Towards the Design of an Intelligent
Hypermedia Architecture

Gilles Fayad

B. Eng,, 1988

Department of Electrical Engineering
McGill University
Montréal
March, 1992

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Engineering

© Gilles Fayad, 1992

iy

hoid

Abstract

A design for a unified model based on the hypermedia paradigm is proposed as a
means to a better synergism of the functionalities of different knowledge manipu-
lation tools. A survey of past and present hypermedia systems has been achieved,
and their characteristics examined. Intelligent hypermedia-based system archi-
tectures have been evaluated, from which functional requirements for a unified
architecture have been derived. Equivalence mappings based on Petri nets, that
equate the structure and behavior of hypermedia networks and expert systems in
a loose way, have been developed. A unified model, that synthesizes the struc-
tural and behavioral equivalences among different knowledge representations in

an object-oriented architecture is proposed.

Résumé

Unmodele d’unification d’outils de connaissance basé sur le paradigme d’hypermédia
est proposé pour une meilleure synergie des fonctionalitécs inhérentes aux dits
modeles. L étude des systémes hypermédias passés et présents a permis d’évaluer
leurs caractéristiques. Les architectures des systémes dits intelligents, et qui
utilisent le concept d’hypermédia, ont aussi été étudiées, et ont servies a énumérer
les fonctionalitées requises pour une architecture unifiée Des relationsd’équivalence
basées sur les réseaux de Pétri ont été dérivées, et permettent d’homogéndiser
de facon globale les structures et les mécanismes des réseaux hypermédias et
des systtmes experts. Un modele unfié est alors propos¢, qui synthétise les
équivalences structurelles et mécaniques de ces différents outils au sein d’ une

architecture orientée objets.

Acknowledgements

I would like to thank my research advisor Dr. David Lowther for allowing me
to discover the fascinating fields of hypermedia and expert systems; and for his
guidance and patience throughout this work. His unconditional support allowed
me to complete the task of writing this thesis. I treasure all the members of the
CADLab, staff and students, past and new, and all the moments and thoughts
we shared. Special thanks to Dr. Silvester, Raymond Sassine and Derek Dyck.

I am indebted to Dr. Richard Furuta and P. David Stotts from the University of

Maryland, for making his hypertext prototype available.

Je voudrais aussi remercier ma mére et mon frére pour leurs éternels encour-
agements, et mon peére pour m’avoir montré la voie a suivre. En sa mémoire, je
dédie cette thése 8 ma mére. Je voudrais aussi mentionner Denisc Telletier, Raja
Abi Dib, Naji Mouawad, Ibrahin El-Husseini, Emile Saab et Lustucru, pour leur
aide, leur patiente, et leur amitié. Je les en remercie infiniment. Quant a Julie, ma

gratitude et mon affection lui sont tout naturellement acquis.

iii

Hypertext

"Consider a future device for individual use, which is a sort of mechanized
private file and library. It needs a name. To coin one at random, "memex” will
do. Amemex is a device in which an individual stores all his books, records and
communications, and which 1s mechamzed so that 1t may be consulted with
exceeding speed and flexibility. 1t is an enlarged intimate supplement to his
memory. [...] So far, all this is conventional; a mere projection of present-day
mechanisms and gadgetry. Itaffords an immediate step, however, toassociative
indexing, the basic idea of which 1s a provision whereby any item may be caused
at will to select another, immediately and automatically. Tius is the essential
feature of the memex; the process of tying items together to form trals is the

heart of the matter.”
- "As We May Think ", Vannevar Bush [Atlantic Monthly, July 1945},

"So it can be done. Will it be done? Ah, that is another question. The greal
digital machines of today have had their exciting prohiferation becanse they
could vitally aid business, because they could increase profils. The librares
still operate by horse-and-buggy methods, for there 1s no profit in libraries
Government spends billions on space since 1t has glamor and hence public

appeal. There is no glamor about hibrarics, and the public do not understand

that the welfarc of their children depends far more upon effectroe libraries than
it does on collecting a bucket of talcum powder from the moon. So it will not

be done soon. But eventually it will.”

- "Memex Revisited"”, Vannevar Bush [Science Is Not Enough, May 1967].

4

Table of Contents

Chapter 1 Introduction

1.1
12

13

1.4

The Scope of the Thesis . . .

Historical Background and Survey
1.21 The Hypertext ’ioneers . .

1.22 The First Hypertext Systems .

Defining Hypertext, Hypermedia and Multimedija:

1.3.1 Hypertext.

1.32 Hypermedia

1.33 Differentiating Hypermedia and Multimedia .

Conclusion . . .

Chapter 2 A Taxonomy and Survey

2.1
22

23
24

2.5

2.6

Introduction

The Classical Taxonomy
2.2.1 Macro-Literary Systems:
A New Taxonomy
Collaborative Work

241 IBIS:
CADand CASE

2.5.1 Neptune

Text Structuring Tools
2.6.1 Textnet

262 WE

o o U W W

10
11
11

13
13
13
14
15
16
16
18
18
20
20
21

27 On-Line Information. 21
271 SDE o 22
272 OEDo 23

28 Teaching Assistance _, 24
2.8.1 Intermedia and InterNote: : . 24

29 Integration Co . 20
291 NoteCards S . 20

210 Browsing Systems 27
2.10.1 Hyperties Ce : 27

211 Conclusion 2K

Chapter 3 Formalizing Hypertext 31

31 Introduction Ce 31

3.2 Hypertext Architectures . . . C . 31
3.2.1 Semantic Networks e . 32
3.2.2 Finite State Automata CL a2
3.2.3 Petri Net Based Hypertexts 33

3.3 Hypertext Structures . . : . e 34
33.1 Entities : 34
332 Functions 37
3.3.3 TProperties . . : C e 3K

34 The Dexter Model e i . 39
34.1 A Layered Architecture 39
3.42 The Storage Layer : 40
3.4.3 The Runtime Layer . . Ce e . . 45

35 Conclusion C e : 49

Vi

3
2

Chapter4 Intelligent Hypertext e

4.1
4.2

4.4

4.5

Introduction Lo Lo
Intelligent HypertextTools
42.1 KnowledgeStructuring0
42.2 Knowledge Representation: SemanticNets
Intelhigent Systems L. Cee
Intelligent Architectures
441 Interfacing
44.2 Integrated Systems

443 Knowledge Modeling Systems

Conclusion

Chapter5 A Unified Model

5.1
52
53
54
55

5.6

Introduction

General Architecture oL 0oL
Fundamental Functions
Leverage By Integration

Equivalence Mappings

551 ThePetnNetModel
55.2 Mapping Petri Nets to Hypermedia
553 Refining the Mapping

55.4 Mapping Petri Nets to ExpertSystems
555 Modeling Equivalence.
556 AnExample 00000
55.7 Knowledge Elicitation
Validationand Analysis

56.1 Reachability,

......
......

......

.....

......

.....

vii

e

5.6.2 Matrix Equations and Reduction Techniques . . . 76

57 Supporting Multimedia Data : : . 77
58 Conclusion 81
Chapter 6 The Architecture of the Unified Model . C 82
6.1 Introduction : oo 82
6.2 A Symmetric Architecture e : 82
63 An Object-Oriented Hyperstructure . . : L 83
6.3.1 The Hyperobject . .. o) . : 85

6.3.2 HyperMethods ‘ : 87

6.3.3 Instance Methods 88

64 Modeling PetriNets fob]
64.1 Aggregations 8Y

65 Conclusion Cee o o 92
Chapter7 Conclusion S . . 93
71 ThesisSummary o 93
72 FutureDevelopments : 94
7.2.1 Representation Enhancements 94

7.2.2 Model Enhancements . . 95

73 Application Fields : o . 95
74 Conclusion . e e o 96
References Cee 97
Appendix A Translation Algorithms : 104
A.1 From Expert Systems to Hypermedia -, 104

vini

1.1

2.1
22
2.3
24

2.5

»
—_

3.2
3.3

[O¥]

w

4.1
4.2
4.3

4.4

List of Figures

The evolution of hypertext specifications

A new taxonomy of hypertextsystems

Specialized semantics for argumentation

The HAM layered architecture

Integrating documents into one displayable unit

Comparing features

Equivalent objects in models

The structure of a hypertext system

The layecred architecture of the Dexter model .
The storage layer data structure E-R diagram . .
The createComponent structure chart

The realizeEdits structure chart

[-R diagrams of the runtime layer data structure

Context diagram of a hypertext session

Data flow diagram of the runtime operations . .

The interfacing model
The integration model
The argumentation model

The smartbook architecture

general architecture
The Ay mapping

extending k; to K

iX

11

15
17
20
22
29

32
35
40

. 42

. 44

46
47
48

56
57
58
59

62
67
68

5.4
5.5
5.6
57
58
5.9
5.10
5.11

6.1
6.2
6.3
6.4

Mapping expert systems to hypermedia . .

The unified model . . .
The fault-diagnosis hypermedia

Adding a diagnosis

Some behavioral properties of Petrinets . .

Combining timing attributes
The timing sequence of multimedia events

The Petri net model of the hypermedia

The classes hierarchy
The E-R diagram of a hyperobject
Modeling Petri nets

Equivalence using hyperobijects

6Y

70

79

80

85
90

91

Chapter 1 Introduction

1.1 The Scope of the Thesis

The objective of this thesis is two-fold: to provide a survey of hypertext with
a focus on intelligent systems; and to present a model for integrating different
knowledge tools within an environment that supports the hypermedia paradigm.
The objective is to investigate new alternatives that the hypermedia model can offer

to the domain of knowledge engineering.

The survey on hypertext was dictated by the lack of standards and structured
evolution in the hyperlext domain and represents a necessary background to the

knowledge based approach to hypertext.

The ultimate aim of knowledge engineering is to develop a methodology that
captures and delivers expertise in various domains in a natural and intuitive way.
Hypertextand hypermedia have shown a great potential, both in human factors and
information management. Coupling hypermedia and knowledge based systems
provides a framework for intelligent information systems. These are defined here as
systems that allow manipulation and processing of inforn:ation in an intelligent

manner.

This thesis is organized into two parts. Part one introduces hypertext and static
architectures (see section 1.3.1) and consisis of chapters one to three. Chapter one
covers the historical background and provides a definition for the often confused
terms of hypertext, hypermedia and multimedia. Chapter two is a general survey
of hypertext systems, and a formal hypertext architecture is described in chapter

three.

1. Introduction

Part two focuses on intelligent hypermedia systems and consists of chapters
four to six. Chapter four describes actual intelligent hypermedia features and
architectures; chapter five introduces the functionalities of a unified model and
derives the equivalence mappings between hypertext and expert systems struc-
tures and behaviors; and chapter six describes the object-oriented unified model.
Chapter seven attempts an evaluation of the model, summarizes the achievements

and proposes future enhancements.

1.2 Historical Background and Survey

1.2.1 The Hypertext Pioneers

The father of hypertext is Vannevar Bush, first director of the Office of Scientific
Research and Development under president Roosevelt in the 1940s. However, the
particularity of Bush is not in his position, but rather in his influence over some pi-
oneers of the computer era Giants such as Wiener, Licklider and Engelbart shaped
cybernetics, man-machine communications and interactive computing, and have
either been under his supervision or were profoundly influenced by his famous
article "As We May Think" [19], which was the earliest and clearest discussion of
the idea that information processing technology could be used to amplify human
memory and thinking. This article is recognized as the root of the modern hypertext

concept.

In the article, Vannevar Bush described whatis today known as facsimile, speech
recognition and artificial intelligence, all applied to the problem of the growth of
scientific information. He postulated a hypothetical machine, the Memex, that
would become an extension of the human mind, and that embodied all the essential

features of a hypertext system.

The Memex is essentially a storage of information within a conventional desk,

1. Introduction

that allows for classification and retrieval of documents. Unlike conventional

systems, Bush’s Memex is not based on indexing[19]:

"Our ineptitude in getting at the record is largely caused by the artificiality
of systems of indexing ... Having found one item, one has to emerge from the

system and re-enter on a new path".

Instead, Bush advocates selection by association:

"The human mind does not work that way. It operates by association. With one
item in grasp, it snaps instantly to the next that is suggested by the association
of thoughts, in accordance with some intricate web of trails carried by the cells
of the brain. It has other characteristics of course; trails that are not frequently
followed are prone to fade, items are not fully permanent, memory is transitory.
Yet, the speed of action, the intricacy of trails, the details of mental pictures, is

awe-inspiring beyond all else in nature.”

The functional description of the Memex in [19] is considered as the hallmark
of today’s hypertext. His machine was essentially mechanical, partly because of
his background in mechanical computers, and partly because electronic computers
had not yet reached a suitable level of development. However, Bush did not rule
out the digital computer, and reconsiders the design of the Memex in the light
of current technological advances [20] in 1967. One year later, Douglas Engelbart
implemented the first operational "Memex" at the Stanford Research Institute (SRI).
His system was demonstrated at the 1968 Fall Joint Conference. Among the input-
devices invented by Engelbart, one was used to move a cursor on the screen, and

was called a mouse.

While at Harvard in 1960, Ted Nelson was inspired by Bush’s paper and focused
on the computer as a medium that would boost creative thoughts. He decided to

write a forty-thousand line machine-language program to implement his ideas,

4

Ead

I Introduction

"but like many beginning computerists, 1 mistook a clear view for a short distance"
[85]. His specifications included "historical backtrack” on paths and versioning, all
in a "point and click" metaphor. He was the first to coin the term hypertext, as a
literary process that allows non-sequential forms of writing made possible by the
advent of the computer. While Engelbart was interested in the technology, Nelson
was interested in the community: A broad hypertext network with an economic
structure and an at tomatic royalties system. "The software is on its way. But what
is really lacking are the visionary artists, writers, publishers and investors who can

see the possibilities and help carry such ideas into reality."

Andries Van Dam met Nelson and Engelbart at the 1967 and 1968 Joint Con-
ferences. The potential Van Dam saw in hypertext is in teaching. In 1983, he
contributed to the creation, at Brown University, of the Institute for Research on In-
formation and Scholarship (IRIS) that designs and evaluates scholars’ workstation

software.

1.2.2 The First Hypertext Systems
NLS/Augment

Engelbart’s "Memex" implementation, NLS, used the latest technological innova-
tions of the 60s: a dedicated time-sharing computer with 65 Kbytes of memory and
96 Mbytes of storage, high-resolution television monitors and three input devices
(akeyboard, a mouse and a five-key handset aimed at replacing the keyboard when
used in conjunction with the mouse). The system was intended for collaborative
work and supported the hierarchical structuring of documents. It provided level
views (i.e. it displayed only the document paragraphs to a given depth), truncation
(i.e. it displayed only the first n lines of the document), and filtertng based on key-
words in context (KWIC). It also supported vector graphics and television signals

superimposed on the screen content using dedicated analog hardware. Engelbart’s

1. Introduction

system is now known as "Augment".

HES

In 1968, Ted Nelson and Van Dam developed another hypertext prototype: the
hypertext Editing System (HES) [35], as a display application. The data structure
consisted mainly of pointers and editing involved manipulating these pointers in-
stead of the raw text. The HES featured unidirectional links automatically managed
into menus, cross-references and indices. Its designers experienced disorientation,
a problem characteristic of hypertext where the user gets lost in the structure due
to the lack of orientation cues. They tried to solve it by providing guided tours
demos. The HES was demonstrated to publishing corporations but failed to en-
ter the commercial world because it was perceived as too complex. However, it

was used by the Houston Manned Spacecraft Center for the production of Apollo

documentation,

FRESS

The second system developed at Brown was the File Retrieval and Editing System
(FRESS) [35), and wa. a time-sharing multiterminal enhancement of the HES. de-
signed it in 1969 and Phillips commercialized itin 1971. In FRESS, Van Dam wanted
toimprove Engelbart’s ideas and added free-form editing, unlimited statement size
and portability. Accordingly, FRESS brings the notion of virtual 1/0, bidirectional
links with attributes, dynamic editing with undo and autosave features and a vi-
sualization of all the structure in the text. Multiple windows and vector graphics

were supported by the 16 Kbytes mini-computer.

w5

1. Introduction

EDS

The successor of FRESS was the Electronic Document System (EDS), better known
as the Dynabook '. The EDS was primarily oriented towards producing graphical
documents. It was composed of three components: a viewer, an authoring paint
tool and a hypertext authoring tool. The EDS also featured three automatic navi-
gation aids: a time line that allowed backtracking and recovery of the node status
at a given time, a "neighbors" display that consisted of a filmstrip of all the possible
incoming nodes iconified on the left and all the possible outgoing nodes iconified
on a similar filmstrip on the right, and a visual index of buttons of page nuniatures

arranged by keywords and color-coded by chapter.

However, the particularity of the EDS is in its architecture: a finite-state automa-
ton that allows for dynamic changes in the hypertext. Unfortunately, the EDS was
difficult to manipulate and the authoring tools were found to be lacking knowledge

about the hypertext context.

ZOG/KMS

KMS [3] first started at Carnegie-Mellon as a menu-based display system under

the code name ZOG. The first commercial version appeared in 1983

KMS (Knowledge Management System) adopts the hierarchical structure of
Augment. It consists of a distributed database of {frames. The frames consist of
text, graphics and bitmaps in a WYSIWYG environment. The frame content is
formatted into a title, a name, a body that holds the frame information content, two
types of links: "tree items" (i.e. a menu) and "special items" (1.e. cross-referential
links), and command items. An unlimited number of links allows any text item

within a frame to be linked to any other frame. KMS also allows for limited

TThe system actually had no official name (personal communication with Nicole Yankelovich,
IRIS)

1. Introduction

procedural attachments to the frames, and independent databases to be linked
together. Frames are displayed as one or two pages on the whole screen, and can

be assembled into a linear document for hardcopy purposes.

KMS innovated by providing contextual distinctions: the location of the cursor
determined whatoperations were available. Although itused a graphical interface,

KMS designers did not feel the need for a graphical browser [60].

It is perhaps the largest and most thoroughly tested hypertext system in ser-
vice: It was installed as a computer-based information management system on
an aircraft carrier and also provided operators of a nuclear plant quick access to
emergency procedures. It has also been used for policy analysis, authoring and

communications.

