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Abstract

This thesis discusses the measurement of the dE/dz resolution of the BaBar
drift chamber. The study was performed on the data obtained with a small scale
prototype drift chamber (built at LAPP, Annecy, France) during test beam runs
at CERN (PS) and Zurich (PSI). Drift chamber simulations were performed in
order to study the expected performance. Good tracking, necessary in the analysis
of the PS runs but unnecessary in the PSI runs, was obtained by performing a
x? minimization of the space residuals, yielding a time to distance function. An
average tracking resolution of &~ 350pm was achieved. The resolution result for
seven energy loss samplings per event was scaled up to 40 samples per event which
will be available in the BaBar chamber. The expected dE/dz resolution of the
BaBar chamber, as obtained from the PS runs, is: (7.3 £ 0.1 £ 0.5) %. The result
from the PSI runs is: (6.9 + 0.4 £ 0.5) %.

Résumé

Cette these discute les mesures de la résolution en dE/dz de la chambre a
dérive du détecteur BaBar. Cette étude a été effectuée avec les données obtenues
avec un prototype a petite gamme de la chambre & dérive (construite 3 LAPP, a
Annecy en France) dans le faisceau de test au CERN (PS) et a Zurich (PSI). Des
simulations des chambres & dérives on été effectuée pour étudier la performance.
Une bonne reconsturction, nécéssaire pour ’analyse des test PS mais démodée
pour les tests PSI, a été obtenue en faisant une minimsation en x? des "space
residuals” donnant une fonction qui relit le temps et la distance. Une résolution
de reconstuction de =~ 350um a été achevée. Le résultat de la résolution pour sept
mesures de ’énergie perdue par événement a été extrapolé jusqu’a 40 mesures (ce
qui sera disponible dans la chambre & derive du détecteur BaBar). La résolution
en dE/dz attendue de la chambre BaBar, obtenue des tests PS est: (7.3 £ 0.1 +
0.5) %. Le résultat des tests PSI est: (6.9 + 0.4 £ 0.5) %.
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Chapter 1

Introduction

The physics of Elementary Particles is a vast and ancient field, with a very ambi-
tious goal: a fundamental description of the nature of both matter and energy. At
this point, it is a very mature and well developed field, with a body of theory and
a language that constitutes what are probably the most accurate theories known
to modern science. This language is called Quantum Field Theory (QFT) and it

is a (some sceptics would say forced) mixture of several theories:

e Quantum Mechanics - the laws that describe the processes at atomic distance
scales, where the classical laws of Newton and his successors break down and

where the traditional notions of reality are challenged.

o Special Relativity - Einstein’s discovery of the relationships between space

and time on one hand, and matter and energy on the other.

e Field Theory - originally developed by Faraday and Maxwell to describe elec-
tricity and magnetism and now extended to describing strong interactions,

weak interactions and gravitation.

2



¢ Symmetry Principles - the application of the mathematical Theory of Groups
to describe a set of transformations that can be applied to physical systems
and leave them unchanged are now being used to classify and enumerate

those systems.

The importance of CP violation, especially in the early universe formation, can
not be overestimated. If indeed all the matter and energy of the Universe were
created out of the gravitational potential energy of the Big Bang, the symmetry
with respect to charge conjugation would have ensured that equal amounts of
matter and antimatter were produced. But, this is clearly no longer the case, as
the Universe we observe is constructed almost entirely of matter with very little
antimatter. Back in 1967 Andrei Sakharov established that three requirements
must be met in order to produce this matter-antimatter asymmetry [Sak67]:

o a stage in the evolution of the Universe which was far from equilibrium -
this was certainly true in the first moments of Universe creation when the

expansion was rapid.

¢ proton decay - modern Grand Unified Theories all predict that protons in-
deed do decay [GG74] (even though proton decay has yet not been observed,
its lifetime is believed to be many orders of magnitude larger than the age
of the Universe [WN96}).

e CP violation - observed in the kaon system in 1964. [CCFT64]

Bearing in mind the fact that CP violation in B mesons is a lot stronger than
in K mesons, one would not be wrong in saying that the comprehensive study of
the CP violation in B decays, performed at a B factory, is one of the priorities for
High Energy Physics in the following decade. This study is the primary physics
goal of the BaBar experiment. [Col95]



Chapter 2

Theoretical Background

2.1 The Standard Model

Over the last few decades a theory has emerged that describes all of the known
elementary particle interactions except gravity (and as far as we can tell, gravity
is far too weak to play an important role in elementary particle processes). This
theory (or rather a collection of related theories) which, in addition to theories
mentioned in the previous chapter, also incorporates quantum electrodynamics,
the theory of electroweak processes and quantum chromodynamics has become
known as the Standard Model Even though no one pretends that the Standard
Model is the definitive description of nature it has an attractive aesthetic feature:
all of the fundamental interactions are derived from very few general principles.
Those requirements on any candidate physical theory are the following: unitarity
- ensures the conservation of probability, microcausality - physical observables
must be separately measurable at different positions and equal times, and locality
- the amplitudes for spatially separated physical processes must factorize and be

preserved under time evolution (provided that no signals propagate from one point

4



2.1. THE STANDARD MODEL 5

to the other), invariance under Lorentz transformations and translations - by the
Noether’s Theorem implies the existence of the corresponding conserved quantities
(like four-momentum and angular momentum), stability - ensures existence of the
lowest energy state and renormalizability - the physics at small energy scale is
largely insensitive to the physics at high energy scale (if Q@ < A then contributions
of order Q/A, where A is the large scale energy factor and @ measures the small

energy scale, can be neglected). [Bur97]

The strong, weak and electromagnetic interactions are understood as arising
due to the exchange of various spin-1 bosons amongst spin-1/2 particles that
make up matter. Their properties can be summarized as being particles that are

associated with the generators of the algebra:
SUL(3) x SUL(2) x Uy(1) (2.1)

The eight spin-1 particles associated with the factor SU,(3) (‘c’ is meant to denote
color, which is a quantum number carried by strongly interacting particles) are
called gluons and are thought to be massless. The four spin-1 bosons associated
with the factor SUL(2) x Uy(1) (‘L’ is meant to indicate that only left-handed
fermions carry this quantum number, ‘Y’ distinguishes the group associated with
the weak hypercharge from the U, (1), the electromagnetic group) are related to
the physical bosons W=, Z° and the photon.

Table 2.1 shows the four fundamental forces governing the interactions between
both matter and energy. Masses of the gauge bosons are from [WN96]. Gravity,
mediated by a hypothetical spin-2 graviton, being difficult to quantize, is excluded
from the Standard Model.

Apart from spin-1 particles there are a number of fundamental spin-1/2 parti-
cles, called fermions, and the character of their interactions can be summarized by

giving their transformation properties with respect to the SU.(3) x SUL(2) x Uy (1)
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Force Range | Mediator Mass Electric
(m] [MeV/c?]  Charge [e]
Gravity infinite || Graviton 0 0
Electromagnetism | infinite || Photon | <6 x 10" <5 x 107%
w+ 80330 1
Weak <1078 w- 80330 -1
2° 91187 0
Strong <107 | Gluons 0 0

Table 2.1: Four fundamental forces and their mediators.

gauge group. Fermions transform in a fairly complicated way as there appear to
be three families of particles, with each family coupling identically to all gauge
bosons. Leptons are, by definition, those spin-1/2 particles which do not take part
in strong interactions. Six leptons are known up to date. Hadrons, on the other
hand, are defined as particles which do take part in strong interactions. The spec-
trum of known hadrons is rich but they can be accounted for as the bound states
of five quarks (u, d, c, s and b). Table 2.2 is a summary of the Standard Model
particle content. The masses were taken from [WN96]. Both quarks and leptons
are grouped into three families. Corresponding antiparticles are not shown. The
v masses are upper limits with a 90% confidence level. The u, d and s quark
masses are estimates of ‘current-quark masses’ in a mass independent subtraction
scheme, the c and b quark masses are estimated from charmonium, bottomonium,
D and B masses, the ¢t quark mass is from a CDF observation of top candidate

events.

Once the most general renormalizable Lagrangian built out of the fields cor-
responding to the expected particle content is diagonalized, all the boson and

fermion masses can be read off and are identically zero ! The vanishing of the
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Lepton Mass  Electric || Quark Mass Electric
| [MeV]  Charge [MeV/c? Charge [e]
T v l<i510¢ o u 2-8 2/3

e 0.511 1 d 5-15 -1/3
| w <0.17 0 c 1000-1600 2/3
B 105.7 -1 8 100-300 -1/3
vy <24 0 t 180000 2/3
T 1777 -1 b 4100-4500 -1/3

Table 2.2: Elementary particle content of the Standard Model.

masses is the consequence of the SU.(3) x SUL(2) x Uy(1) invariance of the theory
and can be avoided only if this symmetry is spontaneously broken by the ground
state. The simplest way to do so is to add to the theory a weakly-coupled spin-0
particle with a potential which is minimized for a non-zero field. This particle
which is ‘artificially’ added to the Standard Model is the Higgs boson, which is
yet to be experimentally observed, and its foundations are much weaker than the
rest of the theory. In a way, the Higgs-doublet parametrizes most of our ignorance
of the Standard Model. [Bur97]

2.2 Discrete Symmetries

As we have seen, symmetries play a crucial role in the Standard Model as they
gave us the conserved quantities. Symmetries with the respect to the gauge group
(SU(3) x SUL(2) x Uy(1)) and to electromagnetism (U.m(1)) are continuous, they
represent invariance of the physical quantities under transformations governed by

one or more continuous parameters (such as position in space or angular orien-
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tation). There are, in addition, symmetries associated with discrete parameters
and three of them are particularly useful: parity inversion (P) - the inversion of
the three spatial coordinates through an arbitrary origin converting a left-handed
system into a right-handed, time reversal (T) - effectively the reversal of the tem-
poral coordinate and charge conjugation (C) - a change in the sign of all internal
degrees of freedom (electric charge, baryon number, lepton number, strangeness,
charm, beauty, truth but not mass, four momentum and spin) of all particles in

the system converting particles into antiparticles.

Until 1956 it was believed that the physical laws were ambidextrous, inverting
parity on any physical process must result in another possible process. The evi-
dence of parity violation in weak decays (original experiment was made on Co®
beta decay) was first detected by C. S. Wu et al. who found that most of the elec-
trons were emitted in the direction of the nuclear spin. [W+57] Another evidence
of P violation is the fact that all neutrinos are left-handed and all antineutrinos
are right-handed, as measured in 7* — u* + y,(7,). Charge conjugation is also
not a symmetry of the weak interactions as applying it to a left-handed neutrino
produces a left-handed antineutrino, which doesn’t exist ! Time reversal is a lot
harder to test as no particles are eigenstates of T so we can not just look at
whether a given reaction preserves the eigenvalues of the time reversal operator,
or whether the rates of T even and T odd reactions are the same. The most direct
way to test the conservation of T is to measure the rates of a candidate reac-
tion (such as » + p = d + v) as we run it both ways under the same conditions.
As stated by the ‘principle of detailed balance’ those rates should be the same.
No evidence of T violation was found in strong and electromagnetic interactions,
which is hardly surprising considering that both Cand P were violated exclusively
in weak decays. Unfortunately, inverse-reaction experiments are hard to do in the
weak interactions. Consider a typical weak decay A — p* +x~. The inverse reac-

tion is p* +7~ — A (allowed only if the energies of p* and =~ are large enough to
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produce A), but we will never see such a reaction because a strong interaction of a
proton and a pion will always dominate over the weak one. [Gri87] In practice the
critical test of T invariance involves measurements of quantities which should be
exactly equal to zero if T is a perfect symmetry. The best known experiment to
date is Ramsey’s upper limit on the electric dipole moment of a neutron. [Ram82]

Nevertheless, there is a compelling answer as to why time reversal cannot be
a perfect symmetry of nature. Based on the most general assumptions - Lorentz
invariance, quantum mechanics and the idea that interactions are carried by fields
- the TCP Theorem states that the combined operation of time reversal, charge
conjugation and parity inversion, in any order, is an exact symmetry of any in-
teraction. [Lue57] It is not possible to construct a quantum field theory in which
TCP is violated. If, as will be presented soon, CP is violated then there must be

a compensating violation of T.

2.3 CP Violation

Some temporary relief to the ‘problem’ of C and P violation was provided by
the discovery that the Universe is made of only left-handed particles and right-
handed antiparticles. This means that the combined CP symmetry transforms the
real physical states into each other. With the discovery of the CP violation in the
kaon system the sanctity of discrete symmetries was pushed back again. The most
obvious CP violating scenario is when two CP conjugate processes have different
amplitudes. The general approach to the explanation of the CP violation, when
CP conjugate amplitudes are the same, is via the interference of two amplitudes
that have a nonzero physical phase difference in a multiamplitude process. CP
violation can be either: direct - the two amplitudes that interfere with each other

contribute directly to the decay of the B meson (there being contributions from
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both tree and penguin diagrams) and indirect - due to mixing, the interference
between X — f and X — X — f (assuming that both X and X decay into a CP
eigenstate f) gives rise to CP violation. If for a process we have M = M, + e M,

then for a rate and a CP conjugate rate
P=MM" = M\M] + MyM; + MiM;e™™ + My M; e
Pcp = CPMM™ = MiM; + MyM; + MiM;e® + MyM;e™™ (2.2)

we get P— Pcp # 0. The three family Standard Model does provide the necessary
CP violating phase through the CKM matriz.

