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ABSTRACT

The effect of the parameters involved in the torsional
analysis of box girder bridges is investigated in this thesis.
The study is limited to single span orthotropic steel bridges,
with one cell of rectangular shape. Several theoretical

solutions are presented and discussed.

A suitably accurate finite element program is formulated
for the analysis of box bridges. +The program is developed by
modifying an existing shell program. The modifications are
focused on introducing the effect of artificial orthotropy and
on automating the preparation of a large amount of the input in-
formation. Another program is developed to interpret the

computer outrut automatically.

The programs are checked and used to study the torsional
behaviour of several chosen bridge examples. The study is
presented and discussed in such a way as to provide aids for
bridge design. It demonstrates the importance of torsional

bending stresses which have been ignored in the design.
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NOTATIONS

Symbol Meanin

A Area enclosed by the center lines of the box
walls.

Ax Average depth of the stiffeners in x direction.

Ay Average depth of the stiffeners in y directionm.

B Bending stiffness of a flat plate = ZE.fi

Bx B + bx

B + b

y B J
Bx Torsional rigidity of the stiffeners in the
y X direction per unit length.

Byx : Torsional rigidity of the stiffeners in the
Y direction per unit length.

b Width of box girder.

bx Moment of inertia of the stiffeners within a
unit length in the y airection about their
centroidal axis.

b Moment of inertia of the stiffeners within a

Y unit length in the x direction about their
centroidal axis.

D Total elasticity matrix (including coupling
terms) relating the resultaant forces aand
strains.

E

D =2 - £

Dx D+ E - Ax

D D+E - A

y y

Eb Direct bending elasticity submatrix in the D
matrix.

T Direct in-plane elasticity submatrix in the D

P matrix.
Qpb pr Coupling submatrices in the D matrix.
Qb Elasticity matrix for bending stresses in the

base program.



xi

Elasticity matrix for the in-plane stresses
in the base program.

Modified elasticity matrix relating the in-
plane stresses and strains.

In-plane elasticity matrix used in the
modified program to develop the stiffness
matrix of the element.

Depth of girder.

Young's modulus.

Young's modulus in the x direction (natural
orthotropic sheet).

Young's modulus in the y direction (natural
orthotropic sheet).

Load eccentricity.

Adjusted centroid in the x direction (ortho-
tropic plate).

Adjusted centroid in the y direction (ortho-
tropic plate).

Distance between centroid of stiffeners in
the x direction and the middle of the deck
plate.

Distance between centroid of the stiffeners
in the y direction and the middle of the deck
plate.

Matrix of the resultant forces and moments.
Matrix of in-plane forces.

Matrix of bending moments.

Thickness of the plate in an orthotropic
plate element.

Average thickness of the orthotropic plate
in the x direction.

Average thickness of the ortnotropic plate
in the y direction.

Average thickness of the stiffeners in the
X direction per unit length in the y direction.

Average thickness of the stiffeners in the
y direction per unit length in the X direction.
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xii

Modulus of rigidity.

Torsional stiffness of a natural orthotropic
plate.

Normal distance from the center of twist to
the tangent at a given point on the perimeter.

Moment of inertia of the section about the
neutral axis.

Torsional constant of an eccentrically
stif fened orthotropic plate.

Torsion parameter for<§£ = IA_'A2 (L/b)z/iL
Curvature in the y direction.

Curvature in the x direction.

Beam length.

Twisting moment.

Matrix for bending moments.

Total resultant bending moment about the
y axis.

Total resultant bending moment about the
X axis.

Total resultant twisting moment.

Resultant moment about y axis due to a unit
strain,

Resultant moment about x axis due to a unit
strain.

Resultant twisting momeant due to a unit
strain.

Total resultant axial force in the X direction.
Total resultant axial force in the y direction.
Total shear force in the x-y plane.

Resultant axial force in x direction due to a
unit strain.

Resultant axial force in y direction due to a
unit strain.
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xiii

Resultant shearing force in the x-y plane
due to a unit strain.

Shear flow at the point considered.

Tangential co-ordinate of a point along the
circumference of a section.

Wall thickness,

Axial displacement of a point in a section
in pure shear theory.

Tangential displacement of a point in a
section in pure shear theory.

Co-ordinate of a point along the x axis.
Co-ordinate of a point along the y axis.
Co-ordinate of a point along the z axis.

Double the area enclosed by the centerline of
thin-walled section.

Angle of twist.

Rate of twist,

Shape ratio = width/depth.
Poisson's ratio (isotropic sheet).

Poisson's ratio in the x direction (natural
orthotropic plate).

Poisson's ratio in the y direction (natural
orthotropic plate).

Shear stress.
Shear strain.
Vlarping stress.
Bending stress.

Maximum axial stress of a beam in flexure
due to concentrated load at midspan.

Maximum axial stress of a beam in flexure
due to uniformly distributed load.

Maximum longitudinal torsion bending stress
due to line load of unit eccentricity.
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Maximum longitudinal torsion bending stress
due to the loading in the studied examples.

In-plane corner longitudinal torsion bending
stress in an orthotropic plate.

Total longitudinal corner stress at the outer
fiber of the plate in an orthotropic plate.

Total longitudinal corner stress at the free
edge of the stiffener in an orthotropic plate.

Maximum transverse torsion bending stress due
to line load of unit eccentricity.

Maximum transverse torsion bending stress due
to the loading in the studied examples.

In-plane corner transverse torsion bending
stress in an orthotropic plate.

otal transverse corner stress at the outer
fiber of the plate in an orthotropic plate.

Total transverse corner stress at the free edge
of the stiffener in an orthotropic plate.

Axial stress in the x direction.

Axial stress in the y direction.

Axial stress in the z direction.

Bending stress at the corner in the y airection.
Bending stress at the corner in the z direction.
Bending stress at the corner in the x direction.
Reference stress.

ilembrane stress at the corner in the x direction.
Axial strain in the x direction.

Axial strain in the y direction.

Engineering shear strain.

Matrix for the in-plane and bending strains.
Matrix of in-plane strains.

Matrix of bending strains.
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Xv

Relative warping displacements of opposite sides

of the slit in cell j due to unit shear flows in
cell 1.

Corner displacement in the y direction of a box
section due to torsion.

The deformation %y at midspan.

Corner displacement in the z direction due to
torsion.



1. INTRODUCTION

1.1 GENERAL

During the past decade, the introduction of box girders
in bridges has revolutionized the design of steel and reinforced
concrete highway bridges. The development of this type of con-
struction, and its practical application have received much
attention in Europe - primarily in Germany - where there exists

a large proportion of the total number of these bridges.

A box girder bridge (Fig. 1.1) consists of top and bottom
flanges connected by webs to form a cellular structure. This
structure may be formed by a single-cell or multi-cell units of
rectangular or trapezoidal shapes. T[he bridge may be made entire-
ly of reinforced concrete or of steel and in some box bridges the

deck is made of reinforced concrete while the webs and bottom

flange are of steel.

Due to the difficulty in understanding the actual be-
haviour of a box girder bridge, because of its high indeterminacy,
and because of the very limited work that has been done on the sub-

ject, design methods are generally based on empirical methods.



In these methods a typical I shaped member, consisting of a web
and top and bottom flanges, equal in width to the web spacing,

is taken from the structure and is analyzed as an independent
beam. The dead load for which such a beam is designed is its
own dead weight, plus that portion of the deck carried by the
beam, plus the weight of curbs, railings and wearing surface,
divided by the number of beams supporting the deck. As for wheel
loads placed on the bridge, empirical formulae based on the web
spacing are used to determine the load distribution to the in-
dependent longitudinal beams. Beams are then designed to resist

the maximum longitudinal and shear stresses developed due to all

cases of loading.

One of the most important structural characteristics of
box-shaped cross sections is its high torsional rigidity, which
leads to nearly uniform transverse distribution of longitudinal

flange stresses for eccentrically distributed loads.

An eccentric load can be replaced by a symmetrical pair
which produces pure bending, and a sxew symmetrical pair which
produces twisting (Fig. 1.2). The degree of uniformity in trans-
verse distribution of symmetrical loads, depends mainly on the
phenomenon of shear lag; however, for skew symmetrical loads it
depends also on the torsional deformation of the box which is

characterized by:

(i) Distortion and rotation of the cross-section (Fig. l.3a)
which is resisted by frame action of the walls of the closed

section and the diaphragums.



(ii) Warping deformation (Fig. 1.3b) which is mainly re-

strained by the supports.

A complex distribution of longitudinal and transverse
stresses, which attain their maximum values at the corners, is
introduced in the actual bridge girder due to the above mentioned
deformations. Those which are shear stresses are added to the
stresses calculated from the conventional methods of design,
which neglect the effect of this deformation. Other stresses
(secondary transverse and longitudinal stfesses) are completely
ignored in conventional design. Although the magnitude of these
secondary stresses might be small in some cases, yet they are
quite important in bridge design, as they undergo full reversal
as lanes on alternate side of the bridge are loaded, and fatigue

failure could occur at places where they have maximum values.
1.2 OBJECTIVE

The torsional deformation of the cross-section of box
girder bridges depends upon many parameters, and the object of
this investigation is to define sucihh parameters and review the
various methods available to study the benaviour of box girders
under torsion. Another object of this work is to develop a suit-
ably accurate finite element computer program capable of consider=-
ing all the factors that play an important role in the behaviour
of box girder bridges. Based upon the finite element method of
analysis, a study is made to provide a clear view of the inter-

action between important parameters such as shape, length and end



conditions. The results are then presented in a way to provide

design aids for box girder bridges.

-

1.5 SCOPE OF PRESENT INVESTIGATION

The box girders studied in this thesis are of a constant
cross section. They are single span and composed of one cell of
rectangular shape. The end conditions are either simply supported
or fixed. Simply supported indicates that the section at the
support is free to warp in the longitudinal direction but not free
to rotate in its plane. A fixed end indicates that the section is
not free to move or rotate in any direction. The diaphragms are
always provided at the ends of the boxes and at midspan. Dia-
phragms are assumed very stiff in their plane and highly flexible
in bending out of their plane. Only steel orthotropic bridges ave
considered in this investigation although any kind of bridge can

be considered using the method of analysis presented.

The loading condition is one of uniformly distributed
torsional line load applied at top and bottom corner nodes of the
box section (Fig. l.4). The study considers only elastic behaviour
of box girder bridges. A summary of the cases considered is shown

in Table I.

All the programming in this work was in FORTRAN IV

language for use on an IBM 360-75 digital computer.



2. THE TORSION PROBLEM

2.1 INTRODUCTION

—

The exact solution of the torsion problem for a general
case of a beam of non-uniform cross section and varying end con-
ditions is not yet available in the literature. However, in 1856
a well known simple theory was developed by St. Venant for the
special case of uniform twist of circular shafts. In this theory,
the only stresses developed in the shaft are the pure shear
stresses, Since that time, designers have thought that torsion
problems can either be solved by St. Venant theory (pure shear),
or, i1f they violated St. Venant assumptions, they had to look for
a suitable theory to estimate the induced secondary or torsional
bending stresses. However, in the latter case the designer might
find it more convenient to redesign the structure to satisfy
approximately the St. Venant assumptions and to convince himself
that the only significant stresses were those of St. Venant pure
shear stresses, and that the secondary stresses were small and

could be safely neglected.



2.2 PURE TORSION

This section will be limited to an outline of the
assumptions and conclusions of St. Venant's theory in relation

to its application to thin walled closed sections.

Pure torsion takes place in beams with thin walled
cross sections when the beam is twisted by end torques and the
only stresses developed are the shear stresses on each transverse
cross section. The shear is considered uniform over the thick-
ness of the wall and the product of the shear stress and the thick-

ness at every point is a constant called the shear flow.

In order to ensure pure torsion, certain assumptions must

be made:

(i) Members are straight.

(ii) The cross section of the beam is constant.

(iii) The beam cross sections are stiffened by closely
spaced rigid diaphragms to ensure that the cross sections do not

distort in their plane.

(iv) Both ends of the beam are completely free to warp.

2.2.1 FORMULAS OF PURE TORSION IN THIN WALLED CLOSED SECIIONS

If the shear flow in a thin walled section (Fig. 2.1) is

q and the twisting moment is M, using the above assumptions, it

follows that

qQ = T ot (2.1)



where T = shear stress and t is the wall thickness.

By equilibrium conditions it can be shown that

M =T -t - (2.2)

where . is double the area enclosed by the centerline of the wall.

The shear strain ¥ is given by

_ T _ du v
X = 3 = SE + b—Z- (2.3)
where G is the modulus of rigidity, and u and v are the axial
and tangential displacements respectively. From assumption (iii)
above it follows that

v = h+« ¢ (2.4)

where h is the distance from the center of twist to the tangent

at the given point, and ¢ is the angle of twist. It follows from
equation (2.3) that

s-s— = E - (205)

©

where ¢" = g;

Integrating (2.5) over the whole perimeter, it can be

shown that

$ - E"'TCJ ds (2.6)

2.2.2 MULTICELL IHIN WALLED SECTION IN PURE TORSION

The above relations can be extended to the case of multi-



cell thin walled section. 1In this case, the problem is
statically indeterminate of degree (n-~l), where n is the number
of cells. However, by following the same procedure as above for
each cell and noting that the section does not distort in its

plane, i.e., the angle of twist is the same for all cells, the

following formulas can be derived:

From equilibrium condition

n
= « S
Moo= 2 gyt (2.7)

And since <$ is the same for each cell, it follows that

\ ds L ds
IR FYRY PR N N CURRN - (2.8)
¢ - GJLJ [ J T r=1 r sjr T

Where the subscript on the integral indicates the path
over which the integration is to be performed, and m is the number

of cells immediately adjacent to the cell j.

By introducing the concept of flexibility coefficients
(Ref. 1) - which is the angle of twist of the cell due to unit

shear flow - equation (2.8) can be written in a matrix form

- - N
rgll 812 813 A S [;1 Tle
821 822_ e 82n a = 4>\ S (2.8)a
8p1 - e $nnl |90 Sy
- 4L L
where by = - g s‘jri de and §; = 3 $ %



or [S]{q} P - {—ﬂ-} (2.8)b
and hence {q} 45[.5].1 {.n.} (2.9)

Equation (2.9) gives the shear flow q in each cell in

terms of <$ , and by substituting these values of q in equation
(2.7) we get & . Substituting back in euqation (2.9) the shear

flow and thence the shear stress in each cell can be obtained.

2.3 TORSION BENDING

The theory of St. Venant and its resulting formulas are
perfectly valid only for a beam of circular cross section. How-
ever, within the scope of this investigation, it can be said that
the application of the formulas of pure shear (Sec. 2.2) can be
accepted only when one can practically ignore additional stresses

caused by either warping or distortion of the cross section.

In many practical problems (box bridges, craneway girders,
water gates) it becomes impossible to guarantee free warping or a
constant shape for beam cross sections. In these cases equation
(2.4) is not valid any more, and a complex distribution of
longitudinal and transverse stresses are developed, and the

application of St. Venant theory may lead to serious errors.