1.3 Defining Hypertext, Hypermedia and Multimedia:

The systems described above clearly show the wide variety of hypertext systems,
and why, till now, neither a formal definition, nor applicable standards have been
defined. A suitable definition is required and should clearly set the boundary

between hypertext, hypermedia and multimedia.

1.3.1 Hypertext

Even though the concept is intuitive, the definition of hypertext is a highly czritro-
versial topic. The reason for this is that the term "hypertext’ has been used quite loosely

in the past 20 years for many different collections of features [29].

The most common definition is that of Ted Nelson who coined the term hyper-

text {70]:

1. Introduction

"A combination of natural language text with the computer’s ability for inter-

active branching or dynamic display ... of a non-linear text”.

The most succinct definition is that "a hypertext is a network of information

nodes connected by means of relational links" [77].

A hypertext system is then a hardware and software configuration that allows

users to manage and access the information it contains.

A more detailed definition would be that hypertext is a generalization of text
documents through the computer medium that allows non-sequential formatting
of the information by freeing the logical structure of the text from the physical

structure of its one-dimensional conventional medium, paper.

Nodes, Links and Networks

Text is then divided into information chunks called nodes. These nodes are ex-
plicitly connected to other nodes through links. Nodes and links form a network

which can have different architectures (see chapter 3).

Navigation and Browsing

Navigating a hypertext document usually consists of a non- sequential visiting of
the nodes accessed through the links, in a process that is usually known as browsing

and that constitutes the hallmark of hypertext.

In order to be non-sequential, the hypertext links should be able to provide
many-to-many relations and the hypertext mechanism (thereafter called hypertext
engine) should allow for backtracking. Another requirement often neglected in hy-
pertext systems is an explicit graphical representation of the network that would
reduce disorientation. Many other features stretch beyond these basic require-

ments, and are not common to all hypertext implementations.

pay

1. Introduction
Static Hypertext

Static hypertext is defined as hypertext systems that do not allow dynamic modifi-
cation of their structure, status and content (i.e. without user intervention). Static

hypertext architectures have limited capabi’ities at the level of processing.

1.3.2 Hypermedia

Hypermedia is the merging of the hypertext concept with multimedia technology.

It extends the hypertext concept to non-textual information chunks (practi-
cally graphics, video and sound) and "produces complex, richly interconnected
and cross-referenced bodies of multimedia information" [95). Accordingly, many

definitions merge hypertext and hypermedia (see for example [72]).

Differentiating Hypertext and Hypermedia

The novelty of hypermedia with respect to hypertext is that it allows for temporal
information chunks such as animated graphics, video and sounds. Rigorously, the
hypertext engine should then be extended to dynamic temporal links for "non-
leaf" nodes (i.e. nodes with outgoing links) and the browsing paradigm should
be broadened so as to allow for the manipulation of these dynamic information

chunks [16][24]. Assuch, hypermedia deserves to be differentiated from hy pertext.

A hypermedia system is then a truly innovative medium that integrates different

media within a single system.

10

¢

1. Introduction

1.3.3 Differentiating Hypermedia and Multimedia

Whereas most computer tools today are geared toward the manipulation of al-
phanumeric data, multimedia integrates different data types such as text, graphics,
video and sound in a single medium, solution or environment. Each data type s

subject to some interactive control by the user.

The emergence of multimedia technology was made possible by the advent
of high-end personal workstations, CD-ROM and videodisk storage technologics,
and high bandwidth networks. The first multimedia applications were primarily

geared toward collaborative work [39] and multimedia electronic mail

Multimedia and hypermedia are often confused, mainly because hyperme-
dia applications apply multimedia technologies. However, being multimedia 1s
not sufficient for being hypermedia: multimedia technologies can rely on pure
database management techniques [45]; hypermedia with no browsing capabilitics

on multimedia nodes is not "pure hypermedia".

>
1945 1967 1968 1969 1970 1972 Timeline
Memex selection by association
NLS/Augment level views, truncations, filtering
HES disorientation, guided tours
FRESS freeform editing, bidirectienal hnks with attributes
EDS backtracking, icons, finite state automata
ZOG/KMS procedural attachments, contextual distinctions
Milestones

Figure 1.1: The evolution of hypertext specifications

1.4 Conclusion

A historical background has been given in order to provide an introduction to

the terminology and diversity of hypertext. The historical systems surveyed carry

11

1. Introduction

the foundations of all subsequent hypertext systems, as depicted in figure 1.1.
Definitions that differentiate between hypertext, hypermedia and multimedia; have
then been articulated. The next chapter will provide a taxonomy and survey of

hypertext systems.

12

Chapter 2 A Taxonomy and Survey

2.1 Introduction

The 1980’s witnessed the introduction of hypertext in the professional world , and
the first commercialization of hypertexts such as Guide [17] and Hypercard (50
Enumerating all the hypertexts of the 80s is out of the scope of this thesis FHow-
ever, a taxonomy and survey of hypertext systems will be attempted in this chapter
Hypertext systems will be approached from the viewpoint of the apphcation do-
main, and surveyed in light of the characteristics, properties and functions they

incorporate.

2.2 The Classical Taxonomy

Conklin[29]has provided a taxonomy that classifies hypertexts into four categories:
macro-literary, browsing systems, problem exploration and general hypertext tech-
nology. Macro-literary systems embed the technologies to support large on-hne
libraries in which document links are machine-supported. Browsing systems are
similar in characteristic but of a smaller scale since they are usually restricted to
a certain knowledge domain. Exploration tools exploit the hypertext capability of
supporting unstructured thinking for problems where many disconnected 1deas
occur. General hypertext technology refers to general purpose systems designed
around a hypertext architecture. Worth detailing is the macro-hterary class of

systems.

13

2. A Taxonomy and Survey
2.2.1 Macro-Literary Systems:

Memex, Augment and Xanadu are the archetypes of macro-literary systems: they
manipulate huge volumes of information and attempt to build a consistent inter-
face. Furthermore, the body of information is to be constantly updated by readers,
integrating them with authors in a single active community close to the "global vil-
lage" metaphor. Inmense problems have yet to be solved; these are mostly related
to managing vast amounts of information (e.g. distribution, unique identification,
etc ..). Despite such problems, Augment is operational, the Xanadu [69] file
server has been designed and publicized by Nelson’s company in association with
Autodesk, and the world wide web project is being implemented at CERN (Centre
Européen de Recherche Nucléaire). Such systems will certainly have a huge social

impact, as Nelson mentions:

The plan is to open the franchise ... for a chain of McDunald’s-like information
stands, which will form a repository network. You'll be able to put your private
documents in, and thus it will be a mini-self-storage system for information

.t will run on the Sun, the Macintosh and the 386s. This will hit the LAN
and serve as many people at once with the fragments necessary to support their

documents. ' [69]

While Conklin’s taxonomy has become a reference, it blurs the distinction be-
tween size, application domain and architecture. Macro-literary systems differ
from browsing systems at the level of size only, while general hypertex: technol-
ogy is too vague a classification for different architectures. We propose another

taxonomy that classifies hypertext systems according to classes of applications.

'"Though typically "Nelsonian”, the above statement is an 1llustration of the difficulties to be
overcome and could ecasily turn "Orwellian”

14

2. A Taronomy and Survey
3 Subdivides mnto :
cae== Strong membership Hypertext
sesesaeee Weaker membership
Legend
Collaboration L-- anffe gIBIS KMS F==3c=N-ul On-Linc Info l
e o
_-=1 Neptune Superbouk P70 L
oy & d
CAD/CASE . - /-’- .
~J "*={ Concorde Intermedia f==° .
-,
\~~
. N Dyn -
(5] | L e
‘s prmme e - - %
.Q.’ "' "’
Textnet Hypercard - ’,","
’
S \ WE Gude ','
A
\ 4
\‘ NoteCard lLoolbook
‘\
»
SunLink e m— e —— /
commercal

Figure 2.1: A new taxonomy of hypertext systems

2.3 A New Taxonomy

The hypertext concept essentially revolves around two paradigms: the network

structure applied to information, and the authoring/browsing mechanism The

network structure provides cross-referencing and a non-linearity that extends be-

yond hierarchical classifications. The structuring aspect of hypertext is predomi-

nant in collaborative work, CAD and CASE, and literature tools that explore non-

linearity. The authoring/browsing mechanism removes the boundaries between
g

the user and the programmer. All the hypertext systems are combinations of these

two concepts applied to application classes, as depicted in figure 2.1. Briefly, the

list is:

e collaborative work {39, 30, 63];

e CAD/CASE (37, 54];

15

&5

by

2. A Taxonomy and Survey

e information structuring (94, 50, 89, 87];
e integration [92, 78]

¢ On-Line Information [3, 83, 38, 98]

e tutoring (100, 23]

e browsing [35, 17, 56, 88l

2.4 Collaborative Work

Collaborative work hypertext applications use the network structure of hyper-
text to capture the nature of the information and to homogenize it. The author-
ing/browsing mechanism is used to capture the collaborative nature of the inter-
action. The main approach to collaborative work using hypertext is collaborative

argumentation [30, 63, 87] as applied in issue-based information systems.

2.4.1 IBIS:

Issue-Based Information Systems (IBIS) are geared toward problems that lack a
formulation and that could not be solved using classical analysis techniques. IBIS
is designed to facilitate the "capture of early design deliberation through collabo-
rative construction of the network of information" [29]. The IBIS meathod and its
cousin, the PHI approach [62] have been used successfully in architectural design,
urban planning and at the World Health Organization. gIBIS [8] has been used
in a project called the Design Journal, "aimed at providing a team of system de-
signers a medium in which all aspects of their work can be computer mediated
and supported.” Documents such as requirements and specifications are integrated
together with interviews with users, scenarios, design reviews, early design notes,

design decisions, internal constraints, minutes of meetings, etc ...

16

2. A Taxonomy and Survey

responds-to

Position
Node

supports
objects-to

questions
is-suggested by

generalizes

spelcmhzes Argument
replaces Node
refers-to

Figure 2.2: Specialized semantics for argumentation

The hypertext version of IBIS, gIBIS, provides specialized semantics at the node
and link level. Three types of node cover issues, positions and arguments. These
nodes are interconnected with nine possible types of links (sce figure 2.2). For
example, an issue is suggested-by an argument, which itself objects-to a position that
responds-to another issue. Issues and their respective positions and arguments can
be clustered into subnets. The nodes in the current network can be presented as
linearized in a hierarchical index in which the ordering of positions and arguments
follows a depth-first traversal of the primary links of the issue. As such, they are
represented by a special icon and all their connective links to external nodes are

not displayed on the graphical browser.

Information Presentation The IBIS user-interface provides four tiled windows: a
graphical browser, a structured index, a control panel and an "inspection window".
The graphical browser shows a dynamically updated scrollable local view of the
network centered on the local issue and its ramifications depicted in full detail.
Clustered subnets of issues are represented by a special icon and all their connective

links to external nodes are not displayed on the graphical browser. The graphical

17

2. A Taxonomy and Survey

browser also provides a small global view that depicts the entire network. Unlike
the local view, node labels, link-type icons and secondary links are pruned for the
sake of clarity. The structured index displays the linearized list of issues, their
positions and arguments. Information objects are accessible in a "point and click"”
paradigm from both the graphical browser and the index. A configuration panel
allows tailoring of the index keys (i.e. by author, keyword or node label). The
control panel provides diversified services, ranging from interface configuration to
query templates or browsing control. Querying, like creation, uses sample data-

entry templates where the user specifies the values of the attributes of the object.

Other argumentative systems have also applied the hypertext concept for the

semantic structuring of information [63, 87].

2.5 CAD and CASE

Other hypertext systems [44, 37, 12, 54] use the same semantic structuring based
on attributes to structure documentation relevant to CAD and CASE. Hypertext
implementations for this application class develop more powerful filtering mecha-

nisms and support versioning. Neptune [37]is a classical CAD-oriented hypertext

system.

2.5.1 Neptune

Neptune [37]is a hypertext system developed by Tektronix and geared toward CAD
applications. It is designed as a layered architecture on top of the hypertext Abstract
Machine (HAM) transaction-based server. The HAM server provides storage and
access mechanisms for nodes and links, distributed networked access with multi-
user synchronization and transaction-based crash recovery. An infinite number of

application layers can be built on top of the HAM. Neptune communicates with the

18

Porsncind

>

2. A Taxonomy and Survey

HAM through a remote procedure call, the HAM being run as a separate process

on a network server.

Querying

Nodes and links have attributes attached to them atthe HAM level. These attributes
are used in two query mechanisms: LinearizeGraph that performs a depth-first
traversal of outgoing links ordered by their offset within the document, and Get-
GraphQuery that performs a classical query on the attributes, retrieving nodes and

their corresponding links.

Information Presentation

Querying, reading and editing is performed through a user-interface written in
SmallTalk-80 and that provides four specialized "browsers": a graphical browser
that contains a navigation pane for zooming and panning, and filtering panes for
editing the visibility predicates of both nodes and links; a document browser that
has four top panes to pick up nodes and a node browser to view the node; a
stand-alone node browser to edit a node; and a node differences browser where

two versions of a document are put side by side, and differences highlighted.

Versioning

The node differences browser reflects the importance of versioning control in CAD
and CASE applications. Versioning is often achieved through backward-deltas [91]
where only the differences among versions are retained. Neptune supports two
mechanisms for link attachment to a version of a node, differentiating between the

current (default) one and a particular one.

Most of the functionalities associated with Neptune (i.e. versioning, querying,

19

2. A Taxonomy and Survey

Application Layer |

\

Hypertext
Abstract
Machine D

Host File System

Figure 2.3: The HAM layered architecture

filtering) are inherent in the HAM architecture. Their tailoring to specific CAD
domains is performed by a presentation level, on top of the HAM layer (see figure

2.3). Dynamic Design [12], for example, is a CASE tool also built on top of the
HAM server.

2.6 Text Structuring Tools

Text structuring tools like Textnet [94] and WE (Writing environment) [89] explore
the non-linear aspects of hypertext applied to the communication processes of
reading and writing. They differ from the previous classes in that they focus on

the presentation of information.

2,6.1 Textnet

Textnet [89] is the product of Randall Trigg, who wrote the first PhD thesis on
hypertext. The system is intended to investigate strategies for text organization

for an on-line scientific community. It uses a directed graph with labeled nodes

20

M

2. A Taxonomy and Survey

and links. Nodes can be one of text nodes and "toc" (i.e. table of contents) ones,
the first having a pointer-to-text field and the second having a child-out field that
encompasses all children toc nodes in an ordered list that forms a path. Paths are
used to browse linear concatenation of text displayed on a "scanning window" and
to produce hardcopies of the information. Links are labeled and point to nodes and
to other links. This extra feature allows for criticism of the structure as well as of the
content. Trigg defines three "trains of thought" based on this architecture of links
and nodes: along the train of thought; side trips where examples, explanations and
details can be found; and forks at which the train of thought divides into several
sub-paths. The user interface consists of overlapping windows where linking

options are represented as menus.

2.6.2 WE

WE [89}is based on a cognitive model that sees writing as the process of organizing
a loosely structured network of internal ideas and external sources into a hierarchy,
and then linearizing it into a linear stream of words, sentences, etc . Using WE, a
user first “draws” his ideas as nodes in a graphical browser, without being forced to
give them any particular structure. As some conceptual structures appear, the user
can copy his nodes into a hierarchy window that has specialized tree operations.
WE can be classified as an outline processor, i.e. a word processor specialized
for processing outlines that inherits much of Engelbart’'s Augment functionalitics,

similar to ThinkTank and Framework [52].

2.7 On-Line Information

Hypertext is mostly perceived as an on-line information system that provides on-

line manuals and technical information. Most of hypertext on-line information

21

[

2. A Taxonomy and Survey

G Alecrander the Great was once B Prassand E pe was
preschied & captured pirae oue of the first poliical books

writien by Noarn Chomsky

D ~*How do you dare molest
the sea?’ sasd Alexander

F -1, who do 11 with & small ship
1 called & prrate You, who do
1t with 3 whole fleel, are called

Bmperor *

Figure 2.4: Integrating documents into one displayable unit

systems try to stress the layout of the displayed information [3, 38, 98] and target
documentation management where the amount of documentation and the rate of
updating it are huge. Consequently, they support hierarchical structures, with-
out which updating large amounts of information becomes a very difficult task.
Some systems specialize in the type of information and the automatic means for

transferring information from printed material to a computerized format [83, 511.

27.1 SDE

The Symbolics Document Examiner (SDE) [98] has been developed as part of Sym-
bolics Genera (software development/operating system) for Symbolics computers.
The particularity of the SDE is in the presentation of the hypertext information: the
directed graph is not used as its fundamental user-visible navigation model, as in
most hypertexts. Instead, the contents of nodes are inserted at given locations in a

WYSIWYG assembled highly structured document (see figure 2.4).

All links are directional and point to records or places in records. Four types

of link refer to different insertion operations. Inclusion links insert the content

22

2. A Taxonomy and Survey

field of a given record. Precis links include the title and one-liner of a connected
record, cross-referencing links are used for conventional cross-referencing, and im-
plicit links refer to traditional hypertext browsing links. In figure 2.4, a network
of seven nodes is connected using insert inclusion links and ref implicit links. If
the information is accessed from node G, the nodes G, D and F get inserted in one
presentation document, while a link points to the B node. Upon activation of the
node, another presentation document gets assembled, that includes node B. If the
network was accessed from node A, the contents of nodes A, B and C would be
displayed. As in many hypertext on-line information systems, documents corre-
spond torigid formats and are modeled as structured records. The documentation
is thus fragmented into a database of records with unique internal identifiers, as-
signed at creation time, and external identifiers such as name or type. The records
are made up of four types of fields: content, accessory, audit and database infor-
mation fields. Content fields provide a description of the node, accessory fields
provide keywords and flags; audit information fields provide version numbers
and publication status, and database information provide the server location of
the record, the outward links, etc. . Document versioning is supported and main-
tained through the audit information fields. While KMS (3] also has formatted
documents, it sticks to the casual one-to-one mapping between a hypertext node

and its display representation.

