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Abstract

Every convex polytope is both the intersection of a finite set of halfspaces and

the convex hull of a finite vertex set. Transforming from the halfspaces (vertices,

respectively) to the vertices (halfspaces, respectively) is called vertex enumeration

(tacet enumeration, respectively). It is an open problem whether there is an algo­

rithm for these two problems polynomial in the input and the output size. For each

of the known methods, this thesis develops a characterization of what constitutes

an easy or difficult input. Example familles of polytopes are presented that show

that none of the known methods will yield a polynomial algorithm. On the other

hand t a family of polytopes difficult for one class of algorithms can (sometimes) he

easily solvable for another class of algorithms; the characterizations given here can

be used ta guide a choice of algorithms. Similarly, although the general problems

of vertex and facet enumeration are equivalent by the duality of convex polytopest

for fixed polytope family and algorithm, one of these directions can be much easier

than the other. This thesis presents a new class of algorithms that use the easy

direction as an oracle ta solve the seemingly difficult direction.
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Résumé

Tout polytope convexe est l'intersection d'un ensemble fini de demi-espaces.

C'est également l'enveloppe convexe d'un ensemble fini de sommets. La transfor­

mation de l'ensemble de demi-espaces en l'ensemble de sommets correspondant s'ap­

pelle l'énumération des sommets. La transformation inverse s'appelle l'énumér­

ation des facettes. Pour ces deux transformations duales, le problème de l'existence

d'un algorithme, de complexité polynomiale relativement à la taille de l'entrée et

de la sortie, est toujours ouvert. Cependant, certains algorithmes peuvent s'avérer

de complexité polynomiale pour certaines familles d'entrée. Ceci définit une notion

de complexité dépendante, de l'algorithme, de la nature de l'entrée ainsi que de la

taille de l'entrée et de la sortie. Nous présentons, en premier lieu, une caractérisation

de ce qui constitue des données d'entrée faciles ou difficiles, ceci pour chacune des

méthodes d'énumération des sommets et des facettes. Cette caractérisation pro­

duit une aide au choix de l'algorithme adéquat, s'il existe, et permet également de

démontrer qu'aucune des méthodes connues ne peut conduire à un algorithme poly­

nomial. D'autre part, nous présentons un nouvel algorithme générique qui, pour

tout algorithme d'énumération des sommets (ou des facettes), calcule la transfor­

mation inverse avec une complexité similaire (i.e. polynomiale ou non), dépendante

de la famille de polytopes considérée. Cette nouvelle classe d'algorithmes permet

de résoudre efficacement le problème de l'énumeration de sommets (ou des facettes)

s'il existe un algorithme pour lequel la transformation inverse est aisée.
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Chapter 1

Introduction

A convex polyhedron is the intersection of a finite number of halfspaces X. A

bounded convex polyhedron is called a polytope. An extreme point of a convex

polytope P is some point in P that does not lie on an open line segment between

two other points in P. The convex hull conv(X) of a set of points X denotes the

intersection of all halfspaces that contain X. A classical theorem from convexity

is that every polytope P can be expressed as the convex hull of its extreme points

(or vertices) V. These descriptions of P will be referred to as the halfspace and

vertex descriptions, respectively. Converting from the halfspace representation to

the vertex representation is called vertex enumeration. Converting from the ver­

tex representation to the halfspace representation is called tacet enumeration or

convex hull. These problems are essentially equivalent by duality of convex poly­

topes. Although methods for solving this problem were sketched by Fourier [22] in

the early 19th century, the computational complexity of vertex/facet enumeration

remains open. Indeed, until recently it was not known if the general methods due to

Fourier could result in an algorithm polynomial in IVI, IXI, and the dimension d (in

the rest of this thesis we cali such an algorithm simply polynomial). In this thesis

we answer the latter question in the negative. Known methods of vertex/facet enu­

meration can be broaclly grouped into those based on the simplex pivot operation

(along with some method of dealing with degeneracy) and those based on incre-

1



mental construction (Le. the double description method of Motzkin [34]). For each

of these general classes of algorithms, we give CCdifficult" familles of polytopes for

which the corresponding algorithms are superpolynomiaL Several of our families

are uuniversal" i.e. difficult for all of the main known types of algorithms.

For any given instance of vertex/facet enumeration, there is a corresponding

dual instance of transforming the output back to the input. In this thesis we ar­

gue that for certain hereditary familles of polytopes (i.e. those where every subset

of the output for a given polytope is in the family) the complexity of these two

transformations is polynomially equivalent (note that this is quite distinct from the

dual interpretation of a vertex enumeration problem as facet enumeration problem).

We then show how to refine our constructive proof into an efficient and practical

algorithm for vertex (resp. facet) enumeration of simplicial (resp. simple) polytopes.

The rest of this chapter is organized as follows. In Section 1.1, we discuss

theoretical and practical motivations for the study of vertex/facet enumeration. In

Section 1.2, we discuss previous work on this topie, and point out some connections

to this thesis. In Section 1.3 we provide an overview of the remainder of the thesis.

• CHAPTER 1. INTRODUCTION 2
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1.1 Motivation

The problem of converting between the two representations of polytopes is funda­

mental from a theoretical point of view. Indeed severa! of the proois that every

polytope has bath halfspace and a vertex representation (see e.g. Minkowski [106],

Motzkin [31], or Ziegler [113]) proceed by showing the existence of an algorithm

ta convert between these two representations. From an algorithmic point of view,

the existence (or non-existence) of a polynomial vertex/facet enumeration alga­

rithm. would have important implications for the tractability of several arbitrary

dimensional geometric problems sucb as Voronoi diagrams [55,89] and Power Dia­

grams [51].

Vertex/facet enumeration is aIso an important practical problem. Much of the

interest in convex polytopes has stemmed from their use in mathematieal modeling.



Vertex enumeration is typically applied when the situation to be modeled can be

characterized (or approxïmated) by a set of linear constraints, but the objective

function (or measure of solution &lgoodness") is either non-lïnear or linear but un­

known. An illustrative example is the work of Ceder et al. [56] where the authors

model the minimum energy state of an alloy lattice by a linear program with an

unknown objective function. From the Fundamental Theorem of Linear Program­

ming (see e.g. [85]), the optimal solution to this linear program must occur at a

vertex. By enumerating the vertices and checking each candidate solution for phys­

ical reasonableness, they are able ta tind the global solution. Other applications

include combinatorial optimization [53, 59, 60, 58, 61, 64], game theory [34, 52],

multi-objective linear programming [63], quantum chemistry [54], and roboties [65J.
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1.2 History

Known algorithms for vertex and facet enumeration can be broadly divided into in­

sertion or incremental algorithms and pivoting algorithms. Insertion algorithms

(for vertex enumeration) are based on the observation that to compute the inter­

section of a set of halfspaces 1{ = {Hl, Hz, ... Hm-l' Hm.}, it suffices ta inductively

compute Pm-l = n:...1 Hi and then compute Pm-I n Hm. Pivoting algorithms are

based on the simplex method of linear programming (see e.g. [85]) which provides

a method ta find all of the vertiees adjacent ta a given vertex of a polyhedron.

1.2.1 Insertion Aigorithms

Research in vertex enumeratio!l predates the discipline of computer science by about

a century. In his 1824 paper on linear inequalities, Fourier [22] proposes a method

for finding extreme solutions of systems of linear inequalities based on successively

eliminating variables. Minkowski [106] made the important observation that every

extreme point (vertex) of ad-polytope defined by halfspaces j( satisfies a set of

d affinely independent constraints from :J{ with equality. Based on this he noted



that all vertices could be found by simply testing all affinely independent d-sets of

constraints. Stokes [38] gives an early exposition of point-hyperplane duality, and

rediscovers Minkowski's algorithm in the dual setting of facet enumeration. None

of these algorithms are practical for computation without modification.

The first practical algorithm for vertex enumeration was developed by Motzkin

in his doctoral dissertation [31] and refined in [34]. Motzkin's double description

method is roughly the following1 . At each step we maintain both a vertex and

halfspace description of a current intermediate polytope Chenee the name «double

description methodU
). Initially, choose some set of d + 1 halfspaces forming a d­

simplex. Compute the vertices and edges of their intersection. At each succeeding

step, compute the intersection of the current intermediate polytope and one of

the remaining halfspaces. The vertices of the new intermecliate polytope are those

of the oid polytope feasible for the new halfspace plus the intersections of edges

of the old polytope and the bounding hyperplane for the new halfspace. Before

this can be termed an algorithm, several details must be specified. In particular,

the order in which the halfspaces are inserted (or insertion arder) can make the

difference between whether the double description method is polynomial or not on

a particular family of polytopes. It was later observed that Motzkin's method is

dual to that of Fourier (see Section 4.1 for discussion). What maltes Motzkin's

method computationally useful, while in general the original method proposed by

Fourier is not, is that the double description method only generates and keeps the

intersections of edges with the bounding hyperplane of the inserted halfspace, while

Fourier's method additionally (in the language of the double description method)

generates and keeps redundant points that are the intersection of a non-extreme

line segment between two vertices of the previous intermediate polytope with the

bouncling hyperplane of the new halfspace.

The double description method was rediscovered by (among others) Burger [9]

and Chernikova [14]. Fourier's elimination method was recliscovered by Dines [18].

• CHAPTER 1. INTRODUCTION 4
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1In order to work for unbounded ïntermediate polytopes the method needs to lift the polytope

into a homogeneous cone in one higher dimension. For details see Section 4.1.



Available implementations of the double description method include [41,44,47, 50].

In the computer science literature, the first work on convex hulls in dimensions

higher than three seems ta be that of Seidel [36], who rediscovered and refined

Motzltin's algorithm in the dual setting of facet enumeration. In the beneath and

beyond method instead of adding halfspaces one at at time, points are added one at

time with the convex hull of the added points maintained at every step. From the

upper bound theorem of McMullen [103], it is known that for fixed d, the the convex

hull of n points in ]Rd has o (nld/ 2j ) facets, and this bound is achieved by the cyclic

polytopes. In order to match this bound in even d, Seidel (and most of the computer

science literature that follows him) makes the assumption that the input points are

in general position, Le. that no d + 1 of them are contained in a hyperplane. Such

an assumption can be removed by either perturbing the input set or by (essentially

equivalently) maintaining a triangulation of the intermediate polytopes. While

neither perturbation nor triangulation affects the bound of o (n ld/ 2J ), we shall see

that in terms of polynomiality in the output size, it makes a huge difference, since

the perturbed or triangulated output is generally much larger than the the actual

output.

In 1983, Dyer [19] used a construction of Klee [100] to show that on-lïne incre­

mental algorithms (Le. those that insert the input constraints in the order given) are

superpolynomial in the worst case. Chapter 4 of this thesis generalizes and extencis

this work in several ways.

An incremental algorithm that meets the worst case bound of o(n ld/ ZJ ) for

all fixed d (as opposed to just even d) was provided (in an expected sense) by

Clarkson and Shor [16] and (in a deterministic sense) by Chazelle [13]. Both of

these algorithms maintain a triangulation of each intermediate polytope.

The work of Seidel [36], Clarkson and Shor [16], and Chazelle [13] on finding a

worst case optimal algorithm can be viewed in part as looking for good insertion

orders. In the case of [36], the insertion order is lexicographie. In the case of [13],

a central part of the algorithm. is a sophisticated insertion order that simu1ates the

random ordering used in [16]. In order for an incremental convex hull algorithm to

•
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be polynomial each intermediate polytope must have polynomial size. In fact, it is

not hard to see that if this condition holds, then a fairly naive implementation of

Motzkin's double description method (with this hypothetical insertion order) will

be polynomiaL Thus the question "Is there a polynomial incremental convex hull

algorithm for polytope family r" is equivalent to "Is there a polynomial insertion

order for polytope family r". One of the results of this thesis is that there are

familles of polytopes (see Section 4.4) for which there is is no polynomial insertion

order.
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1.2.2 Pivoting Aigorithms

The notion of pivoting also seems to have been first explored by Fourier [22], al­

though not formuiated explicitly algebraicly until the late 1930'5 by Kantorovich

(see [98]) and independently by Dantzig in 1951 [86] as the simplex method. Con­

sider ad-polytope P defined by a set of halfspaces 1(. An affinely independent set

of d elements of 1{ whose bounding hyperplanes intersect in some vertex ofv of P is

called a basis for v. Minkowski [106] showed that every vertex has a basis. A pivot

is the replacement of exactly one element of a basis to yield a new basis. In this

manner a basis graph of a polytope is naturally defined with nodes corresponding

to bases and edges corresponding to pivots. The problem of enumerating the ver­

tices of a polytope can be reduced by the theorem of Minkowski to the problem of

traversing this graph. In 1953 Charnes [12] gave an algorithm a using depth first

search on the basis graph, which included a perturbation procedure ta deal with

degeneracy. Manas and Nedoma [29] gave an algorithm using breadth first search

on the basis graph. Altherr [1], Dyer and ProU [20], Dyer [19] and Chvâtal [85] gave

more refined versions using e.g. balanced trees to store the bases found sa far rather

than unordered lists. Avis and Fukuda [5] described the reverse search algorithm

based on the depth first traversai of the basis graph that has the significant advan­

tage that it does not need ta store any of the bases previously discovered. Pivoting

can aIso be used for the problem of facet enumeration, where a basis is a set of



d affinely independent vertices lying in a facet. Dual pivoting or gift wrapping

algorithms for facet enumeration where given by Chand and Kapur [11], Swart [39],

and Seidel [37]. Rote [35] gave a gift wrapping algorithm based the reverse search

technique of Avis and Fukuda interpreted. in the dual.

Polytopes where every vertex has exactly one basis are called simple. Polytopes

where every facet has exactly one basis are called simplicial. Where every item

to be enumerated (vertex or facet) has exactly one basis pivoting algorithms are

polynomial and quite fast in practice. In the general case there can be (superpoly­

nomially) many bases corresponding to a single vertex. The most popular technique

for dealing with this problem in practice is to perturb the input to reduce the num­

ber of bases of the polytope (see e.g. [74, 46, 75]). An alternative approach, taken

in [11, 39, 35], is to recursively compute (in the context of facet enumeration) the

facets of each facet. Dyer [19] previously observed that such algorithms perform

superpolynomially on some families of polytopes. In Chapter 3 we argue that such

algorithms are superpolynomial even if they use an optimization due to Swart [39].
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1.3 Overview of Thesis

The rest of the thesis is organized as follows. In Chapter 2 we gÏve some definitions

and preliminary results from the theory of convex polytopes. In Chapter 3 we

argue the general method of pivoting is unlikely to provide a polynomial algorithm

for vertex/facet enumeration. In Chapter 4, we show that incremental algorithms

cannot be polynomial in our sense. In Chapter 5 we introduce a new "primal-dual"

method of facet /vertex enumeration that is polynomial for a natural and non-trivial

cIass of input. In Chapter 6 we present some conclusions and directions for future

work.
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Chapter 2

Preliminaries

This chapter presents some definitions and fundamental results from the theory of

convex polytopes that will be useful in the seque!. Severa! of the results belong to

the mathematical folklore; for completeness the easy proofs are included here.

2.1 Convex Polytopes

This section introduces some fundamental notions of convex polytopes from a com­

binatorial point of view. We start by defining polyhedra and polytopes, and consider

the notions of the face lattice, duality, and redundancy. For general references on

convex polytopes, and terms not defined here, see [92, 84, 113].

This thesis is primarily concemed with the affine properties of the d-dimensional

real vector space Rd, d > 1. We shall occasionally restrict ourselves ta the the d­

dimensional rational vector space Qd. A hyperplane is a set of points satisfying

some linear inequality ax = b. Similarly, a halfspace is the set of points satisfying

some linear inequality ax < b (i.e. an open halfspace) or ax < b (i.e. a closed half­

space). A convex polyhedron is the set of solutions to a system of linear inequalities

Ax :::; b, or equivalently the intersection of a set of closed halfspaces. A bounded

convex polyhedron is called a polytope.

Given a set of points X = {Xl, .. Xn}, a combination L~l ÀiXi. is called affine

8



if L Ài. = 1. A combination is called nonnegative if each À{ > 0, and convex

if it is both affine and nonnegative. The affine huil aff X is the set of all affine

combinations of X, or equivalently the smallest affine subspace containing X. The

dimension dim X is the dimension of aff X. A set of k points is called affinely

independant if it has dimension k. A set of k hyperplanes in Rd is called affinely

independant if its intersection has dimension d - k. The rela.tive interior relint X

is the interior in ai! X. The convex hull conv X is the set of aIl convex combinations

of X. Point p is extreme for X if p is not a convex combination of X \ {p }.

The following can be considered the fundamental theorem of convex polytopes.

For an outline of a proof, see Section 4.1. Further details can be found in e.g.

Br~ndsted [84J or Ziegler [113J.

• CHAPTER 2. PRELIMINARlES 9
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Theorem 2.1 (Minkowski-Weyl) Every convex polytope is both the intersection of a

tinite set of halfspaces and the convex hull of its extreme points.

Given a polytope P = nX, a halfspace H E j{ is called redundant if P =
n(j{ \ H). Similarly for a polytope P defined as the convex hull of a set X, x E X

is called redundant if P = conv(X \ x) (i.e. x is not an extreme point of conv X). In

what fol1ows, unIess otherwise noted, we assume that any descriptions of polytopes

under discussion contain no redundant elements. This assumption is justified by the

fact that redundant elements can be removed by solving a linear number of linear

programs, and by the existence of practically and theoretically efficient algorithms

for linear programming. X(P) (respectively V(P) is the non-redundant halfspace

(respectively vertex) description of P. We use m for IX(P)I, n for IV(Pll, and d

for the dimension d.im P. We use <0 (<Ok) and li. (1l.k) to denote the vector of all

zeros (of length k) and all ones (of length k) respectively. Let ei. denote the ith

elementary vector, Le. the vector with element i equal to 1 and every other element

O. By convention we define the Oth elementary vector as the origin <O.

From a combinatorial point of view, the important information about a polytope

is the combinatorial structure of its boundary. A hyperplane H supports a polytope

P if H n P i= 0 and P is contained in one of the closed halfspaces (the supporting
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Figure 2.1 The face lattice of a square.

Dimension
d

d-1

d-2

-1
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halfspace) induced by H. The faces of a convex polytope Pare 0, P (the improper

faces), and the intersection of a supporting hyperplane of P and P itself (the proper

faces). Faces of dimension k are called k-faces. By convention we say that the

empty face has dimension -1. fk(P) denotes the number of k-faces of P. Let

f(P) denote the total number of nonempty faces of P, Le. f{?) = L:t=o fdP). The

names vertices, edges, ridges, and facets refer to 0, l, (d - 2), and (d - 1)-faces

respectively. We use V(P), ê(P), and S=-(P) to denote respectively the vertices, edges,

and facets of P. The natural graph defined by the vertices and edges of P is called

the skeleton of P.

The face lattice of a polytope is the poset of its faces partially ordered by inclu­

sion. Lattice II is anti-isomorphic to lattice l2 if it is isomorphic with the partial

order reversed. Polytopes P and Q are combinatorially equivalent (respectively

dual) if their face lattices are isomorphic (respectively anti-isomorphic). For a face

F of d-polytope P, the codimension codimF denotes d -dim(F) -1. We use Ck(P)

to denote the number of faces of P with codimension k. If P' is a polytope dual to

P» then we have

f(p') = f(P)

Figure 2.1 illustrates the face lattice for a square, which is is easily seen to be
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self-dual, since the face lattice is symmetric top to bottom.

Ad-polytope P is called simple if every vertex is the intersection of exactly

d-facets. P is called simplicial if every facet contains exactly d vertices. From the

definition of duality, we see that the simplicial polytopes are dual ta the simple

polytopes.

We treat sets of points and matrices interchangeably where convenient; the rows

of a matrix are the elements of the corresponding set. Where the origin is in the

interior of a polytope, each facet defining inequality can be written as o.x < 1 for

some o.; for facet F we write oc(F) ta denote such a vector o.. For vector h, we adopt

the convention that h +, h -, and hO respectively denote the set of points x such that

hx < 1, h.x > 1, and hx = 1, respectively. Where there is no danger of confusion,

we sometimes identify the halfspace h+ with the corresponding constraint hx < 1.

We use P(H) ta denote the polyhedron {x 1 Hx < :n.}. Similarly we use X(P) to

mean the matrix A where P = {x 1 Ax $ lI.}. For a set of points Y we use j{(V) to

mean X (conv V); similarly for a set of halfspaces H, we use V(H) to mean V(P( H) ).

We say that a halfspace h + is valid (or hx < 1 is a valid inequality) for a set of

points X if X c h+.

For any point set X, the polar X· of X is defined as {1:1 1 Xy $ lI.}. It is known

(see e.g. [84]) that if P is a polytope containing the origin in its interior, p. is a

polytope dual ta P, containing the origin in its interior.

For a facet F with outward normal h, we write F+ or h + for the corresponding

supporting halfspace and F- or h- for the other (open) halfspace induced by h.

2.2 Bounds on Face Counts

Many of the lower bounds in this thesis will be based on families of polyhedra with

particular bounds on face counts. Here we recall the two most weil known such

familles, and the two fundamental theorems of polytope theory that they realize.

A cyclic d-polytope Cd(n) on n vertices is the convex hull of n distinct points



on the moment curve1 c(t) = (t, t 2 , ••• t d ). It is known (see e.g. [92]) that the convex

hull of any n distinct points on the moment curve is combinatorially equivalent.

Let Yi(n, d) denote fiCCd(n)). Let yen, d) denote Yd-t (n, dl. Cyclic polytopes are

neighbourly, Le. every k < Ld/2J vertices define a face (see e.g. [92]). It folIows

that

• CHAPTER 2. PRELIMINARIES 12

o<i < Ld/2J

The facets of a cyclic polytope are completely characterized by uGale's evenness

condition" [90], as folIows. Consider the bit veetor corresponding to the set of

vertices of Cd(n) lying on sorne hyperplane hO. hO defines a facet if and only if

there are exactly d 1s and every consecutive set of ones is either even in length

or contains the first or last vertex. It folIows [90, 92, 113] from Gale's evenness

condition that

dodd

(2.1) yen, d) =

n (n - d/2) d even;
n-d/2 n-d

2 (n - (d + 1)12)
n-d

•

In fact Yk(n, d) can be computed for the remaining values of k from the "Dehn­

Somerville Equations"; see [93J for details and formulae.

Theorem 2.2 (The Upper Bound Theorem [103]) A convex d polytope with n vertices

has at most Yk(n, d) k-faces.

