WEDGE PLACEMENT OPTIMIZATION PROBLEMS

by

Marek Teichmann

School of Computer Science

McGill University, Montréal

October 1989

A THESIS SUBMITTED TO FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright © 1989 by Marek Teichmann

Abstract

In the Euclidean plane, consider a point set S and a wedge W defined as being the
intersection of two half-planes whose bounding lines intersect at an apex () and form
a fixed angle.

We study the problem of determining the position of 1 relative to S, with
translations and rotations allowed, that minimizes the distance between O and 8
and is subject to the constraint that 5 remains inside 1V One measure of distance
considered js the minimum Euclidean distance from O to 5. An O(nlogn) time
algorithm is presented for the case where 5 is a set of » pants or a sumple polygon
with n vertices. If we are given an appropriate Voronor diagram, the solution can be
obtained in O(n) time. Also an O(n) time algorithm 1s given for convex polygons.

Other measures of distance and related problems are also discussed.

Résumé

Dans le plan euclidien, nous considérons un ensemble S de points et un coin W
définy comme I'intersection de deux demi-plans dont les droites détermunantes se
croisent en O et forment un angle fixe.

Nous étudions le probleme de déterminer la position de W par rapport a S,
transiations et rotations permises, qui minimise la distance entre O et S et qui est
telle que 5 reste dans intérieur de W. Une mesure de la distance entre O et S
étudiée est la distance euclidienne minimale pour laquelle est présenté un algorithme
qui trouve la position optimale en temps O(nlogn) lorsque S est un ensemble de n
points ou un polygone simple de n sommets. Si un diagramme de Voronoi approprié
nous est donné ou si le polygone est convexe, la solution peut étre obtenue en temps
Q(n).

D’autres mesures de distance ainsi que des problémes apparentés sont aussi ex-

POSES

Acknowledgements

I would like to thank my thesis supervisor, Godfiied Toussaint, for offering the
Computational Geometry course where these ideas were borun, for his advice and for
providing a continuing creative setting for this work. 1 also appreciate the advice
of David Avis, as well as the helpful comments of Michael Houle, Gilles Pesant and
Alain Leblanc.

I also thank the Natural Sciences and Engineering Research Couneil of Canada

for their generous support through a postgraduate scholarship.

Contents

Abstract

Résumé
Acknowledgements
1 Introduction

2 Voronoi Diagrams

21 Proximty Problemso oo oo oo
2.2 Definitions . .« . o oL L e e
23 Some Properties L oL o0 e e e e
21 Computing the Voronoi Diagrams
2.4.1 The Site Voronoi Diagram Case
2.1.2 The Polygon Voronor Diagram Case
213 The Merge of Two Voronoi Diagrams
2H Data Structures for Implementing Voronor Diagrams

3 The CWP-cp/cs problems for convex polygons

431 Observations . C. e e e e e e e

311 Contact Vertex Paurs oo oo oo oo
32 The Pathof the Apex

32.1 Obtamng the Minimum Distance
3.3 Algorithms CWP-cpand CWP-¢cs.,

{ The CWP-p and -s problems

i1 Properties of Voronoi diagrams and CLOUD(P,w)
12 Algorithms CWP-pand CWP-s oo oo o000,

5 Conclusion and Further Research

Bibliography

10
10
12
14
15
16
17
18
19

21
22
24
26
27
30

38
40
44

50

54

List of Figures

2.1 Vorono: diagram of point sites. 11
2.2 Generalized Voronor diagram of a polygon (thm solid lines.) Il
2.3 DBisector of a point and a closed segment. 12
2.4 Example of a strip and e-promontory. I
3.1 Closest point isonanedgeof P. X
3.2 Non stable optimal placement. 21
3.3 TFinding the next stable placement o . 25
3.4 DPossible closest pairs. . e e e e e . 28
3.5 Showing how c(a} moves in the same direction as a. 31
3.6 Example of CLOUD(P.%w/2). C e R |
3.7 Theorem 3.13 Casew < w/2. 35
3.8 Theorem 3.13. Casew > /2. 16
4.1 Closest point of P behind a hull edge. 39
42 Obtaining the convex hull from the Voronoi diagram. 10
4 3 Showing monotonicity of a v-path and its relationship with cloud arcs 12
44 A late arc of a circle is contained inside the next circle. 43
4.5 Finding the intersections of CLOUD(H,w) and VOR(P) . A7
51 Atypeofrobothand. e 51

by

*

Chapter 1

Introduction

The study of optinuzation problems 1s an important area of Computational Ge-
ometry Proxinuty problems in the Euclidean plane, such as finding the closest
parr of a pomt set [Kn73] or the largest empty circle in a point set [Sh77.To83b],
involve static optimization More recently, dynamic optimization problems involv-
ing objects that can be translated. rotated or varied in size have been considered.
Chazelle [Ch83] and Fortune [Fo85] give algorithms to determine whether one poly-
gon can be positioned such that it 1s contained 1 another and to exhibit such a
contanung placement. The problem of finding the largest polygon, subject to some
restrichion, that fits mside a given polygon, with various definitions of “largest” (area.
penmeter) has also been studied [BDDG82,Ch86.CYS81]. Those restrictions concern
convexity, number of vertices. and specification of angles Similarly, the problem of
finding the smallest polvgon containing another fixed polygon and satisfying similar
testictions has been loohed at [Ch86,KL85.0AMBS1].

In this thesis, we will be considering a set of closely related prot:lems concerning
a set, either a polygon or a set of points, and a corner or wedge of fixed angle. The
wedge is defined as the intersection of two half-planes, and the intersection point of
the two defining half-hnes 15 1ts aper. The problem 1s then to mimimize the *distance’
between the apex and the set. allowing translations and rotations of the wedge and
subject to the constraint that the set remains inside the wedge. Several definitions

ot distance will be considered for both types of sets.

-6 -

In the case of polygons, the distance mimimized 1s the usuz! distance between
the apex and the boundary of the polygon. This will be called problem C"WP-p,
Closest Wedge Placement for simple Polvgons, or CWP-cp lor convex polvgons In
problems CWP-s for pomt sets. and CWP-cs lor sets of vertices of convex polygons,
1t is the distance fiom the apex to the dosest pomnt in the set. Another measure
of closeness for bath types of sets, the smallest radius ciidde centered at the apex
and -ontaining the set. will be examined in the MimiMax-WTP problem Pimally we
will mention the problem of closing off the wedge with a line segment such that
the triangle created contains our set and has mimmum area or perimeter, this will
be the triangle problem Similar questions without angular restrictions have been
addressed in [(Ch86.KL83]

These problems have interpretations i other areas The study of movable ob-
jects mentioned above is closely related to motion planning and compliant motion
planning. Indeed. to solve our CWP problems we compute the path taken by the
apex as the wedge rotates around the set, remaining 1 contact with it The work of
Hopcroft and Wilfong in [HWS1] has shown the importance of the study of compli-
ant motion The CWP problems can also be considered an mstance of local mohon
planning [Ya86b] in which the motion of an arbitrary polygonal r1obot is planned
in a fixed environment QOther examples of local motion planning are the problems
of moving a chawr through a door [St82] ot around a corner m a cormdor solved
algorithmically by Yap [Ya86a] and Maddila and Yap [MYR6] respectively.

In classical motion planning, the question of linding o continuous motion from
one configuration to another has been addressed. but it may be interesting to opti-
mize the final configuration 1n some way [For instance, the tnangle problem salves
the problem of finding a placement of a polygonal robot 1n a corner, so as to occupy
as little space as possible in some large room. When solving the CWP-p problem,
we want to waste as little space as possible in the corner, by minnmzing the radius
of the largest empty circle centered at the apex.

Another relevant and relatively new area in Computational Geometry i¢ the

study of visibility problems [OR87]. A point p1s msible from point g and vice-versa

if the hine segment 75§ tutersects no object [n particular, one may be interested in
the placement of guards subject to some restriction 1n order to see the interior or
exterior of a polvgon Those guards have a 360 degree field of vision However, if
we consider g guard to be camera with a certain himitea field of vision represented
by our wedge, then the CWP-p/s problem becomes a camera location problem and
finds the position closest 1o the object and direction of the camera such that it
completely sees a polygonal obiect or set of sites If the depth of field of the camera
15 linnted then one might want to get as cose as possible to the furthest point and
solve the MimMax-WP problem for sets

The model of computation used will be the real RAM as described in [Sh77]. As
O 1) time operations on real numbers. 1t allows anithmetic operations. comparisons.
inderect addresang with integer addresses and analvtic functions It does not include
the floor tunction but permits the calculation i constant time of the intersection of
any two of the followmg a cucele, an are, a line (segment), a parabolic arc, etc...

In Chapter 2 we will describe some properties and the algorithmic construction
of the Voronor diagrams of sets of segments and points and of peint sets. These
data structures are used for solving the C'WP-p and CWP-s problems respectively
without the convexity restrictions. The Voronoi diagram for points i1s alsc used in
some of the other problems mentioned above.

Chapter 3 characterizes the motion of the wedge around a convex polygon and
presents some properties that allow us to obtain an algorithm that solves the CWP-
cp problem 1 tune linear 1 the number of vertices of the polygon. The algorithm
1s modified to solve the CWP-¢s problem in the same time complexity.