The presence of the longitudinal and transverse stresses
infers that part of the work aone by the twisting moment is used
up in developing them, and only the remainder will develop shear

stresses associated with St. Venant twist. Hence it can be
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postulated that a total twisting moment is the sum of a pure St.

Venant twist and some additional torsion causing bending, or
rather, restrained warping of the section. This torsional part

is known as torsion bending.

Several theories have been developed to estimate these
torsional bending stresses. These theories will be described and

discussed in the next Chapter.
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3. REVIEW OF PREVIOUS WORK

3.1 INTRODUCTION

Many investigators during the past thirty years have at-
tempted to develop a solution for the torsional bending problem.
Since, at the beginning, the problem was frequently encountered
in aircraft structures (wings and fuselages), most of the
theoretical and experimental work that has been done was primari-
ly for the specific purpose of the analysis of aircraft structures.
In these investigations the procedure of the analysis was based
on the assumption that due to the presence of transverse
stiffeners or bulkheads, no transverse distortion of the beanm
cross section occurred. Henée the torsional bendaing stresses wer

caused mainly by warping restraints. Taese types of theories are

described in tue next section.

However, during the past decade, the development of box
girders in bridge construction has rapidly increased and since,
in general, a box girder bridge system does experience transverse

distortion as well as warping restraints, the above mentioned
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procedure cannot be used for this problem. Therefore, re-
searchers started to investigate the problem for the case of
boxes of deformable cross sections. However, owing to the high
degree of indeterminacy of the problem and the mathematical dif-
ficulties involved, most of the theoretical solutions for the

problem have been restricted by one or more conditions.

Recently, with the advent of fast digital computers with
large storage capacity, some approaches which were theoretically
established before and which required an enormous amount of
computation have become practicable. These approaches, such as
the finite difference method, folded plate method, finite element
and others, might be considered in fact the most versatile of those

presently available, since they can treat cases having a large

range of variables.

In Section 5.3 a description of the work done on the
problem with deformable cross sections will be presented with

special emphasis on recent work applicable to bridge structures.

3.2 #ORK DONE FOR ./ON-DEFORMABLE CROSS SECTIONS

Most of the work done on the problem of torsion bending
of box beams with closely spaced rigid diaphragms has been done
primarily for analysing aircraft structures. The first work in
that field was done in 1934 by Ebner (Ref. 2) for the case of
bisymmetrical box beams. A general solution for stiffened beams
of arbitrary cross section was developed later, in 1933, by Ebner

and K8ller (Ref. 3). The main step in their analysis was in
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idealizing the structure to consist of both longitudinal
stiffeners which carry axial stresses only and connecting thin

webs which carry shear stresses only.

The first attempt to develop a theory valid for arbitrary
closed thin walled cross sections without the limitations of air-
craft structures was developed by Umansky (Ref. 4) and by Karman
and Christensen (Ref. 5). In both methods the effect of
secondary shear on the shear strain aistribution was neglected.
They assumed an arbitrary rate of twist"¢"existing along the
span of the beam, and the distribution of shear and axial
components of strain were then determined as a function of "Qf".
These components were calculated according to pure torsion theory.
After calculating the strains the stresses were obtained from
fundamental stress-strain relations. Thence from the conditions
of equilibrium of axial stresses the magnitude of the secondary
shear could be obtained. A method was proposed which reduced the
mathematical calculations to a sequence of graphical iategrations,
analogous to that used in dealing with transversely loaded beams.
The results of carrying out calculations for four examples of open
ana closed sections with different loading and end conditions
indicated the following:

(i) In closed sections, unlike open sections, the
secondary shearing stresses are considerably greater than primary
shearing stresses.

(ii) In the case of a cantilever beam with a concentrated
torque at an intermediate point, the results showed that although

there was no resulting torque in the overhanging part, normal and
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shear stresses existed.

(iii) In the case of a beam with one end fixed and the
other free to warp but not to rotate, and loaded by uniform
torque along the span, the reaction moment at the fixed end was

greater than the other end, while the elementary theory gives both

the same,

Later, in 19445, Karman and Chien (Ref. 6) developed the
first "exact" analysis for torsion of thin walled sections of uni-
form thickness. Their theory was based on two assumptions; first
that the bending stiffness of the wall of the cross section could
be neglected, and second that the deformation of any section was
due to rigid rotation of the cross section plus warping displace-
ment in the longitudinal direction. They developed a differential
equation for the warping function and its solution in detail. The
differential equation for the case of a polygonal section was
reduced to the Laplace equation (valid at every point except the
corners) togetner with some transition conditions at the corners.
Karman and Chien proved that the secondary shear stress had an
important effect on the stress distribution. This was demonstrated
by the marked increase of axial stresses at the corners and at the
fixed end of a doubly symmetrical cantilevered beam loaded by end
torque. The torsional behaviour of this particular case was worked
in detail and curves were drawvan (Fig. 3.1) showing the rate of
twist at various distances from the restrained end and for different
sizes of rectangular tihnin walled section. It should be noted that
the rate of twist"Qx'approaches a constant as the shape of the

section approaches a square. Also curves were obtained (Fig. 3.2)
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for different sizes of rectangular sections showing the

circumferential distribution of axial stresses at the restrained
end. In Fig. (3.3) the maximum stress, which was found to be at
the corners, is plotted against various sizes of the rectangular
thin walled section. Figures (3.2) and (3.3) show that the

curvature of the stress distribution along the section increases
rapidly near the corners especially for shallower sections, and
that the maximum stresses decrease nonlinearly when the shape of

the section approaches a square.

An exact solution for arbitrary section was given by
Adadurov (Ref. 7) but no numerical results were obtained. Another

exact analysis was given by Benscotter (Ref. 8).

Although the exact theories give satisfactory results
providing their assumptions are valid, yet they require an extensive
amount of computational work. Hence an approximate solution having

sufficient accuracy for engineering design was desirable.

An approximate solution was developed by Umansky (Ref. 9)
in his second paper on the problem of torsion bending. This was
followed by an analogous solution by Benscotter (Ref. 10). Both
approximate solutions were based on the assumption that the axial
displacements leading to axial stresses had tne same transverse
distribution at a section of an arbitrary beam as would occur in
St. Venant torsion of a uniform beam with that section. Another

approximate solution of the problem, based on the same avove

assumption but furnishing a somewhat different degree of accuracy

was presented by Dshanelidze and Panovko (Ref. 11). A similar
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solution was given recently by Heilig (Ref. 12).

In 1963, Dabrowski (Ref. 13) suggested the use of these
approximate theories in civil engineering design where the re-
quired accuracy of analysis is not as demanding as in aircraft
engineering. He carried out a comparison between the two
approximate theories, namely of Umansky (or Benscotter) and
Panovko. The two theories were applied to find the maximum axial
stress at the fixed end of a sufficiently long cantilever beanm
twisted by a torque at the free end. The beam had a rectangular
cross section and was of uniform thickness. [he results are shown
in Fig. (3.4) for different width to depth ratios of the section.
It can be seen that the first theory (Umansky) furnishes somewhat
greater values of axial stresses, being on the safe side. It
should be mentioned that both theories give zero axial stress for
a square section. Also, another comparison has been carried out
between the exact solution (Karman - Chien), the refined
approximate (Umansky - Benscotter) and the ordinary approximate
(Karman - Christensen) solutions. The same examnple mentioned
before was used in the comparison. The results are shown in Fig.
(3.5). It should be noted that both the exact and refined
approximate solutions yield, as should be, zero stress for a square
section whereas the ordinary apyroximate solution wrongly indicates
a finite value. The latter also gives exaggerated values of axial
stresses for a/b ratios up to 4, that is for most box sections in
bridge structures. On the other hand, the refined approximate

theory furnishes corner stresses below those of exact theory,
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being on the unsafe side.

Using the formulas of the refined approximate theory
derived by Dabrowsky for the values of the maximum torsion bending
stress in an eccentrically loaded simply supported beam, the
writer inspected the effect of shape ratio on the increase of
axial stresses due to eccentricity of load on box girder bridges.
The results presented in Figures (3.6) and (5.7) show the trans-
verse influence lines of the maximum axial stress ( g ) at mid-
span, for the cases of concentrated and uniformly distributed load.
The stresses are made dimensionless by dividing by the bending
stress (g orog) at midspan. The practical range of width to length
ratios, for box girder bridges, has been chosen for the case of
uniformly distributed load. It can be seen that the stress in-
crease is greater in the case of concentrated load and for the
worst practical conditions this increase may reach approximately

50%. However, the corresponding increase for uniformly distributed

loads is about 20%.

3.3 WORK DONE FOR DEFORMABLE CROSS SECIION

A considerable body of the early literature was devoted
to problems in aircraft field. The most important of this is the
work of Reissner (Ref. 1l4) and Ebner (Ref. 15). The idealization
mentioned in Section 5.2 for aircraft structures was also the
basis of this work. ZEbner showed how doubly symmetrical boxes
could be solved by the method of influence coefficients ( Sik)'
His method is based on the principle of virtual forces and is

applicable to problems of two dimensional elasticity. Argyris
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(Ref. 16) extended Ebner's work and developed a matrix formulation
of the stiffness of the structure but it was based on the principle
of virtual displacements or the total potential energy method. He
was the first to use the finite element in a stiffness form for

solving complex problems in aircraft structures.

The first work done to approach the requirements of bridge
structures using the work of Ebner and Argyris was done by
Resenger in 1959 (Ref. 17) and was extended by Richmond in 1966.
Richmond in his first paper (Ref. 18) suggested an approximate
solution for the problem of twisting of a simply supported rect-
angular box girder with no restraint against warping. Distortion
was only prevented at end cross sectlons by end diaphragms, and
was resisted by a continuous medium along the span. He assumed
that deflections could be considered as a result of bending
stresses in the separate walls, which could be computed by
engineering bending theory. Another approximate solution by the
displacement method was given in the same paper for the case of
boxes with concentrated diaphragms. In this case the beam was
divided into bays each containing two diaphragms. An expression
was found for the displacements and the internal forces at any
section in terms of the diaphragm displacements. Then, by satisfy-
ing the equilibrium conditions just before and after each dia-
phragm, a set of Qimulﬁaneous equations was formed which when

solved gave the unknown displacements of the diaphragms.

Richmond, in his second paper (Ref. 19) extendea his work

on rectangular sections to include trapezoidal sections and
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presented numerical values for several simple box girdérs systems
with different widths of bottom flange. Studying these examples,

it was concluded that the top flange stresses could be significantly
reduced by reducing the bottom flange width. It was also noticed
that the torsion bending stresses decrease with the increase of

the enclosed area and depend on the position and properties of the

diaphragms.

Attention has been focused recently on the folded plate
method as a convenient tool for analysing box girder bridges which
have simile supports at the two ends, since a harmonic analysis
using Fourier series can be used to analyze structures for both
concentrated and distributed loads on the bridge. The bridge is
treated as a series of rectangular plates interconnected along the
longitudinal joints. 1In the formulation of the analysis, the
properties of each plate can be obtained using either ordinary

methods or elasticity methods.

‘fhe ordinary methods assume that the membrane stresses can
be calculated by elementary beam theory and that plate bending is
defined by means of transverse one-way slab action. TInis means
that the following quantities aie neglected: the longitudinal bend-
ing moment, the torsional moment in the plate elements, the trans-
verse axial elongation and the in-plane shearing deformations of
the plate elements. Exauples of these ordinary methods are the
theories of Vilassow (Ref. 20) and of BjBriklund (Ref. 21). A study

of the accuracy of these theories is presented in Section 4.4.4.
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'he elasticity methods utilize plane stress elasticity
theory and the classical two-way thin plate bending theory to
determine the membrane stresses and slab moments in each plate.
This means that all the quantities neglected in the ordinary
methods are considered. However, these methods are restricted to
a one span simply supported folded flat isotropic plates. The
methods belonging to this group are presented by Goldberg and Leve

(Ref. 22) and by De Fries and Scordelis (Ref. 23).

An approximate analysis based on an analogy with the theory
of beams on elastic foundation was developed by Wright, Abdel-Samad
and Robinson (Ref. 24) for multicell box girders of deformable
cross section. A basic assumption in this method was that the dis-
tortions were accompanied by sufficient warping to annul the
average shear strains in the plates forming the cross section. The
method, however, provided an analytical procedure which accounted
for deformation of the cross section, for the effects of rigid or
deformable interior diaphragms, longitudinally and transversely
stiffened plate elements, non-prismatic sections, continuity over

intermediate supports and for arbitrary end support conditions.

Recently, Abdel-Samaa (Ref. 25) extended Wlassow's theory
to consider multicell composite box girders with intermediate
diaphragms and with transverse or longitudinal stiffeners. Results
were presented for different types of single cell box girders. A
parameter study was given for a single cell square box with walls
of uniform thickness and under uniform torsional load. Several

multicell box girders under torsion loads were also presented.
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The effect of introducing diaphragms was studied extensively.
The number and location of diaphragms were varied and the effect
of their stiffnesses was investigated. The following are the
most important results and conclusions that can be extracted from

this study to serve the present investigation:

(i) The intermediate diaphragms are effective in reducing
stresses and deflections. The results of the study made on the
effect of diaphragm location on the longitudinal stress ( G: )
and transverse stress ( C{; ) at midspan of a simply supported girder
under uniform and concentrated torsional load at midspan are
presented by the writer in Fig. (3.8). The terms GRe and GTBU
indicate the maximum axial stresses produced by the two equal mid-
span concentrated loads and two equal uniform line load at the
edges of the box respectively. It can be seen that the stresses
decrease as the nearest diaphragm approaches the load. A .dia-
phragm located below the load reduces the distortion stresses
almost to zero. Also, for the case of uniform torsional load, two
diaphragms at third points reduce stresses and deflections to
small values.

(ii) For the same girder mentioned above (but with dia-
phragms only at the ends) a study was made to investigate the effect
of loading and end conditions on the maximum longitudinal and
transverse stresses. The study is presented by the writer in
Figures (3.9) and (3.10). In the case of a concentrated load it
can be seen that end fixity does influence the response quantities
when the load is near the end, and the longitudinal axial stresses
produced at the end become higher as the load approacaes the eand.

The end stresses must, of course, drop to zero when the load is at
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eﬁb the end. The transverse bending stresses are decreased for loads
close to the ends.
(iii) The stiffening action of diaphragms is insensitive

to practical variations in the stiffness of the diaphragnms.
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4. FINITE ELEMENT ANALYSIS

After reviewing the various methods available for study-
ing torsional behaviour of box girders, and noting the restrict-
ions made upon each method by the nature of the problem in box
girder bridges, it was concluded that one should seek a solution
by a method which takes into consideration the effect of
torsional bending, shear lag and end restraints. The actual rib
spacing and rib stiffnesses should also be accounted for in a
realistic fashion. It is also desirable to avoid the assumption
of closely spaced rigid diaphragms and to consider thne variation

of dimensions and materials of the bridge elements.

I'his is indeed a sizable task; however, the great develop-
ment in the finite element method and modern high speed digital
computers, offer considerable hope that these objectives can be
maintained all at the same time with a considerable amount of

accuracy.

