
INFORMATION TO USERS

This manuscript bas been reproduced Û'Om the microfilm master. UMI

films the text directly ftom the original or copy submitted. Thus, sorne

thesis and dissertation copies are in typewriter &ce, while others may be

ftom any type ofcomputer printer.

Tbe quality of this reproductioD is depeadent UpoB tbe quality of the

copy submiUed. Broken or indistinct print, 001000 or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper a1ignment can adversely affect reproduction.

In the unlikely event tbat the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material bad to be remov~ a note will indicate

the deletioD.

Oversize materials (e.g., maps, drawings, chans) are reproduced by

sectioning the origiDal, beginDing at the upper left-band corner and

continUÎDg ftom left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back ofthe book.

Photographs included in the original manuscript have been reproduced

xerograpbically in !his copy. Higher quality 6" x 9" black and white

photographie prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly ta

arder.

UMI
A Ben & HaMIllDfonoation CompllD.y

300 Nonh Zeeb Rœd. ADn AIbor MI 48106-1346 USA
313n61-4700 1OO"21~

•

•

SPECIFICATION AND VALIDATION OF Q.2931 ATM

SIGNALING PROTOCOL USING ESTELLE

by

Dariusz Tasak

School of Computer Science

McGill University, Montreal

September 1997

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright © 1997 by Dariusz Tasak

I~I National Ubrary
of Canada

AcQuisitions and
Bibliographie Services
395 WellingtOn Street
Oltawa ON K1A 0N4
canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1 A 0N4
C8nad8

The author bas granted a noo
exclusive licence allowing the
National Library ofCanada to
reproduce, 1080, distnbute or sell
copies ofthis thesis in microform,
paper or elcctronic formats.

The author retains ownership ofthe
copyright in this thesis. Neither the
thesis nor substantial extraets from it
may he printed or otherwise
reproduced without the author's
permtsslon.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distnbuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse Di des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-37170-0

Canadrl

•

•

Abstract

ATM, which stands for Asynchronous Transfer Mode, is a networking technology
widely considered to he the most promising and efficient method of transporting

information through future telecommunication networks. An important part of its

definition is a signaling mechanism, which is used to set up and release ATM connec

tions. ITU-T defined a signaling protocol Q.2931, which is designated as an official

standard for caB control in both public and private versions of the ATM User Network

Interface (UNI).

The main goal of this thesis is to specify formally the signaling protocol in Estelle

- one of the Formai Description Techniques (FDT). A specification written in an

FDT offers great advantages as compared to an informai one. It is unarnbiguous; it

may he used for pratocol simulation and validation; and it may aiso serve as a basis

for an actua.1 implementation.

In this study, we design and create a f<;>rmal specification of the Q.2931 ATM

signaling protocol. Ta demonstrate its signa.ling functionalities, we develop a simu

lation model representing the working environment of the protocol. We propose a

validation methodology, which we use ta show the conformance of our description ta
the requirements of the official protocol definition. Fina.lly, we present observations

and conclusions gathered as results of our experiments.

•

•

Résumé

Dans le domaine des télécommunications, on mise beaucoup sur l'efficacité des tech

nologies appelées Ailode de Transfert Asynchrone (MTA) pour les réseaux de demain.

Le mécanisme de signalisation utilisé pour établir et terminer les connexions MTA en

est un élément important. L'organisme international ITU-T a. défini le protocole de

signalisation Q.2931 qui sert de norme officielle pour le controle des appels tant pour

les versions publiques que privées des interfaces réseau utilisateur !\lITA.

L'objectif principal de ma thèse est de définir formellement le protocole de sig

nalisation avec Estelle - l'une des Techniques de Description Formelle (TDF). Une

spécification formelle présente de multiples avantages par rapport à. une autre non

formelle. La première est sans ambiguïté; elle peut être utilisée à des fins de simulation

et de contrôle de la. validité; elle peut aussi servir de base à. une implémentation.

Dans cette étude, nous concevons et créons une spécification formelle du protocole

de signalisation Q.2931. Dans le but de démontrer les fonctionalités de signalisation,

nous dévelopons un modèle simulant l'environnement d'opération du protocol. Nous

proposons une méthodologie de validation que nous utilisons afin de démontrer la

conformité de notre description a.vec les exigences de la définition officielle du pro

tocole. Enfin, nous présentons nos observations et conclusion amalgamées avec les

résultats de nos expériences.

11

•

• 111

Ta my Parents

and Monika

Moim Rodzicom

oraz 1\fonice

•

•

Acknowledgments

Many people in many ways contributed to the creation of this thesis. Now, it is time
to thank them aU.

1would like to express my gratitude to Professor J.W. Atwood who supervised and

guided me in this project. Ideas, experience, and support he provided made my work

possible. From the first literature research to the finaI correction of this document,

his availability for discussion and immediate answers to my questions never failed to

amaze me. 1want to thank him for being there, whenever 1 needed him.

1 also thank rny second supervisor Professor Gerald Ratzer. His suggestions and

comments helped me ta shape my thesis into its current fonn.

1 would like ta thank al! my friends and colleagues in the School of Computer

Science. Particularly, enlightening discussions with Dionis Hristov helped me to un

derstand many issues. Marda, Souad, Taha, Ioannis, Mark, Bora, Stefan, Max - to
naIne just a few - created a great atmosphere during my two years at McGill.

1aIso want to thank my friends on both sides of the Ocean. Natalia and Jacek from

Montréal made me - a complete stranger at that time - feel here like home. Slawek,

Darek, Waldemar, Marcin, Iza, Ela, and a.ll friends in the kayak club "Bystrze" from

Krak6w proved that 7 000 kilometers does not have to be far for friends. Gavin from

Alberta. showed me "the other side" of Canada.

Fina.l1y, 1 want to express my deep gratitude to Hans and Eugenia. Jütting for

their finandaI support. A fellowship they established made my visit to Canada and

stuclies at McGill possible. 1 aIso thank Professor Atwood for the support through
bis research grant.

IV

•

•

Contents

Abstract

Résumé

Acknowledgments

1 Introduction

1.1 Motivation.

1.2 Thesis Contributions

1.3 Thesis Layout

2 ATM Overview

2.1 Introduction.

2.2 Basic Concepts

2.2.1 Information Transfer

2.2.2 Virtual Connections

2.2.3 Protocol Reference Model

v

i

ii

iv

1

1

3

5

7

7

8

8

9

10

•
2.3 Organization of ATM Networks 12

2.3.1 Classification 12

2.3.2 User-Network Interface (UNI) 13

2.3.3 Network Node Interface (NNI) ... 14

3 Signaling 16

3.1 Introduction 16

3.2 Signaling AAL (SAAL) . 17

3.3 Higher Layer UNI Signaling 18

3.3.1 Standards 18

3.3.2 Messages .. 19

3.3.3 Connection Establishment and Release 20

3.3.4 Status Procedures . 23

3.3.5 Error HandIing . . . 23

3.3.6 Restart Procedures III 24

4 Estelle FDT 26

4.1 Introduction 26

4.2 Main Features of Estelle 27

4.2.1 Specification Structure . 27

4.2.2 Communication 28

4.2.3 Simulation Process 29

• 4.3 Estelle Development Tooiset (EDT) 30

vi

•
5 Simulation Model 32

5.1 High Leve! Design 32

5.1.1 User Modules 34

5.1.2 Network Module .. 35

5.1.3 Signaling Entities . . 36

5.2 API and NNI Interface Definitions. 37

5.2.1 API Interface 37

5.2.2 NNI Channel and Routing Simulation. 39

5.3 Signaling Entity Modules Description . 41

5.4 CalI Control Unit Description 45

5.5 Implementation Issues 47

5.5.1 Resolution of Deficiencies in Specification .. 47

5.5.2 Message Structure 49

5.5.3 Message Check 51

5.5.4 Timers 54

5.5.5 CalI Reference Allocation 56

6 Testing and Validation 58

6.1 Introduction. 58

6.2 Methodology 60

6.3 CalI Control Unit Testing 61

• 6.3.1 Set-up 61

vu

•

•

6.3.2 Results .

6.4 Signaling Entity Testing

6.4.1 Set-up .

6.4.2 Results.

6.5 Complete Model Testing .

6.5.1 Set-up

6.5.2 Results.

6.6 Observations and Conclusions

7 Related Work

7.1 Research on ATM Signaling Protocols .

7.2 Estelle Specifications

8 Conclusions and Future Work

8.1 Conclusions ..

8.2 Future Work. .

Bibliography

A E.164 Addressing Format

B List of Acronyms

viii

. 64

70

70

71

73

73

75

76

81

81

84

86

86

88

89

94

96

•

List of Figures

1.1 Iterative protocol development through subsequent refinements of for-
mai description. 4

2.1 Switching of Virtuai Paths and Connections. 10

2.2 ATM protocol reference model. Il

•

2.3 Organization of ATM networks. 15

3.1 Signaling AAL. 17

3.2 Connection establishment and release in Q.2931. . . 21

4.1 Hierarchy' of modules in Estelle presented in two equivalent ways. 28

5.1 General structure of simulation model. 33

5.2 One interface from the simulation model placed in the ATM protocol

stack.. 34

5.3 Signaling entity modules. . 42

5.4 General message structure. . 50

5.5 Message checking and error handling for CONNeT-ACK. . 52

5.6 Implementation of example timer T303. 55

6.1 Test environments for Call Control unit on the user (a) and the network

(b) side. .. 63

ix

•
6.2 Sequence of messages for the incoming caU on the network side. 64

6.3 Incoming cali from Figure 6.2 as seen on the network side. 65

6.4 Test environment for complete mode!. 74

6.5 Immediate reuse of the caU reference value. . . 77

6.6 Unexpected CONNeT-ACK in error-free message exchange. 78

6.7 VPI/VCI values rejection by UserSignEnt. 79

A.1 E.164 ATM address format. " " " 94

• x

•

•

Chapter 1

Introduction

1.1 Motivation

During the last two decades, business, public and personal expectations towards

the telecommunication industry became very demanding. Toda.y's market requires

increasingly sophisticated, bandwidth-intensive services, which often render exist

ing telephone networks inapplicable. The traditional approach to telephony, circuit

switching, was developed initially for voice transmission, but failed la cleU ver satis

factory results after the first computer networks started to exploit existing telephone

resources. On the other hand, packet switching, used by computers, could not he eas

ily applied for speech, due to the fundamental differences in transfer characteristics.

Data transmission requires variable bandwidth and is extremely error-sensitive, but

can tolerate dela.ys and does not need any special timing synchronization between a

sender and a receiver. Voice transmission needs relatively small and fixed handwidth

and can accept b.igh rate of errors (quality of sound does not need to he perfect), but

is very sensitive to delays. The advent of video technology and subsequent need for

transport of video streams brought additional postulates: varia.ble and large band

widths, continuous, error-free transmission, and minimal delays [1].

Asynchrono'US Transfer Mode, ATM, is believed to address successfully all of the

above problems. It integrates various services, satisfies diverse requirements, and

1

•

•

homogeneously transports different kinds of traffic on the same lines. Over the years

of its development, it has emerged as a leader technology on the market and gained

wide recognition in the world of telecommunications.

One may expect that the technology, which aims to satisfy such a broad range of

demands, is inherently complexe Indeed, despite quite simple principles, ATM is con

sidered by sorne experts to be probably the most ambitious and complex undertaking

in the history of networking [2]. From the start, it was designed as a. global, worldwide

solution to be a basis for future broadband telecommunication. As such, ATM must

he developed and defined globally to accommodate different needs of ail interested

parties: govemments, providers, vendors, software producers, and customers. Con

tinuous standardization and a strict, meticulous process of defining ail vital aspects

of ATM allows avoiding ma.ny compatibility and heterogeneity problems, typical for

early eras of networking. In future, when ATM will span organizations, telephone

installations, countries, and continents, there will be no place for proprietary, stan

dalone solutions and time consuming conversions between incompatible protocols or

incongruous interfaces [3].

One of many areas of simultaneous research activities concentrates on the creation

of a uniform and universal calI control mechanism for ail ATM users. Such a protocol,

known as higher layer signaling, access signaling, or layer 9 signaling is necessary

for establishment and termination of data transport connections across ATl\J1. Even

though the work is far from over, the first standard of ATM signaling, Q.2931 [4], has

been already defined. It derives sorne basic principles from its narrowband predecessor

Q.931 (Digital Subscriber Signaling System No.2)[5] used in the Integrated Service

Digital Network, ISON.

Unfortunately, official standard of Q.2931 protocoi is defined exclusively in a tra

ditional forro, that is, narra.tive text describing messages and procedures to be impIe

mented. The problem with naturallanguage specifications is that they may contain

hard-to-spot errors, ambiguities, and inconsistencies. In case of complex protocols, it

may he also very clifficult ta analyze the protocol and visualize its beha.viour directly

from the text of the definition.

To depict protocol operations in a more precise and coherent way, one caon create

a so-called formaI specification in one of the FormaI Description Techniques, FDT.

2

•

•

FDTs are particular kinds of programming languages developed primarily for describ

ing parallel, distributed systems and protocols. They are used to produce an accu

rate and complete description of system behaviour, while actua! reaIization of this

behaviour does not need to he specified (i.e., it is not necessary ta solve implementa

tion specifie problems). By fordng the designer to followa. strict planning disdpline,

FDTs can give a. better quaüty, weIl structured definition with clear separation of dif

ferent abstraction levels. Moreover, a complete high-level formaI description may he

used as a starting point for development of real implementations. Since this form of

the description is understood by the computer, automatic software tools can be used

to assist in the process. FDTs make it possible to move from higher to lower levels of

abstraction and gradually refine the initial model. In case of such application, sub

sequent formaI descriptions are increasingly detailed; they embrace more and more

implementation specifie decisions up to the point where an aspects are aecounted for

and the implementation is ready [6].

Another motivation for using FDT is simplified validation of the description at

each stage of the development. In particular, automatic tools may derive test cases

and sequences to verify conformance of the formally defined system to the require

ments of the original protocol specification. The designer of a formai definition has

aIso the flexibility of building arbitrary environments to be used as testbeds for simu

lations and protocol behaviour analysis. Figure 1.1 depicts the idea of such systematïc

evolution.

1.2 Thesis Contributions

The major goal of this work is to specify formally the ATM higher layer signaling pro

tocol, Q.2931, using the Estelle FDT. We design a formai counterpart of the definition

presented in [4, 7] and create a simulation model for the protocol. For communica

tion hetween the user and signaling ATM functions, we define and realize a simple

Application Programmer Interface, API. Even though our model is meant to he a

high level description of protocol hehaviour, it is "implementation conscious", i.e.,

planned with possible future evolvement into a. reaI implementa.tion in mind. Finite

3

•

(=::::l ..

high Leve! of abstraction low

•

Figure 1.1: Iterative protocol development through subsequent refinements of formaI
description.

state machines, which represent protocol operation for a single calI, are clearly sep

arated from the general purpose and resource management functionalities (common

to all connections), hence, our model is expected to accommodate potential changes

in official standards.

The second major part of our work concentrates on validation of both our sim

ulation model and the protocoi definition itself. We plan the testing approach and

methodology to support the daim that Estelle specification truly represents the in

formai definition of Q.2931. We derive test sequences, cases, and scenarios intended

to examine functionalities of ATM signaling. We build test environments (aIso in

Estelle) for integral elements of our protocol model - either each separately or ail

together. Final1y, we conduct experiments and simulations to remove errors from

the specification, gather evidence of correct protocol operation, and corroborate its
conformance ta the requirements of standards.

4

•

•

1.3 Thesis Layant

The remainder of this document is organized as follows:

Chapter 2 is intended for the reader with no background in ATM networks. It
introduces basic ATM principles, expla.ins some concepts, and defines the ter

minology used throughout the document. We want to stress that due to a

vast range of important issues in ATM, it is Dot our goal to provide a com

plete overview of the technology. We summarize only these aspects which are

a.bsolutely necessary for understanding the following chapters. For additional

information, the reader may refer to [1, 3, 8, 9, 10, 11].

Chapter 3 gives the reader an insight into ATM signaling mechanisms. We review

sorne fundamental notions of call control in general, and move to explaining

particular features of the Q.2931 protocol. AIl its aspects are categorized and

briefly explained.

Chapter 4 introduces Estelle. It summarizes Estelle principles and highlights these

elements that are vital for illustrating the features of our specification.

Chapter 5 concentrates on the simulation model created in this work. Presentation

is organized in a top-down manner. First, we overview the high level design and

explain our approach. Second, we define functions of two additional interfaces

that we created to supplement the protocol and facilitate its validation. Third,

we describe, in detail, elements that constitute the core of our project: signaling

entities of Q.2931. Finally, we present implementation solutions for selected

problems in the specification.

Chapter 6 brings the results of protocol validation. We outline general methodol

ogy, identify three major steps of the testing process, and accordingly schedule

the verification of Q.2931 functions. For each of these steps, testing environ

ment, set-up, and selected experîmental outcome are presented. At the end of

the chapter, we summarize the results obta.ined and share sorne observations

gathered during this part of the project.

Chapter 7 puts our efforts in a. "broader picture" of some related work.

5

•

•

Chapter 8 concludes this thesis and points out possible directions for further inves

tigations.

6

•

•

Chapter 2

ATM Overview

2.1 Introduction

The ATM concept evolved from research on fast packet switching in early 1980s and

was standardized for the mst time in 1988 by ITU-T (former CCITT) as the target

switching and multiplexing technology for Broadband !ntegrated Service Digital Net

works (B-ISDN). The main reason for this designation is that ATM is able to carry aIl

rOrUlS of inIornlation (images, computer data, voice, and video) in an integrated way.

Sinee different kinds of traffie are treated in the same manner and conveyed transpar

ently through the network, ATM can support not only existing and emerging services,

but aIso the ones yet to come. It provides dynamie bandwidth allocation, thus max

imizing resource utilization and lowering complexity of buffer management. Finally,

by using short packets, reducing node processing time, and simplifying switching al
gorithms, ATM supports very high transmission speeds, which are essential for most

of today's applications and services. Even though it is not completely free from dis

advantages, sueh as the possihility of packet 10ss or variable delays, ATM's features

make it a feasihle and widely dep10yed technology in wide area, metropolitan, and

local networking.

