
SOLUTION OF UNBOUNDED FIELD PROBLEMS BY BOUNDARY RELAXATION 

Ivan A. Cermak, B.Eng., M.Eng. 



SOLUTION OF UNBOUNDED FIELD PROBLEMS BY BOUNDARY RELAXAT!ON 

Electrical Ivan A. Cermak, B.Eng., M.Eng. Ph.D. 

ABSTRACT 

A new accurate and efficient numerical method, belonging to the recently 

discovered c1ass of boundary relaxation techniques, is presented for the solution of 

infinitely extending problems of elliptic type, with particular application to un-

bounded problems of Laplace's or Poissbn's equation. The boundary conditions at 

infinity are transformed to an arbitrary, finite, closed contour in terms of a potential 

shift operator. The solution within the arbitrary contour is obtained as the solution 

of an interior Dirichlet problem simultaneously with the shift relationship, and corres-

ponds exactly with that of the infinitely extending problem. The problem is formulated 

in finite differences and standard iterative theory applied to the resulting linear system 

of equations. Optimization of the iterative schemes is considered and an error analysis 

is developed. Application of the method is iIIustrated for two-dimensional, three-

dimensional axially symmetric and coaxial line problems. Ail pertinent computational 

algorithms are presented in detail. 



SOLUTION OF UNBOUNDED FIELD PROBLEMS 
BY BOUNDARY RELAXATION 

by 

Ivan A. Cermak, B.Eng., M.Eng. 

",A thesis submi tted to the Facul ty of Graduate Studies 

and Research in partial fulfillment of the 

requirements for the degree of 

Doctor of Philosophy 

Department of Electrical Engineering, 

McGill University, 

Montreal, Quebec, 

March, 1969. 

(ê) Ivan A. Cermak 1969 



i 

ABSTRACT 

A new accurate and efficient numerical method, belonging 

to the recently discovered class o~·boundary relaxation tech

niques, is presented for· the solution of infinitely extending 

problems of elliptic type, with particular application to 

unbounded problems of Laplace's or·Poisson;s equation. The 

boundary conditions at infinity are.transformed to an arbi

trary, fi~ite, closed contour in terms of a potential shi ft 

operator. The solutionwithin the arbitrary contour is 

obtained as the solution of an interior·Dirichlet problem 

simultaneously with the shift relationship, and corresponds 

exactly with that of the infinitely extending problem. The 

problem is formulated in finite differences and standard itera

tive theory applied to the resulting linear system of equations. 

Optimization of the iterative schemes is considered and an 

error analysis is developed. 1.9plication of the method is 

illustrated for two-dimension'll. t".h~:ee-dimensional axially 

symiüetric and coaxial lino. problems. AlI pertinent computa

tional algori thms are pre;;l€;":i! ;;:,} in detail. 
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CHAPTER 1 

INTRODUCTION 

A great variety of physical problems that arise in en

gineering or physics may be represented by differential equations 

of the forro 

which have the property that the sign of the quantity 

(B 2 - AC) 

is unaffected by a change of variable [1] ,[2]. The equations 

are classified as elliptic, parabolic, or hyperbolic according 

to whether the above expression is less than, equal to, or 

greater than zero respectively. Only special cases of the ellip-

tic equation will be considered in this thesis, namely the 

degenerate elliptic class corresponding to the Laplace or 

Poisson equation, although some of the theory pûssibly holds 

for more general cases. 

Solutions of elliptic problems fall, in general, into 

one of three categories:analytic, analogue and numerical. 

Analytic solutions in general are limited to problems which can 



be posed ina coordinate system in which the v~riables are 

separable, not only for the elliptic operator but for,the 
." . 
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given boundaryconditions as welle There exist, of course, 

many special problems that may be solved by special techni-

ques such as conformal transformation, by the method of 

images, or some other special analytic method, but, in 

general, analytic solution is usually practical only for 

simple problems that have limited application. 

Analogue methods do not suffer from the same limita

tionsas analyticmethods, in that problems that are fairly 

complicated are solved almost as easily as ones with simple 

configurations of sources and boundaries. Of all the various 

available analogue methods, the ones used most widely in 

engineering applications have been the electrolytic tank and 

the resistive mesh analogue. In the electrolytic tank, a 

conductive liquid sheet represents the plane in which the pro-

blem is formulated [3],[4]. Accuracy is limited, however, 

and special models have to be constructed for each problem to 

be solved. The resistive mesh analogue [5] is versatile 

enough to eliminate need for construction of special jigs for 

each problem, and, indeed, may be constructed 50 that infinite-

ly extending problemsmay be solved [6]; however, accuracy is 

again limited and special measuring equipment may be required 

for meaningful solutions to be obtained. Higgins [7] gives an 

extensive bibli~graphy of various electro-analogic methods, 

and the reader is referred to his papers for further details. 
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Numerical methods have come into prominence in 

recent years, since the widespread availability of la~ge dig

ital computers has made solution of complicated problems 

possible wit~out the need for special equipment. Numerical 

methods have also extended,the practical range of problems 

that are analytically solvable, since the evaluation of com-

plicated functions and the evaluation of series of many terms, 

to name just two, is now not only practical, but simple and 

convenient as well. Of all numerical methods available for 

solution of elliptic problems, none has come into as widespread 

use as finite differences; an extensive literature exists on 

the subject. .Finite differences have proved popular for two 

main reasons that.are not entirely separate: they are rela-

tively simple to pr~gram or code for digital computer solution 

and a large variety of complicated problems can be handled 

fairly easily. Theoretical consideration of finit~ differences 

is not trivial; however, their wide acceptance by academe and 

industry has prompted an extensive theoretical literature and 

the subject is far from exhausted. 

Flexibility and wideuse of finite differences not

withstanding, there exists a large category of elliptic problems 

that have up to now resisted rigorous treatment. This is the 

class of infinitely extending problems, i.e., those problems 

that have boundary conditions at infinity. It is these pro-

blems that are considered in this thesis, specifically those 

problems that may be posed in terms of the Laplace or Poisson 

equation. First, however, finite differences in general will 

be considered briefly. 
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1.1 FINITE DIFFERENCE FORMULATION OF FIELDS 

As the name suggests, finite difference methods are 

based on the replacing .of a partial. differential equation by a 

number of difference approximations and then solving the large 

number of resulti~g algebraic equations. The solutions to the 

approximate system represent solution values at dis crete 

points in the region of interest. The continuous differential 

operator is replaced, or approximated by, a matrix operator. 

Necessary and sufficient conditions for uniform approximation 

of a continuous operator by a.matrix may be found in any text 

on linear spaces (8], and will not he detailed here. The 

elliptic operators under consideration here conform to these 

conditions and hence may be approximated by matrices. To 

illustrate the method of approximation, one finite difference 

equivalent of the Laplacian will be derived. 

Suppose a regular rectangular mesh is superimposed 

on the continuous plane. Let the function values V at the 

nodes of the mesh he representative of the continuous function 

~ at that point in the continuous plane. Define a five-point 

star in the mesh by the compass notation shown in Figure 1.1. 

FIGURE 1.1: REGULAR FIVE-POINT STAR 
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The first partial derivatives about the point 0 in 

the star may be approximated in terms of the forward and back 

differences as, 

The second partial derivatives may be taken as the second 

divided differences, [9], 

~ !(!tl -!tl)' 
h ôx faX b 

so that the approximation to the Laplacian becomes, 

a
2

cJ> + a2cJ>1 ~ L(v + V + V + V
W

- 4V
o

) 
ax 2 ôy2 0 h 2 NES 

This derivation serves to il1ustrate the finite differ-

ence approximation but does not, however, give rise to any con-

venient estimate of the error incurred, though it is seen by 

inspection that the error involved is of the order of h 2 • 

Moreover, the mesh 1engths have been assumed equa1. A more 

precise expression may be obtained by taking a Taylor expansion 

about the point 0 and ignoring high order terms [10], [11]. The 

resulting system of equations, however, may not a1ways be 

symmetric. A symmetric system is guaranteed by derivation of 

the finite difference formulas by a variationa1 method [12], 
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which is based on minimizing an integral of the form 

I(~) = 11[-(~2 + ~2) + F~] d d x y x y 

Whatever the method used, the resulting formula at each point 

is the so-called five-point finite difference Laplacian, with 

an error of O(h 2 ). The approximating error may be reduced by 

including more points in the formula. For example, inclusion 

of four more mesh points in the star, as shown in Figure 1.2, 

yields a much more accurate nine-point equation [10] which, 

however, is often not as easily incorporated in computer pro

grammes, particularly if complicated material interfaces are 

encountered. The reader is again referred tothe literature 

for details of the various approximating techniques [10], [11], 

[12], [13]. 

FIGURE 1.2: NINE-POINT STAR 

When a finite difference formula is written for each 

node in the mesh, there results a large number of algebraic 

equations which must be solved simultaneously. Written in 

matrix form, the resulting system is of high order and very 
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sparse, i.e., the coefficient matrix contains a large number 

of zero elements. Direct methods, such as inversion of the 
\ 

large matrix, are, as a rule, inconvenient, although they have 

been \ ""ed [14]. Iterative solutions of such systems are 

more common since the coefficient matrix need not be stored, 

but is generated as needed and the iterative processes are, 

as a rule, free from round-off error propagation. 

Finite differences can be traced back to Gauss [15] 

and one of the oldest iterative methods, the classical Gauss-

Seidel, dates back to 1873 [16]. The word "relaxation" is 

due to Southwell [17] who described a method of solving a 

stressed, jointed framework by the systematic relaxation of 

strains. ,Sorne of the more common as well as historical 

iterative methods are discussed in the next section. 

1.2 ITERATIVE SOLUTION OF THE RESULTING SYSTEM OF EQUATIONS 

1.2.1 SOUTHWELL RELAXATION: Southwell relaxation [17] is 

intended for hand solution of elliptic problems. The method 

consists of rewriting the difference equations at each node 

in the mesh in the form 

where the c· 
~ 

are positive constants, the constant t repre-

sents the forcing function (if any) , and the quantity RO is 

termed the "residual". If V is the solution, then the 
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residual Ra is zero. At first, arbitrary values are assigned 

to the vector V at each point a. The residual is then evalu-

ated at each point, and the mesh is scanned for the residual 

with the largest magnitude. At that point, the residual is 

brought to zero by solving for Va as 

Cha~gi~g Va at any point changes the value of the 

residual for each of its neighbours. The neighbouring resi-

duals are then up-dated and the field is scanned again for the 

residual with the largest magnitude and the process repeated. 

This process can be speeded up by overrelaxing as 

follows 

V(new) = 
a 

V(old) + w[V* 
a a 

where if w = l, the process is called normal relaxation, if 

w > l, overrelaxation and w < l, underrelaxation. This 

process is not well suited for use on digital computing 

machines since the search for the largest residual is a rela-

tively inefficient process. 

1.2.2 RICHARDSaN'S ~~THaD: This method [18], also known as 

the method of simultaneous displacements, was first considered 

in 1845 by Jacobi [19]. In this method, the residuals are 

systematically evaluated at each point in the field and the 
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potential at each point is then subsequently corrected. If 

the superscript (k) refers to the number of complete itera-

tions, the correction scheme may be stated as 

V(k+l) = 
o 

Convergence of the method is poor and, in general, the best 

value of w is different for each iteration. The method 

also suffers from the disadvantage that two full sets of 

function values must be stored. It is rarely used in practice. 

1.2.3 LIEBMANN'S METHOD OR GAUSS-SEIDEL: The classical Gauss-

Seidel method [16], which when applied to the Dirichlet pro

blem is termed th~ Liebmann method [20], [21], and also called 

the method of successive displacements [22], is a simple modi-

fication of Richardson's method. In this sCheme, the most 

recently computed values of the function V are used at each 

stage. If the superscript (k) again refers to the number of 

completed iterations, one possible correction formula is 

(k+l) 
Vo = CNV~k+I)+ ~v~k+l)+ cEV~k)+ csv~k)- t 

Co 

This method requires storage of on1y one complete set of values 

of V and it can be shown [12] that the rate of convergence is 

twice that of Richardson's method. A complete discussion of 

the method is contained in a paper by Frankel (23]. 
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1.2.4 YOUNG-FRANKEL SUCCESSIVE OVERRELAXATION: This method 

developed independently by Young [24] and Frankel [23] is 

also known as the extrapolated Liebmann method, since it is 

derived from the ordinaryLiebmann method by the introduction 

of an overrelaxation facto·r. Using the above notation, 

(k+l) (k) c v(k+l)+ v(k+l) C v(k)+ c v(k) (k) 
V = V + !.Il [ N N Cw W + E E S S - t -V ] 
o 0 0 

Co 

When w = 1 this reduces to the above Liebmann method. It 

can be shown that the method converges for 0 <!.Il < 2, ~2]. 

Consider the set of linear equations that has to be 

solved 

AV = B 

Split the coefficient matrix A into three matrices 

A = L + D + U 

where L is the lower triangular matrix of A with zeros on 

the diagonal, D is a diagonal matrix whose elements are the 

diagonal elements of A, U is an upper triangular matrix con-

taining the elements of A above the diagonal. The extrapol-

ated Liebrnann rnethod then reduces to 

(1.1) 
w !.Il 
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Define an error vector e(k) whose components are 

e~k) = V~k) - V 
J. J. i 

where Vi is the solution. Substitute into (1.1) to yield 

e(k+l)= -(D+wL)-l [(w-l)D+wU] e(k) (1. 2) 

which is the fundamental erroi equation for successive over

relaxation. 

Equation 1.2 may be written as 

e(k+l) = M e(k) 

and in order that lim e(k)= 0 it is necessary for all 
k-+co 

eigenvalues of M lie within the unit circle. It can be 

shown that [24] 

À = Wll ±lw2 11 2 -·4 (w-l) 

2 

(1.3) 

where À is an eigenvalue of M and 1J is an eigenvalue of 

(I - D-1A), which is the Jacobi matrix corresponding to the 

Jacobi iteration in § 1.2.2. This may be done by invoking 

Young's property "A" on the matrix A [24]. Moreover,it can 

be shown that the optimum value of w lies between 1 and 2. 

The prob1em of choosing wopt has received consider

able attention in the literature [11], [25] ,[26] and will not 



be discussed here. In, general, the methods depend on the 

acquisition of a, good estimate of ~ in equation 1.3, thus 

allowing a better estimate of À and hence W t. op 
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1.2.5 PEACEMAN-RACHFORD ALTERNATING DIRECTION LINE RELAXATION: 

In this method, lines of nodes are considered simultaneously 

[27], [11]. This method, although extremely fast for rec

tangular regions in comparison with the above methods, is 

difficult to optimize and involves tedious programming for 

problems with complicated boundaries. 

1.2.6 OTHER METHODS: Many variations of the standard itera-

tive methods have been presented in the literature. These 

methods fall ro~ghly into two classes: In the first class 

Chebyshev polynomials are used for acceleration of the usual 

iterative schemes [28] and are reported to be useful even in 

the case of problems for which the relaxation matrix has 

complex eigenvalues [29]. The second class involves con-

version of the standard schemes into a quasi-doubly-iterative 

scheme, again in order to hasten convergence, or in fact to 

obtain convergence at all [30], [31], [11]. The reader is 

again referred to sorne of the extensive literature on aIl the 

above subjects for details [11], [12], [22],[31], [32]. 
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1'.'3 MAIN LIMITATION OF PRESENT-DAY FINITE Dl FFERENCE SCHEMES 

It has been shown, though perhaps sketchily, that 

formulation of an elliptic problem in finite differences pro

duces a finite, tho~gh la~ge, system of equations and unknowns. 

However, it has been implicitly assumed in the above dis

cussion that the problem is defined over a finite portion of 

space and hence may be modeled by a mesh of finite size. A 

large number of elliptic problems are unbounded, i.e., they 

extend to infinity in space, with at least one boundary 

condition at infinity. stra~ghtforward application of 

finite differences to this type of problem would result in 

an infinite number of equations and unknowns. Various 

attempts have been made to reduce the problem to one of finite 

size, usually by means of sorne approximation. The infinitely 

extending problem is discussed in the next chapter. 
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CHAPTER 2 

THE EXTERIOR ELLIPTIC PROBLH1 

2.1 STATEMENT OF PROBLEM 

'Assume some prescribed distribution of sources and 

bou~daries exists within a fini te region R of the (x,y) or 

(r,z) plane. The r~gion R may contain any combination of 

material inhomogeneities, time-varying fields and material 

non-linearities. outside the regionocoupied by these distri

butions assume Laplace's equation is valid everywhere (see 

Figure 2.1)*. Three-dimensiona1 axially symmetric prob1ems, 

i.e., problems in the (r,z) plane, will be treated here, 

although the discussion is valid for two-dimensiona1 problems 

in the (x,y) plane except for a few differences which will be 

pointed out. 

* It is not necessary that the z-axis forro a part of R, 

and certainly in the (x-y) plane R may be located anywhere. 

The development, in any case, is the same. 



'i]2cp = 0 

FIGURE 2.1: PROBLEM DEFINITION 

The problem to be solved is as follow,s: 

with the boundary conditions 

Bl(cp) 

!t, !t ~ 0, r,z ~ 00 

dr dZ 

(r,z) é.R 

15 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

where cp = cp (r,z) is the potential, and BI(cp) represents the 

prescribed sources and boundaries in the region R. As was 

stated above, formaI formulation of this problem in finite 
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differences requires the superposition of an infinitely 

extending mesh on the problem, resulting in an infinite number 

of equations and unknowns. Various past methods designed 

to cope with the infinity boundary condition are discussed 

in the next section. Some theoretical background literature 

on the subject is considered by Greenspan [32], who considers 

the problem largely unsolved. 

2.2 PAST METHODS DESIGNED .. TO COPE WITH THE INFINITY 

BOUNDARV CONDITION 

Since the solution to the problem is rarely desired 

over the entire infini te plane, aIl approximations to the 

infinitely extending problem involve solution of the problem 

in a finite "region of interest", within which the solution 

is desired. The methods fall roughly into four classes: 

2.2.1 IMPOSITION OF AN ARTIFICIAL BOUNDARY: By far the most 

widespread method of conversion of the infinitely extending 

problem to one of finite size has been the imposition of an 

artificial boundary which encloses the region of interest. 

The problem is, in this way, converted into an interior 

boundary value problem and the artificial boundary is intui-

tively chosen in such a way that the resulting interior 

problem is thought to possess properties that are similar 

to the infinitely extending problem. For examp1e, Binns and 

Lawrenson [Il] solve the prob1em of a rectangu1ar permeable 
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conductor in space by calculating values of potential along 

a boundary some distance away, the values on the boundary 

being obtained by imagining all the current in the conductor 

to be concentrated at the center. In this example, the 

accuracy of the solution depends on the distance of the 

artificial boundary from the conductor and the method suffers 

from two major disadvantages: many more nodes than are actually 

required are used in the solution and the errors incurred by 

the use of the artificial boundary are not easily estimated. 

The most common procedure in this class of approximations is 

merely to impose a flux-line or equipotential boundary some 

distance away from the r~gion of interest and then proceed 

to solve the resulti~g interior problem [14],[33],[34] ,[35]. 

Again, the accuracy of the solution cannot easily be estimated 

and a very large mesh is required, along with an unnecessarily 

large increase of computing time and core storage requirement. 

2.2.2 CONFORMAL MAPPING TECHNIQUES: An inversion trans-

formation may be used to convert the infinite region outside 

the region of interest into a second finite region. It is 

then possible to perform a finite difference solution over 

both regions [36], where the transformed region becomes a 

"terminating region" much as in the case of the infinitely 

extending resistive mesh analogue [6]. The disadvantages in 

this method are again largely twofold: many more nodes are 

used than are actually required, and special equations must 

be written for the irregular configurations at the dividing 
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line between the region of interest and the terminating 

region. 

A technique similar in princip le has been used by 

Greenspan [37], who describes a numerical inversion mapping 

technique for the solution of the exterior Dirichlet problem. 

Greenspan's solution is valid only for simple Dirichlet pro-

blems, namely those problems in which the desired region of 

solution is the exterior of a simply-connected Dirichlet 

boundary and its applications are therefore limited. 

2.2.3 FOURIER EXPANSION OF THE INFINITE REGION SOLUTION: 

For problems in which the r~gion exterior to the r~gion of 

interest has a special geometric configuration (such as the 
• • 

exterior to a circle, or an infinitely extending strip), 

the solution in this exterior source-freer~gion may be ex

panded in a Fourier series, which, though containing an 

infinite number of terms, may be truncated without too much 

error after a finite number of terms. One such solution con-

cerned the scattering of plane waves from conducting cylinders 

[38]. The scattering body was modeled in a polar mesh just 

large enough to enclose it; the scattered field exterior to 

the resulting circular uregion of interest" was expanded in 

terms of the Hankel functions, the expansion being terminated 

after a fini te number of terms. The coefficients in the 

expansion were kept variable and the problem solved by a 

dOubly-iterative scheme in which the coefficients in the 

expansion were corrected after each finite difference solu-
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tion of the interior r~gion of interest. 

Another such solution concerned the eddy currents 

in a conductive strip infinite in le~gth [39] ,[40]. The 

technique used was similar to the above. The disadvantages 

of these methodsare as follows: First, the, geometrical 

configuration of the region of interest must be such that 

a Fourier expansion can be found for the exterior region. 

This may involve use of an awkward mesh (such as the polar 

mesh in the first above example) or a difficult, expansion. 

Second, there is no a priori knowledge'as to where the 

series expansion may be terminated and hence errors incurred 

in this method of approximation are not easily (if at aIl) 

estimable. Third, an efficient correction scheme for the 

coefficients of the Fourier expansion isdifficult to deter

mine. These methods.are then, in, general, practical only for 

special classes of problems. 

2.2.4 BOUNDARY RELAXATION TECHNIQUES: Similar to the above 

cla$s, boundary relaxation, as the name implies, consists 

of the imposition of an arbitrary contour, or boundary, 

around the region of interest. A mathematical expression is 

then derived that relates the potential values on the boundary 

(and therefore the infinite region solution) to the values 

of potential (or the potential gradient) in the interior re

gion of interest. The potential values on the arbitrary 

contour are then corrected iteratively until the solution in 

the interior region of interest corresponds to the infinitely 
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extending·solution. Sorne experimental work, limitedto 

2-dimensional r~gions of interest with balanced sources-has 

been done [41] ~ The work was· subsequently extended to 

includeunbala~ced sources and externally applied fields [42]. 

In both the above references, the boundary relaxation pro

cess.was based on a relationship between the potentials and 

their gradients on the arbitrary artificial boundary. In

vestigation of convergence and acceleration of the iterative 

process was empirical, and no error analysis could be given. 

Bou~dary relaxation as developed in. this thesis, 

differs from the above reported methods in four major·res

pects: 

1. A potential shift operator is used 

on the artificial boundary thus 

eliminating the need to evaluategradients. 

2. The process is. formulated in such a way· 

that the standard iterative theory may 

be applied for its solution. 

3. An efficient acceleration algorithm is 

used to hasten convergence of the 

iterative process. 

4. The need for special boundary operators 

for different source balances in the 

region of interest is eliminated. 