4.l INTRODUCTION [0 FINITE ELEMENI TECHNIQUE

Many researchers have contributed to the development of
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the finite element technique in structural analysis. This is
evidenced by the extensive bibliographies on the subject given
elsewhere (Ref. 26), (Ref. 27), (Ref. 28). Briefly this method
can be applied to the analysis of any structure by means of the
following four phases:

(1) Structure idealization by replacing the structure by
an assemblage of individual structural elements connected to each
other at selected nodal points.

(ii) Representation of the elastic and geometric properties
by evaluating the stiffness properties of the individual elements.
The stiffness properties of the complete assemblage are then
derived by superposition of those element stiffnesses.

(iii) Imposing the desired support conditions, by making
the proper changes to the corresponding rows and columns of the
structure stiffness matrix.

(iv) Representation of the loading characteristic of the
structure in a matrix form; then by applying matrix algebra to
the stiffness matrix, all the components of the nodal displace-
ments and thence stresses in the elements can be obtained.

The above topics are discussed in the following Sections
with refe:rence to the analysis of box girder bridges as three

dimensional structures.

4.2 LHE STRUCTURE AuD ITS SIMULALION

Two approaches have been tried by the writer to simulate

box girder bridges:
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4.2.1 EQUIVALENT GRIDWORK AND PLANE STRESS TRIANGULAR ELEMENT

In this approach the structure was considered as a
three dimensional frame of one dimensional beam members connected
together at nodal points so as to provide all six degrees of
freedom, and three nodal point, triangular, plane stress finite
elements were introduced as an extra constraint between the
nodal points (Fig. 4.1). The beam members were assigned an axial
stiffness to simulate the axial stiffness of the stiffeners in
the beam direction. They also were assigned bending and torsional
stiffnesses of the stiffeners plus that of the twe dimensional
plate elements. The triangular plate element was assigned six
degrees of freedom, two at each nodal point in the plane of the

element.

The computer program developed by A.J. Carr (Ref. 29)

was used for the above idealization.

4.2.2 EQUIVALE([! ORTHOIROPIC PLALE

In fhis method each wall of the box was subdivided into
a number of discrete finite orthotropic triangular elements
interconnected at nodal points (Fig. 4.2). Six degrees of free-
dom were provided at each nodal poiant. The orthotropic plate
elements were assigned membrane and bending stiffness to simulate
the axial and benaing stiffness of the plate with the stiffeners

placed in two orthogonal directions and on one side of the plate.

It was later decided to base the study of this investigation
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on the second method of idealization, Sec. 4.2.2, and to use
the program developed by B.L. Mehrotra and A.A. Mufti (Ref. 30).
Modifications were necessary to account for the artificial
orthotropy and additional programs were developed to provide
automatic preparation of data and automatic analysis of results

for the specific type of box girder bridges considered in this

thesis.

4.3 COMPUTER PROGRAM

4.35.1 INTRODUCT ION

The three dimensional plate structure program developed
in Reference (30) in 1960 was the base upon which the writer
built up the program for analysing single cell orthotropic box
girder bridges. Since that time the base program has been used
in the investigation of the behaviour of many different and
diverse structures. The results have been compared in many
cases to other finite element programs in relation to exact or
experimental values. Perhaps the most interesting case con-
sidered in checking the base program was that of the analysis
of an isotropic spine bridge. 1In this case. a comparison was
made with another finite element program together with
experimental results, and the results presented in Ref. (31)
show very good agreement. In conclusion, the testing of the
base program in the analysis of two dimensional and three
dimensional structures has proved the reliability of such a
program especially in cases of three dimensional structures

where the membrane stresses dominate. Further verifications
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related to the type of problem considered herein and also

designed to test the modification are described later.

In developing the final program, the policy of the
writer was first, to account for the variables introduced in
the analysis in a realistic manner and second, to reduce to a
minimum the effort in using the program for solving a particular
problem. Also it was kept in mind that the new programming
logic should be independent from the base program whenever
possible, the reason for this was to facilitate locating the
errors in the process of debugging the program, and to make it
possible to use the program for any other particular structure

by making relatively simple alterations.

The usefulness of the base program was limited to
structural elements of isotropic or of natural orthotropic
materials. However, that is not the case in steel orthotropic
bridges. Therefore, assumptions have been made in the next
section to idealize the structural behaviour of an orthotropic
plate element of the bridges. The relation between stress and
strain is summed up in a matrix form called the elasticity
matrix. According to the above mentioned assumptions, the
elasticity matrix used in the base program has been replaced by
a new one which is described in Section 4.4.4 and which is based
on the study presented in Section 4.4.3. Consequently, a few
modifications were necessary in the stress and strain matrices

of the base program since the stresses and strains, which the

writer was concerned with, are those of the top of the plate and

of the bottom fiber of the stiffeners. These modifications are
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described in Sections 4.3.4.1 and 4.3.4.2.

As in any finite element program, a huge amount of
information needs to be supplied by data cards. The amount of
time and effort in preparing such data, and the probablg human
error and consequently the significant loss in computer time,
may certainly be considered as a disadvantage which may out-
weigh the advantages of such a powerful method of analysis.
Thercfore, it was found necessary to write several programs
to reduce this number of data cards. [hese programs are de-

scribed in detail in Sections 4.3.6 and 4.3.7.

It was also expected that if all the interpretation
was done by hand for such a large amount of output of the
computer analysis, then a considerable amount of time and effort
would be needed. Also the accuracy of the results would be
questionable, and the extrapolation of the stresses at points
other than those obtained by the program would be somewhat
arbitrary. ‘lherefore an interpretation program has been
developed for the particular case of box girders considered in
this investigation. An explanation of this program can be

found in Section 4.3.3.

All the above programs, except the interpretation pro-
gram, have been integrated with the main modified program after
being tested separately. A check has been made to assure the

functioning of the integrated programs through the total program.

A plan for testing the accuracy of the final program



29

has been developed so that it can be used with confidence in
the analysis of box girder bridges. This plan is described

in Section 4.4.

A detailed description of the final programs and the
method of using them and their limitations can be found in

Ref. (32.).

4.5.2  ASSUMPTIONS

The structural system of steel box girder bridges is
composed of plates with stiffeners placed at one side in both
longitudinal and transverse directions. This is commonly de-
scribed as an orthotropic plate with eccentric stiffeners. A
typical orthotropic plate element with eccentric stiffeners is
shown in Fig. (4.3). The equations governing the behaviour of
an orthotropic plate in this finite element prograxn are based on
the following assumptions:

(1) The orthotrogic plate acts as a monolitic unit, i.e.,
there is no relative movement between the deck plate and the
stiffeners.

(ii) Within an element, the stiffeners are equally and
closely spaced in each direction. They are orthogonal and they
consist of uniform cross section with weak torsional resistance.

(iii) The deck plate is of constant thickness over each
element and has the same isotropic elastic material of the
stiffeners.

(iv) The horizontal sirain in case of bending is zero

at the adjusted centroid of the cross section in each direction.
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The adjusted centroids in the x and y directions are located

at distances e

% and e_ respectively, below the middle surface

y

of the deck plate.

From the above it follows that the adjusted centroids

can be defined as follows:

where:

J‘ E(z) « 2 ° dAx
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distance between centroid of stiffeners in the
X direction ana middle of the cdeck piate.
distance between centroid of the stiffeners

in the y direction and midale of the deck plate.
thickness of the deck plate.

average depth of the stiffeners in x direction.

average uepth of the stiffeners in y direction.
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o]
1]

modulus of elasticity.

Y = poisson's ratio.

(v) Plane surfaces initially perpendicular to the middle
surface of the deck plate remain plane and perpendicular to the
middle surface during bending.

(vi) The torsional stiffness of the stiffener may be
estimated by neglecting any restraint due to warping.

(vii) The angle of twist per unit length of the stiffener

is the same as the middle surface of the plate.

4.%3.3 ANALYSIS OF ORTHOTROPIC PLATE ELEMENT WITH ECCENTRIC
SIIFFENERS

Based on the assumptions in section 4.3.2 the writer
was able to make use of the method of effective stiffness
developed by E. Giencke (Ref. 33) and which was introduced later
in a modified form by Kl8ppel (Ref. 34). The method is more
effective in the case of orthotropic plates with torsionally

soft stiffeners.

In this method, a unit strain is applied to the ortho-
tropic plate element along one of the six degrees of freedom.
The resulting forces and moments corresponcing to each of the
six degrees of freedom are obtained based on the assumptions
given in section 4.%.2. This procedure is repeated for each of
the 6 cegrees of freedom. The behaviour of the orthotropic plate
in each of these cases is fully explained by Figures 4.4 through

4.9.
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The following terms will appear in the derivation of

the final expression for the elasticity matrix, and they are

defined at this stage for convenience.

=
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moment of inertia of the stiffeners within a

unit length in the y direction about their

centroidal axis.

moment of inertia of the stiffeners within a

unit length in the x direction about their

centroidal axis.

B+E- bx
B+ * b
E y
1 2
Z J‘ Gt dfx
torsional rigidity of the stiffeners in
airection per unit length.
1 2
re J. Gt dfy
torsional rigidity of the stiffeners in

girection

resultant

resultant

resultant

per unit length.

axial force in x direction.

axial force in y direction.

shearing force.

the x

the y
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m, = resultant moment about y axis.
my = resultant moment about x axis.
mxy= resultant twisting moment.

The moments are assumed to be applied at their adjusted

centroids,

The cases discussed will now be individually studied.
(i) For the axial strain in the x direction ex =1

(Fig. 4.4) the forces and moments are:

n, = J Gy ' dA =D,

= d = PV
By ] Gy "y D
nxy = 0

S

- L4 L] =-vo ]
o, N Gr?? A dAy ey D
my= (,—'x'2°dAx=O
mxy =

(ii) For the axial strain in the y direction € =1

(Fig. 4.5) we similarly obtain:

n, = Y D m, = 0

= = - V° .
ny Dy my ey D
nxy = 0 mXy = 0

(iii) For the shear strain in the x, y plane Exy =1
we ovtain the following forces and moments. Note that the
stiffeners do not resist any shear stresses since their bending
stiffness about vertical planes is very small. Accordingly we

get the distribution of stresses shown in the fig. (4.6).



34

n, = 0 mx = 0
IJ.y = 0 my = 0
- D¢ - - .
Dyy = -2-(1 V) By = (1 v)(ex + ey) D
d%y

(iv) For the curvature kx =-352 = 1 (Fig. 4.7)

- VD . . -
n, = ey D m, = By
ny=0 myz'l)'(ex‘e'D-fB)
nxy = 0 mxy = 0

2
(v) For the curvature k_ = = 2% = 1 (Fig. 4.8)
9 X2

M
n, = O mx=1>(ex°ey°D+B)
ny=voexoD my=Bx
nxy=0 mxy=o

(vi) The torsional strain is defined in the elasticity

matrix by 2 D2 w
X Sy
22 y .
For 2 —S—x—-s—— = 1 (Flg. 4.9) we get
Yy
n, = 0 m, = 0
n = 0 m = 0
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By = —(19)(eyre) x my = ~3(By +B,y)-B(1-V)

- 3 (- (eyre)®

The previous relations between strains and resultant

forces can be summed up into the following matrices:

{F} - ['ﬁ] {e} (4.3)

where
F is the matrix representing the resultant forces and uwoments,
D is the elasticity matrix and € is the strain matrix. These

matrices can be divided into submatrices to separate the terms

corresponding to in-plane and out-of-plane deformations, and

equation (4.3) will have the form

® D . D ‘
B I R I (5o 1)
Fo] [Dop ! Dp €

a subscript '"p" indicates plane and a subscript "b'" indicates

bending. Equation (4.4) is shown below in detail.
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DETAILS OF EQUATION (4.4)
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4.3.4 MODIFICATIONS INTRODUCED IN THE BASE PROGRAM

The elasticity matrices used in the base program were
for an isotropic or natural orthotropic plate element. These
matrices should be replaced by the elasticity matrix (D) de-

rived in the preceding section.

The base program was built up by combining a plane
stress program and a bending stress program. In formulating
the overall structure stiffness matrix the logic was as follows:

(1) The 3x3 elasticity matrix D, was developed for each
element and then used in forming the strain, stress and stiff-
ness matrices for the element in bending.

(ii) The 3x3 elasticity matrix gp was developed for each
element and then used in forming the strain, stress and stiff-
ness matrices for the element in plane stress.

(iii) The bending and plane stress stiffness matrices
were joined together later in formulation of the overall
structure stiffness matrix.

‘Phe introduction of the 9x9 elasticity matrix (D) de-
rived in sec. 4.3.3 infers that a change should be made in tne
method of formulating the element stiffness matrix. Such a
change implies modifications in the size of matrices and in the
"DO" loops used in the program. This inherently means a major

change in the whole logic of programming.

In view of the above explanation, it was decided to

neglect the coupling terms in the submatrices pr and Ebp

of the 9x9 elasticity matrix (ﬁ), and to consider only the terms
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in the direct plane and bending submatrices Ep and D, re-
spectively. The terms in these direct plane and bending sub-
matrices have been used to replace the corresponding terms in
the elasticity matrices of the plane stress and bending stress
parts of the base program respectively.. The writer found that
although the coupling terms in the submatrices pr and ibp
have been neglected, a relatively high degree of accuracy can

be obtained by using the program. This will be seen later in

Section 4.4.

4.3.4.1 ELASTICITY MATRIX FOR IN-PLANE STRESSES

The elasticity matrix used in the base program for the
plane stress part relates the stress to the strain in the plane
of the plate. However, the derived elasticity matrix Ep re-
lates the resultant in-plane forces to the in-plane strains.
The function of the elasticity matrix in the two cases is shown
below for convenience.

(1) In the base program

- = r —‘ - hn
o E, v, -E, . )
l-vxvy 1—1&v& X
| v.E E
°_§ - 1_}; vy 1- )’yv 0 €y (4-5)
Xy x 'y
Tyy 0 0 G €xy |
L ] L J L
o =
°r = Bp " 5

vinere Ex’ E Y., V., G are the elastic constants of the ortho-

y» x vy
tropic material.
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(ii1) In the developed elasticity matrix

NX Dx

N, Ve D

L
or EF, = Dy &

It follows from
average axial stress in

resultant force in that

Ve D 0 ] -égj
1l-v

0 1—2—1 D éxy

- L.

(4.6)a

assumption (ii) section 4.3.2 that the
the x or the y direction is equal to the

direction divided by the sum of the area

of the plate and the stiffeners in the perpendicular direction.

It can also be concluded that the plate is carrying all the in-

plane shear forces. Hence, the relation between the stresses and

strains can be obtained

by modifying the D_ matrix to ﬁ; and we

p
get
G_d - y . .
G D, &, (4.7)
or _
D 7 - 7
X VD
G —_— 0] €
X TI £ p'q
D
= v * O ° a
Cpe 4 D Tx_ €, | (4.7)
2 2
l-v OD
Txﬂ 0 ° L3 €2y
- b — - —
where:
fl = average thickness of the plate and the stiffeners

in the x direction per unit length in the Yy direction

=f+fx
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‘@, fx = average thickness of the stiffeners in the x direction
per unit length in the y direction.
f2 = average thickness of the plate and the stiffeners in

the y direction per unit length in the x direction

=f+ f
y
f = average thickness of the stiffeners in the y direction

per unit length in the x direction.

