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ABSTRACT 

The effect of the parameters involved in the torsional 

analysis of box girder bridges is investigated in this thesis. 

The study is limited to single span orthotropic steel bridges, 

with one cell of rectangular shape. Several theoretical 

solutions are presented and discussed. 

A sUitably accurate finite element program is formulated 

fOl' the analysis of box bridges. 'rhe program is developed by 

modifying an existing shell pro gram. The modifications are 

focused on introducing the effect of artificial orthotropy and 

on automating the preparation of a large amount of the input in­

formation. Another program is developed to interpret the 

computer outFut automatically. 

The programs are checked and used to study the torsional 

behaviour of several chosen bridge examples. The study is 

presented and discussed in such a way as to provide aids for 

bridge design. It demonstrates the importance of torsional 

bending stresses which have been ignored in the design • 
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1. INTRODUCTION 

1.1 GENERAL 

During the past decade, the introduction of box girders 

in bridges has revolutionized the design of steel and reinforced 

concrete highway bridges. The development of this type of con­

struction, and its practical application have received much 

attention in Europe - primarily in Germany - where there exista 

a large proportion of the total number of theae bridgea. 

A box girder bridge (Fig. 1.1) consista of top and bottom 

flanges connected by webs to form a cellular structure. This 

structure May be formed by a single-cell or multi-cell units of 

rectangular or trapezoidal shapes. fhe bridge May be made entire­

ly of reinforced concrete or of steel and in some box bridges the 

deck is made of reinforced concrete while the webs and bottom 

flange are of steel. 

Due to the difficulty in understanding the actual be­

haviour of a box girder bridge, because of its high indeterminacy, 

and because of the very limited work that has been done on the sub­

ject, design methods are generally based on empirical methods. 
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In these methods a typical l shaped member, consisting of a web 

and top and bottom flanges, equal in width to the web spacing, 

is taken from the structure and is analyzed as an independent 

beam. The dead load for which su ch a beam is designed is its 

own dead weight, plus that portion of the deck carried by the 

beam, plus the weight of curbs, railings and wearing surface, 

divided by the number of beams supporting the deck. As for wheel 

loads placed on the bridge, empirical formulae based on the web 

spacing are used to determine the load distribution to the in­

dependent longitudinal beams. Beams are then designed to resist 

the maximum longitudinal and shear stresses developed due to all 

cases of loading. 

One of the most important structural characteristics of 

box-shaped cross sections is its high torsional rigidity, which 

leads to nearly uniform transverse distribution of longitudinal 

flange stresses for eccentrically distributed loads. 

An eccentric load can be replaced by a symmetrical pair 

which produces pure bending, and a skew symmetrical pair which 

produces twisting (Fig. 1.2). The degree of uniformity in trans­

verse distribution of symmetrical loads, depends mainly on the 

phenomenon of shear lag; however, for skew symmetrical loads it 

depends also on the torsional deformation of the box which is 

characterized by: 

(i) Distortion and rotation of the cross-section (Fig. 1.3a) 

which is resisted by frame action of the walls of the closed 

section and the diaphragms. 



• 

• 

3 

(i1) Warping deformation (Fig. 1.3b) which is mainly re­

strained by the supports. 

A complex distribution of longitudinal and transverse 

stresses, which attain their maximum values at the corners, is 

introduced in the actual bridge girder due to the above mentioned 

deformations. 'rhose which are shear stresses are adàed to the 

stresses calculated from the conventional methods of design, 

which neglect the effect of this deformation. Other stresses 

(secondary transverse and longitudinal stresses) are completely 

ignored in conventional design. Although the magnitude of these 

secondary stresses might be small in some cases, yet they are 

quite important in bridge design, as they undergo full reversal 

as lanes on alternate side of the bridge are loaded, and fatigue 

failure could occur at places where they have maximum values. 

1.2 OBJEC'rlVE 

'rhe torsional deformation of the cross-section of box 

girder bridges depends upon Many parameters, and the object of 

this investigation is to define such parameters anù review the 

various methods available to study the behaviour of box girders 

under torsion. Another object of this work is to develop a suit­

ably accurate finite element computer program capable of consider­

ing all the factors that play an important role in the behaviour 

of box girder bridges. Based upon the finite element method of 

analysis~ a ~tudy is maQe to provide a clear view of the inter­

action between important parameters such as shape, length and end 
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conditions. 'The results are then presented in a way to provide 

design aids for box girder bridges. 

1.3 SCOPE OF PRESENT INVESTIGATION 

The box girders studied in this thesis are of a constant 

cross section. They are single span and composed of one cell of 

rectangular shape. The end conditions are either simply supported 

or fixed. Sim ply supported indicates that the section at the 

support is free to warp in the longitudinal direction but not free 

to rotate in its plane. A fixed ena indicates that the section 1s 

not free to move or rotate in any direction. The diaphragms are 

always provided at the ends of the boxes and at midspan. Dia­

phragms are assumed very st1ff in their plane and highly flexible 

in bending out of their plane. Only steel orthotropic bridges ~'e 

considered in this investigation although any kind of bridge can 

be considered using the method of analysis presented. 

The loading condition is one of uniformly distributed 

torsional line load applied at top and bot tom corner nodes of the 

box section (Fig. 1.4). The study considers only elastic behaviour 

of box girder bridges. A summary of the cases considered is shown 

in Table I. 

All the programming in this Vlork was in FORTRAN IV 

language for use on an IBM 360-75 digital computer. 
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2. THE TORS ION PROBLEM 

2.1 INrRODUCTION 

·rhe exact solutjon of the torsion problem for a general 

case of a beam of non-uniform cross section and varying end con­

ditions is not yet aVailable in the literature. However, in 1856 

a well known simple theory was developed by st. Venant for the 

special case of uniform twist of circular shafts. In this theory, 

the only stresses developed in the shaft are the pure shear 

stresses. Since that time, designers have thought that torsion 

problems can either be solved by St. Venant theory (pure shear), 

ort if they violated St. Venant assumptions, they had to look for 

a suitable theory to estimate the induced secondary or torsional 

bending stresses. However, in the latter case the designer might 

find it more convenient to redesign the structure to satisfy 

approximately the st. Venant assumptions and to convince himself 

that the only significant stresses were those of st. Venant pure 

shear stresses, and that the secondary stresses were small and 

could be safely neglected. 
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2.2 PURE TORSION 

This section will be limited to an outline of the 

assumptions and conclusions of st. Venant's theory in relation 

to its application to thin walled closed sections. 

Pure torsion takes place in beams with thin walled 

cross sections when the beam is twisted by end torques and the 

only stresses deve10ped are the shear stresses on each transverse 

cross section. The shear is considered uniform over the thick­

ness of the wall and the product of the shear stress anà the thick­

ness at every point is a constant called the shear flow. 

In order to ensure pure torsion, certain assumptions must 

be made: 

(i) Members are straight. 

(ii) ·rhe cross section of the beam is constant. 

(iii) The beam cross sections are stiffened by closely 

spaced rigid diaplœagms to ensure that the cross sections do not 

distort in their plane. 

(iv) Both enàs of the beam are completely free to warp. 

2.2.1 FOHMULAS OF PU!~E rrORSION IN THIN WALLED CLOSED SECrIONS 

If the shear flow in a thin walled section (Fig. 2.1) is 

q and the twisting moment is M, using the above assumptions, it 

follows that 

q = 1': • t (2.1) 
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where ""C = shear stress and t is the wall thickness. 

By equilibrium conditions it can be shown that 

(2.2) 

where ~ is double the area enclosed by the centerline of the wall. 

The shear strain "t is given by 

where G is the modulus of rigidity, and u and v are the axial 

and tangential displacements respectively. From assumption (lil) 

above lt follows that 

v = h-C:P 

where h is the distance from the center of twist to the tangent 

at the given point, and <Pis the angle of twist. It follows from 

equation (2.3) that 

(2.5) 

where 

Integrating (2.5) over the whole perimeter, it can be 

shown that 

<i. l ds cr:r' T (2.6) 

2.2.2 NULTICELL 'ERIN WALLED SECTION IN PUHE TORSION 

The above relations can be extended to the case of multi-
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cell thin walled section. In this case, the problem is 

statically indeterminate of degree (n-l), where n is the number 

of cells. However, by following the same procedure as above for 

each cell and noting that the section doas not distort in its 

plane, i.e., the angle of twist is the same for all cells, the 

following formulas can be derived: 

From equilibrium condition 

n 
M = ~ 

j=l 
q • ..n.. 

j j (2.7) 

And since ~ is the same for each cell, it follows that 

ds m 
T-L: 

r=l 
(q~. S ~)l 

sjr J (2.8) 

Where the subscript on the integral indicates the path 

over which the integration is to be performed, and m is the number 

of cells immediately adjacent to the cell j. 

By introducing the concept of flexibility coefficients 

(Ref. 1) - which 1s the angle of twist of the cell due to unit 

shear flow - equation (2.8) can be written in a matrix fO~m 

~ll '12 ~13 ........ SIn ql .J'LI 

r, 21 &22 . . . . . . ,. . &2n q2 = cP ..$\.2 (2.8)a 

Snl .. . . 'nn qn An 

b .. 1 J ds and ~ .. 1 ,. ds 
where = G -r-= - G sji T JJ SJ J~ 
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or [ b J{ q} = cP· {-iL} (2.8)b 

and hence tq} = ~[~r r} (2.9) 

Equation (2.9) gives the shear flow q in each cell in 
\ 

terms of ~ , and by substituting these values of q in equation 

() ~ . 2.7 we get ~ Substituting back in euqation (2.9) the shear 

flow and thence the shear stress in each cell can be obtained. 

2.3 TORSION BENDING 

'rhe theory of st. Venant and its resulting formulas are 

perfectly valid only for a beam of circular cross section. How-

ever, within the scope of this investigation, it can be said that 

the application of the formulas of pure shear (Sec. 2.2) can be 

accepted only when one can practically ignore additional stresses 

caused by either warping or distortion of the cross section. 

In many practical problems (box bridges, craneway girders, 

water gates) it becomes impossible to guarantee iree warping or a 

constant shape for beam cross sections. In these cases equation 

(2.4) is not valid any more, and a complex distribution of 

longitudinal and transverse stresses are developed, and the 

application of St. Venant theory may lead to serious errors. 

fhe presence of the longitudinal and transverse stresses 

infers that part of the work done by the twisting moment is used 

up in developing them, and only the remainder will develop shear 

stresses associated with st. Venant twist. Hence it can be 
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postulated that a total twisting moment is the sum of a pure St. 

Venant twist and some additional torsion causing bending, or 

rather, restrained warping of the section. This torsional part 

is known as torsion bending. 

Several theories have been developed to estimate these 

torsional bending stresses. These theories will be described and 

discussed in the next Chapter. 
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3. REVIEW OF PREVIOUS WORK 

3.1 INTRODUCTION 

Many investigators during the past thirty years have at­

tempted to deve10p a solution for the torsional bending problem. 

Since, at the beginning, the problem was frequent1y encountered 

in aircraft structures (wings and fuselages), most of the 

theoretical and experimental work that has been done was primari­

ly for the specifie purpose of the analysis of aircraft structures. 

In the se investigations the procedure of the analysis was based 

on the assumption that due to the presence of transverse 

stiffeners or bulkheads, no transverse distortion of the beam 

cross section occurred. Hence the torsional benàing stresses were 

caused mainly by warping restraints. 'r.a.ese types of theories are 

described in tùe next section. 

However, during the past decade, the development of box 

girders in bridge construction has rapidly increased and since, 

in general, a box girder bridge system does experience transverse 

distortion as well as warpini,S restraints, the above mentioned 
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procedure cannot be used for this problem.-.rherefore, re­

searchers started to investigate the problem for the case of 

boxes of deformable cross sections. However, owing to the high 

degree of indeterminacy of the problem and the mathematical dif­

ficulties involved, most of the theoretical solutions for the 

problem have been restricted by one or more conditions. 

Recently, with the aùvent of fast digital comput ers with 

large st orage capacity, some approaches which were theoretically 

established before and which required an enormous amount of 

computation have become practicable. TheBe approaches, such as 

the finite difference method, folded plate method, finite element 

and others, might be considered in fact the most versatile of those 

presently aVailable, since they can treat cases having a large 

range 0 f variables. 

In Section 3.3 a description of the work done on the 

problem with deformable cross sections will be presented with 

special emphasis on recent work applicable to bridge structures. 

3.2 'i';ORK DONE FOR ~;oN-DEFOR:1ABLE CROSS SEC'rIONS 

Most of the work done on the problem of torsion bending 

of box beams with closely spaced riGid diaphragms has been done 

primarily for analysing aircraft structures. rhe first work in 

that field was done in 1934 by Ebner (Ref. 2) for the case of 

bisymmetrical box beams. A general solution for stiffened beams 

of arbitrary cross section was deve10ped later, in 1938, by Ebner 

and Kliller (Ref. 3). :file main step in their analysis was in 
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idealizing the structure to consist of both longitudinal 

stiffeners which carry axial stresses only and connecting thin 

webs which carry shear stresses only. 

The first attempt to develop a theory valid for arbitrary 

closed thin walled cross sections without the limitations of air-

craft structures was developed by Umansky (Ref. 4) and by Karman 

and Christensen (Ref. 5). In both methods the effect of 

secondary shear on the shear strain uistribution was neglected. 

They assumed an arbitrary rate of twist "~',, eXisting along the 

span of the beam, and the distribution of shear and axial 

components of strain were then determined as a function of "~'''. 
These components were calculated according to pure torsion theory. 

After calculating the strains the stresses were obtained from 

fundamental stress-strain relations. rhence from the conditions 

of equilibrium of axial stresses the magnitude of the secondary 

shear could be obtained. A method was proposed which reduced the 

mathematical calculations to a sequence of graphical iategrations, 

analogous to that used in dealing with transversely loaded beams. 

'fhe results of carrying out calculations for four examples of open 

and closed sections with different loading and enà conditions 

indicated the following: 

(i) In closed sections, unlike open sections, the 

secondary shearing stresses are considerably greater than primary 

shearing stresses. 

(ii) In the case of a cantilever beam with a concentrated 

torque at an intermediate point, the results showed that although 

there was no resulting torque in the overhanging part, normal and 
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shear stresses existed. 

(iii) In the case of a beam with one end fixed and the 

other free to warp but not to rotate, and loaded by uniform 

torque along the span, the reaction moment at the fixed end was 

greater than the other end, while the elementary theory gives both 

the same. 

Later, in 1946, Karman and Chien (Ref. 6) developed the 

first "exact" analysis for torsion of thin walled sections of uni-

form thickness. 'fheir theory was based on two assumptions; first 

that the bending stiffness of the wall of the cross section could 

be neglected, and second that the deformation of any section was 

due to rigid rotation of the cross section plus warping displace­

ment in the longitudinal direction. 'fhey developed a differential 

equation for the warping function and its solution in detail. The 

differential equation for the case of a polygonal section was 

reduced to the Laplace equation (valid at every point except the 

corners) together with some transition conditions at the corners. 

Karman ana Chien proveci that the secondary shear stress had an 

important effect on the stress distribu~ion. This was demonstrated 

by the marked increase of axial stresses at the corners and at the 

fixed end of a doubly symmetrical cantilevered beam loaded by end 

torque. 'rhe torsional behaviour of this particular case was worked 

in detail and CU,L'ves were dravlll (Fig. 3.1) showing the rate of 

twist at various distances from the restrained end and for different 

sizes of rectangular tüin walled section. It shoulù be noted that 

the rate of twist "q'" approaches a constant as the shape of the 

section approaches a square. Also curves were obtained (Fig. 3.2) 
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for different sizes of rectangular sections showing the 

circurnferential distribution of axial stresses at the restrained 

end. In Fig. (3.3) the maximum stress, which was found to be at 

the corners, is plotted against various sizes of the rectangular 

thin walled section. Figures (3.2) and (3.3) show that the 

curvature of the stress distribution along the section lncreases 

rapidly near the corners especially for shallower sections, and 

that the maximum stresses decrease nonlinearly when the shape of 

the section approaches a square. 