The above as well as the following are claimed to 

be original work: 



Rigorous solution of the infinitely 

extending problem without physical 

alteration, applied to (x,y), (r,z), 

coaxial and strip configurations 

including proof of existence, uniqueness 

and convergence; 

Formulation of the problem such that 

standard iterative theory may be applied 

for its solution; 

A consistent finite difference formula

tion that links interior and exte~ior 

problems and shows that ordinary interior 

problems are a special case of the. general 

problem; 

Formulation of the problem in a familiar 

forro so that errors may be· easily esti

mated; errors a~e rigorously.examined and 

an upper bound is derived; 

Development of an accurate, efficient 

solution algorithm including two accelera

tion techniques for the iterative process, 

and 

Derivation of an iterative scheme for the 

determination of boundary operators for 

coaxial lines and strips. 
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2.3 SOLUTION OF THE INFINITELY EXTENDING PROBLEM AS THE 

SIMULTANEOUS SOLUTION OF Two SIMPLE PROBLEMS 

22 

Let Sl be an arbitrary c10sed contour enc10sing the 

region R of the prob1em defined in Section 2.1, ·as shown in 

Figure .2.2. 

S1 

FIGURE 2.2: DIVISION OF THE INFINITE PLANE 

BY AN ARBITRARY CONTOUR Sl 

The potentia1 in the region exterior to Sl may be considered 

to be caused by a source distribution cr(r,z) on S1, unique1y 

defined by [11, 

(2.5) 
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where K is the elementary solution of Laplace's equation 

in free space * .. The source density may be expressed in 

terms of the outward normal derivative of potential on 51, 

cr = .. €!.t ( 2 • 6 ) 
an 

e 

where n denotes the outward normal to 51. Equation 2.5 may e 

now be written as 

(2.7) 

Given the potential values $51 on 51, the normal derivatives 

everywhere on Sl can be found by s01ving the integra1 equation 

2.7. The potential everywhere may then be determined by 

evaluating (2.7) for any desired (r,z). 501ving the system 

(2.1) and (2.2) within S1 simu1taneously with (2.7) and im-

posing continuity of potential and derivatives on 51 yields the 

solution to the problem. 

* In the r-z plane the kernel K is given as the solution to 

a ring charge [43], 

K(r,ziP,L;) Mf 2(rp)! l 
1{(z-~)2+(r+p)2}~1 
l ) 

where M is the complete elliptic integral of the first kind. 

In the (x,y) plane,K is the familiar solution to a line charge, 

I{(x,Yi~,n) 
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A1though (2.7) can be formu1at~d in finite differ

ences [41],[42] the presence of the derivative makes it 

inconvenient to hand1e. The derivative may be e1iminated 

from the prob1em as fo11ows: let S2 be another arbitrary 

c10sed contour outside Sl,·within which it is desired to 

inspect the solution as shown in Figure 2.3. Equation 2.5 

ho1ds for the entire r~gion exterior to Sl, inc1uding Sl. 

Hence, the potentials $Sl and $S2 may be expressed as 

$S2(r,z) = fI K(r,z;p,~) "Sl(P,~) dpd~, (r,z)e.S2 

Sl 

""'r 

S2 

FIGURE 2.3: DEFINITION OF THE CONTOUR S2 

(2.8) 

(2.9) 
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Equations 2.8 and 2.9 may be expressed in the symbo1ic forro, 

(2.10) 

(2;11) 

which may be combined to e1iminate the source distribution as 

(2.12) 

Equation 2.12 represents the solution a10ng 52 of the exterior 

Dirichlet problem of 81. It, in fact, describes a potentia1 

shift from 81 to 82. This shift is unique [44] since ~ is 

harmonie outside 81. 5ince the solution to the original infin-

itely extending prob1em is unique [1], simultaneous solution 

of (2.12) with the interior prob1em defined by the system (2.1) 

and (2.2) within 82 provides the required solution to the 

prob1em. 

A re1ationship of the forro (2.12) is not easy to 

determine in explicit ana1ytic terms but as will be shown 

below, isentirely practicab1e when do ne by finite difference 

techniques. 



2.4 LINEAR SPACE FORMULATION AND DERIVATION OF BOUNDARY 

RELAXATION 
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The original problern rnay be stated as follows (see 

Figure 2.4): 

FIGURE 2.4 

D<I> = f, ( r , z) E:. R 

D<I> = 0, (r,z)+R 

with boundary conditions 

Bl(<I» = 0, (r,z)E.R 

lirn <1> = const 
r~oo 

where D is the Laplacian and the boundary conditions in R 

(2.13) 

(2.14 ) 

defined by Bl have been defined in the preceding section. It 

has also been shownin the preceding section that if the plane 

is di vided as shown in Figure 2.5, where RE Rl, the problern 

rnay be reduced to solving 

R3 

FIGURE 2.5 



D 4>. t = f, (r, z) ES: R1US1UR2US2 . ~n 

with conditions 

B1(4). t) =0, (r,z)E.R 
~n 

4>(S2) =$82' (r,z)6S2 

sirnu1taneous1y with 
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(2.15) 

(2.16) 

where Q contains the second boundary condition (2.14) and is 

an integro-differentia1 operator. Equations 2.15 and 2.16 

may be represented in the symbo1ic forro 

th = g(thS2 ) 'Yint 'Y (2.17) 

(2.18 ) 

It has been shown in the preceding section that simu1taneous 

solution of (2.17) and (2.18) gives the required unique solu-

tion. Equation 2.17 defines a rnapping of 4>82 into 4>int and 

equation 2.18 defines a mapping of 4>. ~ into $82. 
~n\... 

LEMMA 2.1: The rnapping defined by 

exists. 

(2.17) 
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Proof: Given the potential ~S2' ~int is defined as 

the solution of the resulting interiorDirichlet problem. For 

any properly posed problem in the class considered here, this 

solution exists [1], [44]. 

unique [1], [44] • 

This is stated as 

Furthermore, this solution is 

LEMMA 2.2: The mapping defined by (2.17) is unique. 

LEMMA 2.3: The mapping defined by 

(2.18) 

exists. 

Proof: As has been shown in section 2.3, the opera-

tor q acts only on that part of· ~int on SI, i.e., on ~Sl ~int. 

The mapping (2.18) defines an exterior Dirichlet problem with 

given potentials on SI. The solution again exists [1], [371, [44]. 

Furthermore, the solution is again unique [1], [37], [44]. Hence, 

LEMMA 2.4: The mapping defined by (2.18) is unique. 

Let FI be the space of aIl functions ~l satisfying 

(2.17) with ~S2 as independent variable. Let F2 be the space 

of aIl functions ~2 satisfying (2.18) with ~int as independent 

variable. The required solution is then given by 

(2.19 ) 

THEOREM 2.1: The required solution to the original 

problem exists and is uniquely defined by (2.19). 

Proof: Existence and uniqueness of the solution to 

the (well-posed) original problem have been shown elsewhere [1], 
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[44]. The proof of the second statement of the theorem may 

be developed as follows: Suppose the solution ~ to the 

original problem is known. Considering Lemmas 2.1 to 2.4 

and the uniqueness of ~, it need merely be shown that the 

solution ~ satisfies both (2.17) and (2.18) •. Given the 

solution ~ on S2, suppose that ~ e. R2 U Sl U Rl doesnot 

satisfy (2.17). This implies that there exists another 

solution ~* to (2.17) with ~;2 = ~S2' and hence at least two 

solutions to the or~ginal problem, an obvious contradiction. 

Hence ~ satisfies (2.17). Now since R2 U S2 U R3 is a source

free region (by definition) and since $ = ~ext is harmonie [44] 

in R2 U S2 U R3, then. given ~ along and exterior to an arbitrary 

contour Sl,the principle of virtual sources [45] guarantees 

tha t ~ ext E:. ~ and the theorem i s proved. 

For numerical solution of (2.17) and (2.18), the 

continuous spaces Fl and F2 are inconvenient. Let n be a 

space defined by a point set {P.}, j=l, ••• ,n, and let V, an 
J 

n-vector be the projection of ~ E: Rl U Sl U R2 U 82 on the 

point set {Pj}' where each element V
j 

is a representative 

value of ~ at that point. Further, define the mapping of ~ 

into n such that V+~ as n+oo • Let nI be the projection of 

Fl onto n and n2 be the projection of F 2 onto n. Then the 

solution in V is given as 

(2.20) 
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THEOREM 2.2: The finite difference formulation of 

~ in V is conve~gent. 

Proof: The conve~gent nature of finite differences 

is shown e1sewhere [10],[11], [12]. Hence the formulation 

is convergent for consistent finite difference mappings (2.17) 

and (2.18). Equation 2.17 is the standard interior Dirichlet 

prob1em. Moreover, it is shown in the next chapter that a 

consistent finite difference formulation can be found for 

(2.18) • 

Often the construction of the operator q in 

(2.18) is not convenient in finite differences. As shown in 
-1 section 2.1, q ~ L2L1 where L1 and L2 are integra1 opera-

tors of the type 

where K is the e1ementary solution of D and ~s we11-known. 

Let LI and L
2 

be approximated by 

[n-l J D (K) cr 10 1 L.O' :::! h . L' ( Kô (i) dS) 0' + - L~O' (2.21) 
J J 

2=1 S 

where the prime on the summation sign means that the singul-

arity point is omitted, h is the mesh 1ength and the 

contribution due to the singu1arity is given by the additiona1 

additive term, defined by the finite difference operator D. 

This approximation is convergent (and indeed very usefu1), 

The additive term is justified 
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since K is a weakly-singular kernel [46]. The approximation 

belongs to the class of moment methods [47] with impulse 

functions as the space of testing functions. This result 

will be exploited in Chapter 3, section 3.2 and Appendices 

1 and 2. 

Direct simu1taneous solution of (2.17) and (2.18) 

may not a1ways be practica1, or indeed possible. An itera

tive process is s~~gested by these two equations, as fo11ows: 

0) pick a starting vector (or function) 

<j> (k) in the domain of g. 
82 

1) Forro a trial solution <j>(k) 
1 Fl from 

2) Form <j>(k) 
2 

F
2 

from (2.18) 

3) Forro an error vector (function) as 

e (k) = <j> (k) _ <j> (k) 
2 1 

4) is Ile(k~ 1 < 6.?, m = l, or 2, etc. 
m-

if not, 

return to 1) 

if yes, solution complete. 

(2.17) 

The above process can be i1lustrated as shown in 

Figure 2.6. 
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FIGURE 2.6: ITERATIVE SOLUTION OF THE DUAL PROBLEM 

It is not yet certain that the above iterations 

converge. However, the known uniqueness and existence of the 

solution indicate that if the iterations converge at.all, 

they conve~ge to the solution. In the following chapters 

it will be shown that the finite difference equivalent itera-

tive schemes converge for a=a n +~. The iterative process 

is thus convergent, since lim V =~. Finite difference 
n+ 00 

formulation of the problem is considered in the next chapter. 
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CHAPTER 3 

FINITE DIFFERENCE FORMULATION 

3.1 THE INTERIOR PROBLEM 

The method chosen for solution of the interior 

region was point successive overrelaxation (hereafter 

abbreviated S.O.R.) usi~g a five-point finite difference 

formula in a regular 'square mesh [11],[12]. Although a 

more sophisticated solution method for the interior region 

could have been used, it was felt that this method would be 

the most useful in the study of boundary relaxation for the 

following two main reasons: First, the method is easily 

programmed, allowing solution of problems with complicated 

33 

boundaries and/or material interfaces without extremely com-

plicated or sophisticated housekeeping routines, and secondly, 

the solution is easily terminated when sorne desired accuracy 

is reached~ the solution accuracy being easily estimated at 

any stage. The second reason may seem, at first, trivial; 

however,as will be seen later, it is by no means necessary 

(nor desirable) to carry the interior region solution to a 

high degree of accuracy in the initial stages of boundary 

relaxation, thus making the boundary relaxation process com-
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putationally more efficient. The validity of the first 

reason may easily be seen on inspection of sorne of the illus~ 

trativeexamples in Chapter 6. 

The five-point formula used for problems in Cartesian 

coordinates (or x-y) plane) was one allowing material inter

faces centered between meshlines. The most general configura-

tion of the five-point star is illustrated in Figure 3.1, 

which also shows the compass notation used. 

h/2I W 

h/2 

1 
__ I-

I 

0----00 

N 1 

1 
._1- __ 

1 
1 
1 E 

1 - ---
1 

1 

mesh line 

materia1 interface 

FIGURE 3.1: FlVE-POINT STAR IN X-Y PLANE SHOWING POSSIBLE 

MATE RIAL INTERFACES HALFWAY BETWEEN MESH LINES 

With reference to the figure, if the constant K .. is defined 
l.J 

as 

K .. = Ej(region j) = ~i(region i) 
l.J Ei(region i) ~j(region j) 

(3.1) 

where Ei is the permittivity of region i and ~i is the permea

bility of region i, the five-point formula is given as [41] 



1 
1 

1 

1 

1 

35 

2KON VN + 
(l-KON ) 

Vo + 
2KOE VE + 

(l-K
OE

) 
Vo + 

2KOS 
Vs •.• l+KON (l+KON) l+KOE (l+KOE) l+KOS 

(l-KOS) Vo + 2KOW + 
(l-KOW) 

Vo - 4VO + t = 0 (3.2) + Vw (l+KOS) l+KOW (l+KOW) 

The term t in (3.2) represents the source (if any) at the 

point 0*. For the case where the region is homogeneous, i.e., 

all Kij=l, equation 3.2 reduces to the familiar 

(3.3) 

The five-point formula used for 3-dimensional axially 

symmetric problems (or r-z plane) was one allowing material 

interfaces alo~g mesh lines as weIl as along diagonals in the 

mesh. Figure 3.2 shows the most general configuration of the 

five-pointstar, where the permittivity of the medium is assumed 

to be different in each octant about the point o. Following 

the convention in Figure 3.2, the finite difference formula at 

the point 0 is given as [33] 

* For electrostatic problems, t is the di8cretized pois8onian 

term t = h 2 ~ where q i8 the charge at 0 and E i8 the permit
E 

tivity. In magnetostatic8, t = h2~J, where ~ i8 the permeabil-

ity of the region 0 and J i8 the current density. 
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FIGURE 3.2: FlVE-POINT STAR IN R-Z·PLANE SHOWING ALL 

where 

POSSIBLE ALLOWED MATERIAL INTERFACES 

Kw = (1 + h/4R)E 4 + (1 - h/4R)E5 

K = o 
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(3.4) 

and R is the distance of the point 0 from the axis of symmetry 

(the z-axis). = e: = .•• = 
2 

ES' equation 3.4 again re-

duces to the fami1iar 

Vw + VE + (1 - h/2R)VS + (1 + h/2R)VN - 4VO = 0 (3.5) 
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Let .the problem be posed in a square mesh. Let 

the vector V represent the potential values at all the nodes 

wi thin and on ,.82 • L~t V be parti tioned so that the sub

vector Vint represents all the potentials at the nodes. 

interiorto 52, and the sub-vector V52 contains all the 

potentials on the contour 82, viz., 

(3.6) 

It is readily seen that the five-point formula (3.2) or (3.4) 

may be written for all interior potentials Vint' but not for 

V52 , since the mesh is not defined exterior to 52. 

The interior problem may now be written as a matrix 

equation, 

[A 1 - Cl 

[

V int] 
V52 

[B 1 1 

= (3.7) 

where AI is a square coefficient submatrix relating the 

interior potentials Vint; C is a rectangular connection matrix 

with zero or positive elements relating the interiorpotentials 

to those on 52, and the column vector BI depends on.the pre-

scribed sources and fixed potentials in the interior region. 

Chas been written with a minus sign for reasons of convenience 

which will be apparent later. The system (3.7), as it stands, 

has no solution since the overall coefficient matrix is not 

square, i.e., there are more unknowns than there are equations. 



If; however, the potentials V52 are.known (or. given), then 

there iso~tained, by direct substitution, the familiar 

solvable system for the interior Dirichlet problem, 

AV = B 
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(3.8) 

However, since the potentials on 52 are not known 

a priori for the exterior problem, more equations are re

quired. This is considered in the next section. 

3.2 ApPROXIMATION OF THE BOUNDARY QpERATOR 

It was shown in Chapter 2 that the solution of the 

infinitely extendi~g problem maybe obtainedas the solution 

to the interi9r-problem within the contour 52,simultaneously 

with 

and 

$Sl(r,z) = JI K(r,,,p'~)"Sl(P,~) dpd~, (r,z)€Sl 

51 

which were combined as 

(2.8) 

(2.9) 

(2.12) 

The problem, as was stated in the previous section, 
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is posed in a r~gular square-mesh*. Let the-contours-Sl-and 

S2 be contours of adjacent nodes in the mesh as shown in 

Figure 3.3. Slis represented by x'sand S2 by OlS. The 

potentials onSl and S2 are-represented by the vectors VS1 ' 

an n~vector, _and by VS 2 ' an m-vector, respectively. -Suppose 

the pqtential distribution due to a source at one point in 

the infinite mesh is knownto be, 

where (ro'zo) are the coordinates of the source, V is the 

potential at the point (r,z) and Io is the source strength. 

For problems in-Cartesian-coordinates, (r,z) should be_re-

(3.9) 

placed by (x,y). Equations 2.8 and 2.9 may now be approxi

mated by-

:::! V(r,z) ISl = l Io(ro,zo)ljJ(r,z~ro'zo)' (r,z) E: Sl 

(ro ' zo) <E. Sl 

:::! V(r,z) 1 
S2 

= L l (r ,z )ljJ(r,z;r ,z ), - (r,z)E.S2 
00000 

(ro,zo)E Sl 

* The mesh does not necessarily have to be square, nor 

(3.10) 

(3.11) 

even regular. Use of a square mesh simplifies computation 

considerably, but does not detract from the generality of 

the analysis. 
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FIGURE 3.3: DEFINITION OF S1 AND S2 FOR A RECTANGULAR 

INTERIOR REGION IN THE R-Z PLANE 

which may be written in matrix notation as 

and 

=SI 
o 

v = PI 
S2 0 

z 

where S is an n by n square matrix, P is an m by n 
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(3.12) 

(3.13) 

rectangularmatrix, and each element of P and S is ·an appro-

priate val~e of ~. 

Equations 3.12 and 3.13 yie1d an expression for V~~ 
::;.::: 

in ter.ms of VSl ' viz., 

(3.14 ) 

or, 
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(3.15) 

where Q is an m by n ,rectangular matrix. Equation 3.15 is 

the fini te difference equivalent of (2.12). 

In order to maintain a ,consistent finite difference 

formulation, the function W (values of which form the matrices 

P and S) must be chosen to be the exact elementary solution 

of the finite diff,erence Laplacian. Such a'solution can be 

found for both the x-y and r-z planes. The discret~zed Green's 

function for the x-y plane has been found by Amstu~z [48] who 

. gi ves the solution as a convergent integral·· of . the form 

w (min) 1 l 1 - cos(ma+nb) 
=8;2 r2 - cos a - cos b 

da db (3.16) 

where r is the square (-TI~a~TI,-TI~b~TI). This integral is con

veniently evaluated for the case m=n and hy symmetry and 

application of the five-point operator may be evaluated for 

other values of m and n. This is discussed in detail in 

Appendix l, as well as the methods of computing Q matrices 

for rectangular regions in the x-y plane. 

The Green's function for the discretized Laplacian 

in the r-z plane has been discusseà by Sander [49] 1 who 

formulates W as a convergent integral involving trigonometric 

and hypergeometric functions. His solution is computationally 

prohibitive; however, point values of the Green's function 

in the continuous plane (the complete elliptic integral of the 
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first kind) have been found to give good results~ Sanqerls 

solution as well as the method used to general Q matrices for 

the r-z plane are discussed in Appendix 2. 

The matrix Q in equation 3.15 is referred to as a 

"shift" matrix, since it.represents the potential shift from 

the contour Sl to the contour S2. As will be shown, the 

shift matrix provides thenecessary remaining equations (for 

equation 3.7) to make solution of the problem possible. 

The shift matrix relates potentials.on Sl to those 

on S2 •. As is readily seen, the potentials V on Sl are a 
Sl 

subset of the potentials Vint of the interior·region. Equa-

tion· 3.15 may there'fore be rewri tten as 

[-Q 1 I] IV' 1 ~nt 

= 0 • VS2 
(3.17) 

where the recta~gular submatrix QI contains columns of Q and 

columns of zeros, and l is the identity matrix. The system 

(3.17) along with the system (3.7) allows solution of the 

problem. Before the actual solution is discussed, however, 

sorne of the properties of the shift matrix Q will be examined 

briefly. 

3.3 SOME SHIFT r·1ATRIX PROPERTIES 

A variation of the maximum principle [12], [32] will 

be stated first: 
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Let the mesh exterior to the contour Sl be denoted 

by Rh. Further, let the nodes on the contour Sl.be denoted 

by Sh. Assume that the region ~ is connected and that in 

~ the function V satisfies 

D (V ) - c V + c V + C V + CV 
h 0 N NEE S S W W 

where cN,E,S,W > 0 and Co = l 
NESW 

c .• 
~ 

ple maybe stated as 

c V = 0 o 0 
(3.18) 

Then the maximum princi-

THEOREM 3.1: A function V which satisfies (3.18) 

at each grid point in ~, takes on its maximum value in Sh. 

Proof: Assume the contrary,namely that at sorne 

point P in ~ the function takes on its maximum value, say M. 

Then, from equation 3.18, 

or 

which implies that 

V=V=V=V=V=M NES W P -

In other words, V must assume the value M at.the four adja-

cent points. Since Rh was assumed to be connected, the process 

may be continued for aIl points in ~, including those adja

cent to Sh. Hence aIl points in ~ and Sh take on the value 



M. This, however, contradicts the original assumption that 

V takes on its maximum value at P, Q.E.D. 
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The maximum principle may be used to show unique

ness of·(3.1S), i.e., that the shi ft operation (or the shift 

matrix) is unique for given contours SI and S2. This may 

be done asfollows: AlI points in S2 are.in the region Rh 

where (3.18) holds. Assumethat, for given potentials in Sh' 

the solution V in ~ is not unique. Then there must exist. 

at least two solutions VI and V2 , both of which satisfy the 

given boùndary conditions, namely, 

Dh (VI) = 0 in ~, VI = f(S) in· Sh 

and 

Dh (V2) =·0 in ~, V2 = f (S) in Sh 

Since Dh is a linear operator, 

Dh (VI -V
2

) = DhVl - DhV2 = 0 

and if Vd = VI
-V

2
, .the problem in Vd becomes 

Dh(Vd ) = 0 in Rh' Vd = 0 in Sh 

From the maximum principle, the solution satisfies 

Vd ~ 0 in ~ 



~ 
9 
:= 

1 

However, 

hence 

-v d 

-v d Soin Rh· 
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= 0 in Sh' 

Therefore, Vd = 0, Vl = V2 , and the solution is unique. The 

potential values on S2 are a subset of the solution V, hence, 

given potentials on Sl, the' potentials on S2 are uniquely 

determined. A similar proof holds for ,equations 3.12 and 

3.13, though sl~ght modifications are required. (All sources 

but one are sequentially set to zero and a sourceterm is 

introduced in the difference operator Dh ; the maximum princi

ple is used to show uniqueness of each solution, and all solu-

tions are then added to obtain the total solution). Existence 

of (3.12) and (3.13) has been shown [48],[49]. Since the 

matrix in (3.12) is square, and the solution is unique, the 

matrix 8 in (3.12) possesses an inverse, and Q can be found. 

