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Abstract 

In the Euclidean plane, consider a point set S and a wedgc IV defined .u; lH'ill/!; the 

intersection of two half-planes whose bounding lines intersert al an ap(lx 0 and fOrIn 

a fixcd angle. 

\Ve study the problem of determining the position (Jf IV f('l.ttivp 1.0 S, with 

translations and rotations allow('d, that minimlz(,s tlH' dlhtan('" bt'tw(,PII 0 .\Ild S 

and is subject to the constraint that S r('maJJlS 1ll~J(le IV Ollt' llIe,t~Ilf(' of <Iist,wcp 

considered is the l11Ïnimum Euclid('an distanC(' from () to S. Ail O(nlol!;lI) time 

algorithm is presentcd fOf tlte c.1.sc whcrc S is a spt of n pOlIlts Of a wnplp polYl!;oll 

with n vertices. If we are glven an appropriate VoroUOI di,l,gram, the hollltioll C,\.Il Ill' 

obtained in O( n) lime. Aiso an O( n) time algonthrn IS gi ven for convpx polygolls. 

Other measures of distance and related problcms arc abo discllssed. 

- 1-



Résumé 

J),tnS le plan euclidien, nous considérons un ensemble 5 de points et un coin VV 

défhu rommp l'intersection de deux demI-plans dont les droites déterrrunantes se 

( roihpnt ('Il a pt forment un angle fixe. 

Nouf> {-tudions le problème de déterminer la pOSItion de lV par rapport à 5, 

t ranhiations et rotations permIses, qui mininuse la distance entre 0 et S et qui est 

tplle que H reste dans l'inténeur de W. Une mesure de la dIstance entre 0 et 5 

(-tudiép Pht I.L distance euclidienne minimale pour laquelle est présenté un algorithme 

qlli trouV!' la pOf>ltion optimale en temps O(nlogn) lorsque S est un ensemble de n 

pOlIlb ou 111\ polygone simple de n sommets. Si un diagramme de Voronoi approprié 

IIOUS pst donné 011 SI le polygone est convexe, la solution peut être obtenue en temps 

O( IL). 

J)'autrps IllCSllrpS d(' distance ainsi que des problèmes apparentés sont aussi ex-
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Chapter 1 

Introduction 

'l'III' ~tlldy of Oplllllll.lltlOll problems IS an important area of ComputatlOnal Ge-

1l/lH'lrv ProxlIlllly problem~ in thf' Euclidean plane, slIeh as findillg the clo'iest 

p.ur of .. pOInt ~('t [1\1173] or 1 he largest empty circle in a point set [Sil ïï,ToS3b], 

Illvolv(' ~tatlc nptllllllation },lore r('ccntly, ùynarnic optlffilzation problems Involv­

Illg ob)l'( t ~ 1 ha t can be t rani>l.tted. rotated or vancd in size have been Lousidered. 

('h.lZI'IlP [Clt8:1].lIld Fortune [FoSS] glve algonthrns to determine whether one poly­

I!;OIl (.111 !Jp P()~ltl()n('d ~IJ( Il lhat Il IS contained III allother and to pxlllbit such a 

('011/(11711711/ 11!rZ('('T/l( 1Il. Th(' proble!ll of finding the lar~est polygon, ~ubject to sorne 

1 (',,1 rH Illlll. that lih lIl~ldp agl\PIl polygoll, wlth vanous definitlOlls of 'largest' (area. 

1)('lllllPlt'r) ha ..... Ibo },PPII i'ltudH'd [IlDDG82.Ch8G.CY81]. Those r('stnctlOns concern 

(OIlVt'1(ltV, 1l1l1ll!Jpr of V('ftlce~. d.nd ~peclfication of angles Slmriarly, the problem of 

filldlll~ Iht' ~III,t1I('~t pllly!!;on (()utaHung another fixed polygon and satisfying similar 

11',,11I<l1()1I~ !t,I:. hppn loo\..ed at [Ch86,KL85.0A~m8IJ. 

III lin:. tht'~is, \\e will 1)(, romldNing a bpt of closcly felated problems concerning 

,I ~t't. l'JI !r('r a pol.\'gon or il S(,t of points, and a corner or u'cdqe of fixed angle. The 

\\t'd~(' i~ lh'fillPd .1 .... thl' IIItefscetion of two h,tIf-planes. and the Illtersection pomt of 

t IH' t\\O dl'filllllf!, h,\lf-IJIH'~ 1" Jts apCT. The problem IS thcn to llllIllmize thE' 'dIstance' 

\ll't\\'f'(,1I thl' ap(':-. and thf' ~('t. ,ùlowlIlg transltltlOw, alld rotatlOlls of the wf'dgc and 

"II Il jPct tn t h(' ('on~tr,lJllt t h.lt th!' ~('t rcmallls IIl5Hle the wE'dge. Several definitions 

III di~t.llln' \dll hl' Cl)JI~ldf'I('d for both types of Sf'ts. 
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In the case of polygons. the distance Illllllmlled 15 tl\{' \I~ual dist,tllce lH'tWl'l'll 

the apex and the boundary of the polygon. This will jll' ra\lpc\ problPIII ('\\,p.p. 

Closest Wpdge Plat emellt for simple Pul vgons. or ('n'l'-cp lOf COli VI'\. p()lr~(lnll III 

problems C\VP-s for pOlllt b<'tS. and C\\'P-c<; lor ..,pts of \,prtlfl'~ of lOn\'I'\ poly/!,oll'\. 

lt is the dlstancl' flOm thp él.JH'X to tlll.' (IO'il'~t !Hlllit III tl\(' ~('t .. \nothl'r Illl'dllltrP 

of closeIless for bnth tVpPl:> of <;pts. tllp SIll,ll\P~t r,Hlill:-- lll< h' ! l'lit <'1(,<1 .11 t hl' 'IJ)('X 

ti.nd -ontaillllJ~ the set. wIll })(' l'xanulled ill thp l\llllll\l(t'\- \vP plObiPm Flllallv \\'(' 

WIll mention the problem of r10S\JI~ off the wpdgp \\'11 h .\ IJIH' Ill'glll(,lIt ~Ilch 1 !J.Li 

the triangle cfeated cont .lInS our spl and has mimll1UIIl al l'a Of !H'f1l\1pll'r, t III~ will 

be the trIanglp problelll Slllll!;U questions wlthout angular rl'~tnc\lOn~ h,lV(, !H'pn 

addres~ed in [ChSG,KLSS] 

These proble!lll:> have Illterprelations III other (\r('a~ Thp ~tlldy of IIlovablp oh­

jects men tloner! abo\'(' is dO~l'1 v rplat('d to motlOlI pl(UlIlllIg (Illd (0111 plt,UI t. lIlot iOIl 

planning. Indeed. to wlvl' our C\VP problplll~ WP (omputp Ihl' palh I.lkpIl hv thp 

apex as the wl'dge rotales around the set, remaJl1lI1/!, III conta! t \VIth it 'l'hl' work of 

IIopcroft and \\'dfollg III [1I\V~ lJ hd.'> shown thp Îlllport,HH (' of 1 he hl IIdv of cOlllpli­

ant motion The C\VP problems Ccln ,ù,>o hl' (oll'>lderpt! ,tl\ lII"tcll\( (' of IO('(l1 71W/UJTl 

planmng [Ya86b]III which th(' motion of ,UI dfbllr,trv polygoIl.d lobot. i~ plallllpd 

in a fixed enVlfonlll('lll 01 fiN ('xampl(>~ of lo( ,li mot WB pl,U1Bill~ .ICI' , Ill' plol>l('III& 

of momng tl rhrzzr th/'Ough (l door [StR2] ()[ (l/'0117u[ Il ('m'n('r IT! (l ('m'rulor holvpt! 

algorithnllcally by Yap [YdK(jcl] .U\d ~Ll(ldtl.l <lnd Y.lf> [~IYH(j] rp"(H'! tlvplv. 

In classlcal motion planlllIlg, the qUf':,tlOll of fIndlllg ct CI}!JtII\UOIl~ It\otlon flOlll 

one configuration to another hab bepIl addrl'~,>ed. but It !lIay IH' Irlt(,I(':,tlll~ to Opt.l­

mize the final configuration III !-lome way FOf Imtan( P, thp 1 n,U1~lf~ problNH ~(jIVf':' 

the problem of finding a placement of a polygonal robot. III li < OfJlf'f, hO il.'i to accupy 

as !ittle space cl:' pObslble in ,>ome large rOOrTI, \VIJ{III !-lolvlng thl' (:WP-p pfoblflrn, 

we want to waste dS IJttle 'ipace as pO'i'iJble in the COf/If'f, hy HI III 1111 lZlIlg tbp radiu:, 

of the largest <,mpty Clrc1e center<,d al the apex. 

Another relevant and rf'latively Il(>W arpa in ComputatlOnal Gl'ometry ii thp 

study of vislbility problems [OR87]. A point ]J IS lJl.~lb[e from point q and vi ('f!-VI'f!W. 
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If thl' llltl' ,>Pgllll' Il 1 1)(/ Ill!l'rc,pcts no abject In partlcular. one may be interested in 

1 he placement of glldrdc, ~u Il )('ct to ')ome restnctlOn ln order ta see thE' interior or 

l'xtl'flOf of il polYl!;oI\ 1 ho,>{' ~llard" havp a :lbO dCI!;[('E' helcl of vl"ion However, if 

\VI' (1Jl1'>ldf'f.1 L!;lIard !o Il!' (.tIlH'ra Wlth a (crt;un IIIlllt('(; fipld of VISIOn represented 

Il\' 0111 wl'dgl', 1111'11 tll<' ('\\'P-p/'> probll'll1 1)('cOIl1<'S il lamtTa locatzoll prob/em and 

fl/Hl:-, 1 h" !>O"Il!oll (1(),>I'.,1 I() 1 he oh )l'ct and difPetloll of thp camera such that it 

(ornpldl'J\, ,>PPC,.l !lolygoll.d O!Jlf'( t Of "pt of ~lte1> If the (h'pth of field of the camera 

I~ lilllllpc! IIH'U OUI' 1Illght \\.lllt to I!;<'l as do~e dS pO'>!:>lhle to the furthe!:>t pomt and 

,>olv(' 1 II<' r-.111J1~!.lJ..- \\,p probl('rn fOf Spt'> 

'l'Il(' 1II0d('1 of (Olllpllt.tlloll 1I"l'd will be the rral [LUI as descnhed In [Sh7ï]. As 

() ( 1 ) 1 1 Ill(' (J!H·f.11IOll.., OB fP.t! 11 li III IH'r'i. 1 t allow'i ,Hl tltrnet le o!H'ralJon!:>. (om pariwns. 

