
Towards the Design of an Intelligent
Hypermedia Architecture

Gilles Fayad

B. Eng., 1988

Department of Electrical Engineering

McGill University

Montréal

March, 1992

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Engineering

© Gilles Fayad, 1992

Abstract

A design for a unified model based on the hypermedia paradigm is proposed as a

means to a better synergism of the functionalities of different knowledge manipu­

lation tooIs. A sllrvey of past and present hypermedia systems has been achieved,

and their characteristics examined. Intelligent hypermedia-based system archi­

tectures have been cvaluated, From which functional requirements for a unified

architecture have been derived. Equivalence mappings based on Petri nets, that

equate the structure and behavior of hyperrnedia networks and expert systenls in

a loose way, have been developed. A unified model, that synthesizes the struc­

tural and behavioral equivalences among different knowledge representations in

an object-oriented architecture is proposed.

1
Résumé

Un modèle d'unification d'outils de connaissance basé sur le paradigme d'hyperml'di.1

est proposé pour une meilleure synergie des fonctionalitées inhérentes aux dIts

modèles. L'étude des systèmes hypermédias passés et présents il permis d'évaltH.'r

leurs caractéristiques. Les architectures des systèmes dits intelligents, et qUI

utilisent le concept d'hypermédia, ont aussi été étudiées, et ont sprvles il énunH~rl\r

les fonctionalitées requises pour une architecture unifiét' Des rl'latu.Hbd' équiv,1h'IKl'

basées sur les réseaux de Pétri ont été dénvées, et perme lll.'n t d'homogénébl'r

de façon globale les structures et les mécanismes des réseaux hyperml'dias l't

des systèmes experts. Un modèle unfié est alors proposé, qui ~ynlhélbl' ll\~

équivalences structurelles et mécaniques de ces différents outils au Seill d' un,-'

architecture orientée objets.

ii

Acknowledgements

1 would Iike to thank my research advisor Dr. David Lowther for allowing me

to discover the fascinating fields of hypermedia and expert 'Systems; and for his

guidance and patience throughout this work. His unconditional support allowed

me to complete the task of writing this thesis. 1 treasure aIl the members of the

CADLab, staff and students, past and new, and aIl the moments and thoughts

we sharcd. Sprcial thanks to Dr. Silvester, Raymond Sassine and Derek Dyck.

1 am indebted lo Dr. Richard Furuta and P. David Stotts from the University of

Maryland, for making his hypertext prototype available.

Je voudrais aussi remercier ma mère et mon frère pour leurs éternels encour­

agements, et mon père pour m'avoir montré la voie à suivre. En sa mémoire, je

dédie cette thèse à ma mère. Je voudrais aussi mentionner Denise ielletier, Raja

Abi Dib, Naji Mouawad, Ibrahin El-Husseini, Emile Saab et Lustucru, pour leur

aide, leur pa tiente, et leur amitié. Je les en remercie infiniment. Quant à Julie, ma

gratitude et mon affection lui sont tout naturellement acquis.

iii

Hypertext

"Consider a future deviee for individual u~e, whlch is a sort of ml'chaniz,t'd

priva te file and library. It need~ a name. Ta coin one a t random, "mc/1/t'x" will

do. A mcmex is a dcVlCt' in which an zndividllal stores allllls boob, 'l'lords and

communications, and whiclz IS I1lcchamzcd sa tlrat Il niaI/lIt' CO/bllllcd wllir

exceeding speed and f1exibillly. lt is an cnlargcd intl11tatc SlIl'plt"/l'lIt 10 /1/:;

memory. [.. .] SA far, ail fhis is conventianlll; a merl' projccllOU of prese/lt-dall

mechanisms and gadgctry. It afrards an immcdiatc stcp, IlOwcvcr, to assocmt rUé'

indexing, the basic id Cil of whiclz I~ a p"'oVl~ion u'hcre/ly any Item mill/lie Cilllscd

at 'will to select arlOtlIcr, zmmcdlalcly and automallcal/y. Tills is tile l'SSl'tlt /li 1

feature af the mell1CX; the proCl'SS of tymg items logdhcl 10 fo1'111 tralls is /h,'

heart of the matter. "

- "As Wc May Think", Vannevar Bush [Atlantic Monthly, July 19451.

"50 if can be donc. Will il be donc? Ah, fhat is anolher qucstlOn. Till' sn'al

digital mac1wles of toriay have /tad thcir c::tcitinS prolzferatillrl hCCl111S1' Ihey

could vitally aid business, bl'causc fhey COl/Id increase profils. The Ilhranl's

still operate by horse-and-bux[?y mcthods, for thcrc IS no profll hl lilwar;es

Government spcnds billions on sl'acc sirIce zf Iras glamor and hCrICl' public

appeal. Therc is no glamor about I1brarics, and the puNie do not III/ders/and

that the wellarc of thcir chi/dren depl'nds far more IIpon cff ccl roc Ilhrarics Ihan

it does on collecting a buckct of talC/lIll powder fram the moon. So Il Will 1'101

be dot/c saon. But cvcntllally it wIll."

- "Memex Rcvisited", Vannevar Bush [Science Is Not Enough, May 1%71.

iv

1

Table of Contents

Chapter 1 Introduction ...

1.1 The Scope of the Thesis

1.2 Historical Background and Survey ..

1.2.1 The H ypertex t Pioneers

1.2.2 The First Hypertext Systems .

1.3 Defining Hypertext, Hypermedia and Multimedia: .

1.3.1 Hypertext.

1.3.2 Hypermedia

1.3.3 Differentiating Hypermedia and Multimedia.

1.4 Conclusion . . .

Chapter 2 A Taxonomy and Survey

2.1 Introducrion . .

2.2 The Classical Taxonomy .

2.2.1 Macro-Literary Systems:

2.3 A New Taxonomy .

2.4 Collaborative Work

2.4.1 IBIS:...

2.5 CAO and CASE

2.5.1 Neptune

2.6 Text 5tructuring Tools

2.6.1 Textnet

2.6.2 WE ..

v

2

2

3

3

5

8

8

10

11

11

13

13

13

14

15

16

16

18

18

20

20

21

1
2.7 On-Line Information.

2.7.1 SDE.

2.7.2 OED

2.8 Teaching Assistance

2.8.1 Interrnedia and InterNote:

2.9 Integration ...

2.9.1 NoteCards

2.10 Browsing Systems

2.10.1 Hyperties

2.11 Conclusion . . .

Chapter 3 FormaIizing Hypertext .

3.1 Introduction .,

3.2 Hypertext Architectures

3.2.1 Semantic Networks

3.2.2 Finite State Automata

3.2.3 Petri Net Based Hypertexts

3.3 Hypertext Structures.

3.3.1 Entities

3.3.2 Functions

3.3.3 Properties.

3.4 The Dexter Model

3.4.1 A Layered Architecture

3.4.2 The Storage Layer

3.4.3 The Runtime Layer

3.5 Conclusion .. '

21

')')

31

JI

1·1

]7

lH

40

411

4lJ

vi

>(Chapter4 Intelligent Hypertext 50

" 4.1 Introduction 50

4.2 Intelligent Hypertext Tools .. 50

4.2.1 Knowledge Structuring 50

4.2.2 Knowledge Representation: Semantic Nets 51

4.3 IntellIgent Systems 54

4.4 Intelligent Architectures . 55

4.4.1 lnterfacing 55

4.4.2 Integrated Systems .. 57

4.4.3 Knowledge Modeling Systems 60

4.5 Conclusion 60

Chapter 5 A Unified Model 61

5.1 Introduction 61

5.2 General Architecture. 61

5.3 Fundamental Functions 62

5.4 Leverage By Integration 63

5.5 Equivalence Mappings 64

5.5.1 The Petn Net Model 64

5.5.2 Mapping Petri Nets ta Hypermedia 65

55.3 Refining the Mapping 65

5.5.4 Mapping Petri Nets ta Expert Systems . 66

5.5.5 Modeling Equivalence. 68

5.5.6 An Example 70

5.5.7 Knowledge Elicitation . 74

5.6
'(

Validation and Analysis 74
.,
~ 5.6.1 Reachability 76

vii

5.6.2
1

Matrix Equations and Reduction Techniqut's 76
1-

5.7 Supporting Multimedia Data . 77

5.8 Conclusion Hl

Chapter 6 The Architecture of the Unified Model 82

6.1 Introduction ... H~

6.2 A Syrnrnetric Architecture . S" , ~

6.3 An Object-Oriented Hyperstructure K\

6.3.1 The Hyperobject kt)

6.3.2 HyperMethods . H7
.
! 6.3.3 Instance Methods Hs 1

!
î 6.4 Modeling Petri Nets . HS k

l
6.4.1 Aggregations Sl) 1 ,

• 1

6.5 Conclusion ... l)2

Chapter 7 Conclusion 93

7.1 Thesis Summary ln

7.2 Future Developrnents l)·l

7.2.1 Representation Enhancernents lJ4

7.2.2 Model Enhancements l)'ï

7.3 Application Fields l)Cj

7.4 Conclusion l}()

References 97

Appendix A Translation Algorithms .. 104

Al From Expert Systems to Hypermedia 104

,~

"

viIi

l
List of Figures

1.1 The evolution of hypertext specifications 11

2.1 A new laxonomy of hypertext systems .. 15

2.2 Specialized semantics for argumentation 17

2.3 The HAM layered architecture 20

2.4 Integrating documents into one displayable unit 22

2.5 Compànng features 29

3.1 Equivalent objects in models 32

3.2 The structure of a hypertext system 35

3.3 The layered architecture of the Dexter model 40

3.4 The storage layer data structure E-R diagram 42

3.5 The crcafcComponcnt structure chart 44

3.6 The rcalizeEdits structure chart 44

3.7 E-R dlagrams of the runtime layer data structure . 46

3.8 Context diagram of a hypertext session ... 47

3.9 Data flow dlagram of the runtime operations 48

4.1 The mterfacmg model 56

4.2 The intcgration model 57

4.3 The argumentation model 58

4.4 The smartbook architecture 59

5.1 general architecture 62

52 The k, mapping .. 67 ., .
'" 53 extending /,./ to J\'/ 68

ix

1 5.4 Mapping expert systems to h ypermed la 69

5.5 The unified model , .. 70

5.6 The fault-diagnosis hypermedia 72

5.7 Adding a diagnosis 7'ï

5.8 Sorne behavioral properties of Petri nets . 75

5.9 Cornbining timing attributes 7H

5.10 The timing sequence of multimedia events 79

5.11 The Petri net mode} of the hypermedia HO

6.1 The classes hierarchy R4

6.2 The E-R diagram of a h yperobject H5

6.3 Modeling Petri nets Y()

6.4 Equivalence using hyperobjects YI

1

(

Chapter 1 Introduction

1.1 The Scope of the Thesis

The objective of this thesis is two-fold: to provide a survey of hypertext with

a focus on intelligent systems; and to present a model for integrating different

knowledge tools within an environment that supports the hypermedia paradigm.

The objective is to investigate new alternatives that the hypermedia model can offer

to the domain of knowlzdge engineering.

The sur vey on hypertext was dictated by the lack of standards and structured

evolution in the hypertext domain and represcnts a necessary background to the

knowledge based approach to hypertext.

The ultimate aim of knowledge engineering is to develop a methodology that

captures and delivers expertise in various domains in a natural and intuitive way.

Hypertext and hypermedia have shown a great potential, both in human factors and

information management. Coupling hypermedia and knowledge based systems

provides a framework for intelligent information systems. These are defined here as

systems that allow manipulation and processing of inforn:ation in an intelligent

manner.

This thesis is organized intû two parts. Part one introduces hypertext and static

architectures (see section 1.3.1) and consis'Ls of chapters one to three. Chapter one

covers the historical background and provides a definition for the often confused

terms of hypertext, hypermedia and multimedia. Chapter two is a general survey

of hypertext systems, and a formaI hypertext architecture is described in chapter

lIuee.

2

,

1. Introduction

Part two focuses on intelligent hypermedia systems and consists of ch<1plers

four to six. Chapter four describes actual intelligent hypermcdia fcalures and

architectures; chapter five introduces the functionalities of a unified modcl and

der ives the equivalence mappings between hypertext and expert systems struc­

tures and behaviors; and chapter six describes the obJect-orienled unificd modl'l.

Chapter se ven attempts an evaluation of the model, summarizes the achievemenls

and proposes future enhancements.

1.2 Historical Background and Survey

1.2.1 The Hypertext Pioneers

The father of hypertext is Vannevar Bush, first director of the Office of ScientifIc

Research and Development under president Roosevelt in the 1940s. I-Iowever, the

particularity of Bush is not in his position, but rather in his influence over some pi­

oneers of the computer era Giants such as Wiener, Licklidcr and Engelbart shaped

cybernetics, man-machine communications and interactive compuling, and haVl'

either been under his supervision or were profoundly influenced by his famous

article "As We May Think" [19], which was the earliest and clearesl discussion of

the idea that information processing technology could be used to amplify human

memory and thinking. This article is recognized as the root of the modern h ypertl'xt

concept.

In the article, Vannevar Bush described what is today known as facsimile, speech

recognition and artificial intelligence, aIl applied to the problem of the growth of

scientific information. He postulated a hypothetical machine, the Mcmex, that

would become an extension of the human mind, and that embodied ail the essenlial

features of a hypertext system.

The Memex is essentially a storage of information within il conventional desk,

3

·1

1. Introduction

that allows for classification and retrieval of documents. Unlike conventional

systems, Bush's Memex is not based on indexing[19]:

"Our ineptitude in getting at the record is largely caused by the artificiality

of systems of indexing ... Having found one item, one has to emerge f.rom the

system and re-enter on a new path ".

Instead, Bush advocates selection byassociation:

"The human mind does not work that way. lt opera tes byassociation. With one

item in grasp, il snaps înstantLy ta the next that is suggested by the association

of thoughts, in accordance with same intricate weh of trails carried by the cells

of the brain. It lzas other characteristics of course; trails fhai are not frequently

followed are prone ta fade, items are not fully permanent, memory is transitary.

Yet, the speed of action, the intricacy of trails, the details of mental pictures, is

awe-inspiring beyond ail cise in nature."

The functional description of the Memex in [19] is considered as the hallmark

of today's hypertext. His machine was essentially mechanical, partIy because of

his background in mechanical computers, and partIy because electronic computers

had not yet reached a suitable level of development. However, Bush did not rule

out the digital computer, and reconsiders the design of the Memex in the light

of current technological advances [20] in 1967. One year later, Douglas Engelbart

implemented the first operational "Memex" at the Stanford Research Institute (SRI).

His system was demonstrated at the 1968 FaU Joint Conference. Among the input­

devices invented by Engeibart, one was used to move a cursor on the screen, and

was called a mOllse.

White at Harvard in 1960, Ted Nelson was inspired by Bush' s paper and focused

on the computer as a medium that would boost creative thoughts. He decided to

write a forty-thousand line machine-language program to implement his ideas,

4

"~

1 Introductlllll

"but like many beginning computerists, 1 mistook a clear view for a short distance"

[85]. His specifications included "historical backtrack" on paths and versioning, aIl

in a "point and click" metaphor. He was the first to coin the term hypcrtext, as a

literary process that allows non-sequential forms of writing made possible by the

advent of the computer. White Engelbart was interested in the tcchnology, Ndson

was interested in the community: A broad hypertext network wlth an economic

structure and an al tomatic royalties syslem. "The software is on ils way. Bul what

is really lacking are the visionary artists, writers, publishers and inveslors who can

see the possibilities and help carry such ideas into reality."

Andries Van Dam met Nelson and Engelbart at the 1967 cllH.i 196R Joint Con­

ferences. The potential Van Dam saw in hypertext is in tcaching. In 19R3, he

contributed to the creation, at Brown University, of the Institutc for Research on In­

formation and Scholarship (IRIS) that designs and evaluales scholars' workslalion

software.

1.2.2 The First Hypertext Systems

NLSI Augment

Engelbart's "Memex" implementation, NLS, used the latest technological innova­

tions of the 60s: a dedicated time-sharing computer with 65 Kbytes of memory and

96 Mbytes of storage, high-resolution television monitors and threc inpu t dcviccs

(a keyboard, a rnouse and a five-key handset aimed at replacing the keyboard wh en

used in conjunction with the mouse). The system was intendpd for collaborative

work and supported the hierarchical structunng of documents. Il providcd Icvc/

vÎe'Ws (i.e. it displayed only the document paragraphs to a given depth), truncatlOn

(i.e. it displayed only the first n Hnes of the document), and filtenng based on kcy­

words in context (KWIC). It also supported vector graphies and television signa Is

superimposed on the screen content using dedicated analog hardware. EngcJbart's

5

1

(

1. Introduction

system is now known as "Augment".

HES

In 1968, Ted Nelson and Van Dam developed another hypertext prototype: the

hypertext Editing System (HES) [351, as a display application. The data structure

consisted mainly of pointers and editing involved manipulating these pointers in­

stead of the raw text. The HES featured unidirectionallinks automatically managed

into menus, cross-references and indices. Hs designers experienced disorientation,

a problem characteristie of hypertext where the user gets lost in the structure due

to the lack of orientation cues. They tried to solve it by providing guided tours

demos. The HES was demonstrated to publishing corporations but faHed to en­

ter the commercial world because it was perceived as too complex. However, it

was used by the Houston Manned Spacecraft Center for the production of Apollo

documentation.

FRESS

The second system neveloped at Brown was the File Retrieval and Editing System

(FRESS) [35], and wa. a time-sharing multiterminal enhancement of the HES. de­

signed it in 1969 and Phillips commercialized it in 1971. In FRESS, Van Dam wanted

to improve Engelbart's ideas and added free-formediting, unlimited statement size

and portability. Accordingly, FRESS brings the notion of virtuall/O, bidirectional

links whh attributes, dynamic editing with undo and autosave features and a vi­

sualization of an the structure in the text. Multiple windows and vector graphies

were supported by the 16 Kbytes mini-computer.

6

1

1. Introduction

EDS

The successor of FRESS was the Electronic Document System (EDS), belter known

as the Dynabook 1. The EDS was primarily oriented towards producing graphictll

documents. It was composed of three components: a viewer, an authoring p<ünt

t001 and a hypertext authoring tooI. The EDS also featured three autOll1dlÏc navi­

gation aids: a time line that allowed backtracking and recovery of the node status

at a given time, a "neighbors" display that consisted of a filmstrip of aIl the posslbk'

incoming nodes iconified on the le ft and aIl the possible outgoing nodcs iconified

on a similar films trip on the right, and a visual index of buttons of pdge mmldt1.lrl'S

arrangE'd by keywords and color-coded by chapter.

However, the particularity of the EDS is in ils architecture: a finile-statc autol1ltl­

ton that allows for dynamic changes in the hypertexl. Unfortunatcly, the EDS Wil~

difficult to manipulate and the authoring toois were found to be lacking knowledgl'

about the hypel'text context.

ZOG/KMS

KMS [3] first started at Carnegie-Mellon as a menu-based display system under

the code name ZOG. The first commercial version appeared in 1983

KMS (Knowledge Management System) adopts the hierarclllcai structure of

Augment. It consists of a distributed database of {rames. The frames consist of

texl, graphies and bitmaps in a WYSIWYG envlronment. The frame content is

formatted into a title, a name, a body that holds the frame mformatlon content, two

types of links: "tree items" (Le. a menu) and "special items" (l.e. cross-referential

links), and command items. An unlimited number of links allows any text item

within a frame to be linked to any other frame. KMS aIso allows for Iimited

1 The system actually had no officia! namc (persona! communicatIon wlth Nicole Y,mke1ovlch,
IRIS)

7

1

1. Introduction

procedural attachments to the frames, and independent databases to be linked

together. Frames are displayed as one or two pages on the whole screen, and can

be assembled into a linear document for hardcopy purposes.