All the above results are stated in 

THEO REM 3.2: Given the contours 81 and S2, the 

potential shift from Sl to S2 is uniquely determined by 

equation 3.14 or 3.15. 

The shift matrix Q also possesses two positivity 

properties * that are useful in the derivation of further 

* It is implicitly assumed that the potential reference is 
zero potential, located outside 82 in the case of the x-y 
plane, and at infinity in the r-z plane. 
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results. These properties are stated in two lemmas: 

LEMMA 3.1: 

(3.15) satisfy 

LEMMA 3.2: 

(3.15) satisfy 

All elements q .. 
l.J 

of the matrix Q 

ï q .. < 1, i=1,2, ••• ,m 
. 1 l.J 
J= 

All elements q .. 
l.J 

o < q <. 1 
ij 

of the matrix Q 
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in 

in 

Proof: 5ince 52 is in a Laplacian reqion, the proof 

of the first lemma follows easily from the maximum principle 

on setting all potentials on 51 to unity. This applies to 

any simply-connected contour 52. ·The proof of the second lemma 

follows on setti~g all potentials on 51 to zero and then 

setting each, in turn, to unity. 

3,4 THE COMBINED PROBLEM 

Equations 3.7 and 3.17 may be conjoined into a 

single matrix equation, written in the partitioned form, 

where the square submatrix AI is the same as would be obtained 

for an interior problem with a Dirichlet boundary at 52, l is 
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the identity matrix, C is the connection matrix defined in 

section 3.1 above, and QI is as defined in section 3.2 above. 

The submatrix AI has positive diagonal elements and negative 

or zero off-diagonal elements. All elements 'of Cand Q are 

either positive or zero. 

In the formulation of the problem as in (3.19), the 

set of equations may be thought of as follows: AlI interior 

potentials Vint satisfy a five-point difference formula of 

the form 

2 CjVj - caVa = 0 

NESW 

At all nodeson S2, the potentials VS2 satisfy an n-point 

formula of the form 

n 
2 (qij VS1 .> - VS2 . = 0, i=1,2, ••• ,m 

j=l J 1 

where the potentials VSl are a subset of the interior poten

tials Vint. Equation 3.19 may thus be written in the form 

A V = B (3.20) 

in themanner of an interior problem. It remains to prove 

THEOREM 3.3: -1 
A > 0 

Proof: The usua1 coefficient matrix for the interior 

prob1em satisfies the theorem (i.e., the submatrix AI in 

---=-
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equation 3.19). It is thereforè only necessary to show that 

the introduction of the n-point formula for the potentials 

on 82 does not change the conditions for which this result 

is known to hold true. Specifically, A is a real, square 

matrix with aii > 0 and aij ~ 0, i~j (by Lemma 3.2). Also, 

a .. > ~Ia .. 1, by Lemma 3.1 with strict inequality for some 
J.J. - J.J 

j 

i, i.e., A is di~gonally dominant. The matrix A is also 

irreducible (this can be shown though very tedious, as in 

ref. 31, pp. 19-20). 

Q.E.D. 

-1 
Therefore [31], det(A) ~ 0 and A >0, 

A solution to the problem may thus be obtained as 

Since the matrix A is usually of very high order, direct 

inversion is rarely convenient. The next chapter shows 

how standard iterative the ory may be applied to the system 

(3.19) or (3.20). First, however, the relationship of the 

exterior problem, as formulated here, to the interior pro-

blem will be discussed. 

315 RELATIONSHIP BETWEEN INTERIOR AND EXTERIOR PROBLEMS 

(3.21) 

Consider a slightly generalized version of equation 

3.19, viz., 
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AI -C Vint BI 

= (3.22) 

_QI l VS2 D 

where the zero subvector in the right-hand side of (3.19) has 

been replaced by the more general subvector D. It will be 

shown that the interior Dirichlet, interior Neumann as well 

as the exterior problem can be formulated as in (3.22). 

INTERIOR DIRICHLET PROBLEM: In this problem, the 

potential on S2 is prescribed, i.e., D is non-zero in general. 

The problem may be put into the form (3.22) by setting the 

shift operator to zero, viz., 

-C 

l 

=. 
~'1 
D J 

and by substitution, may be reduced to 

A" V. = B" 
~nt 

which is the familiar forme 

INTERIOR PROBLEM WITH A CLOSED NEUMANN BOUNDARY 

(3.23) 

HALFWAY BETWEEN MESH LINES: For this problem, the contours 

51 and 52 are chesen te lie one-half rnesh unit inside and 

outside the given Neumann boundary respectively. 

blem may now be written as 

The pro-



AI -C 

-II l 

V. t J.n 
BI 

D 
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where the submatrix Il contains co1umns of zeros interspersed 

with columns that contain one unit y element with the rest 

zero. In the case that the boundary is a flux line, i.e., 

a homogenèousNeumann boundary, the subvector D is zero. By 

substitution, the problem may ~gain be reduced to the forro 

(3.23). 

CLOSED NEUMANN BOUNDARY ALONG MESH LINES: This 

problem is similar to the above, with S1 and 52 chosen to lie 

one mesh unit inside and outside the given boundary res-

pectively. ~gain, for a homogeneous Neumann boundary, Dis 

zero and the problem may be formu1ated as above. The matrix 

operator Il may be thought of as being a "unit y shift" opera-

tor, since it reflects potentials from Sl to 52. 

Thus it is seen that interior and exterior problems 

of the type considered here differ only in the definition of 

the boundary operator, a fact that may be useful in further 

research in this area. 
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CHAPTER 4 

ITERATIVE SOLUTION 

As was mentioned in Chapter 3, the matrix problem, 

because of its size, is probably most conveniently solved by 

some iterative method. Direct inversion of the coefficient 

matrix has been considered [14] to overcome convergence 

difficulties due to inhomogeneousregions with widely-differing 

material constants. Iterative convergence difficulties of 

such problems have been overcome, however [30], 50 that this 

reason·is assuming less importance. Iterative methods offer, 

in the main, two distinctadvantages over the so-called direct 

methods. First, the coefficient matrix is such that indiv-

idual elements are easily generated as needed and do not need 

to be stored. These matrices are, as a rule, very sparsei 

that is, they contain a large number of zero elements. Direct 

inversion destroys, in general, the sparsity of these mat-

rices. As more and more fast access memory becomes avail-

able to the programmer, however, this advantage is becoming 

less important. Second, many iterative methods do not suffer 

from round-off error propagation as, for the most part, they 

tend to be self-correcting in this respect. It is shown in 

this Chapter that the standard iterative theory may be applied 

to the linear system (3.19) or (3.20). 



52 

4.1 PRELIMINARY BACKGROUND THEORY 

In order to demonstrate how an' iterative method 

may be arrived at, consider a system of equations such as the 

following 

Ax = b (4.1) 

Write the coefficient matrix A as the suro of two matrices, 

A = M - N (4.2) 

Substitute (4.2) into (4.1) to yield 

Mx = Nx + b 

or 
(4.3) 

Equation 4.3 suggests aniterative method as, 

(4.4) 

wherethe superscript (k) again refers to the number of com-

pleted iterations. Define an error vector as 

e(k) = x(kLx , 

where x is the solution. Then, substitution into (4.4) and 

use of (4.3) yields 

In order for convergence to be obtained, that is, for the 

condition 
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lim e(k)= 0 
k + 00 

to hold for any arbitrary e(O~ it is necessary that all eigen-

values of the matrix M-IN lie within the unit circle; or 

stated anotherway, the spectral radius, ~(M-1N) must be 

less than unity. 

A definition and a theorem from matrix theory [31] 

will now be stated: 
1 

DEFINITION 4.1: For nxn real matrices A, . M and N,· 

A =.M-N is a regular splitting of the matrix A if M is non

singular with M- l > 0 and N > O. 

THEORBM 4.1: If A = M-N is a regular splitting of 

the matrix A and A- l ~ 0 then 

< l 

i.e., the spectral radius of M-1N is less than one. 

The iterative method associated with this splitting 

converges for any initial vector. That is, the sequence of 

v(k) obtained from 

MV(k+l) = NV(k)+ B, k > 0 

which can be written as 

(4.6) 

(4.7) 

converges for any v(O). The proof may be found in ref. 31, p.89. 



1 
li 
~ 

4.2 CONVERGENCE OF SOME STANDARD ITERATIVE SCHEMES 

The r~gular-splitting theorem 4.1 may be used to 

prove convergence of the classical Jacobi [19] and Gauss-

Seidel [16] methods when applied to the system of equations 

54. 

( 3 • 19) or ( 3 • 20) • Application to the system (3.20) yields. 

what are conventionally termed "point methods", while 

application to the system as posed in (3.19) suggests the 

iterative "block methodsU
, which correspond to the iterative 

method suggested in Chapter 2, § 2.4. The point methods will 

be discussed first. 

In the system of equations 

AV = B (3.20) 

the coefficient matrix Amay be written as the matrix sum 

A = D - L - U (4.7) 

where D= diag. {all,a22, ••• ,ann} and Land U are respectively. 

strictly lower and upper triangular nxn matrices, i.e., possess 

zero diagonal elernents. Note that D has all positive, non-

zero diagonal elernents, the elernents of L and U are all posi-

tive or zero and no special ordering of A has been assumed. 

To obtain the point-Jacobi rnethod, the matrices M 

and N in equation 4.6 or 4.7 are chosen as 

M = D, N = L + U (4.8) 

Equation 4.7 then becornes 
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(4.9) 

Since all di~gonal elements of D are positive, ·clearly D-l~ O. 

Also by inspection, (L+U)~ O. The splitting is therefore 

regular and by Theorem 4.1 the point-Jacobi method converges. 

This is stated as 

COROLLARY 4.1: The point Jacobi method for solution 

of (3.20) conve~ges. 

To obtain the point Liebmann method, or point Gauss

Seidel; the matrices M and N are chosen as 

M = D - L, N = U (4.10) 

By Theorem 3.3, (D-L)-l ~ O. Also, by inspection, U ~ O. 

The splitting is ~gain regular, and by Theorem 4.1, the point 

Liebmannmethod conve~ges. This is stated as 

COROLLARY 4.2: The point Liebmann method for solu

tion of (3.20) conve~ges. 

The extrapolated Liebmann method, or point successive 

overrelaxation (S.O.R.) is obtained by choosing M and N as 

M = 1 (D - wL), 
w 

N = ~ (WU + (l-W)D), w :f 0 (4.11) 

where w is a real constant, termed the overrelaxation or accelera-

tion factor. The splitting is regular for 0 < w ~ 1. The 

iterative method associated with this splitting therefore con-

verges for that interval of w, and, by continuity, point S.O.R. 
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converges for some interval of w containing one. This result 

is stated as 

COROLLARY 4.3: The point S.O.R. method for solution 

of (3.20) converges for some interval of w containing one, 

and convergence is assured for 0 < w ~ 1. 

The lack of' an upper bound of w for which conver-

gence is assured is discussed further in section 4.4 below. 

The fact that such a bound does not yet exist doesnot, however, 

detract from the usefulness of the method. 

The block methods are derived from the formulation 

of the problemds in 

AI -C V. t fB' l.n 

t (3.l9.) 

_QI l VS2 

The block Jacobi method is obtained by choosing· M and N as 

A' 0 r
o cl 

M= N = 

lQ' oJ 
(4.12 ) 

0 l 

This splitting is regular. Hence the block Jacobi method 

V ) (k+l) (0 (A,)-lC1 [V. 
(k) 

(A 1) -1 0 

[:'1 v::tj 
j lnt 

= + (4.13 ) 

QI o VS2 0 l 

converges. This is stated as 
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COROLLARY 4.4: The block Jacobi method for solu-

tion of (3.19) conve~ges. 

A more use fuI method is the block successive'relaxa~ 

tion,or block Gauss-Seidel method, obtained by choosi~g M and 

N as 

AI o o C 

M= , N = (4.14) 

_QI l o o 

The splitting is clearly regular. Hence, the 1terative method 

I
V. (k+l) 
~nt 

VS2 

AI 

_QI 

C) v. (k) AI 

oJ 

~nt + 

V
S2 

_QI 

0

1

11 

BOl) 
(4.15) 

converges according to Theorem 4.1. Note, that, ' 

o 
-1 

l
AI 

_QI l 

= 
QI (A,)-l l 

so that (4.15) may be written as 

V .. fk+1l 0 (AI)-le 
(k) _1 

:J 

V ) (A') - BI 

~m: inti 

= J + 

(4.16 ) 

V o Q' (A 1) -le VS2 
QI (AI)-l 0 

S2 

and decomposed intb its two constituent equations 



--
58 

V ~k+l) (A' ) -lev (k) (A,)-lB' = + 
~nt S2 (4.17) 

and 

v(k+l) (k+l) 
= Q'Vint S2 

(4.18) 

In equation 4.18, the vector Vint may be replaced 

by the subvector VSl if Q' is replaced by Q (see equation 3.15). 

Hence (4.18) becomes 

(k+l) V . 
S2 

= Qv(k+l) 
Sl 

Equations 4.17 and 4.19 describe an iterative scheme as 

(4.19) 

follows: an estimate is made of VsJO). The resulting interior 

Dirichlet problem is then solved to findV. (tl ) , and hence 
~n 

V (1) 
Sl VsJl) is then found from (4.19) and the process is 

repeated until convergence is obtained. This result·is stated 

as 

COROLLARY 4.5: The block successive relaxation 

method described by equations 4.17 and 4.19 converges. 

This result will be useful in the derivation of further results, . 

as shown below. The next section deals with error estimates. 

4.3 ERROR ESTIMATES 

~ It has been shown that a consistent finite differ-

ence formulation can be found for the infinitely extending 
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problem, in the manner of an interior problem. Solutions 

ofproblems.in finite differences are; as a rule, subject to 

two sources of error. The first main source of error ~. ~~5 

arises from the fact that even an exact solution to the 

matr~x problem is just that, a solution to the matrixpro

blem, which, it will be recalled, is merely an approximation 

to the original differential or integral equation. The 

appro~imation or discretization error may be reduced to an· 

arb:i.trarily small value by decreasing the mesh size. This 

subject has received (and indeed is still receiving) attention 

in the literature [10] ,[11] ,[12], [50] and will not be ex-

pounded upon here. 

The other source of error arises from the fact that 

the set of linear equations is not solved exactly. This is 

true, in general,whether an iterative method is used or not. 

In direct solution of the equations (such as.by Gaussian elimina-

tion or direct inversion of the matrix),finite~precision 

arithmetic limits the accuracy of solution (round-off error). 

This can sometimes be compensated by one or more iterative 

passes subsequent to the direct solution; however, this is not 

always practical or possible. The iterative methods discussed 

here are self-correcting as regards round-off error [12]. 

However, the iterative process is usually terminated before 

solution accuracy comFarable to machine precision is reached. 

It is therefore desirable that the error, or at least a bound, 

at any stage in the iterative process be determinable. 
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Since the finitedifference formulation of the 

problem is consistent, the iteration errors for the point 

methods are consistent with errors in interior problems, 

and may be determined in the same manner [10],[11],[1~], [25], 

[32]. Error estimates haveto bederived for the block methods, 

however. Again, in the block methods, point methods are used 

for the solution of the interior region. Hence, aIl that is 

required is an estimate of the error on the contour S2 at any 

stage of ,the process. An analysis similar to that of Schiske 

and Ohlig [51] yields the followi~g: 

Equation 4.18 may be written as 

(k+l) 
V 

S2 
= QI (AI)-le V (k) + QI (AI)-lBI 

52 
(4.20) 

An upper bound y < Ion the row-sums of the matrix QI (AI)-le 

is required. This may be obtained as follows: 

a) Set aIl V
S2 

to unit y and aIl other sources 

to zero (making BI identically zero). Solve 

b) 

the interior problem for Vint. Let 

al is then the highest rOW-SQ~ of the matrix 

(A 1) -le. 

Let a 2 = max 
n 

{ L q .. }, i = 1,2, •.. ,m 
~J 

j=l 
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-1 
Y =ala2 is then an upper bou~d on the row-sums of Q' (A') C. 

When, after the kth step of the iteration procedure, it is 

found that, for all j, 

then after the (k+l)th 

after k+n steps, 

Iv (k) 
82. 

- V (k-l) 1 
52· 

J 

step, for 

Iv (k+l) 
82. 

J 

Iv (k+n) 
82. 

J 

J 

all j, 

_ V (k) 1 
82. 

J 

(k) 1 v82 . 
J. 

~ e: 

< e:-y -

Now, since lim V (k+n) = 
k+oo 82j 

V52 .' where v82 . is the solution, then 
J J 

(4.21) 

which gives the required error estimate. 

4.4· ACCELERATION OF THE ITERATIVE METHODS 

As in the iterative solution of the interior problem, 

the iterative methods discussed here may be accelerated by 

overcorrecting the potential values at each stage of the pro-

cess. The standard methods of acceleration can be applied to 

boundary relaxation, though many of the theoretical results 



valid for interior problems do not necessarily apply. As 

before, the point methods are discussed first. 

Extension of point successive overrelaxation to 
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boundary relaxation has been introduced in section 4.2 above, 

where point successive underrelaxation was shown to be con-

vergent (Corollary 4.3), and, by continuity,has been shown 

to be convergent for sorne interval of overrelaxation factor w, 

containing unity. An upper bound of w for which convergence 

is assured has not been derived. Numerical studies have shown 

that acceleration is obtained for w > l, though the increase 

in the rate of conve~gence is not so dramatic as for the 

corresponding interior problem. The reason for this is that 

the coefficientmatrix in (3.20) is not symmetric, and the 

corresponding Jacobi·matrix D-l(L+U) of equation 4.9 has eigen

values that have significant imaginary parts. Wr~gley [291 

discusses acc;:eleration of problems .of this type and concludes·· 

that very significant acceleration cannot be achieved. In 

any event, the point S.O.R. method hasnot been found computa-

tionally efficient because of the large number of arithmetic 

operations in· application of the n-point formula on the contour 

S2. Moreover, the coefficient matrix ofequation 3.20 does 

not possess Young's praperty "A" [24], so that the standard 

theoretical results for point S.O.R. do not necessarily apply. 

Further research is indicated in this area. 

The block methods, specifically the block Gauss-Seidel, 

havebeen found ta be more ~ractical. Acceleration of the above 

black Gauss-Seidel method may be accomplished as follaws. In 



equation 4.6 or 4.7 the matrices M and N are chosen as 

A' 0 (l-w)A' wC 

M= 1 N = 1 
w w 

-wO' I 0 (l-w)I 

Substituting into (4.7) and noting that 

(A' ) -1 

w 

wQ' (A,)-l :1 
there is obtained 

( +1) -1 
V. (l-w)I w (A') C 
~nt 

= 
V w(l-w)O' w2Q' (A') -lC+ (l-w) I 

S2 

+ w 

-1 
(A' ) 

WQ'(A,)-l 

Vint 

V
S2 

,w·~ 0 

(k) 

Equation 4.22 may be decomposed into its two constituent 

equations, viz., 

V (k+l) 
int 

= (l-w)IV. (k) + W(A,)-lcv(k) +W(A,)-lB' 
~nt . S2 
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(4.22) 

(4.23) 



V (k+l) 
52 

= wQ' [(l-w)I. v. (k) + weAr) -lcv
5
(k
2

) + W(A,)-lB'] 
~nt 

+ (l-w)I V (k) 
52 

= ' (k+l) (l-"')I V (k) 
wQ Vint + W 52 

which can be interpreted as follows: 

where 

and 

where 

V. (k+l) + V~ (k) + w(V* _ v. (k» 
~nt ~nt int ~nt 

V* 
int 

V*52 =Q'V. (k+l) 
~nt 
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(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

Equations 4.25 through 4.28 describe an iterative scheme as 

follows: 

An estimateis made of V
S2

(O). V*. is found from (4.26); i.e.: 
~nt 

by solving the interior problem. The interior potentials are 

then corrected as in (4.25). V* is found by application of 
52 

the shift matrix, as in equation 4.28, VS2 is then corrected 

as in (4.27) and the process is repeated until convergence is. 

obtained. 
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A100se upper bound on the block overrelaxation 

factor w can be easily ascertained. In the partitioning of· 

the coefficient matrix·as in equation 3.19, the square sub-

matrices A' and l are c1early nonsingu1ar (Theorem 3.3). 

For this partitioning, the coefficient matrix is 2-cyclic [31]. 

The b10ck Jacobi matrix corresponding to this partitioning is 

the iteration matrix of (4.13), 

o (A' ) -le 

J -

Q' o 

A1so, the coefficient matrix is consistent1y ordered [31] for 

this partitioni~g. From eoro1lary 4.4, the block Jacobi 

method converges. Now let J = L+U where 

The block successive overre1axation scheme may be written as 

(I WL)V(k+l) = (wU + (l-w}I] v(k) + WO-lB 

where V is the vector of all potential values 

BT = [B,T,O] and 

D - [' 

(4.29) 

T T T 
V =[V. t' V l, 

~n 82 
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The block successive overrelaxation matrix corresponding to 

(4.29) is 

cr
w 

= (1 - WL)-l [wU + (1 -w)1] (4.30) 

Then [31] 

(4.31) 

where J..l(cfw>' is the spectral radius' of J w• This means that 

in investigating the convergence of (4.29), only the interval 

o <w<2 need be considered. This is stated as 

LEMMA 4.1: The b10ck successive overrelaxation method 

does not converge outside the interval 0<w<2. 

As was the case for the point methods above, .the 

most cornmon methods for determination of the best value of w 

cannot be used, since the matrices A and J are not symmetric. 

Wachspress [11] gives a method for determination of wopt for 

the case when J is non-syrnrnetric. The method has not been 

found particular1y effective in numerical trials, as the 

eigenvalues J..l of J have significant imaginary parts. However, 

the optimum value of w has notproved to be very cri tic al for 

the problems attempted. Computation time can be reduced by 

approximately one half (as compared to the case w=l) , but 

this decrease can be achieved by use of values of wsignifi-

cantly lower than wopt (10-20%). 



67 . 

Block successive overrelaxation as developed above 

is not ,efficient from the standpointof core memory require

ment, as two vectors of potential values V. t for the interior 
J.n 

region need to be stored. A more attractive correction scheme 

can be obtained by overcorrecting only the potentialsVS2 on 

the contour S2 (and not the interior potentials Vint). In 

this way,stor~ge of only one vector Vint is required. If 

overcorrection is to be applied only to either VS2 or Vint' 

the acceleration obtained is the same whichever vector·, is 

overcorrected. This may be shown as follows: 

Let· ~l be the overcorrection factor applied to Vint 

and let ~2 be the corresponding factor app'lied to VS2 • Sub

stitute ~l for w in (4.25) and ~2 for w in (4.27). Substitu~e 

(4.25), (4.26) and (4.28) into (4.27). After sorne manipulation, 

there results 

V(k+l) = 
S2 

[(2-~l-~2)I + ~ ~ Q'(A,)-lC]v(k) +·(l-~l)(~ _1)v(k-1) 
1 2 S2 2 S2 

(4.31) 

Define an error vector as 

e (k) -_ V (k) V 
S2 - S2 

(4.32) 

where VS2 is the solution. Substitution into (4.31) and noting 

that 

-1 1 
(I - Q' (A') C) VS2 

= Q' (A')- B' 



, 
~-

yields 

from whichit is apparent that either- al or a 2 may be set 

to unit y with the same results. 
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(4.33 ) 

The modified practical block overrelaxation scheme 

thus becomes 

and 

where 

(k+l) 
Vint _ 

V(k+l) = v(k) + a(v* - v(k)) 
S2 S2 S2 S2 

v* = Q'V. (k+l) 
S2 ~nt 

(4.34) 

(4.35) 

(4.28) 

Computational experiments have shown that the rnodifietd block 

method is comparable in efficiency to the more standard block 

overrelaxation described by equations 4.25 to 4.28. As in the 

standard block scheme, the value of acceleration parameter a 

has not been found-to bevery critical. This is discussed 

further in the next chapter. Theoretical investigation of 

determination of best value of w or a has thus not been 

attempted, particularly in view of the fact that yet another 

means of-accelerating convergence was available for all pro

blems considered. This acceleration method is derived 
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empirically and is discussed in the next.section. 