However, in the calculation of the strain energy in the
process of deriving the stiffness matrix, the resultant forces
were obtained in the base program by simply multiplying the stress
vector by a multiplier equal to the thickness of tine orthotropic
plate. Since this is not the same in artificial orthotropic
plates, as can be seen from equations (4.6) and (4.7)a, the
writer introduced an imaginary thickness equal to fl to be used
as a multiplier. Accordingly, the elasticity matrix which was
used in deriving the stiffness matrix of the element, was given

the imaginary form:

EE 2D 0
3 fl
Bo- |22 X 0 (4-8)
=P I 1
0 o (1-¥) D
1
- _

In order to obtain the stresses, the method used in the

base program was simply to post multiply the elasticity matrix

by the final strain vector éx’ éy’ Exy . However when this was

adopted on the above matrix (ﬁ;) the stresses obtained G;, cr&,
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?:xy have to be multiplied by the factors 1, fl/f2 and fl/f
respectively in order to obtain the real stresses. This
modification has been introduced in the stress matrix of the

subroutine "FEMP" of the base program.

L.3.4.2 ELASTICIIY MATRIX FOR BENDING STRESSES

The elasticity matrix in the base program relates the

moments and curvatures as follows:

[ i r E 0f3 v . .f3 N B ba T
X X w

My 12 -vxvy IZ%I-vxva 0 = X2
w | o | VeEf? E, - 5
v T2(I-7 %) IZ&-vxvyj 0 - —givz'
3 2

Mxy 0 0 f dw

- 2
i || %y
(4.9)
or M=Dy - Ey (4.9)a

There was no difficulty in replacing the above amatrix

D, by the new derived matrix Dy,.

As for the normal stresses and strains due to bending,
the writer was intercsted, within the scope of this investigation
in their values at the top of the plate and at the free edge of
the stifreners. On the other hanu, the shear stresses and
strains were only significaat, as far as the study of the over-

all torsional behaviour is concerned, in the plate ana not in
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the stiffeners. Therefore, the shear stresses were calculated

in the bending part of the program at the top of the plate only.

The strains have been assumed equal to zero at the
adjusted centroids in the x and y directions. They are also
assumed to vary linearly across the depth of the orthotropic

plate. Thus the normal strains Ex, €y’ could be described in

d 2w >%w
terms of the calculated curvatures ——z and 7z and of the

y
distance z of the point considered from the adjusted centroid.

2

€y = % 328 (4.10)
_ . 3%y

Ey =z 332 (4.11)

Similarly the normal stresses can be found in terms of
the obtained resultant internal moments per unit length, and

the oeiding stiffness of the plate and the stiffeners.

For stresses in the plate

G = E cZo.}-dl (Ll-la)
x - IH2 By *
G'-I—onz-»fl (4.13)
y - 1-» B *
For stres.es in the stiffeners
Mx
<F§ = E o 2 ¢« 5 (4o1h)
J
oy = E-z.ly (4.15)
Bx

The shear strain Gg

y at top of the plate is
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€.. = % (e, + e_ + f) (4.16)
Xy T odydy XY )
Also the shear stress 'Z%y is given by
Mey'f
Ty = —— (4.17)

where J is the torsional constant of the plate and the

stiffeners and is given by

J =

] [y

BB, + By) + B (1-9) + 2 (1) (ey + e)7((4.18)
Since the base program was concerned with the strains
and stresses at the top and boitom of a plate with uniform
thickness, modifications were then necessary to account for
these stress and strains at the top of the plate and at the
free edge of the stiffeners. The modifications were achieved
by substituting the co-ordinate (z) of the point concerned in
the above equations and making the corresponding changes at
their appropriate positions in the subroutine "FEMB" of the

base progran.

4.3.5 SIRUCIURE IDEALIZALION PROGRAM

Perhaps the most critical, and at the same time tedious
work for the user of a finite element program, is the data
preparation for an idealized large structure. Initially the
nodal points nave to be selected and numbered. The co-ordinates
of each nodal point are defined w.r.t. the structural axis, then
the elements are numbered, and the nodes at the boundaries of

each element are defined. Also the material properties and
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thickness of each element must be specified.

the difficulty in preparing such a large amount of
aata without error has been overcome by developing a computer
program to first idealize the bridge and then to calculate all

the above mentioned data.

A unique form to idealize a single span, single cell
box girder bridge with diaphragms has been chosen (Fig. 4.10).
The bridge has been subdivided by imaginary lines or surfaces
parallel to the structural axes. The intersections of these
lines locate the positions of nodal points enclosing the finite
elements. The program allows for two sizes of subdivisions in
each of the three directions of the structure. This will enable
the user to increase the number of elements at locations where
the stresses increase rapidly, and where a coarse mesh size
would not reflect the actual behaviour. The diaphragms are
always defined b; one of the vertical subdividing surfzces. A
pattern for diaphragm subdivision (Fig. 4.11) has been chosen,
such as to give the best orientation of finite elements with the
least number of nodal roints. This was important because the
main program is limited to a maximum of 20 nodes in each sub-

division of tae structure.

Another subprogram has been developed to number the
elements of the idealized structure. The nodal points (I, J, K)
of each elemeant are numbered in an anticlockwise direction and

the thickness of the element and its material property is given
an indicative number.
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The above mentioned programs can either idealize the
total span of the bridge, or only half of it if the structure

has symmetry of form and loading.

To give an example of the great benefit of these pro-
grams, the data cards prepared without the aid of the programs
which were needed for example No. 1 (Fig. 5.1 ) numbered 306,
and with the help of these programs the same amount of in-

formation is generated by the use of only 5 cards.

4.3.6 ORICHOTROPIC PROPERTIES PROGRAM

In order to reduce the effort in preparing the data
and to speed up the process of debugging the program, the policy
has been to minimize the changes required in the original

variables which were used through the base program.

The elasticity matrices were specified in the base pro-
gram by the natural elastic constants of the orthotropic plate.
The coastants used were Ex, Ey’ Vys vy, G for the plane stress
part, and Ex’ Ey’ Vyr Vg ny for tne be:nding part. As these

J
constants had appeared in many places in the program, and be-
cause of the above mentioned reasoning, a program has been
developed to calculate these same elastic constants in terms of
the geometry and material of the elements which constitute the
eccentricaelly stiffened plate. This was easily achieved by the

manipulation of the equalities which were obtained simply by

comparing each term in the original and the new elasticity
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matrices.

Another object of this program is to calculate the
factors which were used in the modification of the stress and

strain matrices of both plane and bending parts of the program.

The geometry of the stiffeners which can already be
considered in this program are shown in (Fig. 4.12 a, b & c).
However, it should be mentioned that for case "c" the torsional
rigidity of the stiffeners is treated as if they had a cut in

their perimeters and not as closed cells.

A detailed description of this program can be found in

(Ref. 32).

L.3.7 INTERPRETALION PROGRAM

It was found by practice that it takes about 4O to 50
hours of hand work to interpret the results of one problem of
the size used in this investigation. Even so, the accuracy of
the calculation is limited, and fitting and extrapolation from
the curves are a little arbitrary. Therefore, a program was
developed to manipulate the very large output of the finite
element program, and to take care of most of the tedious work in
interpreting the results. The program could be extended to re-

present the results graphically by means of an automatic plotter.

The results of the deformations at all nodal points and

the stresses at the C.G. of each element are obtained from the
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main program punched on cards. These cards are then loaded

with the interpretation program into the computer.

The process of interpretation in the developed pro-
gram can be explained in the following points:

(i) Sorting out the stresses corresponding to each of
the top flange, bottom flange and webs,

(ii) Averaging the membrane and bending stresses of
each two adjacent elements in the crosswise direction.

(iii) Calculating the stresses at the top of the plate
and the free edge of the stiffeners due to the combined action
of plane and bending stresses.

(iv) At cross-sections along the span of the bridge
- defined by the plane containing the averaged stress points -

a curve is fitted to each of the obtained average stress. The
method used in fitting the curves was to find the highest
possible polynomial yielding the least mean square error. The
details of the method are described in (Ref. 35). The degree
ana constants of the polynomial which fit the points are printed
out in the program.

(v) The values of the maximum stresses at the corners
of the box could not be obtained directly from the finite ele-
ment program. However, they were obtained in the interpretation
program by substituting the co-ordinates of the corner points in
the equation of the corresponding fit polynomial.

(vi) The calculated corner stresses are divided by the

reference value of the stress to give the non-dimensional stress
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parameter which is used in plotting the final curves. The
reference stress used in the examples of this investigation
will be defined later in Sec. 5.4.

(vii) The calculated results, namely the average
stresses, corner stresses and the non-dimensional stress para-

meter are tabulated for each wall of the box separately.

A detail list of the program and the method of using

it can be found in (Ref. 32).

A macro-flow chart showing the integration of all the
programs used in the present investigation is shown in

Appendix (A4).

4.4 VERIFICATION OF THE PROGRAM VALIDITY

h.4.1  INTRODUCTION

Several kinds of checking were needed to ensure that

the program wes free from programming as well as logical errors,

The first check was to ensure the correct functioning
of the new programs which were joined to the main program after
introducing the modificzations to the elasticity, stress and
strain matrices. This was easily achieved by checking each
program individually before and after being joined to the main

program.

For the individual programs, a variety of problems
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were chosen to check each part of the program alone. Each

problem was carefully prepared by hand and then checked against

the computer results.

As for the total behaviour of the program; the pro-
blem of a box girder of isotropic material (Fig. 4.13) was used
in the checking procedure. The data for the problems were care-
fully prepared by hand and then loaded together with the original
base program into the computer. The same problem was solved
using the final modified program. The results of the two runs

vere found to be exactly identical.
The developed program can now be said to be operational.

The accuracy of the base program for isoiropic structures
has been previously proved, by the solution of many examples to
be reliable. However, for orthotropic structures, the example
of a two dimensional natural orthotropic square plate was the
only one which was tried by the authors of the base program.
Therefore, there was a need to study the accuracy of the final
program for two and three dimensional structures with artificial
ortnotropic elements of the type used in bridges. There was also
a need to check the accuracy of the program in solving probleas
where bending or in-plane stresses dominate. This will auto-
matically check separately the modifications introduced in the
bending and plane parts of the program. However, since the object
of this investigation is to study the torsional behaviour of box

girders, it was felt advisable to check the accuracy of the pro-
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gram for such a particular problem.

The above mentioned requirements for checking the
program have been satisfied through the study of the follow-

ing particular problems.

4.4.2  ORI‘HOTROPIC BRIDGE DECK PROSBLEM

In many highway bridges, the deck is constructed by
a set of rectangular orthotropic plate panels supported on the
main girders and the cross beams. In this section one of these
panels has been chosen to check the accuracy of the program for
bending. The panel is loaded with a wheel load of 1 kip at the
centre. The orthotropic plate is made of structural steel

having E = 30 x 106 psi and Y = 0.30.

The problem has been solved before by several exact or
approximate methods (Ref. 36, Ref. 37). A solution by the
finite element method was obtained using the developed pro-
gram to check its accuracy in problems where bending stresses
dominate. In the above solutions the load is assumed to be
uniformly distributea over a square area of side = 15 in. It
should be mentioned that the panel is assumed in all the above
solutions to be supported on unyielding supports. However, for
thie complete solution, one should superimpose on the results
obtained from this solution the results of another solution in
which the deck plate is considered acting as an upper flange of

the girders.,
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The geometry of the orthotropic panel together with
the nodal points and the arrangement of the finite elements
that were adopted in the finite element program are shown in
Fig. (4.20). A quarter of the panel was analysed, making use
of symmetry, as this has reduced the size of the system to be
handled thus reducing the effort in producing the data deck

and saving valuable computer time.

Figures (4.21), (4.22), (4.23) show the complete set
of influence surfaces for the vertical deflection and the

stresses Q:& and E?§ at the top of the deck plate.

Table 2 gives the values of the deflection and stresses
at the center of the plate obtained by five different methods.
The percentage error shown in this table is based on taking the
exact single series solution by Clifton (Ref. 36) as a base for

the calculation.

By comparing the results of the finite element analysis
against the other methods of analysis, we can see thai the re-
sults are in good agreement with the exact theory if compared
to other theories. However, one would expect even better results
if the case considered was for a uniform load rather than con-
cenirated load, and if the point of comparison was not that

point of nigh stress concentration.

L.4.3  SHEAR LAG Ii BOX GIRDER BRIDGES

The shear lag phenomenon in thin wall cross sections 1is
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e@g known to reflect the stress diffusion in the plane of the walls
of the section. One of the methods used to define the extent
of shear lag in box girders due to bending action is to define
the width of the flange which when uniformly stressed with the
maximum stress would carry the same longitudinal in-plane load.

This method i1s known as the effective width concept.

‘'he problem of shear lag has been examined in Ref. (38)
with particular reference to single cell box girder bridges.
One of the most critical cases in shear lag problem which was
considered in this reference is for a 2 ft. span aluminum box
girder model with the top and bottom flanges heavily stiffened
in the longitudinal direction. The results obtained from the
experiment on the model together with the results predicted by
three other theoretical methods of analysis have been compared
with those results obtained by using the three-dimensional
finite element program developed in the present investigation.
The results of the different methods of analysis which are
grouped in the curves shown in Appendix (B) of the present thesis,
prove the reliabili:y of using the developed program for the
analysis of three-dimensional orthotropic structures especially

in problems where the in-plane stiresses dominate.

L.4.4  TORSIONAL EEHAVIOUR Or ISOTROP:C BOX-LIKE GIRDER

The problem of torsional bending has been thoroughly

fo) investigated in Chapter3 A very reliable experimental study for

e

the torsional behaviour of a single span, single cell box girder,
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has been presented by G. Florin (Ref. 39). The box consists
of walls of uniform thickness and is provided with a diaphragnm
at each end. The end diaphragms are allowed to warp but not to
rotate. The results of his experiment were compared with those
results obtained by two methods of analysis namely; theory of
Wlassow (Ref. 20) and theory of Bj¥rklund (Ref. 21). The

assumptions of these theories were given in Sec. 3.3.

In this section a study similar to that presented by G.
Florin will be obtained using the finite element program. The
results are then compared with the above mentioned theoretical

analysis and checked against the experimental results.

In order to develop the confidence in the present in-
vestigation and to give some sense to the deviations between
different results, it is felt advisable to mention the important

details of the experiment.

Loh.4.l MODEL EXPERIMENTD

The dimensions of the box model and the load arrangement
are shown in Fig. (4.13). The model is made from plexiglass
which has been testcd to show linear proportionality between
stress and strain in the low range of stresses witain which the
test was performed. The material constants were found to be
E = 305.0 kg/mm2 and VY = 0.38. The material has been chosen
from a large stock after being checked for homogeneity and
uniformity of the thickness. The edges of the box walls had

been machined to guarantee that they fit together to form the
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right dimensions when glued together.