An exact solution for arbitrary section was given by 

Adadurov (Ref. 7) but no numerical results were obtained. Another 

exact analysis was given by Benscotter (Ref. 8). 

Although the exact theories give satisfactory results 

providing their assumptions are valid, yet they require an extensive 

amount of computational work. Hence an approximate solution having 

sufficient accuracy for engineering design was desirable. 

An approximate solution was developed by Umansky (Ref. 9) 

in his second paper on the problem of torsion bending. This was 

followed by ananalogous solution by Benscotter (Ref. 10). Both 

approxilllate solutions were based on the assumption that the axial 

displacernents leading to axial stresses had tile same transverse 

distribution at a section of an arbitrary beam as would occur in 

St. Venant torsion of a uniform beam with that section. Another 

approximate solution of ~he problem, based on the same aGove 

assumption but furnishing a somewhat different degree of accuracy 

was presented by Dshanelidze and Panovko (Ref. Il). A similar 
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solution was given recently by Heilig (Ref. 12). 

In 1963, Dabrowski (Ref. 13) suggested the use of these 

approximate theories in civil engineering design where the re­

quired accuracy of analysis is not as demanding as in aircraft 

engineering. He carried out a comparison between the two 

approximate theories, namely of Umansky (or Benscotter) and 

Panovko. The two theories were applied to find the maximum axial 

stress at the fixed end of a sUfficiently long cantilever beam 

twisted by a torque at the free end. 'l'he beam had a rectangular 

cross section and was of uniform thickness. rhe results are shown 

in Fig. (3.4) for different width to depth ratios of the section. 

It can be seen that the first theory (Umansky) furnishes somewhat 

greater values of axial stresses, being on the safe side. It 

should be mentioned that both theories give zero ax.ial stress for 

a square section. Also, another comparison has been carried out 

between the exact solution (Karman - Chien), the refined 

approximate (Umansky - Benscotter) and the ordinary approximate 

(Karman - Christensell) solutions. The sarne exalnple mentioned 

before was used in the comparison. The results are shown in Fig. 

(3.5). It should be noted that both the exact and refined 

approximate solutions yield, as should be, zero stress for a square 

section whereas the ordinar'y ap~roximate solution wrongly indicates 

a finite value. The latter a1so gives exaggerated values of axial 

stresses for a/b ratios up to 4, that i8 for most box sections in 

bridge structures. On the other hand, the refined approximate 

theory furnishes corner stresses below those of exact theory, 
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being on the unsafe side. 

Using the formulas of the refined approximate theory 

derived by Dabrowsky for the values of the maximum torsion bending 

stress in an eccentrically loaded simply supported beam, the 

writer inspected the effect of shape ratio on the increase of 

axial stresses due to eccentricity of load on box girder bridges. 

The results presented in Figures (3.6) and (].7) show the trans­

verse influence lines of the maximum axial stress ( ~ ) at mid­

span, for the cases of concentrated and uniformly distributed load. 

The stresses are made dimensionless by dividing by the bending 

stress (9;uor~) at midspan. The practical range of width to length 

ratios, for box girder bridges, has been chosen for the case of 

uniformly distributed load. It can be seen that the stress in­

crease is greater in the case of concentrated load and for the 

worst practical conditions this increase May reach approximately 

50%. However, the corresponding increase for uniformly distributed 

loads is about 20%. 

3.3 WORK DO~Œ FOR DEFORMA BLE CROSS SEC.i.'ION 

A considerable body of the early literature was devoted 

to problems in aircraft field. 'l'he MOSt important of this is the 

work of Reissner (Ref. 14) and Ebner (Ref. 15). The idealization 

mentioned in Section 3.2 for aircraft structures was also the 

basis of this Vlork. Ebner showed hoVl doubly symmetrical boxes 

could be solved by the hlethod of influence coefficients ( ~ik). 

His method is based on the principle of virtual forces and is 

applicable to problems of two dimensional elasticity. Argyris 
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(Ref. 16) extended Ebner's work and developed a matrix formulation 

of the stiffness of the structure but it was based on the principle 

of virtual displacements or the total potential energy method. He 

was the first to use the finite element in a stiffness form for 

solving complex prob1ems in aircraft structures. 

The first work done to approach the requirements of bridge 

structures using the work of Ebner and Argyris was done by 

Resenger in 1959 (Ref. 17) and was extended by Richmond in 1966. 

Richmond in his first paper (Ref. 18) suggested an approximate 

solution for the problem of twisting of a simp1y supported rect­

angular box girder with no restraint against warping. Distortion 

was only prevented at end cross sections by end diaphragms, and 

was resisted by a continuous medium along the span. He assumed 

that def1ections could be considered as a resu1t of bending 

stresses in the separate wal1s, which cou1à be computed by 

engineering bending theory. Another approximate solution by the 

displacement method was given in the same paper for the case of 

boxes with concentrated diaphragms. In this case the beam was 

divided into bays each containing two diaphragms. An expression 

was found for the displacements and the interna1 forces at any 

section in terms of the àiaphragm disp1acements. 'rhen, by satisfy­

ing the equi1ibrium conditions just before and after each dia­

phragm, a set of simu1tane.ous Equations was formed which when 

so1ved gave the um~nown disp1acements of the diaphragms. 

Richmond, in his second paper (Ref. 19) extendea his work 

on rectangu1ar sections to inc1ude trapezoida1 sections and 
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presented numerical values for several simple box girders systems 

with different widths of bottom flange. Studying these examples, 

it was concluded that the top flange stresses could be significantly 

reduced by reducing the bottom flange width. It was also noticed 

that the torsion bending stresses decrease with the increase of 

the enclosed area and depend on the position and properties of the 

diaphragms. 

Attention has been focused recently on the folded plate 

method as a convenient tool for analysing box girder bridges which 

have sim!Jle sUl'ports at the two ends, since a harmonic analysis 

using Fourier series can be used to analyze structures for both 

concentrated and distributed loads on the bridge. The bridge is 

treated as a series of rectangular plates interconnected along the 

longitudinal joints. In the formulation of the analysis, the 

properties of each plate can be obtained using either ordinary 

methods or elasticity methods. 

'rhe ordinary methods assume that the membrane stresses can 

be calculated bj elementary beam theory and that plate bending is 

defined by means of tra:1sverse one-way slab action. fhis means 

that the following quantities al'e neglected: the longitudinal bend­

ing moment, the torsional moment in the plate elements, the trans­

verse axial elongation and the in-plane shearing deformations of 

the plate elements. Exarnples of these ordinary methoà.s are the 

theories of Vilassow (Ref. 20) and of Bj~rklund (Ref. 21). A study 

of the accuracy of these theories is presented in Section 4.4.4. 
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'ihe elasticity methods utilize plane stress elasticity 

theory and the classical two-way thin plate bending theory to 

determine the membrane stresses and slab moments in each plate. 

This means that all the quantities neglected in the ordinary 

methods are consid.ered. However, these methods are restricted to 

a one span simply supported folded flat isotropie plates. The 

methods belonging to this group are presented by Goldberg and Leve 

(Ref. 22) and by De Fries and Scordelis (Ref. 23). 

An approximate analysis based on an analogy with the theory 

of beams on elastic foundation was developed by Wright, Abdel-Samad 

and Robinson (Ref. 24) for multicell box girders of deformable 

cross section. A basic assumption in this method was that the dis­

tortions were accompanied by sufficient warping to annul the 

average shear strains in the plates forming the cross section. The 

method, however, provided an analytical procedure which accounted 

for deformation of the cross section, for the effects of rigid or 

deformable interior diaphragms, longitudinally and transversely 

stiffened plate elements, non-prismatic sections, continuity over 

intermediate sUFPorts and for arbitrary end support conditions. 

Recently, Abdel-Samaci (Ref. 25) extended Wlassow's theory 

to consider multicell composite box girders with intermediate 

diaphragms and with transverse or longitudinal stiffeners. Results 

were presented for different types of single cell box girders. A 

parametlr study was given for a single cell square box with walls 

of uniform thickness and under uniform torsional load. Several 

multicell box girders under torsion loads were also presented. 
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The effect of introducing diaphragms was studied extensively • 

The number and location of diaphragms were varied and the effect 

of their stiffnesses was investigated. The following are the 

most important results and conclusions that can be extracted from 

this study to serve the present investigation: 

(i) The intermediate diaphragms are effective in reducing 

stresses and deflections. The results of the study made on the 

effect of diaphragm location on the longitudinal stress ( ~ ) 
L 

and transverse stress ( ~ ) at midspan of a simply supported girder 
T 

under uniform and concentrated torsional load at midspan are 

presented by the writer in Fig. (3.8). The terms ~BC and ~U 

indicate the maximum axial stresses produced by the two equal mid­

span concentrated loads and two equal uniform line load at the 

edges of the box respectively. It can be seen that the stresses 

decrease as the nearest diaphragm approaches the load. A .. dia-

phragm located below the load reduces the distortion stresses 

almost to zero. Also, for the case of uniform torsional load, two 

diaphragms at third points reduce stresses and deflections to 

small values. 

(ii) For the same girder mentioned above (but with dia­

phragms only at the ends) a study was made to investigate the effect 

of loading and end conditions on the maximum longitudinal and 

transverse stresses. The study is presented by the writer in 

Figures (3.9) and (3.10). In the case of a concentrated load it 

can be seen that end fixity does influence the response quantities 

when the load is near the end, and the longitudinal axial stresses 

produced at the end bec orne higher as the load approac~es the end. 

Ehe end stresses must, of course, drop to zero when the load is at 
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the end. The transverse bending stresses are decreased for loads 

close to the ends. 

(iii) The stiffening action of diaphragms is insensitive 

to practical variations in the stiffness of the diaphragma. 
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4. FINI'rE ELEHENT ANALYSIS 

After reviewing the various methods available for study­

ing torsional behaviour of box giràers, and noting the restrict­

ions made upon each method by the nature of the problem in box 

girder bridges, it was COnCl1.1deà that one should seek a solution 

by a method which takes into consideration the effect of 

torsional bending, shear lag and end restraints. The actual rib 

spacing and rib stiffnesses should also be accounted for in a 

realistic fashion. It is also desirable to avoid the assumption 

of closely spaced rigid diaphragms and to consider the variation 

of dimensions and materials of the bridge elements. 

'llhis is indeed a sizable task; however, the great develo~ 

ment in the finite element methoà and modern high speed digital 

computers, offer considerable hope that these objectives can be 

maintained all at the same time with a considerable amount of 

accuracy. 

IN'fRODUCTION 'fO FINI'fE ELEl1ENl' rl1ECHNIQUE 

Many researchers have contributed to the development of 
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the finite element technique in structural analysis. This is 

evidenced by the extensive bibliographies on the subject given 

elsewhere (Ref. 26), (Ref. 27), (Ref. 28). Briefly this method 

can be applied to the analysis of any structure by means of the 

following four phases: 

(i) structure idealization by replacing the structure by 

an assemblage of individual structural elements connected to each 

other at selected nodal points. 

(ii) Representation of the elastic and geometric properties 

by evaluating the stiffness properties of the individual elements. 

The stiffness properties of the complete assemblage are then 

derived by superposition of those element stiffnesses. 

(iii) Imposing the desired support conditions, by making 

the proper changes to the corresponding rows and columns of the 

structure stiffness matrix. 

(iv) Representation of the loading characteristic of the 

structure in a matrix form; then by applying matrix algebra to 

the stiffness matrix, all the components of the nodal displace-

ments and thence stresses in the elements can be obtained. 

The above topics are discussed in the following Sections 

wi th refel.'ence to the analysis of box girder bridges as three 

dimensional structures. 

4.2 l'HE SfRUC'fURE Alm rfS SIMULA/l'ION 

Two approaches have been tried by the writer to simulate 

box girder bridges: 
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4.2.1 EQUIVALENT GrtIDWORK AND PLA~TE STRESS 'l'RIANGULAR ELEMENT 

In this approach the structure was considered as a 

three dimensional frame of one dimensional beam members connected 

together at nodal points 50 as to provide all six degrees of 

freedom, and three nodal point, triangular, plane stress finite 

elements were introduced as an extra constraint between the 

nodal points (Fig. 4.1). The beam members were assigned an axial 

stiffness to simulate the axial stiffness of the stiffeners in 

the beam direction. They also were assigned bending and torsional 

stiffnesses of the stiffeners plus that of the two dimensional 

plate elements. The triangular plate element was assigned six 

degrees of freedom, two at each nodal point in the plane of the 

element. 

fhe computer program developed by A.J. Carr (Ref. 29) 

was used for the above idealization. 

EQUIVALEif.i? OBTHOl'ROPIC PLAl'E 

In this method each wall of the box was subdivided into 

a number of discrete finite orthotropic triangular elements 

interconnected at nodal points (Fig. 4.2). Six degrees of free­

dom Viere provided at each nodal point. The orthotropic plate 

elements were assigned membrane and bending stiffness to simulate 

the axial and benuing stiffness of the plate with the stiffeners 

placed in two orthogonal directions and on one side of the plate. 

It was later decided to base the study of this investigation 
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on the second method of idealization, Sec. 4.2.2, and to use 

the program developed by B.L. Mehrotra and A.A. Mufti (Ref. 30). 

Modifications were necessary to account for the artificial 

orthotropy and additional programs were developed to provide 

automatic preparation of data and automatic analysis of results 

for the specifie type of box girder bridges considered in this 

thesis. 

COMPUTEli PROGRAN 

INTRODuc'r ION 

The three dimensional plate structure program developed 

in Reference (30) in 1968 was the base upon which the writer 

built up the pro gram for analysing single cell orthotropic box 

girder bridges. Since that time the base program has been used 

in the investigation of the behaviour of many different and 

diverse structures. The results have been compared in many 

cases to other finite element programs in relatj.on to exact or 

experi~ental values. Perhaps the most interesting case con­

sidered in checking the base pro gram was that of the analysis 

of an isotropie spine bridge. In this casp-. a comparison was 

made with another finite element pro gram together with 

experimental results, and the results presented in Ref. (31) 

show very good agree~ent. In conclusion, the testing of the 

base program in the analysis of two dimensional and three 

dimensional structures has proved the reliability of su ch a 

program especially in cases of three dimensional structures 

where the membrane stresses dominate. Further verifications 



• related to the type of problem considered herein and also 

designed to test the modification are described later. 

27 

In developing the final program, the policy of the 

writer was first, to account for the variables introduced in 

the analysis in a realistic manner and second, to reduce to a 

minimum the effort in using the program for solving a particular 

problem. Also it was kept in mind that the new programming 

logic should be inde pendent from the base program whenever 

possible, the reason for this was to facilitate locating the 

errors in the process of debugging the pro gram , and to make it 

possible to use the program for any other particular structure 

by making relatively simple alterations. 

The usefulness of the base pro gram wss limited to 

structural elements of isotropie or of natural orthotropic 

materials. However, that is not the case in steel orthotropic 

bridges. 'fherefore, assumptions have been made in the next 

section to idealize the structural behaviour of an orthotropic 

plate element of the bridges. The relation between stress and 

strain is summeà up in a matrix form called the elasticity 

matrix. According to the above mentioned assumptions, the 

elasticity matrix used in the base pro gram has been replaced by 

a new one which is described in Section 4.4.4 and which is based 

on the study presented in Section 4.4.3. Consequently, a few 

modifications were necessary in the stress and strain matrices 

of the base program since the stresses and strains, which the 

writer was concerned with, are those of the top of the plate and 

of the bottom fiber of the stiffeners. These modifications are 
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described in sections 4.3.4.1 and 4.3.4.2. 

