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Résumé

Les ombres douces générées par des lumieres surfaciques sont essentielles en synthese d’images
réalistes, mais elles requierent le tracage de rayons secondaires afin d’évaluer la visibilité. Ce cal-
cul de lumiere directe est dispendieux et est souvent remplacé par des techniques d’approximation
en rendu temps réel. Dans ce mémoire, nous investiguons 'utilisation de méthodes d’apprentis-
sage profond pour modéliser le probleme de visibilité. En traitant I’occlusion comme une tache
de classification binaire, nous entrainons un réseau de neurones artificiels pouvant estimer la
visibilité directionnelle dans I’espace des rayons. Nous testons notre modele sur différents ob-
jets maillés avec plusieurs sources de lumiere et démontrons qu’un simple réseau de neurones
a propagation avant est partiellement capable de généraliser a des positions de lumiéeres jamais
vues. Malheureusement, notre modeéle rencontre des difficultés lors de la reconstruction d’'ombres

lointaines et ne peut donc pas simuler ces régions dans toutes les directions.

Abstract

Soft shadows from area lights are essential in generating compelling photorealistic images but
require tracing secondary rays to evaluate visibility for direct lighting. This computation is costly
and, as such, is usually replaced by image- or geometry-based approximations for real-time ren-
dering. In this work, we investigate the use of deep learning techniques to solve the visibility
problem. By treating occlusion as a binary classification task, we train a per-object artificial
neural network that estimates the directional visibility profile in ray space. We test on low-to-
moderate complexity meshes with different light sources and show that a simple feedforward
neural network classifier is partially capable of generalizing to unseen light positions. Unfor-
tunately, our model has difficulties reconstructing shadows past a certain distance and cannot

accurately resolve shadows in all directions.
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Preface

This thesis investigates the use of deep learning to solve the visibility problem in the context of
soft shadow generation for interactive rendering. It is ultimately based on the work I have done
in the second half of 2017 where I explored the idea of using a deep neural network to learn the
visibility profile of simple mesh objects. When this project originally started, hardware-based
acceleration solutions for ray tracing were not yet publicly available. The introduction of real-
time ray tracing in mid-2018 by NVIDIA® and Microsoft® provided a watershed moment to
the field of real-time rendering. In particular, it allowed for reflections and soft shadows to be
accurately generated on-the-fly on the GPU for the very first time. While it can be argued that
this considerably weakens the importance of this thesis, I still believe the experimental results

obtained, albeit unsuccessful, present promising avenues of research for hybrid rendering.
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Chapter 1

Introduction

Synthesizing the appearance of the real world is an important and long-standing goal of com-
puter graphics. In physically-based rendering, light transport algorithms aim to render realistic
images that are indistinguinsable from photographs. The ever-growing demand for realism and
visual fidelity in the feature film and video games industry has pushed the rendering field to con-
tinuously develop new algorithms that can accurately and efficiently simulate the world we live
in. The ambitious nature of this research field has revealed that, even if we can now synthes-
ize believable images that can trick the most meticulous of audiences, we are still very far away
from reproducing this illusion at interactive framerates. This is why visual effects in blockbuster
movies are usually more convincing than the best looking video games, even in 2018."

Due to past hardware limitations, offline and online (real-time) rendering have essentially
grown into two distinct research fields over the past few decades. While the former enjoys simu-
lating the physics of light without critical time constraints, the latter only has a few milliseconds
to output an image to the screen. Approximation algorithms for real-time applications are thus
employed to alleviate this bottleneck, effectively trading visual quality for performance. As a
result, full global illumination is still an ongoing quest in games and interactive films, and the
majority of research in real-time rendering stems from the difficulty of simulating dynamical

light transport efficiently.

'Of course, this depends on the type of movies you watch!
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Lately, real-time rendering has gained extraordinary momentum with the release of hardware-
based acceleration solutions for ray tracing, a method for propagating light rays in a virtual scene.
Coupled with the recent advances in deep learning, this major shift has significantly narrowed
the gap between offline and interactive techniques. Concretely, it has opened up a sea of prom-
ising research possibilities to navigate while bringing together all prominent actors of the field,
such as feature film production scientists and video games developers. The goal of this thesis is
to explore one such idea.

The primary focus of this thesis is shadows. More precisely, we are interested in the generation
of soft shadows from area light sources. These shadowed regions are essential when synthesizing
images since they provide critical depth cues and information about the surrounding lighting
environment (Figure 1.1). Scenes without shadows can often look unconvincing and are generally
more difficult to parse. This creates a need for simulating shadowed regions in a computationally

efficient way.

¥ ——

(a) Rockstar’s Grand Theft Auto V (2013) (b) CD Projekt’s Witcher 3 (2015)

Figure 1.1. Shadows in a virtual environment are a visual necessity to provide a feeling
of immersion to the player. The shadows casted by the characters and the trees make the
scene believable. Images © Rockstar Games® and CD Projekt® Red.

The core challenge in computing shadows emerges from the necessity of tracing secondary
rays on-the-fly to evaluate the mutual visibility between two points. This, in turn, entails inter-
secting rays with the scene geometry by the mean of a spatial data structure. Although some
optimizations of this tree structure exist, its evaluation remains too slow, which can make it
impractical for real-time usage. Several approximate interactive methods have been developed

throughout the years, but—although computationally inexpensive—they are generally not very
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robust and their imprecise behaviour is often obvious. In any case, these approaches cannot scale
to large scenes without incurring unacceptable performance penalties. This motivates the need
for a model that would be both robust and fast enough for interactive scene relighting. In this

work, we propose to investigate deep learning techniques to solve this problem.

1.1 Thesis Overview

This thesis consists of six chapters. In Chapter 2 we review the fundamentals of light transport
and describe the light transport problem. We also provide a general overview of deep learning
techniques that shall be used later on. In Chapter 3 we describe pratical solutions for generating
soft shadows in offline and real-time scenarios, and we also review the state-of-the-art in shadow
generation. These two chapters will lay the foundations for our work and will also introduce
the necessary notation and terminology to reason about visibility. In Chapter 4 we present a
framework for learning the visibility of simple mesh objects. In particular, we show that it is
possible to sample the visibility of simple convex meshes and learn this distribution using a deep
neural network. We present our experimental results in Chapter 5 and conclude with an analysis

of the learning process in Chapter 6.



Chapter 2

Background

There are many models of the physics of light with various levels of complexity. Spectral ren-
dering models treat the light as a wave and thus treat the spatial-temporal propagation of light,
while simpler models rely on geometric optics to trace out the light trajectories. The former
relies on a more accurate representation of light, but their efficient implementation is often in-
tractable. The latter techniques, on the other hand, amount to the corpuscular theory of light
and thus assume that light travel in a straight line. This important simplification allows for the
decoupling of the RGB channels for an efficient simulation, but cannot handle wave optics phe-
nomenom like diffraction and interference. These events are unperceivable from the human eye
since the wavelength of light is negligible compared to the size of objects encountered in a scene.
Consequently, modern rendering frameworks prefer the classical approach of geometric optics
to model the visible light only. This level of abstraction allows to concentrate the focus on the
phenomena of interest when developing new light transport algorithms or appearance models.
In this chapter, we first introduce the fundamentals of light transport. In particular, we present
a general overview of physically-based rendering, including radiometry, reflectance models, and
Monte Carlo techniques for solving the rendering equation. Given the nature of the problem we
are trying to solve, we will proceed to review deep neural networks in the context of classifica-
tion and describe how these models can be trained to approximate arbitrary nonlinear functions.
In particular, we will see how artifical neural networks are robust tools for learning complex

distributions from big data.
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2.1 Domains and Measures

We introduce several important domains and related measures to facilitate mathematical formu-
lations discussed in the following text.

We assume that the scene to be rendered is made of finite two-dimensional surfaces embedded
in R3. The union of these surfaces forms the scene manifold and shall be denoted by M C R3. A
point on this union of surfaces will be denoted by x € M. We begin by defining the area measure
A on M such that A(D) represents the surface area of some region D € M. We can take the

(Lebesgue) integral over all such regions, assuming f : M — R is integrable:

F = / F(x)dA(x). (2.1)
M

If f is the identity function then F is the total surface area of the scene, which amounts to the sum
of all the triangle areas. We can also define F' with respect to directions. If we consider normalized
directions w in the unit sphere $2, we can define the solid angle measure o which corresponds to
the surface area measure on the sphere. Representing directions in polar coordinates allows us

to integrate over solid angles:

2n k14
F = /:92 f(w)do(w) =/(; /0 f(6,¢)sinf db do. (2.2)

The projected solid angle measure, denoted o and also defined on $2, is used to integrate a
physical quantity that arrives at or leaves a surface point, and as such, introduces a foreshortening

(cosine) factor:

2w T
/ f(w)dot(w) = / / (6, )| cosB|sinf db de, (2.3)
82 0 0

where we use the notation | - | to denote the clamping max(0, x). Hence, the differential dot can
be interpreted as the perpendicular projection of the solid angle on the hemisphere #?(x) onto
its basis disk (Figure 2.1). In the formalism of Veach [Vea98], we finally define the throughput

measure as the product of both measures. Let R := M x $2 denote the ray space, i.e., the space



6 CHAPTER 2. BACKGROUND

dA+
z
do
7 7 4 N N y
X ¢ x dot

Figure 2.1. Spherical coordinates (left) and the relationship between the various differ-
ential quantities introduced so far (right). The perpendicular differential area dA* cor-
responds to the differential area dA projected onto the plane perpendicular to w, and the
projected differential solid angle do' can be viewed as the projection of do onto the
equatorial tangent plane. These differentials are related by d41 do = dAdot.

of all rays that start at points on the scene surfaces. Then, for any D € R we define p as

w(D) := /D dA(x) dot (). (2.4)

Intuitively, we can think of x as measuring the light-carrying capacity of a bundle of light rays.
When convenient and unambiguous, we will write dw instead of do(w) and dw' instead of
dot(w) for conciseness. We now turn to radiometry to reason about the quantities these rays

carry.

2.2 Radiometry

Radiometry is the study of the measurement of the electromagnetic radiation. It is based on the
geometric optics, where we consider the light as a movement of the rigid particles. The light
spectrum domain will be assumed to be the classical red-green-blue (RGB) color domain R3,
namely positive real-valued channels including zero (high-dynamic-range).

The quantity of interest in light transport is the radiance. Given a point x and a direction w,

the radiance L : M x #? € R®> — R? is defined as the flux density ® per differential solid angle
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do(w)

dA+

Figure 2.2. Radiance emitted in the direction @ from the point x is defined as the amount
of energy traveling through the differential beam defined by the projected area dA* per-
pendicular to @ and the solid angle do(w).

do and differential perpendicular area dA (Figure 2.2). More precisely, we can write this as

d?d(x, w)
do(w) dAL(x, w)’

L(x, ) := (2.5)

measured in W/m? sr. Let N : M — $2 be the Gauss map that associates an oriented unit normal
vector to its surface point. Then, the projected differential area is dA+ = cos 6 dA4, where 0 is
the angle between N(x) and w.

Radiance is invariant along a line segment, assuming light travels through a vacuum (i.e,,

without a participating media) and remains unobstructed:
Lx,w)=Lx+tw,w), t=0. (2.6)

This key characteristic is crucial to rendering since it allows us to express radiance as a finite
sequence of surface interactions. Other radiometric quantities can be expressed in terms of the
radiance. For instance, rewriting (2.5) in terms of the radiant flux ® over a surface D yields the

cosine-weighted double integral:

cp:/D[WL(x,a))w(x)-w|da(w)dA(x). (2.7)

The incident radiance L;(x, w) is defined as the measure of radiance arriving at x from direction
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o while exitant radiance L,(x, w) measures the radiance quantity leaving x in direction w. In a

vacuum, these two quantities are such that
Li(x,®) = L,(y,—0) = L(x.®), xye M. (2.8)

This is obvious by Equation 2.6: since radiance is constant along a unobstructed differential beam,
the incoming radiance at point in a given direction is equal to outgoing radiance at another in

the opposite direction.

