. Note that both the free variables in the type t and the
lifted holes described in ∆i form the implicit arguments and are marked
with Πi. For example in the certifying evaluator from Section 3.2.2.3, the
type of the constructor Ex is reconstructed to:

ΠiT:[` tp],M:[` term T].ΠeN:[` value T]. [` big-step T M N]
→ Cert [` T][` M]

The elaboration of kinds follows the same principle. Section 3.4.3
explains the details for the elaboration of types and kinds.

To elaborate recursive function declarations, we first elaborate the
type t abstracting over all the free variables and lifting the remaining
holes to obtain Πi(∆i, ~ε�∆). ~ε�T. Second, we assume f of this type
and elaborate the body e checking it against Πi(∆i, ~ε�∆). ~ε�T. We note

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 60

that we always elaborate a source expression e together with a possible
refinement substitution θ. In the beginning, θwill be empty. We describe
elaboration of source expressions in Section 3.4.4.

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 61

Θ
;∆

f
|
∆
`

k

K
/Θ
′
;∆
′ f;
ρ
′

El
ab

or
at

e
ki

nd
k

to
ta

rg
et

ki
nd

K

Θ
;∆

f
|
∆
`
ct

yp
e

ct
yp

e/
Θ

;∆
f;
id

(Θ
)
el
-k
-c
ty
pe

Θ
;∆

f
|
∆
`

u

U
/Θ
′
;∆
′ f;ρ

′
Θ
′
;∆
′ f
|
∆
,X

:U
`

k

K
/Θ
′
′
;∆
′
′ f
;ρ
′
′

Θ
;∆

f
|
∆
`
{X

:u
}
k

Π
e X

:(
~ρ
′
�U

).
K
/Θ
′
′
;∆
′
′ f
;ρ
′
′
◦
ρ
′

el
-k
-p
i

Θ
;∆

f
|
∆
`

t
T/

Θ
′
;∆
′ f;
ρ
′

El
ab

or
at

e
ty

pe
tt

o
ta

rg
et

ty
pe

T

Θ
;∆

f
|
∆
`

t 1

T 1
/Θ
′
;∆
′ f;ρ

′
Θ
′
;∆
′ f
|
∆
`

t 2

T 2
/Θ
′
′
;∆
′
′ f
;ρ
′
′

Θ
;∆

f
|
∆
`

t 1
→

t 2

(~
ρ
′
′
�T

1)
→

T 2
/Θ
′
′
;∆
′
′ f
;ρ
′
′
◦
ρ
′

el
-t
-a
rr

Θ
;∆

f
|
∆
`

u

U
/Θ
′
;∆
′ f;ρ

′

Θ
;∆

f
|
∆
`

[u
]

[U
]/

Θ
′
;∆
′ f;ρ

′
el
-t
-i
dx

Θ
;∆

f
|
∆
`

u

U
/Θ
′
;∆
′ f;ρ

′
Θ
′
;∆
′ f
|
∆
,X

:U
`

t
T/

Θ
′
′
;∆
′
′ f
;ρ
′
′

Θ
;∆

f
|
∆
`
{X

:u
}
t

Π
e X

:(
~ρ
′
�U

).
T/

Θ
′
′
;∆
′
′ f
;ρ
′
′
◦
ρ
′

el
-t
-p
i

Σ
(a

)=
K

Θ
;∆

f
|
∆
`
−→ [c

]:
K

−→ [C

]/
Θ
′
;∆
′ f;ρ

′

Θ
;∆

f
|
∆
`

a
−→ [c

]
a
−→ C
/Θ
′
;∆
′ f;ρ

′

el
-t
-c
on

Θ
;∆

f
|
∆
`
−→ [c

]:
K

−→ [C

]/
Θ
′
;∆
′ f;
ρ
′

El
ab

or
at

e
sp

in
e
−→ [c

]c
he

ck
in

g
ag

ai
ns

tk
in

d
K

to
sp

in
e
−→ [C

]

Θ
;∆

f
|
∆
`

c
:U

C
/Θ
′
;∆
′ f;ρ

′
Θ
′
;∆
′ f
|
∆
`
−→ [c

]:
[C
/X

]K

−→ [C

]/
Θ
′
′
;∆
′
′ f
;ρ
′
′

Θ
;∆

f
|
∆
`

[c
]−→ [c

]:
Π

e X
:U
.K

(~
ρ
′
�[

C
])
−→ [C

]/
Θ
′
′
;∆
′
′ f
;ρ
′
′
◦
ρ
′

el
-t
-s
p-
ex
pl
ic
it

ge
nH

ol
e

(?
Y

:(
∆

f,
∆

).U
)=

C
Θ

;∆
f
|
∆
`
−→ c

:[
C
/X

]K

−→ C
/Θ
′
;∆
′ f;ρ

′

Θ
;∆

f
|
∆
`
−→ c

:Π
i X

:U
.K

(~
ρ
′
�C

)−→
C
/Θ
′
;∆
′ f;ρ

′

el
-t
-s
p-
im
pl
ic
it

Θ
;∆

f
|
∆
`
·

:c
ty

pe

·/

Θ
;∆

f;
id

(Θ
)
el
-t
-s
p-
em
pt
y

Fi
gu

re
3.

7:
El

ab
or

at
in

g
K

in
ds

an
d

Ty
pe

s
in

D
ec

la
ra

ti
on

s

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 62

3.4.3 Elaborating Kinds and Types in Declarations

Recall that programmers may leave index variables free in type and kind
decarations. Elaboration must infer the type of the free index variables in
addition to reconstructing omitted arguments. We require that the index
language provides us with the following judgments:

Θ; ∆ f | ∆ ` u U/Θ′; ∆′f ;ρ
′

Θ; ∆ ` Pu ; θQ U/Θ′;ρ′

Hence, we assume that the index language knows how to infer the
type of free variables, for example. In Beluga where the index language
is LF, we fall back to the ideas described by Pientka [2013].

The first judgment collects free variables in ∆ f that later in elaboration
will become implicit parameters. The context ∆ f is threaded through in
addition to the hole context Θ.

The judgments for elaborating computation-level kinds and types are
similar:

1. Θ; ∆ f | ∆ ` k K/Θ′; ∆′f ;ρ
′

2. Θ; ∆ f | ∆ ` t T/Θ′; ∆′f ;ρ
′

3. Θ; ∆ f | ∆ `
−→
[c] : K

−→
[C]/Θ′; ∆′f ;ρ

′

We again collect free index variables in ∆ f which are threaded through
together with the holes context Θ (see Figure 3.6 and Figure 3.7). As
notation note, we use ∆ f to store the free index variables, ∆ for the bound
ones, and Θ for holes.

3.4.4 Elaborating Source Expressions

We elaborate source expressions bidirectionally. Expressions such as non-
dependent functions and dependent functions are elaborated by check-
ing the expression against a given type; expressions such as application

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 63

Θ; ∆; Γ ` Pe ; θQ : T E/Θ′;ρ :
Elaborate source Pe ; θQ to target expression E checking against type T

Θ; ∆ ` Pc ; θQ : U C/Θ′;ρ
Θ; ∆; Γ ` P[c] ; θQ : [U] [C]/Θ′;ρ

el-box

Θ; ∆; Γ, x : T1 ` Pe ; θQ : T2 E/Θ′;ρ
Θ; ∆; Γ ` Pfn x⇒ e ; θQ : T1 → T2 fn x⇒ E/Θ′;ρ

el-fn

Θ; ∆,X : U; Γ ` Pe ; θ,X/XQ : T E/Θ′;ρ
Θ; ∆; Γ ` Pe ; θQ : ΠiX : U.T mlamX⇒ E/Θ′;ρ

el-mlam-i

Θ; ∆,X : U; Γ ` Pe ; θ,X/XQ : T E/Θ′;ρ
Θ; ∆; Γ ` PmlamX⇒ e ; θQ : ΠeX : U.T mlamX⇒ E/Θ′;ρ

el-mlam

Θ; ∆; Γ ` Pe ; θQ E : S/·;ρ
~ρ�∆; ~ρ�Γ ` P~b ; ~ρ�θQ : S→ ~ρ�T ~B

Θ; ∆; Γ ` Pcase eof~b ; θQ : T caseEof ~B/·;ρ
el-case

Θ; ∆; Γ ` Pe ; θQ E : T1/Θ1;ρ Θ1; ~ρ�∆ ` T1 � ~ρ�T/Θ2;ρ′

Θ; ∆; Γ ` Pe ; θQ : T ~ρ′�E/Θ2;ρ′ ◦ ρ
el-syn

Figure 3.8: Elaboration of Expressions (Checking Mode)

and dependent application are elaborated to a corresponding target ex-
pression and at the same time synthesize the corresponding type. This
approach seeks to propagate the typing information that we know in the
checking rules, and in the synthesis phase, to take advantage of types
that we can infer.

Synthesizing: Θ; ∆; Γ ` Pe ; θQ E : T/Θ′;ρ
Checking: Θ; ∆; Γ ` Pe ; θQ : T E /Θ′;ρ

We first explain the judgment for elaborating a source expression e by

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 64

checking it against T given holes in Θ, index variables ∆, and program
variables Γ. Because of pattern matching, index variables in ∆ may get
refined to concrete index terms. Abusing slightly notation, we write θ for
the map of free variables occurring in e to their refinements and consider
a source expression e together with the refinement map θ, written as
Pe ; θQ. The result of elaborating Pe ; θQ is a target expression E, a new
context of holes Θ′, and a hole instantiation ρ which instantiates holes in
Θ, i.e. Θ′ ` ρ : Θ. The result E has type ~ρ�T. It is important to notice
here, that ρ contains instances for holes, while θ contains refinements for
meta-variables (i.e. instances for meta-variables refined by dependent
pattern matching).

The result of elaboration in synthesis mode is similar; we return the
target expression E together with its type T, a new context of holes Θ′ and
a hole instantiation ρ, s.t. Θ′ ` ρ : Θ. The result is well-typed, i.e. E has
type T.

We give the rules for elaborating source expressions in checking mode
in Fig. 3.8 and in synthesis mode in Fig. 3.9. To elaborate a function (see
rule el-fn) we simply elaborate the body extending the context Γ. There
are two cases when we elaborate an expression of dependent function
type. In the rule el-mlam, we elaborate a dependent functionmlamX⇒ e
against ΠeX : U.T by elaborating the body e extending the context ∆with
the declaration X : U. In the rule el-mlam-i, we elaborate an expression e
against ΠiX : U.T by elaborating e against T extending the context ∆ with
the declaration X : U. The result of elaborating e is then wrapped in a
dependent function.

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 65

When switching to synthesis mode, we elaborate Pe ; θQ and obtain
the corresponding target expression E and type T′ together with an in-
stantiation ρ for holes in Θ. We then unify the synthesized type T′ and
the expected type ~ρ�T obtaining an instantiation ρ′ and return the com-
position of the instantiation ρ and ρ′. When elaborating an index object
[c] (see rule el-box), we resort to elaborating c in our indexed language
which we assume.

One of the key cases is the one for case-expressions. In the rule
el-case, we elaborate the scrutinee synthesizing a type S; we then elab-
orate the branches. Note that we verify that S is a closed type, i.e. it is
not allowed to refer to holes. To put it differently, the type of the scru-
tinee must be fully known. This is done to keep a type refinement in
the branches from influencing the type of the scrutinee. The practical
impact of this restriction is difficult to quantify, however this seems to
be the case for the programs we want to write. A justification is that it
is not a problem in any of the examples of the Beluga implementation.
For a similar reason, we enforce that the type T, the overall type of the
case-expression, is closed; were we to allow holes in T, we would need to
reconcile the different instantiations found in different branches.

We omit the special case of pattern matching on index objects to save
space and because it is a refinement on the el-case rule where we keep
the scrutinee when we elaborate a branch. We then unify the scrutinee
with the pattern in addition to unifying the type of the scrutinee with the
type of the pattern. In the implementation of Beluga, case-expressions on
computation-level expressions (which do not need to track the scrutinee
and are described in this chapter) and case-expressions on index objects
(which do keep the scrutinee when elaborating branches) are handled
separately.

When elaborating a constant, we look up its type Tc in the signature
Σ and then insert holes for the arguments marked implicit in its type (see

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 66

Fig. 3.9). Recall that all implicit arguments are quantified at the outside,
i.e. Tc = ΠiXn : Un. . . .ΠiX1 : U1.S where S does not contain any implicit
dependent types Πi. We generate for each implicit declaration Xk : Uk a
new hole which can depend on the currently available index variables ∆.
When elaborating a variable, we look up its type in Γ and because the
variable can correspond to a recursive function with implicit parameters
we insert holes for the arguments marked as implicit as in the constant
case.

Elaboration of applications in the synthesis mode threads through the
hole context and its instantiation, but is otherwise straightforward. In
each of the application rules, we elaborate the first argument of the appli-
cation obtaining a new hole context Θ1 together with a hole instantiation
ρ1. We then apply the hole instantiation ρ1 to the context ∆ and Γ and to
the refinement substitution θ, before elaborating the second part.

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 67

Θ
;∆
`

E
:T

E′
:T
′
/Θ
′

A
pp

ly
E

to
ho

le
s

fo
r

re
pr

es
en

ti
ng

om
it

te
d

ar
gu

m
en

ts
ba

se
d

on
T

ob
ta

in
in

g
a

te
rm

E′
of

ty
pe

T
′

ge
nH

ol
e

(?
Y

:∆
`

U
)=

C
(Θ
,?

Y
:∆
`

U
);

∆
`

E
[C

]:
[C
/X

]T

E′
:T
′
/

Θ
′

Θ
;∆
`

E
:Π

i X
:U
.T

E′
:T
′
/

Θ
′

el
-i
mp
l

S
,

Π
i X

:U
.T

Θ
;∆
`

E
:S

E
:S
/

Θ
el
-i
mp
l-
do
ne

Θ
;∆

;Γ
`
Pe

;θ
Q

E
:T
/Θ
′
;ρ

El
ab

or
at

e
so

ur
ce
Pe

;θ
Q

to
ta

rg
et

E
an

d
sy

nt
he

si
ze

ty
pe

T

Γ
(x

)=
T

Θ
;∆

;Γ
`

x
:T

E′
:T
′
/Θ
′

Θ
;∆

;Γ
`
Px

;θ
Q

E′
:T
′
/

Θ
′
;i
d(

Θ
′
)
el
-v
ar

Σ
(c

)=
T c

Θ
;∆
`

c
:T

c

E
:T

/
Θ
′

Θ
;∆

;Γ
`
Pc

;θ
Q

E
:T

/
Θ
′
;i
d(

Θ
′
)
el
-c
on
st

Θ
;∆

;Γ
`
Pe

1
;θ
Q

E 1
:S
→

T
/

Θ
1;
ρ

1
Θ

1;
~ρ

1�
∆

;~
ρ

1�
Γ
`
Pe

2
;~
ρ

1�
θ
Q

:~
ρ

1�
S

E 2
/

Θ
2;
ρ

2

Θ
;∆

;Γ
`
Pe

1
e 2

;θ
Q

E 1
E 2

:~
ρ

2�
T
/

Θ
2;
ρ

2
◦
ρ

1
el
-a
pp

Θ
;∆

;Γ
`
Pe

;θ
Q

E 1
:Π

e X
:U
.T
/Θ

1;
ρ

1
Θ

1;
~ρ

1�
∆
`
Pc

;~
ρ

1�
θ
Q

:U

C
/Θ

2;
ρ

2

Θ
;∆

;Γ
`
Pe

[c
];
θ
Q

E 1
[C

]:
[C
/X

](
~ρ

2�
T

)/
Θ

2;
ρ

2
◦
ρ

1
el
-m
ap
p

Θ
;∆

;Γ
`
Pe

;θ
Q

E
:Π

e X
:U
.T
/Θ

1;
ρ

ge
nH

ol
e

(?
Y

:(
~ρ
�∆

).U
)=

C
Θ

;∆
;Γ
`
Pe

_
;θ
Q

E
[C

]
:

[C
/X

]T
/

Θ
1,

?Y
:(
~ρ

1�
∆

).U
;
ρ

el
-m
ap
p-
un
de
rs
co
re

Θ
;∆
`
Pt

;θ
Q

T/
Θ

1;
ρ

1
Θ

1;
~ρ

1�
∆

;~
ρ

1�
∆
`
Pe

;~
ρ

1�
θ
Q

:T

E/
Θ

2;
ρ

2

Θ
;∆

;Γ
`
Pe

:t
;θ
Q

(E
:T

):
T/

Θ
2;
ρ

2
◦
ρ

1
el
-a
nn
ot
at
ed

W
he

re
id

(Θ
)r

et
ur

ns
th

e
id

en
ti

ty
su

bs
ti

tu
ti

on
fo

r
co

nt
ex

tΘ
su

ch
as

:Θ
`
id

(Θ
):

Θ

Fi
gu

re
3.

9:
El

ab
or

at
io

n
of

Ex
pr

es
si

on
s

(S
yn

th
es

iz
in

g
M

od
e)

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 68

3.4.4.1 Elaborating Branches

We give the rules for elaborating branches in Fig. 3.10. Recall that a
branch pat 7→ e consists of the pattern pat and the body e. We elaborate
a branch under the refinement θ, because the body e may contain index
variables declared earlier and which might have been refined in earlier
branches.

Intuitively, to elaborate a branch, we need to elaborate the pattern
and synthesize the type of index and pattern variables bound inside of
it. In the dependently typed setting, pattern elaboration needs to do
however a bit more work: we need to infer implicit arguments which
were omitted by the programmer (e.g: the constructor Ex takes the type
of the expression, and the source of evaluation as implicit parameter Ex
[T] [M]...) and we need to establish how the synthesized type of the
pattern refines the type of the scrutinee.

Moreover, there is a mismatch between the variables the body e may
refer to (see rule wf-branch in Fig. 3.1) and the context in which the
elaborated body E is meaningful (see rule t-branch in Fig. 3.5). While our
source expression e possibly can refer to index variables declared prior,
the elaborated body E is not allowed to refer to any index variables which
were declared at the outside; those index variables are replaced by their
corresponding refinements. To account for these additional refinements,
we not only return an elaborated pattern Π∆r; Γr.Pat :θr when elaborating
a pattern pat (see rule el-subst in Fig. 3.10), but in addition return a
map θe between source variables declared explicitly outside and their
refinements.

Elaborating a pattern is done in three steps (see rule el-subst):

1. First, given pat we elaborate it to a target pattern Pat together with
its type Sp synthesizing the type of index variables ∆p and the type of
pattern variables Γp together with holes (Θp) which denote omitted
arguments. This is accomplished by the first premise of the rule

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 69

∆; Γ ` Pb ; θQ : S→ T B Elaborate source branch Pb ; θQ to branch B

∆ ` pat : S Π∆r; Γr.Pat : θr | θe
·; ∆r; [θr]Γ,Γr ` Pe ; θr ◦ θ, θeQ : [θr]T E/·; ·

∆; Γ ` Ppat 7→ e ; θQ : S→ T Π∆r; Γr.Pat :θr 7→ E
el-branch

∆ ` pat : T Π∆r; Γr.Pat : θr | θe

·; · ` pat Π∆p; Γp.Pat : Sp/Θp; ·
∆′p ` ε : Θp

~ε�Sp + S/∆r;θR

∆ ` pat : S Π∆r; [θp]~ε�Γp.[θp]~ε�Pat : θr | θe
el-subst

where θR = θr, θp s.t. ∆r ` θp : (∆′p, ~ε�∆p) and θp = θi, θe s.t. ∆r ` θi : ∆′p

Figure 3.10: Branches and Patterns

el-subst:
·; · ` pat Π∆p; Γp.Pat : S1/Θp; ·

Our pattern elaboration judgment (Figure 3.11) threads through the
hole context and the context of index variables, both of which are
empty in the beginning. Because program variables occur linearly,
we do not thread them through but simply combine program vari-
able contexts when needed. The result of elaborating pat is a pattern
Pat in our target language where ∆p describes all index variables in
Pat, Γp contains all program variables and Θp contains all holes,
i.e. most general instantiations of omitted arguments. We describe
pattern elaboration in detail in Section 3.4.4.2.

2. Second, we abstract over the hole variables in Θp by lifting all
holes to fresh index variables from ∆′p. This is accomplished by

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 70

the second premise of the rule el-substusing the lifting substitu-
tion ∆′p ` ε : Θp.

3. Finally, we compute the refinement substitution θr which ensures
that the type of the pattern ~ε�Sp is compatible with the type S of
the scrutinee. We note that the type of the scrutinee could also force
a refinement of holes in the pattern. This is accomplished by the
judgment:

∆, (∆′p, ~ε�∆p) ` ~ε�S1 + T1/∆r;θR θR = θr, θp

We note because θR maps index variables from ∆, (∆′p, ~ε�∆p) to ∆r, it
can be split in two parts: θr that provides refinements for variables ∆

in the type of the scrutinee; θp provides possible refinements of the
pattern forced by the scrutinee. This can happen, if the scrutinee’s
type is more specific than the type of the pattern.

3.4.4.2 Elaborating Patterns

Pattern elaboration is bidirectional. The judgments for elaborating pat-
terns by checking them against a given type and synthesizing their type
are:

Synthesizing: Θ; ∆`pat Π∆′; Γ.Pat : T / Θ′;ρ
Checking: Θ; ∆`pat : T Π∆′; Γ.Pat / Θ′;ρ

As mentioned earlier, we thread through a hole context Θ together
with the hole substitution ρ that relates: Θ′ ` ρ : Θ. Recall that as our
examples show index-level variables in patterns need not to be linear
and hence we accumulate index variables and thread them through as
well. Program variables on the other hand must occur linearly, and we can
simply combine them. The elaboration rules are presented in Figure 3.11.
In synthesis mode, elaboration returns a reconstructed pattern Pat, a type
T where ∆′ describes the index variables in Pat and Γ′ contains all program

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 71

variables occurring in Pat. The hole context Θ′ describes the most general
instantiations for omitted arguments which have been inserted into Pat.
In checking mode, we elaborate pat given a type T to the target expression
Pat and index variable context ∆′, pattern variable context Γ′ and the hole
context Θ′.

Pattern elaboration starts in synthesis mode, i.e. either elaborating an
annotated pattern (e : t) (see rule el-pann) or a pattern c

−→
pat (see rule

el-pcon). To reconstruct patterns that start with a constructor we first
look-up the constructor in the signature Σ to get its fully elaborated type
Tc and then elaborate the arguments

−→
pat against Tc. Elaborating the spine

of arguments is guided by the type Tc. If Tc = ΠiX : U.T, then we generate
a new hole for the omitted argument of type U. If Tc = T1 → T2, then
we elaborate the first argument in the spine pat

−→
pat against T1 and the

remaining arguments
−→
pat against T2. If Tc = ΠeX : U.T, then we elabo-

rate the first argument in the spine [c]
−→
pat against U and the remaining

arguments
−→
pat against [C/X]T. When the spine is empty, denoted by ·,

we simply return the final type and check that the constructor was fully
applied by ensuring that the type S we reconstruct against is either of
index level type, i.e. [U], or a recursive type, i.e. a

−→
[C].

For synthesizing the patterns with a type annotation, first we elab-
orate the type t in an empty context using a judgment that returns the
reconstructed type T, its holes and index variables (contexts Θ′ and ∆′).
Once we have the type we elaborate the pattern checking against the type
T.

To be able to synthesize the type of pattern variables and return it,
we check variables against a given type T during elaboration (see rule
el-pvar). For index level objects, rule el-pindex we defer to the index
level elaboration that the index domain provides3. Finally, when elabo-

3Both, elaboration of pattern variables and of index objects can be generalized by for
example generating a type skeleton in the rule el-subst given the scrutinee’s type.
This is in fact what is done in the implementation of Beluga.

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 72

Pa
tt

er
n

(s
yn

th
es

is
m

od
e)

Θ
;∆
`

pa
t

Π
∆
′
;Γ
.P

at
:T
/

Θ
′

;
ρ

Σ
(c

)=
T

Θ
;∆
`
−→ pa

t:
T

Π
∆
′
;Γ
.−−
→ Pa

t〉
S
/

Θ
′
;ρ

Θ
;∆
`

c−
→ pa

t
Π

∆
′
;Γ
.c
−−
→ Pa

t:
S
/

Θ
′
;ρ

el
-p
co
n

·;
·
`
Pt

;·
Q

T/
Θ
′
;∆
′
;·

(Θ
,Θ
′
);

(∆
,∆
′
)`

pa
t:

T

Π
∆
′
′
;Γ
.P

at
/

Θ
′
′
;ρ
′

Θ
;∆
`

(p
at

:t
)

Π
∆
′
′
;Γ
.P

at
:~
ρ
′
�T
/

Θ
′
′
;ρ
′

el
-p
an
n

Pa
tt

er
n

(c
he

ck
in

g
m

od
e)

Θ
;∆
`

pa
t:

T

Π
∆
′
;Γ
.P

at
/

Θ
′
;ρ

Θ
;∆
`

x
:T

Π
∆

;
x

:T
.x
/

Θ
;i
d(

Θ
)
el
-p
va
r

Θ
;∆
`

c
:U

C
/Θ
′
;∆
′
;ρ

Θ
;∆
`

[c
]:

[U
]

Π
∆
′
;·
.[

C
]/

Θ
′

;
ρ
el
-p
in
de
x

Θ
;∆
`

pa
t

Π
∆
′
;Γ
.P

at
:S
/

Θ
′
;ρ

Θ
′
;∆
′
`

S
�
~ρ
�T
/

Θ
′
′
;ρ
′

Θ
;∆
`

pa
t:

T

Π
~ρ
′
�∆
′
;~
ρ
′
�Γ
.~
ρ
�P

at
/

Θ
′
′

;
ρ
′
◦
ρ

el
-p
sy
n

Pa
tt

er
n

Sp
in

es
Θ

;∆
`
−→ pa

t:
T

Π
∆
′
;Γ
.−−
→ Pa

t〉
S
/

Θ
′
;ρ

ei
th

er
T

=
[U

]o
r

T
=

a
−→ [C

]
Θ

;∆
`
·

:T

Π
∆

;·
.·
〉

T
/

Θ
;i
d(

Θ
)
el
-s
p-
em
pt
y

Θ
;∆
`

pa
t:

T 1

Π
∆
′
;Γ
.P

at
/Θ
′
;ρ

Θ
′
;∆
′
`
−→ pa

t:
~ρ
�T

2

Π
∆
′
′
;Γ
′
.−−
→ Pa

t〉
S
/

Θ
′
′
;ρ
′

Θ
;∆
`

pa
t
−→ pa

t:
T 1
→

T 2

Π
∆
′
′
;(

Γ
,Γ
′
).

(~
ρ
′
�P

at
)
−−
→ Pa

t〉
S
/

Θ
′
′
;ρ
′
◦
ρ

el
-s
p-
cm
p

Θ
;∆
`

c
:U

C
/Θ
′
;∆
′
;ρ

Θ
′
;∆
′
`
−→ pa

t:
[C
/X

]~
ρ
�T

Π
∆
′
′
;Γ
.−−
→ Pa

t〉
S
/

Θ
′
′
;ρ
′

Θ
;∆
`

[c
]−
→ pa

t:
Π

e X
:U
.T

Π
∆
′
′
;Γ
.(
~ρ
′
�[

C
])
−−
→ Pa

t〉
S
/

Θ
′
′
;ρ
′
◦
ρ

el
-s
p-
ex
pl
ic
it

ge
nH

ol
e

(?
Y

:∆
.U

)=
C

Θ
,?

Y
:∆
.U

;∆
`
−→ pa

t:
[C
/X

]T

Π
∆
′
;Γ
.−−
→ Pa

t〉
S
/

Θ
′
;ρ

Θ
;∆
`
−→ pa

t:
Π

i X
:U
.T

Π
∆
′
;Γ
.(~
ρ
�C

)
−−
→ Pa

t〉
S
/

Θ
′
;ρ

el
-s
p-
im
pl
ic
it

Fi
gu

re
3.

11
:E

la
bo

ra
ti

on
of

Pa
tt

er
ns

an
d

Pa
tt

er
n

Sp
in

es

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 73

rating a pattern against a given type it is possible to switch to synthesis
mode using rule el-psyn, where first we elaborate the pattern synthesiz-
ing its type S and then we make sure that S unifies against the type T it
should check against.