Chapter § extends the results in Chapter 3 and, using the data structure pre-
sented in Chapter 2, presents an algorithm that solves the CWP-p and CWP-s prob-
lems m O(nlogn) time, where n s the size of the polygon or point set Moreover,
stnee the step of the algorithm for CWP-p/s that computes the Voronor diagram
is the only step that tahkes more that O(n) time, we can obtamn the solution to the
C'WP-p/s problems in O(n) time if we are given this diagram. These algorithms

will be presented in [Te89).

Finally, Chapter 5 will summarize the results and discuss the other variants of

the problem as well as some open problems.

Chapter 2

Voronoi Diagrams

2.1 Proximity Problems

The Voronor diagram is one of the most fundamental data structures of computa-
tional geometry [Sh77]

Given a set of n points or sites in the Euclidean plane, we wish to know which
points of the plane are closer to some site than any other site. The Voronoi diagram
is the partition of the plane into regions, cach region being the locus of points closer
to a particular site.

The Voronoi diagram can be used as a powerful tool to give efficient algorithms
for various geometiie proaimity problems. These include finding the closest pair of
sites, the closest neighbor of each site, the Euclidean minimam spanning tree of the
sites or the largest site-free crcle with center inside a simple polygon [To83b].

We will be considering two types of Voronoi diagrams: the Voronot diagram
for pont sites and the generalized Voronoi diagram for line segments and points
with the restriction that these hine segments must form a simple polygon and the
potnts are the segment endpoints. Those points and segments will be called Vorono:
clements. Both diagrams have very similar structures and properties as well as
simitlar algorithms to compute them and will be presented together. Examples of

these diagrams are given in Figures 2.1 and 2.2 respectively.

- 10 -

Figure 2.1: Voronoi diagram of point sites.

Figure 2.2: Generalized Voronoi diagram of a polygon (thin sohd lines.)

- 11 -

B(q.(a,b))

Qe

B(q.a) B(g.b)
Figure 2.3: Bisector of a point and a closed segment.

2.2 Definitions

To begm, we will need a few definitions. We denote the closed line segment between
two points @ and b by ab, and the open segment by (a,b). Also line ab refers to the
line passing through a« and b.

The ‘projection’ p(q, ub) of a point ¢ onto a closed segment ab is the intersection
point of the line ab and the line perpendicular to b and passing through gq.

The Ruchdean distance between two points ¢ and r is denoted by d(gq,r). The
distai. ¢ d(q,ab) between a point ¢ and a closed segment ab in the Euclidean metric
15 the distance d(q, x), £ = p(q,ab), between ¢ and its projection z onto ab if =
belongs to ab and is min(d(q, a),d(q,b)) otherwise. Also let cs(g) denote the point
closest to g in the set S.

The besector B(e,,c,) of two elements e, and e, is the locus of points equidistant
ltom ¢, and ¢, but not closer to any other element and is connected. Similarly, the
bisector B(X,Y") of two sets of clements is the locus of points equidistant from X
and Y. re. B(X,Y) = {¢: min.ey d(g,€) = mineey d(q,€)}.

A bisector B(e,,e,) will be oriented such that e, lies to the left of it and e, to
the nght of it. We can similarly orient bisector B(X.Y"). These bisectors will be
line segments and portions of parabolas [LD81]. For example, see Figure 2.3, the

bisector of a point ¢ and a segment ab has three components: the half-lines B(q,a)

-12 -

and B(g,b), and a portion of a parabola whose focus and directrix are the point ¢
and the line ab respectively.

With these definitiors we can now define the region h(e,,¢,) as the locus of
points closer to element ¢, than to element e, and similarly for two sets of clements.

Given a set 5 of n elements {e, : ¢ = 1,...,n}, we define the Voronot region V (e,)
to be the intersection of all regions A(-,-) containing e,, t.c. V{e,) = ﬂ#‘ hie,.e,),
which is the locus of points closer to e, than to any other element. The boundary
edges of V{e,) are called Voronoi edges and its vertices, Voronoi points or Voronoi
vertices. The collection of those i1s the Voronoi diagram VOR(S).

We will also need the following definition that will be used to characterize Voronoi
regions.

A region R in the plane is weakly-internally-nisible from kernel C, ' convex
subset of R, if for any point r € R there 1s a point ¢ € (" such that the line segment
7€ lies completely within R.

We will take a stmple polygon to be the region of the plane delimited by a closed
simple polygonal path and containing the boundary.

Given a simple polygon P of n vertices qo,q1,. ., ¢qn-1, @ vertex ¢, is called
convez if the internal angle at ¢, is less than 7 and reflex otherwise. We will assume
without loss of generality that no three consecutive vertices are collinear.

Let s, denote the segment (q,,q,41)'. A maximal reflez chain is a sequence of
elements s,, 41,5415+, @h~1,84—1 such that the vertices ¢, and ¢ are convex and
gj4+1,.-., qk~1 are reflex. A convex chain 1s defined similarly. We will omit the word
maximal as there will be no ambiguity.

Let S be a point set. We will denote the convex hull of S by CH(S) [Sh77].
Let H be CH(S). We define the normals of I to be the half-lines extending from
the vertices of /I and perpendicular to the edges incident to those vertices. There
are two normals per edge. These normals partition the exterior of /I into V-shaped
wedges each having the corresponding vertex as apex and regions called sirips,

bounded by an edge of /[and the two incident normals. If 77 is the edge of 1]

'Indices will be taken modulo the size of the set they index

-13 -

e—promontory

Figure 2.4: Example of a strip and e-promontory.

then let NORMAL(w,v) be the normal to U at u. See Figure 2.4. The points
of intersection of VOR(S) with H are called cutpoints and the Voronoi diagram
intersected with the strip defined by an edge e (e-strip) is called the e-promontory.

This terminology is due to [ACGOY88].

2.3 Some Properties

We will next describe the main properties of the Voronoi diagrams necessary for
thewr algorithmic construction as well as for the CWP problems.

The following lemma is fundamental.

Lemma 2.1 [LD81] V'(e,) is weakly-internally-visible from kernel e, .

Proof We will show that given a point g, if ¢ € V(e,) then gq¢’ lies completely in
V(ey), where ¢' = ¢, (¢). Assume a point z on qq’ is in V(e;)si# . Let 2’ = ¢ ().
We have d(q,r") < d(¢q.z) + d(z,z’) by the triangle inequality. Since d(z,z’) =
d{r.e;) < d(x.e,), we get d(q.2") < d(q,2) + d(z,¢,). But d(q,z)+d(z,q) = d(qq)

- 14 -

and d(z,e,) = d(z,¢') which implies that d(q,z') < d(q,¢') = d(g,¢,). Therefore
d(q,e,) < d(q,e,) which contradicts the hypothesis that r € V(¢,). I

We state the following additional facts from [LD81] without proof.

Lemma 2.2 The Vorono: regions V (e,) and V(e,) share an edge 1f and only if there
exists a pownt q such that the circle centered at ¢ with radius d(q.¢,) = d(q,¢,) does

not contain any pownt of other elements in its inlerior or on 1its beundary.

The following theorem shows that when a point z is moved on the boundary of
V(e,) in a given direction then its projection ¢, (z) also moves along e, in the same

direction. If e, is a point then the projection is fixed at that poiut.

Theorem 2.3 Let x; and x; be two pownts on the boundary of V{e,) and vy and
4 their images under c.,(-). Either one of the two segments z,x' or T x4 properly

contains the other or they do not intersect except possibly at endpoints.

Another basic fact about Voronoi diagrams is

Theorem 2.4 The element e, is on the conver hull CH(S) of S if and only 1f s

assocrated Vorono: reqion is unbounded,

And finally, we state a result that limits the size of the diagrams.

Theorem 2.5 Given a set S of n elements, then the number of Voronot edges and

the number of Vorono: points in VOR(S) are both O(n).

2.4 Computing the Voronoi Diagrams

The types of Voronoi diagrams considered here will be restricted versions of the
type for line segments and points. We will need essentially two types of diagrams.
For the CWP-s problem, the usual Voronoi diagram for point sites will be needed.
For the CWP-p problem, we will require the Voronoi diagram for the exterior of

a simple polygon, where the latter 1s considered to be a set of open segments and

- 15 -

vertices. Both problems can be solved in O(nlogn) time where n is the number of
clements. The solution for the first type was first presented by Shamos and Hoey
[SH75]. An efficient solution to a problem closely related to the second, namely the
computation of the medial axis transformation of the nterior of a simple polygon
(see [DH73] for a definition and properties), was given by Lee [Le82]. In section
2.4.2, we will describe how to modify his algorithm to obtain the Voronor diagram
for the exterior of a polygon 1 the same time complexity.

A popular problem-solving paradigm, the divide and conquer method, can be
used to compute these diagrams. For the two problems the implementation of the
splitting and merging is different. Ilowever, the merge step can be described in a
uniformm manner for both types of diagrams. as they are conceptually equivalent.
In [FoR6], Fortune presents an elegant sweep line algorithm for the computation of
the Voronoir diagram for line segments and points. However, the divide and conquer
method, with its scanning and traversal procedures, is much closer to the type of
algorithms considered in this thesis and will thus be described instead.