Illdlre( 1 .Idrlrr·!-o"lllg \\ Il h :lIt('ger addfehses and analvtJc fanctions It doefJ not lIldude 

Ihe Ilonr IUll( llOB huI !H'llllllfJ thE' c,llculatlOIl III (OIl1>tant Illne of the llltersection of 

cHly two of tlll' follo\\'llll?; .t (Il cll'. an arr. a line (hf'grnellt). a parabolIc arc. etc ... 

III Ch,tptpf 2 \\(' will deh( Tlbe some properties and the alp;onthmic construction 

of thl' Vorol\ol dl.1l.!,famh of ~('ts of 'lf'gments cind pOints and of p0int sets. These 

d.lia :,t fU( lurl's .lfP \IfJ('d for :,olvillg the CWP-p and C\VP-s problems respectively 

wllhout tI\(, ('OIlV('Xlty ['(·"tnctlons. Tite VOfOIlOi diagram for pOlIltS IS also used in 

:'OIlH' of t hl' ot Il('f plOhlplIIs 1IH'I1tIO!H'd .tbovl'. 

C\t,lplpr ;~ (h.lI .Ictprilp'i llH' motion of the wedge around a convex polygon and 

pfl'S(,lIts :'O!llP plOp('rtl('fJ !,ltat ;t1luw us to obtain an ,t1g,onthm that :,olves the CWP­

cp problem III tlll\(' Illledl' 1Il the number of vertices of the polygon. The algonthm 

I~ llloddi('r! 10 ..,olV<' the C\VP-(!-o problem in the same time complexity. 

('h.tpt('[' 1 ('\tend:, thl' rpsldts III Chapter 3 and. using the data structure pre­

..,PIItPr! ln Chdpt('r 2. !lIe~('nts ,Ul algonthm that solves tlH' CWP-p and CWP-s prob­

kms III O( nlo/-', 11) 1111\(', \\'1\('1(' Il I~ the :'Îze of the polygon or pOlllt set t\loreover. 

~lIIct' 1 Il<' :,(l'P (lf th!' al/-',onthm fOl ('\VP-p/s that computes the VOfonol diagram 

i:, 1 Il(' only tot('P lh.\t t.lkes !HO\'l' th.il Q( 71) tlIlle, wc can ObtaJll the solution to the 

('\VP-p/:, problpllls III 0(11) tlllle If we are given this diagram. These algorithms 

wtll be prpspnted in [Te~9]. 
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Finally, Chapter 5 will SUIllIr.arize the results and discuss the otlH.'r variants of 

thp. problem as well as sorne open problcms. 
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Chapter 2 

Voronoi Diagrams 

2.1 Proxilnity Problems 

The VOlOlJOJ di,tgr,ulI Ïh oue of the most fundamental data structures of computa­

t,iollal gl'omet ry [Sh77] 

Giv('lJ li ~(lt of n points or slies in the Euclidean plane, we wish ta know which 

pOlIlU, of the pl,wc are closer to sorne sIte than any other site. The Voronoi diagram 

is the partition of the pl,we into regions, each region being the locus of points doser 

Lo a partlclllar ~ite. 

The VoronOJ di,lg;ram (alJ oe usrd as a powerful tool to give efficient algorithms 

Iur v.uioll!> geolllctllc Il roximi ty problems. These mclude fin rling the dosest pair of 

~ltps, thp clo~e:,t nelghbOl of each site, the Euclidean minim.lm spannmg tree of the 

~Itps or the largest site-free Clrcle wlth C('fiter inside a simple polygon [T083b]. 

Wp wIll 1)(' cOllsiderIll,!!; two typ('s of Vorolloi diagrams: the VoronOl diagram 

for pOJllt sites .II\Ù th<, generalizeù Voronoi diagram for line ~egments and points 

\VIth till' l't':,tnction that thesl' lJllt' ~egmeItts must form a simple polygon and the 

pOllllS ,If(' th!' st'glllellt cndpolllts. 'l'hose points and segments wIll be called Voronoz 

/11'lT1t'1lfs. Both didgrams havp very sJlnHar structures ar.d propertH's as weil as 

~11\UI,lr ,Ilgorithms to <,ompute them .lnd will be presented together. Examples of 

Illl':,p di.lgrams are !!,1\'Cll in Figurcs 2.1 and 2.2 rcspcctively. 
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." 

Figure 2.1: Voronoi diagram of point sites. 

Figure 2.2: Generalized Voronoi diagrarn of a polygon (tilln flol.d IllIeh.) 
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a b --------------------------
B(q,(a,b)) 

• 
q 

Figure 2.3: Bisector of a point and a closed segment. 

2.2 Definitions 

To Iwglll, wc wlllnccd a few dcfinitions. We dcnote the closed line segment between 

t.wo points (l and b by ab, and the open segment by (a, b). Also [me ab refers to the 

linc paqsing throlll?;h a and b. 

The 'projection' p( q, ab) of a point q onto a closed segment ab is the intersection 

point of the line ab and the lille perpendicular to ab and passing through q. 

The ":uc1l(k<111 distance between two points q and r is denoted by d( q, r). The 

distitl.d' d(q,ab) betwcC:'Il a point q and a closed segment ab in the Euclidean metric 

1'> thl' distance d(q,.c), .c = p(q, ab), between q aud its projection x outo ab if x 

hclongh to ~Il) and is min( d( q, a), d( q, b)) otherwise. Also let cs( q) denote the point 

c10seht to q in the set S. 

The bzscctor fJ( ('Il c)) of two clements el and eJ is the locus of points equidistant 

fl011l c. and c) but Ilot doser to any otller clement and is connected. Similarly, the 

bisedor lJ(.\:, l') of two sets of elements is the locus of points equidistant from X 

.\Ild}', I.C. lJ(X,}') = {q: mineEx d(q,e) = mineEY d(q,e)}. 

A bisl'ctor lJ( fi, t')) will be orienled such that el lies to the left of it and eJ to 

t 11(' IIp,ht of it. Wc> can similarly orient bisector B(X, Y). These bisectors will be 

Iilll' sl'gmcllts and portions of parabola!'! [LD81]. For example, see Figure 2.3, the 

hi~('ctOl of a pOInt q and a hegmcnt ab ha:; three components: the half-lines B(q,a) 
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and B( q, b), and a portion of a parahola whose focus and directrix an' tlH' point q 

and the line ab respectivcly. 

\Vith thcse definitiOI. \, wc can now definc thc fl'gion h( l' .. C J) as tl\{' locus of 

points doser to clement c, thall to (llcI\lent eJ and similarly for two sets of plelllcnts. 

GivenasetSofnelements{e.: t = l, ... ,n},wedefinethc VorOJI011Y'gum\!(e.) 

to be the intersectIOn of ail rC'gions h(·,·) containing e" z.e. \-'(e , ) = nJ;é1 lI(t',.(·)), 

which is the locus of points doser to e. than to any otlH'r pl('IllC'ut. The hOlllldary 

edges of VCe,) are called VoronOl edgcs and its v<'rtices, Voronoi points Of Voronoi 

vertice8. The collcctioIl of those 18 thc VorOIlOl diagram VOR(S). 

We will also necd the following defini tion that will bl' us('d to charact.eriw Voronoi 

regions, 

A region R in the plane is weakly-mlernally-vzszb/c from kcrnd C, c: ('OIlVl'X 

suhset of R, if for any point r E il thcre IS a point cEe such that the liIlc s('gmcnt 

Fë lies completely within R. 

\Ve will take a szmple po/ygon to he the reglon of the plane dplimitccl by a clOfipd 

simple polygonal path and containing the boundary. 

Given a simple polygon P of n vertlces qo, ql, .. , (jn-I, a vprtl'x fi. is ('alled 

convex if the internaI angle at lI. is less titan 'Ir and reflex othcrwlbe. Wp will aSSUIn{' 

without loss of generality that no threc consecutive vcrticeb are collill(·ar. 

Let s, denote the segment ((j" (j.+l )1. A maxImal 7'cflcx cham is iL :-,cCfl1pnn' of 

elements S J' qJ+!' ~J+l, ... , ql..-l, '~I.-l sueh that the v('rtlccS f/J and '1k arl' ('onvex and 

Qj+l,"" Qk-l are reflex. A eonvex chain IS defined :,imilarly. Wc will OIll1t the word 

maximal as there will be no ambiguity. 

Let S he a point set. \Ve will den ote the convex il ull of S by Cll(.'i) [Sh 77J. 

Let H be CII(S). \Ve define the norma/s of Il to be the half-Hnes extpnding from 

the vertices of II and perpendicular to the edge~ incident to t.hose vertÏ<..es. Tll!~re 

are two normals per edge. These normaI~ partttion the cxterior of II iuto V-:-.haped 

wedges each having the corresponding v~rtcx as apex and regioIlb c,dlcd ,c;lriTJH, 

bounded by an edge of II and the two incident normab. If 1.l1J i:-. t.he (!dge of /1 

1 Indices WIll be taken modulo the slze of the set thcy Index 

- 13 -



e-promontory 

cutpoint 

Figure :lA: Example of a strip and e-promontory. 

I.hen I(·t NORMAL( 1l, v) be the normal to uv at u. See Figure 2.4. The points 

of intersection of VOR( S) with II are called cutpOl71ts and the Voronoi diagram 

Il!t<'rs('cted with the strip defined by an edge e (e-strip) is called the e-promontory. 

This l,{'flllillOlogy is due to [ACGOY88]. 

2.3 Sorne Properties 

Wt> will next t1C!>cribe the main properties of the Voronoi diagrams necessary for 

tlll'Ir al~orithmic construction as weil as for the C\VP problems. 

The following lelllma is fundamental. 

Lem ma 2.1 [L DSl] l' ( c,) i ... ll'eakly-mternally-viszble f1'Om kernel e, . 

Proof W(, \VIii show that given a point q, if q E V( e,) then qq' lies completely in 

\'(1',), whl're q' = l'r.(q). Assume a point x on qq' is in lI(eJ ), i =1 J. Let x' = ce,(x). 

Wl' h,ne d(IJ,.I") ~ d(q,x) + d(x,x') by the triangle illequality. Since d(x,x') = 

d(J'.t',) < d(.r.c,), we p;ct d(q.x') < d(q,x) +d(X,è,). Dut d(q,x)+d(x,q') = d(qq') 

- l·t -



... 

and d(x,e, ) = d(x,q') which implies that d(q,x') < dlq,q') = d{q,e,). Therefof(' 

d(q,eJ ) < d(q,e.) which contradicts the hypothesis that x E V(e)) .• 

vVe state the following additional facts from [1,D81] without proof. 

Lemma 2.2 The Vorol1m rcglOns V(c,) and F(e)) sharc an edye If Il/Ill only If lherY' 

exists a pomt q such that the cwcle centered at q tIIllll mdl1ls d( q, c,) = d( q, Cl) d()('.~ 

not contain any poznt of oiher clements zn ItS mter10r 07' on Ils beundll1'Y. 

The following theorem shows that when a point .I ih llIoveù 011 thc bOlludary of 

l'Ce,) in a given direction then ils projection cc,{x) .ùso moves along t'l in the sa.me 

direction. If e. is a point then the projection is (ixeù at that pOlll1. 