As in any finite element pro gram , a huge amount of 

information needs to be supplied by data cards. The amount of 

time and effort in preparing Buch data, and the probabl~ human 

error and consequently the significant 10$8 in computer time, 

may certainly be considered as a disadvantage which may out­

weigh the advantages of such a powerful method of analysis. 

'fhercfore, it was found necessary to write several programs 

to reduce this number of data cards. rhese programs are de­

scribed in detail in Sections 4.3.6 and 4.3.7. 

It was also expected that if all the interpretation 

was done by hand for such a large amount of output of the 

computer analysis, then a considerable amount of time and effort 

would be needed. Also the accuracy of the results would be 

questionable, and the extrapolation of the stresses at points 

other than those obtained by the program would be somewhat 

arbitrary. 'l'herefore an interpretation program has been 

developed for the particular case of box girders considered in 

this investigation. An explanation of this program can be 

found in Section 4.3.~. 

AlI the above programs, except the interpretation pro­

gram, have been integrated with the main modified program after 

being tested separately. A check has been made to assure the 

functioning of the integrated programs through the total program • 

A plan for testing the accuracy of the final program 
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has been developed so that it can be used with confidence in 

the analysis of box girder bridges. This plan is described 

in Section 4.4. 

A detailed description of the final programs and the 

method of using them and their limitations can be found in 

Ref. (32.). 

ASSUHPTIONS 

The structural system of steel box girder bridges is 

composed of plates with stiffeners placed at one side in both 

longitudinal and transverse directions. This is commonly de­

scribed as an orthotropic plate with eccentric stiffeners. A 

typical orthotropic plate element with eccentric stiffeners is 

shown in Fig. (4.3). The equations governing the behaviour of 

an orthotropic plate in this finite element prooram are based on 

the following asswuptions: 

Ci) The orthotro~ic plate acts as a monolitic unit, i.e., 

there is no relative movement between the deck plate and the 

stifîeners. 

(ii) Within an element, the stiffeners are equally and 

closely spaced in each direction. 'rhey are orthogonal and they 

consist of uniÎorm cross section with Vleak torsional resistance. 

(iii) The deck plate is of constant thickness over each 

element and has the sarne isotropie elastic material of the 

stiffeners. 

(iv) The horizontal strain in' case of bending is zero 

at the adjusted centroid of the cross section in each direction. 



• 
30 

'rhe adjusted centroids in the x and y directions are located 

at distances ex and ey respectively, below the middle surface 

of the deck plate. 

From the above it follows that the adjusted centroids 

can be defined as follows: 

where: 

D 

e* x 

= 

= 

= 

= 

= 

= 

= 

= 

~ J E(z) • z • dA Dx -Je 

e* • A x x 
A + x t 

(1 - ~I) 

...!. J E(z) • z • dA Dy --y 

e* • y 
~ + y t 

(1 - iii) 

D + E • A x 

D + E • A y 

E 
l _ i)i • f 

(4.2) 

distance between centroid of stiffeners in the 

x airection ana middle of the deck plate. 

e* = distance between centroid of the stiffeners y 

in the y direction and midcile of the deck plate. 

f = thicknesG of the deck plate. 

= average depth of the stiffeners in x direction. 

= average aepth of the stiffeners in y direction. 
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E = modulus of elasticity • 

v = poisson's ratio. 

(v) Plane surfaces initially perpendicular to the middle 

surface of the deck plate remain plane and perpendicular to the 

middle surface during bending. 

(vi) The torsional stiffness of the stiffener may be 

estimated by neglecting any restraint due to warping. 

(vii) The angle of twist per unit length of t.he stiffener 

is the same as the midQle surface of the plate. 

4.3.3 ANALYSIS OF ORTHOTROPIC PLA'TE ELEHENI1 WI'TH ECCENTRIC 
STIFFENERS 

Based on the assumptions in section 4.3.2 the writer 

was able to make use of the method of effective stiffness 

developed by E. Giencke (Ref. 33) and which was introduced later 

in a modified form by Kltlppel (Ref. 34). The method is more 

effective in the case of orthotropic plates \Vith torsionally 

soft stiffeners. 

In this method, a unit strain is applied to the ortho­

tropic plate element along one of the six degrees of freedom. 

The resulting forces and moments corresponding to each of the 

six degrees of freedom are obtained based on the assumptions 

given in section 4.3.2. This procedure is repeated for each of 

the 6 uegrees of freedom. The behaviour of the orthotropic plate 

in each of these cases is fully explained by Figures 4.4 through 

4.9. 
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The following terms will appear in the derivation of 

the final expression for the elasticity matrix, and they are 

defined at this stage for convenience. 

D = 

B = 

1-1)2 
E 

• f 

D + E • ~ 

D + E • A 
Y 

E • f3 

moment of inertia of the stiffeners within a 

unit length in the y direction about their 

centroidal axis. 

by = moment of inertia of the stiffeners within a 

unit length in the x direction about their 

nx 

ny 

n 

centroidal axis. 

= torsional rigidity of the stiffeners in the x 

àirection per unit length. 

= 

= 

= 

= 

l 
b J Gt2 

torsional 

ciirection 

resultant 

resultant 

resultant 

ri1::,idity of the stiffeners in the y 

per unit length. 

axial force in x direction. 

axial force in y direction. 

xy shearing force. 
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mx = resultant moment about y axis. 

my = resultant moment about x axis. 

m = xy resultant twisting moment. 

rhe moments are assumed to bE: applied at their adjusted 

centroids. 

The cases discussed will now be individually studied. 

Ci) For the axial strain in the x direction Ex = l 
(Fig. 4.4) the forces and moments are: 

nx = J <:r • dAx = Dx x 

ny = J u y • dAy = V . D 

nxy = 0 

mx = J cry · z • d~ = - 'V • ey • D 

my = J~x · z • dAx = 0 

mxy = 0 

(ii) For the axial strain in the y ùirection Ey = l 
(FiG. 4.5) we similarly obtain: 

nx = V • D mx = 0 

ny = Dy my = - 1) • ex . D 

nxy = 0 mxy = 0 

(iii) For the shear strain in the x, y plane €xy = l 
V/e obtain the following forces anù moments. Note that the 

• stiffeners do not resist any shear stresses since their bending 

stiffness about vertical planes is very small. Accordingly Vie 

get the distribution of stresses shown in the fig. (4.6). 
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nx = 0 mx = 0 

ny = 0 my = 0 

D 
nxy = '2(1-1» mxy = (1- 'V)( ex + ey) - D 

(iv) For the curvature kx 
~2w . = -~ = 1 (F~g. 4.7) 

nx = ')) • ey 
. D mx = By 

ny = 0 my = v -(e . ey • D + B) x 

nxy = 0 mxy = 0 

(v) For the curvature ky 
02w = -~ = 1 (Fig. 4.8) 

nx = 

ny = 

nxy = 

(vi) 

matrix by 

For 

nx = 

ny = 

0 mx = }) (ex • e - D + B) 
Y 

)1 • ex • D my = Bx 

0 mxy = 0 

The torsional strain is defined in the elasticity 

2 0 2 w 
()x Sy 

0 2 w 
2 bx ~y = 1 (Fig. 4.9) we get 

0 mx = 0 

0 my ::: 0 
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D - (1-»)( e +e ) T.' 
X Y 't 

mxy= -i(BXy+Byx)-B(l-V) 

- 4? (l-'\,» (e +e )2 
't x Y 

The previous relations between strains and resultant 

forces can be swnmed up into the following matrices: 

[n 1 {t } 
where 

E is the matrix representing the resultant forces and moments, 

Q is the elasticity matrix and ~ is the strain matrix. These 

matrices can be divided into submatrices to separate the terms 

corresponding to in-plane anà out-of-plane deformations, and 

equation (4.3) will have the form 

a subscript "pli il1dicates plane and a subscript lib" indicates 

bending. Equation (4.4) is shown below in detail. 



~ 

N n V-n 0 "V -e .D 0 0 
x x Y -

N V-n n 0 0 'V- e en 0 

1 y 
y x 

(l-V) ~ 
n 

N 0 0 0 0 -(l-V)(e +e ) -
"KY 2 x Y 4 

--------------1 ------------ - - --

M t- ~-ey-D 0 0 B ~(e -e -D+-B) 0 
x y x y 

1 

1 
M 0 -'})-e -n 0 l'{e -e -D+-B) B 0 

y x 1 x y x 

1 D 2 
- t<l-'\))( e +e ) 

1 x y 1 
Mxyl 0 0 (l-V)(e +e )n 0 0 - (1 -,,) e B 

x y 1 
- !(B +B ) 

"KY yx 

nETAILS OF EQUATION (4-4) 

ct 

1 ~ 
€ 

Y 

~ 

- ---

})2 w 
-~ 

02 w 
-~ 

1 2 '~,2w 
b x ~y 

\).1 
0'\ 
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4.3.4 l'10DIFICA'I'IONS INTRODUCED IN 'rHE BASE PROGRAM 

The elasticity matrices used in the base pro gram were 

for an isotropie or natural orthotropic plate element. These 

matrices should be replaced by the elasticity matrix (Q) de­

rived in the preceding section. 

The base program was built up by combining a plane 

stress program and a bending stress program. In formulating 

the overall structure stiffness matrix the logic was as follows: 

(i) 'llhe 3x3 elasticity matrix Qb was developed for each 

element and then used in forming the strain, stress and stiff-

ness matrices for the element in bending. 

(ii) The 3x3 elasticity matrix Qp was developed for each 

element and then used in forming the strain, stress and stiff-

ness matrices for the element in plane stress. 

(iii) 'rhe bending and plane stress stiffness matrices 

\Vere joined together later in formulation of the overall 

structure stiffness matrix. 

The introduction of the 9x9 elasticity matrix (D) de-o _ 

rived in sec. 4.3.3 infers that a change should be made in the 

method of formulating the element stiffness matrix. Such a 

change implies modifications in the size of matrices and in the 

"DO" loops used in the prograrn. 'rhis inherently means a major 

change in the V/hole logic of programruing. 

In view of the above explanation, it was decideà to 

neglect the coupling terms in the submatrices Qpb and Qbp 
of the 9x9 elasticity matrix (Q), and to consider only the terms 
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in the direct plane and bending submatrices Qp and Qb re­

spectively. The terms in these direct plane anà bending sub-

matrices have been used to replace the corresponding terms in 

the elasticity matrices of the plane stress anà bending stress 

parts of the base program respectively., The writer found that 

although the coupling terms in the submatrices D b and Db -p - p 

have been neglected, a relatively high degree of accuracy can 

be obtaineà by using the program. This will be seen later in 

Section 4.4. 

4.3.4.1 ELAS'rrCITY HATRIX FOR IN-PLAI'lE STRESSES 

'rhe elasticity matrix used in the base program for the 

plane stress part relates the stress to the strain in the plane 

of the plate. However, the derived elasticity matrix TI re­-p 

lates the resultant in-plane forces to the in-plane strains. 

The function of the elasticity matrix in the two cases is shown 

below for convenience. 

(i) In the base pro gram 

= 

or 

1-)1 v. x y 

o 

D • E 
-p -p 

1-» li x y 

o 

o 

o (4.5) 

G 

where Ex' Ey' vx' vy ' G are the elastic constants of the ortho­

tropic material. 
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(ii) In the developed elasticity matrix 

)). D o 

Ny V· D Dy 0 fy (4.6) 

Nxy 0 0 ~l-l)~ D 2 

or Ep = ~p • ~p (4.6)a 

It follows from assumption (ii) section 4.3.2 that the 

average axial stress in the x or the y direction is equal to the 

resultant force in that direction divided by the sum of the area 

of the plate and the stiffeners in the perpendicular direction. 

It can also be concluded that the plate is carrying all the in-

plane shear forces. Hence, the relation between the stresses and 

strains can be obtained by modifying the ~p matrix 

get 

G"-' = 

or 

o Dx V·D 

11 f'l 

» ·D ~ f2 2 
= o 

0 0 

where: 

to D'and we -p 

(4.7) 

(4.7)a 

fI = average thickness of the plate and the stiffeners 

in the x direction per unit length in the y direction 

= f + f x 
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fx = average thickness of the stiffeners in the x direction 

per unit length in the y direction. 

f 2 = average thickness of the plate and the stiffeners in 

the y direction per unit length in the x direction 

= f + fy 

fy = average thickness of the stiffeners in the y direction 

per unit length in the x direction. 

However, in the calculation of the strain energy in the 

process of deriving the stiffness matrix, the resultant forces 

were obtained in the base program by sim ply multiplying the stress 

vector by a multiplier equal to the thickness of the orthotropic 

plate. Since this is not the same in artificial orthotropic 

plates, as can be seen from equations (4.6) and (4.7)a, the 

writer introduced an imaginary thickness equal to fI to be used 

as a multiplier. Accordingly, the elasticity matrix which was 

used in deriving the stiffness matrix of the element, was given 

the imaginary form: 

Dx V·D 0 
fI fl 

" )}·D ~ 0 (4.8) Qp = fl l 

0 0 
(1-1I) D 

2 fI 

In order to obtain the stresses, the method used in the 

base pro gram was sim ply to post multiply the elasticity matrix 

by the final strain vector Ex' f y ' fxy. However when this was 

(Q"p) t bt· d -- ~ adopted on the above matrix the s resses 0 a~ne ~x' ~y' 
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~xy have to be multiplied by the factors l, f l /f2 and 1'1/1' 

respectively in order to obtain the real stresses. This 

modification has been introduced in the stress matrix of the 

subroutine "FEHP" of the base program. 

4.3.4.2 ELASTIClfY raTRIX FOR BENDING STRESSES 

The elasticity matrix in the base program relates the 

moments and curvatures as follows: 

E .f3 lJ. • E • f3 02w x 
i2tl-~xYy) 0 12(1-Vx )1y) - -rxz 

My 
}) .E • 1'3 E .1'3 

?/w = x il. 
12(1-vxl'y) 12(1- Vx l1y) 0 -~ 

~ 0 0 -af 02w 
2-

~x~y 

(4.9) 

or 

There was no àifficulty in replacing the above matrix 

Qb by the new derived matrix ~b. 

As for the normal stresses and strains due to bending, 

the writer was intercsted, within the scope of this investigatioq 

in their values at the top of the plate and at the free edge of 

the stifîeners. On the other hanu, the shear stresses and 

strains were only significa.ilt, as far as the study of the over-

aIl torsional behaviour is concerned, in the plate ana not in 
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the stiffeners. Therefore, the shear stresses were calcu1ated 

in the bending part of the program at the top of the plate only. 

The strains have been assumed equal to zero at the 

adjusted centroids in the x and y directions. They are a1so 

assumed to vary 1inear1y across the depth of the orthotropic 

plate. Thus the normal strains ~ x' E. y ' cou1d be described in 

terms of the calculated ~2w and 
~2w 

curvatures ~ ~ and of the 

distance z of the point considered from the adjusted centroid. 

Ex z • 
02w (4.10) = ~ 

Ey z . 02w 
(4.11) = ayz 

Simi1ar1y the normal stresses can be found in terms of 

the obtained resu1tant internaI moments per unit length, and 

the ~e4ding stiffness of the plate and the stiffeners. 

For stresses in the plate 

E Mx 
~=~.z·By 

E ::z cry = r-:vz. z • Bx 

For stres~es in the stiffeners 

Mx 
E • z • -By = 

= 

The shear strain E" at top of the plate is xy 

(4.12) 

(4.15) 
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Exy 
è 2w + e + 1') = Ôx~y (ex y (4.16) 

Also the shear stress LXY is given by 

~ .1' 
Lxy = l. 