2.3 Light Interactions with Surfaces

Describing the appearance of surfaces under varying illumination requires a robust mathematical
model of surface scattering. When light is emitted from a light source, photons travel along a
differential beam of light and are either reflected or transmitted at the object surfaces. A formal
framework is thus necessary to study the surface’s response to illumination, in particular, how
light is absorbed or dissipated as heat at an arbitrary surface point. We define the bidirectional
reflectance distribution function (BRDF) f, : H*x H? C R* — R, as the fraction of light arriving
at a point from the incoming direction w; that gets reflected in the outgoing direction w,." This

function governs the appearance of an object and is formally defined as

dLy(x, w,) . dLo(x, w,)
Li(x,0;)dot(w;)  Li(x,;)cosb; do(w;)’

fr(x, wi, w,) 1= (2.9)

where we include the point x in the notation for clarity. A valid BRDF is always positive and
follows the Helmholtz reciprocity principle f,(x, w;, w,) = fr(X,w,, ;). This entails that re-
versing the incident and outgoing directions does not change the amount of light being scattered.
Moreover, a plausible BRDF must conserve energy. This property is essential to ensure that ren-
dering algorithms converge to the radiant equilibrium: if light can gain energy at every bounce,

transported radiance may grow out of bounds as light propagates indefinitely in a scene.

'Here, w; and w, are assumed to be unitary vectors in the hemisphere H# 2(x), that is, the half-sphere centered
at x with normal N(x). See Figure 2.4a for an illustration.
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(a) Smooth diffuse (b) Smooth conductor (c) Rough conductor (d) Rough dielectric

Figure 2.3. The BSDF captures the overall look of an object as different distributions yield
different visual effects (Teapot model © Disney Pixar).

Definition 2.9 can be extended to handle transmittance, which is known as the bidirectional
transmittance distribution function (BTDF) f,. In this case, w; and w, lie on opposite sides of
the surface plane (i.e., ®; - w, < 0). Combining the BRDF and the BTDF (Figure 2.3) yields the
bidirectional scattering distribution function (BSDF) f; : > x 82 € R* — R?, where the absolute
value of the cosine term is used in (2.9) to handle both reflection and transmission. These function
definitions implicitly ignore the volumetric effect on the subsurface, which implies that light is
scattered at a single point on the surface. Further generalizations of these reflectance models,
such as the bidirectional subsurface scattering distribution function (BSSRDF), can handle different
entry and exit locations to capture internal transmittance within the volume underneath a surface.

From now on, we shall use the BSDF for full generality.

2.4  The Rendering Equation

The rendering equation describes the equilibrium of the radiance at a surface interaction. Intu-
itively, it characterizes how a distribution of the scattered light varies according to the surface
property. Introduced by [Kaj86], it has become the fundamental equation to solve in light trans-

port simulation. In this section, we present various formulations of the rendering equation to



10 CHAPTER 2. BACKGROUND
gain insights on the potential challenges of solving it numerically.

2.4.1. Spherical Formulation. We can formulate the radiance leaving a surface point x as the

sum of emitted radiance L.(x, w) and scattered radiance Lg(x, w):
Lo(x,0) := Lo(x,0) + Ls(x, w). (2.10)

The first term captures the self-emission of the surface at x which enables the modeling of various
emission profiles such as the sun or neon lights; it is naturally zero for nonemissive surfaces. The
second term can be directly obtained by integrating the BSDF over the the unit sphere of incident

direction at x, that is,
Lo i= [ fixon00)Lilx o) NG - n|do (@) 1)
S

The integrand is made of three terms: the incident radiance term L, (x, w; ) determines the amount
of light arriving at x, the foreshortening (cosine) term |N(x) - w;| = | cos 6| weights this radiance
depending on the incoming angle with respect to the surface normal, and the BSDF f; captures
how much of the light received is scattered towards the outgoing direction w,. Substituting (2.11)

into (2.10) gives the rendering equation in its full solid angle form:

u@wa=umwaﬁfﬁ@wmmu@wmmm«mw@» (2.12)
§2

Solving this equation is the crux of light transport algorithms.

2.4.2. Recursive Formulation. Converting Equation 2.12 into a recursive equation is straight-
forward. Let 74 : R — M denote the ray tracing function that casts a ray from x in direction @

and returns the closest scene surface point along this direction. Formally, we can write

ru(x, ) :=x+inf{t>0:x—|—ta)€M}-a), (2.13)

—

d p (x,0)
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where d 4 (x, w) := o0 if no intersection can be found. This definition allows us to relate L; and

L, based on the preservation of radiance along unoccluded rays; in other words, we have that
Li(X9 C()) = LO(rM(Xa C()),—C()) (214)

This observation suggests that finding the incident radiance along a ray (x, ®) merely amounts
to determining the nearest surface visible from x and evaluating its outgoing radiance in the
opposite direction. As a result, we obtain a recursive formulation of the rendering equation,

known as the light transport equation (LTE):

Lo(x, @) = Lo(x. @) + / o 05, 00) Lo(rag(x. ). o) dot (@), (2.15)
s2

Note the presence of the L, term on both sides of the equation.

2.4.3. Surface Area Formulation. We can change the domain of integration to the scene sur-
faces and integrate with respect to the surface area measure A. This formulation of the rendering
equation is quite useful as it allows us to integrate over all area light sources in the scene. Trans-
forming the differential projected solid angle measure dw= to a differential surface area measure
dA introduces a Jacobian determinant to accommodate the change of coordinates. Given two
points x,y € M forming a unit direction v = (x —y)/||x — y|| = (x — y), the geometry term

G : M x M — R3 is the product of the binary visibility function and this Jacobian:

d

Gx <y :=Vx<y) '_ = V(XQY)W(X)'M [N(y) - @

Ix —yl?

, (2.16)

a)J_
dA
where mutual visibility is defined as

if - : , M=0
Vi y) im 1, if {tx+ (1—1)y:1€(0, D)} N 1)

0, otherwise.

Intuitively, the visibility function is an indicator function V' : M x M — {0, 1} that returns one

when two points are mutually visible and zero when an object occludes the line segment between
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; Wo N .

b'e y

(a) Directional form (b) Positional form

Figure 2.4. Directional and positional forms of the BSDF.

these points. Rewriting incident and exitant directions w; and w, in positional form (x — y — z)

with x,y,z € M (Figure 2.4) yields the surface area form of the rendering equation:

Ly —z)=L.(y—>1z)+ /M fi(x >y —>2z)L(x = y)G(x < y)dA(y). (2.18)

Note that we have introduced a new notation for the quantities studied so far; double arrows
are used to emphasize the symmetric nature of some functions while left-to-right arrows follow
the propagation of light from points to points. For instance, the relationship between the two

notations for the BSDF is

B Z—y X-—Yy
flx >y =z = fS(y’ = ||x—y||)‘ (219)

2.5 Monte Carlo Methods

We review Monte Carlo (MC) methods for solving the light transport problem for surfaces. First
introduced by Cook et al. [CPC84] to render distribution effects (e.g., motion blur) and then
applied to the rendering equation to simulate global illumination by Kajiya [Kaj86], Monte Carlo
integration has revolutionized the field of physically-based rendering. Unlike other deterministic
approaches, MC techniques do not suffer from the curse of dimensionality that incurs exponential
computation costs as the number of dimensions increases. This makes Monte Carlo integration

a tool of choice for solving the light transport problem.
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2.5.1. Monte Carlo Integration. Suppose we want to integrate the function f : 2 — R over

some measurable space (2, ¥, v):

= /Qf(x) dv(x). (2.20)

Monte Carlo integration relies on random sampling to estimate the value of F'. Hence, let X € 2
be a random variable with probability density function (pdf) px(x), and further let ¥ : @ — R
be any function of X. By definition,

E[y (X)] = [Q V() px () dv (). (2.21)

If we let ¥ := f(x)/px(x) then by construction, the expected value of ¥ (X) is F":

By (x)) = [ L& (( ))p (x) dv(x)

= / f(x)dv(x) (2.22)
Q
= F.
Therefore, it suffices to design an estimator for E[y (X )] to numerically approximate F. This can

be achieved by choosing N independent and identically distributed random variates {X;}¥., ~

px and then computing the estimate

Mz

1 N
= ; V(X)) = pX(X ) (2.23)

Here, ( Fn) denotes the Monte Carlo estimator for F and is itself a random variable. This estimator
gives the correct result on average and converges at a rate of O(N~1/2). In other words, to de-
crease the expected estimation error by a factor of two, we must use four times as many samples,
which is a relatively poor convergence rate. This result holds even if the variance is infinite,
provided that E[(F)] exists. This is guaranted by the strong law of large numbers. This also

holds regardless of the dimension of €2, unlike other numerical integration techniques such as
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Gaussian quadrature rules. This property is particularly interesting for photorealistic rendering

as paths can have arbitrarily long lengths.

2.5.2. Importance Sampling. It is clear that the probability density px inherently controls
the variance of (Fy); a pdf approximately proportional to the integrand is thus necessary for
the Monte Carlo estimator to be efficient. To see this, suppose that we have a perfect sampling

density p% (x) = af(x) for some a > 0. Then,

lzfszp}(x)dv(x) =a/gf(x) dv(x) = a! =/;zf(x)dv(x). (2.24)

This implies that the Monte Carlo estimator has zero variance since

N
<FN>=%pr 2 =y = [ W @225)

for all sample points X. In other words, a single sample is sufficient to resolve the integral.
Unsurprisingly, this is a chicken and egg situation since it assumes we already know the value of
F in order to compute the normalization constant «! This observation suggests that a probability
density px chosen to resemble f should reduce the variance of (Fu). This technique is known
as importance sampling and is used to accelerate the convergence of MC estimators. It is possible
to importance sample different parts of the integrand. For instance, if f = gh, we could sample
both g and & separately. Ideally, sampling the product f would be the most effective method
to controlling the variance of the estimator. This is difficult to do in practice, and as such, local

importance sampling of individual terms is usually preferred.

2.6 Deep Feedforward Networks

We now move onto reviewing the basics of feedforward neural networks and then introduce
some concepts for designing efficient learning algorithms. We start by describing the classical
components of neural nets and then explain how these models can be trained to infer on unseen

data.



2.6. Deep Feedforward Networks 15

2.6.1. Formal Definition. Deep feedforward networks, also called feedforward neural net-
works, are the cornerstones of deep learning. The main goal of this family of models is to ap-
proximate some function ®*. In the context of classification, ®*(x) = y maps an input x € X to
a class or category y € {1,...,n} = ¥. For binary classification (n = 2), there are only two pos-
sible labels (e.g., cats and dogs). More generally, a neural network defines a mapping ®(x;0) = y
and learns the parameters # that result in the best function approximation to ®*. The parameters
of the network are optimized with respect to a pre-specified cost function on a finite dataset to
obtain the closest possible approximation of ®*. More generally, feedforward neural networks
can be seen as function approximation machines that are carefully designed to achieve statistical
generalization.