2.7.2 OED

Dictionaries are also put on-line, in hypertext format. Since 1986, the University
of Waterloo has been involved in the conversion of the Oxford English Dictionary
(OED) into a hypertext structure in order to support on-line browsing. Experience
has shown that browsing a dictionary is "an invaluable adjunct" to formal querying
[83]. The browsing consists of a two-stage process: specify a pattern for querying,

and navigate around the resulting object. Moreover, an on-line hypertext OED

23

fRy

2. A Taxonomy and Survey

removes the constraints imposed on the original paper medium and allows the

integration of the OED with the user’s task.

Most of the work consists in transferring the actual OED into machine-readable
format, in the study of the characteristics of the 569,000 cross-references (more than
2 per entry), and in the design of the nodes and links data structure. The OED’s
nodes vary in size and structure, and the links are mainly lexicographical, cross-
reference links being one type. Most of the actual research is geared toward the use
of the OED as a generator of hypertext links to other documents and the design
of specialized editors for creating a maintaining the sense structure that represents

the first step in che definition of a word.

2.8 Teaching Assistance

User assistance in on-line documentation can be stretched to the educational field.
Many projects have explored the on-line browsing alternative in scholar work. The
NOVA hypertext in biology, the Shakespeare project at Stanford [46), the Perseus
project [33] in classics at Harvard university, the A la rencontre de Philippe from
MIT’s project Athena [53] in teaching French, and many others [82]. Moreover,
some hypertext systems such as Intermedia have been specifically producea for

educational use.

2.8.1 Intermedia and InterNote:

Intermedia is the natural outcome of the research conducted at Brown and IRIS on
FRESS and .he EDS. Intermedia [100] uses hypertext technology to implement a
tool designed to support teaching and research. It contains different applications

and uses homogeneous mechanisms to link the contents of documents created

with these applications in an Object-Oriented framework. The five integrated

24

M

2. A Taxonomy and Survey

applications consist of three editors (for text, graphics, and a timeline) and two

viewers (scanned mages and 3-D objects).

Information Manipulation The user-interface of Intermedia was designed to ho-
mogenize conceptually similar operations. Accordingly, some operations behave
identically across applications and media. Making links, for example, consists of
marking a certain region in a given application and medium, and linking 1t to
another specified region in, possibly, a differentapplication and medium. Multiple
outgoing/incoming bidirectional links are supported. Links and regions (called
blocks) are assigned descriptive properties stored apart from the documents in
databases called webs. Some properties are automatically set (e.g. creation time
and user ID), while others are left to the user, like "one-liner explanations” and
keywords. These properties are managed by the web so0 as to provide viewing
and navigation of the networks with a minimum of disorientation and cognitive

overhead.

Webs Webs help reducing disorientation and cognitive overhead by providing
context partitioning (i.e. filtering) and searching based on keywords and other
properties of the documents. Three types of webs were initially implemented
[100]: a global map that portrayed all linked nodes, a local map that displayed all
the documents linked to a user-defined "focus” map, and a local tracking map that

dynamically modified the local map during browsing.

InterNote Experiments conducted in English and biology at Brown University
have shown a substantial increase in the critical thinking skills of the students
exposed to different teaching approaches integrated in the Intermedia multiuser
environment. IRIS has chosen to go further in this direction by refurbishing Inter-
media into InterNote [23]. InterNote is designed as a tool to support small groups

in annotative collaboration. Its main contribution is the concept of "warm links".

25

2. A Taxonomy and Survey

Warm links stand between static navigational "cold links" and automatically up-
dated "hot links". They are used tn copy the blocks, on demand, to and from the two
linked nodes in a "push/pull” fashion. The copied blocks replace the information

block of the initial or destinatior link.

2.9 Integration

Intermedia exhibits some kind of integration of the hypertext concept at the level
of applications, much like the "cut-and-paste” metaphor that has evolved into a
standard. The hypertext concept has been further stretched to environments [50]
and even operating systems [78]. The Notecard system is a well-known hypertext
system fully integrated in its environmes't, that inspired Bill Atkinson in the design

of the Hypercard [56] system.

2.9.1 NoteCards

NoteCards [50] has much in common with Textnet (see section 2.6.1), though the
aim has turned into developing a general hypermedia environment, and the de-
sign into supporting the task of transforming unrelated ideas into a homogeneous
integrated interpretation. The semantic network structure found in Textnet has
been retained, and 3x5 notecards are connected by labeled directional links. The
notecards accommodate text, graphics and bitmaps. Two specialized types of cards
define graphical browsers and "fileboxes” (i.e. folders) where cards are grouped
together. The links semantic types are represented by different dashing styles in
the graphical browser. Another feature retained from Textnet is the automatic
assembling of documents. Changes in the linearized document however, do not

propagate back to the original notecards.

26

4

2. A Taxonomy and Survey

Integrated to Lisp

NoteCards is implemented in the Xerox Lisp environment and is fully integrated
within it. The programmer’s interface consists of around a hundred L.isp functions
and allows the user to create new types of cards , develop programs to process the
network of cards, integrate Lisp programs as procedural attachments to the cards

or integrate NoteCard itself into another Lisp-based apphcation.

2.10 Browsing Systems

Browsing systems [88, 56, 17] are small-scaled hypertext systems that do not target
specific application classes. On the other hand, their targeting of the general public
audience makes them general-purpose hypertext systems that focus on simplicity
and ease of use. Their primary interests are a user-friendly nterface and solid
cross-referencing tools. Some of them [88] separate browsing from authoring and
implement them in two different packages. Commercial hypertext systems (56, 17
extend beyond simple browsing capabilities and additionally provide scripfing

languages and external functions for interfacing purposes.

2.10.1 Hyperties

Like OED, Ties started as an electronic encyclopedia, and soon changed its name
into Hyperties so as to stress its hypertext aspects. Hyperties [88] started at the
University of Maryland in the fall of 1983 as a practical toy-tool for browsing and
as an experimental platform for studying the design of hypertext user-interfaces.
Hyperties nodes consists of short articles in scrollable windows, with hypertext
buttons represented as highlighted text. Activating a link leads to the replacement
of the content of the window with that of the destination article. The system

features paths, backtracking and a general index. String searching, bookmarks,

27

2. A Taxonomy and Survey

user annotations and multiple windows are to be part ot future implementations.
An authoring tool allows the user to define a title document, a 5 to 35 word small
definition, the actual document and synonyms for the title. Marking hypertext
links is performed using tildes { ...}. The authoring tool collects all references

in-between tildes and prompts the author for the relationships to other documents.

Field Evaluation

Hyperties has been tested in museum exhibits snd the Maryland University projects
that served as field-experiments. It also served as an introduction to hypertext for

aCACM issue (July 1988) and a hands-on introductory book on hypertext.

The particularities of Hyperties are in the input devices and in the activation of
alink. A dozen empirical studies involving more than 400 participants have shown
that touch-screens and keyboard keys were preferred over the mouse: keyboard
keys (e.g. arrows, letters) showed 15% faster and were preferred by 90%. Touch-
screens were preferred among three other selection strategies (mouse, keyboard
keys, touchscreen and keypads). The other particularity is that, when a link is
selected, the small description of the article is displayed, allowing an intermediate

stage between unclear link selection and full article display.

211 Conclusion

The above hypertext systems are very heterogeneous, for the simple reason that
hypertextis not an application field but a concept applied to different fields. Figure
2.5 shows clearly that filters and versions are mostly developed in hypertext sys-
tems dealing with design environments; that paths are mostly supported in fields
where the material is traditionally presented on a one-dimensional media; and that

very few architectures support procedural attachments, clusterings into subnets,

28

¢ 9

2. A Taxonomy and Survey

Structure Attributes Graphical | Procedursl

Network] Hicrarchical] Nodes] ik Brower | Attuchments A Ekt e B
gIBIS & 7 N &~ | &~ &~ &
M | g AV B &~ e | e &
TextNet V & V &
WE & &
SDE V2 AV &
OED & &
Intermedia | £ &~ & & & &
NoteCards | £ & | | &~ &~
Hyperties | Lo

Figure 2.5: Comparing features
or specialized operations for hierarchical structures.

Homogeneity of use and behavior appeared with commercial hypertext sys-
tems around the mid-80s. Hypertext and hypermedia have been commercially
introduced with Filevision, Guide and especially Hypercard that is distributed
with every Macintosh. They have become widely used in on-line cdiocumentation,
ranging from help systems to small personal information bases often available on

bulletin board system:s.

The parallel world of research continues to evolve, concentrating on developing
more or less formal models for retrieval [31, 18], hypertext architecture [1, 75]
and intelligent systems [51]. Querying models [59] try to generate alternatives to
database indexing schemes, and formal hypertext architectures [57, 41] try to build

a platform for interchange [71]. As for intelligent systems, they try to exploit and

29

2. A Taxonomy and Survey

integrate the intuitive manipulation of hypertext as to enhance the functionality of

actual intelligent tools.

30

Chapter 3 Formalizing Hypertext

3.1 Introduction

The diversity of hypertext systems makes a generalization of hypertext architec-
tures, structures and models difficult. In this chapter, a classification of hypertext
architectures and structures will be attempted. Hypertext entities, properties and
functions will be described in orde= ‘o capture the essentials of an abstract hyper-
text model (see figure 3.2). Based on these entities, the Dexter Reference Model
will be presented. It provides a formal representation that models the core of all

the major hypertext systems.

3.2 Hypertext Architectures

Though many pioneering hypertexts have a hierarchical architecture [39] [3], the
network graph-based structure is the general architecture that superseeds the hier-
archical one. The basic network model is the hypergraph [91193]. A hypergraph !/
is a triple H =< N, L, E > where N is a set of nodes; 1. a set of labels that identify

links; and £: N x L — N is asetof edges '.

! As defined by [93], the edges of a hypergraph are labeled and directed. Our definition however,
encompasses more graph-based hypertext systems and corresponds to the general definition of a
hypergraph as a general logical graph-based representation of a hypertext.

31

3. Formalizing Hypertext

Place
Place Object Transition Node
Edge Relation Arc Link
HyperGraph Semantic Net Petri Net Hypertext

Figure 3.1: Equivalent objects in models

3.2.1 Semantic Networks

A hypergraph can embed attributes associated with hypertext objects such as key-
words and access rights. The structure is then referred to as attributed hypergraph.
These attributes can form a record structure that describes the hypertext objects.
Attributes can also be embedded in links. They are mostly used to describe rela-
tions and automatically created versions. An attributed hypergraph with labeled
directed links is a semantic network. The knowledge representation is better cap-
tured by the explicit labeling of links in semantic nets. The structures, however,
are similar, as is shown in figure 3.1. The use of semantic networks in hypertext
is usually confined to the intuitive graphical representation. Semantic network
hypergraph models and systems (49] (1] [28] [8] go beyond graphical representa-
tion and exploit semantic aggregations and generalizations to provide inheritance,

instantiations and other logical mechanisms.

3.2.2 Finite State Automata

Hypergraph links can support external routines so as to provide the hypertext
with procedural power. The structure is then referred to as an augmented transition
network, which has the ability to represent any computable algorithm. The hyper-

graph structure < N, L, I > with labeled directed edges, F, is itself a deterministic

32

<
Eys

3. Formalizing Hypertext

finite state automaton (FSA) [93]. The essential feature of the deterministic FSA
approach is that the current state of the hypergraph can be determined, and the
next states deduced. This particularity imposes a navigation mechanism the pure
hypergraph/semantic net approach lacks. The FSA formalism, however, does not
capture the sequence of events, conditions, or flow control mechanisms well. FSAs
and their dual, marked graphs, have very high decision power, but restricted model-
ing power since alternative activities cannot be modeled. FSAs can be considered

as subclasses of Petri nets [79).

3.2.3 Petri Net Based Hypertexts

Petri nets [79] [68] are an abstract formal model of information flow. A Petri net
consists of places and transitions connected by directed arcs. As such, it models the
static properties of a hypergraph (see figure 3.1). Additionally, the execution [79]
of a Petri net provides dynamic properties that extend beyond the static graph’s
properties, and that describe asynchronous and concurrent activities. The execu-
tion of a Petri net is controlled by the positions and movements of tokens. At each
instant, the resulting marking describes the status of the Petri net. Petri nets model
two aspects of a system in particular: events and conditions, and the relationship
among them. Furuta [90] has mapped Petri nets to hypertext. Places represent
hypertext nodes and transitions map to links. The execution of the Petri net mod-
els the navigation of the hypertext. The firing mechanism that models conditions
and events extends classical hypertext navigation by providing a browsing semantic.
The browsing semantic helps in reducing disorientation and cognitive overhead.
More important in the context of this thesis, it allows inference to be modeled (see

section 5.5).

33

3. Formalizing Hypertext

3.3 Hypertext Structures

As portrayed in figure 3.2, a hypertext is composed of entities, functions that

manipulate these entities, and properties that result from the functionality and

data structure.

3.3.1 Entities

The hypertext entities are the data objects used in modeling and presenting hyper-
texts. The modeling entities are the hypertextcomponents that form the elements of
the hypergraph. The presentation objects consist of navigational aids and display

widgets.

Nodes

Hypertext nodes can either be structured recipients of information (98, 81, or con-
tainers thatencapsulate it. Nodes may embed links, explicitly as fields, or implicitly
as control sequences and bitmasks. They may also embed attributes, which can
serve purposes such as database management facilities (see 2.5.1), component for-

mats and structures (see 2.7.1) and specialized semantics (see 2.4.1).

Links

Hypertext links can be abstract, hot, warm, dynamic or cold. Abstract links are inde-
pendent of the context of the document and can be compared to embedded menus.
Hot links are system links that get automatically generated and updated. Links tc
versions in [37] are of this kind. Warm links provide a "communication channel"
between documents [100, 98] used to pass information. Dynamic links provide a

"browsing semantic” mechanism: their activation depends on the hypertext status

34

E¥

datamodel;6
structural hypertext data mode!

nodes

L links

com

navigational
aids

3. Formalizing Hypertext

Hypertext
has properties
functions concurrency
synchrony
is_one_of performance
uming
knowiedge
navigation pot_pourt is_one_ot
modification distributed
T vis loce)
is_one_of monolithic
v/s open
tailoring e reizrencial
local query integrity
vorsioning e contaxt
N browsing sonsitivity
semantics
access conwrol F—-‘ intoropersbility
support fools F _.J i
operating
interfacos modes

foreign nodes

Figure 3.2: The structure of a hypertext system

jcomm protocols
and servicos

35

priiyy

3. Formalizing Hypertext

[90]. Links also can embed attribu'es used in filtering and querying mechanisms

[371, specialized semantics [28], forinats and structures.

Composites

Composite hypertext objects embed paths, tours, webs? and networks. Essentially,
their function is to reduce disorientation and cognitive overhead: paths allow
backtracking to previously encountered nodes. Predefined paths form tours that
linearize the hypertext and targetspecific applications such as tutorials for example.
Webs and networks constitute a clustering of basic entities and attributes. Webs

address a specific context, whereas networks reflect a structural associative nature.

Navigational Aids

Navigational aids consist of classical orientation aids - such as those found in
books * [10] - that provide a strong sense of context, together with specific hyper-
text network maps in many possible formats (graphical browser, fisheye, etc...).
The hypertext specific tools reflect the problems inherent in hypertext: graphical
browsers with no filtering mechanisms become unreadable, unless some hierarchy
and clustering [42] provides classification. Graphical browsers also carry problems
inherent in graph layout: automatic layout algorithms are not generally able to
capture the graph semantics, and very few make use of the current layout infor-
mation, creating a user orientation loss [14]; the dimensions of the graph can be
impossible to visualize all at once, or might require "clues” for their 2D projection

on a screen [22].

ZRecall that a web [100] is a network that represents abstract concepts: its links and the nodes
theg/ relate are meaningful fora given concept. It is similar to database views.
“headers, footers, page numbers, chapter headings, bookmarks, thumb marks, etc...

36

t 3

3. Formalizing Hypertext

3.3.2 Functions

The hypertext functional aspects can be categorized (77} into knowledge modifica-

tion, navigation and general system functions.

Navigation

In browsing mode, hypertext systems are only "navigated™: users access documents
either directly through a searching or querying mechanism, or through links from
other documents. Classical search and query mechanisms suffer from the context
problem [96] in hypertext as much as in any information retrieval system [6]. The
context problem can be expressed as the difficulty of determining the relevance of
a document to a query given keywords alone. Some techniques however, exploit
hypertext characteristics [47] to refine the relevance of indexes through voting
methods, or in building hyperindices [18]. Querying can be specified graphically
[13] [40] ; or make use of hypertext structures 7] [31], or models [59] [1] [61].
Browsing mechanisms include history for backtracking, filters based on attributes
to reduce cognitive overhead, progressive disclosure to describe what to expect at
the other end of the link, bookmarks and thumb marks to mark the "information
landscape”. Navigation can also be supported by scripting facilities [101], triggering
of actions (daemons) [21] and procedural attachements as in augmented transition net

architectures.

Knowledge Modification

Knowledge modification consists of any editing, either of the content or the struc-
ture of the hypertext. The knowledge modification functions consist of editing,
updating, annotating and acquiring knowledge. These should support cut and
paste metaphors, along with structural edits of the network itself. Knowledge ac-

quisition should allow both interchange and integration of information. Although

37

()

3. Formalizing Hypertext

no actual hypertext interchange format exists *, the SGML [71] language seems
to be the best candidate and the Dexter model itself served as a reference for an
interchange format. Integration, on the other hand, covers a broad spectrum of
techniques. The two main approaches are in artificial intelligence aids and pure
algorithmic and database approaches. Al techniques tend to merge knowledge
bases and hypertext on the common ground of semantic nets [97]. Some neural net
approaches [11] try to "recognize" documents from keywords. They are soughtasa
viable alternative to pure statistical algorithmic techniques. Database approaches

rely heavily on attributes and are mostly used in specialized hypertexts [92].