J 

where J is the torsional constant of the plate and the 

stiffeners and is given by 

J = i ~(BXY + Byx) + B • (l-V) + * (l-V)(ex + ey)~(4.18) 
Since the base program was concerned with the strains 

and stresses at the top and bOLtom of a plate with uniform 

thickness, modifications were then necessary to account for 

these stress and strains at the top of the plate and at the 

free edge of the stiffeners. The modifications were achieved 

by substituting the co-ordinate (z) of the point concerned in 

the above equations and making the corresponding changes at 

their appropriate positions in the subroutine "FEMB" of the 

base program. 

4.3.5 SrRUCl'U~E IDEALIZArION PROGRAM 

Perhaps the most critical, and at the same time tedious 

work for the user of a finite element program, is the data 

preparation for an idealized large structure. Initially the 

nodal points nave to be selected and numbered. The co-ordinates 

of each nodal point are defined w.r.t. the structural axis, then 

the elements are numbered, and the nodes at the boundaries of 

each element are defined. Also the material properties and 



• 
44 

thickness of each element must be specified. 

'l'he difficul ty in preparing such a large amount of 

data without error has been overcome by developing a computer 

program to first idealize the bridge and then to calculate all 

the above mentioned data. 

A unique form to idealize a single span, single cell 

box girder bridge with diaphragms has been chosen (Fig. 4.10). 

The bridge has been subdiVided by imaginary lines or surfaces 

parallel to ~he structural axes. The intersections of these 

lines locate the positions of nodal points enclosing the finite 

elements. The program allows for two sizes of subdivisions in 

each of the three directions of the structure. This will enable 

the user to increase the number of elements at locations where 

the stresses increase rapidly, and where a coarse mesh size 

would not reflect the actual behaviour. The diaphragms are 

a1ways defined bJ one of the vertical subdividing surf~ces. A 

pattern for diaphrag~ subdivision (Fig. 4.11) has been chosen, 

such as to give the best orientation of finite elements with the 

least number of nodal points. This wao important because the 

main program is limited to a maximum of 20 nodes in each sub-

division of the structure. 

Another subprogram has been developed to number the 

elements of the idealized structure. The nodal points (l, J, K) 

of each elemer1t are llumbered in an anticlockwise direction and 

the thickness of the element and its material property is given 

an indicative number. 
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The above mentioned programs can either idealize the 

total span of the bridge, or only half of it if the structure 

has symmetry of form anù loading. 

To give an example of the great bene fit of these pro­

grams, the data cards prepared without the aid of the programs 

which were needeù for example No. l (Fig. 5.1 ) numbered 306, 

and with the help of these programs the same amount of in­

formation is generated by the use of only 5 cards. 

In order to reduce the effort in preparing the data 

and to speed up the process of debugging the program, the policy 

has been to minimize the changes required in the original 

variables which were used through the base program. 

The elasticity matrices were specified in the base pro-

gram by the natural elastic constants of the orthotropic plate. 

The constants used VIere Ex' Ey' »x' I)y' G for the plane stress 

part, and Ex' Ey' 1)x' ))y' Gxy for the beüding part. As these 

constants had appear~ù in many places in the program, and be-

cause of the above mentioned reasoning, a program has been 

developed to calculate these same elastic constants in terms of 

the geometry and material of the elements which constitute the 

eccentrically stiffened plate. This was easily achieved by the 

manipulation of the equalities which were obtained simply by 

comparing each term in the original and the new elasticity 
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matrices. 

Another object of this program is to calculate the 

factors which were used in the modification of the stress and 

strain matrices of both plane and bending parts of the prograrn. 

The geometry of the stiffeners which can already be 

considered in this pro gram are shown in (Fig. 4.12 a, b & c). 

However, it should be mentioned that for case "c" the torsional 

rigidity of the stiffeners is treated as if they had a eut in 

their perimeters and not as closed cells. 

A detailed description of this program can be found in 

(Ref. .52). 

INTERPRETA1'ION PROGRAM 

It was found by practice that it takes about 40 to 50 

hours of hand work to interpret the results of one problem of 

the size used in this investigation. Even 50, the accuracy of 

the calculation is limited, and fitting and extrapolation from 

the curves are a little arbitrary. Therefore, a progl'am was 

developed to manipulate the very large output of the finite 

ele:nent program, and to take care of most of the tedious work in 

interpreting the results. :rhe program could be extended to re­

present the results graphically by means of an automatic plotter • 

The results of the deformations at all nodal points and 

the stresses at the C.G. of each element are obtained from the 
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main program punched on cards. These cards are then loaded 

with the interpretation program into the computer. 

The process of interpretation in the developed pro­

gram can be explained in the following points: 

(i) Sorting out the stresses corresponding to each of 

the top flange, bottom flange and webs. 

(ii) Averaging the membrane and bending stresses of 

each two adjacent elements in the crosswise direction. 

(iii) Calculating the stresses at the top of the plate 

and the free edge of the stiffeners due to the combined action 

of plane and bending stresses. 

(iv) At cross-sections along the span of the bridge 

- defined by the plane containing the averaged stress points -

a curve 15 fitted te each of the obtained average stress. The 

method used in fitting the curves was to find the highest 

possible polynomial yielding the least mean square error. The 

details of the method are described in (Ref. 35). The degree 

anù constants of the polynomial which fit the points are printed 

out in the program. 

(v) 'rhe values of the maximum stresses at the corners 

of the box could not be obtained directly from the finite ele­

ment program. However, they were obtained in the interpretation 

program by substituting the co-ordinates of the corner points in 

the equation of the corresponding fit polynomial. 

(vi) The calculated corner stresses are divided by the 

reference value of the stress to give the non-dimensional stress 
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reference stress used in the examples of this investigation 

will be defined later in Sec. 5.4. 
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(vii) The calculated results, namely the average 

stresses, corner stresses and the non-dimensional stress para­

meter are tabulated for each wall of the box separately. 

A detail list of the program and the method of using 

it can be foun~ in (Ref. 32). 

A macro-flow chart showing the integration of all the 

programs used in the present investigation is shown in 

Appendix (A). 

VERIFICATION OF THE PROGRk~ VALIDITY 

INTRODUCTION 

Several kinds of checking were needed to ensure that 

the program was free from programming as well as logical errors. 

The first check was to ensure the correct functioning 

of the new programs which were joined to the main program after 

introducing the modifications to the elasticity, stress and 

strain matrices. This Vias easily achieved by checking each 

pro gram indi vidually before and after being join€ld to the main 

program. 

For the individual programs, a variety of problems 
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were chosen to check each part of the program alone. Each 

problem was carefully prepared by hand and then checked against 

the computer results. 

As for the total behaviour of the program; the pro-

blem of a box girder of isotropie material (Fig. 4.13) was used 

in the checking procedure. The data for the problem.s were care­

fully prepared by hand and then loaded together with the original 

base program into the computer. The sarne problem was solved 

using the final modified program. The results of the two runs 

Viere found to be exactly identical. 

The developed program can now be said to be operational. 

The accuracy of the base program for isotropie structures 

has been previously proved, by the solution of many examples to 

be reliable. However, for orthotropic structures, the example 

of a two dimensional natural orthotropic square plate was the 

only one which was trieà by the authors of the base program. 

Therefore, there was a need to study the accuracy of the final 

program for two and three àimensional structures v/ith artificial 

orthotropic elements of the type used in bridges. There was also 

a need to check the accuracy of the pro gram in solving problems 

where benài~g or in-plane stresses dominate. This will auto­

matically check separately the modifications introduced in the 

bending and plane parts of the prograrn. HO\'lever, since the object 

of this investigation is to study the torsional behaviour of box 

girders, it was felt advisable to check the accuracy of the pro-
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gram for such a particular problem. 

The above mentioned requirements for checking the 

program have been satisfied through the study of the follow­

ing particular problems. 

OR~HOTROPIC BRIDGE DEGK PROELEM 

In many highway briàges, the deck is constructed by 

a set of rectangular orthotropic plate panels supported on the 

main girders and the cross beams. In this section one of these 

panels has been chosen to check the accuracy of the pro gram for 

bending. The panel is loaded with a wheel load of 1 kip at the 

centre. The orthotropic plate is made of structural steel 

having E = 30 x 106 psi and ~ = 0.30. 

The problem has been solved before by several exact or 

approximate methods (Ref. 36, Ref. 37). A solution by the 

finite element method was obtained using the developed pro­

gram to check its accuracy in problems where bending stresses 

dominate. In the above solutions the load is assumed to be 

uniformly distributed over a square area of side = 15 in. It 

should be mentioned that the panel is assumed in aIl the above 

solutions to be supported on unyielding supports. However, for 

the complete solution, one should superimpose on the results 

obtained from this solution the results of another solution in 

which the deck pla~e is considered acting as an upper flange of 

the girders. 
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The geometry of the orthotropic panel together with 

the nodal points and the arrangement of the finite elements 

that were adopted in the finite element program are shown in 

Fig. (4.20). A quarter of the panel was analysed, making use 

of symmetry, as this has reduced the size of the system to be 

handled thus reducing the effort in producing the data deck 

and saving valuable computer time. 

Figures (4.21), (4.22), (4.23) show the complete set 

of influence surfaces for the vertical deflection and the 

stresses ~ and CS; at the top of the deck plate. 

'fable 2 gives the values of the deflection and stresses 

at the center of the plate obtained by five different methods. 

The percentabe error shown in this table is based on taking the 

exact single series solution by Clifton (Ref. 36) as a base for 

the calculation. 

By comparing the results of the finite element analysis 

against the other methods of analysis, we can see that the re­

sults are in good agreement with the exact theory if compared 

to other theories. However, one would expect even better results 

if the case considered was for a uniform load rather tnan con­

centrated load, and if the point of comparison was not that 

point of high stress concentration. 

4.4·3 SHEAR LAG IN BOX GIJDER B~<IDGES 

The shear lag phenomeuon in th in wall cross sections is 
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known to reflect the stress diffusion in the plane of the walls 

of the section. One of the methods used to define the extent 

of shear lag in box girders due to bending action is to define 

the width of the flange which when uniformly stressed with the 

maximum stre~s would carry the same longitudinal in-plane load. 

'rhis method is known as the effective width concept. 

fhe problem of shear lag has been examined in Ref. (38) 

with particular reference to single cell box girder bridges. 

One of the most critical cases in shear lag problem which was 

considered in this reference is for a 2 ft. span aluminum box 

giràer model with the top anà bottom flanges heavily stiffened 

in the longitudinal direction. The results obtained from the 

experiment on the model together with the results predicted by 

three other theoretical methods of analysis have been compared 

with those results obtained by using the three-àimensional 

finite element program àevelopeà in the present investigation. 

The results of the different methoàs of analysis which are 

grouped in the curves shown in Appenàix (B) of the present thesis, 

prove the reliabili~y of using the developed program for the 

analysis of three-dimensional orthotropic structures especially 

in problems where the in-plane stresses dominate. 

4.4.4 TORSIONAL EEHAVIOUR OF ISOTROP~C BOX-LIKE GIRDER 

The problem of torsional bending has been thoroughly 

investigated in Chapterj A very reliable experimental study for 

the torsional behaviour of a single span, single cell box girder, 
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has been presented by G. Florin (Ref. 39). The box consists 

of walls of uniform thickness and is provided with a diaphragm 

at each end. The end diaphragms are allowad to warp but not to 

rotate. The results of hie experiment were compared with those 

results obtained by two methods of analysis namely; theory of 

Wlassow (Ref. 20) and theory of Bj6rklund (Ref. 21). The 

assumptions of these theories were given in Sec. 3.3. 

In this section a study similar to that presented by G. 

Florin will be obtained using the finite element program. The 

results are then compared with the above mentioned theoretical 

analysis and checked against the experimental results. 

In order to develop the confidence in the present in-

vestigation and to give some sense to the deviations between 

different results, it is felt advisable to mention the important 

details of the experiment. 

4.4.4.1 MO DEL EXPERL-ŒNi' 

The diillensions of the box model and the load arrangement 

are shown in Fig. (4.13). The model is made from plexiglass 

which has been testcd to show linear proportionality between 

stress and strain in the loV! range of stresses witnin which the 

test was performeà. 'rhe mat,,;rial constants were found to be 

2 E = 305.0 kg/mm and 11 = 0.38. The material has been chosen 

from a large stock after being checked for homogeneity and 

uniformity of the thickness. The edb~s of the box walls had 

been machined to guarantee that they fit together to form the 
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right dimensions when glued together • 

In order to be able to measure the stresses inside the 

box, the end diaphragm was substituted by a ring made of the 

same material anà has a very small thickness. These rings were 

glued to the ends in such a way as to provide no restraint 

against warping while the boundary conditions could be satisfied 

by the edges of the ring itself. To avoid inevitable creeping 

of the material, small loads and special loading devices were 

used, also very careful measuring techniques were adopted. 

:fhe deformations by , bz of the cross section (Fig. 4.14) 

were measured at the corners A, B, C, D and at six cross 

sections along the span. The strains in the x, y and at 450 

angle between, were measured from the inside and the outside of 

the box. From the strain measurements the longitudinal stress 

~ and the transverse stress cr or cs- were calcula ted a t x y z 
top and bottom of the plate. Using these stresses the membrane 

stresses could be evaluated, and then from the stress di-

stribution in each cross section the stresses at the corner 

points were obtained by extrapolation. 

4.4.4.2 EXPLANATIOiI OF l'HE RESUL1'S 

Figures (4.15) through (4.16) show the variation of the 

deformations and the extreme stresses at the corners along half 

the span of the box girder. These relations were obtained using 

each of the previously mentioned theoretical methods of analysis 

together with the experimental results. fhe curves were made 
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dimensionless by using b y, CS; and L as reference values 
o 

for the deformations, stresses and distances along the span 

where; Cb Yo = the deformation ~y at the midule of the beam, 

and ~ = ~b = ~zb and is equal to the transverse bending 

stresses at the corners of the middle span section. All 

reference values were taken from the experimental results. 

The study made on the above mentioned curves can be 

sUInmarized into the following points: 

Ca) Deformations 

From Fig. (4.15) and Fig. (4.16) it is seen that theory 

of Wlassow provides values which are 16% too high for the de-

formation ~ y and 10% too high for the de formation ~ while z 

the finite element analysis gives values which are 6% too high 

for ~y and 3% too high for bz . The slight flattening of the 

slope of the experimental curves near to the end support can be 

attributed to the slight fixity of the beam as a result of 

applying the end restraints to the ring and not to the beam it-

self. 

Cb) stresses 

(i) In Fig. (4.17) the longitudinal bending stress is 

shown. The deviation in the maximum stress is about 8% lower 

in the finite element analysis than the experiment. This stress 

is assumed zero in Wlassow anù in Bjtlrklund theories since the 

bending stiffness of the walls is neglected in their analysis. 
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However, this longitudinal stress amounts to 38% of the 

maximum induced secondary stresses due to torsional bending. 

It also amounts to 68% of the longitudinal membrane stress at 

the same point. 

(ii) The membrane longitudinal stress ~xm is shown in 

Fig. (4.19). Theory of '::lassow gives values \'Ihich are 16% too 

high but theory of Bjtsrklund gives less d.eviation \'lith a 

maximum value of 13% too high. However, in the finite element 

analysis the deviation waS varying in sign and reaches a 

maximum near the center which is only 5% higher than the ex­

perimental value. 

It should be mentioned that the longitudinal membrane 

stresses are expected to be slightly less in the experiment 

than the ideal theoretical simply supported beam, this is due 

to the slight fixation at the ends. This can be foreseen since 

for a completely fixed beam the longitudinal stress is 3~~ less 

than si!!1ply supported beam. However, in the experiment, it will 

ciecrease with a small fraction of the above mentioned 30% since 

the degree of fixation is small. Hence the 5% deviation of the 

finite element would be less if the above correction could be 

introduced to the experimental values. 

An interes"ting observation on the longitudinal me.:ibrane 

stresses is that they are almost zero in the quarter of the span 

near the supports and then they start to increase rapidly to a 

maximum at the point of the ap;;lied torsional mOineüt. 