4.5 EXTRAPOLATION OF THE BLOCK SOLUTION 

After sorne initial iterations of the contour· 52, the 

individual components e3 k ) of the error vector e(k) defined 

byequation 4.32 typically show monotonie convergence towards 

zero, in the form 

(k+l) 
e, 

J 

= T, 
J 

where the constant T, is a measureof the magnitude ,of the 
J 

dominant eigenvalue of the block Jacobi matrix J. Monotonie 

convergence of this type has been found to occur for values 

of S~ 1.5 in allproblems attempted. Hence, 

V52 , 
_ V (k) V52 

- V (k+l) 
52, 52, 

J J j J = Tj , = T, 
- v(k+l) v(k+2) J 

v52 , v52 , 52. 52, J J J J 

(4.36) 

Equations 4.36 may be solved to yield 

V(k) - v(k+l) 
82. 52, 

T. J J = J V (k+l) - v(k+2) 
52. 52. 

J J 

(4.37 ) 

and 
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(4.38) 

or alternately, 

= v(k+l) + Tj (v(k+l) _ v(k+2» 
82 . 1 - T. 82 . 82.· 

J J J J 
(4.39) 

Equations 4.38 and 4.39 represent extrapolated estimates,of 

the solution value v82 . on the contour 82. The incorporation 
J 

of the extrapolation process in boundary relaxation is dis-

cussed further in the next chapter. 



CHAPTER 5 

PRACTICAL COMPUTATIONAL ASPECTS OF 
BOUNDARY RELAXATION 

Solution of the infinitely extending problem is, 
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in practice, best accornplished in .two st~ges: The generation 

of a suitable shift matrix Q and subsequent solution of the 

problem itself. It has been found most practical to gener

ate Q by a separateprogram, since Q is independent of the 

interior problern. Once a shift matrixis generated, it may 

be used for solution of a great variety of problems, provided 

that the choice of the contours SI and S2 and ·the rnesh size 

is satisfac·tory. The shi ft matrix is punched on data cards 

or stored on rn~gnetic tape and is then read in as part of the 

data in the boundary relaxation programs. Generation of the 

shift matrix has been discussed in Chapter 3, § 3.2. A 

detailed discussion of Q matrix generation for rectangular 

regions in the (x,y) and (r,z) planes is contained in 

Appendices land 2, and shi ft matrix generation for coaxial 

line problems is discussed in the next chapter, § 6.3, and 

in Appendix 3. 
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5.1 POINT METHODS 

The point methods, as was seen previously, make use 

of the shift matrix Q in regarding each row of Q as a many

point formula for the nodes on the contour S2. For this rea

son, computational economy dictates storage of Q entirely 

within the fast-access memory of the digital computer used. 

Because of the large nurnber of arithmetic operations involved 

in the use of the many-point formula, the point methods have 

not been found efficient from a cornputational standpoint. 

The point S.O.R. method was programmed and several small trial. 

problems were solved, mainly to verify the theory. The core 

memory.requirement is the same as detailed below for the 

block methods with .. internally stored shift matrix. 

In the problems attempted, convergence was found 

to be slow overall, though the nurnber of iterations required 

was comparable to that of interior problems with a flux-line 

boundary along S2. The overall computation time, however, 

was considerably: greater than for the sarne problems solved 

by block methods. The point S.O.R. method was moreover found 

hard to optimize, i.e., the optimum overrelaxation factor 

Wopt was difficult to determine, though it was not found to 

be overly critical. A time saving of approximately fifty 

percent could be realized by use of a value of W close to 

optimum, as compared to w=l. Figure 5.1 shows the convergence 

behaviour of the problem of a charged conductive sphere, of 

radius one mesh unit, in free space. The nurnber of iterations 
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is plotted versus the arithmetic sum of the residuals in the 

interior region and on 52. The region size is 7 by 14 nodes 

and the potential on the sphere is 10 volts. Note that the 

average residual is approximately two orders of magnitude lower 

than the sum and thatthe solutionhas been taken to approxi

mately the limit of floating point precision of the IBM 360/50 

used. 

5.2 BLOCK METHODS 

Bloek boundary relaxation programs typically require 

two principal routines: a routine for solution of the problem 

in the interiorr~gion and a routine for the correction of the 

potentials on the contour 52. 5ince the interior region con

tains an interior Dirichlet problem, existing interior pro

grams may be used if available. As typically of the order of 

twenty-five corrections are required for the potentials on 52, 

i.e., twenty-five block iterations, the shift matrix Q may be 

stored on magnetic tape or disc without sacrificing computa

tional economy. In this case, the only extra storage require

ment is a buffer to store one row of the shift matrix. Where 

computer hardware permits data transfers concurrently with the 

arithmetic , almost no time is wasted. 

5ince the entire mesh used is the region of interest, . 

storage of Q in the fast-access memory is practical for a 

great many problems. In this case, the greatest storage re

quirement is due to the shift matrix. It has been found that 
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a rectangular interiorregion is most convenient as regards 

programming simplicity as weIl as fromthe standpoint of Q 

matrix storage. Shift matrices for rectangular regions 

possess certain symmetries, so that the entire matrix need 
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not be stored. Core memory requirement will be discussed for 

rectangular r!3gions ··in the x-y and r-z planes. 

In the'x-y plane, let the rectangular region of 

interest be a square mesh of (M+2) nodesby (N+2) nodes. Let 

the contour S2 consist of the outermost nodes, omitting the 
" 

corners, and let the. contour Sl be the rectangular contour 

one mesh uni.t interior· to S2. This is; illustrated in Figure. 

5.2, . where. the contour. 82 is indicated by OlS and SI by. x 1 s •. 

For even M and N, the Q matrix for this region has 

(2M+2N) (2~+2N - 4) elements, of.which only one quarter are 

independent*. (See Appendix 1 for a more detailed discussion 

of the structure of Q). Allowing for storage of a field 

description array, the overall storage requirement becomes: 

independent elements of Q 

field values 

field description array 

(M+N) (M+N - 1) 

(M+2) (N+2) 

(M+2) (N+2) 

locations, plus the program itself. For example, if M=N=56, 

the field values and the field description array each occupy 

* The shiftmatrix actually has less independent elements, 
as can be seen from symmetry considerations. The word 
"independent ll is used here to mean lI easily programmable 
symmetryll, as explained in Appendix 1. 
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FIGURE 5.2: RECTANGULAR REGION IN X-Y PLANE 

3364 locations. The shift matrix is, in this case, 224x220 

and contains 12,320 independent elements. Hence, 19,048 

storage locations are required in addition to the program 

itself. A problem of this size may be conveniently solved 

on an IBM 360/50 .,computer ·with··110 Kbytes of core memory and 

a word size'of four bytes. 

The size of problem that may conveniently be done 

in the r-z plane is approximately the samei though the figures 

vary somewhat. Let the region of interest be the recta~gular 

region described by Figure 3.3. Let the number of radial 

nodes in the mesh be (M+I) and the axial nodes (N+2). The 

shift matrix in this case has (2M+N) (2M+N - 2) elements, of 

which, for even N, one-half are independent. The overall 

storage requirement thus becomes: 

independent elements of Q 

field values 

field description array 

~ (2M+N) (2M+N - 2) 

(M+I) (N+2) 

(M+I) (N+2) 



77 

locations plus the pr~gram i tself.·· For' example, if N=2M=80, 

i.e., the region size is 41 by 82, the field values and the 

fi.eld description array each occupy 3362 locations. The 

associated 160x158 shift matrix has 12,640 independent ele-

ments. Hence the storage requirement is 19,640 locations 

in addition to the program itself, which can again be 

accommodated by an IBM 360/50 computer. Larger machines can, 

of course, handle much larger problems. 

Computation times are rather hard to state for 

boundary relaxation.:·since they depend greatly on the com

plexity·of the problem as well.as mesh size and thevarious 

parameters of the· problem·. Comparison of boundary' relaxation. 

to the other methods that have been used for solution of the 

infinitely extending ,problem is not meaningful, since com

putation times in. the ... earlier methods depend to a. great extent 

on the choice of approximation. The methods reported here are 

significantly faster than·boundary relaxation using potential 

gradients [41], [-42], particularly when extrapolation .. is used, 

as discussed in the next section. Without extrapolation, 

computation times are comparable to optimized interior.pro-

blems with a flux line boundary at S2. It has been found 

that computation time varies approxiroately linearly with the 

number of nodes in the interior region of interest and with 

the order of magnitude of error reduction required. Practical. 

block relaxation dictates overcorrection of only the potentials 

on S2 and not in the interior region. The overcorrection 

factor S is not overly critical, provided it is on. the low side 
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of optimum. This is shown in Figure 5.3, where the arithmetic 

sum of the corrections to the potentials on S2 is plotted 

against the number of block iterations (k) for the conductiye 

sphere '. problem described in· the preceding section. The 

behaviourshown here is typical, with most problems differing 

in the first few iterations. Practical application of the 

block methods is discussed in, the next section. 

5.3 PRACTICAL BLOCK METHOD 

In the ipitial stages of block S.O.R., itispoint

lessto so~ve the interiorregion to a high degree of accuracy. 

For this reason, point S.O.R. is convenient as an "interior" 

solution method, since·it is ea,sily terminat:ed at any stage of 

accuracy. It has been found that a simple method of incorpora-

ting this in the block method·is to simply limit the number of 

interior S.O.R. passes ·to sorne fixed:number varying from la for 

small regions of the order.oflOO nodes, to 40 or 50 for regions 

of lqOO nodes or more. After the first few boundary iterations, 

the interior S.O.R. routine typical1y terminates int~rior solu-

tion·well before the maximum interior passes are executed, 

since a second terminating criterion is the condition·that 

all residuals are smaller in magnitude than sorne prescribed 

constant. This constant is normally specified one-half an 

order of magnitude lower than the maximum allowed boundary (S2) 

correction, which is the terminating criterion for the boundary 

relaxation program. 
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No attempt was made to optimize-the solution of the 

interior region, altho~gh for problems with many nodes 

determination of an optimum interior overrelaxation factor 

is most likely worthwhile. This factor, once deten:nined, 

re~ains fixed for .each block iteration, since the· contour 

S2 is temporarily converted to a Dirichlet boundary. 

The block relaxation factor.f3 is .. not overly criti-:-

cal, and it has been found that a-value of f3=1.5. gave suffi

cientacceleration for most problems attempted, particularly 

when combined with the extrapolation method of §. 4.5 above. 

The extrapolation, when properly used, was found toprovide 

the equivalent of 5-30 full block iterations. Itwas· found 

that the extrapolationprocess, ifapplied too early,.caused 

block relaxation te diverge. This is shown in Figure 5.4, -

. which shows. the behaviour· of the ari thmetic sum of the 

corrections·on.S2 with the itel:'ation·nwnber (k). The plot is 

for the pin insulator problem of Figure 6.6 in the following 

chapter. The region size is 20 by 40 nodes and the block 

overcorrection factor f3 is 1.5. The oscillating curve sbows 

the behaviour for extrapolation after every eighth block itera

tion. The lower-converging curve shows extrapolation applied 

after the twentieth block iteration. In·this example, the 

nuwber of interior relaxation passes was limited to 40 for 

eachblock iterationand the final overall solution·accuracy 

is .001%. In a practical problem of this type, the solution 

is rarely required to this degree of accuracy. 

It is interesting to note that, in most cases, the 

convergence behaviour of the problem changes somewhat after a 



properly applied extrapolation. Figures 5.5. and 5.6·show 

the behaviour of the corrections on 82 versus iteration 

number.for .the insulator problems of Figures 6.8 and 6.9. 
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In Figure 5.5, extrapolati<;>n is applied after the twentieth 

block iteration, whereas in· Figure 5.6, af1;:.er the fifteenth. 

The interior regionsize is approximately the sarne for each 

case. Note that in the former case, convergence (to .001%) 

is obtained within two iterations after the extrapolation, 

while in the latter, nine block iterations·are required 

subsequent to extrapolation. In both cases, however, the 

total number·of block iterations is approximately the sarne. 

The' convergence rate inboth cases is also substantially 

increased after extrapolation. The computationtime in all the 

above convergent cases was substantially less than one minute 

of machinetime on. an IBM 360/75. 

5.4 PROGRAMS· USED 

The boundaryrelaxation programs used in this in-

vestigation consistof twomain sections: routines for solu-

tion of the interior region and boundary potential corrections 

routines. The shift matrix is generated by a separate program 

and read in. as data from punch cards. As has been mentioned 

above, point S.O.R. is used for the solution of the interior 

region of interest at each block iteration. 

The interior point S.O.R. routines were written so 

as to allow arbitrary sources and material interfaces to be 
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specified. The problem geometry is read-in in quasi~ 

graphical form from a data deck in which punches indicate 

the presence or absence of conductors or dielectrics. In· 

the x-y plan~, .material interfaces halfway between mesh lines 

are·allowed, while in the r-z plane.routines, material inter-

faces are allowed to followmesh lines as well as diagonals 

in the mesh. A field codingroutine then forms a· fiel~ des~ 

cription matr.ix which is stored in· an array identical· to the 

array containi~g the field·values, i.e., 'one code number is 

stored for eaoh,',·fi~ld .. ,point •.. The··code number at.each node 

determines the formula to be .used in the interior point S.O.R •. 

routine. The detailsof these routines have bee~ described 

before for x-y plane pr~grélIns [41] •.. A more· detailed discussion 

of the interior·routines·for the r-z plane is.contained in 

Appendix 4. 

The,--intex:ior·.solution. routines may be· thoughtof as 

one package, in that any method.·for solution of the interior 

region may be·used,.provided .. that consistency of formulation 

is preserved at the.,contours Sl" and S2. The boundary 

correction routines are .. qui te simple, requiri~g care only in, 

the indexing involved. The·problem is considered to have con-

-verged whenever themaximum.cor~ection to the potential values 

on S2 does not exceed an arbitrarily srnall preassigned number. 

The maximum boundary correction, as weIl as the aritlliüetic SUffi 

of the corrections and the sum of the squares, is printed out 

at each block iteration. Once convergence is attained, output. 

routines are then used to print the field values, plot equi-
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potential maps, calculate capacitances and any other required 

data. 

Appendices land 2 describe in detail all the nec

essary:indexi~gfer. generation (and subsequent use) of Q 

matrices for recta~gular regions·in the x-y and r-z planes. 

An·additional feature incorporated in the x-y planeprograms 

is·the facility te impose an:externally applied field on the 

problem. Th~ solution of the problem is thesame as for no 

externally· applied .fi~ld,..·;with a slight .. modification in the 

correction' ofthe-·potential~ 0n S2.· The- externally applied 

potentials are subtr~cted,from the potentials VS1 before 

multiplication·by· the shift matrix.Th~ shifted poteI)tials 

VS2 are.then augmented by the external field on 82 and the 

processcontinued as for the normal problem. 

Figure. 5.7. shows a flow chart of the.modified.block 

"boundary relaxati.on· pr~gram. 
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CHAPTER 6 

ILLUSTRATIVE EXAMPLES 

In this chapter, several sample solution~ are pre-

sented inorder to illustrate the application of boundary 

relaxation to practical problems. The selection of examples 

is quite arbitrary and isby.no means intended to be exhaustive. 

Some'of the solutions .presentedare standard "textbook" pro

blems having knownanalytic solution, some are soll,ltions to 

problemsfoun~ in practice, and the remainder are presented 

for their illustrative qualities. 

6,1 Two-DIMENSIONAL PROBLEMS 

"" The two-dirnensional discretized Green' s function of 

Laplace'sequation represents, in fact, a point source in an 

infinite mesh. Hence, solution of a unit point source by 

boundary relaxation should yield values of the Green's function' 

(see-Appendix 1). Such a solution is shown in Figure 6.1, in 

which the computer printout for a small rectangular region is 

reproduced. Enlarging or reducing the regionhas no effect 

on theactualpotential values. It-is interesting to note that 

if the mesh li~es are replaced byunit resistances, the po-
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4.10 4.19 4.27 4.31 4.33 4.31 4.27 4.19 4.10 4.00 

FIGURE 6.1: POINT SOURCE IN AN INFINITE MESH 
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tential values represent.nodevolt~ges, and. the resistance 

between·.two diagonally opposing nodes· in. the mesh ie? obt~ined, 

as by·AInstutz· [48].,to be 2/'IT. 

Figures 6.2 and 6.3 show the equipot~ntial plC,)ts 

of the fainiliar"problem"of a·cireular dielectric;cylinder.in 

an· externally applied uni~orm·field [10]. The actual 

dielectric int~rface is shown.by thedashed lines. - The region 

of interest in·each.case is a square region of l8x18,or 324 

nodes. The first example shows the plot for cylinder-die

lectric permi tti vi.ty. 5 r =2, while the· second· is· for Er =5.Note 

thatthe equipot~ntial lines run· true right tc') the.edgeof the 

regionof int~rest,i.e.i r~ght.to the contour,52, quite:unli~e' 

any sol\ltion ebtaineClby.·,a$s\1mi~g 52 to be a flùx lipe' or 

other hypothetical boun.dary.. "An:-interesti~g point to note' 

in.these two·examples is the fact that even acrude modeling 

of a· circula.r· cylinder·as·shown her~ produces a solution that 

is almost identical to the classical analytic one. 

The last 2-dimensional.example·is an artificial 

problem whose accurate solution is difficult byanalytic means. 

Figure 6.4 sl?owsthe equipotentialmap of a·charged wire in 

t~e·presenc.e of·a dielectric cylinder of rectangular cross-

section, -ea~ily obtained by boundary relaxation. Once more, 

Er=5. Of course, more complicated conductor.and cylinder 

shapes are solved jUe?t as. easily ,·as may· any configuration .of 

sources and boundaries, provided they can be contained in the 

region,of interest. 
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6.2 AXIALLY. SVMMETR1CTHREE-DIMENSIONAL PROBLEMS 

The first example·in·this section is tQe classical 

problem of the -conductive sphere··· in free space. The square 

mesh usedisnot natural to the problem, nor·is the rectangular 

region of inte~estthat was chosen.' As.can be seen from 

Figure 6.5, the solution nonetheless corresponds to the one 

obtained analytically. The region shown in the figure is 7 

radial nodes by 14 axial nodes insize. The radius of.the 
1 

sphere is onemesh unit and the conductive surface is thus 

coincidentwith .node$,in themesh. Once more, alternately 

reducing or enla:rgi~g.th-e r!3gion of int~rest produces the· 

samesolution. 

Figure 6--,; 6.dep-icts the equipotential. plot of a typi

cal'69 Kv. pin insulator. The region.size is 20 by 40 nodes 

and the contours shown are equispaced, .with an· intermediate 

contour shown·by the da shed line. The' smooth dielectric int~r-

faces are modeled by. straight·: line segments along· mesh liIles 

and dia.gonals, as. shown by the fine line!=' in the· figure.. The' 

dielectric permittivity iS€r=2.1. The convergence behaviour 

of . this problem has been discussed in theprevious .. chapter and 

shown in Figure 5.4. This example, as well as the following 

three insulator problems are not intended as design data, .but 

merely to illustrate thecomplexity of sources and material 

interfacesthat may be handled with relative ease. 

The equipotential plot of a typical suspension insula

tor i$ shown in Figure 6.7. Theregion size is again 20 by 40 

nodesand solution is straightforward, requiri~g less than one 
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FIGURE 6.6: TYPICAL 69 Kv. PIN INSULATOR 
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FIGURE 6,7: FIELD MAP OF TYPICAL SUSPENSION INSULATOR 
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minute of machine ,time,' on,.an- IBM" 360/75,. Econqmical solu-

tion, such .as,allowed by boundary relaxation, 'pe:çmits analysis 

of such proble.ms with various'environmental and physical 

factors, such as :contamination,ta]l;:en into account. Figure 

6.8 shows the field map of the above suspension,insulator 

with a conduci;:.ive ,contaminant'on its upper, face. Th:i:-s pro-

blem requir.es. bui;:. a s.l~ght.:modification, of the, data, dec~.for· 

the previous one, and ,solution is again straightforward,and 

economical. 'The' conve~gence behaviour of tbis problemhas 

been shown·in,F~gure5.5. 

Figulie .6,.9 ,shows yet another suspension insulator 

unit, this tixne :modeled in a mesh" of 26 radial'by 34,axial 

nodes. Conve~gençe behaviour of this problemis shown in 

Figure 5. 6 above.' ·'Thi s example, as al~ the ab ove. , . show 

clearly the factthat ,the proble.m, under consideration"is not 

physically altered in,any waYi the arbitrary contour S2 

merely specifies the ,r~gi(m :" of spacec' in, which i t ois desired 

to iIlspect'the solution but does',l1ot alter it. 

6.3 COAXIAL LINE PROBLEMS 

The the ory , methods and examples presented up to 

this point have been for problems that are infinitely e~tending, 

in,two dimensions. As-will be shown in this section, bouI?-dary 

relaxation is applicable as well te problems that are infinite 

in,extent in,only one direction, or cqordinate, aS,a special 

case of problems and will be discussed here. It will be shown 
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that,"by.trivial modificai:ion, the methods arealso appli

cable to infinitely extending plane strips of finite width. 

Pure TEM waves can·be propagated only along uni

forro ·t~ansmission lines. Discontinuities .or·nonuniformities 

. give ri se to cQupling between this mode and h~gher order. 

modes. For linesthathave·small. dimensions compared to 

wavelength, ·the higher order. modes are. evanescent, i ~e .. , ... at, 

some'distance away from the discontinuity they decay enpugh 

to be negligible. Their associated stered energy,. however, 

cannot be n~glected.aven at,very low frequencies. Figure,G.lO 

shows one possible ;t.ype·,of discontinu:j.ty created by.the j~inin.g 

of,two long uniform,.coaxial'lines. The lines are assumed 

infini t~ly extendi~g. in. either .direction·.o..on each side· of the 

discontinuity region. 

The ·type ,of discontinuity·mostcommonly treated in 

th,e literature,: .. thus"-f"aJ:-.is.~ .. the.-ty-pe· whic;:~"is",.confined to a 

single planei'e .• g., ~a step dis"Continuity ·in the inner or out~r 

conduct,or, .or,both. Whinn~ry and Jamieson [52] showed, .. that" 

this .type· of discontinuity can beaccounted for by an equi

valent shunt. capaçi tance ·,·a1: the,discontinui ty, plane ~ Their 

technique is an 'application ,of mode matching· [53] and was· 

later extended [54J,[55] to produce t~ul~ted results and 

curves. 