Let 5 be the set of n elements (points and edges). The general divide and conquer
algorithm proceeds as follows. First 1t partitions S into two subset S; and 5 of
approximately equal size. It then recursively constructs VOR(S;) and VOR(S2).
Finally VOR(S1) and VOR(.S;) are merged. This algorithm runs in O(nlogn) time
provided the merge can be done in time proportional to n. We will next describe

the splitting and merge steps for the two cases.

2.4.1 The Site Voronoi Diagram Case

When elements are points only, the split will be done by sorting the points by z-
coordinate and dividing the resulting sequence into two parts, one of size |3], the
other of size [3]

Using such a split, it can be shown [Sh77] that there exists a merge curve,
which is in fact B(S},S,). It is a monotone chain of line segments such that
VOR(S, U S5,) = (VOR(Sy) N (S, 5,)) U(VOR(S2) N 1(S,2,51)) where h(X.Y)

ts the region of the plane on the left side of the oriented bisector B(X,Y"). More-

- 16 -

over, the first and last elements of the chain are infinite rays and are the bisectors of
the two supporting segments of CH(S;) and CH(S,) by Lemma 2.2, These convex
hulls can be maintained recursively [Sh77] or can be ‘read off” the Voronor diagrams
in linear time {PS85, p. 215]. One of the two infinite ravs i1s chosen as the starting

bisector for the merge.

2.4.2 The Polygon Voronoi Diagram Case

When elements are both points and line segments. the bisector of two sets of ele-
ments may in general have several disjoint components. However in the case of two
polygonal chains, the bisector is composed of only one piece [Le82]. Moreover it 1s
clear that the Voronoi diagram for the exterior of a convex polygon is exactly the
set of normals of all the edges of the polygon. The same is true for the diagram
of one side of a convex chain. (An edge ab is considered to be the set {a,b,(a,b)}
and its Voronoi diagram consists of the two lines perpendicular to (a,b) and passing
through @ and b.)

In [Le82], D.T. Lee computes the Voronoi diagram for the interior of a simple
polygon by first computing the diagram for the ‘interior side’ of reflex chains which
are easily obtained by scanning the edges of the polygon in linear time. Note that
the process of computing this diagram is identical to computing the diagram of the
exterior side of convex chains.

We will need the following definitions:

For a simple closed curve C, let INT(C) denote the interior of C.

A pocket of P is one connected component of the closure of CH(FP)\
INT(P). It is associated with the convex hull edge or pocket Ll that 1s

contained in it.

In Lee’s algorithm, the diagrams of these reflex chains, say C',C,,...,C), are
then merged two at a time to obtain VOR(C, U (), VOR(C4 U Cy), etc... The
process is repeated recursively. At each stage O(n) work is done for the merge and

there are O(m) C O(n) chains to be processed. The total time required is therefore

O(nlogn).

- 17 -

Qur algorithm will be similar to the one just described, but we will compute
the diagram of the exterior side of convex chains as noted above. These chains are
the part of the boundary of the polygon coinciding with 1ts convex hull Moreover,
we will compute the diagram for each pocket of the polygon separately. By the
following lemma, the merge will be just a union of all the diagrams computed since
they are all totally independent (non-overlapping). This s illustrated in Figure 2.2
in which the strip corresponding to a convex hull edge is shown in dashed lines.

One can thus define the e-promontory for Voronoi diagrams of polygons. It
consists of either exactly the boundary of the Voronoi region of e if e is an edge of

I’ and of CH(P) or the part outside of CII(P) of the diagram of a pocket if eis a

lid of a pocket.

Lemma 2.8 Let e be an edge of CH(P). The e-promontory s contained in the strip
corresponding lo e.
Proof If ¢ is also an edge of P, the e-promontory is the boundary of the e-strip.
Otherwise, let ¢ = wo. Then V(u) and V(v) are unbounded by Theorem 2.4.
Moreover NORMAL(u, v) cannot intersect any other Voronoi region, since any point
of NORMAL(u,v) 1s closer to u than any other element. The same is true for
NORMAL(v,u), hence no Voronoi region other than V(u) and V(v) intersects the
normals (except maybe at u and v). R

For a given pochet, the split will be done by dividing the set of convex chains
into two sets of adjacent chains of approximately the same size. Some chains may
be reduced to only an edge. The split will be at a reflex vertex and the starting
bisector will be a ray bisecting the angle formed by the two edges adjacent to that

vertex.

2.4.3 The Merge of Two Voronoi Diagrams

We assume now that VOR(S)) and VOR(S;) are available and show how the two
diagrams can be merged in O(n) time. This is done by constructing the merge curve
B(S51,52) and deleting the edges of Sy on the right of B(S;, 52) and the edges of S,

on the left.

- 18 -

We can imagine moving a point r along the current bisector B(e,,¢€,), ¢, €
S1,€;, € 53, until it enters a new Voronoi region, say of ¢, € 8y. r will then continue
to the right of V'(e,) along B(e,,¢c,) since at this point ¢, became closer to r than
€.

The current (oriented) bisector B(e,,¢,) is initialized to be the starting bisector
Starting with the last examuned edge, we scan the edges of the adjacent Voronoi
region on the left of B(e,,e¢,), V(e,), in counterclockwise direction to find the edge
B(e,,e,) which intersects the current bisector. The same scan 1s performed clockwise
on V(e,) to find the edge B(ei,e,). We then choose the new bisector that first
intersects the current one in the sense of the previous paragraph.

If B(e,,es) intersects B(e,¢,) first then the next current bisector will be £(e,, (),
otherwise it will be B(e,,e;).

For both types of Voronoi diagrams, the construction of B(S5y,S52) terminates
when no more Voronoi edges intersect the merge curve.

Finally, the following theorem from [LD81] states that the scan described above
will work without backtracking, and establishes along with Theorem 2.5 that the
merge can be done in O(n) time. Hence the Voronoi diagrams can each be computed

in O(nlogn) time.

Theorem 2.7 Let e, and e, be elements of Sy and S, respectwvely, and let B(e,, ¢;)
be constructed during the merge process. No pownt of V(e,) in VOR(S)) which lies
to the right of the oriented bisector Ble,,e;) will be wincluded in the reqron V(e,)
in the final diagram and ssmilarly for V(e,). Furthermore, the scanning of V(e,)
in a counterclockuise direction and V(e,) win a clockwise direction unll find the first

intersection between B(e,,e,) and either V(e,) or V(e,).

2.5 Data Structures for Implementing Voronoi Dia-

grams

We will neced to perform rapidly various operations on these diagrams. One data

structure allowing the necessary operations 1s the Doubly Connected Edge List or

- 19 -

DCEL [MP78]. In this data structure, for each edge there is a node containing
information about adjacent vertices, faces, and the next counterclockwise edge at
cach vertex. We can find the edges enclosing a given face, or edges and faces adjacent
to a given vertex in time proportional to the output. In particular, in constant time
we can find the face (or Voronol region) on the ‘other side’ of an edge.

Similar data structures are the Winged Edge {Ba75] and a slightly more general
one, the Quad-Edge data structure which is presented in [GS85] along with an im-
plementation of an elegant divide and conquer algorithm for site Vorono: diagrams.
In particular, this last data structure can represent any planar subdivision where

the edges are not necessarily line segments.

Chapter 3

The CWP-cp/cs problems for

convex polygons

In this chapter, we describe solutions to the following restricted versions of the
optimization problems described in Chapter 1. In the first problem the polygon P
must be convex and in the second, the set of points is in fact the set of vertices of a
convex polygon, giving them additional structure and thus removing the requirement,
of constructing the convex hull'. The approach taken also eliminates the need to
compute Voronoi diagrams that require complex data structures and produces a

simple algonthm for the convex case. We define formally the problems as follows:

Problem CWP-cp (Closest Wedge Placement for a convex poly-
gon). Given a convex polygon P with n vertices and a wedge W with
fixed angle w, apex O, determine the position of W relative to P, al-
lowing translations and rotations, such that d(O,) is mimmized and P
is contained inside V. Determine also the point of P that realizes the

minimal distance to O.

Problem CWP-cs (for Set of vertices of a Convex polygon).

Same setting as CWP-cp problem but we mimmize min{d(Q,v) : v vertex of I’},

'An earlier version of the matenal in this chapter appears in [Te88]

-9 -

and we assume that P is in standard form 1n the sense that no three con

secutive vertices are collinear.

The following notation is used:

d(O, P) is the BEuclidean distance between O and the polygon P (i.e.
d(O,)= min{d(0.z) - z € P}.) We will similarly use d(0,S) for a
point set 5.

CIRCLE(O,r) represents the circle centered at O with radius r.

ab is the arc extending from pomnt a to point b and is part of a circle
whose center 1s given by the context. A subarc of abis a segment of ab.
WEDGE(O,W;,w) represents a wedge having O for apex, 1¥; as one of
its half-lines and the other half-line (denoted 1¥;) is counter-clockwise
from W, forming an angle w with ;. Such a wedge will also be denoted

(Wi, 1y)

3.1 Observations

The problems CWP-cp and CWP-cs become trivial when the wedge angle w is
greater than the largest internal angle of P since in that case we can place O at any
vertex and the mimimal distance is zero. We can therefore assume the contrary.
Also, for problem CWP-cp 1t is not enough to look only at the vertic~s of P for
the closest point to O. Figure 3.1 illustrates the case where the closest point is on

an edge of P Similarlv to Chazelle [Ch83]. we define

a placement of the wedge W as a given position of W and P relative to
one another.