General System Functions

General hypertext system functions encompass all functions not specific to hy-
pertext, that are nevertheless essential functions of it: interfaces, access control,
versioning and tailoring. Interfaces to external programs are achieved in aug-
mented transition networks, and serve specialized applications that require spe-
cific processing power [37]. Versioning is an essential activity by which changes
are recorded [91] [55] in many hypertext applications that need to keep track of
modifications [12]. Access control [37] [90] is imperative in all hypertexts that
extend beyond a single user manipulation. Furthermore, hypertext paths can em-
bed nodes with different access permissions, but the denial of access should not
“cut-off" users from other unrestricted documents. Access and version control are
usually supported through attributes. Beyond casual software tailoring, hypertext

tailoring extends to the access of information and its sequencing.

3.3.3 Properties

The main properties that differentiate between hypertexts are:

4The statement might be outdated at the time of submission

38

¢ 9

3. Formalizing Hypertext

e operating mode: what forms of authoring and browsing are supported?
e inter-operability: are authoring and browsing performed in the same mode?

e concurrency: how many users, paths and documents can be simultaneously

opened?

o formalization: does a formal model exist or is the system developed for a
specific application?

e timing: does the system support dynamic documents?

e context sensitivity: do operations depend on the hypertext context?

o referential integrity: are dangling links permitted?

3.4 The Dexter Model

The key feature of the Dexter® model is in the spectrum of the existing hypertexts it
encompasses %, and of their respective authors, who participated in the workshops
The goal of the Dexter model is to provide a reference basis for comparing hypertext
systems, and to develop interchange and inter-operability standards. Though
quite new, this model has already been used in the standardization ot a hypertext

interchange format.

3.4.1 A Layered Architecture

The Dexter model has a three layer architecture, as depicted in figure 3.3. The
runtime layer handles the presentation mechanisms supporting the user’s interac-

tion with a hypertext. The storage layer describes the hypertext network of nodes

Snamed after the motel in which the first workshop was held in October 1988
¢ Augment, Document Examiner, EDS, FRESS, Intermedia, Hypercard, Hyperties, KMS/ZOG,
Neptune/HAM, NoteCards, Textnet, etc...

39

£

3. Formalizing Hypertext

Runtime Layer

Storage Layer

~'\l NI\ I
AR

Within Component
Layer

Figure 3.3: The layered architecture of the Dexter model

and links along with their management. The within-component layer covers the
actual structure and contents of the hypertext nodes. Presentation specifications in-
terface the runtime and storage layers; an anchoring mechanism maintains a clear

separation between the storage and within-component layers.

3.4.2 The Storage Layer

The storage layer is the core of the Dexter model. It focuses on the mechanisms
by which the hypertext components are associated and managed so as to form
a network. The storage layer does not differentiate between component types:
the component itself is a data "capsule”. Its internal structure is to be dealt with
by the within-component layer. This approach allows the extension of the model
beyond "pure text": it encompasses different media without framing them into

a rigid structure which is not adhered to by any existing hypertext system. The

40

x4

3. Formalizing Hypertext

storage layer consists of a set of components together wil two primitive functions:

a resolver and an accessor.

Data Structures

The component is the basic addressable entity in the hypertext. As described in
the entity-relationship (E-R) diagram of figure 3.4’ , a hypertext consists of a set of
components, each of which has a un que identifier (uid) assumed to be universally
uniquely assigned, a base-component and a component-information module. The base-
component can be one of an atom (commonly called a node), a link, or a composite
component made up of base-components. Composite components are restricted to
be acyclic graphs such that they cannot contain themselves, directly or indirectly.
The links tie different components together. Each link has a sequence of specifiers
Modelling n-arity is then possible. Link endpoints are specified by an anchor id
and a component specification. The direction specification models directional links:
it indicates whether the specified endpoint is to be considered a source link, a

destination link, both, or neither.

Also partof the link specifications is the presentation specification thatis part of the
interface between the storage and runtime layers. The anchor-id and presentation-
specification data types are shared with the component-information part of a compo-
nent. This way, composites and atoms can also possess presentation specifications
to be conveyed to the runtime layer. The component-information part allows the
description of component semantic properties (defined by each hypertext system)
through a set of attribute, value pairs. It also allows the definition of a set of
anchor-id, value pairs to be used by the anchoring mechanism that interfaces the
storage and within-component layers. The anchor-id aid is unique with respect

to the component. lts arbitrary value av can represent a region, a location, an

7all data flow diagrams, structured charts and entity relationship diagrams have been created
using Teamworks 4.01. The use of this case tool allowed the validation of the translation of the
formal model from the Z language formulation to the usual graphical representations.

4]

hypertext dealar_data model 4
denter data model

unique_id

Hypertext

3. Formalizing Hypertext

specifior

component_
dwection spacificatons
1
3 inom of
1
1
from o
none

has

attribuies

atribuwe_vaive

L
anchore
1
| o
1
! 1
presentation_
wnchor_id [~ | anchor_vaive Acations

Figure 3.4: The storage layer data structure E-R diagram

42

3. Formalizing Hypertext

item, a substructure or any other entity within a document. lts interpretation is
up to the application responsible for handling the contents and structure within a

component. The application is thus responsible for the within-component layer.

The Storage Layer Primitives

The storage layer has two primitive functions that together represent the whole
mechanism of mapping specifications into the components themselves (i.e. re-
trieving the components): the accessor and the resolver functions. The accessor
function accesses the component given its uid (i.e. unique identifier) in a direct
addressing scheme, whereas the resolver function returns a uid from a component
specification ¢s. The coupling of both functions provides an indirect addressing
scheme. Often the component specification can only consist of the und itself, in

which case the resolver is a simple identity function.

The Storage Layer Functions

The storage layer functions deal with the creation, modification, deletion and re-
trieval of components. Additionally, the storage layer also covers attributes and

anchors specific functions.

Atoms, links and composites can be created using specific functions. These
functions all rely on the createComponent function described 1n the structured dia-
gram in figure 3.5. All the specific creation functions are packaged as cases into a

unique function CreateNewComponent that will be invoked from the runtime layer.

DeleteComponent and ModifyComponent are also called from the runtime layer
functions deleteComponent and realizeEdits (in figure 3.6) respectively. DeleteCompo-
nent ensures that any link whose specifiers resolve to the given component is also
eliminated. ModifyComponent requires that the component type remains the same

and that the corresponding hypertext remains link-consistent.

43

=

3. Formalizing Hypertext

createcomp2
lavelt craate
componsnt
cs
<O
O LEGEND
uid uid unique component identifier
¢ component
cs componert specifications
uid
accessor <0
O
c

Figure 3.5: The createComponent structure chart

realizeedns 2 Huidc
lavel_1 Ii O
edits «O
H
save
Appand to *Q modity
History componant

LEGEND

uid unique component identifier
H hypertext

¢’ component

ild unique instantiation «d

liz
realizer O

Figure 3.6: The realizeEdits structure chart

Retrieving a component given a uid simply consists of the accessor primitive. If

the component is a link, other functions will return either a source or a destination

for that component.

Attribute functions allow the querying and setting of the attribute values of a
given component. They also allow the querying of all the component attributes.
LinksToAnchor allows the determination of all the links associated with a given

anchor.

All storage functions are invisible to the user, thus creating a clear division with
the runtime layer. Some of these functions (those with a capitalized first letter, the

attributes and anchor functions) can themselves be called from runtime functions.

44

3. Formalizing Hypertext

3.4.3 The Runtime Layer

The runtime layer provides tools for accessing, viewing and manipulating the
hypertext network structure. The objective of the Dexter model is not to formalize
a user interface, but rather to provide the essential functions for browsing and
authoring a hypertext. Again, since the runtime layer is left open to different
implementations, a mechanism is needed for interfacing with the storage layer. The
presentation specifications encoded in the storage layer provide the information
about how the component is to be presented. The advantage of such a technique 1s
that the presentation of acomponent is no longer solely dependent on the hypertext
tool: it is also a property of the component itselt (in the case of a node) or of the

access to a document (in the case of a link).

Data Structures

The key idea of the runtime layer is that components are instantiated on a display
(ie. presented to the user). Thus, it is a component "clone" that gets viewed and
edited. The actual component will not be altered unless edits are explicitly saved.
Furthermore, a component can have multiple instantiations, each being assigned
an instantiation identifier. The instantiation data structure is depicted in the E-R
diagram of figure 3.7. Aninstantiation has a unique idevtifier, the instantiation id, a
base and a sequence of links with their corresponding link anchors. The structure of
the instantiation is a "shadow" of the essential features of a component with respect

to the runtime operations.

A hypertext session then consists of a hypertext, together with a dynamic set
of instants and a history of the operations performed during the session. Three
functions are also part of the session schema: an instantiator that will return instan-
tiations of components from their unique identifier and presentation specifications;

a realizer that will perform a "write" operation, and a run-time resolver that will ex-

45

L sjej0p

ket

X

U

L

f %

U

o,

> IIA
I 1 (L1 \ upe § *ees0
[o1¢}

=

S |
E

S
53
juessadun Y juesesd Y #80]2 n uedo
Joyous u sjul r sseq i uonspumsy|
8
3
L
Lioymy uoyeuUmISU} xeuediy

19POW BWItUNI JBtxep

#'19powWewnunielxep 1xeLedAy

Figure 3.7: E-R diagrams of the runtime layer data structure

46

[

3. Formalizing Hypertext

Context-Diagram,4
context

Display

input Devices

~

operations nstantiations

Figure 3.8: Context diagram of a hypertext session

tend the resolver operations to runtime (e.g. the "last node visited" cannot be

resolved within the essentially static storage layer).

A Hypertext Session

The operations of the runtime layer are best described through a hypothetical
hypertext session. This session in turn is described through a set of data flow

diagrams and structure charts at the adequate level of granularity.

A hypertext session consists of operations performed by a user on hypertext
objects, the instantiations of which are displayed through an independent user
interface (see figure 3.8). The user first opens a session, thus opening a specified
hypertext, initializing the instantiations set, and writing the operation name (i.c.
"open") to the history file. Itis then possible to present a component, the instantiation
of which gets displayed. In a browsing mode, simple follow link operations will
allow the navigation of the hypertext. In the authoring mode, it is possible to ¢dit,
realize the edits (i.e. actually update the component with the edits made to the
instantiation), delete and create new components. In both modes, instantiations of
the components can be unpresented (i.e. removed from the list of instantiations and
from the display). Once all required operations have been performed, the session

can be closed (see figure 3.9).

47

I3

3. Formalizing Hypertext

jusseudun Wwuodwod fec-c-ee-e- Y eeeescmeeceas
wesaidun : ; *802
9 ;
POIRALI VO BIIUMSYY] —u-.! v
" usuodwos LD, H ! H
mau d A0S H H
v wasadun : ; #90)2 :
Pl m
H H H
H
Nt \ 2
=] T
L B IS ST F--> suonenumsy €--of-ee-- wTPUL ===
H
: —_— uoeUSU!
— meod [.m

.9810p, M

||||||||||||

|||||||||||||||||||||||

SUONEN jdMds .
wauodwos VeusdAn C-ooms uedo 7|}

uoiiunisul

NUIL MOI10}

wsuodwoa
PO} pows

€

uoumnumsUl weuoduod
Hpe ussac

ips wesaud

48

Figure 3.9: Data flow diagram of the runtime operations

3. Formalizing Hypertext

3.5 Conclusion

The Dexter model is the formal representation that covers the broadest spectrum of
hypertext systems. Through the specifications and anchoring interfaces, the Dexter
model captures the essentials of the hypertext structure while still remaining a
completely open architecture. This type of architecture can be referred to as static
(see section 1.3.1): no inference or processing based on the status of the hypertext

is performed. These aspects will be covered in the next chapter.

49

Chapter 4 Intelligent Hypertext

41 Introduction

Static hypertext architectures are not a form of artificial intelligence [76]. They do
support the property of connectivity among information chunks that contain facts
and concepts, but the resulting semantic structure is not exploited by any inference

mechanism.

Many hypertext systems, however, use artificial intelligence techniques as aids
to structure and to navigate a cognitive model of the domain of information. Some
even try to exploit the hypermedia features and use them within knowledge engi-
neering tools by interfacing them to expert systems. Very few attempts have been

made to integrate hypermedia to expert systems.

4.2 Intelligent Hypertext Tools

Many hypertext tools try to achieve knowledge structuring and enhance information
retrieval. Some of these do use Al techniques. Though the aim might not be to
achieve intelligent systems, the application of inferencing techniques to hypertext

structures lays down the principles for intelligent hypertext architectures.

4.21 Knowledge Structuring

Knowledge structuring in hypertext is called authoring and is traditionally the

task of the hypertext writer/programmer. As hypertexts grow in size, the task of

50

L

4 Intelligent Hypertext

structuring the whole body of information needs to be assisted by computer tools.
Classical syntactic techniques now compete with hypertext tailored ones. These

are used both for knowledge structuring and retrieval.

4.2.2 Knowledge Representation: Semantic Nets

Knowledge Acquisition in hypertext relies heavily on the use of semantic nets. Al-
though the ultimate goal is to overcome the natural language processing problem,
most tools use a semantic net representation that permits some inferencing on the
concepts being captured. [49] has developed mechanisms that map the hypertext

information structures into first-order logic formulae.

Semantic Net Abstractions in Hypertext

A hypertext H is aset I{ =< Iy . lo,n. A > [49), where /o is the set of information
objects that can be instantiations of primitive objects in the set /4. = is a set of
predicates that characterizes objects and the relationships between them. A is
a set of attributes that identify and describe objects from different perspectives
Abstractions can then be defined in terms of the structures just determined. An
aggregation is the mechanism by which a collection of objects can be referenced
by an identifier; and a gencralization allows a collection of objects to be referred
to by a generic object which captures their common features Versioning can
also be modeled semantically as a revision. The semantic abstraction structures
and mechanisms have been developed by [49]. [1] practically mapped them to
traditional hypertext objects. Nodes, links and their graphical correspondents are
defined as predicates; procedural attachments are defined as properties of these
predicates. Documents are modeled as structured nodes, each part of which is aslof.

The document structure then matches a template or frame structure.

51

T

4. Intelligent Hypertext
Automatic Knowledge Acquisition

In hypertext, automatic knowledge acquisition has been solely based on the seman-
tic net approach. The process [97] consists of several stages: parsing, determination
of dominant concepts, aggregation of these concepts into topic descriptions, and gener-
alization of the topic descriptions into text graphs }. Frame building and slot filling
result from parsing, and constitute the basic activities behind the determination
of dominant concepts. Clustering uses predicate logic based on the newly created

semantic network performs the aggregation into topic descriptions.

In effect, a knowledge base is built, that captures information in the form of a

semantic net. The efficiency of such systems, however, is still to be demonstrated.

Retrieval and Browsing Using Semantic Nets

Once a semantic net exists, intelligent tools can take advantage of the elaborated
structure to assist in information retrieval and navigation. The semantic net can
either be specific (i.e. extracted from the information body using automatic knowl-
edge acquisition, as described above) or general (i.e. “imposed” by a classification
that takes into account the given document). Accordingly, the retrieval tools differ
in their approach. Beside semantic browsing, most elaborate semantic retrieval
techniques in hypertext use one form of querying or another. The querying mech-
anism can be a part or whole of the retrieval mechanism. Moreover, querying can

be classified into structured queries and content queries.

Structured Queries

Structured querying mechanisms use the structural description provided by the

semantic net and determine relevant documents. The expression of the query itself

"Text graphs are hierarchical subscts of semantic nets.

52

¢ %

4. Intelligent Hypertext

can have many formats. It can be expressed graphically [31], in modal logic [7], in
predicate logic [1], as much as it can resemble casual database queries. It can also
use hypertext views and indices [18]; One drawback is that they take no advantage
from the content of the information body. Accordingly, the matching mechanisms

are limited by the predicates and attributes syntax.

Inference Queries

Most inference queries combine one form of natural language processing with the
thesaurus structure that results from the embedded semantic net of a knowladge
base. The knowledge-based approach allows inferencing on the goals of the user
and a duplication of the reasoning of an expert. The stated goals generate sub-goals
and related goals not explicitly expressed by the user but of possible relevance. The
modeling of the expert knowledge allows the expansion of the user queries and
their fitting within the actual semantic structure. Furthermore, inference queries
allow the retrieval process which is inherently uncertain to be better approximated
Bayesian logic [34], non-classical logic [96], fuzzy logic [59] and rule-based 161] re-
trieval models have all been used in hypertext. Few hypertext models [59] and
systems [27] use inference queries because of the difficulties of integrating hyper-
media and knowledge-based features into intelligent systems. As an alternalive,

non-semantic intelligent retrieval tools are being investigated.

Other Intelligent Tools

Non-semantic intelligent tools exploit the acyclic hypergraph structure to help
determine the relevance of documents in retrieval using adaptive methods such as
neural networks [11], and the correspondence between documents in navigation
using affinity criteria [81]. Note that these can also be used as refinements in

semantic-based tools.

53

P

4. Intelligent Hypertext

4.3 Intelligent Systems

Hypermedia is also thought of as a tool that can be integrated with databases
and expert systems in order to build intelligent systems [15]. Such systems are
characterized by their ability to use knowledge to solve problems; and by the
capacity they have to exploit the powers of association and inference needed for
complex problems. As such, they should behave logically (i.e. in the expertsystem
sense); be able to make efficient use of existing information; and provide non-linear
and adaptive navigation. Furthermore, their complexity and that of their operation

modes requires high levels of user-friendliness and interactivity.

Intelligent systems are designed around specialized technologies. Database
techniques and tools are used to efficiently manage knowledge in the form of
structured information. Expert systems then add a new layer of functionality by
“leveraging” the system with induction techniques that provide extended signifi-
cance and usefulness. Hypermedia enhances expert systems by providing a tool
for the management of large bodies of information and knowledge, irrespective
of their existing form. These bodies can have incompatible formats (e.g. different
structures or media) and need to be tied together. On the other hand, expert sys-
tems assist hypermedia in modeling intelligent hypermedia engines that enhance,
but are not restricted to, information retrieval and navigational aid. The expert
system component makes use of the structure of the embedded knowledge to as-
sist in retrieval or reduce disorientation in navigation. Specialized expert systems
can also be attached to hypermedia nodes. They provide added local inference on

the hypermedia information body.