Theorem 2.3 Let Xl and X2 be two pomts on the bOU1Ui(l1'Y of V( c,) (lmi:r~ mui 

x~ their images under ce, (.). Ezther one of the two segments x 1 J'~ 07' X2:r~ 1J1'O]J('7'/Y 

eontams the other or they do not mtersect except posszbly at (,71dpomls. 

Another basic fact about Voronoi diagrams is 

Theorem 2.4 The element e, is on the convex hull CIl(S) of S If and only If Its 

assoclated Vorunol regzon is unbountled. 

And finally, we state a result that limits the size of th<, diagrams. 

Theorem 2.5 Given a set S of n clements, tllen the number of Voronm ('{lqcs and 

the number of Voronol pomts m VOR(S) are both O(n). 

2.4 Computing the Voronoi Diagrams 

The types of Voronoi diagrams consldered here will IH' rp,>trÎcted v(>r~JOn~ of the 

type for line segments and points. We will need e~sentially two typf'f, of di,lgrarns. 

For the CWP-s problcm, the ubual Voronoi diagram for point blteb will lH' Tl!'NJpcl. 

for the CWP-p problern, we will rcqUire the Voronoi cliagram for tbe l'xtNior of 

a simple polygon, where the latter IS considered to bp a set of oPf'n f,('grnents and 
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verticeh. Both prohlems can be solved in O( n log n) time where n is the number of 

.. lernents. The solution for the first type was first presented by Shamos and Hoey 

[SI[75J. An efficient holution to a problem closely related to the second, namely the 

computation of the medial axiS transformatIOn of the znterlOr of a simple polygon 

(h(le [DH73] for cl definition and properties), was glven by Lee [Le82]. In section 

:2.'1.2, W(l will oescribe how to rnodlfy his algorithm to obtain the VoronOl diagram 

for the exterior of a polygon III the same tlme complexity. 

A popular problem-holvIllg paradigm, tlte divide and conquer method, can be 

llsed to compute thcse diagrams. For the two problems the implementatlOn of the 

splittinl!; and llIergllll!; is different. IIowf>ver, the merge htep can be described in a. 

ll1\1form manner for both types of diagrams. as they are conceptually equivalent. 

ln [FoHG], Fortune presents an elegant hweep hne algorithm for the computation of 

the Voronol dicLgram for lille spgments and pomts. IIowever, the divide and conquer 

lllethod, \Vlt.h ils scannillg and trd.versal procedures, is much closer to the type of 

algorithms considcred in this thesis and will thus be dcscribed instead. 

Let .'J' bp tl\(' set ofn clements (pOillts and edges). The genera.l divide and conquer 

aJgorit.hm proceeds as follows. First It partItions S into two subset SI and S2 of 

approximately ('quai size. It then recursively constructs VOR(Sl) and VOR(S2). 

Fillctl!y l'OR(S.) and VOR(.5'2) are merged. This algonthm runs in O(nlogn) time 

providpd t.\l(, IllNge can be done in time proportional to n. We wIll next describe 

the :-.plit tin~ and ll1erge steps for the two cases. 

2.4.1 The Site Voronoi Diagram Case 

When p!pments ,1re points only, the split will be done by sorting the points by x­

coordinat(' and divlding the f('sulting sequence illto two parts, one of size l ~J, the 

ot her of ~Ill' r ':fl 
lT:-.illg surit a split. it ran bp shown [5h77J that there exists a merge curve, 

",Imh i~ in f.lrt lJ(SI,S2). It is a monotone chain of line segments such that 

\ 'OU(S, U 8 2) = (\'OR(Sl) n h(Sx, 5 l » u (VOR(S2) n h(S2, 5d) where h(X. Y) 

,s tItp rl'/!:lOn of the pl,we on the left side of the oriented bisector B(X, Y). More-
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over, the first and last elements of the chain are lIlfilllte rays and arc tlH' bisl'ctors 01 

the two supporting segments of CIl( SI ) anù CIl( 82 ) by Letnma 2.2. These wnVl'X 

hulls can be maintalIled rcrursively [Sh77] or can be 'r('ad off' th(' Voronol dJap;mms 

in linear time [PS85, p. 215J. One of the two infinite ravs 15 rhosl'I1 as the .~tar·tI1lU 

bisector for the mcrge. 

2.4.2 The Polygon Voronoi Diagram Case 

When elements are both pOll1ts and line sl'gments, the biscrtor of two l'pts of 1'1(,_ 

ments may in general have several disjolIlt components. 1I0wevpr in th<, casp of two 

polygonal chams, the biscctor IS romposcd of only 011(' piec<, [LeR2]. I\torpov(\r il. IS 

clear that the VoronO! diagram for the exterior of a convex pnlygon il. ('xact.ly t.hp 

set of normals of aU the edges of the polygon. The !:>ame is t rue for the di,lgram 

of one side of a convex chain. (An edge ab is con!:>lderC'd to he the f,l't {a, Il, (a, Il)} 

and its Voronoi dlagram conslsts of the two line!:> perpendiclliar to ((l, b) and pallSlIIl!; 

through a and b.) 

In [Le82J, D.T. Lee computes the Voronoi diagram for the interior of il l.illlpip 

polygon by first computing the diagram for the 'interior side' of reflex rhains whirh 

are easily obtained by scanning the edges of the polygon in lincar time. Note that 

the process of computing this diagram is identical to computinl!; tll(' di,lgram of tl\(' 

exterior side of convex chains. 

We will need the following definitions: 

For a simple closed curve C, let INT(C) denote the interior of C. 

A pocket of P is one connected component of the closllre of CIf( P) \ 

lNT(P). It is associated with the convex hull edge or poeket lui tha.t I!> 

contained in il. 

In Lee's algorithm, the diagrams of these reflex chain!>, ~ay CI, G''2, .•• , Cm are 

then merged two at a time to obtain VOR(C1 U C2 ), VOR(C-j U (,'4), etc... 'l'II(' 

process is repeatcd recurslvely. At each &tage O( n) work i!> donc fl}r th!! merw' and 

there are O(m) C O(n) chains to be processed. The total lime r(>(llIired il> th{lfpforp 

Q(n log n). 
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Our algorithm will he similar to the one just described, but we will compute 

the diagram of the exterJOr side of convex dJains as noted above. These chains are 

the part of the boundary of the polygon coinclding wlth Its convex hull Moreover, 

w(> will compute the diagram for each pocket of tht' polygon separately. Dy the 

following lemma, tlt(> merge wlil he just a union of ail the diagrams computed since 

tltey are ail totally IIldependent (I1on-overlapping). This IS lliustrated in Figure 2.2 

III wlllch the btrip lOrrespondmg to a convex hull edge ib shown III dashed Unes. 

One ('dIl thus define the e-promontory for VoroIloi diagrarns of polygons. It 

(()nSI~ts of either exactly the boundary of the Voronoi region of e if e is an edge of 

/' and of CIl( P) or the part outside of ClI(P) of the diagram of a pocket if e is a 

lid of a pocket. 

Lemma 2.6 Let c lx: an cdge oJeIl(p). The e-promontory lS contamed in the strip 

('()rr'('.~p07/{lm[J 10 e. 

Proof If c jf, abo ail edge of P, the e-promontory is the boundary of the e-strip. 

Ot.herwlsP, let (' :::: uv. Then V(u) and V(v) are unbounded by Theorem 2.'1. 

Moreovpr NORMAL( Il, v) cannut intersect any other Voronoi region, since any point 

of NOH!I!t1L(Il, v) IS doser to u than any other element. The same is true for 

NORA1:1L(v,u), hence no Voronoi region ather than V(u) and V(v) intersects the 

norm;Js (PX( l'pt may be at Il and v). 1 

Fur a given pocket, the split wIll be done by dividing the set of convex chains 

illto two !>ets of .l<Jjacent ch;uns of approximately the sarne size. Sorne chains may 

h(> rpd uccd t 0 only an edge. The split will be at a reflex vertex and the starting 

ln~('cl(),. will be a ray biscctinp; the angle formed by the two edges adjacent to that 

\'('ftex. 

2.4.3 The l\1erge of Two Voronoi Diagrams 

\\,,, a~st1ll1l' 1I0W th,1t \'OH(Sl) and \'OR(S2) are available and show how the two 

dî,\gralll<; C:\II hp mcrp;ed in O( Il) time. This is done by constructing the merge curve 

11(8"S2) and dl'!l'ting tht' l'dges of S, on the right of B(S},S2) and the edges of 52 

!ln t hl' 1er!. 
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We can imagine moving a point .r along the cnrrent hisector B(c"c)), (', E 

Sl,e) E S2, until it enters a new Voronoi region. say of c. E SI . .r will th('n contint\(' 

to the right of V(c .. ) a10ng B(ej,c)) sinee at this point l'. becauw dO!.N to.r t.ha.n 

The eurrent (oriented) bisector B(e"c)) is initi<l.lLlCd to bl' tIll' . .,furtlf/y ln~('ctor 

Starting wlth the last exaullIled edge, we scan the edges of t he <HI jaccnt Voronoi 

reglOn on the left of B(e"e)), V(e,), ln eounterrlockwise directIon to !ind the pdgl' 

Be e" c .. ) which lllterserts the current biseetor. The saIlle ~( an IS perforlllpd c\uckwi!.p 

on Veel) to find the edge B(et,e)). We then ehoost' tlH' llPW bls('(tor th.Lt first 

intersects the eurrent one in the sense of the previolls paragra ph. 

If B( c" Cs ) \Il i('rseets B( ('" c)) fi rst then the next Cil rrell t. bl~('ct.or wi Il 1)(' JJ( ('., ( ) ), 

otherwise it will be B(c1,et). 

For both types of Voronoi diagrams, the construction of B(SI, 8 2 ) j,NllIinates 

when no more Voronoi edges intersect thf' merge curve. 

Finally, the following theorem from [LD81] states that the scan dpscribed abovp 

will work without backtracking, and establishes along with Theorcm 2.5 tltat ttH' 

merge can be done in O( n) time. Henee the Voronoi diagrarns can ca< h he mmputed 

in O(n logn) time. 