KMS innovated by providing contextual distinctions: the location of the cursor

determined what operations were a vailable. Although it used a graphieal interface,

KMS designers did not feel the need for a graphical browser [601

It is perhaps the largest and most thoroughly tested hypertext system in ser­

vice: ft was installed as a computer-based information management system on

an aircraft carrier and also provided opera tors of a nuclear plant quick access to

emergency procedures. It has also been used for policy analysis, authoring and

communica tions.

1.3 Defining Hypertext, Hypermedia and Multimedia:

The systems described above clearly show the wide variety of hypertext systems,

and why, till now, neither a formaI definition, nor applicable standards have been

defined. A suitable definition is required and should clearly set the boundary

between hypertext, hypermedia and multimedia.

1.3.1 Hypertext

Even though the concept is intuitive, the definition of hypertext is a highly CDrttro­

versial topie. The reason for this is that the term 'hypertext' has been used quite loosely

in the past 20 years for many dlfferent collections of features [291.

The most common definition is that of Ted Nelson who coined the term hyper­

text [70]:

8

l

.'

1. IntroductIOn

"A combination of naturaJ language text with the compllters abilIty for inter­

active branching or dynamic display ... of a lIon-linear text H.

The most succinct definition is that lia hypertext is a network of information

nodes connected by means of relationallinks" [771.

A hypertext system is then a hardware and software configuration that allows

users to manage and access the information it contains.

A more detailed definition would be that hypertext is a generalization of texl

documents through the computer medium that allows non-sequentiell formatling

of the information by freeing the logical structure of the text [rom the physkal

structure of its one-dimensional conventional medium, paper.

Nodes, Links and Networks

Text is then divided into information chunks ca lIed nodes. These nodes are t'x­

plicitly connected to other nodes through links. Nodes and links form a network

which can have different architectures (see chapter 3).

Navigation and Browsing

Navigating a hypertext document usually consists of a non- sequential visiting of

the nodes accessed through the links, in a process that is usually known as browsmg

and that constitutes the hallmark of hypertext.

In order to be non-sequential, the hypertext links should be able to provide

many-to-many relations and the hypertext mechanism (thereafter called hypcrtext

engine) should allow for backtracking. Another requirement often neg!ected in hy­

pertext systems is an explicit graphical representation of the network that would

reduce disorientation. Many other features stretch beyond these basic rcquire­

ments, and are not common to ail hypertext implementations.

9

1

1. Introduction

Static Hypertext

Static hypertext is defined as hypertext systems that do not allow dynamic modifi­

cation of their structure, status and content (i.e. without user intervention). Static

hypertext architectures have limited capabïities at the level of processing.

1.3.2 Hypermedia

Hypermedia is the merging of the hypertext concept with multimedia technology.

It ex tends the hypertext concept to non-textual information chunks (practi­

cally graphies, video and sound) and "produces complex, richly interconnected

and cross-referenced bodies of multimedia information" [951 Accordingly, many

definitions merge hypertext and hypermedia (see for example [72]).

Differentiating Hypertext and Hypermedia

The novelty of hypermedia with respect to hypertext is that it allows for temporal

information chunks sueh as animated graphies, video and sounds. Rigorously, the

hypertext engine should th en be extended to dynamic temporal links for "non­

leaf" nodes (Le. nodes with outgoing links) and the browsing paradigm should

be broadened so as to allow for the manipulation of these dynamic information

chunks [16] [241. As sueh, hypermedia deserves to be differentiated from hypertext.

A hypermedia system is then a truly innovative medium that integrates different

media within a single system.

10

1

1. IntroductIOn

1.3.3 Differentiating Hypermedia and Multimedia

Whereas most computer tools today are geared toward the manipulation of .11-

phanumeric data, multimedia integrates different data types such as text, graphies,

video and sound in a single medium, solution or environment. Each d,lia lype \s

subject to sorne interactive control by the user.

The emergence of multimedia technology was made possible by the adwnl

of high-end personal workstations, CD-ROM and videodisk storage technologit's,

and high bandwidth networks. The first multimedia applications were primarily

geared toward collaborative work [39] and multimedia cleclromc mail

Multimedia and hypermedia are often confused, mamly becausc hyperme­

dia applications apply multimedia technologies. However, being multimedia IS

not sufficient for being hypermedia: multimedia technologies can rcly on pUTl'

database management techniques [451; hypermedia with no browsing capabllilies

on multimedia nodes is 110t "pure hypermedia".

1945 1967 1968 1969 1970 1971 Timeline

Memex ••••••••.•..•. _ ••••••• _ _ •• _ _._._ •••••••• _._._ ••••••. _ ••• _ ... ltelection by 3\\ociat;on

NLS/Augment _._ •••..••••••. _._ .••.•••• _._ _ level view\. trunc~'tion .. , filterin~

HES •••••••• _ _ ••• _ •••••••••• _ di .. orientution, ~uided tour,
FRESS ._._._ _._._ _ freeform editin~, bidireclinnaJ hnk, wHh allrihuh"

EIJS _._._ __ ba('klmcking, Îl.on ... linUe .,1.lte "uloIlHlI ..

ZOGIKMS _ proceduraJ nltnchmenl .. , conlexlunl di .. Ii,u.liOl'\

M ilcstoncs

Figure 1.1: The evolution of hypertext specificatIOn"

1.4 Conclusion

A historical background has been given in order to provide an introduction to

the terminology and diversity of hypertext. The historical systems surveyed carry

11

1

1. Introduction

the foundations of ail subsequent hypertext systems, as depicted in figure Llo

Definitions that differentiate between hypertext,hypermedia and multimedia; have

then been articulated. The next chapter will provide a taxonomy and survey of

hypertext systems.

12

1
Chapter 2 A Taxonomy and Survey

2.1 Introduction

The 1980'5 witnessed the introduction of hypertext in the professional world , and

the first cornrnercialization of hypertexts such as Guide [17] ,md Ilyperc.ud 15/J!

Enumerating all the hypertexts of the 80s is out of the scope of thls thl'sl~ Ilow­

ever, a taxonomy and survey of hypertext systems wIll be altempted III thl~ dldPh·r

Hypertext systems will be approached from the vlcwpoint of thl' "pphcatlon do­

main, and surveyed in light of the characteristics, properties and functions they

incorpora te.

2.2 The Classical Taxonomy

Conklin [29] has provided a taxonom y tha t classifies h ypertcx t5 in to fOll r ca tegoril''>:

macro-literary, browsing systems, problem exploration and gener"l hypL'rtl'xl tl'ch­

nology. Macro-literary systems embed the technologies to support large on-hile

libraries in which document links are rnachine-supportcd. Brow~lllg system!'> arl'

similar in characteristic but of a srnallcr scale since they Me tl~ually rl'~tncted [0

a certain knowledge domain. Exploration tools exploit the hypl'llL'xt capé1bllity 01

supporting unstructured thinking for problems where man y liIsconnectl'd Idl'ilS

occur. General hypertext technology refers to general pur pose system~ dl'~igl1(.'d

around a hypertext architecture. Worth detailing is the macro-htcr(uy cJas~ of

systems.

13

1

1

2. A Taxonomy and Survey

2.2.1 Macro-Literary Systems:

Memex, Augment and Xanadu are the arche types of macro-literary systems: they

manipula te huge volumes of information ànd attempt to build a consistent inter­

face. Furthermore, the body of information is to be constantly updated by readers,

integrating them with authors in a single active community close to the "global vil­

lage" metaphor. Immense problems have yet to be solved; these are mostly related

to managing vast amounts of information (e.g. distribution, unique identification,

etc ..). Despite such problems, Augment is operational, the Xanadu [69] file

server has been designed and pubhcized by Nelson's company in association with

Autodesk, and the world lOufe web proJect is being implemented at CERN (Centre

Européen de Recherche Nucléaire). Such systems will certainly have a huge social

impact, as Nelson mentions:

The plan is ta open the franchise ... for a chain of McDunald's-llke information

stands, wlllcl! will form a reposlfary netwark. Yau'll be able ta put your priva te

documents in, and th us it wIll be a mim-self-storage system for information

. Il will run on the Sun, the Macmfosh and the 386s. This will hit the LAN

and serve as many people at once with the fragments necessary to support their

documents. 1 169/

While Conklin's taxonomy has become a reference, it blurs the distinction be­

twccn size, application domain and architecture. Macro-literary systems differ

from browsing systems at the level of size only, while general hypertext technol­

ogy is too vague a classification for different architectures. We propose another

taxonomy that classifies hypertext systems according to classes of applications.

lThough typlcally "Nelsoman", the abovc statcrncnt is an Illustration of the difftculties to be
ovcrcornc and could ca~lly tum "Orwellian"

14

1

2. A Taxonomy clnd Survey

____ Sulxlivldcs mto
Slrong rncmbcrshtp
Wcakcr rncmbcrshlp

Legend ____

gIBIS KMS On·Lmc Inro

Ncplune 1 SupcrlX>Uk ~ ~ .. ":. '---__ _

ri ~/.-~-CAD/CASE Tcachmg
Concorde 1: Inlcrrncdld ~ ..

B~~,~'C V 1 lIyper Ile~ ~--------
. ',_ __------------, ,,~/1 -------' J ' lit.... ,,'----_---.J _----_1 '~>,_ 1 Tcxtllel 1 ! IIYpcn .. ard :,,"/"

Intcgration -\00--. -- --- - 1 t ' '--____ J.-~~ ~ -'1 WE I! 1 GUide t'}/
" , : l.
'\ .. t 1 t

", 1 :
\. i 1 'f 1 1 .. 1 1 SunLmk , ______________ ,

- commcr(.lal

StTUcturing

Figure 2.1: A new taxonomy of hypertext systems

2.3 A New Taxonomy

The hypertext concept essentially revolves around two paradigms: 111l' nctwork

structure applied to information, and the authoring/browsing mechanism The

network structure provides cross-referencing and a non-linearily that extl'nds bl'­

yond hierarchical classifications. The structuring aspect of hypertcxl is predomi­

nant in collaborative work, CAO and CASE, and literature tools lhat cxplore non­

linearity. The authoring/browsing mechanism removes the boundnrIcs belw('cll

the user and the programmer. AlI the hyperlext systems are combinations of lhcse

two concepts applied to application classes, as depicted in figure 2.1. Briefly, the

list is:

• collaborative work [39,30, 63];

• CAD/CASE [37,54];

15

2. A Taxonomy and Survey

• information structuring [94, 50,89,87];

• inlcgration [92,78]

• On-Line Information [3,83,38,98]

• tutoring [100,23]

• browsing [35, 17, 56, 88]

2.4 Collaborative Work

Collaborative work hypertext applications use the network structure of hyper­

text to capture the nature of the information and to homogenize it. The author­

ing/browJing mechanism is used to capture the collaborative nature of the inter­

action. The main approach to collaborative work using hypertext is collaborative

argumentation [30,63,87] as applied in issue-based information systems.

2.4.1 IBIS:

Issue-Based Information Systems (IBIS) are geared toward problems that lack a

formulation and that could not be solved using classical analysis techniques. IBIS

is designed to fa ci li ta te the "capture of early design deliberation through collabo­

rative construction of the network of information" [29]. The IBIS method and its

cousin, the PHI approach [62] have been used successfully in architectural design,

urban planning and at the World Health Organization. gIBIS [8] has been used

in a project called the Design Journal, "aimed at providing a team of system de­

signers a medium in which aH aspects of their work can be computer mediated

and supported." Documents such as requirements and specifications are integrated

together with interviews with user s, scenarios, design reviews, early design notes,

design decisions, internaI constraints, minutes of meetings, etc ...

16

1

generalizes

specializes

replaces

refers-to

questions

is-suggested by

Argument

Node

2. A Taxonomy and Survcy

Position

supports

objects-to

Figure 2.2: Specialized semantics for argumentation

The hypertext version of IBIS, gIBIS, provides specialized semantics al the nodc

and link level. Three types of node cover issues, positions and nrguments. Thesc

nad es are interconnected with nine possible types of links (sec figure 2.2). For

example, an issue is suggested-by an argument, which itself abjects-lu a position that

responds-to another issue. Issues and their respective positions and arguments can

be clustered into subnets. The nodes in the current network can be presented as

linearized in a hierarchical index in which the ordf'Ting of positions and arguments

follows a depth-first traversai of the primary links of the issue. As such, they arc

represented by a special icon and all their connective links ta extcrnal nodes are

not displayed on the graphical browser.

Information Presentation The IBIS user-interface provides four tiled windows: a

graphical browser, a structured index, a control panel and an "inspection window".

The graphical browser shows a dynamically updated scrollable local view of the

network centered on the local issue and its ramifications depictcd in full detail.

Clustered subnets of issues are represented by a special icon and al! their connective

links to external nodes are not displayed on the graphical browser. The graphical

17

2. A Taxonomy and Survey

browser also provides a small global view that depicts the en tire network. Unlike

the local view, node labels, link-type kons and secondary links are pruned for the

sake of c1a ri ty. The structured index displays the linearized list of issues, their

positions and arguments. Information objects are accessible in a "point and click"

paradigm from both the graphical browser and the index. A configuration panel

allows tailoring of the index keys (i.e. by author, keyword or node label). The

control panel provides diversified services, ranging from interface configuration to

qUt'ry templates or browsing control. Querying, like creation, uses sample data­

entry templates where the user specifies the values of the attributes of the object.

Other argumentative systems have also applied the hypertext concept for the

semantic structuring of information [63, 87].

2.5 CAD and CASE

Other hypertext systems [44, 37, 12,54] use the same semantic structuring based

on attributes to structure documentation relevant to CAD and CASE. Hypertext

implementations for this application class develop more powerful ftltering mecha­

nisms and support versioning. Neptune [37] is a classical CAD-oriented hypertext

system.

2.5.1 Neptune

Neptune [37] is a hypertext system developed by Tektronix and geared toward CAO

applications. It is designed as a layered architecture on top of the hypertext Abstract

Machine (HAM) transaction-based server. The HAM server provides storage and

access mechanisms for nodes and links, distribllted networked access with multi­

user synchronization and transaction-based crash recovery. An infinite number of

application layers can be built on top of the HAM. Neptune communicates with the

18

l

l

••

2. A Taxonomy and Survcy

HAM through a remote procedure caU, the HAM being run as a separa te process

on a network server.

Querying

Nodes and links have attributes attached to them at the HAM level. These attributes

are used in two query mechanisms: LinearizeGraph that performs a depth-first

traversaI of outgoing links ordered by their offset within the document, and Get­

GraphQuery that performs a classical queryon the attributes, retrieving nodes and

their corresponding links.

Information Presentation

Querying, reading and editing is performed through a user-interface written in

SmallTalk-80 and that provides four specialized "browsers": a graphical browser

that contains a navigation pane for zooming and panning, and filtering panes for

editing the visibility predicates of both nodes and links; a document browser that

has four top panes to pick up nodes and anode browser to view the node; a

stand-alone node browser to edit a node; and anode differences browser where

two versions of a document are put side by side, and differences highlighted.

Versioning

The node differences browser reflects the importance of versioning control in CA D

and CASE applications. Versioning îs often achieved through backward-deltas [91)

where only the differences among versions are retained. Neptune supports two

mechanisms for link attachment to a version of anode, differentiating between the

current (default) one and a particular one .

Most of the functionalities associated with Neptune (Le. versioning, querying,

19

-

2. A Taxonomy and Survey

,
,
,

Application Layer

........ " ..

Hypertext

AbstTact

Machine

Host File System

Figure 2.3: The HAM layered architecture

filtering) are inherent in the HAM architecture. Their tailoring to specifie CAO

domains is performed by a presentation level, on top of the HAM layer (see figure

2.3). Dynamic Design [121, for example, is a CASE tool also built on top of the

HAMserver.

2.6 Text Structuring Tools

Text structuring tools like Textnet [94] and WE (Writing environment) [89] explore

the non-linear aspects of hypertext applied to the communication processes of

reading and writing. They differ from the previous classes in that they focus on

the presentation of information.

2.6.1 Textnet

Textnet [89] is the product of Randall Trigg, who wrote the first PhO thesis on

hypertext. The system is intended to investigate strategies for text organization

for an on-line sdentific community. It uses a directed graph with labeled nodes

20

2. A T.lxonomy ,md SUTvey

and links. Nades can be one of text nad es and "toc" (i.e. table of contents) ones,

the first having a pointer-to-text field and the second having a cJzild-oul fit'ld that

encompasses aIl children toc nodes in an ordered list that forms a path. P,lths an'

used to browse linear concatenation of text displayed on a "scanni:ng window" and

to produce hardcopies of the information. Links are laheled and point to nodes and

to other links. This extra featJre allows for criticism of the structure as weil as of the

content. Trigg de fines three "tr:.".ins of thought" based on this architecture of links

and nodes: along the train of thought; side trips where examples, explanations and

details can be found; and forks at which the train of thought divides into severa)

sub-paths. The user interface consists of overlapping windows w}1l'Tl' linking

options are represented as menus.

2.6.2 WE

WE [89] is based on a cognitive mode} that sees writing as the process of organizing

a Ioosely structured network of internaI ideas and external sources into Il hierarchy,

and then linearizing it into a linear stream of words, sentences, etc . Using WE, <1

user first "draws" his ideas as nodes in a graphical browser, without bemg forced lo

give them any particular structure. As sorne conceptual structures appear, the user

can copy his nodes into a hierarchy window that has specialized tree opera Lions.

WE can be cla,"sified as an outline processor, Le. a word processor specialized

for processing outlines that inherits much of Engelbart's Augment functionalities,

similar to ThinkTank and Framework [52].

2.7 On-Line Information

Hypertext is mostIy perceived as an on-Hne information system that provides on­

Une manuals and technical information. Most of hypertext on-line information

21

li AlclIndcr lb: Ort.t wu once

l" 1Od • capl.md ",ta'"

B [,lat ~

/) ~ sHow do yuu due m:tlelt
the Je.7" .&.Id AJeunder

/t"" .sl, who do IllWlm • ..nIH "up
Il called a pif. le Vou, who do
Il WILb • whulc flr.cl. JI"C ca1led
F.mp:ror •

Î
B PUlle' and Emperon wu

OIIC 01 !he fini pohbcal bnou

wrUII:. by Noam OIornliy

2. A Taxonomy and Survey

li -----------------­------------------
B :::::::::::::::::: ------------------c _________________ _

Figure 2.4: Integrating documents into one displayable unit

systems try to stress the layout of the displayed information [3,38,98] and target

documentation management where the amount of documentation and the rate of

updating it are huge. Consequently, they support hierarchical structures, with­

out which updating large amounts of information becomes a very difficult task.

Sorne systems specialize in the type of information and the automatic means for

transferring information from printed material to a computerized format [83, SIl

2.7.1 SDE

The Symbolics Document Examiner (SDE) [98] has been developed as part of Sym­

bolics Genera (software development/operating system) for Syrnbolics cornputers.

The particularity of the SDE is in the presentation of the hypertext information: the

directed graph is not used as Hs fundamental user-visible navigation model, as in

most hypertexts. Instead, the contents of nodes are inserted at given locations in a

WYSIWYG assembled highly structured document (see figure 2.4).

AIl links are directional and point Lo records or places in records. Four types

of link refer to different insertion operations. Inclusion links insert the content

22

2. A Taxonomy and Survl'Y

field of a given record. Precis links include the title and one-liner oi tl conncctl'd

record, cross-referencing links are used for conventional cross-n~fllrencing, and im­

plicit links refer to traditional hypertext browsing links. In figure 2.4, a nl'twork

of seven nodes is connected using insert inclusion links and rcf implicit links. If

the information is accessed from node C, the nodes C, D and F get inserted in Olll'

presentation document, while a link points to the B node. Upon activation of the

node, another presentation document gets assembled, that indudes node B. If tlll'

network was accessed from node A, the contents of nodes A, Band C would bl'

displayed. As in many hypertext on-Hne information systems, documents corn'­

spond to rigid formats and are modeled as structured records. The docul11l'ntalion

is thus fragmented into a databast' of records with unique internaI idcntifil'fs, as­

signed at creation lime, and external identifiers su ch as name Of type. The fecords

are made up of four types of fields: content, accessory, audit and dat,lh.1!'>l' infor­

mation fields. Content fields provide a description oi the node, acccssory fields

provide keywords and flags; audit information fields provide version nllmbers

and publication status, and database information provide the sefver location of

the record, the outward links, etc. . Document versioning is supporled and main­

tained through the audit information fields. While KMS [3] also has formaUed

documents, it sticks to the casual one-to-one mapping between a hypertext node

and its display representation.