A\ stable placement of the wedge W = WEDGE(O,1V,,w)is a placement
such that an edge of P lies on one of the wedge half-lines.

An optimal placement is a placement that solves the CWP-cp or the

C'WP-¢s problem depending on the context.

- 22 -

Figure 3.1: Closest point is on an edge of P.

A contact point is the point or vertex at which the polygon touches a

given wedge half-line.

We note that it 1s not enough to look at stable placements to determine the closest
position of P. TFigure 3.2 illustrates a placement which is not stable but where
P can’t get closer to O. However by the following lemma, which applies to both
definitions of optimality, only placements such that P is supported by each of the
wedge half-lines neced to be considered. This is what will be meant by placement in

the remainder of the thesis.

Lemma 3.1 Let P be a convez polygon and W = WEDGE(QO,W;,w). Then the
optimal placement of P and W is such that there 1s a verter of P on cach of the
half-lines Wy, Wy defining W.

Proof There are 2 cases:

Case (a): There 1s one vertex of P in contact with W Then we can rotate P
about O in the direction away from the contact point, while all points of /> remain
at the same distance fiom O We then fall into the next case.

Case (b): There are no vertices in contact with W. Then one can translate

towards O in the direction of the bisector of W. Clearly all points become dloser to

-923 -

- <P

Figure 3.2: Non stable optimal placement.

(), which leads to a contradiction. §

Stable placements will be useful for the computation of the path followed by O
as the wedge rotates around P. A stable placement can be represented by a triplet
of points (a, u, v}, where a is the position of the wedge apex O, and u and v are
the contact vertices of /2. We will need a starting stable placement, which can be

computed in O(logn) time with the following procedure.

Algorithm STABLE-PLACEMENT

Input: Convex polygon P, angle w.

Outpui: Stable placement of wedge W.

L. Choose an edge of P and place one directed line Wy of W on it such that P
is on the left of the line (check any vertex not on W;.) Define a direction W+
at a counter-dockwise angle of w 4+ 7 /2 with Wy,

2 Using binary scarch, find in O(logn) time the vertex of P furthest in the
ditection of W3 and position IV, to pass through it.

J.1.1 Contact Vertex Pairs

We will next describe an algorithm for obtaining all the contact pairs and the stable

placements of the wedge (and of 0). The wedge will be rotated clockwise. The

DX

Figure 3.3: Finding the next stable placement.

algorithm represents yet another application of the ‘rotating caliper’ approach to
solving geometric problems [To83a].

If there are more than two vertices on the wedge half-lines then for each half-line,
we consider the ones that are the furthest clockwise on P to be the actual contact
vertices. There are exactly two contact vertices at any time. Figure 3.3 illustrates

the following algorithm. We define W as WEDGE(O,Wy,w) = (W, 11,).

Algorithm ROTATING-WEDGE

Input: Convex polygon 2, angle w
Qutput: List of stable placements of W and corresponding contact pairs

1. Find a stablc placement using the preceding algorithm. This gives two contact

vertices A and B of P, and an initial placement of O.

2. Let A’ and B’ be the next vertices of P clockwise from A and I3 respectively.
Let a be the angle formed by Wy and the edge A’A, and 7 = L(B'B,W,).

3. If & = 3 or the internal angle at B is less than w, the next contact par wiil
be (A’,B’), and the new wedge W' = (W{,1¥;) will be such that BB’ is on
Wi. Let (A, B) — (A',B').

- 925 -

Flse if @ > f§, the next contact pair is (4, B’), and the new wedge W' will be
such that BB’ is on W). Let (A, B) — (A, B').
Else if « < f, the next contact pair is (A’, B), and the new wedge W' will be
such that AA” is on W|. Let (A, B) — (A', B).
14 Reposition the wedge, record the pair and the placement of O and repeat from
step 2 until the initial placement of step 1 is reached.
There are O(n) contact pairs since each edge determines two stable placements.
During the execution of the above algorithm, 1V, lies on successive edges of P. In

step 4, we therefore return to the original placement of W.

This algorithm runs in lincar time, since all stable placements are traversed
exactly once. Note that there can be up to 2n contact pairs as in the case of a

regular n-gon and an appropriate angle w.

We will now characterize the set of all placements of O for a given polygon P.

3.2 The Path of the Apex

In [Ch83] the placement of P with respect to two edges of a fixed polygon enclosing
P is examined. This enclosing polygon can be considered as forming a wedge. Here
however, this pomnt of view with P moving leads to an overly complex formula for
the distance fiom O to P as a function of their relative angle. We look therefore
at problem CWP-cp from a different point of view and we examine the path that
O follows as the wedge moves around the polygon in a continuous fashion. The

problem requires solving the following subproblem:

We are given two vertices A and B of P each sliding on its own half-
line, the two half-lines forming a wedge of fixed angle w. If the wedge is
subject to the restriction that it never intersects the interior of P, then

what is the path of the apex O relative to P?

Lemma 3.2 [his path is an arc segment with the containing circle passing through

Aand B and of radwus d(A.B)/(2sinw).

Proof Pollows directly fiom [Eu], book 3, proposition 26. B

- 926 —

Given the points A and B and the angle w, this arc can be represented for
example by a structure containing the center of the circle and two points (or two
angles) and a radius and can be obtained in constant time.

The path of O will be a chain of circular arcs around the polygon. Each arc is
determined by a pair of contact vertices and its endpoints are two consecutive stable
placements of 0. as given by the ROTATING-WEDGE algonithm. 1f the internal
angle at some vertex is smaller than w, O will touch P at that vertex. If w = 7 the

path will be equal to P. Due to its shape (see Figure 3 6),

the closed chain of arcs determined by the ROTATING-WEDGE scan
about P will be called the cloud of P and denoted CLOUD(P,w).

3.2.1 Obtaining the Minimum Distance

To solve problem CWP-cp we need to determine the closest pairof points, one on an
edge of P and one on CLOUD(P,w), such that their distance is as small as possible.

The following will be for a given pair of contact vertices A and B.

For a given arc of CLOUD(P,w), we define the part of the polygonal
chain of P that is between the contact vertices A and B, and on the

same side of the line A8 as the arc, as the wnner chain.

Let a set S of points be visible from a given point ¢, where g and § are
not in the interior of P, if for all s € §, s does not intersect the interior

of P or the wedge half-lines.

We then have the following lemmas.

Lemma 3.3 For a given placement of O, the closest pont to O i the CWP-ep

optimal placement must be on the inner chain.

Proof For all positions of O on the arc determined by two contact points, the inner

chain is visible from O. I

Hence the edges of P on the inner chain are the only candidates for the dosest

pair.

- 27 -

q

(c)

Figure 3.4: Possible closest pairs.

Lemma 3.4 The edges of P on the inner chain are inside the circle determined by
the arc and passing through A and D.

Proof The inner chain is by convexity on the same side of line AB as O and is
inside all triangles qAB for all ¢ on the arc. But gAB is inside the circle (which

passes through ¢, A and B). 1

There are various situations to consider for the closest pair, depending on the
position of the edge relative to the arc, and the size of the arc. In Figure 3.4(a), the
closest pair is on a ray originating from the center Al of the circle. In (b), we must
consider the perpendicular projection of g onto the edge and in (c¢), the closest pair
is an arc endpoint and a vertex.

Refer to Figure 3.4(d) for the following lemma.

Lemma 3.5 Lt p be a fired point inside CIRCLE(M,r) = C and q on C. Then

d(p,q) 18 unimodal as q travels along C making one turn. It has one minimum at

- 98 -

¢ = ¢ and one marimum at ¢ = y, where z 1s the :losest of the two intersection
points of C and the line passing through p and M, and y 1s the other ntersection

pownt.

Proof It is clear that z and y realize the minimum and maximum distance to p,
respectively. Let q1, g2 be two points of C on the same side of the diameter TF, such
that |LzMq| < |[LzMgqz|. Then p is on the same side of the perpendicular bisector
of §1¢z as ¢q;. Hence d(q1,p) < d(qz2,p) with equality only when gy = quorp= M. 8

Corollary 3.8 Let p, and C be as in Lemma 3.5. The closest pomt to p of an
arc q¢' on C is the point s such that |LxMs| is mimimized (—7 /2 < LrMs < n[2).

s can be one of x, ¢ and q', and can be determined 1n constanl tune.

We also note that for an arbitrary point ¢ and segment ab, the point (‘E(q) and

hence the distance d(g,ab) can be determined in constant time.

Theorem 3.7 The points realizing the minimum distance {and hence the distance
itself) between an arc and a segment contained in the wnterior of the circle containing

the arc can be oblained in constant time.

Proof We consider the Voronoi diagram of the set {p,p’,(p,p’)}. It splits the arc
into at most five subarcs of the form ¢,guyy. To find d(q¢is1,p) or d(qiGir, ')
we apply Corollary 3.6 on the subarcs in V(p) and V(p') respectively. To find
d(q.qs41,pP’) for the subarcs in V((p,p’)), we notice that the endpoints of each
subarc are closer to pp/ than any other point of this subarc, therefore only d(qg., pp’),
q, € V{(p,p')) remain to be checked. Thus the number of point pairs whose distance

must be calculated is constant. §

This theorem gives rise to a constant time algorithm for determining the distance
between an edge and an arc positioned as specified in the statement of the thecrem.
This algorithm will be refered to as DAE in the sections to follow. Also, a constant
time algorithm that determines the distance between a vertex of £ and an arc anses

from Corollary 3.6, and will be called DAV.