Evidently, the long lived neutral kaon is not a perfect eigenstate of CP. Vio-
lation in K§ — K} mixing is described by a single parameter ¢ = 2.3 x 1073:
(14 6)|K°> —(1-€)|K° >

e V201 +1ei?)
o (14 €)|K® > +(1 - ¢)|K° >
e V2L +1e) (23)

CP violation in the semi-leptonic kaon decays has also been observed. It is
parametrized by the following quantity (charge asymmetry in leptonic decays):

_ (K} = x~l*v) —-T(K} = x*l"v)
T (K2 - x-l1tv) + (K} - ntl-v)
The experimentally measured value of § (averaged from electron and muon chan-

nels) is: § = (0.327 £ 0.012)%. [WN96] This asymmetry provides an absolute

distinction between matter and antimatter and an unambiguous, convention free

5

(2.4)

definition of positive charge as the charge of a lepton preferentially produced in
the decay of a long-lived neutral kaon.

2.3.1 CP Violation in the Standard Model

The following sections are a summary of the several published works on the subject
of CP violation in and beyond the Standard Model. The full discussion is given
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in: [NQ92], [Gro96], [Lon96] and [Kay96).

A Lagrangian is CP conserving if all the coupling and mass terms can be made
real by an appropriate set of field redefinitions. In the Standard Model, the most
general theory with only two quark generations and a single Higgs multiplet is of
that type. However, when a third quark generation is added then the most general
quark mass matrix does allow CP violation. The three generation Standard Model
with a single Higgs multiplet has only a single non-zero phase and it appears in
the matrix which relates weak eigenstates to mass eigenstates. This is commonly
known as the CKM (Cabibbo-Kobayashi-Maskawa) matrix, [KM73] which is a
generalization of the four quark mixing matrix parametrized by a single (Cabibbo)
angle. [Cab63]

2.3.2 The Cabibbo-Kobayashi-Maskawa Matrix

By convention, the three charge 2/3 quarks (u,c and t) are unmixed, and all the
mixing is expressed in terms of a 3 x 3 unitary matrix V operating on the charge

-1/3 quarks (d, s and b):

& Vi Ve Vo | [ d
S |=| Va Voo Vs |] 8
4 Vi Vio Voo J\ B

The values of individual matrix elements can in principle all be determined from
weak decays of relevant quarks or from deep inelastic neutrino scattering. Using
the unitarity constraint and assuming only three quark generations, the 90% con-

fidance limits on the magnitudes of the elements of the CKM matrix are: [GKR97]

0.9745 —0.9760 0.217 — 0.224  0.0018 — 0.0045
V=] 0217-0224 0.9737 —0.9753 0.036 — 0.042
0.004 — 0.013  0.035 — 0.042 0.9991 — 0.9994
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There are several parametrizations of the CKM matrix. One proposed by Chau
and Keung [CK84] (c;; = cos 6;; and s;; = sin 6;;, with i and j being the generation
labels, and a single phase 0 < §;3 < 27):

C12C13 312¢13 s1ze "0

—_— 7] 7]
V=1 —s11c3 — c12823813"1  c12¢23 — 812823813e% 823C13

is i
812823 — C12€C23813€" " —Cy2823 — 812C23813€ 7 C23C13

Another useful parametrization, up to the fourth power of the Cabibbo angle A
(A = 0.22, A and ? + p? are of O(1)) is due to Wolfenstein: [Wol83]

1-1x A AN(p-in)
V= - 1- -;-/\2 AN?
A1 -p-ip) -AXN? 1

The unitarity of the CKM matrix leads to relations such as:
VoVa+VaVo+VeVy = 0 (2.5)

The unitarity triangle is a geometrical representation of this relation in the com-

Figure 2.1: The unitarity triangle.

plex plane: the three complex quantities, VisV,3, VsV and V3V should form
a triangle, as shown in Fig. 2.1. The unitarity triangle gives a relationship be-
tween the two most poorly determined entries of the CKM matrix, Vs and V..
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It is thus convenient to present constraints on the CKM parameters as bounds on
the coordinates of the vertex A of the unitarity triangle, as in Fig. 2.2. [GKR97]
The top quark mass evaluated at the relevant scale for the B — B mixing is
m; = 166 + 5GeVc~2. Note a different scale with respect to the unitarity triangle
in Fig. 2.1.

0.005

Figure 2.2: Constraints on the position of the vertex, A, of the unitarity triangle
following from |V,s|, B-mixing and €. A possible unitarity triangle is shown with

A in the preferred region.

The Standard Model predictions for the CP asymmetries in neutral B decays
into certain CP eigenstates are fully determined by the values of the three angles,
a, B and v, of the unitarity triangle.

2.3.3 CP Violation in Neutral B Decays

When we consider a neutral meson B° and its antiparticle B° the two mass eigen-

states are By and Bg (meaning light and heavy, respectively):

|Br >=p|B® > +¢|B° >
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|Bg >=p|B°> —q|B°>. (2.6)

The eigenvalue equation is:

(M - %1‘) ( : q ) = (Mw - ;irm) ( ; ) . 2.7)

Here M (the mass matrix) and I' (which describes the exponential decay of the
system) are 2 x 2 Hermitian matrices. The difference between 'y and I'y is
produced by channels with branching ration O(10~%) which contribute with alter-
nating signs and it is safe to set I' = I'y, = I'g. Also, we define M = (M + My)/2
and AM = My — M;. As T'y; « My, gives |p/q| = 1 the proper time evolution
of states which at time t=0 were either pure B° or pure B° is given by:

AMt -

>= e(=5-1M)t o5 MI—EIB‘J > +§i e(=5-M)t gip —|B%>

l phys

l phys (=5 AlzutlBo > +e(‘l’:"ul)t

cos f‘zﬂlﬁﬂ >. (2.8)

= Lie
q

Since we are interested in the decay of neutral B mesons into a CP eigenstate,

which we denote by fcp, we define the following amplitudes:
A=< fcp|H'B° >,A =< fcp[HlBo >, (2.9)

The time-dependent rates for initially pure B° or B° states to decay into CP
eigenstates are:

2 — 2
+2|M :tl 2|’\| cos(AMt)

Flmh sin(AMt)] (2.10)

- 1
I‘(B:hm(B:hya) B fCP) = IAlze—n

where
-4
=27 (2.11)
The time-dependent CP asymmetry, which is defined as:
T(BS,.(t —~ (B, (t
o (8) = DOBa(t) = fop) = T(Bh ()  for) a1

(B, (t) = fop) + T(B%,.(t) — for)
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is given by:

(1 = JA|?) cos(AMt) — 2ImA sin( AMt)
1422 )

az,(t) = (2.13)

The quantity ImA which can be extracted from ay,(t) can be directly related to
the CKM matrix elements in the Standard Model. In the general case:

b W d b uct d
—— >- ———>
uctv uct W W
d wol b d S uct O b
—Fwww e ——t +

Figure 2.3: Feynman diagrams responsible for B® — B° mixing.

A=) Aebie®, A=Y Awie, (2.14)

where A; are real, ¢; are CKM phases and §; are strong phases. If all amplitudes
that contribute to the direct decay have the same CKM phase, such that A/A4 =
e~3%0 and if ¢/p = e %¥M, where ¢p is the CKM phase in the B — B mixing
(the relevant Feynman diagrams are shown in Fig. 2.3), then Eq. 2.13 simplifies

considerably:

ar, (t) = —Im) sin(AMt)
A = ¢ 2(60+éM) o Im\ = —sin 2(¢ép + dnr) (2.15)

CP asymmetries in B? — f,, provide a way to measure the angles of the unitarity
triangle, which are defined by:

= _ V¥V _ VaaV3 _ Va3
a = arg ( V..,V,;) , B= ug( vz ) y=arg Vs ) (2.16)
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The aim is to ‘overdetermine’ the unitarity triangle, to make enough independent
measurements of the sides and the angles and thus check the validity of the Stan-
dard Model. Table 2.3 [NQ92] lists CP asymmetries for various channels in By
(left) and B, (right) decays. One possible hadronic final state is listed for each
specific quark decay. Standard Model predictions for the parameter ImA (in terms

of the unitarity triangle angles) are given in the last columns.

Quark process | Final state ____Im/\ Quark process | Final state | ImA
b— &3 YK :;in 208 b— écs Yo 0
b— Ged D*D- —sin 24 b — ced vKg 0
b — dud VoL o sin 2 b — dud pKs —sin 27
b — 3s3 ¢Ks ~sin 28 b— 3s3 ' 0
b— 3sd KsKs 0 b— 3sd ¢Ks sin 28

b— ui,ics | D%p K™ siny

Table 2.3: CP asymmetries in By and B, decays.

o\
A
c| \c

Figure 2.4: Feynman diagrams, tree (left) and penguin (right) for the B — x*x~
decay.

It is important that only one weak amplitude contributes to a decay if one is

to cleanly extract the CP phases using indirect CP violation. A problem arises
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since many B decays have more than one such contribution. In addition to tree
diagrams, penguin diagrams are often present. This is the case in the decay
BY — #*x~ (both Feynman diagrams for this decay are shown in Fig 2.4), which
is one of the interesting CP eigenstates. Here, the tree diagram has the weak
phase V;V,4, while that of the penguin diagram is V;;V;4. Therefore, for this
decay, in addition to indirect CP violation, direct CP violation is present due to
the interference between two types of diagrams. This spoils the cleanliness of the
measurement of the CP asymmetries, hence the term ‘penguin pollution’. Thus,
the measurement of C'P asymmetry in this mode does not give sin 2a, as advertised
before, but sin(2a + 6,_), where §,_ depends on weak and strong phases of the
tree and penguin diagrams as well as on their relative sizes. It should be noted
that this problem does not arise in all modes. For example, in By — ¥KJ both
tree and penguin diagrams have the same weak phases so there is no interference,

and in B, — DEK¥ there are no penguin contributions.

2.3.4 CP Violation in Charged B Decays

In charged B decays one may look for the CP violating asymmetries of the form:

o o NB* = f) DB =)
P=T(B* = f)+T(B- -]

(2.17)

where f is any final state and f is its CP conjugate. Although CPT theorem
requires that the total B* and B~ decay widths are the same, specific channels
or sums over channels can contribute to the above asymmetry. For this to happen
there must be interference between two separate amplitudes that contribute to
the decay with different weak phases, ¢, # ¢, and with different strong phase
shifts, §; # 6;. In that case:

ay o sin(6y — &;) sin(¢y — ¢3) (2.18)
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It was recognized [BSS79] that, within the Standard Model, these conditions can
be readily met in three types of B decays: (i) CKM suppressed decays where
tree amplitudes can interfere with penguin type amplitudes, (ii) CKM forbidden
decays, which have no tree contributions but there can be interference of penguin
contributions with different charge 2/3 quarks in the loop, and (iii) Radiative
decays, similar to (ii) but the leading contribution is an electromagnetic penguin
(the gluons are replaced by a single photon line).

2.3.5 Beyond the Standard Model

The above discussion assumes that the only source of CP violation is the phase
of the CKM matrix. Models beyond the Standard Model involve other phases
and, consequently, the measurements of the CP asymmetries may violate the
constraints of the unitarity triangle. Even in the absence of new CP violating
phases the sides of the triangle may be affected by new contributions. In certain
models, such as four-generation model and models involving Z-mediated flavor-

changing neutral currents, the unitarity triangle turns into a quadrangle.

Through a measurement of the CP asymmetries, the presence of new physics
can be detected in several ways: (i) the relation a + 8 + 4 = 7 is violated, (i)
even if « + 8 + 4 = « value for the CP phase can be outside of the Standard
Model predictions, (iii) the CP angles are consistent with the Standard Model

predictions but are inconsistent with the measured sides of the unitarity triangle.

Any additional information on the CP violation in and beyond the Standard
Model can be found in a myriad of books and review publications on theoretical

particle physics. The ones used in the preparation of this introductory chapter
are: [NQ92], [Gro96], [Lon96], [Kay96], [WN96] and [Bur97].
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2.4 Specific Ionization - dE/dz

2.4.1 Theory

This section is a summary of the theoretical description of the particle energy
loss in matter. It was taken from Introduction to Erperimental Particle Physics,
by R.C.Fernow [Fer86|, Particle Detectors, by C.Grupen [Gru96], and Review of
Particle Physics, published by The American Physical Society [WN96].

Charged particles passing through matter lose kinetic energy by excitation of
bound electrons and by ionization. The later process is of greater importance
as the atomic electrons are liberated from the atom and can be subsequently

detected.