(iii) The variation of the transverse bending stress 
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along half the span is shown in Fig. (4.18). The deviations 

of the stress are 14% too high in theory of BjHrklund and 

12% too high in theory of Wlassow while the finite element 

analysis gives values less than the experimental values with 

a maximum deviation of 10% of the maximum value at the center. 

fhe transverse membrane stresses were excluded from 

the study since they were small and did not exceed 1% of the 

reference stress 0:. 
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'l'he fini te element computer program describeà in the 

preceding chapter provides a powerful means for the analysis 

of box girder bridges since it accounts rationally for all the 

parameters governing the response of box girders to loadings 

tending to deform their cross sections. 

In this chapter the finite element program will be used 

to estimate for some chosen examples of single cell steel box 

girder bridges the longitudinal and transverse stresses which 

arise from torsional deformations. 

It has been concluded from Chapter 3 that the principal 

parameters governing the response of box girders to torsional 

loadings are: (1) The dimensions and elastic properties of the 

bridge elements (2) End conditions, (3) Number and location of 

the diaphragms and (4) the type cf loading. The procedure 
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presented in the rest of the present investigation is aimed 

at supplementing the methods described in Chapter 3 by pro­

viding a clear view of interactions between proportions, load­

ing, end conditions and response, and thus helping the designer 

work efficiently toward a satisfactory design. 

5.2 s·rUDY OF llHE LIMI'fS OF VARIABLES 

In this section an exposition of the variables which 

are involved in the design of box girder bridges and which 

affect its torsional behaviour will be presented. Some of these 

variables will be excludeà from the present investigation either 

because their effect on torsional behaviour has been studied 

extensively before (e.g. diaphragm action), or because those 

variables are mainly governed in the design by considerations 

which are independent of the torsional behaviour of the box 

(e.g. longitudinal stiffeners in top flange, web stiffeners •• ). 

However, these variables will be accounted for, in the examples 

studied here, in a r~alistic fashion and according to the de­

sign.specifications. 

In order to ascertain the range of variables used in 

designing existing box girder bridges, a review was maùe by the 

State Bridge Department in California - (Ref. 40) - of over 200 

si~ple span box girder bridges constructed during the past ten 

years in California. The available data indicated the following: 

(1) Spans 

A large proportion of the existing bridges are in the 
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~ 50 to 90 ft. span range. For bridges without diaphragms this 

is particularly true, and for spans above 85 ft., aIl bridges 

have at least one interior diaphragme 

• 

(2) Overall Width 

The overall widths are a direct function of the number 

of bridge lanes. 

(3) Depth-Span Ratio 

The majority of existing bridges have a depth-span ratio 

in the 0.05 to 0.065 range. 

In the following, the limitations on the variables are 

discussed in view of the above mentioned ranges and by considering 

the nature of the rest of the variables in the design and their 

significance in torsion bending problem. 

(i) Length 

Most single span box girder bridges have the length close 

to 80 ft., thus it was found advisable to inspect the torsional 

behaviour of this majority by choosingthe 80 ft. length. How-

ever, the effect of torsional bending stresses may be more 

significant for long spans, therefore a 200 ft. span length has 

been chosen to form an iùea of the problem for this case. 

(ii) Width 

Since the scope of this investigation has been limited 
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to single cell box bridges, the two widths of 12 ft. and 24 ft. 

are co!~sidered sufficient to cover the possible variation in 

the number of lanes that may practically exist on a single 

cell single span bridge. 

(iii) Depth 

In view of the range of length - depth ratio mentioned 

before and of the chosen spans in (1) it nas been decided to 

consider the depths of 3 ft. and 12 ft. for the 200 ft. span 

and 4 ft. and 6 ft. for the 80 ft. span. 

(iv) Orthotropic Plate Deck 

lhe top flange of a box girder bridge consists of a 

plate with longitudinal stiffeners supported on transverse 

cross beams which run between the webs of the box. The spacing 

of longitudinal stiffeners is usually taken as about one foot for 

open rib stiffeners and two feet for closed cell ones. However, 

sinee it has been noted before that the computer program is 

best suited for stiffeners of weak torsional resistance, open 

ribs of the type shown in Fig. (4.12.a) have beeu chosen with 

one foot spacings. 

The cross beams are also chosen with open cross section 

(Fig. 4.12.b) and spaced with the minimum allowable spacings of 

5 ft. (see Ref. 41, p. 149) to ensure uniform transverse di­

stribution of deck plate stiffness. 
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Fixing the spacings of the stiffeners as indicated above 

implies that the longitudinal stiffeners will be the sarne for 

aIl bridges and that the cross beams will be the sarne for cross 

sections having the same width. 

However, the plate on top of the stiffeners is so pro­

portioned as to resist the sum of the local stresses caused by 

concentrated wheel loads and the longitudinal stresses obtained 

by considering the deck plate acting as an upper flange of the 

girder. This latter will influence the thickness when consider­

ing the different spans and number of lanes. 

(v) Bottom Flange 

The bottom fI ange is made of unstiffened plate which is 

proportioned to resist the longitudinal stresses obtained by con­

sidering it as a bottom flange of the box girder. 

(vi) Vleb Plate 

The web plates are chosen to be transversely stiffened 

with rectangular plate stiffeners. The proportion and spacing 

are obtained according to AASHO specifications (Ref. 42, clauses 

1.7.71 and 1.7.72). 

(vii) Loading 

Although a more qualitatively significant effect of 

torsional bending stresses may be expected if the torsional 
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loading is concentrated rather than distributed, it has been 

decided that it is more realistic to consider distributed 

torsion line load since it has a larger contribution to the 

total stresses induced in eccentrically loaded design con­

ditions. Also it has been decided to apply the torsional li ne 

load at the four joints of the box to assure good representation 

of the torsional moment, and to omit consideration of the local 

bending stresses in the top flange if the loads are acting 

other than at the corners. 

(viii) End Conditions 

Two types of end conditions are considered in this in­

vestigation; (1) simply supported ends, (2) fixed ends. It is 

expected that the behaviour of a continuous box girder where 

the ends of intermediate spans are partially restrained, can be 

roughly understood by logical interpolation of the results of 

these two cases. 

(ix) Computer Output 

Because of the large amount of information which can be 

provided by the computer, it has been decided to concentrate the 

study of the results on those stresses which are most important 

in terms of the design of box girder bridges. 'rhus - in general­

onl; corner longitudillal and transverse stresses and their di­

stribution along the span are discussed and presented in this 

investigation. 
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CHOSEH CASES FOR ANALY'rrCAL S11UDY 

GENERAL REMARKS 

The cases studied included two spans, 80 ft. or 200 ft. 

Three plate diaphragms were provided in each case, two at the 

ends anà one at the Middle. They were given lt inches thick­

ness to ensure sufficient stiffness in their plane. The cross 

sectional details for each case were obtained accoràing to the 

design example mentioned in the next section, and they are 

shown in Figures (5.1) through (5.5). 

In all cases, two concentrated skew symmetric line loads 

were considered. The line load was represented by applying 500 

lbs at top and bottom corner nodes of the finite element 

idealization. The enà conditions were either simply supported 

or fixed. 

It should be noted that only half the span was analysed 

because of symmetry. The structure idealization was such that 

t.he longituciinal divisions Viere six equal divisions for half the 

girder. However, the deck plate, bottom flange anà the webs 

were each transversely divided into four divisions. 

Table (1) shows a list of the cases considered in this 

investigation • 

DESIGN EX.A1"1PLE 

The procedur6 used in the design of the cases considered 
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is illustrated by the design example given in Appendix (C) 

for a 200 feet span box bridge having two lanes and simply 

supported at the two ends. The cross section is of a single 

cell of width 24 feet and depth of 8 feet. standard AASHO 

H 20-44 loading (Ref. 42) and ASTM A-36 steel are used in this 

design. 

5.4 IN'rERPREI1ATION OF COMPUTER RESULTS 

The results obtaineà from the interpretation program 

are for the percentage ratio of the extremal torsion bending 

stresses at the corners to the reference stress (~). This 

reference stress is taken as the uniform compressive stress 

at the top fiber of the deck plate. This stress is obtained 

by treating the girder as simply supported, and acted upon by 

two symmetrical line loads equal to those used in applying the 

torque but both acting in the same direction (See Fig. 1.2). 

For each example, the variations of the longitudinal 

and transverse stresses along half the span are plotted in 

dimensionless forms for the critical sections (AD), (AB), (BA) 

and (BC), (See Appenaix C, Fig. C.3). It has been found that 

the shape of these curves is similar provided the end conditions 

are the sarne. For the cases of simply supported and fixed ends 

the curves follow the pattern given in Figures (5.6) through 

(5.9) and in Figures (5.10) through (5.13) respectively. In 

these curves, the horizontal ordinate represents a point at 

distance X of the span L, and the vertical ordinate represents 

the above mentioned percentage stress ratio which is identified 
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on the curves by (G-') wi th two subscripts; the first is "T" 

or "L" which indicates the transverse or longitudinal direction 

respectively, and the second is either "m", "p" or "s" which 

indicates whether the stress is the membrane stress or total 

stress at outside fiber of the plate or at the inside free 

edge of the stiffeners respectively. It should be noted that 

the difference between the total and membrane stress curves 

gives the contribution of the bending action to the total stress. 

The variation of the stresses across any wall of the 

cross section, for a torsional load, has been found to be 

non-linear at the majority of ~he cross sections along the span 

(and particularly for in-plane stresses). The stresses are 

maximum at the corners and have opposite signs at adjacent 

corners. 

rables (3-a, b, c, d) show for each example the maximum 

positive and negative total stresses with their locations and 

the maximum concribution of bending and in-plane stresses to 

the total stresses. ~hese values represent in fact the most 

important information that can be extracted from stress di­

stribution curves. 

CASES OF SIHPLY SUPPOR'fED EI-IDS 

'fhese cases a.re represented by examp1es (1) to (5). 

The values of the variables considered were 80' and 200' for 

length (L), 4', 6', 8' aud 12' for depth (d), and 12' and 24' 

for width (b). 
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From the curves shown in Figures (5.5) through (5.9) 

and Tables (~a, b, c, d) the following observations can be 

made. 

(a) Longitudinal stresses 

(i) The longitudinal stresses start with zero value 

at the support and increase to the first peak value at a di­

stance ranging from 0.2 to 0.23 of the span length. Then the 

stresses reverse their sign at a distance of about 0.4 L from 

each end and reach another peak with opposite sign at the mid­

span diaphragme The value of the peak longitudinal stresses 

at the midspan is always greater than the value of the first 

peak. This is important in design since midspan stress con­

troIs design for simply supported girders. 

(ii) The in-plane longitudinal stresses are always 

larger than the bending stresses and they dominate the shapes 

of the total stress distribution curves particularly at sections 

(AD), (AB) and (BA). At these sections the ratio of the maximum 

in-plane stress to the maximum bending stress ranges roughly 

from 12 to 60. However, this ratio is quite low at section 

(Be) of the top flange because it is heavily stiffened in the 

longitudi~al direction; the ratio at that section ranges ap­

proximately from 1.5 to 2.0 for short spans (80 ft.) and from 

3.4 to 6.3 for long spans (200 ft.). It should be noted here 

that these longitudinal bending stresses have been neglected 

i~ all the methods that have been suggested so far for the torsional 

analysis of box bridges. 
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(iii) The maximum longitudiilal stress induced ( GJ:' ) 
is always at section (AD) where the ratio ~ / ~ ranges 

from 60% in example (3) to 27% in example (1). Also it has 

been observed that this ratio is always larger for the examples 

with the short span (80 ft.). 

(b) Transverse Stresses 

(i) The in-plane transverse stress ( GT~ ) starts with 

zero value at the support and increases to a first peak at a 

distance ranging from 0.18 L to 0.22 L, and th en reverses its 

sign at a distance ranging from 0.35 L to 0.45 Land reaches 

another peak of opposite sign at the midspan diaphragm.I'he 

maximum ratio G~ / C5';" in a cross section is generally small 

and ranges from 1% to 14%. 

(ii) The transverse bending stress has a large effect 

on the total transverse stresses induced in the plate and the 

stiffeners. The bending stress is almost zero at the ends and 

at m~dspan, where the diaphragms w'e rigid enough in their plane 

to keep the curvature of the walls of the cross section almost 

close to zero. However, the bending stress reaches a maximum 

at a distance 0.<2 L where it adds to the first peak of the in-

plane stress GTm • The ratio of the maximum transverse bending 

stress to the :ûaximurn in-plane stress is very small except at 

section (BA) VJhere it ranges froID 2.85 in example (3) to 23.5 

in example (4). The percentage ratio of the maximum benà.ing 

stress to ~ ranges froID 40% in example (:;) to 70% in example 

(4). 
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(iii) The most critical total transverse stress ( GÇ ) 
is induced at the edge of the vertical web stiffeners at section 

(BA) • The ratio of ~ / U; ranges from 66% in example (4) to 

25% in example (3). 

It should be mentioned here that although these trans­

verse stresses are sizable, bridge specifications do not con­

sider any transverse stresses in any phase of the design. 

CASES OF FrXED E~·;DS 

·rhese cases are represented by examples (6) through (8). 

rhe values of the variables considered were 80' and 200' for 

length (L), 4', 8' and 12' for depth (d) and 12' and 24' for 

width (b). 

From the curves shown in Figures (5.10) through (5.13) 

and Tables (3-a, b, c, d) the folloVling observations can be 

made: 

(a) Longitudinal Stresses 

(i) The longitudinal stresses start with a maximum at 

the support, r'everse the sign at a distance 0.125 L froill the 

ends, increase to a peak at about 0.3 Land then reverse the 

sign again at a distance 0.075 L from the midspan uiaphragm 

where the stresses reach another peak. 

(ii) The value of the maximum longitudinal stress 

(Gî.) for a box with fixed supports is almost equal to the 

maximum longitudinal stress at midspan if the box is sirnply 

supported. 
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(iii) The maximum longitudinal stress .. ( est ) at mid­

span of simply supported girder is reduced 50% by fixing the 

supports. 

(iv) As in the case of simply supported ends the in­

plane longitudinal stresses dominate the shape of the total 

stress distribution curves. However, the ratio of the maximum 

in-plane stress to the maximum bending stress ranges in the 

fixed end examples from 25 to 38 at sections (AD), (AB) and 

(BA) and from 1.12 to 13.5 for section (Be). 

(v) For the maximum longitudinal stress (Gt) the 

percentage ratio crt / cr.: ranges from 28% in exarnples 6 and 

7 to 38% in example 8. 

(b) Transverse Stresses 

(i) The in-plane transverse stress (~ ) starts with 
T~ 

a maximum value ( GT.., (13%) at the fixed end, decreases rapidly cr;-
and changes sign at 0.075 L from the ends and then remains al­

most flat with a very small value (GT .. (4%). At a distance a;-
0.05 L from the midspan it changes sign once more to reach an-

other peak of very small magnitude ( GT... (3%). 
0;-

(ii) The shapes of the transverse bending stress curves 

and the sections at which it is maximum are still the sarne as 

described in cases of simple supports. However, the ma~nitudes 

of the stresses are very close to half their values for the same 

boxes but with simply supported ends • 

(iii) As in simply supported cases, the Most critical 

total transverse stress ( ~ ) is induced at the edge of the 
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vertica.l web stiffeners at section (BA). However, the ratio 

G7f / 0;- ranges in fixed end examples from 18% for example 

(7) to 31% for example (8). This ratio is close to half of 

that obtained for the same boxes but with simple supports • 
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6. PARAMETER s'rUDIES 

6.1 GENERAL 

In this chapter, the problem of torsion bending in the 

design of box girder bridges will be looked at in the following 

way: given a box bridge structure, subjected to an eccentrically 

distributed line loaà with unit eccentricity, i.e., eccentricity 

from the center equal to unit feet, what will be the maximum 

value of the longitudinal stress that should be added to the 

maximum longitudinal stress obtained by the conventional bending 

theory in which the structure is considered as centrically loaded? 