Theorem 2.7 Lct el and c) !Je elements of SI and .cil rpspectzvcly, mul Id JJ( ('" c) 

bc eonslruelcd durzng the mcTYJc proCCS8. No pomt of V(c.) zn VOR(."I) mlllât 1,(','; 

to the rlght of thc onentcd bzsector B(c.,e) WIll bc mc/udl:d zn thl' 7'('flwn V«('.) 

m the final dzagram and slmtlarly for V (e). Furthermore, lhe srrmnmy of V (',) 

zn a countcrclockwlsC directIOn and V(e) zn a clockwlSP rllr('(:lum !/Izlt fiwl OU' jLr8t 

mtersectzon belwcen B( e" c) and el/her V (el) or V (c J)' 

2.5 Data Structures for Implementing Voronoi Dia­

grams 

\Ve will need to perform rapidly vaflous operatlOIl!> OH thcse dlag;ram<,. {JIll' data 

structure a110wmg the necessary operatIOns Il> the Doubly Connect(>d Edg;p Li!>t or 
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DCEL [MP78J. In this data structure, for each edge there is anode containing 

J/Iformation about adjacent vprtices. faces, and the next counterclockwise edge at 

1'<1.( h vertex. Wp cali find the edges enclosing a given face. or edges and faces adjacent 

Lo (l glven vprtex in time proportionaJ to the output. In partlcular. !fi constant time 

Wp can filld the face (or VoronOl region) on the 'otlier side' of an edge. 

Similar data structures are the Winged Edge [lla75] and a slightly more general 

one, the Quad-Edge d(Lta structure which is presented in [GS85] along with an im­

plementatioll of an elegant dlvide and conquer algonthm for site VoronOl diagrams. 

In partlcular, this last data structure can represent any planar subdivision where 

thp ed~es are Ilot necessarily lille segments. 

- 20-



Chapter 3 

The CWP-cp/cs problelTIs for 
• 

convex polygons 

In this chapter, w(' descnbe solutions to the following restricted Vf'fhIOIlS of t h(' 

optimization problems described in Chapter 1. In the first problpm tll(' poly)?;on l' 

must be convex and in the second, the set of points is in fact th(' sd of VPfllc('s of .t 

convex polygon, giving them additional btructure .wd thus r('movllIg the' f(·qllin·Jllf·1l1. 

of constructing the convex hulJl. The approaclt taken a.lso f'liIIlIIl.ttl'h t 11(' nppd 1.0 

compute Voronoi dlagrams tltat require complex data htrueturps .lI.cl prodllCPh .l 

simple aJgonthm for the convex case. We define formally tlt(' prohlf'lIIh .th followh' 

Problem CWP-cp (Closest Wedge Placement for li convex poly­

gon). Civen a convex polygon P \VIth n v('rtlcch and a WNI)?;c VV wltll 

fixed angle w, apex 0, determine tlte pmltion of W rpl.LtlvP 1.0 l', .d­

lowing translations and rotatlOlls, hlllh that tl(O, l') il> !lJlIlllllilf'd and l' 

is contained inside lV. Determine also the pOInt of P tltat rp;tlizeh t.h" 

minimal distance to O. 

Problem CWP-cs (for Set of vertices of a Convex polygon). 

Same settlJ1g as C\VP-cp proble'rn but we minJInize rrJl/l {d( 0,1)) : /1 vl'rtpx of l'}, 

1 An earher versIOn of the matenal ln tlm chapter appcar~ III [Tf-8il] 
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an<.l wc a.%llme that P is in standard forrn III the sense that no three con 

becutive vertlces are coUlllear. 

The followlllg notation is used: 

rl( 0, P) is the Ellclidean distance between 0 and the polygon P (i.e. 

d(O, P) = llun{d(O.x) . x E P}.) We will similarly use d(O,S) for a 

point b('t S. 

(,'IRCLE(O, r) represents the circ1e centered at 0 with radius r. 

-
ab is the arc extending from pomt a to point band is part of a circle 

wltose rClIter lS glven by the context. A subare of ab is a segment of ab. 

\\'EDGE(O.lV1,w) represents a wedge having 0 for apex, n'} as one of 

ils ha.lf-Illleb and the other half-lille (denoted H'2) is counter-clockwise 

from WI formmg an angle w \Vith WI. Such a wedge will also !:le denoted 

(lV"ll':.d 

3.1 Observations 

Thc problems CWP-cp and CWP-cs become trivial when the wedge angle w is 

g;rC'at er t han tlll' I.ugest IIlternal angle of P since in that case we can place 0 at any 

\ ('rlex ,wd the 1lII1IImai dibtance is zero. \Ve can therefore absume the contrary. 

AIM). for problcm ewp-cp It i5 Ilot enough to look only at the vertlC"s of P for 

tll(' dObPbl point to O. Figure 3.1 illustrates the case where the closest point is on 

.lll ('d~c of P Sillul<l.rlv ta Chazelle [Ch83J. wc define 

,t p/CICC71lfllt of the wedge ur as a given position of TV and P relative to 

onp a notlwr . 

. \ ,~/llblc placement of the wedge H' = H'EDGE(O, lV1,w) is a placement 

:.lIlh th,tt éln cd~e of P lies on one of the wedge half-Hnes . 

. \n o/,Illllai placC'ment i:, il placement that solves the CWP-cp or the 

('WP-f~ problpm dppending 011 the context. 
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Figure 3.1: Closest point is on an edge of P. 

A contact point is the point or vertex at which the polygon touches a. 

given wedge half-line. 

We note that it IS not enough to look at stable pldcemcnts ta detl.'rmint' the dOSCbt 

position of P. Figure ;L2 illustrates a placement which b Ilot stahlf' hut wherp 

P can't get closer to O. However by the followmg Iemma, wInch applies to bath 

definitions of optimahty, only placement.s snell that P if> 6U pported by etleh of the 

wedge half-lines need to be considered. This il:> what will tH' mpant by pluam('ftt III 

the remainder of th!' thesis. 

Lemma 3.1 Let P be a convex polygon and W = WEDGE(O, Wt,w). Then the 

optimal placement of P and IV is such that tflere lS II vertex of P on ('rlch of /11f: 

half-lines W1 , l V2 defimng W. 

Proof There arc 2 cases: 

Case (a): There IS one vertex of P in contact with W Then we (an rotatn J) 

about ° in the direction away from the contact pOlllt, while all points of J) rl'main 

at the same distance fwm 0 We then ftlll into the IH'xt (<tbC. 

Ctlse (b): There are no vertices in contact wlth IV. Then olle cali traJU,I,ün /) 

towardb 0 in the direction of the Lisertor of W, Clearly ail pointh hf!('orrw (IOhN 1.0 
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Fig;urc :t2: Non stable optimal placement. 

(), w 111(:11 Ieads ta a contradiction. 1 

Stabll' placements will he useful for the compu tation of the path followed by 0 

.li-> th(\ wl'llge rotatl'S around P. A stable placement can be represented by a triplet 

of pOlllts (a, Il, 0), where a is the position of the wedge apex 0, and u and v are 

tilt' wutact vertiC<.'s of r. Wc wJ!lnced a startil1g stable placement, which can be 

(omputpd ill O(log n) time with the following procedure. 

Aigorithm STABLE-PLACEMENT 

II/put: 

Output: 

('onvf'X polygon P, angle w. 

Stable placement of wedge l'V. 

1. Choo~p ail e<lge of P llnd place one ùirected Hne W1 of W on it such that P 

i~ on the ll'ft of the li lit' (check any vertex not on W1 .) Define a direction lV:f­

at a couutN-dockwisc angle of w + 11" /2 with ~Vl. 

') {bill!!: binarv ~('nrch, find in ° (log n) time thc vertex of P furthest in the 

dilection of Wf a.nd pO<;ltion ll-':l ta pass through it. 

3.1.1 Contact Vertex Pairs 

Wc wdl ncxt ùescribc an .tlgoritltm for obtaining aU the contact pairs and the stable 

plan'IlH'l1ts of the wedp;l' (and of 0). The wedge will be rotated clockwise. The 
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Figure 3.3: Finding the next stable placement. 

algorithm represents yet another application of the 'rotating caJipcr' approitch 1.0 

solving geometric problems [To83a]. 

If there are more than two vertices on the w('dge half-lin«'s then for caeh h.tlf-ljIIP, 

we consider the ones that are thE' fllrthest clockwÎbe on P to be thp actual cont.act, 

vertices. There are l'xactly two contact vcrtices at ,wy tirne. Figure :J.:l illuhtrat,I'H 

the followmg algorithm. "Vf' define W as W EDG E( 0, 11'1 ,w) = (W1 , 1\'2)' 

Algorithm ROTATING- WEDGE 

Input: Convex polygon P, angle w 

Output: List of stable placements of W and corrcsponding contact p;urs 

1. Find a stable placement using the precedIrlg algorithm. This givl f> two contact 

vertices il and Bof p, and an initial placement of O. 

2. Let A' and B' be the next vertices of P (lockwlse from Il and Il rCf>J)(!cl.lvply. 

Let a be the angle formed by Hf) and the edge A' A, and (3 = L( Jl'lJ, W:d· 

3. If a = /3 or the internaI angle at JJ i" lehf> than w, the next contact pour wlil 

be (A',B'), and the new wedge 11" = (W{,lV~) will be hllCh thd.t lJ/J' if> on 

lV~. Let (A,B) ..... (A',JJ'). 
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Ebe if n > (i, the next contact pair is (A, B'), and the new wedge W! will be 

&uch that IlB' is on W~. Let (A,B) +- (A,B'). 

Else if a < ;3, the next contact pair is (A', B), and the new wedge W' will be 

such that A,l' is on W{. Let (A,B) +- (A',B). 

,1 RepObI tlOn the wcdge, record the pair and the placement of 0 and repeat from 

bt<,p 2 until the initIai placement of step 1 is reached. 

There arp O( n) contact pairs since each edge determines two stable placements. 

»urinp; the execution of the above algonthm, TVI lies on successive edges of P. In 

&tpp 1, we therefore rcturn 1.0 the original placement of lV. 

This ùlgorithm runs in linear time, SlIlce ail stable placements are traversed 

p'Glctly ollce. Note that there can be up to 2n contact pairs as in the case of a 

f('glllar n-gon and an appropriate angle w. 

W(' will 1I0W characterize the set ;:Jf ail placements of 0 for a given polygon P. 

3.2 The Path of the Apex 

III [Ch83] the placement of P wlth respect to two edges of a fixed polygon enclosing 

J> is examined. This enclosing polygon can be considered as forming a wedge. Here 

how<,vPr, this pOlIIt of view with P movmg leads to an overly complex formula for 

the dibtance flOm () to P as a function of their relative angle. We look therefore 

,It plObl<'lII CWP-cp from a different point of view and we examine the path that 

o follows as the wcdge moves around the polygon in a CQI,tmuous fashion. The 

problplll r<'quires solving the following subproblem: 

We are glven 1wo vertices il and B of P each sliding on its own half­

lillC, the two half-lines formmg a wedge of fixed angle w. If the wedge is 

~lIh.i('ct to th(' restrictIOn that it never mtersects the interior of P, then 

",hat is the path of the apex 0 relative to P? 

Lemma 3.2 nlls potlt Ù. an a7'C segment with the containing ci7'cle passmg through 

.1 allcl JJ fllld of mt/lUS d(A,B)j(2sillw). 

Proof Follows dircrtly fJOm [Eu], book 3, proposition 26 .• 

- 26-



Given the points A and B and the angle w, this arc l'an be repres(,lltecl for 

exarnple by a structure containing the center of the cirrle and two points (or two 

angles) and a radius and can be obtained in constant time. 