Let yen, d) denote f(Cd(n)). Since cyclic polytopes are simplicial, the following

(rather crude) bound holds: yen, d) < yen, d) < 2dy(n, dl. The following lemma,

due ta Altshuler and Perles, says that in some sense, the cyclic polytopes are as

degenerate as possible.

lSeveral other curves will serve equally weIl; see [92] p. 63 and the references there for more
examples.



Lemma 2.1 ([77]. p. 102) For even dimension d, every vertex of Cd(n) is contained

in exactly yen - 1, d -1) facets.
• CHAPTER 2. PRELIMINARIES 13

A truncation polytope is either a simplex, or the intersection of a truncation

polytope with a halfspace that cuts off precisely one vertex. A stacked polytope is

either a simplex, or the convex hull of a stacked polytope P, along with a point x

beyond exactly one facet of P. The following can be proved from polarity.

Proposition 2.1 The dual of a stac1ced polytope with n vertices is a truncation poly­

tope witb n facets.

Let f3k(m, d) denote the number of k-faces of a truncation polytope. The following

is known (see e.g. [84]):

(2.2)
{

(d - 1)m - (d + 1)( d - 2), k = 0;

l3k(m, d) = ( d)( d) + (d) 1 < k_< d _ 2
k+l m- k '

We use f3(m, d) ta denote f3o(m, dl.

Theorem 2.3 (The Lower Bound Theorem[78, 79. 82]) For any simple d-polytope P witb

m lacets, fk(P) > Pk(m, dl. Furthermore, for d ~ 4, iffk(P) = f3k(P) for any k then

P is a truncation polytope.

Unlike Theorem 2.2, the bound of Theorem 2.3 halds only for simple (or in the dual

interpretation simplicial) case. A naturallower bound for the number of vertices of

an m facet polytope is provided by "invertingn Thearem 2.2. Define À(m, d) ta be

the smallest integer t such that m < y(t, d). For any m facet d-polytope P,

(2.3) fo(P) > À(m, d)

•
Deza [87] has shawn that the bound (2.3) is tight for m or d even.
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2.3 Products and Sums of Polytopes
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Many of the results of this thesis will be based on the Cartesian products of poly­

topes construction. Here we present some weIl known properties of this construction

that will be useful in the sequel. Let P be a k-polytope and let Q he an l-polytope.

Let P x Q, called the product ofP and Q, denote {(Pt q) 1 pEP, q E Q}. We regard

IRk. x IRl as naturally embedded in JR(k+l), with coordinatization (XII •• ' Xk.t Yh ... yd
where Xi and Yi are the coordinates of JRk and Rl respectively.

Lemma 2.2 For nonempty subsets S and T of R k, JRl respeetively

Ca) aff(S x T) = aff S x affT

Cb) conv(S x T) = conv S x convT

Cc) dïm(S x T) = dimS + dim T

Praof·

Ca) Consider an affine combination (s, t) = LiEI.jEJ Àij(Sil td of S x T. By setting

(Ji = LiEJ Àij and 'Li = LiEI Àij we obtain affine cembinations s = LiEI (JiSiI

t = LiEJ 'LjSi· Te go the ether direction, simply set Àij = (J{'rj.

(b) Note that both of the mappings between combinations given above preserve

non-negativity.

Cc) Let Al = Xl + LI and A z = Xz + Lz be affine subspaces, where II and Lz are

linear subspaces. Let L~ = {(x, Ol) 1X E II }, and let l2 = {(Ok, X) 1xE Lz }.

Al X A z = (Xl, Xz) + (L1 x lz) = (xl, xl) + (L~ + L~)

A standard result of linear algebra (see e.g. [108]) is that

•
dim(L~ + L~) = dim(l~) + dim(l~) - dim(l~ n L~)

= dim L1 + dim Lz = climA1 + dimAz o
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lemma 2.3 (The Produet lemma) Let P be a k-polytope and Q an 1-polytope.

Ca) P x Q is a (k + l)-polytope.

15

•

Cb) For i ~ j > 0, the i-faces oiP x Q are precisely Fp x Fq where Fp is a j-face of

P and Fq is an (i - j) face ofQ.

Cc) P x Q is simple iff P and Q aIe simple.

Proof·

Ca) Since P and Q are convex, P x Q = convP x conv Q. By Lemma 2.2b,

P x Q = conv(P x Q). It follows that P x Q is a polytope. The dimension

follows from Lemma 2.2c.

Cb) Let Rk+l be coordinatized by (Xl", Xie, Yl •. ' yd. Let ax < b be a facet defin­

ing constraint for facet F of P. The constraint ax < b is valid for P x Q.

Moreover {(x, y) E P x Q 1 ax = b} = F x Q hence by (2.3a) has dimension

k + 1- 1. It follows that the facet defining inequalities for P x Q are precisely

the the facet defining inequalities for P and Q, interpreted in the higher di­

mensional space. Any j face must satisfy an affinely independent set of j of

these inequalities with equality, and at most k Crespectively 1) of these can

come from P Crespectively Q).

(c) Note that a vertex (p, q) only satisfies with equality those facet defining con-

straints of P and Q that p or q satisfy with equality. 0

From Lemma 2.3, we draw some easy conclusions about the face counts ofproducts.

Corollary 2.1 Let P and Q be k and 1-polytopes.

Ca) fo(P x Q) = fo(P) . fo(Q)

Cb) co(P x Q) = co(P) + co(Q)

Cc) f(p x Q) = tep) . f(Q)
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For polytopes P c lRk and Q c R l, we define the orthogonal sum P œQ as

P œQ =conv({ (p, ( 1
) [ PEP} u {(Ok1 q) 1 q E Q}).

16

Lemma 2.4 Let P and Q be k and t polytopes respectively that contain the origin

as an interior point. Pœ Q = (P- x Q-)-.

Praof. By Lemma 2.3 and polarity, we know the defining halfspaces for P* x Q*

can be written as [vg l v~d x< 1. Taking the polar one more time, we arrive at

the definition of P œQ. 0

We again note some easy but useful consequences for face counts.

Corollary 2.2 Let P and Q be k and t polytopes respectively that contain the origin

as an interior point.

Ca) fo(P EB Q) = fo(P) + fo(Q)

(b) co(P El' Q) = co{P) . co(Q)

(c) f(p EB Q) = [(P). f(Q)

Closely related to the orthogonal sum is the diagonal sumo Given k-polytope P

and an l-polytope Q, define the diagonal sum P 0 Q as

The idea behind the diagonal sum. is that P and Q are embedded in the two

subspaces

•
(2.4a)

C2.4b)
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where the subspace defined by (2.4a) intersects the subspace defined by (2.4b)

exactly in the point O. It tums out that this is equivalent in a very strong sense to

the orthogonal sum construction. Call two polytopes linearly equivalent if there is

a bijective linear transformation !rom one to the other.

Lemma 2.5 Let P and Q be polytopes containing the origin in their interior. R =

P 8 Q is linearlyequivalent to R' = P' œQ', where P' (respectively Q') is linearly

equivalent te P (respectively Q).

Praof. Let k = dim P, l = dim Q and d = k + 1. Let II (Ll respectively) be the

linear subspace defined by (2.4a) ((2.4b) respectively). Let BI denote a basis for II

(i.e. a set of k linearly independent vectors in Lt). Let Bl be a basis for Ll . Sï.nce

dim(ll U lz) = d, B = BI U Bz forms a basis for Rd. The linear transformation B-1

transforms B to the identity matrix 1. Let R' = RB-1 (i.e. the transformation B- I

applied to R). Sînce II n lz = 0, Bl and 8 l are transformed to disjoint subsets

(of rows) of l, hence R' has the desired form P' œ Q' (possibly after reordering

coordinates). By construction,

Let X = V(P) and Y = V(Q).

It follows that e.g. P = P/B1 where BI denotes the tirst k columns of BI. 0

From Lemma 2.5, we can use the diagonal and orthogonal sum interchangeably,

depending on which is more convenient. One advantage of the diagonal sum opera­

tion is that it preserves the vertex coordinates of the two polytopes, set of the two

polytopes. We will use this create a sum of polytopes with coordinates ± 1 that also

has coordinates ± 1.
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2.4 Complexity
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We consider the input (respectively, output) size to be the number of real (or ratio­

nal) numbers needed to represent the input (respectivelyoutput). For convenience,

we use size(P) = dim(PHIV(P) + IX(P)I) to denote the summed input and output

sÎZe.

We assume each single arithmetic operation takes a constant amount of time.

This assumption is merely ta simplify the discussion, and everything here could be

reanalyzed in the binary complexity model without qualitative changes.

AIl logarithms are binary, unless otherwise specified.

A jamily of polytopes is used here to mean an infinite set of polytopes. Usually,

but not necessarily, familles arise in some natural way from a problem such as the

traveling salesman problem [61], or a construction such as those described below.

Given a family of polytopes r, a function 9 : r ~ IR. is called polynomial for r if there

exists some univariate polynomial p(x) such that for every P E r, g(P) < p(size Pl.

A function 9 : r ~ IR. is called weakly polynomial for r if there exists positive

function f(x) and polynomial l'(x) such that VP Er, g(P) ~ f(dim P) ·p(size Pl; this

corresponds to the notion of considering d to be a constant. If 9 is not (weakly)

polynomial for r we say that 9 is (strongly) superpolynomial for r.

Bibliographie Notes

The numbers (f0 (P ) t f 1(P) , ... f d-l (P) ) are often called the f -vector of the polytope

P. Characterizing the f-vectors of (various familles) of polytopes is a central theme

in polytope theory. The Upper Bound Theorem (Theorem 2.2) was first conjectured

by Motzkin [107] in 1957 and proved by McMullen [103] in 1970. The f-vectors

of simplicial (and by duality simple) polytopes are completely characterized by

ccMcMullen's f-vector conditions". These algebraic conditions were conjectured by

McMullen [104, 105] in 1971. The necessity of these conditions was proved by

Stanley [111] in 1980. In 1981, the sufticiency of the conditions was shown by
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Billera and Lee [82]. The Lower Bound Theorem (Theorem 2.3), although first

proved by Barnette [78, 79J, is aIso a corollary of McMullen's conditions. Deza and

Fukuda [88] also use McMullen's conditions ta give a tight lower bound for the

number of vertices of a polytope with mi-faces, 0 < 1. < Ld/2J.
Some results are also known for familles ofpolytopes other than simple/simplicial.

Blind and Blind [83] show that any d-polytope without a triangular 2-face has an

f-vector bounded below by that of the d-cube. Kortenkamp et al. [102] give an

upper bound of d! - (d - 1)! + 2( d - 1) facets for an n-vertex d-polytope whose

vertices are 0/l-vectors. They give an example family of O/l-polytopes with more

than (2.76)d facets for sufficiently large d.

For notational convenience, the same algebraic construction of orthogonal sum

is used for two clifferent combinatorial purposes here. If P and Q are bath full

dimensional, then P œQ corresponds to what is known in the literature as a ''free

sumn
• Otherwise, it corresponds to a "join". The "diagonal sumn construction ap­

pears in a paper by Kortenkamp et aL [102] under the name "direct sum". The free

sum operation can he defined in sufficient generality to include both the orthogonal

and diagonal sum, by defining it is any operation that embeds the two polytopes in

complementary subspaces (two subspaces that intersect in a point and whose union

is the entire space) before taking their convex hull. For more details, see [95, 102] .
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Chapter 3

Pivoting Aigorithms and Triangulation

A basis for (a vertex of) ad-polytope P is a set of d affinely independent supporting

hyperplanes whose intersection is feasible. A pivot operation moves from one basis

to another by exchanging exactly one hyperplane. It turns out that the basis graph,

whose nodes are bases and whose (directed) edges are pivots, is connected. This,

along with the fact that every vertex has a basis means that the vertices of a

polytope can be enumerated by exploring the basis graph; such an algorithm is

called a pivoting algorithm. The number of bases can be much larger than the

number of vertices: a vertex where 1110 facets meet can have as many as (~) bases.

The earliest (and most popular in practice) technique to reduce the number of

bases visited by a pivoting algorithm is to perturb the input hyperplanes 50 that

the resulting polytope is simple. In general the number of vertices of the perturbed

polytope is significantly larger than that of the input polytope. In Section 3.3

we give example familles for which every perturbation produces a superpolynomial

blowup.

The main step of pivoting algorithms is finding the neighbouring vertices of the

current vertex (as opposed to the neighbouring bases of the current basis). Find­

ing the neighbouring vertices to the current vertex v is equivalent to enumerating

the edges adjacent to v. By considering a hyperplane that cuts off only v, we can

recursively reduce this problem to a vertex enumeration problem in one less dimen-

20
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sion. Such algorithms (see e.g. [11, 39, 35, 401) are equivalent to computing the

entire face lattice of the polytope. Familles whose face lattice is superpolynomial

in m, n, and d are weIl known. In Section 3.1, we give examples of such familles

with an infinite number of members in a given dimension. We also consider the

variant of this method proposed by Swart [39] which computes a subset of the face

lattice. Although this defeats certain simple lower bounds, it turns out aIso to be

superpolynomial in the worst case.

In the facet enumeration setting, a basis is a set of d vertices defining a facet. A

dual-pivoting or "gift-wrapping" (see e.g. [39]) algorithm moves between adjacent

bases (those that share d - 1 vertices) in much the same way as a pivoting algorithm

for vertex enumeration. In order ta reduce the number of bases visited, the input

vertices are either perturbed, or the boundary of the polytope is tria.ngulated,

i.e. decomposed into (d - 1)-simplices. Triangulation will be the bridge between

bounds for face lattice producing algorithms and bounds for algorithms based on

perturbation. The results on the face lattice of Section 3.1 will imply lower bounds

on the size of triangulations in Section 3.2, and these triangulation bounds will in

turn imply bounds on the size of the perturbations in Section 3.3. It should be

noted that although triangulation does not provide a polynomial upper bound, the

bound of o (nld/2J ) provided by the upper bound theorem is much better than the

il(n d) possible total bases.

The lower bounds in this chapter apply to pivoting based algorithms using either

perturbation (e.g. [42, 12, 46]) or lattice enumeration [35, 39, 40]. They further apply

to incremental algorithms that use triangulation (see e.g. [16, 48, 13]). Because the

worst case complexity of the face lattice is asymptotically the same as the worst

case output size (vertices or facets), several authors (see e.g. [15, 10]) define the

"convex hull problem" as computing the face lattice of the polytope. The bounds

of this chapter show that this can be prohibitively expensive for applications that

only want the vertices or facets, especially since the face lattice is relatively easy

to compute given the vertices and facets (see [26]). Severa! of these algorithms

compute the face lattice of a perturbed polytope, and are thus potentially subjeet
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to two superpolynomial blowups. Finally, the lower bounds in this chapter apply

to algorithms that apply pivoting to the dual polytope as a method of verifying the

output, such as those developed in Chapter 5.

3.1 Computing the Face Lattice

This section presents examples of familles whose face lattice is superpolynomial in

their size. These familles show that no convex hull algorithm that computes the

face lattice is polynomial. Let Td denote the d-dimensional simplex. Since every

subset of vertices of a simplex defines a face (see e.g. [92]),

(3.1)

Although computing the face lattice might be a useful technique if it were bad only

for simplices, given (3.1) it is not hard to see that the face lattice is superpolyno­

mial for any polytope that contains (or whose dual contains) a Uhigh dimensional"

simplicial face and whose input and output sizes are polynomial in the dimension.

If P is a truncation d-polytope, d ~ 3, then

tep) > 2a (d} size(P)

This can be seen as follows. Let m = co(P).

fo(P) = (m- d)(d-l) +2

<2(m-d)d

By (2.2)

d>2

Since for a simple polytope fo(p) > co(P), it follows s =size(P) ~ 4d2 (m - dl·

Sllmming (2.2), we get

•
tep) = (m- d+ 1){2d -2) +3

> (m - d)(2d - 2) > S2d-21ogd-3 d>3



• CHAPTER 3. PIVOTING ALGORITHMS AND TRIANGULATION 23

•

Swart [39] ohserved that instead of computing the vertices of a simplicial k-face

recursively, one can can compute them directly. Sucb an algorithm computes the

abbreviated face set ~(P), defined recursively as follows:

- U {{F} if Fis a simplex,
iY(P) ={P}

FE:T(P) ~(F) otherwise

~ ~ 6-

Let f(P} denote 1;j(P}I. Obviously tep) ~ f(P). For simple or simplicial polytopes,

both f( P) and t( P) are linear in m and n, although exponential in d. Consider

the simplicial case. Every facet is a (d - 1}-simplex, hence by (3.1) has 2d - 1

non-empty faces. It follows that if P is simplicial (respectively simple), f(P) < 2d m

(respectively tep) < 2dn). In [39], Swan conjectures that tep) is linear (or ICsimilar'

ta linear, Le. bounded by a small polynomial) in n + m for general polytopes. We

will see below that for certain (non-simple and non-simplicial) familles of polytopes,

r(p} is not bounded by any polynomial in m and n independent of the dimension.

Computing the abbreviated face set instead of the complete face lattice is only

advantageous if the polytope has one or more l'large dimensional" simplicial faces.

The following consequence of the Product Lemma suggests how to construct poly­

topes with large face lattices, but with no lClarge climensional" simplicial faces.

Lemma 3.1 Let Pl and Pz be polytopes. Pt x Pz is a simplex if[ dim Pl = 0 or

dim Pz = o.

Proof. The "if" direction is clear from the Product Lemma. Let nt and nz be the

number of vertices of Pl and Pz respectively. Let dl = dim. Pl and let dz = dim Pz.

Suppose Pl x Pz is a simplex.

dl + d2 + 1 =nl ·nz By Lemma 2.3

~ > dj + 1 j E { 1•2 }

dl + dz + 1 > (dl + 1) (dz + 1) = dt dl + dt + d2 + 1

.·.0 > dt dl 0
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Corollary 3.1 Let P and Q be polytopes contai11iIJg the origin as an interior point.

P $ Q is a simplex ifIdim P = 0 or dimQ = o.

Proof· The observation here is that P œQ is a simplex if and only if (P œQ).,

Le. P* x Q* is. By Lemma 3.1 this holds if{ dim P* = 0 or dim Q* = O. 0

In order to make use of Lemma 3.1 and Corollary 3.1, we need familles of poly­

topes whose face lattice is extremely large in terms of the number of vertices. A

natura! candidate family is the cyclic polytopes. On the other hand, cyclic poly­

topes, at least those realized as the convex hull of a set of points on the moment

curve, are not weIl behaved numerically, since the bit complexity of the coordinates

growslinearly with the dimension. Since the other dth order curves (see Section 2.2)

seem to have similar numerical behaviour, it will prove useful to have (non-cyclic)

familles that behave in some ways like the cyclic polytopes, but have tighter bounds

on the values of coordinates. We define two such familles using the sum construc­

tions of Section 2.3. For a polytope P, let EBk P denote the k-fold sum of P with

itself, i.e.

œp=J'œp ...œ~
k k t~es

Define 0k P analogously (recall that 0 is the diagonal sum operator linearly equiv­

aient to EB; see Lemma 2.5). Let 7t'n. be a convex polygon with n vertices. For odd

n choose points as follows:

xCi) = (n -1 )/2 - i

y(i) = 2x(i)2 - 3 i=O ...n-l

•

If n is even, construct 7t'n.-T and then add a vertex with coordinates (0, n 2/2 - 2n).

Let Hd denote the d-dimensional hypercube with vertices in {-1 , +1 }d. Define

n1d(n} =EBd 1'Cn and U3d =Gd H3 · Recall that foCP} and coCP) denote respectively

the number of vertices and facets of P. f( 7tn.) = 2n + 1. From Lemma 2.3 and
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Lemma 2.4, we know the following:
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H3 has 1 3-face, 6 facets, 12 edges and 8 vertices. It follows that f(H3} = 27.

In both cases we have the desired property that the face lattice size is much larger

than the vertex representation.

We now introduce three families of polytopes that are somewhat of a recurring

theme in this thesis. Although there are perhaps easier ways of achieving our

immediate goal of superpolynomially sized face lattices, these three familles will

turn out to be useful in Chapter 4 as weIl. Loosely speaking, we will take the y(l­

foid product of polytopes in dimension Vd. In order to have familles with members

in every (sufficiently large) kth dimension for constant k, we interpolate in the

fol1owing manner. For any d > 2 define a = rv"dl, b = LdlaJ, and c = d mod a.

Define

••• b
Czd(n} =CZa(n) x Czc(n)
••• b
TTZd(n} =TTZa(n) x TTzc(n}

••• _ b
U3d = U 3a X U3c •

The last term is omitted if c = O. since multiplying by a O-polytope merely changes

the ambient space. Define sgn(x) as 0 if x = O. xl abs(x) otherwise. Let bl ­

rdial = b + sgn(c}. We will make use of the fact that b' < a and c < a.

•

••. b'
for CZd(n)) = n

co(CZd(n)) = by(n, 2a) + sgn(c} . yen, 2e}

E sena}

By Corollary 2.la

By Corollary 2.lb

d fixed
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Thus we have
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(3.2) d fixed

Similarly, for IT2d(n) we have

(3.3)

f oOï2d(n)) = (an)b(cn)sgn(cl

< (an}b'

CO(Ïï2d(n)) = bna + sgn(c)nC

size IT2d(n) E Sena) d fixed

It should be noted that (3.3) hides a constant of approximately d'-"'d and hence is

only of interest when n :» d. Similar arithmetic to the above reveals

(3.4)

... b'
f O(U3d) < (8a)

CO(U3d) < b'6u

size U3d < 6d(8a)a

= Zu(3+Ioga+{Zloga+3}fa)

< 3uloga d sufficiently large

Using the fact that the size of the face lattice multiplies under bath the sum and

product operations, we have

(3.5)

t( C2d(n)) E 8(nd }

tOïZd(n)} E 8(nd)

f(U3d) = 33d

d fixed

d fixed

•
By Lemma 3.1, C2d(n) has no simplicial face with dimension greater than fv'dl.

By Corollary 3.1, neither n 2d(n) nor U3d has a simplicial face with dimension higher

than 1. By Lemma 3.1 it follows that neither do products of either of these families.
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Since every l-face is simplicial, it follows that
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We summarize the resu1ts of this section as follows.

t( ë'Zd(n)) E e(s~/rv'dl) where Sc =size Czd(n) d fixed

t(ITZdCn)) E e(s:/fv'd1} where S-p =size iïZd(n) d fixed

t(UZd) E OCS~d/( fv'dllog[v'êill) where Su =size U3d

3.2 Triangulation

In this section we work in the context of facet enumeration; as usual this is merely

a matter of convenience, and everything here can be interpreted in the dual vertex

enumeration context. It will be useful in the next two sections to work with objects

slightly more general than polytopes. A set of polytopes r is called a polytopal

complex if

1. The empty polytope is in r,

2. If P E r t then the faces of P are also in r t and

3. for any pair {Pi, Pi} Cr, Pi n P j is a (possibly empty) face of both Pi and Pj.