In order to be able to measure the stresses inside the
box, the enc diaphragm was substituted by a ring made of the
same material and has a very small thickness. These rings were
glued to the ends in such a way as to provide no restraint
against warping while the boundary conditions could be satisfied
by the edges of the ring itself. To avoid inevitable creeping
of the material, small loads and special loading devices were
used, also very careful measuring techniques were adopted.

The deformations %y* Sz of the cross section (Fig. 4.14)
were measured at the corners A, B, C, D and at six cross
sections along the span. The strains in the x, y and at 45°
angle between, were measured from the inside and the outside of
the box. From the strain measurements the longitudinal stress

GT; and the transverse stress 453 or G; were calculated at
top and bottom of the plate. Using these stresses the meubrane
stresses could be evaluated, and then from the stress di-
stribution in each cross section the stresses at the corner

points were obtained by extrapolation.

L.4. 4.2 EXPLANATION OF [I'HE RESULLS

Figures (4.15) through (4.ld) show the variation of the

deformations and the extreme stresses at the corners along half
; the span of the box girder. These relations were obtained using
é@ each of the previously mentioned theoretical methods of analysis

together with the experimental results. [he curves were nade
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dimensionless by using %’%, G, and L as reference values

for the deformations, stresses and distances along the span
where; (°y°= the deformation %y at the middle of the beam,
and Gy = <?;b = Grib and is equal to the transverse bending
stresses at the corners of the middle span section. All

reference values were taken from the experimental results.

The study made on the above mentioned curves can be

summnarized into the following points:

(a) Deformations

From Fig. (4.15) and Fig. (4.16) it is seen that theory
of Wlassow provides values which are 16% too high for the de=-
formation cby and 107% too high for the deformation %z while
the finite element analysis gives values which are 6% too high
for Sy and 3% too high for Sz. The slight flattening of the
slope of the experimental curves near to the end support can be

attributed to the slight fixity of the beam as a result of

apprlying the end restraints to the ring and not to the beam it-

self,
(b) Stresses

(1) In Fig. (4.17) the longitudinal bending stress is
shown. The deviation in the maximum stress is about &% lower
in the finite element analysis than the experiment. This stress
is assumed zero in Wlassow and in Bjdrklund theories since the

bending stiffness of the walls is neglected in their analysis.
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‘ﬁb However, this longitudinal stress amounts to 38% of the
maximum induced secondary stresses due to torsional bending.
It also amounts to 68% of the longitudinal membrane stress at
the same point.

(ii) The membrane longitudinal stress G;;m is shown in

Fig. (4.19). Theory of \/lassow gives values which are 16% too
high but theory of BjBrklund gives less deviation with a
maximum value of 13% too high. However, in the finite element
analysis the deviation was varying in sign and reaches a

maximum near the center which is only 5% higher than the ex-

perimental value.

It should be mentioned that the longitudinal membrane
stresses are expected to be slightly less in the experiment
than the ideal theoretical simply supported beam, this is due
to the slight fixation at the ends. This can be foreseen since
for a completely fixed beam the longitudinal stress is 30% less
tnan simply supported beam. However, in the experiment, it will
cdecrease with a small fraction of tne above mentioned 30% since
the degree of fixation is small. Hence the 5% deviation of the
finite element would be less if the above correction could be

introduced to the experimeantal values.

An interesting observation on the longitudinal meubrane
stresses is that they are almost zero in the quarter of the span

near the supports and then they start to increase rapidly to a

maximum at the point of the apslied torsional moieat.

(iii) The variation of the transverse bending stress
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along half the span is shown in Fig. (4.18). The deviations
of the stress are 14% too high in theory of Bj8rklund and
125 too high in theory of Wlassow while the finite element
analysis gives values less than the experimental values with

a maximum deviation of 10% of the maximum value at the center.

The transverse membrane stresses were excluded from
the study since they were small and did not exceed 1% of the

reference stress Gy .
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5. ANALYTICAL STUDY OF TORSION BENDING
PROBLEM IN BOX GIRDER BRIDGES

5.1 GENERAL REMARKS

‘The finite element computer program described in the
preceding chapter provides a powerful means for the analysis
of box girder bridges since it accounts rationally for all the
parameters governing the response of box girders to loadings

tending to deform their cross sections,

In this chapter the finite element program will be used
to estimate for some chosen examples of single cell steel box
girder bridges the longitudinal and transverse stresses which

arise from torsional deformations.

It has been concluded from Chapter 3 that the principal
parameters governing tne response of box girders to torsional
loadings are: (1) The dimensions and elastic properties of the

bridge elements (2) End conditions, (3) Number and location of

the diapnragms and (4) the type of loading. The procedure
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presented in the rest of the present investigation is aimed
at supplementing the methods described in Chapter 3 by pro-
viding a clear view of interactions between proportions, load-
ing, end conditions and response, and thus helping the designer

work efficiently toward a satisfactory design.

5.2 STUDY OF I'HE LIMITS OF VARIABLES

In this section an exposition of the variables which
are involved in the design of box girder bridges and which
affect its torsional behaviour will be presented. Some of these
variables will be excluded from tne present investigation either
because their effect on torsional behaviour has been studied
extensively before (e.g. diaphragm action), or because those
variables are mainly governed in the design by considerations
which are independent of the torsional behaviour of the box
(e.g. longitudinal stiffeners in top flange, web stiffeners ..).
However, these variables will be accounted for, in the examples
studied here, in a rcalistic fashion and according to the de-

sign.specifications.

In order to ascertain the range of variables used in
designing existing box girder bridges, a review was made by the
State Bridge Department in California - (Ref. 40) - of over 200
siuple span box girder bridges constructed during tine past ten

years in California. The available data indicated the following:

(1) Spans

A large proportion of the existing bridges are in the



60

50 to 90 ft. span range. For bridges without diaphragms this
is particularly true, and for spans above 85 ft., all bridges

have at least one interior diaphragm.

(2) Overall Width

The overall widths are a direct function of the number

of bridge lanes.

(3) Depth-Span Ratio

The majority of existing bridges have a depth-span ratio

in the 0.05 to 0.065 range.

In the following, the limitations on the variables are
discussed in view of the above mentioned ranges and by considering
the nature of the rest of the variables in the design and their

significance in torsion bending problen.

(1) Length

Most single span box girder bridges have the length close
to 80 ft., thus it was found advisable to inspect the torsional
behaviour of this majority by choosingthe 30 ft. length. How-
ever, the effect of torsional bending stresses may be more
significant for long spans, thaerefore a 200 ft. span length has

been chosen to form an idea of the problem for this case.
(ii) wWidth

Since the scope of this investigation has been limited
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to single cell box bridges, the two widths of 12 ft. and 24 ft,
are considered sufficient to cover the possible variation in

the number of lanes that may practically exist on a single

cell single span bridge.
(iii) Depth

In view of the range of length - depth ratio mentioned
before and of the chosen spans in (i) it nas been decided to
consider the depths of & ft. and 12 ft. for the 200 ft. span

and 4 ft. and 6 ft. for the 80 ft. span.

(iv) Orthotropic Plate Deck

the top flange of a box girder bridge consists of a
plate with longitudinal stiffeners supported on transverse
cross beams which run between the webs of the box. The spacing
of longitudinal stiifeners is usually taken as about one foot for
open rib stiffeners and two feet for closed cell ones. However,
since it has been noted before that the computer program is
best suited for stiffeners of weak torsional resistance, open
ribs of the type shown in Fig. (4.12.a) have been chosen with

one foot spacings.

The cross beams are also chosen with open cross section
(Fig. 4.12.b) and spaced with the minimum allowable spacings of
an 5 ft. (see Ref. 41, p. 149) to ensure uniform transverse di-

stribution of deck plate stiffness.
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Fixing the spacings of the stiffeners as indicated above
implies that the longitudinal stiffeners will be the same for
all bridges and that the cross beams will be the same for cross

sections having the same width.

However, the plate on top of the stiffeners is so pro-
portioned as to resist the sum of the local stresses caused by
concentrated wheel loads and the longitudinal stresses obtained
by considering the deck plate acting as an upper flange of the
girder. This latter will influence the thickness when consider-

ing the different spans and number of lanes.

(v) Bottom Flange

The bottom flange is made of unstiffened plate which is
proportioned to resist the longitudinal stresses obtained by con-

sidering it as a bottom flange of the box girder.

(vi) Vleb Plate

The web plates are chosen to be transversely stiffened
with rectangular plate stiffeners. The proportion and spacing
are obtained according to AASHO specifications (Ref. 42, clauses

1.7.71 and 1.7.72).

(vii) Loading

Although a more qualitatively significant effect of

torsional bending stresses may be expected if the torsional
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loading is concentrated rather than distributed, it has been
decided that it is more realistic to consider distributed
torsion line load since it has a larger contribution to the
total stresses induced in eccentrically loaded design con-
ditions. Also it has been decided to apply the torsional 1line
loaa at the four joints of the box to assure good representation
of the torsional moment, and to omit consideration of the local
bending stresses in the top flange if the loads are acting

other than at the corners.

(viii) End Conditions

fwo types of end conditions are considered in this in-
vestigation; (1) simply supported ends, (2) fixed ends. It is
expected that the behaviour of a continuous box girder where
the ends of intermediate spans are partially restrained, can be

roughly understood by logical interpolation of the results of

these two cases.

(ix) Computer Qutput

Because of the large amount of information which can be
provided by the computer, it has been decided to concentrate the
study of the results on those stresses which are most important
in terms of the design of box girder briadages. Thus - in general-
onl, corner longitudinal and transverse stresses and their di-
stribution along the span are discussed and presented in this

investigation.
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5.3 CHOSEN CASES FOR ANALYTICAL STUDY

5.3.1  GENERAL REMARKS

The cases studied included two spans, 80 ft. or 200 ft.
Three plate diaphragms were provided in each case, two at the
ends and one at the middle. They were given 1% inches thick-
ness to ensure sufficient stiffness in their plane. The cross
sectional details for each case were obtained according to the
design example mentioned in the next section, and they are

shown in Figures (5.1) through (5.5).

In all cases, two concentrated skew symmetric line loads
were considered. The line load was represented by applying 500
lbs at top and bottom corner nodes of the finite element
idealization. The end conditions were eitner siuply supported

or fixed.

It should be noted that only half the span was analysed
because of symmetry. The structure idealization was sucn that
the longitucinal divisions were six equal divisions for half the
girder. However, the deck plate, bottom flange and the webs

were each transversely divided into four divisions.

Table (1) shows a list of the cases considered in this

investigation.

5.5.2 DESIGN EXAMPLE

The procedure used in the design of the cases considered
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is illustrated by the design example given in Appendix (C)

for a 200 feet span box bridge having two lanes and simply
supported at the two ends. The cross section is of a single
cell of width 24 feet and depth of 8 feet. Standard AASHO

H 20-44 loading (Ref. 42) and ASTM A-36 steel are used in this

design.

S.4 INTERPREIATION OF COMPUTER RESULTS

The results obtained from the interpretation program
are for the percentage ratio of the extremal torsion bending
stresses at the corners to the reference stress (<; ). This
reference stress is taken as the uniform compressive stress
at the top fiber of the deck plate. This stress is obtained
by treating the girder as simply supported, and acted upon by
two symuetrical line loads equal to those used in applying the

torque but both acting in the same direction (See Fig. 1l.2).

For each example, the variations of tne longitudinal
and transverse stresses along half the span are plotted in
dimensionless forms for the critical sections (AD), (AB), (BA)
and (BC), (See Appencix C, Fig. C.3). It has been found that
the shape of these curves is similar provided the ena condiiions
are the same. For the cases of simply supported and fixed ends
the curves follow the pattern given in Figures (5.6) through
(5.9) and in Figures (5.10) through (5.13) respectively. In
these curves, the horizontal ordinate represents a point at
distance X of the span L, and the vertical ordinate represents

the above mentioned percentage stress ratio which is identified
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on the curves by (G~ ) with two subscripts; the first is np»

or "L" which indicates the transverse or longitudinal direction
respectively, and the second is either "m", "p" or "s" which
indicates whether the stress is the membrane stress or total
stress at outside fiber of the plate or at the inside free

edge of the stiffeners respectively. It shouid be noted that
the difference between the total and membrane stress curves

gives the contribution of the bending action to the total stress.

The variation of the stresses across any wall of the
cross section, for a torsional load, has been found to be
non-linear at the majority of the cross sections along the span
(and particularly for in-plane stresses). The stresses are

maximum at the corners and have opposite signs at adjacent

corners.

fables (3-a, b, c, d) show for each example the maximum
positive and negative total stresses with their locations and
the maximum contribution of bending and in-plane stresses to
the total stresses. nese values represent in fact the most
important information that can be extracted from stress di-

stribution curves.

S.4.1 CASES OF SIMPLY SUPPORPED EiDS

These cases are represented by examples (1) to (5).
The values of the variables considered were 80' and 200! for
length (L), 4', 6', 8' aud 12' for depth (d), and 12' and 24'
for width (b).
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From the curves shown in Figures (5.5) through (5.9)

and Tables (3%-a, b, c, d) the following observations can be

made,

(a) Longitudinal Stresses

(i) The longitudinal stresses start with zero value
at the support and increase to the first peak value at a di-
stance ranging from 0.2 to 0.23 of the span length. Then the
stresses reverse their sign at a distance of about 0.4 I from
each end and reach another peak with opposite sign at the mid-
span diaphragm. The value of the peak longitudinal stresses
at the midspan is always greater than the value of the first
peak. This is important in design since midspan stress con-
trols design for simply supported girders.

(ii) The in-plane longitudinal stresses are always
larger than the bending stresses and they dominate the shapes
of the total stress distribution curves particularly at sections
(AD), (AB) and (BA). At these sections the ratio of the maximum
in-plane stress to the maximum bending stiress ranges roughly
from 12 to 60. However, this ratio is quite low at section
(BC) of the top flange because it is heavily stiffened in the
longitudinal direction; the ratio at that section ranges ap-
proximately from 1.5 to 2.0 for short spans (80 ft.) and from
3.4 to 6.3 for loag spans (200 ft.). It should be noted here
that these longitudinal bending stresses have been neglected
in all the methods that have been suggested so far for the torsional

analysis of box bridges.
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(iii) The maximum longitudinal stress induced ( GE’)
is always at section (AD) where the ratio Cﬁ: / G ranges
from 60% in example (3) to 27% in example (1l). Also it has
been observed that this ratio is always larger for the examples

with the short span (80 ft.).

(b) Transverse Stresses

(1) The in-plane transverse stress ( GE& ) starts with
Zero value at the support and increases to a first peak at a
distance ranging from 0.18 L to 0.22 L, and then reverses its
sign at a distance ranging from 0.35 L to 0.45 L and reaches
another peak of opposite sign at the midspan diaphragm. The
maximum ratio GE; / G 1in a cross section is generally small
and ranges from 1% to 1l4%.