3.5 Soundness of Elaboration

We establish soundness of our elaboration: if from a well-formed source
expression, we obtain a well-typed target expression E which may still
contain some holes then E is well-typed for any ground instantiation of
these holes. In fact, our final result of elaborating a recursive function
and branches must always return a closed expression.

Theorem 3.5.1 (Soundness).

1. If Θ; ∆; Γ ` Pe ; θQ : T E/Θ1;ρ1 then for any grounding hole
instantiation ρg s.t. · ` ρg : Θ1 and ρ0 = ρg ◦ ρ1, we have:
~ρ0�∆; ~ρ0�Γ ` ~ρg�E⇐ ~ρ0�T.

2. If Θ; ∆; Γ ` Pe ; θQ E : T/Θ1;ρ1 then for any grounding hole
instantiation ρg s.t. · ` ρg : Θ1 and ρ0 = ρg ◦ ρ1, we have:
~ρ0�∆; ~ρ0�Γ ` ~ρg�E⇒ ~ρg�T.

3. If ∆; Γ ` Ppat 7→ e ; θQ : S→ T Π∆′; Γ′.Pat : θ′ 7→ E then
∆; Γ ` Π∆′; Γ′.Pat : θ′ 7→ E⇐ S→ T.

To establish the soundness of elaboration of case-expressions and
branches, we rely on pattern elaboration which abstracts over the vari-
ables in patterns as well as over the holes which derive from the instanti-
ations inferred for omitted arguments. We abstract over these holes using
a lifting substitution ε. The proofs for this theorem and related lemmas
are in Appendix A).

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 74

Lemma 1 (Pattern elaboration).

1. If Θ; ∆ ` pat Π∆1; Γ1.Pat : T/Θ1;ρ1 and ε is a ground lifting sub-
stitution, such as ∆i ` ε : Θ1 then:
∆i, ~ε�∆1; ~ε�Γ1 ` ~ε�Pat⇐ ~ε�T.

2. If Θ; ∆ ` pat : T Π∆1; Γ1.Pat/Θ1;ρ1 and ε is a ground lifting
substitution, such as ∆i ` ε : Θ1 then:
∆i, ~ε�∆1; ~ε�Γ1 ` ~ε�Pat⇐ ~ε�~ρ1�T.

3. If Θ; ∆ `
−→
pat : T Π∆1; Γ1.

−−→
Pat 〉 S/Θ1;ρ1 and ε is a ground lifting

substitution, such as ∆i ` ε : Θ1 then:
∆i, ~ε�∆1; ~ε�Γ1 ` ~ε�

−−→
Pat⇐ ~ε�~ρ1�T 〉 ~ε�S.

3.6 Related Work

Our language contains indexed families of types that are related to
Zenger’s work [Zenger, 1997] and the Dependent ML (DML) [Xi, 2007]
and Applied Type System (ATS) [Xi, 2004, Chen and Xi, 2005]. The ob-
jective in these systems is: a program that is typable in the extended
indexed type system is already typable in ML. By essentially erasing all
the type annotations necessary for verifying the given program is depen-
dently typed, we obtain a simply typed ML-like program. In contrast,
our language supports pattern matching on index objects. Our elabora-
tion, in contrast to the one given in Xi [2007], inserts omitted arguments
producing programs in a fully explicit dependently typed core language.
This is different from DML-like systems which treat all index arguments
as implicit and do not provide a way for programmers to manipulate
and pattern match directly on index objects. Allowing users to explicitly
access and match on index arguments changes the game substantially.

Elaboration from implicit to explicit syntax for dependently typed
systems has first been mentioned by Pollack [1990] although no concrete

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 75

algorithm to reconstruct omitted arguments was given. Luther [2001]
refined these ideas as part of the TYPELab project. He describes an
elaboration and reconstruction for the calculus of constructions without
treating recursive functions and pattern matching. There is in fact little
work on elaborating dependently-typed source language supporting re-
cursion and pattern matching. For example, the Agda bi-directional type
inference algorithm described in Norell [2007] concentrates on a core de-
pendently typed calculus enriched with dependent pairs, but omits the
rules for its extension with recursion and pattern matching4. Idris, a
dependently typed language developed by Brady [2013] uses a different
technique. Idris starts by adding holes for all the implicit variables and it
tries to instantiate these holes using unification. However, the language
uses internally a tactic based elaborator that is exposed to the user who
can interactively fill the holes using tactics. He does not prove soundness
of the elaboration, but conjectures that given a type correct program its
elaboration followed by a reverse elaboration produces a matching source
level program.

A notable example, is the work by Asperti et al. [2012] on describing
a bi-directional elaboration algorithm for the Calculus of (Co)Inductive
Constructions (CCIC) implemented in Matita. Their setting is very dif-
ferent from ours: CCIC is more powerful than our language since the
language of recursive programs can occur in types and there is no dis-
tinction between the index language and the programming language
itself. Moreover in Matita, we are only allowed to write total programs
and all types must be positive. For these reasons their source and target
language is more verbose than ours and refinement, i.e. the translation of
the source to the target, is much more complex than our elaboration. The
difference between our language and Matita particularly comes to light
when writing case-expressions. In Matita as in Coq, the programmer

4Norell [2007] contains extensive discussions on pattern matching and recursion,
but the chapter on elaboration does not discuss them.

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 76

might need to supply an invariant for the scrutinee and the overall type
of the case expression as a type annotation. Each branch then is checked
against the type given in the invariant. Sometimes, these annotations
can be inferred by using higher-order unification to find the invariant.
In contrast, our case-expressions require no type annotations and we re-
fine each branch according to refinement imposed by the pattern in each
branch. The refinement is computed with help from higher-order uni-
fication. This makes our source and target language more light-weight
and closer to a standard simply typed functional language.

Finally, refinement in Matita may leave some holes in the final program
which then can be refined further by the user using for example tactics.
We support no such interaction; in fact, we fail, if holes are left-over and
the programmer is asked to provide more information.

Agda, Matita and Coq require users to abstract over all variables
occurring in a type and the user statically labels arguments the user can
freely omit. To ease the requirement of declaring all variables occurring
in type, many of these systems such as Agda supports simply listing the
variables occurring in a declaration without the type. This however can
be brittle since it requires that the user chose the right order. Moreover,
the user has the possibility to locally override the implicit arguments
mechanism and provide instantiations for implicit arguments explicitly.
This is in contrast to our approach where we guide elaboration using type
annotations and omit arguments based on the free variables occurring in
the declared type, similarly to Idris which abstracts and makes implicit
all the free variables in types.

This work is also related to type inference for Generalized Algebraic
Data Types (i.e: GADTs) such as [Schrijvers et al., 2009]. Here the authors
describe an algorithm where they try to infer the types of programs with
GADTs when the principal type can be inferred and requiring type an-
notations for the cases that lack a principal type or it can not be inferred.

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 77

This is in contrast to our system which always requires a type annotation
at the function level. On the other hand our system supports a richer
variety of index languages (some index languages can be themselves de-
pendently typed as with Contextual LF in Beluga). Moreover we support
pattern matching on index terms, a feature that is critical to enable rea-
soning about objects from the index level. Having said that, the approach
to GADTs from [Schrijvers et al., 2009] offers interesting ideas for future
work, first making the type annotations optional for cases when they
can be inferred, and providing a declarative type systems that helps the
programmer understand when will the elaboration succeed to infer the
types.

3.7 Conclusion

In this chapter we describe a surface language for writing dependently
typed programs where we separate the language of types and index ob-
jects from the language of programs. Total programs in our language
correspond to first-order inductive proofs over a specific index domain
where we mediate between the logical aspects and the domain-specific
parts using a box modality. Our programming language supports in-
dexed data-types, dependent pattern matching and recursion. Program-
mers can leave index variables free when declaring the type of a construc-
tor or recursive program as a way of stating that arguments for these free
variables should be inferred by the type-directed elaboration. This offers
a lightweight mechanism for writing compact programs which resemble
their ML counterparts and information pertaining to index arguments
can be omitted. In particular, our handling of case-expressions does not
require programmers to specify the type invariants the patterns and their
bodies must satisfy and case expressions can be nested due to the refine-
ment substitutions that mediate between the context inside and outside

CHAPTER 3. RECONSTRUCTION OF IMPLICIT PARAMETERS 78

a branch. Moreover, we seamlessly support nested pattern matching in-
side functions in our surface and core languages (as opposed to languages
such as Agda or Idris where the former supports pattern matching lamb-
das that are elaborated as top-level functions and the latter only supports
simply typed nested pattern matching).

The proposed case-expression can be nested and does not require
annotating its return type. Notably, it refines all the variables in the
context, this allows the programmer to write pattern matching on de-
pendent types using variables from the context that have been refined by
the current branch. We think this is a powerful feature for the users of
our language, nonetheless it is at the expense of some complexity in the
theory of the language, namely the elaboration of terms together with a
substitution that contains the current refinements.

To guide elaboration and type inference, we allow type annotations
which indirectly refine the type of sub-expressions; type annotations in
patterns are also convenient to name index variables which do not occur
explicitly in a pattern.

We prove our elaboration sound, in the sense that if elaboration pro-
duces a fully explicit term, this term will be well-typed. Finally, our
elaboration is implemented in Beluga, where we use as the index domain
contextual LF, and has been shown practical (see for example the im-
plementation of a type-preserving compiler [Belanger et al., 2013]). We
believe our language presents an interesting point in the design space
for dependently typed languages in general and sheds light into how to
design and implement a dependently typed language where we have a
separate index language, but still want to support pattern matching on
these indices.

4 Contextual Types and Programming
Languages

4.1 Introduction

Writing programs that manipulate other programs is a common activity
for a computer scientist, either when implementing interpreters, writing
compilers, or analyzing phases for static analysis. This is so common
that we have programming languages that specialize in writing these
kinds of programs. In particular, ML-like languages are well-suited for
this task thanks to recursive data types and pattern matching. However,
when we define syntax trees for realistic input languages, there are more
things on our wish list: we would like support for representing and
manipulating variables and tracking their scope; we want to compare
terms up-to α-equivalence (i.e. the renaming of bound variables); we
would like to avoid implementing capture avoiding substitutions, which
is tedious and error-prone. ML languages typically offer no high-level
abstractions or support for manipulating variables and the associated
operations on abstract syntax trees.

Over the past decade, there have been several proposals to add sup-
port for defining and manipulating syntax trees into existing program-
ming environments. For example: FreshML [Shinwell et al., 2003], the
related system Romeo [Stansifer and Wand, 2014], and Cαml [Pottier,
2006] use Nominal Logic [Pitts, 2003] as a basis and the Hobbits li-
brary for Haskell [Westbrook et al., 2011] uses a name based formalism.
In this chapter, we show how to extend an existing (functional) pro-
gramming language to define abstract syntax trees with variable binders
based on higher-order abstract syntax (HOAS) (sometimes also called λ-
trees [Miller and Palamidessi, 1999]). Specifically, we allow programmers

79

CHAPTER 4. IN PROGRAMMING LANGUAGES 80

to define object languages in the simply-typedλ-calculus where program-
mers use the intentional function space of the simply typed λ-calculus
to define binders (as opposed to the extensional function space of ML).
Hence, HOAS representations inherit α-renaming from the simply-typed
λ-calculus and we can model object-level substitution for HOAS trees
using β-reduction in the underlying simply-typed λ-calculus. We further
allow programmers to express whether a given sub-tree in the HOAS
tree is closed by using the necessity modality of S4 [Davies and Pfenning,
2001]. This additional expressiveness is convenient to describe closed
abstract syntax trees.

This work follows the work of HOAS representations in the logical
framework LF [Harper et al., 1993]. On the one hand we restrict it to
the simply-typed setting to integrate it smoothly into existing simply-
typed functional programming languages such as OCaml, and on the
other hand we extend its expressiveness by allowing programmers to
distinguish between closed and open parts of their syntax trees. As we
analyze HOAS trees, we go under binders and our sub-trees may not
remain closed. To model the scope of binders in sub-trees we pair a
HOAS tree together with its surrounding context of variables following
ideas from Beluga [Pientka, 2008, Nanevski et al., 2008]. In addition,
we allow programmers to pattern match on such contextual objects, i.e.
an HOAS tree together with its surrounding context. In essence, this
work shows that the fundamental ideas underlying Beluga [Pientka and
Dunfield, 2010b, Pientka and Cave, 2015] can be smoothly integrated into
existing programming environments.

In this chapter the contribution is two-fold: First, we present a general
methodology for adding support for HOAS tree definitions and first-class
contexts to an existing (simply-typed) programming language. In par-
ticular, programmers can define simply-typed HOAS definitions in the
syntactic framework (SF) based on modal S4 following [Nanevski et al.,

CHAPTER 4. IN PROGRAMMING LANGUAGES 81

Core-ML

+ Contextual
Types

Syntactic
Framework

Core-MLgadt

Figure 4.1: Adding Contextual Types to ML

2008, Davies and Pfenning, 2001]. In addition, programmers can manipu-
late and pattern match on well-scoped HOAS trees by embedding HOAS
objects together with their surrounding context into the programming
language using contextual types [Pientka, 2008]. The result is a program-
ming language that can express computations over open HOAS objects.
We describe our technique abstractly and generically using a language
that we call Core-ML. In particular, we show how Core-ML with first-
class support for HOAS definitions and contexts can be translated in into
a language Core-MLgadt that supports Generalized Abstract Data Types
(GADTs) using a deep (first-order) embedding of SF and first-class con-
texts (see Fig. 4.1 for an overview). We further show that our translation
preserves types.

Second, we show how this methodology can be realized in OCaml by
describing our prototype Babybel1. In our implementation of Babybel we
take advantage of the sophisticated type system, in particular GADTs,
that OCaml provides to ensure our translation is type-preserving. By
translating HOAS objects together with their context to a first-order rep-
resentation in OCaml with GADTs we can also reuse OCaml’s first-order
pattern matching compilation allowing for a straightforward compila-
tion. Programmers can also exploit OCaml’s impure features such as

1available at www.github.com/fferreira/babybel/

www.github.com/fferreira/babybel/

CHAPTER 4. IN PROGRAMMING LANGUAGES 82

exceptions or references when implementing programs that manipulate
HOAS syntax trees. The Babybel prototype includes implementations of
a type-checker, an evaluator, closure conversion (shown in Section 4.2.1.3
together with a variable counting example and a syntax desugaring ex-
amples) and a continuation passing style translation. These examples
demonstrate that this approach allows programmers to write programs
that operate over abstract syntax trees in a manner that is safe and effec-
tive.

Finally, notice that Babybel’s language extensions do not have to be
OCaml specific. The same approach could be implemented in Haskell,
and other typed functional programming languages.

4.2 Main Ideas

In this section, we show some examples that illustrate the use of Baby-
bel, our proof of concept implementation where we embed the syntactic
framework SF inside OCaml. To smoothly integrate SF into OCaml,
Babybel defines a PPX filter (a mechanism for small syntax extensions for
OCaml). In particular, we use attributes and quoted strings to implement
our syntax extension.

CHAPTER 4. IN PROGRAMMING LANGUAGES 83

4.2.1 Example Programs

4.2.1.1 Removing Syntactic Sugar

In this example, we describe the compact and elegant implementation
of a compiler phase that de-sugars programs functional programs with
let-expressions by translating them into function applications. We first
specify the syntax of a simple functional language that we will transform.
To do this we embed the syntax specification using this tag:

[@@@signature {def| ... |def}]

Inside the @@@signature block we will embed our SF specifications.
Our source language is defined using the type tm. It consists of con-

stants (written as cst), pairs (written as pair), functions (built using
lam), applications (built using app), and let-expressions.

[@@@signature {def|
tm : type.
cst : tm.
pair : tm → tm → tm.
lam : (tm → tm) → tm.
fst : tm → tm.
snd : tm → tm.
letpair : tm → (tm → tm → tm) → tm.
letv : tm → (tm → tm) → tm.
app : tm → tm → tm.
|def}]

Our definition of the source language exploits HOAS using the function
space of our syntactic framework SF to represent binders in our object lan-
guage. For example, the constructor lam takes as an argument a term of
type tm → tm. Similarly, the definition of let-expressions models vari-
able binding by falling back to the function space of our meta-language,
in our case the syntactic framework SF. As a consequence, there is no

CHAPTER 4. IN PROGRAMMING LANGUAGES 84

constructor for variables in our syntactic definition and moreover we
can reuse the substitution operation from the syntactic framework SF to
model substitution in our object language. This avoids building up our
own infrastructure for variables bindings.

We now show how to simplify programs written in our source language
by replacing uses of letpair in terms with projections, and uses of letv
by β reduction.

letv M (λx.N) ≡ N[M/x]
letpair M (λx.λy. N) ≡ N[(fst M)/x,(snd M)/y]

To implement this simplification phase we implement an OCaml pro-
gram rewrite: it analyzes the structure of our terms, calls itself on the
sub-terms, and eliminates the use of the let-expressions into simpler con-
structs. As we traverse terms, our sub-terms may not remain closed. For
simplicity, we use the same language as source and target for our trans-
formation. We therefore specify the type of the function rewrite using
contextual types pairing the type tm together with a context γ in which
the term is meaningful inside the tag [@type].

rewrite[@type γ.[γ ` tm]→[γ ` tm]]

The type can be read: for all contexts γ, given a tm object in the context
γ, we return a tm object in the same context. In general, contextual types
associate a context and a type in the syntactic framework SF. For example
if we want to specify a term in the empty context we would write [`
tm] or for a term that depends on some context with at least one variable
and potentially more we would write [γ,x:tm ` tm].

CHAPTER 4. IN PROGRAMMING LANGUAGES 85

We now implement the function rewrite by pattern matching on the
structure of a contextual term. In Babybel, contextual terms are written
inside boxes (L...M) and contextual patterns inside (L...Mp).

let rec rewrite[@type γ.[γ ` tm]→[γ ` tm]]
= function
| L cst Mp → LcstM
| L pair ’m ’n Mp →

let mm, nn = rewrite m, rewrite n
in Lpair ’mm ’nnM

| L fst ’m Mp →

let mm = rewrite m in Lfst ’mmM
| L snd ’m Mp →

let mm = rewrite m in Lsnd ’mmM
| L app ’m ’n Mp →

let mm,nn = rewrite m, rewrite n
in Lapp ’mm ’nnM

| L lam (λx. ’m) Mp →

let mm = rewrite m in Llam (λx. ’mm)M
| L #x Mp → L#xM
| L letpair ’m (λf.λs. ’n) Mp →

let mm = rewrite m in
rewrite L’n [snd ’mm;fst ’mm]M

| L letv ’m (λx. ’n) Mp → rewrite L’n[’m]M

Note that we are pattern matching on potentially open terms. Although
we do not write the context γ explicitly, in general patterns may mention
their context (i.e.: L_ ` cstMp

2. As a guiding principle, we may omit
writing contexts, if they do not mention variables explicitly and are irrel-

2The underscore means that there might be a context but we do not bind any variable
for it because the term does not explicitly mention them and contexts are not available
at run-time.

CHAPTER 4. IN PROGRAMMING LANGUAGES 86

evant at run-time. Inside patterns or terms, we specify incomplete terms
using quoted variables (e.g.: ’n). Quoted variables are an ’unboxing’
of a computational expression inside the syntactic framework SF. The
quote signals that we are mentioning a computational variable inside SF.
Quoted variables can depend on all the variables in scope in scope where
they are defined. For example, in the pattern:

L letpair ’m (λf.λs. ’n) Mp

the variable ’n may depend on bound variables f and s.
The computationally interesting cases are the let-expressions. For them,

we perform the rewriting according to the two rules given earlier. The
syntax of the substitutions puts in square brackets the terms that will
be substituted for the variables. We consider contexts and substitutions
ordered, this allows for efficient implementations and more lightweight
syntax (e.g.: substitutions omit the name of the variables because con-
texts are ordered). Importantly, the substitution is an operation that is
eagerly applied and not part of the representation. Consequently, the
representation of the terms remains normal and substitutions cannot be
written in patterns. We come back to this design decision later. When
pattern matching on open terms, one needs to match against variables,
this is accomplished with the pattern for variables from the context that
we denote as L #x Mp.

To translate contextual SF objects and contexts, Babybel takes advan-
tage of OCaml’s advanced type system. In particular, we use Generalized
Abstract Data Types [Cheney and Hinze, 2003a, Xi et al., 2003] to index
types with the contexts in which they are valid. Type indices, in particular
contexts, are then erased at run-time. When the contexts are relevant at
run-time, we need to provide a term to explicitly represent the contexts.
In Section 4.2.1.3 there is an example of this.

CHAPTER 4. IN PROGRAMMING LANGUAGES 87

4.2.1.2 Finding the Path to a Variable

In this example, we compute the path to a specific variable in an abstract
syntax tree describing a lambda-term. This will show how to specify
particular context shapes, how to pattern match on variables, how to
manage our contexts, and how the Babybel extensions interact seamlessly
with OCaml’s impure features. For this example, we concentrate on the
fragment of terms that consists only of abstractions and application which
we repeat here.

[@@@signature {def|
tm : type.
app : tm → tm → tm.
lam : (tm → tm) → tm.
|def}]

To find the first occurrence of a particular variable in the HOAS tree,
we use backtracking that we implement using the user-defined OCaml
exception Not_found. To model the path to a particular variable oc-
currence in the HOAS tree, we define an OCaml data type step that
describes the individual steps we take and finally model a path as a list
of individual steps.

exception Not_found
type step
= Here (*the path ends here*)
| AppL (*take left on app*)
| AppR (*take right on app*)
| InLam (*go inside the body of the term*)
type path = step list

The main function path_aux takes as input a term that lives in a
context with at least one variable and returns a path to the occurrence of

CHAPTER 4. IN PROGRAMMING LANGUAGES 88

the top-most variable or an empty list, if the variable is not used. Its type
is:

[@type γ. [γ, x : tm ` tm] → path].

We again quantify over all contexts γ and require that the input term
is meaningful in a context with at least one variable. This specification
simply excludes closed terms since there would be no top-most vari-
able. Note also how we mix in the type annotation to this function both
contextual types and OCaml data types.

let rec path_aux [@type γ.[γ, x:tm ` tm] → path]
= function
| L_, x ` xMp→ [Here]
| L_, x ` #yMp→ raise Not_found
| L_, x ` lam (λy. ’m)Mp→

InLam::(path_auxL_,x,y `’m[_;y;x]M)
| L_, x ` app ’m ’nMp→

try AppL::(path_aux m)
with _ → AppR::(path_aux n)

All patterns in this example make the context explicit, as we pattern
match on the context to identify whether the variable we encounter refers
to the top-most variable declaration in the context. The underscore simply
indicates that there might be more variables in the context. The first case,
matches against the bound variable x. As mentioned before, the second
case has a special pattern with the sharp symbol that matches against any
variable in the context _, x. Because of the first pattern if it had been
x it would have matched the first case. Therefore, it simply raises the
exception to backtrack to the last choice we had. The case for abstractions
is interesting, since we have to go under its binder and the variable that
we are looking for is no longer the top most declaration of the context.
Hence we must apply a substitution to swap the two variables at the top

CHAPTER 4. IN PROGRAMMING LANGUAGES 89

of the context.
The case for lambda expressions is interesting because the recursive

call happens in an extended context. Furthermore, in order to keep the
variable we are searching for on top, we need to swap the two top-most
variables. For that purpose, we apply the [_ ; y; x] substitution. In
this substitution the underscore stands for the identity on the rest of the
context, or more precisely, the appropriate shift in our internal repre-
sentation that uses de Bruijn indices. Once elaborated, this substitution
becomes [^2 ; y; x] where the shift by two is because we are swap-
ping variables as opposed to instantiating them with closed terms.

The final case is for applications. We first look on the left side and if
that raises an exception we catch it and search again on the right. We
again use quoted variables (e.g.: ’m) to bind and refer to ML variables
in patterns and terms of the syntactic framework and more generally be
able to describe incomplete terms.

let get_path [@type γ.[γ, x:tm ` tm] → path]
= fun t → try path_aux t with _ → []

The get_path function has the same type as the path_aux function.
It simply handles the exception and returns an empty path in case that
variable x is not found in the term.

4.2.1.3 Closure Conversion

In the final example, we describe the implementation of a naive algorithm
for closure conversion for untyped λ-terms following [Cave and Pientka,
2012]. We take advantage of the syntactic framework SF to represent
source terms (using the type family tm) and closure-converted terms
(using the type family ctm). In particular, we use SF’s closed modality
box to ensure that all functions in the target language are closed (this is
written with curly braces: {}). This is impossible when we simply use LF
as the specification framework for syntax as in [Cave and Pientka, 2012].

CHAPTER 4. IN PROGRAMMING LANGUAGES 90

[@@@signature {def|
ctm: type. % closed term
btm: type. % binder term
env : type. % environment

capp : ctm → ctm → ctm.
clam : {btm} → ctm.
clo : ctm → env → ctm.

embed : ctm → btm.
bind : (ctm → btm) → btm.

empty : env.
dot : env → ctm → env.
|def}]

Figure 4.2: Closure Converted Language

We omit here the definition of lambda-terms, our source language, that
was given in the previous section and concentrate on the target language
ctm.

Concretely, tm is the type of our input language. Applications are
again represented by the constructor app that takes two terms, the first
represents the function and the second its parameter.

One option would be to simply use the same representation for the
target language that we used for the source language (i.e.: the untyped
λ-calculus). A better option is to use a new representation that highlights
that functions in the target language do no depend on their environments.
To this effect we declare in Figure 4.2 two types, ctm to represent terms
after the conversion and btm to represent the bodies of functions. We
take advantage of the expressive power of the specification framework
SF to define the closed bodies of the functions btm and the converted
terms ctm.

CHAPTER 4. IN PROGRAMMING LANGUAGES 91

Applications in the target language are defined using the constructor
capp and simply take two target terms to form an application. But
functions (constructor clam) take a btm object wrapped in {} braces.
This means that the object inside the braces is closed. The curly braces
denote the internal closed modality of the syntactic framework. As the
original functions may depend on variables in the environment, we need
closures where we pair a function with an environment that provides
the appropriate instances for variables. We define our own environment
explicitly, because they are part of the target language and the built-in
substitution is an operation on terms that is eagerly computed away.
Inside the body of the function, we need to bind all the variables from the
environment that the body uses such that later we can instantiate them
applying the substitution. This is achieved by defining multiple bindings
using constructors bind and embed inside the term.

When writing a function that translates between representations, the
open terms depend on contexts that store assumptions of different rep-
resentations. Therefore, it is often the case that one needs to relate these
contexts. In our example here we define a context relation that keeps the
input and output contexts in sync using a GADT data type rel in OCaml
where we model contexts as types. The relation statically checks corre-
spondence between contexts, but it is also available at run-time (i.e. after
type-erasure). It states that for each variable in the source contexts there
is a corresponding one in the target context.

CHAPTER 4. IN PROGRAMMING LANGUAGES 92

type (_ , _) rel =
Empty : ([.], [.]) rel

| Both : ([γ], [δ]) rel →
([γ, x:tm], [δ, y:ctm]) rel

exception Error of string

let rec lookup
[@type γ δ.[γ ` tm]→(γ, δ) rel→[δ ` ctm]] =

fun t → function
| Both r’ → begin match t with

| L _,x ` x Mp → L_,x ` xM
| L _,x ` ##v Mp → let v1 = lookup L#vM r’

in L_, x ` ’v1 [_]M
| _ → raise Error (‘‘Term that is not a variable
’’)

| Empty → raise Error (‘‘Term is not a variable’’)
end

The function lookup searches for related variables in the context rela-
tion. If we have a source context γ,x:tm and a target context δ,y:ctm,
then we consider two variable cases: In the first case, we use match-
ing to check that we are indeed looking for the top-most variable x and
we simply return the corresponding target variable. If we encounter a
variable from the context, written as ##v, then we recurse in the smaller
context stripping off the variable declaration x. Note that ##v denotes a
variable from the context _, that is not x, while #v describes a variable
from the context _, x, i.e. it could be also x. The recursive call returns
the corresponding variable v1 in the target context that does not include
the variable declaration x. We hence need to weaken v1 to ensure it is
meaningful in the original context. We therefore associate ’v1 with the

CHAPTER 4. IN PROGRAMMING LANGUAGES 93

identity substitution for the appropriate context, namely: [_]. In this
case, it will be elaborated into a one variable shift in the internal syntax
(i.e.: ↑1). The last case returns an exception whenever we are trying to
look up in the context something that is not a variable.