2.7.2 OED

Dictionaries are also put on-Hne, in hypertext format. Since 1986, the University

of Waterloo has been involved in the conversion of the Oxford English Dictionary

(OED) into a hypertext structure in order to support on-Hne browsing. Experience

has shown that browsing a dictionary is "an invaluable adjllnct" to formai querying

[831 The browsing consists of a two-stage process: specify a pattern for querying,

and navigate around the resulting object. Moreover, an on-Hne hypertext OED

23

2. A Taxonomy and Survey

removes the constraints imposed on the original paper medium and allows the

integration of the OED with the user's task.

Most of the work consists in transferring the actual OED into machine-readable

format, in the study of the characteristics of the 569,000 cross-references (more than

2 per entry), and in the design of the nodes and links data structure. The OED's

nodes vary in size and structure, and the links are mainly lexicographical, cross­

reference links being one type. Most of the actual research is geared toward the use

of the OED as a generator of hypertext links to other documents and the design

of specialized editors for creating a maintaining the sense structure that represents

the first step in [he definition of a word.

2.8 Teaching Assistance

User assistance in on-li ne documentation can be stretched to the educational field.

Many projects have explored the on-line browsing alternative in scholar work. The

NOVA hypertext in biology, the Shakespeare project at Stanford [46], the Perseus

project [33] in classics at Harvard university, the A la rencontre de Philippe from

MIT's project Athena [53] in teaching French, and many others [821. Moreover,

sorne hypertext systems such as Intermedia have been specifically producea for

educational use.

2.8.1 Intermedia and InterNote:

Intermedia is the natural outcome of the research conducted at Brown and IRIS on

FRESS and .he EDS. Intermedia r1001 uses hypertext technology to implement a

tool designed to support teaching and research. It con tains different applications

and uses homogeneous mechanisms to link the contents of documents created

with these applications in an Object-Oriented framework. The five integrated

24

l

2. A Taxonomy and Survcy

applications consist of three editors (for text, graphies, and a timcline) and twu

viewers (scanned :mages and 3-D objects).

Information Manipulation The user-interface of Intermedia was desiglwd to ho­

mogenize conceptually similar operations. Accordingly, sorne operations behaw

identically across applications and media. Making links, for example, consists of

marking a certain region in a given application and medium, and linking It to

another specified region in, possibly, a different application and medium. Multipll'

outgoing/incoming bidirectionallinks are supported. Links and regions (called

blocks) are assigned descriptive properties stored apart from the documents in

databases called webs. Sorne properties are auton1atically set (c.g. creation lime

and user ID), while others are left to the user, like "one-liner explanations" ,1Ild

keywords. These properties are rnanaged by the web 50 as to provide vil'wing

and navigation of the networks with a minimum of disorientation and cognitive

overhead.

Webs Webs help reducing disorientation and cognitive overhead by providing

context partitioning (i.e. filtering) and searching based on keywords and other

properties of the documents. Three types of webs were initially Implementcd

[1001: a global map that portrayed alllinked nodes, a local rnap that displayed ail

the documents linked to a user-defined "focus" map, and a local tracking map lhat

dynamically modified the local map during browsing.

InlerNole Experiments conducted in English and biology at Brown University

have shown a substantial increase in the critical thinking skills of the students

exposed to different teaching approaches integrated in the Intermedia multiuser

environment. IRIS has chosen to go further in this direction by refurbishing Inler­

media into InterNote [231. InterNote is designed as a tool to support small groups

in annotative collaboration. Its main contribution is the concept of "warm links".

25

c

(

2. A Taxonomy and Survey

Warm links stand between statie navigational "cold links" and automatîcally up­

dated "hot links". They are used tn copy the blocks, on demand, to and from the two

linked nodes in a "push/pull" fashion. The copied blocks replace the information

block of the initial or destination link.

2.9 Integration

Intermedia exhibits sorne kind of integration of the hypertext concept at the level

of applications, much like the "cut-and-paste" metaphor that has evolved into a

standard. The hypertext concept has been further stretched to environments [sol

and even operating systems [781. The Notecard system is a well-known hypertext

system fully integrated in its environmer·t, that inspired Bill Atkinson in the design

of the Hypercard [56] system.

2.9.1 NoteCards

NoteCards [sol has much in common with Textnet (see section 2.6.1), though the

aim has turned into developing a general hypermedia environment, and the de­

sign into supporting the task of transforming unrelated ideas into a homogeneous

integrated in terpretation. The semantic network structure found in Textnet has

been retained, and 3xS notccards are connected by labeled directional links. The

notecards accommodate text, graphies and bitmaps. Twospecialized types of cards

define graphical browsers and "fileboxes" (i.e. folders) where cards are grouped

together. The links semantic types are represented by different dashing styles in

the graphical browser. Another feature retained from Textnet is the automatic

assembling of documents. Changes in the linearized document however, do not

propagate back to the original notecards.

26

1

2. A Taxonorny and Survey

Integrated to Lisp

NoteCards is implemented in the Xerox Lisp environment and is fully integrated

within it. The programmer's interface consists of around a hundred l.isp functlOns

and allows the user ta crea te new types of cards, develop programs to process the

network of cards, integrate Lisp programs as procedural attachments tn the cards

or integrate NoteCard itself into another Lisp-based applIcation.

2.10 Browsing Systems

Browsing systems [88,56, 17] are small-scaled hypertext systems lhat do nol targl'l

specifie application classes. On the other hand, their targeting of the geneTa} public

audience makes them general-purpose hypertext systems that focll~ on simpliclly

and ease of use. Their primary interests are a lIser-fnendly mlerfdCl' ilno solid

cross-referencing tools. Sorne of them [88] separate browsing Erom authonng and

implement them in two different packages. Commercial hypertext systems [56, 171

extend beyond simple browsing capabilities and additionally providl' script ins

languages and external functions for interfacing purposes.

2.10.1 Hyperties

Like OED, Ties started as an eleetronic eneyclopedia, and soon changed ils name

into Hyperties 50 as ta stress its hypertext aspects. Hyperties [881 started at the

University of Maryland in the faH of 1983 as a practical toy-tool for browsing and

as an experimental platform for studying the design of hypertext user-interfaces.

Hyperties nodes consists of short articles in scrollable windows, with hypertext

buttons represented as highlighted text. Activating a link leads to the replacement

of the content of the window with that of the destination article. The system

featur~s paths, backtraeking and a general index. String searching, bookmarks,

27

2. A Taxonomy and Survey

user annotations and multiple windows are to be part ot future implementations.

An authoring tool allows the user to define a title document, a 5 to 35 word small

definition, the actual document and synonyms for the title. Marking hypertext

links is performed using tildes { ... }. The authoring tool collects aIl references

in-between tildes and prompts the author for the relationships to other documents.

Field Evaluation

Hyperties has been tested in museum exhibits ô.,d the Maryland University projects

that served as field-experiments. It also served as an introduction to hypertext for

a CACM issue (July 1988) and a hands-on introductory book on hypertext

The particularities of Hyperties are in the input devices and in the activation of

a link. A dozen empirical studies involving more than 400 participants have shown

that touch-screens and keyboard keys were preferred over the mouse: keyboard

keys (e.g. arrows, letters) showed 15% faster and were preferred by 90%. Touch­

screens were preferred among three other selection strategies (mouse, keyboard

keys, touchscreen and keypads). The other particularity is that, when a link is

selected, the small description of the article is displayed, allowing an intermediate

stage between unclear link selection and full article display.

2.11 Conclusion

The above hypertext systems are very heterogeneous, for the simple reason that

hypertext is not an application field but a concept applied to different fields. Figure

2.5 shows dearly that filters and versions are mostly developed in hypertext sys­

tems dealing with design environments; that paths are mostly supported in fields

where the material is traditionally presented on a one-dimensional media; and that

very few architectures support procedural attachments, clusterings into subnets,

28

1

2. A l~lxonomy and SurVl'y

Structure Attrlbute~ Grllphlça) PrO(edur~

AUllchmenb I<'IItH~ Ver,lon .. Subnet, l'nlh ..
Nelwork HierarchlclIl Nodes Llnk~

8row .. cr

g181S V V V ~ V V V
HAM V ", V V V ~ V V

TutNet V ~ V V
WE V V

SDE V ", V V
OED V V

Intermcdia V ", V V ~ V
NoteCards V ~ ", V V '" ~ Hyperties V

,-

Figure 2.5: Comparing features

or specialized operations for hierarchical structures.

Homogeneity of use and behavior appeared with commercial hypertcxt sys­

tems around the mid-80s. Hypertext and hypermedia have been commcrcially

introduced with Filevision, Guide and especially Hypercard that is dlstribut('d

with every Macintosh. They have become wideIy used in on-line documentation,

ranging from heIp systems to small personaI information bases oftl?n avai1able on

bulletin board systems.

The parallel world of research continues ta evol ve, coneen tra Ling on deve loping

more or less formaI models for retrieval [31, 18], hyperte)~t architecture rI, 75]

and intelligent systems [51 J. Querying models [591 try to generate alternatives to

database indexing schemes, and forma! hypertext architectures l57, 41] try to build

a platform for interchange [711. As for intelligent systems, the y try Lo exploit and

29

2. A Taxonomy and Survey

integrate the intuitive manipulation of hypertext as to enhance the functionality of

actual intelligent tools.

30

1
Chapter3 Formalizing Hypertext

3.1 Introduction

The diversity of hypertext systems makes a generalization of hypertext architec­

tures, structures and models difficult. In this chapter, a classification of hypertcxl

architectures and structures will be attempted. Hypertext entities, propertics and

functions will be described in orde:- ~o capture the essentials of an abstract hyper­

text model (see figure 3.2). Based on these entities, the Dexter Reference Model

will be presented. It provides a formai representation that models the core of ail

the major hypertext systems.

3.2 Hypertext Architectures

Though many pioneering hypertexts have a hierarchical architecture [39] [31, the

network graph-based structure is the general architecture that superseeds the hicr­

archicalone. The basic network model is the hypergraph [9] [931. A hypcrgraph 1/

is a triple Ii ==< N, L, E > where N is a set of nodes; /, a sel of labels lhat identify

links; and E: N x L --t N is a set of edges 1.

1 As defmed by 193J, the edges of a hypcrgraph arc labeled and directed. Our defmition howevcr,
encompasses more graph-based hypcrtcxt systems and corresponds to the gencral dcfmition of a
hypergraph as a gcnerallogical graph-bascd rcprcscntation of a hypcrtcxt.

31

3. Formalizing Hypertext

Place

Place Object Transition Node

Edge Relation Arc Link

HyperGraph Semantic Net Petri Net Hypertext

Figure 3.1: Equivalent objects in models

3.2.1 Semantic Networks

A hypergraph can embed attributes associated with hypertext objects such as key­

words and access rights. The structure is then referred to as attributed hypergraph.

These attributes can form a record structure that describes the hypertext objects.

Attributes can also be embedded in links. They are mostly used to describe rela­

tions and automatically created versions. An attributed hypergraph with labeled

directed links is a semantlc network. The knowledge representation is better cap­

tured by the explicit labeling of links in semantic nets. The structures, however,

are similar, as is shown in figure 3.1. The use of semantic networks in hypertext

is usually confined to the intuitive graphical representation. Semantic network

hypergraph models and systems [49] [1] [28] [8] go beyond graphical representa­

tion and exploit semantic aggregations and generalizations to provide inheritance,

instantiations and other logical mechanisms.

3.2.2 Finite State Automata

Hypergraph links can support external routines so as to provide the hypertext

with procedural power. The structure is then referred to as an augmented transition

network, which has the ability to represent any computable algorithm. The hyper­

graph structure < N, L, E > with labeled directed edges, E, is itself a deterministic

32

1

3. Formalizmg Hypertext

finite state automaton (FSA) [931. The essential feature of the deterministic FSA

approach is that the current state of the hypergraph can be determined, and th('

next states deduced. This particularity imposes a navigation 1nl'c1zanism the pure

hypergraph/ semantic net approach lacks. The FSA formalism, however, does not

capture the sequence of events, conditions, or flow control mechanisms weIl. FSAs

and their dual, marked graphs, have very high decision power, but restricted modcl­

ing power since alternative activities cannot be modeled. FSAs can be considered

as subclasses of Petri nets [791.

3.2.3 Petri Net Based Hypertexts

Petri nets [79] [68] are an abstract formaI model of information flow. A Petri net

consists of places and transitions connected by directed arcs. As such, it models the

statie properties of a hypergraph (see figure 3.1). Additionally, the excculion f79]

of a Petri net provides dynamic properties that extend beyond the statie graph's

properties, élnd that describe asynchronous and concurrent aetivities. The exeeu­

tion of a Petri net is eontrolled by the positions and movements of tokcns. At eaeh

instant, the resulting marking describes the status of the Petri net. Petn nets rr.odel

two aspects of a system in particuIar: events and conditions, and the relationship

among them. Furuta [90] has mapped Petri nets to hypertext. Places represpnt

hypertext nodes and transitions map to links. The execution of the Petri net mod­

els the navigation of the hypertext. The firing mechanism that mod(lls conditions

and events extends classical hypertext navigation by providing a IJrowsing semantic.

The browsing semantic helps in reducing disorientation and cognitive overhead.

More important in the contexl of this thesis, it allows inference to be modeled (see

section 5.5).

33

1

3. Formalizing Hypertext

3.3 Hypertext Structures

As portrayed in figure 3.2, a hypertext is composed of entities, functions that

manipula te these entities, and properties that result from the functionality and

data structure.

3.3.1 Entities

The hypertext entities are the data objects used in modeling and presenting hyper­

texts. The modeling entities are the hypertextcomponents tha t form the elements of

the hypergraph. The presentation objects consist of navigational aids and display

widgets.

Nodes

Hypertext nodes can either be structured recipients of information [98,81, or con­

tainers that encapsulate it. Nodes may embed links, explicitly as fields, or implicitly

as control sequences and bitmasks. They may also embed attributes, which can

serve purposes such as database management facilities (see 2.5.1), component for­

mats and structures (see 2.7.1) and specialized semantics (see 2.4.1).

Links

Hypertext links can be abstract, hot, warm, dynamic or co/do Abstract links are inde­

pendent of the context of the document and can be compared to embedded menus.

Hot links are system links that get automatically generated and updated. Links to

versions in [37] are of this kind. Warm links provide a "communication channel"

between documents [100,98] used to pass information. Dynamic links provide a

"browsing semantic" mechanism: their activation depends on the hypertext status

34

3. Formalizing Hypertext

1

datamodel ;6

structural h~pel1eX1 data model

node.

Ilnka

compo

edit

upda.

annoll.

Figure 3.2: The structure of a hypertext system

35

(

3. Fonnalizing H ypertext

[901. Links also can embed attribuf.es used in filtering and querying mechanisms

[37], specialized semantics [28], formats and structures.

Composites

Composite hypertext objects embed paths, tours, webs2 and networks. Essentially,

their function is to reduee disorientation and cognitive overhead: paths allow

backtracking to previously encountered nodes. Predefined paths form tours that

linearize the h ypertext and target specific applications such as tutorials for example.

Webs and networks constitute a clustering of basic entities and attributes. Webs

address a specifie con tex t, whereas networks reflect a structural associative nature.

Navigational Aids

Navigational aids consist of classical orientation aids - such as those found in

books 3 [10] - that provide a strong sense of con tex t, together with specifie hyper­

text network maps in many possible formats (graphieal browser, fisheye, etc ...).

The hypertext specifie too15 reflect the problems inherent in hypertext: graphieal

browsers with no filtering mechanisms become unreadable, unless sorne hierarchy

and clustering [42] provides classification. Graphieal browsers also carry problems

inherent in graph layout: automatie layout algorithms are not generally able to

capture the graph sernantics, and very few make use of the current layout infor­

mation, creating a user orientation loss [14]; the dimensions of the graph can be

impossible to visualize aIl at once, or might require "clues" for their 20 projection

on a screen [221.

2Rccall that a web (100] is a network that rcprcsents abstract concepts: its links and the nodes
ther, relate arc meaningful for a given concept. ft is similar to database views .

. hcadcrs, footers, page numbers, chapter hcadings, bookmarks, thumb marks, etc ...

36

1

3. Formalizing Hypertext

3.3.2 Functions

The hypertext functional aspects can be categorized [77] into knowledge modifica­

tion, navigation and general system functions.

Navigation

In browsing mode, hypertext systems are only "navigated": users access documents

either directly through a searching or querying mechanism, or through links from

other documents. Classical search and query mechanisms suffer from the context

problem [96] in hypertext as much as in any information retrieval system [61. Thl'

context problem can be expressed as the difficulty of determining the relevance of

a document to a query given keywords alone. Some techniques however, exploit

hypertext characteristics [47] to refine the relevance of indexes through voting

methods, or in building hyperindices [181. Querying can be specified graphiccllly

[13] [40] ; or make use of hypertext structures [7] [311, or models [59] [11 [61J.

Browsing mechanisms inc1ude history for backtracking, filters based on atlributes

to reduce cognitive overhead, progressive disclosure to describe what to expect at

the other end of the link, bookmarks and thumb marks to mark the "information

landscape". Navigation can also be supported by scnpting facilities [1011, triggering

of actions (daemons) [21] and procedural attachements as in augmenled transition net

architectures.

Knowledge Modification

Knowledge modification consists of any editing, either of the content or the struc­

ture of the hypertext. The knowledge modification functions consist of editing,

updating, annotating and acquiring knowledge. These should support cut and

paste metaphors, along with structural edits of the network itself. Knowledge ac­

quisition should allow both interchange and integration of information. Althoubh

37

1

3. Formalizing Hypertext

no actual hypertext interchange format exists 4, the SGML [71] language seems

to he the best candidate and the Dexter model itself served as a reference for an

interchange format. Integration, on the other hand, covers a broad spectrum of

techniques. The two main approaches are in artificial intelligence aids and pure

algorithmic and database approaches. AI techniques tend to merge knowledge

bases and hypertext on the common ground of semantic nets 1971. Sorne neural net

approaches 111] try to "recognize" documents from keywords. They are sought as a

viable alternative to pure statistical algorithmic techniques. Database approaches

rely heavily on attributes and are mostly used in specialized hypertexts [921.

GeIi~ral System Functions

General hypertext system functions encompass aIl functions not specifie to hy­

pertext, that are nevertheless essential functions of it: interfaces, access control,

versioning and tailoring. Interfaces to external programs are achieved in aug­

mented transition networks, and serve specialized applications that require spe­

cifie processing power [37]. Versioning is an essential activity by which changes

are recorded 191] [55] in many hypertext applications that need to keep track of

modifications [121. Access control [37] [90] IS imperative in aIl hypertexts that

ex tend beyond a single user manipulation. Furthermore, hypertext paths can em­

bed nodes with different access permissions, but the denial of access should not

"eut-off" users from other unrestricted documents. Access and version control are

usually .:;upported through attributes. Beyond casual software tailoring, hypertext

tailoring extends to the access of information and its sequencing.

3.3.3 Properties

The main properties that differentiate between hypertexts are:

4The statcment might he outdated at the time of submission

38

1

3. Formalizing Hypertext

• operating mode: what forms of authoring and browsing are supported?

• inter-operability: are authoring and browsing performed in the same mode?

• concurrency: how many users, paths and documents can be simultaneously

opened?

• formalization: does a formaI model exist or is the system developed for a

specifie application?

• timing: does the system support dynamie documents?

• context sensitivity: do orerations depend on the hypertext context?

• referential integrity: are dangling links permitted?

3.4 The Dexter Model

The key feature of the DexterS model is in the spectrum of the existing hypertexts il

encompasses 6, and of their respective authors, who participated in the workshops

The goal of the Dexter model is to provide a reference basis for comparing hyperlexl

systems, and to develop interchange and inter-operability standards. Though

quite new, this model h~s already been used in the standardization of a hypertext

interchange format.