Since the only complexes we are interested in here are polytopal, we usually abbre­

viate polytopal complex to complu. The polytopes that make up a complex are

called its faces. By the maximal faces of complex we mean those not contained in

any other face. The boundary complex of a polytope P is the complex consisting of

ail of the k-faces of P, k < d. Note that the face lattice of a polytope can be viewed

as a complex, but a complex is not necessarily a lattice. A complex â is called a

decomposition of a polytope P if P = UQEA Q. Complex r' is called a refinement

of complex r if it consists of decompositions of the faces of r. A complex r is



called simplicial if each P E r is simplex. A simplicial refinement of a complex is

called a triangulation. Triangulation is used. not only in pivoting based algorithms

for facet enumeration, but in certain incremental algorithms. In the former case,

the idea is to reduce the number of bases (facet defining sets of vertices) visited

by the algorithm. In the latter case, the idea is to improve the performance of the

algorithm in low dimensions or to meet the worst case bound of O(nld/ 2J ). In the

case of pivoting algorithms, although triangulation is no worse than enumerating

all bases of a polytope, it cannot guarantee a polynomial algorithm. In the case

of incremental algorithms, not only does triangulation not guarantee a polynomial

algorithm, but it can malte an algorithm superpolynomial for certain familles of

polytopes, even given a good insertion order.

Triangulations without extra vertices (Le. those whose O-faces are the vertices

of the polytope) are of special interest, bath from a theoretical point of view and

from the point of view of facet enumeration algorithms. It will turn out that the

bounds in this section hold for the more general case of allowing additional vertices;

we will see in Section 3.3 that they hold even for more general sets of simplices than

triangulations.

There are severa! problems closely related to triangulating a polytope, namely

triangulating its facets (individually) and triangulating its boundary complex. Given

a triangulation Â of the boundary complex of P, we can extend it ta a triangulation

of P (see Section 3.2.1). On the other hand, a triangulation of the facets is not nec­

essarily a triangulation of the boundary: consider for example a ridge of a 4-cube

(itself a 2-cube) where the triangulations of the adjacent facets choose different diag­

anals (see Figure 3.1). A lower bound on the number of (d-1 )-simplices necessary to

triangulate each facet will proride a lower bound for the number of (d- 1)-simplices

neccesary to triangulate the boundary and the number of d-simplices neccesary to

triangulate the polytope.

Severa! known bounds on the size of triangulations are based on volume. By

providing a lower bound for the volume of the polytope P ta be triangulated, and

an upper bound for the volume of a simplex contained in P, a lower bound for the

•

•
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Figure 3.1 The ridge Xl = xl = 0 of a 4-cube triangulated in two different ways by
triangulations of facets Xl = 0 and Xz = 0
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number of maximal simplices necessary to triangulate P is obtained. Section 3.2.1

comprises an exposition of two such bounds.

Similarly ta the bound on the face lattice size in terms of the number of facets

of a simplicial polytope, we can obtain a bound in terms of the number of maximal

simplices in a triangulation. Suppose we have a triangulation d of d-polytope P

with t d-simplices. For k < d, every k-face of P must be triangulated by d, Le.

must contain at least one k-face of sorne T E d. Since k-faces of P do not intersect

except in j-faces, j < k, it fallows that

(3.6)

k<d

Note that (3.6) does not depend on whether d contains extra vertices or note Here

we are interested in the interpretation of (3.6) as a lower bound on the size of a

triangulation. Let tmin(P) denote the minimum number of d-simplices necessary

ta triangulate ad-polytope P.

•
(3.7) tmin(P) > f(P)2- d
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Let tminF(P) denote the minimum. number of (d - 1)-simplices necessary to trian­

gulate the facets of P.

(3.8)

tminF(P) = ~ tmin(F)
Fe:T[PI

tminF(P) > 2-d +1 ~ ([(F))
Fe:TfPI

> r(p) 2-d+1

By (3.7)

From (3.B), and the bounds (3.5) on face lattices from Section 3.1, we have the

following

tminF(ë·Zd(n)) E O(nd)

tminF(nZd(n)) E O(nd)

tminF(U3d) > 33d/23d

> 3d

d fixed

d fixed

Use the size calculations of (3.2), (3.3), and (3.4), we have almost the same results

as for the face lattice sizes.

tminF( C2d(n)) E Q{s~;rv'Cll) where Sc =size C2d(n)

tminF(n2d(n)) E Q(s~/rv'Cll) where sp =size ITzd(n)

tmm· F(U···3d) E Q(Shd/crv'CllIOgrv'dll) h . ·U··w ere Sh =slZe 3d

3.2.1 Triangulation and Volume

dfixed

d fixed

•

This section gives an exposition of two lower bounds for triangulation sizes based

on volume considerations. We start by presenting some relevant background on

volume in 1R.d. By the d-dimensional volume Vol(P} we mean the standard Lebesgue

measure. If P is not full dimensional, we use Vol(P) to mean the volume of P in
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(3.9)

affP. Let Td denote ad-simplex. We take the following as given1 (see e.g. [81, 95]).

Vol Td = ~! abs !V(Td) 1/
For a k-polytope P c !Rd and point v ~ affP (the apex), define the (k + 1) di­

mensional pyramid Pyr(P, v) as conv(P U {v}). Let hep, P) denote the denote the

perpendicular distance from p to aff P. From properties of determinants (see e.g.

(24.16) in [811), we have the following:

(3.10) "VlIP (T ) = h(v,Td-tlVol Td - 1
o yr d-h V d .

Suppose we have a polytope P containing the origin as an interior point. Let F

be a facet of P. Let IX(F) be the d-vector such that IX(F)x < 1 supports P in F.

(3.11) h(<O, F) = l/IIIX(F)[1

If we consider some arbitrary triangulation of F, from (3.10) and (3.11), we have:

(3.12)
VolF

VolPyr(F,<O) = dlllX(F)II.

By considering the decomposition of Pinto pyramids with the origin as apex it

follows that

(3.13)
Vol(F)

Vol P = L dlllX(F)II'
FE:T{P}

•

Lemma 3.2 Let P and Q be polytopes. Vol(P x Q) = Vol(P) . Vol(Q)

Proof. Let k = dim P and l = d.im Q. We proceed by induction. The lemma holds if

k+l = O. Nowsuppose k+l = d > 0, and the lemmaholds for k+l = d-l. Without

10ss of generality, suppose that bath P and Q (and hence P x Q) cantain the origin

as an interior point. As in the preceding discussion, consider the decomposition of

1 For our purposes this eould serve as a definition of volume, sinee the volume of any polytope is
defined here in terms of a triangulation.
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P x Q into pyramids with the origin as apex. We know by Lemma 2.3 that every

facet of P x Q is the product of a tacet of one polytope with the other polytope.

Let F = Fp x Q for some Fp E S=-(P).

VolF
VoIPyr(F) 0) = dl/cx(F)1I

Vol(Fp ) • Vol(Q)

dl/cx(FlIl

Vol(Q) k Vol(Fp )
-

k + l kil exC Fp ) Il

By (3.12)

By the inductive h.ypothesis

since IIcx(F) Il = I/cx(Fp lll

By surnrning over an such facets f, and considering the symmetric case of facets of

the form P x Fq, we arrive at

Vol(P x Q) = (VOl(Q) k, VOI(Fp )) + (VOICP) l , VOI(Fq ))

k+l L klloc(Fp )Il k+l L IIIcx(Fq )Il
FpET(P) FqE:rCQ)

= Vol(P) . Vol(Q) By (3.13) 0

Perhaps the most weil known family of difficult to triangulate polytopes are the

hypercubes Hd. Haiman [70] gives the following bound:

(3.14)

•

We include here a sketch of Haiman's argument. The essence of the argument is

to give an upper bound on the size of the largest simplex contained in Hd. Let

ball(c) T) denote the d-ball of radius T centered at Ct Le. {x II/x-cil < T}. If we take

the standard {+1)-1 } coordinatization of Hd, every vertex lies on the boundary

of ball(O, Vd). Fejes T6th [112] proved that the maximum volume d-simplices

contained in a d-ball are the regular ones (where the distance between every pair of

vertices is the same). According to [112) the regular d-simplex with circumradius

~ has volume Vmax = Cd + 1)(d+l}/2/d!. As a consequence of Lemma 3.2, the

{+1) -1 }-hypercube has volume 2d • It follows that any triangulation of Hd must
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contain at least

2d 2d d!
Vmax = (d + 1)(d+l)/2

d-simplices. Snmming over all facets, we have the following.

Theorem 3.1 Let H d be ad-cube.

t . H > (1/4) log log sd-1/2
IIl1D.F d _ Sd

> (1/4) Iogd-I/2_ Sd

Praof. The hypercube Hd has 2d vertices and 2d facets. Thus we have

size Hd = d(2d + 2d) = Sd < 22d = Ud •

33
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By (3.14). the number of (d - 1)-simplices required to triangulate the 2d facets of

Hd (each of which is a (d - 1)-cube) is at least

But (d/2) = (1/4) logud > (1/4) logsd and thus triangulating the boundary of Hd

requires at least

(d/2)d/2 > [(1/4) log scJ (1/4) logsd = s~1/4) loglogsd -1/2

(d - 1)-simplices, as claimed. The second inequality follows from the fact that

logsd > d. 0

By the Product Lemma, f(Hd) = 3d. Since size Hd > 2d• it follows that f(Hd) <
size(Hd)log3 (recall that logarithms are binary unless otherwise noted). Thus we see

that the the triangulation complexity of a polytope is not always bounded above

by the face lattice size.
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The lower bound of Theorem 3.1 is only slightly superpolynomial in size (P). We

now show how to obtain a much stronger bound.

Theorem 3.2 [67, 70, 69] Let Td denote ad-simplex. Every triangulation of Tic x Tl

without extra vertices requires exactly (lcrl
) (k + l)-simplices. Every triangulation

of Tk x Tl requires at least (krl
) (k + t)-simplices.

The proof of Theorem 3.2 uses the taols of unimodular matrices. A matrix is

called totally unimodular if every square submatrix has determinant -1, 0, or +1.

We will use (but not prove) the following theorem, due ta Ghouila-Houri [91] (for

a more accessible proof, see [110])

Theorem 3.3 [91, 110] Let A be a matrix with entries {-l, 0, +1}. A is totally

unimodular if! every collection of columns of A can be split into two sets such that

the SUIn of the columns in one set minus the sum of the columns in the other set is

a vector with entries {-1,0, +1 }.

The following lemma will allow us to extend the bound (based on unimodular

matrices) for triangulations of Tk x Tl without extra vertices ta the general case.

Lemma 3.3 Let P be a d-polytope, and T ad-simplex such that T ç P. There exists

a d-simplex T' C P such that Vol Tf > Vol T and V(T f
) C V(P).

Proof. Let v be a vertex of T, Le. T = Pyr(Q, v) where Q is d - 1 simplex. By

(3.10), $(x) = VolPyr(Q, x} is a linear function of h(x, Q}. By the Fundamental

Theorem of Linear Programming (see e.g. [85]), there exists some x· E V(P) such

that <P (x·) 2:: <P (v) . 0

Proof. (of Theorem 3.2) Let Td denote convex hull of {eo ... ed}. Let P be the

product Tk x Tl. Let A E {O, 1 }mx(k+l+l) be defined by ai = (Vit 1) where Vi is the

ith vertex of P. We claim that A is totally unimodular. Consider some collection

e of columns of A. Let 'Yl be the sum of columns from e with index at most k (Le.

columns from Tk). Let 'Y2 be the sum. of columns from e with index between k + 1



and k+ l (Le. columns !rom Tl)' If the last column of A is in e, let 1'= 1-1'1 -1'1;

otherwise let y = 1'1 - 1'1. In either case, y E {O, ± 1 lm. By Theorem 3.3, it

follows that Ais totally unimodular. In particular it follows by (3.9) that every full

dimensional simplex with vertices in V(P} has volume l/(k+IH (note that since the

determinant of an integer matrix is an integer, this is the smallest possible volume

for a (k + tl-simplex with integer vertices). By Lemma 3.2, P has volume l/(k!l!).

It follows that every triangulation of P without extra vertices has at exactly C'rl
)

[k + t)-simplices. By Lemma 3.3, every triangulation of P has at least this many

(k + l )-simplices.

Ta generalize to products of arbitrary simplices, it suffices ta note that transform­

ing from an arbitrary simplex ta conv{ eo ... ed } amounts ta a translation fallawed

by a change of basis, Le. an affine transformation. Taken together, these two trans­

formations are aIsa an affine transformation in IRk+l. Since affine transformations
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preserve triangulations, Theorem 3.2 follaws.
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We can restate Thearem 3.2 in terms of the size function. Let T2d denote TdxTd.

Theorem 3.4 Let s = sizeCf2d }. For d > 3,

tmin (f ) > 2~ > .!.Sd/(3Iogd)
F 1d - -2

Proof. From Lemma 2.3, every facet of T·2d is combinatoriallyequivalent to Td-l X

Td. By Corollary 2.1a, foCf2d) = (d+ 1}1 and by Carallary 2.1b, CO(T·2d) = 2(d+ 1};

hence

size(f2d} = 2d((d + 1)2 + 2(d + 1}) = (2d1 + 2d)(d + 3)

< (2d2 +3d-2)(d+3) d>3

= (2d - l)(d + 2)(d + 3) < (2d _1)3 d > 3

By Theorem 3.2, we know the number of (d - 1) simplices to triangulate all facets
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is at least

2(d+ 1)ed; 1) >;'ed;-l)
> 22d- 1

This establishes the first ïnequality. Note that for d > 4, 5 < 8d3 , hence
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In contrast to the d-cubes, the face lattice is also superpolynomial for =r·2d. By (3.1)

and the Product Lemma, f(=r·2d) > 22d > sizeCf2d )d/(21ogd) (d sufficiently large).

3.3 Perturbation

In this section we analyze the relationship between triangulation and perturbation.

To avoid a dualization step, we again work in the context of facet enumeration. Per­

turbation is a useful practical technique to reduce the number of feasible bases of a

polytope. Conceptually, one moves each input point a small amount, thus breaking

ties within large sets of points lying on the same facet. In order to apply this tech­

nique to facet enumeration, one must characterize what kinds of perturbation are

permissible. This is possible either by giving numerical bounds [74], by defining the

perturbation symbolically [76], or in terms of limits [75]. Here we give a geometric

definition, and show that the lower bounds of Section 3.2 apply to algorithms using

these perturbations.

It will be convenient in this section to identify faces of polytopes and complexes

with their vertex sets. For d-polytope P, v E V(P), and v' E Rd, we say that

V(P) \ {v} U {v'} is a local perturbation of P if the half-open line segment (v, v']

does not intersect any hyperplane induced by a (d - 1)-face of P \ {v}. In this case,

we write p~' (P) for V(P) \ {v} U {v'}.

Lexicographie triangulations [73, 68] are defined in terms of two refinements.
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A point v is beneath (respectively beyond) a facet Q of a polytope P if it is in the

open halfspace induced. by aff Q containing (respectively not containing) int(P). Let

r be a complex (for definitions of complexes, refinements, and triangulations, see

Section 3.2). The refinement puIl(v, r) is defined as follows. For each FEr,

1. If v ~ F, then FE pull(v, r).

2. If v E F, then pull(v, r) contains Gu {v} for each face G of F such that v ri:. G.

The second refinement push(v, r) is defined as follows. For each FEr,

1. If v ~ F, then FE push(v, r).

2. If v E F and dim(F \ {v}) < dimF, then FE push(v, f).

3. If v E F and dim(F \ {v}) = dim(F) = k, then push(v, r) contains F \ {v}, the

faces of F \ {V}, and G u {v} for each (k - 1)-face G of F \ {v} such that v is

beyond G (in aff F).

For a polytope P, we use push(v, P) (respectively pull(v, PD to Mean push(v, f)

(respectively pul1(v, f)) where f is the complex of faces of P. A lexicographie

triangulation is the decomposition of a polytope obtained by choosing an ordering

Vl ••• Vn of V(P) and applying either a push or a pull operation to each vertex in this

order. To see that this is a triangulation, note that after a vertex v has been pushed

or pulled, for every face F of the decomposition containing v, dim(F \ { v }) < dim F.

ACter every vertex of a polytope has been this is true for each vertex v of each face

F, thus the complex is simplicial.

We now argue that the combinatorial pushing and pulling operations correspond

to certain local perturbations. We can view local perturbations as a certain kind of

incremental construction. The following lemma, due ta Grünbaum [92], character­

izes the combinatorial structure of adding a vertex ta a full dimensional polytope.
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Lemma 3.4 Let Po and P be two d-polytopes sucb. that P = conv(Po U {v}). F is a

face ofP ifI

(a) F is a face of Po sucb that v ~ F and there exists facet Q :::> F of P sucb tbat v

is beneatb Q,

(b) F = G u {v} where G is face of Po and v E aff(G), or

(c) F = G u {v} where G is face of Po and G is contained in two facets Q+ and

Q_ of Po sucb. that v is beneath Q + and beyond Q_.

We say that two complexes are combinatorially equivalent if they have iso­

morphic face posets. Let us fix some d-polytope P and some local perturbation

P' = p~' (P). Define a mapping <p(F) as follows

{

{VI} if x = v
<p(F) = U

lCEF { X } if x #: v .

Let Q denote some facet of P containing v. Let r (Q) denote the complex of faces

of P' that are subsets of cp(Q). Let Po denote P \ {v} and let Qo denote Q \ {v}.

Lemma 3.5 If dim. Qo < dim Q then r (Q) is combinatorially equivalent to both

push(v, Q) and pull(v, Q).

Proof. If dimQo < climQ, Q is a pyramid, and hence combinatorially unchanged

by locally perturbing v (see e.g. Theorem 7.7 in [84]). Furthermore, if d.im Qo <

dim Q J by definition both push(v, Q) and pull(v, Q) are simply the complex of faces

ofQ. 0

Lemma 3.6 lEv' is beyond Q tben r(Q) is combinatoriaflyequivalent to pull(v, Q).

Proof. The mapping cp is one to one and preserves inclusion. It remains to show

that F E pull(v, Q) iff cp CF) E r (Q). By Lemma 3.5, we need only consider the case

that clim Qo = dim.Q.



Suppose cp(F) E r(Q). Further suppose v' fi cp(F}. It follows that F = cp(F} is a

face of Qo. Since Fis preserved when adding v', by Lemma 3.4 there must be some

facet Q _ :::> F of Po that v' is beneath. By the definition of local perturbation v must

also be beneath Q_, so Fis a face of Q and hence of pull(v, Q). H cp(F} = Gu {v'},

then by Lemma 3.4 G is a face of Qo. By the argument immediately preceding, G

is also a face of Q; it follows that Gu {v} is a face of pull(v, Q) by definition.

Suppose F E pull(v, Q). Further suppose that v fi F. It follows that F must aIso

be a face of Q (from the definition of pull(v, Q» and Qo. By Lemma 3.4 (working

in aff Q) there must be some ridge R of Q such that v is beneath R (in aff(Q)),

and hence beneath the corresponding facet Q+ :::> R. From the definition of a local

perturbation, v' is aIso beneath Q+, hence by Lemma 3.4a cp (F) = F is a face of

p '. Suppose F = {v } U G. It follows by definition of pull(v, Q) that G is a face of

Q. Since v fi G, as above G must be contained in some facet Q+ of Po such that

v and v' are beneath Q+. But G is also contained in Q and v' is beyond Q, so by

Lemma 3.4c cp(F) = ({ v'} U G) is a face of r(Q). 0
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Lemma 3.7 Ifv' is beneath Q then r (Q) is combinatoriallyequivalent to push(v, Q).

Praof. As in the proof of Lemma 3.6, we need only show FE push(v, Q) i1f cp(F) E

f (Q) and we may assume that dim Qo = dim Q.

Suppose cp(F) E f(Q). If v' ~ cp(F), then F = cp(F) is a face of Qo, hence a

face of push(v, Q) by definition. If v' E cp(F), then by Lemma 3.4 cp(F) = {v'} u G

for some face G of Po. Since v' fi aff G, by Lemma 3.4 G C Q+ n Q_, where

{ Q+, Q_} c ~(Po) and v' is beneath (resp. beyond) Q+ (resp. Q_). By definition

of a local perturbation v is aIso beyond Q_, and hence beyond the corresponding

ridge of Qo. It follows that Gu {v} is a face of push(v, Q).

Suppose F E push(v, Q). If v fi F, F is a face of Po. Sïnce F ç Q and v' is

beneath Q, by Lemma 3.4a, cp CF) is aIso a face of P'. Suppose that F = {v} U G.

By Lemma 3.4, G must be a face of Po. From the definition ofpush(v, Q), there are

two cases.
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1. If dim G < dimF, then v cannot be in a1f G, hence by Lemma 3.4, there must

be some facet Q_ :::) G of Po such that v is beyond Q_.

2. If dim G = clim. F, then by definition of push(v, Q), G must be contained in

some ridge of Qo such that v is beyond the corresponding facet Q_.

In either case, since v' is aIso beyond Q_ (and beneath Q), by Lemma 3.4c cp(F) =

G u {v' } is a face of P'. 0

Ifv' is either beneath every facet containing v or beyond every facet of P contain­

ing v, then we cal! p~' (P) a lexicographie perturbation. In this case we see from

Lemma 3.6 and Lemma 3.7 that the boundary complex of P' is combinatorially

equivalent to the refinement of the boundary complex of P induced by push(v, P) or

pull(v, P). Thus by lexicographically perturbing each vertex of a polytope P sequen­

tially, we obtain a simplicial polytope whose boundary complex is combinatorially

equivalent ta a lexicographie triangulation of the boundary complex of P. Lexi­

cographie perturbations date back at least to the "right hand side" perturbations

proposed by Charnes [12]. Interpreted in our (polar) context of perturbing vertices,

this perturbation is defined as follows. Given a polytope P = conv V containing

the origin as an interior point, P(€) is defined as convV' where v{ = vi/(l + e i ) for

sorne 1 ~ € > O. For € sufficiently small, this is equivalent to pushing the vertices

of P in the order VI, VZ, ••• Vn . Other lexicographie perturbations/triangulations can

be 0 btained by setting v{ to Vil (1 - ei) for certain vertices. Dantzig, Orden and

Wolf [17] showed how to implement a lexicographie (pushing) perturbation without

computing a value for e (see Section 5.4.1 for discussion).