Also, what will be the order of magnitude of the transverse 

stresses that have been neglected in the aesign specifications? 

In practice, a quick estimate of these secondary stresses 

is necessary during the preliminary design phase. SUCh an 

estimation will guide the Qesigner to select quickly the best 

geometry of the structure and the number and locations of the 

diaphragms that ensure a safe and economic design. 

In order to achieve this phase in bridge design, the 
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complete picture of the torsional behaviour of the structure 

should be understood, and the interaction of the various in-

volved parameters should be clearly identified. 

In this chapter, and based on the torsional study per­

formed on the examples of the previous chapter, a parameter 

study is presented and graphs are plotted for the interaction 

between the variables. It should be emphasized that such a 

study is limited to single cell boxes of fixed or simply supported 

ends and with rigid diaphragms at the ends and at midspan. How-

ever, for boxes with different diaphragm locations and number, 

the designer should relate this study to the diaphragm study 

presented in Ref. (25). AIso, for continuous girders, a fair 

understanding of the problem May be achieved by proper inter­

polation of the behaviour of fixed and simply supported ends. 

A list of aIl the variables and parameters that might 

affect the torsional behaviour of a box bridge i5 shown in 

Table (1) for each example studied in Chapter 5. 'rhe variables 

considered are the length (L), the depth (d), the width (b), 

the moment of inertia of the bridge section about its neutral 

axis (1), the area enclosed by the walls of the box section (A), 

and the end conditions. The parameters shown are for the shape 

ratios 0< = a/d, Lib and L/d. 

;rhe percentage ratios of the maximum induced total 

" longitudinal stress ( ~ ) and transverse secondary stress 

( ~ ) to the reference stress ç;- have been recalculated from 
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Tables (3-a, b, c, d) for an eccentric uniform line load with 

unit eccentricity. These ratios are shown in Tables (4) and 

(5) for each example and for each of the four corner sections 

considered before. 

6.2 LONGlfUDINAL STRESS 

The study that has been made on the effect of the para­

meters on the magnitude of the maximum secondary longitudinal 
.... .... 

stresses (crt ) indicated that the percentage ratio G1 / CS; 

is almost directly proportional to the parame ter "K" which in 

fact includes the effect of the ratio of the longitudinal stiff­

ness of the box to its torsional stiffness (I/A2 ) and the effect 

of a parameter (L/b) which is an inùication of shear lag effects. 

K = l 
A2 (L/b)273 (6.1) 

This has been demonstrated by the plot given in Fig • 
.... 

(6.1) for the stress ratio csr / c;;- against K for the fixed and 

simply supported box examples considered. It can be seen that 

the relation can be very closely expressed by the equation of 

the straight line 

= 1.50 . K - 4.5 (6.2) 

In the aGove equation, and in order to simplify its 

form, the units of "Ali and "1" which define the parameter "Kil 

are chosen to be in ft and in4 respectively. 
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The negative sign in equation (6.2) inherently means 

that for practical design purpose, the secondary longitudinal 

stresses can be neglected for values of K less than 3.0. 

Although the accuracy of equation (6.2) is question­

able outside the range of parameters used in the studied 

examples, it provides, however, a rational and physical under­

standing of the torsional behaviour of box bridges. For the 

purpose of demonstrating such a behaviour, equation (6.2) has 
.... 

been used to de termine the magnitude of ~ 1 ~ for a wide 

range of the parameters I/A2 and Lib. The results are shown 

in Figures (6.2) and (6.3). By studying the curves in these 

figures the following conclusions can be made: 

(i) For constant ratio of I/A2 the ratio 4:-1 tS;; is 

almost linear, and is less than 10% for span to width ratio 

greater than 10, however, for smaller values of Lib the stress 

ratio starts to increase very rapidly. 

(ii) By decreasing the ratio of I/A2 the stress ratio 

is re~uced. This reduction, however, is more significant for 

smaller values of Lib up to 10 and negligible for Lib more 

than 15. 

6.3 TRANSVERSE STRESS 

'l'he maximum transverse torsion bending stress has been 

found to occur at section (BA) at the edge of the vertical web 

stiffeners. This stress is dominated by the transverse bend-

ing stress rather than in-plane stress. However, this bending 
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stress is largely dependent on the following factors: 

(i) The geometry and stiffness of the web stiffeners. 

This has been changed in the examples according to design re­

quirements. 

(ii) The relative transverse stiffness of the web and 

the deck plate. However, the transverse stiffnes5 of the deck 

is mainly governed by the stiffness of the cross beams. This 

stiffness has been changed in the examples with the change in 

the length of spans between the webs. 

(iii) The ratio of span to depth L/d. This ratio has 

not been fixed in any two of the examples considered. This, 

therefore, aàds more difficulty in inspecting the rest of the 

parameters involved in the problem. 

In view of the above, it has been found impossible to 

perform a parameter study for the maximum transverse bending 

stress by using the results of the solved examples. However, 

the following comments can be made by studying the results 

presented in Table (5): 

(i) The stress ratio G-;r 1 cr;:' for t.1e sarne bridge 

span is greater for cross sections of shallower shapes provided 

that the lateral wall stiffnesses of the box are the same. 

(ii) The stres.;.; ratio G;r 1 rr: i5 most ef .i.'ectively re­

duceà by decreasing the span to àepth ratio L/d. 

(iii) The stress ratio ~ 1 Ci;" in boxes with fixed 

ends is half that of simply supported boxes • 

(iv) Except for very low Lib ratios, the transverse 

stress ratio ~ 1 cr- is always greater than the longitudinal 
o 
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..... • stress ratio or / G;; 

(v) For long span bridges the percentage ratio of 
, 

G'if / c;- did not exceed 3.9%, however, for short spans i t 

increased up to Il.~~. 
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DEForu1ArloNS IN BRIDGE DESIGN 
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It was thought advisable to describe these recommend­

ations through an outline of a suggested design procedure for 

the particular type of bridge considered in this investigation. 

This procedure is summarized in the following steps: 

(i) A very rough estimate of the bridge cross section 

is determined by the designer using his practical experience. 

(ii) The parameter (k) is computed. 

(iii) The deck is designed according to AISC (Ref. 41) 

as described in the design example given in Appenaix C. 

(iv) The bridge cross section is designed by the con­

ventional means, as if it was a beam in flexure without twist. 

However, the live load plus impact are increased by a certain 

pe~centage to account for the longitudinal torsional bending 

stresses. 'rhis increase can be obtained by substituting the 

parameter (k) in the following equation derived from equation 

(6.2); 

percentage increase = (1.5 k - 4.5) • e 

where "e" is the eccentricity of the live load. 
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(v) Web stiffeners are proportioned for the shears cor­

responding to the reactions of the deck acting as a beam strip 

on undeflecting supports. 

(vi) The stresses due to dead and live load are 

calculated using the established cross section and compared with 

the allowable values. 

(vii) If the section is overstressed, the following is 

suggested to reduce the longitudinal torsional bending stresses: 

(a) If the ratio of length of the briàge to the width of 

the bottom flange is less than 10, it is recommended that this 

width be increased. 

(b) If the above ratio is more than 10, it is recommended 

the flmlge proportions be revised. 

It should be emphasized here that the decrease in 'i" 

longitudinal stresses is not markedly changed if the number or 

stiffness of the diaphragms are increased. 

(viii) It is necessary to repeat steps (ii) through (vii) 

only for substantial changes in the proportions of the cross 

section. 

(ix) ·rhe peak transverse bending stress in the web 

stiffener is estimated by performing one run of the computer 

program considering live load on one side of the bridge. If the 

stiffeners are highly overstressed, it is strongly recommended 

that the number of interior diaphragms ce increased. T\ïO dia­

phragms at the third poiüts are sufficient to reduce the stress 

to a small value. In order to avoid fatigue failure, special 

consideration should be given in the design of the weld at the 

junction between the web and top flange. 
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8. SmfHARY AND CONCLUSIONS 

8.1 SUMMARY 

A review of the theories dealing with the torsional be­

haviour of thin walled beams has been presented in Chapt ers 2 

and 3. The applicability of such theories in the design of 

box girder bridges is investigated. They have been classified 

into two groups; (1) theories dealing with beams of non-deform­

able cross sections, (2) theories dealing with beams of deform­

able cross sections. In each group, solutions have been present­

ed for particular problems of single cell box girders under 

torsional loading. Through these solutions, the effects of the 

loading conditions, shape of the box, length of girder, dia­

phragm stiffness and location on torsional bending stresses have 

been discussed and presented in many cases by curves. For sorne 

of these problems, comparisons have been made for solutions ob­

tained by different theories, and their accuracy has been dis­

cussed. 

Based on the three dimensional plate structure program 
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~ in Ref. (30), a finite element computer program is developed 

for analysing single cell orthotropic box girder bridges. The 

problem of preparing by hand the large amount of input inform­

ation for the program is reduced to a simple matter of prepar­

ing very little basic input data on cards. 

• 

Another pro gram is developed to interpret automatically 

the large amount of computer output for the specific type of box 

girders used in this investigation. 

'rhe finite element method of analysis, the development 

of the computer programs and the verification of their validity 

are presented in Chapter 4. 

In Chapter 5, the finite element program is used to 

estiwate for some chosen examples of single cell steel box girder 

briàges the longitudinal and transverse stresses \'Ihich arise 

from torsional deformations. The examples are for different 

box shapes, lengths and end conditions. fhe torsional behaviour 

of these boxes are explained and discussed in detail. 

A parameter study based on the torsional stuày performed 

on the abJve mentioned examples is given in Chapter 6. The 

percentage ratio of the maximum secondary longitudinal stresses 
, 

( G1 ) and the reference bending stress (G:') is found to be re-

l.ateci to a new parameter (k) by a simple straight line relation-

ship (equation 6.2) . 

In Chapter 7 and through a suggested design procedure, 
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recommendations are given to account for the torsional deform­

ation in bridge design. 

8.2 COHCLüSIONS 

8.2.1 COHPUTER PROGRAM 

The computer pro gram developed in this study is a 

power fuI tool for investigating any problem that may face the 

designers in the analysis of box girder bridges. It can be used 

for arbitrary loading and boundary conditions. It can also treat 

the cases of varying dimensional and natural properties through­

out the structure. It has, however, the disadvantages that it 

involves the solution of a very large system of equations for 

structures of the complexity of multicell box girder bridges. 

·rhe size of this problem is large even for present day computers, 

in terms of storage and computer time required for the solution. 

In addition, the accuracy of the program is de pende nt on the 

fineness of the subaivisions used in dividing the structure into 

finite elements. 

It is expected, however, by the continuous development 

of fast digital computers of large storage capacity, that it may 

be more practical to use the program as a direct method for the 

elastic analysis of a specifie bridge under a given loading or 

temperature changes. In this case the program may eventually 

be used to replace the present semi-empirical methods used in 

analysing complex bridge systems. It may also be used as an 

aid in studying the effect of different parameters on certain 
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internal forces or load distribution properties. 'rhis will 

provide a means for developing improved simplified analysis 

procedures similar to those presently being used for design. 

An example of the latter application is demonstrated in the 

parameter study presented in Section 6.2 which leads to the 

simplified formula for evaluating the secondary longitudinal 

stresses developed in a single cell box due to eccentric line 

loads. 

8.2.2 BEHAVIOUR OF SLrGLE CELL BOX GIRDER 
BRIDGES UNDER UNIFORH rORSIONAL LOAD 

Analyses of single cell box bridges typical of those 

used in highway bridges show that torsional deformations give 

rise to substantial longitudinal and transverse stresses which 

have been completely ignored in the conven~ional design. These 

stresses become more important for bridges with a high ratio of 

live load to Qead load, with more eccentric loads, with wide and 

short s~ructures and with briages of smaller I/A2 ratio. 

The torsional benùing stresses can be effectively re-

àuced by introducing intermediate diaphragms. rhe reduction, 

especially in the longitudinal stresses, is insensitive to 

practical variations of diaphragm stiffness. 

For the specifie types of problem studied in the present 

investigation the fOllowing is a summary of the Most important 

remarks ana conclusions that can be made on the torsional bend-

ing stresses: 
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(a) Longitudinal Stresses 

(i)rhe longitudinal stresses are maximum at midspan 

in the case of simply supported ends, and at the ends in the 

case of fixed ends. They are almost equal in magnitude in 

both cases and they occur at the corner sections of the bottom 

flange. 

(ii) The use of theories that neglect the longitudinal 

bending stiffness of the wall elements of the girder (e.g. 

Wlassow's theory) may lead to inaccurate resultL> in short span 

bridges. In some of the examples considered, the bending stress 

was about 355~ of the total maximum longitudinal stress. This 

was at the corner sections of the top flange since it is heavi-

ly stiffened in the longitudinal direction. 
, 

(iii) The maximum longitudinal stress ( ~ ) increases 

with the parameter (k). 

(iv) It is expected that smaller values of longitudinal 

stresses would be produced if the line load was placed between 

webs rather than over the webs. In the former case l:.he load 

has a chance to distribute longitudinally before it is picked 

up by the web; while in the latter case, the effect of shear lag 

tends to produce a concentration of stress at the web. It is 

necessary to differentiate between this kind of stress con­

centration and the local stress concentration due to point load-

ing. 

(b) fransverse Stresses 

(i) The maximum transverse stresses (G!) occur at the 

free ~dge of the vertical web stiffeners at their cnnnection 
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with the top flange • 

(ii) The stress ~ is dominated by the bending stress 

part, and is reduced approximately 50% by changing the end 

conditions from simple supports to fixed supports. 

(iii) The transverse stress is a function of the 
~ 

geometry of the vertical stiffeners and increases with shallower 

box shapes and larger span to depth ratios. 

(iv) The magnitude of GT May reach a sizable value, 

and undergo full reversal as lanes on alternate sides of the 

bridge are loaded. The high potential number of cycles of such 

load reversal suggests a special consideration in the design of 

the weld at the junction of web stiffener to top flange where 

fatigue failure May occur. 

8.3 RECO~{ENDArIONS FOR FURrHER STUDY 

(a) Finite Element Program 

There are several possible modifications which could be 

incorporated into the program. Some of these modifications are 

for better accuracy, others which appear desirable because they 

would improve the usefulness or flexibility of the proGram or 

reduce the computing time. 'rhese modifications are summarized 

below: 

(i) The coupling action between in-plane and bending de­

formations can be included in the analysis by the replacement 
~~ 

of the in-plane elasticity matrix (D ) and the bending elasticity -p 

matrix (Qb) by the to~al elasticity matrix (Q) derived in 

Chapter 4. 
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(ii) Modification of the program can be made to in­

clude structural elements in which the direction of ortho-

tropy does not coincide with the structural axes. 

86 

(iii) Modification of the structural idealization pro­

gram can be made to include bridges of different geometrical 

shapes (trapezoidal, multicell, ••••• ). 

(iv) It is believed that the capacity of the program 

cannot be materially improved at the moment unless a link system 

is used in the program. This may need basic modifications in 

the procedure of formulating the program. 

Cv) Further improvement can easily be added to the 

interpretation program to represent the results graphically by 

means of an automatic plot ter. 

Cb) Torsional study 

'rhe computer programs used in this investigation can be 

used to perform parame ter studies for reinforced concrete bridges 

or for steel bridges of reinforced concrete deck subjected to 

torsional loading. 