There are many components to a feedforward neural net. At a very high level, a deep neural
network implements a directed acyclic graph that describes a composition of functions, for in-
stance ® = ® @ o...0 P?@ o ®). Each function is associated to a layer and the overall length of
this chain gives the depth of the network. The first layer of this structure is called input layer and
the last layer is called the output layer. We train these networks by using a collection of noisy,
approximate example pairs (x, ®*(x)) = (x, y). These training examples inform the network of
possible realizations of ®* and are used to learn @ directly. The underlying learning algorithm
must determine how to use the internal (hidden) layers of the network to produce its best repres-
entation of ®*. Each hidden layer h”) is vector-valued and its dimensionality (also known as its
width) can vary from layer to layer. Each element of this vector is called a neuron or unit and its
role resembles that of an actual brain neuron as it reacts to an input signal, by providing an ac-
tivation response as output. The activation function for these neurons introduces nonlinearity in
the approximator which make neural nets particularly good candidates for estimating arbitrary
functions.

Each layer h”) is finally connected to the next by a real-valued weight matrix w®) of size
N;_1 X Nj, where N; is the width of layer i. Propagating an input through the network results in
a sequence of matrix multiplications followed by pointwise application of a nonlinear function
g at each neuron. A bias term b® is also commonly added to shift the activation function

while providing each neuron with a trainable constant value. Combining all components, we can
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express the first layer of the neural network as

a® = wOTyx 1 pO, (2.26)

hV = g(l) (a(l))’ (2.27)

where x is the input of the network viewed as a column vector in RM  and a® denotes the

activation of layer i. More generally, we can write the 7-th layer recursively as
h® = gD (WwOThD + D), 2<i <d, (2.28)

where d is the depth of the network. We shall denote by W and B the set of all weights and biases
of the model (viewed as flattened row vectors), respectively. The architecture of a simple neural
network is depicted in Figure 2.5. We next discuss how this model can be trained on empirical

data to approximate an arbitrary function ®*.

h©® K h®

O,

Input

w® w®

Figure 2.5. Example of a simple neural network with two hidden layers (also called a
multilayer perceptron) with 3 neurons each. All components of the input x € R are

connected to each neuron hgl) of the first layer h(!) via the weight matrix w() ¢ RM*M

(blue arrows). A nonlinearity g is then applied pointwise to each entry before adding a
bias term (here omitted from the diagram). This computation is passed to the next layer as
input, propagating x through the network until it reaches the last layer, where ®(x) = y.

2.6.2. Gradient-Based Learning. Training neural networks is an optimization problem where
we update the parameters § = {W, B} of the model based on some cost function we wish to min-

imize. When we use a feedforward neural net, we propagate an input x through the network to
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produce an output y. This information flows from the first to the last layer. During training,
this forward propagation continues onward to produce a scalar cost £(J, y). This loss function
measures how close the network output y is to the real target y with the current parameters. The
backward propagation algorithm [RHW86] (also known as backprop) allows the information from
this cost to flow backward in the network. By recursively applying the chain rule on the com-
putational graph characterized by the network, we can compute the gradients on the activations
a") for each layer i. These indicate how each layer’s response should change in order to reduce
the global error of the network. From there, the gradient of &£ with respect to the parameters 6
can be computed and used as part of a stochastic gradient update.

In practice, we use a finite training set (X, ¥) consisting of example/target pairs (x, y) to
learn a model. The goal of a deep neural net is to minimize the cost function over this training
set using the information provided by the backpropagated gradients. We can think of the loss

function () as an average over this training set, that is,

1 K . .
F(8) = Eeyypg L(P(0), ) = = > 2(e(x?:0).y?) (2.29)
i=1

where pg is the empirical distribution of the data and |X/| = K. Intuitively, learning amounts to

searching for the best parameters for the model:
0" = argmin g (0). (2.30)
0

As m — oo, the computational cost associated with the expectation (2.29) increases with O(n)
for a single gradient update. Gradient descent in general is often too slow and unreliable to
be useful. The insight of stochastic gradient descent (SGD) is that the gradient is in fact an ex-
pectation which can be estimated by a smaller collection of examples. By sampling a minibatch
B = (x(i), y(i))m:1 C (X, Y) for some fixed m < K uniformly, we can estimate the gradient as

i

Vod(0) = %ve Z 2(@(x?;0), y©). (2.31)

i=1
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Empirically, m is commonly chosen to be a moderately low power of two (e.g., m = 128) to
reduce interface overhead with GPUs when training.”
Given Equation (2.31), we can then update the parameters 6 by taking a step in the negative

direction of this gradient:

0 <0 —n-Voed(0), (2.32)

where 7 is called the learning rate. This procedure is typically repeated | X|/| 8| = K/m times to
complete a full epoch until some user-defined stopping criterion is met (e.g., $(6) < € for some
€ > 0). SGD does not guarantee to converge to a local minimum but, in practice, it often finds low
values of ¢ in a reasonable amount of time, hence its predominance in deep learning. We shall
refer to all parameters whose value is set before the learning process begins as hyperparameters.

These include the width of each layer, the depth of the network, the learning rate, and so on.

2.6.3. Deep Learning Best Practices. Hitherto, we have seen that training a neural network
merely amounts to iteratively updating the weights and biases using gradient information for
the loss function. In its simplest form, a deep learning algorithm using a neural network is just
a combination of a training dataset, a network architecture, a cost function, and an optimization
procedure. Carefully choosing each of these components is almost an art form. In fact, there is a
whole research field devoted to tailoring this recipe to certain types of problems in order to create
robust solutions that generalize well to unseen data. Here we discuss a few important concepts

for stable training in the context of classification.

NETWORK ARCHITECTURE. Feedforward neural nets with hidden layers provide a universal ap-
proximation framework. The universal approximation theorem [HSW89, Cyb89] states that a
neural net with a linear output layer and at least one hidden layer with any “squashing” activa-
tion function (to be discussed soon) can approximate any Borel measurable function arbitrarily

well. Put simply, this theorem shows that there always exists a network large enough to achieve

?Recent work [ML18] has shown that training with lower values such as m = 16 can be more reliable and stable
in specific cases. For multilayer perceptrons, training is already very stable, so we use a larger batch size to reduce
training time.
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the desired degree of accuracy, but it does not provide a bound on its width. This is problematic
as the layer may be infeasibly large and thus the algorithm may fail to learn the optimal paramet-
ers and generalize correctly. Consequently, determining the number of layers and neurons per
layer for a supervised learning task is still an open problem. Empirically, a deeper network will
perform better than a wider one on an arbitrary task [BLPL06]. Great depth can help reducing
the amount of generalization error and almost always result in easier training due to fewer units.

In general, the layers of a neural network need not be connected in a chain. Many techniques
have been developed to fit different tasks. Standard feedforward deep nets can generalize to
other types of architectures, motivated by the learning problem to solve. Convolutional neural
networks (ConvNets) are a specialized family of nets for processing data that has a known, grid-
like topology such as color images, while recurrent neural networks add feedback connections
at each layer to handle sequential data such as text. We shall focus on the classical multilayer

perceptron model from now on.

ActivaTiON FuncTiOoNs. When we defined neural networks, we have introduced the concept
of a hidden layer, but this definition requires us to choose the activation functions that will
be used to compute the neurons values h?). In modern neural networks, the most commonly
used activation function is the rectifying linear unit (also known as ReLU) [JKRL09] defined as
ReLU(z) := max(0, z). This function is nonlinear but because it is also nearly linear, it preserves
several of the properties that make linear models easy to optimize with gradient descent tech-
niques.” This definition is useful because the derivatives through a rectifying linear unit always
remain large whenever the unit is active. Therefore, the gradients are large and also consistent
across the network, which turns out to be highly valuable for learning. There are other gen-
eralizations of the ReLU, including the leaky rectifying linear unit which ensures that gradients
can flow through everywhere and not only when the neuron is active. The activation of the last
layer in a network is usually chosen to suit the task. For instance, in a classification problem, it
is common to apply the softmax operator to “squash” a vector in R¥ to a vector in (0, 1)* to rep-

resent a categorical distribution. When k = 2, the softmax is equivalent to the logistic sigmoid

3The non-differentiability of the ReLU at z = 0 in SGD is handled by treating the function as piecewise linear,
essentially setting its gradient to zero at this point.
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s(z) :=1/(1 + exp(—2)).*

REGULARIZATION. The main goal of a neural network classifier is to be able to infer the labels
from unseen examples. Multiple strategies from the machine learning literature are designed to
reduce the generalization error of a learning algorithm. These methods are collectively known as
regularization. In the context of deep learning, regularizers are used to decrease variance without
overly increasing the bias of the estimator. Limiting the capacity of the model by adding a para-
meter penalty term 2(6) to the objective function { is one way of regularizing the model, i.e.,
’5(0) = 4(0) + a2(0) for some a > 0. Tikhonov regularization (also known as L? regulariza-
tion or weight decay) sets Q2(0) = %||W||% It can be shown that weight decay is equivalent to
early stopping in the case of linear model with a quadratic error function. Other regularization

techniques include dropout [SHK ™ 14], batch normalization [IS15], and bagging [Bre96].

ADAPTIVE LEARNING RATEs. There exists several variants of stochastic gradient descent that
adapt the learning rate during training. This idea is based on the observation that the partial
derivative of the loss with respect to the parameters can vary and thus an efficient optimiza-
tion algorithm should adapt to these changes. Methods such as AdaGrad [DHS11] and RMSProp
[Hin12] keep a history of accumulated gradients to inform the parameter updates, while Adam
[KB14] use moments of the gradients to indirectly incorporate momentum in the updates. The
latter is generally considered the most robust optimizer with respect to the choice of hyperpara-

meters.

A comprehensive and complete overview of deep learning techniques for classification is well
beyond the scope of this thesis. For a detail discussion of deep learning, we refer the reader to
Goodfellow et al. [GBC16]. A more concise introduction to the field is also given by Lecun et
al. [LBH15]. From now on, we shall assume basic notions and concepts related to the efficient
training of deep neural networks, occasionally referring to research literature to justify certain

design choices.

*In fact, the softmax is a generalization of the logistic function in higher dimensions.
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Soft Shadows

Soft shadows from area light sources are important in physically-based rendering since they
provide visual depth cues about the lighting settings. It is clear that shadows significantly add
to the believability of a scene; without them, a scene would look flat and overly synthetic. The
main challenge in computing these shadowed regions comes from evaluating the spherical binary
visibility function V(-, -) at every shading point: given an intersection point x, can we make an
unobstructed connection to a point y on a light? The numerical solutions to the light transport
problem discussed thus far all assume the existence of a ray tracing function r 4 that intersects
arayr = (x,w) € R with the scene geometry to retrieve a new pointy € M U {oco}. Up
until now, we have merely abstracted the notion of ray tracing and completely disregarded how
such a function is implemented in a modern rendering framework. The notion of mutual visib-
ility between two points is evident and intuitive, but implementing this query in a renderer that
supports discretized scenes comprising several objects is nontrivial.

For offline rendering—which aims to render still images in a physically-accurate manner—the
mathematical framework for visibility directly encapsulates what it means for two points to be
mutually visible. Tracing a ray at every shading point to evaluate the light contribution seems
quite natural, provided an almost unlimited computational budget. Interactive techniques, on
the other hand, do not have this luxury and can only use a fraction of the cost to compute an
image frame. Video games, for instance, require to render multiple frames per second (e.g., 30 fps

on consoles, 60 fps on computer platforms) to simulate a smooth experience where characters

21



22 CHAPTER 3. SOFT SHADOWS

can move and affect their environment. Real-time rendering is a completely different field in
itself as it can only approximate the physics of the light to allow for other interactions to occur
simultaneously. In real-time graphics, people strive for realism but are limited by important
performance considerations. These two goals—realism and performance—are extremely difficult
to combine in general. This is particularly true in the context of shadows, as we shall see.