Although it was introduced almost ten years ago, the technology should still he

7

•

•

regarded as an on-going project rather than pret-a-porter product. There is a sub
stantial amount of research effort carried simultaneously by different groups, stan

dard organizations, and industrial companies. The standard bodies involved in the

definition of ATM and B-ISDN are: ITU-T (International Telecommunication Union)

Study Group 13, ANSI (American National Standards Institute) TISI Technical Sub
committee, and ETSI (European Telecommunications Standards fnstitute) NA5 Com

mittee. Another important group is the ATM Forum, an international consortium of

hardware producers, their customers and service providers. The ATM Forum is not

an official standards organization; nevertheless, it produces its own specifications,

often to address issues not yet included in standards. Clearly, with sa many par

ticipants and still evolving concepts, proposed solutions are not always completely

coherent, even though there is a lot of effort to bring them together and achieve their

full interoperability.

2.2 Basic Concepts

2.2.1 Information Transfer

The ward asynchronou's in ATM does not refer to the physical transmission (which

may be, in fact, synchronous; for example in SONET/SDH based standards), but

rather to the way the bandwidth is divided and distributed among connections. Unlike

in someearlier solutions (e.g., timedivision multiplexingTDM), where the assignment

of channels to their correspondent time slot in the frame is fixed, in ATM the user can

take any available, empty slot, label it with the identifiers unique for its connection,
and fil! it with data. In other words, the network does not enforce or quantify in any
way the speed of generation of the data by the user; theoretically, it can accept every

bitstream as it comes.

ATM operates strictly in a connection-oriented mode. Before the user can send

anything, the network must establish a connection and al10cate necessary resources.

Since one of the requirements of B-ISDN is the support of connectionless services, they

must be emulated by higher layers of the ATM protocol stack. Both user and control

8

•

•

information is transported in smali, 53 byte packets called cells. Each cell consists of

5 bytes of header and 48 bytes of payload (information field). The main purpose of

the cell header is to identify the cells belonging to the same connection, by means of

Virtual Path and Virtual Channel Identifiers. Additionally, the header also includes

fields necessary to: distinguish user-data cells from control cells, assign priorities

in case sorne cells must be discarded, perform error control on the header (payload

contents is not protected), and, in sorne cases, introduce flow control. Because there

is no cell storage or retransmission in ATlvr networks, all cells in a given connection

maintain their order and cannat be mîssequenced.

2.2.2 Virtual Connections

ATM has two types of transport connections: Virtual Paths and Virtual Channels,

labeled by their respective identifiers: VPI/VCI values. Those values do not have

any global meaning; instead, they are translated at each step of routing through the

network. A basic element of an ATM connection is called a VC link. Each VC link

connects two consecutive points in the network, where the VCI value is translated.

A set of sequential VC links with end points and connecting points constitutes a

Virtual Channel. A set of Virtual Channels traveling together through the network

constitutes a Virtual Path.

Each connection may he unambiguously identified only by both VPI and vcr
values, i.e., a given VeI value has a meaning only within its VPI. Because identifiers

are translated during routing, which in ATM is rather called switching, there is no

need for complex algorithms to select globally unique labels. Each routing oode

(switch) picks a locally unassigned pair of vaiues, and, throughout the whole life of

a connection, it translates VPI/VCI labels in all incoming cells into the new values
(see Figure 2.1). After a connection is released, labels may be reused and translation

information is removed from the switch's memory.

Each connection in ATM has Quality of Sernice (QoS) associated with it. It is

a set of parameters specifying cell delays, delay variation, and cell 1055 rate for a

given connection. Required QoS May be explicitly requested by the user or implicitly

9

•
VPI7

VPI Il

va41VPI4

VPI3
~__......... VCl54

Figure 2.1: Switching of Virtual Paths and Connections.

associated with certain types of connection request. The network is responsible for

maintaining the negotiated QoS throughout the duration of the connection.

2.2.3 Protocol Reference Model

The ATM reference model is shown in Figure 2.2. It consists of three main parts:

• User plane: transfer of user information,

• Control plane: connection control procedures (mainly signaling procedures),

• Management plane: network supervision.

The user plane consists of layers, as in the ISO OSI model, but their number is

limited to 4. We will present them briefiy in a top-down direction:

•

Higher layer of user plane provides support for user services, grouped by ITU-T

into four classes: connection-oriented constant bit rate (Class A), connection

oriented variable bit rate with (Class B) or without (Class C) timing require
ment, and connectionless variable bit rate services (class D) .

10

•

•

Higber layem {---t--....--+---'--r
ATM adaptation { Sipalml

layer{AAL) AAL AALl AAI:l

ATM
Physicallaya:

Figure 2.2: ATl\'[protocol reference model.

The ATM Adaptation Layer (AAL) is a service specifie layer, whose main pur

pose is to prepare user data, received from the higher layers, for the transport by

the service independent ATM layer. Of course, it also conveys the data retrievecl

from the network in the opposite direction. AAL consists of two subla.yers: CS

(convergence sublayer) and SAR (segmentation and reassembly). CS performs

various actions, depending on the requirements of a given class of service. For

example, its functions may include errar detection and recovery. SAR is re

sponsible for converting the data from the variable length packets used by CS

into ATM cells (outgoing da.ta.) and from cells back into CS packets (incoming

data).

ATM layer is mainly responsible for end-to-end transport of cells. Cells being sent

are furnished with headers (produced by ATM layer), while cells being receivecl

are stripped from their headers and processed according to the headers) con

tents. VPI/VCI values are translated here. This la.yer is completely service

independent, that is, data. in information field of cells has no meaning whatso

ever; it is simply camed.

Physical layer is responsible for tra.nsmitting the information across the physical

medium. Since ATM network may he implemented over various media. (optical

fibers, twisted pair), the physicallayer will be different in each case.

Il

•

•

It is important ta note, that there is no direct and simple correspondence of ATM

layers ta the seven layers of ISO OSI mode!. A rigid structure of the ATM protocol

stack allows layers ta be independent from each other, thus achieving modularity and
portability (e.g., in case of implementation over different physical media).

The control plane also consists of four layers. Since, as we a.lready mentioned,

the contents of payload does not matter for ATM layer (and below), both ATM and

physical layers are able to carry control information in the same manner as user

data and, therefore, they may he shared with the user plane. The control and user

cells need to he distinguished no sooner than in higher layers, where the control cells
are processed by signaling protocols. Two highest layers of the control plane stack:

signaling AAL and higher layer signaling will he described in more detail in the next

chapter.

The management plane performs monitoring and supervision of aIl ATM network

operations. It is responsible for failure detection and recovery, collecting and re

porting statistics of resource utilization (e.g., for the purpose of hilling the users),

configuration and maintenance of network elements, determining access privileges,

and other security related issues. As shawn in Figure 2.2, management plane covers

the whole structure of ATM reference model, 50 its role will be different at each layer

and will directly depend on the functionali ty of the la.yer.

2.3 Organization of ATM Networks

2.3.1 Classification

ATM network elements can he divided ioto two general groups:

user terminais: all kind of user equipment that is atta.ched ta a. network (e.g.,

computera, IP routers, phone exchanges, phones, fax),

switching nodes : elements, whose primary purpose is to relay the information he

tween nodes and convey it from one user terminal to another. Furthermore,

12

•

•

switches may be classified as: private ATM equipment (owned by private orga
nizations) and public switches (owned by service providers and carriers), which

are part of the public B-ISDN infrastructure.

Figure 2.3 presents one possible layout of an ATM network organization. As we

can see, network elements are interconnected using two different types of interfaces:
User-Network Interface (UNI) and Network-Node Interface (NNI).

2.3.2 User-Network Interface (UNI)

The UNI is used to interconnect any kind of user terminal with any kind of ATM

switch. Additionally, it is aIso used between private ATM networks and public

switches.

Depending on the ownership of a switch, two distinct forms of ATM UNI are

defined:

• public UNI, where the user tenninal or private switch is connected to a public

service provider network,

• private UNI, where the user terminal is connected to a corporate ATM switch,

i.e., the organization responsible for the user terminal is also responsible for the

switch.

The main difference is the physîcal configuration of the connection. In most of the
cases, private UNI interfaces will he used in places where the ATM switch is located
nearby (the same room, Boor, building) as the terminais. This configuration does

not require any sophisticated, long range physîcaI layer technology. On the other
hand, public UNI must meet much higher requirements - terminais may be many
kilometers away from the switch. In this situation, it is understood that even though
bath UNIs share most of the ATM layer stack, they may use completely clifferent

physicaI media.

13

•

•

This thesis is entirely devoted to issues concerning the User-Network Interface.

In all remaining cha.pters, whenever we use term "UNI", we will mean both private

and public forms, unless explicitly specified otherwise. Whenever we use term "ATM

user" we will mean: "anything connected to the network through UNI". It ma.y he

either a terminal, or a private ATM switch.

2.3.3 Network Node Interface (NNI)

The NNI, aIso known as the Inter Switching System Interface (IS51), is used to in

terconnect switches within a particular ATM network. As with the UNI, the NNI

may be c1assified, based on the ownership of the switches, as private or public NNI.

The ATM user never communicates directIy with the NNI, it perceives the network

as being one carrier entity. Since the NNI is beyond the scope of this thesis, the

interested reader should refer to relevant literature [1, 12, 9] .

14

•

Figure 2.3: Organization of ATM networks.•

~ ATM lWitdl (privaIe or plblic)

4J ~ ~ differmtldDds of
189 U!I user equipmeDt (temrinIJ1)

User Netwodt
Interface (UNI)

NetworkNode
IDtaface (NNI)

15

•

•

Chapter 3

Signaling

3.1 Introduction

Signaling in ATM is defined as a set of messages, states and procedures, which allow

tile user to request from the network that the connection with the specified char

acteristics (e.g., Quality of Service) be created, maintained, and, final1y, torn down

after the information transfer is completed. These functions are performed in the two

highest layers of the control plane: Signaling AAL a.nd highfr layer signaiing, also

known as access signaling. Moreover, there are two different versions of higher layer

signaling: one for the UNI (ITU-T standard Q.~991[4]), and the second for the NNI
(ITU-T standard BIBUP(12]). This document deals mainly with higher layer UNI
signaling (Q.2931), nevertheless, for c1arity of the description, we will briefly present

th.e Signaling AAL as wel1. It is important to stress that this chapter has only in

troductory character and covers the most basic issues. Signaling protocols are tao

complex to be reviewed thoroughly here; their specifications are hundreds of pages

long.

Signaling peers in ATM are communicating by exchanging messages on a single,

static, out-of-band signaling virtual channel. This channel cannat normally he used

for any other purpose. Messages are carried through the ATM layer in the form

of control cel1s, in the same way as user data cel1s. One of the responsibilities of

16

•
the Signaling AAL layer is to retrieve control cells from the network, reconstruct

the original signaling message, and carry it to the higher layer signaling entity for

interpretation. Connections established as a result of signaling procedures are called
switched virtual connections, to distinguish them from the semi-permanent virtual

connections, which are handled by the network management plane.

In the remainder of this document, we will use terms "connection" and "caU"
exchangeably, as synonymous to "switched virtua.1 connection" 1.

3.2 Signaling AAL (SAAL)

The SAAL structure is presented in Figure 3.1.

Service
Specifie

Converpnce
Sublayer

AAL
Functions

CommonPart
AAL Fonctions

~L To hl,lwr I4yer
IigrrtJllnl

~,

Service Specifie
Coordination Punction

SSCF

Service Specifie
P••r-ro-Par

CDfrllfllllllctl
Connection Oriented

Protocol SSCOP -
Ha

~,

P",-ro-P••,
Common Part AAL CDflllftlllllctl

Peer-to-Peer Protocol
...... ...
...... ..

CP-AAL
~~

"
ToATMI4yer

•

Figure 3.1: Signaling AAL.

The upper layer of this structure, Service Specifie Coordination Funetion (SSCF)
[13], is exactly what its name implies: it simply coordinates transport of data from

l Even though it is not precise according to lTU-T terminology, it follows the conventions used
in ATM Forum specification.

17

•

•

higher layer signaling to the SSCOP protocol below. SSCF does not add any informa

tion to the carried messages - it only maps services of SSCOP to the requirements
of the higher layer.

Service Specifie Connection-Oriented Protocol (SSCOP) [14) is the rnost important

part of SAAL. It provides reliable data transfer between the signaling entities in the

UNI (or the NNI), which communicate with SSCOP through their respective SSCFs.

SSCOP supports message sequence integrity, error handling (detection, reporting
to the management layer, and recovery by retransmission), flow control, connection

control, as well as both assured and unassured (unacknowledged) modes of transport.

In case of assured connection, which is used by the Q.2931 specification, signaling

messages up to 4KB long are protected from loss, reordering and corruption.

3.3 Higher Layer UNI Signaling

3.3.1 Standards

Higher layer signaling in the UNI (access signaling) is specified in two versions: an

official ITU-T standard Q.2931 [4] and the ATM Forum UNI specification [7]. Even

though the latter is based on Q.2931 and designed to be compatible, sorne differences

exist and the scopes of both documents are not the same. Sorne of the features

supported by one document do not appear in the other and vice versa. For example,

procedures for establishing point-to-multipoint connections are already defined by

the ATM Forum and not yet by the ITU-T; on the other hand, ATM Forum does

not support metasignaling, which is specified in Q.2931. Additional1y, sorne of the
messages and ca1l states defined by ITU-T are not used by the ATM Forum 2.

When defining the area of our interest in this work, we decided to choose the

common part of the two documents: point-to-point connection control with error
handling, status enquiry and restart procedures. They will he described in the fol

lowing sections. In cases where discrepancies between the two specifications exist, we

2The detailed list of differences is in [7}.

18

•

•

are using the ATM Forum UNI Signa.Iing 3.1 as a. guideline for implementation. The

terms: "specification", "Q.2931", and "UNI Signaling 3.1" from now on refer ta the

common part of specifications and are therefore synonymous.

3.3.2 Messages

Signaling messages are exchanged on a permanently established virtual channel con

nection, identified hy VPI=O, VCI=5. They are sent to SAAL using an assured mode

SAAL connection.

The specification defines ten variable length messages, which may he grouped into

four classes:

• call setup messages: SETUP, CALL PROCEEDING, CONNECT, and CON
NECT ACKNOWLEDGE,

• caU tear-down messages: RELEASE and RELEASE COMPLETE,

• caU or interface status reporting messages: STATUS ENQUIRY and STATUS,

• caU or interface restart messages: RESTART and RESTART ACKNOWL

EDGE.

Every message consists of the fol1owing parts (information elements):

1. protocol discriminator, always coded as: Q.~931 user-network cali control

messages,

2. caU reference identifies call on the local interface, to which this message refers,

3. message type identifies type of the message,

4. message length indicates total length of the remainder of the message (in

octets),

19

•

•

5. variable lengtb information elements carry information pertinent to the

call and specifie ta each message type. Sorne of these elements are mandatory

and sorne optional.

The information earried in the messages may be of a global (end-to-end) impor

tance, e.g., ATM traffic descriptor, or it may have ooly local (interface) significance,

e.g., cali reference identifier, VPI/VCI values. Most of the messages are a.lways asso

ciated with the partieular calI; however, restart and status messages may refer to the

whole interface. In such a case, their caU reference element is coded as Global Cali

Reference value.

3.3.3 Connection Establishment and Release

In order to understand signaling in UNI, one must realize that on any given interface

there must he two signaling entities: one to represent the user and the other one to
represent the network. Figure 3.2 depicts a simple example of successful connection

establishment and release.

Establishment is initiated when a Q.293I entityon the user side transfers a SETUP

message across the interface to the entity on the network side and enters Cali Initiated

state (Ul). The SETUP message must contain all the information necessary for the

network to process th.e caU (e.g., called user address, ATM traffic descriptor, QoS,

etc.) Upon the reception of SETUP, the network side of calling interface enters Call

Initiated State (NI) and verifies that the resources for a. calI with required charac

teristics are available. One of the responsibilities of the network side, at this point,

is to select unique VPI/VCI values for connection identifica.tion on this interface. li
the Q.2931 entity is a.ble to accept a new calI, it forwards informa.tion through the

network to the called user. AdditionalIy, it can optionally notify the calling user

about the progress by sending CALL PROCEEDING message (in such case, both

sides enter Outgoing Ca.ll Proceeding state, N3 and U3 respectively).

After the ATM network delivers the establishment request information to the

called interface (which is the responsibility of NNI signaling), the Q.2931 entity on

the network side of this interface enters Call Present state (N6) and generates a

20

U12
ua

U11

UO

•
caIliDB user Q.2931 ea11ed user

Q.2931

4J ~ f ~

ua
NI
N3--~-'>---------

U3

message U6
excbangein U9

NNI sigo,Ung
protoeol(s)

U8

NB---<::_ Nia-_ -
UIO

U10

Figure 3.2: Connection establishment and release in Q.2931.

SETUP message across the UNI. It must include in SETUP the VPI/VCI 3 values

•
3 Actually, for the purpose of identifying the virtual path, the specification uses Virtual Path

Connection Identifier (vpeI) rather than VPI. Sïnce VPI and VPCI are numericallyequivalent,
we will continue ta use more cammon term VPI/VCI in this document, except in cases where we
directIy cite !rom [7].

21

•

•

selected for caU identification on this interface. If the user wishes and is able to accept

the call, it enters CalI Present state (U6), and takes steps to accommodate a new con

nection. During this process, it has an option to notify the network side with CALL

PROCEEDING message, which would result in entering Incoming Call Proceeding

state (U9 and N9 respectively) on both sides of the UNI. When the user is ready, it

sends a CONNECT message and enters Connect Request US state. Upon reception

of CONNECT, the network side responds with CONNECT ACKNOWLEDGE and

transfers its notification through the network to the calling interface. Both sides of

the called interface are in Active state (NIO, UI0), whicll means that the connection

at this end-point is considered established and ready for the transmission.

After the ATM network delivers the response from the called ta the calling inter

face, the Q.2931 entityon network side sends CONNECT to the user side and enters

Active (NlO) state. The calling user responds with CONNECT ACKNOWLEDGE,

aIso enters Active state and from now on it perceives the connection to be ready for

transmission.