Given the momentum of the incident particle p = ymofBc (where v is the
Lorentz factor, B¢ = v and m, is the rest mass of the particle) the maximum
energy that might be transferred to an atomic electron (mass m.) in a medium is
given by [Ros52]:

. 2m By 2m.p’
Tl (TP mimi+

(2.19)

where the kinetic energy Ej, is related to the total according to Eyin = E —mqc?.
If one neglects the quadratic term in Eq. 2.19, which is a good approximation for
all incident particles other than electrons, it follows that:

A (2.20)

mz
Tme + 5

kin —

For relativistic particles Ey;, =~ EF = pc and the maximum transferable energy

becomes:

E2
B = —— g (2.21)
+ -

2m,
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If the incident particle is an electron, these approximations are no longer valid.

In this case Eq. 2.19 reduces to:

2 2 2.4
maz _ P _E—mc R 3
kin — me""g_ E +m.3 E —m.’, (2'22)

which is expected for a central collision of two classical particles of equal mass.

The average energy loss dF per ‘length’ dz for ‘heavy’ particles in semi-classical
approximation is given by Bethe-Bloch formula [Bet30, Bet32, Blo33]:

232 pmaz
_4E = 2t N1, m,c’zzg—l- In2m,c3'y FE

= A7 72 -28° -4, (2.23)

where
z - charge of the incident particle in units of elementary charge
Z, A - atomic number and atomic weight of the absorber
- electron mass

- classical electron radius (r. = ;:—“;‘-‘.3;;)
N, - Avogadro number (6.022 x 10**mol™?)
I - ionization energy of the absorber material which can be approximated by
I =162%%V for Z > 1
§ - a parameter which describes how much the extended transverse electric field
of incident relativistic particles is screened by the effective charge density of the
atomic electrons. For energetic particles § ~ 2lny + {, where { is a material

dependent constant.

The energy loss is usually given in units of =55 M‘V . The length unit g cm™2
commonly used because the energy loss per surface mass density (which is dz as
defined above) is largely independent of the properties of the material. Eq. 2.23
is an approximation which is precise to the level of a few percent up to energies
of several hundred GeV, but it cannot be used for slow particles which move with

velocities comparable to, or less than, those of atomic electrons.
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Figure 2.5: Energy loss rate in copper as a function of S« of incident pions [WN96].
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Figure 2.6: Energy loss rate for various materials and several particle species as a
function of incident particle momentum [WN96].
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Figure 2.5 [WN96] shows the energy loss rate as calculated for an incident
pion passing through copper. (Note the difference in energy notation between the
figure and the text: Tnos = E™** and Ty = En). In the low energy domain
the energy loss decreases like #~? where g ranges between 2/3 and 3. It reaches
a broad minimum of ionization at By = 3.5. Relativistic particles which have
an energy loss in this region are called ‘minimum-ionizing particles’. The energy
loss increases again because of the logarithmic term in the brackets of Eq. 2.23.
This equation only describes energy losses due to ionization and excitation of the

atomic electrons in the medium.

Figure 2.6 [WN96] shows the energy loss rate for several spicies of incident
particles, as a function of the incident particle momentum, passing through liquid

hydrogen, gaseous helium, carbon, aluminum, tin and lead.

At high energies radiation losses, which are not included in the Bethe-Bloch
formula, become more and more important, as the rate of energy loss due to

bremsstrahlung [Ros52|:

(2.24)

dE Z? 1 e 1% 183
dz A

———— — 2
faNa7r2'B 47eg mec? = z4’
begins to dominate the total rate of energy loss at very high energies (E;1TeV for

particle more massive than the electron).

Equation 2.23 gives only the average energy loss of charged particles. For thin
absorbers, i.e., mainly in gases, strong fluctuations around the average energy
loss exist. The energy loss distribution for thin absorbers is strongly asymmetric
and can be parametrized by a Landau distribution, see Fig. 2.7. A reasonable

approximation of the Landau distribution is given by [B+84]:

L) = % X exp [%(x +ed), (2.25)
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where A is the deviation from the most probable energy loss:

_ARW
A= 9_’.5_6_“_1'7_, (2.26)
E= 2‘1|'N41-f1'n,,c2z:2£ (2.27)

AB—’pz'
AE - actual energy loss in a layer of a given thickness,
AEY - most probable energy loss in the same layer,
p - density of the traversed material in g cm—3
z - thickness of the material in cm.
r. - the classical electron radius in cm.
The Landau fluctuations of the energy loss are related to a large extent to very high
energy transfers to atomic electrons, which allow escape and are called § or knock-
on electrons. The strong fluctuations of the energy loss are quite frequently not
observed by a detector, as detectors only measure the energy which is deposited
in their sensitive volume, and this energy may not be the same as the energy lost
by the particle. Some of the § electrons may leave the sensitive volume before
depositing all of their energy. Therefore, it is quite often of practical interest
to consider only the energy loss with energy transfers E smaller than some cut-
off value E.;. The ‘mean’ for this truncated energy loss distribution is given
by [WN96):

_%f. = 2 N rPmecs? % % [anm.c’[;:‘yzEm _

The truncated energy loss distribution does not show as pronounced Landau tail

g -§|. (2.28)

as distribution of Eq. 2.23. Because of the density effect, expressed by §, the mean
energy loss of the truncated distribution approaches a constant at high energies,
which is called the Fermi plateau.

So far, only the energy loss of the ‘heavy’ particles was discussed. Electrons,

as the incident particles require special treatment as: (i) even at low energies,
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the energy loss is influenced by bremsstrahlung, and (i) the mass of the incident
particle and the target electron are the same. The equivalent of Eq. 2.23 for elec-
trons, which also takes into consideration the kinematics of the electron-electron

collisions and the screening effects, is [MRRS88]:

9B e Naim P E L [ ameBV = T
T =4xNyrom.c AF [ln al
Lo o 29-1 1 (y=-1\’
+2(1 B) e ln2+16 (——1 )] (2.29)

The ionization energy loss of a 250MeV electron in a lem gaseous argon layer is

shown in Fig. 2.7, where we have used: AEW = 2.4keV and ¢ = 0.125keV [Gru96].

0.3 Landau Distribution
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Energy Loss [keV]

Figure 2.7: Landau distribution for the ionization energy loss of 250MeV electrons

in lcm of gaseous argon.

Finally, the energy loss in a compound of various elements 1 is given by:
dE dE
Ez_~z,-:ﬁ7l;,-’ (2.30)

where f; is the mass fraction of the i-th element and ‘%L the average energy loss

rate in that element. Corrections to this relation due to the dependence of the
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ionization constant on the molecular structure can be safely neglected, provided

that one does not have 8 < 10~2 — 1073,

2.4.2 Applications of dE/dr to Particle Identification in
Drift Chambers

It should be realized that the specific energy loss rate, Eq. 2.23, depends on the
incident particle’s electric charge and velocity, but not on its mass. Therefore, if
one is able to simultaneously measute curvature of the track and the deposited
ionization energy associated with the track, the incident particle can be identified
in the following way. The curvature of the track, as obtained from the fit of the
drift chamber hits, yields the momentum of the particle, as well as the sign of its
electric charge. If the path a particle has traversed in the drift chamber is known
(and it is, after the track fit is done) the measurements of the ‘total’ energy loss
of the particle give the rate of energy loss (dE/dz) and, finally, the particle’s
velocity. The momentum and the velocity of a given particle are sufficient to
unambiguously determine its mass, therefore, the incident particle is identified.
Figure 2.8 shows the specific ionization energy loss rate for incident kaons and
pions in copper. Note the expanded vertical scale compared to Fig. 2.5. The
horizontal axis is the momentum rather than 8+ factor of Fig. 2.5. The incident
particle momentum ranges between 0 and 3GeVc~!. dE/dz was calculated using
Eq. 2.23 with the ionization energy of copper Ic, = 322¢V [WN96]. All the
‘density effects’ (the § term) were neglected. Note that the two curves cross at

the momentum of =~ 0.9GeVc™1.

A fundamental problem of this procedure arises from the fact that, beyond
certain momenta, energy loss rates of different particle species, pions and kaons for

example (Fig. 2.8), overlap due to instrumantal resolution. Particle identification
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Figure 2.8: Specific ionization of kaons and pions in copper, as a function of their

momentum.

using the dE/dz method becomes impossible in that momentum range.



Chapter 3

BaBar Experiment

This chapter is a brief review of the BaBar Technical Design Report [Col95]. Other

references are quoted where necessary.

3.1 Motivation

While it has been understood for several years that the measurement of CP violat-
ing asymmetries in B? decays could lead to important tests of the CKM matrix,
the experiments seemed beyond reach. The discovery of a surprisingly long b quark
lifetime together with a large B® — B° mixing made it possible to contemplate
such experiments. It soon became clear that the most straightforward approach
involved experiments at a variety of ete™ machines, either in the T(4S) region
(10.58GeV), in the PEP/PETRA continuum region, or at the Z° pole (91.19GeV).

The most favorable e*e™ experimental situation, which is the one producing
the smallest statistical error with the least integrated luminosity, is the asymmetric
storage ring first proposed by Oddone. [0dd87] This machine would boost the

27



28 CHAPTER 3. BABAR EXPERIMENT

decaying B° mesons in the laboratory frame, allowing existing vertex measuring
technology to measure the time order of B® — B decay pairs (remember that in
order to extract the CP violating parameter ImA from the measured asymmetry,
see Eq. 2.15, one needs to know the time ¢ between the two B° decays) even with

the short B meson flight distance.

PEP-II collider, at Stanford Linear Accelerator Center (SLAC), in Stanford,
California, promises to provide the required luminosity, initially 3 x 103%cm=2s~1,
ultimately 10, with asymmetric T(45) production at a By = 0.56) (9GeV elec-
trons on 3.1GeV positrons). The BB production rate will be 3Hz at the initial
luminosity, rising to 10Hz. The experimental challenge is then to provide high
efficiency, high resolution exclusive state reconstruction in a situation new to the

ete~ collider world: a center of mass in motion in the laboratory.

The primary goal of the BaBar experiment is the systematic study of CP
violation in neutral B decays, as discussed in the previous chapter. The secondary
goals are to explore the wide range of other B physics, charm physics, 7 physics,
two-photon physics and T physics that becomes available with the high luminosity
of PEP-II.

The critical experimental objectives to achieve the required sensitivity for CP

measurements are: [Col95]

¢ To reconstruct the decays of B® mesons into a wide variety of exclusive final

states with high efficiency and low background.

o To tag the flavor of the other B meson in the event with high efficiency and
purity.

o To measure the relative decay time of the two B mesons.
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3.2 The Experimental Setup

_/ N

aZ
r
43

-

Figure 3.1: 3D view of the BaBar detector.

The BaBar experimental design is shown in Fig. 3.1 and a summary of the
individual detector components is given in Table 3.1. It consists of a silicon vertex
detector, a drift chamber, a particle identification system, a Csl electromagnetic
calorimeter, and a magnet with an instrumented flax return. The superconducting
solenoid is designed for a magnetic field of 1.5T, and the flux return is instrumented

for muon identification and coarse hadron calorimetry. All of those detectors



30 CHAPTER 3. BABAR EXPERIMENT
Detector Technology Dimensions Performance
SVT Double-sided T 5 Layers O: =0y =
Silicon Strip r=23.2-144cm = 50pum/p, & 15um
~0.87 < cos § < 0.96 oy = 09 = 1.6mr/p,
DC Small Cell 40 Layers a(pe)/pe =
Drift Chamber r = 22.5 — 80.0cm =0.21% + 0.14% x p;
—1llem < z < 166cm
PID DIRC 1.75 x 3.5cm? quartz Npe =20 - 50
—0.84 < cos0 <0.90 | > 40 K/7 separation
CAL CsI(Ti) 16 - 17.5 X, og/E = 1%/E* © 1.2%
~ 4.8 x 4.8cm crystals | o = 3mr/VE @ 2mr
MAG | Superconducting IR =1.40m B =1.5T
Segmented Iron L =3.85m
IFR RPC 16-17 Layers € > 90%
for p, > 0.8GeVc™?

Table 3.1: The BaBar detector - parameter summary.

operate with good performance for laboratory polar angles between 17° and 150°,

corresponding to the range —0.95 < cos fn < 0.87 (due to the Lorentz boost, the

center of mass frame does not coincide with the laboratory frame).

The detector coordinate system is defined with +z in the boost (high energy

beam) direction. The origin is the nominal collision point, which is offset in the

—z direction from the geometrical center of the detector magnet.

The tracking system in BaBar consists of the vertex detector and a drift cham-

ber. The vertex detector is used to precisely measure both impact parameters for

charged tracks (z and » — ¢). These measurements are used to determine the
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difference in decay times of two B® mesons. Charged particles with transverse
momentum (p;) between ~ 40MeV/c and ~ 100MeV/c are tracked only with the

vertex detector, which must therefore provide good pattern recognition.