As we cannot express at the moment in the type annotation that the
input to the lookup function is indeed only a variable from the context γ
and not an arbitrary term, we added another fall-through case for when
the context is empty. In this case the input term cannot be a variable, as
it would be out of scope.

Finally, we implement the function conv which takes an untyped
source term in a context γ and a relation of source and target variables,
described by (γ, δ) rel and returns the corresponding target term in
the target context δ.

CHAPTER 4. IN PROGRAMMING LANGUAGES 94

let rec close [@type γ δ. (γ, δ) rel→[δ ` btm]→[
btm]]

= fun r m → match r with
| Empty → m
| Both r → close r Lbind (λx. ’m)M

let rec envr [@type γ δ. (γ, δ)rel→[δ ` env]]
= fun r → match r with
| Empty → LemptyM
| Both r →

let s = envr r in L_, x ` dot (’s[_]) xM

let rec conv [@type γ δ.(γ, δ)rel→[γ `tm]→[δ `ctm
]]

= fun r m → match m with
| L lam (λx. ’m) Mp →

let mc = conv (Both r) m in
let mb = close r Lbind(λx. embed ’mc)M
in let s = envr r in Lclo (clam {’mb}) ’sM

| L#xMp → lookup L#xM r
| Lapp ’m ’nMp → let mm, nn = conv r m, conv r n in

Lcapp ’mm ’nnM

The core of the translation is defined in functions conv, envr, and
close. The main function is conv. It is implemented by recursion on
the source term. There are three cases: i) source variables simply get
translated by looking them up in the context relation, ii) applications just
get recursively translated each term in the application, and iii) lambda
expressions are translated recursively by converting the body of the ex-
pression in the extended context (notice the recursive call with Both r)
and then turning the lambda expression into a closure.

CHAPTER 4. IN PROGRAMMING LANGUAGES 95

In the first step we generate the closed body by the function close that
adds the multiple binders (constructors bind and embed) and generates
the closed term. Note that the return type [btm] of close guarantees
that the final result is indeed a closed term, because we omit the context.
For clarity, we could have written [` btm].

Finally, the function envr computes the substitution (represented by
the type env) for the closure.

The implementation of closure conversion shows how to enforce closed
terms in the specification, and how to make contexts and their relation-
ships explicit at run-time using OCaml’s GADTs. We believe it also illus-
trates well how HOAS trees can be smoothly manipulated and integrated
into OCaml programs that may use effects.

4.3 Core-ML: A Functional Language with

Pattern Matching and Data Types

We now introduce Core-ML, a functional language based on ML with
pattern matching and data types. In Section 4.5 we will extend this
language to also support contextual types and terms in our syntactic
framework SF.

We keep the language design of Core-ML minimal in the interest of
clarity. However, our prototype implementation which we describe in
Section 4.9 supports interaction with all of OCaml’s features such as
exceptions, references and GADTs.

CHAPTER 4. IN PROGRAMMING LANGUAGES 96

Types τ ::= D | τ1 → τ2

Expressions e ::= i | fun f (x) = e |

let x = i in e | match iwith
−→
b

Neutral Exp. i ::= i e | C−→e | x | e : τ

Patterns pat ::= C
−→
pat | x

Branches b ::= | pat 7→ e

Contexts Γ ::= · | Γ, x : τ
Signature Ξ ::= · | Ξ,D :type | Ξ,C :−→τ → D

In Core-ML, we declare data-types by adding type formers (D) and
type constructors (C) to the signature (Ξ). Constructors must be fully-
applied. In addition all functions are named and recursive. The language
supports pattern matching with nested patterns where patterns consist of
just variables and fully applied constructors. We assume that all patterns
are linear (i.e. each variable occurs at most once) and that they are
covering.

The bi-directional typing rules for Core-ML have access to a signature
Ξ and are standard (see Fig. 4.3) and the signature remains unchanged
throughout the rules.

There are three things to notice in the rules:

1. The rule t-constr ensures that the constructor C is fully applied.

2. When type checking pattern matching in rule t-match the branches
are checked against the type that the pattern needs to have (i.e.: τ′)
and the type the body needs to have (i.e.: τ). The use of the arrow
in this context is an overloading of syntax to mean the type of the
pattern and the type of the body.

CHAPTER 4. IN PROGRAMMING LANGUAGES 97

Γ ` e⇐ τ : Expression e checks against type τ in context Γ

Γ, f : τ→ τ′, x : τ ` e⇐ τ′

Γ ` fun f (x) = e⇐ τ→ τ′
t-rec

Γ ` i⇒ τ′ Γ, x : τ′ ` e⇐ τ
Γ ` let x = i in e⇐ τ

t-let

Γ ` i⇒ τ′ ∀bk ∈
−→
b . Γ ` bk ⇐ τ′ → τ

Γ ` match iwith
−→
b ⇐ τ

t-match

Γ ` i⇒ τ′ τ = τ′

Γ ` i⇐ τ
t-emb

Γ ` i⇒ τ : Neutral expr. i synthesizes type τ in context Γ

Γ ` e⇐ τ
Γ ` e : τ⇒ τ

t-ann Γ ` i⇒ τ′ → τ Γ ` e⇐ τ′

Γ ` i e⇒ τ
t-app

Γ(x) = τ
Γ ` x⇒ τ

t-var

Ξ(C) = −→τ → D ∀τi ∈
−→τ . ∀ei ∈

−→e . Γ ` ei ⇐ τi

Γ ` C−→e ⇒ D
t-constr

Γ `| pat 7→ e⇐ τ1 → τ2 : Branch checks against τ1 and τ2 in Γ

` pat : τ′ ↓ Γ′ Γ,Γ′ ` e⇐ τ
Γ `| pat 7→ e⇐ τ′ → τ

t-branch

` pat : τ ↓ Γ : Pattern pat is of type τ and binds variables in context Γ

` x : τ ↓ x : τ
t-pat-var

Ξ(C) = −→τ → D ∀τi ∈
−→τ . ∀pati ∈

−→
pat . ` pati : τi ↓ Γi

` C
−→
pat : D ↓ Γ1, ...,Γi

t-pat-con

Figure 4.3: Core-ML Typing Rules

CHAPTER 4. IN PROGRAMMING LANGUAGES 98

Values v ::= C−→v | (fun f (x) = e)[ρ]
Environments ρ ::= · | ρ, v/x
Closures L ::= e[ρ]

e[ρ] ⇓ v : Expression e evaluates to value v in environment ρ

i[ρ] ⇓ (fun f (x) = e′)[ρ′] e[ρ] ⇓ v′ e′[ρ′, v′/x] ⇓ v
(i e)[ρ] ⇓ v

e-app

ρ(x) = v
x[ρ] ⇓ v

e-var
i[ρ] ⇓ v1 e[ρ, v1/x] ⇓ v
(let x = i in e)[ρ] ⇓ v e-let

i[ρ] ⇓ v1 ` pat1��� v (match iwith
−→
b)[ρ] ⇓ v

(match iwith | pat1 7→ eb ::
−→
b)[ρ] ⇓ v

e-match-fail

i[ρ] ⇓ v1 Γ̂ ` pat1 � v/ρ′ eb[ρ, ρ′] ⇓ v

(match iwith | pat1 7→ eb ::
−→
b)[ρ] ⇓ v

e-match-succ

−→e [ρ] ⇓ −→v
(C−→e)[ρ] ⇓ C−→v

e-constr
e[ρ] ⇓ v

e : τ[ρ] ⇓ v
e-ann

i[ρ] ⇓ v
i[ρ] ⇓ v e-emb

(fun f (x) = e)[ρ] ⇓ (fun f (x) = e)[ρ] e-fun

Figure 4.4: Core-ML Big-Step Operational Semantics

3. Finally, in the rule for branches(t-branch) we check the body in the
context Γ extended with the context from the pattern of the branch
(context Γ′).

In Figure 4.4 we define the operational semantics using an environment
based approach. We define:

• values, that are either constructors applied to other values or recur-
sive functions.

CHAPTER 4. IN PROGRAMMING LANGUAGES 99

• environments that assign a value to each variable in the context.

• closures that represent pending computations in the environment.
We write e[ρ] for a closure that consists of expression e in context ρ.

We use an environment based operational semantics to avoid having to
define substitutions at the level of Core-ML and later, substitution of
quoted variables. This agrees with Babybel that in its implementation we
do not need to define quoted variable substitution as we reuse OCaml’s
substitution so this style of semantics seems fitting.

The evaluation judgment e[ρ] ⇓ v means that the expression e in envi-
ronment ρ evaluates in a big step to value v. The more interesting rules
are the ones for pattern matching that use first-order matching as defined
in Fig. 4.5. As traditional, in a match expression, patterns are matched
branch by branch until one matches and then the body is executed in the
extended environment that resulted from the matching.

We characterize both matching and failure to match. Successful match-
ing is defined by the judgment Γ ` pat � v/ρ that means that the pattern
pat with unification variables in Γ and the value v match producing the
substitution ρ. Failure to match is defined by the judgment ` pat��� v that
states that the pattern pat with unification variables in Γ and the value v
cannot be matched. Since v is always ground we do not need unification
but matching. We also will not address the details of pattern match-
ing compilation but merely state that it is possible to implement it in an
efficient manner using decision trees [Augustsson, 1985].

4.4 A Syntactic Framework

In this section we describe the Syntactic Framework (SF) based on the
modal logic S4 [Davies and Pfenning, 2001]. Our framework characterizes

CHAPTER 4. IN PROGRAMMING LANGUAGES 100

Γ̂ ` pat � v/ρ : Value v matches pat producing substitution ρ

x ` x � v/(·, v/x)
m-v

n = |
−→
pat| Γ̂ = Γ̂0, . . . , Γ̂n−1 ∀i < n.Γ̂i ` pati � vi/ρi

Γ̂ ` C
−→
pat � C−→v /ρ0, . . . ρn−1

m-c

` pat��� v : Value v does not match pattern pat

k , m
` C
−→
pat���C

−→
pat

f-c
` pat���fun f (x) = e f-f

n = |
−→
pat| ∃i < n. pati��� vi

` C
−→
pat���C−→v

f-r

Figure 4.5: First-order Matching

only normal forms. All computation is delegated to the ML layer, that
will perform pattern matching and substitutions on terms.

4.4.1 The definition of SF

The Syntactic Framework (SF) is a simply typed λ-calculus based on S4
where the type system forces all variables to be of base type, and all
constants declared in a signature Σ to be fully applied. This simplifies
substitution as variables of base type cannot be applied to other terms,
and in consequence, there is no need for hereditary substitution in the
specification language. Finally, the syntactic framework supports the box
type to describe closed terms [Pfenning and Davies, 2001]. It can also be
viewed as a restricted version of the contextual modality in [Nanevski
et al., 2008] which could be an interesting extension to our work.

Having closed objects enforced at the specification level is not strictly

CHAPTER 4. IN PROGRAMMING LANGUAGES 101

necessary. However, being able to state that some objects are closed in the
specification has two distinct advantages: first, the user can specify some
objects as closed so their contexts are always empty. This removes the
need for some unnecessary substitutions. Second, it allows us to encode
more fine-grained invariants and is hence an important specification tool
(i.e. when implementing closure conversion in Section 4.2.1.3).

Types A,B ::= a | A→ B | �A
Terms M,N ::= c

−→
M | λ x.M | {M} | x

Contexts Ψ,Φ ::= · | Ψ, x : a
Signature Σ ::= · | Σ, a : K | Σ, c : A

Fig. 4.6 shows the typing rules for the syntactic framework. Note that
constructors always are fully applied (as per rule t-con), and that all
variables are of base type as enforced by rules t-var and t-lam.

The specification framework’s terms are manipulated by the computa-
tional language, in the resulting system any concrete use of terms in the
syntactic framework will be done by pattern matching and the applica-
tion of substitutions in the computational language therefore we will not
have any elimination forms in the syntactic framework.

4.4.2 Contextual Types

We use contextual types [Nanevski et al., 2008] to embed possibly open
SF objects in Core-ML and ensure that they are well-scoped. We use
contextual types where we pair the type A of an SF object together with
its surrounding context Ψ in which it makes sense. This follows the
design of Beluga [Pientka, 2008, Cave and Pientka, 2012].

Contextual Types U ::= [Ψ ` A]
Type Erased Contexts Ψ̂ ::= · | Ψ̂, x
Contextual Objects C ::= [Ψ̂ `M]

CHAPTER 4. IN PROGRAMMING LANGUAGES 102

Ψ `M : A : M has type A in context Ψ

Ψ, x : a `M : A
Ψ ` λ x.M : a→ A t-lam · `M : A

Ψ ` {M} :�A t-box
Ψ(x) = a
Ψ ` x : a t-var

Σ(c) = A Ψ `
−→
M : A/a

Ψ ` c
−→
M : a

t-con

Ψ `
−→
M : A/B : spine

−→
M checks against type A and has target type B

Ψ ` · : a/a
t-sp-em

Ψ ` N : A Ψ `
−→
M : B/a

Ψ ` N
−→
M : A→ B/a

t-sp

Figure 4.6: Syntactic Framework Typing

Contextual objects, written as [Ψ̂ `M] pair the term M with the variable
name context Ψ̂ to allow for α-renaming of variables occurring in M.
Note how the Ψ̂ context just corresponds to the context with the typing
assumptions erased.

When we embed contextual objects in a programming language we
want to refer to variables and expressions from the ambient language,
in order to support incomplete terms. Following [Nanevski et al., 2008,
Pientka, 2008], we extend our syntactic framework SF with two ideas:
first, we have incomplete terms with meta-variables to describe holes in
terms. As in Beluga, there are two different kinds: quoted variables ’u
represent a hole in the term that may be filled by an arbitrary term. In
contrast, parameter variables represent a hole in a term that may be filled
only with some bound variable from the context. Concretely, a parameter
variable may be #x and describe any concrete variable from a context Ψ.
We may also want to restrict what bound variables a parameter variable
describes. For example, if we have two sharp signs (i.e. ##x) the top-most
variable declaration is excluded. Intuitively, the number of sharp signs,

CHAPTER 4. IN PROGRAMMING LANGUAGES 103

after the first, in front of x correspond to a weakening (or in de Bruijn
lingo the number of shifts). Second, substitution operations allow us to
move terms from one context to another.

We hence extend the syntactic framework SF with quoted variables,
parameter variables and closures, written as M[σ]. We annotate the sub-
stitution with its domain and range to simplify the typing rule, however
our prototype omits these typing annotations and lets type inference infer
them.

Parameter Variables v ::= #x | ##x
Terms M ::= · · · | ’u | v |M[σ]
Substitutions σ ::= · | σ,M/x
Ambient Ctx. Γ ::= · · · | Γ,u : [Ψ ` a]

In addition, we extend the context Γ of the ambient language Core-ML
to keep track of assumptions that have a contextual type.

Finally, we extend the typing rules of the syntactic framework SF to in-
clude quoted variables, parameter variables, closures, and substitutions.
We keep all the previous typing rules for SF from Section 4.4 where we
thread through the ambient Γ, but the rules remain unchanged otherwise.

CHAPTER 4. IN PROGRAMMING LANGUAGES 104

Γ; Ψ `v v : a : Parameter Variable v has type a in contexts Ψ and Γ

Γ(x) = [Ψ ` a]
Γ; Ψ `v #x : a

t-pvar-v Γ; Ψ `v v : a
Γ; Ψ, y : _ `v #v : a

t-pvar-#

Γ; Ψ `M : A : Term M has type A in contexts Ψ and Γ

Γ(u) = [Ψ ` a]
Γ; Ψ ` ’u : a

t-qvar Γ; Ψ `v v : a
Γ; Ψ ` v : a

t-pvar

Γ; Ψ ` σ : Φ Γ; Φ `M : A
Γ; Ψ `M[σ] : A t-sub

Γ; Ψ ` σ : Ψ′ : Substitution σ from Ψ′ toΨ in the amb. ctx. Γ

Γ; Ψ ` · : ·
t-empty-sub

Γ; Ψ ` σ : Ψ′ Γ; Ψ `M : a
Γ; Ψ ` σ,M/x : (Ψ′, x : a) t-dot-sub

The rules for quoted and parameter variables (t-qvar and t-pvar

respectively) might seem very restrictive as we can only use a meta-
variable of type Ψ ` a in the same context Ψ. As a consequence meta-
variables often occur as a closure paired with a substitution (i.e.: ’u [σ]).
This leads to the following admissible rule:

Γ(u) = [Φ ` a] ∆; Ψ ` σ : Φ
Γ; Ψ ` ’u [σ] : a

t-qvar-adm

We stress that M[σ] it is an operation that is applied and not part of the
syntax of our terms.

Note that when we compile SF objects, this substitution will be eagerly
applied in order to keep terms in the syntactic framework in normal form.

Substitution is straightforward to define. We write it here as a prefix,
to stress that it is an operation that is applied and not part of the term.

CHAPTER 4. IN PROGRAMMING LANGUAGES 105

Substitutions ([_]_) is defined as:

[σ](λ x.M) = λ x.(M[σ, x/x])
[σ] {M} = {M}
[σ]’u = ’u
[σ]#x = #x

[σ] x = lookup x σ
[σ](M[φ]) = [σ ◦ φ] M

[σ](c ~M) = c ~N where Ni = ([σ]Mi)
[σ]{M} = {M}

We distinguish the actual operation of applying a substitution from the
explicit substitution in a term, by writing the substitution in a prefix
position.

Composing substitutions is defined as:

σ ◦ φ,M/x = (σ ◦ φ), ([σ] M)/x
σ ◦ · = σ

The lookup of variables in substitutions is defined as:

lookup x σ,M/x = M
lookup x σ,M/y = lookup x σ

Note that looking up in an empty substitution is not defined as it is
ill-typed.

The next step is to define the embedding of this framework in a pro-
gramming language that will provide the computational power to ana-
lyze and manipulate contextual objects.

CHAPTER 4. IN PROGRAMMING LANGUAGES 106

4.5 Core-ML with Contextual Types

To embed contextual SF objects into Core-ML, we extend the syntax of
Core-ML as follows:

Types τ ::= · · · | [Ψ ` a]
Expressions e ::= · · · | [Ψ̂ `M] | cmatch ewith −→c
Patterns pat ::= · · · | [Ψ̂ ` R]
Contextual Branches c ::= · · · || [Ψ ` R] 7→ e

In particular, we allow programmers to use the expression:

cmatch ewith −→c

to directly pattern match on the syntactic structures they define in SF.

4.5.1 SF Objects as SF Patterns

We allow programmers to analyze SF objects directly via pattern match-
ing. The grammar of SF patterns follows the grammar of SF objects.

SF Parameter Pattern w ::= #p | ##w
SF Patterns R ::= λ x.R | {R} | x | c

−→
R | ’u | w

However, there is an important restriction: closures are not allowed in
SF patterns. Intuitively this means that all quoted variables are associated
with the identity substitution and hence depend on the entire context in
which they occur. Parameter variables may be associated with weakening
substitutions. This allows us to easily infer the type of quoted variables
and parameter variables as we type check a pattern. This is described by
the judgment:

Ψ ` R : A ↓ Γ : Pattern R has type A in Ψ and binds Γ

CHAPTER 4. IN PROGRAMMING LANGUAGES 107

Ψ `v w : a ↓ Γ : Parameter Pattern w has type a in Ψ and binds Γ

Ψ `v #p : a ↓ p : [Ψ ` a]
tp-pvar Ψ `v w : a ↓ Γ

Ψ, y : _ `v #w : a ↓ Γ
tp-pvar-#

Ψ ` R : A ↓ Γ : Pattern R has type A in Ψ and binds Γ

Ψ, x : a ` R : A ↓ Γ
Ψ ` λ x.R : a→ A ↓ Γ

tp-lam
· ` R : A ↓ Γ

Ψ ` {R} :�A ↓ Γ
tp-box

Ψ ` ’u : a ↓ u : [Ψ ` a]
tp-mvar

Σ(c) = A Ψ `
−→
R : A/a ↓ Γ

Ψ ` c
−→
R : a ↓ Γ

tp-constr

Ψ `v w : a ↓ Γ
Ψ ` w : a ↓ Γ

tp-pvar
Ψ(x) = a

Ψ ` x : a ↓ ·
tp-var

Ψ `
−→
M : A/B ↓ Γ : Pat. Spine

−→
R has type A and target B and binds Γ

Ψ ` · : a/a ↓ ·
tp-sp-em

Ψ ` N : A ↓ Γ Ψ `
−→
M : B/a ↓ Γ′

Ψ ` N
−→
M : A→ B/a ↓ Γ,Γ′

tp-sp

Figure 4.7: Typing Rules for SF Patterns

Figure 4.7 shows the typing rules for SF patterns. They closely follow
the typing of SF terms. The more interesting ones are the parameter
patterns as they illustrate the built-in weakening.

Further, the matching algorithm for SF patterns degenerates to simple
first-order matching [Pientka and Pfenning, 2003] and can be defined
straightforwardly. However, it is worth considering the matching rules
for parameter patterns. As matching will only consider well-typed terms,
we know that in the rules m-pv and m-pv-# the variable x is well-typed

CHAPTER 4. IN PROGRAMMING LANGUAGES 108

in the context Ψ̂.

Γ; Ψ̂ `v w � x/ρ : Param. Patt. w matches var. x from Ψ̂ producing ρ.

p : [Ψ ` A]; Ψ̂ `v #p � x/·, [Ψ̂ ` x]/p
m-pv

x , y Γ; Ψ̂ `v w � x/ρ
Γ; Ψ̂, y `v #w � x/ρ

m-pv-#

Γ; Ψ̂ ` R � M/ρ : M matches pattern R with vars. in Ψ̂ producing ρ.

Γ; Ψ̂, x ` R � M/ρ
Γ; Ψ̂ ` λ x.R � λ x.M/ρ

m-λ
·; Ψ̂ ` x � x/·

m-bv

Γ; · ` R � M/ρ
Γ; Ψ̂ ` {R} � {M}/ρ

m-box

for all Ri ∈
−→
R such as Γ; Ψ̂ ` Ri � Mi/ρi

Γ; Ψ̂ ` c
−→
R � c

−→
M/ρ0, . . . , ρn

m-cc

u : [Ψ ` A]; Ψ̂ ` ’u � M/·, [Ψ̂ `M]/u
m-cv

Γ; Ψ̂ `v w � x/ρ
Γ; Ψ̂ ` w � x/ρ

m-pv

Finally, it has another important consequence: closures only appear in
the branches of case-expressions. As Core-ML has a call-by-value seman-
tics, we know the instantiations of quoted variables and parameter vari-
ables when they appear in the body of a case-expression and all closures
are eliminated by applying the substitution eagerly. Given these condi-
tions the matching operation remains first-order. An alternative way of
explaining this is that in fact we have a degenerate case of the pattern
fragment [Miller, 1991] of higher-order unification where all unification
variables are applied to different variables and all the variables in the
context. In this situation we only need first order matching [Pientka and

CHAPTER 4. IN PROGRAMMING LANGUAGES 109

Pfenning, 2003], which enables efficient pattern matching compilation.

4.5.2 Typing Rules for Core-ML with Contextual Types

We now add the following typing rules for contextual objects and pattern
matching to the typing rules of Core-ML:

Γ; Ψ `M : a
Γ ` [Ψ̂ `M]⇐ [Ψ ` a]

t-ctx-obj

Γ ` i⇒ [Ψ ` a] ∀b ∈
−→
b . Γ ` b⇐ [Ψ ` a]→ τ

Γ ` cmatch iwith
−→
b ⇐ τ

t-cm

Ψ ` R : a ↓ Γ′ Γ,Γ′ ` e⇐ τ
Γ ` [Ψ ` R] 7→ e⇐ [Ψ ` a]→ τ

t-cbranch

The typing rule for contextual objects (rule t-ctx-obj) simply invokes
the typing judgment for contextual objects. Notice, that we need the
context Γ when checking contextual objects, as they may contain quoted
variables from Γ.

Extending the operational semantics to handle contextual SF objects is
also straightforward.

Additionally, we need rules to evaluate the matching of contextual
types that largely follow the rules for pattern matching e-match-succ

and e-match-fail but use the matching operation defined for contextual
objects.

Finally, the operational semantics needs to be extended with rules to
support the new constructs. The rules, in Figure 4.8 for contextual terms
simply take the terms apart and re-build them, except for quoted vari-
ables that are looked up in the environment(rule ec-qvar) and for terms
with substitutions where the substitution operation is immediately ap-
plied(rule ec-sub). The rules for the new pattern matching construct are
analogous to the ones from Core-ML.

CHAPTER 4. IN PROGRAMMING LANGUAGES 110

e[ρ] ⇓ v : Expression e evaluates to value v in environment ρ

[Ψ̂, x `M][ρ] ⇓ [Ψ̂, x ` N]

[Ψ̂ ` λ x.M][ρ] ⇓ [Ψ̂ ` λ x.N]
ec-lam

[· ` {M}][ρ] ⇓ [· ` {N}]
[Ψ̂ ` {M}][ρ] ⇓ [Ψ̂ ` {N}]

ec-box

[Ψ̂ ` x][ρ] ⇓ [Ψ̂ ` x]
ec-var

∀M ∈
−→
M. M[ρ] ⇓ N

[Ψ̂ ` c
−→
M][ρ] ⇓ [Ψ̂ ` c

−→
N]

ec-constr

ρ(u) = M
’u[ρ] ⇓M

ec-qvar
ρ(x) = y
#x[ρ] ⇓ y

ec-pvar
ρ(x) = y

##x[ρ,M/z] ⇓ y
ec-ppvar

([σ]M)[ρ] ⇓ N
M[σ][ρ] ⇓ N ec-sub

e[ρ] ⇓ [Ψ̂ `M] Ψ ` R���M (cmatch ewith −→c)[ρ] ⇓ v
(cmatch ewith | [Ψ ` R] 7→ eb

−→c)[ρ] ⇓ v
ec-mf

e[ρ] ⇓ [Ψ̂ `M] Γ′; Ψ ` R � M/ρ′ eb[ρ, ρ′] ⇓ v
(cmatch ewith | [Ψ ` R] 7→ eb

−→c)[ρ] ⇓ v
ec-ms

Figure 4.8: Extended Operational Semantics

CHAPTER 4. IN PROGRAMMING LANGUAGES 111

4.6 Core-ML with GADTs

So far, in this chapter, we reviewed how to support contextual types
and contextual objects in a standard functional programming language.
This allows us to define syntactic structures with binders and manipulate
them with the guarantee that variables will not escape their scopes. This
brings some of the benefits of the Beluga system to mainstream languages
focusing on writing programs instead of proofs. A naive implementation
of this language extension requires augmenting the type checker and op-
erational semantics of the host language. This is a rather significant task
– especially if it includes implementing a compiler for the extended lan-
guage. However, we can take advantage of the powerful type-system in
modern functional languages to make the implementation more straight
forward. Concretely, we use Generalized Abstract Data Types (GADTs)
as a target to our translation. GADTs are a generalization of algebraic
data-types that allow types to be indexed by other types. This mild
form type dependency is enough to implement the SF. In the literature,
GADTs have been introduced several times under different names: phan-
tom types [Cheney and Hinze, 2003b], guarded recursive types [Xi et al.,
2003] and equality types [Sheard and Pasalic, 2008]. In this section, we
describe how to embed Core-ML with contextual types in a functional
language with GADTs, called Core-MLgadt, based on λ2,Gµ by Xi et al.
[2003]. The choice of this target language is motivated by the fact that it
is close to what realistic typed languages already offer (e.g.: OCaml and
Haskell) and it directly lends itself to an implementation.