It is important to stress that the actual data transmission takes place in a different

plane of the protocol stack (user plane, not control plane) and, therefore, it does not

involve signaling in any way.

Connection clearing is initiated when the user of any involved interface (not nec

essarily the one that established the caU) sends a RELEASE message and enters

Release Request state (U1l). The message must conta.in a cause information ele

ment, which explains the reason for clearing. The network side also enters Release

Request state (Nil), then responds with RELEASE COMPLETE, forwards informa

tion about termination to the remote interface, and finallyenters Null (NO). Upon

receipt of RELEASE COMPLETE, the terminating user considers the connection to

be cleared; no acknowledgment from the other interface is required.

After the network side of the remote interface is notified about clearing, it enters

Release Indication state (N12) and sends RELEASE to the user side. Upon acknowl

edgement by the user with RELEASE COMPLETE, the connection at this end-point

ceases to exist and its resources are freed for reuse.

22

•

•

3.3.4 Status Procedures

Status procedures and messages provide signaling entities with additional means to

exchange information a.bout the current state of a connection. Statua procedures may

be used in some error conditions to determine the situation on the interface before

recovery actions are taken. For this purpose, two messages are defined: STATUS

ENQUIRY, used for soliciting the caU state in the peer, and STATUS, used for re

porting the local caU state to the peer. As a matter of fact, Q.2931 does not specify

situations in which STATUS ENQUIRY should be sent. It does, however, define that

in response to this message, the receiving entity should retum STATUS with the

current caU state. Additionally, there are a number of situations in error handling

procedures, when a STATUS message is sent unasked, to inform the peer about faulty

but non-fatal conditions. Neither receiving nor sending of any of these messages can

change the call state. Apart from reporting calI states, STATUS message with Global

CaU Reference may be used to report the state of the whole interfa.ce, e.g., during the

restart procedures.

3.3.5 Error HandIing

As the reader might have noticed, our example of connection establishment and clear

ing presents just one, very simple sequence of events. In reality, setting up the caU

may be far more complicated. In each step of calI processing, entities execute many

actions (e.g., allocation of resources, analysis of parameters required by the user,

checking for presence and validity of mandatory elements), which may not be suc

cessful. Entities often ha.ve a limited time to respond to messages; there are timers

operating on both sides of the interface and they can sometimes expire. Messages

transported across the UNI may get lost or arrive corrupted. Finally, the called user

may he too busy, or simply may not wish to accept the connection.

To resolve a.ll such prohlems, Q.2931 defines a set of actions, which should be

taken in various error conditions. We will only present their brie!summary here; as a

matter of fact, errar trea.tment constitutes a substantial part of th.e specification and

its description takes more space than, for example, caIl establishment.

23

•

•

The first and sometimes very difficult task of error handling procedures is to

recognize and correctly interpret a faulty situation. The next step depends highly on

this interpretation. In general, we cao distinguish two kinds of error conditions:

Fatal errors. They cannot be tolerated and require immediate termination of a con

nection. Sorne examples in this group are: first expiry of non-restartable timer,

final expiry of restartable timer, reception of STATUS indicating incompatible

state at peer or reception of a message that refers ta a. non-existing calI, while

the message type indicates that the calI should he in progresse A special kind of

fatal error exists when the entity is not able to clear the connection in a normal

fashion - restart procedures must be then invoked.

Non-fatal errors. They do not require clearing and permit trying solving the proh

lem. Two main forros of hehaviour here are: discarding the message (upon the

reception of badly corrupted, unrecognized or non-standard message) or send

ing the STATUS message (upon the reception of unexpected, out-of-sequence

message, lnessage referring to non-existing caU, and message with mandatory

elements missing or invalid). In the second case, STATUS must contain the

cause element, which explains the problem. Sometimes, the entity may decide

to process the erroneous message, if it is possihIe ta retrieve all necessary in

formation. It may aIso happen, that an attempt ta recover from an initial1y

non-fatal situation leads to more severe problems and the connection is cleared

anyway.

More detailed information about error handling and checking may he found in Chapter

6, where we present simulation results.

3.3.6 Restart Procedures

Restart procedures define special kinds of actions, which are invoked usually as a

last resort. They are used to return a virtual channel or all virtual channels on a

given interface to the Null state. In general, Q.2931 recommends initiation of restart

after any kind of local failure or certain maintenance actions. On the other hand,

24

•

•

the documentation clearly specifies only one case when those procedures should be

invoked: upon the failure of regular cali clearing (final expiry of the timer associated

with Call Request state). One must understand that restart is always executed locally

on a given interface. It is not possible for UNI signaling to restart virtual channels

on the remote interface.

An entity willing to return virtual channel(s) to the Null state, sends a RESTART

message to the other side of the interface and starts a timer. Unlike other signaling

messages, RESTART does not use caU reference of its connection, instead, it is sent

with Global CalI Reference value. It also contains information about virtual chan

nel(s) ta be restarted. Upon reception of RESTART, the peer entity initiates releasing

of the ca.ll(s) resources and starts its own timer. If the timer expires before calls are

brought to Null, restart fails: connection is considered to be out of order and the

maintenance entity should be informed. Q.2931 cannot use the calI(s) or associated
resources until sorne sort of repairs are made. If calls manage to enter NuU before

the timer expiry, the entity generates a RESTART ACKNOWLEDGE message (aIso

with Global CalI Reference) and considers restart a success.

When RESTART ACKNOWLEDGE is received by the initiating side of the in

terface, it can release resources of its connection(s). If the initiating side does not

receive this acknowledgment before the mst expiry of its timer, it is allowed to repeat

an a.ttempt and resend RESTART. If the timer expires for the last timc, the cali is

considered out of order. More information about restart can be found in Chapter 6.

25

•

•

Chapter 4

Estelle FDT

4.1 Introduction

The Estelle language (15) is one of ISO standardized FormaI Description Techniques

(FDTs). It is rnainly used, as all FDTs, to specify in a formaI way the behaviour and

structure of finite state machines, which represent distributed and parallel systems.

One of its particular applications is networking protocols and services. A reason for

creating forma.I descriptions is that the traditional forro of the protocol definition (i.e.,

natura! language text with state tables, graphs, etc.) usually contains ambiguities

and different kind of deficiencies. Not only does the formai description technique

enforce a. methodological, careful and complete approach to protocol specification,

but it aiso allOW5 using tools to simulate the behaviour of the protocol and verify its

conformity to the original requirements. Additionally, even though the unamhiguous

formaI specification should not he mistaken with the actual implementation, Estelle is

50 close to natura! programming languages that it allows the anticipation and solution

of many implementation issues (U5uaI1y not covered by standards).

Technically, the Estelle FDT is based on the syntax of the Pascal language and

enhanced by a set of extensions to model finite state machines that are nmning in
parallel and can communicate.

26

•

•

In this chapter, we will present a brief overview of Estelle principles. For exhaus

tive information, the reader should refer to [15, 16, 17).

4.2 Main Features of Estelle

4.2.1 Specification Structure

An Estelle specification of a protocol (or any other distributed system) is built of

elements called module instances (briefly: modules). AlI entities, units, tasks or even

the specification itself are defined as modules and every kind of activity must take

place within one of those modules.

An Estelle module may contain:

1. Other modules. Estelle al10ws nesting, i.e., each module may have its children,

2. Data structures and Pascal functions/procedures to handle them. They are

internai and private parts of the module; however, some data may he shared

(but only with a parent),

3. Interaction points: external and intemaI. They are the communication ports

for exchanging information with other modules (siblings, parents, and children),

4. Transitions. This part describes the finite state machine associated with the

module and represents its intemai behaviour.

Each system described in Estelle has a hierarchicaI structure, which may be pre

sented as in Figure 4.1. The foot of the tree, or the main enclosing box is always a

module of the specification itself.

Modules in Estelle may be attributed in one of four ways: systemprocess, sys

temactivity, process or activity. Attributes divide the system into suhtrees of modules

called subsystems. A subsystem consists of a module attributed systemprocess or sys

temactivity (root) and all its descendants (children, grandchildren, etc.). Assignment

27

•

•

Figure 4.1: Hierarchy of modules in Estelle presented in two equivalent ways.

of the attributes strongly influences the behaviour of the whole system, and, in most

cases, it is specifie to the described protocol or service.

Apart from the tree-like hierarchy resulting from the parentfchild relationship,

modules may aIso he structured from the communication point of view. It will de

fine information How in the system, i.e., it will decide which modules can exchange

messages. Only interaction points of modules may be linked and they can be either

attached (if they are external points of the parent and the child) or connected (if both

are externat points of siblings, bath are internai points of the same module, or one is

an internai point of the parent and the other is an externat point of the child). An

example of communication structure is our model of the Q.2931 specification, shown

in Chapter 5. AIl interaction points there are connected.

4.2.2 Communication

Estelle modules communicate most commonly by exchange of messages (caIled in

teractions). Messages are carried using channels: an abstract medium, which links

interaction points. For each direction separately, a channel defines the set of messages

that it is able to transmit. AIl messages received in the destination interaction point

are inserted to an unbounded FIFO queue, where they wait for processing by transi

tions. It is the programmer's responsibility to ensure that the module cao retrieve all
types of interactions that may arrive at any given interaction point. If the message

28

•

•

at the head of the queue is not processed, it will stall the interaction point. Only

end-to-end communication is possible, which means that if more than two points are

involved in the link, intennediate points can neither intercept nor send a message (if

sent, it will he lost). Transmission is non-blocking, i.e., it is always possible to send

an interaction. Data structures carried by messages are declared as their parameters.

Another communication means in Estelle is sharing of variables, but this method

is very limited. Shared variables must be explicitly declared as exported by their

module and they will be visible only to the parent. In case of simultaneous access to

the variable by both parent and child, the parent's action has priority.

4.2.3 Simulation Process

As already explained, a.ttributing splits the main system into subsystems. Each sub

system executes its own computation steps in its own computation time, which means

that the behaviour of modules from different subsystems is completely asynchronous.

In one computation step, each module in a subsystem chooses one of its transitions,

which is ready for execution (firing). Then the subsystem executes in parallel these

selected transitions and moves to the next computation step.

A transition is like a procedure, which can be activated when its firing condition

is met. A transition consists of two parts: clause-group (which defines the situation

in wlllch the transition can be fired, i.e., firing condition) and transition-block (set of

instructions to be executed).

Clause-group may contain any number of the following clauses:

from 51, ... , sN: ready-to-fire if the module is in one of 51, .. , sN states,

when ip. msg: ready-to-fire if msg is the next intera.ction ta be retrieved from inter

action point ip,

provided exp: ready-to-fire if Boolean expression ezp is true,

priority n: ready-to-fire if there is no other ready transition with a larger value of

priority parameter n,

29

•

•

delay (tI, t2): ready-to-fire if it stays ready for at least tl time and at most t2 time.

Transitions are atomic; they cannot be interrupted and take no time to execute.

After a single computation step is completed, firing conditions of all transitions within

the module are reevaluated and new set of ready-to-fire transitions is selected.

4.3 Estelle Development Tooiset (EDT)

EDT is a set of tools provided to allow and facilitate the development of implementa

tions for systems specified in Estelle. The most important tools, from the perspective

of our work, are: Estelle Compiler (Ec) and Estelle Simulator/Debugger (Edb).

Ec analyses an Estelle specification to check for any static errors and produces the

corresponding source code in C language. Since Estelle is stroogly typed language,

many kinds of errors may be discovered during tms compilation phase.

Edb is an interactive simulator, wllich allows the user to execute the specification

and discover all the run-time and semantic errors. It is a powerful tool; oot ooly does

it enable the user to observe and trace the behaviour of the system, but also it allows

to control and influence the execution.

Distributed systems are inherently hard to trace. Complexityand parallelism of

their components make it clifficult ta present and visualize the course of action; an

excess of trace data may prevent the user from locating the errors. Edb solves the

prohlem by giving the user freedom to customize IDS scope of interests - both in

terms of observed events and control of execution.

Simulation of an Estelle specification is completely interactive. The user can start,

advance, break, finish and restart the simulation. He can choose a granularity of the

execution by setting the number of transitions to he fired in one turn: from 1 (control

is returned to the user after each transition) to infinity (execution advances on its

own). He may use macro-commands and Edb scripting language to design rus own

simulation scenarios. He can also put sorne timing constra.ints on the execution,

30

•

•

which do not exist in the Estelle language, i.e., he can define both execution time of

transactions in a module and system management time (between transactions).

Nondeterminism of Estelle description is achieved by random selection of exe

cutable systems, modules, and transitions to be fired in each step of the simulation.

However, the user has an option to take manua.l control of the selection process and,

therefore, to enforce the future sequence of events.

Edb allows displaying and storing in trace-files various kinds of information about

the on-going simulation. It defines, for this purpose, a large set of functions, which

allow obtaining an insight concerning many aspects of the current execution status.

Among other things, it is possible to: identify the last module where a transition was

fired, identify the transition itself, display its input or output interactions (if any),

see the contents of queues, check the state of a module and even the values of its

internaI variables.

Perhaps the most powerful tool of Edb is the so-called observer. It is a user-defined

sequence of commands to be executed after each computation step. An observer has

the form of a simple script and is capable of using most Edb features, including aIl

predefined functions described above. The user may set observers to define events,

messages, modules, and variables to be traced. Observers can also be used to break

the simulation after occurrence of an event (either expected or undesired), which may

he particularly interesting for the user. This feature is very helpful in tracing rarely

occurring errors.

For further details about the tools, we refer the reader to the EDT documentation

[18, 19].

31

•

•

Chapter 5

Simulation Model

5.1 High Level Design

A general structure of a simulation model, created as a result of this work, is depicted

in Figure 5.1. The Q.2931 protocol is represented by a. pair of signaling entities:

UserSignEnt to control the user side and NetSignEnt to control the network side of

the UNI.

Figure 5.1 shows two sibling instances of the protocol: on interface A and B

respectively. By using names A and B, rather than terms "called" and "calling", we

want ta stress that those instances are functionally identical (they share the same

definition of Estelle modules) and they are equally able ta process both incoming and

outgoing calls. Any of them can pla.y either the role of the initiating or the remote

interface 1.

AlI the remaining modules are not parts of the Q.2931 specification, but they

reconstruct an environment in which the protocol is working and allow verification

of its behaviour. User modules simulate the activity of users and Network represents

NNI signaling protocols (e.g., BISUP).

lOr both, in case of simultaneous calls simulation; see Chapter 6.

32

•
User

Network

User

•

Figure 5.1: General structure of simulation mode!.

Modules in Figure 5.1 are interconnected by three types of channels: APlchannel,

UNlchannel, and NNlchannel. Only UNIchannel is interesting from the perspective

of UNI signaling. It is an abstract, bi-directional medium, which transports aU ten

signaling messages defined by Q.2931 between peer entities. APlchannel, which allows

the user to access signaling, and NNlchannel, which simulates the bridge between UNI

and NNI, were designed by us for use with this model and they do not represent any

factua1 standards.

For better understanding of how our specification corresponds to ATM reality, in

Figure 5.2 we projected one of the interfaces from Figure 5.1 onto the ATM proto

col stack. Dark shaded elements are Q.2931 modules, and light shaded ones (User,

BISUP) form the simulation environment. UNIchannel, even though it represents

33

•
NNI

•

ATM layer

Physicallayer

ATM layer

SAALinUNI

Pbysicallayer

•

UNI

1

ATMJayer

SAAL in UNI

Physicallayer

L

() ~91 t (l' \'t'rSiJ:/J Elit)
1

1

User equipmeDt ATMSwiteh

Figure 5.2: One interface from the simulation model placed in the ATM protocol
stack.

peer-to-peer communication and directly connects signaling entities, is drawn through

ail the layers of ATM reference protocol modeL It is intended to point out that the

information generated bya Q.2931 entity in the form of a. signaling message is, in re

ality, subsequently broken down by lower layers into la.yer-specific units (e.g., cells in

ATM layer), transported over physical media as a. bitstream, reassembled accordingly

on the other side of the interface, and submitted as a signaling message to the peer.

In the remainder of this chapter, we will present the details of ail our design

concepts and elements.

•
5.1.1 User Modules

A set of identical user modules represents al! kinds of clients (protocols, applications,

systems, etc.,) that are using UNI signaling to manipulate their ATM connections.

34

•

•

At any time during the simulation, the user may request the establishment of a

connection, up to the total limit of simultaneous calls allowed on the interface. The

user is responsible for providing all the information necessary for processing such a

request. After being notified about the acceptance, the user may keep the connection

active for as long as desired, and then the request for termination will be sent. In

our test cases, we were running the scenarios in which either just one user or bath of

them were granted permission ta terminate the connection.

After the signaling entity on the user side of the interface sends an indication that

the remote user wishes to set up a new calI, the local user has a choice ta accept

or reject this incoming connection. It is implemented by simultaneous activation

of "accepting" and "rejecting" transitions, and the decision is left to the Estelle

simulator. Depending on the choice, acknowledgment or request for termination is

sent in response. Again, in different scenarios, one or both users could reject or accept

the calI.

Additionally, a user cau receive information about the failed restart procedure,

which results in a channel being out of order. The user respects the const!quences,

i.e., does not place requests for the broken channel, but has no means to repair it.

Since there is no officially sta.ndardized communication between the user and

Q.293L the documentation does not specify any protection from the faulty behaviour

of the user 2. Therefore, our user modules are implemented to behave in a friendly

way: they do not try to cause any protocol malfunction by generating out~of-sequence

messages or by not responding.

Messages exchanged between the user and the Q.2931 protocol are defined in

Section 5.2.1.

5.1.2 Network Module

The Network module is the simplest of all elements in our model, even though it

simulates very complex activity. It represents the NNI signaling protocol together

2It would be the responsibility of the Application Programming Interface (API) definition.

35

•

•

with switching and inter-network routing mechanisms. This part of ATM protocols

is normally responsible for the difficult task of finding the route through the network,

setting the signaling connections hetween the switches (within the networks and he

tween them - see Figure 2.3), and delivering information to the remote interface.

In our simulation, the Network module merely carries messages between the

Q.2931 entities. The module is equipped with an array of interaction points. Each of

the interaction points is associated with the corresponding network interface. Their

number is control1ed by constant MAXPARTIES, and, in this specification, it is cur

rently set ta 2 (point-to-point connection). Network module is able ta relay messages

of the NNIchannel - descrihed in Section 5.2.2 - between any of the two points,

depending on the addressing information provided hy the network sides of interfaces.