One.of the first finite difference treatments of 

coaxial line discontinuitiesto appear.inthe literature 

was thatof Green [35], who approximated the infinitely ex

tending lines by imposing a flux line boundary one diameter 
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FIGURE 6,.lO:.-.DL$CONTINUITY-.REGION BETWEEN TWO UNIFORM 

SEMI~INFINITELY' EXTENDING COAXIAL LINES 

away from the discontinuity .r~gion.-· The equiva1ent shul)t· 

capaci~anc~s we~e thenobtained from the static field map •. 

Green' s· approach suffers fr()m .. severa1 defects. - First, the 

artificia1 fluxline boundary.a1ters the problem physica11y, 

and though--Green-asser.ted..that··thi-s boul)dary, . if taken one 

diameter away from the discontinuity'region, did not affect 

the overa1l solution,it.has been found in·this investiga-

tion .. that this ·.dist~nce.·.is:· too optimistic. Second1y, many 

morenodes than' are actually required need to be int~oduced 

into the problem,. increasing computation timeaccordingly. 

Third1y, Green's approach to calculate theequivalent shunt 

capacitance involves calculation of the total capacitance 

of the line section between the artificial flux line boundaries . 

and then subtraction of the capacitance of an equivalent· 
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length of uniform line(s), i.e., t~e subtraction of two large 

numhers that are almost equal, a dangerous process, at best. 

Equivalent capacitance may be derived from energy 

considerations in a very small region containing the dis- . 

continuity .[56], so that boundary relaxation provides a very 

economical and efficient means of treatment·of this type of 

problem. In·order to apply boundary relaxation, a shift 

operator for the uniforrncoaxial line has- to. be found.·· 

The method of,constx:uction of shi~toperators,·or. 

matrices, thus ·far, has beenby means of the elementary 

solution; or the ~reen~s functioniof.the Laplacianfor the 

appropriate region,·such as the infinite plane. Such a 

function ·can be found·for the uniform coa~ial line by use of 

the· finite·· Hankel -tr~nsform-, [57], as· shown in Appendix 3. 

The solution is·--obtainéd in- the form of a. convergent series 

of -Bessel. function$, -'-Thich, .unfortunately ,coI'l-verges too 

slowly-. to be _of p:tactical use. Because of the uI'l-iform nature 

of the problem, however,,.-- another simple means of constructioI:l 

of a shift matrix is available. 

Consider an infinite uniform coaxial line, such as 

shown in Figure 6 .. 11 à·· Let sorne- charges q be placed on the 

plane numbered-(l) in-the figure. Let the planes numbered 

(2) and (3) coincide with the adjacent radial mesh lines as 

shown. The inner and outer conductors of the line are assumed 
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(t> (12 ) ( 3 ) 

1 1 1 axis 

--t-:~+ï_-~!_-_-_-__ ~~~-=~~~ __ ~ _____ -__ ~r z 
1 1 inner conductor =r - L. 
l 1 

~ q, 
T 

outer conductor ::c: 

. FIGURE ·6 ... ~~ .. DEFINI'l'ION0F ·THREE" ADJAG!~NT PLANES 

IN A.SEMI-INFINITE COAXIAL LINE 

at· zero potential* O" • If ... the vectors Vl ,' V2 and V3 represent 

thepotential values on the plan~s (l), (2) and(3) res-

pectively, then writi~g the finite difference equation at 

each no de on the planes results in a ·system of equations 

[ C 

-21 0'1 Vl 
, 

-q 

-1 C -1 V2 = 0 

0 -Q l lV3 0 ) 

(601) 

where C is a tri-diagonal matrix (for uniform. inward or out-

ward ordering of the potentials) containing the self and radial. 

coeffici~nts of the finite difference equationsi lis the 

id~ntity matrix, and Q is the required shift matrix. Note 

* Potential$ other than zero are treated in the sarne fashion 

as external fields in the x-y plane. Itis merely nec

essary to subtractthe uniform potential before application 

of the shift relationship and then to add it.prior to solu

tion.of the interior problem. 
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thatC is writt~n'with positive diagonal elements. The doubling· 

of . the 'ceefficie~ts .in the .• first ·equation. results from the fact 

that plane (1) is a plane of symmetry. Note·that inthis case, 

the shift matrix Q is a square matrix of ordern where.n is 

the·number.of radial,nodes within the inner and outer conduc-

tors·of~the line. 

The third· row .. of equation· (6.1)··' is·. the shift .rela

tionship from p1an.e, (2) . to plane·. (3) ..However, ·.since plane (2) 

is i~ a Laplacian region, . the same shift·relationship holds 

betwe~n pl~nes. (1) and (2) •. ApplicatioIl of the ·shift to the 

second eq\lation..::.(6 .• l) results in 

QQ - CQ + l = 0 (6;. 2) 

Calculation of Q from therelation~hip (6.2) is nqt convenient. 

Equa.tion 6.2 may be·postmul.t.iplied by Q-l- ·and rearra~ged to 

yield 

Q = - [Co _ Ql-l (6.3) 

which suggests an iterativeprocess as 

(6.4) 

Theabove equation maybe. deduced in another fashion which gives 

a.physical interpretation of the process involved. In equation 

6.1, let.the initial iterate of Q be taken as the.identity 

matrix, zero, or.any other convenient starting point. ·This 

initial iteratemay be imagined to represent a certain boundary 

operator. Solution of the equation for unit chargesq taken . 
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one·at a time yields values of pot~ntial on·the planes (1) 

and (2). These.valuesmay be u$ed to construct another shift· 

matrix Q which can be used to relate the planes (2) a:t:ld' (3), 

i.e., the'initially assumed boundary operator is effectively. 

displaced one.mesh unit to the right. Successive application 

of this procedure effectively shifts·the flux line or other 

boundary farther and farther away, until a uniform iterate. 

of:Q is obtained. Implementation of this prc;;>cedure in mathe-

matical terme resultsin equation.6.4. Convergence of this 

process~may be-anticipated on·purely.physical:grounds and has 

bee~ found' true in .. prac1;:.ice • 

The' extrapolation procedure' of § 4.5 may be applied 

to the iterative process describedin ·equation 6.4, ·so that 

iterative construction of Q is very efficient from a computa

tion~l standpoint. It has been·found practical to continue the 

iterations to the limit of precisionavailable, i.e., zero 

computed.difference on· an IBM 360/50, a binary machine with 

24-bit .mantissa. Forthis accuracy, the flux lineor other 

boundary is effectively .. shifted 1.5-2.0 diéiI[\eters away, thus 

casting doubts on Green's '[35] artificial boundary as· regards 

accuracy of solution. 

Once a shiftmatrix is obtained for each of the two 

semi-infinite lines in question, the calculation of the static 

field map in the neighbourhood of the discontinuity isbut a 

trivial application of boundary relaxation. For plane dis-

continuities, e.g., steps, only three radial mesh lines need 

be considered, as .shown in Figure 6.12. problems of this type 
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FIGURE 6 .12:·· PLANE, DISCONTINUITY IN· G0AXIAL 'LI~E IL~USTRATING' 

RADIALMESH LINES REQUlRED FOR SOLUTION 

may be· sat~sfaçtorily mQdeled by,matrices.of order 100-200, 

SQ that direct imr.ersior1:.may be· used.· F(;)r· disçontinuities· 

other than plane; e, ... g~,suchasshown in Figure 6.10, point or 

block S.O.R •. is ,likelyto be:more'.practica~. 

Th~ field pattern obt~ined represents a,superposition 

of t~e' propagatingTEM·mode,.with other evanescent modes·. that· 

exist only in and'near the discont,inuity region. The' dis

continuity capacitance is the equiva+ent.network representa

tion ·to account for th~ stored energy of th.e h~gherorder modes. 

It is tbere~ore ',onl.y necessary to find this e~ergy in the· dis- . 

continuityregi9n • 

The potential at any point within the-line' isthe 

superposition of a logarithmic'potential (for a·uniform line) 

which is characteristic of the TEM mode, and an added pote~tial 

whiçh can be attributed to the effectof the discontinuity. 

If the reference logarithmic potential is V*, ,the additional 

potential·is then-V-V*. Within the diseontinuity region· 

itself, this viewpoint is not justified (for the case of a 

non-planar discontinuity) , sinee the potential.due to the 
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TEM mode is·not known. In this region,'however, V* may well 

be taken equal to V (the actual.solution), or.some·other 

convenient reference satisfying the Laplace .. equation. in the. 

discontinuityregion. The energy associated with the differ

ence potential .V-V*may be expressed as 

'iJ2 (V*-V) dU 

t/e: 
(6.5) 

where the r~gion of integration extends over both coaxial· li~es, . 

including the· discçmtinui ty region. The iri,t~gral vanishes 

everywhere' except··at ·the·:·two planes bouI:lding. thediscqntinuity 

region,. hence .. i:t:. is necessary· to know· the potential·,. at these 

two planes ·only. '. Note·-thatin the case· of·. a plane' discontinu~ ty, . 

the twoboundi~g planes· for tbe' dis'continuityregion are. coin~ 

cident •. 

The actual integration is done numerically and care 

must .be taken in obtaining·the necessa~y secondderivatives. 

If V* is defined to satisfy Laplace'scequation everywhere ex

cept at the planesbounding the discontinuityregion, the 

energy associat~d with the discontinuity may be obtained as 

follows: (V*-V) is formed for the uniform lines on e~ther 

side of tbe discontinuity region (V*-V is by the above defini-

tioI:l equal to zero wi thin the region). The energy associated·. 

with each bounding plane is tnen obtained as hal~ the energy 

associatedwith a potential distribution (V*-V) symmetric 

about each plane in turne The five-point Laplacian is easily. 

applied t~o this distribution ,so that" .the energy is readily 



calculated. The discontinuitycapacitance is then derived 

from the energy as 

whereVo is the potential difference between the inner and 

outer conductors. ,of the line. 
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(6.6) 

The··abeve methods· have ·been -implemented and ·several 

sample problèmssolyed •. Plane discontinuity-capacitances 

were'found ·to ~gree withthose~:given-by Somlo [551. Several 

sample: field mapsare presented bel.ow •... 
,- -'\ 

Figu~e6.13shows the equipotential lirtes neara 

step discont:i:nuity ........ ,The entire computed solution is shown. 

Themesh used ·was 61 by 9 nodes in extent, though a region 3. 

nodes wide would have~been shfficient. Such a narrowregion 

does not lend its~lf well- to plotting, however. The figure 

serves to ill·ustrate the':miniItl-al ·r~gion that has. to be. solved 

for this kind of problem. 

The field map of a double step discentinuity is 

shown, in Figure- 6.14. - Though iI:lthis case it is only necessary 

to solve a mesh extending one unit beyond the step on either 

side, the solution is again taken slightly further beyond the 

steps for illustrative purposes •. The mesh in this case was· 31 

radialby 20 axial nodes. Seven block iterations were re-

quired, with extrapolation after the sixth,for a·maximum 

bou~dary correction of 0.0006 v. , with 10 v. on the inner 

conductor and 0 v. on the outer. 
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Figure 6.15 illustrates the field map for the pro

blem of a·spherical dielectric bead support. The .mesh.size 

in thisexample. is 16 radial by 31 axial:nodes. The die~ 

lectric constant of the bead is Er=2. Fiveblock iterations 

with no extrapolation·reduced the· maximum boundary cqrrection 

to o. 0004 v.,. wi th the poten ti al .. di f ference between the·. ou ter 

and inner -conductors bei~g, onc~ more, 10 v. 

Application ef boundary relaxq,tiol)·to plane.strip 

problems is iël.entical· .. toth~ above proced\lres. A sl~ght. 

modi:Çicat;ion.is required in. the matrix C of equa:tion 6.4 

s~nce· a different coordinate.system is used.lt is shown'in 

Appendix.3··.that the shift mat~ix.,.·f0l:··stl;'ips:can be related·: to 

the admittance matrix'ebtained by Sander [58] ·~fer· a similar 

conf;guration. Sat:lder.'-s.~.matrix has served· to verify the. 

accuracy of ·the ite:r:ative"method·employed here.· Calculation 

of·· the shiftmatrix for. coaxial lines aswell as strips is 

discussed fu~ther···in AppendiJe 3. 
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CHAPTER 7 

CONCLUSIONS 

An accurate, efficient and rigorous method has been 

presented for· solution of infinitely.extending field problems 

in two dimensions and.three dimensions with axial symmetry~ 

The boundary conditions atinfinity are transformed to. an 

arbitrary, finite, closed contour in terms of a potential 

shift operator •. The solution within t~e arbitrary contouris 

obtained as the solution of an interior Dirichlèt prQblem 

simultaneously with the shift relationship, and corresponds 

exactly with that of theinfinitely extending problem. All 

necessary pertinent a~gorithms are givenin detail. 

The method is termed "boundary relaxation" and it 

is shown that the common interior Dirichlet and Neumann pro-

blems may beformulated in the same fashion as the infinitely 

extending problem, differing only in the definition of the 

shift operatQr. 

Aside from the few special cases referred to in the 

text, this thesis has presented the firstgeneral numerical 

solution of-the infinitely extending static field problem by, 

finitedifferences. Existence of sol~tion,as well as unique

ness and convergence, have been demonstrated theoretically 
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and by practical examples. Several convergent.iterative schemes 

for solution of the problem are presented, and two optimizing 

algorithms are shown. 

Boundary relaxation is shown to be an efficient 

solution algorithm whenever aIL sources and material inhomo

geneities can be confined to a reasonably finite volume of 

space. Application has been shown to x-y, r-z and coaxial 

line problems by a variety of illustrative examples. 

There is no objection, in principle, to application 

of boundary relaxation to three dimensional problems. 

Practical.considerations of core memory and computation time 

have, however, prevented invest~gation of this topic. Prac

tical solution of the, general three dimensional problem will 

depend very greatly on the method of approximation used in 

the interior r~gion of interest and further research is indi

cated in this area. Aside from a more efficient approximation 

of the problem in the interior region, the next obviousarea 

of research seems to be extension of boundary relaxation to 

the more general elliptic operators, such as the Helmholtz 

operator. The applications might includescattering and 

diffraction problems, extension of the method used for coaxial 

lines to waveguide discontinuity problems and many more. 

It is felt that the foundations of boundary relaxa-

tion as developed in this thesis will serve as a starting point 

for development of methods of solution for a great many classes 

of infinitely extending p~cblems that are of interest in engi

neering and physics. 
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ApPENDIX 1 

SHIFT r1ATRICES FOR X-Y PLANE 

Al~l DISCRETIZED GREEN'S FUNCTION. 

The elementary solution of,-the finite difference Laplacian 

is derived in this section- following tne method', of Amstutz [48], 

with some of, the intermediate mathematical stepspresented in 

more detail. Following the derivation, practical implementa

tion of Amstutz's'procedure is discussed. 

Thefunction sought is one defined on discrete points of

the x-y plane, for example the points that have integerco~ 

ordinate,s (m,n) , and which satisfies the disc:!:'etized form of 

Laplace'sequation 

DljJ(m,n) = 0 

where D is the linear operator defined by 

D1JI (m, n) =1JI (m+l, n) + ljJ (m-l',n) +, 1JI (m, n+l) + ljJ (m,n~l) 

- 4ljJ (m, n) 

(Al.l) 

(Al. 2) 

Amstutz imposes the following conditions (condition d shall 

be changed later) on the function ljJ: 



a) D1jJ =. ° for (m, n) ~ (0, 0) ; 

b) D1jJ = 1 for (m,n) = (0,0); 

c) tbat there·.exist int~gers mo and no' such that 

1jJ (m,!) - 1jJ (m-mo,n-no) tends to zero as r~ = m2 . +. n·2 tenq,s 

te infinity;. 

d) 1jJ ( ° i 0) = O. 

A suitable function 1jJ is found by.a heuristic rea-
1 

soning as follows.· From 

D co.s (m~+nb) _. -2 (2- cos a - cos b) cos (ma+nb) 

one deduces that one solution of 

D F = cos (ma+nb) 

is 

F= 
-cos (ma+~) 

2(2 - cos a -cos b) 

One can hence hope to find a solution of· 

D1jJ = J cos (ma+nb) da db 

r 

= ° for (m,n) ~ 0 

= 41T 2 for (m,n)= 0, 

on integrating F with respect to a and b over the square 

r(-1T~a~1T,-1T~b~1T). However, F·has to be adjusted by a 

quantity independent of m and n in order to obtain a con-

vergent integral. One is thus led to 
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tP(m,n) 1 J-= 8if2 
r 

1 - cos (ma +- nb) 
2 - cos a - cos b 

da db 
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(Al.3) 

wherer is as defined abov~. Amstutz shows thatthe function 

defined ·by- (Al.3) satisfies the-_abov~ conditions a) to dl. 

Evaluation of the integral in (Al.3) may-be.accomplished 

in,a straightforwardmanner- for the·casem=n. The change of 

variable is introduced 

a_+ b = 2s 

b - a= 2t 

which changes the regionof integration from-the-squareto,the 

diamond-shaped. area shown-in Figure Al.l. The-resulting 

t 

r-:""--
1 
1 

-if 1 

FJ;GURE Al.1 

8-n 2 tP (m, m) 

s 

function is even in sand. the mapping. 

of the function is such that the 

integral over area (1) in the figure' 

equals • the in,tegral 0ver area (2) ,

and similarly forareas (3) and (4). 

The integration is done for· the right. 

half-plane only, and the int~gral in 

t may be taken as 

The integralthusbecomes 

- JI. I - cos 2ms -dtds 
I - oos s -cos t-



1 
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The integral in t may be performed by taki~g for· a variable 

z = e jt , so that 

-1T 

1 dt·= 
cos s cos t· J j(2z -

C 

2dz 
z2cos's - cos s) 

wher~ C is the contour given by the unit circle. This inte-

gral may be·evaluated bymeans of residues. The integrandhas 

one pole 'within the c~ntour C and the residue at·thispole·is. 

readily evaluated as 

Residue = 1 

so that the integralin t becomes' 41T/2sin s. 

maining int~gration is 

The 

21T ljJ (m,m) = 

last integral is 

_11'1T 1 _ e2mj s· 
----- de js 

1 l - e 2js 

Jo 

r 1 - CQS 2ms ds 
2sins 

0 

the real part of 

Hence .the re-

= - Jn [ l + e 2js + 

o 

" •• + e 2 (m-l)jS ] de js 

_. 2 ( l + 1/3 + . .. + ~ ) 
2m-l 



from whiç:h 
m 

TI ljJ (m,m) .=' l. 
p=l 

--L 
2p-l. 

However, :there follows immediately, from,(Al.3) 

and 

ljJ(l,O) ='ljJ(O,l) = t 

ljJ(m,n) = ljJ(n,m) - ljJ(m,-n} 
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Hence ljJ may beevaluated at allpoints .inthe plane from 

symmetry considerations. and by application of the five-point 

operator of (Al~2). 

For la:rge values' of· m and n', the function ljJ approaches 

the limiting function 

ljJ(m;n) + l (log (m2 + n 2 ) +. 2y +. logeS), r.+ 00, 
4TI . e 

where y is Euler's constant. Co~vergenge to thelimit· is 

quiterapid. At the point (5,5), for example, the difference 

between ljJ and the limiting function is 0.00026. 

Actual evaluat.i..on of ljJ. as suggested by the above pro

cedure'leads to a few complications. ThefunctionljJ(m,m} is 

eaeily.evaluated but repeated application of the five-point· 

operator· (with symmetry considerations) leads to significapt· 

round-off error·propagation. Hence a practical Green's 

function subroutine may be written.so as.to contain stored 

values of ljJ in a small r~gion surrounding the singularity· 

and for· values outside this region to use the limiting formula 

above. 
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The aqtual. values of lJJ as calculated here. are. not 

practical, especially the zero potential value atthe singular-

i ty i tself. Furth.ermore, i t . is desirable that lJJ decr.ease in 

value for increasing radius.' If the potentialatthe singu

l~rity pointis.chosen to be unit y, then a suitable normalized 

Green~s function 1s 

(Al.4) 

This choice:is just1fied,since a constant'reference potential. 

may beadded'or . .subtracted without affecting the problem. 

Al.2 CONSTRUCTION OF THE SHIFT MATRIX 

A rectangular interior region ofinterest is convenient·. 

in the x-y plane, ma1nly through programming considerations, 

sincethe indexing is relatively simple, and the shift 

matrices possess certain synunetries which .reducethe storage. 

requirement. 

Considerra rectangular.region of·M~ by N~ nodes as 

shown in Figure Al.2. The discussion will be.restricted to 

even.values ofM and N, purely.for reasons ofconvenience. 

The contour S2 is indicated by x'sand Sl by OlS. If sources 

are p1aced in Sl, with source strengths Io' then 

VSl = SIo 

V =·PI 
S2 0 



1 
1 
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( a , "7 1 )i 1 
, 

1 

1 
"-(1 ,0) 

(4) r (1) 

M- - - - - - 1-- -~ ~I-~ - - - - - -. _. 

1 
1\" J 

1 
-\~J 

1 
-. 

1 

1 

1- N-l 

FIGURE A1.2: RECTANGULAR REGION OF INTEREST IN X-Y PLANE 

where each element.ofthe matrices P and S isan appropriate 

value of·W. From the above, 

-1 = PS VSl 

whichdefines the desired shift matrix. 

If the origin. (of the x-y coordinate system) is chosen 

to be the top right-hand center.nodeof the region of interest, 

asshown in Figure Al.2, and if the numbering of the points 

on:S1 and 82 is c10ckwise from the points (1,0) and (0,0) 

respectively, each of the indices (i,j) of the matrices P, S 

and Q may be mapped into coordinates in the mesh by a simple 

indexingscheme. Forexample, each element Sij of the matrix 

S may be interpreted as follows: s .. is the potentia1 at the 
J.] 

node corresponding to the index i, when the source is located 

at the node corresponding to the index j. Bence all that is 

required is a mapping of each of i and j into the coordinates 



(m,n) of··Sl. This mapping will be termed the "S" mapping 

andmay be·carried out as follows: 

Let· I.be the indexi or j of the S matrix element to 

be mapped into Sl. Then the "s" mapping may be constructed 

as 

I<N/2 

m = 1· 

n = l - 1 

N/2~'I SN/2 + M.- 5 

m = l - N/2 + 2 

n = N/2- 2 

N/2 +.M - 4 S'I $ N/2 + M +N - 7 

m = M - 2 

n= N + M - 6 - l 

N/2 +. N +.M - 6 5 l S N/2 +N + 2M.-

m = 2M + N + N/2 - 9 - l 

n = 1 - N/2 

N/2 + ·N + 2M- 10 SI S2 (M + .N) - 12 

m = 1 

n = l - 2(M + N} + 11 

11 
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In mapping of the S matrix elements asabove, let the index i 

be mapped onto the coordinates (m,n) 1 (the nmeasuring" point),. 

and the index jbemapped onto the coordinates· (molno) 1 (the 

"source" point). The appropriate value of 1jJ then is 
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Themapping of the elements Pij for the matrix P may 

be accomplished in the same fashion •. The index j (correspon-

ding to the source location) is mapped into (mo,'no) on 51 by 

the above "5" mapping. The index i, however, has to be mapped 

into 52. This may be done by means of the following "P" 

mapping: 

l < N/2 

m = 0 

n = l - 1 

N/2 < l ~. M + N/2 - 3 

m = l - N/2 + 1 

n.= N/2 - 1 

M.+ N/2 - 2 .::;; I . ~ M+ N +N/2 - 5 

m = M - 1 

n = M + N - I· - 4 

M +N + N/2 - 4 S.I S 2M + N.+ N/2 - 7 

m = 2M + N + N/2 - l - 6 

n = -N/2 

2M + N + N/2 - 6 S l ~:2(M + N) - 8. 

m= 0 

n = l + 7 - 2(M + N) 

As in the case of the 5 matrix, the elements of Pare obtained 

as 

Pij = ~(m,n;mo,n6) 

~ = ~.(m-mo' n-no ) 
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where (m,n) are obtained from i by the "p" mapping and 

(IDo,no ) are obtained from j by the "S" mapping. Note that 

the nS" and "P" mappings may also be used in the boundary 

relaxation programs to construct the vectors VSl and VS2 from 

the field values. 