We introduce the terminology for shadow casting and explain the distinction between hard
shadows and soft shadows. We also highlight the difficulties encountered when generating real-
istic shadows in both offline and real-time settings. Next, we review the most preferred
approaches to generating shadows in the context of direct illumination only. In particular, we
present various techniques to either perfectly simulate soft shadows or approximate them effi-
ciently. Finally, we discuss recent advances in real-time ray tracing and what this means for soft

shadows synthesis.

3.1 Types of Shadows

Shadows are produced when an occluder is placed between a light source and a receiver. For infin-
itely small light source models like point lights, there is only one possible segment that connects
the shading point with the emitter. Consequently, the shadows created by these so-called §-lights
are characterized as hard since their silhouettes are crisply defined and sharp. Area lights, on the
other hand, have finite surface areas and, as such, provide uncountably many ways of connecting
the shading point to the visible surface of the light. This results in soft shadows which are less
harsh and thus gradated towards the edges. Each shadow can have a fully shadowed region, called
the umbra, and partially shadowed regions, called the penumbra. Point lights only have umbra
regions, whereas area lights give rise to penumbra for a more realistic look. This is illustrated in

Figure 3.1.



3.1. Types of Shadows 23

Point light Area light

Occluder

Receiver

| I I

Umbra only | I
Penumbra 4+ Umbra = Shadows

Figure 3.1. Top left: a teapot occludes the incoming light from an infinitely small point
source, thus casting umbra on the receiving ground to create hard shadows. Top right: the
teapot casts both umbra and penumbra to create soft shadows. Bottom: The distinction
between hard and soft shadows is mainly noticeable at the silhouette of the shadows casted
by the teddy bear. From left to right, the surface area of the light is increased in size while
keeping its radiance-to-area ratio constant. The umbra becomes less and less perceivable
(Image source: Tim May).

It is important to observe that true soft shadows are not just hard shadows blurred out by a
low-pass spatial filter. Moreover, the umbra region of a soft shadow is not equivalent to a hard
shadow generated by a point light source (assuming we fix the positions of the lights). Indeed,
the umbra region of a soft shadow shrinks in size as we increase the surface area of an area
emitter. For very large area lights that are placed far enough from the receiver, the umbra can
be almost unperceivable or completely vanish. Soft shadows are usually preferable to avoid any
visual ambiguities, such as misreading a shadow for an actual geometric feature (e.g., a crease
in a surface) [AMHH"18]. The main advantage of hard shadows produced by point lights or
infinite directional lights is that they are faster to compute in general. These §-light models

are nonphysically-realizable as they are not attached to physical surface. This implies that, to
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compute the radiance contribution, there is always a unique direction to pick between the point
to be shaded and the light. This, in turn, significantly simplifies the visibility evaluation. Soft
shadows correspond to a most accurate model of shadowing but require a light sampling step.
In any case, soft shadows should be sought as much as often as possible to synthesize realistic

images.

3.2 Ray Intersection Acceleration

We now turn our attention to offline techniques for generating soft shadows. Our main interests
are secondary rays, those rays that evaluate the light contribution at a shading point x. These rays
will be referred to as shadow rays as they effectively determine if x either directly lies in shadow
or not (Figure 3.2). Secondary rays are different from primary rays which are traced directly from

the eye.

Shadow ray

Shadow

Unoccluded
Occluded

Figure 3.2. To determine if a point lies in shadow, we simply trace a ray to the light
source. The shadow ray with origin x intersects the bunny before reaching the light &, so
the radiance contribution is zero. Conversely, the shadow ray with origin x" has a clear
line of sight, yielding positive incoming radiance at that point.

In computer graphics, scenes are typically represented as a union of polygon meshes indexed by
triangles. Each mesh or object in a scene is entirely determined by the positions of its polygons

along with their face and vertex normals. Determining the intersection of a line in R® with an
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analytic shape (e.g., disk, plane, sphere) has closed-form solutions and can be evaluated efficiently
in a software. Shapes made of millions of triangles, however, require a special type of data struc-
ture to search for triangle intersection. Such a spatial tree structure is used to trace primary and
secondary rays in a scene to evaluate radiance contributions. An efficient implementation of such
a data structure is crucial to a rendering engine as it allows for more paths to be computed for
the same amount of time which, in turn, yields an estimate of the rendering equation with lower
variance.

There are many types of such acceleration structures, the most prevalent being bounding
volume hierarchies (BVH). Bounding volumes are used to enclose a collection of polygonal meshes.
The idea is that these volumes should be much simpler geometry-wise than the objects they
contain. BVHs are based on the premise that testing for intersection against trivial shapes—such
as cubes or spheres—has a much lower computational cost than testing on complicated meshes
with million of triangles. By partioning the primitives of a scene into a hierarchy of disjoint sets,
we can test for ray intersection against these simpler shapes and quickly discard nonintersecting
rays: if a ray does not hit the enclosing parent node, it will never hit its children and therefore
can be skipped.

More formally, a BVH stores the primitives as the leaves of a tree and stores a bounding box
of the primitives in the nodes beneath it. Determining the ray intersection point, if any, merely
boils down to traversing the tree from the root until a leaf is found. If the ray does not hit the
node’s bounds, the subtree beneath that node can be skipped and the BVH can simply return nil
(Figure 3.3). Hence, a bounding volume essentially acts as a proxy for the bounds of the enclosing
objects to speed up the intersection computations.

The top-down construction of the scene’s BVH is done before any rendering takes place.
Building an efficient tree structure amounts to creating a partitioning of the scene geometry that
does not cause too many overlaps. If the partition is computed carefully, more nodes of the
tree can be visited by rays (on average), which can lead to unneccessary computations at render
time. Most of the best algorithms for building ray acceleration data structures are based on the
surface area heuristic (SAH), a strategy that essentially provides a cost model to determine which

spatial subdivision scheme should occur next. SAH uses geometric probabilities to design a cost
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Root

r——lp===—19

(a) Scene representation (b) Tree representation

Figure 3.3. At construction, each object in the scene M is enclosed in its bounding volume
in a recursive manner. When a ray r is traced, we first check that its trajectory is within
the bounds of the scene (blue). As it is the case, we check against internal nodes (red box
and teapot). No intersections could be found, so the algorithm returns nil. We only had
to check a maximum of three ray-box intersections to discard the ray r.

function for splitting the space to minimize spatial overlapping and thus the expected intersection
time. Before usage, the resulting binary tree is typically converted to a more compact linear
representation to improve cache, memory, and overall system performance. Traversing this tree
is logarithmic in the number of objects.

Intersection acceleration design is an entire subfield of computer graphics and a thorough
overview of acceleration structures for rendering is out of the scope of this thesis. K-d trees are
sometimes used as alternatives to scene subdivision but, albeit nonoverlapping and faster to tra-
verse on CPUs, their performance is substantially affected on larger complex scenes. The main
takeaway here is that, even if BVHs and k-d trees aim at accelerating ray-primitive intersection,
they are typically considered too slow for real-time applications. Improving the quality of BVHs
after construction is an active field of research but the computational budget available for inter-
active techniques is simply too low to allow its usage [PJH17]. Ray traversal on the GPU has
made significant progress in the past few years [AL09, YKL17] but it is still too expensive to be

performed on most industrial graphics cards.
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3.3 Previous Work on Interactive Shadows

In real-time rendering, soft shadows can only be estimated from hypothetical point light sources.
Since we cannot trace rays to perform Monte Carlo sampling, other techniques had to be de-
veloped to approximate shadows casted by area light sources. Rasterization is the method of
choice for modern real-time applications. The idea of rasterization is to geometrically project
primitives from the scene onto the image plane and then process the pixels it affects. In essence,

it converts the triangles of the polygon models into pixels on the screen (Figure 3.4).

Image plane
/N
/ N
>
/ L]
A
A
Primitive
(a) Project to screen space (b) Find pixel coverage and interpolate

Figure 3.4. In rasterization, we first project the vertices making up triangles onto the
screen, then we determine the pixels they cover. Linear interpolation of varying variables
and depths is then performed for all covered pixels.

Several methods were developed in this particular framework to evaluate the occlusion profile of
arbitrary meshes. In what follows we discuss the most relevant approaches for generating soft

shadows at interactive framerates.

3.3.1. Classic Shadow Mapping. Considered one of the oldest technique for simulating shad-
ows, shadow maps use a z-buffer to efficiently determine shadow regions casted from static light
sources. Introduced by Williams in 1978 [Wil78], shadow mapping renders the scene a first time
from the position of the light and stores the output into a z-buffer: whatever the light “sees” is
illuminated. This shadow depth buffer is then used to determine if a point lies in shadow or not

during a second pass, this time rendered with respect to an arbitrary view point. As each primit-
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ive is drawn, we compare with the computed shadow map at each pixel. If a point to be rendered
is farther away from the emitter than the corresponding value in the z-buffer, it is occluded and

thus lies in shadow, otherwise it is visible. This is illustrated in Figure 3.5.

(a) Computing the shadow map (b) Determining shadows at run-time

Figure 3.5. In shadow mapping, the scene is first rendered from the point of view of the
light and z-depths are calculated and stored in a buffer. To determine if a vertex v is in
shadow, we compare its z-value with the depth buffer’s corresponding texel. Here, the
distance from v, to the light is less than the value in texel a, so v, is visible. On the other
hand, v; is farther away from the light than the depth stored in texel b and therefore lies
in shadow (red).

In practice, shadow mapping is implemented via texture map lookups. The cost of building this
texture is O(n) for n primitives to be rendered, and accessing each texel is constant. The main
benefit of shadow maps is that they can be computed once per light beforehand and they can
then reused across frames, assuming the light sources are static.

The shadow mapping model described so far is ambiguous because the direction of lighting
is unclear for different light profiles. For infinite directional light sources (e.g., the sun) or distant
spotlights (e.g., a lighthouse), we can suppose that the emitter is not part of the scene per se,
which heavily constrains the possible directions of illumination. The light’s view frustum is set
to encompass the collection of all possible occluders in the camera’s view frustum and some op-
timizations can be made to select these occluding candidates. If the light is within the boundaries
of the scene then a popular method is to use a cube environment map to project and capture all

directions. This approach is often referred to as omnidirectional shadow mapping.
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The pixel resolution of the shadow buffers and their numerical precision needs to be carefully
chosen, otherwise shimmering edges, perspective aliasing, and other precision issues can occur.
Shadow acne is a typical problem that is caused when a triangle is incorrectly consider to shadow
itself. Adding a small bias when comparing depths is one possible solution, but this value usually
needs to be angle-dependent to capture subtleties at contact points. A bias that is too high will
result in Peter Panning, a light leaking artifact that makes objects with missing shadows appear to
be detached and to float above the surface, leaving an unwanted gap inbetween (Figure 3.6). There
exists many variants of shadow depth maps that addressed these issues (e.g., cascaded shadow
maps (CSM)), but they all provide an approximate solution for hard shadows. We now look at

techniques that can be used to soften shadow edges for a smoother look at shadow silhouettes.

Figure 3.6. Peter Panning (or light leaking) occurs at contact points and can negatively
impact the realism of soft shadows. Image source: Unreal Engine 4.

3.3.2. Percentage-Closer Filtering. Shadow maps can be extended to approximate penumbra
to generate pseudo-soft shadows. The main goal of this method is to blur out the shadow edges
that may look blocky and unnatural. This aliasing artifact occurs when a large number of screen
pixels are covered by a single texel in the shadow map. To avoid this problem, percentage-closer
filtering (PCF) [RSC87] retrieves multiple samples from a shadow map and blends the results.
More precisely, PCF attempts to approximate the proportion of samples in some fixed regions
around the receiver shading point that are visible from the light. Many shadow map compar-
isons are made per pixel and then filtered via some screen-space kernel to create artificial soft
shadows. Unfortunately, self-shadowing problems and light leaking artifacts can still occur with
this technique. Perhaps the main issue with percentage-closer filtering is that shadows will ap-
pear uniformly soft. This is because the width of the area to be sampled is typically held constant,

which results in penumbra regions with equal width. While this is an important improvement
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over hard blocky edges, penumbra usually become softer as it moves away from umbra. This is
particularly apparent when occluders are in contact with the receiver.