For a (not necessarily lexicographie) local perturbation p~' (P), v' may be beyond

sorne facets containing v, but beneath others. In this case the boundary complex of

the perturbed polytope is not necessarily combinatorially equivalent to a refinement

of the boundary complex of the original polytope. For example, d vertices in a ridge

of P may map to facet of p~' (P). Since these vertices have dimension d - 2 in P,

they cannot be a basis of some facet of P. Call a set of d-polytopes {Pl .. ' Pk}

a caver of ad-polytope P if P = Ut Pi' We claim that neither the face lattice
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based bounds nor the volume based bounds of Section 3.2 depend on properties of

a triangulation other than its being a cover. For volume based bounds, allowing

simplices to intersect arbitrarily does not affect the bounds on the volume of a

simplex contained in P. For lattice based bounds, the bounds foilow from the fact

that every k-face of a polytope P must contain some k-face F of a cover, and F is

contained in a unique k-face of P.

Given any d-polytope, we can always lexicographically perturb it ta a simplicial

polytope without increasing the number of bases (since the corresponding lexico­

graphie triangulation takes a subset of bases as (d - 1}-simplices). Thus for the

purposes of lower bounds, we may assume that our perturbed polytope is simpli­

cial. Now consider locally perturbing the vertices of some polytope P one by one. At

each step, we have an induced cover of each facet (with the adclitional property that

no pair of simplices intersect in their interiors). Locally perturbing a vertex of some

facet Q of the perturbed polytope decomposes the corresponding (d-l )-polytope in

the caver. By this recursive decomposition process we arrive at a cover of each facet

of P using no more simplices than the number of facets of the perturbed simplicial

polytope. Thus we see that the lower bounds of Section 3.2 apply to algorithms

using local perturbation (or equivalent symbolic schemes) as weil.

3.4 Experimental Results

In this section we examine the performance of four programs that directly or indi­

rectly use triangulation. Irs [42] is an implementation of the reverse search algo­

rithm. of Avis and Fukuda [5] using exact arithmetic. Irs uses lexicographie pertur­

bation. hull [45] and qhull [43] are insertion based programs that use triangulation.

pd is a primaI-dual algorithm that uses lexicographie perturbation on the dual

polytope (see Chapter 5 for details). In arder to compare the size of the triangula­

tions computed by an three programs !rom the point of view of lower bounds, the

measurements for pd presented here for performing the dual transformation to the

other two. AlI experiments in this section are on a Digital AlphaServer 4/233 with
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256M of real memory and 512M of virtual memory. The notation Umemory limit"

means working storage exceeded 128M; this limit was imposed to avoid problems

with thrashing.

3.4.1 Lattice Based bounds

For all three families with lattice based lower bounc1s, we report the triangulation

sizes for qhull summed over intennediate polytopes.

We consider first the products of cyclic polytopes ë·8 {n). Figure 3.2 shows a

plot of triangulation complexity versus size(P).

Figure 3.2 'Iiiangulation Complexity, C8 (n).
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Table 3.1 shows measured triangulation sizes for iï8 (n). We can see that even

for a polytopes with relatively few vertices and facets, in relatively small fixed

dimension (8 in this case), triangulation can be prohibitivelyexpensive. Table 3.2

shows measured triangulation sizes for 1.bd as d increases. Sînce our lower bound

is less than 3d , it is far from tight for small d.
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Table 3.1 Triangulation size, IT8(n).

n fo(P) co(P) Irs pd qhull

5 100 50 34595 28881 40745
6 144 72 78408 74620 100907
7 196 98 187376 142131 201413
8 256 128 322176 275942 overftow
9 324 162 640791 454623

10 400 200 960200 765906

Table 3.2 Triangulation size, U3d.
d fo(P) co(P) Irs pd qhull

1 8 6 12 12 12
2 16 36 144 144 190
3 128 42 72540 63600 87776
4 256 72 9579672 8818410 overftow

43
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3.4.2 Volume Based Bounds
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There is ongoing research on the minimum number of simplices necessary to tri­

angulate a d-cube, bath in an asymptotic sense and for small d; see e.g. [70, 71]

and references therein. Tight lower baunds are known for tmin Hd for d < 7, and

hence for tminF Hd for d < 8. In Table 3.3 we compare the size of triangulations

computed by varions programs with these best possible lower bounds (computed

fram those gÏven in the paper of Hughes and Anderson [71]). For bath of the incre-­

mental programs we report anly the size of the the triangulated output, rather than

Sl1mm ing over all intermediate polytopes. It is interesting to note that the number

of simplices for hull, and for Irs up to dimension 7 is exactly 2d· (d - 1)t = 2dt, which

is the largest possible.

Table 3.3 Triangulation size of cubes, versus best possible

d best possible huit Irs pd qhull

3 12 12 12 12 12
4 40 48 48 47 44
5 160 240 240 228 210
6 804 1440 1440 1314 1242
7 4312 10080 10080 9038 8472
8 23888 80640 80635 68284 63684

For the products of simplices we know from Section 3.2.1 that every triangulation

without extra vertices is exactly the same size. It is therefore encauraging that al!

four programs tested (hull, Irs, pd, and qhull) camputed the same size triangulations

for runs completed. Figure 3.3 shows the runnjng time in CPU seconds.

Bibliographie Notes

The thearem that every vertex has a basis was first proved by Minkowski [106, 94].

The first published pivoting algorithm known the author [12] includes a discussion of
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Figure 3.3 RUDning time for products of simplices Td x Td •
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using perturbation to deal with degeneracy. The standard reference for lexicographic

perturbation is [17]. A reference probably more useful to implementors is [72].

The observation that truncation polytopes have much larger face lattices than

vertex and facet sets occurs in Dyer [19].

Polytopes constructed by taking sums and products of intervals (such as the

products of sums of cubes introduced in this chapter) are known in the literature

as Hanner polytopes. Kalai [97] conjectures that the size of their face lattice, 3d
,

provides a lower bound on the size of the face lattice of any centrally symmetric

polytope, i.e. a polytope P sucb that pEP =::} -p E P.

The proof of Theorem 3.2 given here is mostly based on the one due ta Haiman [70].

For general references on unimodular matrices, the reader is referred to the books

of Schrijver [110J and Nemhauser and Woolsey [109]. A proof that uses algebraic

tools instead of volume is given in [69] and [67].

Bayer [66] defined the class of weakly neighbourly polytopes, defined as those

where every k+ 1 vertices are contained in face of dimension at most 2k, 0 < k ~ d,

and showed that ever triangulation of wealdy neighbourly polytope has the same

number of full dimensional simplices. It is not difficult to see that products of
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two simplices are weakly neighbourly, since a vertex (p, q) of Td x Td lies on all

of the facet defining hyperplanes that p does, along with aU of the facet defining

hyperplanes that q does.

Borgwardt [6] considers the expected performance of a gift wrapping algorithm

on certain rotation-symmetric distributions of random points. Of course such point

sets are in general position, and hence easy for gift wrapping from our point of view.
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Chapter 4

Incrementai Aigorithms

Pivoting algorithms are vulnerable to degeneracy, in the sense that degenerate poly­

topes can have a number of bases (facet defining simplicies or vertex defining sets of

supporting hyperplanes) superpolynomial in the output size. In Chapter 3 we have

seen that neither of the known methods for dealing with degeneracy - perturbation

and face lattice generation - can yield a polynomial algorithm. The algorithms

most widely used for degenerate problems in practice are the incremental algorithms

based on the double description method of Motzkin et al. [34]. Incremental algo­

rithms are not necessarily affeeted by degeneracy, but have a fundamental weakness

of their own. In an incremental facet enumeration algorithm, after some initializa­

tion, we insert points one by one, maintaining the convex hull of the points inserted

so far at every step. A necessary condition for such algorithms to be polynomial is

that the size of each intermediate polytope be polynomial. It turns out the order

the points are inserted can malte a huge difference in the size of the intermediate

polytopes. This is analogous to the simplex method of linear programmjng where a

family sucb as the Klee-Minty [101] cubes can be superpolynomial for one pivoting

rule but easily solvable using a cillferent pivoting rule.

In the most general sense, insertion orders are procedures to determine at each

step of an incremental algorithm, what input element should be processed next. In

sorne cases, such as lexicographie or random ordering, aIl of the choices can be made

47



before the input is processed. In other cases, such as the maxcutof! rule (where we

choose the nen element which causes the largest drop in intermediate size), the

insertion order is inherently dynamic. In either case, for every input and for every

insertion order there are one or more possible permutations of the input generated.

We will say that Tt is a good insertion order for a family of polytopes r if the size of

intermediate polytopes created by 7[ is polynomial for r (obviously a much stronger

bound is necessary for an insertion order to be "good" in practice). A good insertion

arder does not by itself guarantee a polynomial algorithm: in particular the use of

triangulation can still cause an incremental algorithm to be superpolynomial (see

Section 3.2). On the other hand, a naive implementation of the double description

method will be polynomial given a good insertion order. Dyer [19] gave a family of

polytopes for which inserting the halfspaces in the order given (for vertex enumera­

tion) yields superpolynomially sized intermediate polytopes, most of whose vertices

are deleted. In this chapter, we give three extensions and generalizations.
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1. Section 4.2 describes familles with superpolynomially sized intermediate poly­

topes all of whose vertices are deleted.

2. In Section 4.3 we show that there are families of non-degenerate polytopes for

which the largest drop possible in intermediate size (in the sense of the Upper

and Lower Bound theorems) occurs for several common insertion orders.

3. In Section 4.4 we show that there are families for which superpolynomial drop

in intermediate size occurs for any insertion order. This may be contrasted

with the situation of the simplex method, where the existence of a polynomial

pivoting rule remains an open problem.

We stan the chapter by explaining a few of the details of incremental methods,

that while not directly necessary to understand the theoretical results in the rest

of this chapter, are helpful in understanding some of the experimental results, and

possibly of independent interest.
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For simplicity. most of thesis takes a rather abstract view of incremental algorithms.

There are at least three detaïls that we have been ignoring (and will continue ta

ignore outside of this section). The first detail is the construction of an initial

polytope. The second detail is the possible unboundedness of intermediate poly­

topes. The third detail is the claimed equivalence of Fourier-Motzkin elimination

and incremental construction.

There are two main approaches taken to constructing an initial polytope. We

work ïnitially in the context of facet enumeration. The first approach is to find

a set of d + 1 affinely independent input points and take their convex hull. a d­

simplex. as the initial polytope. The other approach is to work inductively on the

dimension. Starting with a O-polytope. with each point we add that lies outside

the current affine hull, increase the dimension by one. The first approach has the

advantage of simplicity. the second of dealing automatically with input that is not

full dimensional.

If we consider the problem of initializing an incremental vertex enumeration

algarithm, a subtle difference not covered by the usual tool of duality becomes

apparent. While one can always find a set of d+1 input halfspaces whose intersection

is full dimensional (corresponding to our initial set of affinely independent vertices

in the facet enumeration case), it is not always possible to find such a set whose

intersection is bounded (consider e.g. ad-cube). Rather than introducing special

cases like simplices with a vertex at infinity, the dou.ble description method [34,

25] hamagenizes the input constraints, Le. for each input constraint ax < b, one

generates a constraint ax - bXd+l < O. This gives a polyhedral cone in JRd+l with a

unique vertex at the origin (presuming the original polytope was full dimensional).

As weil as the intersection of a set of inequalities, every polyhedral cone is aIso the

nonnegative hull (set of nonnegative combinations) of its extreme rays. i.e. rays not

nannegative combinations of two other rays in the cone. We can recover the vertices

of the original system by setting Xd+l = 1; in the (for us normal) case where the
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original system is bounded, this merely requires scaling each extreme ray. We now

give a brief sketch of the double description method for finding the extreme rays of

a cane. Start by finding some linearly independent set of d + 1 constraints defining

a cane with d + 1 extreme rays. Suppose we have computed the set of extreme rays

for Ck = ni~" hi and we wish to compute the extreme rays of C"+l = Ck n h~+l'

The extreme rays of Ck+1 are the extreme rays of Ck feasible for h~+l' along with

the intersection of 2-faces of Pk with h~+1. We can check if two extreme rays are

adjacent, i.e. lie in a 2-face of Ck , either by computing the rank of the appropriate

matrix, or by a simple combinatorial test (see e.g. Proposition 7 in [25]).

Figure 4.1 Elimination and projection

For vector x and JC Z+, let xJ be the vector of elements of x indexed by J. For

X E IRdxn, the kth orthogonal projection projk(X) is defined as {X( T..•d }\{ k} 1 x EX}.

The kth elimination elim,,(X) is defined as {X+Àek 1x E X, À E lR}. For polyhedron

P, note that the facet defining inequalities for proj,,(P) and elim,,(P) are the same;

it is merely a matter of what space they are interpreted in (see Figure 4.1).

Fourîer-Motzkin elimination is a technique first proposed by Fourier [22] to com­

pute the halfspace representation of elim,,(P) for a polyhedron described by inequal­

ities. We are given a homogeneous system of inequalities C = {x 1 Ax > O}. For
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rows with nonzero aik, solve for Xk.
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(4.1)

Xk > (ai - ekadx - 1{
aik

(ak - ekaj)x
Xk < = Uj

ajk
Qjk < 0

The inequalities aix > 0 where Qik = 0, along with inequalities 4 < Uk for aIl

possible pairs, form an inequality description of elimk (P) .

Let P he ad-polytope with vertices V = {Vl, Vz, .. .vn }. The following linear

system describes the set of convex combinations of V, (i.e. P).

(4.2) 1 <i::;n

•

We can transform system (4.2) into a homogeneous system of inequalities and apply

Fourier-Motzkin elimination ta eliminate the Ài's. If we substitute Àj = 0, k + 1 <
j < n, into (4.2), then we have system of inequalities describing conv{ Vl •.. Vk}.

From the definition of the elimination operation, this is still true after {À) ... Àk }

are eliminated from (4.2). Since this substitution operation does not introduce any

new constraints, it follows that after {Ài ... Àk } are eliminated, the current set of

inequalities must contain each element of :Ji ({v) ... Vk } ), lifted into IRd+n-k.

Many of the inequalities generated by the elimination procedure described above

will he redundant. If we consider the polar interpretation of the inequalities (4.1)

as vectors, the comhined inequality 1{ < Uk corresponds taking a nonnegative com­

bination that lies on the polar hyperplane Oj = O. It follows that the generated

constraints are non-redundant iff the corresponding vectors (extreme rays) are ad­

jacent. Thus a small variation (inserting hyperplanes, rather than halfspaces) of the

double description method can be used to perform elimination.
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In this section we define a set of combinatorial conditions on a pair of polytopes P

and Q sucb that for any pair of polytopes that satisfies these conditions, size(P n Q)

is quadratic in IV(P)I and X(P n Q) = X(P) U 1i(Q). We then show the existence

of sucb pairs where size Q is superpolynomial in size P. Let ~(P) denote the facets

of P and let e(P) denote the edges of P. Given polytopes P and Q, we say that P

pierces Q if the following conditions hold:

(4.3a)

(4.3b)

(4.3c)

'IF E ~(Q)

'IF E :f'(Q), 3e E ê(P)

\le E ê(P}.3F E ~(Q)

F n P c relint F

relint{e) n F i= 0

relint(e) n F =/; 0

and

and

e rt. affF

e rt. aff F

If P pierces Q then we daim the following:

(4.4) V(pnQ)=(V(p)nQ)u U (enôQ)
eEê(P)

Certainly every v E (V(P) n Q) is a vertex of P n Q. For any edge e E ê(P), by

condition (4.3c) we know that 3x E relïnt(e) nô Q, and x must aIso be a vertex of

P n Q. It remains to show that these are ail af the vertices af P n Q. Consider some

basis B (set of d-affinely independent facets) for a vertex of P n Q. By (4.3a), B

contains at most one facet of Q. But then it must contain at least d - 1 facets of

P, and (4.4) follaws.

It is easy ta construct redundant familles of inequalities clifficult for (naive)

insertion algorithms, e.g. by placing a smail simplex inside a dual cyclic polytope.

Since it is relatively easy ta remove redundant constraints using linear programmjng,

these familles are not really difficult, hence we wauld like our example familles to

be non-redundant. If P pierces Q. then we daim the following:

•
(4.5) 1{(P n Q) = 1i(P) u 1i(Q) .



Here it is trivial that X(P n Q) ç X(P) u j{(Q). It remains ta show that each

H E Je(P) and each H E X(Q) is non-redundant. We start with X(Q). For

convenience, we define some notation. Let ball(x, T) (sphere(x, Tl) denote the d-ball

(d-sphere) of radius T, centered at x. Let P E3 H denote n(1{(p) \ H). Let Fq be

some facet of Q. From condition (4.3b) and condition (4.3a), we know there is some

edge e of P such that x = relint{e) n relint(Fq ) i= 0. There must be some € > 0

such that en ballex, €) C relint( e) and ballex, e:) C int(QB F~). We know one of the

vertices w of e must be outside Q. Define x' = x.w n sphere (x, €). By construction

Xl E relint(e) n int(Q E3 F~) n F;. It follows that Xl E (P n Q) B F~ n F;, hence F~ is

not redundant.

We now argue that no H E 1C(P) is redundant either. Let Fp E S:(P). Let

e E ë. (Fp). By condition (4.3c) and condition (4.3a), we know there is some facet Fq

of Q sucb that X =relint(e) n relint(Fq ) =1= 0. Let € be defined as above. Let Xl be

sorne point in [intball(x, €)] n Fq n relint(Fp ). By considering some point along the

outward normal of Fp from Xl close to x', we see that F; is not redundant either.
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4.2.1 Examples of Piercing Pairs

We now show the existence of families of piercing pairs of polytopes. Our example

family will achieve a superpolynomial drop in intermediate size by piercing a cube

with a stacked polytope. We start by defining a family of stack:ed d-polytopes with

2d + 1 vertices. Let Td be the polytope defined by the constraints

•

(4.6a)

(4.6b)

(4.6c)

Xi > 0

lx $ 1

Xi <3/5

1 <i $ d

1 <i $ d.



Lemma 4.1 Td is a truncation polytope witb. 2d + 1 facets, and d2 + 1 vertices con­

sisting of the origin 0, along witb (3/S)ei + (2/5)ej, for i > 0, j #= i.
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Proof· The constraints (4.6a) and (4.6b) define a simplex Td with vertices eo ... ed.

Consider the new vertices introduced by intersecting Td and one of the constraints

(4.6c), h.t : Xi. < 3/5. The only vertex of Td infeasible for hi is eh thus the new

vertices are convex combinations of ei and some ej. Since the new vertices lie on

the hyperplane Xi = 3/5, it follows that they have coordinates (3/5)ei + (2/S)ej_

Since the new vertices strictly satisfy every other inequality (4.6c), any ordering of

the constraints (4.6c) produces a truncation order for Td- 0

Let Td denote the polyhedron defined by the following constraints:

:n.x>-d

(3dei - :n.)x < d

(3dei + 2dej - :n.)x < d

1 <i< d

{ i, j } C {1 ... d }

lemma 4.2 Tdis a stacked polytope dual to Td, with vertices 1/4 and {-de;" 3dc:1ei },

1 < i < d.

Proof. Consider the polyhedron defined. by the following constraints:

(4.7)
-1/d <Xi < -1/d + 3

:n.x <4

1< i< d

•

The reader can verify that this polytope is obtained by scaling T d by 5 and trans­

lating by -:n./d, hence it has vertices -:n./d, 3ei - :n./d, and 3e;, + lej - :n./d. Td is

the polar of the polytope defined. by constraints (4.7). 0

We conclude the section by arguing that there exist polytopes with few facets

and many vertices (namely certain cubes) pierced by the stacked polytopes Td·
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Xi < 1/3

Xi > -Cd -1)

1 <i< d

1 <i< d.

Proof. We consider the intersection each bounding hyperplane of Hd with Td, and

show that such an intersection is in the relative interior of the corresponding facet

of H d • It suffices to consider the intersection of the bounding hyperplane with the
--edges of Td •

Consider a bounding hyperplane defined by U i . There is exactly one vertex of Td

infeasible for Ui , namely Si = 3d~1 ei. From the fact that Td is a stacked polytope, it

fol1ows that Si is adjacent to (Le. shares an edge with) vertices TI./4 and -de;, j i= i.

The first case is easy, since both 1/4 and Si strictly satisfy every constraint of Hd

other than than lii; thus any point on that edge must lie interior to the (d - 1)-cube

defined by lik , lb k i= i. Let x be the intersection of the edge between Si and -dej

and the hyperplane Xi = 1/3. From the definition of a convex combination, we have

x = ÀSi + (1 - À)(-dej)

= (ei - ej)/3.

3d-l -dej
3d Si+3d since ÀSi = 1/3ei

•

x is aIso in the relative interior of the appropriate facet.

The case of bounding hyperplanes defined by li is analogous. The vertex ïn­

feasihle for li is -dei. It is adjacent to 1/4 (this case is again easy), -dej. and

d/(3d - 1)e;, j i= i. The intersections between these edges and the defining hyper­

plane for li have the form (1 - l/d}Si + (l/d)sj. In the second case, we have Xj

coordinate -1 which is greater than - (d - 1) for d > 2, and in the third case we

have Xj coordinate 1/(3d - 1). which is less than 1/3 for d > 1.

We have seen that conditions (4.3a) and (4.3b) are satisfied. To see that (4.3c)

is aIso satisfied, we note that every edge of Td contains a vertex outside Hd • and

that no vertex of Td is on the boundary of Hd • 0
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Figure 4.2 Pierced cubes, memory use in kilobytes.
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•

The pierced cubes (Le. Hd n Td) are difficult for insertion algorithms in much

the same wayas the earlier examples of Dyer [19]: if an insertion algorithm inserts

the constraints in the order given, then an adversary can force the construction of

the d-cube as an intermediate polytope, which has a superpolynomial number of

vertices in the final output size. They differ from the earlier examples in that all of

the vertices of the large intermediate polytope are infeasible for the final output.