CHAPTER 4. IN PROGRAMMING LANGUAGES 112

Signatures Σ ::= · | Σ,D : (∗, . . . , ∗)→ ∗ | C :∀−→α . τ→ D[−→τ]
Types τ ::= D[−→τ] | ∀α . τ | τ1 → τ2 | α | τ1 × τ2

Expressions e ::= x | C[−→τ] e | fix f : τ = e | e1 e2 | (e1, e2) | λx . e

| let x = e1 in e2 | match ewith
−→
b

| Λα . e | e[τ] | (e1, e2)
Branch b ::= pat 7→ e
Pattern pat ::= x | C[−→α] pat | (pat1, pat2)
Exp. Ctx. Γ ::= · | Γ, x : τ
Type Ctx. ∆ ::= · | ∆, α | ∆, τ1 ≡ τ2

Core-MLgadt contains polymorphism and GADTs, which makes it a
good ersatz OCaml that is still small and easy to reason about. GADTs are
particularly convenient, since they allow us to track invariants about our
objects in a similar fashion to dependent types. Compared to Core-ML,
Core-MLgadt’s signatures now store type constants and constructors that
are parametrized by other types. We show the typing judgments for the
language in Fig. 4.9. The term language is similar to Core-ML, with the
addition of the usual terms for supporting abstraction over types (i.e.
Λα . e) and type applications (i.e. e[τ]).

The language is type-checked with the two typing judgments, one for
terms and one for patterns:

• ∆; Γ ` e : τ : expression e is of type τ in typing context ∆ and ex-
pression context Γ.

• ∆o ` pat : τ ↓ ∆; Γ : pat is of type τ and binds type variables in ∆ and
variables in Γ.

The expressive power of pattern matching is greatly enhanced by the
presence of a limited form of dependent types (i.e. types that depend on
other types).

CHAPTER 4. IN PROGRAMMING LANGUAGES 113

∆
;Γ
`

e:
τ

:e
is

of
ty

pe
τ

in
ty

pi
ng

co
nt

ex
t∆

an
d

ex
pr

es
si

on
co

nt
ex

tΓ
.

Σ
(C

)=
∀
−→ α
.τ

1
→

D
[−→ α

]
∆

;Γ
`

e:
τ 1

[−→ τ
]

∆
`
−→ τ
wf

∆
;Γ
`

C
[−→ τ

]e
:D

[−→ τ
]

g-
co
n

∆
;Γ
`

e 1
:τ

1
→
τ 2

∆
;Γ
`

e 2
:τ

1

∆
;Γ
`

e 1
e 2

:τ
2

g-
ap
p

∆
;Γ
`

e 1
:τ

1
∆

;Γ
`

e 1
:τ

2

∆
;Γ
`

(e
1,

e 2
):
τ 1
×
τ 2

g-
pa
ir

Γ
(x

)=
τ

∆
;Γ
`

x
:τ

g-
va
r

∆
;Γ
,

f:
τ
`

e:
τ

∆
;Γ
`
fix

f:
τ

=
e:
τ
g-
fix

∆
;Γ
,x

:τ
1
`

e:
τ 2

∆
;Γ
`
λ

x
.e

:τ
1
→
τ 2

g-
la
m

∆
;Γ
`

e:
∀
−→ α
.τ

∆
;Γ
`
−→ τ

1
wf

∆
;Γ
`

e[
−→ τ

1]
:τ

[−→ τ
1]

g-
ta
pp

∆
,α

;Γ
`

e:
τ

∆
;Γ
`

Λ
α
.e

:∀
α
.τ

g-
La
m

∆
;Γ
`

e 1
:τ

1
∆

;Γ
,x

:τ
1
`

e 2
:τ

∆
;Γ
`
le

t
x

=
e 1
in

e 2
:τ

g-
le
t

∆
;Γ
`

e:
τ 1

fo
r

al
li
.∆

;Γ
`

b i
:τ

1
→
τ

∆
;Γ
`
ma

tc
h

ew
it

h
−→ b

:τ
g-
ma
tc
h

∆
`

pa
t:
τ
↓

1
∆
′
;Γ
′

∆
,∆
′
;Γ
,Γ
′
`

e:
τ 2

∆
;Γ
`

pa
t7→

e:
τ 1
→
τ 2

g-
br
an
ch

∆
o
`

pa
t:
τ
↓

∆
;Γ

:p
at

is
of

ty
pe
τ

an
d

bi
nd

s
va

ri
ab

le
s

in
∆

an
d

Γ

∆
0
`

x
:τ
↓
·;

x
:τ

gp
-v
ar

∆
0
`

pa
t 1

:τ
1
↓

∆
1;

Γ
1

∆
0
`

pa
t 2

:τ
2
↓

∆
2;

Γ
2

∆
0
`

(p
at

1,
pa

t 2
):
τ 1
×
τ 2
↓

∆
1,

∆
2;

Γ
1,

Γ
2

gp
-p
ai
r

Σ
(C

)=
∀
−→ α
.τ
→

D
[−→ τ

1]
∆

0,
−→ α
,−→ τ

1
≡
−→ τ

2
`

pa
t:
τ
↓

∆
;Γ

∆
o
`

C
[−→ α

]p
at

:D
[−→ τ

2]
↓
−→ α
,−→ τ

1
≡
−→ τ

2,
∆

;Γ
gp
-c
on

Fi
gu

re
4.

9:
Th

e
Ty

pi
ng

of
C

or
e-

M
Lga

dt

CHAPTER 4. IN PROGRAMMING LANGUAGES 114

Of particular interest are the type equalities introduced in the type
context in the gp-con rule. Let’s consider an example to understand
this (a complete discussion is fully developed by Xi et al. [2003]). As an
example, we define the type of vectors as lists indexed by their length
(i.e. the classical dependent types example).

Σ = z : ∗,s : ∗ → ∗,vec : (∗, ∗)→ ∗,
Nil :∀β . vec[z, β],
Cons :∀α, β . (β × vec[α, β])→ vec[s[α], β]

In the signature we need to define the type level encoding of natural
numbers: types z and s, and the type of vectors vec that are indexed
by their length and the type of their elements. Finally, we define the
constructor Nil of empty vectors of length zero, thus the first index is the
type z. And finally the constructor Cons that puts together an element
of type β and a vector of length α to form a vector of length α + 1, that is
s[α] in Core-MLgadt.

Vectors are interesting because they make many functions type safe by
relying on the more expressive type system. As an example, in Figure 4.10
shows the function zip that joins two vectors of the same length and
produces a vector of the same lengths containing pairs of values taken
from the original vectors:

In this case, type refinement happens for example in the second branch,
where in the body we have the choice of referring to the length as α1 or
α2, knowing they have to be the same. In fact, when typing the pattern in
rule gp-con context ∆ is extended with α ≡ α1 and α ≡ α2 from which is
easy to conclude that α1 ≡ α2. Additionally, the type constraint that the
vectors are of the same length makes it obvious that the diagonal cases
(those when one vector has more elements than the other) are impossible.

Since Core-MLgadt has strong type separation the operational semantics,
in Figure 4.11, is similar to the semantics for Core-ML, after all, type
information is irrelevant at run-time. The interested reader can find the

CHAPTER 4. IN PROGRAMMING LANGUAGES 115

fixzip :∀α, β1, β2 .
(vec[α, β1] × vec[α, β2])→ vec[α, (β1, β2)] =

Λα, β1, β2 . λv . match vwith
| (Nil[β1],Nil[β2]) 7→ Nil[β1 × β2]
| (Cons[α1, β1](x, xs),Cons[α2, β2](y, ys) 7→
Cons[α1, β1 × β2]((x, y), zip[α1, β1, β2](xs, ys))

Figure 4.10: Zip in Core-MLgadt

meta-theory in [Xi et al., 2003]. We define values and environments as:

Values v ::= C[−→τ] v |(v1, v2) | (λx . e)[θ;ρ] | (Λα . e)[θ;ρ]
Environments θ;ρ ::= ·; · | θ; (ρ, v/x) | (θ, τ/α);ρ

And with them the semantics are implemented with two judgments, one
to evaluate expressions and the other to compute matching, the matching
operation simply augments the environment inside of the branches in
case expressions:

• e[θ;ρ] ⇓ v : Expression e evaluates to value v in environment ρ.

• pat � v\θ;ρ : Value v matches pattern pat and produces env. θ;ρ.

4.7 Deep Embedding of SF into Core-MLgadt

We now show how to translate objects and types defined in the syntactic
framework SF into Core-MLgadt using a deep embedding. We take ad-
vantage of the advanced features of Core-MLgadt’s type system to fully
type-check the result. Our representation of SF objects and types is in-
spired by [Benton et al., 2012b] but uses GADTs instead of full dependent
types. We add the idea of typed context shifts instead of renamings to

CHAPTER 4. IN PROGRAMMING LANGUAGES 116

e[θ;ρ] ⇓ v : Expression e evaluates to value v in envirnoment ρ

e1[θ;ρ] ⇓ (λx . e)[θ′;ρ′] e2[θ;ρ] ⇓ v′ e[θ′;ρ′, v′/x] ⇓ v
(e1 e2)[θ;ρ] ⇓ v

ge-app

e[θ;ρ] ⇓ Λα . e′ e′[θ, τ/α;ρ] ⇓ v
e[τ][θ;ρ] ⇓ v

ge-tapp

ρ(x) = v
x[θ;ρ] ⇓ v

ge-var
e1[θ;ρ] ⇓ v1 e2[θ;ρ, v1/x] ⇓ v

(let x = e1 in e2)[θ;ρ] ⇓ v
ge-let

e[θ;ρ] ⇓ v1 pat1 � v\θ′;ρ′ eb[θ, θ′;ρ, ρ′] ⇓ v

(match ewith | pat1 7→ eb ::
−→
b)[θ;ρ] ⇓ v

ge-match

e[θ;ρ] ⇓ v
C[−→τ] e[θ;ρ] ⇓ C[−→τ] v

ge-constr
(λx . e)[θ;ρ] ⇓ (λx . e)[θ;ρ]

ge-lam

(Λα . e)[θ;ρ] ⇓ (Λα . e)[θ;ρ]
ge-Lam

e1[θ;ρ] ⇓ v1 e2[θ;ρ] ⇓ v2

(e1, e2)[θ;ρ] ⇓ (v1, v2)
ge-pair

e[θ; (ρ,fix f : t = e/ f)] ⇓ v
fix f : t = e[θ;ρ] ⇓ v

ge-fix

pat � v\θ;ρ : Value v matches pattern pat and produces env. θ;ρ.

x � v\·; (v/x)
gm-v

pat1 � v1\θ1;ρ1 pat2 � v2\θ2;ρ2

((pat1, pat2) � (v1, v2)\θ1, θ2;ρ1, ρ2
gm-p

v � pat/θ;ρ
C[−→α] pat � C[−→τ] v\(−→τ /−→α , θ);ρ

gm-c

Figure 4.11: Core-MLgadt Big-Step Operational Semantics

CHAPTER 4. IN PROGRAMMING LANGUAGES 117

represent weakening. This is necessary to be able to completely erase
types at run-time.

To ensure SF terms are well-scoped and well-typed, we define SF types
in Core-MLgadt and index their representations by their type and context.
The following types are only used as indices for GADTs. Because of that,
they do not have any term constructors.

Σ = base : ∗ → ∗,arr : (∗, ∗)→ ∗,boxed : ∗ → ∗,
prod : (∗, ∗)→ ∗,unit : ∗

We define three type families, one for each of SF’s type constructors. It
is important to note the number of type parameters they require. Base
types take one parameter: a type from the signature. Function types
simply have an input and output type. Finally, boxes contain just one
type.

Terms are also indexed by the contexts in which they are valid. To
this effect, we define two types to statically represent contexts. Anal-
ogously to the representation of types, these two types are only used
during type-checking and there will be no instances at run-time. The
type nil represents an empty context and thus has no parameters. And
the constructor cons has two parameters the first one is the rest of the
context and the second one is the type of the top-most variable so far.

Σ = . . . ,nil : ∗,cons : (∗, ∗)→ ∗

We show the the encoding well-typed SF objects and types in Fig. 4.12.
Every declaration is parametrized with the type of constructors that the
user defined inside of the @@@signature blocks.

The specification takes the form of the type con : (∗, ∗)→ ∗, where con
is the name of a constructor from the signature indexed by the type of its
parameters and the base type they produce. So, all the SF definitions the
user makes add constructors, in our closure conversion example some
constructors could be for instance: capp, clam, clo.

CHAPTER 4. IN PROGRAMMING LANGUAGES 118

Σ = . . . ,var : (∗, ∗)→ ∗,
Top :∀γ, α . var[cons[γ, α], α],
Pop :∀γ, α, β . var[γ, α]→ var[cons[γ, β], α],
sftm : (∗, ∗)→ ∗,sp : (∗, ∗, ∗)→ ∗
Lam :∀γ, α, τ . sftm[cons[γ,base[α]], τ]→ sftm[γ,arr[base[α], τ]],
Var :∀γ, α . var[γ, α]→ sftm[γ,base[α]],
Box :∀γ, τ . sftm[·, τ]→ sftm[γ, τ],
C :∀γ, τ, α . con[τ, α] × sp[γ, τ]→ sftm[γ,base[α]],
Empty :∀γ, τ . sp[γ, τ, τ],
Cons :∀γ, τ1, τ2, τ3 . sftm[γ, τ1] × sp[γ, τ2, τ3]→ sp[γ,arr[τ1, τ2], τ3],
shift : (∗, ∗)→ ∗,
Id :∀γ . shift[γ, γ],
Suc :∀γ, δ, α . shift[γ, δ]→ shift[cons[γ,base[α]], δ],
sub : (∗, ∗)→ ∗,
Shift :∀γ, δ . shift[γ, δ]→ sub[γ, δ],
Dot :∀γ, δ, τ . sub[γ, δ] × sftm[γ, τ]→ sub[γ,cons[δ, τ]]

Figure 4.12: Syntactic Framework Definition

Variables and terms are indexed by two types, the first parameter is
always their context and the second is their type. The type var represents
variables with two constructors: Top represents the variable that was
introduced last in the context and if Top corresponds to the de Bruijn
index 0 then the constructor Pop represents the successor of the variable
that it takes as parameter. It is interesting to consider the parameters
of these constructors. Top is simply indexed by its context and type
(variables γ and α respectively). On the other hand, Pop requires three
type parameter: the first γ represents a context, α the resulting type of the
variable, and β the type of the extension of the context. These parameter
make it so that if we apply the constructor Pop to a variable of type α in
context γ we obtain a variable of type α in the context γ extended with
type β. Top and Pop contexts cannot be empty because they refer to
existing variables. The constructor Top is indexed by a context with at

CHAPTER 4. IN PROGRAMMING LANGUAGES 119

least one variable, and its type is the same as the top variable. On the other
hand, the constructor Pop is also indexed by a non-empty context but its
type corresponds to the type of the variable that it takes as a parameter.

As mentioned, terms described by the type family sftm are indexed by
their context and their type. It is interesting to check in some detail how
the indices of the term constructors follow the typing rules from Fig. 4.6.
The constructor for lambda terms (Lam), extends the context γ with base
type α and then it produces a term in γ of function type from the base
type α to the type of the body τ. The constructor for boxes simply forces
its body to be closed by using the context type nil. The constructor
Var simply embeds variables as terms. Finally the C constructor has two
parameters, one is the name of the constructor from the user’s definitions
that constrains the type of the second parameter, the other is the term of
the appropriated type.

The definition of substitution is a modified presentation of the substitu-
tion for well-scoped de Bruijn indices, as for example presented in [Benton
et al., 2012b]. We define two types, sub and shift indexed by two con-
texts, the domain and the range of the substitutions. Substitutions are
either a shift (constructor Shift) or the combination of a term for the
top-most variable and the rest of the substitution (constructor Dot).

Our implementation differs from Benton et al. [2012b] in the represen-
tation of renamings. Benton et.al define substitutions and renamings, the
latter as a way of representing shifts. However to compute a shift, they
need the context that they use to index the data-types. Hence, contexts are
not erasable during run-time. As we do want contexts to be erasable at
run-time, we cannot use renamings. Instead, we replace renamings with
typed shifts (defined in type shift), that encode how many variables
we are shifting over. This is encoded in the indices of shifts.

Variables that use de Bruijn indices and shifts ultimately correspond to
natural numbers, as they encode how many binders we need to traverse,

CHAPTER 4. IN PROGRAMMING LANGUAGES 120

or how many variables a shift adds. However, we use specialized data
types because we explicitly carry the typing information in the indices.
Finally, we omit the function implementing the substituti0on as it is stan-
dard. We will simply mention that we implement a function apply_sub
of type:

∀γ, δ, τ . sftm[γ, τ]→ sub[γ, δ]→ sftm[δ, τ]

That applies a substitution moving a term from context γ to context δ.

CHAPTER 4. IN PROGRAMMING LANGUAGES 121

The finding the path to a variable example from Section 4.2.1.2, contains
a signature that defines the untyped λ-calculus. This would result in a
new type, and two new constructors for the existing type con. We will
prefix the definitions with def_ to create unique names:

• A new type: def_tm : ∗

• A constructor for applications:
def_app :con[base[def_tm],base[def_tm] × base[def_tm]]

• A constructor for abstractions:
def_lam :con[base[def_tm],arr[base[def_tm],base[def_tm]]]

To implement the signature we declare a new type for the terms of the
defined language (def_tm), and we extend the type of SF constructors,
with as many constructors as our signature had (def_app anddef_lam).

4.8 From Core-ML with Contextual Types to

Core-MLgadt

In this section, we translate Core-ML with contextual types into the lower
level Core-MLgadt. Because our embedding of the syntactic framework SF
in Core-MLgadt is intrinsically typed, there is no need to extend the type-
checker to accommodate contextual objects. Further, recall that we re-
stricted quoted variables and parameter variables such that the matching
operation remains first order. In addition, as our deep embedding uses a
representation with canonical names (namely de Bruijn indices), we are
able to translate pattern matching into Core-MLgadt’s pattern matching;
thus there is no need to extend the operational semantics of the language.

The translation we describe in this section provides the footprint of an
implementation of it to directly generate OCaml code, as Core-MLgadt is

CHAPTER 4. IN PROGRAMMING LANGUAGES 122

essentially a subset of OCaml. It therefore shows how to extend a func-
tional programming language such as OCaml with the syntactic frame-
work with minimal impact on OCaml’s compiler.

Our main translation of Core-ML to Core-MLgadt uses the following
main operations:

pτq, pΞq, pΓq : Translate types, signatures and contexts.
peqΓ`τ : Type directed translation of expressions.
ppatqΓ′Γ`τ : Translates patterns and outputs Γ′ the

context of the bound variables.

We begin by translating SF types and contexts into Core-MLgadt types.
These types are used to index terms in the implementation of SF:

SF Types: pa→ Aq = arr[a, pAq]

p�Aq = boxed[pAq]

paq = a

SF Contexts: p·q = nil[]

pΨ, x : aq = cons[pΨq, a]

The translation of SF terms is directed by their contextual type Ψ `

A, because it needs the context to perform the translation of names to

CHAPTER 4. IN PROGRAMMING LANGUAGES 123

de Bruijn indices and the types to appropriately index the terms.

SF Terms: pλ x.MqΨ`a→A = Lam[cons[pΨq, a], pAq]pMqΨ,a`A
p{M}qΨ`�A = Box[pΨq, pAq]pMq·`A
pxqΨ`a = Var[pΨq, a]pxqv

Ψ

pc
−→
MqΨ`a = C[pΨq, pAq, a](c, p

−→
MqΨ`A↓a)

with Σ(c) = A

pM[σ]qΨ`A = apply_subpMqΦ`ApσqΨ`Φ
p’uqΨ`A = u

p#vqΨ`a = Var[pΨq, a]pvqΨ`a

pN
−→
MqΨ`A→B↓a = Cons[pΨq,arr[pAq, pBq], a]

(pNqΨ`A, p
−→
MqΨ`B↓a)

p·qΨ`a↓a = Empty[pΨq, a, a]

SF Vars.: pxqv
Ψ,x : a`a = Top[pΨq, a]

pyqv
Ψ,x : b`a = Pop[pΨq, a,b]pyqv

Ψ`a

Param. Vars: pxqΨ`a = x

p#vqΨ,y : a′`a = Pop[pΨq, a, a′]pvqΨ`a

There are are three kinds of variables in the syntactic framework SF:
bound variables, quoted variables and parameter variables. Each kind
requires a different translation strategy. Bound variables are translated
into de Bruijn indices where the numbers are encoded using the con-
structors Top and Pop. Quoted variables are simply translated into the
Core-MLgadt variables they quote. And finally the parameter variables are
translated into a Var constructor to indicate that the resulting expression
is an SF variable, and the shifts (indicated by extra ’#’) are translated to
applications of the constructor Pop.

Notice how substitutions are not part of the representation. They are
translated to the eager application of apply_sub, an OCaml function
that performs the substitution. Before we call apply_sub we translate

CHAPTER 4. IN PROGRAMMING LANGUAGES 124

the substitution. This amounts to generating the right shift for empty
substitutions and otherwise recursively translating the terms and the
substitution.

We also need to translate SF patterns into Core-MLgadt expressions with
the right structure. The special cases are:

• Variables are translated to de Bruijn indexes.

• Quoted variables simply translate to Core-MLgadt variables.

• Parameter variables translate to a pattern that matches only vari-
ables by specifying the Var constructor.

The translation of patterns follows the same line as the translation of
terms, however, we do not use the indices of type variables in Core-MLgadt

patterns. This is indicated by writing an underscore.
Additionally, the translation of substitutions amounts to generating the

right shift for empty substitutions and otherwise recursively translating
the terms and the substitution:

p·qΨΨ = Shift[pΨq, pΨq](Id[pΨq, pΨq])

p·qΦΨ,x : a = Shift[pΨ, x : aq, pΦq]
(Suc[pΨ, x : aq, pΦq]p·qΦΨ)

pσ, x/MqΦ,x : A
Ψ

= Dot[pΨq, pΦq, a](pσqΦΨ, pMqΦ`a)

Our Babybel prototype (see also our examples from the beginning) ex-
ploits the power GADTs to model context relations and relies on OCaml’s
type reconstruction engine [Garrigue and Rémy, 2013] to infer the omitted
indices.

CHAPTER 4. IN PROGRAMMING LANGUAGES 125

SF Patterns: pλ x.RqΓ
Ψ`a→A = Lam[_, _, _]pRqΓ

Ψ,a`A

p{R}qΓ
Ψ`�A = Box[_, _]pRqΓ

·`A

pxq·Ψ`a = Var[_, _]pxqp
Ψ

pc
−→
RqΓΨ`a = C[_, _, _]p

−→
RqΓ

Ψ`A↓a

with Σ(c) = A

p’uqu : pΨ`Aq
Ψ`A = u

p#xqx : pΨ`Aq
Ψ`a = Var[_, _]x

p##xqx : pΨ,y : _`Aq
Ψ,y : _`a = Var[_, _](Pop[_, _, _]x)

pR
−→
R′qΓ,Γ

′

Ψ`A→B↓a = Cons[_, _, _, _](pRqΓ
Ψ`A, p

−→
R′qΓ′

Ψ`B↓a)

p·q·
Ψ`a↓a = Empty[_, _]

SF Variables: pxqp
Ψ,x : a = Top[_, _]

pyqp
Ψ,x : b = Pop[_, _, _]pyqp

Ψ

Figure 4.13 shows the translation of types, signatures and contexts for
the computational language and the index language.

The translation of Core-ML expressions into Core-MLgadt directly fol-
lows the structure of programs in Core-ML and is type directed to fill
in the required types for the Core-MLgadt representation. Figure 4.14
contains the translation.

Finally we show that the translation from Core-ML with contextual
types into Core-MLgadt preserves types.

Theorem 4.8.1 (Main).

1. If Γ ` e⇐ τ then ·; pΓq ` peqΓ`τ : pτq.

2. If Γ ` i⇒ τ then ·; pΓq ` piqΓ`τ : pτq.

Our result follows form mutual induction on the typing derivations
and relies on several lemmas that deal with the other judgments and
context lookups. Appendix B contains the proofs.

CHAPTER 4. IN PROGRAMMING LANGUAGES 126

Translating Types:

pDq = D[]
pτ1 → τ2q = pτ1q→ pτ2q
p[Ψ ` A]q = pAq

p−→τ q = pτ1q, . . . , pτnq

Translating Signatures:

p·q = ·

pΞ,Dq = pΞq,D : ∗
pΞ,C :−→τ → Dq = pΞq,C : p−→τ q→ D[]

Translating Contexts:

p·q = ·

pΓ, x : τq = pΓq, x : pτq

Translating SF Signatures:

p·q = ·

pΣ, a :typeq = pΣq, a : ∗
pΣ, c : A→ aq = pΣq, c : pAq→ a

Translating SF Contexts:

p·q = nil[]
pΨ, x : aq = cons[pΨq, a]

Figure 4.13: Translating Types, Signatures, and Contexts

CHAPTER 4. IN PROGRAMMING LANGUAGES 127

Translating expressions:

pxqΓ`τ = x
pC−→e qΓ`D = C[] p−→e qΓ`−→τ with Ξ(C) = −→τ → D

pfun f (x) = eqΓ`τ1→τ2 = fix f : pτ1 → τ2q = λx . peqΓ,x : τ1`τ2

pi eqΓ`τ = piqΓ`τ1→τ peqΓ`τ1

with Γ ` i⇒ τ1 → τ
plet x = i in eqΓ`τ = let x = piqΓ`τ1 in peqΓ,x : τ1`τ

with Γ ` i⇒ τ1

pmatch iwith
−→
b qΓ`τ = match piqΓ`τ1 with p

−→
b qΓ`τ1→τ

with Γ ` i⇒ τ1

pe1, . . . , enqΓ`−→τ = pe1qΓ`τ1 , . . . , penqΓ`τn

p[Ψ̂ `M]qΓ`[Ψ`A] = pMqΨ`A
pcmatch iwith −→c qΓ`τ = match piqΓ`[Ψ`A] with p−→c qΓ`[Ψ`A]→τ

with Γ ` i⇒ [Ψ ` A]

Translating branches and patterns:

ppat 7→ eqΓ`τ1→τ2 = ppatqΓ′Γ`τ1
7→ peqΓ,Γ′`τ2

pxqx : τ
Γ`τ = x

pC
−→
patqΓ′Γ`D = C[] p

−→
patqΓ′

Γ`−→τ

with Ξ(C) = −→τ → D

Translating branches:

p[Ψ ` R] 7→ eqΓ`[Ψ`A]→τ = pRqΓ′
Ψ`A 7→ peqΓ,Γ′`τ

Figure 4.14: Translating Computational Expressions

CHAPTER 4. IN PROGRAMMING LANGUAGES 128

Lemma 2 (Ambient Context). If Γ(u) = [Ψ ` a] then
pΓq(u) = sftm[pΨq, a].

Lemma 3 (Terms).

1. If Γ; Ψ `M : A then ·; pΓq ` pMqΨ`A : pΨ ` Aq.

2. If Γ; Ψ ` σ : Φ then ·; pΓq ` pσqΨ`Φ : pΨ ` Φq

Lemma 4 (Pat.). If ` pat : τ ↓ Γ then · ` ppatqΓ
Ψ`A : pτq ↓ Γ.

Lemma 5 (Ctx. Pat.). If Ψ ` R : A ↓ Γ then · ` pRqΓ
Ψ`A : pΨ ` Aq ↓ Γ.

Given our set-up, the proofs for the are straightforward by induction
on the structure of Γ and the typing derivation for Lemma 4, 5, 6.

4.9 A Proof of Concept Implementation

In this section, we describe the implementation3 of Babybel which uses
the ideas described in this chapter. One major difference is that Babybel
translates OCaml programs that use syntax extensions for contextual SF
types and terms and translates them into pure OCaml with GADTs. In
fact, even our input OCaml programs may use GADTs to for example
describe context relations on SF contexts (see also our examples from
Sec.4.2).

The presence of GADTs in our source language also means that we can
specify precise types for functions where we can quantify over contexts.
Let’s revisit some of the types of the programs that we wrote earlier in
Sec.4.2:

• rewrite: γ. [γ ` tm]→[γ ` tm]: we implicitly quantify
over all contexts γ and then we take a potentially open term and

3Available at www.github.com/fferreira/babybel/

www.github.com/fferreira/babybel/

CHAPTER 4. IN PROGRAMMING LANGUAGES 129

return another term in the same context. These constraints imposed
in the types are due to being able to index types with types thanks
to GADTs.