3.4.1 A Layered Architecture

The Dexter model has a three layer architecture, as depicted in figure 3.3. The

runtime layer handles the presentation mechanisms supporting the user's interac­

tion with a hypertext. The storage layer describes the hyperlext network of nodes

5named after the motel in which the fln.t workshop was held in Octobcr 1988
6 Augment, Document Examiner, EDS, FRESS, Intcrrncdia, Hypercard, Hypcrhc!>, KMS/ZOG,

Neptune/HAM, NoteCards, Tcxtnct, ctc ...

39

1

3. Fonnalizing Hypertext

Runtime Layer

~~~ 

Storage Layer 

~~ 
1 ....... 

Wilhin Component 
Layer 

Figure 3.3: The layered architectur\? of the Dexter model 

and links along with their management. The within-component layer covers the 

actual structure and contents of the hypertext nodes. Presentation specifications in­

terface the runtime and storage layers; an anchoring mechanism main tains a clear 

separation between the storage and within-component layers. 

3.4.2 The Storage Layer 

The storage layer is the core of the Dexter model. It focuses on the mechanisms 

by which the hypertext components are associated and managed 50 as to form 

a network. The storage layer does not differentiate between component types: 

the component itself is a data "capsule". Hs internaI structure is to be dealt with 

by the within-component layer. This approach allows the extension of the model 

beyond "pure text"; it encompasses different media without framing them into 

a rigid structure which is not adhered to by any existing hypertext system. The 

40 



3. Form,lhzing HYPl'rtcxt 

storage layer consists of a set of components together wil'~ two primitive functions: 

a resolver and an accessor. 

Data Structures 

The component is the basic addressable entity in the hypertext. As described in 

the entity-relationship (E-R) diagrarn of figure 3.47 , a hypertext consists of a set of 

components, each of which has a un ?ue identifier (uid) assurned to be universally 

uniquely assigned, a base-component and a component-information module. The basc­

component can be one of an atom (commonly ca lIed a node), a link, or <l composite 

component made up of base-components. Composite components are restricled lo 

be acyclic graphs such that they cannot contain thernselves, dUt:!ctly or indireclly. 

The links tie different components together. Each Iink has a sequence of speCIfias 

Modelling n-arity is then possible. Link endpoints are specified by an ancllOr id 

and a component specification. The dzrectioll specification models directionill links: 

it indicates whether the specified endpoint is to be considered a source link, il 

destination link, both, or neither. 

Aiso partof the link specifications is the presentation speCIfication that 15 parl oi the 

interface between the storage and runtime layers. The anchor-id and prcscntation­

specification data types are shared with the componcnt-information part of a compo­

nent. This way, composites and atoms can also possess presentation specifications 

to be conveyed to the runtime layer. The component-information part allows the 

description of component semantic properties (defined by each hypcrtext system) 

through a set of altribute, value pairs. It also allows the definition of a set of 

anchor-id, value pairs to be used by the anchoring mechanism that interfaccs the 

storage and within-component layers. The anchor-id ald is umque with respect 

to the component. lts arbitrary value av can represent a region, a location, an 

7all data flow diagrams, structurcd (harts and entity relatlOi1shlp diagrams have been crcdted 
using Teamworks 4.01. The use of this case too1 allowed the validation of the tran~lation of the 
formaI model from the Z language formulation to the usual graphica1 reprc~entallon~. 

41 



1 

-

hyptfttflt de ..... _ dala modll,4 
d.lI4H" data modM 

3. Forrnalizing Hypertext 

m 

m 

Figure 3.4: The storage layer data structure E-R diagram 

42 



1 

-

3. Formalizing Hypertext 

item, a substructure or any other entity within a document. lts interpretation i5 

up to the application responsible for handling the contents and structure within a 

component. The application i5 thus responsible for the within-component layer. 

The Storage Layer Primitives 

The storage layer has two primitive functions that together represent the whole 

mechanism of mapping specifications into the components themselves (Le. re­

trieving the components): the accessor and the resolvcr functions. The acccssor 

function accesses the component given its uld (i.e. unique identifier) in a direct 

addressing scheme, whereas the resolver function returns a uid from a component 

specification cs. The coupling of both functions provides an indirect addr<.>ssing 

scheme. Often the component specification can only consist of the U/il itself, in 

which case the resolver is a simple identity function. 

The Storage Layer Functions 

The storage layer functions deal with the creation, modification, deletion and re­

trieval of components. Additionally, the storage layer also covers attributes and 

anchors specific functions. 

Atoms, links and composites can be created using specifie functions. These 

functions aU rely on the createComponent function described ln the structured dia­

gram in figure 3.5. AlI the specifie creation functions are packaged as cases into a 

unique function CreateNewComponent that will be invoked from the runlime lay('r. 

DeleteComponent and ModifyComponent are also called from the runtnne layer 

functions deleteComponent and realizeEdits (in figure 3.6) respectively. DeleteCompo­

nent ensures that any link whose specifiers resolve to the given component is also 

eliminated. ModifyComponent requires that the component type remains the same 

and that the corresponding hypertext remains Hnk-consistent. 

43 



t . 

reatacomp;2 c 
Iov elt 

reaol_ 

ec:c:e._ 

r-' 
«e •• 
component 

e. 
+() 

~ 
uld 

uld 
+() 

0. 
e 

LEGEND 
uld unique component Identllier 
c component 
ce component specifIcations 

Figure 3.5: The createComponent structure chart 

laallz~~.,2 Huldc 

10veU rel Ille 0. 
edll. +() 

H 

live 
Appendto +() 

moclHy 
Hlltory cOlllpCMWll 

Iid 

map +0 
Inltanll 00- lEGEND 

3. Formalizing Hypertext 

Inlluld uld unlq.e compone nt lœnllll8r 
H hypertext 

Inlt C' compone"t 
+0 IId unlquo Instant la!! 

reailler 
0. 

on rd 

c 

Figure 3.6: The realizeEdits structure chart 

Retrieving a component given a uid simply consists of the accessor primitive. If 

the component is a link, other functions will return either a source or a destination 

for that component. 

Attribute functions allow the querying and setting of the attribute values of a 

given component. They also allow the querying of aIl the component attributes. 

UrzksToAnchor allows the determination of aIl the links associated with a given 

anchor. 

AIl storage functions are invisible to the user, thus creating a c1ear division with 

the runtime layer. Sorne of these functions (those with a capitalized first leUer, the 

attributes and anchor functions) can themselves be ca lIed from runtime functions . 

44 



1 

3. Formalizing Hypertext 

3.4.3 The Runtime Layer 

The runtime layer provides toois for accessing, viewing and manipulating the 

hypertext network structure. The objective of the Dexter model is not to formalize 

a user interface, but rather ta provide the essential functions for browsing and 

authoring a hypertext. Again, since the runtime layer is left open to different 

implementations, a mechanism is needed for interfacing with the storage layer. The 

presentation specifications encoded in the storage layer provide the information 

about how the component is to be presented. The advantage of such a technique IS 

that the presentation of a component is no longer solely dependent on the hyperlext 

tool: it is also a property of the component itselt (in the case of i.1 node) or of the 

access ta a document (in the case of a link). 

Data Structures 

The key idea of the runtime layer is that components are inslanliatL'd on a display 

(Le. presented to the user). Thus, it is a component "clone" that gets viewed and 

edited. The actual component will not be aitered unless edits are explicitIy saved. 

Furthermore, a component ean have multiple instantiations, eaeh being assigned 

an instantiation identifier. The instantiation data struel ure is depicted in the E-R 

diagramof figure 3.7. An instantiation has a unique idel'~ifipr, the inslantiation Id, a 

base and a sequence of Imks with their eorresponding Imk anchors. The structure of 

the instantiation is a "shadow" of the essential features of a component with respect 

to the runtime operations. 

A hypertext session then consists of a hypertext, together with a d ynamic set 

of instants and a history of the operations performed during the session. Three 

functions are also part of the session schema: an instal'ltiator thal will return instan­

tiation~ of components from their unique identifier and presentation specifications; 

a realizer that will perform a "write" operation, and a run-time yeso/ver that will ex-

45 



3. Formalizing Hypertext 

15 

1 • 'Ii 
a. .. 
c ou 
::10 .. 

~ ... c • ... 1 

:§ 

j i J ( • 1 • 
• 

.1 
~ 

j ... 

J i .. 

Figure 3.7: E-R diagrams of the runtime layer data structure 

46 



f 

l 
Context-D,agram.4 
contexl 

IlnpUI Devie. l 
operllllon. 

1 DI·p"Y 

.,/" 
n.t.ntl.Uon. 

Figurt' 3.8: Context dia gram of a hypertext session 

3. Formalizing Hypertext 

tend the resolver operations to runtime (e.g. the "last node visited" cannot be 

resolved within the essentially statie storage layer). 

A Hypertext Session 

The operations of the runtime layer arE' best described through a hypothetical 

hypertext session. This session in turn is described through a set of data f10w 

diagrams and structure charts at the adequate level of granularity. 

A hypertext session consists of operations performed by a user on hypertexl 

objects, the instantiations of which are displayed through an independenl user 

interface (see figure 3.8). The user first opens a session, thus opening a specified 

hypertext, initializing the instantiations set, and writing the operation namc (i.e. 

"open") to the history file. His then possible topresent a component, tlw mstantiation 

of which gets displayed. In a browsing mode, simple follow Imk operations will 

allow the navigation of the hypertext. In the authoring mode, il is possible lo edit, 

reaUze the edits (Le. actually update the component with the edits made to the 

instantiation), de/ete and create new components. In both modes, inslanlialions of 

the components can be unpresented (i.e. removed from the list of instantiations and 

from the display). Once aIl required operations have been performed, the session 

can be c/osed (see figure 3.9). 

47 



1 

! 
-II. 

3. Formalizing Hypertext 

1 
-1 

............................................. _-, 

~ 

, , 

i 
Ë 
~ 
,; 

i 

. ~ 
,1-+--+1f--' 

1 .. 
c: 
.2 
~ 

1 
a. 
c 
::0 

c 
Il 
'1 
ë 

1: 
"+-~-+-----+-...I1 

~--~~ __ !--__ ~--~~-+-~Hhl 
I! 

~ 2 
~~ 

'= 1 tl 

r· .. ~ 1 
• t 1 : 

'li C 

~ ,i i ... __ ............. : ...... .. 
, , ........ _- ........... -_ .. __ .......... -

1 
II. 

.4+-++41---- ,§--+----" 
~ = : J ~····I··· ~ ......... J 

i r-----------------· !········1 
-: 1 ___ -, 

,u 

~ 
'ii 
;;: ........ --- ..................... .. 
" 
, ........... -- .......... _ ................. _ .. _--- -... _ .... -...... -- _ .. -_ .. ~ 

R 

ï 

Figure 3.9: Data flow diagram of the runtime operations 

48 



3. Formalizing Hyperh:.'xt 

3.5 Conclusion 

The Dexter model is the formaI representation that covers the broadest spectrum of 

hypertext systems. Through the specifications and anchoring inlerfaces, the Dexter 

model captures the essentials of the hypertext structure while still rcmaining a 

completely open architecture. This type of architecture can be referred to as static 

(see section 1.3.1): no inference or processing based on the sia/us of the hypcrtext 

is performed. These aspects will be covered in the next chapler. 

4Y 



Chapter4 Intelligent Hypertext 

4.1 Introduction 

Static hypertext architectures are not a form of artificial intelligence [761. They do 

support the property ()f connectivity among information chunks that contain facts 

and concepts, but the resulting semantic structure is not exploited by any inference 

rnechanism. 

Many hypertext systems, however, use artificial intelligence techniques as aids 

to structure and to navigate a cognitive model of the domain of information. Sorne 

even try lo exploit the hypermedia features and use them within knowledge engi­

neering tools by interfacing them to expert systems. Very few attempts have been 

rndde to integrate hypermedia to expert systems. 

4.2 Intelligent Hypertext Tools 

Many hypertext tools try to achieve knowledge structuring and enhance information 

rctricval. Some of these do use Al techniques. Though the aim might not be to 

achieve intelligent systems, the application of inferencing techniques to hypertext 

structures la ys down the principles for intelligent hypertext architectures. 

4.2.1 Knowledge Structuring 

Knowledge structuring in hypertext is ca lIed authoring and is traditionally the 

task of the hypertext writer /prograrnmer. As hypertexts grow in size, the task of 

50 



1 

-

§ Q 

4 Intel1i~ent Hypertext 

structuring the whole body of information needs to be assisted by computer lools. 

Classical syntactic techniques now compete with hypertexttailored ones. These 

are used both for knowledge structuring and retrieval. 

4.2.2 Knowledge Representation: Semantic Nets 

Knowledge Acquisition in hypertext relies heavily on the use of semanlic nets. A 1-

though the ultimate goal is to overcome the naturallanguage processing problcm, 

most tools use a semantic net representation that permits somc infcrcncing on the 

concepts being captured. [49] has developed mechanisms that map the hypert(lxt 

information structures into first-order logic formulae. 

Semantic Net Abstractions in Hypertext 

A hypertext fi is a set Il =< n./o, IT. A > [49], where /n is the sel of mformalùm 

objects that can be instantiations of primitive abjects in the set /h. IT is a sel of 

predicates that characterizes objects and the relationships bl'twccn them. il is 

a set of attributes that identify and describe objects from diffl'renl pL'rspt'ctiVl'~ 

Abstractions can then be defined in terms of the structures ju~t detl'nnined. An 

aggregation is the mechanism by which a collection of obJccts can be refercnccd 

by an identifier; and a gcncralizatlOtl allows a collection of ob}ecls lo bc rderred 

to by a generic object which captures their common fcalures Versaming mn 

also be modeled semantically dS a revisiotl. The semantic abstractIon struclure~ 

and mechanisms have been developed by [49]. [11 practically mappt>d them lo 

traditional hypertext objects. Nodes l links and their graphical correspondcnls are 

defined as predicates; procedural attachments are defined as properlies of these 

predicates. Documents are modeled as structured nodes, each part of which is a slo/. 

The document structure then matches a template or frame structure. 

51 



JI 

f 

4. Intelligent Hypertext 

Aulomatic Knowledge Acquisition 

In hypertext, au toma tic knowledge acquisition has been solely based on the seman­

tic net approach. The process [97] consists of several stages: parsing, determination 

of dominant concepts, aggregation of these concepts into topie descriptions, and gener­

alization of the topic descriptions into text graphs 1. Frame building and siot filling 

result from parsing, and constitute the basic activities behind the determination 

of dominant concepts. Clustering uses predicate logic based on the newly created 

semantic network performs the aggregation into topie descriptions. 

In effect, a knowledge base is built, that captures information in the form of a 

semantic: net. The efficiency of such systems, however, is still to be demonstrated. 

Retrieval and Browsing Using Semantic Nets 

Once a semantic net exists, intelligent tools can take advantage of the elaborated 

structure to assist in information retrieval and navigation. The semantic net can 

either be specifie (i.e. extracted from the information body using automatic knowl­

edge acquisition, as described above) or general (i.e. "imposed" by a classification 

that takes into account the given document). Accordingly, the retrieval tools differ 

in their approach. Beside semantic browsing, most elaborate semantic retrieval 

techniques in hypertext use one form of querying or another. The querying mech­

anism can be a part or whole of the retrieval mechanism. Moreover, querying can 

be classified into strucfured queries and content queries. 

Structured Queries 

Structured querying mechanisms use the structural description provided by the 

semantic net and determine relevant documents. The expression of the query itself 

1 Tcxt graphs arc hierarchlCal sub!'ct!> of scmantic nets. 

52 



1 

4. Intelligent H ypertext 

can have many formats. It can be expressed graphically [31], in modallogie [7], in 

predicate logie [1], as much as it can resemble casual database queries. Il can also 

use hypertext views and indices [18]; One drawback is that they take no advanlagc 

from the content of the information body. Accordingly, th€ matching mechanisms 

are limited by the predicates and attributes syntax. 

Inference Queries 

Most inference queries combine one form of naturallanguage processing with the 

thesaurus structure that results from the embedded semantic net of a knowk'dgl' 

base. The knowledge-based approach allows inferencing on the goals of lht:' user 

and a duplication of the reasoning of an expert. The stated goals gcnerate slIb-goals 

and related goals not explicitly expressed by the user but of possible relevanC<.'. The 

modeling of the expert knowledge allows the expansion of the ll~er ql\l'ric~ and 

their fitting within the actllal semantic structure. Furthermore, inferenœ quenl's 

allow the retrieval process which is inherently uncertain to be better approximated 

Bayesian logie [34], non-classicallogic [96], fuzzy logic [59] and rule-based 1611 rc­

trieval models have aIl been used in hypertext. Few hypertext models [59] and 

systems [27] use inference queries because of the difficulties of integrating hyper­

media and knowledge-based features into intelligent systems. As an alternativc, 

non-semantic intelligent retrieval tools are being investigated. 

Other Intelligent Toois 

Non-semantic intelligent tools exploit the acyclie hypergraph structure to help 

de termine the relevance of documents in retrieval using adaptive methods such as 

neural networks [111, and the correspondence betwecn documents in navigation 

using affinity criteria [811. NotE" that these can also be used as refinements in 

semantic-based tool5. 

53 



1( 

4. Intelligent Hypertext 

4.3 Intelligent Systems 

Hypermedia is also thought of as a tool that can be integrated with databases 

and expert systems in order to build intelligent systems [15]. Such systems are 

characterized by their ability to use knowledge to solve problems; and by the 

capacity they have to exploit the powers of association and inference needed for 

complex problems. As such, they should behave logically (i.e. in the expert system 

sense); he able to make efficient use of existing information; and provide non-linear 

and adapti ve na viga tion. Furthermore, their complexity and tha t of their opera tion 

modes requires high levels of user-friendIiness and interactivity. 

Intelligent systems are designed around specialized technologies. Database 

techniques and tools are used to efficiently manage knowledge in the form of 

structured information. Expert systems then add a new layer of functionality by 

"1everaging" the system with induction techniques that provide extended signifi­

cance and uSf'fulness. Hypermedia enhances expert systems by providing a tool 

for the management of large bodies of information and knowledge, irrespective 

of their existing form. These bodies can have incompatible formats (e.g. different 

structures or media) and need to be tied together. On the other hand, expert sys­

tems assist hypermedia in modeling intelligent hypermedia engines that enhance, 

but are not restricted to, information retrieval and navigational aid. The expert 

system component makes use of the structll!'e of the embedded knowledge to as­

sist in retrieval or reduce disorientation in navigation. Specialized expert systems 

can also be attached to hypermedia nodes. They provide added local inference on 

the hypermedia information body. 

Since no single technology integrates a1l these functions, the separate systems 

either "hook" to each other through "external functions" or share common data 

repositories. These techniques are attractive because the y provide severa} advan­

tages. First, quick prototypes can be implemented and evaluated. Second, data 

acquisition is almost al ways already available in the form of databases. In spite of 

54 



4. Intelligent Hyperte>.t 

this, few integrated prototype systems have been "polished" enough élnd put tu 