The drift chamber (extending from 22.5¢m in radius to 80cm) is used primar-
ily to achieve excellent momentum resolution and pattern recognition for charged
particles with p, > 100MeV/c. It also supplies information for the charged track
trigger and a measurement of dE/dz for particle identification. The optimum
resolution is achieved by having a continuous tracking volume with a minimum
amount of material to cause multiple scattering. By using helium-based gas mix-
ture with low mass wires and a magnetic field of 1.5T very good momentum
resolution can be obtained. The chamber is designed to minimize the amount
of material in front of the particle identification and calorimeter systems in the
heavily populated forward direction. The readout electronics are mounted only
on the backward end of the chamber.

Two primary goals for the particle identification system are to identify kaons
for tagging beyond the momentum range in which dE /dz separation works well,
and to identify pions from few body decays such as B® — x#*x~ and B° — pr.
A new detector technology is needed to meet these goals and in the barrel region
a DIRC (Detector of Internally Reflected Cerenkov radiation) is used. Cerenkov
light produced in quartz bars is transferred by total internal reflection to a large
water tank outside of the backward end of the magnet. The light is observed by an
array of photomultiplier tubes, where images governed by the Cerenkov angle are
formed. This arrangement provides at least 4 standard deviation x/K separation

up to almost the kinematic limit for particles from B decays.

The electromagnetic calorimeter must have superb energy resolution down to
very low photon energies. This is provided by a fully projective CsI(Ti) crystal
calorimeter. The barrel calorimeter contains 5880 trapezoidal crystals; the endcap
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calorimeter contains 900 crystals. The crystal length varies from 17.5X, (X, is
the radiation length) in the forward endcap to 16X, in the backward part of the
barrel. Electronic noise and beam related backgrounds dominate the resolution at
low photon energies, while shower leakage from the rear of the crystals dominates
at higher energies.

To achieve very good momentum resolution at ‘high’ momenta without in-
creasing the tracking volume, and therefore the calorimeter cost, it is necessary
to have a field of 1.5T. The magnet is therefore of superconducting design. The
magnet is similar to many operating detector magnets, so the engineering and
fabrication should be straightforward. The segmentation of the iron for an Instru-
mented Flux Return (IFR), and the need for the DIRC readout in the backward

region cause some design complications.

The IFR is designed to identify muons with momentum around 0.5Gev/c and
to detect neutral hadrons (such as K2s). The magnet flux return is divided into
layers between which are gaps with Resistive Plate Chambers (RPC), which serve
as active detectors. The RPCs represent a proven technology which adapts well
to the BaBar geometry.

The high data rate at PEP-II requires a data acquisition system which is more
advanced than those used at present e*e~ experiments. The rate of processes to be
recorded at the design luminosity of 3 x 10%¥cm 25! is about 100Hz (the bunch
crossing period is 4.2ns), except for Bhabha events which have to be ‘scaled’.
Simulations of machine backgrounds show hit rates of about 100kHz per layer in
the inner region of the drift chamber and about 140MHz in the first silicon layer.
The goal is to operate with negligible dead time even if the backgrounds are 10
times higher than present estimates, which might happen early in the life of the

experiment.
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3.3 Gas Choice and Properties
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The choice of gas for the drift chamber is driven primarily by the needs to reduce

the total amount of the material, minimize multiple scattering for low momentum

tracks, and to operate efficiently in a 1.5T magnetic field.

Primary dE/dz

Gas Mixture Xo Ions vq 6z | Resol.
(m) | (cm™) | (pm/ns) | (deg) | (%)
Ar :CO,: CH,(89:10:1) | 124 | 23.6 49 52 7.3
He: DM E(70:30) 723 | 224 6 8 6.7
He : CyH,(80:20) 807 | 21.2 22 32 6.9
He:CO, : C H1o(83:10:7) | 963 13.8 19 26 8.5

Table 3.2: Properties of various gas mixtures at atmospheric pressure and 20°C.

Gas Mixture
Ar : CO, : CH(89:10:1)
He : DM E(70:30)
He : C4H,0(80:20)
He : CO, : CyHyo(83:10:7)

p for 3¢ (MeV/c)

665
720
710
660

2.4
2.1
2.1
1.7

# of o at 2.6GeV/c

Table 3.3: K/x separation for various gas mixtures.

These requirements are well satisfied by mixtures of helium and hydrocarbons.
Mixtures with 10-30% of various hydrocarbons afford a small Lorentz angle (the
angle between electron drift velocity and the electric field), good resolution and
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Figure 3.2: Calculated and measured drift velocities as a function of electric field

for a zero magnetic field.

low multiple scattering. Tables 3.2 and 3.3 show the properties of gases which
have been considered for the BaBar drift chamber.

The drift velocities and Lorentz angles are determined with the Boltzmann in-
tegration code [Bia89] and the dE/dz calculations were performed with a modified
version of a program by Va’vra [VRFC82|. Note that the helium mixtures have a
radiation length more than five times larger than that of Ar : CO; : C H(89:10:1),

a commonly used argon-based mixture.

Fig. 3.2 shows the calculated drift velocity vs. electric field for four gases in the
table. The results are from [PBES92] (He : C4Hyo), [BBB92] (He : CO, : CHyo
and Ar : CO, : CHy), [C*91] (He : DME). The helium based mixtures lead to
better performance than typical argon mixtures since the smaller Lorentz angle

results in a more uniform distance-time relation.

The results for the spatial resolution are summarized in Fig. 3.3. Points rep-
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resent the data from prototype chamber while curves are results of other stud-
ies. [PBES92, C+91, U*93] The He : CyH10(80:20) mixture was chosen for the
BaBar drift chamber based on the measured spatial resolution and simulated
dE/dz resolution. The aging studies were performed with a small proportional
counter and an Fe®® source, and the isobutane mixture showed negligible aging.

Long term aging studies are under way.

-
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Figure 3.3: Spa*:al resolution for various gasses from the prototype drift chamber
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Chapter 4

Small Scale Drift Chamber

A small scale drift chamber prototype was built by members of the BaBar group
at Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Annecy-le-
Vieux, France. This chamber was used for subsequent test-beam experiments at
the Proton Synchrotron (PS), CERN (August 1997) and at PSI, Zurich (October
1997). The goal was to study the specific ionization (dE/dz) of the Helium-
Isobutane gas mixture (80%He 20%C,Hyo) which is to be used in the actual
BaBar drift chamber.

4.1 Prototype Drift Chamber Description

The prototype drift chamber is a cylinder of radius ~5.5cm and of length =17.5cm.
It consists of 34 hexagonal cells (each cell is a right hexagonal prism of length
17.5 cm). This geometry closely resembles the mid layers of the BaBar drift
chamber. Sense wires (gold plated tungsten, 20 micron diameter) are centered at
the middles of each cell and are kept at a potential of positive 1650 Volts. Field
wires (berylium, 100 micron diameter) positioned at the vertices of hexagons are

36
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kept at a constant potential of 0 Volts thus creating an electric field attracting the
deposited electric charge toward the sense wires. Fig. 4.1 shows a two dimensional
(z-x plane, with +z being along the incident beam direction, note that this does
not correspond to the BaBar coordinate system) view of the small scale drift

chamber prototype.

Annecy BaBar Test Chamber

&
&

4181

Figure 4.1: 2D geometry of the small scale drift chamber prototype.
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For the events passing the common threshold, needed information was obtained
in the following way. The times at which the signal arrived at sense wires in cells
1-10 were recorded by TDCs! while the charge collected on each sense wire was
recorded by ADCs.? Signal duration was limited to a 2us gate. In addition, cells
1-7 were also recorded by FADCs.® Only 200 samples were made at the rate of
100Mhz. Other 24 cells were not read. An Fe*® radioactive source is mounted
on the inner wall of the chamber. Fe® transforms via the capture of an electron
from one of its atomic orbitals: e~ +p — n + v. A hole in the atomic shell is
filled by another atomic electron giving rise to the emission of a characteristic
x-ray (231keV, with a half-life of 2.73 years [WPF88]). Electrons from this decay
cause ionization the same way the beam particles do. Every 5 minutes 500 of
these ‘source’ events are recorded. These were used for calibration purposes. The
lifetime of this iron isotope is large enough so that the probability of one beam

and one source events overlapping is negligible.

Four scintillators* and two ATCs® were mounted in front of the chamber and
used with beam events. The coincidence of four scintillators was used as a trigger.

ATC readouts were used to distinguish whether the ionizing particle was a proton

1Time-to-Digital Converter: TDC gives a time interval measurement in digital form. Trigger
starts a scaler which counts pulses from a constant frequency oscillator. At the arrival of the
signal this scaler is gated off to yield a number proportional to the time between trigger and the

signal. [Leo87]
3 Analog-to-Digital Converter: ADC is a device which converts an analog signal to an equiva-

lent digital form. The signal charges a capacitor which is then discharged at a constant current.

Digitised signal amplitude is proportional to dischatge time. [Leo87)
3Flash Analog-to-Digital Converter: FADC is an ADC which samples the signal at a fixed

rate thus digitising both the shape and the magnitude of the signal. [Leo87]
4Scintillator is a particle detector utilising a property of some materials which emit a flash

of light when struck by a particle (charged or neutral).
$Aerogel Cerenkov Threshold Counter: ATC produces a signal when its medium istraversed

by a particle which emits Cerenkov radiation. This happens if the the particle moves faster than
light propagates through the detector medium (Sparticze > 1/n).
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or a pion. Minimum (threshold) momentum at which a given particle will emit
Cerenkov light is:

mec

Ti—1 (41)

Dthreshold =

where my is the particle’s rest mass and n is the index of refraction of the ATC
medium. For our two ATCs (n=1.03 and n=1.05) threshold momenta for pions
and protons are: pus.(proton,1.03) = 3.8GeV/c, py,(proton,1.05) = 2.9GeV/c,
Pee (Pion, 1.03) = 0.57GeV/c, pene(pion,1.05) = 0.44GeV/c. Therefore, a combi-
nation of these two ATCs allows us to distinguish pions from protons up to the
momentum of = 3.8GeV/c. Fig. 4.2 shows the schematics of the experimental

| 1

B IR0 =

I 2

Figure 4.2: Experimental setup in the T10 test area at CERN.

setup used for the beam testing at CERN.

Recording of a beam event starts when a trigger signal is sent to FADC, ADC
and TDC. This happens when scintillators S1-S4 are hit, the beam is on and the
computer is ready to take new data. Trigger for the source events is provided
by the drift chamber signal passing a set threshold and a ready signal from the

computer.

The outputs of the chamber (pulses from sense wires) are split, attenuated to
1.5V for the FADC and 400mV for the TDC/ADC and time delayed not to precede
the trigger. A Fan out® unit is used to split the signals going to TDCs/ADCs.

SFan out: FO is an active device which allows distribution of one signal to several parts of
the system by ‘dividing’ the input into several identical signals of the same height and shape.
It should be distinguished from the passive splitter which divides signal’s amplitude
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Figure 4.3: Schematics of the Data Acquisition System.
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# Component Description

1,2 Magnet Bumaa=1.2T, gap = 22cm

3 Drift Chamber radius = 5.55cm, length = 17.5cm
4,6,7 Scintillators $4,53,52 cross section = 27mm x27mm

5 | Aerogel Threshold Counter ATC3 n=1.03, read by an ADC
8 | Aerogel Threshold Counter ATC5 n=1.05, read by an ADC

9 Scintillator S1 cross section = 100mm x 100mm,
read by an ADC
10 Beam Pipe 7%, p* p=1Gev/c — 5Gev/c

Table 4.1: Experimental setup at T10, summary of the component characteristics.

ADC signal is then attenuated to 80mV, and the signal passing the threshold
stops the TDC. See Fig. 4.3.

4.2 The Truncated Mean Method

The dE /dz resolution is calculated using a truncation technique. Only a fraction
of the hits (dE/dz measurements from each of the cells) are used in the energy
loss calculation. The hits are ordered according to the pulse heights, from small
to large, and a certain percentage of hits are removed from the high end. The
means of the remaining dE/dz measurements are histogramed. This technique
should convert a Landau spectrum of dE/dz into a Gaussian-like spectrum of the
truncated means [GDKK96]. The resolution is then defined as the ratio of the
width of the Gaussian to the pedestal subtracted peak (GDKK96]. Truncation
method yields symmetrical errors on dE/dz (this would not be true for errors
derived from the original, asymmetric, Landau distribution) which can then be
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easily propagated.

It will be shown that this method works well for low statistics, but fails for a
large number of events, as the truncated distribution systematically differs from a
Gaussian. This is easily understood knowing that the relative uncertainty of the
counts in each bin equals: Z¥ = 7‘; Therefore, a histogram with lower statistics
will give a better fit, even if the fit function does not fully correspond to the fitted

distribution.