- 929 ~

3.3 Algorithms CWP-cp and CWP-cs

Before presenting the solution to the CWP-cp/cs problems, we first establish a result
that helps avoid repeated work in our algorithms, when determining the minimum

distance between the path of the wedge apex and the polygon. We need some

definitions:

A point d on CLOUD(P,w) is between a and b on the cloud if, starting
at e and traversing the cloud clockwise, we reach d before 6. This fact
will denoted by the expression a < d < b.

Let vy,....0, be the inner chain with vertices listed in clockwise order
on the polygon P. It is visible from every point of ab where ab is the set

of positions of O for which vy and v, are the contact vertices of W,

We will also use the abbreviation ¢(a) to mean cp(a).

We can now say that p is before ¢ on the inner chain, if we encounter p before
¢ while traversing the inner chain from vp to vy,. This fact is denoted by p < g or
p < qif we can have p = q. (p and g are not necessarily vertices of P.)

We will show that for a point @ on CLOUD(P,w) moving in a given direction,
c(a) also moves in the same direction without backtracking. This will be similar to

Theorem 2.3 for Voronoi regions in Chapter 2.

Lemma 3.8 Lct a be a fired point outside a convexr polygon P, and p a variable
pownt on the boundary of P wsible from a. Then the function D(p) = d(a,p) is
unirnodal, with the minunum occurring at p = c¢(a), as p moves counterclockwise
along the boundary.

Proof For cach edge, by the triangle inequality D(p) decreases strictly as p ap-

proaches ¢{a) and is a continuous function. §

Here ab will be a fixed aic of CLOUD(P,w), determined by the contact vertices
rg and r,, and the ciicle is that which contains this arc and intersects the contact

vertices as deseribed by Lemma 3.2,

- 30 -

Figure 3.5: Showing how ¢(a) moves in the same direction as a.

Lemma 3.9 The arc ab is in the region of the circle delimited by the lines ertending

Uov1r and Um_1Um, and intersecting the circle at ug and wu,,, respectwely. Thatl 1s
Um < a < b < uy. Moreover, ¢ = Tglio N Tm U 15 tn the wnterior of the circle.

Proof Sece Figure 3.5. If O was placed outside u,,ug then one of the wedge half-

lines would intersect the interior of P. Since vy and v,—; are in the interior of the

triangle Ovgvp,, for all O € u;,ug, the lines extending Tooy and Ty O intersect at

¢, and q is in the interior of the circle. I

Note also that the inner chain is contained in triangle voqu,,, where ¢ = g N

Tl -

Lemma 3.10 Guen an arc ab of CLOUD(P,w) uwith u,, < a < b < uy, then we
have c(a) < ¢(b).

Proof Assume c(a) # ¢(b). c(a) and ¢(b) are inside triangle voqv,m. Let L be the
perpendicular bisector of Z(—a_)c_m. With respect to L, the pont a must be on the

side of ¢(a), and b on the side of ¢(b); otherwise, we get a contradiction.

-31-

We want to show that L crosses wgo,, (see Figure 3.5.) Assume the contrary.
Since L crosses a?) and u,,up, L cannot intersect gvg or Uy and hence does not
enter triangle voqu,. But the midpoing ofm through which L passesisin this
triangle, which contradicts our assumption.

Therefore L intersects Tpvy,. Since L cannot rross the inner chain twice, L
separates the arc ab and the chain into two pieces. Thus, traversing the inner chain

starting at vy, we must encounter c(a) before ¢(b). Hence c(a) < c(b). B

i.emma 3 10 is valid for any subarc of ab. Therefore, if d is on (ﬁ), then ¢(a) <
e(d) < e(b); r.e. the point of P of the closest pair of points between ab and P can

always be found between ¢(a) and ¢(b) on the inner chain.

Theorem 3.11 Ifa,b € CLOUD(P,w) and a < b, then c(a) < c(b).
Proof If a and b are on the same arc, by Lemma 3.10 we are done. Else we have the
chamn of arcs (clochwise): a,(ZH,awﬁzﬂ.g,...,aJ:aJ, where the a, are successive

stable placements of O and a € a,a,41,b € a,71a,. Then by Lemma 3.10 we have
c(a) < e(ap) L e(ag2) < ... < e(ay-1) S c(b). &

In this way the set of arc endpoints partitions P into chains or sections that
we will call c((ﬁ)) for each (ﬁ), extending our notation. So for a given arc 1’1?1, the
algorithm for CWP-cp has to look for the closest pair only on the edges of c(cﬁ)).

Lemma 3.8 ensures that the distance between an arc endpoint b on CLOUD(P, w)
and p on P reaches a minimum exactly once (at ¢(b)) as p moves along the boundary
of P. This fact along with Theorem 3.11 allows us to determine ¢(b) given c(a)
without backtracking. This can be done by iteratively checking the distance between
b and edges succeeding c(a) until this distance increases. The preceding edge then
contains ¢(b), and we can advance a to b. Doing this for a linear number of arc
endpoints a, we can obtain all the c(a)’s in linear time in one scan around the
boundary of P.

For arc endpoints a,, we can introduce new vertices at the c(a,)—no more than
2n new vertices—to simplify the complexity analysis. We can then claim that the

alporithm never examines two edges twice, and hence is linear.

-32 -

Algorithm CWP-cp.

Input: Convex polygon P, angle w.
Output: CWP-cp optimal placement of wedge apex O and ¢(0).

1. Let R be an unordered set of point pairs, initially empty.

2. Perform a ROTATING-WEDGE scan around P to obtain the initial placement
of apex and the list of stable placements and corresponding contact pairs,
(ary Uy, 1), 2 =0,...,t = 1,1 € O(n).

3. Find c(ap) for ag the initial placement of apex given by step 2.

4. For each stable placement (a,, u,,v}):

4.1. Compute the arc a,a,41 of the circle as described in Lemma 3.2 (indices
are taken modulo ¢.)

4.2. Determine c(a,+1) as described above by traversing the inner chain clock-
wise from ¢(a,).

4.3. For each edge on inner chain between ¢(¢,) and ¢(a,41) {including those
containing c(a,) and c(a,+1)) do:

Using algorithm DAE, get the closest pair of points on a,a,4, and
the current edge and add it to R.

5. Obtain the closest pair (O,p) of the pairs of points in R, and report the

corresponding wedge placement.

The comment preceding the algorithm establishes the following result.

Theorem 3.12 Problem CWP-cp for a conver polygon P with n vertices can be

solved in O(n) time.

Figure 3.6 shows an example of CLOUD(P,w) for a wedge with angle w = w/2. The
optimal placement of the wedge apex is at O, and the closest point on > to O is »,
a vertex of P. This placement is therefore also a solution to CWP-cs.

We have a very similar result for CWP-cs. Let cv(a) be the dosest visible vertex
to a point a outside P. It is the only vertex that is candidate for being part of
the closest pair, as is shown in the next thecorem. We will prove a fact sunilar to
Lemma 3.3 for the closest vertex in the optimal placement of W and P, as defined

by problem CWP-cs.

-33 -

Figure 3.6: Example of CLOUD(P,x/2).

- 34 -

gl /\%

Figure 3.7: Theorem 3.13: Case w < 7/2.

Theorem 3.13 Given a placement of polygon P and wedge W = WEDGE(O,W;,w) =
(W1, W) optimal for problem CWP-cs, then the verlex closest to O 1s on the mner

cham.

Proof Suppose the closest vertex c is not on the inner chain. Then all vertices must
be on the outside of the circle CIRCLE(O,r), where 7 = d(0,¢). Let L be the line
of support of P passing through ¢, with P on the same side of [as 0. Let A be
a point of intersection of L with W, say on W. The internal angle 3 formed by L
and ', (on the side of O) must be less than 7/2, since ¢ is on the circle, and (hy
Lemma 3.1) A is outside of the circle.
Case w < 7/2 (see Figure 3.7):

Since w < /2, we must have another intersection point 2 on the other half-line
There must be vertices at A and B, otherwise we could place a wedge W' with apex
O’ such that d(0',¢) < d(O,c). W' is a copy of W reflected with respect to L. But
1V is not in contact with P, since P is contamed in tiiangle AOB By Lemma
3.1, this is not the optimal placement. But, by the definition of CWP-cp, I’ has no

three consecutive collinear vertices, which contradicts our assumptions, and proves

35

A B’ (0]

Figure 3.8: Theorem 3.13: Case w > 7/2.

the theorem for w < m/2.

(‘ase w > /2 (sce Migure 3.8):

In this case the supporting hine does not necessarily intersect both wedge half-lines.
Note that g < 7/2 implies that 8 < w.

All the vertices of P must reside inside the wedge, and in the half-space delimited
by I and containing O There must be at least one vertex of P in triangle AO¢
and outside CIRCLE(O,r) different from ¢ (in particular on OA), otherwise we
contradict Lemma 3.1. Of the vertices of P in triangle AOc¢, take the one that is
the furthest in the direction of W, and call it B. Call B its oithogonal projection
on W, Then we can place a wedge WEDGE(B’, E'—éw) at B' with d(B',B) < r,
so there 1s a placement of the wedge that brings O closer to the set of vertices of P.