• get_path: γ. [γ,x:tm ` tm]→path: In this case we quan-
tify over all contexts, but the input of the function is some term in a
non-empty context. On the left of the turn-style our type mandates
that there is at least one assumption of type tm. Notice how the
return type is not inside a box(i.e.: square braces) because it is a
regular OCaml recursive type and not a contextual type. We can
mix and match as necessary.

• conv: γ δ.(γ, δ) rel→[γ ` tm]→[δ ` ctm]:
This final example shows that we can also use the contexts to index
regular OCaml GADTs. In this function we are translating between
terms in different representations. Naturally, their contexts contain
assumptions of different type. To be able to translate between these
different context representations, it is necessary to establish a rela-
tion between these contexts. So we need to define a special OCaml
type (i.e.:rel) that relates variable to variable in each contexts.

By embedding the SF in OCaml using contextual types, we can combine
and use the impure features of OCaml. Our example, in Section 4.2.1.2
takes advantage of them in our implementation of backtracking with ex-
ceptions. Additionally, performing I/O or using references works seam-
lessly in the prototype.

The presence of GADTs in our target language also makes the actual
implementation of Babybel simpler than the theoretical description, as
we take advantage of OCaml’s built-in type reconstruction. In addition
to GADTs, our implementation depends on several OCaml extensions.
We use Attributes from Section 7.18 of the reference manual [Leroy et al.,
2016a] and strings to embed the specification of our signature. We use

CHAPTER 4. IN PROGRAMMING LANGUAGES 130

quoted strings from Section 7.20 to implement the boxes for terms (L...
M) and patterns (L...Mp). All these appear as annotations in the internal
Abstract Syntax Tree in the compiler implementation. To perform the
translation (based on Section 4.8) we define a PPX rewriter as discussed
in Section 23.1 of the OCaml manual. In our rewriter, we implement a
parser for the framework SF and translate all the annotations using our
embedding.

The Babybel prototype has been used to implement several case studies
that expand from the examples at the beginning of this chapter. The
Babybel distribution contains the following case studies besides some
smaller programs used as a test suite.

• The example that removes syntactic sugar from Section 4.2.1.1.

• The example that finds the path to a variable from Section 4.2.1.2.

• The closure conversion example from Section 4.2.1.3.

• Inferring types for MiniML.

• An evaluator for an untyped MiniML.

• Comparing λ-terms up to alpha renaming.

• Translating the λ-calculus to a CPS form.

Currently, implementing these programs was straightforward and not
having to think about the representation of binders was liberating. Along
with the examples there are a couple of compiler phases, it would be in-
teresting to implement a small compiler combining them and generating
some code. Much remains to be done, but the prototype is already us-
able4.

4Given that type-checking is done by OCaml on the translation, the error messages
are far from perfect, but otherwise it is easy to use.

CHAPTER 4. IN PROGRAMMING LANGUAGES 131

4.10 Related Work

Babybel and the syntactic framework SF are derived from ideas that orig-
inated in proof checkers based on the logical framework LF such as the
Twelf system [Pfenning and Schürmann, 1999]. In the same category are
the proof and programming languages Delphin [Poswolsky and Schür-
mann, 2009] and Beluga [Pientka and Cave, 2015] that offer a computa-
tional language on top of the LF. In many ways, this chapter and Babybel
are a distillation of Beluga’s ideas applied to a mainstream programming
language. As a consequence, we have shown that we can get some of the
benefits from Beluga at a much lower cost, since we do not have to build
a stand-alone system or extend the compiler of an existing language to
support contexts, contextual types and objects.

Our approach of embedding an LF specification language into a host
language is in spirit related to the systems Abella [Gacek et al., 2012] and
Hybrid [Felty and Momigliano, 2012] that use a two-level approach. In
these systems we embed the specification language (typically hereditary
harrop formulas) in first-order logic (or a variant of it). While our ap-
proach is similar in spirit, we focus on embedding SF specifications into
a programming language instead of embedding it into a proof theory.
Moreover, our embedding is type preserving by construction.

There are also many approaches and tools that specifically add sup-
port for writing programs that manipulate syntax with binders – even if
they do not necessarily use HOAS. FreshML [Shinwell et al., 2003] and
Cαml [Pottier, 2006] extend OCaml’s data types with the ideas of names
and binders from nominal logic [Pitts, 2003]. In these system, name gen-
eration is an effect, and if the user is not careful variables may extrude
their scopes. Purity can be enforced by adding a proof system with a
decision procedure that statically guarantees that no variable escapes its
scope [Pottier, 2007]. This adds some complexity to the system. We feel
that Babybel’s contextual types offer a simpler formalism to deal with

CHAPTER 4. IN PROGRAMMING LANGUAGES 132

bound variables. On the other hand, Babybel’s approach does not try to
model variables that do not have lexical scope, like top-level definitions.
Another related language is Romeo [Stansifer and Wand, 2014] that uses
ideas from Pure FreshML to represent binders. Where our system stat-
ically catches variables escaping their scope, the Romeo system either
throws a run time exception or uses an SMT solver to prove the absence
of scoping issues. The Hobbits for Haskell [Westbrook et al., 2011] system
is implemented in a similar way to ours, using quasi-quoting but they
use a different formalism based on the concepts of names and freshness.
In general, parametric HOAS (PHOAS) [Chlipala, 2008] reuses the exten-
sional (as in black box functions) function space of the language, while
our approach introduces a distinction between an intensional and exten-
sional function space. A particular approach is described in [Washburn
and Weirich, 2008] where the authors propose a library that uses cata-
morphisms to compute over a parametric HOAS representation. This
is a powerful approach but requires a different way of implementing
recursive functions.

The separate intensional function space from SF allows us to model
binding and supports pattern matching. The extentional function space
allows us to write recursive functions. Following essentially work started
by Despeyroux, Schuermann, and Pfenning [Despeyroux et al., 1997] and
then later in the work on Beluga, we use a modality to embed syntac-
tic objects characterized using the intensional function space into our
programs. This is done while preserving the host language’s (ML) exten-
sional function space that allows for computation.

4.11 Conclusion

In this chapter, we describe the syntactic framework SF (a simply typed
variant of the logical framework LF with the necessity modality from

CHAPTER 4. IN PROGRAMMING LANGUAGES 133

S4) and explain the embedding of SF into a functional programming
language using contextual types. This gives programmers the ability to
write programs that manipulate abstract syntax trees with binders while
knowing at type checking time that no variables extrude their scope.
We also show how to translate the extended language back into a first
order representation. For this, we use de Bruijn indices and GADTs
to implement the SF in Core-MLgadt. Important characteristics of the
embedding are that it preserves the phase separation, making types (and
thus contexts) erasable at run-time. This allows pattern matching to
remain first-order and thus it is possible to compile with the traditional
algorithms.

Finally, we describe Babybel an implementation of these ideas that
embeds SF in OCaml using Contextual Types. The embedding is flexible
enough that we can take advantage of the more powerful type system
in OCaml to make the extension more powerful. We use GADTs in our
examples to express more powerful invariants (e.g. that the translation
preserves the context).

5 Contextual Types and Type Theory

5.1 Introduction

This is the last chapter1, but in a sense it is not the end but the beginning
of what we hope will be a fruitful research path. This chapter presents the
first steps on answering an important question in this field, namely how to
integrate contextual types and the logical framework LF with a reasoning
language that provides full dependent types. Here, we develop a system
that extends the ideas of Chapter 4 to a system that combines the logical
framework LF [Harper et al., 1993] with an extended Martin-Löf style
type theory [Martin-Löf, 1984] (MLTT). As in Babybel, the embedding
uses contextual types [Nanevski et al., 2008] to mediate between both
layers and allow the system to effortlessly represent open objects.

Furthermore, this system can be seen also as an extension of the the-
ory of Beluga [Pientka and Cave, 2015] into full dependent types. The
resulting system supports the definition of abstract syntax with binders
and the use of substitutions. This simplifies proofs about systems with
binders by providing for free the substitution lemma and lemmas about
the equational theory of substitutions. As in Beluga, we mediate between
specifications and computations via contextual types. However, unlike
Beluga, we can embed and use computations directly in contextual ob-
jects and types, hence we allow the arbitrary mixing of specifications and
computations. Moreover, dependent types allow for reasoning about
proofs in addition to reasoning about LF specifications. This resulted
in the Orca language, with its prototype implementation available at
https://github.com/orca-lang/orca.

From an expressivity perspective, Orca and Beluga differ as when using
1This is the last chapter before the concluding remarks and conclusion.

134

https://github.com/orca-lang/orca

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 135

the former the user can reason about specifications and computational
functions. While the latter cannot reason about computations and instead
needs to specify the computations in a relational style in LF.

The focus of this chapter is to describe the theory that is implemented
by the Orca language (where the prototype already implements some
extensions to the theory presented here) and to describe some ideas for
an appropriate surface language for this theory. In particular, we will
discuss how the prototype tries to alleviate the mediation between the
two main syntactic categories (the specifications in LF and the reasoning
language) by performing what we call a box inference pass on the surface
language. Much remains to be done. As we discuss in the future work
section a particularly important next step is to work on the meta-theory of
this language. This will settle the answer to the question how to combine
LF specifications with dependent types, while this chapter just hints at
the answer.

5.2 Example: Translating Boolean Types

Let’s consider a simple example of translating between two languages
with a different representation of boolean types. Starting from a simply
typed λ-calculus with boolean type:

Types t ::= bool | t→ t′

Expressions e ::= tt | ff | if ethen e′ else e′′ | λxt.e | e e′ | x
Context Γ ::= · | Γ, x : t

We want to translate into a language that lacks booleans, but instead it

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 136

Γ ` e : t : e is of type t in context Γ

Γ ` tt :bool t-tt
Γ ` ff :bool t-ff

Γ ` e :bool Γ ` e′ : t Γ ` e′′ : t
Γ ` if ethen e′ else e′′ : t t-if

Γ, x : t ` e : t′

Γ ` λxt.e : t→ t′
t-lam Γ ` e : t′ → t Γ ` e′ : t′

Γ ` e e′ : t
t-app

x : t ∈ Γ
Γ ` x : t t-var

Figure 5.1: The Typing of the Source Language

has unit and sums:

Types T ::= 1 | T + T′ | T→ T′

Expressions E ::= () | inlT E | inrT E
| (caseEinl x 7→ E′ | inr x 7→ E′′)
| λxT.E | E E′ | x

Context ∆ ::= · | ∆, x : T

The typing for both languages is as one would expect. For complete-
ness, Figure 5.1 contains the typing rules for the source language and
Figure 5.2 contains the typing for the target language.

The idea for the translation is that type bool from the source language
can be represented by type 1 + 1 in the target language, and that there is
a mechanical way to translate expressions in a way that preserves types.

The translation of types is a function from types in the source language
to types in the target language and it is defined as follows:

~bool� = 1 + 1
~t→ t′� = ~t�→ ~t′�

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 137

∆ ` E : T : E is of type T in context ∆

∆ ` () :1 T-unit x : T ∈ ∆
∆ ` x : T T-var

∆ ` E : T′

∆ ` inlT E : T′ + T
T-inl ∆ ` E : T′

∆ ` inrT E : T + T′
T-inr

∆ ` E : T′ + T′′ ∆, x : T′ ` E′ : T ∆, x : T′′ ` E′′ : T
∆ ` caseEinl x 7→ E′ | inr x 7→ E′′ : T T-case

∆, x : T ` E : T′

∆ ` λxT.E : T→ T′
T-lam ∆ ` E : T′ → T ∆ ` E′ : T′

∆ ` E E′ : T
T-app

Figure 5.2: The Typing of the Target Language

Finally, the translation of expressions depends on the translation of
types and it is as follows:

~tt� = inlunit ()
~ff� = inrunit ()

~if ethen e′ else e′� = case ~e�inl _ 7→ ~e′� | inr _ 7→ ~e′′�
~λxt.e� = λx~t�.~e�
~e e′� = ~e� ~e′�
~x� = x

This translation can be implemented as a function that computes the
expression in the target language. Moreover, it would be interesting to
establish some properties of the translation. One such property is the
fact that the translation is type preserving. Notice, that because both
languages have different types, we say that the idea of type preservation
is up-to the notion of translated types.

Let’s consider how to formalize this in Orca in the most direct way. This
is as opposed to formalizing an existing proof. The idea is to minimize

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 138

the lemmas and complexity of the formalization. To this end, let’s specify
the source and the target languages in an intrinsically typed way. That is,
using dependent types in the logical framework LF to easily restrict the
expressions to those that are well-typed.

spec s-tp : * where
| bool : s-tp
| arr : s-tp � s-tp � s-tp

spec s-exp : s-tp � * where
| app : (s : s-tp) � (t : s-tp) �

s-exp (arr s t) � s-exp s � s-exp t
| lam : (s : s-tp) � (t : s-tp) �

(s-exp s � s-exp t) � s-exp (arr s t)
| tt : s-exp bool
| ff : s-exp bool
| if : (t : s-tp) �

s-exp bool � s-exp t � s-exp t � s-exp t

In this code, we define two new types families, first s-tp for types and
for expressions s-exp. Notice how the expressions form a type family
where expressions are indexed by their types (i.e.: the function from s-tp

to * that represents the base kind for LF specifications). The declaration
of constructors is straightforward even if the lack of implicit parameters
makes it verbose. Specifically, applications take two expressions, the first
one a function from s to t and a parameter of appropriate type to produce
an expression of type t. The constructor lam builds an abstraction from
an expression with one bound variable (using HOAS we represent the
binder using the LF function space) to produce an expression of function
type. Then the two values of boolean type, and finally expressions of
boolean type are eliminated with if expressions. It is straightforward
to see how these definitions follow from the typing rules in Figure 5.1.
Notice how, for LF specifications (declared with spec), we use a special
function space (x : α) � β to indicate the LF function space. Also, as it is
commonly done, for non dependent functions we use α � β when α does
not occur in β.

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 139

spec t-tp : * where
| tunit : t-tp
| tsum : t-tp � t-tp � t-tp
| tarr : t-tp � t-tp � t-tp

spec t-exp : t-tp � * where
| tapp : (s : t-tp) � (t : t-tp) �

t-exp (tarr s t) � t-exp s � t-exp t
| tlam : (s : t-tp) � (t : t-tp) �

(t-exp s � t-exp t) � t-exp (tarr s t)
| tone : t-exp tunit
| tinl : (s : t-tp) � (t : t-tp) �

t-exp s � t-exp (tsum s t)
| tinr : (s : t-tp) � (t : t-tp) �

t-exp t � t-exp (tsum s t)
| tcase : (s : t-tp) � (t : t-tp) � (r : t-tp) �

t-exp (tsum s t) � (t-exp s � t-exp r) �
(t-exp t � t-exp r) �

t-exp r

The target language is similar to the source language, and it is repre-
sented in a analogous way. Notice, how we model the binders in the
branches of the case expression with the logical framework’s function
space.

The translation of types is represented with a function from source
types to target types. We use the keyword def to introduce a top level
function definition with pattern matching. It is implemented as follows:

def tran-tp : (` s-tp) → (` t-tp) where
| bool ⇒ tsum tunit tunit
| (arr s t) ⇒ tarr (tran-tp s) (tran-tp t)

First notice the type specification after the colon in the first line where
the turn-styles specify that these are specification types and that they are
closed types (after all these two languages types have no binders in them).
Then the implementation of the function goes by pattern matching on the
argument and producing the appropriate target type according to the
definition. In Orca, definitions are elaborated in a type directed way to
allow the user to omit the boxes when possible. This is explained further

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 140

when we describe the prototype in Section 5.5 and we show the result of
the reconstruction of boxes for the translation function in Figure 5.17.

We proceed similarly to implement the translation of expressions.
However, let’s consider the type for the translation function first. A
first idea could be:

def tran : (st : ` s-tp) → (` s-exp st) →
(` t-exp (tran-tp st)) where

...

This type indicates that given a closed source expression of type st we
can produce a closed target expression whose type will be the translation
of type st. Notice how this is a place we interleave specifications and
computations as the resulting expression’s type is the result of actually
calling the function tran-tp on the source expression. In a system without
computation in types like Beluga, we need to implement this using a
relation and this requires a couple of lemmas to show that the relation
is actually a function. As a reference Appendix C contains a Beluga
implementation of this example. However, this type is not strong enough
as the recursive calls may go under binders. Thus we need to be able to
translate open expressions. We need to generalize this type to arbitrary
contexts and add a context relation that expresses that the source context
and target context grow in unison. Context relations are required because
so far, Orca contexts can contain assumptions of any kind. For this we
define a binary relation on contexts as follows:

data rel: ctx → ctx → set where
| empty : rel ∅ ∅
| cons : (g h : ctx) (t : ` s-tp) →

rel g h →
rel (g, x: s-exp t)

(h, y: t-exp (tran-tp t))

In this relation the empty constructor states that empty contexts are re-
lated, and the cons constructor shows that if we have two related contexts
we can extend both contexts with a fresh related assumption.

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 141

With all this in place, we can write the translation function:
def tran : (g h : ctx) → rel g h →

(st : ` s-tp) → (g ` s-tm st) →
(h ` t-tm (tran-tp st))

where
| g h r t (app s[^] .t m n) ⇒

tapp (tran-tp s) (tran-tp t)
(tran g h r (arr s t) m) (tran g h r s n)

| g h r (arr s[^] t[^]) (lam .s .t m) ⇒
tlam (tran-tp s) (tran-tp t)

(λx. tran (g,x:s-tm s) (h,x:t-tm (tran-tp s))
(cons g h s r) t (m x))

| g h r bool tt ⇒
tinl tunit tunit tone

| g h r bool ff ⇒
tinr tunit tunit tone

| g h r t (if .t b e1 e2) ⇒
tcase tunit tunit (tran-tp t) (tran g h r bool b)

(λx. tran g h r t e1)
(λx. tran g h r t e2)

(* when translating variables it is either the top variable *)
| ._ ._ (cons g h .t r) t (g, x: s-tm t :> x) ⇒

(h, x: t-tm (tran-tp t) :> x)
(* or a variable deeper in the context (hence the shift) *)
| ._ ._ (cons g h t r) s (v[^1]) ⇒

tran g h r s v

The function tran has type:
(g h : ctx) → rel g h → (st : ` s-tp) → (g ` s-exp st) →

(h ` t-exp (tran-tp st))

This function transforms expressions of type: (g ` s-exp st) into ex-
pressions of type (h ` t-exp (tran-tp st)), where it computes the type of
the source expression by embedding the computation tran-tp st in the
resulting type. The computation proceeds by pattern matching, in the
patterns we write ._ for inaccessible patterns that the implementation
fills in automatically. Inaccessible patterns are a concept from Agda that
simplifies implementing pattern matching, their value is forced by the
other variables, for example in the pattern for lambda expressions g h r

(arr s[^] t[^]) (lam ._ ._ m) the two inaccessible patterns are forced by

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 142

the arrow type to be s and t respectively. In the same pattern, we want to
indicate that the types of expressions are closed, we annotate s and t with
the empty substitution (i.e.:[^]) that prevents them from using variables
from the context. We build contextual types by combining a term with a
context (e.g.: g ` s-exp st), for contextual terms we use a different syntax
to make it easier to disambiguate between types and terms, contexts and
terms are combined in the following way: g, x: s-tm t :> x.

This is a simple example, but even in its simplicity it showcases the
power of the Orca language. Even if the Orca prototype does not offer
many of the features present in Beluga, this example shows a hint to what
is coming in the future. In the next section, we peek behind the curtains
into Orca’s type theory.

5.3 Orca’s Core Calculus

Orca’s core calculus is composed of two separate languages, a reasoning
and computation language on one side and a specification language on the
other side. We refer to the former as the computation language when
we want to emphasize that we can write programs with it, and as the
reasoning language when trying to emphasize that we can write proofs
with it.

The syntax for the reasoning language is a fully dependently typed
theory, extended with contextual types and terms (in red in the syntax),
it is exactly as one would expect a type theory to be. As is the case with
Agda [Norell, 2007] and Idris [Brady, 2013], we do not have recursion
in the calculus, but we do top-level recursive definitions that allow for
defining inductive functions. We say contextual objects are boxed spec-
ifications as a reference to the contextual modality in contextual modal
type theory [Nanevski et al., 2008]. The type for contexts is a simplifica-
tion that avoids discussing classifiers for contexts (i.e.: context schemas).

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 143

This is a limitation of the current presentation of the theory, and it makes
discussing totality and coverage difficult. In short, it would be necessary
to add schemas to be able to describe a coverage checking algorithm.

Reasoning Language

Terms E,S,T ::= setn A universe of level n
| (x : S)→ T A function type
| λx.E An abstraction
| E E′ An application
| x A variable
| c A constant
| [Ψ̂ . M] A contextual term
| [Ψ ` α] A contextual type
| ctx The type of contexts

Conversely, the specification language is a version of the logical frame-
work LF, but instead of meta-variables, it supports a direct embedding
of computations together with a substitution, to unbox the result of com-
putation into a specification object. Of course, the computation needs to
produce a result of specification type.

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 144

Specification Language

Kinds K ::= ? The base kind
| (̂x :α)� K A kind family

Families α, β ::= a A base type
| (̂x :α)� β A type family
| αM A family instance

Objects M,N ::= λ̂x.M An abstraction
| M ' N An application
| x̂ A variable
| ĉ A constant
| bEcσ An unboxed computation

Substitutions σ ::= ∧ An empty substitution
| idn An identity substitution,

with weakening
| σ; x̂ := M A substitution extension

Context Ψ ::= ∅ Empty context
| bxc An unboxed context variable
| Ψ, x̂ :α A context extension

Erased Context Ψ̂ ::= ∅ An empty context
| bxc An unboxed context variable
| Ψ̂, x̂ A variable declaration

Finally, we define contexts for computational variables, that as in Chap-
ter 4 will be the meta-variables for incomplete objects, and a signature to
define types and constants for computation terms and for the specification
language.

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 145

Signature and Computational Context

Context Γ ::= · Empty context
| Γ, x : T An assumption

Signature Σ ::= · Empty signature
| Σ, c : T A comp. constant
| Σ, a : K A spec. type
| σ, ĉ :α A spec. constant

We present a Martin-Löf style type theory with an infinite hierarchy
of universes extended with contextual types [Ψ ` α] which represent a
specification type α in an open context Ψ. Specification types are classi-
fied by a single universe ?, together with an intensional function space
(̂x :α) � β and constants. Substitutions can be an empty substitution ∧

which weakens closed objects, an identity substitution idn that weakens
the context with n elements (we write id = id0 as syntactic sugar), or a
substitution extended with an object for a variable σ; x̂ := M. Contexts
are either empty ∅ or a context extended with a new assumption Ψ, x̂ : A.

Type theory terms and specification objects are typed with two different
judgments Γ ` E : T and Γ; Ψ ` M : β, respectively. For instance, we type
the type theory functions and specifications functions in the following
way:

Γ, x : S ` E : T
Γ ` λx.E : (x : S)→ T t-fun

Γ; Ψ, x̂ :α `M : β

Γ; Ψ ` λ̂x.M : (̂x :α)� β
s-lam

The two function spaces differ by the contexts they act on and that
the computational function space is extensional (i.e.: we can compute
with these functions) while the specification function space is intensional
(i.e.: we can inspect these functions with pattern matching) in the sense
of Pfenning [2001]. Type theory λ-abstractions introduce variables in
the computational context Γ while specification λ̂-abstractions use the

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 146

Substitution in the reasoning language

{θ}setn = setn

{θ} (x : S)→ T = (x : {θ}S)→ {θ; x := x}T for x free in θ
{θ}λx.E = λx.({θ; x := x}E) for x free in θ
{θ}E E′ = ({θ}E) ({θ}E′)
{θ} x = E if x := E is in θ
{θ} x = x if x is not in θ
{θ} c = c
{θ} [Ψ̂ . M] = [{θ} Ψ̂ . {θ}M]
{θ} [Ψ ` α] = [{θ}Ψ ` {θ}α]

Figure 5.3: Computation Substitution

specification context Ψ. The β-rule for each λ-abstraction uses its own
substitution operation for its corresponding class of variables denoted
respectively {θ}E and [σ]M. The definition for the substitution operations
is presented in Figures 5.3, 5.4, 5.5, and 5.6. This is in contrast to bEcσ for
the closure that embeds a computation of boxed type into a specification
and is defined by the following introduction rule:

Γ; Ψ ` σ : Φ Γ ` E : [Φ ` α]
Γ; Ψ ` bEcσ : [σ]α s-clo

In addition to the description of the term calculus we present a proto-
type implementation2 for our type theory which supplements the calcu-
lus with recursive functions and Agda-style dependent pattern matching
[Norell, 2007] extended to allow matching on specifications including
specification-level λ-abstractions and thus abstracting over binders.

In conclusion, we present a theory that allows for embedding con-
textual LF specifications into a fully dependently typed language that
simplifies proofs about structures with syntactic binders (such as pro-

2Available at:http://github.com/orca-lang/orca

http://github.com/orca-lang/orca

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 147

Substitution in objects of the specification language

{θ} λ̂x.M = λ̂x.({θ}M)
{θ}M ' N = ({θ}M) ' ({θ}N)
{θ} x̂ = x̂
{θ} ĉ = ĉ
{θ} bEcσ = b({θ}E)c({θ} σ)

Substitution in families of the specification language

{θ} a = a
{θ} (̂x :α)� β = (̂x : ({θ}α))� ({θ} β)
{θ}αM = ({θ}α) ({θ}M)

Figure 5.4: Computation Substitution in Specifications

Substitution in the specification contexts

{θ} ∅ = ∅

{θ}Ψ, x̂ :α = ({θ}Ψ), x̂ : ({θ}α)

Substitution in the specification substitutions

{θ} ∧ = ∧

{θ}idn = idn

{θ} σ; x̂ := M = ({θ} σ); x̂ := ({θ}M)

Figure 5.5: Computation Substitution in Contexts and Substitutions

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 148

LF Substitution in objects

[σ] λ̂x.M = λ̂x.([σ; x̂ := x̂] M)
[σ] M ' N = ([σ] M) ' ([σ] N)
[σ] x̂ = M if x̂ := M is in σ
[σ] x̂ = x̂ if x̂ is not in σ
[σ] ĉ = ĉ
[σ] bEcσ′ = bEc([σ] σ′)

LF Substitution in families

[σ] a = a
[σ] (̂x :α)� β = (̂x : ([σ]α))� ([σ; x̂ := x̂] β) with x̂ fresh in σ
[σ]αM = ([σ]α) ([σ] M)

LF Substitution in kinds

[σ]? = ?
[σ] (̂x :α)� K = (̂x : [σ]α)� ([σ; x̂ := x̂] K) with x̂ fresh in σ

Figure 5.6: Specification Substitution

gramming languages and logics). Moreover, we have a prototype, the
Orca system, in which we implement some example proofs.

5.3.1 The Typing of Programs

Type checking depends on these mutually dependent typing judgments:

• Γ ` E : T : E is of type T in context Γ.

• Γ ` Ψ is ctx : Ψ is a valid specification context in ctx. Γ.

• Γ; Ψ ` α is kind : α is a syntactic type in ctx. Γ and spec. ctx. Ψ.

• Γ; Ψ ` α : K : α is a syntactic type in ctx. Γ and spec. ctx. Ψ.

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 149

Γ ` E : T : E is of type T in context Γ

Γ ` setn :set(n+1)
t-set x : T ∈ Γ

Γ ` x : T t-var c : T ∈ Σ
Γ ` c : T t-con

Γ ` S :setn Γ, x : S ` T :set0

Γ ` (x : S)→ T :set0
t-pi-1

Γ ` S :setn Γ, x : S ` T :set(m+1)

Γ ` (x : S)→ T :set(max n (m+1))
t-pi-2

Γ, x : S ` E : T
Γ ` λx.E : (x : S)→ T t-fun

Γ ` E : (x : S)→ T Γ ` E′ : S
Γ ` E E′ : {x := E′}T

t-app

Γ ` E : S Γ ` S ≡ T
Γ ` E : T t-conv

Γ ` Ψ is ctx Γ; Ψ `M :α
Γ ` [Ψ̂ . M] : [Ψ ` α]

t-box∗

Γ ` Ψ is ctx Γ; Ψ ` α :?
Γ ` [Ψ ` α] :set0

t-spec∗

Figure 5.7: Typing for Computations

• Γ; Ψ `M :α : M is of type α in ctx. Γ and spec. ctx. Ψ.