(ii) The transverse bending stress has a large effect
on the total transverse stresses induced in the plate and the
stiffeners. The bending stress is almost zero at the ends and
at midspan, where the diaphragms are rigid enough in their plane
to keep the curvature of the walls of the cross section almost
close to zero. However, the bending stress reaches a maximum
at a distance 0.<2 L where it adds to the first peak of the in-
plane stress ST The ratio of the maximum transverse benaing
stress to the aaximum in-plane stress is very small except at
section (BA) where it ranges from 2.35 in example (3) to 23.5
in example (4). The percentage ratio of the maximum bending
stress to G  ranges from 40% in example (9) to 70% in example

(4).
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(iii) The most critical total transverse stress ( GE )
is induced at the edge of the vertical web stiffeners at section
(BA). The ratio of G‘,I',/G; ranges from 66% in example (4) to
25% in example (3).

It should be mentioned here that although these trans-
verse stresses are sizable, bridge specifications do not con-

sider any transverse siresses in any phase of the design.

5.4.2 CASES OF FIXED E:DS

These cases are represented by examples (6) through (8).
The values of the variables considered were 80' and 200' for
length (L), 4', 8" and 12' for depth (d) and 12' and 24' for
width (b).

From the curves shown in Figures (5.10) through (5.13)
and Tables (3-a, b, c, d) the following observations can be

made:

(a) Longitudinal Stresses

(1) The longitudinal stresses start with a maximum at
tne support, reverse the sign at a distance 0,125 L froa the
ends, increase to a peak at about 0.5 L and then reverse the
sign again at a distance 0.075 L from the midspan aiaphragm
where the stresses reach another peak.

(ii) The value of the maximum longitudinal stress
(e7,) for a box with fixed supports is almost equal to the
maximum longitudinal stress at midspan if tine box is simply

supported.
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(iii) The maximum longitudinal stress ( GE: ) at mid-

span of simply supported girder is reduced 50% by fixing the

supports.

(iv) As in the case of simply supported ends the in-
plane longitudinal stresses dominate the shape of the total
stress distribution curves. However, the ratio of the maximum
in-plane stress to the maximum bending stress ranges in the
fixed end examples from 25 to 38 at sections (AD), (AB) and
(BA) and from 1.12 to 13.5 for section (BC).

(v) For the maximum longitudinal stress (Gi') the
percentage ratio GE;/ G, ranges from 28% in examples 6 and

7 to 38% in example 8.

(b) Transverse Stresses

(1) The in-plane transverse stress ( G;; ) starts with
a maximum value ( %E? {13%) at the fixed end, decreases rapidly
and changes sign at 0.075 L from the ends and then remains al-
most flat with a very small value (%%9 {4). At a distance
0.05 L from the midspan it changes sign once more to reach an-
other peak of very small magnitude ( g_ﬂ' <3%).

(ii) The shapes of the transverse bending stress curves
and the sections at which it is maximum are still the same as
described in cases of siuple supports. However, the magnitudes
of the stresses are very close to half their values for the same
boxes but with simply supported ends.

e@a (iii) As in simply supported cases, the most critical

total transverse stress ( G ) is induced at the edge of the
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‘E’ vertical web stiffeners at section (BA). However, the ratio
GT'/ G;” ranges in fixed end examples from 13% for example
(7) to 31% for example (8). This ratio is close to half of

that obtained for the same boxes but with simple supports.



72 E

6. PARAMETER STUDIES

6.1 GENERAL

In this chapter, the problem of torsion bending in the
design of box girder bridges will be looked at in the following
way: given a box bridge structure, subjected to an eccentrically
distributed line load with unit eccentricity, i.e., eccentricity
from the center equal to unit feet, what will be the maximum
value of the longitudinal stress that should be added to the
maximum longitudinal stress obtained by the conventional bending
theory in which the structure is considered as centrically loaded?
Also, what will be tne order of magnitude of the transverse

stresses that have been neglected in the aesign specifications?

In practice, a quick estimaﬁe of these secondary stiresses
is necessary during the preliminary design phase. Such an
estimation will guide the designer to select quickly the best
geometry of the structure and the number and locations of the

-

diaphragms that ensure a safe and economic design.

In order to achieve this phase in bridge design, the
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complete picture of the torsional behaviour of the structure
should be understood, and the interaction of the various in-

volved parameters should be clearly identified.

In this chapter, and based on the torsional study per-
formed on the examples of the previous chapter, a parameter
study is presented and graphs are plotted for the interaction
between the variables. It should be emphasized that such a
study is limited to single cell boxes of fixed or simply supported
ends and with rigid diaphragms at the ends and at midspan. How-
ever, for boxes with different diaphragm locations and number,
the designer should relate this study to the diaphragm study
presented in Ref. (25). Also, for continuous girders, a fair
understanding of the problem may be achieved by proper inter-

polation of the behaviour of fixed and simply supported ends.

A list of all the variables and parameters that might
affect the torsional behaviour of a box bridge is shown in
Table (1) for each example studied in Chapter 5. The variables
considered are the length (L), the depth (d), the width (b),
the moment of inertia of the bridge section about its neutral
axis (I), the area enclosed by the walls of the box section (4),
and the end conditions. The parameters shown are for the shape

ratios & = a/d, L/b and L/d.

The percentage ratios of the maximum induced total

longitudinal stress ( Gi ) and transverse secondary stress

( &jj) to the reference stress o5 have been recalculated from
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Tables (3-a, b, c, d) for an eccentric uniform line load with
unit eccentricity. These ratios are shown in Tables (4) and

(5) for each example and for each of the four corner sections

considered before.

6.2 LONGILUDINAL STRESS

The study that has been made on the effect of the para-
meters on the magnitude of the maximum secondary longitudinal
stresses (6\‘£ ) indicated that the percentage ratio G\f/c;';'
is almost directly proportional to the parameter "K" which in
fact includes the effect of the ratio of the longitudinal stiff-
ness of the box to its torsional stiffness (I/Aa) and the effect
of a parameter (L/b) which is an indication of shear lag effects.

K = 1
Z a0 (6.1)

This has been demonstrated by the plot given in Fig.
(6.1) for the stress ratio ét’/cg‘ against K for the fixed and
simply supported box examples considered. It can be seen that
the relation can be very closely expressed by the equation of
the siraight line

L

— 1.50 * K - 4.5 . (6.2)

In the avove equation, and in order to simplify its
form, the units of "A" and "I" which define the parameter "K"

are chosen to be in ft. and in“ respectively.
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The negative sign in equation (6.2) inherently means
that for practical design purpdse, the secondary longitudinal

stresses can be neglected for values of K less than 3.0,

Although the accuracy of equation (6.2) is question-
able outside the range of parameters used in the studied
examples, it provides, however, a rational and physical under-
standing of the torsional behaviour of box bridges. For the
purpose of.demonstrating such a behaviour, equation (6.2) has
been used to determine the magnitude of <5£ / oy for a wide
range of the parameters I/A2 and L/b. The results are shown
in Figures (6.2) and (6.3). By studying the curves in these
figures the following conclusions can be made:

(1) For constant ratio of I/A2 the ratio etf/c;‘ is
almost linear, and is less than 10% for span to width ratio
greater than 10, however, for smaller values of L/b the stress
ratio starts to increase very rapidly.

(ii) By decreasing the ratio of I/A2 the stress ratio
is recuced. This reduction, however, is more significant for
smaller values of L/b up to 10 and negligible for L/b more
than 15.

6.3 TRANSVERSE STRESS

‘ine maximum transverse torsion bending stress has been
found to occur at section (BA) at the edge of the vertical web

stiffeners. This stress is dominated by the transverse bend-

ing stress rather than in-plane stress. However, this bending
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stress is largely dependent on the following factors:

(1) The geometry and stiffness of the web stiffeners.
This has been changed in the examples according to design re-
quirements.

(ii) The relative transverse stif fness of the web and
the deck plate. However, the transverse stiffness of the deck
is mainly governed by the stiffness of the cross beams. This
stiffness has been changed in the examples with the change in
the length of spans between the webs.

(iii) The ratio of span to depth L/d. This ratio has
not been fixed in any two of the examples considered. This,
therefore, adds more difficulty in inspecting the rest of the

parameters involved in the problen.

In view of the above, it has been found impossible to
perform a parameter study for the maximum transverse bending
stress by using the results of the solved examples. However,
the following comments can be made by studying the results
presented in Table (5):

(i) The stress ratio éﬁf / o> for tae same bridge
span is greater for cross sections of shallower shapes provided
that the lateral wall stiffnesses of the box are the same,

(ii) The stresc ratio 5Eﬂ/c§; is most effectively re-
duced by decreasing the span to deptn ratio L/d.

(iii) The stress ratio 6-71‘ / o7 1in Dboxes with fixed
ends is half that of simply supported boxes.

(iv) Except for very low L/b ratios, the transverse

stress ratio éHTJ/G:'is always greater than the longitudinal
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stress ratio 6 /6 .
(v) For long span bridges the percentage ratio of
N\
67 /G did not exceed 3.9%, however, for short spans it

increased up to 11.0%.

77
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7. RECOMMENDATIONS TO ACCOUNT FOR TORSIONAL
DEFORMATIONS IN BRIDGE DESIGN

It was thought advisable to describe these recommend-
ations through an outline of a suggested design procedure for
the particular type of bridge considereé in this investigation.
This procedure is summarized in the following steps:

(1) A very rough estimate of the bridge cross section
is determined by the designer using his practical experience.

(ii) The parameter (k) is computed.

(iii) The deck is designed according to AISC (Ref. 41)
as described in the design example given in Appenaix C.

(iv) The bridge cross section is designed by the con-
ventional means, as if it was a beam in flexure without twist.
However, tne live load plus impact are increased by a certain
pecrcentage to account for the longitudinal torsional bending
stresses. This increase can be obtaineda by substituting the
parameter (k) in the following equation derived from equation

(6.2);

percentage increase = (1.5 k = 4.5) =+ e

where "e" is the eccentricity of the live load.
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(v) Web stiffeners are proportioned for the shears cor-
responding to the reactions of the deck acting as a beam strip
on undeflecting supports.

(vi) The stresses due to dead and live load are
calculated using the established cross section and compared with
the allowable values.

(vii) If the section is overstressed, the following is
suggested to reduce the longitudinal torsional bending stresses:

(a) If the ratio of length of the bridge to the width of
the bottom flange is less than 10, it is recommended that this
width be increased. &

(b) If the above ratio is more than 10, it is recommended

the flange proportions be revised.

It should be emphasized here that the decrease in
longitudinal stresses is not markedly changed if the number or
stiffness of the diaphragms are increased.

(viii) It is necessary to repeat steps (ii) through (vii)
only for substantial changes in the proportions of the cross
section.

(ix) The peak transverse bending stress in the web
stiffener is estimated by performing one run of the computer
program considering live load on one side of the bridge. If the
stiffeners are highly overstressed, it is strongly recommended
that the number of interior diaphragms ve increased. Two dia-
phragms at the third poiats are sufficient to reduce the stress
to a small value. In order to avoid fatigue failure, special
consideration should be given in the design of the weld at the

junction between the web and top flange.
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8. SUMMARY AND CONCLUSIONS

8.1 SUMMARY

A review of the theories dealing with the torsional be-
haviour of thin walled beams has been presented in Chapters 2
and 3. The applicability of such theories in the design of
box girder bridges is investigated. They have been classified
into two groups; (1) theories dealing with beams of non-deform-
able cross sections, (2) theories dealing with beams of deform-
able cross sections. In each group, solutions hzve been present-
ed for particular problems of single cell box girders under
torsional loading. Through these solutions, the effects of the
loading conditions, shape of the box, length of girder, dia-
phragm stiffness and location on torsional bending stresses have
been discussed and preseated in many cases by curves. For some
of these problems, comparisons have been made for solutions ob-
tained by different theories, and their accuracy has been dis=-

cussed.

Based on the three dimensional plate structure program
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in Ref. (20), a finite element computer program is developed

for analysing single cell orthotropic box girder bridges. The
problem of preparing by hand the large amount of input inform-
ation for the program is reduced to a simple matter of prepar-

ing very little basic input data on cards.

Another program is developed to interpret automatically
the large amount of computer output for the specific type of box

girders used in this investigation.

The finite element method of analysis, the development
of the computer programs and the verification of their validity

are presented in Chapter 4.

In Chapter 5, the finite element program is used to
estinate for some chosen examples of single cell steel box girder
bridges the longitudinal and transverse siresses which arise
from torsionzl deformations. The examples are for different
box shapes, lengths and end conditions. ‘fhe torsional benaviour

of these boxes are explained and discussed in detail.

A parameter study based on the torsional study performed
on the above mentioned examples is given in Chapter 6. The
percentage ratio of the maximum secondary longitudinal stresses
( é}i ) and the reference bending stress (G:’) is found to be re-
lated to a new parameter (k) by a simple straight line relation-

ship (equation 6.2).

In Chapter 7 and through a suggested design procedure,
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recommendations are given to account for the torsional deform-

ation in bridge design.

8.2 CONCLUSIONS

8.2.1  COMPUTER PROGRAM

The computer program developed in this study is a
powerful tool for investigating any problem that may face the
designers in the analysis of box girder bridges. It can be used
for arbitrary loading and boundary conditions. It can also treat
the cases of varying dimensional and natural properties through-
out the structure. It has, however, the disadvantages that it
involves the solution of a very large system of equations for
structures of the complexity of multicell box girder bridges.

The size of this problem is large even for present day computers,
in terms of storage and computer time required for the solution.
In addition, the accuracy of the program is dependent on the

fineness of the subaivisions used in dividing the structure into

finite elements.

It is expected, however, by the continuous development
of fast digital computers of large storage capacity, that it may
be more practical to use the program as a direct method for the
elastic analysis of a specific bridge under a given loading or
temperature changes. In this case the program may eventually
be used to replace the present semi-empirical methods used in
analysing complex bridge systems. It may also be used as an

aid in studying the effect of different parameters on certain
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internal forces or load distribution properties. This will
provide a means for developing improved simplified analysis
procedures similar to those presently being used for design.

An example of the latter application is demonstirated in the

parameter study presented in Section 6.2 which leads to the
simplified formula for evaluating the secondary longitudinal

stresses developed in a single cell box due to eccentric line

loads.

8.2.2 BEHAVIOUR OF SI.iGLE CELL BOX GIRDER
BRIDGES UNDER UNIFORM TORSIONAL LOAD

Analyses of single cell box bridges typical of those
used in highway bridges show that torsional deformations give
rise to substantial longitudinal and transverse stresses which
have been completely ignored in the conventional design. These
stresses become more important for bridges with a high ratio of
live load to uead load, with more eccentric loads, with wide and

short siructures and with briages of smaller I/A2 ratio.

The torsional bending siresses can be effectively re-
duced by introducing intermediate diaphragms. The reduction,
especially in the longitudinal stresses, is insensitive to

practical variations of diaphragm stiffness.