Percentage-closer soft shadows (PCSS) [Fer05] resolves this problem by increasing the width
of the surface area to be sampled. In particular, this area grows as the average occluder gets
farther from the receiver and closer to the emitter. PCSS essentially works by finding an average
depth of nearby occluders to rescale, assuming the average blocker is a reasonable estimate of
the size of the penumbra. While this generally results in perceptually-accurate soft shadows,
this strong assumption can be violated in simple scenarios where two close and distant objects
occlude the same surface at a pixel. GPU-based techniques such as ones using backprojection are

viable options but their high per-pixel cost is not suitable for interactive rendering.

3.3.3. Other Shadowing Techniques. There are several other techniques to generate soft
shadows in real-time. For instance, variance shadow maps (VSM) [DL06] stores the depth in one
buffer and the depth squared in another, which allows for statistical prefiltering of the shadow
map textures. VSM have significant performance benefits over PCF methods as the shadow depths
can be pre-filtered with a separable blur kernel. As a result, light bleeding when there is high
depth complexity and/or variance is handled remarkably well by VSM. Other approachs based
on irregular z-buffers (IZB) permit sampling of the scene at arbitrary points on the image plane.
This technique allows for one or more receiver locations to be stored at each map texel. Cascaded
shadow-map approaches can also be used in conjunction with filtered maps. This hybrid solution
encapsulates the idea that we generally need shadows to be more accurate near the object rather
than farther. Sharp shadows from IZB blended with soft from PCSS can generate compelling pen-
umbra regions, hence their popularity in modern video games. Some of the techniques discussed
above are illustrated in Figure 3.7. A complete overview of shadow mapping techniques can be

found in [ESAW11].
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(a) Shadow maps (b) PCF (c) PCSS (d) VSM

Figure 3.7. Approximate soft shadows methods. Image source: [Mik08].

3.4 Real-Time Ray Tracing

All interactive techniques for generating soft shadows are approximate solutions to the true vis-
ibility problem. Querying a BVH in real-time is generally considered too costly to be worthwhile,
but this is subject to change in the near future. While rasterization has ruled the video game in-
dustry ever since its invention, its limitations are quite severe. The so-called “AAA” video game
titles can be visually stunning and immersive, but underneath the hood, many corners are being
cut to allow for dynamic, interactive environments. It is clear that ray tracing is in every way su-
perior to rasterization to resolve complex lighting phenomena, but the heavy machinery needed
to achieve this is simply not suited for today’s GPUs. Or is it?

Recently, hardware-based solutions for ray tracing has started to emerge with impressive
results [YKL17, Hil18]. As pure ray tracing is still impossible to perform at interactive framerates,
adopting a hybrid approach where rasterization is used for primary rays and ray tracing is used
for secondary ones seems like a powerful strategy. Combined with recent advances in Monte
Carlo denoising [ZJL"15], real-time ray tracing has the potential to generate both realistic true
reflections and shadows, something the field of computer graphics has sought for decades. This
approach has proved to be very successful thus far. For instance, [HHM18] obtains close-to-exact
soft shadows by first stochastically tracing visibility rays and then denoising the result. With

improved denoising algorithms and GPU architectures optimized for tracing rays, it is undeniable
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that this hybridity will provide significant performance boosts to real-time applications. Recent
games such as EA’s Battlefield 5 (2018) and Eidos’ Shadow of the Tomb Raider (2018) have already

started to embrace this hybrid rendering approach with impressive results (Figure 3.8).

(a) Rasterized (b) Ray-traced

Figure 3.8. Effect of RTX technology on reflections in Battlefield 5.

Traditional
rasterization-based approaches cannot handle light effects such as a flame reflecting off a
shiny car door. Images © NVIDIA®.



Chapter 4
Learning Visibility

We present a learning algorithm to approximate the visibility function of simple meshes to com-
pute soft shadows. The main goal of our algorithm is to alleviate some of the cost associated with
shadow ray queries by training a deep neural network ®¢ in an offline setting for a given object
(. Once the model is trained, we use the network to guide the shadow ray tracing for visibility
testing in an augmented environment with receivers. By sampling the global occlusion profiles
of a mesh, we aim to learn per-object visibility by treating it as a binary classification problem.
The premise is that, since the visibility function is a binary operator, the visibility problem can be
thought of as classification task with two categories: {nonvisible, visible} = {0, 1}. We suggest to
learn a binary classifier in a supervised manner using a neural network that would return, after
training, a value close to the true occlusion bit from any point, in any direction.

A priori, the visibility problem is a challenging one: visibility is full of discontinuities but it
also exhibits a fair amount of spatial coherence. Most importantly, it is nonsmooth and not well-
behaved at grazing angles. Neural networks, however, have proven to be particularly robust for
resolving similar problems, such as 3D shape recognition [SMKL15]. Given the recent success
of deep learning on classification tasks [KSH12], considering deep nets to approximate visibility
seems like a natural and sensible thing to investigate. The use of neural networks in rendering is
particularly recent and, as such, has seen few applications until 2017.

Using deep nets to solve the full visibility problem has, to the best of our knowledge, never

been tried. Closest to our work is [DK17], in which the authors train an artificial neural network
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to approximate the probability distribution of selecting light sources with high contribution (and
thus includes visibility). Their algorithm is based on a voxelized representation of the scene where
many neural nets are learned for each voxel to determine which emitter should be sampled in
explicit path tracing. Our approach differs from theirs as we want to use a single neural network
to estimate the visibility function for secondary rays.

In this chapter, we develop a simple algorithm for replacing the shadow ray query with a
neural network query. We experiment with low-complexity shapes to learn their visibility pro-
file. We show that, in the context of soft shadows, the network does not need to be perfectly
accurate to generate shadows that are close to ground truth. Indeed, for large area lights, the
penumbra dominates the umbra. A moderately accurate neural net can thus take advantage of
this phenomenon, since the incorrect regions will be attenuated and less visible due to smoothing.
At a high level, our visibility pipeline can be decomposed into three stages: sampling, learning,

and prediction. (Figure 4.1). We detail each stage in the following sections.

&
NN prediction
\, Neural net ®

Point on receiver

(a) Sampling (b) Learning (c) Prediction

Figure 4.1. Visibility learning pipeline. First, we sample (a) the visibility to gather training
examples. We then train (b) a model to learn the visibility profile of the mesh. Finally, we
use this model to predict (c) the visibility for unseen data points to generate shadows.

4.1 Sampling the Visibility

We start by presenting a few heuristics to sample the visibility profile of a mesh. The sampling

scheme should ideally be representative of the overall visibility of the object, but this is difficult to
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enforce for arbitrary meshes. Instead, we opt for a more conservative approach. Before describing
these methods in detail, we first discuss the input representation for our neural network. This

representation will then guide our visibility sampling algorithm.

4.1.1. Input Features. Before constructing an artificial neural network for classifying visib-
ility, we need to specify the input format for the model. Recall that evaluating visibility can be
thought of as taking two points p, p’ € M and checking if an occluder is present along the line
segment [ = p + t(p’ — p) for ¢ € (0,1). Since both p,p’ € R>, we can concatenate these
two points to obtain a 6-dimensional input. The problem with this representation is that it only
captures visibility along a finite line segment, meaning we lose information for the visiblity of
points along / that go beyond p’ (i.e., when ¢t > 1). A better approach is to specify a single point

p and a direction w to query along, in which case the input is given by
X = (Px, Py, Pz 0x, 0y, @) € X CRE. (4.1)

This representation agrees with how shadow rays are being evaluated in a renderer. Indeed, at
each shading point, a ray is traced towards an emitter to determine the visibility bit.

We can reduce the dimension to R® by using spherical coordinates to represent the direction
vector, that is, ® = (cos¢ sin 0, sin ¢ sin 0, cos 8). This representation is convenient as we can
rewrite the binary visibility function as V' : M x §2 — {0,1}. This function thus answers
the question: “Given I am at position p looking in the direction w, am I seeing something (1) or
am I looking into the void (0) ?”. Note that this representation needs to be sufficient to determine
visibility: other values such as depth cannot be encoded in the input features since we do not have
this value unless we trace a ray, which is precisely what we want to avoid. In our experiments,
we test with both representations. We can now address the visibility sampling component of the

algorithm.

4.1.2. Naive Visibility Sampling. To simplify the problem, we can assume that the object O
to be learned is centered at the origin 0 = (0, 0, 0). To sample the visibility of a mesh, we need

to provide bounds on the environment surrounding the object. This bounded region needs to
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encompass all potential light positions in the final, augmented scene. A natural choice is to use
the bounding box of the final scene that includes the receivers. Since we still have access to the
BVH for tracing primary rays, the dimensions of this bounding box is readily available to us. It
seems more natural, however, to use the bounding sphere of the final scene Sy to sample the
positions. Unfortunately, sampling this volume naively can result in points inside the mesh. To
avoid this issue, we can sample positions p between the tight bounding sphere of the object Sg
and the larger bounding sphere of the final scene S 4. We shall refer to this region as the sampling
region S = Sy \Seo (Figure 4.2). This further constrains the possible positions of the emitter in
the final scene, as we will effectively miss all points that are too close to the mesh. Nonetheless,
for distant light sources this assumption is reasonable and avoids introducing an unnecessary
cost related to inside-outside determination when generating our datasets.

We now need to sample directions @ in the bounding volume S. Again doing so naively,
we can uniformly sample the unit sphere for a direction. By sampling &, & ~ U(0, 1), we can
compute angles § = 27, and ¢ = cos™!(2£;, — 1) to obtain a random spherical direction w.
This approach is completely oblivious to the actual position of the mesh, meaning many samples
will return unoccluded if their direction points outward. The farther away the sampled position
is to the center of the mesh, the more likely it is to yield no occlusion, as many rays will be
traced into the void. In other words, P[r (p, ®) = 1] — 0 as ||p|| — oo because the solid angle
subtended by the object shrinks to zero with the square of the distance. While this is technically
a valid technique for sampling the visibility, shadow ray queries are typically more organized if

we assume that the receiver is close to the object. We thus need a better sampling scheme.

\*—*\ Sy
So V.
y 4
3
A 3
o
—_

Figure 4.2. Naively sampling the visibility can result in very few positive training ex-
amples. Sampling positions in the gray region S = Sy \Se with arbitrary spherical
directions can hurt the generalization capacity of a learning algorithm.
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4.1.3. Improved Sampling Scheme. By definition, occluded coverage of an object is the solid
angle subtended by that object as viewed from the light, projected onto the receivers. Therefore,
sampling an area that resembles this solid angle once the origin of the ray is determined should
promote a better label distribution of visibility. Perfectly sampling the solid angle for visibility
points will always yield a visible bit y = 1, leading to complete class imbalance. In addition,
the computational cost of determining the triangles of a mesh that are visible from an arbitrary
view point is linear in its number of triangles. Considering we wish to sample as many points
as possible to have a diverse and balanced training set, we want to limit the time it takes to
generate a single example. Determining a tight bounding sphere for an arbitrary mesh requires
additional machinery, but we can use the minimum bounding box structure already in place after
the BVH construction to have a rough estimate of this bounding sphere. Setting the diagonal of
the bounding box as the diameter of the sphere S, we are guaranteed that the object is contained
in it. Since the bounding box is inscribed by this sphere, we can sample directions in the cone
subtended by S to ensure that the visible and nonvisible samples are more or less balanced. Put

differently, we effectively bias the directions towards the object @ (Figure 4.3).