With the current specification supporting only point-to-point connections, the fea

tures of this module are not fullyexploited. However, they were designed with future

point-to-multipoint calI support in mind.

5.1.3 Signaling Entities

A pair of Q.2931 entities, UserSignEnt and NetSignEnt, implement the beha.viour of

the entire ATM Forum UNI signaling 3.1, in a scope discussed in Chapter 3. A formal

specification of these entities constitutes the main goal of this work. The rationale he

hind splitting the functionality of a protocol into separate modules is that, depending

on their location on a physical interface, they have slightly different responsibilities

and require different mechanisms to communicate with their neighbors: user modules

and network module. Additionally, in a real implementation, NetSignEnt would he

a part of a switch and UserSignEnt would reside in the user's equipment; therefore,

they could he supplied by two different software vendors.

The signaling entities support multiple simultaneous calls in both directions: out

going and incoming. The detailed design of the modules is presented in Section 5.3.

36

•

•

5.2 API and NNI Interface Definitions

5.2.1 API Interface

As we already mentioned, the Q.2931 specifica.tion does not define what interface

should he used between the user and the protocol. It is left as an implementation

dependent issue, to he defined by the ATM users according to their needs. Commercial

vendors of signaling software packages offer their own versions of such Application

Programming Interfaces, either general or designed for particular customers (e.g.,

telecommunication companies).

In order to test the behaviour of our specification, we need such an interface as

weIl. In our case, however, it is not necessary to solve any practical problems that
are typical for real applications. We only need a communication scheme that would

allow the translation of basic intentions regarding the connection (establishment,

acceptance, rejection and termination) into the actions understood hy both involved

parties: the pratocol and the user.

Our design of APlchannel is based on the fol1owing messages:

1. messages sent by the user to the Q.2931 protocol:

cal1REQUEST - initiation of call establishment signaling procedures. It

carries two parameters: ID, which identifies the cannection, and data,

which contains cali characteristics required by the user: QoS, ATM traffic

descriptor, etc. ID has only a local meaning for the user and should not be

mistaken with the cali reference value. Data does not neecl ta he coded as

"Q.!991 user·network cali control", but it uses the same data structure and

the cali characteristics must he in a form. of valid information elements 3.

Additional1y, the message length element in data must be correct to assure

proper processing by the protocol;

3Infonnation elements will be copied directly to Q.2931 messages, sa if they are not coded pr0tr
erly, signaling error hanclling will reject them•

37

•

•

callTerminRQST - initiation of caU termination. ft may be generated for

an active connection, which means that the data transfer is over, or as a

response to an incoming caU indication, which means that the user wishes

to reject the calI. In either case, apart From the calI ID, the user shall

include data parameter with the cause information element indicating the

reason for termination;

callStatusRQST - initiation of status enquiry procedures From the user side.

In fact, the user's behaviour is not influenced by the resuit of status enquiry

procedures, but the message allows testing of this part of the protocol. This

message carries calllD ooly;

2. messages received by the user from the Q.2931 protocol:

callINDICATION - indication that the remote user requested the establish

ment of a new connection. This message includes caU ID and data, which
contains a. complete SETUP message received fr<:>m the network. In the

current implementation this information is Dot used, but in sorne future

work the user may analyze it to make a decision whether ta accept the

caU;

callTerminIND - indication that the connection has been cleared. This mes

sage may be received as a response to caliTerminRQST (as an acknowl

edgment) or may arrive unasked (when the protocol or the remote user

cleared the calI). Apart from ID, it includes aiso data parameter with the

cause information element provided by the protocol;

callOUTofORD - indication that the calI identified by lD is out of order

and sha.H not he used;

callStatusIND - indication of the result of status enquiry procedure. It

includes ID and data, which contains a complete STATUS message;

3. message sent and received by both the user and the protocol:

callACK - acknowledgment of the connection. If sent from the user to the

protocol, this message indicates that the user accepts the call. Ifsent in the

opposite direction, it acknowiedges that the call esta.blishment (outgoing

38

•

•

or incoming) has been completed and the caU is in active state. It contains

ID and data.

In the case of an outgoing calI, user initiates the connection by sending caURE

QUEST. After the Q.2931 completes its establishment procedures and is ready ta

award the calI, it generates a callACK message to the user. At this point, the con

nection is aIready in the Active state. If the call cannot be established (procedure

failed or the remote user rejected it), caIITerminIND is retumed by the protocol.

In the case of an incoming calI, the user is notified by callINDICATION. It may

respond with either ca.llACK or callTerminRQST. If the user sends callACK, the

Q.2931 completes connection establishment and aIso responds with callACK. If the

user sends caIITerminRQST, the protocol clears the connection and responds with

callTerminIND.

When the user wants ta clear an already existing connection, it generates call

TerminRQST. The protocoL starts release procedures and, after they are completed,

responds with callTerminIND.

When Q.2931 initiates clearing, it sends callTerminIND. The user sha.H consider

connection released right a.way and there is no need for an acknowledgment.

5.2.2 NNI Channel and Routing Simulation

NNIchannel, which is meant ta simu1ate the information transfer between UNI and

NNI signaling entities, consists of only three messages:

• NetSETUP, used to notify the called interface about the connection,

• NetCONNCT, used to inform the calling interface that the call has been
accepted,

• NetRLEASE, used to inform the calling interface that the call has been re

jected, or to notify any of the interfaces about calI clearing.

39

•

•

AlI three messages carry two parameters: data and NN[Tag.

Data contains information necessary for further connection processing, and it is

always a copy of eorresponding signaling message (SETUP, CONNeT or RLEASE).

NNITag is an additional parameter, which allows the Network module to find

the destination of the message. It is necessary, together with certain bookkeeping

mechanism, because - except for SETUP - signaling messages do not contain an

address of the called interface. Moreover, the cali reference value, which identifies calI

on the interface, has only local meaning. Without the additional information carried

by NNITag, ooly SETUP message would fiod its way to the destination, however,

it would be impossible to convey a response. Even if there is no problem with the

identification of the destination interface 4, received response (e.g., NetCONNCT)

must still be assigned to the particular connection, but it contains only the remote

user's caU reference, which has no meaning to the receiver.

In our implementation, this problem is solved by including the NNITag with the

following elements:

• srcAddr, an ATM address of the sending interface,

• srcCallReJ, caU reference value used 10calIy by the sender,

• dstAddr, an ATM address of the destination interface,

• dstCaliReJ, ca.ll reference value used locally by the destination.

When the signaling entity on the network side of the interface sends NetSETUP,

it fills three of four fields of NNITag: srcAddr (its own address), dstAddr (retrieved

from mandatory calling party number information element), and srcCal/Ref (local).

It is, obviously, not able to fill dstCallRef sinee this value has not yet been assigned

(the remote interface does not even know about the call yet). The receiving interface

copies all this information into the entry in the so-called Correspondence A rray and

appends its own cali reference value allocated for the new calI. Correspondence Array

4Sînce in point-to-point signaling there only two interfaces, for each of them "the destination"
means simply "the other one" .

40

•

•

is used during the remainder of the call as a translation table between calI references

on the two interfaces; NNItags of sent messages are filled with this data. Initiating
interface has a Correspondence Anayas well, and it creates its own entry upon the

reception of complete NNITag in the first response to NetSETUP 5. In reality, similar

translation mechanism would be executed by NNI signaling, at each step of switching.

ATM addresses used in our specification are coded according to ISO E.164 Inte
grated Services Digital Network standard and are meaningful for the Network module.

As a matter of fact, the Network module does not analyze the whole address, but only

one octet of End System Identifier which corresponds to identification of interfaces
within the domain 6.

Each interface has a number which is encoded in the 14th byte of an ATM ad

dress, and this number is used by the Network module for relaying messages between

appropriate interaction points. Since one octet of the address is used, the number

of interfaces which can be connected ta the Network module is currently limited ta

256 i. In reality, these issues would be addressed by routing algorithms.

5.3 Signaling Entity Modules Description

The structure of bath signaling entities: UserSignEnt and ."letSignEnt is presented

in Figure 5.3. Since their overall design is aimost the same, we will rerer to a. single

SignEnt in the description and, where necessary, we will point out the differences.

SignEnt contains a set of its children modules called CalI Control Units or, brieHy,

CC units. Each of the identical CC units takes care of one single call, from the time

it was requested until it is released. Finite state machines for connection processing

are implemented in these units.

As seen in Figure 5.3, SignEnt modules communicate using ooly one UNlchan

nel which spans their external interaction points: UNI_USignIP and UNI-NSignIP.

5Actually, it is not necessary in case of only two interfaces. However, if there are more than two,
such information will he required due to the lack of calling party number in RLEASE message.

6More about E.164 can be round in Appendix A.
7Which seems to he enough for any simulation purposes. If not, it may be easily increased ta

accommodate up to 6 octets long identifiers.

41

•

•

1
APl~

lAPJ..USJpIP-
• .ur.rœ. • ulllSlpBat

APIl .u-mlt-
CID

CODImI
Unit

UNIe!::
• • ~ • •1JJDtUNl[i]

UNLUSipIP

tJNU-1SipIP

• .~. • NetSlpEnt
UNlj

.u....-
CaB

Control
Unit
-

NNll:;
• • ~ • •NJdNI(i)

- NNlJlWpIP
T

NN1dt18t1l

1

Figure 5.3: Signaling entity modules.

It corresponds to a single signaling virtua! connection used by the Q.2931 protocol

(VCI=O, VPI=5). Messages exchanged on the UNlchannel have a1most the same

names as defined in the specification, except that they may he shortened: STA

TUS-ENQ, RESTART-ACK, or slightly modified: CONNCT, RLEASE 8. SignEnt

8We need to modify them, because both Tf!lease and connect are reserved keywords in Estelle.
From now on, we will use these modified names in the remainder of the document.

42

•

•

module contains also an array of internai interaction points, used for communication

with its CC units.

The main functions performed by SignEnt module are:

1. managing all CC units: dynamic creation of units upon the reception of calI
requests and their destruction after they are done with calI processing,

2. administration and allocation of resources for new calls: assigning available caIl

reference values, selecting VPI/VCI values for a call (NetSignEnt only), book

keeping of connection status (used, empty, restarted, out of arder) and main
taining Correspondence Array for the purpose of routing (NetSignEnt only),

3. dispatching messages from the external interaction point to their respective CC
units, as weil as conveying messages from the units outside,

4. verifying the structure and contents of ail messages received through the

UNlchannel,

5. conducting most of error recovery procedures associated with format and mes

sage contents errars,

6. handIing all restart procedures.

The following are short explanations for for the above functions:

Function 1, 2: The first step taken by UserSignEnt after the reception of callRE

QUEST from the user is an allocation of the cal! reference value, to be used by aIl
messages relating to this new connection 9. UserSignEnt inserts this value in a slot of

its internai administration database Re/Array, marks the caU as "used" and initiaIizes

a new CC unit. Links between external interaction points of CC unit and internai
points of SignEnt are created and calIREQUEST is passed to the unit for processing.
After CC generates SETUP, UserSignEnt conveys it to NetSignEnt. On the other
side of the interface, NetSignEnt aIso needs to al10cate the resources. It does not

involve calI reference (since call already received this value from UserSignEnt) but it

9See Section 5.5.5 for Curther detaifs.

43

•

•

includes allocation of empty slot in RefArray and VPI/VCI values for the connection.

If it tS successful, NetSignEnt initializes CC unit, links appropriate interaction points

and passes SETUP ta the unit for processing. A message generated by CC is sent to

UserSignEnt. If this is CALL-PROCEEDING or CONNCT, it contains mandatory

VPI/VCI values, so that UserSignEnt may insert them into its interna! database.

In case of incoming caU, the procedure is a Little bit different. Since here NetSig

nEnt is the side which initiates the establishment, it must allocate both caU reference

and VPI/VCI 10. Therefore, SETUP received by UserSignEnt contains full informa

tion about the connection and no later updates in RefArray are necessary.

When the connection is terminated and CC unit is no longer needed, SignEnt

destroys the unit and removes from its databases all the information about the caU.

Function 9: Throughout the whole course of connection processing, SignEnt mod

ules pick messages generated by CC units and simply relay them from internaI interac

tion points to the externat point (UNI_USignIP or UNI..NSignIP respectively). In the

other direction, SignEnt picks a message from its externa! interaction point, retrieves

the caU reference information element, locates in RefArray the CC unit associated

with this calI reference and passes the message.

Function 4, 5: AIl Q.2931 messages that cross the UNlchannel are subject to the

detailed examination described in Section 5.5.3. Messages are tested by the SignEnt

module right after they are received. If they fail the verification, SignEnt triggers

error recovery. Most of the error handling procedures, except for unexpected message

detection, are located in this module.

Function 6: Restart messages, used to return caU or calls to Null state, are never

forwarded to CC units and are entirely processed by SignEnt. This module is respon

sible for running restart timers, updating information about the states associated

with Global CalI Reference (Null, Restart Request, and Restart), blocking forbidden

simuitaneous restarts, resending RESTAItT upon timer expiry, responding with ac

knowledgments, etc. If restart is successful, SignEnt destroys CC unit(s) of involved

ca1l(s) and it is the ooly case when it makes this decision on its own, without waiting

lOThe specification requires that VPlfVCI are always assigned. by the network. User sicle may
ooly reject proposed values, but cannot suggest anything on its own.

44

•

•

for permission from the unit. If restart failed, SignEnt marks caU as out of order

in RefArray and it sbould notify the maintenance entity. Since we decided, for sake

of clarity, not to include maintenance module in our modei 11, we substituted this

notification with caiiOUTofORD message sent to the user by UserSignEnt. Restart

being local, it does not involve the remote interface, sa NetSignEnt does not send

anything in this situation.

5.4 CalI Control Unit Description

CC unit module is a formaI description of a finite state machine for caU control

procedures defined in ATM UNI signaling documenta.tion. It represents a single ATM

connection on a given side of the interface. Units from network and user sides of UNI

realize the same functionaIity, but they do not sbare the same Estelle definition.

A module communicates through its two external interaction points: UserIP and

NetIP. How those points are linked by channels depends on where the module is

located (see Figure 5.3). Each CC unit has three exported variables that are shared

with SignEnt:

• CCiVr. identifier of the unit in SignEnt; it is also used as a position of the

correspooding entry in RefArray,

• CCState: cucrent state of the unit; even though internai cali state does oot

concem SignEnt in general, it is necessary in sorne error recovery actions (e.g.,

upon reception of a message with missing elements, SignEnt must respond with

STATUS which contains cali state),

• Done: Boolean value used to inform SignEnt that call control is completed and

the unit may be destroyed.

The main functions of Call Control Unit are:

111f included t this module would Dot do anything anyway, since repairs to be clone are Dot specified.

45

•

•

1. implementing ca.U establishment and release procedures,

2. implementing status procedures,

3. error recovery associated with incorrect behaviour of connection: unexpected

messages and non-responding caUs,

4. initiating restart upon a failure of release procedures.

Function 1: When the CC unit is notified about a new caU, it creates a SETUP

message with all the information provided in callREQUEST or NetSETUP. Con

nection specifie data necessary for composing the message (e.g., caU reference value,

VPI/VCI values) are passed by SignEnt during initiaIization as a parameter called

context. In fact, conte:ct is simply a copy of a corresponding entry from RefArray.

After SETUP is sent and caU establishment initiated, the CC unit processes incom

ing messages, generates its responses and changes states in a manner explained in

Section 3.3.3. Since messages received by this module successfuUy passed the test in

SignEnt, the unit assumes they are free of errors. As weIl, aU the messages produced

here have valid forro and contents.

Function 2: Upon reception of caUStatusRQST, CC unit on the user side of the

interface generates STATUS..ENQ message, without changing its state. Since the

specification does not define any kind of "'remote status enquiry" (soliciting the status

of the remote interface), there is no way for the network side to send such a message.

Nevertheless, wl1en STATUS-ENQ is received, both sides are obliged ta reply with

STATUS. This response does not change the caU state. When the STATUS message

is received, tl1e CC unit analyses its content. If cause element indicates that it is

a response to status enquiry, the user is notified by callStatusIND. If cause element

indicates that this STATUS was sent byerror recovery procedures, unit initiates caU
clearing.

Additionaily, if cause element does not report any problem, but call state element

indicates that the call state on the other side is Null, the CC unit also goes to Null

immediatelyand sets its Done variable to true, in arder to let SignEnt destroy the

unît.

46

•

•

Function 3: CC unit module provides a set of traps: transitions intended to

intercept aU unexpected (out-of-sequence) messages. A trap is activated if a. message

is received that should oever arrive in a given state. Traps do not change a calI state,

but they generate a. STATUS message with the cause element coded as "message

incompatible with the caU state".

CalI Control Unit is responsible for running the timers associated with the calI

(except restart timers), resending the messages upon the timer expiry (if aUowed),

and terminating non-responding connections.

CC module is also able to detect lack of mandatory cause element in

RLEASE. Such messages are processed normally as if they were correct, but

RLEASE_COMPLETE sent in response contains the cause element coded as "manda

tory element missing". This is the only situation when handling of the message con

tents error is done by CalI Control Unit; normally, such procedures are located in

SignEnt modules.

Function 4: In cases when caU clearing fails, i.e., the timer associated with release

procedures expires for the last time, CC unit module generates RESTART. It does

not carry on restart procedures, however. They are conducted by SignEnt.

5.5 Implementation Issues

5.5.1 Resolution of Deflciencies in Specification

One of the main advantages of formal specification is that it requîres the designer

to define the protocol in an unambiguous way, without deficiencies and uncertainties

typical for the traditiooal forms of description. Even though, in our opinion, Q.2931

is a carefully and quite coherently defined protocol, we needed to resolve some of the

issues not (or not dearlyenough) addressed by the documentation. Examples of such

problems and their solutions are given below. Sections and pages cited here refer to

the ATM Forum UNI Specification version 3.1 [7}.