• Γ; Ψ ` σ : Φ : σ transports types from spec. context Φ to ctx. Ψ.

and these definitional equality judgments:

• Γ ` E ≡ E′ : T : E is equal to E′ at type T in context Γ.

• Γ; Ψ `M ≡ N :α : M is equal to N at type α in contexts Γ and Ψ.

• Γ; Ψ ` K ≡ K′ : K is equal to K′ in contexts Γ and Ψ.

• Γ; Ψ ` α ≡ β : K : α is equal to β at kind K in contexts Γ and Ψ.

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 150

• Γ ` Ψ ≡ Φ :ctx : Ψ is equal to Φ in context Γ.

• Γ ` Ψ̂ ≡ Φ̂ :ctx : Erased context Ψ̂ is equal to Φ̂ in context Γ.

The typing for computations appears in Figure 5.7 and the typing for
specifications appears in Figures 5.8 and 5.9. While rules for computa-
tional equality appear in Figure 5.10 and for specifications in Figures 5.11,
5.12, and 5.13. Rules for equivalences and congruence rules are omitted
as they are as expected.

Most rules are as expected, however the interesting ones appear with
a star in their names. These rules, reproduced below deal with the em-
bedding of specifications in computations and vice versa.

Γ ` Ψ is ctx Γ; Ψ `M :α
Γ ` [Ψ̂ . M] : [Ψ ` α]

t-box∗

Γ; Ψ ` σ : Φ Γ ` E : [Φ ` α]
Γ; Ψ ` bEcσ : [σ]α s-unbox∗

The rule t-box embeds an object together with its context in a compu-
tation (of contextual type). And the s-unbox rule allows specifications to
refer to computations, in particular this is essential to represent incom-
plete terms where the role of meta-variables is taken by computational
variables inside an unbox construction.

5.3.2 Equality

Due to the presence of fully dependent types Orca’s computational lan-
guage does not have a distinction between type checking and evaluation
(as evaluation may happen at type check time). As usual, the conversion
rule (rule t-conv in Figure 5.7) is where there may be some computation
to compare two types, that may not be yet in normal form. Equality
(and computation), as typing, is shown in several judgments, one for the

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 151

Γ ` Ψ is ctx : Ψ is a valid specification context in ctx. Γ.

Γ ` ∅ is ctx
c-empty

Γ ` Ψ is ctx Γ; Ψ ` α :?
Γ ` Ψ, x̂ :α is ctx

c-hyp

x :ctx ∈ Γ
Γ ` bxc is ctx c-ctx-var

Γ ` Ψ̂ is erased : Ψ̂ is a valid erased context in ctx. Γ.

Γ ` ∅ is erased
cp-empty Γ ` Ψ is erased

Γ ` Ψ, x̂ is erased
cp-hyp

x :ctx ∈ Γ
Γ ` bxc is erased

cp-ctx-var

Γ; Ψ ` K is kind : α is a syntactic kind in ctx. Γ and spec. ctx. Ψ.

Γ; Ψ ` ? is kind s-kind

Γ; Ψ ` α :? Γ; Ψ, x :α ` K is kind
Γ; Ψ ` (̂x :α)� K is kind

s-pi-k

Γ; Ψ ` α : K : α is a syntactic type in ctx. Γ and spec. ctx. Ψ.

a : K ∈ Σ
Γ; Ψ ` a : K s-base

Γ; Ψ ` α :? Γ; Ψ, x̂ :α ` β :?
Γ; Ψ ` (̂x :α)� β :?

s-fam

Γ; Ψ ` α : (̂x : β)� K Γ; Ψ `M : β
Γ; Ψ ` αM : [x := M]K s-ins

Γ; Ψ ` α : K′ Γ; Ψ ` K ≡ K′

Γ; Ψ ` α : K s-eqk

Figure 5.8: Typing Rules for Specifications (I)

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 152

Γ; Ψ `M :α : M is of type α in ctx. Γ and spec. ctx. Ψ.

Γ; Ψ, x̂ :α `M : β

Γ; Ψ ` λ̂x.M : (̂x :α)� β
s-lam

Γ; Ψ `M : (̂x :α)� β Γ; Ψ ` N :α
Γ; Ψ `M ' N : [x := N]β

s-app

x̂ :α ∈ Ψ
Γ; Ψ ` x̂ :α

s-var ĉ :α ∈ Σ
Γ; Ψ ` ĉ :α

s-con

Γ; Ψ ` σ : Φ Γ ` E : [Φ ` α]
Γ; Ψ ` bEcσ : [σ]α s-unbox∗

Γ; Ψ `M :α′ Γ; Ψ ` α ≡ α′ :?
Γ; Ψ `M :α

s-eq

Γ; Ψ ` σ : Φ : σ transports types from spec. context Φ to ctx. Ψ.

Γ; Ψ `∧ : ∅
s-empty |Ψ′| = n

Γ; Ψ,Ψ′ ` idn : Ψ s-id

Γ; Ψ ` σ : Φ Γ; Ψ `M : [σ]α
Γ; Ψ ` σ; x̂ := M : Φ, x̂ :α

s-ex

Figure 5.9: Typing Rules for Specifications (II)

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 153

Γ ` E ≡ E′ : T : E is equal to E′ at type T in context Γ.

Γ, x : S ` E : T Γ ` E′ : S
Γ ` (λx.E) E′ ≡ {x := E′}E : {x := E′}T e-beta

Γ ` E : [Ψ ` α]
Γ ` [Ψ̂ . bEcid] ≡ E : [Ψ ` α]

e-box-unbox

Γ ` Ψ̂ ≡ Φ̂ :ctx Γ; Ψ `M ≡M′ :α
Γ ` [Ψ̂ . M] ≡ [Φ̂ . M′] : [Ψ ` α]

e-box-1

Γ ` Ψ ≡ Φ :ctx Γ; Ψ ` α ≡ β :?
Γ ` [Ψ ` α] ≡ [Φ ` β] :set0

e-box-2

Figure 5.10: Equality Rules for Computations

Γ; Ψ `M ≡ N :α : M is equal to N at type α in contexts Γ and Ψ.

Γ; Ψ, x̂ :α `M : β Γ; Ψ ` N :α

Γ; Ψ ` (̂λx.M) ' N ≡ ({x̂ := N}M) : ({x̂ := N}β)
es-beta

Γ; Ψ `M : (̂x :α)� β

Γ; Ψ ` λ̂x.M x ≡M : (̂x :α)� β
es-eta

Γ; Ψ ` σ : Φ Γ; Φ `M : α
Γ; Ψ ` b[Φ̂ . M]cσ ≡ [σ] M : [σ]α

es-unbox

Figure 5.11: Equality Rules for Specification Terms

computational/reasoning language and one for each syntactic category of
the specification language.

Again equality is defined in Figure 5.10 for computations and for spec-
ifications in Figures 5.11, 5.12, and 5.13.

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 154

Γ; Ψ ` K ≡ K′ : K is equal to K′ in contexts Γ and Ψ.

Γ; Ψ ` ? ≡ ? ek-base
Γ; Ψ ` α ≡ β :? Γ; Ψ, x̂ :α ` K ≡ K′

Γ; Ψ ` (̂x :α)� K ≡ (̂x : β)� K′

Γ; Ψ ` α ≡ β : K : α is equal to β at kind K in contexts Γ and Ψ.

Γ; Ψ ` a ≡ a : K ef-base

Γ; Ψ ` α ≡ α′ :? Γ; Ψ, x̂ :α ` β ≡ β′ :?
Γ; Ψ ` (̂x :α)� β ≡ (̂x :α′)� β′ :?

ef-pi

Γ; Ψ ` α ≡ β : (̂x : δ)� K Γ; Ψ `M ≡ N : δ
Γ; Ψ ` αM ≡ βN : [x := M]K ef-ins

Figure 5.12: Equality Rules for Specification Types and Kinds

Γ ` Ψ ≡ Φ :ctx : Ψ is equal to Φ in context Γ.

Γ ` ∅ ≡ ∅ :ctx
ec-empty

Γ ` bxc ≡ bxc :ctx ec-ctx

Γ ` Ψ ≡ Φ :ctx Γ; Ψ ` α ≡ β :?
Γ ` Ψ, x̂ :α ≡ Φ, x̂ : β :ctx

ec-cons

Γ ` Ψ̂ ≡ Φ̂ :ctx : Erased context Ψ̂ is equal to Φ̂ in context Γ.

Γ ` ∅ ≡ ∅ :ctx
ee-empty

Γ ` bxc ≡ bxc :ctx ee-ctx

Γ ` Ψ ≡ Φ :ctx
Γ ` Ψ, x̂ ≡ Φ, x̂ :ctx

ee-cons

Figure 5.13: Equality Rules for Contexts

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 155

5.4 Definitions and Pattern Matching

In Section 5.3, we extended a type theory with contextual types and their
introduction forms (i.e.: contextual terms). However, to make use of these
definitions it is necessary to have an elimination form. To that effect in
these section we extend the language with top-level definitions by pattern
matching. These definitions take apart values by using simultaneous
pattern matching in the style of Agda [Norell, 2007].

Patterns for Definitions

Pattern P ::= c ~P A fully applied constant
| x A variable
| .P An inaccessible pattern
| [Ψ̂ . P] A contextual pattern

Spec. Pattern P ::= ĉ ~P A fully applied constant
| λ̂x.P An abstraction
| x̂ A bound variable
| .P An inaccessible pattern
| bxcσ̄ An unboxed meta-variable

Pattern Subst. σ̄ ::= ∧ An empty substitution
| idn An identity substitution,

with weakening

The syntax for patterns is straightforward, we highlight in red where
computations embed specifications and vice-versa. Notice, how in pat-
terns only variables can be unboxed as it is not clear what it would mean
to pattern match against a computation and not a value. Furthermore,
the substitution is weaker as only empty and identity with weakening
substitutions are allowed. Because we use fully applied constructors for
patterns we define the patterns c ~P and ĉ ~P that are applied to a spine

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 156

of parameters. The type-checking of pattern spines uses its own typing
judgment where we check a spine against a type that produces as a result
the final type of the constant applied to the pattern. Figure 5.14 shows
the typing of patterns.

Having defined patterns we move on to define top-level pattern match-
ing definitions:

Type annotation f : T
Equations Γ1 . f ~P1 = E1

...

Γn . f ~Pn = En

A definition by pattern matching introduces a new constant and its
type followed by its pattern matching equations. Each equation contains a
context that binds all the variables used in the pattern, a set of pattern and
the right hand side of the equation that contains the term that performs the
computation when this equation is matched. For each equation, patterns
use every variable from the context exactly once. Because non-linear
patterns are unavoidable in dependent pattern matching, all non-linear
occurrences of a variable must be in inside inaccessible patterns (where
the value of the pattern is forced by the type and thus is not really a
discrimination pattern). This is not enforced in the typing rules and has
to be checked by the implementation. Inaccessible patterns provide a
nice way of implementing the computation of pattern matching by using
discrimination trees, this is mostly a practical concern at this point. The
constant defined in a function by pattern matching may be used inside
the right hand side of any equations. As functions may appear in types
and be executed during type-checking, they should be total. In this
chapter we do not discuss how to check termination and coverage to
establish totality, but rather leave that as future work. However the user
is required to provide functions where pattern matching is covering and
that recursive calls are terminating.

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 157

Γ ` P : T : P is of type T in context Γ.

c : S ∈ Σ Γ ` ~P : S 〉 T

Γ ` c ~P : T
tp-con x : T ∈ Γ

Γ ` x : T
tp-var

Γ ` P : T
Γ ` .P : T tp-inac

Γ; Ψ ` P :α
Γ ` [Ψ̂ . P] : [Ψ ` α]

tp-box

Γ `
−→
P : S 〉 T : Spine

−→
P is of type S and produces type T in context Γ.

Γ ` P : S Γ ` ~P : {x := P}S′ 〉 T

Γ ` P ~P : (x : S)→ S′ 〉 T
tp-spine

Γ ` · : T 〉 T
tp-nil

Γ; Ψ ` P :α : P is of type α in contexts Γ and Ψ.

ĉ :
−−−−→
(̂x :α)� β ∈ Σ Γ; Ψ ` ~P : ~α σ =

−−−−−→
x := Pi

Γ; Ψ ` ĉ ~P : [σ] β
sp-const

Γ; Ψ, x̂ :α ` P : β

Γ; Ψ ` λ̂x.P : (̂x :α)� β
sp-lam x̂ :α ∈ Ψ

Γ; Ψ ` x̂ :α
sp-var

Γ; Ψ ` P :α
Γ; Ψ ` .P :α

sp-inac
Γ; Φ ` x :α Γ; Ψ ` σ : Φ

Γ; Ψ ` bxcσ : [σ]α
sp-unbox

Γ; Ψ `
−→
P :α 〉 β : Spine

−→
P is of type α and produces type β in Γ and Ψ.

Γ; Ψ ` P :α Γ ` ~P : [x := P]α′ 〉 β

Γ; Ψ ` P ~P : (̂x :α)� α′ 〉 β
sp-spine

Γ; Ψ ` · : β 〉 β
sp-nil

Figure 5.14: Typing Rules for Patterns

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 158

` Γi . f ~Pi = Ei valid : The equation is valid

Γi ` f ~P1 : T Γi ` Ei : T′ Γi ` T ≡ T′

` Γi . f ~P = E1 valid
t-pat

Figure 5.15: Typing Equations

A valid pattern matching definition extends the signature and the re-
duction behaviour of the system where each of the clauses becomes a new
reduction rule.

The typing of equations is done using the typing judgment in Fig-
ure 5.15 that depends on the typing of patterns presented in Figure 5.14.

Definitions by pattern matching extend the signature Σ with a new
constant (i.e.: the name of the function) and possibly multiple pattern
matching equations that become new computation rules. We extend the
syntax of the system as follows to accommodate for equations:

Extended Signature and Simultaneous Substitutions

Signature Σ ::= . . .

| Σ,Γi . f ~Pi = Ei Pattern matching equation

Substitution θ ::= · An empty substitution
| θ; x := E A substitution extension

Definitions by pattern matching compute by extending computation
using the equations in the definition in the following form:

f :
−−−−→
(x : S)→ T ∈ Σ Γ ` ~E : ~S Γ1 . f ~Pi = Ei ∈ Σ Γ ` ~Pi � ~E/θ

Γ ` f ~E ≡ {θ}Ei : {θ}T
e-equ

This requires the computation of higher-order matching (i.e.: operation
Γ ` P � E/θ) between patterns and the terms passed as parameter to

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 159

Parser Well-formed
Check

Type Re-
construction Final AST

Implicit
Parameters

Small Type
Checker

Implemented

Planned

Figure 5.16: The Orca Pipeline

the function. A sensible implementation, (and it is indeed the Orca
implementation does), tries the equations in the order they where defined.
This is done so as to respect the user’s specified order in the case of
overlapping patterns.

5.5 The Prototype Implementation

As seen in the example from Section 5.2, the ideas from Section 5.3 have
been implemented in a prototype language called Orca (following the
marine mammal tradition of languages like Beluga and Delphin [Pos-
wolsky and Schürmann, 2009]). The OCaml implementation is available
on Github3.

Figure 5.16 shows the pipeline for the prototype. The first line shows
the existing pipeline, and the phases in the second line show planned
features that have not been implemented yet. The first two phases form
the front end of the language. First, the parser produces the first version

3https://github.com/orca-lang/orca

https://github.com/orca-lang/orca
https://github.com/orca-lang/orca

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 160

of the AST (Abstract Syntax Tree). Subsequently, the AST generated by
the parser is checked for some well formed properties:

• It disambiguates between constructors, variables, and bound vari-
ables.

• It checks the scope of variables and definitions.

• It transforms the bound variables of the specification framework to
de Bruijn indices.

The idea behind this design is to have a very permissive parser, and
a second pass that removes ambiguities and can report accurate error
messages4. The language does not enforce restrictions on naming con-
ventions for user defined identifiers. Constructors, variable names and
definitions can be composed of capitals, symbols and characters from
any writing system supported by the Unicode standard (with some re-
striction for keywords and the symbols used in the grammar itself). The
well-formed check phase checks that variables and definitions respect their
scopes and prepares an intermediate AST that is susceptible to type re-
construction and checking. As a side note, this phase is the perfect place
to add mix-fix parsing [Danielsson and Norell, 2011] in the style of the
Agda language. As a remark, the lack of enforced conventions for names
is done for flexibility, but for large developments it would be important
to develop such a convention. We expect an ad-hoc convention to emerge
once larger Orca examples are implemented.

The third pass, type reconstruction, generates the final version of the
AST with all the type checking information included. This pass performs
two main tasks:

• It disambiguates the computation and specification terms by insert-
ing boxes and un-boxes appropriately.

4Even if the current implementation does not exploit this to have great error mes-
sages

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 161

def tran : (g h : ctx) → rel [g] [h] →
(st : ` s-tp) → (g ` s-exp ’ st) →
(h ` t-exp ’ [(tran-tp st)][^])

where
| g h r t [g :> (app s[^] .t[^] m n)] ⇒

[h :> tapp ’ [(tran-tp s)][^] ’ [(tran-tp t)][^]
’ [(tran g h r [g :> (arr ’ [s][^] ’ [t][^])] m)]
’ [(tran g h r s n)]]

| g h r [:> (arr ’ s[^] ’ t[^])]
[g :>(lam ’ .s[^] ’ .t[^] ’ m)] ⇒

[h :> tlam ’ [(tran-tp s)][^] ’ [(tran-tp t)][^] ’
(λx. [tran (g, x:s-exp s[^])

(h, x:t-exp [tran-tp s][^])
(cons g h s r)
t
([g, x:s-exp s[^] :> m[^1] ’ x])

][^1;x])]

| g h r [:> bool] [g :> tt] ⇒
[h :> tinl ’ tunit ’ tunit ’ tone]

| g h r [:> bool] [g :> ff] ⇒
[h :> tinr ’ tunit ’ tunit ’ tone]

| g h r t [g :> (if ’ .t[^] ’ b ’ e1 ’ e2)] ⇒
[h :> tcase ’ tunit ’ tunit ’ [(tran-tp t)][^] ’

[(tran g h r bool b)] ’
(λx. [tran g h r t e1][^1]) ’
(λx. [tran g h r t e2][^1])]

| .[g, x:s-exp ’ t[^]] .[h, x:t-exp ’ [tran-tp t][^]]
(cons g h .t r) t (g, x: s-exp t[^] :> x) ⇒

(h, x: t-exp [(tran-tp t)][^] :> x)

| .[g, x:s-exp ’ t[^]] .[h, x:t-exp ’ [tran-tp t][^]]
(cons g h t r) s (v[^1]) ⇒

[tran g h r s v][^1]

Figure 5.17: Boolean Translation After Box Inference

• It simultaneously type checks user input.

Following the spirit from Chapter 3, the boxes are reconstructed by
a type directed algorithm that by construction produces well typed ex-
pressions as a result. The AST produced by this phase, is complete, and
can be type-checked without having to infer or complete any type infor-

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 162

mation. A small type-checker would make the trusted computing base
of the system small. Similarly, having implicit parameter reconstruction
would make writing programs easier to write. Both aspects are planned
additions to the Orca prototype.

5.6 Related Work

The idea of embedding a specification framework in a computational
λ-calculus using a modality was first presented in [Despeyroux et al.,
1997] where they embed a simply-typed version of LF in a simply typed
lambda calculus extended with a box modality based on that from S4.
As mentioned, in Orca the reasoning framework is the logical framework
LF [Harper et al., 1993] and the computational framework is a depen-
dently typed system [Martin-Löf, 1982]. This presents a very first step
towards answering the long standing question of combining HOAS and
dependent types.

Moreover, Orca can be seen as an extension of the Beluga language
[Pientka and Cave, 2015]. As such it uses the logical framework LF
to represent syntax and judgments using higher-order abstract syntax
(HOAS). However, it extends Beluga’s first order reasoning language to
a dependently typed system where computations can be embedded in
specifications. The Twelf system [Pfenning and Schürmann, 1999] also
implements LF where they implement computation using logic program-
ming instead of a functional framework. The Delphin system [Poswolsky
and Schürmann, 2008] manipulates LF objects using functional programs
in a similar way to Beluga but without support for inductive types or
contextual types.

Other approaches that use a two-level system with specifications and
reasoning are the Abella prover [Baelde et al., 2014] and Hybrid frame-
work [Felty and Momigliano, 2012], these two systems provide a spec-

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 163

ification logic on top of a proof-theoretic reasoning logic. Abella is a
standalone proof assistant, while Hybrid can be implemented on existing
proof assistants, implementations for Coq and Isabelle exist.

Traditionally, implementing HOAS in systems without a specification
framework is troublesome because of the positivity restriction for induc-
tive types. To overcome this problem, weaker forms of HOAS use an
abstract type to represent variables and obtain a strictly positive type.
Examples of this are the work of Chlipala [2008] and Despeyroux and
Hirschowitz [1994]. Weaker forms of HOAS are convenient but they
do not get substitution from β-reduction in the host language and make
dealing with open terms less convenient.

Another option is to implement binders using de Bruijn indices. A
convenient way is using well-scoped de Bruijn indices [Altenkirch, 1993]
(and later extended to intrinsically typed terms in [Benton et al., 2012a]),
where substitution is implemented as an inductive data type and its struc-
tural properties need to be proved manually. There are implementations
of de Bruijn indices that provide and facilitate proving the required lem-
mas. One example is Autosubst [Schäfer et al., 2015] that implements
a decision procedure to compare terms with explicit substitutions. The
Nameless Painless [Pouillard, 2011] approach is based on de Bruijn in-
dices, but it simplifies the arithmetic reasoning by hiding the numbers in
an abstract “world” representation. Finally, GMeta [Lee et al., 2012] sim-
plifies implementing first-order binding representations (e.g.: de Bruijn
indices) using generic programming to provide proofs for the lemmas
about binders.

More recently, Allais et al. [2017] propose a way of encoding syntax
(as opposed to syntax and judgments) in Agda using a generic type and
scope preserving semantics. This allows them to prove lemmas about
the semantics and then reuse them to implement renaming, substitution,
normalization by evaluation and CPS transformations.

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 164

Finally, a possible approach is to use nominal logic [Pitts, 2003] that
uses an infinite set of atoms (abstract names) to replace the position based
approach. These ideas have been implemented in Nominal [Urban, 2008]
package of Isabelle [Nipkow et al., 2002].

Finally, thanks to its specification framework, Orca is well-positioned
to implement meta-programming in dependently typed systems where
syntax can be reflected into LF objects where computational functions
can manipulate them. There is interest in doing this in existing sys-
tems as a way of implementing tactics and elaboration, for example the
MTAC [Ziliani et al., 2015] system for Coq, or elaboration reflection [Chris-
tiansen and Brady, 2016] for Idris implement meta-programming (The
Agda proof assistant also implements Idris-style reflection). What Orca
offers to meta-programming is the ability of processing structures with
binders in a type safe and convenient way, instead, for example, of the
de Bruijn representation that the Idris reflection offers.

5.7 Conclusion

In this chapter we describe Orca, as an idea and a prototype that imple-
ments a Martin-Löf style type theory with a specification language based
on the logical framework LF. This language can be thought of as a depen-
dently typed Beluga, and thus continues the theme of cetacean inspired
names (after Beluga and Delphin). The design of Orca can also be seen as
a next step extending the design of the Babybel system from Chapter 4 to
total languages and full LF and thus continues that line of work. How-
ever, this chapter does not address the full spectrum of possibilities and
questions about Orca. This should not be seen as a limitation but as an as-
piration. Exploring the meta-theory of the system, its expressivity and the
fields where it will be applicable is all exciting future work. Some of this
work is already in progress, particularly the meta-theory and improving

CHAPTER 5. CONTEXTUAL TYPES AND TYPE THEORY 165

and extending the prototype with new ideas. However, the current state
of affairs is promising, we show how Orca can interleave computation and
specifications, and how this saves some lemmas that would be necessary
in systems that need to represent specification computation as relations.
Moreover, the Orca distribution contains several examples that hint to the
power of reasoning not only about specifications and inductive types like
in Beluga, but also about functions. Some of these examples are: a small
type preservation proof, the translation we used as an example here, a
proof that a particular computation preservers types (illustrated with the
simplest computation function, the copy function), a conversion between
two styles of operational semantics and several small programs that we
use as the beginnings of a test harness. In conclusion, Orca represents a
new bold first step in the reasoning about open objects and offers a path
to explore extensions to the ideas presented in this chapter.

6 Conclusion

In this thesis, after introducing the problem of reasoning about open
terms using a HOAS representation, we show how to simplify writ-
ing these programs using inference of omitted arguments, how to write
programs by integrating contextual types and HOAS with existing pro-
gramming languages, and finally we present the Orca system that does
the first step towards integrating a Martin-Löf’s style type theory with
contextual types and the logical framework LF, this allows for the inter-
leaving of specifications and proofs/computations. Therefore, Orca, once
the meta-theory is proven and the totality check implemented, allows
for proofs about meta-theoretic properties of specifications together with
proofs about computations which allows the user to prove properties of
their computations over specifications. This provides for the seamless
combination of programs and proofs.

6.1 Future Work

6.1.1 Implicit Parameter Reconstruction

Implicit parameter reconstruction makes our lives easier, by allowing us
to concentrate in what is important. Reconstruction only fills in parts
that are forced by the surrounding program. As future work, one would
like to extend the kinds of information that can be inferred. Further-
more, as the current algorithm works for indexed type systems, it would
need to be extended for full dependent types to support reconstruction of
Orca programs. Having a formally specified type reconstruction for Orca
will dramatically improve its ergonomics. Another interesting approach
would be to specify reconstruction as form elaboration reflection [Chris-
tiansen and Brady, 2016] that would allow for reconstruction to be done in

166

CHAPTER 6. CONCLUSION 167

Orca code itself. Orca’s specification framework should make for a great
target for this reflection mechanism because the LF framework could be
used to represent the program being elaborated.

6.1.2 Contextual Types and Programming Languages

In the future, we plan to implement our approach also in other languages.
In particular, it would be natural to implement our approach in Haskell.
GHC Haskell offers the required syntax extension mechanism and its
more powerful type system offers interesting possibilities. With regards
to the implementation, the PPX syntax extension mechanism is a bit
limited (e.g.: the syntax of type annotations cannot be extended), it would
be interesting to either extend PPX or to replace PPX with CamlP4 that
would allow for a more seamless syntax extension. And finally, while the
current features of Babybel allow for many interesting use cases, it would
be interesting to develop more substantial use cases to both validate the
convenience our approach and to possibly justify new features that a
larger program might require. For example, implementing the compiler
for a small language would neatly showcase the use of the syntactic
framework.

6.1.3 Contextual Types and Type Theory

This chapter represents an open path to future research, which is another
way to say that there are lots of open questions regarding this subjects. So
far, there is no meta-theory for the core calculus we presented, as future
work it would be important to show that normalization is preserved when
extending a dependently typed calculus with the logical framework LF
using contextual types in the way described in this chapter1. Also on the
side of the theory, certain needed features are missing to make it more

1There is ongoing work on draft of meta-theory for this

CHAPTER 6. CONCLUSION 168

expressive, like substitution variables [Cave and Pientka, 2013]. Finally,
inspired by the Babybel theory where contexts are erased at run-time, in
this calculus contexts are run-time irrelevant. This means that properties
about contexts need to be established using inductive predicates (e.g.:
the rel predicate in the example from Section 5.2). Adding Beluga style
context schemas would allow for more powerful use of contexts.

On the side of the Orca prototype, the immediate future work is me-
chanically making sure that the functions are total, that is implementing
coverage and termination checking. Implementing coverage would ex-
tend ideas from the Beluga system [Pientka and Dunfield, 2010a] and for
termination many choices are possible. The author would like to explore
the idea of sized types [Hughes et al., 1996] and [Abel, 2006]. And from
here the possibilities expand, as Orca can be used as a vehicle for research
in this area. Examples of this are: adding generic judgments as in the
work by Miller and Tiu [2005] to have Abella [Gacek, 2008] and Delphin
style introduction of fresh names, and exploring co-inductive types with
co-patterns.