4.2.2 Experimental Results

The lower bounds of this chapter are lower bounds on the space used by particu­

lar classes of algorithms. Such bounds of course imply corresponding bounds on

time complexity, but from a practical point of view are even stronger, since waiting

twice as long is often more practical than doubling the available memory. In this

section we consider the space usage of three incremental facet enumeration pro­

grams. cdd+ [47] is an implementation of the double description method, using

either floating point (cddf+) or exact arithmetic (cddr+). porta [44] is an implemen­

tation of Fourier-Motzkin elimination using exact arithmetic. qhull is an incremental

algorithm using floating point and triangulation.

In Figure 4.2 we compare the memory usage of cddf+, porta, and qhull for the
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Figure 4.3 Pierced cubes, summed intermediate size.
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pierced cube examples. These measurements are on a Digital AlphaServer 4/233

with 256M of real memory and 512M of virtual memory. To prevent problems with

thrashing, we have imposed an arbitrary limit of 128 megabytes of working space.

The notation memory limit indicates the last run of series able to complete due

ta this limite Sïnce size(P} is polynomial in the dimension, the super-linear curves

in Figure 4.2 are suggestive of memory usage superpolynomial in size(P) (since Cd

would be a line on a logarithmic plot).

For incremental algorithms. a machine independent measure of the work done

is the sum. of sizes of the intermediate polytopes created. In Figure 4.3 we com­

pare this statistic for cddf+, porta, and qhull. The number reported by porta is the

sum of intermediate sizes over all iterations; thus an inequality is counted once for

each iteration that it exists, rather than just once when created. qhull and cddf+

report the total number of hyperplanes created over all iterations. Note that qhull

stores the triangulation of each intermediate facet, thus even when the intermediate

polytopes are smalIer (in terms ofvertices) than those produced by cdd+, qhull uses

significantly more memory. The number of intermediate rays created by cddr+ is

identical ta the number created by cddr+, suggesting that the pierced cube examples

are reasonably numerically stable.

Although the pierced cube examples were not designed ta be difficult for tri­

angulation/perturbation based algorithms, experimentally it seems that they are.

Figure 4.4 shows triangulation size for Irs, pd, and qhull. Note that in the case of pd,

this is the size of the triangulation of the dual polytope (see Chapter 5).

4.3 Dwarfed Polytopes

In this section, rather than intersecting a large intermediate polytope with another

polytope, we intersect with a single halfspace. In arder ta prevent redundancy,

we must preserve a small number of the vertices of our intermediate polytope.

Nonetheless, the drop in intermediate size achieved will be asymptotically larger

than in the previous section. A halfspace of Rd is said to dwarf ad-polytope P
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with m facets if P n H is a simple polytope with m + 1 facets and
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(4.8) 13(m+l,d) = (d-l)(m+l) - (d+l)(d-2)

vertices; in this case we say that P n H is a dwarfed polytope. Note that (4.8) is the

rnjnimumnumber ofvertices for a simple polytope with m+1 facets permitted by the

Lower Bound Theorem. It follows that for d > 3, dwarfed polytopes are truncation

polytopes, and have at at lean one good insertion order, namely the truncation

arder. In this section we will provide example familles of dwarfed polytopes where

fo(P} is superpolynomial in foCP n Hl, and show that there are severa! natural

insertion orders that inserted the dwarfing halfspace last (or late).

Before proving the main result of this section, we will need two preliminary

results. The first is characterization of the vertices and facets of the polytope

formed by intersecting a polytope with a single halfspace. Let P be a d-polyhedron

and H a halfspace in 1Rd with bounding hyperplane h such that h n P i= 0 but h

contains no vertex of P. We argued in Section 4.2 that by dimension considerations,

(4.9) V(pnH)=(V(p)nH)u U enh.
eEê(P)

The following is a consequence of the definition of a facet.

(4.10) 5'"(P n H) = {P n h} u U F n H
FE~(P)

•

Let P be a polytope, and H an open halfspace. We call a vertex v of P surviving if

v E H. We call an edge surviving if both of its vertices are surviving.

Lemma 4.3 Let P be a polytope and H an open halfspace. The graph of surviving

vertices and edges oEP w.r.t. H is connected.

Proof. Define a linear program with the constraints X(P} U {H} and an objective

function of the inward normal of H. Every vertex of P n H is either a surviving
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vertex or contained in the bounding hyperplane of H. From the correctness of

the simplex method with Bland's pivot rule (see e.g. [85]), there is a path in the

skeleton of P from any surviving vertex to a unique optimum face F of P n H. Sïnce

the simplex method monotonically increases the value of the objective function

(i.e. the distance from the bounding hyperplane of H), this path does not intersect

the bounding hyperplane of H, hence is entirely contained in surviving edges. By

Balinski's Theorem (see e.g. (801), the skeleton of F is connected and the lemma

fu~s. 0

We are now ready to prove the central result of this section.

Lemma 4.4 Let P he a simple d-polytope with m lacets. Let H be halfspace with no

vertex ol P on its houndary. If the surviving vertices éUld edges form a tree with t

nodes, P n H has (d - 1)t + 2 vertices and d + t lacets.

Proof. We start by showing that P' = P n H has (d - 1)t + 2 vertices. Call an edge

of P a eut edge if it is adjacent to exactly one surviving vertex, i.e. if it intersects

the bounding hyperplane of H. Sînce there are t surviving vertices, it suffices by

(4.9) ta show that there are (d-l)t+l cut edges. P is simple, so the total number

of adjacencies between edges of P and surviving vertices is dt. The surviving edges

form a tree, sa l(t - t) of the adjacencies are consumed by surviving edges. This

leaves dt - l(t -1) adjacencies to eut edges, each of which generates a new vertex

of P n H.

We now argue that P' has d + t facets. By (4.10) it suflices to show that d +
t - 1 facets of P contain surviving vertices. Let T be the tree of surviving vertices

and edges. Consider T as a "pivot tree" where each edge corresponds to a pivot,

interchanging exactly one incident facet. Root T at some arbitrary node. Label

each edge of T with the entering facet, Le. the facet incident to the child but not

ta the parent. For any node v in the tree, every facet incident to that node must

either be incident ta the root, or have entered the set of incident facets at some step

on the path from the root to v. It follows that there are at most d + (t - 1) facets
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incident to surviVÏDg vertices. By Lemma 4.3, the surviving vertices and edges in

a given facet form a connected subgraph of T (here F is considered as a polytope in

its own right; notice that Lemma 4.3 does not depend on the polytope being full

dimensional). It follows that every entering facet is unique, hence that there are

exactly d + t - 1 facets incident to surviving vertices. 0

The following is then a straightforward consequence of the previous lemma.

Theorem 4.2 (Dwarfing Theorem) If P is a simple d-polytope with m facets and H is

a halfspace with no vertex of P on its boundary sa tbat the surviving vertices and

edges form a tree with m + 1 - d nodes, tben H is a dwarting halfspace for P.

The following illustrates an easy application of the Dwarfing Theorem.

Theorem 4.3 (Dwarfed Cubes) Let H d be the d-cube speciJied by the 2d constraints

o <Xi < 3/5 for 1 <i< d. Hd is dwarfed by the halfspace h+ = {x 1 :n.x < 1}.

Proof. The surviving vertices are the origin, and those vertices adjacent to the

origin. The theorem then follows from the Dwarfing Theorem. The theorem can

aIso be proved directly, since Hd n h + is the the polytope Td from Lemma 4.1. 0

In retrospect, the pierced cube examples of Section 4.2.1 are the intersection of

dual dwarfed cubes (Le. udwarfed cross polytopes") and cubes. Next we show that

for simple polytopes, the highest drop in size permitted by the Upper and Lower

Bound theorems can indeed occur.

Theorem 4.4 (Dwarfed Dual Cyclic Polytopes) For evexy rn-facet d-polytope dual ta a

cyclic polytope there is a dwarfing halfspace.

Proof. Let P be a polytope dual to a cyclic polytope Cd(m). Suppose P has a 2-face

F that is a polygon with m +2 - d vertices. Let v be one of those vertices and let R

be the remaining rn + 1 - d vertices. Let f be a line in affF that separates v from

R. By perturbing hF = aff F slightly we can find a hyperplane h containing f that

separates R from V(P) \ R. Let H be the closed halfspace bounded by h that contains



R. Then by construction there are m + 1 - d surviving vertices strung together into

a path by m - d surviving edges (the boundary of the polygon F without v and its

two incident edges). Now apply the Dwarfing Theorem.

It remains to show that polytope P has such a 2-face F with m - d + 2 vertices.

It turns out that P has Many such faces (actually y(d - 3, m) of them). Let Q
be the cyclic polytope that is the dual of P with vertices Pl, Pz, •.. ,Pm in their

natural order along the curve used to generate Q. Let li = {Ph ... ,Pd-Z}. Then,

according to Gale's evenness condition (see Section 2.2) for each of the m + 1 - d

indices i with d - 2 < i < m, the set li U {Pi, Pi+l} spans a facet of Q; moreover,

li U {Pd-l, Pm} spans a facet of Q, and this yields all facets containing li. Thus li

spans a (d - 3)-face F· of Q that is contained in m + 2 - d facets. Taking the dual

we thus get a 2-face F of P that contains m + 2 - d vertices. 0

• CHAPTER 4. INCREMENTAL ALGORITHMS 62

Figure 4.5 The polygon W 6•
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•
Sïnce cyclic polytopes are difficult for Many implementations for numerical rea­

sons independent of intermediate size, we consider numerically better behaved (but
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non-cyclic) family with about the same dwarfing behaviour. Let W n be convex

polygon with vertices as follows:

(4.11)
x(i) E{O,n,n+1,n+2, ... ,2n-3,2n}

y(i) = n 2 - (x(i) - n)2

Figure 4.5 illustrates W 6• The defining halfplanes for W n are as follows:

-nx+y <0

(2i + l)x + y < (n + i)(n + i + 1)

(2n-3)x+y < 2n(2n-3)

y>O

0<i:::;n-4

•

Let W2o(n) denote the ô-fold product W~. From the Product Lemma, we know

Wzo(n) is a simple polytope with dimension 2ô, on facets, and nO vertices, where

the vertices Wzo(n) are the products of vertices of W n and the facets are defined

by the facet (edge) defining inequalities of Wn , lifted into 1R26 •

Theorem 4.5 (Dwarfed Products of Polygons) For Ô > 2, W2o(n) is dwarfed by the con­

straint Xl + Xz + ... + X6 < 2n -1 where ]R26 is coordinatized (XI, Y1, Xl, yz ... ).

Praof. By simple arithmetic, we can see that no vertex of W26(n) with more than

one non-zero Xi coordinate, or with Xi = 2n for some i, will survive. Consider some

surviving vertex v. By possibly reordering coordinates, we may assume that v =
(<])26-Z, xCi), y(i)) where xCi) and y(i) aredefined by (4.11). Bythe Product Lemma,

the edges of W 16 (n) are the product ofedges of W n and vertices of W2(6-1 )(n). Hence

v is adjacent exactly to surviving vertex (vertices) VI = (<])26-Z, x(j), y(j)) where j

is the index before or after 1. It follows that the surviving edges form Ô paths

emanating from the origin with n - 2 edges each, one along each Clx-coordinate"

direction. Thus the surviving vertices and edges form a tree with Ô(n - 2) + 1 =
m - d + 1 nodes. Now apply the Dwarfing Theorem. 0
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It should be clear that for any algorithm that inserts halfspaces online, an adver­

sary merely has to present the dwarfing halfspace last in order to force superpolyno­

mial performance. We now consider how to use the familles defined in this section

to argue that more sophisticated insertion orders are superpolynomial. The next

theorem shows that for many polytopes, ordering the halfspaces at random is nearly

as bad as the worst case. Let E{X} denote the expectation of random variable X.

Theorem 4.6 Let P = nH be a d-polytope and let H' be a set of k baIfspaces of

IRd such tbat H n H' = 0. Let Q be tbe polybedron formed by intersecting the

halfspaces appearing before any element of H' in a random ordering of H u H'.

{ (Q )} > P) (j + 1)!
E Cj - Cj ( (j + k + 1)! .

Prao/. Every face of codimension j must be the intersection of at least one j-hasis

of j + 1 facet defining halfspaces. If a j-basis B of some face of P occurs before any

halfspace of H'. then it will aIso define a face of Q. The probability that any such

basis B !rom H occurs before any halfspace !rom H' is the probability that in a

permutation of BuH'. B occurs at the beginning. i.e. IBIt/IB U H'IL 0

Note that for dwarfed polytopes. we have

E{size( Q)} > size{P}/(d + 1) .

Another weil known insertion order is to insert the halfspaces in lexicographie

or reverse lexicographie order. If the constraints are not reduced to some canonical

form. before ordering then it is trivial for an adversary to enforce whatever ordering

is desired by scaling the constraints. Two natural canonical forms for coefficient

vectors are unit forrn where the most significant nonzero entry is 1 (considering

the right hand side as a (d + 1}st entry) and reduced integer form where the

coefficients are relatively prime integers. The fol1owing lemma shows that these two

are essentially equivalent for the purposes of lower bounds.
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lemma 4.5 For any inequality system Ax < b, A E Qmxd, b E Qm, it is possible to

translate and seale the the eoorCÜl1ate system so that the unit form and the redueed

integer form of the transformec1 inequality system are identieal.

Proof. Assume without loss of generality that P ={x 1Ax < b } is full dimensional.

Let z be some interior point of P. Let P' denote the translation of P by -z. Since

(() E int pl: we ean write eonstraint i describing P' in the form Lj(a;.j/f3i;)Xj < 1

where the Deij'S are integers and the f3ij'S are positive integers. For each j, let 5j

denote the least common multiple of the f3ij'S. Let Uïj = (OCij/f3i;) ·Ôj and Yi = xj/5 j •

Then Uy < n. is affinelyequivalent to Ax < b, and furthermore is in bath reduced

integer and unit fonn. 0

It will be slightly more convenient to work with unit form. We call the lexico­

graphie order after reduction to unit form unit lexicographie arder.

Theorem 4.7 Let P = {x 1 Ax < :n.}, be ad-polytope eontaining the origin in its

interior. There exists an atline transformation that places any fixed row of the

transformed system tirst or last in unit lexicographie arder, as desired.

Proof. Consider hyperplane~. If h u i= 0, tt.r intersects the Xl axis at the point

el /hil . Sïnce the origin is in the interior of P, both the positive and negative Xl axes

must intersect some bounding hyperplane of P. The first hyperplane intersected by

the positive Xl axis will be the lex maximum one (Le. largest positive ail) and the

first intersected by the negative Xi axis will the lex minimum one (ignoring ties).

Now suppose we wish ta malte some hyperplane ~ lex minimum or maximum.

Let Fi be the corresponding facet. Choose some xi such that the Xj axis is not

parallel ta tt.r. Reorder coordinates sa that Xj is Xl. Let ebe line paral1el to the Xj

axis intersecting the relative interior Fi. Let u be some point in int(P) ne. Translate

50 that u is the origin and e the Xl axis. From the discussion proceecling, we see

that (the transfonned) ~ is now either lex minjmum or lex maximum. We can

switch between these two options by swapping the positive and negative Xl axes.



Note that sinee eintersects the relative interior of fi. lexicographie order is entirely

determined by the first coordinate. i.e. there are no ties. 0
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4.3.1 Experimental Results

Figure 4.6 Summed intermediate size. dwarfed cubes

• cddf+. lexmin & maxcutoff
a cddf+ minindex
a cddf+ random
ll. porta
x qhull

• qhull, random
• memory limit

lOS

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

d

Figure 4.6 plots summed intermediate size for cddf+, porta, and qhull on dwarfed

cubes. On completed runs. cddr+ produces the same intermediate sizes as cddf+.

Random insertion (the numbers here are averaged over 100 runs) behaves badly for

dwarfed cubes as predicted by Theorem 4.6. This means that in a probabilistic

sense, most insertion orders are bad. On the other hand. common heuristics such

as lexicographie ordering and maxcutoff seem to work quite weIl. The c'!arthest

outside" heuristic of qhull also works significantly better than random ordering. It

turns out that maxeutoff degenerates into lexmin on these examples by a quirk of

initialization. When using a dynamie insertion order sucb as maxcutoff, the initial

simplex must be chosen by some other method (sinee initially the maxcutoff IUle
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Figure 4.7 Summed intermediate size, 10 dimensional dwarfed products of polygons
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size(P)

does not malte any sense). In the case of cdd+, the initial simplex is ehosen lexieo­

graphically. After the initial simplex is chosen, then each remaining hyperplane cuts

off the same number (1) of vertices, and ties are broken lexieographically. Sïnce at

every step we have truncation polytope, lexmin and maxcutoff (given lexicographie

insertion orders) are polynomial insertion orders for dwarfed cubes.

We consider the growth of intermediate size for dwarfed products of polygons

with the dimension held fixed and the number of input halfspaces varying. Fig­

ure 4.7 shows a plot of summed intermediate size versus summed input and output

size. The results for dwarfed cubes and dwarfed products of polytopes support the

intuition that maxcutoff ordering behaves weIl for dwarfed polytopes, sinee it will

tend ta insert the dwarfing halfspaee early.

•
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4.4 Families Hard for Ali Insertion Orders

68

•

In the previous section, we have seen that there exist familles of polytopes where

the insertion of one particular "dwarfing" halfspace last causes a huge drop in inter­

mediate size. Here we consider the natural extension to the case where every input

halfspace causes a huge drop in intermediate size when inserted last. This will im­

ply a superpolynomiallower bound for any insertion order. It will convenient in

this section ta consider the dual situation for facet enumeration where every vertex

causes a huge drop in the number of intermediate facets when inserted last.

4.4.1 The Main Result

At each step of an incremental facet enumeration algorithm, we maintain (at min­

imum) the vertex description Vi and the halfspace description Hi of the current

intermediate polytope (the Udouble description" of Motzkin et al. [34]). We are

interested here in the drop in the size of the halfspace description caused by in­

serting the last vertex. This is the same as the increase in the number of facets

caused by removing one vertex of a polytope and recomputing the convex hull of

the remaining vertices. In the following definitions, let P be a d-polytope and let v

be a vertex of P. Let P ev denote conv(V(P) \ {v}). Let ::T(P} denote the facets of

P, ::Tv(P) the facets of P containing v, and let ::Jvep} be defined as follows:

_ _ {{F E ::J(P ev) 1 v E F-} if dim(P ev) = d;
3="v(P) =

{P ev} otherwise.

We define loss(v, P) =,j'v(P)1 as the number of halfspaces deleted by inserting v

last1 . Similarly. we define gain(v, P) =ls:"v(Pll as the number of halfspaces created

by inserting v last. The net drop in intermediate size is then drop (v, P) = loss{v, P)­

gain(v, Pl. Finally we define gain{P) =maxv gain(v, Pl. loss(P) =minv loss(v, Pl,

lwe make the notation simplifying assumption that in the case where dim(P ev) = dim(P) -l,
the affine hull of P ev is stored as two halfspaces



and drop(P) = minv drop(v, P). If there is a vertex whose removal decreases the

number of facets (as in for example a stacked polytope) then drop(P) is negative.

The lower bounds in this section folIow from using the product and sum of

polytopes constructions defined in Section 2.3. The central geometric observation

is that while the number of facets of the final polytope sums under the product

of polytopes operation, the number of intermediate facets multiplies. We call a

polytope P robust li dîm(P ev) = dim P for every vertex v of P.
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Theorem 4.8 Let P and Q be polytopes with dimension at least 2. P x Q is robust

and drop(P x Q) = loss(P) ·loss(Q).

We prove Theorem 4.8 via severallemmas. Since gain(v, P) is non-negative, the

following holds: loss(P) - gain(P) < drop(P) < loss(P). Let P and Q be polytopes

with dimension at least 2. Theorem 4.8 folIows from the folIowing two facts.

(4.12)

(4.13)

gain(P x Q) = 0

loss(P x Q) = loss(P) ·loss(Q)

•

We start with (4.12), which is equivalent to saying that every facet of P x Q is

robust. Sïnce each facet of Px Q is the produet of a facet of P (respectively P) and

Q (respectively a facet of Q), this follows from the next lemma.

Lemma 4.6 Let P and Q be polytopes with dim P > 1 and dim Q > 1. P x Q is

robust.

Proof. Let v = (p, q) be a vertex of P x Q. Let P' denote (P x Q) ev:

P' = conv({ (P e p) x Q} u {P x (Q e q) }).

If dim(Q e q) = dim Q, then the lemma follows by the Product Lemma. Otherwise,

q ~ aff(Q e q). Let p' be some vertex of P other than p. By Lemma 2.2a, if (x, y) E

aff(X x Y), then x E aff X and y E a1f Y. It follows that (p', q) ~ aff(P x (Q e q}) •
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But (p', q) E P', 50

dimP' > dim[P X (Q e q)] > dimP + dimQ-1

We now turn our attention to (4.13).

Lemma 4.7 Let P and Q be polytopes containing the origin as a vertex.

70

o

•

Praof. Let P' denote (P x Q)e([). Suppose we have facets Fp E joCP), Fq E jo(Q).

We can write linear constraints ax ~ 1 and by > 1 that support P' in Fp and Fq

respectively. The constraint ax + by > 1 supports P'. The vertices of P x Q that

lie on ax + by = 1 are precisely the vertices of Fp Et) Fq' It is known (see e.g. the

proof of Lemma 2.2c) that if dPl n affP2 = 0 and Pl is not a translate of P2 then

dim(P 1 œPz) = dim Pl + dim Pz + 1.

Now suppose we have some F E jo (P x Q). Let hO denote aff F. Every vertex of

P x Q in hO must have at least one adjacent edge e in F-, since otherwise P x Q C F+.

The other vertex of e must be <0, since otherwise h O is not a supporting hyperplane

for CP x Q) e <D. By the Product Lemma, the vertices defining hO must be of the

form (p, 0) or (0, q) for p E Vrp), q E V(Q). It follows that any basis (set of d

affinely independent vertic~) B defining hO must have the form ~= [~ ~] where

Bp is a basis of some Fp E 9="o(P) and Bq is a basis of some Fq E 9="o(Q). 0

Since by change of coordinates we can assume without 10ss of generality that an

arbitrary vertex of P x Q lies on the origin, (4.13) and hence Theorem 4.8 follows.

From Lemma 4.7 we aIso get a complete characterization of the facets of (P x Q) ev

since T((P x Q) ev) ={F E T(P x Q) 1 v E F+} U ~v(P X Q) .
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4.4.2 Consequences

71

We now present some consequences of Theorem 4.8 for particular families of poly­

topes. To construct familles of polytopes hard for incremental convex hull algo­

rithms, it suffices to take products of familles with large loss functioDS. In this

subsection we present three such familles. Recall that Cd(n) denotes the cyclic

d-polytope with n vertices.