the test. However, there is Httle binding between the hypermedid dnd the expert 

system at the structurallevel; as a result, the hypermedia componcnt often dupli­

cates part of the expert system inferencing as in [36], when it is not Just limited to 

a simple user-interface too1. 

4.4 Intelligent Architectures 

Intelligent architectures have been developed From one or other of the lwo tech­

nologies, either by integration of one system into the other, or by interfacing t wo 

stand-alone packages. Few approaches, however, have allempled lo uwrgc them 

into one intelligent system. 

4.4.1 Interfacing 

The most common architecture model is that of interfacing, as depicted in figure 

4.1. The interfacing component usually consists of mapping the external functions 

featureof both modules. Communication channelsare then crcated through which 

data is interchanged. The interchanged data consists of mformal1on (e.g 011-

Hne documentation, entry values, etc ... ) and of status information useful tn the 

other module. In this architecture, the hypermedia component can serve a double­

function: on .. line documentation and user interface. Often, hypermedia systems 

with an augmented transition network feature serve as the interface ils('lf 

Hypermedia Interfaces 

Interfacing can ex tend beyond ir,telligent functions and provide support for co\­

laborative work, bulletin boards, electronic mail, dccess to on-Hne libraries and 

55 



1 

4. Intelligent Hypertext 

Module A Module B 

Externat Functions 

Figure 4.1: The interfacing model 

specialized systems [25,47, 5J 

Hypermedia interfaces can provide several advantages: 

• an intuitive manipulation of the user-interface that ad dresses an audience 

larger than computer literates only; 

• greater cohesion between separate modules; 

• a coherent user-interface with unified functions; 

• a personalized environment; and most important: 

• a personal workspace. 

Personalized Environments Personalized environments result from the author­

ing feature hypermedia provides. They provide tailoring beyond the user-interface 

environment, and result in the notion of incremental intplligent systems, where ele 

throughput increases with the usage and the users. One example is the use of user 

feedback in building belief networks in the index terms of a query [47]. The weight 

propagation allows a fine-tuning of the queries usually performed by a given set 

of users. 

56 



1 

4. Intelligent H ypertext 

1 
Integrated Knowledge",Base 

( MOdUleQ ( Module B ] 
User Interface 

Figure 4.2: The integration model 

Personal Workspaces The notion of a personal workspace is supported by the 

/ledit realization" concept detailed in the Dexter model in chapter 3.4. Users GIn 

retrieve a set of information, create their own versions, edit and test using the sys­

tem fea tures, and copy back the informa tion to the shared informa tion-base. Beforc 

integration, the manipulated data and the operations performed on it represent a 

context [371. 

One possible approach is to use argumentative methods (sec 2.4.1) and infer on 

these. An alternate approach consists of the integration of the knowledge-basc and 

the information-base in hypermedia structure. 

4.4.2 Integrated Systems 

Integration architectures try to merge the information and knowledge represen­

tations, as depicted in figure 4.2. The concept is similar to that of blackboard 

architectures [73, 74]. The essential feature is the representation and presentation 

of the information, both at the level of problem specification and solution cxplana­

tion. The two main approaches in integrated systems consist of using inference in 

argumentative methods and in knowledge elicitation. 

57 



( 

4. Intelligent Hypertext 

Hypermedia Interface 

Apprentice/Critic 

Knowledge Base 

Figure 4.3: TIte argumentation mode} 

Argumentative Architectures 

Argumentative methods [86] were first implemented in issue-based hypertexts [8] 

(see 2.4.1) and have been used in intelligent systems 4.3 that use design appren­

tice/critics editors. The design apprentices can typically only provide brief and 

awkward explanations that fail to provide the complex al"gumentative background 

behind their critiques. These critiques include assumptions, conditions and con­

troversial design issu('s that can be structured into an issue-based semantic net. 

They provide personally meaningful abstractions to the user, and thus eliminate 

computer-generated explanations as found in expert systems. The net effect is to 

reduce the difference bt?tween problem-oriented and system-oriented descriptions. 

Argumentative architectures [44, 63,43] (see figure 4.3) are based on the sernan­

tic nets such as those that the IBIS [86] and PHI [62] argumentation methods create. 

The restricted set of derived relations allows a mapping from the knowledge-base 

system to the issue-based semantic net. The knowledge-based system is usually 

built around state-driven condition-action rules which are triggered by the ap­

prentice/ critique inference engine when a non-satisfactory solution is detected. 

The corresponding hypermedia information is then accessed and the related argu­

ment is made available. The apprentice/critique has thus provided an "intelligent" 

entry point within the hypertext. 

Next, authoring capabilities founded on the issue-based semantic network [63] 

are needed. Full integration of the issue-based semantic net and the knowledge 

58 



1 

4. Intel1i~ent Hypertl'xt 

Integrated Knowledge Base 

Retrieval Diagnostic 

Expert System Expert System 

Augmented Network 

Hypermedia 

Figure 4.4: The smartbook architecture 

base, however, should allow inf~rencing based on the knowledge just acquired, 

wnich in turn implies an inverse mapping from the issue-based semantic net to the 

knowledge base. 

Smart book Architectures 

The smartbook architecture [51] (see figure 4.4) tries to answer the nl'eds of large 

complex documentation systems integrated with appropria te field expertise. Ex­

pert systems are developed alongside hypermedia on-Hne documentation nodes, 

in an augmented transition network architecture. The tight coupling of expert sys· 

tems to the corresponding hypermf'dia information provides an inte\hgent system 

in which the hypermedia structure allows easy extension and intcgratlon Tlw hy­

permedia information-base, however, remains separa te from the knowlcdge base, 

even if sorne autorna tic knowledge acquisition can be achievE'd for sorne proced ura 1 

documenta tion. 

The interest in smartbook architectures goes beyond the incremental approach 

to knowledge and lies essentially in the knowledge l'licitation for diagnostic expert 

systems. Classical diagnostic expert systems rely on a set of questions lo a~serl 

a diagnostic/solution. The smartbook architecture uses the descriptive power of 

hypermedia together with a clear navigation structure to determinc the diagnostic. 

SlJ 



1 

L 

4. Intelligent Hypertext 

Once the fault is determined, the local expert system is accessed and a set of rules 

and procedures determine the repair . At any instant, supportive documentation is 

available in hypermedia format. Knowledge integration in smartbook architectures 

remains however at the conceptuallevel. 

4.4.3 Knowledge Modeling Systems 

Knowledge modeling hypermedia systems are intelligent systems specialized in the 

support of the process of knowledge acquisition. They represent integration tools 

for the storage, structuring and maintenance of different sources of knowledge. 

At the same time, they provide a collaborative platform for knowledge transfer 

between knowledge engineers and experts, together with personal workspaces. 

The intelligence of this kind of architecture is currently very limited, and, to 

our knowledge, no inferencing has been implemented on the resulting structures. 

They are worth men tioning, however, because they retlect a knowledge acquisition 

methodology that represents one aspect of the intelligent hypermedia architecture 

proposed in the next chapters. 

4.5 Conclusion 

Intelligent systems do provide the "appearance" of intelligence, and loosely map 

hypermedia information pools to knowledge bases. Till now, the mapping has 

been unidirectional, and the developed systems have failed to provide inference 

fmm the hypermedia structure. These lacunae reflect at the level of architectures. 

Interfacing and integration have been implemented, but no true unification of the 

two architectures has been attempted. This is what we will attempt to develop in 

part 2. 

60 



1 

"". 

Chapter5 A Unified Model 

5.1 Introduction 

The incentive behind a unified model is to provide a knowledgc éluthor­

ing/ consulting environment within a symmetric architecture. The unified model 

consists of modular toolsets integrated in a tightly-coupled architecture The func­

tionalities of the integrated tools provide a framework for knowledgc manipula­

tion. The integration and synchronization of these tools providc fUl1ctionalitll's 

that extend beyond the added functionality of each module alo11e (1.1;'. ~ynerglsm 

occurs). The functionality of this model will be covered in Lhis chapLer. The struc­

turai and behavioral aspects of the model will be described in the forthcommg 

chapters. 

5.2 General Architecture 

The general architecture of the unified model is depicted m figure 5.1. The kcrncl 

is the core of the model. It models the information base and dutomaticéllly reflects 

the modifications and inferences performed by any peripheral module. Each of 

the peripheral modules provides a different view of the information basC', élnd a 

different processing approach; yet the y can ail be dynamically manipula Led at onCl', 

providing a "leverage" over their own specificities. For ex ample, a fact asserted in 

a running expert system will correspond to a token inserled al the correspond mg 

place in the Petri net module. Should the place (and hence the f act) corre~pond 

to a hypermedia document, this document could be automatIcally dbplayed in 

the hypermedia module. Inversely, links activated from withm lhC' hypcrrnedia 

61 



c 
5. A Unified Model 

module would instantly fire a transition in the Petri net module. Should the link also 

correspond to a ru le in the expert syst::?m, it would be triggered and the resulting 

actions would be inferred. The hyperstructure of the kernel should then he able to 

model the statie structures used in the different modules and to synchronize their 

dynamics. 

MODULE MODULE MODULE 

1 2 N 

INTERFACE 

KERNEL 

Figure 5.1: generaJ architecture 

5.3 Fundamental Functions 

The unified model is to support, but is not restricted to, the following functions: 

• multiple media redl-time support in distributed environments; 

• various information access strategies; 

• multiple knowledge processing techniques; 

• knowledge elicitation and acquisition; 

• validation and analysis. 

The above functions are distributed over several modules. Two of these modules 

will be detailed throughout these chapters. They are the hypermedia engine and 

the expert system engine. Other obvious engines could be validation engines, 

object-oriented databases, intelligent retrieval engines, intelligent tutorials, etc .... 

62 



1 

5. A UJlIhed Mndl'l 

As will be shown, the open architecture of the model does not restrict the IlUmbl'r 

or diversity of modules. The only restriction is that their data structures shuuld ail 

be modeled using the kernel hyperstructure. 

5.4 Leverage Dy Integration 

Multimedia support allows for different sources of informa tion to be i 11 t('gra tl'd in a 

single computer medium. The hypermedia authoring support provides a cognihw 

modeling of the information conveyed by the media; and the support for browsmg 

allows intuitive user-friendly access to this information. Embedded knowJedgl' 

can be inferred by a productuH'l f:ystCtn that integrates procedural and dec1arativl' 

knowledge processing. Knowledge can be elicited from the browsing of the hy­

permedia. The unified hyperstructure representatiol1 of the kcrne1 l'Hables tllL' 

automatic building of the corresponding knowledge objects in the rule-base. COH­

versely, expert systems programmmg offers an attractive dec1aratlve language for 

intelligent hypermedia navigation. An evollltlve knowledge concept fol1ow~ from 

both the authoring/browsing interoperability and the unified knowledgc (>lIcita­

tion mechani5m. It allows incremental information and knowledge intl'gralton, 

thus producing a system that t.'1.101ves with time and use, un1ike must actudl expert 

systems. The complexity resulting from multiple media, integration, allLl knowl­

edge base maintenance, requires analysis techniques that mamtam and validatt' 

the hyperstructure. In this general context, collaborative work u~mg l~sue-basl'd 

methodologies and multi-user access would augment the system capabllitle~. 

But first, equivalence mappings should be built between the diffcrcnt repre­

sentations. In the following sections, equivalencc mappmgs will bc bUllt betwecn 

hypermedia, Petri nets and expert systems. The resultmg synergctlc will be demon­

strated with the use of an example. Additionally, support for dynamlc documents 

will be modeled using the Petri net representa tion. An example will Illu~tratc 

the modeling of multimedia nodes that can be embeddeà as dynamic documents 

63 



( 

( 

5. A Unified Mode} 

within the previous example. 

5.5 Equivalence Mappings 

Mappings are to be described, that will demonstrate the global equivalence in 

behavior between a hypermedia, a Petri net, and an expert system. The Petri 

net mapping is necessary for modeling timed events in hypermedia, as will be 

demonstrated. Petri nets can also be useful in modeling and validating both the 

hypermedia and the expert system module. Furthermore, using the Petri net as 

an intermediate representation simplifies the building of a mapping between the 

hypermedia and expert system modules. 

5.5.1 The Petri Net Model 

A marked Petri net structure [79] is a five-tuple, N =< 8, T, 1,0, Nf >in which" is a 

finite set of places, 'f' a finite set of transitions, 1 an input function that defines for each 

transition the set of mput places, () an output function that defines for each transition 

the set of output places, and a marking 1\1 which is a vector that gives the number of 

tokens in each place of the Petri net Executing a Petri net results in a sequence of 

markings, beginning with an initial marking Ilo, and ending with a final marking 

Mf. Coing From one marking to the nexl is performed by firing any transition that 

is enabled under the current marking. Firing a transition resuIts in tokens being 

removed from places incident with transitions and added to the places that follow 

these same transitions. 

64 



1 

-

5. A Unified Mode) 

5.5.2 Mapping Petri Nets to Hypermedia 

The model of a Petri net based hypermedia (PNBH) was developed by (901. A J) N Il JI 

is a sextuple H =< N, {), IF, /J, J~, /)d >, in which beside the Petri net .Y defined 

above, D is a set of documents, \\' a set of witrdows, H a set of buttons, n a loSicaf 

projection of the hypermedia documents and links onto Petri net places and tr,1I\­

sitions, and Pd a display projection of the same document. The logical projection 

PI provides the mapping between the Petri net structure and the < 1), \", Il .> 

hypermedia structure. The display projection Pd is a collection of mappings that 

associa tes the logical elements in < \ L 13 > to the front-end uscr-inlcrfclcc widgl\ts 

of the hypermedia. 

5.5.3 Refining the Mapping 

The refinement of the P IV H /1 model is required to keep the mapping to the ex­

pert system model comprehensible. lndeed, since the two represcntalions are nol 

exactly equi valen t, a direct mapping to the /) LV /J Il would result in meaningless h y­

permedia nodes that would correspond to assertions needed for infercncing at t1H.' 

expert system level. Note that the "adjustment" of representations is not requircd 

under the hyperstructure, as will be demonstrated in the next chapter 

Let 1-1 =< N. D.W, /J. n. J~I > be al).'\' IJJI as defined above. 

We refine the definition of J) to be J) = < n" J)" , nI' >, 1 J, n /)" n /J,) _-:: (/" where 

D, is the set of invisible documents, Ou the set of active documents, and ni) the set 

of passive documents. An invisible document is a document that does not appcc1r 

under the display projection /~I. An active document is a document from which the 

user will make or collect an inference. A passive document is a descriptive docu­

ment that provides further information on the contents of displayable documents. 

Furthermore, we define 1 J Il as the subset { /)" /)u} of /J. 

65 



5. A Unified Mode} 

Similarly, we refine the definition of JJ to /J =< Hp, Ba, H, >, Hp n Ba n B, = </J, 

where Bp is the set of buttons that link to passive documents Dp, Ba is the set of 

buttons that link to active documents Da, and /3, is the set of invisible buttons used 

in internaI inferencing and that can link to any document D. 13, buttons cannot 

have manual user-triggered firings since they are invisible. Furthermore, we define 

/Jn as the subset { /J" /Ja} of /J. 

Observe that documents D, and buttons B, are not mapped to the display under 

5.5.4 Mapping Petri Nets to Expert Systems 

Mapping logic clauses to high-Ievel Petri nets has been studied by [671. A high­

level net can be considered as a structurally folded version of a regular Petri net. 

For the purpose of the discussion, and unlike [671, we are going to elaborate a 

mapping between simple Petri nets and proposition al clauses such as those found 

in rule-based syntax. 

Definitions 

Let a basic Petri net structure be a triple < P. i, Q > where P = ]JI,· .. ,Pn, Q = 
fil , ...• ([III and 1 the transition. 

Let a basic rule be a triple < (', .'-,', Il > where C = cl, ... , Cn are conditions, 

;1 = al, .... (lm are actions, and S' is an inference structure. 

Let F =< C,:1 > be the set of facts in an expert system ES. 

Let k1 be a mapping from the set of basic rules to the set of basic Petri nets 

which maps c, onto l'II li) onto 'l" and ... onto t (see figure 5.2). Observe that kt is a 

one-to-one mapping and denote the inverse mapping by ~·1-1. 

66 



1 

5. A Unified Mode) 

Figure 5.2: The k[ mapping 

A Petri net, /V, may be viewed as a set of basic Petri nets connected in il weak 

order fashion. 

Similarly, an expert system, J.;:')', may be viewed as a set of basic ruks connccted 

in a weak order fashion through an inference mechanism 

We extend the mapping of A[ to a mapping I\'{ betwcen expert systems and Petri 

nets in the natural way (see figure 5.3), Observe that I\'{-I can be <'xtcnded in the 

same way. 

Under this projection, the facts and rules of the expert system arc modcled 

in a Petri net. Inference is modeled as a set of markings where transition firings 

modify the state of the search space. An assertion corresponds tü cl token in the 

corresponding place. The retraction of a fact corresponds to the removc11 of the 

token from the corresponding place. As such, the browsing semantics would not 

accurately mimic the inference mechanism: a token would be rernoved from il place 

upon firing the corresponding transition, but the fact need not be retracted from the 

knowledge-base. Accordingly, the mapping 1.'/ accounts for each place 111 /) to be a 

place in q unless a retraction of an antecedent fact is specified ln the consequent 

67 



( 

IF A. l, C THI:N 1>, L 

.. Il, A THI:.N f, C, H 

IfCTHIlNH 

Petri Nd 

Figure 5.3: extending kl to A"I 

5. A Unified Model 

part of the corresponding rule. Observe that ail retractions can be modeled in this 

fashion 1
• 

5.5.5 Modeling Equivalence 

Recall that 1\'1 maps the expert system to the Petri net and that PI maps the Petri 

net to the hypermedia. Let 1\' = 1\'/0 PI. 1\ then represents the mapping from the 

expert system to the hypermedia. Similarly, denote by 1\'-1 the inverse mapping 

",-1 = Ir l 
0 1\',-1. The display projection I~I still maps the internaI representation 

of the hypermedia to the interface widgets. 

Un der the 1\' mapping, an expert system ES can be modeled into a hypermedia 

Il, as depicted in figure 5.4. 

l,' maps to /)" under /\'. The invisible documents D, correspond to facts that 

do not require documentation. They, for instance, can represent internai states 

used in the inference mechanism. Observe that the passive documents Dp are not 

tIn our approach, transitIons arc in!>tantancousor manual. Thus, the facts statusdoes not change. 
Furthermorc, only one tran!>ition can bc fIrcd at a time. Thus, no more than one tokcn can residc in 
one pIdcc, 

68 



'. 

5. A Unifled Mode! 

K 

Pd 

[~ ___ C: __ ~~ ___ p_: ___ ~~~~~_:_I:_:_> __ ~~~_~_: ____ -J 

E~~~m.dl' D'''I'I.y 

K' 

Figure 5.4: Mapping expert systems to hypermedia 

mapped to ES. They only provide further information that extends and bTOadl~ns 

the knowledge documented in the active documents /)". 

Similarly, S maps only to the /371 buttons and to the /)" documents associated to 