A Proof of Soundness of
Reconstruction

We begin with some lemmas that we will use to establish the main result:

Lemma 1 (Implicit parameter instantiation). Let’s consider the judgment:
Θ; ∆; Γ ` E : T E1 : T1/Θ1, where Θ1 is a weakening of Θ.

We want to prove that, if ρg is a grounding instantiation such as · `
ρg : Θ1 where we split ρg = ρ′g, ρ

′′

g and · ` ρ′g : Θ and ·; ~ρ′g�∆; ~ρ′g�Γ `
~ρ′g�E : ~ρ′g�T then ·; ~ρg�∆; ~ρg�Γ ` ~ρg�E1 : ~ρg�T1.

Proof. The proof follows by induction on the rules of the judgment where
the base case for el-impl-done is trivial and the inductive step for
el-impl has also a very direct proof. �

Lemma 2 (Pattern elaboration).

1. If Θ; ∆ ` pat Π∆1; Γ1.Pat : T/Θ1;ρ1 and ρr is a further refinement
substitution, such as Θ2 ` ρr : Θ1 and ε is a ground lifting substitu-
tion, such as ∆i ` ε : Θ1 then
∆i, ~ε�~ρr�∆1; ~ε�~ρr�Γ1 ` ~ε�~ρr�Pat⇐ ~ε�~ρr�T.

2. If Θ; ∆ ` pat : T Π∆1; Γ1.Pat/Θ1;ρ1 and ρr is a further refinement
substitution, such as Θ2 ` ρr : Θ1 and ε is a ground lifting substitu-
tion, such as ∆i ` ε : Θ1 then
∆i, ~ε�~ρr�∆1; ~ε�~ρr�Γ1 ` ~ε�~ρr�Pat⇐ ~ε�~ρr ◦ ρ1�T.

3. If Θ; ∆ `
−→
pat : T Π∆1; Γ1.

−−→
Pat 〉 S/Θ1;ρ1 and ρr is a further re-

finement substitution, such as Θ2 ` ρr : Θ1 and ε is a ground lifting
substitution, such as ∆i ` ε : Θ1 then
∆i, ~ε�~ρr�∆1; ~ε�~ρr�Γ1 ` ~ε�~ρr�

−−→
Pat⇐ ~ε�~ρr ◦ ρ1�T 〉 ~ε�~ρr�S.

169

APPENDIX A. PROOF OF SOUNDNESS OF RECONSTRUCTION 170

Proof. By simultaneous induction on the first derivation.

For (1):

Case D : Θ; ∆ ` c
−→
pat Π∆1; Γ1.c

−−→
Pat : S/Θ1;ρ1

Σ(c) = T
Θ; ∆ `

−→
pat : T Π∆1; Γ1.

−−→
Pat 〉 S/Θ1;ρ1 by assumption

∆i, ~ε�~ρr�∆1; ~ε�~ρr�Γ1 ` ~ε�~ρr�
−−→
Pat⇐ ~ε�~ρr ◦ ρ1�T 〉 ~ε�~ρr�S by i.h.

(3)
Note that types in the signature (i.e. Σ) are ground so ~ε�~ρr ◦ ρ1�T = T
∆i, ~ε�~ρr�∆1; ~ε�~ρr�Γ1 ` c (~ε�~ρr�

−−→
Pat)⇐ ~ε�~ρr�S by t-pcon.

∆i, ~ε�~ρr�∆1; ~ε�~ρr�Γ1 ` ~ε�~ρr�(c
−−→
Pat)⇐ ~ε�~ρr�S

by properties of substitution
which is what we wanted to show.

For (2):

Case E : Θ; ∆ ` x : T Π∆1 ; x : T︸︷︷︸
Γ1

.x / Θ;id(Θ)

Γ1(x) = T by x being the only variable in Γ1

~ε�~ρr�Γ1 = ~ε�~ρr�Γ1T by applying ε and ρr to ∆1, Γ1 and T
~ε�~ρr�∆1; ~ε�~ρr�Γ1 ` x⇐ ~ε�~ρr�T by rule t-pvar
which is what we wanted to prove

For (3):

Case
F : Θ; ∆ ` pat

−→
pat : T1 → T2 Π∆2; Γ1,Γ2.(~ρ′�Pat)

−−→
Pat 〉 S/Θ2;ρ2 ◦ ρ1

Θ; ∆ ` pat : T1 Π∆1; Γ1.Pat/Θ1;ρ1

Θ1; ∆1 `
−→
pat : ~ρ�T2 Π∆2; Γ2.

−−→
Pat 〉 S/Θ2;ρ2 by assumption

Θ2 ` ρ2 : Θ1 by invariant of rule

APPENDIX A. PROOF OF SOUNDNESS OF RECONSTRUCTION 171

Θ3 ` ρ3 ◦ ρ2 : Θ1 (further refinement substitution) by composition
∆i ` ε : Θ3 lifting substitution
∆i, ~ε�~ρ3 ◦ ρ2�∆1; ~ε�~ρ3 ◦ ρ2�Γ1 ` ~ε�~ρ3 ◦ ρ2�Pat⇐ ~ε�~ρ3 ◦ ρ2 ◦ ρ1�T1

by i.h. on (1). (†)
∆i, ~ε�~ρ3�∆2; ~ε�~ρ3�Γ2 ` ~ε�~ρ3�

−−→
Pat⇐ ~ε�~ρ3 ◦ ρ2 ◦ ρ1�T2 〉 ~ε�~ρ3�S

by i.h. on (2)
we note that in pattern elaboration we have:
∆2 = ~ρ2�∆1,∆′2

∆2 is the context ∆1 with the hole instantiation applied and some extra
assumptions (i.e. ∆′2))).
and Γ2 = ~ρ2�Γ1,Γ′2

Γ2 is the context Γ1 with the hole instantiation applied and some extra
assumptions (i.e. Γ′2).
and we can weaken (†) to:
∆i, ~ε�~ρ3 ◦ ρ2�∆1, ~ε�~ρ3�∆′2; ~ε�~ρ3 ◦ ρ2�Γ1, ~ε�~ρ3�Γ′2 `

~ε�~ρ3 ◦ ρ2�Pat⇐ ~ρ�~ρ3 ◦ ρ2 ◦ ρ1�T1

∆i, ~ε�~ρ3�∆2; ~ε�~ρ3�Γ2 ` (~ε�~ρ3 ◦ ρ2�Pat)(~ε�~ρ3�
−−→
Pat)⇐

~ε�~ρ3 ◦ ρ2 ◦ ρ1�T1 → ~ε�~ρ3 ◦ ρ2 ◦ ρ1�T2 〉 ~ε�~ρ3�S
by t-sarr.

∆i, ~ε�~ρ3�∆2; ~ε�~ρ3�Γ2 ` ~ε�~ρ3�(~ρ2�Pat
−−→
Pat)⇐ ~ε�~ρ3 ◦ ρ2 ◦ ρ1�(T1 →

T2) 〉 ~ε�~ρ3�S by properties of substitution
which is what we wanted to show.

Case
F : Θ; ∆ ` [c]

−→
pat : ΠeX : U.T Π∆2; Γ2.(~ρ1�[C])

−−→
Pat 〉 S/Θ2;ρ2 ◦ ρ1

Θ; ∆ ` c : U C/Θ1; ∆1;ρ1

Θ1; ∆1 `
−→
pat : [C/X]~ρ1�T Π∆2; Γ2.

−−→
Pat 〉 S/Θ2;ρ2 by assumption

Θ2 ` ρ2 : Θ1 by invariant of rule
Θ3 ` ρ3 ◦ ρ2 : Θ1 (further refinement substitution) by composition
∆i ` ε : Θ3 lifting substitution

APPENDIX A. PROOF OF SOUNDNESS OF RECONSTRUCTION 172

∆i, ~ε�~ρ3 ◦ ρ2�∆1 ` ~ε�~ρ3 ◦ ρ2�C⇐ ~ε�~ρ3 ◦ ρ2 ◦ ρ1�U
by property of the index language(†)

∆i, ~ε�~ρ3�∆2; ~ε�~ρ3�Γ2 ` ~ε�~ρ3�
−−→
Pat⇐ ~ε�~ρ3 ◦ ρ2�([C/X]~ρ1�T) 〉

~ε�~ρ3�S
by i.h. (3)

as before, we note that:
∆2 = ~ρ2�∆1,∆′2 ∆2 is the context ∆1 with the hole instantiation applied
and some extra assumptions (i.e. ∆′2).
and we can weaken (†)to:
∆i, ~ε�~ρ3 ◦ ρ2�∆1, ~ε�~ρ3�∆′2 ` ~ε�~ρ3 ◦ ρ2�C⇐ ~ε�~ρ3 ◦ ρ2 ◦ ρ1�U
Note that
~ε�~ρ3 ◦ ρ2�([C/X]~ρ1�T) = [(~ε�~ρ3 ◦ ρ2�C)/X](~ε�~ρ3 ◦ ρ2 ◦ ρ1�T)
by properties of substitution
∆i, ~ε�~ρ3�∆2; ~ε�~ρ3�Γ2 ` [~ε�~ρ3 ◦ ρ2�C] (~ε�~ρ3�

−−→
Pat)⇐

ΠeX : (~ε�~ρ3 ◦ ρ2 ◦ ρ1�U). (~ε�~ρ3 ◦ ρ2 ◦ ρ1�T) 〉 ~ε�~ρ3�S by t-spi

∆i, ~ε�~ρ3�∆2; ~ε�~ρ3�Γ2 ` ~ε�~ρ3�([~ρ2�C]
−−→
Pat))⇐

~ε�~ρ3 ◦ ρ2 ◦ ρ1�(ΠeX : U.T) 〉 ~ε�~ρ3�S
by properties of substitution

which is what we wanted to show.

Case F : Θ; ∆ `
−→
pat : ΠiX : U.T Π∆1; Γ1.(~ρ1�C)

−−→
Pat 〉 S/Θ1;ρ1

genHole (?Y : ∆.U) = C
Θ, ?Y : ∆.U; ∆ `

−→
pat : [C/X]T Π∆′; Γ′.

−−→
Pat/Θ′;ρ 〉 S by assumption

Θ, ?Y : ∆.U; ∆ ` C⇐ U by genhole invariant
∆i, ~ε�~ρr ◦ ρ1�∆ ` ~ε�~ρr ◦ ρ1�C⇐ ~ε�~ρr ◦ ρ1�U

applying substitutions ε, ρrandρ1

noting that ∆1 = ~ρ1�∆,∆′1
∆i, ~ε�~ρr�(~ρ1�∆,∆′1) ` ~ε�~ρr ◦ ρ1�C⇐ ~ε�~ρr ◦ ρ1�U by weakening
∆i, ~ε�~ρr�∆1; ~ε�~ρr�Γ′ ` ~ε�~ρr�

−−→
Pat⇐ ~ε�~ρr ◦ ρ1�[C/X]T 〉 ~ε�~ρr�S

by i.h. (3)

APPENDIX A. PROOF OF SOUNDNESS OF RECONSTRUCTION 173

∆i, ~ε�~ρr�∆1; ~ε�~ρr�Γ′ ` ~ε�~ρr�
−−→
Pat⇐

[~ε�~ρr ◦ ρ1�C/X](~ε�~ρr ◦ ρ1�T) 〉 ~ε�~ρr�S
by properties of substitution

∆i, ~ε�~ρr�∆1; ~ε�~ρr�Γ′ ` [~ε�~ρr ◦ ρ1�C] ~ε�~ρr�
−−→
Pat⇐

ΠiX : ~ε�~ρr ◦ ρ1�U. (~ε�~ρr ◦ ρ1�T) 〉 ~ε�~ρr�S
by t-spi

∆i, ~ε�~ρr�∆1; ~ε�~ρr�Γ′ ` ~ε�~ρr�[~ρ1�C]
−−→
Pat⇐ ~ε�~ρr ◦ ρ1�(ΠiX : U.T) 〉

~ε�~ρr�S
by properties of substitution

which is what we wanted to show

�

We can now prove the theorem:

Theorem A.0.1 (Soundness).

1. If Θ; ∆; Γ ` Pe ; θQ : T E/Θ1;ρ1 then for any grounding hole
instantiation ρg s.t. · ` ρg : Θ1 and ρ0 = ρg ◦ ρ1, we have
~ρ0�∆; ~ρ0�Γ ` ~ρg�E⇐ ~ρ0�T.

2. If Θ; ∆; Γ ` Pe ; θQ E : T/Θ1;ρ1 then for any grounding hole
instantiation ρg s.t. · ` ρg : Θ1 and ρ0 = ρg ◦ ρ1, we have
~ρ0�∆; ~ρ0�Γ ` ~ρg�E⇒ ~ρg�T.

3. If ∆; Γ ` Ppat 7→ e ; θQ : S→ T Π∆′; Γ′.Pat : θ′ 7→ E then
∆; Γ ` Π∆′; Γ′.Pat : θ′ 7→ E⇐ S→ T.

Proof. By simultaneous induction on the first derivation.
For (1):

Case D : Θ; ∆; Γ ` Pcase eof
−→
b ; θQ : T caseEof

−→
B /Θ′;ρ

Θ; ∆; Γ ` Pe ; θQ E : S/·;ρ by inversion on el-case

APPENDIX A. PROOF OF SOUNDNESS OF RECONSTRUCTION 174

~ρ�∆; ~ρ�Γ ` P
−→
b ; ~ρ�θQ : S→ ~ρ�T

−→
B by inversion on el-case

for any grounding hole inst. ρ′ we have ~ρ�∆; ~ρ�Γ ` E⇒ S by I.H.
noting ρ′ = · and ρ′ ◦ ρ = ρ

~ρ�∆; ~ρ�Γ ` B : S→ ~ρ�T for every branch by (3)
~ρ�∆; ~ρ�Γ ` caseEof

−→
B ⇐ ~ρ�T by t-case

Note that because E is ground then the only grounding hole to
instantiate is the empty substitution.

Case D : Θ; ∆; Γ ` Pfn x⇒ e ; θQ : T1 → T2 fn x⇒ E/Θ1;ρ1

Θ; ∆; Γ, x : T1 ` Pe ; θQ : T2 E/Θ1;ρ1 by assumption
for any grounding hole inst. ρg we have:
~ρ0�∆; ~ρo�(Γ, x : T1) ` ~ρg�E⇐ ~ρ0�T2 by i.h. (1) with ρ0 = ρg ◦ ρ1

~ρ0�∆; (~ρo�Γ), x : (~ρ0�T1) ` ~ρg�E⇐ ~ρ0�T2

by properties of substitution
~ρ0�∆; ~ρo�Γ ` fn x⇒ (~ρg�E)⇐ (~ρ0�T1)→ (~ρ0�T2) by t-fn

~ρ0�∆; ~ρo�Γ ` ~ρg�(fn x⇒ E)⇐ ~ρ0�(T1)→ T2)
by properties of substitution

which is what we wanted to show

Case D : Θ; ∆; Γ ` PmlamX⇒ e ; θQ : ΠeX : U.T mlamX⇒ E/Θ1;ρ1

Θ; ∆,X : U; Γ ` Pe ; θ,X/XQ : T E/Θ1;ρ1 by assumption
for any grounding hole inst. ρg we have:
~ρ0�(∆,X : U); ~ρ0�Γ ` ~ρg�E⇐ ~ρo�T by i.h.(1) with ρ0 = ρg ◦ ρ1

~ρo�∆,X : (~ρ0�U); ~ρ0�Γ ` ~ρg�E⇐ ~ρo�T by properties of subst
~ρo�∆; ~ρ0�Γ ` mlamX⇒ ~ρg�E⇐ ΠeX : ~ρ0�U. (~ρo�T) by t-mlam

~ρo�∆; ~ρ0�Γ ` ~ρg�mlamX⇒ E⇐ ~ρ0�ΠeX : U.T
by properties of substitution

which is what we wanted to show

APPENDIX A. PROOF OF SOUNDNESS OF RECONSTRUCTION 175

Case D : Θ; ∆; Γ ` Pe ; θQ : ΠiX : U.T mlamX⇒ E/Θ1;ρ1

this case follows the same structure as the previous

Case D : Θ; ∆; Γ ` P[c] ; θQ : [U] [C]/Θ1;ρ1

Θ; ∆ ` Pc ; θQ : U C/Θ1;ρ1 by assumption
for any grounding inst. ρg we have ~ρ0�∆; ~ρ0�Γ ` ~ρg�C⇐ ~ρ0�U

by properties of the index language and ρ0 = ρg ◦ ρ1

~ρ0�∆; ~ρ0�Γ ` ~ρg�[C]⇐ ~ρ0�[U] by t-box and properties of subst.
which is what we wanted to show

Case D : Θ; ∆; Γ ` Pe ; θQ : T ~ρ2�E/Θ2;ρ2 ◦ ρ1

Θ; ∆; Γ ` Pe ; θQ E : T1/Θ1;ρ1

Θ1; ~ρ1�∆ ` T1 � ~ρ1�T/Θ2;ρ2 by assumption
for any grounding inst. ρg we have ~ρo�∆; ~ρ0�Γ ` ~ρg�E⇒ ~ρg�T1 by
i.h. (2) where ρo = ρg ◦ ρ1 (†)
for any grounding inst. ρ′g we have ~ρ′g ◦ ρ2�T1 = ~ρ′g ◦ ρ2 ◦ ρ1�T by prop
of unification and applying a grounding subst (‡)
~ρ′g ◦ ρ2 ◦ ρ1�∆; ~ρ′g ◦ ρ2 ◦ ρ1�Γ ` ~ρ′g ◦ ρ2�E⇒ ~ρ′g ◦ ρ2�T1 from (†)using
ρg = ρ′g ◦ ρ2

~ρ′g ◦ ρ2 ◦ ρ1�∆; ~ρ′g ◦ ρ2 ◦ ρ1�Γ ` ~ρ′g ◦ ρ2�E⇒ ~ρ′g ◦ ρ2 ◦ ρ1�T by (‡)
~ρ′g ◦ ρ2 ◦ ρ1�∆; ~ρ′g ◦ ρ2 ◦ ρ1�Γ ` ~ρ′g ◦ ρ2�E⇐ ~ρ′g ◦ ρ2 ◦ ρ1�T by t-syn

which is what we wanted to show

For(2):

Case E : Θ; ∆; Γ ` Pe [c] ; θQ E1 [C] : [C/X](~ρ2�T)/Θ2;ρ2 ◦ ρ1

Θ; ∆; Γ ` Pe ; θQ E1 : ΠeX : U.T/Θ1;ρ1

Θ1; ~ρ1�∆ ` Pc ; ~ρ1�θQ : U C/Θ2;ρ2 by assumption

APPENDIX A. PROOF OF SOUNDNESS OF RECONSTRUCTION 176

for any grounding instantiation ρg s.t. · ` ρg : Θ1 we have
~ρg ◦ ρ1�∆; ~ρg ◦ ρ1�Γ ` ~ρg�E1 ⇒ ~ρg�ΠeX : U.T by i.h. (2)(†)
for any grounding instantiation ρ′g s.t. · ` ρ′g : Θ2 we have
~ρ′g ◦ ρ2 ◦ ρ1�∆ ` ~ρ′g�C⇐ ~ρ′g ◦ ρ2�U by soundness of index
reconstruction
~ρ′g ◦ ρ2 ◦ ρ1�∆; ~ρ′g ◦ ρ2 ◦ ρ1�Γ ` ~ρ′g ◦ ρ2�E1 ⇒ ~ρ′g ◦ ρ2�ΠeX : U.T Note
that in (†)· ` ρg : Θ1 so we can instantiate ρg = ρ′g ◦ ρ2

~ρ′g◦ρ2◦ρ1�∆; ~ρ′g◦ρ2◦ρ1�Γ ` ~ρ′g◦ρ2�E1 ⇒ ΠeX : (~ρ′g◦ρ2�U). (~ρ′g◦ρ2�T)
by properties of substitutions

~ρ′g◦ρ2◦ρ1�∆; ~ρ′g◦ρ2◦ρ1�Γ ` (~ρ′g◦ρ2�E1) ~ρ′g�C⇒ [~ρ′g�C}/X](~ρ′g◦ρ2�T)
by t-app-index

~ρ′g ◦ ρ2 ◦ ρ1�∆; ~ρ′g ◦ ρ2 ◦ ρ1�Γ ` ~ρ′g�((~ρ2�E1) C)⇒ ~ρ′g�([C/X](~ρ2�T)
by properties of substitutions

which is what we wanted to show.

Case E : Θ; ∆; Γ ` Px ; θQ E1 : T1 / Θ1;id(Θ1)

Γ(x) = T
Θ; ∆; Γ ` x : T E1 : T1/Θ1 by assumption
∆; Γ ` x⇒ T by rule t-var(†)
for any grounding inst. ρg s.t. · ` Θ1 we have:
~ρg ◦ ρ1�∆; ~ρg ◦ ρ1�Γ ` ~ρg�E1 : ~ρg�T1 by (†), weakening and lemma 1
with ρ1 = id(Θ1)
which is what we wanted to show

For (3):

Case F : ∆; Γ ` Ppat 7→ e ; θQ : S→ T Π∆r; Γr.Pat′ :θ 7→ E

∆ ` pat : S Π∆r; Γr.Pat :θr | θe by assumption
·; · ` pat Pat : S′/Θp; ∆p; Γp | ·

APPENDIX A. PROOF OF SOUNDNESS OF RECONSTRUCTION 177

∆′p ` ρ : Θp and Γr = [θp]~ρ�Γp, Pat′ = [θp]~ρ�Pat by inversion on
el-subst

∆′p, ~ρ�∆p; ~ρ�Γp ` ~ρ�Pat⇐ ~ρ�S′ by pattern elaboration lemma
∆,∆′p, ~ρ�∆p ` ~ρ�S′ + S/∆r, θ by inversion on el-subst

where we can split θ as θ = θr, θi, θe so that:

∆r ` θr : ∆
∆r ` θi : ∆′p
∆r ` θi, θe : ∆′p, ~ρ�∆p

let θp = θi, θe

[θi, θe︸︷︷︸
θp

]~ρ�S′ = [θr]S by soundness of unification and the fact that ∆ and

∆′p, ~ρ�∆p are distinct
∆r; [θp]~ρ�Γp ` [θp]~ρ�Pat⇐ [θp]~ρ�S′ by substitution lemma
∆r; [θp]~ρ�Γp︸ ︷︷ ︸

Γr

` [θp]~ρ�Pat︸ ︷︷ ︸
Pat′

⇐ [θr]S by [θ]~ρ�S′ = [θr]S

·; ∆r; [θr]Γ,Γr ` Pe ; θr ◦ θ, θeQ : [θr]T E/·; · by assumption
∆r; [θr]Γ,Γr ` E⇐ [θr]T by (1)
∆; Γ ` Π∆r; Γr.Pat′ :θr 7→ E⇐ S→ T by t-branch

which is what we wanted to show.
�

B Babybel’s Translation Meta-theory

Lemma 3 (Ambient Context). If Γ(u) = [Ψ ` a] then
pΓq(u) = sftm[pΨq, a].

Proof. Induction on the structure of Γ. �

Lemma 4 (Terms).

1. If Γ; Ψ `M : A then ·; pΓq ` pMqΨ`A : pΨ ` Aq.

2. If Γ; Ψ ` σ : Φ then ·; pΓq ` pσqΨ`Φ : pΨ ` Φq

Proof. Induction on the typing derivation.

Case D =

Ψ(x) = a
Γ; Ψ ` x : a t-var

·; pΓq ` Var[pΨq, a] k : sftm[pΨq, a] by the correctness of our
translation function that computes the position k of x in Ψ.

·; pΓq ` pxqΨ`a : pΨ ` aq by definition

Case D =

Γ; Ψ `M : A Γ; Φ ` σ : Ψ
Γ; Φ `M[σ]Φ

Ψ : A
t-sub

·; pΓq ` pMqΨ`A : pΨ ` Aq by i.h.

·; pΓq ` pσqΦ`Ψ : pΦ ` Ψq by i.h.

e = apply_sub pMqΨ`A pσqΦ`Ψ and
·; pΓq ` e : pΦ ` Aq by property of apply_sub

Case D =

Γ(u) = [Ψ ` a]
Γ; Ψ ` ’u : a

t-qvar

pΓq(u) = sftm[pΨ, aq] by Lemma 3

178

APPENDIX B. BABYBEL’S TRANSLATION META-THEORY 179

·; pΓq ` p’uq : pΨ ` aq by rule g-var and definition

Case D =
Γ; Ψ, x : a `M : A

Γ; Ψ ` λ x.M : a→ A t-lam

·; pΓq ` pMqΨ,a`A : pΨ, a ` Aq by i.h.

pΨ ` a→ Aq = sftm[pΨq, pa→ Aq] = sftm[pΨq,arr[a, pAq]] by
definition

·; pΓq ` Lam [cons [pΨq, a, pAq]] pMqΓ,a`A : pΨ ` a→ Aq by using
g-con

Similar for the other cases.
�

Lemma 5 (Pat.). If ` pat : τ ↓ Γ then · ` ppatqΓ
Ψ`A : pτq ↓ Γ.

Proof. By induction on the type derivation for patterns.

�

Lemma 6 (Ctx. Pat.). If Ψ ` R : A ↓ Γ then · ` pRqΓ
Ψ`A : pΨ ` Aq ↓ Γ.

Proof. By induction on the typing derivation. The interesting case is the
one where R is a pattern variable.

Case: D = Ψ ` ’u : a ↓ u : [Ψ ` a]
tp-mvar

· ` u :sftm[pΨq, a] ↓ ·; u :sftm[pΨq, a] by gp-var

· ` p’uqu : [Ψ`a]
a : pΨ ` aq ↓ ·; pu : [Ψ ` a]q by definition

The other cases are similar.
�

Theorem B.0.1 (Main).

APPENDIX B. BABYBEL’S TRANSLATION META-THEORY 180

1. If Γ ` e⇐ τ then ·; pΓq ` peqΓ`τ : pτq.

2. If Γ ` i⇒ τ then ·; pΓq ` piqΓ`τ : pτq.

Proof. By mutual induction on the type derivations.

Case D =

Γ; Ψ `M : a
Γ ` [Ψ̂ `M]⇐ [Ψ ` a]

t-ctx-obj

·; pΓq ` pMqΨ`a : pΨ ` aq from Lemma 4.

pΨ ` aq = sftm[pΨq, pAq] and pΨ `MqΨ`a = pMqΨ`a

pΓq ` pΨ̂ `M]qΨ`a : p[Ψ ` a]q by definition

Case D =

Γ ` i⇒ [Ψ ` a] ∀b ∈
−→
b . Γ ` b⇐ [Ψ ` a]→ τ

Γ ` cmatch iwith
−→
b ⇐ τ

t-cm

We note that each bi ∈
−→
b is of the form [Ψ ` R] 7→ e.

Ψ ` R : A ↓ Γ

Γ,Γ′ ` e⇐ τ by typing inversion

· ` pRqΓ′Ψ`a : a ↓ Γ′ by Lemma 6

·; pΓ,Γ′q ` peqΓ,Γ′`τ : pτq by i.h. (1).

·; Γ,Γ′ ` pRqΓ′Ψ`a 7→ peqΓ,Γ′ : a→ pτq by g-branch

·; pΓq ` piqΓ`a : a by I.H (2).

·; pΓq ` pcmatch iwith
−→
b qΓ`τ : pτq by g-match

Case D =
Γ ` i⇒ τ′ τ = τ′

Γ ` i⇐ τ
t-emb

·; pΓq ` piqΓ`τ : pτq by i.h.(2)

The other cases for part 1) are similar.

APPENDIX B. BABYBEL’S TRANSLATION META-THEORY 181

Case D =

Γ(x) = τ
Γ ` x⇒ τ

t-var

·; pΓq ` pxqΓ`τ : pτq trivial using g-var.

Case D =
Γ ` i⇒ τ′ → τ Γ ` e⇐ τ′

Γ ` i e⇒ τ
t-app

·; pΓq ` piqΓ`τ′→τ : pτ′ → τq by i.h.

·; pΓq ` piqΓ`τ′→τ : pτ′q→ pτq by definition

·; pΓq ` peqΓ`τ′ : pτ′q by i.h.

·; pΓq ` pi eqΓ`τ : pτq by g-app

The other cases for part 2) are similar.
�

C A Beluga Implementation of Orca’s
Translation Example

This chapter contains an implementation of the example from Section 5.2
written using the Beluga language. We do not explain this example in
detail, but it is here as a reference to show how similar the two languages
are.