Further examples of the type used in this investigation 

but with different ranges of parameters could be solved to con-
, 

firm the parameter study made for the longitudinal stresses (~), 

and to complete the data necessary to perform another parameter 
, 

study for the transverse stresses ( ~ ) • 

It is possible to modify the program to perform a torsional 

study of multicell box girders using the present capacity of 
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computers. This can be achieved in two steps; (1) A coarse 

mesh of finite element idealization for the whole structure 

is used to obtain an approximate solution for the nodal dis­

placements and stresses in the elements, (2) at locations 

where more accurate results are re~~ired, a solution for this 

particular part of the structure is obtained by refining its 

mesh, applying the external nodal forces within this part and 

imposing the nodal displacements at its boundary which were 

obtained from the first solution. 

Further study is suggested to investigate the effect 

of torsional bending stresses on buckling consideration in 

the design of box girder elements, especially the webs. 
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TABLE (1) 
Variables and Pararneters lncluded in the Studied Exemples 

Variables 

b L 
Width Depth Moment o'f Area L o(Ci b d 

(b) (d) Inertia (1) (A) 

'fcet 'feet in4 ft2 - - -

24 8 839,300 192 3 8.3 25 

24 12 1,969,200 288 2 8.3 16.6 

24 8 705,200 192 3 3.3 10.0 

12 4 82,750 48 3 6.6 20-

12 6 199,550 72 2 6.6 13.3 

24 8 839,300 192 3 8.3 25. 

24 12 1,969,200 288 2 8.3 16.6 

12 4 82,750 48 3 6.6 20.0 

• 
Parameters 

l 1 1 
AZ K = AZ • (L!b)2/3 

- -

22.8 5.55 

23.8 5.78 

19.2 8.62 

35.9 10.4 

38.4 Il.0 
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(Oct. 1968) 
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TABLE 2 

COMPARISON BET\>.'EEN FINITE ELEMENT SCLUTION AIlD THE THEORETICAL 

SOLUTIONS FOR THE DEFLEC'l'lOH AND STRESSES AT THE CENTER OF AN 

ORTHOTHOPIC PLATE LOA'JED WITH 1 KIP AT THE CENTER 

Method of Solution Deflection Stresses at Top Stresses at Bottom 
of Deck Plate of Stiffeners 

in p.o.i p.s.i. 

GX' av 0;- c;y-
Single Series 0.004505 -230 -163 +1092 +1059 

Double Series 0.004503 -227 -163 +1073 +1055 

Single Series 0.004257 
1 

-280 -220 + 999 + 937 

% Error -5.5 +27.1 +35.1 - 9.1 -11.6 

Descrete Element 0.004234 -218 -121 +1030 + 782 
Analysis 

% Error -5.9 -3.96 25.2 3.96 25.2 

Finite Element 0.004880 -212 -171 + 990 +1160 
Analysis 

%Error +8.3 5.5 4.9 -7.75 +9.95 
- - - - - - - ----

! 
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TABLE 3.a 

STRESSES IN THE STUDIED EXAMPLES AT SECTION AD 

!.(Max. -ive Stress) (.(Max. +ive Stress) 1. Max. 
IG; les;;- Bencl:'ng 

S"tress 
Value Location Value Location les;: il. X/L = X x/L-

27 0.5 20 0.23 2 

30 0.5 27 0.22 2 

44 0.5 60 0.23 1 

38 0.5 31 0.20 1 

37 0.5 31 0.20 1 

26 0.0 11 0.30 1 

28 0.0 12 0.29 1 

38 0.0 18 0.30 1 

4 0.21 5 0.21 4 

5 0.50 3 0.21 4 

9 0.5 7 0.18 3 

7 0.5 8 0.22 7 

8 0.5 6 0.22 5 

Il 0.0 3 0.25 2 

8 0.0 3 0.25 2 

13 0.0 5 0.25 3 

'/.Max. 
Plain 
Stress 
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27 
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ft 
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36 
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1 
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1 

1 

1.25 
1 3.0 
! 
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\0 
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TABLE 3.b 

STRESSES IN THE STUDIED EXAHPLES AT SECTION AB 

f,(Max. -ive Stress) 1. (Max. +ive Stress) i. Max. 
lU;' 1<5;- Bending 

Stress Value Location Value Location lu,: 1. X/L - 1- X/L= 

27 0.5 20 0.23 2 

30 0.5 27 0.22 2 

44 0.5 60 0.23 1 

38 0.5 31 0.20 1 

37 0.5 31 0.20 1 

26 0.0 II 0.30 1 

28 0.0 12 0.29 1 

38 0.0 18 0.30 1 

5 0.5 3 0.20 4 

3 ' 0.5 3 0.22 1 
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7 0.5 4 0.20 7 
7 0.5 8 0.20 5 
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9 0.0 4 0.25 1 

11 0.0 3 0.25 2 
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TABLE 3.c 

STRESSES IN THE STUDIED EXAMPLES AT S~TION BA 

/'(Max. -ive Stresa) /.(Max. +ive Stress) /. Max. 
/GO /ca;;- Bending 

Stress Value Location Value Location lu,; 1 x/L= 1. X/L: 

17 0.20 27 0.50 2 

18 0.20 27 0.50 2 

45 0.22 36 0.50 l 

24 0.22 31 0.50 l 

23 0.20 35 0.50 l 

11 0.25 28 0.0 l 

11 0.25 28 0.0 1 

13 0.25 33 0.0 1 

6 0.25 47 0.22 49 

6 0.25 38 0.22 41 

16 0.25 25 0.22 40 

10 0.25 66 0.22 70 

8 0.25 32 0.22 40 

4 0.25 21 0.25 23 

4 0.25 18 0.25 20 

6 0.25 31 0.25 35 

-- --

1. Max. 
Plain 
Stress 
/eç-

25 

25 

44 
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27 

27 
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7 
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STRESSES IN THE STUDIED EXAMPLES AT SECTION Be 

!(Max. -ive Stress) /'(Max. +ive Stress) 
Exemple End les;;- Iv;;-

No. Stress Condition Value Location Value Location 
1- X/L = '/. ~/L", 

1 
II) 18 0.20 25 0.5 
cv en 

2 en 
~t 18 0.20 27 0.5 en 

cv p.o 
3 H a p. 41 0.20 27 0.5 ~ "r-! p.. 

CI) CI) ~ 

4 U) 25 0.20 30 0.5 ri 
al 

5 s::: 24 0.20 33 0.5 "ri 
'0 ::s 
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li) >< p.. 
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8 6 0.25 37 0.0 
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2 en 
cv~ 

2 0.20 6 0.2 
cv 

3 
II) ri 0 3 0.20 3 0.5 en p..p.. 
cv a P-

4 H "r-! ::s 1 0.20 2 0.5 ~ u)u) 
U) 

5 cv 1 0.20 2 0.5 en 
H 

6 cv ~ 1 0.20 7 0.0 > '0 H en cv 0 

7 § >< P- l 0.20 5 0.0 "r-! P-
H """ ::s E-l CI) 

1 0.20 4 0.0 8 

'/. Max. 1. Max. 
Bending Plain 
Stress Stress 
I~ 1 Ur: 

7 24 

4 25 

17 37 

17 25 

14 28 

8 24 

2 27 
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6 2 

1 3 
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1 2 

1 7 

3 5 

2 4 
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Max. Bending Stress 
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6.25 

2.20 

1.48 

2.00 

3.00 

13.50 

1.12 

1.00 

0.33 

3.00 

2.00 

2.00 

7.00 

1.66 

2.00 

\0 
\).J 



. 
CIl 0 
s:: z 
0 

°M ID 'O+> .-1 
s:: °M p. r:a'O a s:: 

0 :< 
t..> rx:l 

1 
CIl 2 

~t 
p.o 3 s p... 

°M P. 
CIl ~ 4 CIl 

5 

CIl 6 'Ot 
ID 0 7 :< p. 
°M P. 

""" ~ 8 CIl 
_. ______ L 

TABLE 4 

VALUES OF THE PERCENTAGE RATIO G-J cr;; OBTAIlnm FR<l-1 

THE S'l'UDIED EXAMPLES FOR UNIT ECCENTRIC LIllE LOAD 

... 
Max. Longitudinal Sec. Str. GL for Unit Eccentricity 

X 100 
GO 

Sections 

AD AB BA :oc 

2.25 2.25 2.25 2.10 

2.50 2.50 2.25 2.25 

5.00 5.00 3.75 3.41 

6.35 6.35 5·20 5.00 

6.15 6.15 5.80 5.50 
-, 

2.16 2.16 2.34 - 2.10 

2.35 2.35 2.34 2.34 

6.30 6.30 5.50 6.15 

1 

1 

1 
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TABLE 5 

VALUES OF THE PERCEHTAGE RATIO ~.; G;" OBTAINED FROH 

THE STUDIED EXAMFLES FOR UNIT ECCENTRIC LINE LOAD 

..... 
Max. Transverse Sec. Str. e>T for Unit Eccentricity 

0=- )( 100 
0 

Sections 

AD AB BA BC 

0.415 0.42 3.90 0.16 

0.415 0.25 3.15 0.50 

0.750 1.32 2.10 0.25 

1.330 1.16 Il.00 0.33 

1.330 1.16 5.30 0.33 

0.920 0.92 1.75 0.58 

0.660 0.75 1.50 0.42 

2.150 1.83 5.20 0.66 
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APPENDIX "A" 131 
Macro-flow chart showing the integration of the 

programs used to analyse box girder bridges. 

Orthotropic properties 
pro gram 

* Read data 
* Calculation of ortho­

tropic properties for 
the plane and bending 
stress parts of the 
program. 

* Calculation of geo-
metric factors used in 
the modification of 
stress and strain 
matrices. 

* Print out the results. 
____ L ___ , 

r-
Idealization Ero~ram 

1 Call CORD 1 1 

1 1_ 
~ 

Print out of nodal 1 
numbers and co-

1 ordinates. 
~ 1 

1 Call NODAL 1 1 
1 

• 1 

Print out of element 
numbers. (l, J, K), 1 

and matérial 1 property number. 
1- - - - - -- - -1 

Print out of dis­
placements and 
stresses. 

Punched cards for 
displacement and 
stresses. 

Subroutine CORD 

* Read data 
* Subdivision of the 

structure. 

* Calculation of nodal 
point numbers and 
co-ordinates. 

t 
Subroutine NODAL 

* Read data 
* Numbering the elements 

* Calculation of the ele-
ment nodal numbers 
(l, J, K) and material 
property number. 

t 

Feed in the interpretation 
pro gram 

(see next page) 



Results from main program 

Interpretation program 

* Read data (punched cards + 5 cards) 
* Sort and average the stresses for the 

web~, top flange and bottom flange. 
* Calculation of bending stresses at 

edge of stiffeners. 
* Calculation of combined in-plane and 

bending stresses at the top of the 
plate and edge of stiffeners. 

* Fitting curves for averaged stress 
points in the webs, top flange and 
bot tom flange. 

* Calculation of corner stresses by 
extrapolation. 

* Calculation of corner stress ratio 
(% u-/v:). 

* Print out of results. 

Dravring of stress distribution curves. 
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Appendix B VI~IOOOlbS 

Comparison between 3-D finite element 
methtd and othe~ theories in the 
solution of shear lag problem. 
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Span = 200 ft 

End conditions: Simply supported 

Material A-36 Steel 

APj'EUDIX "c" 

DESIGN EXA!-1PLE OF BOX 

GIRDER BRIDGE 

Width = 24 ft 

E = 29,000 ksi 

Live 1000 Standard ASSHO H 20-44 

DESIGN PROCEDURE 

1) = 0.30 

Depth = 8 ft 

f = 36 ksi y 

• 

CA) DESIGN OF THE DECK: The procedure and notations given by AISC manual (Ref. 41) are applwd here. 

(A.l) CHOICE OF DECK PLATE THICKNESS 

Rib spacing = 12 in Design pressure for 12,000 lbs wheel = P = 59·psi 

The deck plat e thickness t p ). 0.007 x 12 x 3J{59 = 0.328 in 

Choose t = 3/8 in 
p 

Spacing of cross beams is chosen = 5 ft. 

...., 
VI 
~ 

----------------------~--................ ~~ ........ . 
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(A.2) SECTION PROPERTIES .. 

23 =- -f221-

(A.2.1) LONGITUDINAL RIBS 

" Wheel width = 2 ~ 22 

2~ 22 = 1.83 = a 12 

Using chart (2) case 1 1· S=5: 0 

• a 
= ( a

O 
) 

• EfÎective rib spacing = ao • a = 17.6" 
Sec. (x-x) 

EÎÎective rib span = SI = 0.7 S = 42.0" 

a· 
17.6 Intering chart (1) with S 0 = 42 = 0.42 the eÎÎective width oÎ the deck acting 

1 

with the rib 0.8 '" 17.6 = 14.0" 

Consider a rib oÎ di:mensions 8.5" x. 0.5 (Fig. C-l) 

y' = 1.982" Y = 2.17" 

Moment oÎ inertia I~ = 72.0 in4 

Section modu1us at top of plate = 5RT = 33.4 in3 

Section modulus at bottom of rib = S~B = 10.72 in3 

o .. 31~"l 
1 

Br" 
1 

\1 

Fig. (C-l) 

fi 

1-' 
Vol 
VI 
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The values of IR ar.d SR are recalculated for the computation of the effect of floor 

flexibi1ity by considering a = 1.1 a = 13.2". 

The corresponding values are IR = 70.7 in
4 

SRT = 31.5 in3 
SRB = 10.7 in3 

(A.2.2) FLOOR BEAMS 
... 

Assuming the effective spacing S = S = 60" and entering Ch art (1) with 

S· 
T= 

60 0.193 we get the effective width of plate acting with the f100r beam = 24" 12 

sa = 60" 

Consider the cross section shown in (Fig. C.2) 

y' = 3.94" 

Moment of inertia 4 IF = 1620 in 

Section modulus at top of plate 1FT = 394 in3 

Section oodu1us at bottom of beam = I FB = 97 in3 

r 

6,1 
"F 

60" 

~ 6"-11 

Fig. (C-2) 

1-' 
\.N 
(j\ 
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(A.3) RELATIVE HIGIDITY COEFFICIENTS 

't = 
4 1 .IR 

3 4 a.S .v ·1 

t 3 
\ -...E.._~ 
~ = 10.92 IR 

F 

_ (24X12)4 70.7 

- 12(60)3",..4. 1620 

S 4 
2 

a 3 ,.4 
(0.375)3 
10.92 .. 72 

= 1.19 

(0.81X60)4 

(12)3. 1f 4 
= 0.0024 

Since ~\ is less than 0.006 no correction of the effect of deck plate rigiuity is needed in 

the calculation of bending moment. 