Since no single technology integrates all these functions, the separate systems
either “hook” to each other through “external functions” or share common data
repositories. These techniques are attractive because they provide several advan-
tages. First, quick prototypes can be implemented and evaluated. Second, data

acquisition is almost always already available in the form of databases. In spite of

54

4. Intelligent Hypertext

this, few integrated prototype systems have been “polished” enough and put to
the test. However, there is little binding between the hypermedia and the expert
system at the structural level; as a result, the hypermedia component often dupli-
cates part of the expert system inferencing as in [36], when it is not just limited to

a simple user-interface tool.

4.4 Intelligent Architectures

Intelligent architectures have been developed from one or other of the two tech-
nologies, either by integration of one system into the other, or by interfacing two
stand-alone packages. Few approaches, however, have attempted to merge them

into one intelligent system.

4.4.1 Interfacing

The most common azrchitecture model is that of interfacing, as depicted in figure
4.1. The interfacing component usually consists of mapping the external functions
feature of both modules. Communication channels are then created through which
data is interchanged. The interchanged data consists of information (e.g on-
line documentation, entry values, etc...) and of status information useful to the
other module. In this architecture, the hypermedia component can serve a double-
function: on-line documentation and user interface. Often, hypermedia systems

with an augmented transition network feature serve as the interface itself

Hypermedia Interfaces

Interfacing can extend beyond intelligent functions and provide support for col-

laborative work, bulletin boards, electronic mail, access to on-line libraries and

55

4. Intelligent Hypertext

Module A Module B

External Functions

Figure 4.1: The interfacing model
specialized systems [25,47, 5]
Hypermedia interfaces can provide several advantages:
e an intuitive manipulation of the user-interface that addresses an audience
larger than computer literates only;
e greater cohesion between separate modules;
e acoherent user-interface with unified functions;
e apersonalized environment; and most important:

e apersonal workspace.

Personalized Environments Personalized environments result from the author-
ing feature hypermedia provides. They provide tailoring beyond the user-interface
environment, and result in the notion of incremental intelligent systems, where the
throughput increases with the usage and the users. One example is the use of user
feedback in building belief networks in the index terms of a query [47]. The weight
propagation allows a fine-tuning of the queries usually performed by a given set

of users.

56

Y

4. Intelligent Hypertext

Integrated Knowledge-Base

)

=
Module A J (Module B

J

User Interface

Figure 4.2: The integration model

Personal Workspaces The notion of a personal workspace is supported by the
“edit realization” concept detailed in the Dexter model in chapter 3.4. Users can
retrieve a set of information, create their own versions, edit and test using the sys-
tem features,and copy back the information to the shared information-base. Before
integration, the manipulated data and the operations performed on it represent a

context [37].

One possible approach is to use argumentative methods (see 2.4.1) and infer on
these. An alternate approach consists of the integration of the knowledge-base and

the information-base in hypermedia structure.

4.4.2 Integrated Systems

Integration architectures try to merge the information and knowledge represen-
tations, as depicted in figure 42. The concept is similar to that of blackboard
architectures [73, 74]. The essential feature is the representation and presentation
of the information, both at the level of problem specification and solution explana-
tion. The two main approaches in integrated systems consist of using inference in

argumentative methods and in knowledge elicitation.

57

4. Intelligent Hypertext

Hypermedia Interface

e
Apprentice/Critic J
Knowledge Base J

Figure 4.3: The argumentation model

Argumentative Architectures

Argumentative methods [86] were first implemented in issue-based hypertexts (8]
(see 2.4.1) and have been used in intelligent systems 4.3 that use design appren-
tice/critics editors. The design apprentices can typically only provide brief and
awkward explanations that fail to provide the complex argumentative background
behind their critiques. These critiques include assumptions, conditions and con-
troversial design issues that can be structured into an issue-based semantic net.
They provide personally meaningful abstractions to the user, and thus eliminate
computer-generated explanations as found in expert systems. The net effect is to

reduce the difference between problem-oriented and system-oriented descriptions.

Argumentative architectures (44, 63, 43] (see figure 4.3) are based on the seman-
tic nets such as those that the IBIS [86] and PHI [62] argumentation methods create.
The restricted set of derived relations allows a mapping from the knowledge-base
system to the issue-based semantic net. The knowledge-based system is usually
built around state-driven condition-action rules which are triggered by the ap-
prentice/critique inference engine when a non-satisfactory solution is detected.
The corresponding hypermedia information is then accessed and the related argu-
ment ismade available. The apprentice/critique has thus provided an “intelligent”

entry point within the hypertext.

Next, authoring capabilities founded on the issue-based semantic network [63]

are needed. Full integration of the issue-based semantic net and the knowledge

58

?

$

4. Intelligent Hypertext

Integrated Knowledge Base

— J
r

Retrieval Diagnostic
Expert System| Expert System

Augmented Network

Hypermedia

Figure 4.4: The smartbook architecture

base, however, should allow inferencing based on the knowledge just acquired,
wiich in turn implies an inverse mapping from the issue-based semantic net to the

knowledge base.

Smartbook Architectures

The smartbook architecture [51] (see figure 4.4) tries to answer the needs of large
complex documentation systems integrated with appropriate field expertise. Ex-
pert systems are developed alongside hypermedia on-line documentation nodes,
in an augmented transition network architecture. The tight coupling of expert sys-
tems to the corresponding hypermedia information provides an intelligent systern
in which the hypermedia structure allows easy extension and integration The hy-
permedia information-base, however, remains separate from the knowledge base,
even if some automatic knowledge acquisition can be achieved for some procedural

documentation.

The interest in smartbook architectures goes beyond the incremental approach
to knowledge and lies essentially in the knowledge elicitation for diagnostic expert
systems. Classical diagnostic expert systems rely on a set of questions to assert
a diagnostic/solution. The smartbook architecture uses the descriptive power of

hypermedia together with a clear navigation structure to determine the diagnostic.

59

4. Intelligent Hypertext

Once the fault is determined, the local expert system is accessed and a set of rules
and procedures determine the repair . Atany instant, supportive documentation is
available in hypermedia format. Knowledge integration in smartbook architectures

remains however at the conceptual level.

4.4.3 Knowledge Modeling Systems

Knowledge modeling hypermedia systems are intelligent systems specialized in the
support of the process of knowledge acquisition. They represent integration tools
for the storage, structuring and maintenance of different sources of knowledge.
At the same time, theyv provide a collaborative platform for knowledge transfer

between knowledge engineers and experts, together with personal workspaces.

The intelligence of this kind of architecture is currently very limited, and, to
our knowledge, no inferencing has been implemented on the resulting structures.
They are worth mentioning, however, because they reflect a knowledge acquisition
methodology that represents one aspect of the intelligent hypermedia architecture

proposed in the next chapters.

4.5 Conclusion

Intelligent systems do provide the “appearance” of intelligence, and loosely map
hypermedia information pools to knowledge bases. Till now, the mapping has
been unidirectional, and the developed systems have failed to provide inference
from the hypermedia structure. These lacunae reflect at the level of architectures.
Interfacing and integration have been implemented, but no true unification of the
two architectures has been attempted. This is what we will attempt to develop in

part 2.

60

= s s

i T ST T T T SR P o Ny R

[

Chapter 5 A Unified Model

5.1 Introduction

The incentive behind a unified model is to provide a knowledge author-
ing/consulting environment within a symmetric architecture. The unified model
consists of modular toolsets integrated in a tightly-coupled architecture The func-
tionalities of the integrated tools provide a framework for knowledge manipula-
tion. The integration and synchronization of these tools provide functionalities
that extend beyond the added functionality of each module alone (1.e. synergism
occurs). The functionality of this model will be covered in this chapter. The struc-
tural and behavioral aspects of the model will be described in the forthcoming

chapters.

5.2 General Architecture

The general architecture of the unified model is depicted n figure 5.1. The kernel
is the core of the model. It mocdels the information base and automatically reflects
the modifications and inferences performed by any peripheral module. Each of
the peripheral modules provides a different view of the information base, and a
different processing approach; yet they can all be dynamically manipulated atonce,
providing a “leverage” over their own specificities. For example, a fact asserted in
a running expert system will correspond to a token inserted at the corresponding
place in the Petri net module . Should the place (and hence the fact) correspond
to a hypermedia document, this document could be automatically displayed in

the hypermedia module. Inversely, links activated from within the hypermedia

61

5. A Unified Model

module would instantly fire a transition in the Petri net module. Should thelink also
correspond to a rule in the expert systom, it would be triggered and the resulting
actions would be inferred. The hyperstructure of the kernel should then be able to

model the static structures used in the different modules and to synchronize their

dynamics.
MODULE MODULE MODULE
1 2 N
INTERFACE
KERNEL

Figure 5.1: general architecture

5.3 Fundamental Functions

The unified model is to support, but is not restricted to, the following functions:

e multiple media real-time support in distributed environments;

e various information access strategies;

o multiple knowledge processing techniques;

o knowledge elicitation and acquisition;

e validation and analysis.
The above functions are distributed over several modules. Two of these modules
will be detailed throughout these chapters. They are the hypermedia engine and

the expert system engine. Other obvious engines could be validation engines,

object-oriented databases, intelligent retrieval engines, intelligent tutorials, etc

62

s o e s Bt W s St Se? RN F fapcn ot P,

- h

N]

5. A Umfied Model

As will be shown, the open architecture of the model does not restrict the number
or diversity of modules. The only restriction is that their data structures should all

be modeled using the kernel hyperstructure.

5.4 Leverage By Integration

Multimedia support allows for different sources of information to be integrated ina
single computer medium. The hypermedia authoring support provides a cognitive
modeling of the information conveyed by the media; and the support for browsing
allows intuitive user-friendly access to this information. Embedded knowledge
can be inferred by a production system that integrates procedural and declarative
knowledge processing. Knowledge can be elicited from the browsing of the hy-
permedia. The unified hyperstructure representation of the kernel enables the
automatic building of the corresponding knowledge objects in the rule-base. Con-
versely, expert systems programmng offers an attractive declarative language for
intelligent hypermedia navigation. An evolutive knowledge concept follows from
both the authoring/browsing interoperability and the unified knowledge elicita-
tion mechanism. It allows incremental information and knowledge integration,
thus producing a system that evolves with time and use, unlike most actual expert
systems. The complexity resulting from multiple media, integration, and knowl-
edge base maintenance, requires analysis techniques that maimntain and validate
the hyperstructure. In this general context, collaborative work using 1ssue-based

methodologies and multi-user access would augment the system capabilities.

But first, equivalence mappings should be built between the different repre-
sentations. In the following sections, equivalence mappings will be built between
hypermedia, Petri nets and expertsystems. The resulting synergetic will be demon-
strated with the use of an example. Additionally, support for dynamic documents
will be modeled using the Petri net representation. An example will tllustrate

the modeling of multimedia nodes that can be embedded as dynamic documents

63

e

5. A Unified Model

within the previous example.

5.5 Equivalence Mappings

Mappings are to be described, that will demonstrate the global equivalence in
behavior between a hypermedia, a Petri net, and an expert system. The Petri
net mapping is necessary for modeling timed events in hypermedia, as will be
demonstrated. Petri nets can also be useful in modeling and validating both the
hypermedia and the expert system module. Furthermore, using the Petri net as
an intermediate representation simplifies the building of a mapping between the

hypermedia and expert system modules.

5.5.1 The Petri Net Model

A marked Petri net structure [79] is a five-tuple, N =< §,T,1,0, M >inwhich Sis a
finite set of places, I' a finite set of transitions, I an input function that defines for each
transition the set of input places, O an output function that defines for each transition
the set of output places, and a marking A/ which is a vector that gives the number of
tokens in each place of the Petri net Executing a Petri net results in a sequence of
markings, beginning with an initial marking po, and ending with a final marking
M;. Going from one marking to the next is performed by firing any transition that
is enabled under the current marking. Firing a transition results in tokens being

removed from places incident with transitions and added to the places that follow

these same transitions.

64

¢

5. A Unified Mode)

5.5.2 Mapping Petri Nets to Hypermedia

The model of a Petri net based hypermedia (PNBH) was developed by [90]. A PN B 1
is a sextuple H =< N, D, W, B, P, I’; >, in which beside the Petri net N defined
above, D is a set of documents, W' a set of windows, 13 a set of buttons, I’ a logical
projection of the hypermedia documents and links onto Petri net places and tran-
sitions, and F; a display projection of the same document. The logical projection
P, provides the mapping between the Petri net structure and the < D, W, 1 >
hypermedia structure. The display projection /’; is a collection of mappings that
associates the logical elements in < 11" /3 > to the front-end user-interface widgets

of the hypermedia.

5.5.3 Refining the Mapping

The refinement of the P’V /3! model is required to keep the mapping to the ex-
pert system model comprehensible. Indeed, since the two representations are not
exactly equivalent, a direct mapping to the /’N 31/ would result in meaning]less hy-
permedia nodes that would correspond to assertions needed for inferencing at the
expert system level. Note that the "adjustment” of representations is not required

under the hyperstructure, as will be demonstrated in the next chapter
Let H =< N.D.W,B. . P; >bea PN as defined above.

We refine the definition of Dtobe D =< 1, D,, D, >, D, D, "D, = ¢, where
D, is the set of invisible documents, 1), the set of active documents, and D), the set
of passive documents. An invisible document is a document that does not appear
under the display projection /;. An active document is a document from which the
user will make or collect an inference. A passive document is a descriptive docu-
ment that provides further information on the contents of displayable documents.

Furthermore, we define /), as the subset {1),, D,} of D.

65

an

PRy

5. A Unified Model

Similarly, we refine the definition of B to 8 =< I3,,B,, B, >, B, N B, N B, = ¢,
where 13, is the set of buttons that link to passive documents D,, B, is the set of
buttons that link to active documents 1), and B, is the set of invisible buttons used
in internal inferencing and that can link to any document D. B, buttons cannot
have manual user-triggered firings since they are invisible. Furthermore, we define

13, as the subset {13, 13,} of B.

Observe that documents D, and buttons B, are not mapped io the display under

Py.

5.54 Mapping Petri Nets to Expert Systems

Mapping logic clauses to high-level Petri nets has been studied by [67]. A high-
level net can be considered as a structurally folded version of a regular Petri net.
For the purpose of the discussion, and unlike [67], we are going to elaborate a
mapping between simple Petri nets and propositional clauses such as those found

in rule-based syntax.

Definitions

Let a basic Petri net structure be a triple < P.1,Q > where P = py,...,p,, @ =

q1s- .-+ qm and ! the transition.
Let a basic rule be a triple < (', 5,4 > where C' = ¢,...,c, are conditions,
A = a,....a, areactions, and S is an inference structure.

Let I’ =< (', A > be the set of facts in an expert system ES.

Let k&, be a mapping from the set of basic rules to the set of basic Petri nets
which maps ¢, onto p,, ¢, onto ¢, and s onto ¢ (see figure 5.2). Observe that &; is a

one-to-one mapping and denote the inverse mapping by ;.

66

5. A Unified Model

Basic Petri net

Basic
Rule

IFA

THEN
D —

Figure 5.2: The &; mapping

A Petri net, NV, may be viewed as a set of basic Petri nets connected in a weak

order fashion.

Similarly, an expert system, 5, may be viewed as a set of basic rules connected

in a weak order fashion through an inference mechanism

We extend the mapping of 4, to a mapping A between expert systems and Petri
nets in the natural way (see figure 5.3). Observe that ;' can be extended in the

same way.

Under this projection, the facts and rules of the expert system are modeled
in a Petri net. Inference is modeled as a set of markings where transition firings
modify the state of the search space. An assertion corresponds to a token in the
corresponding place. The retraction of a fact corresponds to the removal of the
token from the corresponding place. As such, the browsing semantics would not
accurately mimic the inference mechanism: a token would be removed froma place
upon firing the corresponding transition, but the fact need not be retracted from the
knowledge-base. Accordingly, the mapping 4, accounts for each place in /’to bea

place in Q) unless a retraction of an antecedent fact is specified 1n the consequent

67

5. A Unified Model

IFA,B,CTHEND, L
FD,ATHENE, G, H
It CTHENH

Lxpert System

Petri Net

Figure 5.3: extending &; to A

part of the corresponding rule. Observe that all retractions can be modeled in this

fashion'.

5.5.5 Modeling Equivalence

Recall that A; maps the expert system to the Petri net and that F; maps the Petri
net to the hypermedia. Let i’ = ;0 /. K then represents the mapping from the
expert system to the hypermedia. Similarly, denote by &' the inverse mapping
K=" = P o W' The display projection / still maps the internal representation

of the hypermedia to the interface widgets.

Under the A" mapping, an expertsystem £.S can be modeled into a hypermedia

i1, as depicted in figure 5.4.

I’ maps to 1), under KA. The invisible documents /), correspond to facts that
do not require documentation. They, for instance, can represent internal states

used in the inference mechanism. Observe that the passive documents D, are not

'Inourapproach, transitions are instantancous or manual. Thus, the facts status does not change.
Furthermore, only one transition can be fired at a time. Thus, no more than one token can reside in
one place.

68

o~

5. A Unified Model

Kl | 4] Pd

BrecBiBa> BaBp
Bp

Dn=<Di,Da> Da,Dp
Dy

e rd’

Expert System k' Petri Net Hypermedia Display

Kl

Figure 5.4: Mapping expert systems to hypermedia

mapped to £S. They only provide further information that extends and broadens

the knowledge documented in the active documents /).

Similarly, S maps only to the 3, buttons and to the I),, documents associated to
them. The /3, passive buttons are hypermedia links to passive documents /), and

thus have no mapping under h.

The inference structure ~ of [becomes, then, the browsing semantics of //,

and thus provides an intelligent navigation mechanism.

Under the inverse mapping ', active and invisible documents in /), are
mapped onto factsin /. The /3, buttons together with the 1), documents represent

the inference structure .S of the expert system £2.5.