For the specific types of problem studied in the present
investigation the following is a summary of the most important

remarks and conclusions that can be made on the torsional bend-

ing stresses:
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(a) Longitudinal Stresses

(i) I'he longitudinal stresses are maximum at midspan
in the case of simply supported ends, and at the ends in the
case of fixed ends. They are almost equal in magnitude in
both cases and they occur at the corner sections of the bottom
flange.

(ii) The use of theories that neglect the longitudinal
bending stiffness of the wall elements of the girder (e.g.
Wlassow's theory) may lead to inaccurate results in short span
bridges. In some of the examples considered, the bending stress
was about 355 of the total maximum longitudinal stress. This
was at the corner sections of the top flange since it is neavi-
ly stiffened in the longitudinal direction.

(iii) The maximum longitudinal stress ( EE’) increases
with the parameter (k).

(iv) It is expected that smaller values of longitudinal
stresses would be produced if the line load was placed between
webs rather than over the webs. In the former case the load
has a chance to distribute longitudinally before it is picked
up by the web; while in the latter case, the effect of shear lag
tends to produce a concentration of stress at the web., It is
necessary to differentiate between this kind of stress con-
centration and the local stress concentration due to point load-

ing.

(b) Ifransverse Stresses

(i) The maximum transverse stresses (@f ) occur at the

free §dge of the vertical web stiffeners at their connection
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with the top flange.

(ii) The stress &7 1is dominated by the bending stress
part, and is reduced approximately 50% by changing the end
conditions from simple supports to fixed supports.

(iii) The transverse stress is a function of the
geometry of the vertical stiffeners and increases with shgllower
box shapes and larger span to depth ratios.

(iv) The magnitude of GE' may reach a sizable value,
and undergo full reversal as lanes on alternate sides of the
bridge are loaded. The high potential number of cycles of such
load reversal suggests a special consideration in the design of
the weld at the junction of web stiffener to top flange where

fatigue failure may occur.

8.3 RECOMMENDATIONS FOR FURIHER STUDY

(a) Finite Element Program

There are several possible modifications which could be
incorporated into the program. Some of these modifications are
for better accuracy, others which appear desirable because they
would improve the usefulness or flexibility of the program or
reduce the computing time. These modifications are summarized
below:

(i) Tne coupling action between in-plane and bending de-
formations can be included in the analysis by the replacement
of the in-plane elasticity matrix (@;) and the bending elasticity
matrix (Eb) by the totval elasticity matrix (ﬁ) derived in

Chapter 4.
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(ii) Modification of the program can be made to in-
clude structural elements in which the direction of ortho-
tropy does not coincide with the structural axes.

(iii) Modification of the structural idealization pro-
gram can be made to include bridges of different geometrical
shapes (trapezoidal, multicell, .....).

(iv) It is believed that the capacity of the program

cannot be materially improved at the moment unless a link system

is used in the program. This may need basic modifications in
the procedure of formulating the program.

(v) Further improvement can easily be added to the
interpretation program to represent the results graphically by

means of an automatic plotter.

(b) Torsional Study

The computer programs used in this investigation can be
used to perform parameter studies for reinforced concrete bridges
or for steel bridges of reinforced concrete decx subjected to

torsional loading.

Further examples of the type used in this investigation
but with different ranges of parameters could be solved to con-
firm the parameter study wmade for the longitudinal stresses (éir),
and to complete the data necessary to perform another parameter

~
study for the transverse stresses ( G7g ).

It is possible to modify the program to perform a torsional

study of multicell box girders using the present capacity of
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computers. This can be achieved in two steps; (1) A coarse
mesh of finite element idealization for the whole structure
is used to obtain an approximate solution for the nodal dis-
placements and stresses in the elements, (2) at locations
where more accurate results are recuaired, a solution for this
particular part of the structure is obtained by refining its
mesh, applying the external nodal forces within this part and
imposing the nodal displacements at its boundary which were

obtained from the first solution.

Further study is suggested to investigate the effect
of torsional bending stresses on buckling consideration in

the design of box girder elements, especially the webs.



TABLE (1)

Variables and Parameters Included in the Studied Examples

Variables Parameters

o b L L 1 1 1

= st | Length Width Depth Moment of Area o= o = Vi K=57-

o SaL @ | (a) | Inertia (1) | (a) i R e e SRRE

g &3

gj § feet feet feet in4 ft2 - - - - -

1 200 24 8 839,300 192 3 8.3 | 25 22.8 5.55

2 £ | 200 24 12 1,969,200 | 288 2 8.3 | 16.6 |23.8 5.78
£

3 3 80 24 8 705 4200 192 3 3.3 | 10.0 [19.2 8.62
3

4 £ 80 12 4 82,750 48 3 6.6 | 20. |35.9 10.4
&

5 80 12 6 199,550 72 2 6.6 | 13.3 |38.4 11.0
/7]

6 £ | 200 24 8 839,300 192 3 8¢3 | 25. [22.8 5455
[o]
£,
2

7 a | 200 24 12 1,969,200 288 2 8.3 | 16.6 |23.8 5.78
g

8 E 80 12 4 82,750 48 3 6.6 | 2040 |35.9 10. 4

88



TABLE 2

COMPARISON BETWEEN FINITE ELEMENT SQLUTION AND THE THEORFTICAL
SOLUTIONS FOR THE DEFLECTION AND STRESSES AT THE CENTER OF AN
ORTHOTROPIC PLATE LOAED WITH 1 KIP AT THE CENTER

Author Method of Solution Deflection Stresses at Top Stresses at Bottom
of Deck Plate of Stiffeners
in p'SOi pOScic
Gx Sy Ox Sy
Clifton +|Single Series 0.004505 =230 -163 +1092 +1059
(]
. &
(Oct. 1963) | X | poypre series 0.004503 -227 -163 +1073 +1055
Ref. (36)
g‘ Single Series 0.004257 -280 =220 + 999 + 937
&
5‘ % Error 5.5 +27.1 +35.1 - 9.1 ~11.6
Hudson Descrete Element 0.00423%4 =218 -121 +1030 + 782
(Oct. 1968) | Analysis
(Ref. 37) % Error -5.9 -3.96 25,2 3.96 25.2
Finite Element 0.,004880 ~212 -171 + 990 +1160
Analysis
%Error +8¢3 5¢5 4.9 =7.75 +9.95

68



STRESSES IN THE STUDIED EXAMPLIS AT SECTION AD

/.(Max. -ive Stress){ /(Max. +ive Stress) | / Max. |/ Max. Max. Plain Stress
ExampLe B L = Sorosa” | Simens
Noe. Stress Condition Value Location| Value Location / / Max. Bending Stress
YA X/ L = 7 xX/L = Go e

1 27 0e5 20 0623 2 23 11.5
wm

2 é 3_% 30 05 27 0022 2 28 14

3 g E é 44 0e5 60 0623 1 60 60

4 0 w3 38 045 31 0.20 1 37 37

5 q 37 0.5 31 0420 1 36 36
-
o

6 5 g E 26 0.0 11 030 1 25 25
& % & 28 040 12 0.29 1 27 27

&

8 A & 38 0.0 18 030 38 38

1 4 0.21 5 0.21 4 1l 0.25

2 o 5 0.50 3 0.21 4 5 l.25
Q Q ‘t’.

3 @ =28, 9 0e5 7 0.18 3 9 3.0
[} B &

4 e aa 7 045 8 0422 7 7 1.0
w2

5 9 8 0.5 6 0.22 5 8 1.8
~

6 2 11 0.0 3 0425 2 11 55
2 v &
& = a 13 040 5 0425 3 13 4.3

06



TABLE 3.b

STRESSIS IN THE STUDIED EXAMPLES AT SECTION AB

/ (Max. -ive Stress) | (Max. +ive Stress) | ; Max. |/ Max. Max. Plain Stress
Exemple Eng S = Streas® | Strens
No. Stress | Condition | Value Location| Value Location / o Max. Bending Stress
V4 x/L = V4 X/ L= - Gy~
1 " 27 05 20 0423 2 23 11.5
2 & ® {3. 30 045 27 0.22 2 28 14
o 2 0
3 £ g & 44 0.5 60 0.23 1 60 60
& h s
4 2 @ 38 045 31 0420 1 37 27
5 £ 37 0.5 31 0.20 1 36 36
™
6 ié ° ‘g 26 0.0 11 0430 1 25 25
7 g ;H‘ § 28 0.0 12 0.29 1 27 27
8 = @ 38 0.0 18 0.30 1 38 38
1 5 0.5 0.20 4 1.25
2 m - 3 0.5 0.22 1 3.0
[} O K
3 a a8 3 0.5 16 0.20 3 14 4.7
] g2 A
4 5); a2 7 0.5 4 0.20 7 7 1.0
5 o T 0.5 8 0.20 5 7 1.4
(5]
$~
6 9 - 11 0.0 3 0425 11 5.5
()] T
-7 g 29 9 0.0 4 0425 1 9 9.0
- 2
8 & ~a 11 0.0 025 2 11 5¢5

6



TABLE 3.c

STRESSES IN THE STUDIED EXAMPLES AT SECTION BA

7 (Max. -ive Stress)| / (Max. +ive Stress) | / Max. |/ Max. Max. Plain Stress
Example End Gy G~ Bending| Plain
. . X Stress Stress .
No. Stress | Condition | Value Location} Value Location / / Max. Bending Stress
V4 x/L = 7 X/L a G G5~
1 " 17 020 27 0450 2 25 12.5
2 ] o 18 0420 27 050 2 25 12.5
o - f
3 :; g« & 45 0.22 36 0.50 1l 44 44
4 “ o g 24 0,22 | 3 0450 1 30 30
5 £ 23 0.20 | 35 0.50 1 34 34
il
6 a ot 11 0.25 | 28 0.0 1 27 27
7 g "8 11 0.25 | 28 0.0 1 27 27
- <]
8 2 13 025 33 0.0 32 32
1 0.25 47 022 49 1/8.2
2 o £ 0.25 38 0.22 41 1/6485
7] [}
3 @ 2 8. 16 0425 25 0422 40 14 1/2.85
1 3] g8 A
4 & a3 10 0425 66 0.22 70 3 1/23.5
5 2 8 0.25 32 0.22 40 5 1/8.0
£
Q
z st 0.25 21 0.25 23 7 0.3
o O
7 E B B 0.25 18 0425 20 7 0.35
] =3
8 2 0.25 31 025 35 8 0.23

26



STRESSES IN THE STUDIED EXAMPLES AT SECTION BC

TAELE 3.d

/ (Max. -ive Stress) |/ (Max. +ive Stress) | / Max. [/ Max. Max. Plain Stress
Exempl e Fnd / & / o5 Bending| Plain
Noe. Stress | Condition Value Location | Value Location St}'es S;ress Max. Bending Stress
/ X/L = A %X/L = o G
1 " 18 0.20 25 045 24 34,40
2 2 o 18 0420 27 0.5 4 25 625
3 & & a1 0420 27 0.5 17 37 2.20
w
4 o ?a 25 0.20 30 0.5 17 25 1.48
o
5 £ 24 0.20 33 045 14 28 2.00
3 £
o o 11 0.25 25 0.0 24 3.00
ty ®N £
§ o g 10 0.25 28 0.0 27 13.50
6 0425 37 0.0 25 28 1.12
1 1 0420 2 0.2 1 1 1.00
2 @ 2 0420 6 042 6 2 0.33
o o B
3 o = 8 3 0.20 3 0.5 1 3 3.00
[ g
4 b a3 1 0.20 2 05 1 2 2.00
w
5 2 1 0.20 2 0.5 1 2 2,00
&~
6 4 < & 1 0.20 7 0.0 1 7 7.00
& 22
7 g o B 1 0.20 5 0.0 1.66
= @ 1 0420 040 2.00

¢6



VALUES OF THE PERCENTAGE RATIO G‘;‘/c,—; OBTAINED FROM

THE STUDIED EXAMPLES FOR UNIT ECCENTRIC LINE LOAD

TABLE 4

. S Max. Longitudinal Sec. Str. é" for Unit Eccentricity
= = L x 100
2 © Go
'g hat 'S. Sections
m o 5
5 ¥
S X AD AB BA BC
1 2.25 2.25 2.25 2,10
° g 2 2.50 250 2.25 2425
& § 3 5.00 5.00 3.75 3e41
o
w3 4 6435 6435 5.20 5,00
5 6415 6.15 5.80 550
{:?, 2.16 2.16 2434 " 2410
o]
% § 235 2435 2.34 2.34
= a 8 6430 6430 5450 6.15

%6



VALUES OF THE PERCENTAGE RATIO G,’I,/G;’ OBTAINED FROM

THE STUDIED EXAMYLES FOR UNIT ECCENTRIC LINE LOAD

TABLE 5

a .g: Max. Transverse Sec. Stre. Gd’l‘ for Unit Eccentricity

g X 100
o P .Ec’ )

ks =% Sections

© & AD AB BA BC

" 1 0.415 0.42 3.90 0.16
%‘5 2 0.415 0625 3,15 0.50
5 § 3 04750 1.32 2.10 0.25

«n 4 1.330 1.16 11.00 0e33

5 1.330 1.16 54320 0433

w
. g 6 0.920 0.92 1.75 0.58
ERS 0.660 0.75 1.50 0.42
a3 2.150 1.83 520 0.66

G6




96

A | Interior diaphragm
End diaphragm ' :
'r— — . ': L AN ' H
i I ! I| '
I . V/ I !
| i I ] |
1 )| 1L !
b
A -

(a) SIDE ELEVATION

Top flange deck

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\W

\\\\\—-Bottom flange

(b) CROSS=SECTION A-A

Wedb

FIG. (1.1)
TYPICAL BOX GIRDER BRIDGE
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FIG. (1.4)
LOADING ARRANGEMENT

FIG, (2.1)

IN~PLANE DISPLACEMENTS OF A POINT
DUE TO TWISTING OF THE SECTION
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1. B = I
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FIG.(3.1)
THE RATE OF TWIST AT VARIOUS

be x;2a+b)

DISTANCES FROM THE RESTRAINED END.,

(Karman & Chien)
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2.0} B = 0.1
1.0}
A
2b
2b »
\ |
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o
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~

Circumferential distribution
of axial stress at the fixed
end.

~{

N .

> 7/2a—— 2@ Fig. (3.2)
+ -l.Or-

=

(Karman & Chien)
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Fig. (3.3)

Maximum Axial Stress at tne Corner for
Various Rectangular Thin-Walled Sections.