The path of 0 will bl'! a chain of circular arcs around the polygon. Each <l.re is 

determined by a pair of contact vertices and its endpOlnts are two conspcutive st.able 

placements of 0, as given by the ROTATING-WEDGE algonthm. If th(' internai 

angle at sorne vertex is smaller than w. 0 will touch P at that vertex. If w = 11" t.he 

path will be equai to P. Due to its shape (sec Figure :~ G). 

the closed chain of arcs determined by the ROTATING-WEDGE scan 

about P will be called the cloud of P and denoted CLOUD(P,w). 

3.2.1 Obtaining the Minimum Distance 

To solve problem C\VP-cp we Ileed to determine the closest pau' of points, Ollp 011 an 

edge of P and one on CLOUD(P,w), 5uch that their distancc is as small as possibl('. 

The following will be for a given pair of contact vertices A and /J. 

For a given arc of CLOUD(P,w), we define the part of the polygonal 

chain of P that i5 between the contact vertlces A and n, and on tht' 

same side of the line AB as the arc, as the mner chain. 

Let a set S of points be Vl8zble from a given point q, where q and Sarp 

not in the interior of P, if for al! sES, qs does not interse('t tll<' intNior 

of P or the wedge half-tines. 

We then have the following !emmas. 

Lemma 3.3 For a given placement of 0, the closesl fJoml 10 () zn lIw eWP-f'p 

optimal placement must be on the znner chain. 

Proof For all positions of 0 on the arc determined by two contact pointb, t.he illnf'f 

chain is visi ble from O. • 

Hence the edges of P on the inner chain are the only candidatef> for thf' (Io<,eht 

pair. 
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Figure 3.4: Possible closest pairs. 

Lemma 3.4 The edges of P on the inner chain are inside the circ/e determmed by 

the ml' and paSSl71[J through il and B. 

Proof The inner chain is by convexity on the same side of line AB as 0 and is 

iJ\~id(' ail tria.llt:';le~ qrlJJ for aIl q on the arc. Dut qAB is inside the circle (which 

p.ll-~l'~ through q, A and B). 1 

Tllcre ,He \'arious SI tuations ta con si der for the closest pair, depending on the 

positioll of the cdgl' rel,ltive to the arc, and the size of the arc. In Figure 3.4(a), the 

(IOM'l-t pair is 011 il ray originating from the center AI of the circle. In (h), we must 

(OIlSllll'l' t hl' pt'rpl'Ildicular projection of q onto the edge and in (c), the closest pair 

is ail arc cndpoillt and a vertex. 

RefN lo Figure 3..1( d) for the following lem ma. 

Lcmma 3.5 Ld p be a jiJ:cd pomt inszde CIRCLE(M, r) = C and q on C, Then 

dtp, li) 18 111ll11Wdlll as q Iml'els along C makmg one turn. It has one mimmum at 
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q = x and one maxImum at q = y, where x lS the :losest of the tt/'O illtcrSf'ctlOli 

points of C and the line passmg through p and AI, and y IS the oiller mtcr,Olt'ctioli 

pomt. 

Proof It is clear that x and y realize the minimum and m,\.ximum distalH'c to p. 

respectively. Let qI. q2 be two points of C on the same bide of the diamcter l'y, slIch 

that ILxMqd < ILxMq2/' Then p is on the same side of the peqwndicular bis('fI,or 

of qlq2 as ql. Hence d(ql,]» < d(q2,P) with equaIity only whell ql = ql or TJ = AI .• 

Corollary 3.6 Let p, x and C be as m Lemma 3.5. The closest ]JOl7lt to l' of au 
~ 

are qq' on C is the point s sueh that ILxMsl is mimmlzed (-tr/2 < L.r.M8 < tr/2). 

scan be one of x, q and q', and ean be dctermzned zn constant tnne. 

We aIso note that for an arbhrary point q and segment ab, t.he point (-l (q) and 
(L) 

hence the distance d( q, ab) can be determined in constant time. 

Theorem 3.7 The points rea/lzing the minImum distance (and hcnce the (lz.'ltance 

ztse/f) between an arc and a se,qment c071tained zn the mterior nf the curie conlal7lUlg 

the arc can be obtained zn constant time. 

Proof We consider the Voronol diagram of the set {p,P',(p,p')}. Il bplits the arc 

into at most five subarcs of the form qJh-H. To find d(qJh+l,p) or d(qJï:+I,P') 

we apply Corollary 3.6 on the subarcs in V(p) and V(p') respectlvely. '1'0 find 

d(qlq;+l'PP') for the suoarcs in V((p,p')), we notice that the endpoints of parla 

suhare are doser to PZ! than any other pOlllt of titis subare, tlwrefore only d(qa,PTI), 

ql E V((p,p')) remain to be checked. Thus the number of point pairs WhOhP dihta(l(p 

must be calculated is constant .• 

This theorem gives rise ta a constant time algorithm for determining tbe dlhtall«(> 

between an edge and an arc positioned as speclfied in the r,tatPrnent of LIll! thp{Jf('III. 

This algorithm will be refered to as DAE in the sections ta follow. Abo, fi. (onst.ant 

time algorithm that determines the distance betw(!en a vertex of f> ,LIId an arc <Lflf,P,> 

from Corollary 3.6, and will be called DA V -
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3.3 Algorithms CWP-cp and CWP-cs 

Bcfore prcse/ltin~ the solution to the CWP-cpjcs problems, we first establish a result 

that helps avoid rcpcated work in our algorithms, when determining the minimum 

dlhtanre hPlw(>cII th~ path of the wedge apex and the polygon. We need sorne 

dl'fi /litions: 

A point d OII CLOUD(P,w) is between a and b on the cloud if, starting 

at a and traversing the cloud clockwise, we reach d before b. This fact 

will dC/loted by the expression a < d < b. 

Ll't Pu, .... Vm be the inner chain with vertices listed in clockwise order 

O/l the polygon P. It is visible from every point of ab whcre ab is the set 

of P~)hltioIlS of 0 for which Vo and Vm are the contact vertices of W. 

WC' will (1):.,0 Ufle the abbreviation c(a) to mean cp(a). 

Wc ran now say that p is before q on the inner chain, if we encounter p before 

(1 while tra,versing the inner chain from Vo to V m • This fact is denoted by p < q or 

fJ ~ q if wc ('an have p = 'l' (p and q are not necessarily vertices of P.) 

We will show t.hat for a point a on CLOUD(P,w) moving in a given direction, 

('(a) alsa moves III the same direction without backtracking. This will be similar ta 

Theor('1l\ :2.:1 for Voronoi regions ln Chapter 2. 

Lemmn 3.8 Ld a be II fi.rcd poznt outslde a convex polygon P, and p a variable 

pomt 011 the bOllwlary of P l'lszble from a. Then the functwn D(p) = d( a, p) is 

IilllTllodal, lI,/th the minImum occurring at ]1 = c( a), as p moues cOlmterclockwise 

/IlOT/fi Ihe bOll7lclary. 

Proof For l'.tell ('d~(', by the triangle inequality D(p) decreases strictly as p ap­

proa( h('~ c( ([) and if; .1. continuous function .• 

~ 

1I('f(' (lb will be a fixed aIC of CLOUD(P,w), determined by the contact vertices 

l'U ,Uld l',,, and t II(' ci l('Ic is t hat which contains this arc and intersects the contact 

\'<'rt I(,{'~ .I~ d('~rnb{'d hy Lemma 3.2. 
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Figure 3.5: Showing how c(a) moves in the same din·(,tioll a~ a. 

Lemma 3.9 The arc ab is zn the reglOn of the cude de/mulcd by th(' Imes ('xl('nrliuf/ 

"iiOVï and Vm-l Um, and intersectzng the clrcle at Uo and llm , respectzve/y. Thal 18 

U m < a < b < 'Ua. Moreover, q = VaUa n VmUm is zn lhe mterlOr of the czrclc. 

Proof See Figure 3.5. If 0 was placed outside u';;ua th en one of the wc'dge half· 

lines would intersect the interior of P. Since VI and Vm-I are in the illtprior of th(' 

triangle OVavm, for aIl 0 E umuo, the lines extending VUu) and Vm-I 0m inLerscct aL 

q, and q is in the interior of the circle .• 

Note also that the inner chain is contained in triangle VofjUm , wherp q = 1J()1l0 n 

Lemma 3.10 Gwen an arc ab of CLOUD(P,w) tmlh 1Lm < (l < b < Un, lhf'TI 1/)(' 

have c(a) ~ e(b). 

Proof Assume e(a) f. c(b), e(a) and c(b) are imide triangle voqvm • Let /. be thp 

perpendicular bisector of e(a)c(b). \Vith respect to L, the pOlllt (l must 1)(· (H) tlll' 

sicle of c(a), and b on the bide of c(b); otherwi&(!, \Ve W·t a C'OutradictioJl. 



Wc want ta show that L crosses VOVm (see Figure J.5.) Assume the contrary. 
~ 

Since L crosse!> ab and u;-uQ, L cannat intcrsect 1l0VQ or U;;V;; and hence does not 

enter trial1gle VOf/lJm • nut the midpoint of e(a)c(b) through which L passes is in this 

triangle, which contradicts our assumption. 

Therefore L intersects VOVm . Sincc L cannat rross the inner chain twice, L 
~ 

"cparateb tlte arc ab and the chain into two pieees. Thus, traversing the inner chain 

htarting at vo, w(> must encounter e(a) before e(b). Hence e(a) :S e(b) .• 

r--

Lpmma :J 10 is valid for any suharc of ab. Therefore, if d is on ab, then e(a) ~ 

c(rl) :S r(b)j l.e. the point of P of the dosest pair of points between ab and Pean 

.dwayh !Jp found !H'twcen e(a) and e(b) on the inner chain. 

Theorem 3.11 lfa,b E CLOUD(P,w) and a < b, then eCa) ~ e(b). 

Proof If (l and b are on the same arc, by Lemma 3.10 we are done. Else we have the 

(halIl of arcs (clockwisc): (l,â;+1,at+iàt+2, ... ,a3~aJ\ whp.re the a, are successive 

htahle placements of 0 and a E a,ii;+I,b E aJ:IaJ' Then by Lemma 3.10 we have 

1/1 thil, W,lY the set of arc endpoints partitions Pinto chains or sections that 
~ 

\VI' will calI cC ab) for cach ab, extending our notation. Sa for a given are ab, the 

.dgorithm for CWP-cp ha.c; ta look for the closest pair only on the edges of c(ab). 