Lemma 4.8 For even d, n > d + 2, for any vertex v of Cd (n) 1

(
n-d/2-2) [ den-dl ]

10ss(v, Cd(n)) = n _ d -1 = (2n _ d _ 2) n yen, d)

d lixed.

Proof. Let the dimension d = 2k for some positive integer k. Let v be a vertex of

P = Cd(n). By Lemma 2.1, each vertex of an even dimensional cyclic polytope is

contained in y(n-l, d-l) facets. Since P is simplicial, gain(v, P) = y(n-l, d-l).

Since P ev is full dimensional, fd-l(P ev) - f d- 1(P) = loss{v, P) - gain(v, Pl. It

follows that

loss(v, P) = f d-dP ev) - f d-l (P) + gain(v, P)

=y(n-l, d) -y(n,d) +y(n-l, d-l).

Substituting in the appropriate values of yen, d) from (2.1) for odd and even d,

[
n - 1 (n - k - 1) n 2 n - 2 k - 2] (n - k - 2) !

10ss(v, P) = k - (n - 2 k) k + n - 2 k (n - 2 k - 1)! (k - 1) !

The term in brackets simplifies to 1. o

•
As usual, we now give two altemative familles to products of cyclic polytopes. A

polytope P is called centered if for every v E Vrp), P ev contains the origin as an
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interior point. As in Section 3.1, define'7tn as follows. For odd n, choose points:

72

xCi) - (n-l)/2-i

y(i) - 2x(i)2 - 3 i=O ...n-l

•

If n is even, construct 'Ttn-t and then add a vertex with coordinates (0, n 2/2 -2n).

Figure 4.8 illustrates P6 . The reader can verify that Ps is centered. Since V(Ps ) c
V(Pn } for n > S, Pn. is centered for n > S.

Figure 4.8 7t6
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The following lemma gives a general method for constructing familles of poly­

topes with large loss functions.

Lemma 4.9 Let P be a centered polytope. Let Q be a polytope with m lacets con­

taining the origin in its ïnterior. Let v = (p, <D) be a vertex of P œQ.

loss(v, P œQ) = loss(p, P) . m .



Proof. Note that (pœQ)8(p, 0) = (P8p)œQ. Sïnce P is centered, by Lemma2.4,

ax + by < 1 defines a facet of (P e p) œQ iffax < 1 defines a facet of Pep and

by < 1 defines a facet of Q. Vertex (p, ({)) is infeasible for a.x + by < 1 iff p is

infeasible for QX < 1. 0
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Again following the development of Section 3.1, let Tlzk(n) denote Eak 1tn..

Corollary 4.1 For even d, n > 5, 10ss TTd(n) = n d/ Z- 1•

From Lemma 4.8 and Corollary 4.1, we have two familles of polytopes with

large 105S functions. Intuitively, our construction takes the vIëI-fold product of

2vCl-polytopes from these familles. In order to have example polytopes in each

sufficiently large even dimension, a slightly more complex construction is necessary.

Following Section 3.1, for any even dimension 2d > 4 define a = rVdl, b = Ld/a J,
c = d mod a, and Kzd(n) = Q~Cl(n) x Qzc(n) where Qk(n) is either a cyclic polytope

Ck(n) or a sum of polygons TTk(n) (and we again omit the term Qzc(n) if c=O).

Theorem 4.9 For d > 2 held tixed,

Ca) s =size KZd(n) E o (nrv'éIl ), and

(h) drop KZd(n) E Q(sd/h/Cfl-1).

Proof. Let bl = rd/al = b + sgn(c). We will make use of the fact that bl < a. By

(3.2) and (3.3), size KZd(n) E El(nCl ). By Lemma4.8 and Corollary 4.1, loss QZk(n) E

S(nk-l). By Theorem 4.8, drop KZd(n) E O(ntP(d») where

<J>(d) = (a - l)b + sgn(c) . (c-1)

= (ab + sgn(c) . (c - 1) + sgn(c)) - (b + sgn(c)))

=d-b l

•
= 0.(dia - bIla)

> a(d/a -1) o
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From this theorem we can see that incrementa! convex hull algorithms are

strongly superpolynomial in the worst case, irrespective of the insertion order used.

Since these same familles were shown in Chapter 3 to be hard for perturbation

(triangulation) and for face lattice producing algorithms, it follows that no method

consisting of nlnning severa! of the weIl known methods in parallel will be polyno­

mial either.

An important class of polytopes for facet enumeration is the 0Il-polytopes,

whose vertices are a subset of {O, 1 }d. Because of their importance in combinatorial

optimization, a facet enumeration algorithm polynomial for 0Il-polytopes would be

significant result; unfortunately incremental algorithms fail here also. We consider

the equivalent case of polytopes whose vertices are a subset of {+1, -1 }d. Let Hd

denote the hypercube with vertices {+1, -1 }d. The reader can verify that Hd is

centered for d > 3. Recall that U3k denotes Ok H3. Taking the definition of a, b,

and c from Theorem 4.9, let U3d denote U~n X U3c·

Theorem 4.10 For d sutliciently large,

drop U··· > Sd/U./dllogr..ldl)3d _ where s =size U3d.

Proof. By (3.4), for d sufficiently large, sizeU3d < 3nlogn. By Lemma2.5, Lemma4.9

also holds with the œ operation replaced by 8. Sïnce 10s8 H3 = 1, it follows that

10ss U3k = 6k- t. Let b' = rdlQ 1. By Theorem 4.8,

•

drop ·U·· > 6(a-t)b+sgn(cHc-l)3d _

= 6d - b '

2d 3d

- 2b 'log6

~ 3d

> sd/(nloga)

see proof of Theorem 4.9

if b'10g6 < d

d suif. large o
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4.4.3 Experimental Results
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This subsection presents experimental results for incremental facet enumeration

programs on our three "universal" familles C1d(n), nld(n), and U3d'

Figure 4.9 Maximum intermediate facets versus size(P) for Cs(n), cddr+

fi
::s
8
.~

8
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o maxcutoff
6 random

101

280 624 968 1312 1656 2000 2344 2688 3032 3376

size(P)

•

Figure 4.9 plots the maximum. number of intermediate facets versus size(P) for

the products of cyclic polytopes Ca(n) = C~(n). These measurements are all for

cddr+; measurements for porta are identical ta those for cddr+ with the lexmin

insertion arder. The numbers for random ordering are the average of 100 trials.

Although Theorem 4.9 provides a lower bound for aIl insertion orders, in practice

there is a wide variation between the best insertion orders and the worst ones.

Figure 4.10 shows the intermediate size (in facets) at each step for several insertion

orders. The trace for random ordering is from a single trial. The order labeled

"dual" is the order the vertices are produced by cddr+ using lexmin ordering for

the dual vertex enumeration problem. Both this order and lexmin somehow refiect

the product structure of these polytopes since all vertices of the form (Vi, x) for a

particular Vi are inserted sequentiaIly (or at least close together). In [4], the authors

observe that for random ordering, the lower bound of Theorem 4.9 can be improved



• CHAPTER 4. INCREMENTAL ALGORITHMS

by a factor of n (for d fixed).

Figure 4.10 Trace of intermediate size for CarlO), cddr+.
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•

A natura1 question for examples such products of cyclic polytopes where one

transformation is difficult, is whether there is a good insertion order for the dual

transformation. Table 4.1 shows the resuIts of various halfspace insertion orders

for C8 (n). There is again a fairly wide variation among insertion orders. The best

arder is minindex, which again refiects the product structure of the polytopes, since

the halfspaces from each factor polytope (Le. C4 (n) are grouped together in the

input files. The resuIts for this order are very close ta the best of the orders for

facet enumeration, included as the last column of Table 4.1. The difference between

the best and worst insertion orders is quite significant in practical terms: while the

best order takes severa! minutes for C8 (10) (which has 100 vertices and 70 facets),

the worst order takes over four hours (both on a Digital AlphaServer 4/233).

The products ofsums ofpolygons nd(n) have the same asymptotic lower bound

as products of cyclic polytopes (see Theorem 4.9). Their better nwnerical behaviour

allows the use of fioating point, which fails quite quickly for Cd(n), even in 8

dimensions. In Table 4.2, rather than fixing the dimension, we fut the number of

vertices as a function of the dimension. Once again there is large variation among
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Table 4.1 Maximum intermediate facets, Cs(n), vertex enumeration.

n cddr+ cddr+ cddr+ cddr+ porta cddr+ lex.,
lexmin maxcutoff rnjnjndex random facets

5 25 25 25 25 25 Il
6 42 46 42 50.210 42 24
7 70 74 70 111.790 70 46
8 112 182 112 245.540 112 80
9 202 260 171 472.360 171 129

10 364 442 250 819.270 250 196

the insertion orders; as the dimension increases the best of the insertion orders is

much farther from the theoretical lower bound.

Table 4.2 Maximum intermediate size, iï2d(S), lacet enumeration

d fo(P) co(P) lower cddf+ cddf+ cddf+ porta
bound lexmin maxcutoff rnjnindex

1 5 5 6 5 5 5 5
2 10 25 30 25 25 25 25
3 50 30 35 45 166 45 45
4 100 50 75 125 1658 125 125
5 150 150 275 525 6367 525 525
6 225 250 875 2125 35379 2125 2125
7 1125 255 880 7755 7755 7755

•

As before we consider dual problem of vertex enumeration for iï2d(5). Table 4.3

suggests that the best insertion orders for vertex enumeration are better than those

for facet enumeration.

Table 4.4 shows maximum intermediate size for the products of sums of 3-cubes.

If we compare with the experimental results of Section 3.4.1, we can see that for all

three "universaln familles, even though the asymptotic lower bounds given for piv­

oting algorithms and incremental algorithms are about the same, the experimental

performance of the incremental algorithms seems much closer to the lower bounds,
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Table 4.3 Maximum intermediate size, n2dCS), vertex enumeration.

5
13
50

130
195
360

1125
2925
5400

5

10
50

100
150
225

1125
2250
3375

d foCP) cddf+ cddf+ porta
lexmin maxcutoff

5 5
14 23
65 71

130 195
260 2836
390 4246

1950 4248
3900 4506
5850

1
2

3
4
5
6
7

8
9

Table 4.4 Maximum intermediate size, U3dt facet enumeration

d foCP) co(P) lower cddf+ cddf+ cddf+ porta
bound lexmin maxcutoff minindex

1 8 6 1 1 7 7 7
2 16 36 42 42 42 42 42
3 128 42 48 60 918 60 60
4 256 72 108 180 33611 180 180
5 384 252 468 900 900 900
6 576 432 1728 4320 4320 4320
7 4608 438 1734 6918 8214

•
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Figure 4.11 RllDDjng time in cpu seconds, Hd
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and hence much larger problems are solvable by incremental methods within a given

amount of time. In all three cases, the examples solvable in a reasonable amount of

time on CUITent hardware are really too small for the asymptotic bounds to be very

meaningful. For example, for d < la, droP(U3d) < size(U3d).

The three familles from this section are in sorne sense universally difficult for

facet enumeration algorithms, since in Chapter 3 we saw that they are difficult

aIso for pivoting algorithms. By way of contrast, we consider two other families

polytopes shown to difficult for pivoting algorithms, namely cubes and products of

simplices. In each case, it turns out that at least empirically, there are good insertion

orders for these familles. Figure 4.11 and Figure 4.12 compare the rl1DD;ng time of

cddf+ using two different insertion orders with qhull and the pivoting based Irs. It

is interesting that the two greedy insertion orders (maxcutoff and qhull) perform

quite badly on these examples. In the case of qhull this can be partially blamed on

triangulation, but as Table 4.5 shows, the untriangulated intermediate size grows

quite quicklyas weil. In [4] the authors show that a family closely related to TZd

is difficult for maxcutoff insertion order. Lexicographie order seems to work very

weIl, even for the 30 dimensional product of simplices example, whose facets would
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Figure 4.12 Running time in cpu seconds, f ld
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Table 4.5 Summed intermediate size, T·ld.

d cddf+ cddf+ qhull
lexmin maxcuto1f

1 6 6 6
2 14 15 12
3 23 35 25
4 34 79 62
5 47 175 171
6 62 383 609
7 79 831 2240
8 98 1791 8774
9 119 3839 overfiow

10 142 8191

•
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require more than 500 million (d - 1)-simplices ta triangulate.

Bibliographie Notes
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The first published lower bounds for incremental algorithms seem ta be those of

Dyer [19]. In this paper Dyer uses a construction of Klee [100] which build a

polytope with many facets, al! incident to one uuniversal" facet2 • Dyer shows that

one can find a halfspace that creates a prism out of the universal facet. This yields

a drop in intermediate size almost as extreme as Theorem 4.4.

The description of the double description method in [34] is in terms of canes.

Although as we discuss in Section 4.1, this is the cleanest way to deal with un­

boundedness, it seems ta have the unfortunate effect of making the algorithm less

accessible ta the computational geometry community. For a description and exper­

imental comparison of severa! variations of the double description method, see [25].

The results of Section 4.2 were first presented in slightly different form in [2]

and [3}. The dwarfed polytope examples of Section 4.3 first appeared in [4], which

also included several arguments showing that particular familles of dwarfed poly­

topes (rather than dwarfed polytopes in general) are bad for greedy insertion orders

that choose the next halfspace that cuts off the maximum or minjmum number of

intermediate vertices. The results of Section 4.4 appeared in a preliminary form

in [7}. Raimund Seidel suggested the use of products of sums of polygons for The­

orem 4.9. The use of products of sums of cubes for Theorem 4.10 was suggested ta

the author by David Avis.

2 such polytopes are called Kirkman polytopes, after the Reverend Thomas P. Kirkman, who
characterized them in 3-dimensions [99]
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Chapter 5

Primai-Dual Aigorithms

5.1 1ntraduction

It follows from the duality of convex polytopes that the vertex and facet enumer­

ation problems are polynomiallyequivalent, that is, the existence of a polynomial

algorithm for one problem implies the same for the other problem. Several polyno­

mial algorithms (see e.g. [5, Il, 85, 19, 37, 39]) are known under strong assumptions

of nondegeneracy, which restrict input polytopes to be simple in the case of vertex

enumeration and simplicial in the case of facet enumeration. On the other hand,

we have seen in Chapter 3 and Chapter 4 that none of the known methods are

polynomial for general polytopes.

In this chapter, we extend the known polynomially solvable classes by looking at

the dual problems. The dual problem of a vertex (facet, respectively) enumeration

problem is the facet (vertex) enumeration problem for the same polytope where

the input and output are simply interchanged. For a partieular class of polytopes

and a fixed algorithm, one transformation may be much easier than its dual. One

might be tempted to explain this possible asymmetry by observing that the standard

nondegeneracy assumption is not self·dual. Are the dual problems of nondegenerate

vertex (facet) enumeration problems harder? More generallYt are the complexities

of the primai and the dual problem distinct?

82
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Recall that an algorithm. is said to be polynomial if the time to solve any instance

is bounded above by a polynomial in the size of input and output. A successively

polynomial algorithm is one whose kth output is generated in time polynomial in

k and the input size s, for each k less than or equal ta the cardinality of output.

Clearly every successively polynomial algorithm is a polynomial algorithm.

In Section 5.2 we will show in a certain sense that the primai and dual problems

are of the same complexity. More precisely, we will show the following theorem:

if there is a successively polynomial algorithm. for the vertex (facet, respectively)

enumeration problem for a hereditary class of problems, then there is a successively

polynomial algorithm for the facet (vertex) enumeration problem for the same c1ass,

where a hereditary class contains all subproblems of any instance in the class. We

propose a new class of algorithms that take advantage of this phenomenon. Loosely

speaking, primal-dual algorithms use a solution to the easy direction as an oracle

to help solve the seemingly hard direction.

The non-degenerate polytopes are in some sense the least complicated of all

polytopes. The simplicial polytopes have the fewest possible vertices on each facet;

the simple polytopes have the fewest possible number of facets containing each

vertex. Which of these properties is Most desirable depends on the problem at hand.

If we are given a halfspace description and want to enumerate its vertices, then we

know how to efficiently solve the problem if the halfspaces define a simple polytope.

Similarly, if the problem is to enumerate the facets given the vertices, then we know

how to solve the problem if the polytope is simplicial. In both of these cases we say

the problem input is primal-nondegenerate. If, on the other hand, the problem

is vertex (respectively facet) enumeration and the input is simplicial (respectively

simple) enumeration then we say that the problem is dual-nondegenerate. In the

language of Chapter 3 we can measure the primal (respectively dual) degeneracy

of a polytope in a quantitative sense by its primal (respectively dual) triangulation

complexity.

From the general result of Section 5.2 relating the complexity of the primal

and dual problems, and known polynomial algorithms for the primal nondegenerate
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case, we arrive at a polynomial algorithm for vertex enumeration for simplicial

polytopes and facet enumeration for simple polytopes. In Section 5.3 we show how

ta refine this algorithm. to yield an algorithm with time complexity competitive

with the algorithms known for the primal-nondegenerate case. Section 5.4 considers

how to modify the algorithm of Section 5.3 to perform weIl when the polytope is

(moderately) dual-degenerate. Section 5.5 contains some experimental results and

Section 5.6 some concluding remarks for the chapter.

The only published investigation of the dual-nondegenerate case the author is

aware of is a paper by Peter Gritzmann and Victor Klee [27]. Their approach,

most easily understood in terms of vertex enumeration, consists of intersecting the

canstraints with each defining hyperplane and, after removing the redundant con­

straints, finding the vertices lying on that facet by some brute force method. David

Avis (private communication) has independently observed that this method can he

extended to any polytope whose facets are simple (or nearly simple) polytopes. The

method of Gritzmann and Klee requires solving a (m2 ) linear programs (where m

is the number of input halfspaces) ta remove redundant constraints. Our approach

daes not rely on the polynomial solvability of linear programming.

5.2 Primai-Dual Aigorithms

In this section we consider the relationship between the complexity of the primai

problem and the complexity of the dual problem for vertex/tacet enumeration. We

will fix the primai problem as facet enumeration in the rest of this chapter, but the

results can aIso he interpreted in terms of vertex enumeration. For convenience we

assume in this chapter that the input polytope is full dimensionaI and contains the

origin as an interior point. While it is easy to see this is no loss of generality in

the case of facet enumeration, in the case of vertex enumeration one might need to

solve a linear program to find an interior point. We call a family r of polytopes

facet-hereditary if for any P Er, for any H' c X(P), ifnH' is bounded then nH'

is aIso in r. The main idea of this chapter is summarized by the following theorem.
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Theorem 5.1 If there is a successively polynomial vertex enumeration algorithm for

a facet-hereditary family of polytopes then tbere is a successively polynomial facet

enumeration algoritbm for the same family.

Simple polytopes are not necessarily facet-hereditary, but each simple polytope

can be perturbed symbolically or lexicographically ante a combinatorially equivalent

polytope whose defining halfspaces are in "general position" , Le. if we consider the

natural arrangement of hyperplanes induced by the polytope, no d + 1 meet in a

point.

Corollary 5.1 There is a successively polynomial algorithm for facet enumeration of

simple polytopes and for vertex enumeration of simplicial polytopes.

Proof of Theorem 5.1 is constructive, via the following simple algorithme Algo­

rithm 1 takes as input a set V of points in Rd, and a subset Ho C XCV) sucb that

nHo is bounded. We show below how to compute such a set of halfspaces.

Aigorithm l PrimalDualFacets('V; Ho)

Heur f- Ho
while 3V E V(Hcur ) \ V do

Find h E 1f(V) s.t. V E h­
Heur r- Heur U { h. }

endwhile
return Heur.

FindWitness
DeleteVertex

•

At every step of the algorithm we maintain the invariant that conv V ç 3'(Heur).

When the algorithm terminates, we knowthat V(Heur ) ç V. It follows that 3'(Heur) C

canv V. There are two main steps in this algorithm that we have labeled FindWit­

ness and DeleteVertex. The vertex v E V(Heur) \ V is a witness in the sense that for

any such vertex, there must be a facet of XCV) not yet discovered whose defining

halfspace cuts offv. From the precondition of the theorem there exists a successively

polynomial algorithm to enumerate the vertices of Heur. It follows that in time poly-
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nomial in IVI we ean find IVI + 1 vertices of P(Hcur ) , or discover V(Hcur ) = V. If we

discover IVI + 1 vertices, one of these vertices must be a witness. In arder to find the

facet cutting off a witness (the cmeleteVertex" step), we need to solve a separating

hyperplane problem for a point and eonvex set. The separating hyperplane problem

can he solved via the following linear program: maximize Vy subject to Vy < :n.. If

y* is a basic optimal solution (i.e. a solution eorresponding to a vertex of the polar

polytope p. = {y 1 Vy < :n.}) of the linear program then y·x ~ 1 is the desired

separating halfspaee. While there are linear programming algorithms polynomial in

the bit size of the input, there are not yet any known that are polynomial in n = IVI

and d, which is what we need for our theorem. It turns out that because we have

a halfspaee description of the eonvex hull of the union of our two sets, we can solve

the separating hyperplane problem via a much simpler algorithme

Our main tool here will be the pivot operation of the simplex method of linear

programming. Any inequality system

(5.1) Hx~ :n.

can be represented in the standard Udictionary" form (see e.g. [85]) as follows. We

transform. each inequality into an equality by adding a slack variable, to arrive at

the following system of linear equations or dictionary:

(5.2) s=D.-Hx

•

More precisely, a dictionary for (5.1) is a system obtained by solving (5.2) for some

subset of m variables (where mis the row size of H). A solution to (5.2) is feasible for

(5.1) if and only if s > <O. In particular sinee HO < 1, s = 1 is a feasible solution to

both. The variables are naturally partitioned into two sets. The variables appearing

on the left hand side of a dictionary are ealled basic; those on the right hand side

are called cobasic. The solution to (5.2) obtained by setting the cobasic variables

ta zero is ca1led a basic solution. In particular s = 1 is a basic feasible solutioD.

A pivot operation moves between dictionaries by making one cobasic variable (the



• CHAPTER 5. PRIMAL-DUAL ALGORITHMS

Figure 5.1 The raindrop algorithm
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entering variable) basic and one basic variable (the leaving variable) cobasic.

If we have a feasible point for a polytope and a halfspace description, in d pivot

operations we can find a vertex of the polytope. If we ensure that each pivot does

not decrease a given objective function, then we have the following.

Lemma 5.1 (Raindrop Aigorithm) Given H E Rmxd, W E Rd and Vo E P(H), in time

O(md2) we can find v E V(H) such that wv > wVo.