them. The Bp passive buttons are hypermedia links to passive documents 1)1" and 

thus have no mapping under 1\. 

The inference structure ."" of J.; ...... becomes, then, the browsing semantics of Il, 

and thus provides an intelligent navigation mechanism. 

Un der the inverse mapping 1\'-1, active and invisible documents in /)" ,He 

mapped onto facts in F. The HII buttons together with the [)1l documents represent 

the inference structure S' of the expert system l'~·''''''. 

The equivalence in behavior can be described in a three-Iayer architecture as 

depicted in figure 5.5. The three layers are made up of an acquisition layC'f, an 

integration layer, and a representation one. VerticaIly, each column corre:'>pond:'> Lo 

a domain: expert systems, Petri nets and hypermedia. The represenlalion laYl'r is 

the heart of the equivalence mapping. Ail the operations performed III the upper 

layers end up in modifications at the representation Ievel. The interfacing betweE.·n 

the different domains consists of the same mapping as that described f1bove and 

depicted in figure 5.4. The integration layer is concerned with the integrc1tion of 

knowledge into the existing representation in the three domains. Il consÎsts of 

integrating rules and faets with an existing expert system, integrating Petri net 

69 



1 Acqul.ltlon 

Layer 

Reprelf'nliltlon 

Layer 

Model 
Knowlf'dge 

Integrate 
Faetsl.: 

Knowlf'dge 
Bue 

Expert System 

Crea te 
plaœs 1.: 
transitions 

Integrait' 
plaœs 1.: 
transitions 

Pf'lrl Net 

Petri Net 

Figure 5.5: The unified model 

5. A Unified Model 

C~ale 

documents 
1.: links 

Integrate 
documents 
tonelwork 

Hypermedia 
Network 

Hypermedia 

places and transItions with the current Petri net network, and integrating new 

documents and links with the actual hypermedia network. The acquisition layer 

describes the modeling functions that are to be integrated at the integration level. 

One can notice that there is no perfect one-to-one mapp.!lg between the hypermedia 

structure and browsing semantics and the expert system rules, facts and inference. 

Sorne hypermedia nodes and links have no equivalent in the expert system, and 

vice-versa. The overall behavior and knowledge, however .. are similar. This will 

be illustrated in the example below. 

5.5.6 An Example 

Consider an intelligent system concerned with assisting with car repairs. The 

system does not target a specifie audience, and accommodates the knowledge 

evolution of the user. Accordingly, it embeds hypermedia "tours" of the car in 

full-motion video with a separa te sound track 2 and dynamic links (i.e. in time 

and space). The system also embeds a fault-diagnosis expert system that diag­

noses fauIts based on the user description of the fauIt. The expert system can be 

20nc can casily Imagine a video ~cqucncc with both French and Enghsh narrations ~r example. 

70 



1 

5. A UnilIl'd Modl'l 

manipulated on a stand-alone basis, or coupled to the hypermedia features. In the 

second case, the hypermedia browsing exhibits intelligent navigation semantics, 

and guides the user into successive steps, from the illustration of possible symp­

toms to description of repair procedures. As such, the system provides on-Hne 

documentation in different media, that can be accessed and processed in different 

ways. 

Intelligent Navigation Oerived 

The sample expert system can determine repairs and adJustments based on the statl' 

of the engine, its components, and on sorne symptoms the engine might exhibit. 

A sample set of rules that detects the need for timing adjustmcnts could be (in 

pseudocode): 

symptoms rule: 

if (engine unsatisfactory) then (check syrnptoms) 

rnisfiring rule: 

if (car backfires) then (misfiring engine) 

timing problem rule: 

if (engine unsatisfactory) 

and (misfiring engine) then (timing adjustments) 

The corresponding equivalent representation is depicted in figure 5.6. ThiS statie 

representation is automatically acquired 1 when the diagnosis program is loaded 

within the expert system module. The kernel representatIon can also serve for 

other modules, such as the hypermedia one. The hyperstructure 15 then mapped tü 

the hypermedia structure, places coinciding with documents, and transItions with 

links. The resulting hyperrnedia structure then looks like figure 5.6. 

3 Algorithrns have becn implcrncnted and med with a prototype hypertcxt [901. The algorithm~ 
are listed in appcndix A. 

71 



5. A U nified Model 

Unublf.C'1Dry' matne 

Figure 5.6: The fauIt-diagnosis hypermedia 

Document Home is a data-gathering node where information on the state of 

the engine is acquired. The statie document explains in detail each button op­

tion. Should the user choose the Unsatisfactory option for example, the Normal and 

Ooes l'lot start buttons would be deactivated and a new document Unsatisfactory 

engi1'le would appear that would offer new button options along with, say, a video 

sequence introducing a speaker, and a setting with a car. At the level of the brows­

ing semantics, the token wou Id leave document Home upon the activation of the 

U1'lsatisfaclnry button, and appear in node Unsatisfactory engine, thus automatically 

launching the video sequence. Two buttons Timing probJem and Point gap problem 

provide hints to possible adjustments. Their activation, however, is dependent on 

facts not yet determined and they are thus disabled. The third button Symptoms caUs 

for further information on sorne engine symptoms. Vpon activating this button, 

a new document Possible symploms appears as a video sequence that describes en­

gine misfiring and knocking symptoms, together with their appropria te temporal 

links. Should the user click on the misfiring engine button, the browsing semantics 

of the hypermedia would enable the timing problem link that corresponded to the 

diagnosed fault. The timmg adjustment node can then be visited. This node can 

represent a starting point for on-line documentation for timing ad just ment s, an au­

tomatic repair process, or represent a sub-Iayer of further intelligent expert system 

72 



i 

5 A Untill'li Modl'l 

coupled hypermedia, using the hierarchical structure previously describl'd. Tht' 

hypermedia structure and execution semantics acquired from the hypcrstruclurc 

are an indirect translation of the rules of the expert system. The resulting browsmg 

semantics have reduced the disorientation by enabling only th05e links for which 

prerequisite material has been covered. For example, the timmg prol'/c11llink from 

the unsatisfactory engine node could only be enabled after the relevant symptomntlc 

documentation on misfiring engines has been covered. 

Unformatted Knowledge Support For Expert Systems 

The hypermedia module could aiso serve as a front-end to tIll' expert system 

module, and provide additional support to unformClttcd information. Knowll'dgl' 

could then be inferred from the hypermedia itself. Back to our e\'(llnplL', ~lIppo~e 

the user is within the Possible Symptoms document, fn(('d with cl description of 

misfiring and knocking engines. Should the user decidc that one of thl'~l' applit's 

to his situation, and click, for example, on Knockmx CtlX Irl l', a loken would he 

inserted in the relevant place in the hyperstructure. The expert system would thl'll 

be notified of this change of status in the hyperstructure, and the (n/lsfirmg ctli\mc) 

fact wouid be asserted. The (cngltlt' unsatisfactory)fact bemg prt'vlOu~Iy aS~l'rll'd tlll' 

sa me way, the inference engine of the expert system would tngger tlH.' 11111 1l1S l'roh/cm 

ruie. The (timing adjustml'l1t) fact would th en be asserted, and the fault diagnosed. 

On the other hand, when the information is manipulaled from the expert system 

interface, asserted (retracted) facts aiso modify the hyperslructure The kern('\ then 

notifies the hypermedia module of which corresponding documents have becn 

enabled (disabIed). In our example, should an inference determine that il point 

gap adjustment is needed, the corresponding document would pop-up on the 

hypermedia interface even though it was not accessed through any hypermedia 

path. The integration aiso allows users to assert conditions that couId only be 

represented by unformatted documents (e.g. an x-ray image). 

73 



c 

5. A Unified Model 

5.5.7 Knowledge Elicitation 

Beyond mere consistency in the manipulation of the two modules, integration also 

provides a platform for knowledge elicitation. The merged authoring/browsing 

functionality of the hypermedia provides a user-friendly knowledge elicitation 

tool. The automatic declarative coding that results from the alteration of the hy­

perstructure requires no special programming skills. It could often remove the 

need for knowledge transfer from the expert to the programmer. This can be best 

described using an example. 

Suppose now that, in our previous example, the user decides to upgrade the 

knowledge-base with a new adjustment, Nw adjustment, that corresponds to a 

new symptom, Ne7J.J symptom. The first step consists of creating the new document 

New adjustment, and its corresponding link, New problem, and to link them to the 

Unsatisfactory engme document il! the current hypermedia network. Similarly, a 

New [ault document should be created, and linked to Possible symptoms through a 

new link, New symptom. The new hypermedia network is depicted in figure 5.7. 

The resuIting browsing semantics for the Neul problem button are identical to the 

on es for Timing problem and Point gap problem. The documents with new button 

options should be upgraded so as to provide the relevant information associated 

with the new alternative. Further on-line information on the adjustment can also 

be added to the hypermedia structure. ln this ex ample, the expert system module 

automatically generates a set of rules corresponding to the added diagnosis. At 

that point, knowledge acquisition of the new diagnosis is complete. 

5.6 Validation and Analysis 

Due to the variety of knowledge representations and manipulations, validation is 

required at severallevels within the unified mode!. First, at the level of the modules 

themselves, it verifies numerous properties. Second, at the level of the integration, 

74 " " 



1 

5. A Unitit..xi Model IIc.m0O-.o: Un .. t.,.f~dory 

UnNti"f.riory t'nslnt 

SaMory cha'llocl 

Enalne rulll'n 

TtminlldJu .. tm.ent Ilolnt ,.p .dlu.ment 

Legend. 
existins network 

IIdd.d by liser 

Figure 5.7: Addmg a diagnosis 

l'ruperly Concept InILrprt.latIUn\ 

Buundcdncss #1 of tokcn< 10 p <: k i\ Klv\.n d(')("umcnl (,.ould he ül(.c~"iul by a mux IInum (If k- 1 tP'IU' 

Con<ervatJOn #1 of tokcns ln net <: k A nllu.unum o.f k-l d()~,umcnt ... '-'an he t;ulluhancou .. ly Ut. (..".,..,ul 

Llveness No dcadlock 'ihanng rl.\OUH.C'i, \CLUrHy 8llL~" 

Rcac.hat"hty Is mark mg M rcachahlc? 1< dlx-umcnl (' allc<"blc 1 

Cuverabthty Crom markmg N" \< dlx-umlnl CI alccS'.bk 1 rom do( "mcot C2 > 

Pcrs.<lenlc Docs flflng t t mhlblL< t2'1 Wou Id tnggerll1g button III II1hlblt butto" 112' 

Figure 5.8: Smne behavlOral propertles of Petri nets 

it verifies hornogeneity and coherence. 

Validation within the unified model is greatly facilitclted by the Petri net struc­

ture under the equivalence mappings. Analysis techniques of Petn nets and thcir 

properties can contribute to the validation of the hyperstructure. Furtlwrmore, the 

Petri net properties can be equivalent to sorne module specific OlWS (~l)e figure 5 8) 

The hyperstructurc then provides a unique structure through which the different 

modules can be validated and analyzed. Analysis can be c1assified in tcrms of 

reachability, rnatrix equations and reduction techniques. 

75 



1 

5. A Unified Model 

5.6.1 Reachability 

The reachability graph allows the determination of aH possible marking states from 

an initial marking JLO. Considering the fault-diagnosis example of figure 5.6, one 

can verify that the Timing adjustment document can be reached from the Home 

document. Furthermore, the reachability graph will determine what intermedi­

ate markings are necessary to reach the document, hence creating a path to that 

document. 

Within the integrated approach, the Timing adjustment document might have 

been triggered from a corresponding assertion in the expert system. The reach­

ability graph then provides ail supportive documentation through the path it de­

termines, providing a cognitively structured hypermedia equivalent to the "w hy" 

answer of the expert system. At the level of the expert system, reachability pro­

vides a demonstration that search space states are reachable, and what the "infer­

ence thread" to each state is. At the level of real-time multimedia applications, 

reachability provides the temporal analysis tool of synchronous hypermedia [481 

5.6.2 Matrix Equations and Reduction Techniques 

Matrix equations and reduction techniques are also useful analysis tools. Matrix 

equations are a powerful representation of the dynamic behavior of Petri nets, but 

contain certain weaknesses that make them difficuIt to apply in sorne cases [68, 79]. 

As for reduction techniques, they provide simple operations [66] for reducing large 

Petri nets, while preserving their properties. Reduction techniques can extend 

beyond Petri net analysis and can be used to cluster nodes in hypermedia graphical 

browsers, or in simplifying rule-based representation. 

76 



1 

5. A Umht:.'li Modd 

5.7 Supporting Multimedia Data 

While equivalence mappings have demonstrated an underlying similarity the hy­

perstructure will exploit, no dynamic media support was modeled. Support of 

multiple media imposes specifie funetional requirements on the data structurc' 

• real-time support for dynamic media (e.g. video, audio, animatlon); 

• concurrency and synchronizalion of the different media 

• synchronized manipulation of concurrent activities and coordination 01 their 

accessing mechanisms. 

The equivalenœ mapping should be dble to support the above fl'atures. The 

next section will demonstrale what properties of the underlying l'l'tn nl't moJl'1 

are relevant in the support of multiple media. 

To be able to support multimedia data, timing eharacteristics are 10 hl' intrn­

duced. These characteristics can be added to the /) IV li 1/ by extendmg the l'eln 

net model as to include for timing properties. This will be detailed bdow, and an 

example will be used to demonstrate the mechanisms. 

Timed Petri Nets 

A timed Petri net is a quadruple IV =< ."', T, /,0, T > where < ,'-,'. '1',1, () > conslÏ­

tute the ordinary Petri net, and TT :---t {D,l, 2,· .} J<. {oc" 0.1,2," 1 is a function 

mapping each transition ta a triple (ri, r;", T;') termcd re/ease lime, maXlnlWn laletlC'Y, 

and maximum availability respectively [481; such that VI E: 1, r(t) ::.~ (T,', 1',''') and 

(Tf:; r[" :::; Tt"). The release time is the minimum lime that must clapse bdore the 

transition can be fired, and the maximum latency is the maximum time that can 

elapse before automatic firing of the transition. Such nets have been widely inves­

tigated [32,64,841. The application of Petri nets to timed hypertexts 148} has bccn 

77 



( 

( 

5. A Unified Model 

interpretatIOn 

0 0 X ImmedlAle aulomaUc falna ~ .. mum ,vlllablhly nol nnponanl 

0 1 mf Can he fired anme(bately Will flle aulomlllCally lfier el· unllS of Ume Remams avallablc 

Il t2 X Can he fired aRer ·11" unllS or lune, and Will flJ"C automallCally lfier .12" UnI\s 

Il mr a Can only fire .. !he mlervallll.a) CumOl fire aUlllmallcllly 

Il mr mf Manual rmna only ~UIr" 1 <tell)' or "II" unlL, before filma 

Il Il X win automallcally fire al lime ·11" 

t f t ___ maximum avallablhly 
1 1... _______ " maximum lalency 
L ____________ relcasc lime 

Figure 5.9: Combining timing attributes 

extended here so as to provide a more elaborate dynamic temporal specification. 

We have added an avai/ability rime limit Tl
a that allows the building of a temporal 

interval for the hypermedla Iink. 

Usage 

The combination of the three timing parameters provides temporal characteristics 

that naturally extend to places: a place is said to be active as long as it has a token in 

H, (i.e. within the interval [T/ . T;']). Release time and maximum availability provide 

lower and upper bounds to its llVencss Maximum latency provides a default 

automatie firing. Several combinations and their interpretations are detailed in 

figure 5.9. Timings and pnorities can be easily modeled using these characteristics. 

Multimedia applications, among other real-time systems, can be modeled using 

the resulting properties of timed Petri nets. 

ln our sample application, video and sound sequences should be synchronized, 

and temporal links should be accessible at specifie locations and time intervals. A 

typical presentation would have the timings of figure 5.10, where the video and 

sound seq uences ex tend from Il to 16 ; and links linkl and Iink2 respecti vely provide 

access ta a static document (su ch as text or graphies) and another multimedia 

sequence. The presentation and accessing of the documents satisfies our definition 

of truc hypermcdia (see 1.3.3). 

78 



1 

' .. 

hnk 2 

hnk 1 

5. A Unitil'ti Madl'\ 

audlll scljuellce 

Vldco scqUClltC 

-+_"'-_...:.-_ _=__ ___ :..-____ .:..... ___ _=__~ lu Ile 

Figure S.10: The timing sequence of multimedia l'vents 

The corresponding tirned Petri net is represented III figure 5.11. Recall that 

Petri net places can consist of procedural attachments and other proceSSl'S. TIl(' 

separation of structure from content allows the modcling of the video dnd audio 

sequences as events in Petri net places The start and end of tl1l' muItlllll'dia pre­

sentation are modeled as transitions sfarl and end. Supposing t1lt1t Hw pfl'sl'nt(1tion 

is to be manually started, and that it should star! mstantancously, tlll' corœspond­

ing timing attributes of link starf are (O. x. x ): the hnk should tw m~ttlntclnl'ollsly 

available, should not be fired automatically, and b always v .... !td The end link, on 

the other hand, corresponds either to an cnd-of-scqut'ncc or an 1I1lcrrupi/On l'vent of 

the multimedia presentation. Accordingly, it should be immediately operational 

and automatically fired after a maximum latency of lb -II time units corrl'~pondlllg 

to the end of the sequence. Hs timing attributes are then (O. I h Il,''') 

Hypermedia access 

The timing diagram of figure 5.9 shows that the static document accessed through 

linkl can only be available in the [12. f41 time interval. It muid, for l'X ample, provide 

technical details about an object that appears in the video sequence during that 

interval. Iink1 can then be available only after 12 - 1), and for a pcriod up to 14, 

As for default firing, it is not required here. The timing altributcs of link1 are then 

(t2 - fI, 00, t4 - Il)' The annotative document should not replace the video sequence, 

but rather superpose in an overlapping window. As for the sound sequence, il 



f 
'1 

r 

5. A U nified Model 

lIorne 

hnk 1112-II,lOf,14-1I1 audio sequence 

S!aIIC lUl/lllllllIVC documenl 

end IO,14-I2,xl 

audio o;equcncc 2 

end 10.15-13,<) 

Figure 5.11: The Petn net model of the hypermedia 

should not be affected by the selection of litlkl. The modeling of these execution 

semantics is illustrated in figure 5-11. A self-loop between the video sequence and 

litlkl allows the continuation of the video sequence while the annotative link is 

present, while there is no arc linking the sound sequence to linkl. Note that the 

annotative document can be kIl/cd any time between 12 and t4 by the activation of 

the corresponding CI'ld link_ The timing characteristics of the corresponding end 

link are then (0,14 - 12.(0). 

The second document is accessible through the link link2. Unlike the annotative 

one, this document consisls of another dynamic presentation (e.g. another video 

sequence). Figure 5.10 shows that it is active in [t3, t5]. The execution semantics for 

Iink2 are different from those of linkl, as depicted in figure 5.11. The structure of the 

second sequence, though, is identical to that of the first sequence: it starts by firing 

Iink2 that will, in turn, activate two multimedia processes. These processes will be 

interrupted either manually by the user, or automatically, through the maximum 

latency timing. The readability of the graph can be enhanced by using hierarchical 

80 



1 

• > 

5. A UIlIIIl'd Modl'l 

Petri nets. Under these, the whole process could be reduced to d plan' that would 

be labeled "multimedia sequence". The resulting place could then be part of an 

upper layer representation of a hypermedia diagnosis system, as depictcd in figure 

5.6. 

5.8 Conclusion 

In this chapter, the principal functionalities of the unified model have becn ellu­

merated. Equivalence mappings have been built in order to show that synl'rglsm 

is possible. Examples have illustrated the synergism. A Petri net intl'rmedi.1tl' 

representation has proved capable of integrating the two repTl'~l'nt<lllonS, ,1I1d of 

modeling the synchronization of their similar behaviors FurthermOTc, the !'l'ln 