47

•

•

Deficiency: 1t is defined that "... when both sides of the interface initiate simul

taneous restart requests, they shaH be handled independently. In the case when the

same virtuaI channel(s) are specified, they shall not be considered free for reuse until

ail the relevant restart procedures are completed." (Section 5.5.5, page 251)

When there are parallel incoming and outgoing restarts for the same channel, one

of the independent procedures might be successful and the other not. What should he

done by successfully completed incoming restart in case when failed outgoing restart

finished first and already marked the channel as out of order? Should this decision

be changed? Should RESTART..ACK he sent?

Solution: We decided, that the intention of out of order link marking is to

require an external intervention of maintenance entity and that Q.2931 cannot in

any way impact this process. Therefore, a channel once considered broken cannot be

reused even if the incoming restart procedure succeeded in bringing it to Null. No

acknowledgment is sent (we do not want the other side to consider this channel to be

restarted).

Deficiency: 1t is not specified what should be done after the arrivai of RESTART

specifying a channel that is marked as out of order.

Solution: For the SaIne reasons as above, we decided not to send an acknowledg

ment. ACter severa! failed attempts of restarting the channel, the other sicle will ha.ve

no choice but to mark this channel as ou.t of order, too.

Deficiency: ACter the reception of RESTART specifying that "ail channels con

trolled by the layer 3 entity" shall be restarted, should acknowledgment he sent if

sorne of the channels were previously ou.t of order and, therefore, were not restarted

with a.H others?

Solution: We chose not to consider broken channels as included in restart request
(since it is heyond the means of the protocol). RESTART..ACK will be sent if all

working channels at the time of arrivai were successfully restarted, even if it does not

mean that aIl channels controlled by SignEnt are opera.tional.

Deficiency: 1t is defined, that when the destination interface is notified about

the call establishment" ... (SETUP message to the called user] is sent by the network

48

•

•

only if resources for the caIl are availablej otherwise, the cali is cleared toward the
calling user" (Section 5.5.2.1, page 246). Cause for this clearing is not specified.

Solution: We chose to use cause #47: "Resources unavailable, unspecified."

Deficiency: It is specified, that the timer T322 (associated with sending STA

TUS-ENQ message) shaH be stopped upon the reception of any clearing message

(page 259). It is not clear, what should be done if the clearing message is not re

ceived, but sent by the same entity which generated STATUS-ENQ. We may have

such a situation if there is another timer running simultaneously on this side (e.g.,
T310 associated with Outgoing Call Proceeding state) and this timer expires first.

Solution: We decided ta stop the T322 timer in any case of clearing: either

outgoing or incoming. Otherwise, we would have second RLEASE sent after T322

expires, while the calI is already in Release Request state.

Deficiency: It is specified, tha.t both RESTART and RESTART-i\CK messages

shaH be used with Global CaU Reference values. The specification does not define

any error handling actions, if one of these messa.ges is received indicating different

calI reference.

Solution: If the message is otherwise correct and contains aIl necessary informa
tion, vve decided to ignore the caIl reference value and processs the message as if it

arrived with Global CalI Reference.

5.5.2 Message Structure

The general message structure is the same for all messages used in our implementation

and is presented in Figure 5.4. 1t has been designed to reHect very c10sely the Iayout

of the original signaling messages.

The basic elements of the message are octets, which are grouped together to con

tain information elements specified by the Q.2931 coding standards. Each signaling
message has four mandatory, fixed length elements: Protocol discriminator, Gall ref

erence (CallRefL is length and CallRefV..CallRetV3 contain value), Message type and

49

1 1

ommmoo:c.••)
VLIB[•••I-.-1e-_II(_.I

JdIB

Coataltl(5)

ComplllltrIE

(...)

ProtDiJcr

CaDR.efL

CaIIRefV
- -

CaIIRefV2
1"'- -

CaIIRefV3

MsI'I)pe
1"'- -

MsI1)pe2

MssLqdl
'- -
MsiLeqtb2

VLIB(l]

•
PmIDcDIDiIcriJrfbr4IDr {
CtMlllejna&e La'" {

CaU Re/emIœ MUue

MU8Gp7)pe {
MUMJ,e LIIIgth {

Figure 5.4: General message structure.

l\iIessage length (in octets). When a.n element occupies more than one octet, the first

octet in the group is the most significant, e.g., CallRefV, l\JIsgType, and the last octet

is the least significant, e.g., CallReN3, MsgLength2. It is important to note, that

the octets used for these four fixed elements are not included in the value of message

length.

The remaining part of the message is an array of 50 called VLIEs: variable length

information element records. They are used to encode all remaining information

carried by the message. Each VLIE record consists of:

•
1. IdIE (mandatory, 1 octet) - Identifier of Information Element,

2. CompInstrIE (mandatory, 1 octet) - Compatibility Instruction Information
Element. It contains Coding Standard Field and IE Instruction Field. In this

50

•

•

implementation, bath are coded to aIl Os, which has a meaning: "ITU-T stan

dardized coding standard with lE instruction field not significant (regular error

handling applies),"

3. LengthIE, LengthIE2 (mandatory, 2 octets) - length of the information ele

ment. As it is with message length, element length aIso do not include octets

used by the header: IdIE, CompInstrIE, and lE length itself,

4. Contents (optional, variable length) - an array of octets. It contains the re

mainder of this information element. Its range starts from 5, in order to preserve

numbering of octets (header takes 4) and a compatibility with the documenta

tion.

Constant MaxIELength, which controis the size of the Contents array, is set to 34

and constant MaxNrIEs, which contraIs the size of the VLIE array, is set to 18, in

order to accommodate the largest possible signaling message.

The same da.ta structure is also used for communication on APlchannel and
NNIchannel, but, in these cases, contents of the first 3 fixed elements in the mes

sage does not matter. The message Length element is still important for correct

detection of the end.

5.5.3 Message Check

Message checking (and consequent error recovery, if necessary) is a very important

part of the SignEnt module. It is performed every time the signaling message arrives

through UNlchannel, and it is broken into two phases:

Testing - checking for presence and validity of all mandatory elements. Number

of messages and variety of elements in different parameter configurations make

it a tedious and fakly complex task, executed by large function msgCheck,

Reacting - i.e., following one of possible patterns of processing, depending on the

result of the testing phase. This part is implemented by two transitions: one
for correct and the other one for incorrect messages.

51

•

•

An outline of the Estelle solution for this mechanism is presented in Figure 5.5.

trans
when UNLU5ignIP.CONNCT.ACK

provided msgCheck(data, CONNCT..ACKtype. RefArray)=OK {- SUCCESS -}
name MessageProcessing:
begin
cRef:=getCaliRefAII(data);
cRef:=aIterCRFlag(cRef);
position:=findCaIlRef(cRef. RefArray);
output UlntUNI[position).CONNCT.ACK(data);

end;
provided otherwise {- FAlLURE -}

name ErrorHandling:
begin
testResult:=msgCheck(data. CONNCT.ACKtype, RefArray);
cRef:=getCaIiRefAII(data); { get info about the cali}
cRef:=alterCRFlag(cRef);
if testResult=Discard then

begin
{ ignore message - do not do anything}

end
else if testResult=lncorrectUseGlobalCR then

begin
(...) {send STATUS message with Global CR state}

end
else if testResult=Non ExistingCall then

begin
(...) { :seTld Release Complele - cali rel"al recognued as relating ta a ,ail}

end
else if testResult=MandatorylEMissing then

begin
(...) { send status with cause #96 - mandatory element is missing}

end
else if testResult=MandatorylEBad then

begin
(...) {send status with cause #100 - invalid infonnation element content}

end
end;

Figure 5.5: Message checking and error handling for CONNCT..ACK.

The first transition (marked SUCCESS) defines actions to he taken, when the mes

sage passed the test successful1y, Le., msgCheck retumed OK. Most of the messages

52

•

•

will be simply sent to their respective Call Control unit modules l2.

The second transition (marked FAILURE) is fired if msgCheck returns anything

other than OK. First the transition must invoke msgCheck once again ta repeat the
testing, since it is not possible to use assignments within the conditional expressions

in Estelle. When the exact diagnosis of a problem is known, appropriate actions are

taken.

Careful analysis of error handling procedures in Q.2931 shows that aIl errors re

lated to the message contents may be grouped into five distinct classes, each associated

with its own pattern of processing. They correspond to the following test results:

• Discard: for aIl types of severe errors, which do not allow reading of sorne or
all parts of tb.e message header; also for sorne caU reference errors in SETUP or

RLEASE_COMPLETE,

• NonExistingCall: for calI reference values indicating connections which do not

have their CalI Control units while the type of message requires CC 13,

• IncorrectUseGlobalCR: for Global CalI Reference values found in messages which

are not allowed to use them,

• 1~/andalQryIEAfissing: for messages without one or more variable length infor

mation elements, which are considered mandatory for this message type,

• MandatoryIEBad: for messages with one or more variable length information

elements, which are considered mandatory and have invalid contents.

Actions assigned to these cases depend on the message type - Figure 5.5. shows

their examples for CONNeT..A.CK message.

12Depending on the type oC message, some variations ta this scheme May happen (e.g., additional
check for Global Call Reference, if message is allowed ta use it).

13Examples oC messages which do not require the presence of CC on their arrivai are: SETUP and
STATUS with Global CalI Reference.

53

•

•

5.5.4 Timers

When describing the Estelle language, we mentioned an important type of transitions
with so called de/ay clauses (Section 4.2.3). These transitions introduce a notion of

time into Estelle and allow us to implement timers.

The signaling specification defines timers in different states of calI processing to

limit the maximum response time of the other side of the interface or, in sorne cases,

the response time of the remote interface. SignEnt and CC unit modules must be

able to start the timer, detect its expiry, restart it and finally stop it at any given
moment. Certain actions must he performed upon each timer expiry; moreover, they
can be different every time the timer expires.

As the reader may recall, all transitions in Estelle are atomic and take no time to

execute. It should he clear then, that there is no possibility to implement the timer

in the form of a single transition; instead, we must define the whole set. We are
aIso constrained by the fact that we cannot define separate timer states (e.g., stop,

running, restart), since module sta.tes in our implementation are reserved for caU

states. Additionally, we would like to have one universal timing mechanism, which

could he easily copied in many different situations and states without any major

changes.

An outline of the solution which satisfies al! the above conditions is presented

in Figure 5.6. Timer T3D3 is used as an example here, but ail other ones in our

specification are based on the same concept.

Among the 4 transitions involved in timer T303 operations, only those named

RUNI and RUN2 are purely designed for timing. Transitions START and STOP,
which tum the timer on 0[' off, have aIso other duties, for example: processing and

sending the messages.

Initially, the value of T303tryLimit is 2 and T303run is 0, therefore RUNI and
RUN2 are disabled (their firing conditions are false). When the transition START is
executed, T303run changes to 1 and RUN1 becomes enabled. Sînce it îs a. delayed

transition, it ma.y tire ooly when it stays enabled for T303timeout period of time. H
during that time STOP does not fire and T303run is still l, the action defined for

54

{destroy this module • internaI clearing}
{stop the timer}

{ stop the timer T303}
{ start the limer T310}

•

•

from UO to Ul { START tuma the limer on upon sending of SETUP}
when UserIP.caIlREQUEST

name START:
begin

{create SETUP message and copy aU global info /rom what user sent}
createMsgQ2931(stpdata, SETU Ptype. context.caIlRef);
copyGlobaIlEs(stpdata. data);
output NetlP.SETUP(stpdata);

{start T303 timer}
T303run:=1;

end;

from Ul to same { RUNl - timing for the firsl lime}
provided (T303run > 0) and (T303run < T303tryLimit)

delay(T303timeout)
name RUN1:
begin
output NetlP.SETUP(stpdata); {resend SETUP alter expiry}
T303run:=T303run+l; {increment the control variable of the timer}

end;

from Ul to UO { RUN8 - timing for the last time}
provided (T303run=T303trylimit)

delay(T303timeout)
name RUN2:
begin
Done:=True;
T303run:=O;

end;

from Ul to U3 { STOP tums the timer off}
when NetIP.CALLPROCEEDING

name STOP:
begin
T303run:=O;
T3l0run:=1;

end;

Figure 5.6: Implementation of example timer T303.

RUNI is executed (here: SETUP is resent) and the value of T303run is increased by

1. Since it is DOW 2, RUNI is disabled and RUN2 becomes enabled. Transition RUN2

contraIs the last run of T303. Again, if it succeeds to stay enabled for T303timeout, it

55

•

•

executes actions defined for the final timer expiry (here: calI clearing) and, eventually,

turns itself off, i.e., T303run is set to o. At any time, if an event defined for transition

STOP satisfies its firing condition (here: arrival of CALL-PROCEEDING), STOP

fires and tums the timer off.

5.5.5 Cali Reference Allocation

Gall reference is mandatory for each message, and it consists of calt reference value

and flag.

Value is coded on 23 bits, which corresponds to the decimal range 0..8388607.

However, neither end of this range can he used for calI identification, since they are

bath reserved by ATM Forum: 0 (binary all Os) is used for Global CalI Reference and

8388607 (called "dummy", binary all 15) is reserved for future purposes.

In our implementation, each subsequent allocation produces a unique value in a

valid range, which is always larger than the one allocated recently. The last constraint

follows a suggestion in the documentation, that implementations should not reuse the

caIl references right away after they are released 14. Allocation is cyc1ie, i.e., after

reaching the upper limit (8388606), it starts again from 1.

As we have already explained, a call reference value may be assigned by either

side of the interface: always the one which initiates the calI. It poses a problem, that

the same value may be allocated simultaneously by user and network sicles to two

different calls, hence, i t might fail to unambiguously identify the connection on the

interface. UNI signaling resolves this issue by using the cali reference]lag.

Flay is located in 24th, the most significant bit of the calI reference element. Its

purpose is to identify the side of the interface, that allocated the cali reference value.

Flag is always set ta 0 by the originating side and always set to 1 by the destination.

. Even if the same value is assigned by two sides, on each of the sides it will have a

different Hag and it may he properly distinguished.

L4Even though it is rormulated as a mere "suggestion", non-complying May result in serious
malfunctions in the protocol (800 the next chapter) .

56

•

•

In our implementation, we simply negate the flag bit every time it crosses the

UNlchannel, before it is used to find a correspondiog CC unit in RefArray database.

In this way, all entries in RefArray with flag=O describe calls originated here, and all

entries with Bag=l describe calls initiated on the other side. Since the flag is stored

together with calI reference value (as one integer), the signaling entity does Dot even

need to consider the origins of the caU in order ta correctly dispatch its messages 15.

15Note, that whatever the value of a flag on a given interface is, after being sent back and forth
(hence negated twice), it will be eventually the same as in the beginning.

57

•

•

Chaptel' 6

Testing and Validation

6.1 Introduction

As the final step in the development process, we needed to design some mechanisms

for validation of our simulation mode!. Sucb mecbanisms provide a mea.ns for sys

tematic testing of the formai specification, fixing errors, and convincing us that our

model behaves as we intended. In general, we may higblight two major goals of the

validation:

1. It must show that the formai protocol specification confOrInS ta tlle informaI

definition, tha.t is, the behaviour of the proposed solution is identical to the

requirements defined in the standard. This part concentrates on the implemen

tation; it verifies accuracy of designer's own ideas, algorithms, procedures and

data representation,

2. It must show that the pratocol itself conforms ta the intentions of its creators

and achieves its goals, e.g., the protocoi can set up and tear down the connection,

recover from a.ll kinds of faulty conditions and ensure continuous service for the

user (no deadiocks, correct resource management, etc.). This part concentrates

on both the implementation and the specification; it verifies that the protocol

can actually deal with real-life situations.

58

•

•

We described validation as the final step of formal protocoi specifica.tion because

major testing efforts are taken aIter the code is written. It does not mean, how

ever, that the validation begins at this point. In fact, it starts at a very early sta.ge,
together with the first outlines of the design. In order to he able to test the speci

fication efIicientlyand thoroughly, we needed to think of its testing at each step of
the development. Many issues had to be resolved not only to have the most effi

cient code, but also the one which couid he easily tested. As a matter of fa.ct, in
sorne particular cases, the validation methodology was the most important factor; for

example, APIchannei was designed to test the protocol rather than to provide any

reailife functionality. Validating such a "testing conscious" implementation gives us

a very important advantage in comparison with testing of a commercially ava.ilable

signaling package: without an additional code instrumentation we are able to observe

aIl internal actions of the protocol. It facilitates the validation process - wllich is

complicated enough - and reduces the number of testing cases and messages. For

example: iostead of invoking status enquiry procedures to check the caU state after

each message, we can simply examine the internaI CC module state; instead of wait

ing for time-outs to see if the timer is 00, we can check the firing conditions of the

timer transitions.

After we coded the protocol in Estelle, we compiled it using the Estelle Compiler,

Ec. Since Estelle is based on very strict Pascal syntax and its own extensions push this

formalism even further l, Ec is able to discover many problems that are normally not

detected in case of other progra.mming languages. Not only clid it allow us to remove

many syntax errors, but aIso forced us to review sorne of the semantic problems and

design faults that became apparent during the compilation.

After the above errors were corrected, we moved to the most difficult and tedious

task of the protocol validation process. We conducted a series of simulations executed

io different environments and for different parts of the protoco1. The main purpose
was to find aIl semantic and mn-time errors, and to collect convincing evidence of

correct protocol operation. We built severa! testing environments, prepared appropri

ate test cases, and ran them using the Estelle Debugger/Simulator, Edb. Depending
on the testing scenarios and verified functionalities, simulations could be executed

1 For example, Estelle requires that aU Pascal functions must he pUTe, i.e., they do not ha.ve any
side effects.

59

•

•

manually (step-by-step control, with thorougb. analysis of each fired transition), or

they could be fully automatic (non-interactive experiments, ruoning severa! hours

and control1ed entirely by Edb or custom defined scripts). Edb observers were used

to trace the protocol activityand report all results.

The remainder of this chapter gives the details of our testing methodology, simu

lation environments and obtained results.