(A.4) ELASTIC STABILITY OF RIES 

t R 
h = 

0.5 _ 
8.5 -

l 
17 K = 1.0 (See the mnnua1, Appendix II, II.1.3.1.1) 

fi = Ideal buckling stress = (26,200)( (1.0 )(117)2 = 90.7 ksi 

Since f. > f 
1 Y the critical buckling stress can be found by entering Ourve l, Fig. II.2 

CD 

...... 
\.N 
-....J 
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(Manual) with ~yI~i = 36/90.7 = 0.4 

.. f If = 0.96 c y 
~ = 0.96 l( 36 
cr 

The al10wable comp. stress 34.6/1.5 = ~ ksi 

34.6 ksi with ~actor of sa~ety 1.5 

The actual max. comp. stress = 17.03 ksi (see Table C.l) O·K 

(A.5) DESIGN DY CHARTS FOR AASHO LOADS 

Following the same procedure described in Section 11.2.3 of the manual, the results are 

Îound as follows: 

(A.5.1) BENDING MOMENT IN A SYSTa.1 WITH RIGID FLOOR BEAMS 

(A.5.1.1) LIVE LOAD MOMENT IN RIBS 

At midspan Loading "a" ~C = 7.10 K.ft 

Loading "~" M
RC 

= 1.!.!Q K. ft 

At support Loading "d" MRS = -5.55 K.ft 

e 

..... ,/II 
(X> 
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(A.5.1.2) LIVE LOAn NOHENT IN FroOR BEAMS 

The max. bending are found to be: 

LoadinB "A" H = 308 K.ft 

Loading "B" M = 324 K.ft 

(A.5.2) DEAn LOAn HOMENTS 

Ribs 

Weight of: 211 Asphalt = 20.0 MOMENTS IN RIB 

3/8" Deck plate = 15.3 MIDSPAN HOMENT = 0.0471"'25 
24 

t")(~11 Ribs = Il.8 SUPPORT ~lOHENT = 0.0471~25 
12 

~ = 47.1 PIf 

Floor Beams 

Weight of: Asphalt, plate and ribs = 235.5 PIf 

Floor beam = 32.5 Pl:f 

TCY:rAL = 268.0 PIf 
-2 

Span Moment 
0.268)(24 19.20 K.:ft = 8 = 

ft 

= 0.05 K. ft 

= 0.10 K.ft 

~ 
\.N 
'-0 
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(A.5.3) EFFECT OF FLOOR BRAM FLEXIBILITY 

(A.5.3.1) ADDITIONAL HENDING HOHENT IH RIBS 

(a) Positive moment increment: 

Loading "a" A ~c = 1.92 K.ft 

lia Il A M
RC = 1.00 K.ft I~ Total moment increment is for loading (a+h) 

1 AMRC = 4.62 K.ft 

\1 
"h" CI. MRC = 2.70 K.ft 

(b) Negative moment reduction: 

The reduction is computed for loading "d" and using Chart 24 

6 M
RS 

= 2.15 K.ft 

(A. 5.3.2) BENDING MOMENT RELI EF IN FLOOR BEAMS 

, 
Using Charts 30 and 32 for y = 1.19 s = 5.0 Loading "B" 7 the reduction is found 

to be A ~ 210 K.ft 

J-I 
-'='" o 
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(A.6) STRESSES IN THE nECK WHEN CONSlnEREn AS THE FLMlGE OF THE MAIN GIRDER 

The max. stresses in this case will be obtained in Section (B.4). 

(B) DESIGU OF MAIN BOX GIRDER 

The thickness of the web plate t 

(Fig. A.3) 

D t} 'fb 
= 23000 (ASSHO, Clause 1.7.71) , with depth o:f web 

D = 96 in and assuming compressive bending stress -= 16.0 ksi, the web thickness 

t tin. 

The bottom flange thickness is assumed i lt
_ 

(B.l) LOADIHG 

(a) LIVE LOAD: The standard ASSHO loading HS.20-44 

e 

..... 
+­..... 
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(B.2) 

(b) DEAD LOAD 

2" asphalt 480 plf 

3/8" deck plate 366 " 
longitudinal ribs 33"3 " 
floor beams 149 " 
~" web plates 325 " 
-k" bottom flange 490 " 
dinphragms and 
web stiffeners J" = 107 " 

Total D.L = 2250 plf 

fi 

200 -, _1 

~-- - ~ 

\ 

24 0 
__________________________ __._ 1 

Sec. B.e.. 

J. . ; C J -'/8 ~ RibS ~ T .~ ........ ~ ...... ;::;;::..;~ ..... F"i~...._.~~~,.....;~~~. 
\ 

8 UI 

Ik 

Floot- beam 
(cz) 5' 0 r -· ~:r' . - stifF. li; il 5 @ c.a 

\1 

42.55 

t 
5395 

11AXIMUM LENDI NG I·~OMEHTS 

. SecA-B~~ 
U I~· 1 Se<-A-D A D 

l 
The max. B.f.l. is at midspan Fig. (C.3) 

(a) D.M. due LO D.L.: ~·L = 
2.25 X {200} 2 

8 = 11250 K.ft 

(b) H.M. due to L.L.: 
50 50 

Impact factor = L + 125 = 200 + 125 + 1-00 = 1.155 

From ASSHO Page 299, For L = 200 and using impact factor = 1.155 the bending moment 

due to L.L ~.L = 4100 )< 2 x. 1.155 = 9500 K.ft 
....., 

-R; 
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DESIGN BENDING M(l·1EUT M = MD•L + ~.L = 11250 + 9500 = 20750 K.ft 

(B.3) MAXIMUM· SHEARING FORCE: 

The max. S.F. is at the supports 

(a) Hax. S. ]t'. due ta D.L. sn.L 2.25~200 = 225 KIP 
2 -

(b) Max. S.P. due ta L.L. 
, 

(See ASSHO page 299), for span = 200 and 

impact factor = 1.155 SL.L = 90 J( 2 )( 1.155 = 205 KIP 

Design shearing force for each web = 22S:205 = 215 KIP 

(B.4) SECTION PROfi~RTIES 

Area of the section = 446 in2 

Distance from top f1ange ta C.G. of section 

Distance from bottom f1ange ta C.G. of section 

Homcnt of inertia of the section 

= 42.55 in ) 

= 53.95 in ~ 
= 839300 in4 

(See Fig. C.3) 

e 

1-' 

~ 



• 
(B.5 ) STRESSES DUE TO MAIN SYSTEM 

Stress at top of deck plate 20750xl2x42.55 
- 12.70 KSI = 839300 = 

Stress at bottom of deck plate 20750d2x34.125 
- .!.2.!.QQ KSI = 839300 = 

Stress at bottom flange = 
207501(12)(53.95 

+ 839300 = + .!&.!1.Q. KSI 

Allowable stress = 20.0 KSI 

Cc) SUMI-1ARY OF t·10MENTS AllD STRESSES IN TOP FLANGE 

The results obtained in Section A and B are listed in the following Table. It can be 

seen that the stress did not exceed f all = 20.0 KSI. 

ft 

~ 
+­
+-
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TABLE C.l 

Bending 
Location Looo.ing Moment K. ft 

(1) L.L. Rigid System 7.10 

(2) L.L. Effect of Floor Flexibility 4.62 

(3) D.L. Superimposed 0.05 

CT) (4) Total (2) + (3) 4.67 .c 
Ti 
0:: 

(5) Total System (A) 

(6) Tot al System (B) 

(7) Total Stress 

Ul (1) D.L. 19.20 
& (2) L.L. Rigid F100r 324.00 
&l 
~ (3) L.L. Effect of Floor Flexibility -210·00 
a 
a 
ri 
~ TOTAL 133.20 

Sectio~ ~Odulus Stress 
~n 

Top Bottom Top 

33.4 10.72 - 2.55 

31.5 10.70 - 1.78 

- 4.33 

-12.70 

-17.03 

394.0 97.00 

- 4.15 

Ct 

KSI 

Bottom 

7.90 

5.20 

13.10 

-10.00 

16.50 
1 

o.k. 

o.k. 

~ 
.,J:­
~ 
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CD) DESIGN OF WEB PLATE 

The avarage shear stress ~ = v 
215000 
96XO.5 = 4450 psi 

The distance between transverse stif~. d = 11,000 t 
V ~~ = 

v 

11000 ~ 0.5 

V4450 
= 83.9" 

The dimensions of' the transverse stif:feners are chosen 5.0" X 0.5" and spaced every 7. o. 

(These dimensions satisf'y the requirements o~ AASHO (Clause 1.7.7~1)). 

t-J 
.J:­
CT\ 

~~SR~ga~m.œaa. ...... 



• 

• 

lOden, J.T. 

2 Ebner, H. 

3 Ebner, H. & 
KHller, H. 

4 Umansky, A.A. 

5 Karman, Th.V. & 
Christensen, N.B. 

6 Karman, Th.V. & 
Chien, W.Z. 

7 Adadurov, R.A. 

8 Benscotter, S.U. 

9 Umansky, A.A. 

10 Benscotter, S.U. 

11 Dshanelidze, G.J. 
& Panovko, J.G. 

12 Heilig, R. 

147 

REFEHENCES 

"Mechanics of Elastic structures", 1967 
McGraw Hill Book Co. 

"Torsional stress in Box Beams with 
Closed Sections Partially Restrained 
against Warping" 
NACA TM744, 1934. 

"Calculation of Load Distribution in 
Stiffened Cylindrical Shells" 
NACA TM866, 1938. 

"Bending and Torsion of 'rhin-Walled 
Aircraft Structures" 
Oborongiz, Moscow, 1939. 

"Methods of Analysis for Torsion with 
Variable Twist" 
Journal of Aeronautical Science, 1944, 
P. 110. 

"Torsion with Variable Twist" 
Journal of Aeronautica1 Science, 1946, 
P. 503. 

"Strain and Deformations in a Cy1indrica1 
Shell Stiffened by Transverse Membranes" 
Doklady Akad. Nauk SSSR, Vol. 62, No. 2, 
P. 183. 

liA Theory of Torsion Bending in Mu1ticell 
Beams" 
Journal of App1ied Mechanics, 1954, P. 25. 

"Chapter IV in the Handbook (Mashines­
toyenye)" 
Vol. l, Moscow, 1948, P. 347. 

"Secondary Stresses in Thin-Walled Beams 
with Closed Cross-Sections" 
NACA Td 2529, 1951. 

"statics of Elastic Thin-Walle d Members" 
G'fTL Moscow, 1948. 

"Bei trag zur ·rheorie der Kastentr!lger 
Be1iebiger Querschnittsform" 
Stah1bau, 1962, No. 4, P. 128. 



• 13 Dabrowski, R. 

14 Reissner, E. 

15 Ebner, H. 

16 Argyris, J.H. 

17 Resenger, F. 

18 Richmund, B. 

19 Dalton, D.C. & 
Richmond, B. 

20 Wlassow, W.S. 

21 Bjtlrklund, A. 

22 Goldberg, J.E. 
& Leve, M.L. 

23 De Fries-Skene & 
Scordelis, A.C. 

148 

"Torsion Bending of Thin-Walled Members 
with Non-Deformable Closed Cross Section" 
Report of the School of Engineering, 
Columbia University, Sept. 1963. 

"Neuere probleme aus der Flugzeugstatik" 
Zeitschrift f. Flugtechnik u. Motorluft­
fahrt, 1962, P. 384; 1927, P. 153. 

"Die Beanspruchung DUnnwandiger Kasten­
tr8ger auf Drillung bei behinderter 
Querschnittsw61bung z. Flugtech. 
Motorluft, 1933, 24 (24), 684-692. 

"Energy Theorems and Structural Analysis 
Part l and II'' 
Butterworths, London, 1960. 

"Der Dtlnnwandige Kastentr8ger" 
Stahlbau-Verlag, K61n, 1959. 

"Twisting of Thin-Walled Box Girders" 
Proc. Instn. Civ. Engrs., 1966, 33. 
(April) 659-675. 

"Twisting of 'rhin-Walled Box Girders of 
Trapezoidal Cross Section" 
Proc. Instn. Civ. Engrs. January 1968. 

"Raschet l'onkostennikh Prismaticheskikh 
Obolochek, Prikladga Matamatika i 
Mekhanika, 8, 5, (1946) Amerikanische 
Ubersetzung. 
Computation of Thin-Walle d Prismatic 
Shells, 
~'iACA TH1234 (1969), S. 1-51. 

"Berllkning av Symmetrisk Ladbalk Utsatt 
ftlr Vridning" 
Unvertlffentlichter Interner Bericht 
Nr. 'r-16 Staatliche WasserkraftverVial tung, 
stockholm, 1959. 

"Theory of Prismatic Folded Plates 
structures" 
IABSE, ZUrich, Switzerland, No. 87, 1957, 
P.P. 59 - 86. 

"Direct Stiffness Solution for Folded 
Plates", 
Journal of the Structural Division, Asce, 
Vol. 90, No. ST 4. Proc. Paper 3994, 
August 1966, PP. 15. 47. 



24 Wright, R.N. 
Abdel-Samad, S.R. 
& Robinson, A.R. 

25 Abdel-Samad, S.R. 

26 Zienkiewicz, O.E. 

27 Clough, R.W. & 
Johnson, C.P. 

28 Clough, R.W. & 
Tocher, J.L. 

29 Carr, A.J. 

30 Mehrota, B.L. 
Hufti, A.A. & 
Redwood, R.G. 

31 Mehrota, B.L. 
Hufti, A.A. 

32 Faro, A.R.H. 

33 Griencke, E. 

"BEF Analogy for Analysis of Box 
Girders" 

149 

Journal of the structural DiVision, 
Asce., Vol. 96, No. ST 4, Proc. Paper 
5394, August 1967, P. 165. 

"Analysis of Multicell Box Girders with 
Diaphragms" 
Thesis Presented to the University of 
Illinois at Urbana, Ill, in Feb. 1967, 
in Partial Fulfilment of the Requirements 
for the Degree of Doctor of Philosophy 
in Civil Engineering. 

"The Finite Element Method of Structu.::al 
and Continuum Hechanics" 
McGraw Hill (1967). 

liA Finite Element Approximation for the 
Analysis of Thin Shells" 
Int. J. Solià Structures 1968 Vol. 4 
P.P. 43 to 60. 

"Finite Element Stiffness Matrices for 
the Analysis of Plate Bending" 
Proc. Conf. Matrix Methods in structural 
Mechanics, 
Airforce Institute of Technology, Ohio, 
October 1965. 

"The Analysis of Three Dimensional 
Structures Using a High Speed Digital 
Computer" 
(Report), University of California, 
Department of Civil Engineering. 

"A Pro gram for the Analysis of Three 
Dimensional Plate Structures" 
McGill University, Structural Hechanics 
Series, Report No. 5, Sept. 1968. 

liA Hoàified 'Eoreher' 5 Func tion for the 
Analysis of Three Dimensional Plate and 
Shell Structures" 
McGill University, Structural Mechanics 
Series, Report No. d, November 1968. 

"Finite Element prograrn for the Analysis 
of Single Cell Box Girder Bridges" 
Report No. 13 Structural Mechanics Series, 
Department of Civil Engineering and 
Applied Mechanics, Mc Gill University, 1969. 

"Die Grundgleienungen fUr die Orthotrope 
Platte mit Exzentrischen Steifen" 
Der Stahlbau Vol. 24, 1955, P 128. 



• 

• 

34 Kltlppel, E.M. 

35 Peck, J.E.L. 

150 

"Systematische Ableitung der DifferentiaI 
Gleichungen fUr Ebene Anisotrope Fl~chen­
tragwerke" 
Der Stahlbau, Feb. 1960, P. 42. 

"Polynomial Curve Fitting, with Con­
straints" 
University of Alberta, Calgary. 

36 Clifton, Rodney J. "Analysis of Orthotropic Plate Bridges" 
Journal of structural Division, 

37 Hudson, R.W. & 
Matlock, H. 

38 Malcolm, D.J. 

39 Florin, G. 

40 Scordelis, A.C. 

41 AISC 

42 AASHO 

ASCE, Vol. 89, No. ST5, Proc. Paper 3675, 
Oct., 1963, pp. 133-171. 

"Discrete-Element Analysis for 
Discontinuous Plates" 
Journal of structural Division, 
ASCE, Oct., 1968. 

"Shear Lag in Stiffened Wide Flanged Box 
Girders" 
Master Thesis, April 1969, Department of 
Civil Engineering, McGill University. 

"Vergleich verschiedener irheorien fUr den 
auf Verdrehung beanspruchten Kastentr!ger 
ohne Querschnittsaussteifung an der 
Lasteinleitungsstelle an Hand eines I-1ode11-
versuchs" 
Der Stahlbau, Feb. 1963, P. 51. 

"Analysis of Simply Supported Box Girder 
Bridges" 
Report No. SESM-66-17, College of 
Engineering Office of Research Services, 
University of California, Oct. 1966. 

"Design Hanual for Orthotropic Steel 
\ Plate Deck Bridges" 

The American Institute of Steel 
Construction, New York, 1963. 

"Standard Specifications for Highway 
Bridges" 
The American Association of State Highway 
Officials, Washington, 1965 • 