Figure 4.3. Determining the boundind box By (dotted) is relatively cheap after the BVH
construction, so we can use it to obtain a loose bounding sphere S around the object.

Note that objects that are tightly enclosed in their bounding box can cause problems. Indeed, if
we wish to sample the visibility of a cube then @ = Bg. This implies that all 8 vertices of the

inscribed cube will be on Sj. If we sample directions towards this sphere, subtleties at corners
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will be missed. A simple solution is to expand the sphere by a small, optional value « € [0, 1) to
cover these regions by increasing the radius R(Sp) = (1 + a)R(Sg).

Using this method, we can have better control on the training set label distribution by vary-
ing only a single hyperparameter . We can thus guarantee a perfectly balanced dataset for
positive and negative occlusion points, if needed. However, doing so will bias the distribution to
be learned. This essentially puts an equal prior probability of positive and negative occurences,
which is not necessarily true for the true visibility distribution and may well give bad predictions
by over-predicting the unoccluded class. Since we do not know the true visibility distribution a
priori, we set @ = 0.15 heuristically for most meshes we experiment with. Our final sampling

scheme is summarized in Algorithm 1 below.

Algorithm 1 SAMPLEVISIBILITY(O, Ryax, @, N)

Require: Object (9, max scene radius Ry, bounding sphere expansion factor o, number of training

examples N

1: @ < CENTERTOORIGIN(O) > Move mesh to origin
2: Bp < GETBOUNDINGBOX(O)

3: Rpin < GETDIAGONAL(B@)/2 > Get object’s bounding sphere radius
4: if @ > 0 then > Increase smaller sphere size (mesh-dependent)
51 Rmin < (1 + &) Rmin

6: (X,Y) <« (8,0) > Initialize training set
7: 0 <0

8: whilei < N do

9: & < RanD(0, 1)
10: R < Ryin + £(Ryax — Ruin) > Sample position in S = S \Se
11: p < R - SAMPLEUNIFORMSPHERE( )
12: Omax < GETCONEANGULARSPREAD(P, Rpin) > Sample direction towards ¢
13: ® < SAMPLEUNIFORMCONE (Hay)
14: @ < ToWoRLD(w) > Align cone along vector —p
15: y < ryulp,w) > Ray trace
16: x < ConcaTt(p, ®)
17: (X,Y) <« (X, Y) Uix, y} > Add to training set

18: I<1+1
19: return (X, ¥Y)
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A few lines in Algorithm 1 deserve further explanation, starting with Line 12. Computing the
angular spread of the subtended cone can be done by trigonometry: since ) is centered at the
origin, R,/ ||p|l = sin Opax. It would be tempting to simply invert to retrieve 8., but inversion
is costly. Instead, we note that SAMPLEUNTIFORMCONE( ) utilizes the term cos 6y, to sample a dir-
ection. Indeed, a random vector in the cone of directions aligned with the z-axis requires to com-
pute cos 0 = (1—&1)+& cos Oy for &y, €, ~ U(0, 1). We can then retrieve sin 6 by applying the
identity sin” 6 + cos?> @ = 1. The final direction is given by @ = (cos ¢ sin 8, sin ¢ sin 6, cos ).
Line 14 of the above algorithm orients the canonical cone along the vector 0 — p so the sampled

direction points towards S 3. This is illustrated in Figure 4.4 below.

+z

——
0 ToWoRLD

emax

¢

Figure 4.4. To sample a direction towards @, we first sample the uniform cone of direc-
tions and then rotate it.

Algorithm 1 was designed with the mindset that it should be general enough to cover a wide vari-
ety of shapes. Tailoring the visibility sampling problem to the complexity of the shape can quickly
become a convoluted task, especially if the object exhibit many concave regions. Moreover, this
process can be easily parallelized by leveraging a parallel implementation of ray tracing. Hav-
ing an infinite generator for the training set is also convenient since it allows us to generate as
many examples as we want. In particular, we can sample a fresh training set for each epoch of
our training algorithm. This is highly desirable to reduce the generalization error of our learned
model. With an efficient and dynamic visibility sampling routine, we now turn our attention to
designing a classifier that learns the underlying visibility distribution of this dataset to predict

shadows.
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4.2 Designing a Visibility Classifier

Recall that the main idea of constructing a visibility classifier is to shift the burden of shadow
ray tracing to an offline setting. If the model is small enough, we can hope to use it instead
of the scene BVH to speed up the computations of shadow regions. What we want is a neural
network trained for a specific occluder without any receiver. The premise is that, if a sufficient
number of training examples regarding the occluder visibility profile are given to a network, it
could internally reconstruct a spatial representation of the mesh. This learned representation
could then be used on an augmented scene with receivers to predict soft shadows generated by

arbitrarily-placed light sources.

4.2.1. Network Architecture. As previously mentioned, the network complexity should be
kept as simple as possible to avoid introducing any major overhead during shadow inference.
The network shall be used at each shading point, meaning propagating the input through the
network should be fast. In what follows we describe our choice of architecture.

The universal approximation theorem states that a single layer net can, in theory, approximate
any function arbitrarily well. However, we also know that a deeper model usually performs better
on classification tasks, so our approach is to use few layers with very few neurons. We opted for
a two-layer neural network with 128 neurons at each layer as a tradeoff between simplicity and
efficiency. We use ReLU activation units for each layer to obtain well-behaved gradients. Since we
need the network to predict a binary value, we use a sigmoid activation function at the output
layer to squash the final layer value into the unit interval [0, 1]. A simple 0.5-thresholding is
then employed to determine the occlusion category. To increase training stability, we use batch
normalization [IS15]. To train the model, we use the Adam optimizer [KB14] with a learning rate
of n = 0.01 and exponential decay rates f; = 0.9, 85 = 0.999. We train using mini-batch with
a batch size of m = 128.

4.2.2. Loss Function. The choice of loss functions is critical for learning algorithms. A loss
function that is not well adapted to the problem will result in poor performance of the estimator.

Due to its ubiquity in deep learning for classification problems, we choose to use binary cross-
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entropy as our objective loss function:
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where m is the batch size, y(i) is a true label, ﬁ(i) is a predicted belief on the label, and & is
our model. This cost function has a simple interpretation. Indeed, if we see the output of ® as
a probability p of being either visible or nonvisible then we can write ®(x®;0) = P [y(i) =
0]x?] sothat P[y@ = 1[xD] =1 — &(x?; ). Writing this as the probability of a Bernoulli

trial, we obtain

_y(i)

P[y®1x?:0] = [N [1 - o(x)]' (4.3)

Assuming that the data is independent and identically distributed, we can write the likelihood by

simply taking the product across the sampled mini-batch:

m
1y @
00 1x2) =T]I[ (o)1 - o))" (4.4)
i=1
Binary cross-entropy (4.2) is then derived by taking the logarithm and rearranging terms. From an
information-theoretic point of view, this loss function is particularly interesting for classification
problems since it essentially minimizes the KL-divergence between two distributions: the true

visibility distribution of the mesh and the visibility distribution approximated by the network.

4.2.3. Other Hyperparameters. Our training set consists of N, = 8 x 10° visibility points
that can be resampled at every epoch. We use a fixed validation set of N, = 2 x 10° examples
to assess the generalization capacity of the network. To initialize the weights and biases, we
adopt the technique from He et al. [HZRS15] specifically tailored to ReLU-like activations. This
initialization heuristic uses the size of the previous layer to sample the weight entries according

to a Gaussian wi(f) ~ N (O, 2/ Ng_l) for 1 < £ < d. This procedure is similar to Xavier/Glorot
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initialization [GB10] and keeps the variance of the input gradient and output gradient the same.
We set the bias to zero for layers, as recommended by [HZRS15].

Below is a table summarizing our choice of hyperparameters for our model.

Hyperparameter Value

Architecture b9 5/6 > 128 > 128 —> 1

Activation functions g ReLU — ReLU — Sigmoid

Regularizer —  Batch normalization

Parameter initialization 0 He et al. (weights), biases = 0

Loss function £  Binary cross-entropy (log-loss)

SGD Optimizer — Adam (n = 0.001, 81 = 0.9, B> = 0.999)
Training set Ny 8000000 (dynamic resampling)
Validation set Ny 2000000

Batch size b 128

Number of training epochs K 30

Minimum sampling radius ~ Rpin 1.0
Final scene radius Rupax 7.0

BSphere expansion factor o 0.15

Table 4.1. Summary of hyperparameters for training.

4.3 Methodology

4.3.1. Implementation. To test our algorithm, we implemented a ray tracer in C++11 with
different emitter models, such as point lights and area lights, and a Lambertian reflectance model.
We also implemented a simple direct illumination Monte Carlo integrator that can handle both
types of lighting. The mesh can be loaded in Wavefront OBJ format and an SAH-based BVH is
constructed at run-time. We use the construction of [Wal07] to quickly build the tree in parallel.
Sampling is done in the renderer, where data is serialized and saved to file for training.

Our neural network is implemented in Python with Keras [C™15] with a TensorFlow backend
[AABT15]. A bridge is created between the C++ renderer and the Python trainer to fetch new
training data on demand to allow for different data to be used at each epoch. The model is saved as
a checkpoint at the end of each epoch. To load the weights back into the renderer, we implemented

a custom wrapper that loads each weight and bias matrices into memory. We then replace any
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shadow ray queries with our model.

Implementing the training and inference under a unified language turned out to be relatively
tricky and unnecessary. Given the limited support for prototyping deep learning models in C++
and the wide variety of learning packages available in Python, it is not worth training in the
renderer itself. Since this is a one-time cost that needs to be done before any rendering takes
place, we opted for the approach that gave us the most freedom for experimenting. A Python
implementation is robust and supports training on the GPU with CUDA [NBGS08], which enables

rapid iterations.

4.3.2. Experimental Setup. Our experimental setup consists of various meshes from low to
moderate complexity. We start with two simple shapes, namely the unit sphere and the unit
cube. These objects—albeit trivial—are particularly valuable for testing. The sphere is perfectly
rotationally invariant, while the cube has several rotational symmetries. We then move to more
difficult meshes such as the Stanford bunny, which is a highly nonconvex object, and the torus,
which is a genus-1 manifold.

For all tests, we use a scene radius of R, = 7 and scale down the geometry so that R;;;, = 1.
We monitor loss and accuracy at each epoch during training. For each object, we evaluate the
ground truth visibility using a point light source to have a crisp representation of the umbra.
The network is then evaluated at different positions in the sampling region S. Finally, we can
replace the point light with a moderately small spherical light source to obtain soft shadows.
In this scenario, the solid angle formulation of the rendering equation is used to evaluate direct

illumination for diffuse surfaces:

Lo(x 00) = Le(x, ) + / £1(%, 05, 00) Li (%, 00) [N () - 1| dor (@)
52
~ / P (%, 1) Do (x, 1) N () - 1] do (@) (45)
Je2 T
_ B/ L2 (x, i) do (),
T J g2

where p is the surface albedo and L is the combined radiance and learned visibility. We approx-

imate Equation 4.5 using a Monte Carlo estimator with low sample count. In our experiments,
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we use 4 samples per pixel to avoid aliasing artifacts.

4.3.3. Learned Visibility Visualization. To visualize the learned visibility in three dimen-
sions, we need to design a tool to assess how well the model generalizes to unseen data, namely a
small collection of points that were not part of the training set. To do so, we first note that moving
the emitter along a particular dimension should produce shadows that are structurally similar.
For instance, moving an emitter along the direction parallel to the receiver surface normal, we
can increase or decrease the size of the shadow (Figure 4.5a).