6.2 Methodology

The literature provides us with the broad spectrum of validation methods: from

exhaustive, complete approaches, which verify all possible cases, to more traditional

testing, which takes into account ooly sorne carefully selected subset of important

(from the user's point of view) scenarios [20}. The discussion of advantages and

disa.dvantages of particular methods is far beyond the scope of our work. For the

purpose of this document, it is only important ta note that, overall, it is difficult to

find the best validation method for a real, complex communication protocol. Each

approach has a certain cost associated with it, both in terms of effort and time

necessary to obtain the results. Exhaustive testing is trustworthy, but is just too

expensive. Less formai .. cheaper tests do not prove correctness. For a fairLy complex

protocol such as Q.2931, combinatians of states, messages, and carried parameters

may cause "state explosion", which means tha.t the set of possible cases and testing

scenarios grows beyond a manageable size. Obviously, sorne trade-offs are necessary:

the validation process has to be carefully designed to minimize the cost, but it must

also cover all areas of protocol operation and provide enough evidence of correct

behaviour.

We drafted our approach based on the ideas used for validation of the XTP pro

tocol specification in [21, 22, 23}.

We have broken the validation into two ma.jor steps:

Unit testing. Each distinct element of the signaling protocol (Le., Call Control Unit

on bath sides of the interface, UserSignEnt and NetSignEnt), is extracted from

60

•

•

the original model, placed ioto its own simulation environment a.nd validated

separately. This allows us to make sure that all these elements exhibit expected

behaviour both in ideal conditions and in the presence of errors. By splitting

this step into separate testing of Call Control and SignEnt modules, we can

concentrate a.t any given moment only on functions that are realized within the

particular module. It introduces a. natura.1 order of testing scenarios and greatly

simplifies locating of errors. Since both sides of the interface communicate using

different interfa.ces, we need separate testing environments for each side.

Interoperability testing. Validated and corrected basic elements of the protocol

are put together into one model and tested in regard to their cooperation and

mutual communication. It is necessary to check that individually correct ac

tions of an parts constitute an equally good entirety, and that they do not lead

the whole simulation into faults (such as deadlocks or contradictory activities

of signaling entities). Also, only at this point, can sorne globally meaningful or

implernentation dependent issues can be tested, together with the definition of

the protocol itself (e.g., usefulness of error recovery procedures). Simulations

are conducted with many simultaneous calls, both in an ideal, "friendly" en

vironment, where messages are conveyed without any problems, as weIl as a

"hostile" one - messages can be delayed, corrupted, and lost.

Before we can move to the first phase of validation, it is necessary to decompose

the formal specification into the set of separate, basic functionsj assign them to their

respective Estelle modules (in which these functions are implemented); and schedule

them to the appropriate testing steps. Table 6.1 presents the validation schedule for

ail major functions described in Sections 5.3 and 5.4.

6.3 Call Control Unit Testing

6.3.1 Set-up

Two environments used for Call Control unit testing are depicted in Figure 6.1.

61

•

•

Tested function Location

Forma.t and contents of genera.ted messa.ges CalI
Message sequence for call establishment/release
Timers associated with establishment/release Control
Response to unexpected messages
Status enquiry procedures Unit
Spontaneous (unrequested) STATUS handling
CalI reference and connection identifier selection
Dynamic alloca.tion/release of CC units Signaling
Message dispatching
Message check and error recovery Entity
Restart procedures
Complete establishment/release procedures
Managing simultaneous caUs Complete
Resource alloca.tion (continued)
Error recovery (continued) Model
Deadlocks and other abnormali ties

Table 6.1: Verification schedule.

Other Sicle Test module is a. generic module, wrnch ah'lays plays the role of the

opposite, currently not tested, side of the interface. It can accept and generate any

message standardized by the Q.2931 specification. It does not contain anyalgorithm,

however, 50 it cannot process received messages (they are discarded) or send anything

out on its own initiative (allsent messages must be manually requested by the user).

User Test and Network Test have similar tasks, but they simulate User and Network

modules and use the mess&.ges defined for their respective interfaces: APlchannel and
NNlchannel.

We are able to force each of these Test modules to send any type of message

we want and observe the reaction of the Call Control Unit. The simulation is exe

cuted step-by-step and the outcome is constantly examined. Every time when one of

the Test modules (User, Network, Other Side) should respond, we have a choice of

providing either a. desired or an unexpected message.

62

•

•

•

User Test OtherSide

a) b) Test

1]
~

~~
U-n'

Il
NedP

1
NetIP

]
~ ~

OtherSide Network
Test Test

Figure 6.1: Test environments for caU Control unit on the user (a) and the network
(b) side.

Technically, generation of messages by the Test modules is based on conditional

transitions with initially faIse firing conditions. When we wish to send any message,

we use one of the debugging features of Edb: an ability ta modify interna! module

variables. We can access a Boolean variable controlling the condition of the appro

priate transition, change it to true, and force this transition to tire. The last action

executed by the transition is always retuming its control variable to false, 50 that

there are no further messages sent, unless we request them again. Messages used in

this phase have correct fonn and contents, since message check is not tested in CC
unit 2.

Becallse of the large number of possible test cases, they will not he presented

here. Instead, in Figures 6.2 and 6.3 we have shown some example scenarios of

message exchange in fault-free situations. Sorne test c~es for erroneous conditions,

2Except for the lack of cause element in RLEASE.

63

•
such as out-of-sequence messages, mayalso be easily derived from these figures by

replacing correct responses with aIl possible unexpected ones. Please note, however,
that unexpected SETUP is a special case, which is always processed in SignEnt, sa

it must he tested there as weiL

Network
Test

OtberSide
Test

•

Figure 6.2: Sequence of messages for the incoming calI on the network sicle.

6.3.2 Results

Connection establishment on the user side. It bas been verified, that

for outgoing call:

• messages generated by the module have proper format and contents,

• SETUP sent after the reception of callREQUEST contains all the information

supplied by the user. In particular, it does not contain connection identification

(VPI/VCI), even if it was mistakenly sent by the user,

64

•

Hull

1

OtberSide
1at

•

Figure 6.3: Incoming cali from Figure 6.2 as seen on the network side.

• if the other side does not respond to SETUP with CALL-PROCEEDING or

CONNCT (expiry of timer T303), SETUP is resent and if there is still no

aoswer, the calI is eventually intemally cleared,

• if the other side responds with CALL PROCEEDING but it does not send CON

NeT before timer T310 expires, clearing procedures with cause #102 "recovery

00 timer expiry" are invoked,

• upon reception of CONNCT, module enters Active state, retums CON
NCT..ACK and notifies the user (by callACK).

forincoming call:

• upon the reception of SETUP with acceptable parameters (e.g., correct

VPljVCI values), the user is notified with callINDICATION. Then the module

may choose to send CALL..PROCEEDING or not,

• after receiving ca.llACK from the user, CC unit generates CONNCT and enters
Active state.

65

•

•

Connection establishment on the network side. It has been verified, that

for outgoing calI:

• upon the reception of SETUP, CC unit checks that VPI/VCI are available and

sends NetSETUP with the contents supplied by the user. Then the module

randomly chooses to send or not to send CALL..PROCEEDING to the call

ing user. If CALL-PROCEEDING is sent, it contains mandatory connection

identification element with VPI/VCI values assigned ta the calI,

• after NetCONNCT is received, the module generates CONNCT message and
enters Active state. If the module chose not ta send CALL-PROCEEDING

before, CONNCT contains connection identification element,

• if CONNeT...ACK message is received in Active state, it is ignored.

for incoming caU:

• upon the reception of NetSETUP, CC unit checks that VPI/VCI are available
and genera.tes SETUP with all globally meaningful information retrieved from

NetSETUP. Information elements that have local meaning and were included

in NetSETUP (e.g., connection identification on the remote interface) are not

transferred. Additionally, connection identification element with local VPI/VCI

values is aIso appended,

• if the other side does not respond with CALL..PROCEEDING or CONNeT
before the final expiry of respective timers, calI clearing procedures are initiated,

• upon reception of CONNCT, the module generates CONNCT.ACK and Net
CONNeT.

Connection clearing on the user side. It has been verified, tha.t

for outgoing clearing:

66

•

•

• RLEASE is sent and timer T30S started; the message contains the cause element
supplied by the user,

• upon reception of RLEASE_COMPLETE, aIl timers are stopped, callTer
minIND is sent to the user, and the Done variable is set to true. It does not

matter if RLEASE_COMPLETE contains a cause element,

• if RLEASE_COMPLETE is Dot received before expiry of T308, RLEASE is
resent and timer restarted. Upon final expiry of T308, RESTART is sent,

for incoming clearing:

• upon reception of RLEASE, the unit responds with RLEASE_COMPLETE,
sends callTerminIND to the user and sets Done to true. If RLEASE contains

cause element, it is copied ioto RLEASE_COMPLETE, otherwise cause #96

"mandatory element missing" is used.

Connection clearing on the network side. It has been verified , that the be

haviour of this module during clearing procedures corresponds ta the behaviour of

the CC unit 00 the user side with the foliowiog modifica.tions:

for outgoing clearing:

• procedure is initiated upon reception of NetRLEASE message, iostead of call

TerminRQST,

• upon reception of RLEASE_COMPLETE, the module is returned to Nul!, but
no confirmation is sent to the remote user (Le., there is no equivalent of call

TerminIND on the network side of interface).

for incoming clearing:

• instea.d of ca.l1TerminIND message, NetRLEASE is used to inform the remote
interface about termination.

67

•

•

Error handling on the user side. It has been verified that:

• timers used for both outgoing (T303, T310) and incoming (T313) calI, as well

as clearing timer T30S and status enquiry timer T322 are properly started,

stopped and restarted according to guidelines in specification,

• actions upon the expiry of aIl above timers are correct,

• clearing procedures invoked as a. result of errors are performed in the same way

as user initiated caU clearing, with the exception that the cause element contains

the value corresponding to the error that caused clearing (instead of the value

supplied by the user),

• in case of incoming call, an attempt ta assign incorrect 'VPI/VCI values gen

erates RLEASE_COMPLETE with ca.use #35 "requested VPCI/VCI values

unavailable" ,

• when unexpected RLEASE_COMPLETE is received, the unit is returned ta

NuU state and callTerminIND is sent ta the user,

• when unexpected RLEASE is received, the unit is returned to Null state, Call

TerminIND is sent ta the user and RLEASE_COMPLETE is retumed,

• when any other unexpected message is received, the module generates STATUS

message with the CUITent state of the cali and cause value #101 "message not

compatible with caU state" ,

• when STATUS is received indicating Null state, while the module is any other

state, the module is returned to Null and the callTerminIND is sent,

• when STATUS is received indicating astate other than Null, but with one of

the inappropriate cause values (96, 97, 99, 100, 101), outgoing calI clearing is

initiated,

• when STATUS is received with contents that qualifies for clearing of the call,

but the cal! is already being cleared, no action is taken and the release process

continues.

68

•

•

Error handling on the network side. It has been verified, that the behaviour of

the unit in error conditions is very similar to the behaviour of the unit on the user
side, except for the fol1owing:

• T322 and T313 timers are Dot used,

• in addition to regular actions after the final expiry of timers T303 and T310,

NetRLEASE with cause #18 "no user responding" is sent,

• if incoming caU is initiated when it is not possible to accommodate a new
connection, NetRLEASE is returned with cause #41 "temporary failure",

• instead of callTerminIND in error conditions, NetRLEASE is generated with

the cause provided by the user side or #111 "protocol error, unspecified", if

nothing is supplied,

• upon reception of CALL-PROCEEDING or CONNeT which contains connec

tion identification element indicating different values from the ones included in

SETUP, outgoing calI clearing is triggered with cause #36 "VPCI/VCI assign

ment failure" and NetRLEASE with cause #41 "temporary failure" is gener

ated.

Status enquiry on the user side. It has been verified that:

• when STATUS-ENQ is received in any state, STATUS message is sent with
the current state of the unit and cause #30 "response ta status enquiry". No

change in the call state occurs,

• STATUS with contents that does not trigger error recovery (described above)

is disregarded,

• upon reception of callStatusRQST, STATUS-ENQ is generated and timer T322
started. Until this enquiry is completed with STATUS received from the other

side, all subsequent callStatusRQST messages from the user are ignored (only

one outstanding enquiry in a given moment exists),

69

•

•

• wheu STATUS is received as a response to STATUS-ENQ, it is processed in the
same way as the one that arrived spontaneously, with the exception that it is

additionally forwarded ta the user as callStatusIND.

Status enquiry on the network side. It has been verified that status procedures

here are the same as on the user side with the exception that there is no equivalent

of callStateRQST a.nd cal1StateIND messages from the network. As a. consequence,

sending of STATUS..ENQ by the module does not take place and timer T322 is not

used. Actions following reception of STATUS-ENQ and STATUS messages sent by

the other side are identical to those described above.

6.4 Signaling Entity Testing

6.4.1 Set-up

The testbed used in this phase is basically the same as in Figure 6.1. Module CC unit

has been replaced with respective SignEnt module and Other Side Test module has

been slightly modified. Instead of generating only correct messages, Other Side must

be able ta produce aH kinds of faults in message formats and contents. Messages

may be sent with incorrect protocol discriminator, caU reference values, message

types, missing or invalid information elements, etc. Most of it is achieved by simple

manual intervention in the message contents during the simulation, because source

code changes would require lengthy recompilations. Again, the simulation is step

by-step and completely under our control. Apart from checking the new functions

assigned ta this step in Table 6.1, we aIso need to repeat some of the test cases for CC

unit. This time, however, we do not verify the responses of Call Control, but rather

the correctness of SignEnt transitions responsible for dispatching the messages.

Since functions performed by signaling entities on bath network a.nd user sides of

the interfa.ce are almost the same and their testing is very similar, the results will be

discussed together.

70

•

•

6.4.2 Results

CalI control unit administration, resource and message management. It

has been verified that:

• CalI reference values selected by the entity are unique, in valid range and gen

erated in a progressive manner,

• VPI/VCI selection assigns values that are in valid range and unique on a given

interface,

• upon reception of correct SETUP, a local context (set of parameters) for the

connection is created, CalI Control unit is dynamically allocated and duly ini

tialized. Throughout the whole life of connection, all newly obtained informa

tion (e.g. connection identification) is properly updated in internaI structures.

When the caU is cleared, its local context is destroyed, resources returned for

reuse and the CC unit is released,

• incoming messages are correctly dispatched to their respective CC units, out

going messages are conveyed to the external interaction point and sent outside,

• on the network side, the additional "routing" database (Correspondence Array)

is properly created, updated with new data, and finally disposed of upon clearing

of the network connection.

Error conditions. It has been verified that the msgCheck function returns appro

priate evaluation of the message state, which results in the following actions of the

signaling entity:

• if the message should he discarded, no action is taken on the message and no

state change occurs, as if it never arrived,

• if any message, except SETUP, RLEASE_COMPLETE, STATUS-ENQ and
STATUS, relates to a non-existing calI, RLEASE_COMPLETE is returned with

cause #81 "invalid ca.ll reference value" ,

71

•

•

• if any message, except RESTART, RESTART..ACK and STATUS, uses Global
CalI Reference, STATUS is retumed with cause #81 "invalid calI reference

value" ,

• if any message, except SETUP, does not have an element which is mandatory
for this messa.ge, STATUS is returned with cause #96 "mandatory element

missing". In case of SETUP, RLEASE_COMPLETE is returned,

• if any message, except SETUP, contains a. mandatory element with invalid con

tents, STATUS is returned with cause #100 "invalid information element con

tents". In case of SETUP, RLEASE_COMPLETE is returned,

• on the user side, if CALL-PROCEEDING or CONNeT (when it is the first
response to SETUP) arrives without or with invalid VPI/VCI, it is treated as

a message with mandatory element missing or invalid, respectively,

• optional information elements are simply transported and not checked either for

presence or for validity. Since they are not mandatory, connection may proceed

even if they are corrupted or missing.

Restart procedures. It has been verified that:

• RESTART and RESTART..ACK generated by the entity have proper format

and contents,

• upon the initiation of outgoing restart (expiry of timer T30S), timer T316 is

started and no other outgoing restart is permitted. If another caU Control unit
generates RESTAR.T while T316 is running, this message is not processed until

the ongoing restart is completed,

• the first expiry of T316 resends RESTART; when it is expired for the last time,

connection is considered to be unusable. Call control unit is not destroyed,

virtual channel is not released and associated resources (e.g., calI reference value,

VPI/VCI values) are left in the local call context and marked as "OutOfOrder".

On the user side, callOutOfOrder is additionally generated for the user,

72

•

•

• when RESTART..ACK arrives before T316 expires and the channel indicated
in the message corresponds to the one being restarted, calI control unit and

all resources are released (local context is wiped). Additionally, on the user

side, calI termination is reported to the user, while on the network side of the

interface the remote connection is cleared (Le., NetRLEASE is sent),

• when RESTART..ACK arrives and T316 is running, but the channel indicated in
the message is different from the one being restarted, the message is discarded;

when RESTART..ACK arrives and T316 is not running, STATUS with cause

#101 "message not compatible with calI state" is sent,

• when incoming restart is initiated upon reception of correct RESTART message,
timer.T317 is started and simulation of internal "clearing" is launched,

• if internaI clearing finishes before T317 expires, Call Control unit and all re
sources are released. Additionally, either user is notified of termination (user

side) or remote connection is cleared (network side),

• if T317 expires, the connection is considered unusable. On the the user side,

callOutOfOrder is sent,

• if RESTART arrives when T317 is already running, STATUS is generated with
cause #101 "message not compatible with caH state",

• incoming and outgoing restart procedures are carried in parallel and are inde
pendent. If the same channel is being restarted simultaneously, the final result

depends on the procedure that terminates first - the second one has no way

to overrule a decision a1ready taken (success or failure).

6.5 Complete Model Testing

6.5.1 Set-up

The testing environment used in tills step is based on the original simulation model

from Chapter 5. It is presented in Figure 6.4. The only modifica.tions are two adcli

tiona! instances of the module SAAL Test, which simu1ate the SAAL layer on both

73

•
interfaces.

SAAL'lèat

Network

SAALTest

•

Figure 6.4: Test environment for complete mode!.

SAAL Test modules are necessary to introduce a "hostile" environment. They

intercept messages sent between protocol entities, clelay these messages for a ran

domly chosen period of time, and, finally, forward them to the destination. Since the

capacities of SAAL Test modules are limited, it is possible that an arriving message

cannot he stored and must he dropped. As weil, messages do not have ta be sent in

the arder they were received (there is no FIFO queue there), sa that missequencing

of messages belonging to the same connection can occur 3. Additional1y, we aIso use

3It may look like an overkill, since SAAL normally guarantees delivery and sequencing. Please
note, however, that the protocol must also deal with situations where the other signaling entity is
faulty. By introducing all kinds of hazards between the entities, we avoid the necessity of explicitly
simulating incorrect behaviour on the other side.