The equivalence in behavior can be described in a three-layer architecture as
depicted in figure 5.5. The three layers are made up of an acquisition layer, an
integration layer, and a representation one. Vertically, each column corresponds to
a domain: expert systems, Petri nets and hypermedia. The representation layer is
the heart of the equivalence mapping. All the operations performed in the upper
layers end up in modifications at the representation level. The interfacing between
the different domains consists of the same mapping as that described above and
depicted in figure 5.4. The integration layer is concerned with the integration of
knowledge into the existing representation in the three domains. It consists of

integrating rules and facts with an existing expert system, integrating Petri net

69

» Y

5. A Unified Model

Acquisition Model Create Crrate
Layer Knowledge places & documents
transitions & links
Integration Integrate Integrate Integrate
Layer Facts & places & documents
Rules transitions to network
Representation Knowledge Petri Net Hypermedia
Layer Base F—_-, Network
e U
Expert System Petri Net Hypermedia

Figure 5.5: The unified model

places and transitions with the current Petri net network, and integrating new
documents and links with the actual hypermedia network. The acquisition layer
describes the modeling functions that are to be integrated at the integration level.
One can notice that there is no perfect one-to-one mapp.ag between the hypermedia
structure and browsing semantics and the expert system rules, facts and inference.
Some hypermedia nodes and links have no equivalent in the expert system, and
vice-versa. The overall behavior and knowledge, however, are similar. This will

be illustrated in the example below.

5.5.6 An Example

Consider an intelligent system concerned with assisting with car repairs. The
system does not target a specific audience, and accommodates the knowledge
evolution of the user. Accordingly, it embeds hypermedia “tours” of the car in
full-motion video with a separate sound track 2 and dynamic links (i.e. in time
and space). The system also embeds a fault-diagnosis expert system that diag-

noses faults based on the user description of the fault. The expert system can be

2one can easily imagine a video sequence with both French and English narrations or example.

70

5. A Unitied Model

manipulated on a stand-alone basis, or coupled to the hypermedia features. In the
second case, the hypermedia browsing exhibits intelligent navigation semantics,
and guides the user into successive steps, from the illustration of possible symp-
toms to description of repair procedures. As such, the system provides on-line
documentation in different media, that can be accessed and processed in different

ways.

Intelligent Navigation Derived

The sample expert system can determine repairs and adjustments based on the state
of the engine, its components, and ori some symptoms the engine might exhibit.
A sample set of rules that detects the need for timing adjustments could be (in

pseudocode):

symptoms rule:

if (engine unsatisfactory) then (check symptoms)
misfiring rule:

if (car backfires) then (misfiring engine)
timing problem rule:

if (engine unsatisfactory)

and (misfiring engine) then (timing adjustments)

The corresponding equivalent representation is depicted in figure 5.6. This static
representation is automatically acquired * when the diagnosis program is loaded
within the expert system module. The kernel representation can also serve for
other modules, such as the hypermedia one. The hyperstructureis then mapped to
the hypermedia structure, places coinciding with documents, and transitions with

links. The resulting hypermedia structure then looks like figure 5.6.

3 Algorithms have been implemented and used witha prototype hypertext {901, The algorithms
are listed in appendix A.

71

f =

5. A Unified Model

Posaible sympioms

Hame
Uraastsfactory

Unsatiefactory engine

Msfinng

Misfinng engine, Knocking

Point gap problem

Knedking engune

‘Timing problems

Timing adjustment Point gap adjumtment

Figure 5.6: The fault-diagnosis hypermedia

Document Home is a data-gathering node where information on the state of
the engine is acquired. The static document explains in detail each button op-
tion. Should the user choose the Unsatisfactory option for example, the Normal and
Does not start buttons would be deactivated and a new document Unsatisfactory
engine would appear that would offer new button options along with, say, a video
sequence introducing a speaker, and a setting with a car. At the level of the brows-
ing semantics, the token would leave document Home upon the activation of the
Unsatisfactory button, and appear in node Unsatisfactory engine, thus automatically
launching the video sequence. Two buttons Timing problem and Point gap problem
provide hints to possible adjustments. Their activation, however, is dependent on
facts not yet determined and they are thus disabled. The third button Symptoms calls
for further information on some engine symptoms. Upon activating this button,
a new document Possible symptoms appears as a video sequence that describes en-
gine misfiring and knocking symptoms, together with their appropriate temporal
links. Should the user click on the misfiring engine button, the browsing semantics
of the hypermedia would enable the timing problem link that correspcnded to the
diagnosed fault. The timing adjustment node can then be visited. This node can
represent a starting point for on-line documentation for timing adjustments, an au-

tomatic repair process, or represent a sub-layer of further intelligent expert system

72

5 A Unihed Model

coupled hypermedia, using the hierarchical structure previously described. The
hypermedia structure and execution semantics acquired from the hyperstructure
are an indirect translation of the rules of the expertsystem. The resulting browsing
semantics have reduced the disorientation by enabling only those links for which
prerequisite material has been covered. For example, the timing problem link from
the unsatisfactory engine node could only be enabled after the relevant symptomatic

documentation on misfiring engines has been covered.

Unformatted Knowledge Support For Expert Systems

The hypermedia module could also serve as a front-end to the expert system
module, and provide additional support to unformatted information. Knowledge
could then be inferred from the hypermedia itself. Back to our example, suppose
the user is within the Possible Symptoms document, faced with a description of
misfiring and knocking engines. Should the user decide that one of these applies
to his situation, and click, for example, on Knocking engime, a token would be
inserted in the relevant place in the hyperstructure. The expert system would then
be notified of this change of status in the hyperstructure, and the (musfiring engine)
fact would be asserted. The (engine unsatisfactory) fact being previously asserted the
same way, the inference engine of the expertsystem would trigger the tuning problem
rule. The (timing adjustment) fact would then be asserted, and the fault diagnoscd.
On the other hand, when the information is manipulated from the expert system
interface, asserted (retracted) facts also modify the hyperstructure The kernel then
notifies the hypermedia module of which corresponding documents have been
enabled (disabled). In our example, should an inference determine that a point
gap adjustment is needed, the corresponding document would pop-up on the
hypermedia interface even though it was not accessed through any hypermedia
path. The integration also allows users to assert conditions that could only be

represented by unformatted documents (e.g. an x-ray image).

73

iy

5. A Unified Model
5.5.7 Knowledge Elicitation

Beyond mere consistency in the manipulation of the two modules, integration also
provides a platform for knowledge elicitation. The merged authoring/browsing
functionality of the hypermedia provides a user-friendly knowledge elicitation
tool. The automatic declarative coding that results from the alteration of the hy-
perstructure requires no special programming skills. It could often remove the
need for knowledge transfer from the expert to the programmer. This can be best

described using an example.

Suppose now that, in our previous example, the user decides to upgrade the
knowledge-base with a new adjustment, New adjustment, that corresponds to a
new symptom, New symptom. The first step consists of creating the new document
New adjustment, and its corresponding link, New problem, and to link them to the
Unsatisfactory engine document in the current hypermedia network. Similarly, a
New fault document should be created, and linked to Possible symptoms through a
new link, New symptom. The new hypermedia network is depicted in figure 5.7.
The resulting browsing semantics for the New problem button are identical to the
ones for Timing problem and Point gap problem. The documents with new button
options should be upgraded so as to provide the relevant information associated
with the new alternative. Further on-line information on the adjustment can also
be added to the hypermedia structure. In this example, the expert system module
automatically generates a set of rules corresponding to the added diagnosis. At

that point, knowledge acquisition of the new diagnosis is complete.

5.6 Validation and Analysis

Due to the variety of knowledge representations and manipulations, validation is
required at several levels within the unified model. First, at the level of the modules

themselves, it verifies numerous properties. Second, at the level of the integration,

74

e Y

[ety

5. A Unitied Model
tlame

Pousible symptoms
Unsatisfactory

Unsatisfactory engim

Battery charged Engine status

Misf:
Engine rotates O whinng

1
[}
[]
[}
]
1
1
)
|
[}
1
)
]
[}
[}
]
)
[}
1
]

Musfinng engine

' knockeng
Ry
Lo qemt New symptom
Fuel suffictent [
! Timing problem Knocking Fngine
Y. New problen ;
. y
R LT ey
e s Y New fauit
s~~ . ’l
s N e
]
z n-"
New adypuoiment
Tuning adjustment Pount gap adjustment

Legend.

— €Xisting network

enene. added by user
Figure 5.7: Addinga diagnosis
Property Concept laterpretations
Boundedness

of tokens in p <k

A given document could be accessed by a maximum of k-1 uscrs
Conservauon # of tokens 1n net < k

A maximum of k-1 documents can be simultancousty accessed
Liveness No deadlock

sharing rusources, securily access
Reachatnhty Is marking M rcachable? Is document accessible?
Coverability from marking N” Is document C1 accessible trom document (22
Persistence Does finng 11 inhbts 127

Would triggering button Bl inhibit button B2?

Figure 5.8: Some behavioral properties of Petri nets

it verifies homogeneity and coherence.

Validation within the unified model is greatly facilitated by the Petri net struc-
ture under the equivalence mappings. Analysis techniques of Petri nets and their
properties can contribute to the validation of the hyperstructure. Furthermore, the
Petri net properties can be equivalent to some module specific ones (sce figure 5 8)
The hyperstructure then provides a unique structure through which the different

modules can be validated and analyzed. Analysis can be classified in terms of

reachability, matrix equations and reduction techniques.

75

5. A Unified Model
5.6.1 Reachability

The reachability graph allows the determination of all possible marking states from
an initial marking so. Considering the fault-diagnosis example of figure 5.6, one
can verify that the Timing adjustment document can be reached from the Home
document. Furthermore, the reachability graph will determine what intermedi-

ate markings are necessary to reach the document, hence creating a path to that

document.

Within the integrated approach, the Timing adjustment document might have
been triggered from a corresponding assertion in the expert system. The reach-
ability graph then provides all supportive documentation through the path it de-
termines, providing a cognitively structured hypermedia equivalent to the “why”
answer of the expert system. At the level of the expert system, reachability pro-
vides a demonstration that search space states are reachable, and what the “infer-
ence thread” to each state is. At the level of real-time multimedia applications,

reachability provides the temporal analysis tool of synchronous hypermedia [48].

5.6.2 Matrix Equations and Reduction Techniques

Matrix equations and reduction techniques are also useful analysis tools. Matrix
equations are a powerful representation of the dynamic behavior of Petri nets, but
contain certain weaknesses that make them difficult to apply in some cases [68, 79].
As for reduction techniques, they provide simple operations {66} for reducing large
Petri nets, while preserving their properties. Reduction techniques can extend
beyond Petri net analysis and can be used to cluster nodes in hypermedia graphical

browsers, or in simplifying rule-based representation.

76

5. A Unihed Model

5.7 Supporting Multimedia Data

While equivalence mappings have demonstrated an underlying similarity the hy-
perstructure will exploit, no dynamic media support was modeled. Support of

multiple media imposes specific functional requirements on the data structure

e real-time support for dynamic media (e.g. video, audio, animation);
¢ concurrency and synchronization of the different media

¢ synchronized manipulation of concurrent activities and coordination of their

accessing mechanisms.

The equivalence mapping should be able to support the above features. The
next section will demonstrate what properties of the underlying Petr1 net model

are relevant in the support of multiple media.

To be able to support multimedia data, timing characteristics are to be intro-
duced. These characteristics can be added to the I’V /3/l by extending the etr1
net model as to include for timing properties. This will be detailed below, and an

example will be used to demonstrate the mechanisms.

Timed Petri Nets

A timed Petri net is a quadruple N =< S,T,1,0,r > where < ST [, > consti-
tute the ordinary Petri net, and 77" :— {0,1,2,- -} x {oc,0.1,2, - } is a function
mapping each transition toa triple (7;, ;" ;') termed release time, maximum latency,
and maximum availability respectively [48]; such that V¢ € 1, 7(/) = (7], 7,") and
([< 7" < 17). Therelease time is the minimum time that must elapse before the
transition can be fired, and the maximum latency is the maximum time that can
elapse before automatic firing of the transition. Such nets have been widely inves-

tigated [32, 64, 84]. The application of Petri nets to timed hypertexts [48] has been

77

5. A Unified Model

interpretation

0 0 X immedsate sutornatic firng Maximum availability not smponant.

0 l inf | Can be fired mmediately Will fire automaucally after ™t" units of ume Remains available
1] 2 X Can be fired sficr "t1” units of ume, and will fire sutomatically after "(2" units

1l nf 12 Can only fire in the nterval (1112} Cannot fire automatcally

[A] mnf § nf Manual finng only Requires a defay of "t1" units before finng

tl 1] X Will automatically fire at time "t1”

| maximum latcncy

? ’ te.. maximum availability
E
L rcicasc time

Figure 5.9: Combining timing attributes

extended here so as to provide a more elaborate dynamic temporal specification.
We have added an awailability time limit 77 that allows the building of a temporal

interval for the hy permedaa link.

Usage

The combination of the three timing parameters provides temporal characteristics
that naturally extend to places: a place is said to be activeas long as it has a token in
it, (i.e. within the interval [/ .r;']). Release time and maximum availability provide
lower and upper bounds to its liveness Maximum latency provides a default
automatic firing. Several combinations and their interpretations are detailed in
figure 5.9. Timings and priorities can be easily modeled using these characteristics.
Muiltimedia applications, among other real-time systems, can be modeled using

the resulting properties of timed Petri nets.

In our sample application, video and sound sequences should be synchronized,
and temporal links should be accessible at specific locations and time intervals. A
typical presentation would have the timings of figure 5.10, where the video and
sound sequences extend from /; to /4 ; and links link1 and link2 respectively provide
access to a static document (such as text or graphics) and another multimedia
sequence. The presentation and accessing of the documents satisfies our definition

of true hypermedia (see 1.3.3).

78

5. A Unitied Model

link 2

link 1

audio sequenee

video scquence

Y N S—

eveefereadeean
[N S M

a» e

o~
[

4 l

ST 1T ""1

L f;

Figure 5.10: The timing sequence of multimedia events

The corresponding timed Petri net is represented m figure 5.11. Recall that
Petri net places can consist of procedural attachments and other processes. The
separation of structure from content allows the modeling of the video and audio
sequences as events in Petri net places The slart and end of the multimedia pre-
sentation are modeled as transitions start and end. Supposing that the presentation
is to be manually started, and that it should start instantaneously, the corcespond-
ing timing attributes of link start are (0. >x. >): the link should be instantancously
available, should not be fired automatically, and is always vahid The end link, on
the other hand, corresponds either to an end-of-scquence or an mterruption event of
the multimedia presentation. Accordingly, it should be immediately operational
and automatically fired after amaximum latency of /, — /; time units corresponding

to the end of the sequence. Its timing attributes are then (0.4, ;. x)

Hypermedia access

The timing diagram of figure 5.9 shows that the static document accessed through
link1 can only be available in the {f2. 14] time interval. It could, for example, provide
technical details about an object that appears in the video sequence during that
interval. linkl can then be available only after /; - /, and for a period up to /.
As for default firing, it is not required here. The timing attributes of link1 are then
(t2 —t1, 00, ts —t1). The annotative document should not replace the video sequence,

but rather superpose in an overlapping window. As for the sound sequence, it

70

-

5y

5. A Unified Model

start {0,inf,inf)

hink 1 {12-t1,1af 14-11] audio sequence

static annotative document

end {0,14-12,x]}

audio sequence 2

end 0,15-13,x]

Figure 5.11: The Petr1 net model of the hypermedia

should not be affected by the selection of link1. The modeling of these execution
semantics is illustrated in figure 5.11. A self-loop between the video sequence and
link1 allows the continuation of the video sequence while the annotative link is
present, while there is no arc linking the sound sequence to linkl. Note that the
annotative document can be killed any time between /> and 4 by the activation of
the corresponding end link. The timing characteristics of the corresponding end

link are then {0,/ — t5. o).

The second document is accessible through the link /ink2. Unlike the annotative
one, this document consists of another dynamic presentation (e.g. another video
sequence). Figure 5.10 shows that it is active in [t3, {5]. The execution semantics for
link2 are different from those of link1, as depicted in figure 5.11. Thestructure of the
second sequence, though, is identical to that of the first sequence: it starts by firing
link2 that will, in turn, activate two multimedia processes. These processes will be
interrupted either manually by the user, or automatically, through the maximum

latency timing. The readability of the graph can be enhanced by using hierarchical

80

5. A Umted Model

Petri nets. Under these, the whole process could be reduced to a place that would
be labeled “multimedia sequence”. The resulting place could then be part of an
upper layer representation of a hypermedia diagnosis system, as depicted in figure

5.6.

5.8 Conclusion

In this chapter, the principal functionalities of the unified model have been enu-
merated. Equivalence mappings have been built in order to show that synergism
is possible. Examples have illustrated the synergism. A Petri net intermediate
representation has proved capable of integrating the two representations, and of
modeling the synchronization of their similar behaviors Furthermore, the Petn
net could model the hypermedia dynamics, and provide interesting analysis and
simulation properties. The hyperstructure of the unified model, however, should
not be restricted to a Petri net structure Rather, it should model the equivalence
mappings described above in an object-oriented framework, and account for their
imperfections. Moreover, it should support further integration of modular tools

This will be detailed in the next chapter.

81

Chapter 6 The Architecture of the Unified Model

6.1 Introduction

This chapter will present the structural aspects of the unified model. As expected
from the functional descriptions of the model, the architecture should be symmetric
in order to allow for the synchronization of events among the different modules.
The cement of the model is the hyperstructure that ties together the data structures
of the different modules. Its object-oriented nature should allow for a growing
structure in an open architecture. The corresponding object methods should bring
integrity and consistency among the operations of the module. Moreover, in-
heritance and aggregation should lay the ground for the interaction between the
different parts of the system. As before, the examples will focus on the hypermedia,

Petri net and expert system modules.

6.2 A Symmetric Architecture

The intelligent system architectures detailed in chapter three all exhibit the same
master-slave architecture. Accordingly, the master application takes advantage of
the slave characteristics: expert systems with hypermedia interfaces, and hyperme-
dia systems with intelligent retrieval techniques. Moreover, the integration of the
two components often requires the duplication of their execution semantics. While
attractive for rapid prototyping, the merging of different off-the-shelf packages
cannot provide extensive enhancement over the packages themselves, because of
the limitations in the manipulation and representation of knowledge inherent to

each module. Furthermore, adding functionality in the form of other modules is

82

6. The Architecture of the Unified Model

highly restricted to the integration capabilities and compatibilities ot the existing

systems.