This contradicts our assumption and proves the theorem for all angles w < 7. 1

Lemma 3.14 The closest vertez lo arc ab 1 a vertez adjacent to an edge of c((;?)).
Proof The closest visible vertex must be on the inner chain by Theorem 3.13.
(‘onsider the Voronoi regions of the edges of P. We noted in Chapter 2 that they are
delimited by the set of normals stemming from the adjacent vertices. By definition,
ab intersects the Voronoi regions of the edges (and adjacent vertices) in c(&)), and no
other regions. Thercfore the only vertices necessary to consider are those adjacent

to edges ot c(ab). §

- 36 -

This means that cv(q), ¢ € ab can reach outside of e¢(ab), but not beyond another
vertex. To obtain an algorithm for CWP-cs, we modify the preceding algorithm by
replacing the application of DAE on the current edge by an application of DAV on

the vertices of the current edge.

Theorem 3.15 Problem CWP-cs for a point sct S with n ponts that arc the ver-

tices of CII(S) can be solved in O(n) tune.

Proof The preceding lemma guaranties the correctness of algorithmn C"WP-¢s and

the running time remains lincar. |

37

Chapter 4

The CWP-p and -s problems

We will now consider the general version of the CWP problems and present algo-

nthmic solutions. The precise statements of the problems follow.

Problem CWP-p (Closest Wedge Placement for a simple poly-
gon). Given a simple polygon P with n vertices and a wedge VW with
fixed angle w, apex O, determine the position of 1" relative to P, al-
lowing translations and rotations, such that d(O, P) is minimized and P
15 contained inside 1V. Determine also the points of P that realize the

minimal distance to O

Problem CWP-s (for a Set of points). Given a set S of n points
and a wedge 1V with fixed angle w, apex O, determine the position of
1 relative to §, allowing translations and rotations, such that d(0,5)
1s minimized and 9 is contained inside 1. Determine also the points of

S that realize the minimal distance to O.

We will assume that the only extreme points of S are the vertices of CH(S), and
that /715 m standard form. These assumptions will simplify the proofs below, but
ate not necessary for achieving an O(nlog n) time bound.

We fust note that the wedge lines will be tangent to the convex hull of P or S,
o the tesults concerning convex polygons of Chapter 3 apply here to CH(P) and
CHSY e, CLOUD(P,w) = CLOUD(CH(P),w) and similarly for 5.

- 38 -

Figure 4.1: Closest point of P belund a hull edge.

To solve the first problem, which the case of a simple polygon P, we cannot
merely scan the edges of P and obtain the successive c(e) for cloud arc endpoints a,
since the polygonal chain can wander anywhere inside CH(F). As an example, we
note the case where the optimal placement is such that ¢fQ) is inside C'H(P) as in
Figure 4.1. A similar situation occurs in the case of a point set.

For a given arc of CLOUD(P,w), we will usce the Voronoi diagram of the set of
edges and vertices of P to determine which edges of P to examine when searching
for the closest point on P. Similarly, we will use the Voronoi diagram of § for the
second problem,

The convex hulls CH(P) and CH(S) mentioned above can be obtained in hnear
time [MAT79,Le83,GY83} and O(nlogn) time [Gr72], respectively. However, the
convex hull of S can be obtained from its Voronoi diagram in O(n) time, as deseribed
in [PS85, p. 215]. The algorithm in [PS85] traverses the unbounded regions of
VOR(S), finding the convex hull vertices as illustrated in Figure 4.2. By Lemmma
2.4, we can adapt this algorithm to construct the Voronor diagram of the exterior

of a simple polygon, since there exists a similar correspondence between convex hull

~139 -

Figure 4.2: Obtaining the convex hull from the Voronoi diagram.

clements and unbounded Voronoi regions.

4.1 Properties of Voronoi diagrams and CLOUD(P,w)

Let H be C'H(P) or CH(S) according to the problem considered. We will need a

result smular to Lemma 2.6 for sets of points.

Lemma 4.1 Lcte an edge of CH(S). The e-promontory of the Voronoi diagram of

S 18 contaned n the strip corresponding to e.

Proof Identical to that of Lemma 2.6. §

We can now piesent a result that applies to both kind of Voronoi diagrams. It
will enable us to efficiently search the diagrams for intersections with CLOUD(H ,w).
Below. we will assume w.l.o.g. that e is parallel to the z axis, and we define the
vertical’ direction to be in the direction of the y-axis. We also assume that P and

5 are below e (their points have smaller y coordinates).

- 40 -

Theorem 4.2 Let € = 7,7, be an edge of H. If the interior of the e-strip 1s not
empty, then the e-promontory is an embedding of a tree 1n the plane such that (a)
each node 1s a Vorono: edge, (b) a tree node N, 1s a child of tree node N, if their
corresponding Vorono: edges E, and E, arc adjacent, and if E, s below E,. The
root of this tree 1s the node corresponding to DB(v,,v,), a half-line, and the leaves

correspond to the (parts of) Voronoi edges ending with cutpownts.

Proof Lemmas 2.6 and 4.1 guarantee that the Voronoi edges intersect the strip
boundary only at e. First, we note that a Voronoi diagram is a planar graph. We
now show it has no cycle outside of I. There are no Voronoi elements outside I,
and since the only way to get a cycle is to have an entire Voronoi region (along with
its element) in the exterior of H, the e-promontory must be a tree. By Lemma 2.2,
B(v,,v,) is the only infinite bisector in the interior of the strip since, sufliciently far
from H, for z € B(v,,v,), CIRCLE(z,d(x,v,)) is empty and intersects only v, and
.

B(wv,,v,) will be taken as the root of the trce. We now show that any path from
B(v,,v,) is monotone with respect to the vertical direction and this will establish
the theorem.

Assume the contrary and refer to Figure 4.3(a). Then thereis alocal mimmum in
the y coordinate, say at M. The set of points visible from M is above the horizontal
line L through M. Since the path is the boundary of two Voronoi regions whose

elements are below L, we get a contradiction with Lemma 2.1. §

In fact, since the set of elements is connected, the only kind of cycle in the
exterior of P is one that contains either a vertex or an edge of P.
We can use the terms leftmost and rightmost child of a Voronor edge, as well as

the father of a Voronoi edge.
Let a v-path be a path from the root of an e-promontory to a cutpoint.

We will need some additional properties of CLOUD(Il,w). Since the contact

points of ¥ are on /I, the inner chain of Chapter 3 will be a chain of /1.

- 4] -

Figure 4 3: Showing monotonicity of a v-path and its relationship with cloud arcs.

Lemma 4.3 The wteror of a circle C defined by two contact points A and B as
wm Lemma 3.2, contains no arc of CLOUD(H ,w) n the half-plane delimited by line
ADB and contarming the wnner chain.

Proof Let ab be an arc of CLOUD(I,w) such that ab C INT(C). Let ¢ be any
point of ab. Then L(cA, ceB) > w. If cA and ¢B do not intersect INT(H) we have a
wedge of angle gieater than w tangent to and containing H. Otherwise, to make cA
and ¢? tangent to I, we must translate A or B along the inner chain corresponding
to (". However this increases Z(cA,cB) and we again get a wedge of angle greater

than w. B

Lemma 4.4 A v-path does not intersect a circle (or arc) more than once.

Proof Refer to Iigure 4.3(b). Let ¢ be any point of the v-path and let B(s,t) be
the bisector ¢ is on. Then ¢ is visible from a point p’ in V(s) N INT(H) and from
¢ m V(YN INT() by Lemma 2.1. Let € be the convex hull edge determining the
strip in which the v-path is contained. Then by Lemmas 2.6 and 4.1, ?p_’ and -c—q-f
cannot intersect the normals of e, so they must intersect e itself, say at p and ¢

tespectivelv. Hence pge is a triangle containing the section of the v-path below c.

- 42 -

Civ1
Late arc of C;

H

Figure 4.4: A late arc of a circle is contained inside the next circle.

We can place ¢ on an arc ab of CLO UD(H ,w) that is on a circle (' defined by two
contact vertices. Then by Lemma 3.4, 77 is inside C. Hence pqe is inside ¢, and
the v-path does not intersect C below c.

Assume now that the v-path intersects C above ¢, say at ¢/. Then applying
the preceding discussion to ¢ instead of ¢ produces a contradiction. Therefore the

v-path cannot intersect the circle above c. §

Corollary 4.5 A v-path does not intersect CLOUD(H ,w) more than once.
Proof By Lemma 4.3, an arc ab of CLOUD(H,w) that is on circle (' is contained
in the interior of no other circle of the cloud, and no other arc of the cloud is inside

C. Hence a v-path cannot cross CLOUD(H ,u) twice. R

Define a late arc as the largest subarc of the circle, C, that is dockwise
of its cloud arc, and up to the nearest intersection with the polygon, as

in Figure 4.4.

The theorem below will establish the structure of the set of cireles and show the

correctness of step 5 of the algorithm in the next section.

Theorem 4.8 When lraversing a v-path up towards the root, the order wm which
late arcs are encountered 1s the same as the order i which they are ¢ neountered

when traversing CLOUD(H ,w) clockunse.