74

•

•

Edb observers to remove messages from interaction points and corrupt them in trans

port, thus directly triggering recovery procedures for otherwise difficult-to-provoke
situations.

Simulations are automatic; they are partially controlled by scripts, but mostly

by a non-deterministic selection of execution paths. User modules on both interfaces

randomly generate multiple requests for outgoing connections, accept or reject the in

coming calls, and terminate the ones in progress. Characteristic of the user behaviour

is basically defined by the algorithm coded in the module, but may be aIso tuned by

setting sorne global variables (e.g., each user May not be allowed to terminate, ini

tiate, or reject the caU). Experiments are conducted in both "friendly" (no externat

disruptions) and "hostile" environments (with SAAL Test modules and destructive

observers). The level of "hostilities" can aiso be adjusted by changing transmission

delays, manipulating the capacities of interna! SAAL modules storage and defining

appropriate observers.

6.5.2 Results

This final step of testing tumed out to be the most difficult to plan and summarize.

During CalI Control and SignEnt validation, the test scenarios are directly derived

from the functions performed by the modules. In the testing of a complete model,

we do not really know what kind of problems we are looking for - our goal is to

find all abnormalities which might lead to any kind of incorrect behaviour. First,

we need to identify faulty situations (and it is not trivial in case of four signaling

entities working in parallel), then we have to trace back the sequence of events that

caused this errar to occur, understand its reasons, and, finally, find a solution. It is

always possible, that in the process of fixing one particular problem, we interfered

with previously tested elements of specification, 50 that the whole testing must be

relaunched. Additionally, however long and exhaustive the simulations may be, they
are still merely based on a statistical assumption that sooner or later the errors will

be revealed. Obviously, there is no guarantee that all problems can be found; random

simulation may never exploit some scenarios.

It is not possible to directly present the exact results of this phase of the valida.tion.

75

•

•

The reader should realize that each of the simulations produced hundreds of kilobytes

of trace files, which kept track of all events in the system. We had to analyze these

files step-by-step, visua1ize the protocol operation and decide whether it complies

with the requirements of the documentation. It was definitely the most tedious and

tiresome stage of the entire project. As a result of these experiments, we introduced

many changes to the original draft of Estelle specification. Particula.rly, error recovery

mechanisms in SignEnt modules were almost completely redesigned to receive their

final shape as described in Section 5.5.3.

Our implementation of the protocol has been shown to he able to establish, sustain

and tear down multiple point-to-point connections. It can correctly recognize and

recover from erroneous situations. Error handling procedures are sensitive enough;

even if they are unnecessarily triggered in correct situations 4, they do not cause

any malfunction. Simultaneous connections do not interfere, i.e., states or messages

belonging to one caU have no influence on another. Allocation of resourees is correct:

entities do not assign more than they have, all values which have to be unique do

not appear more than once, released resources are reused. The protocol does not

deadlock or stall.

Additionally, these simulations eontributed to even deeper understanding of sorne

subtleties of Q.2931, c1arified the intentions of the protocol designers and revealed

interesting situations that rnay happen in reality. Sorne of thenl are briefly described

in the next section.

6.6 Observations and Conclusions

Like most specifications, Q.2931 defines actions to be implemented, but it does not

bother ta expIain or justify their purposes. Sometimes, it is difficult to understand

sorne of the solutions only on the hasis of their definition. Random simulations of the

protocol may be of great help here, since they tend to wander into sequences of events

that are not easily anticipated. We will present sorne selected issues discovered during

'lIt is not an errort but may happen if two entities at the same time try to do something with the
connection (e.g., release it). See the next section for details.

76

•
simulations, give additional explanations, and back them with specifie examples. It

will allow us to understand an importance of certain design solutions, which otherwise

rnight not get enough attention, even though they can have a large impact on the
correct protocol operation.

Why should the cali reference value not he reused immediately?

According to the specification: "... it is suggested that implementors avoid imme
diate reuse of the calI reference values aRer they are released." As a matter of fact, it

should not he just a suggestion, since disregarding this rule may lead to serious proh
lems on the interface. Figure 6.5 presents an example of scenario which illustrates

the danger.

USBRSIDS NETWORKSmE

coDDeCtiOD z
is active

%inReleue
Request (Ull) stare

%isœ1eased
and ready foc reuse

% is reusipecl
to anotber caIl

ERROR!
Dew%isreleued

cODDeCtion %
is active

%iDReIeue
IDdicalioD (N12) state

%isœleased
and ready for œuse

message is ctiIC8Ided

%in Call1Ditiated
(NI) stale

•

Figure 6.5: Immediate reuse of the calI reference value.

Let us assume, that both sides simultaneously decide to clear the connection

identified by the calI reference x. After RLEASE messages for x are sent, UserSig
nEnt enters Release Request state (Ull) and NetSignEnt enters Release Indication

state (N12). They both await for RLEASE_COMPLETE, but instead they receive
RLEASE messages, so error recovery procedures are triggered. According ta the def

inition, both sides must return RLEASE_COMPLETE, enter Null sta.te and release

77

•
all resources. If the "suggestion" from the documentation were not followed, the caB

reference value could be reused for any other connection now.

In our exampIe, the user side assigns x ta a new outgoing caB and in

cIudes it in SETUP sent to the other side. On the network side, reception of

RLEASE_COMPLETE does not cause any problems, sinee RLEASE_COMPLETE

referring to an unknown caU (x is already released) is simply discarded. Upon

arrivaI of SETUP, new call establishment is started. Unfortunately, reception of

RLEASE_COMPLETE on the user side has disastrous consequences. 1t is treated as

a response to SETUP and the newly initiated call is terminated without any reason.

How can we have unexpected messages in a fault-Cree environment?

Examples of unexpected reception of RLEASE and RLEASE_COMPLETE mes

sages, eVen though everything works correctly, are presented above. 1t happens due

to the simultaneous actions of bath signaling entities rather than real errors. Another

example, this time for CONNCT-ACK is shown in Figure 6.6.

USERSIDB

ca1l in Reh:ue
IndiQâon (U12) Itate

NBTWORICSIDE

call in Active state

caU in Re1ease
lDdication (N12) state

ERROR!

~:::e

•
Figure 6.6: Unexpected CONNCT-ACK in error-free message exchange.

After NetSignEnt transfers CONNCT message across the interface, it enters an

Active state immediately, without waiting for acknowledgment from UserSignEnt.

This aeknowledgment will be sent anyway, but should he discarded by the network.

78

•
It is possible though, that before UserSignEnt responds with CONNCT..ACK, the

network side already starts clearing: it sends RLEASE and enters N12. Arrivai of

CONNCT..ACK in this situation is treated as an error condition and STATUS with

ca.use #101 "message not compa.tible with calI state" is generated. Fortunately, this

message does not esca1ate the confusion; although usually it signaIs a fa.tal error,

when received in Release Request, Indication or Null state, it is only discarded.

Why should the user ever reject the VPI/VCI values allocated by the
network?

The specification states that the user can reject the connection identification

(VPI/VCI) assigned by the network by sencling RLEASE_COMPLETE with cause

#35 "VPCI/VCI not available". On the other hand, allocation of these values is

entirelyand always the responsibility of NetSigEnt. Therefore, it might not be c1ear,

why UserSignEnt has a. right to question the assignment received from the network.

Figure 6.7 describes a situation, in which it is justified.

USER.SIDE NBTWORKSIDE

VPIIVCI (d,b)
in use by a ca1l

call clearinl iDitiared r----=.Rl.EAsB=~ -.I

caJl cleariag is
still in PJOIRII

(a,b) Ile nccived
while old values

are DOt re1eascd yet r-RLBAs-.;;.;,,;,;;;:E;::_CO:.::=MPL8TE~~~(eause~~t3~5)U

VPIIVa (a,b)
in lISe by a caJl

(a,b) are œleued
aDd rady for reuse

(tI,6) are rassiped
for a DeVi caIl

caJl temin.ted

•

Figure 6.7: VPI/VCI values rejection by UserSignEnt.

Let us assume, that there is a connection with VPI/VCI values (a,b). UserSig

nEnt wishes to clear the call and sends RLEASE. (a, b) will not be released on the

user side until all clearing procedures are finished. After NetSignEnt receives the

clearing message, it releases all resources and responds with RLEASE_COMPLETE.

79

•

•

At this point, (a, b) may he reused by NetSignEnt, since the caU is aIready termi

nated and there are no other eonstraints (as in case of call reference). Henee, when

another establishment is initiated, NetSignEnt assigns (a, b) to the new connection
and indudes them in SETUP (could be aIso CALL-PROCEEDING or CONNCT).

Please note, that even though the sequence is preserved and SETUP arrives later
than RLEASE_COMPLETE, it belongs to another call. Different caUs are controlled

by separate fini te state machines, which are neither synchronized nor correlated in

any way. It is possible, that SETUP will start to be proeessed when the proeessing

of RLEASE_COMPLETE is not finished and resources of the old caU are still not

free. [n such a situation (a, b) received in SETUP eannot be accepted for the new

connection and RLEASE_COMPLETE with #35 "VPCljVCI Dot availa.hle" will be

returned.

In conclusion of the verification process, we believe that our formaI specification
truthfully represents the Q.2931 protocol in all these aspects, which were intended

for implementation in this work. We do not daim it may he formally proven, sinee

validation through simulation cannat guarantee the correctness, but we trust that

both our approach to testing and our obtained results are credible. Nonetheless,

there are certainly other ways to validate the protocol and otller scenarios to ex

plore. In particular, restart procedures, which do not follow the regular pattern of

message processing in CalI Control units, may be potentially error-prone. Since they

can be launched in unforeseen and undefined circumstances, it is extremely difficult
to construet any exha.ustive methodology for testing this kind of beha.viour. Unques

tionably, more work can he done in this field, but the development of complete and

universal validation suites for a.ll aspects of ATM signaling was not meant to be a

part of this project.

80

•

•

Chapter 7

Related Work

7.1 Research on ATM Signaling Protocols

Due ta the common recognition of ATM as a technology of the future, it is impossible

to even list universities, research centers, governmental institutions, commercial ven

dors and telecommunication companies working in ail areas of ATM networking 1. In

a brief summary below, we will only mention some of the publicly accessible projects,

the most recent and the most correlated with the topie of this document.

In Concordia University, Montréal, Morteza Ghodrat, under the supervision of

Professor J.W. Atwood, formally specified and validated in Estelle the major part of
the ATM lower layersignaling: Service Specifie Connection Oriented Protocol (1995).

This project [25} provided direct motivation for our own work and was the first step

in an on-going effort to create a complete ATM UNI signaling mechanism in Estelle.

In the University of Ottawa, students supervised by Professar Luigi Logrippo

specified part of the ATM UNI signaling using another FormaI Description Technique

- LOTOS (1995) (26}. Bath SSCOP and Q.2931 are taken into account. Due to the

mathematical and strict nature of this particular description technique, the LOTOS

1ATM Forum alone, since it foundation in 1991, grew from 4 to more than 750 member organi
zations worldwide [24] •

81

•

•

specification concentrates more on a theoretical analysis and formal correctness of the

protocol, as opposed to the implementation-oriented solutions typical for Estelle.

Simultaneously with our research, in the Université de Montréal, students under

the supervision of Professor Gregor v. Bochman are working on yet another ATM

signaling project - this time in Specification and Description Language, SDL. Their

efforts include formal specifica.tion of Q.2931 point-to-point connection control, as well

as the development of test suites for automatic validation of the protocol. Results of

this project are expected to be a.vailable in 1997.

Harri Hansen from Helsinki University of Technology deals in [27] with signaling

issues in case of a wireless access to the ATM network (1996). He proposes a set of

mobility specifie functions to he implemented over conventional ATM switches, in or

der to create a Wireless ATM (WATM) environment and integrate it with stationary

public ATM networks. Even though most of the work concentrates on solving purely

mobility-related problems, connection management functions identify also signaling

protocols and handover mechanisms necessary for integration with fixed telecommu

nication networks. From the point of view of both mobile terminal (MBT) and wired

ATM switch, calI control is based on the Q.2931 specification. To support mobility

of terminaIs, an additional signaling protocol, called W-EXT (Wireless Extension),

is used between the MBT and the switch. W-EXT is transparent for the Q.2931

connection and is used for locating the terminal. security can authentication, and

handover. The author suggests that the W-EXT signaling connection is established

"on demand" , i.e., in situations where Q.2931 generates SETUP and initiates its own

procedures. Unfortunately, he does not elaborate in more detail on any practical
ways of doing it, in particular, on the issue of possible time-outs. Timers in Q.2931

are designed for very reliabie physical media and do not leave too much time for any

extra activity. For example, the first response to SETUP is expected in just 4 sec

onds. Apart from usual signaling delays (resource allocation, waiting for a response

from the user, etc.), in WATM this period must additionally includepaging the MBT,

security functions (checking the databases), access to the medium., and two way radio

communication (possible faults and retransmissions). Sînce increasing time-out val
ues is not a solution (being connected to the public or private UNI, WATM must work

with standard settings), a. successful connection establishment seems to be difficult

to achieve.

82

•

•

An interesting case of education-oriented work on Q.2931 can be round on the

Internet. David Hudek created demonstration package for UNI 3.1 signaling [28],

written entirely in Java. It is not a worlcing implementation or specification of the

protocol, bllt it may serve as a useful educational tool for understanding of signaling

principles. After caU establishment or release is interactively requested, the Java

applet visua.1izes step-by-step the processing of calI control procedures. Apart from a

simple animation representing information flow in the network, the tool records and

displays an exact sequence and contents of all exchanged messages.

As we a.lready mentioned before, various software and hardware vendors offer

their own signaling packages. These solutions may be either direct implementations

of official specification or independently defined protocols, which preserve partial or

full compatihility with standards. The first category is represented, for example, by

CELL-UNI 3.1&3.0 [29] package from Cellware; the second group includes Simple

Protocol for ATM Network Signaling, SPANS [30] designed for Fore switches. Obvi

ously, ooly general information and documentation for these products can he accessed;

their implementation details and the code are not freely distributed.

Even though Q.2931 is an international standard, it is not the only existing ATM

signaling protocol. Grenville Armitage in University of Melbourne proposes gNET

[31] - signa.ling protocol for ATM local area networks (1994). This work was initiated

when international standards did not exist and it was specifical1y designed to support

multimedia terminais. gNET provides basic service for connection establishment and

termination, but with the set of additional constraints resulting from its intended

applications. Virtual connections cao ooly be unidirectionai, they are able to perform

point-to-mll1tipoint unidirectional multicasting, and they are admitted with a limited

set of traffic parameters. The protocol defines its own addressing mechanism (both for

interfaces and AAL users) and aIso supports "shared medium" links, where different

nodes are connected to the common bus and have access to each other's cells. A

distinctive feature of this solution is that signaling messages are restricted to ooly one

cell. This simplifies greatly the management of connections over a shared medium,

but, at the same time, limits to a minimum. a variety of services provided by the

protocol.

Another example of a signaling protocol is the Generic Universal Line Protocol,

83

•

•

GULP, presented by See-Mong Tan in [32J. The protocol is used to control communi
cation between active objects in an object-oriented Architecture for CaLI Processing,
Archos, developed in University of lllinois at Urbana Champlain. GULP is a sim

ple signaling and supervision protocol, which realizes "process-per-call" (aIso known

as "thread-per-connection") model of ATM call processing. Apart from setting up
and tearing down connections, it is aiso used to synchronize communicating objects.

See-Mong Tan is also a co-author (with Roy Campbell) of a project 00 x-ATM: A

Portable ATM Protocol Toolkit [33}. It is an environment for experiments in imple

mentation of ATM protocols, located in various layers of protocol reference model:

AAL, signa1ing, IP over ATM, etc. One of the most important features of the toolkit
is its signaling suite. It is based on a generic SIG protocol, which represents the finite

state machine for processing abstract signaling messages. Upon reception of initiating
message, SIG creates a separate and autonomous thread for a new connection, and

from now on, an the remaining messages are processed by this thread 2. Interest

ing property of this protocol is that its behaviour may be easily "traoslated" into
any other linear signaling protocol (like Q.2931, SPANS, or GULP). In the author's

own words: "In object- oriented terminology, the superclass SIG implements abstract

signalling while subclasses such as SPANS and Q.2931 specialize SIG for their own
particular protocols." The finite state machine implemented in SIG is independent

and invariable in all cases, only messages must he translated from an abstract format
used by SIG into the factual signaling formats llsed by a given protocol.

7.2 Estelle Specifications

The Estelle FDT is used ail around the world for forma.! specification of protocols,

services, and systems. One Estelle software toolkit, EDT [18, 19] alone is officially

licensed to more than 30 universities and research centers in Il countries. It was also
used in sorne industrial applications.

The French Institut National des Télécommunications, INT (where EDT is being

developed) is one of the most active promoters of Estelle. Researchers from INT are

2Please note similarity ta our own solution with SignEnt and Call Control Unit.

84

•

•

particularly involved in work on the Xpress Transfer Protocol, XTP [34]. XTP is
a high performance protocol designed for modem distributed, reaI-time, and multi

media systems. It defines functionalities within transport and, partially, network ISO
OSI layers (e.g., support of routing). Subsequent versions of XTP were specified

and validated using Estelle. Validation methods designed for specification of XTP

version 4.0 {21, 22, 23] were a basis for drafting our own testing techniques for Q.2931.

Xpress Transport Protocol is aIso under extensive study in the High Speed Protocols

Laboratory in Concordia University, Montréal (often in collaboration with INT) [35,

36].

La Trobe University in Melbourne, Australia, carries research on formal descrip

tion of ISO standardized ROSE protocol [37] and applying Numerical Petri Net ap

proach for verification of Estelle specifications [38). Introduction of analysis facilities

offered by high-level Petri Nets into Estelle definitions is aiso studied in the Technicai

University of I1menau, Germany [39].