On inspection of Figure Al.2 it is readily seen that 

not aIl elements of the matrices P,S and Q are independent, 

since the region chosen issymmetric about two planes as 

shown by the dashed lines*. The corresponding matrices 

possess a certain structural symmetry which may be exploited. 

If the ordering of points on SI and S2 is clockwise fromright 

top center· of the region,.the resulting symmetries are not 

of the usual type. It will therefore be convenient to define 

a certain matrix,ordering property as follows: 

DEFINITION: If A=a .. is a matrix of size K by L, (i.e., K 
~J 

rows and L celumns), then the reverse matrix A is defined as 

(a .. }r = (a l' l') 
~J K+--~IL+ -J 

i.e., the reverse matrix A contains the elements of A, ordered 

"in reverse Il • 

* This dees not mean that the problem within the mesh has te 

possess any symmetry, since the symmetries in the shift 

matrix arise from the geometry of the region and not the 

problem. 



This may easily be visualized by means of a simple example: 

l 2 

A = 3 4 

5 6 

6 

4 

2 

5 

3 

l 
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The shi ft matrix Q may thus be written in the partitioned 

form 

fQl Q2 Q3 Q4 

Qr 
2 

Qr 
l 

Qr 
4 

Qr 
3 

Q = 

Q3 Q4 Ql Q2 

Qr 
4 

Qr 
3 

Qr 
2 

Qr 
l 

where the submatrices Ql' Q2' Q3 and Q4 refer to the effect of 

the potentials on that part of Sl in the quadrant numbered (1) 

in the Figure Al.2 on those potentials on S2 in quadrants (1) 

to (4) respectively. The above is true of the matrices S 

and P as well. The elements of the submatrices Ql to Q4 are 

easily programmable as independent elements of Q, since the 

entire matrix Q may be easily generated if they are known. The. 

matrix Q has fewer independent elements than are indicated by 

the above partitioning, but ,exploitation of this fact ispro-

hibitive as regards programming. 
-1 

The matrices S ,P and Q may easi1y be constructed using 

on1y approximately three quarters of the memory required for 

storage of the entire Q matrix had the symmetries not been 
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exploited. The matrix S is of the forro 

s = 
[: :] 

so thatS- l may be written as 

-1 [X y]-l S = = 

y X 

-1 -1 

[

(X - YX Y) 

-1 -1 
(Y - XY X) 

(Y -

(X -

Xy-1X)-lj 

-1 -1 
YX y) 

The-proqedure for calculating Q is now as- follows: 
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Storage is reserved for-the matrices X-and Y. Working storage 

is reserved for a matrix W, which is the same size a$ X and Y. 

The elements of X and Y arethen calculated. The procedure 

for obtaining S-l (that is, the independent elements of S-l) 

may bedescribed in a simple fashion by using the ALGOL 

assignment operator:= (meaning " setequal to"), asfollows: 

W 
-1 

:= X 

W := YW YX- l 
) 

-1 
y := WY YX Y 

v := (X - y)-l X - YX-ly)-l 
.t'>. 

-(X YX- l y)-lyX -1 y := -xw -

-1 
The matrices X and Y now contain the top ha1f of S The 

storage space allotted to W may next be used to construct the 

top quarter of the matrix P. A special matrix multiplication 

routine is used to construct the top quarter of ps-lj or Q. 
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At.·3 FORTRAN PROGRAM LISTINGS 

This section lists the various programs necessary for 

implementation of the preceding computational·procedures. The 

programs are in FORTRAN IV Language, Level G, suitable for use 

withoutmodification on IBM 360 series computers. The programs 

are quite heavily commented, so that the preceding discussion 

along with the comments in the programs should be sufficient 

for full comprehension of the various steps in the generation 

of shi ft matrices for rectangular regions in the x-y plane. 

The matrix inversion routine usedis a locally available Gauss

Jordan routine, called by 

CALL INVERT(A,IJ,IK,M,N,DELTA,EPS) 

A 

IJ,IK 

is the matrix to be·inverted. A is replaced 

by its inverse in the routine. 

are the dimensions of· the array A in the 

calli~g program. 

M,N are the dimensions of the matrix to be inverted. 

DELTA 

EPS 

Normally, M=N for direct inversion. There is 

provision in the routine for the solution of 

simultaneous equations, henceN may· exceed M 

by the numberof right hand vectors to be 

solved for. 

is the value of the deterrninant of A 

is the smallest pivot used in the inversion. 
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C ~HIFT ~AT~IX GENERATOR FOR. RECTANGULAR REGIDNS 

C ù: ( X , Y ) . PLA ;,j EoR F. G ION SIL E 1 S ,\1 N POl N T S B y N N POl NT S 

C WHERE BJTH M~ AND NN ARE R~STRICTEC TO EVEN NUMBERSo . 

C NUMBERI~G 5TARTS RIGHT OF. CENTER AT THE.TOP OF THE 

C ~EGION AN) ?~OGRESSES ClOCKWISE ARJUND THE REGIONo 

C ONLY T~E TOP 1/4 OF THE SHIFT MATkIX 15 GENERATEOo 

C 
o Hl E: N S 10\1 P ( 35 , 13 (, ) ,1\ ( 6 a , 68) , B ( 6 8 , (, 3) ,C ( 68 ,6 8 ), w <1.36 ) 

EQUIVALENCE (P(l,l),C(l,l» 
1I=35 
JJ=136 
IJ=69 

C INPUT F\OUTl'n: 

C 

l R r: AD ( 5 , ,. :~, C) i'H , ;\l r.J 

JaO FOR,'-tAT06I5) 
IF P1:"i oEQoJ) STOP 

C BU 1 L D T U P H ~ L F 0 F 5 ;\1 A TRI X !\ S A AND B 
C A.l L S,'" 1\ T K X ( A, B , 1 J ,t~ \1 , ~IN ) 

C / 

C ***INVE~T S SY BLOCKS*** 
L L ? = ~,It\\ + \1 \j - 6 

C STORE A 1\l.ALTERNATE LOCATION 
. DO ~ I=1;LL2 
·00 .? J=1,LL2 

2 C(I,J)=A{I,J) 

C FORM AI= A INVERSE 
CALL INVERT(C,IJ,IJ,LL~,L~2,DEL1,EPS1) 

C FOF,\~ S*A 1 
CALL PREMUL(b,C,lJ,M~,NN,W) 

C For~:Ii\ B*AI::~B 

CALL PRENUL(C,B,IJ,MM,NN,W) 
C FOR~ (A-B*~1*5)I· AND STORE IN A 

00 ~. 1 =~. , L L~ 
DJ 3 J=l,LL~ 

'3 A(I,J)=A(I,j)-Pdl,Jl 

CALL INV~RT(A,IJ,IJ,Ll?,lL2,DEL2,EPS2) 

C FORM -(A-S*AI*S)I*a*AI AND STORE IN B 
00 4 I=l,LL"J. 
DG ft J=ï.,LL? 
B(I,J)=[lo 
JO 4 K=J,LL2 

4 5<I,J)=B{I ,J)-A{I,K)*C(K,J) 
C 
C =~:;'!_-------~: .. !::-* 

C 
C FO~~ TJP ~/4 OF P MAT~IX 

Ct: L L P:'1!\ T R.)(( Pd! ; J J '1 ~.!~'j , \1 ~J ) 

C FnR~ TJP '/4 OF 5HIFT MATRIX 
CALL PS~ULT(P,II ,JJtA,S9IJ,M~,NN,W) 

. C 
C JUTPUT RCUTI~E 

L L = ::: ~.< ( W'i + \ii'l l -1 2 
KK=LL/4+1 



1 
1 
1 

1 

. NA IN. 
':. 

; 

CAL LOU T PUT (P fIl , J J ,"K K, L U 

WRITE(6,lQ~) DEL1,EPS1,DEL2,EPS? 

l'H FD~''1AT(1-i:),·DEU.=·,J.PE902,' EPS1=',E9o?',' 

1 EPS2=',E9 0 2) 
~O Hl 1 : 
END 
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DEL2=' tE9:J2, 



\ . SMAP 

SUB~OUTI~E SMAP(MM,NN,I,M,N) 
CMAPS l~OEX OF S MATRIX INTO'PUSITION IN FIELO ARRAY 
C --I--I~PUT I~DEX 
C --M,N--O~TPUT COORDINATES OF POINT IN A~RAY . 
C THE POI~T (J,O) IS LOCATED JUST RIGHT OF CENTER, 
C AT THE TJP Of THE FIELD ARRAY . 

~2=~N/2 . 
rF(I~GEoN2) GO TO l 
M=l 
N=I-l 
R~TURN 

l IF(IoGTo~~+~M-5) GO TO 2 
M=I-N2+2 
N=N2-Z 
RETURN 

~=~~-2 

~=~~+MM-6-I 

RETURN ' 
~ IF(IoGToN~~~N.M~+MM-l1) GO TO 4 

~=M~+M~+~2-9-I+NN 

N=-~2+1 . 
RETURN 

4 M=l 
~=I+1I-MM-MM-NN-NN 
RETURN 
END 

140 

/ 



e SMATRX 

SU6RJUTI~E SMATRxtA,B,II,MM,NN' 
C 6E~~RATES TJP HALF OF S MATRIX, PARTITIONEO INro 
C MATRICES A AND B. 
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C MAT~ICES A AND B A~E DIMENSIONED (I[,I[' IN THE CALLING 
C PRJGKA~ 

C REQJIRES MAPPIN6 ROUTINE 'SMAP~ AND G~EEN'S FUNCTION 
C ROuTI~E ~Hl(I,J) ~HERE THE SINGULARITY IS PHl(O,~ •• 
C 

I)JMfNSIO~ AC II ,1 It ,B( UtIII 
C DtTêR~I~E SILE OF A AND B 

LL="iM+NN-b 
LL2=LL/2 
LU =Ll2+1 

C ~UILD TOP HALF UF EACH OF A AND b 
)0 , 1 = 1 ,L L ~ 
DO 1. J=l,LL 
CALL SMAP{Mi·1,N~,I,M,N' 
CALL SM~P(MA,~N,J,MO,NO' 
A(I,Jt=PHI(~-M~,N-Nn) 

JJ=J+LL 
CALL S~AP(MM,NN,JJ,MO,N~' 
tH l, J, =PH 1 ('-1-W!, N-Nn) 

1 CG:'-JTI~U~ 
C BUILU BaTTO~ HALVES OF A AND B 

DO 2 I=LL1,LL 
I:'=LL-I+l 
oc 2 J=l,LL 
Jl=LL-J+l 
A([,J)=A(ll,Jl' 

2 B(I,J)=B(Il,Jl) 
fU. TU'<'N 
END 
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PMAP 

SUBR~UTI~E PMAP(MM.N~.I.M.N' 
C SAME AS SMAP, ~UT MAPS P MATRIX 

N2=t\,Ir..J/? 
IF(I.GE.N2) GO TO 1 
M=C' 
"J= l-l 
RETURN 

! IF(leGT.MM+~~-3t GO TO ~ 
M=I-N2+1 
N=N2-1 
RETURN 

2 IF(I.GT.MM+NN+N2-5' GO TO 3 
M=M"1-1 
N=MM+NN-4-1 
RETURN 

3 IF(I.GT.MM+MM+NN+N2-7' GO TO 4 
~=~~+MM+NN+N2-6-1 
~=-'J2 
RETURN 

4 :.,=Q 
:~= 1 + 7-MM-MM-NN-NN 
RI:TURN 
END 
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PMATRX 

SUBROUTI~E ?MAT~X(P,IltJJ,MH,NNt 

C GENERATES TOP QUARTER OF P MATRIX. 
C DIM~NSIUNED P(II,JJ' IN CALLING 'ROGRAM 

DIMENSION P(II,JJ' 
C DETERMINE SilE OF P 

LL=2*(MM+NN)-ll 
KK=LL/4+1 

C BUILD TOP QUARTER OF P 
DO l 1 =1 ,KK 
DO 1 J=1,LL 
CALL PMAP(MM,NN,I,M,N' 
CALL SMAP(M~tNN,J,MO,NO' 

P(I,J)=PHI(M-MQ,N.NO) 
l CO;HINUE 

RETURN ' 
END 
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PSMLIl T 

SUBROUTI~E PSMULT(P,II,JJ,4.a,IJ,MM,N~,~J 

C POSTfotULTIPLIES P SV Sr TOP HAlF OF S SEING STOREO IN A AND B 
C ALL DIMENSIùNS AS SEFORE 
C W--~ORK VECT~R OF lENGTH JJ 
C JUTPUT IS P 

OIMENSIUN P(II,JJ),ACIJ,IJ),iCIJ,IJ),W(l' 
C DETëRMI~E SIlE UF MATRICES 

LL=2*(MM+NN'-ll 
KK=Ll/4+1 
LL2=LL/2 

C PERfJR~ MULTIPLICATION 
OU Jo I=l,t<K 
OU 2 J=l,LL 
tj"(J'=O. 
Ir(J.GT.LL2) GO TO 3 
Dr, 4 K=l,LLZ 

4 ~(JJ=w(J)+P(I,K'*A(K,J) 
Du :; K=1,lL2 
Kl=K+LLl 

5 ~(J)=~(J).P(I,Kl)*6(K,J) 
GO Tn 2 

3 Jl=J-LL2 
DO 6 K=1,LL2 

6 w(J'=W(J,+P(I,K)*BCK,Jl) 
DO 1 K=1,LL2 . 
Kl=K+LL2 

7 ~(J)=W(J)+P(I,K11*A'K;Jl) 
2 CONTINUE 

00 8 J=l,LL 
9 P{I,J)=\oI(JJ 
1. cm~ TI NUE 

i<.ETURN 
END 



PREMUL 

SUBROUTINE PREMUL'A,S,IJ,MM,NN,W~ 
C FORi4S PRUOUCT AB AND RETURNS RESULT UNDER S'. 
C IJ--DIMENSIONS OF A AND B IN CALLING PROGRAM 
C W--WORKING VECTOR OF lENFTH IJ OR MORE. 

DIMENSION A(IJ,IJt,B(IJ,IJ),W(l. 
C DETERMINE SILE Of MATRICES 

LL-MM+NN-6 
C PERFORM MULTIPLICATION 

DO 1 J-l,LL 
DO 2 I-I,LL 
W(I'=O. 
DU 2 K=l,LL 

2 W(I)-~(I)+A([,K)*B'K,J) 

DO 3 l=l,LL 
3 B{I,J)-W(I) 
t CUNTINUE 

RETURN 
END 
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PHI 

FUNCTIUN PHl(M,N) 
C GREEN'S FUNCTION SUBROUTINE FOR THE (X,y, LAPLACIAN 

C PLA~E, C.F.,·P.AMSTUTZ,ANN.OES TELECOHM., VOL.22, 

C 1907,PP.l49-152.' 
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C THE FUNCTIONS UP TO INOEX (NN,.NN' ARE STOREO INTERNAlLY 

C ANû THE REMAINOER IS CALCULATED EXPLICITLY.SY AMSTUTZ'S 

C FùRMULA (10'. THE STORED VALUES A~E STOREO ROWWISE, 

C UPP~K TRIANGLE INCLUOING THE OIAGONAl. 
DIMENSION VAL(Zl. . 
DATA VAL/1.,.lS,.63662,.56912,.5l30l,.48710, 

1 o6d169,.61338,.55962,.51160,.48315, 
2 051559,.53119,.50404,.41470, 
3 0511.Y2,.4860(),.4618l, 
4 o4604~,.44685, 

5 o4j.u. .. ~1 

JATA FPl,GAMMA/.0795715,1.1544311 
i~N=5 . 
MA=lA~S(M. 

1'4 A:: 1 Au S ( foi ) 
IF(MA.GT.NNt GO Ta l 
IF(~A.GT.NN) GU TO 1 
IF(NAoGE.MA) GU Ta 2 
1 =~·JA 
J=l-iA 
Gu TJ 3 

2 I=MA 
J=NA 

3 K=NN*1-(1**2-lt/2 +J+l 
Phl=VAL(K) 
KETUKN 

l PHI=l.-FPl*(ALUG(FLOAT(S*(M**Z+N**2)))+GAMMA) 
KETURN 
END 



OUTPUT 

SUB~OUTINE aUTPUT(P,II,JJ,KK,LL' 
DIMENSION P(II,JJ),CARO(9) 
WRITE(6,104' 
LP=(LL-l'/9+1 
INO=() 
00 11 I=1,KK 
DO 12 II=1,LP 
IND=INO+l 
JJ=9 lOc (II-l' 
DO 13 J=1,9 

13 CARO(J'=Oo 
DO 14 J=1,9 
JP=J+JJ 
IF(JP.GT.LL' GO TO 15 

14 CARD(J'=P(I,JP' 
15 CONTINLJE 

WRITE'6,lOl'tCARD(J"J=~,9),IND 

r~~ITE(7,102) (CARO(J) ,..1=1 ,9't!ND 
12 CONTINUE 

WRITE(6,J05' 
J.l CONTINUE 

RFTURN 
lOS FUR~AJ( IH , 
101 rURMAT(lH ,lP9E13.5,IS' 
102 FORMAT(9l8,I8' 
l04 FORMAT(lHl' 

END 
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ApPENDIX 2 

SHIFTr1ATRICES FOR R-Z PLANE 

A2.1 DISCRETIZED GREEN'S FUNCTIONS 

Elementary.solution of the finite difference Laplacian 

for the r-z plane may be accomplished by separation of 

variables. This has been done by Sander. (49] and his method 

of solution is discussed briefly. As Sander's method is 

computationally prohibitive, a practical alternative method 

is presentéd f~rthe evaluat~on of the required functions. 

Followi~g Sander's development, the finite difference 

Poisson's equation is written as 

(r + ~) V(r+h,z) + (r - ~) V(r-h,z) - 2rV(r,z) 

+ r{V(r,z+h) + V(r,z-h) - 2V(r,z)} =rh 2 cr (A2.l) 

For Laplace' s equation, i. e., when the right hand side is·. 

zero, the substitution V(r,z) = R(r)Z(z) yields two equations, 

Z(z+h) + Z(z-h) - 2Z(z) = 2kZ(z) 

(r + ~)R(r+h) + (r - ~)R(r-h) - 2rR(r) = -2krR(r) 
2 

(A2. 2) 

(A2 .3) 



Equation A2.2 may be normalized by the substitutions 

z = ~h, Z(~h) = F(~). Equation A2.2 then becomes· 

F(~+l) + F(~-l) = 2(1+k)F(~) 

The solution of (A2.4) are 

F(~) =e1J~ 

where 

cosh 1J = 1 + k 

Equation A2.3 may be normalized by the· substitutions 

r· =. ph, R(ph) = H(p). The· equation for H is then 

(p + !)H(p +1) + (p - !)H(p - 1) - 2p coshÀ H(p) = 0 

where 
cosh À =·1 - k =.2 - cosh 1J 
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(A2.4) 

(A2. 5) 

Equation.A2.5 may be solved by standard methods. Two types 

of solution are required; the first representing·the decaying 

solution of a charge distribution in an enclosed region, the 

second for the case of zero charge on the axis. 

Solutions of equations of the form (A2.5) may be obtained 

as contourintegrals of the type 

H(p) =!tP-lv(t) dt 

Sander shows that one solution, valid for p>! is 
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A. second solution, for all p is 

The two abovesolutions may be· expr~ssed in terms·of the hyper

geometric- functions' and. are denote.d u1and U
2

• Once Ul and U;2 

are specified, the Wronskian L for equation A2.S may be·found. 

The solution (corresponding to a ring charge) is finally found 

as 

n .>n : 
- o. 

=. 2no 

1T 

r U2 . (n,À)U, 

o 

d~ 

Evaluation of ~ as in the above expressions is com-

putationally prohibitive, both from a programming standpoint 

as well as required machine time. Point values of the 

Green's function to the continuous Laplacian may be used to 

approximate the required functions, as shown in Chapter 2 

above. 
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The elementary solution to the continuous Laplacian in 

the r-z plane is the solution to a fine ring charge. This 

solution may be expressed as [43] 

l Ir:-
= v ~ k K(k) ,r ~ 0 

21T r 0 
(A2. 6) 

where 

k = (A2.7) 

and K(k) is the complete elliptic integral of the first kind, 

modulus k. At the singularity itself, l/J may be approximated 

by means of the five-point operator, viz., 

h + (1 - - ) l/J(r -h,z ;r ,z ) o 0 0 0 
2ro 

h + (l + - ) l/J(r +h,z ;r ,z ) + 1] 2r 0 0 0 0 
(A2.8) 

o 

Itis advisable from a computational standpoint to 

normalize l/J SO.that all potentials at the singularity itself 

are unity. This is accomplished by 

= l/J(r,z;ro'zo) 
ijJ(ro,zo;ro'zo> 

(A2. 9) 

The subscript n will be aropped for convenience and it will be 

assumed from this point that the functions l/J have been 

normalized. 
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The potential due to a point charge on the z axis, i.e., 

$(r,ziO,zO)' isstill required. An,approximate expression 

may be obtained as follows: The finite difference poisson's 

equation for a point charge on the axis is 

If q/e: = 41f, the potential everywhere (in the continuous case) 

is 1/lr '2 + (z-:-zo) 2. Substituting in the above equation and 

solving for Va yields 

Bence if the potential at the charge point in the meshis 

taken as unit y, the normalized Green's function corresponding 

to a point .. charge on the axis' may be taken as 

l 
(A2.10) 

A2.2 CONSTRUCTION OF Q FOR A RECTANGULAR.REGION 

Though a "pli and "s" mapping may be used to construct 

Q as for the x-y plane, the structure of the shift matrix 

for a rectangular region is simple enough to warrant writing 

the elements of p and S explicitly. Consider arectangular 

region in the r-z plane bounded on one side by the z-axis, 

as shown in Figure A2.1. The mesh size is M+l radial by 

N+2 axial nodes and the contours 81 and S2 are indicated by 
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o's and x's respectively. Let the points on 81 and 82 be 

numbered counterclockwise, starting from the top left corner. 