The symmetric architecture approach should be able to avoid the master-slave
shortcomings, by providing a truly integrated environment, both at the level of
the knowledge pool and of its manipulation. Accordingly, the kernel of the model

consists of an object-oriented hyperstructure.

The hyperstructure class captures the knowledge structure and its status. The
associated execution semantics are captured by the corresponding system classes
(see figure 6.1). The hyperstructure does not capture the internal knowledge
representation and the internal processing mechanisms specific to cach module.
Whether the knowledge is a fact being asserted, a variable carryimng a result value,
or a piece of on-line documentation is irrelevant to the hyperstructure. What mat-
ters is that it has a representation in the hyperstructure, and that its status can
be reflected at that level The separation of structure from content allows for this
abstraction and the integration of knowledge representations The execution se-
mantics of the modules are defined by the corresponding system classes. However,
only the status of an object is reflected at the hyperstructure level, and only if the
object corresponds to a hyperobject instance. This way, the internal mechanisms of
modules canbe modeled without affecting the hyperstructure To be truly symmet-
ric, the architecture should be able to dynamically reflect the manipulations within
one module in the others. This is achieved through inheritance and aggregation,

as detailed below.

6.3 An Object-Oriented Hyperstructure

A symmetric architecture requires a single mechanism to represent different data
types and the relations among these diverse types of data. In the unified model,

the kernel provides this mechanism in an object-oriented solution The kernel

83

6. The Architecture of the Unified Model

HYPERSTRUCTURE

(HYPEROBIECTS + HYPERMETHODS)
e] T —

{ N 3 f 1
SYSTEM CLASSES SYSTEM CLASSES SYSTEM CLASSES
(OBJECTS + METHODS) (OBJECTS + METHODS) (OBJECTS + METHODS)

_ J J L J
: E—— - | g
MODULE MODULE MODULE
— J .. J \. J

Figure 6.1: The classes hierarchy

hyperstructure represents the superclass of all objects. As a class, it represents the
abstract data type of the kernel objects, which may be thought of as instances of the
hyperstructure; and it defines the operations that can be applied to the objects. As
a superclass, it encompasses system classes specific to each module attached to the
kernel. The system classes in turn depict, the data types of all the objects and the
operations the modules perform on these. They can also, in turn, be superclasses for
other classes. These can benefit from the object-oriented environment by creating
generalization lattices that inherit from different system classes, thus building a
richer layered architecture. The last class-layer has instances that correspond to
the objects of the modules (see figure 6.1). By analogy with the Dexter model, the
hyperstructure could be thought of as the storage layer and its operations, with
several runtime layers running on top of it. Each runtime layer would represent a
module, and each of its objects and operations would be instantiations of the storage
layer class. The hyperstructure is not directly accessible, but is realized only from
modular instantiations. Should the same hyperstructure object (hereafter called
hyperobject) be instantiated under more than one module, the realizations brought
to it in one module would reflect in the others. This architecture brings equivalence
of objects and methods through a hyperstructure superclass, and synchronization

of manipulation through the realizations and instantiations, as will be explained

later.

6 The Architecture of the Unitied Model

hyperstructure 4 hyperobject
Hyperobject

object_id k_____.‘

PR I— status

—————" oy

instantiation

composhe

instantistior nstantiation
atom link attributes history

instantiation_id

Figure 6.2: The E-R diagram of a hyperobject

6.3.1 The Hyperobject

The hyperobiject is depicted in figure 6.2. Each hyperobject has a unique identifier,
the object id, an object type that could be one of atom, relation and composite; and an
operation id that determines which operation is to be performed on it. Note that
the composite type is recursively defined, as in the Dexter model. Additionally,
each hyperobject has a sfatus determined by the type of object, the operations
performed on it, and its instantiations. Finally, the hyperobject has an instantiation
id that uniquely identifies each of its several instantiations; instantiator attributes
that determine to which module the instantiation is attached and identify the
operations being performed on it; and an instantiation history that constitutes the

list of such operations.

Several points are worth mentioning here:

e Only the most essential attributes have been elaborated. All attributes spe-
cific to system classes or user-defined classes should not be included in the
hyperobject. The purpose is to keep an abstraction level that could guarantee
the independence of the hyperstructure from any application structure or

semantics. Accordingly, the operation-id attribute uniquely determines the

85

headl

L¥S

6. The Architecture of the Unified Model

hypermethods to which the hypercobijects react.

¢ The composite object type is recursively defined, as in the Dexter model. 1t
essentially allows relationships to be captured as objects, and hence to model
a network object by aggregation of atoms and links. Furthermore, since

relations are modeled as objects, they can also have relations to other objects.

¢ Any hyperobject can have multiple instantiations (most often these are system
class objects), each one bearing a unique instantiation-id, many instantiation
attributes and an instantiation histcry. Note that hy perobjects can have mul-
tiple instantiations in one module, and that instantiations need not be unique:
several versions of a given instance in a given module might coexist, until one
is realized. At that point, the instantiation history gets updated. The instanti-
ation is at the heart of the equivalence and synchronization mechanism built

around the hyperstructure.

Instantiations

Hyperobjects and hypermethods are abstractions that cannot be directly manip-
ulated. They represent equivalence classes with different instances in different
system classes. The instantiations inherit properties and behavior froin the class
they are an instance of, and they can also be manipulated directly by the users
through the module interfaces. When manipulations are explicitly realized (i.c.
written) by the users, the corresponding methods will be applied to the objects

they instantiate, and will eventually propagate to the corresponding hyperobject.

Generalizations

System class hyperobjects can be used to implement generalizations: an object

may refer to a set of objects from different classes. The resulting lattice allows the

86

6. The Architecture of the Unified Model

object to inherit default behaviors from diverse classes. Its ordering determines the

precedence ir. case of inheritance conflicts.

6.3.2 HyperMethods

Methods consist of code that manipulates or returns the state of an object. Objects
interact with one another through messages. Eachmessage corresponds to a method
that executes it. Objects react to messages by executing the corresponding method.
The hyperstructure methods subdivide into class and instance methods and are
the primitive operations allowed on the hyperstructure. They essentially consist of
alterations of the object attributes and methods; changes to the object lattices, and

alteration of system classes. The hierarchy of hypermethods is as follows:

¢ Class changes:

1. add a parent class;
2. delete a parent class;
3. add a system class;
4 delete a system class;

5. modify a class name.
e Object changes:

1. Attribute changes: add, delete, modify name, modify domain, modify

inheritance;

2. Method changes: add, delete, modify name, modify code, modify inher-

itance.

87

6. The Architecture of the Unified Model

6.3.3 Instance Methods
The hyperstruc:iire methods classify into:

e primitive operations (create, destroy, get, set);
e execution operations (enable, select, execute);

e access operations (open, close).

The primitive operations allow the creation and destruction of instances of an
object; and the getting or setting of an attribute value. The access operations allow
an instance to be opened after checking privilege clearance and access status (i.e it
it is already being accessed); and to reset it accordingly before closing it. Execution
primitives allow an instance to be enabled according to its status, select it among,

other instances and execute the operation corresponding to its operation-id.

6.4 Modeling Petri Nets

A simple Petri net can be modeled as a system class instance of the hyperstructure.
The places and transitions are instances of atoms, and the arcs are instances of
relations. The Petri net itself can be a composite object, made of atoms and links, as
depicted in figure 6.3. Specialized attributes and operations can be defined using,
the hypermethods. For example, a new “has token” attribute can be created and
added to the place object, from which a “live” status could be determined by an
appropriate operation “evaluate place”. Instances of the place object that hold a
"live" status will see the “enable” executioi« operation adding them to the set of
selectable obijects ready for an operation execution. The operation itself is deter-
mined by the operation-id attribute inherited from the atom object The transition
object can also have priority, minimum release time, maximum latency and maximum

availability. The corresponding network object instance can then decide on prioritics

88

i,

6. The Architecture of the Unified Mode!}

and enabling conditions in firing the Petri ret transitions and sending adequate
messages to all objects concerned with the execution semantics (i.e. passing tokens
from places to other, firing transitions, etc...). Note that ail interaction is performed
by message passing, except for instances of system class objects (e.g. Petri net
objects) that are instantiations that can be also directly manipulated by the Petri net
module interface. The mechanism is identical for all the modules. The medeling of
expert and hypermedia systems is straightforwardly derived (see figure 3.1) using
the equivalence relation developed in the previous chapter (see figure 6.4). As for
object-oriented multimedia databases, they have been investigated by [99, 26], and
others. Moreover, an object-oriented hypertext model has been presented by [571,
and formalized in the VDM . The Dexter model itself (see 3.4) can be easily turned
into an object-oriented structure, thus covering the broadest spectrum of actual
hypertext systems. Furthermore, the hyperstructure straightforwardly accommo-
dates the storage data structure of the Dexter model. At the level of integrated
object-oriented systems, similar work has been investigated [4] for databases and

expert systems, and [65] for multimedia authoring systems.

6.4.1 Aggregations

While hyperobjects provide the structure by which different knowledge represen-
tations can be abstracted, aggregation is the key mechanism by which they get
integrated and through which manipulations propagate back to all the modules
concerned. Inaggregations, an object abstracts (i.e. “stands for”) all the objects and
instances, possibly from different classes, in its aggregation lattice. Hyperobjects
are then aggregations of objects that represent the same knowledge abstraction in

different representations.

As depicted in figure 6.4, the unsatisfactory status of the engine is depicted as a

factin the rule-base, a place in the Petri net, and a document in the hypermedia. The

"Vienna Design Methodology

89

i3

6. The Architecture of the Unitied Model

HyperObject
Hypentruciure
atom object link obyect composiie object
network
ohject
place obgect transition obyect arc object Petn Net System Class
A
o P,
A R
P RN 13 AR BNS
AP AR) [- AP S W, U
S oo N 'AY Pl A AR AN
A A A A A A A Petn Net Instances
P4 rel

pl p2 p3 8t 2 [a2 a3 arcd arcS arch {
y ‘ object duta type
arcl arc2 3 4
@ 1 >@"‘ 2 -)@
A msiance

child object of

........ nstance of

LEGEND

Figure 6.3: Modeling Petri nets

corresponding hyperobject has thus three instantiations; one in each module. The
lattice of objects and instances that connects the instantiations to the hyperobject
is an aggregation lattice. Realizing instantiations means passing a message (that
represents both a method and an attribute) to an instance. The instance being
also a logical instance of its parent classes, the instance status propagates to the
hyperobject. By aggregation, the same status and properties propagate down the
aggregation lattice, and all the instantiations that belong to the same hyperobject get
updated. In the example, opening the unsatisfactory document in the hypermedia
module reflects on the status of the hyperobiject, and the action is thus propagated
to the corresponding fact and place in the expert system and Petri net respectively.
The (engineunsatisfactory) fact gets asserted, and place p1 of the Petri netgets a token.
In turn, these updated instances can trigger or apply methods that will reflect back
to the hyperobject and down the aggregation lattice to their equivalent objects in
other modules. In the example, the (engine unsatisfactory) fact being asserted, the

timings rule will be triggered as soon as the hyperobject corresponding to (misfiring

90

6. The Architecture of the Unified Model

4]
unsatisf [_@ timings rule.": If (engine unsatisfactory) and (musfiring engine)

L ——"

enginc musfire \ then (iming adjustment)
Hypermedaa Obgects Fxpurt System Objects o
ohject data type
[D
node michor link hypergraph fact nile rule-base
-
—\ l t child object of
/ mstance of
\ / / / LEGEND
—
HyperObject
Hyperstructure
I Objects
atom ohject link object composile ohject
~ < ; @) f»
place ohjeca transitton object arc object network
ohject

Peini Net Obyects

Figure 6.4: Equivalence using hyperobjects

engine) gets activated in any module? . The(timingadjustments)factis then asserted.
In turn, this instantiation modification reflects at the hyperobject level and down
to the relevant instances of other modules. Aggregation and abstraction thus
provide equivalence and integration among knowledge structures, while methods,
inheritance and aggregate propagation of properties achieve the synchronization

in manipulation. Several points are worth mentioning here:

¢ Propagating properties down the aggregation lattice is different from inher-
itance. In the first mechanism, attribute values get propagated from a given
instance to its children in the aggregation lattice. In the latter, whole classes

inherit properties from their parent classes. If inheritance replaces propaga-

2If there exists no equivalent object n a given module, then there is obviously no effect on this
module. What was forced through Petr nets in the equivalence mappings 1s here nicely eluded by
the object-oriented architecture.

91

6. The Architecture ot the Unitied Model

tion in our example, opening a document would assert all the expert system

facts!

The knowledge representations need not be exactly equivalent. For exam-
ple, removing the symptoms rule from the expert system does not harm the
encapsulated knowledge, and its equivalent hypermedia representation can
be retained. The overall behavior of the system does not get disrupted, and
the timing problem rule can still be activated upon the assertion of (misfiring
engine). This loosely coupled architecture removes some of the rigidities and
artificialities of exact equivalent modeling, while retaining a similar global

behavior.

The knowledge representations remain independent and separately accessi-
ble through their own module interfaces. The leverage obtained by different
representations and manipulation paradigms does not pose restrictions on

the module’s own representations and manipulations

6.5 Conclusion

The unified model has an open, symmetric architecture that avoids the drawbacks

of the intelligent systems architectures depicted in chapter 4 The hyperstruc-

ture supports a powerful object-oriented network representation. It is based on a

hyperobject that is application independent, and that provides mtegration of struc-

ture through abstraction. Instantiations allow the modification of the hyperobject

through the module interfaces. Inheritance and aggregate propagation update the

hyperobject and its corresponding instances through message passing, thus pro-

viding synchronization of the modules. Leverage is achieved by this integration

and synchronization of modules.

92

Chapter 7 Conclusion

7.1 Thesis Summary

A survey of past and present hypermedia systems has been achieved, and their
characteristics examined. Intelligent system architectures have been evaluated,
from which functional requirements for a unified architecture have been derived.
Equivalence mappings that equate the structure and behavior of hy permedia net-
works and expert systems in a lose way have been developed. A unified model

has been designed, that synthesizes the structural and behavioral mappings in an

object-oriented architecture.

The model was designed so as to merge the knowledge representation and ma-
nipulation paradigms found in knowledge-based and hypermedia systems. With
regard to knowledge-based systems, the model allows the problern of minimalist
explanations to be remedied and allows to knowledge to be elicited from un-
structured sources. Minimalist explanations are complemented with unformatted
supportive documentation that is presented in an intuitive organization by a hy-
permedia module. In addition, knowledge elicitation is achieved by translating
the network structure and browsing behavior of the hypermedia module on the

very same unformatted documentation into the corresponding rule-based format.

With respect to hypermedia systems, the model provides intelligent processing
capabilities, and partly remedies to the characteristic problem of disorientation.
Intelligent processing results from the equivalence mappings and integration with
the expert system module. The unified model architecture differs in this sense
from hypermedia architectures in that it does not exploit “end-node processes”

as in augmented-transition networks, but rather exploits the parallel rule-based

93

g

AR ve <o g,

Lk

7 Conclusion

representation that can be derived from the network structure itself. Disorientation
is attenuated by modeling browsing semantics that exhibit an intelligent behavior
These semantics can be modeled by the user, or derived from a corresponding
rule-based system. When the browsing semantics are modeled by the user, they
can be translaied into an equivalent rule-base using the same mechanism as for

knowledge elicitation.

7.2 Future Developments

Many enhancements could be brought to the model before actual implementation;

notably at the level of knowledge representation, classes, and user interface

7.21 Representation Enhancements

The Petrinet representation used in the equivalence mappings could be extended to
high-level Petri nets such as colored or logical ones. This enhancement would allow
the modeling of a fully-fledged rule-based syntax, and to extend the equivalence
mappings to frame-based representations. High level Petri nets would also affect
the mapping to the hypermedia representation at the level of node clustering
and browsing semantics. The enhancement of Petri nets is also required if the
representation is going to serve as a basis for a modeling and simulation module
At that level, matrix representations and analysis tools need to be explored and

their correspondence to hypermedia and expert systems needs to be refined.

94

[}

7. Conclusion

7.2.2 Model Enhanicements

Class Enhancements

Only the classical object-oriented mechanisms have been tackled at the level of
the hy perstructure superclass. Methods need to be [urther specified in terms of
hyperstructure objects. At the level of system classes, only the atomic objects have
been modeled. Path, network and web objects and their respective methods need
to be defined for the hypermedia system class before new methods can be derived.
Though frame modeling naturally derives from object structures, the expert system
class also needs to be refined so as to model a complete shell structure. Derivation
of Petri net methods for reachability analysis and reduction are also required at the

level of the Petri net system class.

User Interface Development

Interface paradigms should be derived from the methods at the level of the model
operations. These methods could easily benefit from the homogeneity derived from
the object-oriented structure. Separate classical approaches should be available,

that interface to the modules directly.

7.3 Application Fields

The processing of information in a hypermedia structure and format enables new,
and improves existing, application areas. The abstraction layer of the hyperstruc-
ture allows the integration of manipulations and representations in multiple media.
In the domain of design, the unified model allows the alleviation of the problem of
minimalist information, either at the level of explanations, or at that of user input

(e.g. rating a plot, or more generally a graphic document). It should also help in

95

D

7. Conclusion

the integration of expert systems facilities and on-line documentation of a CAD
package such as [58]. As such, the model architecture should be able to provide an

attractive alternative to current solutions.

7.4 Conclusion

The conclusion of this dissertation is that an intelligent hypermedia architecture
that integrates and synchronizes different knowledge representations in a syner-
gistic approach can be derived. The hypermedia paradigm offers a network archi-
tecture that supersedes hierarchical ones; a support for unformatted information
that provides new possibilities in many apphcation fields, an authoring paradigm
that fits the concept of an evolving structure; and an aptitude tor integration that
should be an attractive alternative to many hybrid urchitectures The unified model
was elaborated for these purposes, and its hyperstructure reflects the hypermedia

paradigm and distinguishes it from other intelligent systems arclutectures

96

References

{1] E Afratiand C.D.Koutras. A hypertext model supporting query mechanisms.
In First European Conference on Hypertext, pages 52-66, November 1990.