Two sets of random numbers (N=42,000 and N=420,000, which are statistics
corresponding to 1000 and 10,000 events with 42 hits per event) were generated
according to the Landau distribution peaking at 100 with the width of 10 (arbi-
trary units). 42 consecutive numbers were linked into an ‘event’ and truncation
mean method was applied. A number of highest hits were cut from each ‘event’
and the truncated distributions are plotted in Figs. 4.4 (1000 ’events’) and 4.5
(10,000 ‘events’).

Each of the truncated distributions was fitted to a Gaussian and a confidence

level 7 was calculated for the obtained x? and a given number of degrees of freedom.

C.L(x}) = f: f(z,n)dz (4.2)

When the number of degrees of freedom (n) is large the confidence level is ap-
proximated by [BC84):

C.L(x* =~

where y = /2% — V20 - 1.

/w e;lédz, (4.3)
v

2~
£y

The confidence levels of the Gaussian fits to the small Landau ‘data’ set are
dependent on the number of truncated hits (see Table 4.2). The best fit is obtained

7C.L. is the probability that a random repeat of a given experiment would lead to a greater
x3, assuming the model is correct. It is used as a measure of the fit quality.
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Figure 4.4: Landau Distribution and the corresponding truncated means for 1000

simulated ‘events’. The percentage of hits used in calculation is indicated.
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Fraction of the hits used | 40% | 50% | 60% | 70% | 80%
Confidence level 31.6% | 5.45% | 0.35% | 0.29% | 0.03%

Table 4.2: Confidence level of the Gaussian fit as a function of the percentage of
hits used.

when only 40% of the sampled hits are averaged. There is a tradeoff of the quality
of the Gaussian fit and the resolution obtained, dependent on the truncation
fraction, that will have to be examined when the data is analyzed. It should
be noted that the mean of the Gaussian corresponds to the peak position of the
underlying Landau distribution. A small shift in the peak is observed and will be

corrected for.

When the same truncation method is applied to the big ‘data’ set (10,000
‘events’) distribution that is obtained is no longer a Gaussian. Regardless of the
truncation fraction confidence levels of the Gaussian fits are identically 0. Trun-
cated distributions systematically differ from a Gaussian. A small asymmetry in
the peaks (elongated high end is the consequence of the original Landau distri-
bution) can be neglected and, therefore, we are able to define the resolution of
the ionization energy loss as the ratio of the width to the mean of the Gaussian

(truncated) distribution.

4.3 GEANT Detector Description and Simula-

tion Tool

GEANT [Sof94] is a system of detector description and simulation tools which help

in design, optimization, development and testing of reconstruction programs, and
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interpretation of experimental data from High Energy Physics experiments.

4.3.1 GEANT Simulation of the Prototype Drift Chamber

GEANT was used to simulate the drift chamber response and see what dE/dz
resolution is to be expected. Both the geometry of the chamber and the proper-
ties of the Helium-Isobutane gas ® were taken into account. GEANT uses Monte
Carlo techniques to simulate passage of particles through different detector com-
ponents taking into consideration properties of the simulated particle (its type
and momentum), traversed materials and any external factors (such as electric
and magnetic fields ®). For each simulated event we know the exact length the
particle traveled in each cell of the drift chamber, as well as the amount of ioniza-
tion energy deposited in each cell. GEANT assumes that the charge collection at
the sense wire is 100% efficient. In simulating ionization energy loss GEANT uses
two corrections to Landau model. Vavilov [Vav57] theory removes the restriction
that the typical energy loss is small compared to the maximum energy loss in a
single collision. If typical energy losses are comparable to the binding energies, as
is true for gaseous detectors, more sophisticated approach is necessary [Tal79] to

simulate data distributions.

Therefore, dE /dz resolution obtained from GEANT does not include any ex-
perimental uncertainties and it is a measure of the intrinsic width of the ionization

distribution.

10,000 pions (7v~) and 10,000 protons, at momentum of 3.0GeV, were created
and their behavior in the prototype drift chamber was observed.  To avoid

8For the drift chamber gas mixture (80%He, 20%CyH10) A=5.222g/mol, 2=2.626, p = 8.4 x

10-4g/em?d.
9Some runs with an external magnetic field present were taken at CERN. A study discussed

in this thesis, however, is based exclusively on B = 0 runs.



4.3. GEANT DETECTOR DESCRIPTION AND SIMULATION TOOL 47

Yo £

300

L2 TSN
Srsmes "".: S
g 350

300

2580
280

200
200

1830 150

100 100
[-Yo) S0
a L 1 . ] | o ¢ i L e L ]_ 1
a8 10 12 14 18 a 10 12 14 16
w (rmen) ~ (rrrm)
x - lowar cells x - uppar cells

Figure 4.6: Lengths traversed in each cell (mm). Two possible paths are shown.
Flat distribution verifies that the cell illumination is uniform.

fluctuations in dE/dz resulting from a short distance traversed in a given cell

only the events for which this distance lies in a 8mm-15.72mm range !°

were
selected. This cut removed approximately 40% of events, with roughly a half of
the remaining events passing through lower 7 cells (marked 1,2,3,4,5,6,7 in Fig. 4.1)
and a half passing through upper 7 cells (marked 1,8,3,9,5,10,7 in Fig. 4.1) See
Fig. 4.6. These are the only two possible paths because each test-beam particle will

be required to have at least 7 hits, and only cells 1-10 are read by the electronics.

Figs. 4.8 and 4.9 show simulated dE/dz (ionization energy deposited in each
cell, divided by the length traversed through that cell) for the drift chamber pro-
totype, along with the corresponding truncated distributions. Incident particles
are pions and protons at 3GeV/c momentum. Fits to the Landau distribution
(in terms of the universal Landau [KS84] function) are also shown. The fit for
three independent parameters (P1 - integrated area of the distribution, P2 - the

19Determined by the chamber geometry, corresponding to particles which do not pass close

to field and sense wires.
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peak of the distribution, and P3 - the width of the distribution) was done using
PAW [Sof95]. The fit function is:

F(X) = Pl x Q(A)
A
$()) = / _(dr

L

c+1ico
Py / ~ exp(ulnu + du)du, c2>0

X - P2
P3 ’

¢(A) =
A=

(4.4)

with X being the measured dF/dz. The peak of the distribution, corresponds
to the average ionization per unit length of pions (protons) in the He-Isobutane
gas (as given by Bethe-Bloch formula, Eq. 2.23), while the width of the dE/dz
distribution is given by: o = {/z, with § being the width of the ionization distri-
bution (dE, not dE/dz), as defined in Eq. 2.27. Using the fundamental constants,
properties of the incident particles (type and momentum) and the parameters (A,
Z and p) of the drift chamber gas we can calculate the theoretical prediction of
the width of the Landau distribution. Results are shown in Table 4.3. Note that
the theoretical positions of the peaks are too high. This is due to the § = 0

approximation which overestimates the specific ionization. See Fig. 2.5.

4.3.2 Truncation of the GEANT dE/dz Distribution

pkeVmm™!] | o(keVmm~?] | C.L.[%)]

Land(p) | 9.72 x 10~2 | 6.96 x 10~ | 49.6
Theo(p) | 14.16 x 10~2 | 7.075 x 10~3
Land(r) | 9.88 x 1072 | 7.68 x 10~ |2 x 10~%
Theo(r) | 12.23 x 10~2 | 6.473 x 103

Table 4.3: Fit parameters and theoretical values for dE/dz distributions (Landau).
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dE/dz distributions of both protons and pions were obtained from GEANT.
We see great agreement between theoretical values and the fit parameters in case
of protons. Pion distributions, on the other hand, seem to be too wide, fit values
are an overestimate of the expected ones. More importantly, it can be seen that
the pion distribution is not Landau. This is because another regime defined by the
contribution of the collisions with low energy transfer needs to be considered when

¢/I < 50 (this is the limit to Landau theory in GEANT). Below this limit, as it is
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Figure 4.7: Energy loss distribution for a 3 GeV electron in Argon as given by stan-
dard GEANT. The width of the layers is given in centimeters. Taken from [Sof94).

true in our case where {proton = 70.73eV, &pion = 64.71eV and I = 38.51eV special
models taking into account the atomic structure of the material are used. The
Urban Model [Sof94] computes restricted energy losses with §-ray production and
can be used for thin layers and gasses. Approaching the limit of of the validity of
Landau theory, the energy loss predicted by the Urbdn Model approaches smoothly
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the Landau distribution, as seen in Fig. 4.7. It is assumed that the atoms have two
energy levels and that particle-atom interaction will be either excitation energy
loss or an ionization energy loss. As the excitation cross sections depend on the
mass of the incoming particles this correction is visible in the pion spectrum but

not in the proton spectrum.

N[%] | ulkeVmm™] || o(keVmm~!] | o/p[%]

protons || 40 9.37 x10~2 || 2.01 x10-3 2.1
50 9.59 x10-2 2.20 x1073 2.3

60 9.82 x10™? 2.42 x10°3 2.5

70 | 10.1 x107? | 2.73 x10™® | 2.7

80 10.4 x10~% || 3.38 x10°3 3.2

pions 40 | 9.50 x10~2 || 2.74 x10~8 2.9
50 9.75 x10~? || 3.12 x10-3 3.2

60 10.0 x10~% || 3.39 x10-3 3.4

70 10.3 x10~% | 3.86 x10~* 3.7

80 10.7 x107? 4.33 x10°3 4.1

Table 4.4: Fit parameters of the truncated mean distributions for several trunca-

tion fractions (percentages of hits used in the calculation of the means).

Truncation method was applied to dE/dz distributions of both protons and
pions. Fits are shown in Figs. 4.8 and 4.9 and the obtained parameters are sum-
merized in Table 4.4. It was shown before that the truncation method does not
yield a true Gaussian for high statistics, so high x?s per degree of freedom of
the fits to the truncated distributions were expected. The widths of these distri-
butions are a measure of the intrinsic width of the original Landau distribution.
The actual dE/dz resolution (defined as o/u of the truncated means distribution)

which will be measured from the data has two contributions: the intrinsic width
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Figure 4.8: dE/dz distribution for 3GeV/c incident protons. Truncated means

for various truncation fractions are also shown.
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Figure 4.9: dE/dz distribution for 3GeV/c incident pions. Truncated means for

various truncation fractions are also shown.
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of the dE/dz distribution and the width due to experimental uncertainties.

4.4 The Track Fit

To measure specific ionization (dE/dz) in the drift chamber prototype one needs to
know the amount of ionization energy deposited in each cell, as well as the length
the particle traveled in a given cell. To obtain the later, the exact trajectory of the
particle (the track) needs to be reconstructed. The only information available is
the TDC readouts (or the timing as deduced from the FADCs) which correspond
to the transport time of the ionization electrons from the track to the sense wire.
To convert this time information into distance the time-to-distance relationship
(TD is generally a function of the distance to the sense wire) needs to be known.
Even the knowledge of the right TD does not uniquely determine the track, as
the direction from which the charge has drifted to the sense wire is unknown.

This leaves us with a set of circles centered at sense wires with radii representing

i \;i

[ 8]
*G
*G——

Figure 4.10: A single track passing through cells 1-7. Circles are distances the

ionization electrons traveled to the sense wire.

the drift distance in each cell. See Fig. 4.10. The track is finally determined by

minimizing the following x? fit:

x* =Y (Xzp — Xrrr), (4.5)
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where Xrp — Xprr are the space residuals (difference in the distance from the
sense wire obtained from the TD and the distance of the track). Due to the
experimental error in the drift-time measurement and the uncertainty in the TD
function these residuals will be nonzero. The track, which is our best estimate
of the actual particle trajectory, is a curve (a helix which in the absence of the
magnetic field flattens into a line) passing through points Xprr which minimize
the normalized sum of the squared residuals.

4.4.1 GARFIELD Simulation of the Drift Chamber

GARFIELD [Vee96] is a computer program originally written for the detailed
simulation of two-dimensional drift chambers. The input parameters include the
chamber geometry, voltages on the field wires and the properties of the drift
chamber gas. The two-dimensionality is, in our case, not a serious constraint as the
beam particles traverse the drift chamber perpendicular to the wires which allows
us to treat the chamber as a 2D object. The program can, for instance, calculate
the following: field maps and contour plots, plots of electron and ion drift lines,
x(t) (time-to-distance) relations, drift time tables and arrival time distributions.
Our main goals were to check the uniformity of the cells by looking at equipotential
contours and the drift lines, and to obtain a first order TD function. In Fig. 4.11 we
see the layout of the cell with the field wires represented by crosses and sense wires
by circles. Note the 90° rotation with respect to Figs. 4.1 and 4.10 which makes the
beam direction vertical. Drift line plot (describing the trajectories of the ionization
electrons drifting toward the sense wires) is shown for the incident particle passing
through cells 1-7. The asymmetry in the drift lines is caused by slightly different
electric potentials in different cells. This is understandable bearing in mind that
the potential at each point in the drift chamber is a superposition of potentials
due to each of the sense wires (each sense wire is kept at the constant 1650 Volts).
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Figure 4.11: Chamber layout (left) and electron drift-lines for particle traversing
cells 1-7 (right).