net could model the hypermedia dynamics, and providc mtl'resting analy~ls and 

simulation properties. The hyperstructure of the umfied model, hOWl'wr, ~hould 

not be restricted ta a Petri net structure Rather, il ~hould model tlll' l'qll1V.1IL'l1ce 

mappings described above in an object-oriented framework, and account for tlwir 

imperfections. Moreover, it should support fUTther integration of modulaT lools 

This will be detailed in the next chapter . 

81 



Chapter 6 The Architecture of the Unified Model 

6.1 Introduction 

This chapter will present the structural aspects of the unified model. As expected 

from the functional descriptions of the model, the architecture should be symmetric 

in order to allow for the synchronization of events among the different modules. 

The cement of the model is the hyperstructure that ties together the data structures 

of the different modules. Its object-oriented nature should allow for a growing 

structure in an open architecture. The corresponding object methods should bring 

integrity and consistency among the operations of the module. Moreover, in­

heritance and aggregation should lay the ground for the interaction between the 

different parts of the system. As before, the ex amples will focus on the hypermedia, 

Petri net and expert system modules. 

6.2 A Symmetric Architecture 

The intelligent system architectures detaHed in chapter three aIl exhibit the same 

master-slave architecture. Accordingly, the master application takes advantage of 

the slave characteristics: expert systems with hypermedia interfaces, and hyperme­

dia systems with intelligent retrieval techniques. Moreover, the integration of the 

two components often requires the duplication of their execution semantics. While 

attractive for rapid prototyping, the merging of different off-the-shelf packages 

cannot provide extensive enhancement over the packages themselves, because of 

the limitations in the manipulation and representation of knowledge inherent to 

each module. Furthermore, adding functionality in the form of other modules is 

82 



1 

6. The ArchItecture of tht.> Unifil:.'d Modl'l 

highly restricted to the integration capabilities and compatibilitil's ot the existing 

systems. 

The symmetric architecture approach should be able to avoid the master-slave 

shortcomings, by providing a truly integrated environment, bOlh al the levc1 of 

the knowledge pool and of its manipulation. Accordingly, the kernel of the model 

consists of an object-oriented hyperstructure. 

The hyperstructure class captures the knowledge structure and ils slalus. The 

associated execution semantics are captured by the corresponding systl'm classes 

(see figure 6.1). The hyperstructure does not capture the interntll knowll'dgl' 

representation and the internai processing mechanisms speclfic lo Ccl ch module. 

Whether the Imowledge is a fact being asserted, a variable cclrrymg a rc~ult value, 

or a piece of on-line documentation is lrrelevant to lhe hyperstrllClllre. What mal­

ters is that it has a representation in the hyperstrllclure, and lhat ils stdtUS c.lll 

be reflected at that level The separation of structure from contenl allows for this 

abstraction and the integration of knowledge representations The l'xeculum se­

mantics of the modules are defined by the corresponding system classes. 1-lowcVl'r, 

only the status of an object is reflected at the hyperstructure level, and only il the 

object corresponds to a hyperobject instance. This way, the intcrn(ll mcch(lnisnt~ of 

modules can be modeled without affecting the hyperstructure To be tn1)y symnwt­

ric, the architecture should be able to dynamically refiect the manipulations \\'llh1l1 

one module in the others. This is achieved through inherilance and aggregalion, 

as detaHed below. 

6.3 An Object-Oriented Hyperstructure 

A symmetric architecture requires a single mechanism to represent different data 

types and the relations among these diverse types of data. In the unifjed modc1, 

the kernel provid,,:?s this mechanism in an object-oriented solution 1'h(> kernel 

83 



1 

,1 

• 

6. The Ar.-:hitecture of the Unifjed Mode} 

HYPERSTRUCTURE 

(HYPEROBJECTS + HYPERMETHODS) 

1 

SYSTEM CLASSES SY STEM CLASSES SYSTEM CLASSES 

(aBJECTS + METHODS) (OBJECTS ~ METHODS) (OBJECTS + METHODS) 

1 1 L 

MODULE MODULE MODULE 

Figure 6.1: The classes hierarchy 

hyperstructure represents the superc/ass of aIl abjects. As a class, it represents the 

abstract data type of the kernel objects, which may be thought of as instances of the 

hyperstructure; and it defines the operations that can be applied to the abjects. As 

a superclass, it encompasses E=ystem classes specific to each module attached ta the 

kernel. The system classes in turn depict, the data types of aIl the objects and the 

operations the modules perform on these. They can alsol in turn, be superclasses for 

other classes. These can benefit from the object-oriented en vironment by creating 

generalization lattices that inherit From different system classes, thus building a 

richer layered architecture. The last class-Iayer has instances that correspond to 

the abjects of the modules (see figure 6.1). By analogy with the Dexter model, the 

hyperstructure could be thought of as the storage layer and its operations, with 

s~'Vcral runtime layers running on top of it. Each runtime layer would represent a 

module, and eclch of its abjects and operations would be instantiatlOns of the storage 

layer class. The hyperstructure is not directly accessible, but is realized only from 

modular instantiations. Should the same hyperstructure object (hereafter called 

hyperob;cct) be instantiated under more than one module, the realizations brought 

to it in one module would reflect in the others. This architecture brings equivalence 

of abjects and methods through a hyperstructure superclass, and synchronization 

of manipulation through the realizations and instantiations, as will be explained 

la ter. 

84 



1 

l 

6 The Architecture of the Unitied Mode! 

hypefSlruClUre,4 
HyperooJ8CI 

objec:Ud ~---""'1 at.\UI 

Figure 6.2: The E-R diagram of.a hyperobJect 

6.3.1 The Hyperobject 

The hyperobject is depicted in figure 6.2. Each hyperobJect has il umque identifier, 

the object id, an abject type that could be one of atom, relatIOn and cOl1lpo:;ilc; and an 

operation id that de termines which operation is to be pcrformed on il. Nole lhal 

the composite type is recursively deflned, as in the Dexter model. Additiondlly, 

each hyperobject has a status deterrnined by the type of objt'cl, the operations 

performed on it, and its instantialions. Finally, the hyperobject has an ms/ar/HallOn 

id that uniquely identifies each of its several instantiations; I1lstllnlwlor allributl's 

that de termine to which module the instantiation is attaclwd and idcnlify the 

operations being performed on it; and an inslanlwlion his/ory thal conslitules the 

Iist of such operations. 

Several points are worth mentioning here: 

• Only the most essential attributes have been elaboraled. AIl attributes spe­

cifie to system classes or user-defined classes should not be lI1cluded in the 

hyperobject. The purpose is to keep an abstraction Ievcl th<lt muId guaraI1ke 

the independence of the hyperstructure from any application structure or 

sernantics. Accordingly, the operation-id attribule uniquely detcrmines the 

85 



1 

6. The Architecture of the Unified Model 

hypermethods to which the hyperobjects react. 

• The composite object type is recursively defined, as in the Dexter mode\. lt 

essentially allows relationships to be captured as objects, and hence to modd 

a network object by aggregation of atoms and links. Furthermore, since 

relations are modeled as objects. they can also have relations to other objccts . 

• Any hyperobject can have multiple instantiations (mnst often these are system 

class objects), each one bearing a unique instantiation-id, many instantiation 

attributp.s and an instantiation histcry. Note that hyperobjl'cts can have mul­

tiple instantiations in one module, and that instantiations n(,l'd not be uniqu("': 

several versions of a given instance in a given module might coexist, until one 

is reaLized. At that point, the instantiation history gets updated. The instanti­

ation i5 at the heart of the equivalence and synchronization nll'chanism built 

around the hyperstructure. 

Instantiations 

Hyperobjects and hypermethods are abstractions that cannot be dircctly manip­

ulated. They represent equivalence classes with different instances in dlffcrcnt 

system classes. The instantiations inherit properties and behavior from the c1ass 

they are an instance of, and they can also be manipulated direclly by the uscrs 

through the module interfaces. Wh en manipulations are explicitly rcalized (i.e. 

written) by the users, the corrl'sponding methods will be applied to the objects 

they instantiate, and will eventually propagate to the corresponding hyperobjcct. 

Generalizations 

System class hyperobjects can be used to implement generalizations: an object 

may refer to a set of objects From different classes. The resulting lattice allows the 

86 



( 

6. The Architecture of the Unified Mode} 

abject to inherit default behaviors from diverse classes. Hs ordering de termines the 

precedence ir. case of inheri tance conflicts. 

6.3.2 HyperMethods 

Methods consist of code that manipulates or returns the state of an abject. Objects 

interact wi th one another through messages. Each message corresponds to a method 

that executes it. Objects react to messages by executing the corresponding method. 

The hyperstructure methods subdivide into cIass and instance methods and are 

the primitive operations allowed on the hyperstructure. They essentially consist of 

alterations of the object attributes and methods; changes to the object lattices, and 

alteration of system classes. The hierarchy of hypermethods is as follows: 

• Class changes: 

1. add a parent class; 

2. delete a parent class; 

3. add a sy.3tem dass; 

4 delete a system c1ass; 

5 . modify a c1ass narne. 

• Object changes: 

1. Attribute changes: add, delete, rnodify narne, modify domain, modify 

inheritance; 

2. Method changes: add, delete, modify na me, modify code, modify inher­

itance. 

87 



r 6. The Arcllllecture of the Uniiit.'(j Modl'1 

6.3.3 Instance Methods 

The hyperstruc,'ure methods classify into: 

• primitive operations (crea te, destroy, get, set); 

• execution operations (enable, select, execute); 

• access operations (open, close). 

The primitive operations allow the creation and destruction of instances of an 

object; and the gettir:.g or setting of an attribute value. The acccss operations allow 

an instance to be opened afte,- checking privilege clearance and access slatlls (i.e il 

it is already being accessed); and to reset it accordingly before closing Il. Execution 

primitives allow an instance to be enabled according to ils status, select il among 

other instances and execllte the operation corresponding to its operation-id. 

6.4 Modeling Petri Nets 

A simple Petri net can be modeled as a system cIass instance of the hyperslruclure. 

The places and transitions are instances of atoms, and the arcs are instances of 

relations. The Petri net itself can be a composite object, made of at011lti and linkti, as 

depicted in figure 6.3. Specialized attributes and operations can be defined using 

the hypermethods. For ex ample, a new "ha5 token" altribute can be crealed and 

added to the place object, from which a "live" slatus could be delC'rmined by an 

appropria te operation "evaluate place". Instances of the place object that hold a 

"live" status will see the "enable" executimt operation adding them to the set of 

selectable objects ready for an operation execution. The operation itself is de ter­

mined by the operation-id attribute inherited from the atom object The transition 

object can also have priority, minimum release time, maximum latency and maximum 

availability. The corresponding network object instance can then decide on prioriti.!s 

8R 



( 

( 

6. The Architecture of the Unifipd Mode] 

and enabling conditions in firing the Petri net transitions and sending adequate 

messages to aIl obJects concerned with the execution semantics (i.e. passing tokens 

from places to other, finllg transitions, etc ... ). Note that al! interaction is performed 

by message passing, except for instances of system class objects (e.g. Petri net 

objects) that are instantidtions that can be also directly manipulated by the Petri net 

module interface. The mechanism is identical for aIl the modules. The m(\deling of 

expert and hypermedia systems is straightforwardly derived (see figurE:' 3.1) using 

the equivalence relation developed in the previous chapter (see figure 6.4). As for 

object-oriented multimedia databases, they have been investigated by [99, 261, and 

others. Moreover, an obJect-oriented hypertext model has been presented by [57], 

and formalized in the VDM 1. The Dexter model itsE:'lf (see 3.4) can be easily turned 

into an object-oriented structure, thus covering the broadest spectrum of actual 

hypertext systems. Furthermore, the hyperstructure straightforwardly accommo­

dates the storage data structure of the Dexter rnodel. At the level of integrated 

object-oriented systems, similar work has been investigated [4] for databases and 

expert systems, and [65] for multimedia authoring systems. 

6.4.1 Aggregations 

While hyperobjects provide the structure by which different knowledge represen­

tations can be abstracted, aggregation is the key mechanism by which they get 

integrated and through which manipulations propagate back to all the modules 

concerned. In aggregations, an object abstracts (Le. "stands for") all the objects and 

instances, possibly from different classes, in its aggregation lattice. Hyperobjects 

arE:' then aggregations of objects that represent the same knowledge abstraction in 

d ifferen t represen ta tions. 

As depicted in figure 6.4, the unsatisfactory status of the engine is depicted as a 

fact in the rule-base, a place in the Petri net, and a document in the hypermedia. The 

tVicnna Design Mcthodology 

89 



1 

6. The Architecture of the Unitied Mode1 

Il ypcr..ltuLlure 

Peln Nel SyMcm (,Ia.~, 

Figure 6.3: Modeling Petri nets 

corresponding hyperobject has thus three instantiations; one 111 eèlch module. The 

lattice of objects and instances that connects the instantiations to the hyperob}eCl 

is an aggregation lattice. Realizing instantiations means passing a message (thal 

represents both a method and an attribute) to an instance. The inslance being 

also a logical instance of its parent classes, the im,tance status propagates to the 

hyperobject. By aggregation, the same status and properties propagate down the 

aggregation lattice, and ail the instdntiations that belong tu the sa me hyperobJect gel 

updated. In the example, opening the unsalisfactory documenl in the hypprmedla 

module reflects on the status of the hyperobject, and the action is th us propagaled 

to the corresponding fact and place in the expert system and Pt'tri net respectively. 

The (engineunsatisfactory) fact gets asserted, and place pl of the Petri net gels a loken. 

In turn, these updated instances can trigger or apply methods that will reflect back 

to the hyperobject and down the aggregation lattice to their equivalent objecls in 

other modules. In the example, the (engine unsatisfactory) fact being asserted, the 

timings rule will be triggered as soon as the hyperobject corresponding to (mlsfinng 

90 



( 

( 

cngmc 

6. The Architecture of the Unified Madel 

.-.. _-------------------------------------~ , . 
timings rule: 1 f/(engme unsatlsfactory) and (ml,rji"ng englTle) : 

• • 1 then (timing adJustmenl) : 
~--------_ .. -----------------------------_. 

lIypenncd'B ObJC<.t~ hp<.rt System ObjCClS 

pIlee ohJetl lrIWlllOll ohJC'.(.. l AIl... ohJa..t Ilclwork 
ohJcct 

Petr, Nt'! ObJLct, 

1 (yperstruc!ure 

ObJCC1S 

Figure 6.4: Equivalence using hyperobjects 

D ohJect dalJi type 

6 IDJtancc 

___ dl/Id objectaI 

• _______ UlItance of 

.... ___ IEGEND 

etlgine) gets activated in any module 2 . The (timing adjustments) fact is then asserted. 

In turn, this instantiation modification refiects at the hyperobject level and down 

to the relevant instances of other modules. Aggregation and ab~traction thus 

provide equivalence and integration among knowledge structures, while methods, 

inheritance and aggregate propagation of properties achieve the synchronization 

in manipulation. Several points are worth mentioning here: 

• Propagating properties down the aggregation lattice is different from inher­

itance. In the first mechanism, attribute values get propagated from a given 

instance to its children in the aggregation lattice. In the latter, whole classes 

inherit properties from their parent classes. If inheritance replaces propaga-

2lf thcrc cxists no cquivalcnt obJcct In a givcn module, then thcrc is obviou~ly no effect on this 
module. What was forœd through Petn nets in the cquivalcnœ mappings lS herc niccly eluded by 
the object-oricntcd architcctuIt', 

91 



1 

"-"" 

6. The Architecture 01 tlll' Unihl'd Modl'I 

tion in our exarnple, opening a document would assert ail the expert systelll 

facts! 

• The knowledge representations need not be exact/y equiVllll'nl. For eX.111l­

pIe, removing the symptoms rule from the expert sy~tenl does not harm tIw 

encapsulated knowiedge, and ils equivalent hyperrnedia repn.'sl'ntation can 

be retained. The overall behavior of the system does not get disruptcd, and 

the timing problem rule can still be activated upon the assertion of (""~Jinns 

engine). This loosely coupled architecture removes some of the rigiditiL's ,md 

artificialities of exact equivaient rnodeling, while retaining a similar global 

behavior . 

• The knowledge representations remain independent and scpc1I'.ltcly tlcces~i­

ble through the il' own module interfaces. The leverage obt,lined by dlfferenl 

representations and manipulation paradigms does not pose restrIctions on 

the module's own representatiolls and manipulations 

6.5 Conclusion 

The unified model has an open, symmetric architecture that avoids the drawbacks 

of the intelligent systems architectures depicted in chapter 4 The hyperstruc­

ture supports a powerful object-oriented network representation. Il is based on a 

hyperobject that is application independent, and that provides lIltq~ratlOn of struc­

ture through abstraction. Instantiations allow the modlficdtion of the hyperobjeci 

through the module interfaces. Inheritance and aggregate propagatIon update the 

hyperobject and its corresponding instances through message pdssing, thus pro­

viding synchronization of the modules. Leverage is achieved by this integralion 

and synchronization of modules. 

92 



( 

Chapter7 Conclusion 

7.1 Thesis Summary 

A survey of past and pr.?sent hypermedia systems has been achieved, and their 

characteristics examined. Intelligent system architectures have been evaluated, 

from which functional requirements for a unified architecture have been derived. 

Equivalence mappings that equate the structure dnd behavior of hypermedia net­

works and expert systems in a lose 'vay have been developed. A unified model 

has been designed, that synthesizes the structural and behavioral mappings in an 

object-oriented architecture. 

The model was designed 50 as to merge the knowledge representation and ma­

nipulation paradigms found in knowledge-based and hypermedia systems. With 

regard to knowledge-based systems, the model allows the problem of minimalis" 

explanations to be remedied and allows to knowledge to be elicited from un­

structured sources. Minimalist explanations are complemented with unformatted 

supportive documentation that is presented in an intuitive organization by a hy­

permedia module. In addition, knowledge elicitation is achieved by translating 

the network structure and browsing behavior of the hypermedia module on the 

very same unformatted documentation into the corresponding rule-based format. 

With respect to hypermedia systems, the model provides intelligent processing 

capabilities, and partIy remedies to the characteristic problem of disorientation. 

Intelligent processing results from the equivalence mappings and integration with 

the expert system module. The unified model architecture differs in this sense 

from hypermedia architectures in that it does not exploit "end-node processes" 

as in augmented-transition networks, but rather exploits the parallel rule-based 

93 



1 

'.' 

7 Conclusion 

representation that can be derived from the network structure itself. Disorientation 

is attenuated by modeling browsing semantics that exhibit an intelligent bchilvior 

These semantics can be modeled by the userl or derivcd from é1 corrcsponding 

rule-bast!d system. When the browsing semantics arc mode)ed by tht'" user, they 

can be translaèed into an equivalent rule-base using ~he Silme mechanism as for 

knowledge elicitation. 

7.2 Future Developments 

Many enhancements could be brought to the mod",) before actual impll"'mentcltion; 