- 43 -

Proof By looking at algorithm ROTATING-WEDGE, we notice that successive
stable placements have both contact points moving clockwise on the convex polygon.
Any pair of circles can intersect at only two points, and successive circles C,,C,4;
of CLOUD(H,w) intersect already on CLOUD(H ,w). Both circles contain in their
intenior the last clockwise edge of the inner chain of C, (unless the cloud intersects
I on (', in which case we are done.) Therefore C,4+; cannot intersect C, on the
late arc of € (except at the endpoints of the late arc); hence the late arc of C, is
contained mside C,4 . This can be seen in Figure 4.4. Finally, Lemmas 4.2 and 4.4

guarantee the ordering on the v-path. §

4.2 Algorithms CWP-p and CWP-s

In this section we present an algorithm for solving the CWP-p problem, and then
show how a minor vaiiation of it also solves CWP-s. As in Chapter 3, the algorithm
for CWP-p will do a traversal of CLOUD(P,w). For each Voronoi region encountered
it considers the distance from the current arc to the element (edge or vertex of P)

corresponding to the region.

Giiven a vertex h of II, let the left normal at h, denoted LNORMAL(h),
be the normal at A that is orthogonal to the edge of H adjacent to and
dockwise fiom A For an arc A on circle C, let LCARC(A) be the union

of the cloud arc and the late arc on C.

We will assume that all infinite Voronoi edges join at infinity as in [PS85, p. 251),
and that they have a dummy parent that is ‘above’ every Voronoi region. This is
to sumplify the description of steps 5.3 and 5.4, which find the next infinite Voronoi
edge dockwise from the current edge. Alternately, the next infinite Voronoi edge
can be found through a counterclockwise scan of the edges of the Voronoi region
located to the right of the current infinite (directed) edge.

This can be accomplished in linear amortized time without altering the com-

plexity of the algorithm. This 1s similar to the scan pictured in Figure 4.2.

— 4 -

Below we present a formal description of the algorithm followed by a detailed

explanation and analysis.

Algorithm CWP-p

Input:

Qutput:
1.
2.
3.

Simple polygon P, angle w.
CWP-p optimal placement of O and cp(0).

Obtain VOR(P).
Let H = CH(P).

Obtain CLOUD(H,w) and the list (a,,u,,v,), ¢ = 0,...,¢ — 1, of contact
vertices using ROTATING-WEDGE algorithm.

4.1.
4.2,

4.3.
4.4,

5.1.

5.2.

5.3.

5.4.

. [Some nitialization]

[Good placement list] R « §.

[Initial arc] Let A, = a,a,41 be the arcs of CLOUD(H ,w) in clockwise
order. Let hg be any vertex of Il and traverse CLOUD(I,w) to find k
such that A intersects LNORMAL(hg). Let i — k.

[Initial Voronot element] Let z — hy.

[Initwal Voronot edge] Let E be the infinite Voronot edge most counter-
clockwise in V(ho).

. [Do traversal] Repeat:

[Follow leftmost v-path down to LCARC(A,)} While ENLCARC(A,) =

do: E — leftmost child of E.

[Find intersection of v-path and cloud]

5.2.1. [Check distance] Apply DAE or DAV, as appropriate for z, on A,
and z and get closest point pair (O, p). Add (O,p,u,v) to R.

5.2.2. f EN A, = @ then:
a. [Go to next cloud arc] i — (¢ + 1) mod t.

b. While £EN LCARC(A,) = 0 do: E — father of E.
c. Repeat step 5.2.

[Advance to nezt Voronoi region] Let z be the element corresponding to

the newly entered Voronoi region on the other side of F.

[Find nezt wtwal Voronor edge] While E is not above V(z) do: [—
father of E.

5.5. F « next leftmost unvisited child of E.
5.6. If z is a vertex of H then [skip to nezt left normal)
repeat
5.6.1. [Check distance] Same as step 5.2.1.
56.2. [Go to next cloud arc) + — (i + 1) mod t.
until A, N LNORMAL(z) # 0.
until : reaches k after having been modified in step 5.
6. Find the smallest distance between points pairs (O, p) of the elements (0, p, u,v)
of R, and report the corresponding placement of O and p = cp(0).
More informally, the algorithm proceeds as follows. To begin we find VOR(P) which
takes O(nlogn) time, I = CIH(P) which takes O(n) time, and CLOUD(H ,w) which
takes O(n) time as discussed in Chapters 2 and 3. The sizes of VOR(P), H and
CLOUD(H,w) are all linear 1n terms of n. Next we choose an arbitrary left normal
(denoted LNORMAL(hg) above), and find in linear time its intersection with the
cloud, by testing for intersection with each of its arcs. For each strip, the arc
intersecting the left normal will be a starting arc. For ease of discussion, we will
assume below that the left normal is vertical.

In step 4 some initialization is done. We will maintain a current Voronoi element
z, which is a vertex of IT at the start, and we initialize the current Voronoi edge to
be the infinite Voronoi edge most counterclockwise in the current Voronoi region,
V'(z) This can again be found in at most linear time given any edge of V(z), which
can be obtained from the data structure implementing the Voronoi diagram.

Step 5 performs the clockwise traversal of the cloud, and at the same time
performs a variant of a Jdepth-first search of the Voronoi diagram. Step 5 will be
tepeated until a full cycle around the cloud is made. Figure 4.5 illustrates this
process. For each cloud are A, encountered, we will apply algorithm DAE if 2 is an
edge, DAV otherwise, and find the closest point pair (O, p), O € 4, p € P (in steps
52.0and 56.1).

First, the current Voronor edge descends down the left-most v-path of the promon-
tory until the late arc of the current cloud arc or the cloud arc itself is crossed, say at

point ¢ (step 5.1). This must occur by Lemma 3.4, Note that in the process we may

- 16 -

TN
/ N\
{ \
|
| /
VOR(H) /
I s/
l 7/
/ /
/A
Ay A Lcarcliz),
CLOUD(H,) ALCARC(A,)
\\\\ \\\
\\ N\
H h N

Figure 4.5: Finding the intersections of CLOUD(I ,w) and VOR(P’).

have crossed many late arcs corresponding to cloud arcs clockwise of the current
one. If we have reached the corresponding cloud arc, we are done. Otherwise the
intersection must occur at some cloud arc after (clockwise of) this one.

In step 5.2, we find the next intersection of CLOUD(H ,w) with VOR(P) as
follows. We scan the cloud clockwise and the v-path upwards from ¢. By Theorem
4.6, each late arc will intersect the v-path higher as we progress along the cloud
until we reach the cloud arc that intersects the v-path. For each new LCARC(:), we
climb the v-path until the point it crosses the v-path is reached (step 5.2.2), then
we can advance the current arc. Thus the current arc A, and the current Voronos
edge £ must meet and this will be the only intersection by Corollary 4 5. Therefore
step 5.2 must terminate and we never cross a Voronoi region twice.

At this point, the current cloud arc has crossed over to the next Voronor region
which is determined in step 5.3. Again, this can be done using the data structures
described in Chapter 2. In steps 5.4 and 5.5, the current Voronoi edge is placed so
that it is the highest Voronoi edge of the v-path that bounds the new Voronoi region

on the right. We used the assumption that all infinite Voronor edges join at infinity

- 47 -

to simplify the description of these steps. We are ready to start step 5 again and
traverse this new region, unless we just reached an infinite region corresponding to a
vertex v of P that is also on the convex hull. In this case step 5.6 brings the current
arc to the left normal of the next strip. This is easy since we are guaranteed not to
have any Voronoi edges in the interior of V(v). Thus we will be ready to search the
next promontory.

At cach iteration of step 5, one or both of the following events occur: (a) the
current arc crosses over to a new Voronol region; (b) the current arc advances. Step
5 must therefore terminate. Also no cloud arc is traversed more than once. There is
a linear number of regions and a linear number of arcs in CLOUD(H,w). Moreover
there is a linear number of Voronoi edges, and each is visited at most twicel. Step
5 thus runs in linear time,

Finally step 6 finds the solution to CWP-p among the linear number of good

placements in R and also runs in linear time.

Theorem 4.7 Problem CWP-p for a ssmple polygon P with n vertices can be solved

i O(nlog n) time. If we are given VOR(P), then CWP-p can be solved in O(n)
Lime,

Proof By the discussion above, steps 2 to 6 run in linear time.

To obtain an algorithm for problem CWP-s for a set S of points, replace P by
S the above algorithm and its analysis. The discussion on algorithm CWP-p also
applies to CWP-s since the facts on which it is based are valid for both types of
Voronor diagrams. Ilowever DAE will never be called since the only elements are
points. In particular the comments pertaining to step 5.6 remain true: this step is
Just an aesthetic aid in the polygonal case, since a late arc coming out of a strip
must intersect the left normal of the next clockwise strip (which is also a Voronoi
edge). Step 5.6 now becomes essential in the case of point sets, since the leftmost
v-path of the next strip does not necessarily intersect this late arc.

Thus {ollows our final theorem.

"Fxcept the edge above each Voronol region encountered, which 1s visited s + 1 times, where s
1~ the number of duldren of that edge. This number is linear over the whole diagram.

- 48 -

Theorem 4.8 Problem CWP-s for a finite set § of n points can be solved in
O(nlogn) time. If we are given VOR(S) then CWP-s can be solved in O(n) time.