Proof. We start by translating our system by -Vo so that our initial point is the

origine As a final row to our dictionary we add the the equation z = wx (the objec­

tive row). Note that by construction, x = {) is a feasible solution. We start a pivot

operation by choosing some cobasic variable Xj to become basic. Depending on the

sign of the coefficient of Xj in the objective row, we can always increase or decrease

Xj without decreasing the value of z. As we change the value of Xj J some of the basic

slack variables will decrease as we get closer to the corresponding hyperplane. By

considering ratios of coefficients, we can find one of the first hyperplanes reached.

By moving that slack variable to the right hand side (making it cobasic), and mov­

mg Xj to the left hand side, we obtain a new dictionary in O(md) time (see e.g. [85]

for details of the simplex method). We can continue this process as long as there
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is a cobasic x-variable. After exactly d pivots, ail x-variables are basic. It follows

that the corresponding basic feasible solution is a vertex (See Figure 5.1). 0

Figure 5.2 Pivoting from a valid inequality to a facet.

hXo = <1>' > <1>
.,~

xQ ... ···'····hox = <1> > 1
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........ ~ hx == 1
~.. , .11·'....... ho 1

~I""""""".'" ,1 •••••••• lit........ Il' Il •• "" ~ X =

.'...'.'.'.'.'",A",.

By duality of convex polytopes we have the following.

Lemma 5.2 (Dual Raindrop Algorithm) Given V E 1Rnxd, w E IRd and ho such that

V c hci, in O(nd2 ) time we can find hE X(V} such that hw > hcw.

Essentially this is the same as the initialization step of a gift-wrapping algorithm

(see e.g. [11, 39]), except that we are careful that w is on the same side of our final

hyperplane as the one we started with. Figure 5.2 illustrations the rotation dual to

the pivot operation in Lemma 5.l.

We can now show how to implement the DeleteVertex step of Algorithm 1 with­

out linear programming. A basis B for a vertex v E V(H} is a set of d rows of H

such that Bv = :n. and rank B = d. We can obviously find a basis in polynomial

time; in the pivoting based algorithms in the following sections we will always be

given a basis for v.
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Figure 5.3 lliustrating the proof of Lemma 5.3.
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lemma 5.3 (DeleteVertex) Given V E Rnxd, Ho c XCV), vE VeHo) \ V, and a basis

B for V, we can tind hE XCV) such tbat v E h- in time O(nd2 ).

Proof. Let h = ~ LbEB b. The inequality hx < 1 is satisfied with equality by li and

with strict inequality by every v E V (see Figure 5.3). Let y = maxvEV h.v. Since

(]) E int conv V, Y > o. Let ho = ii/y. The constraint hox < 1 is valid for conv V,

but ho\i > 1. The lemma then follows from Lemma 5.2. 0

If we are not given a basis for the vertex li we wish to eut off, we can use instead

the mean of the outward normaIs of all facets meeting at v. This mean vector can

be computed in time OCIHo[d) time.

Corollary 5.2 Given V E IRnxd, Ho c XCV), and v E VeHo) \ V, we can find h E XCV)

such that v E h- in time O(nd2 + IHold).

It will prove useful below to be able to find a facet of conv V that cuts off a

particular extreme ray or direction of unbaundedness for our current intermediate

polyhedran.

Lemma 5.4 (DeleteRay) Given V E ]Rnxd and r E ]Rd \ {(])}, in O(nd2 ) time we can

find h E XCV) such tbat hr > O.

Praof. The praof is similar ta that of Lemma 5.3. Let 'Y = maxvEv TV. Sînce {) E

intconvV, y > O. Let ho = r/y. The constraint hox < 1 is valid for convV, but
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hor = (r· r)/y > O. By Lemma 5.2, in O(nd2 ) time we can compute hE XCV) such

that nr > hor > o. 0

In order to initialize Algorithm 1, we need to find some subset Ho c XCV)

whose intersection is bounded. We start by showing how to find a subset whose

intersection is pointed, Le. has at least one vertex.

Aigorithm 2 FindPointedCone

H f- 0. r f- :n.. A f- Rd.

while IHI < d do
h f- DeleteRay(r, V)
Hf-HU{n}
A f-An hO

Let Cl and b distinct points in A.
Tf- Cl- b.

endwhile
return H

Lemma 5.5 Given V E IRnx d, in 0 Cnd3 ) time, Algarithm 2 computes subset H c
XCV) such that nH detines a vertex.

Proof. We can compute a parametric representation of the affine subspace A de­

fined by the intersection of all hyperplanes found 50 far in 0 (d3 ) time by Gaussian

Elimination. With each DeleteRay call in Algorithm 2, we find a hyperplane that

cuts off some ray in the previous affine subspace (see Figure 5.4). It follows that

the dimension of A decreases with every iteration. 0

We now show how to augment the set of halfspaces computed by Algorithm 2

50 that the intersection of our new set is bounded. Ta do sa, we use an idea due ta

Jack Edmonds [21].

Lemma 5.6 (Edmonds' Oracle) Given H E R mxd and Va E P(H), in time O(md3 ) we

can find V c V(H) such that Vo E conv V and IVI < d + 1.
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Figure 5.4 Successive affine subspaces Ai. computed by AIgorithm 2
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Proof. (sketch) Let P = P(H). Apply Lemma 5.1 to find v E V(H). Find the point

Vt at which the ray W6 exits P (see Figure 5.5). If Vt is a vertex, we are done,

otherwise intersect all constraints with the minimal face containing VI and recurse

with Vt as the gÏven point in the face. The recursively computed set, along with v,

will contain Va in its convex hull. 0

By duality of convex polytopes, we have the following:

lemma 5.1 (Dual Edmonds' Oracle) Given ad-polytope P = convV and ho such that

V c hci, we can tind in time O(IVld3 ), some H C 1f(V) such that ho E conv H.

Figure 5.6 Primai and dual Edmonds' oracles.

Va
V2

.~\
.....

(a) Using Edmonds' Oracle to
find a set of points whose con­
vex hull contains z.

(b) The dual problem of finding a set
of facets that imply a given valid con­
straint zx :5 1.

•

Figure 5.6a illustrates the application of Edmonds' oracle ta find a subset of

vertices of a polygon cantaining an interior point z in their convex hull. In Fig­

ure 5.6b the equivalent dual interpretation of finding a set of facets that implya

valid inequality is shown. In order to understand the application of Lemma 5.7, we

note the following:
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Proposition 5.1 Let P = {x 1 Ax < li.} and Q = {x. 1 A'x < n.} be polybedra such that

each row a' of A' is a conve.x combination ofrows ofA. P ç Q.

Figure 5.7 illustrating the proof of Lemma S.8

B····
,,,,

•

Using Lemma 5.5 and Lemma 5.7, we ean now find a subset of XCV) whose

intersection is bounded.

lemma 5.8 Given V E lRnxd, in time O(nd3 ) we can compute a subset H C j{(V)

such that nH is bounded.

Proof. We start by computing set B of d facet defining halfspaces whose intersection

defines a vertex, using Algorithm 2. The proof is then similar to that of of Lemma S.3

and Lemma 5.4. Compute the mean vector fi. of the normal vectors in B (see

Figure 5.7). Let y = maxvEV -h.v. Let ho = -h/y. Note that hri is valid for V,

but any ray feasible for nB will be eut off by this constraint; hence P(B) n hri is

bounded. Now by applying Lemma S.7 we can find a set of halfspaces He C j{(V)

such that ho E conv He. By Proposition 5.1, P(B U He) is bounded. 0

We can now state a stronger version of Theorem 5.1.
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Theorem 5.2 For any facet bereditary family of polytopes r if we can generate k

vertices of an m-facet d-polytope P E r (or certïfy tbat P bas Jess tban k vertices)

in time O(f(k, m, dl) tben we can enumerate the m facets oEP in time

m

O(nd3 +mnd2 +m2d+ L f(n+l,i-l,d».
i=d+2

Proof By Lemma 5.8 we know that preprocessing takes O(nd3 ) time. Computing

the witness for the ith facet takes O(f(n+1, i-l, dl} time. Each call to DeleteVertex

costs O(nd2 ), plus an additional O(md) if we are not given a basis for the witness

(see Corollary 5.2). 0

In certain cases (such as the dual-nondegenerate case considered in the next

section), we may have a theoretical bound for f(k, m, d) polynomial in k, m, and d.

In other cases, sucb a theoretical bound may be diffieult to obtain, but we may have

experimental evidence that a certain method (e.g. some heuristic insertion arder for

an incremental algorithm) is efficient for vertex enumeration for r. In either case the

techniques described in this section can be used to obtain an efficient method for

facet enumeration as weIl. It is worth noting that there is no restriction of the input

points to he in Uconvex position". Although the algorithm will be more efficient

if there are no redundant interior points as part of the input, it will still function

correctly if there are such points.

5.3 The Dual-Nondegenerate Case

In this section we describe how the results of the previous section lead to a polyno­

mial algorithm for facet enumeration of simple polytopes. We then gÏve a refinement

of this aIgorithm that yields an algorithm whose time complexity is competitive with

the known algorithms for the primai nondegenerate case.

From the discussion above, we know that to achieve a polynomial algorithm for

facet enumeration on a particular family of polytopes we need only have a polyno-
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mial algorithm for vertex enumeration for each subset of facet defining halfspaces of

a polytope in the family. Dual-nondegeneracy (Le. simplicity) is not quite enough in

itself to guarantee this, but it is not difficult to see that the halfspaces defining any

simple polytope can be perturbed so that they are in general position without affect­

ing the combinatorial structure of the polytope. In this case each dual sub-problem

is solvable by any number of pivoting methods (see e.g. [5, 85, 19]). Equivalently

(and more cleanly) we can use lexicographie ratio testing (see Section 5.4.1) in the

pivoting method. A basis is a subset of X(P) whose bounding hyperplanes define

a vertex of P. Although a pivoting algorithm. may visit many bases (or perturbed

vertices) equivalent to the same vertex, notice that any vertex of the input is simple

hence will have exactly one basis. It follows that we can again guarantee to find

a witness or find all vertices of P(Heur ) in at most n + 1 bases (where n = IVI, as

before) output by the pivoting algorithm. In the case where each vertex is not too

degenerate, sayat most d + S facets meet at every vertex for some small constant

S, we may have to wait for as many as n . (d;cS) + 1 bases. Of course this grows

rather quickly as a function of S, but is polynomial for S constant. In the rest of

this section we assume for ease of exposition that the polytope under consideration

is simple.

It is not completely satisfactory to perform a complete vertex enumeration for

each verification (FindWitness) step since each succeeding input to the vertex enu­

meration algorithm consists of adding exactly one halfspace to the previons input.

We now show how to avoid this duplication of effort. We are given some subset

Heur C 1{(V) such that P(Hcur ) is bounded and a starting vertex v E V(Heur ) (we

can use the raindrop algorithm to find a starting vertex in O(IHcurld2 ) time).

Algorithm 3 is a standard pivoting algorithm for vertex enumeration using depth

first search. The procedure ComputeNeighbour(v,;, Heur) finds the j-th neighbour

ofv in P(Hcur ). This requires O(md) time to accomplish using a standard simplex

pivot. To check if a vertex is new (Le. previously undiscovered by the depth first

search) we can simply store the discovered vertices in some standard data structure

such as a balanced tree, and query this structure in O(dlogn) time.
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Aigorithm 3 clfs(v, Heur)

for j El ... d do
v' f- ComputeNeighbour(v, j, Heur)

if new(v/) then
clfs (v', Heur)

endif
endfor
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We could use Algorithm 3 as a subroutine to find witnesses for Algorithm. l,

but we can also mod.ify Algorithm 3 so that it finds new facets as a side effect.

We are given a subset Ho C 1f(V) as before and a starting vertex v E V(Ho)

with the additional restriction that v is a vertex of the input. In order to find

a vertex of P(Ho) that is also a vertex of the input, we find an arbitrary vertex

of P(Ho) using Lemma 5.1. If this vertex is not a vertex of the input then we

apply DeleteVertex to find a new halfspace which cuts it off, and repeat. In what

fol1ows, we assume the halfspaces defining the current intermediate polytope are

stored in some global dictionary; we sometimes denote this set of halfspaces as Heur.

We modify Algorithm 3 by replacing the cali to ComputeNeighbour with a cali

ta the procedure ComputeNeighbour2. In addition to the neighbouring vertex v',
ComputeNeighbour2 computes the (at most one) halfspace defining v' not already

known. Suppose we have found v (i.e. v is a vertex of the current intermediate

polytope). Since P is simple we must have also found ali of the halfspaces defining v.

It follaws that we have a halfspace description of each edge leaving v. Since we have a

halfspace description of the edges, we can pivot from v ta some neighbouring vertex

v' of the current intermediate polytope. Ifv' E V then we know v' must be adjacent

ta v in canv V; otherwise then we can eut v' off using our DeleteVertex routine. If P

is simple, then no perturbation is necessary, since we will eut off degenerate vertices

rather than trying to pivot away from them. Thus ComputeNeighbour2 can be

implemented as in Algorithm. 4.
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Aigorithm 4 CamputeNeighbour2(v t j, Heur)

repeat
" f- ComputeNeighbour(v) j t Heur)

If" ~ V then
h f- DeleteVertex(v, Heur, V)

AddToDictionary(h, Heur)
end if

until" E V
return v
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lemma 5.9 Witb O(mnd) prepracessing, ComputeNeighbour2 takes time O(md +
k(md + nd2 ) ), wbere k is tbe number of new halfspaces discovered.

Proof. As mentioned above, ComputeNeighbourtakes O(md) time. The procedure

AddToDictionary merges the newly discovered halfspace into the global dictionary.

Since P is simple, we know the new halfspace will he strictly satisfied by the current

vertex v; it fallows that we can merge it into the dictionary by making the slack

variable basic. This amounts to a basis transformation of the bounding hyperplane,

which can be done in 0 (dl) time.

Sïnce the search problem is completely static (Le. there are no insertions or

deletions), it is relatively easy to achieve a query time of 0 (d + log n), with a

preprocessing cost of O(n(d+logn)) using e.g. kd-trees [30]. Suppose lagn > md.

It follows that

n> 2md

= (md / 2 )lm/ log m;

but from the Upper Bound Theorem [103], we know n E o{mld/2J ). It follows that

d + log n < md. Since each pivot in ComputeNeighbour2 that does not discover a

vertex of V discovers a facet of cany V, we can charge the time for those pivots to

the facets discovered. 0
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Aigorithm 5 pddfs(v, Ho)

Heur f- Ho
For j El ... d do

v' f- ComputeNeighbour2(v, j, Heur)

if new (v') then
Heur f- Heur U pddfs(v')

endif
endfor
return Heur
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A depth first search based primal-dual algorithm is given in Algorithm 5. Note

that we no longer need an additional query step in Algorithm 5 to determine if the

neighbour of the current vertex v is new. We simply mark each vertex as cliscovered

when we search in ComputeNeighbour2. Furthermore. for P simple. m < n. Thus

we have the following:

Theorem 5.3 Given V E lRnxd, if conv V is simple, we can compute H = X(V) in

time O(nIHld2 ).

5.4 The Dual-Degenerate Case

We would like an algorithm. that is useful for moderately dual-degenerate polytopes.

In a standard pivoting algorithm. for vertex enumeration based on depth or breadth

first search. previously discovered bases must be stored. Since the number of bases

is not necessarily polynomially bounded in the dual-degenerate case1 we turn to re­

verse search [5] which allows us ta enumerate the vertices of a non-simple polytope

without storing the bases visited. The rest of this section is organized as follows.

Section 5.4.1 explains how to use reverse search for vertex enumeration of non­

simple polytopes via lexicographie pivoting. Section 5.4.2 shows how to construct

1 Even if the number of bases is bounded by a small polynomial in the input size, any super-linear
space usage may he impractical for large prohlems.
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a primal dual facet enumeration algorithm analogous to Algorithm 5 but with the

recursion or stack based depth first search replaced by the "memoryless" reverse

search.

5.4.1 Lexicographie Reverse Search

The essence of reverse search. in the simple case is as follows. Choose an objective

function (direction of optimization) so that there is a unique optimum vertex. Fix

sorne arbitrary pivot rule. From any vertex of the polytope there is a unique se­

quence of pivots taken by the simplex method to this vertex (see Figure 5.8a). If

we take the union of these paths to the optimum vertex, it fonns a tree, directed

towards the root. It is easy to see algebraicly that the simplex pivot is reversible;

in fact one just exchanges the roles of the leaving and entering variable. Thus we

can perform depth-first search on the lCsimplex tree" by reversing the pivots from

the root (see Figure 5.8b). No storage is needed to backtrack, since we merely pivot

towards the optimum vertex.

Figure 5.8 Reverse search on a 3-cube

path of
simplex
method
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•
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1/'
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(b) The corresponding reverse
search tree.

•
(a) The "simplex tree" induced by the objec­
tive -1.
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In this section we discuss a technique for dealing with degeneracy in reverse

search. In essence what is required is a method for dealing with degeneracy in the

simplex method. Here we use the method of lexicographie pi1Joting (aIso used in

Avis' implementation of reverse search [42]), which can be shown to be equivalent

ta a standard symbolic perturbation of the constant vector b in the system Ax < b

(see e.g. [85] for discussion). Since the words "lexicographie" and "lexicographically"

are somewhat ubiquitous in the remainder ofthis chapter, we sometimes abbreviate

them to "lex".

In arder ta present how reverse search works in the non-simple case, we need. to

cliscuss in more detail the notions of dictionaries and pivoting used in Section 5.2.

Let P be ad-polytope defined by a system of m inequalities. Recall that we create a

clictionary by converting each inequality to an equation (by adding a slack variable)

and solving for some subset of m (slack and original) variables. We can find (possibly

after renaming variables) a dictionary for P where all of the original variables are

basic, along with the first m - d slack variables. For J C Z+ and vector x, let XJ

denote the vector of elements of x indexed by J. Similarly, for matrix At let Ar

denote the subset of columns of A indexed by J. Let B denote { 1 ... m - d}. Let

C denote {1 ... m} \ B. We can partition our initial dictionary into two sets of

equations:

(5.3)

(5.4)

x = b -Ase

58 = b' - A'se.

We can use (5.3) to transform any nonnegative solution to (5.4) into a solution of

our original problem. We can rewrite (5.4) as

(5.5) [I A']S=b', A' E lR.(m-d)xd •

•
We call (5.5) the slaek representation of P. GeometricallYt this transformation can

be viewed as coordinatizing each point in the polyhedron by its scaled distance from

the bounding hyperplanes. Suppose slack representation (after renaming the slacks
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(5.6) Ax=b, A E lR.(m-d)xm.

If rank A J = rank A, we call J a basis for A. Suppose 8 C {1 ... m} defines a

basis of (5.6) (i.e. a basis of A). Let C (the cobasis) denote {1 ... m} \ B. We can

rewrite (5.6) as

b = ABXB + Acxc .

Rearranging, we have the familiar form of a dictionary

(5.7)

•

Each basis of (5.6) corresponds to a basis of some vertex of the corresponding poly­

hedron, in the sense of an affinely independent set of d supporting hyperplanes;

by setting Xi = 0, i E C we specify d inequalities to he satisfied with equality. If

the corresponding vertex is simple, then the resulting values for "B will be strictly

positive, i.e. no other inequality will be satisfied with equality. In the rest of this

paper we use basis in the (standard linear programming) sense of a set of linearly

independent columns of A and reserve cobasis for the corresponding set of sup­

porting hyperplanes incident on the vertex (or equivalently, the set of indices of

the corresponding slack variables). To pivot ta a new basis, start by choosing some

cobasic variable Xj in C to increase. Let f3 = Ailb and let A' = Ail Ac. Let B+

denote {i E B 1 aij > O}. For vector oc, define minset(oc, J) as the set of indices i

such that

oct • CXk
-, =nun-, .
Cij kEJ Q.kj

The set of variables indexed by minset(13, B+) is the set of candidate leaving vari­

ables, i.e. those forced to zero first as Xj increases. Ifminset( f3 t 8+) contains a unique



• CHAPTER 5. PRIMAL-DUAL ALGORITHMS 102

•

index then this defines the unique candidate hyperplane ta enter the cobasis. In

general there will be ties for this minimum ratio. In arder to have a unique choice

of hyperplane to enter the cobasis, a method to break ties must be adopted. Here

we use the technique of lexicographie ratio testing (for more details see e.g. [72]).

Lexicographie ratio testing breaks ties by suecessively applying the same ratio test

to the columns of A Bt
J starting with the lowest indexed. Define the matrix l(B) as

We can more formally restate lexicographie ratio testing as follows. Let lk denote

column k of l(B). Let Tl denote minset(l3, B+) = minset(lt, B+). For i > t define

Ti as minset(4, Ti-tl. For some i < m - d + t J Ti must contain a single index

(otherwise AB is singular), and we choose this index as our entering hyperplane. A

vector x is called lexicographically positive ifx :f: ([) and the lowest indexed nonzero

entry is positive. A basis B is called lexicographically positive if every row of l( B)

is lexicographically positive. Let B be a basis set and let C be the eorresponding

cobasis set. Given an objective vector w, the objective row of a dietionary is defined

by

z=wx

= WBXB +wcxc

substituting for XB from (5.7),

The simplex method chooses cobasic variable to increase with a positive coefficient

in the cast raw Wc - WBAB"t Ac (Le. a variable Xj s.t. increasing Xj will increase the

objective value z). The folloWÎng is a standard result of linear programming (see

e.g. [85]) .
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Proposition 5.2 If tbe cast row has no positive entry; then the current basie feasible

solution is optimal.

If the entering variable is chosen with positive cost row coefficent, and the leaving

variable is chosen by the lexicographie ratio test, we call the resulting pivot a lexi­

cographie pivot. A vector v is lexieographically greater than a vector v' if v - v'

is lexicographically positive. The following facts are known about lexicographic

pivoting:

Proposition 5.3 [72] Let S be lexicograpbieally positive basis and let T be a basis

arrived at from S bya lexicographie pivot.

(a) T is lexieographieally positive, and

(b) wTL(T) is lexieograpbically greater than wsL(S).

A basis is called lex optimal if it is lexicographically positive, and there are no

positive entries in the corresponding cast row. In arder ta perform reverse search,

we would like a unique lex optimal basis. The next lemma suggests how to achieve

this.

lemma 5.10 Let S = {1 ... m - d} denote tbe initial basis detined by the slack

representation. For objective vector w = rom-dl -:n.d ] , a lex positive basis B has a

positive entry in tbe eost row if and only ifB =F S.