The University of Delaware, Newark and the U.S. Army cooperate in using Estelle

for designing, testing and performance evaluation of military communication proto

cols [40, 41]. They aIso created formai description for ISO defined Virtual Terminal

Protocol [42] and Network Time Protocol [43]. Additional1y, University of Delaware
hosts an ftp site [44] with publicly accessible complete Estelle specifications. Apart

from many protocols mentioned above, interested reader may find there, among othee

definitions, Distributed· Queue Dual Bus (DQDB) standard for Metropolitan Area

Network (ISO 802.6) [45] and ITU-T Recommendation Q.921 [46] .

85

•

•

Chapter 8

Conclusions and Future Work

ITU-T Recommendation Q.2931 and ATM Forum specification UNI 3.1 define the

signaling protocol to be used in ATM networks for both private and public versions of

the User Network Interface. The protocol provides a uniform means for esta.blishment

and release of switched virtual connections.

8.1 Conclusions

In this thesis, we designed and created a formaI specification of the Q.2931 protocol

in the Estelle FDT. Since the protocol operation on the user and the network sides of

the interface is not symmetric, Q.2931 is represented formally by two corresponding

signaling entities: UserSignEnt and NetSignEnt. In arder to demonstrate and validate

signaling functionalities, we developed a simulation model, whlch corresponds to the

working environment of the protocol. Apart from the signaling entities, it includes

modules acting as ATM users and NNIsignaling protocol of ATM networks. For

the purpose of this model, we aIso needed to fill existing specification gaps with our

own solutions for the Application Programming Interface, API, and the interworking

procedures between UNI and NNI protocols.

During the experimental phase of the project, we ran numerous simula.tions to

86

•

•

verify that our Estelle description can be considered a formal counterpart of the orig

inal specification. We followed a carefully designed, systematic, bottom-up validation

path. In the first place, we tested the behaviour of the basic module representing

a single fini te state machine. Theo, we concentrated on validation of the signaling

entities on both sides of the interface independently. Finally, in a series of extensive

simulations, we tested interoperability of all elements of the mode!. For each step,

we developed a separate testing environment. This metllodology allowed us ta locate

and remove many errors, which resulted in redesigning and rewriting sorne parts of

the specifica.tion. As a consequence of the validation process, we believe that the final

version of our forma.! description corresponds ta the definition of Q.2931 protocol in

aU the aspects that we decided ta handle in this work.

We also conclude that Q.2931 itself is an example of a weB and carefully defined

protocol. In an cases covered by our simulations, even with very "hostile" behaviour

of the environment, the protocol turned out to he successful. However, in this context,

it does not necessarily mean that requested connection is actually established. From

the signaling point of view, success May aIso Mean that if the can cannat he placed,

the protocol gracefully recovers and terminates the establishment procedure. The

crucial point for protocol definition is to make sure that, within a reasonable period

of time, all involved parties perceive the caU status in the same way (established or

released). Q.2931 has shawn to possess this feature.

Unfortunately, the ability to deal with numerous unexpected situations cornes at

a price of complex message verification and fauIt recovery. Error handling proce

dures contain Many exceptions from general rules and provisions for treating partic

uIar events. In real implementations, it translates into time-consuming, processor

intensive aigorithms, and it May incline a programmer to consider simplifying, or even

discarding, certain - seemingly unnecessary - procedures. In this thesis, however,

we discovered and presented selected examples of situations that justify the solutions

proposed in the definitien.

87

•

•

8.2 Future Work

We would like to suggest several possible directions for continuing this project. We

do Dot intend to explore all opportunities, but radler wish to indicate the areas that

we find particularly interesting.

The specification may be extended to include functionalities not handled in this

th.esis, such as point-to-multipoint connection procedures (defined by AT~I Forum in

[7]) or metasignaling (defined by ITU-T in [4]).

The official definition is not a final produet yet; it is still in the development phase,

50 there will he a constant need for updating our formai specification to accommodate

new elements and changes. For example, the ATM Forum has already announced

ATM UNI 4.0, and ITU-T is working on their version of multi-party connections.

1t would be interesting ta combine our Q.2931 definition with the already existing

specification of Signaling AAL protocol, SSCOP [25]. After the missing joint, Service

Specific Coordination Function, is defined, we could simulate a complete ATM UNI

signaling stack.

Validation methods used in this work are based on simulations, and, as we ex

plained, they do not guarantee correctness. We believe that it would he very u5eful

to design and conduct more formal verification procedures. One opportunities in this

area is to look at sorne work on applying Petri Nets to Estelle specifications [38, 39],
which we mentioned in Section 7.2.

There are many implementation specifie or undefined issues in the documenta

tion, and they should he subjects of further studies. For example, it is not known

which states shall he considered incompatible by status procedures, and what kind

of recovery actions shall he taken. As weil, in sorne cases, protocol creators leave

developers an option to either design their own error handIing procedures or use the

default connection clearing. These and other akin problems may he addressed in

subsequent refinements of our description, so that, eventua1ly, an implementation of

the protocol can he built. We think that it would he a1so worthwhile to port such an

implementation onto the real network environment.

88

•

•

Bibliography

[1] Chen, T.M., Liu, S.S., "ATM switching systems", Artech House, 1995.

[2] Alles, A., "ATM Internetworking", Cisco Systems Inc. Publication, 1995.

[3] Wajda, K., "Sied szerokopasmowe" (Broadband Networks - in Polish),

Wydawnictwo FPT, Krakow, 1994.

[4] ITU-T Recommendation Q.2931 "B-ISDN User-Network Interface layer 3 specifi

cation for basic call/bearer control", 1994.

[5] ITU-T Recommendation Q.931 "Digital Subscriber Signalling System No.l (DSS

1) - ISDN User-Network Interface layer 3 specification for basic calI control",

1993.

[6] ISO Document DTR 10167 "Guidelines for the Application of Estelle, LOTOS,

and SDL", 1990.

[7] ATM Forum, "ATM User-Network Interface Specification, version 3.1", 1994.

[8] Zahir Ebrahim, "A brief tutorial on ATM",

http://dallas.ucd.ie/-ndowney/atmlntro.btml

(9] Le Boudee, J.Y., "Welcome to the LRC Tutorial Pages",
http://lrcwww.epfl.ch/PSJlles/-tutorial.html

[la] Reddivalam, S., "ATM Module",
bttp:j/cne.gmu.eduj-sredcliva.jatm-module.btml

89

•

•

[Il} Xylan Corporation, "The switching book" ,

http://www.xylan.com/sb/start.html

[12] ITU-T Recommendations Q.2761 "BISUP-Functional description", Q.2762

"BISUP-Genera! functions of messages and signais", Q.2763 "BISUP-Formats
and codes" , Q.2764 "BISUP-Basic calI procedures", 1993.

[13} ITU-T Recommendation Q.2130 "B-ISDN Signalling ATM Adaptation Layer
Service Specifie Coordina.tion Function for support of signalling at the User-ta
Network interface (SSCF at UNI)", 1993.

[14} ITU-T Recommeodation Q.2l10 "B-ISDN ATM Adaptation Layer Service Spe
cifie Connection Oriented Protocol (SSCOP)", 1993.

[15} "Estelle: A Forma! Description Technique based on Extended State Transition
Model", International Standard ISO 9074: 1989 (E) (1989-07-15).

[16} Budkowski, 5., Dembinski, P., "An introduction to Estelle: A specification lan
guage for distributed systems", Computer Networks and ISDN Systems Journal,

voL.14, No.l, 1988.

[17} ISO 9074:1989/Amendement 1, Annex D, "Estelle Tutorial", 1989.

[18] Estelle Development Toolset (EDT). version 4.0. "General information and
Estelle-to-C compiler (Ec)", User Reference Manual, INT Evry, France, 1996.

[19} Estelle Development Toolset (EDT), version 4.0, "Estelle Simulator/Debugger
(Edb) and Universal Test Drivers Generator (Utdg)", User Reference Nlanuai,
INT Evry, France, 1996.

[20] HoIzmann, G.J., "Design and validation of computer protocols", Prentice-Hall,
1991.

[21] Alkhechi, B., Benalycherif, M.L., Budkowski, 5., Dembinski, P., Gardie, M.,
Lallet, E., Mouchel La Fosse, J.P., Octavian, C., Souissi, Y., "Formal specification,
validation, and performance evaluation of the Xpress Transfer Protocol (XTP)",

Research report No. 931004, Institut National des Télécommunications, Évry,
France, 1993.

90

•

•

[22] Catrina, O., La.l1et, E., "Contributions to the specification and validation of

the Xpress Transfer Protocol", Research report No. 931005, Institut National des

Télécommunications, Évry, France, 1993.

[23] Catrina, O., "Protocols for telecommunieation networks: Development of com

plex communication protocols using Estelle FDT", Extended abstract of the Ph.D.

Thesis, Politehnica University Bueharest, 1996.

[24] ATM Forum, http:j(www.atmEorum.com/.ftp.atmEorum.com/pub

[25] Ghodrat, M., "Specification and verification of the Service Specifie Connection

Oriented Protocol", M.Sc. Thesis, Coneordia University, Montreal, 1995.

[26] Bihan-Faou, P., Mahamad, E., "Rewriting (part of) the ATM specification in

LOTOS", LOTOS Research Group report, University of Ottawa, Canada, 1995.

[27] Hansen, H., "Connection management funetions of a private wireless ATrvI net

work", M.Sc. Thesis, Helsinki University of Teehnology, 1996.

[28] Hudek, D., "Demo of (Java powered) UNI 3.1 Signaling Package",

http://www.ultranet.comj-dhudekjjunidemol.shtml

[29] Cellware Broadband, "CELL-EXPRESS introduction" ,

bttp://www.cellware.de/soEtware/q2931.btml

[30] Fore, "SPANS Protocol Specification Version 2.0", Fore Systems Ine. Publication,

1993.

[31] Armitage, G.J., "gNET: An ATM LAN signalling protoeol", Technical Report,

University of Melbourne, 1994.

[32] Tan, S.M., "An architecture for caIl processing", M.Sc. Thesis, University of

Illinois at Urbana Champaign, 1993.

[33] Tan, S.M., Campbell, R.H., "x-ATM: A Portable ATM Protocol Toolkit",

http://choices.cs. uiuc.edu/latex.docs/suite/suite.html

[34] XTP Forum, "Xpress Transport Protoeol Specification, Revision 4.0", 1995.

91

•

•

[35] Cheung, J., "An Estelle Specification and Partial Validation of the Xpress Trans

fer Protocol", M.Sc. Thesis, Concordia University, 1990.

[36J Soumas, N., "An XTP Router in the Internet Addressing Domain", M.Sc. Project

Report, McGill University, 1994.

[37] Jirachiefpattana, A., Lai, R., "Verification Results for the ISO ROSE Protocol
Specified in Estelle". In: Protocol Specification, Testing and Verification, XIV,

eds. S.T. Vuong and S.T. Chanson, Chapman & Hall, IFIP, 1995.

[38] Jirachiefpattana, A., Lai, R., "Verifying Estelle Specifications: Numerical Petri
Nets Approach". In: Proceedings of the 1993 International Conference on Network

Protocols, IEEE Computer Society Press, 1993.

[39] Nuetzel, J., "Analysis and Verification of High-Level-Nets in Combination with
Formal Estelle Specification", Petri Nets applied ta Protocols, Workshop of tbe

l6th International Conference on Application and Theory of Petri Nets, Torino,

Italy, 1995.

[40] Amer, P., Burch, G., Sethi, A., Zhu, D., Dzik, T., Menell, R., McMahon, ~I.,

"Estelle specification of MIL-STD 188-220A data link la.yer", ln: Proceedings of

MILCOM '96, McLean, VA, 1996.

[41] Amer, P., Sethi, A., Fecko, M., Uyar, M., "FormaI design and testing of army

communication protocols based on Estelle", In: Proceedings of lst ARL/ATIRP

Conference, College Park, 1997.

[42] Amer, P., Çeçeli, F., Juanole, G., "Formai Specification of ISO Virtual Terminal
in Estelle", In: Proc. IEEE INFOCOM'88, IEEE, New Orleans, 1988.

[43] Mills, D., "Network Time Protocol (Version 2) Specification and Implementa

tion", Technical Report, University of Delaware, 1989.

[44] University of Delaware, ftp.ude1.edu/pub/grope/estelle-specs/

[45] ISOjIEC Standard DIS 8802-6, "Information technology - Telecommunications
and informa.tion exchange between systems - Local and metropolitan area net

works - Specifie requirements - Part 6: Distributed Queue Dual Bus (DQDB)
access method and physicallayer specifications (Formerly DAM 1)".

92

•

•

[46J ITU-T Recommendation Q.921bis "Abstract test suite for LAPD conformance
testing", 1993.

Good starting points for ATM research on the Internet:

[47J Batsell, S., "ORNL Network Research Navigator - ATM Page",

http://www.epm.ornl.gov/-batsell/atm.html

[48) Robel, A., Dent, C., "The cell relay retreat", http://cell-relay.indiana.edu/cell

relay/

[49] Koester, D., "Asynchronous Transfer Mode (ATM) Technology Web Knowledge

base" ,
bttp://www.npac.syr.edu/users/dpk/ATM-Knowledgebase/ATM
technology.btml

93

•

Appendix A

E.164 Addressing Format

An ATM address uniquely identifies the ATM endsystem in the network(s). The

ATM Forum specification uses three different formats of the address: E.164 num

bering defined by ITU-T Recommendation E.164, Data Country Code (DCC), and

International Code Designator (ICD). The specification recommends the support of

all three formats for private networks and either E.164 or all three formats for pub

lic ATM. In our simulation model, only E.164 is currently supported. The general

structure of the E.164 ATM format is presented in Figure A.l.

. •
IDP

ft

IDI
•

DSP
•

•

Figure A.l: E.164 ATM address format.

An ATM address is always 20 octets. It consists of two main parts: Initiai Domain

Part (IDP) and Domain Specifie Part (DSP).

The first octet of IDP is Authority and Format Identifier, AFI. It identifies the

administrative authority that al10cated the number and the format of the remaining

94

•

•

part. For E.164 numbering the value of AFI is coded to 45. The next 8 octets,
Initial Domain Identification (101), specify the ISDN telephone numbers in their

international form. They can be up to 15 digits long and they are coded in Binary

Coded Decima.!, BeD, syntax (Le., one digit takes one semi-octet, two digits form one

octet). If the telephone number is less than 15 digits long, it is padded with leading

0000 semi octet to obtain the maximum length. The address is ended with the 1111

semi octet after the last digit to obtain an integral number of octets (note that 15

digits takes only ï.5 octets and the IDI is 8 octets).

Domain Specifie Part, DSP, consists of High Order DSP (HO-OSP), End System

Identifier (ESI), and Selector. HO-DSP is used by the authority identified in IDP

to divide the domain into separate subdomains. It defines the hierarchical structure

of the authority's networking resources. ESI identifies an end system within the

subdomain created by HO-DSP. It takes 6 octets and must be unique within the

particular value of the IDP+HO-DSP. The last octet, Selector, is not used by ATM

routing but may be used by endsystems.

In our implementation of the specification, ATM addresses are produced by the

procedure produceE164Addr(phLikeNr J HoDsp J IntNumber, VAR atmAddr).

phLikeNr ("phone-like number") is a string of 15 digits fortning the telephone
number 1. HoDsp is a string of 8 digits, and it identifies the domain within phLikeNr

number. Both phLikeNr and HoDsp are inserted accordingly into the ATM address,

but they are actually not used by the Network module for routing; so their values do

not have any meaning for the current implementation.

For the purpose of identifying the interface in our simulation model, we use Int
Number value, wh.ich is encoded in the first octet of ESI (Le., 14th octet of the

whole address). Currently, ooly this octet is used by Network module for routing, 50

the number of interfaces participating in the simulation is limited ta 256. Rema.ining

five octets of ESI and Selector are coded to all Os.

The resulting 20 octets of the complete ATM address are inserted into the at
mAddr output parameter.

lphLikeNr supplied to the procedure must have exactly 15 digits - in case of shorter numbers t

the programmer is responsible for providing leading Os.

95

•

Appendix B

List of Acronyms

•

A

AAL

AFI

ANSI

API

ATM

B

BCD

B-ISDN

BISUP

c
CC

CP-AAL
CS

ATM Adaptation Layer

Authority and Format Identifier

American National Standards Institute

Application Programming Interface

Asynchronous Transfer Mode

Binary Coded Decimal

Broadhand Integrated Service Digital Network

Broadhand ISDN User Part

CalI Control

Common Part AAL

Convergence Sublayer

96

•
D
DCC Data Country Code

DSP Domain Specifie Part

E
ESI End System Identifier

ETSI European Telecommunications Standards Institute

F
FDT Formai Description Technique

FIFO First-In-First-Out

H
HO-DSP High Order DSP

•

1
ICD

101

IDP

lE
IP
ISDN

I5SI

ITU-T

N
NNI

Q
QoS

International Code Designator

Initial Domain Identification

Initial Domain Part

Information Element

Interaction Point

Integrated Service Digital Network

Inter Switching System Interface

International Telecommunication Uwon

Network Node Interface (also known as Network Network Interface)

Quality of Service

97

•

•

S

SAAL

SAR

SDH

SONET

SSCF

SSCOP

T
TDM

V
VCI

VLIE

VPCI

VPI

Signaling ATM Adapta.tion Layer

Segmentation And Reassembly

Synchronous Digital Hierarehy

Synchronous Optieal Network

Service Specifie Coordination Function

Service Specifie Connection Oriented Protocol

Time Division Multiplexing

Virtual Connection Identifier

Variable Length Information Element

Virtual Path Connection Identifier (equivalent to VPI)

Virtual Path Identifier

98

l' 'A"'"IIVI ul:. E'v'ALUA""'O\J
TEST TARGET (QA~3)

1
1.0 :: W Iii

~ ,3.2
~ 12.2

~W -

111.1 t~~
1I111~

IIII~ 11111.4 1111.6

1-...
1

150mm .-J.1.....

- 6" ------~--

1
........-
L

AP~LIECJ ~ IMAGE 1_ .ne-= 1653 EastMafnStreet
_ .Ii Rochester. NY 14809
~~ Phone:7161482-0300 USA

_ ~ Fax: 7161288-5989

~ 1983. AppIied Image.1nl:.. AlI RIghIS ReIerved