[2] Alfred V. Aho, Brian W. Kernighan, and Peter].Weinberger. The AWK pro-
gramming language. Addison-Wesley, Reading, Mass., 1988.

[3] Robert M. Akscyn and Donald L. McCracken. Experience with the ZOG
human-computer interface system. Int’l |, of Man-Machine Studies, 2:293-310,
1984.

[4] Nat Ballou and Hong-Tai Chou. Coupling an expert system shell with an
object-oriented database system. Journal of Object Oriented Programming,
pages 12-21, June-July 1988.

[5] Thierry Barsalou and Gio Wiederhold. Cooperative hypertext interface to
relational databases. In Proceedings: Thirteenth Annual Symposium on Computer
Appiications 1n Medical Care (SCAMC-13), pages 383-387, November 1989.

[6] M. Bartschi. An overview of information retrieval subjects. IEEE Computer,
18(5):67-84, May 1985.

[7] C. Beeri and Y. Kornatzky. A logical query language for hypertext systems.
In First European Conference on Hypertext, pages 67-80, November 1990.

[8] Michael L Begeman and Jeff Conklin. gIBIS: a tool for all reasons. Journal of
the American Society for Information Science, 40(3):200-213, May 1989.

[9] C. Berge Graphsand Hypergraphs. American Elsevier, New York, 1973.

[10] Mark Bernstein The bookmark and the compass: Orientation tools for
hypertext users. ACM Transactions on Office Information Systems, 7(1):34—45,
January 1989.

[11] F Bienner, M. Guivarch, and J.M. Pilon. Browsing in hyperdocuments with
the assistance of neural networks. In First European Conference on Hypertext,
pages 288-297, November 1990.

[12] James Bigelow. Hypertext and Case. 1EEE Software, 5(2):23-27, March 1988.

[13] Czejdo Bogdan. Using an E-R query and update interface for rapid prototyp-
ing of hypertext systems. In Proceedings of the Hawan International Conference
on System Science, pages 227-236, January 1990.

97

References

[14] Karl Friedrich Bohringer and Frances Newbery Paulisch. Using constraints

to achieve stability in automatic graph layout algorithms. In CHI'90, pages
43-51, April 1990

[15] Larry Brelawski and Robert Lewand. Intelligent Systems Design. John Wiley

[16]

[17]

(18]

[19]
(20]
[21]

[22]

(23]

[24]

(25]

[26]

{27]

& Sons, New York, 1991.

H.P. Brondmo and G. Davenport. Creating and viewing the elastic Charles
- a hypermedia journal. In C. Green and R. McAleese, editors, Hypertext:
Theory ir.to Practice Il. Intelect Press, 1990.

P. J. Brown. Interactive documentation. In Software - Practice and Experience,
volume 16, pages 291-299, March 1986.

PD. Bruza. Hyperindices: A novel aid for searching in hypermedia. In I'irst
European Conferenccon Hypertext, pages 109-122, November 1990.

Vannevar Bush. As we may think. Atlantic Monthly, pages 101-108, July 1945
Vannevar Bush. Science is not enough Morrow, New York, 1967

Brad Campbell and Joseph M. Goodman. Ham" A general purpose hypertext
abstract machine. In Communications of the ACM, volume 31, pages 856-861,
July 1988.

Michael Caplinger. Graphical database browsing. In ACM SIGGIS Builctin,
volume 7, pages 113-119, 1986.

Timothy Catlin, Paule‘te Bush, and Nicole Yankelovich. Internote: Extend-
ing a hypermedia framework to support annotative collaboration In Hyper-
text'89, pages 365-378, No.~.nber 1989.

T.J.O. Catlin and K.E. Smith. Anchors for shifting tides: Designing a ‘sca-
worthy” hypermedia system. In Proc. Online Information 88, pages 15-25,
December 1988.

R. Jesse Chaney, Frank M. Shipman, and G. Anthony Gorry. Using hypertext
to facilitate information sharing in biomedical research groups In Proceed-
ings. Thirteenth Annual Symposium on Computer Applications in Medical Care
(SCAMC-13), pages 350-354, November 1989.

S. Christodoulakis, F. Ho, and M. Theodoriou. The multimedia object presen-
tation manager of minos: A symmetric approach ACM OIS, pages 295-310),
1986.

Peter Clitherow, Doug Riecken, and Michael Muller. VISAR: A system for in-
ference and navigation of hypertext. In Hypertext’89, pages 293-304, Novem-
ber 1989.

98

References

[28] Georger H. Collier. Thoth-1I: Hypertext with explicit semantics. In Hyper-
text'87, pages 269-290, November 1987.

[29] Jeff Conklin. Hypertext: An introduction and survey. Computer, 20(9):17-41,
September 1987.

[30] Jeff Conklin and Michael Begeman. gIBIS: A hypertext tool for exploratory
policy discussion. ACM Transactions on Office Information Systems, 6(4):303-

331, October 1988.

[31} Mariano P. Consens and Alberto O. Mendelzon. Expressing structural hy-
pertext queries in graphlog. In Hypertext'89, pages 269-292, November 1989.

[32] James E. Coolahan. A timed petri net methodology for specifying real-time
systems timing requirements. In Proceedings of the Int'l Workshop on Timed

Petri nets, Torino, Italy, July 1985.

[33] G. Crane. From the old to the new: Integrating hypertext into traditional
scholarship. In Hypertext’87, pages 51-55, November 1987.

[34] W.Bruce Croftand Howard Turtle. A retrieval model incorporating hypertext
links. In Hypertext'89, pages 213224, November 1989.

[35] Andries Van Dam. Hypertext ‘87 kevnote address. Communications of the
ACM, 31(7):887-895, July 1988.

[36] Centre de Recherche Informatique de Montreal. An expert system with a
hypermedia interface. Personnal communication with Carlos Saldanha.

[37] Norman Delisle and Mayer Schwartz. Neptune: A hypertextsystem for CAD
applications. ACM, pages 132-143, 1986.

[38] Dennis E. Egan, Joel R. Remde, and Carol C. Lochbaum. Formative design-
evaluation of superbook. ACM Transactions on Office Information Systems,
7(1):30-57, January 1989.

[39] Douglas C. Engelbart and W.K. English. A research cente- for augmenting
human intellect. In AFIPS Conference Proceedings, volume 33, Washington
D.C., 1968. The Thompson Book Company.

[40] Richard Gary Epstein. Graphical query language for hypertext database
systems. In Proceedings - Graphics Interface, pages 47-54, June 1989.

[41] Halasz F. and Schwartz M. The Dexter hypertext reference model. Proceedings
of the Hypertext Standardization Workshop, pages 95-133, January 1990.

[42] Steven Feiner. Seeing the forest for the trees: hierarchical display of hypertext
structure. In Conference on Office Computing Systems 88, pages 205~212, 1988.

99

References

[43] Gerhard Fisher, Thomas Mastaglio, Brent Reeves, and John Rieman. Mini-
malist explanations in knowledge-based systems. In Proceedings of the Twenty-
Third Annual Hawaii International Conference on System Sciences, pages 309-317,
January 1990.

[44] Gerhard Fisher and Raymond McCall. JANUS: Integrating hypertext with
a knowledge-based design environment. In Hypertext'89, pages 105-118,
November 1989.

[45] H.C. Fordsick, R.h. Thomas, G.G. Robertson, and V.H. Travers. Initial experi-
ence with multimedia documents in diamond. In IEEE Databas¢ Engincering
Quaterly Bulletin, volume 7, September 1984.

[46] L. Friedlander. The Shakespeare project. In S. Ambron and K. Hooper,
editors, Interactive Multimedia: Visions of Multimedia for Developers, Educators
and Information Providers, pages 115-141. Microsoft Press, 1988.

[47] Mark E. Frisse. Retrieving information from medical hypertext systems. In
Annual Symposium on Computer Applications in Medical Care, pages 441-444,
1988.

[48] Richard Furuta and P. David Stotts. Timing analysis of synchronous browsing
in Petri net-based hypertext. Technical Report UMIACS-TR-89-53, University
of Maryland, May 1989.

[49] PankajK. Garg. Abstraction mechanisms in hypertext. Communications of the
ACM, 31(7):862-870, July 1988.

[50] Frank G. Halasz. Reflections on Notecards: Seven issues for the next genera-
tion of hypermedia systems. Communications of the ACM, 31(7):836-852, July
1988.

[51] Phil Hayes and Jeff Pepper. Towards an integrated maintenance advisor. In
Hypertext’89, pages 119-127, November 1989.

[52] W. Hershey. Idea processors. In BYTE Magazine, page 337. McGraw Hill,
June 1985.

[53] M.E. Hodges, R.M. Sasnett, and M.S. Ackerman. A construction set for
multimedia applications. IEEE Software, 6(1):37-43, January 1989.

[54] M. Hofmann, U.Schreiweis, and H. Langendorfer. An intergated approach of
knowledge acquisition by the hypertext system CONCORDE. First European
Conference on Hypertext, pages 166—179, November 1990.

[55] Randy H. Katz and Tobin]. Lehman. Database support for versions and
alternatives of large design files. In IEEE Transactions on Software Engincering,
volume 10, pages 191-200, March 1984.

100

Fy

g

References

[56] Susan K. Kinnell. Comparing Hypercard and Guide. In Database, volume 11,
pages 49-54, 1987.

[57] Danny Lange. A formal model of hypertext. In Proceedings of the Hypertext
Standardization Workshop, pages 145-166, Gaithersburg, M, January 1990.

[58] D.A. Lowther and P.P. Silvester. Computer-Aided Design in Magnetics.
Springer-Verlag, Berlin, 1985.

[59] D. Lucarella. A model for hypertext-based information retrieval. In First
European Conference on Hypertext, pages 81-94, November 1990.

[60] Robert M.Akscyn, Donald L. McCracken, and Elise A. Yoder. KMS: A dis-
tributed hypermedia system for managing knowledge in organizations. Com-
munications of the ACM, 31(7):820-835, July 1988.

[61] Brian P. Mc Cune and Daniel G. Shapiro. Rubric: A system for ruled-based
information retrieval. IEEE Transactions on Software Engineering, 11(9):939-

945, September 1985.

[62] R. McCall. Phibis: Procedurally hierarchical issue-based information sys-
tems. In Proc. Conf. Arch. Int’l. Congress on Planning and Design Theory, pages
17-22, 1987.

[63] R. McCall, P. Bennet, and P. D’Ornozio. Phidias: Integrating cad-graphics
into dynamic hypertext. First European Conference on Hypertext, pages 152-
165, November 1990.

[64] Phillip M. Merlin. Recoverability of communications protocols. IEEE Trans.
on Comm., 24(9):1036~1043, 1976.

[65] Max Muhlhauser. A software engineering environment for distributed ap-
plications. The Euromicro Journal, 27:327-332, September 1989.

[66] T. Murata and J.Y. Koh. Reduction and expansion of live and safe marked
graphs. IEEE Tran. Circuits Syst., 27(1):68-70, 1980.

[67] T. Murata and D. Zhang. A predicate-transition net model for parallel inter-
pretation of logic programs. IEEE Trans. Software Eng., 14(4):481-497, April
1988.

[68] Tadac Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541-579, April 1989.

[69] Ted Nelson. The Xanadu file server. In Byte Magazine, pages 298-299. McGraw
Hill, September 1990.

[70] Theodore H. Nelson. Getting it out of our system. Information Retrieval: A
critical Review, 20(9):17—41, September 1987.

101

¢

References

[71] Steven R. NewComb. Explanatory cover material for section 7.2 of
x3v1.8m/sd-7. In Proceedings of the Hypertext Standardizalion Workshop, pages
179-188, January 1990.

[72] Jakob Nielsen. Hypertext and Hypermedia. Academic Press, Boston, Mass.,
1990.

[73] H.P Nii. Blackboard systems. Al Magazine, 7(3):38-53, Summer 1986.
[74] H.P Nii. Blackboard systems. Al Magazine, 7(4):82-106, Summer 1986.

[75] R. Ogawa, H. Harada, and A. Kameko. Scenario-based hypermedia: a model
and a system. In First European Conference on Hypertext, pages 38-52, Novem-
ber 1990.

[76] Tim Oren. The architecture of static hypertext. In Hypertext'87, pages 291--306,
November 1987.

[77} H. Van Dyke Parunak. Reference data model group (rdmg): Work plan
status. In Proceedings of the Hypertext Standardization Workshop, pages 9-13,
March 1990.

[78] Amy Pearl. Sun’s link service: A protocol for open linking. In Hypertext’89,
pages 137-146, November 1989.

[79] James Lyle Peterson. Petri net theory and the modeling of systems. Prentice-Hall,
Englewood Cliffs, New Jersey, 1981.

{80] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice
Hall, Englewood Cliffs, New Jersey, 1981.

[81] X. Pintado and D. Tsichritzis. Satellite: Hypertext navigation by affinity. In
First European Conference on Hypertext, pages 274—287, November 1990.

[82] Martha C. Polson and J. Jeffrey Richardson, editors. Foundations of intelligent
tutoring systems. L. Erlbaum Associates, Hillsdale, N.J., 1988.

[83] Darrell R. Raymond and Frank Wm. Tompa. Hypertext and the Oxford
English Dictionary. Communications of the ACM, 31(7):871-879, July 1988.

[84] Wolfgang Reisig. Petri Nets: An introduction and Survey. Springer-Verlag,
1985.

[85] Howard Rheingold. Tools for thought: the people and ideas behind the next
computer revolution. Simon & Shuster, New York, 1985.

[86] W. Rittel and W. Kunz. Issues and elements of information systems. Work-
ing Paper. Centre for Planning and Development Research, University of
Califirnia, Berkeley, 1970.

Y

References

[87] W. Schuler and J. Smith. Author’s argumentation assistant (AAA): A
hypertext-based authoring tool for argumentative texts. First European Con-
ference on Hypertext, pages 137-151, November 1990.

[88] Ben Shneiderman. User interface design for the hyperties electronic encyclo-
pedia. In Hypertext’87, pages 189-194, November 1987.

[89] J. B. Smith. WE: A writing environment for professionals. Technical report,
University of North Carolina at Chapel Hill, August 1986.

[90] P. David Stotts and Richard Furuta. Petri-net-based hypertext. document
structure with browsing semantics. ACM Transactions on Office Information

Systems, 7(1):3-29, January 1989.

[91] Walter F. Tichy. Design, implementation and evaluation of a revision control
system. In ICSE’82, pages 5867, 1982.

[92] Toomas Timpka. Knowledge-based decision for general practitioners; an
integrated design. Comput. Methods Prog. Biomed., 25:49-60, August 1987.

[93] Frank Wm. Tompa. A data model for flexible hypertext database systems.
ACM Transactions on Office Information Systems, 7(1):85~-100, January 1989.

[94] Randall H. Trigg. A Network-Based Approach to Text Handling for the Online
Scientific Community. PhD thesis, University of Maryland, 1983.

[95] Kenneth Utting and Nicole Yankelovich. Context and orientation in hy-
permedia networks. ACM Transactions on Information Systems, 7(1):85-100,

January 1989.

[96] C.]. van Rijsbergen. Towards an information logic. In SIGIR’89, pages 77-86,
1989.

[97] Udo Wahn and Ulrich Reimer. Automatic generation of hypertextknowledge
bases. In Conference on Office “omputing Systems, pages 182-188, March 1988.

(98] Janet H. Walker. Document examiner: Delivery interface for hypertext doc-
uments. In Hypertext'87, pages 307-323, November 1987.

[99] Darrell Woelk, Won Kim, and Willis Luther. An object-oriented approach to
multimedia databases. ACM OIS, pages 311-325, 1986.

[100] Nicole Yankelovich and Steven M. Drucker. Intermedia: The concept and the
construction of a seamless information environment. Computer, 21(1):81-96,
January 1988.

[101] Polle T. Zellweger. Scripted documents: A hypermedia path mechanism. In
Hypertext'89, pages 1-14, November 1989.

103

A

Appendix A Translation Algorithms

This appendix contains the algorithms based on the equivalence mappings and
tested on the aTrellis Petri net hypertext prototype developed by Richard Furuta
and P. David Scotts at the University of Maryland [90]. The algorithms have been

implemented in awk [2].

A.1 From Expert Systems to Hypermedia

Theawk translator actually creates two files: one that contains the Petri net descrip-
tion and one that describes the mapping from the places to the hypertext nodes. A
simplified version of the general algorithm will be described here. It is linearized
and avoids special cases (e.g. taking into account retractions) and parsing rules, for
the sake of clarity. It uses the incidence matrix representation described in 68] and
[80]. Two separate matrices are maintained: a D,, matrix that records all places
with arcs pointing towards transitions, and a /),,,, matrix that records alil places with
arcs pointing from transitions. The resulting matrix /), used in reachability analysis
forexample, is D = D,,, — D,,, with D, D,,,. D, having dimensions (1 » 1), where
m is the number of transitions (rules) and » is the number of places (facts) in the
Petri net !. As can be seen from the implementation, the inverse translation 1s

straightforward.

Initialize variables and arrays:

trcount « 0 ; initialize transition counter

!Similar work has been achicved by 1671 and has resulted in a formal procedure for transforming
a given logic program into the incidence matrix of high-level nets.

104

A. Translation Algorithms

plcount — 0 ; initialize place counter

i

For each rule do:

map rule identifier (name) to transition name:

{rcounl 4+ 4 ; increment transition counter
transition[trcount] — [rulecname]; assign the rule identifier
to the transition
With the antecedent part of the rule do:
For each condition do:
for(r = 1o plecount) ; check if the fact s already exists
i f(s == place]r])
plcouni + + ; it doesn’t: increment the place counter
placc[plcount] = s create a new place and assign it an identifier
dinfircount,plcount] + + ; update D,, accordingly

din[trcount, i} + + ; it does: update D,, accordingly
With the consequent part of the rule do:

For each action do:
Jor(i = lto pleount) ; check if the fact s already exists
[(s == placcli])
plcount + + ; it doesn’t: increment the place counter
place[plcount] = s create a new place and assign it an identifier
dout[trcount, pleount] + + ; update D,,, accordingly

doul[trcount 1] + + ; it does: npdate D,,, accordingly

until EOF(expert system).

by

105