Proof. The cast row for S is -:n.d. Let B be a lex positive basis distinct from S,

and let 13 denote the basic part of the corresponding basic feasible solution. Let k

denote the number of non-identity columns in AB' If w8f3 < 0, then there must be

some positive entry in the cast row since f3 is not optimal. Suppose that W8f3 = o.
It foIlows that f3 = [13', <Ok] since WB = [<Dm - d- k , :n. k]. Let j be the first column of

AB that is not column j of an (m - d) x (m - d) identity matrix. Let a = [<0, al
denote row j of AB. Since the first m - d - k columns of AB are identity columns, il:

is a k-vector. Let b = [b', 6] be column j of AB1
• where 6 is also a k-vector. Since



a6 = l, we know Gi= <O. By the lex positivity of l(B), along with the fact that

(3 = [13'1 <ok], it follows that 1) has no negative entries. It follows that element j of

wsAï3' is negative. Since identity column j is not in As, it must be present in Ac,

in position j 1 < k. It follows that element j'of wsAi' Ac is negative, hence element

j 1 of the cost row is positive. 0
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From the preceeding two lemmas, we can see that the lexicographically positive

bases can be enumerated by reverse search from a unique lex optimal basis. The

following tells us that this suffiees to enumerate all of the vertices of a polytope.

Lemma 5.11 Every vertex of a polytope bas a lexicographically positive basis.

Praof. Let P be a polytope. Let v be an arbitrary vertex of P. Choose some

objective function so that v is the unique optimum. Choose an initiallex positive

basis. Run the simplex method with lexicographie pivoting. Since there are only

a finite number of bases, and by Lemma 5.3 lexicographie pivoting does not repeat

a basis, we must eventually reach some basis of v. Since lexicographie pivoting

maintains a lex positive basis at every step, this basis must be lex positive. 0

5.4.2 Primai Dual Reverse Search

In this section we discuss how to construct an algorithm analogons to Algorithm 5

which uses reverse search instead of a standard depth first search. As before, we re­

place the ComputeNeighbour routine (which consists of a single simplex pivot) with

the ComputeNeighbour2 routine (Algorithm 4). In schematic form, the resulting

algorithm is given in Algorithm 6.

We suppose that the preprocessing steps described above have given us an initial

set of facet defining halfspaces Ho such that P(Ho) is bounded and there is some Va

that is a vertex of the input and of P(Ho). We number the jth halfspace discovered

(including preprocessing) as m - j (of course, we do not know what m is until

the algorithm completes, but this does not prevent us from ordering indices). By

possibly renumbering variables, we choose our initial cobasis as {m - d +1 ... m}, Le.
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Aigorithm 6 ReverseSearch(Ho, vo)

C t- Copt , j t- 1, AddToDictionary( Ho, Heur)
repeat

while j < d
Cf t- ComputeNeighbour2(C, j, Heur)
if IsPivot (Cf, C) then

C t- Cf, j t- 1
else

jt-j+l
end if

end while
(C, j) f- PivotToOpt(C)
jt-j+1.

until j > d and C = Copt
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down edge

next sibling

up edge
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the lexicographically maximum possible set of indices. As in Lemma 5.10, we choose

the objective vector [{)m-d, -:n.d] in order to force this cobasis to be lex optimaL

We malte use of the same ComputeNeighbour2 routine as before, except that we

now use lexicographie pivoting and return a cobasis rather than the coordinates of

the vertex.

If Ho = 1C(P ), then Algorithm 6 reduces to the standard reverse search algorithm.

For a given Ho and vo, and for a fixed numbering of the initial halfspaces, there is

a fixed ordering the halfspaces are numbered (discovered) by Algorithm 6. Rather

than considering the dynamic discovery of halfspaces, we can consider Algorithm 6

as a CCrestricted" variant of reverse search that only considers candidates for leaving

variable (Le. candidate hyperplanes to enter the cobasis) that have index greater

than some bound. We daim that this restriction does not change the set of cobases

discovered. Let Ax. = b, A E IR(m-d)xm be the slack representation of ad-polytope.

Let K denote {k ... m} for some k < m - d. For any cobasis C C K, let Bdenote

K\ C. We define the k-restricted ba.sis matm for C as the last m.-k+1 rows of As.

Let R denote the k-restrieted basis matrix for C, and let p denote R-1bK. By the
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k-restricted lexicographie ratio test we mean the lexicographie ratio test applied

to the matrix: [p R-1]. By way of contrast we use the unrestricted lexicographie

ratio test or basis matrix: ta mean the previously defined lexicographie ratio test or

basis matrix. If at some step of Algorithm 6 the smallest indexed. hyperplane that

has oecurred in a previously visited eobasis (Le. the smallest indexed hyperplane

discovered so far) is k + l, the choice of leaving variable (entering hyperplane) is

equivalent to the choice made by the k-restricted lexicographie ratio test (i.e. we

may discover at most one more hyperplane in the neighbouring cobasis during the

call ta ComputeNeighbour2 ). We claim that the choice made by the restricted

ratio test is the same as that made by the unrestricted ratio test (given the same

number of hyperplanes). We start by observing that the restricted basis matrix

is a submatrix of the unrestricted basis matrix for a given cobasis, and that this

property is preserved by matrix inversion. Let R denote the k-restricted basis for

c. Let li denote the (unrestricted) basis matrix for C. Since k < m - d, we know

columns of li before k must be columns of a m - d identity matnx. It follows that

u= [~ ~]
for some matrix M. The reader can verify the following matrix identity.

(5.8) u-1 = [I M] -1 = [1 -MR-1
].

ORO R-t

•

Lemma 5.12 Let P be a d-polytope and let Ax = b he the slack representation of P.

Let C C {k ... m} he a cobasis for Ax = b. For k < m - d and for any entering

variable "s, if there is a candidate leaving variable "t witb t > k then the leaving

variable chosen by the lexicographie ratio test is identical to that cbosen hy the

k-restricted lexicographie ratio test.

Proof. Let 13 denote U-Ib. As above, let p denote R-1bK. One consequence of (5.8)



is that p = f3K. If there is exactly one candidate leaving variable, then by the

assumptions of the lemma it must have index at least k, and both ratio tests will

find the same minimum. If on the other hand there is a tie in the minimum ratio

test applied to f3 then a variable with index at least k will always be preferred by

the unrestricted lexicographic ratio test, since in the columns of li-1 with index less

than k, these variables will have ratio O. 0
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The previous lemma tells us that for a fixed entering variable and cobasis, the

restricted and unrestricted reverse search will choose the same leaving variable. It

remains to show that in a (backtracking) pivot towards the optimum. cobasis they

will choose the same entering variable. As above, let K = { k ... m} and B= K \ C.

Analogous to the definition of a k-restricted basis matrix, we define the k-restricted

cast row for cobasis C as Wc - wBR-1Âc where R is the k-restricted basis matrix

and Âc is the last m- k+ 1 rows of Ac.

Lemma 5.13 For objective vectar w = (lom-d, w/], for k < m - d, tbe cast raw and

the k-restricted cast row are identical.

Proof. As before, let R and U be the restricted and unrestricted basis matrices

respectively. From the form of the objective vector, we lmow WB = [<OK, WB].

By (5.8),

[
1 -MR-

1

] [~']w BU-1Ac = [<OK-l WB] _
({) R-1 Ac

o

•

The previous two lemmas can be interpreted as claiming that locally, the re­

stricted reverse search of Algorithm 6 behaves identically to the standard reverse

search algorithm. We can use this ta argue inductively that the two algorithms

behave the same globally as weil. Reverse search is just depth first search on a

particular spanning tree; hence it visits the nodes of the tree in a sequence (with
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repetition) defined by the ordering of edges. The ordering of edges at any node in

the reverse search tree is in turn determined by the numbering of hyperplanes.

Lemma 5.14 Let P be a polytope. Let Ho be a subset ofJ((P) witb bounded inter­

section. Let Vo E V(Ho) n Vrp). Tbere exists a labeling ofJ((P) \ Ho such that the

sequence of cobases visitec:l by ReverseSearch(Ho, vol is identical ta that visited by

ReverseSearch (J((P) 1 vo).

Praof. We can think of the sequences of cobases as chains connected by pivots.

Each edge in the chain is either a reverse pivot (a down edge) or a forward pivot

(an up edge). Let eT = (Cl, Cl, ... ) (the l'restricted chain") be the chain of cobases

visited by ReverseSearch(Ho, vol. Let eu (the CCunrestricted chain") be the chain

of cobases visited by ReverseSearch(1{(P), vol. Both sequences start at the same

cobasis, since the starting cobasis is the one with the lex maximum set of indices,

and hence by the way the hyperplanes are numbered must be contained in Ho. Now

suppose the two sequences are identical up to element j; further suppose that we

have a partial numbering of the hyperplanes k + 1 ... m such that Ci C { k + 1 ... m}

for i < j. There are two cases. If the edge in eT from C j to C j + 1 is a reverse edge,

then we start by pivoting from C j ta C i+ 1 by fixing some entering variable and

choosing the leaving variable lexicographically. C j+ 1 contains at most one variable

not present in CiJ i < j; this variable is numbered k, if present. Let s denote the

position of the entering variable in Ci (Le. the column to leave the cobasis matrix).

Since the cobasis in position Ci will have occurred 5 - 1 times in both sequences, we

know that ReverseSearch(X(P), vol and ReverseSearch(Hol vol will choose the same

entering variable. By Lemma 5.12, they will choose the same leaving variable. The

test IsPivot(Ci+1t Cd is another lex ratio test, sa by Lemma 5.12 the next cobasis

in eu will also be C j +l. Suppose on the other hand the pivot from C j to C i+1 is a

forward pivot. We know from Lemma 5.13 that both invocations will choose the

same entering variable, and we again apply Lemma 5.12 ta see that they will choose

the same leaving variable. 0



Theorem 5.4 Given V E Rnxd, let m denote IX(V)I, and let <P denote the number of

lexicographically positive bases of X(V).
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Ca) we can compute XCV) in time O(<pmd2 ) and space O((m+n)d).

Cb) we can decide ifconvV is simple in time O(nZd2 ).

Proof

Ca) Total cast for finding an initial set ofhalfspaces is O(nkd2 ). where k is the size

of the initial set. Since every DeleteVertex call finds a new halfspace, the total

cost for these calls is O(nmd2 ). In every cali to ComputeNeighbour2, each

pivot except the last one discovers a new halfspace. Those which discover

new halfspaces have total cost O(m2 d) which is O(4)md); the other pivots

cost O(<pmd2 ) as there are <pd calls to ComputeNeighbour2. The <p forward

pivots (PivotToOpt) cost 0 (4>md).

Cb) At any step of the reverse search, we can read the number of halfspaces satisfied

with equality by the current vertex off the dictionary in O(m) time. If we

reach a degenerate vertex, or discover more than n facets, we stop. If the

reverse search terminates, then in O(nmd) time we can compute the number

of facets meeting at each vertex. 0

Theorem 5.4b is of independent interest since the problem of given H, deciding

whether P(H) is simple is known to be NP-complete in the strong sense [24].

5.5 Experimental Results

Ambros Marzetta has implemented Algorithm 6 using rational arithmetic in C. The

memcry requirements of this implementation are twice the input size plus twice the

output size, as the program stores four dictionaries: a constant vertex dictionary V

and a growing halfspace dictionary Heur in unpivoted form, and a working copy of

bath. The program uses an earlier version of the preprocessing step, with an upper
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bound of 0 (nd4
) t compared to the current bound of 0 (nd3 ). The source code is

available at http://wwvjn.inf.ethz.ch/ambros/pd.html.

In what follows pd is Marzetta's implementation of Algorithm 6, Irs is Avis'

implementation of reverse search [42], and qhull is Barber et al.'s incremental algo..

rithm which uses triangulation. Figure 5.9 shows the running time of these three

programs on products of two simplices. Recall from Chapter 3 that these polytopes

are simple, but have extremely high triangulation complexity. On this plot, we

show the times for enumerating both the lacets and the vertices. Since pd is always

triangulating the polytope dual to that triangulated by the other two programs, it

is not surprising that it performs weIl (respectively badly) exactly when the other

two perform. badly (respectively weIl).

Figure 5.9 RUDnjng time for products of simplices Td x Td

• Irs facets
o pd facets
o qhull lacets
~ Irs vertices
x pd vertices
* qhull vertices
• mem.limit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d

A less asymmetric example is the product of cyclic polytopes CZd(n). In Chap­

ter 3 we saw that both the primai and the dual triangulations of these polytopes are
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superpolynomial; nonetheless experimentally it seems that the dual triangulations

are smaller than the primal ones (see Figure 5.10). Apparently this constant factor

is nct enough to malte up for the di1ference between fioating point arithmetic (qhull)

and exact rational arithmetic (see Figure 5.11); on the other hand pd is able to

complete larger problem sets using the same amount of memory.

Figure 5.10 Triangulation size, C4 (n) x C4 (n).
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5.6 Conclusions

An alternative approach to achieving an algorithm polynomial for the dual­

nondegenerate case is to moclify the method of Gritzmann and Klee [27]. An idea

due to Clarkson [15) can be used to reduce the row size of each of these linear pro­

grams to O(m/) where m' is the maximum number of facets meeting at a vertex.

If we assume that m' < d + b for some constant b then we can solve each linear

program by brute force in time polynomial in d. It seems that such an approach

will be inherently quadratic in the input size since a quadratic number of linear

programs May need to be solved.
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Figure 5.11 cpu time, C4 (n) x C4 (n).
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It would be interesting to remove the requirement in Theorem 5.1 that the

family be facet-hereditary, but it seems difficult to prove things in general about

the polytopes formed by subsets of the halfspace description of a known polytope.

Bibliographie Notes

A preliminary version of the material in this chapter first appeared in [8] .
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Chapter 6

Conclusions

6.1 Summary of Thesis

For any convex polytope P, there are two fundamental algorithmic problems. Trans­

forming from the halfspace representation to the vertex representation is called ver­

tex enumeration. Transforming from the vertex representation to the halfspace rep­

resentation is called facet enumeration. A theoretically and practically important

question is whether there are algorithms for these problems whose time complex­

ity is polynomial in the input and the output size. Answering this question seems

quite difficult; the goals of this thesis are to better understand the performance of

existing methods, and to provide algorithms whose performance is polynomial for

new (restricted) classes of input. For each known class e of algorithms, we give a

measure m.e(P) with the property that the time complexity an algorithm in class

e on input P is bounded (above, below, or both) by a polynomial in tne(P}. For

each such measure, we provide one or more example families of polytopes where

the measure (and hence the corresponding class of algorithms) is superpolynomial

in the input and output size. It is weIl known from duality of convex polytopes

that a polynomial algorithm for vertex (respectively facet) enumeration of a fam­

ily r of polytopes provides a polynomial algorithm for facet (respectively vertex)

enumeration of a family r* dual to r. On the other hand, the relationship between

113



the complexity of vertex enumeration for a family r and the complexity of facet

enumeration for r itself has not been widely studied. In this thesis we show that

under certain restrictions, an efficient algorithm for vertex (respectively facet) enu­

meration for r can be used as a subroutine to provide an efficient algorithm for facet

(respectively vertex) enumeration for r.
Broadly speaking, known algorithms for vertex/facet enumeration can be divided

into those that enumerate the face lattice, those that use triangulation or perturba­

tion, and those that use incremental construction. We consider three corresponding

measures for ad-polytope P:
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1. The lattice complexity ((P) is defined as the number of non-empty faces of P.

2. The triangulation complexity tminF(P) is the mjnimum number of (d - 1)

simplices necessary to triangulate the boundary of P.

3. The intermediate vertex (respectively facet) complexity of P is the maximum.

size of an intermediate polytope constructed by an incremental vertex (respec­

tively facet) enumeration algorithm.

In ail three cases we considered the asymptotic behaviour of these measures relative

to the input and output size of the polytope. For convenience we defined the

function size(P) as d(m + n) where m and n are the number of facets and vertices

respectively of P.

In Chapter 3 we considered the relationship between lattice complexity, trian­

gulation complexity and perturbation. In general, algorithms for vertex or facet

enumeration that enumerate the face lattice will perform weIl (badly) on familles

of polytopes with low (high) lattice complexity. That is, there are algorithms to

compute the face lattice (see e.g. [24, 39]) whose complexity is polynomial in {(P)

and size(P). Facet enumeration algorithms that use perturbation or triangulation

will perform weIl (baclly) on familles with low (high) triangulation complexity. In

particular, pivoting algorithms for facet enumeration such as [5, Il, 85, 19, 37, 39]

will be polynomial or superpolynomial depending on the triangulation complexity.
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By duality, the same algorithms will be polynomial or superpolynomial for ver­

tex enumeration depending on the triangulation complexity of the dual polytope.

Furthermore, in Chapter 5 we argued that if either the primal or the dual trian­

gulation complexi.ty is bounded above by a polynomial then both facet and vertex

enumeration are solvable in polynomial time. In Table 6.1 we summarize the bounds

presented in this thesis related to lattice, triangulation, and dual triangulation com­

plexity. In this table and the next, s denotes size(P) = (m+n)d, which corresponds

to the number of real or rational numbers required to write down the input and the

output. The column "bits" is the number of bits required to write down a single

coordinate. For familles of polytopes with two parameters, asymptotic statements

are for d fixed. Of course one could always fut the other parameter to some function

of d. For familles with only one parameter, namely d, in statements involving sand

d, d can be regarded as some slowly growing but non constant function of s.

The performance of incremental algorithms for vertex/facet enumeration de­

pends on the size of the intermediate polytopes constructed. It turns out that

for some familles this depends on the order the input is processed (the insertion

order). Even for familles where every insertion order causes a superpolynomial

blowup, experimentally it seems some insertion orders are much worse than others

(see Section 4.4.3). Table 6.1 summarizes the results of Chapter 4 regarding incre­

mental constructions. Unlike the case of lattice and triangulation based bounds,

for each family we have theoretical bounds for at Most one one of vertex and facet

enumeration. For several familles, we present experimental results for one or more

directions where no theoretical bounds are given. Insertion orders for which upper

or lower bounds are given include lexmin (i.e. lexi.cographically), random, maxeut­

off (insert the point or halfspace that causes the largest drop in intermediate size) ,

and mjnindex (insert the input in the order given). Statements about mjnindex

insertion order can he considered existential statements: if mjnjndex is good (bad)

then there is a good (bad) insertion order.
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Table 6.1 Summary of bounds for triangulation and lattice complexities
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description notn. lattice
~ size

dual ~ bits
size size

prad. of cyclic
Cld(n) S(sv'd) Q(sv'd) Q(sv'd) Sen)

polytopes l 2 2

prad.ofsum
ITld(n) 8(sv'd) Q(sv'd) Q(sv'd) S(logn)

of polygons l 2 2

prod.ofsum ... S (s3'-"i/log d) Q(Sv'd/logd) !l(Sv'd/logd)
1

of 3-cubes U3d
l 2 2

product of > Sd/(llogd) > Sd/(21ogd) S
t·ld --2d-2 1

simplices 3 " d 5

< slog3 > sclogd s
d-cubes Hd --2d 1

6 " d 5

..... > Sd/(41ogd) high high 8(1ogm)pierced cubes TdnHd 3 7 7

d warfed cubes Td
> Sd/(41og d) high o(s) S(l )

3 8 5

dwarfed dual > S2e (d) o(s)cyclic !lem)
9 5

polytopes

dwarfed > s2B (d) high o(s)products of 8(logm)
9 8 5

polygons

•

(1) Assuming d = k l , k integer. §3.l

(2) Assuming d = k l , k integer. §3.2

(3) P or p. has a simplicial facet, but
size( P) is polynomial in d. p. 22

(4) By volume ratios. §3.2.1

(5) Simple polytope.

(6) §3.2.l

(7) Experimentally. See §4.2.2

(8) Experimentally. §5.5

(9) This is only superpolynomial if s sub­
exponential in d. §3.l

(10) italic text denotes experimental re­
sults
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Table 6.2 Summary of bounds for insertion algorithms
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description notn. Vertex Enumeration Facet Enumeration

bound arder bound arder

prad. of
C2d (n) U(S..!d-l)

cyclic aIl
polytopes l

prod. of
iï2d (n) good lexmin, Q(Sv'd-T)

sumof aU
polygons 2 maxcutoff l

prod. of ... > Sv'd/logd-l
sum of U3d all
3-cubes l

product of ~t"2d good lexmin, good lexminsimplices 2 maxcutoff 2

d-cubes Hd
good lexmin, good lexmin

2 maxcutoff 2

pierced ....... > Sd/(41ogd)

cubes
TdnHd

3
minindex

dwarfed Td
> Sd/(41ogd) minindex,

lexmin,cubes " random

<s lexmin
5 maxcutoff

dwarfed
U(Sd)

minindex,
dual cyclic lexmin,
polytopes " random

dwarfed
U(Sd)

minindex,
products of lexmin,
polygons

4 randam

•

(1) Assuming d = k2
J k integer. §4.4

(2) Experimentally. §4.4.3

(3) §4.2

(4) §4.3

(5) §4.3.1

(6) Italie text indicates experimental re­
suIts
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6.2 Future Work
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Our understanding of incremental algorithms is still much less satisfactory than

for those based on pivoting. Experimental results (see e.g. Table 4.3) suggest that

for certain familles of polytopes, facet enumeration is much easier than vertex enu­

meration for incremental algorithms. It would thus be interesting ta consider a

primal-dual incremental algorithm along the lines of those presented in Chapter 5,

where the finding of witnesses is done by an incremental algorithm rather than by

pivoting. Unfortunately there are few familles for which incremental algorithms are

known (in a theoretical sense) to work weIl for either transformation. Even when

polynomial bounds are known incremental algorithms on a particular family, it is

usually only for particu1ar insertion orders (see e.g. [57]). It would be particu1arly

interesting to better understand the relationship (if any) between degeneracy and

intermediate size. One curious experimental result is the maxcutoff insertion order

seems ta be very bad for facet enumeration of polytopes with high triangulation

complexity.

The more general question of whether there is a polynomial algorithm for ver­

tex/facet enumeration remains open. If the answer should turn out to be negative,

or if the problem continues to defy resolution, then a fruitful line of research is

probably ta continue to find algorithms that behave weIl for restricted classes of

input.

While there is evidence (see e.g. [56, 57, 52, 54, 61, 62]) that many polytopes

that occur in applications are degenerate, and have high intermediate complexity

for standard insertion orders, a more systematic experimental study would no doubt

be valuable.
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