Lemma 3.8 ensures that the distance between an arc end point b 011 CL 0 UD( P, w) 

and p on P rcachcs a Il1lJlimum cxaetly once (at e( b» as p moves along the boundary 

of P. This faet along wlth Theorem 3.11 allows us to determine c(b) given e(a) 

wlthout backtracking. This Gln be done by iteratively checking the distance between 

b ,uHl l'dges ~l1ccccdillg c( a) until this distance increases. The preceding edge then 

\ olltain~ c( b), ami we can advance a to b. Doing this for a linear number of arc 

\'ndpolI1ts a. we can obtain ail the c(a)'s in linear time in one scan around the 

bOlllldary of P. 

For <lfC cndpoillts (l" wc can introduce new vertices at the e(al)-llo more than 

'2 n HPW vl'rtices-to bimplify the complexity analysis. We can then daim that the 

.t1)!.oril hm Hc\'{'r examines Iwo cdges twice, and hence is linear. 
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01' 

Aigorithm CWP-cp. 

Input: Convex polygon p, angle w. 

Output: CWP-cp optimal placement of wedge apex () LUlli c( 0). 

1. Let n be an unordered set of point pairs, illitially empty. 

2. Perform a ROTATING- WEDGE scan around P to ohtain tht' initial plan'llIl'nl 

of apex and the li!':>t of stable placempnts and corresponding conta.ct. pairs, 

(a"u"v l ), i = O, ... ,t - 1, t E O(n). 

3. Find e(ao} for ao the initial placement of apex givcn hy stpp 1. 

4. For each stable placement (a" u" VI): 

4.1. Compute the arc at â:"+l of the circle as describ('d in },t'Illma :l.1 (indi((ls 

are taken mod ulo t.) 

4.2. Determine e(a,+!) as described above by traversing the inner challl dock­

wise from e( al ). 

4.3. For each edge on inner chain betweell e(al ) a.nd c(a,+I) (including t!t01.t' 

containing e(a.) and e(a'+l)) do: 

Using algorithm DAE, get the c10sest pair of points on a l ll.+1 and 

the current cdge and add it to n. 
5. Obtain the closest pair (0, p) of the pans of points III 'R, and r('port t.hp 

corresponding wedge placement. 

The comment precedillg the algorithm establishes the following rcsult. 

Theorem 3.12 Problem CWP-cp for a convex polygUTI P llJzth n lJt'7'lZCf'8 ('(lit (J(' 

solved zn D(n) lime. 

Figure 3.6 shows an example of CL 0 UD( P, w) for a wedge wi th angle w = 'Fr /'2. Thc 

optimal placement of the wedge apex is at 0, and the clo&cst point on P to () is v, 

a vertex of P. This placement is therefore abo a wIn tion to CWP-cs. 

We have a very similar result for CWP-cs. Let C1J( il) 1)(1 the dm,c!,t Vlhi bl(~ Vl'rtpx 

to a point a outside P. It is the only vertex that b candidatl! for lH'in~ part of 

the closest pair, as is 1>hoWIl in the next thcorcm. \\'~ will pro\'(' a. feU t hllllilar t.o 

Lemma 3.3 for the closest vertex in the optImal placement of IV aud P, al> ddil1l~d 

by problem CWP-cs. 
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Figure 3.6: Example of CLOUD(P, 7r /2). 
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Figure 3.7: Thcorem 3.13: Casc w < 1T /2. 

Theorem 3.13 Given a placement ofpolygon P and wedge IV = WEJ)(;E( 0, lVl ,w) = 

(lVll lV2 ) optimal for problem CWP-cs, then the vertex c!oscsl to () 1,'; on the mnt'r 

cham. 

Proof Suppose the closest vertcx c is not on thc inller chain. Thcn ail vertices rnu~t 

be on the outside of the circle CIRCLE(O, r), where r = d(O, c). LC't D IH' t.he li/ll' 

of support of P passing through c, wi th P on tll(' bamc si de of L .t~ (). Let A hl' 

a point of intersection of L with W, sayon W2. The IIItcrnal angle j3 form('d by /, 

and lV2 (on the side of 0) must be less than rr /2, bint.e c is on th(' circle, and (by 

Lemma 3.1) il is outside of the circle. 

Casew < rr/2 (see Figure 3.7): 

Since w < 1T /2, we must have another intersection point fJ on the other half-)jllp 

There must he vertices at il and B, othcrwise wc cou lei place a wpdg(\ W' with apl'x 

0' such that d(O',c) < d(O,c). W' is a capy of W reflected with rcsI)I!ct 1,0 L. But 

l V' is not in contact with p, since P i!:> contallled in tIiangle AO JJ By I,l'rnmtL 

3.1, this is not the optimal placement. Dut, by the elpfinitlOlI of CWP-rp, /' ha~ /10 

three consecutive collinear vertices, which contraellct!:> our a~~urnption~, and proVP'> 

- 35 -



A 

Figure :.L8: Theorem 3.13: Case w 2: 1T' /2. 

1 he t hcorellJ for w < 7r /2. 

('a8(, w 2: 7r /2 (sec Figure 3.8): 

III titIs ca ..... p the suppOlting Illle does not neces<;arily intersect both wedge half-lines. 

NotC' that p ::; 7r /2 imphes that (3 ::; w. 

Ail tI\(' vertices of P must reside inside the wedge, and in the half-space delimited 

\'V /, ,md contailllng 0 There must be at least one vertex of P in triangle AOc 

anù olltside CIRCLE(O,r) dIfferent from c (in particular on GA), otherwise we 

(ontradirt Lemma :U. Of the vertices of P in triangle AOc, tale the one that is 

Ihl' Illrtheht in the directIOn of W2 and caU it B. Cali BI its olthogonal projection --
Oll \t'.!. Th(,11 W(' (iUl plùCe a wedge WEDGE(B'. B'D.w) at B' \VIth d(B',B} < r, 

~o t heTe I!-> .t pldccmen t of the wedge that b rings 0 doser to the set of vertIces of P. 

This (,()lItradlcts our ahsumption and proves the theorem for aU angles w ::; 1T' •• 

---Lemma 3.14 TilL closes! t'er·tex ta arc ab lS a vertex adjacent ta an eclge of c(ab). 

Proof 'l'Ile dosest visible vertex must be on the inner chain by Theorem 3.13. 

('ollé,lller thp \'oronoi Iegions of the edges of P. We noted in Chapter 2 that they are 

dl'lIlIllted by the set of normals stC'mming from the adjacent vertices. Dy definition, 
- ~ 

lib interhl'('ts the Vorolloi l'egions of the edges (and adjacmt vertices) in c(ab), and no 

(,tht'r rq:dolls. Thercfor<, the only vC'rtices necessary to consider are those adjacent 

tu <,d)!.('s 01 ((ab). 1 
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This rneans that cv(q), q E ab can rcach outsidc of ('(ab), but not bt'YOIHI anotlH'f 

vertex. Ta obtain an algorithm for C'WP-cs, wc modify tll<' pr('c('din~ al~orithm hr 

replacing the application of DAE on the current edf!;e l'yan ,\ppliratlOll of DAV on 

the vertices of the current edgc. 

Theorem 3.15 Problem CTI'P-cs for a pomt set S tvlfh n pornt ... fhat arr the t'(T­

tzces of GII(S) ean be solocd m O(n) t/1ne. 

Proof The preceding lem ma guaranties t.he correctness of algorithm ewp·("S and 

the running time remains linear .• 
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Chapter 4 

The CWP-p and -s problerns 

\\'p WIll 1l0W comider the general ver510n of th(' C\VP problems and present algo­

rrthnJl( ~()llItions, The precise 5tatements of the problems follow, 

Problcm CWP-p (Closest Wedge Placement for a simple poly­

gon). Givt'Il ,1 Simple polygon P with 11 vPftices and a wedge IV with 

lixcd ant-?;Ic w, apex 0, dcterrnlllP the positIOn of W relative to p, al­

lowint-?; translations and rotations, such that d( 0, P) is minimized and P 

1'> ronta.Îned imide IV, Determine also the pOlllts of P that realize the 

Illinilll<ll di::,tallce to 0 

Problem CWP-s (for a Set of points). Given a set S of n points 

,tlld ,\ wedge IV \VIth Jixed angle w, apex 0, determine the position of 

H' r('lative to S, allowing translatIOns and rotations, such that d(O,S) 

I~ IIIll1illlizcd ,lIId S is contained inside IV, Determine also the points of 

S that 1(',t1izp tl\(' minimal distance to O. 

\\'(' will as~ullJ(' Ih,1t tilt' onl)' cxtreme points of S are the vertices of CH(S), and 

1 h,l t J) I~ III l'iLlndard form. These assumptions will simplify the proofs below, but 

,Ill' 1101 1It'('('~sa)y for achicvlIlg an O(nlogn) time bound. 

\\'p fll~t note Ihdt. the wl'dge lines will be tangent to the convex hull of P or S, 

~() 1 hl' l(,~lIlls COllceflllllt-?; cOllvex polygolls of Chapter 3 apply here to CH(P) and 

('lI(,.,'). 1 c. CU)FD(P, ...... ) = CLOUD(CII(P).w) and similarly for S. 
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Figure 4.1: Closebt point of P b('llIlItl a hull edgc. 

Ta solve the first problern, which the case of a simple polygoll l', W(' call1lot 

merely scan the edges of P and obtalll tltc successive c( a) for cloud arc endpoÎllts (l, 

since the polygonal chain can wander anywhNc illside CIl( P). Ab an eXiLlIlple. Wf' 

note the case where the optllUal placelIl('nt 1S sueh that cC 0) if, inwl(· Cm F) iL." ill 

Figure 4.1. A similar situation occurs in the case of a poillt set. 

For a given arc of CLO UD( P, w), wc will U&C the Voronoi dial!,rarn of tht· spl of 

edges and vertices of P to determine which edges of P to examine whell ~('archill~ 

for the closest point on P. Similarly, wc will use the VOfonoi dmv;ram of oS' for tht' 

second problem. 

The convex hulls CH(P) and CIl(S) mcntioned above can br obtailled ill l1upar 

time [1IA79,Le83,GY83J and O(nlogn) time [Gr72], respectivply. IIowpver, t.he 

convex hull of S '('an be obtained from iLs VorollOl diagram in O(n) tim(', <11> c1pbuibl'd 

in [PS85, p. 215]. The algorithm in [PS85) travcrbCS the unhollllded regioJlb I)f 

VOR(S), finding the convcx hull v('rtlces as iJlustraLed in Fi~un' 1.2. By L(~rnIlIi1 

2.4, we can adapt this algonthm to construct the VoronOl diagrarn of th(· l'xt(>fiOT 

of a simple polygon, silice there eYJsts a bimilar corrcfopondcncc b(ltw(>(~l1 fOUVPX hull 
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Figur(l -1.2: Obtainmg the convex huIl from the Voronoi diagram. 

pl<,rncnts .wd unbounded Voronoi regions. 

4.1 Properties of Voronoi diagrams and CLOUD(P,w) 

Lpt JI bp Cl1( P) or ClI( 5) according to the problem considered. We will need a 

1(,~lIlt slIllllar 10 Lcmma :Ui for self, of points. 