To see how the learned model produces shadow regions from varying positions, we can pro-
ject the occlusion profile on all six walls of an axis-aligned box. This allows us to vary one dimen-
sion at a time to see how the model behaves for predicting shadows on receivers with different
angles (Figure 4.5b). For symmetric shapes like the sphere and the cube, the shadows should be
the same for all projections, assuming the distance to the occluder and receiver is held constant.
Combining both (a) and (b), we thus have a relatively robust and intuitive visualization tool for
our network to compare with ground truth shadows. In the case of a sphere for instance, we
expect all learned shadows to resemble a circle. Taking the mean squared error between true and

predicted can then be used to measures visual similarity.
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(a) Moving along one dimension (b) Box projection

Figure 4.5. To visualize our model, we can either vary the position of the light & in one
dimension or project on receivers with different angles.

In our tests, we use a 5 X 5 x 5 box and project using the best model on the validation set from

varying light depth. This depth is defined as the shortest distance between p and the object’s
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bounding box Bg. More formally,
§:=68(p,0) =inf{t > 0:p—tp/lpl € Bo}. (4.6)

Secondly, we can visualize the pre-activation output of our model. Since we are classify-
ing points by thresholding, we can simply disregard all terms in the rendering equation and
return the approximate visibility spectrum V(x, ) & Do (x, w), where Do : X — [0, 1] is the
continuous output of the model before thresholding. This visualization on receivers is partic-
ularly interesting as it allows to assess gray regions where the network might be uncertain of
its predictions. In classification problems, we effectively separate the space into two subregions.
Borrowing intuition from support vector machines (SVM) in machine learning, we can think of
visualizing the raw output as the margins of the learned hyperplane. We expect the network to
be highly confident in clearly visible (0) and occluded (1) zones, but unsure in transition regions,
ie., 551 ([0.5 —€,05+ e]) for some € > 0. We thus foresee that the learned model will produce

uneven shadow silhouettes while retaining the overall shape of the umbra region.
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Results

We present our experimental results. Each scene network was trained offline and we show the
accuracy and loss plots on their respective training and validation sets. The accuracy corresponds
to the proportion of true results among the total number of cases observed in the dataset: it meas-
ures how successful our classifier is at correctly identifying occluded and unoccluded samples.
We are mostly interested in the validation error of our models. We display the evolution of our
binary classifiers as they are trained and compare with ground truth, ray traced images. The aug-
mented test scenes are constructed by adding an infinite receiving ground plane at z = —1 on
which shadows can be cast. We vary the position of the light source in the positive hemisphere
above the object to visualize the hard and soft shadows in different lighting scenarios. These po-
sitions correspond to p, € {0, £1.5, £3} with fixed p, = 1 and p, = 2. We also show the raw
output of our best models (on the validation set) using the box projection test. The pre-activations

are colored to better visualize the output values of our neural network classifiers.
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5.1 Sphere

We start with the simplest possible shape, namely an analytical unit sphere. We first note that
the model reached a very high level of validation accuracy (0.984) early on in the training, as
shown in Figure 5.1 below. We also observe that the model reaches a higher level of accuracy

on the validation set than on the training set on 2/3 of the epochs, which might be due to class

. . i
imbalance. We shall refer to our model at epoch i as CDgp)here.
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Figure 5.1. Training curves for SPHERE scene.

The top row of Figure 5.2 shows how the model evolves through time as it is trained by back-
prop. The high validation accuracy early in the training process is directly reflected in the quality
of the shadows, as q)éaere already closely resembles the ray traced (RT) ground truth. While the
neural network is quickly able to reconstruct the visibility profile of the ball, this process rapidly

stagnates. The difference between the worst and best learned (L) models for this particular setup

is almost unnoticeable. The middle second and third row of the same figure compares ray tracing

(28)

sphere 18 used. Even if

with our approach for different point light positions. Here, the best model ®
the visibility was sampled in the bounding region with R, = 7, the model fails to capture the
shadows beyond p, = %3, even if it can approximate point closers to the mesh relatively well.
In the last row of the figure, we replaced the point light in the top row with an area light with
radius Rg = 0.5. Visually, both penumbra regions look similar but the MSE heatmap shows that

our learned algorithm has difficulties resolving penumbra at the front of the object.
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Figure 5.2. Visualization of the learning process for the SPHERE scene.
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Figure 5.3 shows the results for the box projection test using our best model. Each column
corresponds to a different position p for the light, and the raw pre-thresholded neural network
output is plotted for two different light depths §. All projections correctly identify the cast shadow
as a circle, with the exception of the top projection (third column) having more difficulties. The
binary (thresholded) shadow for both depths are superposed and compared with the ray traced

umbrae. This region should be identical for all projections as the sphere is rotationally invariant.
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Figure 5.3. Box projection of SPHERE scene.
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5.2 Cube

The second scene we tested is the unit cube. While it has several rotational symmetries, the
unit cube has many sharp corners that could be difficult to resolve for the neural network with
a smooth loss function like BCE. Figure 5.4 depicts the accuracy and loss of the network during
training. Again, our model obtains a remarkably high accuracy early on in the training process,

with a score of 0.991 after the very first epoch. Here, the model mostly performs better on the

training set, which is to be expected.
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Figure 5.4. Training curves for CUBE scene.

Figure 5.5 similarly shows the training process, with little to no improvements after the first
few epochs. The learned shadow region for the cube is much smaller than the ray traced umbra

region and also suffers from Peter Panning. One important difference with the unit sphere is that

our best model CD(CZu?e is able to generalize to farther light positions, as shown in the third row,

even though the shape of the shadow is not structurally accurate. The network has many issues
resolving sharp corners and oversmooth these regions. This especially severe when the light is

directly above the cube (third row, third column). Replacing the point light with an area light,

the shadow is almost inexistant, as displayed by the MSE heatmap.
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Figure 5.5. Visualization of the learning process for the CUBE scene.

This poor learned representation is demonstrated in Figure 5.6 where we used farther depths
to avoid projecting on other surrounding walls (i.e., the shadow would be too large to be contained
on a single 5 x 5 panel). At § = 2 the network completely fails to capture the square shape of the
shadow in all but the bottom projection. For a slightly farther light position at § = 3, we note
that the network is somewhat capable of detecting the edges of the umbra but this representation
lacks any form of symmetry. Moreover, the network learns two components for the umbra in
most projections. For the top projection (third column), the learned model does not distinguish
between the two light positions and predicts occluded for the entire plane. This is reminiscent
of the sphere scene that learned a less accurate top representation of the visibility. The only
success story for the unit cube is the bottom projection at § = 3, where our model learns a crisp

representation of the side of the object
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5.3 Stanford Bunny

The sphere and the cube are both convex objects with many axes of symmetries. We next tested
on a nonconvex shape that has no axial symmetries, namely the classical Stanford bunny. This
mesh is particularly important has it has both convex (body) and concave (ears) components.
While the body is more or less smooth, the ears are sharp at their tip, which justifies this choice
of object as it can be seen as a concave mixture of the previous two objects. Figure 5.7 shows
once again the training and validation accuracy/loss over time. Most surprising is the fact that
two curves are very similar and show little variance in the second half of training. The validation
accuracy is lower than the previous examples at the beginning, starting from 0.973 and reaching

0.987 at the end of training.
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Figure 5.7. Learning curves for the STANFORD BUNNY scene.

(26)
Bunny>

To test our best model ® we placed the camera in a position that would allow to clearly
see the shadow cast by the bunny ears. Rendering the bunny at every 5 epochs (Figure 5.8) re-
vealed that the model’s internal representation of the mesh did evolve, which is not something
that was observed with previous objects. However, the neural network overcompensates for the
right ear (left on the figure), as shown by a increase in length of the shadow. While the model ad-
apts surprisingly well to the concavity of the head of the bunny, it still fails at displaying shadows

when the light is too far. When the point light is replaced with an area light, the model generates
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arguably realistic soft shadows, but has issues at the base of the object where the umbra domin-

ates as shown by the MSE heatmap.
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Figure 5.8. Visualization of the learning process for the STANFORD BUNNY scene.

The box projection of the Stanford bunny in Figure 5.9 was only performed for § = 2, as a
smaller values produced shadows that were too large to be contained on a 5 x 5 wall, and larger
values all collapsed to the unoccluded class. We observe that most predictions are structurally
correct, but they lack fine details. The model’s exaggeration on the bunny right ear previously
noted is very well captured by the back projection. The neural network again shows poorly
formed top projected shadows, as the learned model could not learn this view even at a short

distance.
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Figure 5.9. Box projection of STANFORD BUNNY scene.
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5.4 Torus

Our last object is a torus to test nonzero genus shapes. This torus is angled at 45° in the y-axis
to break symmetry. The goal of this mesh is to determine if our neural network can learn a
representation of the hole while retaining a single spatial component. The curves in Figure 5.10

shows stability in the training process, eventually reaching an accuracy of 0.993 at epoch 29.
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Figure 5.10. Learning curves for the Torus scene.

Figure 5.11 shows that the visual accuracy of the shadow stabilizes early on in the training.
Our best network ¢%9u)s is not capable of capturing the entiery of the donut shape, which results
in a banana-shaped umbra that is far from correct. When moving the light position, the network
completely fails at identifiying any shadow region and collapses to the unoccluded class, thus
rendering the network useless for generating shadows. The last row of the figure shows the

result of replacing the point light with an area light, but this case is already a lost cause as most

of the torus visibility profile cannot be represented by the model.
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Figure 5.11. Visualization of the learning process for the Torus scene.

Finally, the box projection of the torus is shown in Figure 5.12. The network partially succeeds
at reconstructing the visibility of the object at mid-range, as shown by all but the top projection.
The network is able to understand the presence of a hole in the geometry, but reverts to a genus-
0 shadow for a farther light position, indicating that it did not, in fact, learn the true geometry
of the manifold. This recurrent structural error is indeed shown by the bottom, front and back
projections, where the shadow resembles a banana instead of a donut. The problem with the top
projection persists, as it fails at “closing” the shadow for mid-range and completely disregards
the presence of occluded points at far-range. We did not superpose the learned binary shadows

in the figure for clarity.
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Chapter 6

Discussion and Conclusion

In view of the results, we unfortunaly cannot claim to have achieved our initial goal of using a
deep net for accurate shadow generation. In what follows, we discuss our approach and describe
the main limitations of our model. We then present several avenues of future work for learning

visibility.

6.1 Method Analysis

6.1.1. Generalization Capacity. It is clear that the network capacity is not high enough to
capture all subtleties in the geometries to learn. The fact that the network is able to vaguely
recognize the object at close to mid-range is encouraging, but most shadows predicted have a
tendency to be too smooth in sharp regions. In all test cases, the network was unable to generalize
past a bounding sphere of radius 3, which is less than half the trainable radius that was set to
Riax = 7. The reasons for this are unclear, since the sampling routine was specifically designed
to be agnostic to the distance to the mesh. Indeed, the expected number of hit/miss rays along a
direction should be constant as we are sampling the subtended cone. One possible explanation
is that two layers are simply not enough to capture the visibility depth. Past a certain point, the
network prefers to predict the unoccluded class for all points. While this is visually better than
always predicting occluded, it significantly constrains the potential light positions. For more

complex meshes, we observed that this is particularly severe as the shape of the learned visibility
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rapidly degenerates until it collapses to a single occlusion category.