Ratio between axial stress of Umansky to Panovko

FIG.(3.4)
COMPARISON BETVEEN THE TVO APPROXIMATE THEORIES OF UMANSKY&PANOVKO
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0.2 O.4 0.6 0.8 1.0
FIG.(3.6)
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FIG.(3.7)

EFFECT OF SHAPE RATIO ON RATIO OF AXIAL SIRESS DUE TO

TORSION BENDINDIG TO FLEXURE STRESS,FOR BEAMS OF NON=-
DEFORMABLE SECTIONS




105
@ G 0.8 I |
b4
EC l p P
L T
}o-X ~u
— L —
0.4 = f/
/ T
0.2 / '
- g — o}
/ et
0.0 __{,V l ' l X/,
0.2 0.4 0.6 0.8 1.0
FIG. (3.8)
EFFECT OF DIAPHRAGM LOCATIO:I ON Gi and G';
P %
ST, ¥ '
BU ¢ | -
& . i P
e = fii
. \
Oy oo | o j:E:»h____ e
F (Fixed Fnds)
N
AN ki
0.2 Ggﬁ, .—\
S (Simply [Supported {Knds) \
0. X/
0 0.1 0.2 0.3 0.4 0.5 /L
FIG. (3.9)
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FIG. (3.10)
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Rigid Joints

Triangular Plane
Stress Elements

FIG. (4.1)
IDEALIZATION OF A BOX GIRDER BRIDGE BY EQUIVALE:T
GRIDWORX AND PLANE STRESS TRIAGULAR FLEMENTS
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Orthotropic Triangular Elements

FIG. (4.2)
IDEALIZATION OF A BOX GIRDER BRIDGE BY EQUIVALENT
ORTiIOROPIC TRIANGULAR ELEMEUTS

FIG. (4.3)
ORTHOTROPIC PLATE ELLMENT
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FIG. (4.4)

FIG. (4.5)
STRESSES I AW ORIHOTROPIC ELEMENT DUE TO UNIT AXIAL
STRAIN I [:E Y-DIRECIIO.J

STRESSES IN AN ORTHOTROPIC ELEME:T DUE TO UNIT AXIAL
STRAIN I THE X-DIRECTION .

(1-v2)
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FIG. (4.6)

STRESSES IN AN ORTHOTROPIC ELEXENT DUE TO UNIT
IN-PLANE SHEAR STRAIN

FIG. (4.7)
STRESSES IN Al ORTHOTROPIC ELEMENT DUE 10 UNIT
- CUXVATURE I THE Y-DIRECTIOXN

(L-¥2)
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(1-v2)
FIG. (4.8)

STRESSES Ii# Al ORTHOTROPIC ELEMET DUE TO UNIT
CURVATURE I THE X-DIRECTION

; FIG. (4.9)
STRESSES IN AN ORTHOLROPIC EL:MENT DUE TO UNIT
TORSTOHAL STRAIN
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FORH OF SUBDIVISIONS USED
IN THE IDEALIZATION PROGRAM
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FIG. (4.11)

FORM OF SUBLIVISIONS USED IN IDEALIZING THE PLATE
DIAPHRAG:HS

(a) () (c)

FIG. (4.12)

GEOMETRY OF IHE STIFFEIERS WHICH CAN BE USED IN
THE PROGRAM
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Macro-flow chart showing the integration of the
programs used to analyse box girder bridges.

START

Orthotropic properties
program

* Read data

* Calculation of ortho-
tropic properties for
the plane and bending
stress parts of the
program.

# Calculation of geo-

metric factors used in
the modification of
stress and strain
matrices.

# Print out the results,

Subroutine CORD

Read data

Subdivision of the
structure,

Calculation of nodal
point numbers and
co-ordinates,

| call CORD |—
)

|
L

Y

£
| [Print out of nodal

numbers and co-

| lordinates.

[ ca1ll nopaL F—

Print out of element
| |numbers, (I, J, K),

and material ‘
| |property number.

l
I
l
!
I
|

Subroutine NODAL

Read data
Numbering the elements

Calculation of the ele-
ment nodal numbers

(I, J, K) and material
property number,

|

. - — jl _ —— = d

Modified base program

IOutput]

: t

't

Print out of dis-| |Punched cards for
placements and displacement and
stresses. stresses.

L

Feed in the interpretation

program
(see next page)
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Results from main program

:

Interpretation program

# Read data (punched cards + 5 cards)

* Sort and average the stresses for the
webs, top flange and bottom flange.

* Calculation of bending stresses at
edge of stiffeners.

* Calculation of combined in-plane and
bending stresses at the top of the
plate and edge of stiffeners.

# Fitting curves for averaged stress
points in the webs, top flange and
bottom flange.

# Calculation of corner stresses by
extrapolation.

# Calculation of corner siress ratio

(% /7).

# Print out of results.

Draving of stress distribution curves.
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Appendix B W=1000 lbs
Comparison between 3-D finite element , ' X
methcd and other theories in the -
solution of shear lag problem. « /./ 1
|i/;luz /b =1.71
X

Orthotropic plate theory./\ Experimental rezults.
—— —- Finite elements (Pl.Str.)® 3-D finite elements.

~——.— Stiffener-sheet theory.

5 ]
G
1 ”,/f”'
i 6 A//,,z/””
[ _é_—‘
¥ L T —
5 4
T .5 =
: 2=
S /7
3 L
S yed
- Z
€3] 3 X/l
.08 .16 2L 032 40 A48
LARGE STIFFEIERS
.7 A

e & =
_/ w——
06 v
/’-‘
=

Effective width ratio - b/b

.08 .16 24 32 40 48

SMALL STIFFENERS




APIENDIX "C

DESIGN EXAMPLE OF BOX
GIRDER BRIDGE

Span = 200 ft Width = 24 ft Depth = 8 ft
End conditions: Simply supported
Material : A-36 Steel E = 29,000 ksi Y = 0.30 f& = 36 ksi

.

Live load : Standard ASSHO H 20-44

DESIGN PROCEDURE

(A) DESIGN OF THE DECK: The procedure and notations given by AISC manual (Ref. 41) are applied here.

(A.1) CHOICE OF DECK PLATE THICKNESS

Rib spacing = 12 in Design pressure for 12,000 1bs wheel = P = 59 psi
The deck plate thickness tp> 0.007 x 12x 259 = 0.328 in

Choose tp = 3/8 in

Spacing of cross beams is chosen = 5 ft.

"ot




)

(A.2) SECTION PROPERTIES

(A.2.1) LONGITUDINAL RIBS

N

Wheel width = 23 = 22

23 _ 22
a 12
Using chart (2) case 1

= 1083

with the Tib = 0.8 % 17.6

. Effective rib spacing = a; = (—ZQ ) *a
Effective rib span = Sl = 0.7 S
&'
Intering chart (1) with o _ 17.6
Sl 42

Floor Beam

N\

AN
Rib ——_  \
| , .\Eiftfif 2
f o r’ N
- . !
, S=5. 0 _..__,4
= 17.6"
= 42.,0"

0.42 the effective width of the deck acting

14.0"

Consider a rib of dimensions 8.5" x 0.5 (Fig. c-1)

y = 1.982" y = 2.7"

Moment of inertia fh = T72.0 in4

Section modulus at top of plate

Section modulus at bottom of rib

]

-

RT

RB

33.4 in3

10.72 in’

Fig. (Cc-1)

Y

-

L N-A ) “_1_7 = 1.982

‘705 “

W

ceT




The values of IR ard SR are recalculated for the computation of the effect of floor

flexibility by considering a = l.1 a = 13.2".

. _ . _ .3 _ .3
The corresponding values are IR = 7067 in |, SRT = 31.5 in SRB = 10.7 in
(Re242) FLOOR BEAMS
-
Assuming the effective spacing 8§ =S = 60" and entering Chart (1) with
s" 60
T %4=13 ° 06193 we get the effective width of plate acting with the floor beam
S, = 60"
) 60 ____,4
Consider the cross section shown in (Fig. Ce2) ) laag' <
: —
Yy o= 3.94" I wx =390
- - - ¥
Moment of inertia IF = 1620 in4 20" |
Section modulus at top of plate IFT = 394 in3 6‘%. EEJEEB
-6
Section modulus at bottom of beam = IFB = 97 in3 -
Fig. (C=2

9¢T



(Ae3) RELATIVE RIGIDITY COEFFICIENTS

4
¥ 1Ip _ _(ean2)? 7007 _ 1.19
a-s3-1r4-1F 12(60)”\ 71620
‘ __t;__‘_ 55" (0.375)> . (0.81%60)* |
¥ = . = * . - = 0.0024
10.92 T, o> wd 10.92x72 (12)3, x4

Since ¥ is less than 0.006 no correction of the effect of deck plate rigiuity is needed in

the calculation of bending moment.

(Ae4)  ELASTIC STABILITY OF RIBS

g 0.5 1

= 8% = 17 K = 1.0 (See the manual, Appendix II, IT.1l.3.1.1)

£, = Ideal buckling stress = (26,200) x (1.0)(-1—17-)2 = 9047 ksi

Since fi > fy the critical buckling stress can be found by entering Gurve 1, Fig. I1.2

ST



(Manual) with fy/fi = 36/90.7 = Ou4

- fcr/fy = 0.96

f = 0096x 36 = 3406 ksi

cr

with factor of safety =

The allowable comp. stress = 34.6/1.5 = 23.10 ksi

The actual max. compe. stress = 17.03 ksi (see Table C.l) oK

(A5)

DESIGN LY CHARTS FOR AASHO LOADS

Tollowing the same procedure described in Section 11.2.3 of the manual, the results are

found as follows:

(A.5.1) BEENDING MOMENT IN A SYSTEM WITH RIGID FLOOR BEAMS

(Ae5.1.1) LIVE LOAD MOMENT IN RIBS

At midspan Loading "a"
Loading “al"
At support Loading "d"

RC

RS

Tel0 Ko ft
7«10 Ko Tt

<5455 Keft

1.5




(A+5.1.2) LIVE LOAD MOMENT IN FLOOR RBEAMS

The max. bending are found to be:
Loading "A" M

Loading "B" M

(Ae5+2) DEAD LOAD MOMENTS

Ribs

Weight of: 2" Asphalt = 20.0
3/8" Deck plate = 15.3
2"x8%Y% Ribs = 11.8
TOTAL = 47.1

Floor Beams

Weight of: Asphalt, plate and ribs

Floor beam
TOTAL

— 2
0.268x24

Span Moment = g = 19420 K.ft

Plf

1]

Y

MOMENTS IN RIB

MIDSPAN MOMENT

i

235.5 P1f

32.5 P1f
268.0 P1f

SUPPORT MOMENT =

0.0471%25
24

0.0471%25
- 12

]

0,05 K.Tt

0.10 K.ft

65T



(Ae5.3)

EFFECT OF FLOOR BEAM FLEXIBILITY

(A.5.3.1) ADDITIONAL BENDING MOMENT IN RIBS

(a) Positive moment increment:

Loading

[iPN i} — . .
a A MRC = 1492 K.ft
"a, " A M. = 1.00 KTt Total moment increment is for loading (a+h)
AM = 4.62 Kof‘t
RC _—
m, 1 — - .
h a MRC = 2.70 K.ft

(b) Negative moment reduction:

The reduction

PaY MRS = 2415 Koft

(Ae5.3.2) BENDING MOMENT RELIEF IN FLOOR BEAMS

Using Charts 30 and 32 for ¥ = 1.19 S =

to be =

&M, = 210 K.ft

5.0

is computed for loading "d" and using Chart 24

Loading "B" , the reduction is found

oht



(A.6) STRESSES IN THE DECK WHEN CONSIDERED AS THE FLANKGE OF THE MAIN GIRDER

The max. stresses in this case will be obtained in Section (B.4).

(B) DESIGH OF MAIN BOX GIRDER (Fig. A.3)

pVTyp

The thickness of the web plate t = 53665_ (AssHO, Clause 1.7.71), with depth of web

D= 96 in , and assuming compressive bending stress = 16.0 ksi, the web thickness
t =% in.
The bottom flange thickness is assumed ",

(B.1) LOADING

(a) LIVE LOAD: The standard ASSHO loading HS.20-44

™t




(Be2)

(b) DEAD LOAD — 200

2" asrhalt = 480 plf ,Q» ¢;;7

3/8" deck plate = 366 "

longitudinal ribs = 333 "

floor beams = 149 " e 24 o —

A" web plates = 325 " i

3" bottom flange = 490 " c — - I S S B Sg,;
J L

1

diaphragms and
web stiffeners,-- 107 "

\Floor beam 4255

Total D.L = 2250 plf o @ s o *
Stiff. 1,x5 @ 7
5395
Sec. A-B
MAXIMUM LENDING VMOMENTS D
The max. B.M. is at midspan Fig. (C.3)
2
() B.M. due to D.L.: 1 = 222 g (200)° _ 11250 K.ft
. _.52 _ _ __.50 __ -
(b) B.M. due to LeL.: Impact factor = y="57c = 306 4 155 + 200 = 1.155

Trom ASSHO Page 299, For L = 200 and using impact factor = 1.155 the bending moment

due to L.L ML L= 4100 X 2 X 1.155 = 9500 K.ft

eh1



DESIGN BENDING MOMENT M= MD-L + ML-L

(B+3) MAXIMUM- SHEARING FORCE:

The maxe S.F. is at the supports

2.25x200

(a) Max. S.F. due to DeL. : Spup, = 5

[

1]

11250 + 9500 = 20750 K.ft

225 KIP

N
(b) Max. S.F. due to L.L. : (See ASSHO page 299), for span = 200 and

impact factor = 1.155 SL 1 = 90 x 2 X 1.155 = 205 KIP
Design shearing force for each web = 3323292 = 215 KIP
(Be4) SECTION PROPERTIES
Area of the section = 446 in2
Distance from top flange to C.G. of section = 42.55 in )
g (See Figc Co3)
Distance from bottom flange to C.G. of section = 53.95 in

Moment of inertia of the section

839300 in*

ehT



(B.5) STRESSES DUE TO MAIN SYSTEM

20750x12x4255

Stress at top of deck plate = - 839300 = - 12,70 KSI
. _ 20750x12x34.125
Stress at bottom of deck plate = 639300 = 10.00 KSI
20750x12x53.95
Stress at bottom flange = + 839300 = + 16,10 KSI

Allowable stress = 20.0 KSI

(C) SUMMARY OF MOMENTS AND STRESSES IN TOP FLANGE

The results obtained in Section A and B are listed in the following Table. It can be

seen that the stress did not exceed fall = 20,0 KSI.

LA



TAELE C.l
Section bjjodulus Stress KSI
Bending in
Location Loading Moment Ko £t Top Bottom Top Bottom
(1) | L.L. Rigid System 7.10 3344 10.72 - 2.55 790
(2) | L.L. Effect of Floor Flexibility 4.62
(3) | D.L. Superimposed 0.05
2| (4)| Toter (2) + (3) 4.67 315 10.70 - 1.78 5420
s
(5) ] Total System (A) - 4.33 13.10
(6) | Total System (B) -12.70 -10.00
(7) | Total Stress -17.03 0ok
w | (1) D.L. 19.20 39440 97.00
§ (2)| L.L. Rigid Floor 324.00
& (3)| Le.L. Effect of Floor Flexibility -210-00
=
TOTAL 133-20 - 4.15 16050 OeKe

GhT



(D) DESIGN OF WEB PLATE

215000

The avarage shear stress fv = §E§5:§ = 4450 psi
0 00 X O.
The distance between transverse stiff. d = 11,000 t _ 11000 2 = 83.,9"
v z, Vaaso

\

The dimensions of the transverse stiffeners are chosen 5.0" X 0.5" and spaced every 7 O.

(These dimensions satisfy the requirements of AASHO (Clause 1.7.72)).

LA
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