Then, referring to the three sides of· the region separately, 

the 8 and P matrices may be partitioned as 

8 (1) 8(2) 8(3) P (1) P (2) p(3)1 

8 (4) 8 (5) 8(6) (4) (5) (6) 
s = P = P P P 

S 
(7) 

8 
(8) 

8 
(9) 

P 
(7) 

P 
(8) 

P 
(9) 

If i,j are the indices of the submatrices, there"results, 

for 8, 

z 

M r 

-'--

lE; 
N 

FIGURE A2.l: RECTANGULAR REGION OF INTERE8T IN R-Z PLANE 
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NOTe.~ "1'= 'i' ~~,,...; 10 ,0) 

(1) 
='1JJ(O,i-1;j-1,0) , 1 i 1 j S .. ' ~ ~. M, ~ ~ M 1J 

(2) 
1Ji (j , i ~ 1; M-1, 0) , 1 i j S .. =. ~ ~ M, 1 ~. ~ N-2 1J 

(3) 
1Ji(N-1,i-1;M-j,0) , S .. = 1 ~ i ·S M, 1 ~ j S M 1J 

(4) 
1Ji(i,M-1;j-1,0), . 1 S .. = ~ 1J i .~ N-2,' 1 ~ j ~ M 

(5) 
1Ji(j-i,M-1;M-1,0) 1 i N-2, 1 j .S N-2 S .. = ~ S ~ 1J 

(A2.11) 

S~~) = 1Ji(N-1-i,M-1 i M-j,O) 1 ~. i ~ N-2, 1 ~ j ~ -M 1J 

S~:) =. 1Ji(N-1,M-i;j-1,O) 1 S- i ~ 'M, 1 ~ .j ~ M 1J 

(8) 
1Ji(N-1-j,M-i;M-1,0) 1 i 1 j S'j = ~ ~ M, ~ ~. N-2 1. 

S~~) 
1J = 1Ji (Gl ,M-i;M-j, 0) 1 ~. i ~ M, 1 ~ j ~ M 

and for P, 

(1) 
=1Ji(1,i-1;j-1,0) 1 ,i 1 ~ j P .. ~ ~ M, ::;; M 1J 

P ~~) = 1Ji(j+1,i-1;M-1,0) 1 s. i ~ M, 1 ~ j ~ N-2 1J 

(3) 
1Ji(N,i-l;M-j,O) 1 i 1 j P .. = ~ ~ M, ~ < M 

tD 
1J 

P ~~) = 1/J(i-1,M;j-l,0) 1 ~ i 1J ~ N, 1 ~ j ~ M 
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(5) 
P .. = ljJ (i-j-1 ,M; M-1, 0) . 1 ~ i ~ N, 1 ~ j $ N-2 

J.] 

p~~) = ljJ(N-i,M;M-j,O) 1 < i < N, 1 < j < M 
J.] 

p(7) = ljJ(N,M-i;j-1,O) 1 ~ i $ M, 1 $ j $ M (A2.12) .. 
J.] 

P ~~) = ljJ(N-j,M-i;M-1,O) 1 S i < M, ·1 < j < N-2 
J.] 

P ~~) ljJ(l;M-i;M-j,O) 1 $ i $ M, 1 $ j $ M 
J.] 

The matrices Sand P as we11 as the resu1ting Q matrix possess 

a Il reverse Il symmetry, in that 

Q = Q .. 
2M+N+1-i,2M+N-1-j J.,] 

so that, for even N, the matrix Q may be written in the 

partitioned forro 

Hence on1y one ha1f of Q need bestored. 

(A2.13) 
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A2.3 FORTRAf'I PROGRAM,LISTINGS 

This section 1ists the various programs necessary for 

imp1ementation of the above. As before, the programs are 

in FORTRAN IV Language, Leve1 G. The matrix inversion rou-

tine 'INVERT' has b~en described in Appendix 1. 
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C 
C 
C 
c 
r 

c 

c 

C 

MAIN 157 

SHIFT MATRIX PROGRA~ME FOR THE R-Z ~L~NE. THE SIlE OF THE REGION 
IS M2 ev N2 (TOTAL) AND (2*M2&N2-4) SHOULO 8E lESS THAN OR EQUAl 
TO lCO. RfQUIRES SUBPROGRAMMES 'RING','EI.INK' AND 'ARAO'. 

Dt~ENStON $(100,lOO),P( 51,lOQJ,WK(lQOJ 
DI~ENS[ON RAD(40, 
COMMON RAD 
READ(5,lOO' M2,N2 
r~= ·.~2-1 

N=N2-2 
NN=N-2 
NIJ=N/2 
IF(~O*2.NE.N) NO=NO+l 
KK='-HNO 
ll=2*M+NN 
CALl ARAO(M, 
DO 1 1=I,M 
no 1 J=I,M 
CAll RING(O,I-l,J-l,X' 
5(I,J)=X . 
Jl=~"'+f\:N+J 

CALL RING(N-l,[-l,M-J,X' 
S<I,Jl)=X 

1 "'=r-~+P\,jN+1 
CALL P.ING(~-l,M-I,J-l,X) 
S(17,J)=X 
CAlL RING{~,M-I,M-J,X) 
S(l7,J3)::X 
CALl RING(l,I-l,J-l,X' 
P(I,J)=X 
CAlL RINGeN,I-l,~-J,X) 

1 P(I,J3)::X 

DO 2 1=1,"1 
DO "2 J=l,NN 
J2=M+J 
CALl RINGeJ,I-l,M-l,X) 
S(I,J2)=X 
CAlL RïNG(J+l,I-i,M-l,Xi 
P( I,J2)=X 
IB=M+NN+I 
CAll RINGCN-I-J,M-I,M-l,X' 

2 S(I8,J2)=X 

no 3 l=l,NN 
on 3 J=l,M 
!4=M+! 
J6=M+NN+J 
C~Ll RING(i,M-l,J-l,Xi 
S(I4,J)=X 
CALL RINGCN-I-I,M-l,M-J,X' 

3 S(I4,J6)=X 



r: 

r. 

c 

c 

00 4 l=l,NO 
on 4 J=l,M 
14=M+1 
J6=M+NN+J 

MAIN! 

C~ll RINGCI-l,M,J-l,X' 
P(14,J'=X 
CALl RING(N-I,M,M-J,X' 

4 P(l4,JA'=X 

fI:-' 5 1 = l, N~ 
DO 5 J=l,NN 
15=M+1 
J5=M+J 
CAll RINGI-I+J,H-l,M-l,X. 

5 S(15,J5'=X 
00 6 I=l,NO 
DCl n J=l,NN 
I5=M+1 
J5=~+J 

CAll RING(-I+J+l,M,M-l,XJ 
6 P(I5,J5'=X 

CALL INVERT(S,lOO,lOO,ll,~l,OElTA,EPS) 

0" i J=l,KK 
')1 R II=l,lL 

R wt<(II)=C'. 
Of) q J=l,ll 
00 q t<=l,ll 

q WK(J'=WK(J)+P(I,K)*S(K,J) 
00 10 J=l,ll 

10 P(I,J'=WK(J' 
7 CO~TINU~ 

CAlL OUTPUT(P,KK,Ll) 
WRITF(6,10.3t DElTA,EPS 
SH)P 

100 FOR~AT(lI2' 
103 FO~~AT(IHO,lOX,6HDElTA=,E12.3,6H FPS=,E12.3) 

ENI) 
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RING 

SU8~OUTINE RINGCMl,Nl,NR1,VAlU' 
DIMENSION RAD(40' 
CpMfr'nN RAD 
M= IAi3S« Ml , 
!\J=UBSH'l) 
M~ = 1 A B S ( !\JR 1 , 
TFlN.Nf.NR, GO TO 1 
If(~.Nf.O) GO TO 1 
VALU=1 .. 
R(TIJR~ 

1 IF(N.NF.O' ~o Tn 3 
Ir(NK.FQ.O, GO TO 3 
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VftLU=.5*FLG\T(NR,*RAD(NR)/SQRT(FlOAT(M**2+NR**7') 
~ETIJ!:'N 

:3 IF(NK.ER.~) GO lO 4 
AK=2.*SQRT(FlOAT(NR.N))/SQRT(FlO~T(M.·2+(N+NR

'*.2') 

VAlu=n.15ql~492*AK*ElINK(AK)*RAO(NR)*SQRT(~lOAT
(NR}/FlOAT(N') 

RETURN 
4 ~ACSQ=FlOAT(~**2+N**2) 

VAlU=1.1(3.0943'133*SQRT(RAOSQ, ). 

PFTUP,N 
ENI1 . 



SUBROUTINE ARAOINa 
DI~ENS[ON RAO(40) 
Cm-iMON RAO 
F~r.TOR=O.5/3.1415q 

on 1 1= l ,N 
IF([.NE.l) GO TO 2 
VI=O.S 
GO TO 3 
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ARAD 

2 AKI=2.*SQRTCFlOAT(!*(I-l",/SQRTlflOATC(I+I-ll**2') 

VI=FACTOR*SQRT(FlOAT(l)/flOATCI~l)a*AK[*ELINK(AKI
' 

3 AKE=2.*SQRTCFLOATCI*CI+l"'/SQRTlflOATC[+I+l)**2' 
VE=FACTOR*SQRTCFLOATCI)/FLOATCI+l,,*AKE*ElINKIAKE) 
AKN=2.*FLOATCI'/SQRT(1.+FlOAT(II+l'.*Z) 
VN=FACTOR*A~N*ElINK(AKN) 

~H=1./FlOAT(2*I' 

VO=.75*(VI*(1.-RH'+VF*(1.+RH'+Z.*VN+l.' 
RAO( 1 )= 1./VO 

1 cor'Hl~UE 
RETIJRN 
ENr. 



.FUNCTION ELINK(Z) 
P=l • ..,Z*Z 
IF(P) 1,1,2 
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ELtNK 

2 ELtNK=1.38629436+P*(O.096663443+P*{O.03590C924+P*(O.037425637+ 
1 O.014511962*P»)'-ALOG(P)*(O.5+P*(O.12498594+P*(O.06880248&+P* 
2 (O.0332B3553+0.0044178701*P»») 

RETURN 
1 EL!NK-=EXP(88.) 

RETURN 
END 

UUTPUT 

SUB~JJTIN~ OUTPUT(P,KK,LL" 
o HIE \l SI.] \J P ( 51. , 1. 1) 0) ,C.A RI) ( ci) 
WR 1 TE ( :, , 1..) 4 1 
.LP=(LL-l)/9+1 
IND=:) 
00 11 1 = 1, KK 
DO 1.2 II=l,LP 
IND=I\~D+l 

J J =9 :;q 1 1 -:-1 ) 
DO 13 J= 1',9 

13 CA;<.D(Jl=r)., 
DO 14 J=1,9 
JP=J+JJ 
IF(JPoGToLLl GO TO 15 

14 CL\;{D(J)=P(I,JP) 
25 CONTI~ûE . 

~,j kIT:: ( 6, l. 0 l ) ( CAR. 0 ( J ) , J = 1 ,9 } ,IN Cl 
~~ ~ 1 T ~ ( 7 , 1- ) 2) ( CAR D ( J ) f J = t 9 9 ) , 1 \l J 

12 CC1"-JTINJE 
i'jf-{ 1 TE ( ~ , J. 05 ) 

11 C~J\lT L'WE 
RE TU::':. N 

J. CI 5 F Ci?; "!·H { :. ri 1 
1)1 FJR:'I~\T (lci , P9ë13" 5,18) 
11Z FJR~~T(q~~, dl 
104 FJ;<."l'::'T('Hll 

E:~D 
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ApPENDIX 3 

SHIFTMATRICES FOR COAXIAL LINES AND STRIPS 

A3.1 EXISTENCE OF THE CONTINUOUS GREEN'S FUNCTION 

b 
--r---- z 

-I- ~ 
~~----r-------~~-------------- r 

r 
o a 

FIGURE A3.l 

Consider the unifor.m infinite coaxial line shown in 

Figure A3.1. Assuming axial symmetry, i.e.; 

Green's function ~ is found by solving 

~.= 0, the aa 

(A3.l ) 

where (ro'zo) are the coordinates of the singularity. Take 

a finite Hankel transform [57, p.85] of equation (A3.l), 



resulting in 

or 

where. 

r8(r-rQ ) 8(z-zo) [Jo(r~i)Go(a~i) 
r 

and ~i areall the positiveroots of 

163 

(A3.2) 

(A3.3) 

(A3. 4) 

Jo is the Bessel function atthe first kind, order zero, and 

Go is defined in terms of the familiar Hankel function* as 

H(l) (x) 
n 

Taking a Fourier transform as 

* Seei for example, M. Abramowitz and I. Stegun, Handbook 

of Mathematica1 Functions, New York: Dover,p. 358. 
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there-results 

- a2 F - ç; ,2 F = _w_JOO Ô (z-z ) e iaz dz 
~ 12~: - 0 

-00 

= 

from which, 

Take the inverse transform of F as 

~H = 

= 

~H = yI'2! 1
00 

F e -icx.z da 
_00 

da 

-i sin[a(z-zo)] _ da. 
+ ç;~ 

~ 

In the last integral, sin[a(z-z )] is an odd function about 
- 0 

zO' so fora finite value of Zo the contribution due to the 

sine term vanishes. Hence, 

= - ~ JOO cos[a(z-zo)] 
2~ a2 + ç;~ 

~ 

-00 

da 
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1:1 

i 
1 

1 

The lastintegral may be put in a standard forro as 

J
ooo 

- !! 
~i1T 

cos[~1.' (z-z ). ~/~·] o 1. 
da/~· 1. 

which is evaluated from tables*as 

= 
_co. (z -z) 

e "'1. 0 z< Z , 0 

Taking the inverse Hankel transform there results 
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Convergence of the above series is very peer for the case z=O. 

Hence, the above development is useful only since it proves 

* H.B. Dwight, Tables of IntegraIs and Other Mathematical 

Data, New York: Macmillan, (#859.3). 
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uniqueness and existence of the Green's function as h~O. 

A3.2 ITERATIVE CONSTRUCTION OF THE SHIFT MATRIX 

An iterativescheme for calculation of the shi ft matrix 

Q has been developed in Chapter 6, § 6.3 as 

(6.4) 

The structure of the matrix C will now be examined. Each row 

of C represents the negative of the self and radial coeffi-

cients of the finite difference formula for the r-z plane. 

Bence, the diagonal elements of C are equal to 4. If the 

potentials on the radial planes defined in Figure 6.11 are 

numbered sequentially outward from the z-axis, the matrix C 

is tri-diagonal. The upper. off-diagonal elements are set to 

-(1+ ~ ) while the lower· off-diagonal e1ements are set to 
2r 

-(1 -.~ ), where r· is the radius of the point corresponding 

2r 
to the coefficient in the diagonal. For example, if the 

radius of the first node on each plane in Figure 6.11 is ri' 

that of the second is r 2 and so on, since the inner and outer 

conductors havebeen assumed at zero potential, the matrix C 

is structured as 

C = 

4, 

h 
- (1- 2- ) 

r2 ' 

-(1+ ~), 
2r1 

4, 

0, 0, 

0, 



In.the case of strips, the off-diagonal coefficients are 

unit y, so that the matrix C is structured as 

4 -1 0 0 0 · .. 

-1 4 -1 0 0 · .. 
C = 

0 -1 4 -1 0 · .. 

etc. 

The initial iterate of-Q is usually taken as zero or as the 

identity matrix. The iterations are continued until the 

difference between two successive iterates of Q is floating 

point zero or-sorne other small preassigned number. In the 

case of strips, the Q matrix is symmetric. 

A3.3 VERIFICATION OF Q FOR STRIPS 

If each mesh 1ine is replaced by a unit resistance, 

the semi-infinite conducting strip may be considered as a 
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semi-infinite square resistance mesh, bounded by two parallel 

conducting bars, as shown in Figure A3.2. Let the nodes in 

the mesh be numbered as shown in the figure. At the nodes 

or "terminals" along the line n==O, the currents into the 

mesh may be related to the potentials at the terminals by 

an admittance matrix as 



0 

ml 

l 

2 

M 

n ... 
1 2 3 

-------

- - -----

--------

- - - - ---

l<'IGURE A3. 2 ~ sm.u--INFINITE STRIP 

i = GV 
1 
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However, the potentials along n=Q and n=l are related by the 

shift matrix 

For unit resistances in the mesh, the current vector i is 

given by 

i = VI -- V 2 

so that the relationship bet~,!een Gand Q is 

~ _. l .. Q 

where l is the identity matrix. 

The admittance matrix G for the strip may be found 

analytically and has been calculated by Sander [58]. Sanderls 

solution is presented briefly below. 
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The equation relating the potential differences between 

adja'cent nodes·is 

V(m+l ,n) + V(m-l,n)+ V(m,n+l) + V(m,n-l) = 4V(m,n) 

This issatisfied by functions of,the forro exp(jm~ + nÀ) 

provided tha t .. 

sinh À/2 = ± sin ~/2 

The boundary conditions· are v=o at m=O and'm=M. A t~ial 

general solution may therefore be constructed, of the forro 

M-l 
V(m,n) = l· A exp(-nÀ ) sin me! 

p=l p P M 

where Àp is given by· 

= sin p1T. 
2M 

and p is·an integer. The coefficients Ap may be·found expli

citly from 

M-l 
l 

m=l 
= !M, p;:q~M-l 

Now since 

M-l 
V(m,O) = r 

p=l 
A sin mp1T· 

p M 

then· 
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M-l 
A· =.2· l V (m, 0) sin qm1T 

q M m=l M 

To. const~uct· .. the G' matrix', V(m,O) is set to unit y for m=k· 

and te zero for·m~k. . . Then, '. 

= 2 sin qk1T . 
M' M. 

and 

M-l' 
V(m,n) =.~ ~ exp(-nÀ) sin pk1T sin· pm1T . 

M p~l PM' r:r 

The G'matrix may thus be' constructed as·. 

=.-
M-l . 

~ l exp (-À ) sin Pk
M

1T .sin~ PMj1T , j~k. 
Mp=l· P 

M-l 
Gkk = 1· - 2 2 exp (-Àp) sin2 .

pk1T 

M· p=l M 
j=k 

Note that'Qjk =.-Gjk , k~j, and Qkk = l-Gkk - The shift matrix 

for strips·as·obtainedby iteration has been verified-with 

Sander.' s· results and exact agreement has been obtained •. 

A3.4 FORTRAN PROGRAM LISTINGS 

The necessary.programs-for generation of Q matrices for 

coaxial lines are presented below. As before, -the comments 

in the pro~~ams are self-explanatory. 
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MAIN 1 

C ~ MATRIX G~NERATION PROGRAMME fOR COAXIAL CABLE PROBLEMS. 

C ~ IS ~OUND SV ITERATION. REQUIRES SU8ROUTINES 'CMATRX' 

C 'ITER' AND 'OUTPUT' AND THE FOLLOWING OATA--

C A--OUTER RADiuS OF CABLE, ARBITRARY UNITS 

C ~--l~NER RAOIUS OF CABLE, SAME UNITS 
C N--Nu. OF RADIAL NUDES INSIDE CABLE 
G ERR--RtQUIRED AdSOLUTE ACCURACY OF EACH ELEMENT OF Q. 

G MAV BE SP~CIFIED AS FLOATING POINT lERO 

C NITER--MAXIMUM NO. OF. ITERATIONS ALLOWED 
C 

DIMENSION C(50,50"Q'~O,50) 
C 
C RE:AD OATA 
C 

c 

100 FOkMAT(215,3FIU.Oa 
50 REAO'5,lOO) N,NITER,A,S,ERR 

IF (N. Ew. Q» STOP 

C GENERATE C MATRIX 
C 

GALL CMATRX(C,A,8,N' 
C 
C GENERATE INITIAL GUESS OF Q 
C 

C 

DO l 1 =1 ,N 
00 1 J=l,N 

1 Q ( l, J» =0. 
2 QUtI'=l. 

C lTERATlO ..... LOUP 
C 

c 

UO 3 l=l,NITER 
CAlL ITER(C,Q,N,BIGEST,DElTA,EPS) 
IF(BIGEST.LE.ERR) GO TO 4 

3 CONTINUE 

C OUTPUT ROUTINE 
C 

4 CAlL OUTPUT(Q,N,N) 
wRITE(o,lùl) BIGcST,I,OELTA,EPS 

101 fORMAT(lHO,'bIGEST=',lPE9.2,' KOUNT=',~3,' DELTA=·,E9.2,· EPS='I 

lE9.2) 
GO Ta 50 
END 
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CMATRX 

SUBROUTINE :MATRX(C,A,B,NI 
C FINDS RADIAL COEfFIClçNT MATRIX C FOR COAXIAL CABLE PROBLEM 
C ~SI~G FIVE-POINT FINITE DIFFERENCE OPERATOR. 
C A--OUTER RADIUS OFCASLE 
C ~--INNER RADIUS OF CABLE 
C N--NO. OF RADIAL NODES INSIDE CABLE 
C DIAGONAL ELEMENTS OF C ARE SET TO 't. SUPRA-DIAGONAL 
C ELEMENTS ARE SET TO -Cl+H/2R) AND LOWER DIAGONAL TO 
C - (l-H/2R) e. ALL OTHER ELEMENTS ARE ZERO 
C 

DIMENSION C(50,50) 
ri=A-B 
l=d*FLOATCN+l'*20 
TW=2o*W 
DU 1 1 =1, N 
DU l J=l,N 

t C, l ,J ) =0 0 

DL 2 l=l,N 
FACT=W/'~LOAT'I)*TW+ZJ 
C ( 1,1) =40 

IF(loEQ.l. GO TO 3 
C (1,1,-1 t =FAC T-1. 

3 IF(I.EQ.N) GO TO 2 
C(I,I+l)=-FACT-lo 

2 CONTINUE 
RETURN 
f:ND 
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ITER' 

SUBROUTINE ITER(C,Q,N,BIGEST,DELTA,EPSt 
C SUBROUTINE INPUTS MATRICES C AND Q AND RETURNS INVERSE 
C OF (C-Q) UNDER Q. 'BIGESTt IS THE MAXIMUM ABSOLUTE DIFfERENCE 
C BETWEEN CORRESPONOING ELEMENTS IN INPUT Q AND OUTPUT Q MATRICESe 
C DELTA IS DETERMINANT VALUE AND EPS IS SMALLEST PIVOT OF 
C INVERSION. REQUIRES MATRIX INVERSION ROUTINE 'INVERT'. 

DIMENSION C(50,50',Q(50,SOt,scSO,SO, 
C 
C STORE DLD Q IN S 
C 

C 

00 J. l=l,N 
00 l J=l,N 

1 S ( l , J » =Q , l ,J» 

C FORM (C-QI AND STORE IN Q 
C 

C 

DO 2 l=l,N 
DO 2 J=l,N 

2 Q(I,J'=C(I,J,-Q(I,J' 

C INV~RT (C-Q) AND STORE IN Q 
C 

CALL INVERTCQ,50,50,N,N,DELTA,EPS) 
C 
C FINO BIGGEST DIFFERENCE 
C 

BIGI::ST=Oe 
00 3 I=l,N 
OU 3 J=l,N 
DIF=ABS(Q(I,J)-S(l,J') 
IFIOIF o GT.BIGEST' SlGEST=OlF 

3 CUNTINUE 
RETURN 
END 
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SL8ROUTINE OUTPUTCP,KK,Ll' 
DIMENSION PCSO,50),CARO(9) 
WRITE(6,l.04' 
LP=( ll-l) /9+1 
INO=O 
DO 11 I=l,KK 
00 12 II=l,lP 
INO=INO+l 
JJ=9*'11-1) 
DO 13 J=1,9 

13 CARtH J ) =0. 
00 14 J=1,9 
JP=J+JJ 
IF'JP.GT.ll) GO TO 15 

l4 CARO(J)=PCI,JP) 
15 CONTINUE 

WRITE(6;lOl)'CARO'J"J=1,9"INO 
~KITE'7,!02"CARO(J),J=l,9"IND 

12 CONTINUE 
WRITE(6,lÛ5) 

11 CuNTINUE 
RETURN 

105 FORMATUH ) 
101 FORMAT'lH ,lP9E'3.5,IS) 
102 FOKMAT(9l8,IS) 
104 FORMAT'lHl' 

END 
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ApPENDIX 4 

INTERIOR POINT S.O.R. PROGRAr~S 

A4.1 Two-DIMENSIONAL (X-Y PLANE) PROGRAMS 

The interior·routines used inthis research for problems 

in the· x-yplaneare'essentially the same as those used in 

the previous experimental work in boundary relaxation by 

using gradients [411. Thenecessaryhousekeeping routines 

are describedin, the abovereference to f~cilitate solution 

of problems with as many as four different·media in the 

interior region of interest. The reader, is referred to the 

above·for further details of these.interior·routines. 