We start by defining the languages and translation of types using the
logical framework LF, this is similar to the Orca implementation, except
that where Orca uses a function to implement the translation of types
here we have a relation that is inhabited by the pairs of source types and
their translations. Notice the schema declaration that allows for storing
blocks of assumptions in the context thus avoiding the need to declare a
context relation.

LF s-tp : type =
| bool : s-tp
| arr : s-tp → s-tp → s-tp
;

LF s-tm : s-tp → type =
| app : s-tm (arr S T) → s-tm S → s-tm T
| lam : (s-tm S → s-tm T) → s-tm (arr S T)
| tt : s-tm bool
| ff : s-tm bool
| ife : s-tm bool → s-tm T → s-tm T → s-tm T
;

LF t-tp : type =
| tunit : t-tp
| tsum : t-tp → t-tp → t-tp
| tarr : t-tp → t-tp → t-tp
;

LF t-tm : t-tp → type =
| tapp : t-tm (tarr S T) → t-tm S → t-tm T
| tlam : (t-tm S → t-tm T) → t-tm (tarr S T)

182

APPENDIX C. TRANSLATING BOOLEANS IN BELUGA 183

| tone : t-tm tunit
| tinl : t-tm s → t-tm (tsum S T)
| tinr : t-tm t → t-tm (tsum S T)
| tcase : t-tm (tsum S T) →

(t-tm S → t-tm R) →
(t-tm T → t-tm R) →
t-tm R

;

LF tran-tp : s-tp → t-tp → type =
| t-bool : tran-tp bool (tsum tunit tunit)
| t-arr : tran-tp S S’ →

tran-tp T T’ →
tran-tp (arr S T) (tarr S’ T’)

;

schema ctx = block (s: s-tm S, t: t-tm T, tr: tran-tp S T;

The type tran-tp replaces the Orca function with the same name. But
then, we need to show that the relation is defined for all terms, and that it
is deterministic. We prove both facts in the comp-tran-tp and unique-tran

-tp lemmas, respectively.

LF ex-tran : s-tp → type =
| ex : {T : t-tp} tran-tp S T → ex-tran S
;

rec comp-tran-tp : {S : [` s-tp]} [` ex-tran S] =
mlam S ⇒ case [` S] of
| [` bool] ⇒ [` ex (tsum tunit tunit) t-bool]
| [` arr S S’] ⇒
let [` ex T TR] = comp-tran-tp [` S] in
let [` ex T’ TR’] = comp-tran-tp [` S’] in
[` ex (tarr T T’) (t-arr TR TR’)]

;

LF eq : t-tp → t-tp → type =
| refl : eq T T
;

rec unique-tran-tp : (g:ctx) [g ` tran-tp S[] T[]] → [` tran-tp S T
’] → [` eq T T’] =

fn tr1 ⇒ fn tr2 ⇒ case tr1 of

APPENDIX C. TRANSLATING BOOLEANS IN BELUGA 184

| [g ` t-bool] ⇒
let [` t-bool] = tr2 in
[` refl]

| [g ` t-arr T1 T2] ⇒
let [` t-arr T1’ T2’] = tr2 in
let [` refl] = unique-tran-tp [g ` T1] [` T1’] in
let [` refl] = unique-tran-tp [g ` T2] [` T2’] in
[` refl]

;

APPENDIX C. TRANSLATING BOOLEANS IN BELUGA 185

With these lemmas in place, the translation can be implemented, notice
how the context relation was made superfluous by the information carried
in the context schema. Context schemas for Orca remain an unexplored
subject.

rec tran : (g : ctx) [` tran-tp S T] → [g ` s-tm S[]] → [g ` t-tm
T[]] =

fn tr ⇒ fn e ⇒ case e of
| {M : [g` s-tm (arr S[] T[])]} [g ` app M N] ⇒
let [` ex S’ TR] = comp-tran-tp [` S] in
let [` TR’] = tr in
let [g ` M’] = tran [` t-arr TR TR’] [g ` M] in
let [g ` N’] = tran [` TR] [g ` N] in
[g ` tapp M’ N’]

| [g ` lam λx.M] ⇒
let [` t-arr TR TR’] :

[` tran-tp (arr S T) (tarr S’ T’)] = tr
in
let [g, x: block s:s-tm S[]

, t:t-tm S’[]
, tr:tran-tp S[] S’[] ` M’[..,x.t]] =

tran [` TR’]
[g, x: block s:s-tm S[]
, t:t-tm S’[]
, tr:tran-tp S[] S’[] ` M[..,x.s]]

in
[g ` tlam λx.M’]

| [g ` tt] ⇒
let [` t-bool] = tr in
[g ` tinr tone]

| [g ` ff] ⇒
let [` t-bool] = tr in
[g ` tinl tone]

| [g ` ife C M N] ⇒
let [g ` C’] = tran [` t-bool] [g ` C] in
let [g ` M’] = tran tr [g ` M] in
let [g ` N’] = tran tr [g ` N] in
[g ` tcase C’ (λx. M’[..]) (λx. N’[..])]

APPENDIX C. TRANSLATING BOOLEANS IN BELUGA 186

| {#p:[g ` block s:s-tm S[]
, t:t-tm T[]
, tr:tran-tp S[] T[]]} [g ` #p.s] ⇒

let [` refl] = unique-tran-tp [g ` #p.tr] tr in
[g ` #p.t]

;

Bibliography

A. Abel. A Polymorphic Lambda-Calculus with Sized Higher-Order Types.
PhD thesis, Ludwig-Maximilians University, 2006.

A. Abel and B. Pientka. Higher-order dynamic pattern unification for de-
pendent types and records. In L. Ong, editor, 10th International Confer-
ence on Typed Lambda Calculi and Applications (TLCA’11), Lecture Notes
in Computer Science (LNCS 6690), pages 10–26. Springer, 2011.

G. Allais, J. Chapman, C. McBride, and J. McKinna. Type-and-scope safe
programs and their proofs. In Proceedings of the 6th ACM SIGPLAN
Conference on Certified Programs and Proofs, CPP 2017, pages 195–207.
ACM, 2017.

T. Altenkirch. A formalization of the strong normalization proof for
System F in LEGO. In M. Bezem and J. F. Groote, editors, International
Conference on Typed Lambda Calculi and Applications (TLCA ’93), volume
664 of Lecture Notes in Computer Science, pages 13–28. Springer, 1993.
ISBN 3-540-56517-5.

A. Asperti, W. Ricciotti, C. S. Coen, and E. Tassi. A bi-directional refine-
ment algorithm for the calculus of (co)inductive constructions. Logical
Methods in Computer Science, 8:1–49, 2012.

L. Augustsson. Compiling pattern matching. In J.-P. Jouannaud, editor,
Functional Programming Languages and Computer Architecture (FPCA’85),
volume 201 of Lecture Notes in Computer Science (LNCS), pages 368–381.
Springer, 1985.

D. Baelde, K. Chaudhuri, A. Gacek, D. Miller, G. Nadathur, A. Tiu, and
Y. Wang. Abella: A system for reasoning about relational specifications.
Journal of Formalized Reasoning, 7(2):1–89, 2014.

187

BIBLIOGRAPHY 188

H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M.
Gabbay, and S. E. Maibaum, editors, Handbook of Logic in Computer
Science (Vol. 2), pages 117–309. Oxford University Press, Inc., New
York, NY, USA, 1992. ISBN 0-19-853761-1.

O. S. Belanger, S. Monnier, and B. Pientka. Programming type-safe trans-
formations using higher-order abstract syntax. In G. Gonthier and
M. Norrish, editors, Third International Conference on Certified Programs
and Proofs (CPP’13), Lecture Notes in Computer Science (LNCS 8307),
pages 243–258. Springer, 2013.

N. Benton, C. Hur, A. Kennedy, and C. McBride. Strongly typed term
representations in coq. J. Autom. Reasoning, 49(2):141–159, 2012a.

N. Benton, C.-K. Hur, A. J. . Kennedy, and C. McBride. Strongly typed
term representations in Coq. Journal of Automated Reasoning, 49(2):141–
159, 2012b.

M. Boespflug and B. Pientka. Multi-level contextual modal type theory.
In G. Nadathur and H. Geuvers, editors, 6th International Workshop on
Logical Frameworks and Meta-languages: Theory and Practice (LFMTP’11),
Electronic Proceedings in Theoretical Computer Science (EPTCS), 2011.

E. Brady. Idris, a general-purpose dependently typed programming lan-
guage: Design and implementation. Journal of Functional Programming,
23:552–593, 9 2013.

A. Cave and B. Pientka. Programming with binders and indexed data-
types. In 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’12), pages 413–424. ACM Press, 2012.

A. Cave and B. Pientka. First-class substitutions in contextual type theory.
In Proceedings of the Eighth ACM SIGPLAN International Workshop on

BIBLIOGRAPHY 189

Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP’13),
pages 15–24. ACM Press, 2013. ISBN 978-1-4503-2382-6.

A. Cave, F. Ferreira, P. Panangaden, and B. Pientka. Fair reactive program-
ming. In S. Jagannathan and P. Sewell, editors, The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’14, pages 361–372. ACM, 2014.

I. Cervesato, F. Pfenning, D. Walker, and K. Watkins. A concurrent logical
framework II: Examples and applications. Technical Report CMU-CS-
02-102, Department of Computer Science, Carnegie Mellon University,
2002.

C. Chen and H. Xi. Combining programming with theorem proving.
In O. Danvy and B. C. Pierce, editors, 10th International Conference on
Functional Programming, pages 66–77, 2005.

J. Cheney and R. Hinze. First-class phantom types. Technical Report
CUCIS TR2003-1901, Cornell University, 2003a.

J. Cheney and R. Hinze. First-class phantom types. Technical report,
Cornell University, 2003b.

A. J. Chlipala. Parametric higher-order abstract syntax for mechanized
semantics. In J. Hook and P. Thiemann, editors, 13th ACM SIGPLAN
International Conference on Functional Programming (ICFP’08), pages 143–
156. ACM, 2008.

D. Christiansen and E. Brady. Elaborator reflection: Extending idris in
idris. In Proceedings of the 21st ACM SIGPLAN International Conference
on Functional Programming, ICFP 2016, pages 284–297, New York, NY,
USA, 2016. ACM.

A. Church. A formulation of the simple theory of types. The Journal of
Symbolic Logic, 5:56–68, 6 1940.

BIBLIOGRAPHY 190

R. L. Constable. Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986. ISBN
0-134-51832-2.

T. Coquand and G. Huet. The calculus of constructions. Information and
Computation, 76(2):95 – 120, 1988.

N. A. Danielsson and U. Norell. Parsing Mixfix Operators, pages 80–99.
Springer Berlin Heidelberg, 2011.

R. Davies and F. Pfenning. A modal analysis of staged computation.
Journal of the ACM, 48(3):555–604, 2001. doi: 10.1145/382780.382785.

N. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-
Rosser theorem. Indag. Math, 34(5):381–392, 1972.

N. G. de Bruijn. AUTOMATH, a Language for Mathematics, pages 159–200.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

N. G. de Bruijn. Checking Mathematics with Computer Assistance. No-
tices of the American Mathematical Society, 38(1):8–15, 1991.

J. Despeyroux and A. Hirschowitz. Higher-order abstract syntax with
induction in coq. In Proceedings of the 5th International Conference on
Logic Programming and Automated Reasoning, LPAR ’94, pages 159–173,
London, UK, UK, 1994. Springer-Verlag. ISBN 3-540-58216-9.

J. Despeyroux, F. Pfenning, and C. Schürmann. Primitive recursion for
higher-order abstract syntax. In Proceedings of the Third International
Conference on Typed Lambda Calculus and Applications (TLCA’97), pages
147–163. Springer, 1997. Extended version available as Technical Report
CMU-CS-96-172, Carnegie Mellon University.

BIBLIOGRAPHY 191

G. Dowek, T. Hardin, C. Kirchner, and F. Pfenning. Unification via explicit
substitutions: The case of higher-order patterns. In M. Maher, editor,
Joint International Conference and Symposium on Logic Programming, pages
259–273. MIT Press, Sept. 1996.

J. Dunfield and B. Pientka. Case analysis of higher-order data. In In-
ternational Workshop on Logical Frameworks and Meta-Languages: Theory
and Practice (LFMTP’08), volume 228 of Electronic Notes in Theoretical
Computer Science (ENTCS), pages 69–84. Elsevier, June 2009.

P. Dybjer. Inductive Families. Formal Aspects of Computing, 6(4):440–465,
Jul 1994. ISSN 1433-299X.

A. Felty and A. Momigliano. Hybrid: A definitional two-level approach
to reasoning with higher-order abstract syntax. Journal of Automated
Reasoning, 48(1):43–105, 2012.

F. Ferreira and B. Pientka. Bidirectional elaboration of dependently typed
programs. In Proceedings of the 16th International Symposium on Principles
and Practice of Declarative Programming, PPDP ’14, pages 161–174. ACM,
2014.

F. Ferreira and B. Pientka. Programs using syntax with first-class binders.
In H. Yang, editor, Programming Languages and Systems: 26th European
Symposium on Programming, ESOP 2017, Uppsala, Sweden, pages 504–
529. Springer Berlin Heidelberg, 2017.

F. Ferreira, D. Thibodeau, and B. Pientka. Dependent type theory with
contextual types. In 23rd International Conference on Types for Proofs and
Programs TYPES 2017, Budapest, Hungary, pages 61–62, 2017.

M. Fiore and C.-K. Hur. Term equational systems and logics: (extended
abstract). Electronic Notes in Theoretical Computer Science, 218:171 – 192,

BIBLIOGRAPHY 192

2008. ISSN 1571-0661. Proceedings of the 24th Conference on the
Mathematical Foundations of Programming Semantics (MFPS XXIV).

M. Gabbay and A. Pitts. A new approach to abstract syntax involving
binders. In G. Longo, editor, Proceedings of the 14th Annual Symposium
on Logic in Computer Science (LICS’99), pages 214–224. IEEE Computer
Society Press, 1999.

A. Gacek. The Abella interactive theorem prover (system description). In
4th International Joint Conference on Automated Reasoning, volume 5195
of Lecture Notes in Artificial Intelligence, pages 154–161. Springer, 2008.

A. Gacek, D. Miller, and G. Nadathur. A two-level logic approach to
reasoning about computations. Journal of Automated Reasoning, 49(2):
241–273, 2012.

J. Garrigue and D. Rémy. Ambivalent types for principal type inference
with gadts. In Proceedings of the 11th Asian Symposium on Programming
Languages and Systems (APLAS’13), Lecture Notes in Computer Science
(LNCS 8301), pages 257–272. Springer, 2013. ISBN 978-3-319-03541-3.

G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot, S. L.
Roux, A. Mahboubi, R. O’Connor, S. O. Biha, I. Pasca, L. Rideau,
A. Solovyev, E. Tassi, and L. Théry. A Machine-Checked Proof of the
Odd Order Theorem, pages 163–179. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

R. Harper and D. R. Licata. Mechanizing Metatheory in a Logical Frame-
work. Journal of Functional Programming, 17(4-5):613–673, 2007.

R. Harper and F. Pfenning. On equivalence and canonical forms in the
LF type theory. ACM Transactions on Computational Logic, 6(1):61–101,
2005.

BIBLIOGRAPHY 193

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, January 1993.

J. Harrison. Hol light: An overview. In S. Berghofer, T. Nipkow, C. Ur-
ban, and M. Wenzel, editors, TPHOLs, volume 5674 of Lecture Notes in
Computer Science, pages 60–66. Springer, 2009. ISBN 978-3-642-03358-2.

J. Harrison, J. Urban, and F. Wiedijk. History of interactive theorem prov-
ing. In J. H. Siekmann, editor, Computational Logic, volume 9 Suplement
C of Handbook of the History of Logic, pages 135 – 214. North-Holland,
2014.

W. A. Howard. The formulae-as-types notion of construction. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry; Essays on Combinatory
Logic, Lambda Calculus and Formalism, pages 479 – 490. Academic Press,
1980.

J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive
systems using sized types. In 23rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’96), pages 410–423, New
York, NY, USA, 1996. ACM. ISBN 0-89791-769-3.

R. Jacob-Rao. Well-founded recursion in terms and types. Master’s thesis,
McGill University, 2017.

L. Jia, J. A. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J. Schorr, and
S. Zdancewic. Aura: A programming language for authorization and
audit. In 13th ACM SIGPLAN International Conference on Functional
Programming, pages 27–38. ACM, 2008.

G. Lee, B. C. D. S. Oliveira, S. Cho, and K. Yi. GMeta: A Generic For-
mal Metatheory Framework for First-Order Representations, pages 436–455.
Springer Berlin Heidelberg, 2012.

BIBLIOGRAPHY 194

X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon. The
OCaml System Release 4.03 – Documentation and user’s manual. Institut
National de Recherche en Informatique et en Automatique, 2016a.

X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon. The
OCaml system (release 4.04): Documentation and user’s manual. Institut
National de Recherche en Informatique et en Automatique, 2016b.

Z. Luo. Computation and reasoning: a type theory for computer science. Oxford
University Press, Inc., New York, NY, USA, 1994.

M. Luther. More on implicit syntax. In R. Gore, A. Leitsch, and T. Nip-
kow, editors, First International Joint Conference on Automated Reasoning
(IJCAR’01), Lecture Notes in Artificial Intelligence (LNAI) 2083, pages
386–400. Springer, 2001.

P. Martin-Löf. Constructive mathematics and computer programming.
In 6-th International Congress for Logic, Methodology and Philosophy of
Science, 1979, pages 153–175. North-Holland, 1982.

P. Martin-Löf. Intuitionistic Type Theory, volume 1 of Studies in Proof Theory
Lecture Notes. Bibliopolis, Napoli, 1984.

D. Miller. Unification of simply typed lambda-terms as logic program-
ming. In 8th International Logic Programming Conference, pages 255–269.
MIT Press, 1991.

D. Miller and C. Palamidessi. Foundational aspects of syntax. ACM
Comput. Surv., 31(3es), Sept. 1999.

D. Miller and A. Tiu. A proof theory for generic judgments. ACM Trans-
actions on Computational Logic, 6(4):749–783, 2005. ISSN 1529-3785.

A. Nanevski, F. Pfenning, and B. Pientka. Contextual Modal Type Theory.
ACM Transactions on Computational Logic, 9(3):1–49, 2008.

BIBLIOGRAPHY 195

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science.
Springer, 2002.

B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löfs
Type Theory. An introduction. Clarendon Press, Oxford, 1990.

U. Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Department of Computer Science and Engineering,
Chalmers University of Technology, Sept. 2007. Technical Report 33D.

C. Paulin-Mohring. Inductive definitions in the system coq - rules and
properties. In M. Bezem and J. F. Groote, editors, International Confer-
ence on Typed Lambda Calculi and Applications(TLCA ’93), volume 664 of
Lecture Notes in Computer Science, pages 328–345. Springer, 1993.

L. C. Paulson. Isabelle: The next seven hundred theorem provers. In
E. Lusk and R. Overbeek, editors, 9th International Conference on Au-
tomated Deduction (CADE-9), pages 772–773, Argonne, Illinois, 1988.
Springer Verlag Lecture Notes in Computer Science (LNCS) 310. Sys-
tem abstract.

F. Pfenning. Elf: A language for logic definition and verified meta-
programming. In Fourth Annual Symposium on Logic in Computer Science,
pages 313–322, Pacific Grove, California, June 1989. IEEE Computer So-
ciety Press.

F. Pfenning. Intensionality, extensionality, and proof irrelevance in modal
type theory. In J. Halpern, editor, Proceedings of the 16th Annual Sym-
posium on Logic in Computer Science (LICS’01), pages 221–230, Boston,
Massachusetts, June 2001. IEEE Computer Society Press.

F. Pfenning and R. Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11(4):511–540, 2001.

BIBLIOGRAPHY 196

F. Pfenning and C. Elliott. Higher-order abstract syntax. In ACM SIGPLAN
Symposium on Language Design and Implementation (PLDI’88), pages 199–
208, June 1988.

F. Pfenning and C. Paulin-Mohring. Inductively defined types in the Calculus
of Constructions, pages 209–228. Springer-Verlag, New York, NY, 1990.

F. Pfenning and C. Schürmann. System description: Twelf — a meta-
logical framework for deductive systems. In H. Ganzinger, editor,
16th International Conference on Automated Deduction (CADE-16), Lecture
Notes in Artificial Intelligence (LNAI 1632), pages 202–206. Springer,
1999.

B. Pientka. A type-theoretic foundation for programming with higher-
order abstract syntax and first-class substitutions. In 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’08), pages 371–382. ACM Press, 2008.

B. Pientka. Higher-order term indexing using substitution trees. ACM
Transactions on Computational Logic, 11(1):1–40, 2009.

B. Pientka. An insider’s look at LF type reconstruction: Everything you
(n)ever wanted to know. Journal of Functional Programming, 1(1–37),
2013.

B. Pientka and A. Abel. Structural recursion over contextual objects.
In T. Altenkirch, editor, 13th International Conference on Typed Lambda
Calculi and Applications (TLCA’15). Leibniz International Proceedings
in Informatics (LIPIcs) of Schloss Dagstuhl, 2015.

B. Pientka and A. Cave. Inductive Beluga:Programming Proofs (System
Description). In A. P. Felty and A. Middeldorp, editors, 25th Interna-
tional Conference on Automated Deduction (CADE-25), Lecture Notes in
Computer Science (LNCS 9195), pages 272–281. Springer, 2015.

BIBLIOGRAPHY 197

B. Pientka and J. Dunfield. Covering all bases: design and implemen-
tation of case analysis for contextual objects. Technical report, McGill
University, 2010a.

B. Pientka and J. Dunfield. Beluga: a framework for programming and
reasoning with deductive systems (System Description). In J. Giesl
and R. Haehnle, editors, 5th International Joint Conference on Automated
Reasoning (IJCAR’10), Lecture Notes in Artificial Intelligence (LNAI
6173), pages 15–21. Springer-Verlag, 2010b.

B. Pientka and F. Pfenning. Optimizing higher-order pattern unification.
In F. Baader, editor, 19th International Conference on Automated Deduction
(CADE-19), Lecture Notes in Artificial Intelligence (LNAI) 2741, pages
473–487. Springer-Verlag, 2003.

B. C. Pierce and D. N. Turner. Local type inference. ACM Transaction on
Programming Languages and Systems, 22(1):1–44, jan 2000.

A. Pitts. Nominal logic, a first order theory of names and binding. Infor-
mation and Computation, 186(2):165–193, Nov. 2003. ISSN 0890-5401.

R. Pollack. Implicit syntax. In G. Huet and G. Plotkin, editors, Proceedings
of First Workshop on Logical Frameworks, pages 421–434, 1990.

A. Poswolsky and C. Schürmann. System description: Delphin—a func-
tional programming language for deductive systems. In International
Workshop on Logical Frameworks and Meta-Languages: Theory and Prac-
tice (LFMTP’08), volume 228 of Electronic Notes in Theoretical Computer
Science (ENTCS), pages 135–141. Elsevier, 2009.

A. B. Poswolsky and C. Schürmann. Practical programming with higher-
order encodings and dependent types. In 17th European Symposium on
Programming (ESOP ’08), volume 4960, pages 93–107. Springer, 2008.

BIBLIOGRAPHY 198

F. Pottier. An overview of Cαml. Electronic Notes in Theoretical Computer
Science, 148(2):27 – 52, 2006. Proceedings of the ACM-SIGPLAN Work-
shop on ML (ML’05).

F. Pottier. Static name control for FreshML. In 22nd IEEE Symposium
on Logic in Computer Science (LICS’07), pages 356–365. IEEE Computer
Society, July 2007.

N. Pouillard. Nameless, painless. In Proceedings of the 16th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’11, pages 320–
332. ACM, 2011. ISBN 978-1-4503-0865-6.

S. Schäfer, T. Tebbi, and G. Smolka. Autosubst: Reasoning with de bruijn
terms and parallel substitutions. In C. Urban and X. Zhang, editors,
6th International Conference of Interactive Theorem Proving (ITP), Lecture
Notes in Computer Science (9236), pages 359–374. Springer, Aug 2015.

T. Schrijvers, S. Peyton Jones, M. Sulzmann, and D. Vytiniotis. Complete
and decidable type inference for gadts. In 14th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP ’09, pages 341–352.
ACM, 2009.

C. Schürmann, J. Despeyroux, and F. Pfenning. Primitive recursion for
higher-order abstract syntax. Theoretical Computer Science, 266(1-2):1–
57, 2001.

T. Sheard and E. Pasalic. Meta-programming with built-in type equality.
Electronic Notes in Theoretical Computer Science, 199:49 – 65, 2008. Pro-
ceedings of the Fourth International Workshop on Logical Frameworks
and Meta-Languages (LFM 2004).

M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: programming
with binders made simple. In 8th International Conference on Functional
Programming (ICFP’03), pages 263–274. ACM Press, 2003.

BIBLIOGRAPHY 199

K. Slind and M. Norrish. A Brief Overview of HOL4, pages 28–32. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

P. Stansifer and M. Wand. Romeo: A system for more flexible binding-safe
programming. In Proceedings of the 19th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’14, pages 53–65, 2014.

The Coq Developement Team. The Coq Proof Assistant Reference Manual
v. 8.6.1. Institut National de Recherche en Informatique et en Automa-
tique, 2016.

C. Urban. Nominal techniques in Isabelle/HOL. Journal of Automated
Reasoning, 40(4):327–356, 2008.

G. Washburn and S. Weirich. Boxes go bananas: Encoding higher-order
abstract syntax with parametric polymorphism. Journal of Functional
Programming, 18(01):87–140, 2008.

K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical
framework I: Judgments and properties. Technical Report CMU-CS-
02-101, Department of Computer Science, Carnegie Mellon University,
2002.

S. Weirich, A. Voizard, P. H. A. de Amorim, and R. A. Eisenberg. A
specification for dependent types in Haskell. Proc. ACM Program. Lang.,
1(ICFP):31:1–31:29, Aug. 2017. ISSN 2475-1421.

E. Westbrook, N. Frisby, and P. Brauner. Hobbits for Haskell: a library
for higher-order encodings in functional programming languages. In
4th ACM Symposium on Haskell (Haskell’11), pages 35–46. ACM, 2011.

H. Xi. Applied type system. In TYPES 2003, volume 3085 of Lecture Notes
in Computer Science, pages 394–408. Springer, 2004.

BIBLIOGRAPHY 200

H. Xi. Dependent ml an approach to practical programming with depen-
dent types. Journal of Functional Programming, 17:215–286, 3 2007.

H. Xi and F. Pfenning. Dependent types in practical programming. In
26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’99), pages 214–227. ACM Press, 1999.

H. Xi, C. Chen, and G. Chen. Guarded recursive datatype constructors. In
30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’03), pages 224–235. ACM Press, 2003.

C. Zenger. Indexed types. Theoretical Computer Science, 187(1-2):147–165,
1997.

B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski, and V. Vafeiadis.
Mtac: A monad for typed tactic programming in coq. Journal of Func-
tional Programming, 25, 2015.

	Contents
	List of Figures
	Introduction
	Deductive Systems with Binders
	Introduction
	The Representation of Binders
	Higher Order Abstract Syntax
	Logical Framework LF
	Programming with Proofs: The Beluga System

	Reconstruction of Implicit Parameters
	Introduction
	Source Language
	Target Language
	Description of Elaboration
	Soundness of Elaboration
	Related Work
	Conclusion

	Contextual Types and Programming Languages
	Introduction
	Main Ideas
	Core-ML: A Small Functional Language
	A Syntactic Framework
	Core-ML with Contextual Types
	Core-ML with GADTs
	Deep Embedding of SF
	From Contextual Types to GADTs
	A Proof of Concept Implementation
	Related Work
	Conclusion

	Contextual Types and Type Theory
	Introduction
	Example: Translating Boolean Types
	Orca's Core Calculus
	Definitions and Pattern Matching
	The Prototype Implementation
	Related Work
	Conclusion

	Conclusion
	Future Work

	Proof of Soundness of Reconstruction
	Babybel's Translation Meta-theory
	Translating Booleans in Beluga
	Bibliography