Figure 6.1 shows the normalized confusion matrices on the validation set for all scenes. Here,
the color reflects the distribution of data points (e.g., a darker color means more examples; see
Figure 6.2 for the training data distributions). We observe that the number of false positive and
false negative is relatively low for the last three scenes. However, the SPHERE scene has a very
high false negative rate and a zero false positive rate. In addition, it has perfect positive error
and poor true negative error. This is an interesting behaviour as the SPHERE scene was arguably
the most successful case visually. This is symptomatic of bigger problems with the visibility
sampling scheme as this error was not immeditately noticed by our rendered test images and the

box projection visualization.
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Figure 6.1. Normalized confusion matrices for all scenes.

A deeper model could potentially alleviate the problems discussed thus far, but it would also come
at the cost of longer evaluation time which is already an important limitation. We did try with
many different architectures, from a single layer perceptron to a deep neural network with up to
6 layers. Empirically, we saw that fewer neurons in the first layer significantly hurt the quality of
the shadows the model can produce. Deeper models, besides being much longer to train, did not
seem to generate more accurate shadows overall, at least not as good as we would like them to be.
This further suggests that the multilayer perceptron’s capacity might simply be too constrained
for something as complex as visibility.

Although this evaluation can be made efficient by moving it onto the GPU, the vanilla neural

network model still treats all training examples independently. Recasting the visibility problem
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in the convolutional framework to take advantage of correlated data is not a straightforward task,
as convolutions naturally act on array-like representations. However, recent work in spherical
convolutional neural networks [CGKW18] has shown that it is possible to use ConvNets for
spherical signals and can possibly be applied to improve visibility learning. Combining this idea
with recent regularization techniques for neural networks, such as penalizing low entropy output

distributions [PTC™17], could potentially produce important improvements over our method.

6.1.2. Dataset Generation. We observed that the same architecture can produce highly vary-
ing results depending on the mesh. For instance, even if the cube mesh has a relatively simple
piece-wise linear analytical form for ray intersection, the network could only reconstruct one
of the six sides of the mesh correctly using a large amount of training examples. One possible
explanation for such poor performance is that the bounding sphere heuristic for sampling this
object is nonoptimal. Even if we increased S¢ by a small factor «, few visibility points actually
captured the corners of the cube. While this argument makes sense for the cube, it cannot be
applied to the bunny mesh as many sharp traits were well estimated at close range. On the other
hand, the sphere mesh was very well approximated but the bounding region was also spherical,
which could suggest that a sampling volume that is adapted to the mesh to learn could be bene-
ficial. However, modifying our sampling scheme to sample a larger enveloppe around @ did not
seem to improve results, at least for the same architecture.

The difficulty of designing a one-size-fits-all sampling scheme stems from the fact that we
know so little a priori about the visibility of the mesh. Not enforcing an equally balanced train-
ing set can make the accuracy measure highly unrelieable as it could become heavily biased
towards one class and misrepresents the true distribution." Figure 6.2 below shows the average
class distribution for all scenes trained. Surprisingly enough, training on a 1:1 ratio of visible
and nonvisible samples yielded a model that could not produce any shadow at all. This indicates
that not altering the training distribution was crucial in controling the mode of the learned dis-
tribution and it could also explain why the model could not capture shadows from farther light

sources. This is also reflected by the poor performance of the CUBE scene, where the average

!For instance, a binary classifier achieving 0.90 accuracy on a heavily skewed test set with a 90% class A and 10%
class B is essentially useless.
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Figure 6.2. Average class distribution for all scenes over 30 epochs of dynamic visibility
resampling. In blue, visible (1) and in red, nonvisible (0).

class distribution was the closest to a 1:1 ratio among all other scenes.

Moreover, training with and without dynamical resampling at each epoch did not produce
better shadows overall. In fact, both methods stabilized early in the training and barely improved
over time. This is an interesting observation, as one would expect better performance from a
more diverse training set. Online resampling does decrease the generalization error of the model,
but it is more likely that the shallowness of the network lead to a visibility approximator with
high bias. In other words, the model was too simple to explain all discontinuities present in the
visibility profile of the mesh and was only able to resolve some of them. Using online learning
in regions where the model completely failed is one intuitive way of improving the visibility
sampling scheme, but it is unclear if this would actually enhance the quality of the shadows.

All renders were obtained with an input representation in Euclidean coordinates in R®. Using
spherical coordinates to decrease the number of input dimensions to R® turned out to be prob-
lematic and often did not produce any shadow at all. This might be explained by the fact that
using two different coordinate systems for positions and directions forced the network to learn
the mapping from one space to another on top of learning the visibility distribution, which is

already difficult for such a small net.
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6.1.3. Choice of Minimizer. While the binary cross-entropy loss is a natural choice for clas-
sification problems, it is clearly not enough for target distributions as complex as visibility. The
principal issue with maximizing log-likelihood in this scenario is that it does not use any geomet-
rical feedback to guide the learning process, even though the visibility problem is intrinsically
geometric. Gradients do not care how far off the prediction is in Euclidean space, but this inform-
ation could possibly be exposed by adding an additional geometric penalty term. The issue with
this approach is that this term needs to be differentiable for backpropagation, and it is not clear
how to incorporate this measure efficiently. In fact, it is an open problem to design a trainable
objective function that would integrate both the notions of information and geometry in a well-
defined and differentiable manner. There are other loss functions that do no rely on a probabilistic

interpretation, but in the context of classification they arguably make less sense.

6.1.4. Choice of Metric. Accuracy turned out to be poor metric to assess how well the model
would perform in the presence of receivers. A near perfect accuracy on the validation set did
not translate to better shadows by any mean; in fact the per-epoch rendered scenes proved that
small increases in validation accuracy did not contribute to a lower error when compared to ray
traced shadows. In other words, our choice of loss function did not correlate with overall quality
of the final shading. An arguably improved metric would be to measure an expected structural
error on random projection planes. Using the box projection test to measure this error could
have undesired and pervasive effects, such as forcing the network to learn axis-aligned shadows.
Using randomly oriented walls for projections would ensure a uniform coverage of the visibility
profile, but this approach would require invoking the renderer on every training batch. While
this is feasible under a unified framework, this introduces a large amount of overhead that is

difficult to accommodate for separate training/inference platforms.

6.2 Other Limitations

6.2.1. Self-shadowing. One limitation of using a neural network for shadows is that it cannot

resolve shadows casted directly onto the occluder. This is not an issue for convex shapes, but self-
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shadowing can occur for concave objects. For instance, the ears of the bunny can cast a shadow
on its back if the light is placed above the object. In our model, this was handled by reverting to
ray tracing if a primary ray hit the identified occluder. It is possible to use precomputed visibility

methods such as dynamic height fields [SN08] to capture this effect.

6.2.2. Static Occluders. Another important limitation of our model is that it assumes that
the occluder is static and centered at the origin. However, it would be possible to change the
occluder’s position, provided we also modify how we use the neural network to determine visib-
ility. This would require transforming the shape back in local frame, which can be costly if this

needs to be done at every frame.

6.2.3. Evaluation Cost. Our implementation did not fully take advantage of parallelism since
we applied the neural network at every shading point. Deep neural networks are particularly
good at processing large amounts of data in batch, but in our tests we called our model whs times,
where w, h are the width and height of the image plane, and s is the number of samples per pixel.
As a result, our method was 5-10x slower than using a BVH for secondary rays. Feeding many
inputs (say for each pixel) as tensors to the model could provide important speedups and could

allow for more complex architectures to be used without impacting inference time.

6.3 Future Work

In hindsight, it is clear that our goal of learning arbitrary visibility profiles was far too ambitious.
Artificial neural networks are powerful approximation tools but they also tend to oversmooth
in blurry regions, which is problematic for shadows even when they are produced by area light
sources. While it is true that we do not necessarily need shadows to be perfectly accurate to
provide a sense of realism, small defects in the structure of the shadows are rapidly noticed even
if they get blurred. Our experiments have shown that attempting to solve the visibility problem
with a small capacity neural network simply seems to be unfeasible, even for simple shapes. By
sampling a spherical volume around the occluder, we assumed that the light positions could be

anywhere in this region. In practice, moving light sources are usually constrained into much
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tighter regions (e.g., the trajectory of the sun in the sky). For the neural network approach to be
efficient, we would need to dramatically reduce the number of potential positions when sampling,
but by doing so, we also heavily weakens the usefulness of our model.

Nonetheless, there are some interesting avenues for future research. Given visibility is a gen-
eral problem that frequently appears in rendering, it would be worth investigating other problems
that suffer from poor visibility approximations. Our experiments has demonstrated that training
a neural network to estimate visibility can be done in only a handful of epochs and, as such, could
be used as a preprocessing step to bootstrap other rendering algorithms. For instance, recent work
in Markov chain Monte Carlo for rendering [OHHD18] has shown that mutating paths to avoid
nonzero path contributions due to occlusion can significantly accelerate convergence. Another
possibility is to extend our framework to cone tracing by estimating the average visibility. By
sampling the visibility using small beams of directions instead of single rays, a different model
could be learned. This approach is particularly intriguing as a network would probably have
more facility learning visibility over a discretized set of directions than over the entire sphere
of directions. Combining this approach with a voxelized scene representation in a divide-and-
conquer manner could potentially lead to better visibility approximation overall. Finally, the idea
of only using the network in high confidence zone could be explored more. By computing a seg-
mentation mask of confidence zones produced by the network, it would be possible to invoke
the model only in uncertain regions and ray traced the rest. The network would then only be
used to resolve partially occluded regions to retain the structural fidelity of the shadows. This
could be achieved by using Bayesian neural networks to quantify the incertainty for instance.
This segmentation idea has recently proved to be successful in the context of adaptive temporal

antialiasing [MSG ™' 18] and is worth investigating further in the context of learned visibility.

6.4 Conclusion

In this thesis, we have investigated the possibility of using a deep neural network to approximate
the visibility profile of simple objects for shadow generation. After reviewing the fundamentals of

light transport and deep learning, we have presented offline and real-time techniques to estimate
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shadow regions in virtual scenes. We then introduced a method for sampling visibility points
around an object that correspond to potential light positions to evaluate. We have shown that
using this data generating tool, we could dynamically create a binary training set of points and
directions in ray space. We used this dataset to train a simple neural network classifier in a
supervised manner to approximate the underlying visibility distribution of the object.

We tested our model on meshes of varying complexity (e.g., convex, concave and nonzero
genus objects) by replacing the visibility query with our neural network to generate learned
shadows. Our results demonstrated that for a multilayer perceptron architecture, the visibility
function is too complex to be learned. Our simple two-layer feedforward neural network failed
at capturing all subtleties in the visibility landscape, but it was somehow able to resolve some
umbra regions. Our model could not generalized to further light positions despite having been
trained on such data, suggesting that the network capacity was too low. Out of the four meshes
we tested, only one (the sphere) was successful at correctly approximating the shadows. Other
mesh objects had varying artifacts that produced unrealistic shadow regions.

Our experiments indicate that neural networks are not magic black boxes that work flawlessly
in all scenarios: their power is limited and they do not always behave as one would expect. With
real-time ray tracing now a first-class citizen in modern rendering pipelines, we believe hybrid
strategies combining rasterization and ray tracing is the next step for solving the interactive re-
lighting problem. While bruteforce learning of visibility could not be done efficiently, there are
many other problems in rendering that could benefit from supervised learning to improve per-
formance. The complexity of these problems need to be taken into account and carefully studied
in order to design intelligent algorithms that would be both fast and precise enough to justify
replacing traditional rendering techniques. With the ever-growing effort of the AI community to
make deep learning programming frameworks accessible to other fields of research, we anticip-
ate that many ideas attempting to bridge learning and rendering algorithms will be explored in

the near future.
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