Lemmll 4.1 LI t c an cdge of Cll( 5). The e-promontory of the Voronoi diagram of 

.'J' l8 (,01llalTlcd 11I Ihe slrzp corrcspanding ta e. 

Proof hl('nti(.11 to that of Lemma 2.6 .• 

W(' ran now pl esent a re~m1t that appHes ta bath kind of Voronoi diagrams. It 

will ('nablt' liS 10 pfficielltly s<,arch the diagrams for intersections with CLO UD( H ,w). 

I!l,low. W(' \\'111 assume w,l.o.g. that e is parallel to the x axis, and we define the 

'\t'rtict!' directIOn ta be in the dIrection of the y-axis. \Ve also assume that P and 

S M(' IH'low (' (t hl'ir pOints have smaller y coardinates). 
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Theorem 4.2 Let e = V,')J be an edge of Il. If the ÎnterlOr of the e-sfl'ip IS Ilot 

empty, then the e-promontory is an embedding of a tree Hl the plane .'·iIIeh fllat ((1) 

each node IS a VoronOl edge, (b) a 17'('(:' node N, IS II c1u/d of t,'('e not/t' N J if flld,. 

corresponding ForonOl edges E, and EJ arc adjacent, and if E, :s bdOt/1 J~). TIlt' 

root of titis tree lB the node correspondmg to IJ( 17" l'J)' l) Iwlf-/l7le. aod tilt' Impc,'! 

correspond to the (parts of) Vor'onOl cdqes crtdm~1 tmlh cutpomfs. 

Proof Lemmas 2.6 and 4.1 guarantee that the Voronoi edges intPrsl'ct t.IH' Rt.rip 

boundary only at e. First, we note that a VoronOl dia)!;ram is a planar )!;raph. WC' 

now show it has no cycle outsidc of II. Thcre arc no Voronoi clements outside JI, 

and since the only way to get a cycle is to have an entire Voronoi rt't-?;JOII (,dont-?; with 

its element) in the exterior of II, the e-promontory must 1)(' a trec. By LplIIJllit ~.2, 

B( VI' vJ ) is the only infinite bisector in the interior of th{· st.rip ~iIlce, :-.uflicicnt.ly far 

from II, for x E B(v"v)), CIRCLE(x,d(x,v,)) is empty and interh{,cts only 1', ,\I\(I 

B( v" vJ ) will be taken as the root of the tree. We now show that any path from 

B( V" v)) is monotone with respect to the vertical direction and this will estahlh,1t 

the theorem. 

Assume the contrary and refer to Figure 4 .3( a). Then there is a localmilllIllII III in 

the y coordinate, sayat M. The set of points vi~ible from M is ahov(' the hOl iWlItal 

line L through M. Since the path is the boundary of two VorOllOI r<'giom, w hOb/' 

clements are below L, we get a contradiction with Lemma ~.l. 1 

In fact, since the set of elements is connected, the only kind of cycle III the 

exterior of P is one that contains either a vertex or an edge of P. 

vVe can use the terms leftrnost and rightrnost child of a VoronOJ ('dg<', a:-. w(·11 as 

the father of a Voronoi edge. 

Let a v-palh be a path from the fOot of an e-promontory to a ClltpOlllt. 

\Ve WIll need sorne additional properties of CLOUD( li ,w). Since I.ltf' wlltad 

points of W are on II, the inner chain of Chapter 3 will he a chain of Il. 

- 41 -



L 
M 

v-path 
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(a) 

~ v-path 

V(S) \~!~) 
1 .\ 
1 : \ 
1 • \ 

1 \ 
1 \ 
1 \ 
1 \ 
1 \ 

1 \ 

p/ q\ 
1 
1 e \ 

\ 

p' / q' 

(b) 

Fip;urp .\ :J: Showillg 1Il0notonicity of a v-path and its reId.tionship with cloud arcs. 

Lcmma 4.3 Tllt~ I1Iterzor of a ctrc/e C defined by two contact points A and B as 

t1I Lf1ll7llll .1,2, contams no arc of CLO UD( Il, w) ln the half-plane delimited by line 

,\ JJ and ('outaml1lg the mner cham. 

-
Proof Ll·t ab be an arc of CLOUD(II,w) sueh that ab c INT(C). Let c be any 

~ 

point of ab. Then L(cA, cB) > w. If cA and cB do not intersect INT(Il) we have a 

\\,('t!g{' of .1Ilp;1{' 1!;1 e.ller t ha Il w tangent to and contaming H, Otherwise, to make cA 

.llId c /J t.llIgt'Il1 to Il. \\'P must translate Il or B along t.he inner chain corresponding 

10 ('. lIowpv('r thib increases L(cA,cB) and we again get a wedge of angle greater 

1 h.U1 w .• 

Lcmma 4.4 A l'-pail! doc ... Hot mtersect a czrcle (or arc) more than once. 

Pl'oof Hl·fl'r to Figure ,1,3(b). Let c be ally point of the v-path and let B(s,t) be 

the hii>('ltor c ii> on, Then c il> visible from a point p' in V(s) n INT(ll) and from 

If' III \. (1) n [NT( Il) by LClllll1a 2.1. Let e be the convex hull edge determining the 

.,llÎp in whirh tIlt' v-p.tth is contained. Then by Lcmmas 2.6 and 4.1, cp' and cq' 

r.\IlIlot intersect the lIormals of e, so they must intersect e itself, sayat p and q 

Il'~lll'('ti\'l,lv. lll'nc(' pqc is a triangle containing the section of the v-path below c. 
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Figure 4.4: A late arc of a circle is contained inhide the next circl{'. 

We can place c on an arc ab of CLOUD(lI,w) that is on il circle C defill<'d hy twu 

contact vertices. Then by Lemma 3.4, ]Jq is illside C. IIpnre IJQc j:, inside (,', and 

the v-path does not intersect C below c. 

Assume now that the v-path intersects C above c, sayat r'. Thcm applying 

the preceding discussion to fi instead of c produces a contradiction. Thcreforp the 

v-path cannot intersect the circle above c .• 

Corollary 4.5 A v-pa th does not intersect CLOUD(Il,w) more than mzcc. 

Proof Dy Lemma 4.3, an arc ab of CLOUD(lI,w) that is on circle C is contailled 

in the interior of no other circle of the cloud, and no othcr arc of th(' doud if> inbH!p 

C. IIence a v-path cannot crObS CLOUD(Il,u,:) twice .• 

Define a lale arc as the largest subarc of the circle, CI that if) (lockwlhP 

of its cloud arc, and up to the nearest intersection with the JlOlygOll, a.', 

in Figure 4.4. 

The theorem helow will establish the structure of the &l't of (11'(')('" ,wei ,,/iow 1111' 

correctness of btep 5 of the algorithm in the next section, 

Theorem 4.6 IVhen traverszng a v-path up towarrls tfl( mot, IIIf' OIr/(T !TI w/twh 

late arcs are encountered zs the sarne as the order' lTt w/w:/t tlU:7/ rH(' (W'OlHllrT( ri 

wlien traversmg CLOUD(Il,w) clockwzse. 
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Proof By looking at a1gorithm ROTATING-\VEDGE, we notice that successive 

~t.able placementf> have both contact pomts moving clockwise on the convex polygon. 

A uy pair of circlcs can intcrsect at only two points, and successive circles Cil CI+! 

of C'L 0 U D( Il, w) interscct already on CLO UD( H, w). Both circles contain in their 

lIltcrJor lhe lasl clockwise edge of the inner chain of CI (unless the cloud intersects 

Il on CIl in whirh caS(l WI' are don(>.) Therefore C1+1 cannat intersect CI on the 

late arc of CI (exccpt at the endpoints of the late arc); hence the late arc of CI is 

rontainccl lIlblcle C1+ 1. This can be seen in Figure 4..1. Finally, Lemmas 4.2 and 4.4 

gllarante(~ the ordcring on the v-patll. • 

4.2 Aigorithms CWP~p and CWP-s 

III thih h(>ctlOll we present an algonthm for solving the C\VP-p problem, and then 

~how how a IlllIlor vaIÎation of il also salves CWP-s. As in Chapter 3, the algorithm 

fur CWP-p Will do a traversai of CLOUD(P,w). For each Voronoi region encountered 

il. consldl'rs the dbtance from the current arc ta the element (edge or vertex of P) 

currehponding to the region. 

(;iven a v<,rtex h of Il, let the left normal at h, denoted LNORMAL(h), 

b(' the norm;ù at Il that is orthogonal to the edge of H adjacent to and 

dockwibl' flOm h For an arc A on circ!e C, let LCARC(A) be the union 

of the cloud arc and the I,lte arc on C. 

We will assume 1 hat all infini te Voronoi edges join at infinity as in [PS85, p. 251], 

,lIld Ih,tt 1 hey have a ùummy parent that is 'aLove' every Voronoi region. This is 

10 bllllplify the dCbcnption of steps 5.3 and 5.4. which find the next infinite Voronoi 

l'dg(l dockwl!.;(' from the enrrent l'tige. Altcrnately, the next infinite Voronoi edge 

(,tIl hl' found throu~h a conntcrclockwise scan of the edges of the Voronoi rcgion 

locatl'd 10 the ri~ht of the current infinite (directed) edge. 

Thi~ l',ln hl' drcOIllplt~hcd in linear amortized time without altering the com­

pll'~1 1 \' of t he al~ortt hm. This 15 sIlnilar to the scan pictured in Figure 4.2. 
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Below we present a formai description of the algorithm followf'd by a d('ta.iI('1! 

explanation and analysis. 

Aigorithm CWP-p 

Input: Simple polygon p, angle w. 

Output: CWP-p optimal placement of 0 and cp(O). 

1. Obtain VOR(P). 

2. Let II = CII(P). 

3. Obtain CLOUD(ll,w) and the list (a"u"v.), z = O, ... ,t -l, of coutad, 

vertices using ROTATING-WEDGE algorithm. 

4. [Some mztzalizatzon] 

4.1. [Good placemenllzst] 'R;- 0. 

4.2. [Initial arc] Let AI = al~+l be the arcs of CLOlJD(lI ,w) in c\ockwiw 

order. Let ho oe any vertex of Il and traverse CLOUD(J/ ,w) to filld k 

sueh that Ak intersects LNORMAL(ho). Let i ;- k. 

4.3. [Imtial Voronoz element] Let z +- ho. 

4.4. [Initzal Voronot edge] Let E be the infinite Voronoi edge most COU IIter­

cloekwise in V(ho). 

5. [Do traversai] Repeat: 

5.1. [Follow [eftmost v-path down to LCi\RC(AI)] While En LCAllC( AI) =- I./J 

do: E ;- leftmost child of E. 

5.2. [Find inlersect20n of v-palh and cloud] 

5.2.1. [Check distance] Apply DAE or DAV, as appropriate for z, on AI 

and z and get dosest point pair (O,p). Add (O,p, u, v) to 'Tl_ 

5.2.2. If E n AI = 0 then: 

a. [Go ta next cloud arc] i +- (l + 1) moc! t. 

b. While En LCARC(A I ) = 0 do: E .... father of E. 

c. Repeat step 5.2. 