- 49 -

Chapter 5

Conclusion and Further

Research

We have presented efficient O(nlogn) algorithms to obtain the optimal placement
of a containing wedge for various types of sets. We take advantage of convexity
to obtain the result in O(n) time. For the CWP problems, the optimal placement
was defined to be that which minimized the smallest Euclidean distance between the
wedge apex and theset. We will mention other definitions for which the optimization
problems are still open,

Iirst, 1n the MiniMax-WP problem, we define the opt'mal placement as the
placement mininuzing the radius of the smallest circle centered at the wedge apex,
and containing the set. In this problem, it is clear that only the vertices of the convex
hull of the set are relevant. This problem is quite close to the smallest enclosing circle
problem, which is also known as the minimaz facility location problem [Sh77,BT85].

Followmg Shamos, we define the furthest-point Vorono: diagram (FPVD) of a
pomt set § = {s, 11 = 1,...,n} to be the partition of the plane into unbounded
convex ‘polygons® V(s,), such that V(s,) is the locus of points further from s, than
from any other point in §. The size of this diagram is linear in terms of n.

Furthermore, we notice that given a general placement of the wedge, the point

of the set that determines the radius is the point associated with the FPVD region

- 50 -

P

Figure 5.1: A type of robot hand.

containing the apex. It may be possible to take advantage of this fact to obtain an
algorithm more efficient than the following naive O(n?) algorithm For each arc of
the cloud, examine the edges of the FPVD to determine which regions are mtersected
by the arc, and check the distance between the arc and the poimnts assocrated with
those regions.

Another problem arises when we define the quantity to be minimized as the area
or perimeter of a triangle containing the set, and formed by the wedge half-lines
and a segment whose endpoints are on the half-lines. For a right-angled wedge
at a fixed position, these pioblems are solved in [Ch8G]. This is a version of the
smallest triangle enclosure problem that asks for the minimum triangular superset
[KL85,Ch86], but with one fixed angle. It would be interesting to seef the optimal
placements for the two wedge problems are related.

We may also want to measure the distance from the wedge apex to the contact
points. The minimum or maximum of these 1s easily obtained in linear time. lor
some types of robot hands, this might be indicative of the size of the hand necessary
to handle a given object (see Figure 5 1).

Finally, 1t would be interesting to obtain efficient algorithms for the two problems

defined in this chapter, and extend the concepts of this thesis to three dimensions.

- 51 -

Bibliography

[ACGOYSS8] A. Aggarwal, B. Chazelle, L. Guibas, C. O’D(mlajng, C. Yap, Parallel
Computational Geometry, Algorithmica, pp. 293-327, 1988.

BT85] B.K. Bhattacharya, G.T. Toussaint, On Geometric Algorithms that use
] y
the Furthest-Point Voronor Diagram., Computational Geometry, ed.
(:.T. Toussaunt, North-Holland, pp. 43-61. 1985.

[Ba75] B.G. Baumgart, A Polyhedron Representation for Computer Vision,
1975 National Computer Conference. AFIPS Conference Proceedings,
Vol. 41. AFIPS Press, Arlington Va., pp. 589-596, 1975.

[BDDGR2) J.E. Boyce, D P Dobkin, R.L. Drysdale I1I, L.J. Guibas, Finding Ez-
trernal Polygons, 11th STOC, pp. 282-289, 1982,

[Ch86) J.S. Chang, Polygon Optimization Problems, TR. No. 240, NYU,
Courant Inst. Math. Sci., New York, N.Y.. Aug. 1986.

[CYS81] J.S. Chang, C.K. Yap, 4 Polynomaal Solution to Patui> Peeling and
Other Polygon Incluston and Enclosure Problems, 25th FOCS, pp. 408-
416, May 1984

[Ch83 B. Chazelle, The Polygon Containment Problem. Advances in Comput-
ing Research, VP Preparata ed., V1, pp. 1-33, 1983.

[DH7T3) R.O. Duda, P E. Hart, Patiern Classification and Scene Analysis, John
Wiley and Sons. pp. 356-362, 1973.
[12u] Euclid, The Elements. ¢. 300 B.C.

[Fo85) S. Fortune, A Fast Algorithm for Polygon Containment by Transla-
tion, Automata, Languages and Programming, Springer Lecture Notes
m Comp. Sci 191, pp. 189-198, 1985.

{los6) S. Fortune, A Sweepline Algorithm for Voronor Diagrams, Proc. 2nd.
Ann ACM Sympos. Comput. Geom, pp. 313-322, 1986.

[Gr72] R.L. Giaham. .An Efficient Algorithm for Determining the Conver Hull
of a Fuute Planar Set, Information Processing Letters, Vol. 1, pp. 132-
133, 1972,

- 52—

(GY83]

[GS83]

[HW84]
[KL85]
(Kn73]

[Le82]

[Le83]
[LD81]
[MY86]

[MAT9]

[MP78]

[OR87]

[OAMDBS4]

[PS85]

[Sh77]

R.L. Graham, F.F. Yao, Finding the Conver Hull of a Simple Polygon,
J. Algorithms, Vol. 4. No. 4. pp. 324-331, 1983.

L. Guibas. G. Stolfi. Prinutives for the Mampulation of General Subdi-
visions and the Computation of Voronor diagrams, ACM Transactions
on Graphics, Vol. 4, No. 2, pp. 71-123, April 1985.

J. Hopcroft and G. Wilfong, On the Motion of Objects mn Contact, TR
84-602, Dept. of Comp. Sci.. Cornell Univ., May 1981,

V. Klee, M.C. Laskowski, Finding the Smallest Triangles Containing a
Giiven Conver Polygon, journal of Algorithms. Vol. 6, pp. 359 375, 1985,

D.E. Knuth, The Art of Computer Programining. Volume [II: Sorting
and Searching, Addison-Wesley, Mass , 1973.

D.T. Lee, Mcdwal Aris ansformation of a Planar Shape, IEEE Trans-
actions on Pattern Analysis and Machune Intelligence, Vol PAMI-1, No.
4, pp. 363-369, July 1982.

D.T. Lee, On Finding the Conver Hull of a Simple Polygon, Int’l J
Computer and Information Sciences, Vol. 12, No. 2, pp. 87 98, 1983.

D.T. Lee, R L. Drysdale, Generalization of Voronor dwgrams in the
plane, SIAM J. Computing, Vol. 10, No. 1, pp. 73 87, Feb. 1981,

S. Madilla, C.K. Yap, Mowving a Polygon Around a Corner i a Clorridor.
Proc. 2nd. Ann. ACM Sympos Comput. Geom., pp. 187 192, 1986.

D. McCallum, D. Avis, A Linear Tune Algorithm for Findmg the Conver
Hull of a Simple Polygon, Information Processing Letters, Vol. 9, pp.
201-206, 1979.

D.E. Mueller, I P. Preparata. Finding the Intersections of Two Conver
Polyhedra, Theoretical Computer Science, Vol 7, No. 2, pp, 217 236,
Oct. 1978.

J. O'Rourke, Art Gallery Theorems and Algorithms, Oxford University
Press, New York. 1087.

J. O'Rourke, A. Aggarwal, S Maddila, M. Baldwin, An Optunal Algo-
rethm for Finding Minimal Enclosing Triangles, TR JIU/EECS-84 /08,
Dept. of Elec. Eng. and Comp. Sci., The Johns Hopkins University, May
1984.

['.P. Preparata. M.1. Shamos, Computational Geometry, an Intioduction,
Springer-Verlag, New York, 1985.

ALIL Shamos, Computational Geomelry, Ph.D. Dissertation, Yale Uni-
versity, 1977,

o &

[SHT5]
[S182)

[Te8S]

[Te89)

[ToR3a]

[Tuk3b]

[Yas6a]

[Ya8Gb]

M.I. Shamos, D). Hoey, Closest-point Problems, Proc. 16th IEEE Sym-
posium on Foundations of Computer Science., pp. 151-162, Oct. 1975.

G. Strang, The Width of a Chair. The American Math. Monthly, Vol.
89, no. 8, pp. 529-535, Oct. 1982.

M. Teichmann, Shoving a Table Into a Corner, Snapshots of Compu-
tational and Discrete Geometry, ed. G.T. Toussaint, TR. SOCS 88.11,
McGill University, Montréal, pp. 99-118, June 1988,

M. Teichmann, Shoving a Table Into a Corner, First Canadian Confer-
ence on Computational Geometry, McGill University, Montréal, August

1089.

G:.'T. Toussaint, Solving Geometric Problems with Rotating Calipers.
Proc. IEEE MELECON 83, Athens, Greece, May 1983.

(UL Towssaimt, Computing Largest Empty Circles with Location Con-
straints International Journal of Computer and Information Sciences,
Vol 12, No. 5, pp. 347-358, Oct. 1983.

C. K. Yap, lHow to Move a Chair Through a Door, TR. No. 238, NYU,
Courant Inst. Math. Sa., New York, N Y., Aug. 1986.

¢ K. Yap, Algorithinic motion planning, Advances in Robotics, Volume
1: Algorithmic and Geometric Aspects, ed. J.T. Schwartz and C.K. Yap,
Lawrence Eilbau:a Assoc., N.J., 1986.