The configuration of surrounding wires changes as we move toward the edges of
the chamber, and so does the electric potential, thus changing the drift pattern.
This does not pose a serious concern to us, as the timing information is obtained
by the first ionization electrons reaching the sense wire. These drift along the line
of closest approach of the track to the sense wire and are, therefore, not affected

by the asymmetries which are limited to the edges of the cells.

Equipotential contours for the whole chamber, and for cell 4 only, are also
shown. We can see that the cell has a nice circular symmetry close to the sense
wire. This symmetry is broken as we move toward the edges of the hexagonal cell.
It will be shown that the potential configuration close to the edges of the cells
prevents the ionization electrons created in that region from reaching the sense

wire in a reasonable time.

The most important information obtained from the Garfield program is the
first order approximation of the time-to-distance function. TD function can, in
principle, be different for different drift chamber cells (only the cells with readouts,



56 CHAPTER 4. SMALL SCALE DRIFT CHAMBER

CONTOURS OF v

CONTOQURS CF v

y-axis lem)
y -oxis lcm)

9
8
7
L]
S
4
3
2
T

b ok

PRSP
LR Ll o DY IL RV T 5
54§ s (O gv | 0/00/ 1 v 12 DL 10 pneme

et}
Uy

< - [ L

x=cxis [eml]

Figure 4.12: Equipotential contours for the whole chamber (left) and cell 4 only
(right).

numbered 1-10 in Fig. 4.1 are relevant). Due to the symmetry of the chamber,
only TD functions for cells 1-4 were examined. Particles moving along the beam
direction (along the positive z axis) were created and the arrival times of the
ionization electrons to the sense wires in all of the hit cells were calculated by
GARFIELD. By varying the distance of closest approach of the track to the sense
wires !! and calculating the arrival time for each distance a TD function is ob-
tained. Plots of the TD functions for cells 1-4 are shown in Fig. 4.13. Dashed
lines represent the estimated uncertainties in the drift times. For the distances
larger than = 7.6mm (depending on the cell) GARFIELD calculation of the TD
function did not converge properly. In these regions TD function was not plotted,
but the values were still calculated and will be used later.

Note that due to the specific beam direction the distances of closest approach of the track
to sense wires 1, 3, 5 and 7 should be about the same. The same is true for the distances to

wites 2, 4 and 6.
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4.4.2 Time-to-Distance Function and Track Fitting

The time-to-distance function was extracted from the data !? in the following way:

o An analytical function giving a good approximation to the expected TD
function, as calculated by GARFIELD, was found.

¢ For each event in a given data set drift distances in every cell were calculated

from drift times using a current estimate of the drift function.

¢ A linear fit to the points of closest approach to sense wires (assuming that
the first charge arriving to the wire was propagating perpendicular to the

track) was made.

¢ Space residuals, the difference between the distance to the wire calculated
from the drift function and the distance of the track to the wire: RES =
Xrp — Xrrr, were calculated for each cell that was hit.

e A new estimate of the drift function was obtained by minimizing the sum !*
of the squares of the residuals. This minimization was done using MI-

NUIT [Jam94] function minimization and error analysis tool.

e A proper convergence of this procedure gave us the best approximation of

the drift function for our drift chamber.

The choice of the most suitable analytical function to parametrize the time-

to-distance function was not simple. The BaBar reconstruction software team

13For each event we recorded the timing information for each cell (the time the signal prop-
agated to the sense wire) and the charge deposited in each cell (which is not relevant for track
fitting).

13The sum was performed over all cells and all events in the data set.



4.4. THE TRACK FIT 59

suggested the use of a piecewise linear function 4. This did not work too well
due to a fairly large number of parameters (one parameter is needed for each
time bin because, if continuity of the TD function is imposed, the offsets are not
independent of the slopes). This made MINUIT minimization long and somewhat
unreliable because for a large number of parameters (between 7 and 15 time bins
were used) and a very big number of points that were fitted (7 cells in ~ 10,000
events per data set) the minimization can converge at a local, as opposed to the
global, minimum. Also, a big dependence of the calculated minimum on the input

parameters was observed.

The next logical choice for the parametrization of the drift function was a
polynomial. To satisfy the basic property of the drift function that zero drift
time corresponds to zero distance, the free parameter of this polynomial must
equal zero. Another issue was the optimum degree of the polynomial. Clearly,
the degree should be as small as possible, resulting in the smallest number of
parameters needed to describe the drift function, which is crucial for a good
MINUIT minimization. Also, as discussed before, the drift functions are not
exactly the same in all of the cells but, as the differences are rather small, one
would still like to use a unique drift function. Finally, the choice was the smallest
degree for which the parameters of the drift functions for cells 1-4 agreed to within
1 standard deviation. This, in a way, justifies the use of a single drift function for
all the cells. The degree chosen was 3, and the parametrization of the time-to-

distance function is:
Xrp(t) =Pl xt+ P2 xt?+ P3 x t°. (4.6)

Fig. 4.14 shows fits to the GARFIELD predictions of TD functions for cells 1-4.

14The time axis is divided into a number of bins. TD function in each bin is linear, but
the slopes and offsets are different in different bins. The constraint is the continuity on bin

boundaries.
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Figure 4.14: Polynomial fits to time-to-distance functions for cells 1-4.
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Points (*) are the drift times calculated for the distances of closest approach of the
track to the sense wire ranging from Ocm to .92cm, with a step of 0.02cm. Lines
are fits to the polynomial function of Eq. 4.6. Fit parameters (P1, P2 and P3), as
well as the corresponding x? are shown. They are also summarized in Table 4.5.
The mean values of the parameters and their uncertainties were calculated as the
weighted average over the cells (due to the symmetry, TD function is the same in
cells 1 & 7,2 & 6, 3 & 5, with cell 4 being unique):

o*(P) =

It is clear that the proposed parametrization of the drift function satisfies all

P =

2Pcun + 2Pcetiz + 2FPcens + Peela

7

40*(Peanr) + 402 (Peeuz) + 402 (Peeits) + 0*(Peeia)

49

Cell # Pl P2 P3 C.L.%
1 3.837 £ 0.052 | -8.244 £ 0.355 | 9.077 £ 0.565 | 99.68
2 3.832 + 0.052 | -8.313 + 0.350 | 9.151 + 0.552 | 99.58
3 3.853 + 0.053 | -8.506 + 0.361 | 9.611 £ 0.576 | 99.50
4 3.838 £ 0.052 | -8.325 + 0.352 | 9.194 + 0.558 | 99.12

Mean | 3.840 %+ 0.027 | -8.349 £ 0.183 | 9.266 + 0.290 -

Table 4.5: Summary of the parameters for polynomial fits to TD functions in cells
1-4. Confidence levels are also shown.

the requirements mentioned before. The number of free parameters is small, fits
to the expected time-to-distance functions are good (all the confidence levels are
above 99%, and the parameters for TD functions in different cells are within one
standard deviation of each other which allows us to treat the TD function as

independent of the cell number.

The focusing magnets in the T10 test area allowed us to set the signed momen-

tum (the product of the magnitude of the momentum and the electric charge of
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a given particle) of the incoming particles. The test beam runs that will be stud-
ied are divided into two classes: runs with the particle momentum of +3GeV/c
(240,000 events before cuts, incoming particles are positively charged) and runs
with the particle momentum of -3GeV/c (204,880 events before cuts, incoming
particles are negatively charged). The main difference is that for the runs with
a positive signed momentum the beam contains mostly pions, protons and some
kaons, whereas the negative signed momentum beam does not contain antipro-
tons. This difference can be seen by looking at the ATC response 5 for the two
sets of runs, ATC responses are shown in Fig. 4.15. Two different types of
particles triggering !® the ATC can, statistically, be distinguished by the number
of Cerenkov photons produced. The number of photons produced by a particle
with charge ze per unit path length and per unit energy interval of the emitted

photons is [WN96]:
&N  az? a?z? ( 1 1 )

Badbh . JIPTNS I T -
dEdz  he % b reMec? B2n?(E)

where 0, = arccos(1/n8) & 1/2(1 — 1/nB) is the half angle of the Cerenkov cone
for a particle with velocity v = Sc. For practical use, Eq. 4.8 must be integrated

(4.8)

over the region for which An(E) > 1. From the information in Table 4.6 we see
that both protons and pions at 3GeV/c will produce Cerenkov light in the ATC3,
but only pions will trigger the ATC5. Electrons and kaons trigger both ATCs.
Also, we see that pions traversing the ATC counters will produce more photons
as they yield larger Cerenkov angle. This is true under the assumption that the
energy ranges over which Eq. 4.8 has to be integrated are similar for both types
of particles (or if the integration range for pions is larger). Given the actual s,
the integration range for pions is: n(E£) > 1.002, and the integration range for

15Remember that our setup of two ATC counters (n=1.05 and n=1.03) allows us to distinguish

protons from pions at 3GeV/c momentum.
18Passing through the detector with a momentum larger than the threshold momentum, as

defined by Eq. 4.1.
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Figure 4.15: ATC readouts for the two sets of runs. The -3GeV/c runs (top) show
a ‘cleaner’ beam particle content than the +3GeV/c runs (bottom). Responses
from both ATCs are shown: n=1.03 (left) and n=1.05 (right).
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Figure 4.16: Two dimensional projection of the Cerenkov cone (left). For 8 < 1/n

there is no constructive interference and Cerenkov light is not emmited (right).

protons is: n(E) > 1.048, which verifies the conclusion that pions will produce
more Cerenkov light. Looking at Fig. 4.15(bottom), we see a single peak produced
by pions (as only pions are over the threshold momentum) in ATC3 and two peaks
(lower-protons, higher-pions) in ATC5. The positions of peaks along the x axis
are a relative measure of the number of Cerenkov photons produced (assuming
that the detection probability is the same for the light produced by either type
of incoming particles). The relative positions of pion and proton peaks in ATCS
show that pions produce approximately 3 times more light than protons. This is
in agreement with Eq. 4.8 with a factor of two comming from the ratio of sin® f.s
and the rest being due to the larger integration range for pions. The top two
graphs have only a single, pion peak. This is the verification of the fact that the

beam with the negative signed momentum does not contain antiprotons.
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Particle | B | piara0s(GeV/c) | sin? 0. 1.03 | Penr,1.05(GeV/c) | sin? 6, 1 o
pion [ 0.9978 0.57 B 0.053 0.44 0.088

proton | 0.9544 3.8 - 29 0.042
kaon | 0.9736 2.00 0.006 1.54 0.043

electron | 0.9999 0.0021 0.057 0.0016 0.092

Table 4.6: Threshold momenta and the Cerenkov angles for protons and pions in
both ATCs.

Time Zero (TO0)

The raw times measured are not equal to the ionization electron propagation times
(drift time) needed for the track reconstruction. TDC readout corresponds to
the time between the arrival of the trigger signal which starts the TDC recording
(common start) and the signal pulse from a given wire which stops a specific
TDC channel. This is different from the drift time due to the time delay of the
signal pulses (see Fig. 4.3), the propagation times of the signal pulses from the
chamber preamplifier to the discriminator and the various time delays due to the
electronics. For the track fitting purposes it is necessary to determine the time
zero (T0) which is a difference between raw times and drift times. Time zeros
can be different for different channels (corresponding to different sense wires) and
will be determined for each drift chamber cell separately. Figure 4.17 shows the
recorded time spectra for the sense wires in cells 1-4. The highly populated bin at
~ 1200ns is the TDC overflow, which is recorded when the stop signal does not
arrive within a time gate set for one event. This means that the cell was not hit in
a given event. The shape of the spectrum depends on the cell illumination and on

the drift function. As the drift velocity is not constant over the cell, uniform cell

illumination does not result in a flat drift-time distribution. Since the ionization
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Figure 4.17: Raw time spectra (TDC readouts) for cells 1-4. Both sets of runs
(-3GeV/c and +3GeV/c) were used.
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Figure 4.18: The expected time spectrum, uniform cell illumination assumed.
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electrons drift faster if the ionization occurred close to the sense wire, the drift-
time spectrum will be systematically shifted toward short drift-times, as seen in
the Fig. 4.18. This plot was made by first numerically inverting the time-to-
distance function into the appropriate distance-to-time function. 100,000 random
numbers, with a flat distribution, their values lying between 0 and 0.935, were
created thus simulating uniform illumination of a half of a single drift cell. These
‘distances’ were then converted into the corresponding ‘drift times’ which, when
plotted, represent the expected drift-time distribution. Note that the maximum
drift time is ~ 475ns.