notably at the level of knowledge representation, classes, and liser interface 

7.2.1 Representation Enhancements 

The Petri net representation used in the eqUlvalence mappings could b(' ("'xtcndcd to 

high-Ievel Petri nets such as colored or logical ones. This enhanœmcn t wou Id allow 

the modeling of a fully-fledged rule-based syntax, and to exlcnd the equivaknCl' 

mappings to frame-based representations. High level Petri nl'b wou Id a150 ilffeet 

the mapping to the hypermedia repre5entation at the levcl of nodl' cluslcring 

and browsing semantics. The enhancement of Petri l1('t5 is .1150 rcqll1red if Hw 

representation is going to serve as a basis for a modeling cllld ~lmul.ltion modull' 

At that levet matrix representations and analysis lools need lo be explored and 

their correspondence ta hypermedia and expert systems nceds to be refined. 

94 



r 

7. Conclusion 

7.2.2 Model Enhancements 

Class Enhancements 

Only the classical object·oriented mechanisms have been tackled at the level of 

the hyperstructure superc1ass. Methods n~ed to be :urthE'r specified in terms of 

hyperstructure objects. At the level of system classes, only the atomic objects have 

been modeled. Path, network and web objects and their respective methods need 

to be defined for the hypermedia system c1ass before new methods can be derived. 

Though fr<lme modeling naturally derives from object structures, the expert system 

dass also needs to be refined 50 as to model a complete shell structure. Derivation 

of Petri net methods for reachability analysis and reduction are also required at the 

level of the Petri net system class. 

User Interface Development 

Interface paradigms should be derived from the methods at the level of the model 

operations. These methods couid easily bene fit from the homogeneity derived from 

the object~oriented structure. Separate c1assieal approaches should be availabIe, 

that interface ta the modules directly. 

7.3 Application Fields 

The l'rC>cessing of information in a hypermedia structure and format enables new, 

and improves existing, application areas. The abstraction layer of the hyperSll'UC­

ture allows the integration of manipulations and representations in multiple media. 

ln the domain of design, the unified model allows the alleviation of the probJem of 

minimalist information, either at the level of explanations, or at that of user input 

(e.g. rating a plot, or more generally a graphie document). It should also help in 

95 



1 

... 

7. Conclusion 

the integration of expert systems facilities and on-line documentatIOn of cl CAD 

package such as [581. As such, the model architecture should be able to provide ,1\1 

attractive alternative to current solutions. 

7.4 Conclusion 

The conclusion of this dissertation is that an intelligent hypermedia architt'cturt.' 

that integrates and synchronizes different knowledge representations in il syI1l'r­

gistic approach can be derived. The hypermedia paradigm ofll'rs ,1 IH.'lwork archi­

tecture that supersedes hierarchical ones; a support for unform,1ttl'd information 

that provides new possibilities III many applIcation fields, ,Hl iluthoring p.1radigm 

that fits the concept of an evolving structure; and an apliludl' lor Integration thal 

should be an attractive alternative to many hybrid ,Œchitl'ctun.':-. The unifil'd l11odl'l 

was elaborated for these purposes, and ils hyperstructurL' retll'cb thl' hnwrn1l'di,\ 

paradigm and disLinguishes it from other intelligent systl'm~ ilrdlltectufl'~ 



1 
References 

[1] F. Afratiand C.D. Koutras. A hypertext model supportingquery mechanisms. 
ln First European Conference on Hypl'rtext, pages 52--66, November 1990. 

[2] Alfred V. Aho, Brian W. Kernighan, and Peter J.Weinberger. The AWK pro­
gramming language. AddIson-Wesley, Reading, Mass., 1988. 

[3] Robert M. Akscyll and Donald L. McCracken. Experience with the ZOG 
human-computer interface system. Int'l J. of Man-Machine Studies, 2:293-310, 
1984. 

[4] Nat Ballou and Hong-TaI Chou. Coupling an expert system shell with an 
object-oriented database system. Journal of Object Oriented Programming, 
pages 12-21, June-July 1988. 

[5] Thierry Barsalou and Cio Wiederhold. Coop€rative hypertext interface to 
relational databases. In Proceedings: Tizirteenth Annual SymposIUm on Computer 
AppÎlca/unIs zn MedIcal Carc (SCAMC-13), pages 383-387, November 1989. 

[6] M. Bartschi. An overview of information retrieval subjects. IEEE Computer, 
18(5):67-84, May 1985. 

[7] C. Beeri and Y. Kornatzky. A logical query language for hypertext systems. 
ln First European Conference on Hypertext, pages 67-80, November 1990. 

[8] Michael L Begeman and Jeff Conklin. gIBIS: a tool for aIl reasons. Journal of 
thc Amer/can Society for Information Science, 40(3):200-213, May 1989. 

[9] c. Berge Graplls and Hypergraphs. American Elsevier, New York, 1973. 

[10] Mark Bernstein The bookmark and the compass: Orientation too15 for 
hypertext users. ACM Transactions on Office InformatIOn Systems, 7(1):34-45, 
January 1989. 

[11] F. Bienner, M. Cuivarch, and J.M. Pilon. Browsing in hyperdocuments with 
the assistance of neural networks. In First European Conference on Hypef'text, 
pages 288-297, November 1990. 

[12] James Bigelow. Hypertext and Case. IEEE Software, 5(2):23-27, March 1988. 

[13] Czejdo Bogdan. Using an E-R query and update interface forrapid prototyp­
ing of hypertext systems. In Proceedings of the Hawall International Conference 
on System Science, pages 227-236, January 1990. 

97 



1 

. ' 

RefL>rl'lK"l'S 

[14] Karl Friedrich Bohringer and Frances Newbery Paulisch. Using constrclinb 
to achieve stability in automatic graph layout algorithms. In CHf90, pc1gl~~ 
43-51, April 1990. 

[15] Larry Brelawski and Robert Lewand. Intelligent Systems Des/sn. John Wlley 
& Sons, New York, 1991. 

[16] H.P. Brondmo and G. Davenport. Creating and viewing the elastic Cllarll'~ 
- a hypermedia journal. In C. Green and R. McAleese, editors, HYJlclfext: 
Theory ir.ta Practice II. Intelect Press, 1990. 

[17] P. J. Brown. Interactive documentation. In Software - Practicc and fxpt'r/ct/ct', 
volume 16, pages 291-299, March 1986. 

[18] P.O. Bruza. Hyperindices: A novel aid for searching in hypermedta. In /ïrsl 
European Co nferen cc on Hypertext, pages 109-122, November 1990. 

[19] Vann~varBush. Aswemaythink. Atla/lticMonthly, pages IOI-IOR,July 1945 

[20] Vannevar Bush. SCience IS l'lot cnough Morrow, New York, IlJ67 

[21] Brad Campbell and Joseph M. Goodman. Ham' A general purpose hypertext 
abstract machine. In CommunicatIOns of the ACM, volume 31, pages 856-861, 
July 1988. 

[22] Michael Caplinger. Graphical database browsing. In ACM SIGG15 Hl/lIelÎfl, 
volume 7, pages 113-119, 1986. 

[23] Timothy Catlin, Paule'.te Bush, and Nicole Yankelovich. Internote: Exlend­
ing a hypermedia framework to support annotative collaboration In lIypcr­
text'89, pages 365-378, NO'''-'lnber 1989. 

[24] T.J.O. Catlin and K.E. Smith. Anchors for shifting lides: Designing il '5('a­

worthy' hypermedia system. In Proe. Onlinl' Informa/wn 88, pages 15-25, 
December 1988. 

[25] R. Jesse Chaney, Frank M. Shipman, and C. Anthony Gorry. Usmg hypert('xL 
to fa ci li ta te information sharing in biomedical research groups ln Procl'cd­
ings. Thirtet'ntlz Annual Symposium on Computer ApplIcatTOt/s In MedICal Carl' 
(SCAMC-13), pages 350-354, November 1989. 

[26] S. Christodoulakis, F. Ho, and M. Theodoriou. The multlfficdicl object presen­
tation manager of minos: A symmetric approach ACM OIS, pagc~ 295-310, 
1986. 

[27] Peter Clitherow, Doug Riecken, and Michael Muller. VISAR: A system for in­
ference and navigation of hypertext. In Hypertext'89, pages 293-304, Novem­
ber 1989 . 

98 



References 

[28] Ceorger H. Collier. Thoth-II: Hypertext with explicit semantics. In Hyper­
text'87, pages 269-290, November 1987. 

[29J Jeff Cünklin. Hypertext: An introduction and survey. Computer, 20(9):17-41, 
September 1987. 

[30] Jeff Conklin and Michael Begeman. gIBIS: A hypertext tool for explora tory 
policy discussion. ACM Transactions on Office Information Systems, 6(4):303-
331, October 1988. 

[31 J Mariano P. Consens and Alberto O. Mendelzon. Expressing structural hy­
pertext queries in graphlog. In Hypertext'89, pages 269-292, November 1989. 

[32] James E. Coolahan. A timed petri net methodology for specifying real-time 
systems timing requirements. In Proceedings of the Int'l Workshop on Timed 
Petri nets, Torino, Haly, July 1985. 

[33J C. Crane. From the old to the new: Integrating hypertext into traditional 
scholarship. In Hypertext'87, pages 51-55, November 1987. 

[34] W. Bruce Croft and Howard Turtle. A retrieval model incorporating hypertext 
links. In Hypertext'89, pages 213-224, November 1989. 

[35] Andries Van Dam. Hypertext '87 keynote address. Communications of the 
ACM, 31(7):887-895, July 198B. 

[36] Centre de Recherche Informatique de Montreal. An expert system with a 
hypermedia interface. Personnal communication with Carlos Saldanha. 

[37] Norman Delisle and Mayer Schwartz. Neptune: A hypertext system for CAD 
applications. ACM, pages 132-143, 1986. 

[38] Dennis E. Egan, Joel R. Remde, and Carol C. Lochbaum. Formative design­
evaluation of superbook. ACM Transactions on Office Information Systems, 
7(1):30-57, January 1989. 

[39J Douglas C. Engelbart and W.K. English. A research cente~ for augmenting 
human intellect. In AFIPS Conference Proceedings, ~/olume 33, Washington 
D.C, 1968. The Thompson Book Company. 

[40J Richard Gary Ep"tein. Craphical query language for hypertext database 
systems. In Proceedings - Graphies Interface, pages 47-54, June 1989. 

[411 Halasz F. and Schwartz M. The Dexter hypertext reference mode!. Proceedings 
of the Hypertext Standardization Workshop, pages 95-133, January 1990. 

[42] Steven Feiner. Seeing the forest for the trees: hierarchical display of hypertext 
structure. In Conference on Office Computing Systems 88, pages 205-212, 1988. 

99 



1 

References 

[43] Gerhard Fisher, Thomas Mastaglio, Brent Reeves, and John Rieman. Mini­
malist expIa nations in knowledge-based systems. In Proccedings of tlu' Twetlty­
Third Amlual Hawaii International Conference on System Scit'nct's, pages 309-317, 
January 1990. 

[44] Gerhard Fisher and Raymond McCall. JANUS: Integrating hypertext with 
a knowledge-based design environment. In Hypertext'89, pages 105-118, 
November 1989. 

[45] H.C. Fordsick, R.h. Thomas, G.G. Robertson, and V.H. Travers. Initial experi­
ence with multimedia documents in diamond. In IEEE Datal1ase Engineering 
Quaterly Bulletin, volume 7, September 1984. 

[46] L. Friedlander. The Shakespeare project. In S. Ambron and K. Hooper, 
editors, Interactive Multimedia: Visions of Multimedia for Dcvdopcrs, Edllcators 
and Information Providers, pages 115-141. Microsoft Press, 1988. 

[47] Mark E. Frisse. Retrieving information from medical hypertext systems. In 
Annual Symposium on Computer Applications m Medical Carl', pages 441--444, 
1988. 

[48] Richard Furuta and P. David Stotts. Timing analysis of synchronous browsing 
in Petri net-based hypertext. Technical Report UMIACS-TR-89-53, University 
of Maryland, May 1989. 

[49] Pankaj K. Cargo Abstraction mechanisms in hypertext. Communications of tilt' 
ACM, 31(7):862-870, July 1988. 

[50] Frank G. Halasz. Reflections on Notecards: Seven issues for the next gcnera­
tion of hypermedia systems. Communications of the ACM, 31 (7):836-852, July 
1988. 

[51] Phil Hayes and Jeff Pepper. Towards an integrated maintenance advisor. In 
Hypertext'89, pages 119-127, November 1989. 

[52] W. Hershey. Idea processors. In BYTE Magazine, page 337. McCraw Hill, 
June 1985. 

[53] M.E. Hodges, R.M. Sasnett, and M.S. Ackerman. A construction sel for 
multimedia applications. IEEE Software, 6(1):37--43, January 1989. 

[54] M. Hofmann, U. Schreiweis, and H. Langendorfer. An intergated approach of 
knowledge acquisition by the hypertext system CONCORDE. First European 
Conference on Hypertext, pagf.!s 166-179, November 1990. 

[55] Randy H. Katz and Tobin J. Lehman. Database support for versions and 
alternatives of large design files. In IEEE Transactions on Software Engmeering, 
volume 10, pages 191-200, March 1984. 

100 



f .. 

References 

[56] Susan K. Kinnell. Comparing Hypercard and Guide. In Database, volume Il, 
pages 49-54, 1987. 

[57] Danny Lange. A formai model of hypertext. In Proceedings of the Hypertext 
Standardization Workshop, pages 145-166, Gaithersburg, MD, January 1990. 

[58] D.A. Lowther and P.P. Silvester. Computer-Aided Design in Magnetics. 
Springer-Verlag, Berlin, 1985. 

[59] D. Lucarella. A model for hypertext-based information retrieval. In First 
European Conference on Hypertext, pages 81-94, November 1990. 

[60] Robert M.Akscyn, Donald L. MeCracken, and Elise A. Yoder. KMS: A dis­
tributed hypermedia system for managing knowledge in organizations. Com­
munications of the ACM, 31(7):820-835, July 1988. 

[61] Brian P. Mc Cune and Daniel G. Shapiro. Rubric: A system for ruled-based 
information retrieval. IEEE Transactions on Software Engineering, 11(9):939-
945, September 1985. 

[62] R. MeCall. Phibis: Procedurally hierarchical issue-based information sys­
tems. In Proc. Conf. Arch. Inn. Congress on Planning and Design Theory, pages 
17-22, 1987. 

[63] R. MeCall, P. Bennet, and P. D'Ornozio. Phidias: Integrating cad-graphics 
into dynamic hypertext. First European Conference on Hypertext, pages 152-
165, November 1990. 

[64] Phillip M. Merlin. Recoverability of communications protocols. IEEE Trans. 
on Comm., 24(9):1036-1043, 1976. 

[65] Max Muhlhauser. A software engineering environment for distributed ap­
plications. The Euromicro IDl/rnal, 27:327-332, September 1989. 

[66] T. Murata and J.Y. Koh. Reduction and expansion of live and safe marked 
graphs. IEEE Tran. Circuits Syst., 27(1):68-70, 1980. 

[67] T. Murata and D. Zhang. A predicate-transition net model for parallel inter­
pretation of logic programs. IEEE Trans. Software Eng., 14(4):481-497, April 
1988. 

[68] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings 
of the IEEE, 77(4):541-579, April 1989. 

[69] Ted Nelson. The Xanadu file server. In Byte Magazine, pages 298-299. McGraw 
Hill, September 1990. 

[70] Theodore H. Nelson. Getting it out of our system. Information Retrieval: A 
critical Review, 20(9):17-41, September 1987 . 

101 



1 

References 

[71] Steven R. NewComb. Explanatory cover material for section 7.2 of 
x3vl.8m/ sd-7. In Proceedings of the Hypertext Standardizal ion Workslwp, pages 
179-188, January 1990. 

[72] Jakob Nielsen. Hypertext and Hypermedia. Academie Pn'ss, Boston, Mass., 
1990. 

[73] H.P Nii. Blackboard systems. Al Magazine, 7(3):38-53, Summer 1986. 

[74] H.P NiL Blackboard systems. Al Magazine, 7(4):82-106, Summer 1986. 

[75] R. Ogawa, H. Harada, and A. Kameko. Scenario-based hypermedia: a model 
and a system. In First European Conference on Hypertext, pages 38-52, Novern­
ber 1990. 

[76] Tim Oren. The architecture of static hypertext. In Hypcrtl'XJ'87, pages 291-306, 
November 1987. 

[77] H. Van Dyke Parllnak. Reference data model group (rdmg): Work plan 
status. In Proceedings of the Hypertext Standardizatùm Workslzop, pages 9-13, 
March 1990. 

[78] Amy Pearl. Sun's link service: A protocol for open linking. In Hypertext'89, 
pages 137-146, November 1989. 

[79] James Lyle Peterson. Petri net theory and the modeling of systems. Prcntice-Hall, 
Englewood CHffs, New Jersey, 1981. 

[80] James Lyle Peterson. Petri Net Theory and the Mode/mg of Systems. Prentice 
Hall, Englewood Cliffs, New Jersey, 1981. 

[81] X. Pintado and D. Tsichritzis. Satellite: Hypertext navigation by affinity. In 
First European Conference on Hypertext, pages 274-287, November 1990. 

[82] Martha C. PoIson and J. Jeffrey Richardson, editors. Foundations of intellIgent 
tutoring systems. L. Erlballm Associates, Hillsdale, N.J., 1988. 

[83] Darrell R. Raymond and Frank Wm. Tompa. Hypertext and the Oxford 
English Dictionary. Communications of the ACM, 31(7):871-879, July 1988. 

[84] Wolfgang Reisig. Petri Nets: An introduction and Survey. Springer-Verlag, 
1985. 

[85] Howard Rheingold. Too/s for thought: the people and ideas behmd the next 
computer revolution. Simon & Shuster, New York, 1985. 

[86] W. RiUel and W. Kunz. Issues and elements of information systems. Work­
ing Paper. Centre for Planning and Development Research, University of 
Califirnia, Berkeley, 1970. 

102 



( 

References 

[87] W. Schuler and J. Smith. Author's argumentation assistant (AAA): A 
hypertext-based authoring tool for argumentative texts. First European Con­
ference on Hypertext, pages 137-151, November 1990. 

[88] Ben Shneiderman. User interface design for the hyperties electronic encyc1o­
pedia. In Hypertext'87, pages 189-194, November 1987. 

[89] J. B. Smith. WE: A writing environment for professionals. Technical report, 
University of North Carolina at Cha pel Hill, August 1986. 

[90] P. David Stotts and Richard Furuta. Petri-net-based hypertext. document 
structure with browsing semantics. ACM Transactions on Office Information 
Systems, 7(1):3-29, January 1989. 

[91] Walter F. TIchy. Design, implementation and evaluation of a revision control 
system. In leSE'82, pages 58-67, 1982. 

[92] Toomas Timpka. KnowJedge-based decision for general practitioners; an 
integrated design. Comput. Methods Prog. Biomed., 25:49-60, August 1987. 

[93] Frank Wm. Tompa. A data model for flexible hypertext database systems. 
ACM Transactions on Office Information Systems, 7(1):85-100, January 1989. 

[94] Randall H. Trigg. A Network-Based Approach to Text Handling for the Online 
Scierttiftc Community. PhD thesis, University of Maryland, 1983. 

[95] Kenneth Utting and Nicole Yankelovich. Context and orientation in hy­
permedia networks. ACM Transactions on Information Systems, 7(1):85-100, 
January 1989. 

[96] C. J. van Rijsbergen. Towards an information logie. In SIGIR'89, pages 77--86, 
1989. 

[97] Udo Wahn and Ulrich Reimpr. Automatic generation of hypertextknowledge 
bases. In Conference on Offiet ,.~omputing Systems, pages 182-188, March 1988. 

[98] Janet H. Walker. Document examiner: Delivery interface for hypertext doc­
uments. In Hypertext'87, pages 307-323, November 1987. 

[99] Darrell Woelk, Won Kim, and Willis Luther. An object-oriented approach to 
multimedia databases. ACM OIS, pages 311-325, 1986. 

[100] Nicole Yankelovich and Steven M. Drucker. Intermedia: The concept and the 
construction of a seamless information environment. Computer, 21(1):81-96, 
January 1988. 

[101] Polle T. Zel1weger. Scripted documents: A hypermedia path mechanism. In 
Hypertext'89, pages 1-14, November 1989. 

103 



1 

-

AppendixA Translation Aigorithms 

This appendix contains the algorithms based on the equivalence mappings and 

tested on the oTrellis Petri net hypertext prototype developed by Richard Furuta 

and P. David Scotts at the University of Maryland [901. The algorithms have becn 

implemented in awk [21. 

A.1 From Expert Systems to Hypermedia 

The awk translator actually crea tes two files: one tha t con tains the Petri net descrip­

tion and one that describes the mapping from the places to the hypertext nodes. A 

simplified version of the general algorithm will be described hcrp. It is linearized 

and avoids special cases (e.g. taking into account retractions) and parsing ru les, for 

the sake of clarity. It uses the incidence matrix representation described in [68] and 

[BOl. Two separa te matrices are maintained: a D," matrix that records ail places 

with arcs pointing towards transitions, and a J),ml matrix that records aB places with 

arcs pointingfrom transitions. The resulting matrix /J, used in reachability analysis 

for ex ample, is D = DOIII - J)1711 with D, D"" /),,"1 having dimensions (III Y 1/), where 

m is the number of transitions (rules) and 11 is the number of places (facts) in the 

Petri net 1. As can be seen from the implernentation, the inverse translation IS 

straightforward. 

Initialize variables and arrays: 

trcount f- 0; initialize transition counter 

t Similar work has been achI('ved by [67) and has l"C!>ultcd in a fonnal procedure for tran!>forming 
a given logic program into the incIdence matrix of high-lcvcl nets. 

104 



A. Translation Aigorithms 

plcount +-- 0; initialize place counter 

For each ru le do: 

map rule identifier (name) to transition name: 

tl'(:OIml + +; increment transition counter 

11'an.s~twn[t7'c()unt] +-- [rulcname]; assign the rule identifipr 

to the transition 

With the antecedent part of the rule do: 

For each condition do: 

.r or( 7 = 11 () plro/11I t) ; check if the fact 8 already exists 

1'/('011111 + + ; it doesn't: increment the place counter 

placc[plcollllt] = ... create a new place and assign it an identifier 

din[trcounl,l,/cml11l] + +; update Dm accordingly 

dm [l1'cOIml, i] + + ; it does: update Dm accordingly 

With the consequent part of the rule do: 

For each action do: 

.r 01'( i = 110 plcOIm/) ; check if the fact s already exists 

1/(8 == place[i]) 

picO/ml + +; it doesn't: increment the place counter 

placc[plcOIl11/] = ~O; create a new place and assign it an identifier 

doul[i1'('OIl71l,pl('ount] + +; update Dout accordingly 

dOIl/[/1'C01l11l,l] + + ; it does: npdate Dout accordingly 

until EOF(expert system). 

105 