5.3. [Advance to next VoronOi region] Let z be the eh'ment corrcbpondillJ!; to 

the newly entered Voronoi reglOll on the other ::,id{! of R. 

5.4. [Find next mzlzal Voronoz etlge] While E is not ahoVf~ Vez) do: l~' <­

father of E. 
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5.5. E <- Il<,xt Ieftmost unvisited child of E . 

.5.6. If z is a vertex of Il then [skzp to next left normal] 

repeat 

5.6.1. [Check dzstance] Same as step 5.2.1. 

:l6.2. [Go to next cloud arc] t +- (i + 1) mod t. 

untiI AI n LNORMAL(z) f. 0. 
untiI z reaches k after having been modified in step 5. 

G. Find the smal\c&t distance bctween points pairs (0, p) of the clements (0 ,p, u, v) 

of R., ,wd r<,port the corresponding placement of 0 and p = cp( 0). 

Mor(! iuformaIly, the aIgorithm proceeds as follows. To begin we find VOR(P) which 

t .Ikrs O( lllo~ Tl) time, 11 == Cil( P) wluch takes O(n) time, and CLOUD( Il ,w) which 

lakcs O( /1) lime a& discusscd ln Chapters 2 and 3. The sizes of VOR( P), H and 

CI,OUD(lI,w) are alllinear III terms of n. Next we choose an arbitrary left normal 

(dcnotcd LNORM,U(ho) aoove), and find in linear time its intersection with the 

cloud, by te&tlIlg for intersection with each of its arcs. For each strip, the arc 

illtersl'cting the lert normal will be a starting arc. For ease of diSCUSSIOn, we will 

assullIe bplow that the \eft normal is vertical. 

In st<,p ·1 some inilializatioll is done. We will maintain a current Voronoi element 

::, which if, a vprtex of 11 at the start, and wc initialize the current Voronoi edge to 

hl' thp infinitr Voronoi e<Ige llIost countercloekwise in the eurrent Voronoi region, 

\ 0(.:) This can ap;aill IH' found in at most linear time given any edge of V(::), which 

(',UI bp ohta.ined from the data structure implementing the Voronoi diagram. 

Stpp :l jlNforms the c\ockwise traversai of the cloud, and at the same time 

p('fforms Oi v.lriaut of a depth-first search of the Voronoi diagrarn. Step 5 will be 

ll'lH'.lt('d Il lit Il .1 full cyde around the cloud is made. Figure 4.5 iIlustrates this 

pnH·p<,s. For each cloud arc A. cncountered, we will apply algorithm DAE if z is an 

l'd~(', DAY ot!l('rwisp. and find the closest point pair (O,p), 0 E A" pEP (in steps 

:l ~.1 .\lld !i 6.1). 

First. thr t'urrent VorollOi edge descends down the left-most v-patll of the promon­

tory IIllt il tlll' late arc of the currcnt cloud arc or the cloud arc itself is crossed, sayat 

pO\lIt If (~t('jl [d). This 1I1t1!:>t occur by Lemma 3.4. Note that in the proccss we may 
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Figure 4.5: Finding the intersections of CLOUD(lI,w) a.nd \'OR(P). 

have crossed many late arcs corresponding to cloud arcs clockwisc of the fllrrcnt 

one. If we have reached the corresponding cloud arc, w<' are dor\('. Ot!H'rwÎ:'c the 

intersection must occur at sorne cloud arc after (clockwisc of) this one. 

In step 5.2, we find the ncxt intersection of CLOUD(ll,w) with VOJl(l') a:, 

foIlows. We scan the cloud clockwise and the v-paUl upwards from q. By Thcor('ll\ 

4.6, each late arc will intersect the v-paUl higher as w(' progrc:,s ,dong thp cloud 

until '\Je reach the cloud arc tltat interseds the v-paUl. For ('éi(.h lICW tC/\. Ile'( .), Wp 

climb the v-path until the point it crosses the v-patll is fpached (~tep 5.2.2), then 

we can advance the current arc. Thus the current arc 111 and thp cllrr('nt Voronol 

edge E must meet and this will be the only intersectlOIl by Corollary Il 5. Therefofp 

step .5.2 must terminate and we never cross a Voronoi reglOlI tWlce. 

At this pomt, the current cloud arc lias cros:,cd ovpr ln t.he next VoronOl fI'19on 

which is determined in step 5.3. Again, this cali be dOlle lIi>ing thc da.ta htructurPh 

described in Chapter 1. In steps .5..1 and 5.5, the Cllrrent Vorolloi edge i:, pla.n·cl :'0 

that it is the highest Voronoi edge of the v-path tha.t bOUllCb the npw Voronoi fI'glOll 

on the right. We used the assurnption tltat all infinite Voronol edge~ join at infinity 
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to simpli fy the description of these steps. We are ready ta start step 5 again and 

traverse this new region, unless we just reaehed an infinite region eorresponding to a 

vertex v of P that is also on the convex hull. In this ease step 5.6 brings the eurrent 

are Lo the left normal of the next strip. This is easy sinee we are guaranteed not ta 

havc any Voronoi cdges in the interior of V(v). Thus we will be ready to seareh the 

ncxt promontory. 

At each iteration of step 5, one or bath of the following events oceur: (a) the 

fnrrent arc crosses over to a new VoronOl region; (b) the eurrent are advanres. Step 

!) IIlU!>t thcrefore terminate. Al&o no cloud are is traversed more than once. There is 

a linear nurnber of reglOns and a linear numher of arcs in CLOUD(H,w). Moreover 

t hcrc is a. liIlear Ilumber of Voronoi edges, and each is visited at most twiee1. Step 

!) tJau!> runs in lin car limc. 

Fillally btep G finds the solution to CWP-p among the linear numher of good 

plac('f)IPIIts in R a.nd also runs in !inear time. 

Thcorcm 4.7 P1'Obicm CWP-p for a s,mple polygon P with n vertices can be solved 

zn O(nlog n) lime. If we are given VOR(P), th en CWP-p can be so/ved in O(n) 

lZ7nf'. 

Proof IJy the discussion ab ove, steps 2 to 6 run in linear time. 

'1'0 ohtall\ an algorithm for problern CWP-s for a set S of points, replace P by 

.". III 1 hl' abov(' algorithm ,llIe1 ils analysis. The discussion on algorithm C\VP-p also 

.lpplit'& 10 CWP-s !:liuce the facts on which it is bascd are vaUd for both types of 

\'OIOIIOI d iagrams. IIO\VPver DAE will never be called since the only clements are 

points. III particular the commcnts pertaining to step 5.6 remain true: this step is 

JII&t cUl <lPsthetir aid in the polygonal case, since a late arc coming out of a strip 

IlII1~t intersect the lpft 1l01mal of the next clockwise strip (which is also a Voronoi 

t'd)!;t'). St('p G.G 1I0W becomes essential in the case of point sets, sinee the leftrnost 

\ -p.tth of tll{' lIext strip cloes Ilot necessarily intcrsect this late arc. 

Thlls t'ollows our final thcorem. 

1 FxCt'pt the cd!;c above ea{"h VoronOl reglOn encountered, which 15 visited s + 1 times, where s 
h t ht' 1I11111lwr of dllltlren of that ctlge. Tills Ilumber is hnear over the whole dlagram. 
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Theorem 4.8 Problem CWP-s for a finite set S of Tl point.Q mn be soltwd m 

O(nlogn) time. If we are given VOR(S) then ClVP-s can he solvcd in O(n} lime. 
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Chapter 5 

Conclusion and Further 

Research 

Wp have presented efficient 0(12 log 12) algorithms to obtain the optimal placement 

of iL conlaining wedge for various types of sets. We take advantage of convexity 

10 obt,ull the result in O(n) time. For the CWP problems, the optimal placement 

was dcfined to be that which minimlzed the smallest Euclidean distance between the 

wpdp;t' apex and the bet. Wf' will mention other definitions for WhlCh the optimization 

problcms .lre still open. 

Firbt, ln the tlIilliMax- WP problem, we define the opt'mal placement as the 

plan'ment IlJlnimlting the radIUs of the smallp.st Clrele ccntered at the wedge apex, 

.U1d cunta.ÎulIIp; the spt. In this problem, it is clear that only the vertices of the convex 

huI! of I.h(' spI. .l,f(' relevant. This problem is quite close to the smallest enclosing circle 

problPIII. which ib ,1/&0 known ab the mmzmax faczlzly locatzon problem [Sh77,BT85]. 

Followl\lg Sh,ul1os, w(' d('fine the fllrthcst-pomt ~T07'onot diagram (FPVD) of a 

(lOint ~pt S = {.<;, : l = 1. ... , n} to be the partition of the plane into unbounded 

rOll\'l'X 'poly[?;ons' \'(s,), such that F(s,) is the locus of points further from s, than 

lrom ,lIIY oth('r point in S. The size of this diagram is !inear in terms of n. 

Furtlll'rmore, we notice that given a general placement of the wedge, the point 

nf tltt' spt that ddcrmines the radius is the point assoclated with the FPVD region 
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Figure 5.1: A type of robot hand. 

containing the apex. It may be possible to take advantage of this fart. toobtaill an 

algorithm more efficient than the following naIve 0(n2 ) algonthm For ('arh arc of 

the cloud, examine the edges of the FPVD ta determme which regioll!-. .t1 e IIItI.'rM·{ I,e{\ 

by the arc, and check the distance between the arc and th(' pOlIIts .1!-.wClatcd with 

those regions. 

Another problem arises when wc define the quantity to Ill' llllIllllliz('d .. :, thC' (ifpa 

or perimeter of a triangle containing the set, and formed by tltt' wl'dge h,tlf·litw!-. 

and a segment whose end points are on the half·lines. For ,\, right',U1glpd wpdge 

at a fixed position, these plOblem5 are solved in [Ch86]. This if> ,t Vl'fS101l of 1.)1(' 

~mallest triangle enclosure problem that aflks for the IlunimuIll tn,wgtllclf flll pefSf't 

[KL85,Ch86], but wlth one fixed angle. It would be intef('f>tlng lo "pp If th!' optiméJ 

placements for the two wedge problems are related. 

vVe may also Want to rnea.,>ure th(' di~tance from the wedge apex to the wntact 

points. The mmimum or maximum of these 15 eahily ohtaillcd in Iinear time. For 

sorne types of robot hands, this rrug;ht be Ilaiicative of the f>lze of tlte hand necef>f>ary 

1,0 handle a gIV('I! abject (see Figure .51). 

Finally, It wauld be interehting to ob tain efficient algorithms for the two problerns 

defined in thi5 chapter, and extend the concepts of this thesis to tltrc(! dUlH!lIr,i()fIf>. 
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