In principle, no signal should arrive before the time T0 has passed. This is
not true in a real experiment as a signal larger than the threshold, which will stop
the TDC, can be caused by electronic noise. Note that TDC1 overflows less than
TDC3 (due to the chamber design and the alignment with respect to the beam, the
number of hits should be about the same in cells 1 and 3) which is a consequence of
a higher noise level on TDC3, most likely caused by the preamplifiers. Electronic
noise is almost exclusively responsible for the drift time mismeasurement which,
along with the nonuniformities in the ionization charge collection efficiency as
a function of drift distance, converts the theoretical time spectrum of Fig, 4.18
in to the measured TDC response of Fig. 4.17. The sharp leading edge of the
distribution becomes a smooth, exponential-like increase. It is clear that the TQ
for a given cell must lie between the lowest measured time and the first peak (at
about 250ns). The time zero is estimated as the point where the distribution
crosses the half maximum mark (in the middle of the peak and baseline values).
Individual T0s are found by fitting the leading edge to the following exponential
function: '

F(t) = P4+ P1 x (1 - -;%.;LJ:) , (4.9)

with P2 being the time zero. When ¢ = P2 the above function reaches a height
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exactly between the baseline (P4) and the maximum (P1), P3 is the width over
which the function rises.. The full data set {(both sets of runs) was used
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Figure 4.19: Exponential fits to ‘time zeros’ for cells 1 and 2. Both sets of runs

wif.h were used.

| 7o, | 70, | Tos | T0. | TOs | T0, | TO, | TOW | TO, | TO |
| 1348 | 137.5 | 125.7 | 150.6 | 144.9 [ 125.9 [ 135.1 [ 137.0 [ 128.0 [ 1058 |

Table 4.7: Time zeros for all 10 cells, as obtained from the exponential fit (both
sets of runs were used). The correction centering the spatial residuals was also

applied.

in the T0 determination. This makes sense considering that time zeros depend
only on the electronics and transmission delays and they are clearly a property
of the experimental setup, independent of the type or the charge of the particle
traversing the chamber. The only correction to the fitted values was done in order
to center the spatial residuals in every cell around zero, as will be shown later.
When determining the correction only the negative signed momentum runs were

used as it is impractical to try fitting the whole data set (because of a larger
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number of events the minimization is not as successful) to adjust all the residuals.

The results are presented in Table 4.7

4.4.3 Cuts and Event Selection

Before attempting any event reconstruction (track fitting) and further analysis
of the specific ionization, events satisfying certain criteria need to be selected.
This is done in order to reduce the experimental background and thus obtain a

measurement with the lowest possible uncertainty.

The first requirement imposed on ‘good’ events is that the appropriate 7 cells
(remember that there are two possible paths a particle can traverse, each passing
through 7 cells) must be hit. A signal must be recorded in each of the 7 TDCs
during a set interval (maximum drift time is &~ 476ns, as seen before) starting at
time zero. Additional requirement is that none of the remaining 3 cells were hit.

These two cuts combined remove about 25% of the events.

Since the particle type determines the amount of deposited ionization at a fixed
particle momentum, it is crucial to exclude all but one particle type, in our case
pions. This is done by cutting on the ATC responses. A reasonable cut removes
protons from the data sample. The ATC response of the p=-3GeV/c runs (see
Fig. 4.15) was fitted to a Gaussian and the events within u*3% are accepted.
The cuts, in terms of arbitrary units of light yield, are: 453 < ATC3 < 1488
and 579 < ATCS5 < 998. The lower limit is severe in order to cut protons from
the +3GeV/c runs as well as to ensure that the accepted events have the ATC
signal well above the pedestal values. The analysis of the pedestal run is given in
Appendix A.

Another requirement is that the ADC content of the ‘hit’ cells must be larger
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than a calculated threshold value. This cut will discriminate against the events
in which one or more TDCs were triggered by noise. The mean ADC response
resulting from the electronic noise was extracted from the pedestal run (Appendix
A). Gaussian fits provide both the mean and the width of the pedestal ADC
distributions. A ‘good’ event is required to have all 7 ADC values larger than
g + 5.00 of the pedestal value.

Finally, the cut which is essential to good tracking involves times measured
in all hit cells. From the cell geometry and the known particle direction it is
clear that there should be a strong correlation between times measured in cells
1, 3, 5, 7 and in cells 2, 4, 6, or cells 8, 9, 10, as the track passing along the
beam direction should be approximately equally distant from each cell in a given
group. Similarly, there should be a strong anticorrelation between the times in
different groups of cells (remember that either cells 2, 4, 6 or cells 8, 9, 10 are
hit in a given event). Figure 4.20 shows time correlations and anticorrelations
for a single 20,000 event run. Cutting on the time anticorrelation rather than the
time correlation between different cells was proven to be more efficient. Once a
scatter plot of anticorrelated times was made (as in Fig. 4.20) only events falling
into a region of the plot bounded by two circles (with centers at the 45° line) were
accepted. This cut also improves the correlation of the times measured in the cells
of the same group. The improvement of the tracking resolution achieved by this
cut is demonstrated in Appendix B.

Table 4.8 shows the efficiencies of the cuts used. In each of the following table
rows (3 Cells Not Hit, ATC Cut, ADC Cut and TDC Cut) only one cut was
applied but 7 good hits were always required. The column marked %’ gives the
efficiency calculated using the number of events with 7 good hits rather than all
of the events recorded. The final efficiency (4.5% for negative signed momentum

runs and 3.2% for positive signed momentum runs) is low. This is a consequence
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Figure 4.20: Anticorrelation of times in cells 1 and 2 (left) and correlations of
times in cells 1 and 3 (right) before the time cut (top) and after the time cut
(bottom).
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Runs I‘ p=-3GeV/c p=+3GeV/c
Events N % | % N % | %
Total 204,880 ( 100 | - 240,000 | 100 -

7 Cells Hit | 60,557 | 29.6 | 100 || 62,305 | 26.0 | 100
3 Cells Not Hit || 51,100 | 24.9 | 84.4 || 54,766 | 22.8 | 87.9
ATC Caut 46,026 | 22.5 | 76.0 | 38,569 | 16.1 | 61.9
ADC Cut | 48,399 |23.6 | 79.9 | 46,739 | 19.5 | 75.0
TDC Cut 14,792 | 7.2 | 24.4 || 15,646 | 6.5 | 25.1
Al Cuts | 9219 | 45 |153 | 7,724 | 3.2 | 124

Table 4.8: Cuts and their efficiencies for both sets of runs.

of a rather high noise level in all the readouts (TDC and ADC) but does not

seriously limit our study as the amount of data available is very large.

4.4.4 Final Tracking Results

For a detailed discussion of individual track fits to both positive and negative
signed momentum tracks see Appendix B.

It will be shown that the parametrizations of the TD function obtained by
minimizing a x? fit to either sets of runs are consistent with each other and,
moreover, are in good agreement with the GARFIELD predictions. Fig. 4.21
(top) shows that the two fitted TD functions (one obtained from each of the run
sets) are virtually indistinguishable which proves that the method of TD function
estimation is valid and that the data is consistent. The difference between Garfield
estimate and the fitted TD, Fig. 4.21 (bottom), is never larger than 30um which

is considerably smaller than the space residuals and is, therefore, satisfactory.
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Figure 4.21: Three different time-to-distance functions: a GARFIELD prediction
and fits to each of the run sets (top). A difference between GARFIELD and the
average of the fitted TD functions (bottom).
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A summary of the TD function parameters for three different cases is given in
Table 4.9. Also quoted are the average values (a weighted average, taking into

p=-3GeVc! | p=+3GeVc! | Average GARFIEL&
Pl 3.6866 _3.6841 3.6854 3.840 ]
P2 -8.4922 -8.4679 -8.480 -8.349
P3 10.386 10.453 10.420 9.266
|krES| (pm) 12 25 19 -
ores (pm) 330 372 351 -

Table 4.9: Time-to-distance function parameters, and parameters of Gaussian fits

to residual distributions.

consideration that cells 1, 3, 5, 7 are hit twice as much as the rest, was performed)
of the absolute values of the means of the residual distributions, and the widths
of the residual distributions. It can be concluded that the space residuals are well
centered (as |u| € o) meaning that the fitted drift function is unbiased. Average
width of the space residual distributions is a measure of the tracking resolution

achieved and, in our case, it equals ~ 350um.

4.5 dFE/dz Calculation and Results

Once good tracking resolution is achieved extracting the dE/dz information be-
comes simple. The amount of energy deposited in each cell is proportional to
the charge accumulated in the corresponding ADC, after the pedestal was sub-
tracted. The length a particle traversed in each cell is easily calculated for each
track. Therefore, dE/dz is calculated as the ratio of the pedestal subtracted ADC
readout to the cell-crossing length.
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To make the truncation technique possible all the peaks of the ADC distribu-
tions must coincide. This adjustment is made by fitting the pedestal subtracted
ACD spectra to Landau distributions and correcting for different peak positions.
Since the units of energy depositions measured are arbitrary (no calibration was
done to relate the ADC readout with the proper energy units) all the peaks will
be rescaled to 100.

Run # 101 102 119 120 121 "
Date || Aug 22 | Aug 22 | Aug 23 | Aug 23 | Aug 23 |
Time 16:10 16:50 16:00 16:30 17:48

# of Events | 20k 40k 20k 60k 60k
p(GeVe™?) +3 +3 -3 -3 -3

Run# | 122 | 124 | 148 | 144 | 146
Date 1 Aug 23 | Aug 23 | Aug 24 | Aug 24 | Aug 24
Time 19:00 20:33 12:20 13:00 14:35

# of Events | 44.88k 20k 60k 60k 60k
p(GeVc?) -3 -3 +3 +3 +3

Table 4.10: Different runs used in dE/dz calculation.

Table 4.11 shows the calculated dE/dz resolution as a function of the per-
centage of hits used in the calculation. Statistical errors on the parameters of the
Gaussian fits (done by PAW) are propagated to give the error in the measured

+3xwidth

resolution. The fits were performed in the meanZ3X i, region to minimize the

effect of the non-Gaussian tail at the high end, as suggested by [GDKK96].

o (%) - mdth(’a’cuu =

- MEGNGauss

3
™)

2 3

weo,

ac— _z+—'n.
m

— (4.10)

with wgay,s and M@y, being the width and the mean of the Gaussian fit. The
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Figure 4.22: dE/dz resolutions obtained from both negative and positive signed
momentum runs. Different fractions (10% to 100%) of hits were used in calcula-

tions.
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Hits used | meangau, | Widthgau | & (%) [%]
10 % 63.63 £ 0.18 | 8.34 £ 0.14 | 13.1 £ 0.2
20 % 73.41 £ 0.16 | 7.46 £ 0.13 | 10.2 £ 0.2
30 % 81.23 +£0.15|7.11 £ 0.12 | 8.7 £ 0.1
40 % 88.17 +£0.15|7.01 £0.11| 79 +0.1
50 % 94.89 +0.16 | 7.30 £ 0.12 | 7.7 £ 0.1
60 % 101.8 £ 0.2 [ 760 £0.13 | 7.5 £0.1
70 % 109.3 £0.2 [ 8.00£0.13 | 73+ 0.1
80 % 1178 £ 0.2 | 875+ 0.14 | 74 £ 0.1
90 % 1289 £ 0.2 | 105+ 0.2 | 82+ 0.1
100 % 156.5 £ 0.5 | 17.5 £ 0.3 | 11.2 £ 0.2

Table 4.11: Gaussian fit parameters and the corresponding dE/dz resolutions for

various fractions of hits used. Statistical errors are also shown.

resolution of dE/dz measurement varies with the truncation percentage and has

a broad minimum at = 70%, confirming a result stated by [GDKK96).

There is a systematic error associated with the truncation procedure, as the
resolution depends on the percentage of hits used to calculate the means. To esti-
mate this error the standard deviation of the resolutions (for truncation fractions
of 30% to 90% '7) was calculated yielding ,ystematic = 0.5 %. From Table 4.11 we
can conclude that the optimum truncation percentage (giving the smallest dE/dz
resolution while still having a symmetrical, Gaussian-like distribution) is 70%.
The measured resolution is then:

o (%) =(1.3+01%05) %

This result is in good agreement with o(dE/dz) = (6.8 + 0.3 £ 0.5)%, given

(4.11)

1"This range was centered around 60%, the truncation percentage most often used.
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by [Bli97]. Our mean value of the resolution is slightly higher, due to different
operating voltage; our statistical uncertainty is smaller because of the larger num-
ber of events used; the systematic uncertainty estimates are the same. Another
measurement of the specific ionization resolution in the helium-isobutane (a dif-
ferent chamber geomeiry was used) was presented by [GDKK96]. Their result,
o(dE/dz) ranging from = 6.25% to x 7.6%, depending on the operating voltage,
is, again, consistent with our measurement. The resolution comes partly from the
intrinsic width of the Landau distribution. This contribution for the Truncated
Mean Method with 70% of hits used (incident particles are pions), as estimated
by the GEANT simulation, is 3.7%. The experimental uncertainty contribution
(resulting from both tracking and the ionization energy measurement errors) to

the measured resolution is 3.6%.

The same truncation procedure was applied to the data from the test beam
run at PSI in Zurich (incident particles are pions with momentum 0.405 GeV/c).
The chamber was rotated by 90° (about the y — azis) with respect to the CERN
setup. Again, 10 innermost cells are read but only the readout from 4 central cells
was used in calculation (cells numbered 11, 9, 4 and 12 in Fig. 4.1). The advantage
of this chamber positioning is simple. All of the pions passing through the central
part of the cells (these are easily selected by imposing a cut on the drift time)
traverse equal lengths in all four cells, thus completely eliminating tracking from
the dE/dz calculation. The resolution expected should be better than previously
quoted (4.11). Also, we can estimate the loss in the resolution caused by tracking

uncertainties.

Gaussian fits to the truncated mean distributions for these runs are shown in
Fig. 4.23 and the parameters, together with the calculated dE/dz resolutions, are
listed in Table 4.12. Larger statistical errors are a consequence of a considerably

smaller data set used. The optimum truncation percentage is again 70%, and
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Figure 4.23: dE/dz resolutions obtained from the PSI runs. Different fractions
(10% to 100%) of hits were used in calculations.
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I‘ Hits used | meangeuss | Widthgaus | & (%) (%]
T—10 % 65.40 + 0.60 ! 8.27 = 0.58 | 12.6 + 0.9

20 % 75.30 £ 0.50 | 7.31 £ 0.48 | 9.7 £ 0.6
30 % 82.14 +0.44 | 6.85 = 042 | 83 £ 0.5
40 % 88.51 +0.41 {650 £ 039 | 7.3 £ 04
50 % 9465 +£0.45 | 722 041 7.6 £04
" 60 % 101.3 £0.4 [ 712 £ 039 7.0 £ 0.4
70 % 108.2 £ 0.5 | 747 £ 047 | 69 £ 0.4
80 % 116.1 £ 0.6 | 894 £ 0.56 | 7.7 £ 0.5
90 % 126.2 £ 0.6 | 10.2 £ 0.59 | 8.1 £ 0.5
100 % 156.3 £+ 1.4 | 21.8 £ 1.4 | 13.9 + 0.9

Table 4.12: Gaussian fit parameters and the corresponding dE/dz resolutions for

various fractions of hits used. Statistical errors are also shown.

the systematic error is estimated as o,ystematic = 0.5 %. The measured dE/dz

resolution for the PSI runs is then:

dE

o (-—) =(6.9£0.4+05) % (4.12)

dz
which is consistent with the result obtained from the CERN data. As tracking

was not used in this calculation we can estimate the energy mismeasurement
contribution to the resolution to be 3.2%. The contribution due to tracking is

1.6% (as the two errors, added in quadrature, must give 3.6%).

Both of the above results can be checked against the approximate formula for
the dE/dz resolution [AC80]:

f@_ 1 —ous (& -0.32
”(dz) P (I ’

with n being the number of ionization measurements (in our case 40), £ the same

as defined in Eq. 2.27 and I the ionization potential. The factor of 1/2.35 comes

(4.13)
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from converting FWHM into ¢. This empirical formula is well supported by
experimental data for argon, xenon and propane. It should be good to about
20% in the range 0.5 < £/I < 10. Using the relevant quantities calculated before
(I = 38.51 eV and &ion = 64.71 V) yields the resolution of: o (%) = (5.3£1.1)%.
The error is estimated based on 20% uncertainty of this empirical formula. This

result is consistent with our measurements of the dE/dz resolution.



Chapter 5

Conclusion

Measurements of the dE/dz resolution in the Helium-Isobutane gas (80%He,
20%C4Hqo) which will be used in the BaBar drift chamber were made using a
small scale prototype drift chamber. Test-beam experiments were performed at
CERN (PS, proton and pion beam with a variable momentum of 1 GeV/c to §
GeV/c) and at Zurich (PSI, pion beam with a 0.405 GeV/c momentum).

Testing of the Truncated Mean Method verified that the Landau spectrum of
the specific ionization can be converted into a Gaussian-like. The quality of the
Gaussian fit, however, depends on the fraction of hits used in the calculation and

on the amount of statistics used.

A GEANT simulation was made in order to study the chamber response in
absence of the experimental uncertainties. The dE/dz resolution calculated after
applying the truncation method (70% of hits are used) to the pion specific ion-
ization spectrum is 3.7% and it is a measure of the intrinsic width of the Landau

distribution.

A GARFIELD simulation of the drift chamber was done to obtain the first
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order time-to-distance function and find its suitable parametrization for the sub-
sequent fitting to the data (a third order polynomial with a zero constant term
proved to be the best choice).

All of the selected events were required to have exactly 7 good hits with the
arrival time larger than time zero (time zeros were fitted to the time spectra in
each cell and adjusted to center the space residuals). Additional cuts were made on
ADC, TDC and ATC responses to eliminate events consistent with the pedestal.

After the track fit was performed by a x? minimization the average spatial
resolution, as measured by the weighted averages of the space residuals in all

cells, was calculated to be:
lbres| £ crEs = (19 £ 351)pm.

Obtained time-to-distance function is in good agreement with the GARFIELD

prediction.

The dE/dz resolution, defined as the ratio of the width of the Gaussian dis-
tribution to the pedestal subtracted mean, was calculated for both sets of runs.
Various fractions of hits used were tested and the optimum was found to be 70%.
Systematic uncertainty was estimated by varying the truncation fraction. The

results are:

dE
a ((—i;) = (7.3+0.1+0.5) %,

for the PS runs, and:

o (%) = (6.9+0.4+0.5) %,

for the PSI runs. The increase in the resolution with respect to the GEANT
prediction can be explained in terms of the contribution due to the errors in

the ionization energy measurement (3.2%) and the contribution due to imperfect

tracking (1.6%).



Appendix A

The Pedestal Run

A pedestal run with 4000 events was taken in order to study the system depen-
dent backgrounds. The trigger signal was periodically created and the chamber

readouts were taken while the beam was turned off.
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Figure A.l1: ATC readouts from both counters. Gaussian fits to pedestal distri-

bution are also shown.

The readouts from both threshold counters are shown in Fig. A.1. Gaussian

fits to the distributions yield the following pedestal values (arbitrary units for the
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ligh yield are used): ATC3 = 43 + 137 and ATC5 = 177 +43.

By looking at the TDC readouts (Fig. A.2) it can be realized that the noise
level is reasonably small. The number of overflows in each of the TDCs is close to
4000 (which is the total number of events). Only cell 3 has a considerably higher
noise level. Table A.l lists the number of events in which a given TDC channel

did not overflow, which is a measure of the noise level.

Cell # 1 2 3 4 5 6 7 8 9 10

Npvenrs | 35 25 1 311 | 26 21 25 25 35 25 26
% 0.88 | 0.63 | 7.78 | 0.65 | 0.53 | 0.63 | 0.63 | 0.88 | 0.63 | 0.65

L

Table A.1: Noise level in each of the TDC channels.

The pedestal values of the ADC readouts were obtained by a Gaussian fit.
Even though the measured distributions are not Gaussian (as can be seen in
Fig. A.3), these fits give us the information about the peak (corresponding to the
mean of the fitted Gaussian) and the width of the pedestal ADC distributions.

This information is summarized in Table A.2.

[Lcen#12345678910
I 8 | 9 |

7 88.8 | 100.9 | 65.5 | 213.6 | 121.5 | 147.1 | 82.3 | 116.4 | 86.4 | 230.4
o 34| 90 | 62 | 89 8.7 | 169 | 54 | 41 | 7.1 | 10.2

Table A.2: Means and widths of Gaussian fits to pedestal ADC distributions.
Arbitrary units are used.
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Figure A.2: TDC readouts for all 10 cells. The noise level is small as the TDCs

overflow for almost all events.
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Figure A.3: ADC readouts for all 10 cells. Gaussian fits to pedestal distribution

are also shown.



Appendix B

Track Fits Using MINUIT

The track fits (with fit parameters being the coefficients of the parametrized time-
to-distance function) were done using MINUIT in data-driven mode [Jam94]. Ini-
tial values of the parameters P1, P2 and P3 are GARFIELD predictions.

B.1 Negative Signed Momentum Runs

Once the track fit converges (remember that a sum over all cells hit in all events of
the squares of the spatial residuals is being minimized) the optimum parameters
of the time-to-distance function are set. The quality of the fit can be verified
by plotting various quantities. Fig. B.1 shows distances to the wire in cell 1 as
calculated from the drift time (which is the TDC readout after TO subtraction)
using the time-to-distance function (top left, X'1) and the distance of the track
(obtained from the fit) to the wire (top right, XFT1). If the knowledge of the
TD function and the time measurements were perfect the two distances should
be the same. Due to experimental errors there is a difference between the two

values, called a space residual: Rs = X — XFT. These will be discussed in a

88
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moment. A scatter plot of the track distance versus the calculated distance is

also shown (bottom left). We can see that there is a strong correlation between
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Figure B.1: Calculated and fitted distances to the wire in cell 1. Negative signed

momentum runs were used.

the two for all but very small and very large distances. This is a consequence of
a small number of events falling in these regions, which compromises the quality
of the fit there. The best fit is obtained around the middle of the cell where
the statistics is the highest. A plot of the track distance versus the drift-time
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(bottom right) closely resembles the TD function, as expected. Low statistic at
very short drift distances prevents us from verifying that fitted distances also
approach zero for very short drift times.  Spatial residuals measure the quality
of track reconstruction in a given chamber, as they correspond to the uncertainty
in the particle trajectory. Fig. B.2 shows spatial residuals in all 10 cells of our
prototype chamber and Table B.1 summarizes the parameters of the Gaussian

fits to residual distributions. All the residual distributions are centered around

Cell#1234|5678910

-11.0(-10.1 ; 6.7 } -20.9 | -1.0 | -29.3 | 12.8 | 24.2 | 4.0 | 16.6

o 295 | 346 | 336 | 358 | 375 | 316 | 288 | 330 | 357 | 326

Table B.1: Means and widths of Gaussian fits to space residuals (pm), p =
+3GeVct.

zero (to within 30um, which is large compared to the widths) which means that
the track fit is not biased toward distances either larger or smaller than those
calculated by the TD function. The centering of the residual distributions was
done by adjusting the time-zeros, as mentioned before. Finally, the values of the
fit parameters (P1=3.6866, P2=-8.4922, P3=10.386) do not differ significantly
from the GARFIELD predictions.

To show the efficiency of the drift time cut, as discussed in the Cuts and Event
Selection subsection, the track fitting will be attempted on the data set (negative
signed momentum) without the cut performed. To simulate the same amount of
statistics only 10,000 events entered the fit. As shown in Fig. B.3, space residuals
increase drastically is the time cut is not applied. In addition, they are neither
symmetrical nor centered at zero. The asymmetry of the residuals is a consequence

of the wrong TD function (P1=6.2207, P2=-25.137, P3=33.857) resulting from
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Figure B.2: Spatial residuals in all cells with a drift-time cut applied. Negative

signed momentum runs were used.
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Figure B.3: Spatial residuals in all cells without a drift-time cut applied. 10,000

events from negative signed momentum runs were used.
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trying to fit uncut data. Different TD functions are shown in Fig. B.4. The shifts

— FIT, without cut
---- FiT, with cut

0.9
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0.7
0.6
0.5
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------- GARFIELD
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Figure B.4: Time-to-distance functions obtained from fits to dat with and without
the drift time cut, and from GARFIELD prediction.

in the mean values of the residuals are produced by the overestimate of the TD
function for small times whereas the elongated tails at the opposite ends of the
distributions are caused by the underestimate of the TD function for large times.
Remember that all positions (X and X FT') are given with respect to the chamber
z axis (see Fig. 4.1) and are, therefore, positive in cells 8, 9, 10 and negative in
cells 2, 4, 6. An overestimate of the TD function makes |XFT| > |X]| in all cells
resulting in negative mean space residuals in cells 8, 9, 10 and in positive mean
space residuals in cells 2, 4, 6. Note that mean space residuals in cells 1, 3, 5, 7

are either positive or negative, resulting in a double peeks seen in Fig. B.3.
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B.2 Positive Signed Momentum Runs

Fig. B.5 shows the space residuals after the fit to positive signed momentum
runs, with a drift time cut applied and Table B.2 summarizes the parameters of

We can see that both the residual

the Gaussian fits to residual distributions.

distributions and the parameters of the TD function (P1=3.6841, P2=-8.4679,
P3=10.453) agree with the values obtained from the first set of runs. The residuals

are not as well centered around zero because the correction to time zeros was done

using only the p = —3GeVc™! runs, as mentioned before.

APPENDIX B. TRACK FITS USING MINUIT

Cell # | 1 2 | 3| a4 |5 | 6 | 78] 9]10
29.4 | -30.0 | 14.1 | -27.3 | -4.1 | -50.0 | 14.5 | 82 | 19.3 | 16.2
325 | 389 | 396 | 398 | 426 | 358 | 324 | 366 | 388 | 361

Table B.2: Means and widths of Gaussian fits to space residuals (um), p =

+3GeVcl.
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Figure B.5: Spatial residuals in all cells with a drift-time cut applied. Positive

signed momentum runs were used.
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