A4.2 AXIALLV SVMMETRIC INTERIOR PROGRAMS 

As for the problems in the x-y plane, the routines for 

point S.O.R. solution of the interior region in the r-z plane 

make.use of a·field description array to define the appro

priate formula to.be·used at.eachpoint of the mesh. The 

problem geometry is read in from a quasi-graphical data 

deck in whichpunches indicate the presence or· absence of 

conductors and/or dielectrics at each node in the mesh. The 
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problem geometry is encoded as follows: 

CODE MEANING -
0 Dielectric interface 

1 Region Rl with dielectric constant El 

(normally = 1) 

_2 Region R2 with dielectric constant E2 

3 Constant potential Vl, adjacent to Rl region 

4 Constant potential-V2, adjacent to Rl region 

5 Constant potential V3, adjacent to Rl region 

6 Constant potential Vl, adjacent to R2 region 

7 Constant potential V2, adjacent to- R2 region _ 

8 Constant potential V3, adjacent to R2 region 

To illustrate how the problem geometry is encoded, 

considerthe problem in Figure A4.l. The figure shows a 

hollow rectangular conductor with a dielectric rodin the 

interior. The four sides are held at different fixed po

tentials as shown. The problern is shown rnodelled in a mesh 

of7 x 8 nodes. Seven data cards are required to de scribe _the 

problem, one for each horizontal row of nodes: 

VI 7 0 nductor 

...d 
~ ~ 

ielectric rod 

V2 I~ ~ V2 
""" 1- ... ir 

conductorG 

V3 

FIGURE A4.l: HYPOTHETICAL PROBLEM 
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Card # 1 3 3 3 3 3 3 3 3 

Card # 2 4' 1 1 1 1· 1 1 4 

Card # 3 4 1 1 0 0 0 1 4 

Card # 4 4 1 1 0 2 0 1 4 

Card #. 5 4 1 1 1 0 0 1 4 

Card # 6 4 1 1 1 1 1 1 4 

Card # 7 5 5 5 5 5 5 5 5 

The ab ove , "field geometry array" is then converted to 

a field description array by the subroutine FIELD2, one code, 

number for each node in the field. This codenumber is·then 

used·to de termine th,e appropr~ate formula at.each point in th,e 
'. 

interior S.O.R. cycle. In.order to minimize the number.of 

operations, all-radialmultipliers (or. coefficients) are 

calculated beforehand by. subroutine ARAD and stored for sub-

sequent use. 

AlI subroutines are heavily conunented, to tbe point where 

they are self-descriptive. 

A4.3 BOUNDARY RELAXATION R-Z PLANE PROGRAMS 

This section gives the FORTRAN program listings of the 

necessary routines for boundary relaxation in the r-zplane, 

using the interior routines described in the preceding section. 

The only listing not heavily conunented is·that of· the main 

calling program, as.this is the one· part of the overall pro-

gramthat undergoes most change. The programs, aS.listed 



here, will work without modification on IBM series 360com-

puters with at least 110 Kbytes of available core. 

In addition to the routines, a data deck describing 

problem parameters is required. The data deck is· assembled 

as follows: 

No. of 
Cards' Name(s) Format 

1) 1 Ml,M2,Nl,N2 415 

2) deck P(I,J) 9Z8 

3)* 1 NPROB 15 

4) 1 Vl,V2,V3,V4,Rl,R2, 

ALPHA,UDIF 8FlO.0 

5) deck field coding (as above) nIl 

6) 1 NCOR,IFORM,IWIDTH, 

NCONTR,NEXTRA,NPASS 615 

7)* 1 BETA,BDIF 2FlO.0 

where the variable names are, 

Ml,M2 -- Start and end of field in radial direction; Ml 

is the Z-axis and is specified as 1; 

Nl,N2 -- start and end of field in axial direction; 

P(I,J) -- is the shift matrix (top half) as produced by 

the programs described in Appendix 2; 

NPROB -- is the number of the problem. The execution is 
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terminated when NPROB=O. Sections 3) to 7) in the 

data deck may be repeated as often asdesired and 

terminated with an NPROB=O card; 



e 
Vl,V2,V3 -- are the fixed potentia1s corresponding to the 

field codings of 3,4 or 5 respective1y; 

V4 -- a1l nodes in the mesh whose potentia1s are not fixed 

are initia11y set equal to V4; 

Rl,R2 die1ectric constants of regions Rl and R2. R1 is 

normally specified as 1.0; 

ALPHA -- interior overrelaxation factor; 

UOIF maximum a1lowable interior residua1; 

NCOR maximum a110wed boundary corrections; 
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IFORM -- determines the format of printed potential values -

see comments in subroutine VALUES; 

IWIOTH 

NCONTR 

NEXTRA 

width of equipotentia1p1ot in printer spaces; 

no. of potentia1 contours desired; 

boundary correction number when'extrapolation is 

desired. Extrapolation is performed at each 

integer multiple of NEXTRAj 

NPASS -- maximum allowed interior S.O.R. passes for each 

BETA 

BOIF 

boundary correction; 

boundary correction factor (norrnally = 1.5); 

maximum permissib1e boundary correction Ior con

vergence. 

preceding the prcrgram listing is a samp1e outputprintout 

'for the conducting sphere prob1em of Chapter 6, Figure 6.1. 

In this examp1e, NEXTRA was specified as 6. 



...... 'lPU'!"I'PW!F8I 1PfJ!'--".IJI!lSUII&a_ 

~ 

PROBLEM NO. 1 

BOUNOARY INTERIOR NO.OF INT. BOUNDARY 
CORRECTION RELAXATION RELAXATION CORRECTIOf'll 
I\IUMBER FACTOR PASSES FACTOR 

KBAi~ ALPHA ITEk-l BETA 

1 1.3500 25 1.4000 
2 1.3500 25 1.4000 
3 1.3500 25. 1.4000 
4 1.35,JO 25 1.4000 
5 1.3500 25 1.4000 
6 1.3500 25 1.4000 
1 1.3500 25 1.4000 
6 1.3500 18 1.4000 
9 1.3500 11 1.4000 

10 1.3500 lb 1.4000 
11 1.3500 14 1.4000 
12 1.3500 14 1.4000 
13 1.3500 15 1.4000 
14 1.3500 4 1.4000 

UDIF= O.1000E-04 BOIF= a.1000E-03 

LARGEST BOUNDARY 
BùUNOARY ERROR 
DIFFERENCE ,\I0RM 

BIGEST ENOR,.. 

O.349E 00 O.526E 01 
0.195E 00 O.39ZE 01 
01t142E 00 0.318E 01 
a.114E 00 0.256E: 01 
O.904E-01 O.204E 01 
O.114E-01] 
0.101E-01 

O.163E 011 
O.936E-Ol 

0.444E-02 O.484E-Ol 
O.201E-02 0.261E-01 
O.109E-02 0.149E-Ol 
0.591E-03 O.849E-02 
O.338E-03] 
O.225E-03 

O.481E-Ol] 
0.122E-03 

0.629E-04 0.336E-'l3 

'\ 

-

T\JTAL 
ERRUR 
NORMSQ 

ESQ 

O.130E 01 
O.650E 00 
0.424E 00 
0.213E 00 
O.114E 00 
0.110E 00] 
O.620E-03 
O.129E-03 
0.364E-04 
O.112E-04 
0.362E-05 
O.lllE-O,] 
0.618E-01 
O.836E-08 

.... 
co 
o 
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MAIN! 

UIMENSlùN IND(40,aO),U(40,80"POT(Zl"RAOOT(40),RAOIN(40),AK3(40,3 
1),AK7(40,3),AK1(40,Z),AK5(40,ZI 

DIMENSIUN VI(lOO),VEO(102),VENC10ZI,P( 51,lOO),VEOO(lüZ' 
CUMMUN IND,U,POT,RADQT,RAOIN,AK3,AK1,AK1,AK5,Vl,VEO,V[N,P,~~Uu 
RtAO(S,lOO) Ml,M2,Nl,N2 
!'~=1\2 -Nl-l 
l'JU=hl/2 
IF(NU*2.NE.NJ NU=NO+l 
J\K=M2-rH+NO 
LL=M2+M2+N2-Nl-5 
DU 1 l=l,KK 
K~AD(5,lv5'(P(I,J"J=1,lL) 

1 CUI'l rI NUE 
irJl<lTE(ô,12C) (Ptl,J) ,J=l,lL) 

120 FURMAT(lH ,6E20.1. 
5 ~lA0(5,100) NPR08 

If(NPROti.EQ.O) STOP 
READ(5,lOl) Vl,VZ,V3,V4,Rl,R2,ALPHA,UOIF 
CALL FIEL02(M2,N2,lt 
CÂLL KAUX(M2,Rl,R2) 
REAO(S,lOO, NCOR,IFORM,IwIOTH,NCONTR,NEXTRA,NPASS 
KEAO(S,lOl) BETA,80IF 
GALL SETUP2(Ml,M2,Nl,Nl,Vl,V2,V3,V4) 
~KITE(6,110) NPRU8 
KBAR=O 

2 CGI'4TINUE 
CALL ~ELAX2(Ml,M2,Nl,N2,ALPHA,UDIF,NPASS,ITER,O) 
K2=LL+2 
ua 7 1=1.,K2 

7 vEOu(l)=VEO(It 
CALL VECTOR(M2,Nl,N2,BIGEST,ENORM,ES~) 
i<.bA;.l.=KbAR+l 
wkITE(6,101) KBAR,ALPHA,ITER,BETA,BIGEST,ENORMtESQ 
IF(K8AR.GE.NCUR) GO TO 50 
IFlôlGESToLEoBDIF' GO Ta 50 
CALL CHANGElM2,Nl,N2,BETA) 
If(KBAR.NE.(KBAR/NEXTRA)*NEXTRA) GO rD 4 
CALL EXTRA(M2,Nl,N2~ 

4 C(j~~ T 1 f'.4UE 
GO TO i 

50 W~IT~(6,104' UDIF,BDIF 
U(M2,1)=U'M2-1.1)+U(M2,2~-.5*(U(M2-2,1)+U~M2,3)) 
U (Ml, N2) =u (M2 tN2~1)+ U( M2-1 tN2j -.5*(U (M2 ,N2-2 .+U( M2-2,N2) ) 
CALL VAlUES(Ml,M2,Nl!N2tiFûRM,i~iDiH,NCONiR,1) 
GO TU 5 

100 FOkMAT(l615l 
!Ûl FORMAT(~Fl000) 
104 FORMAT(lHO,10X,5HUDIF=,Ell.4,5X,5HBUiF=,Ell.4) 
105 FORMATl9l8t 
107 ~ü~MAT(lH ,4X,I3,lOX,F604,7X,I3t8X,F8.4,5X,3(Ell.3,2X}) 
~lO FL~MAT(lHl/35X,11HPRJBLEM NO.,I2 1/5X,8HBOU 

lNDAKV,5X,8HINTERlOR,5X,lOHNO.OF INT.,3X,8HBOUNDARY,5X,7HLARGEST, 
26x,8HBOUNDARY,5X,8HTOTAL 15X,lOHCORRECTION,3X,lOHRELAXATIUN,3x, 
31GHRELAXATION,3X,lOHCORRECTION,3X, 8H8ùUNDARY,5X,5HERROR,8X,5HERRu 
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·MAIN 

4R/5X,bHNUMBER,7X,bHFACTOR,7X,bHPASSfS,7X,6HFACTOR,7X,lOHOIfFERENCE 
5,3X,4HN:JRM,9X,bHNORMSQI15X,4HK8AR,9X,SHALPHA,8X,6HITER-l,lX,ItHBETA 
6,9X,bHbiGEST,7X,5HENORM,8X,3HESQ/' . 

I:NO 

RAOX 

SU5RJUTI~~ RADX(M,Rl,R2' 

C THIS SUDRUUTINE COMPUTES RAOIAl MUlTIPlIERS FO~ USE WITH 'RELAX2' 
C ROUTINE A~D STORES THEM IN COMMUN 
C "'1--"~;.1 OF POINTS IN R-DIR.ECTION 
C 'U--ùIëLECTKIC CONSTVH NJ.l. C·WRj-14llY =1.) 
~ R2--~lELECTRIC Cü~ST4NT ~Q.2 
C 

DI~ENSlü~ I~O(4~,80),U(40,80'tPOT(21),RAOOT'40"RADIN(4J),AK3(40,~ 
1),A<7(40,3),AK1(40,2),AK5(40,2t 
COM~U~ INO,U,POTt~ADOT,RAOIN,AK3,AK7,AK1,AK5 

DU l 1=2,1'" 
RM=0.~/FLOAT(I-l) 
kMH=J.2~/FLJAT(I-l) 
kADJTt 1 )=l.+RM 
KAOI"-I( 1 )=l.-RM 
AK3(I,1)=~ADOT(Il*(Rl+Rl) 

AK3(!92)=KADOT(I)*(Rl+R2) 
AK3(I,3)=RAJOT(I)*(R2+RZ) 
AK7(1,1'=RADIN(I)*(Rl+Rl) 
AK7(I,21=RADIN(Il*(Rl+R2) 
AK1( I,3)=RADI\I(l l*(R2+R2J 
AK1(I,1)=(1.+RMH)*Rl 
AK1(I,2)={1.+RMH.*R2 
AK5{I,1)=(lo-RMHi*Rl 

l AK5(i,2)=(1.-RMH)*R2 
AK3(1,1)=Zo*(Rl~R2) 

4K3(1,2,=Q o5*(lo+R!) 
AK3(1,3)=0.S*(1.+R2} 
AK7(1,1)=2.5*(Rl+RZ)+1. 
RETUR-N 
END 
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SUE~JUTINE FIELD2(M,l,Nl,IREAD' 
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C THIS SUS~OUTINE GENERATES A FIELD DESCRIPTION MATRIX INDCI,J' FROM A 
C FIELD :ûùE MATRIX INDIC(I,J), THE SIZE OF BOTH SEING Ml BY Nl. 
C Ml--NO UF POINTS IN R-OIRECTION,THE ROW Ml=1 SEING THE Z-AXIS 
C N\--NO OF POINTS IN Z-DIRECTION 
C CaDE ~ATRIX 'INDIC' IS SUPPLIEO RO~WISE AND MUST BE CODED AS FOLLOWS-
C Q-0ItL~CTRIC INT~RFACE 
C L-~IELECTRIC CUNSTANT =Rl,CNORMALLY=l.) 
C 2-DIEL~CTRIC CUNSTA~T =~2 
C 3-CJNSTANT PUTENTIAL Vl,ADJACENT Ta RI REGION 
C 4-CONSTANT POTENTIAL V2,ADJACENT TO Rl REGION 
C 5-cnN~TA~T POTENTIAL V3,ADJACENT TO Rl REGION 
C 6-tJ~STANT POTENTIAL Vl,AOJACENT TO R2 REGION 
C 7-CJNSTANT POTENTIAL V~,ADJACENT TU R2 REGION 
C b-CONSTANT PUTENTIAL V3,ADJACENT TO R2 REGION 
C IN TH~ CASE THAT A OIELECTRIC INTRFACE MEETS A CONSTANT POTENTIAL 
C SURfACE, THE CODE AT THAT POINT SHOULD dE THE ONE FOR DIELECTRIC Rt, 
C lor. ~JJE: 6,t OR 1. 
e NU ACUTE ANGLES OF OIELECTRIC SURFACE ARE PERMITTEO, CONCAVE OR 
C CO~VEXo THE SHAKPEST ANGLE PERMITTED IS A RIGHT ANGLE. THE UNLY DIE
e l~CT~IC INTERFACE AlLOWED ON TiE l-AX1S 15 AT RIGHT ANGLES Ta THE 
l. L-A,AISo 
C ThE CGD~S 6,7 AND 8 AKE RE ALLY ONLY NECESSARY WHERE THERE MIGHT BE 
C :J~FUSIJ~ SJCH AS AROUND AIR-OIELECTRIC-CONSTANT POTENTIAL I~TERFACES 
r. 

DIME~SION INDC40,80"IN~IC(40,80),ICODE(9),IER(d. 
CLN~ON I~D,INDIC 

IF(IRtAO.EQ.O) GO TG 2 
DO 1 I=1,r-11 
R.EAi)(S,lOOH INDIce 1,J',J=1,'JU 

1 crJ~;T INUE 
2 Dli 3 N=1, [~l 

H;D(1,I"d=5 
1 F ( PH) 1 C ( t , N , 0 GE 0 3) GOT a 200 
IF(l~DI:(l,N).NE.O) GO TO 3 
IND(1,N)=6 
IF(INOIC(1,N+1'.EQ.2) IND(1,N)=7 
IF(INDIC{l,N+l'.GE.6) iNO(1,N)=7 
Ge Ta 3 

~no IND(1,N'=INDICtl,N'-2 
IF(IND(1,N.oGE.4' IND(1,N'=INDll,N)-3 

"'J, CGNTINUE 
DU 11 M=2,/w\l 
~rOl 11 N= 1 , N 1 
IF{INDICtM,N)oNEeO) GO TO la 
ICODE(!)=INDIC(M,N+l' 
ILOù=(2)=INDIClM+l,N+l) 
ICODE(3)=INDIC(M+l,NJ 
ICCü~(4)=INDIC(M+l,N-1J 
ICUJE(5)=INDIC(M,N-1) 
ILnü~(6'=INDIC(~-1,N-1) 
ICGU[(7)=lNDIC(M-1,N' 
ICODE(8)=INUIC(M-1,N+1' 
lCODE(9)=ICODEC1) 



1 
1 
1 
= 1 

1 

1
: 
, 

1 

FIELD2 

DO 4 1=1,9 
IF (ICODE!! )~GT.5' ICODE( ()=2 
IF(ICODE(I)oGT.2' ICODE'I)=l 

4 CONTINUE 
INO( ~·\,N)=O 
DO 9 1=1,8 
IF(ICOOE(I'oEQ.l.ORoICODE(I+l).éQ.l) GO TD 7 
IF(ICDDE(I'oEQo2.0R.IÇODE(I+1'.EQ.2» GO TO 0 
Ir:( (I/2'*2oEQol) GO TO 5 
IEP.{I)=ICODE(I+2'-1 
GO Hl 8 

5 lER( 1 )=ICODE(l-l)-l 
GO TD 8 

6 1 U~ ( 1 , =1-
GO Tll A 

7 IER(I)=O 
a CUNTINUl 

IFACT=2**(I-l) 
9 I~D(M,N)=IND(M,N'+IER(I)*IF~CT 

IND(M,N)=IND(M,N'+10 
GU rD 11 

lO IND(I'-1,N'=4 
IF(INOIC(M,N).GEo31 INO(M,N)=INDIC(M,N'-2 
IfCINDIC(M,N).GEoo) INO(M,N)=INDIClM,N)-5 

:"'1 CUI'.iT 1 NUE 
Kl-TURN 

100 I-ORMAT(SOI1' 
am 
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RELA X2 \ 

S L'lH ,J U TIN E REL A X 2 ( Ml, M 2 , NI ,N 2 , AL P HA, U D 1 F , NP AS S , 1 TER, NE U » 
~~LAXATILN KOUTINE FOR AXIALlY SYMMETRIC FIELDS. REQUIRES FIELD CODé 
DESC~.IPTION ~ATRIX AS SUPPLIED BV SUBROUTINE IFIELD2 1 AND RADIAL 
MULTIPLlfRS AS SUPPLIED SV XUBROUTINE 'RADX' 

Ml,M2--PORTION JF FIELD IN R-DIRECTION 
Nl,N2--PORTIUN OF FIELD IN l-DIRECTION 
ALPHA--RELAXATION FACTOR 
UUIF--ROUTINE EXITS wHEN ALL CORRECTIONS TO POTENTIALS ARE 

ôELOw 'uDIF' 
NP~SS--~OUTINE EXITS ~HEN ~UMBER OF PASSES OVER FIELD EXCEEOS 

'NPASS' 
I1E~--NO nF ACTUAL RELAXATION PASSES TAKEN. IF ROUTINE EXITED 

BE~~USE OF CONVERGENCE, THE NUMBER OF PASSES E~UALS 
'ITER+l'. IF EXIT 8ECAUSE 'NPASS • EXCEEDED, NUMRER OF 
PASSéS E~UALS 'ITERI 

NFU--Q-NO NEUMANN ~OUNDARIES 

--l-N~UMANN 50UNDARIES AT J=Nl AND J=N'-. IN THIS CASE Nl=2 
Of.., GRf;;ATER AND N~=79 OR LESS, AND THE FIELD COI.)ING SJPPLIED 
TJ 'FIELD2' ~JULD FO~ EXAMPLE HAVE THE SAME CODI~G AT J=l 
AS AT J=3 ~HEN THE NEUMANN BOUNDARV IS AT J=2. IF ONLV ONE 
NfUMANN BUUNDARY IS DESIRED, THE OTHE~ MUST BE CODED AS A 
uI!UCrlLET ~OUNDARV 

DrMEhSlj~ 1~O(4Û,aO»,U(40,60"POT(21),RADOT(40"RADIN(4J»,AK3(40,3 
1),AK7(4J,3»,AK!(4ù,2),AK5(40,2) 
C~M~Q~ IN~,J,PUr,RADJT,RAOIN,AK3,AK7,AK1,AK5 

ALPHA1=ALPHA*O.25 
ALPHA2=ALPHA/6. 
ALPHA3=ALPHA/AK7(1,1) 
ITf~=O 

1. ccr~T 1 Mlf 
I~{~~UoEwon) GG TU 3 
DU 2. 1 = r.q , i4 2 
U(I,~l-l)=U(I,Nl+l) 
U( l, ,~:2+1) =U( l ,N2-l) 

2 CL!'H INUE 
3 r<L,tJVr<.G=() 

DO S '.j 1 =1'\ l. , M 2 
o ( J 9::'J J = ~Jl , i\I 2 
H~ 0 X = 1 ND ( l ,J ) 
Ir(I~UX.GE.8. GU TO 8 
GU TQ (99,99,99,4,5,6,7)tl~DX 

4 CHANGt=~LPHA1*(U(1+"J'*RADJT(I)+U(I-l,J)*RADIN(I}+U(1,J-l)+ 
lU(I i J+!)-4g*U(!9J,) 

GL TJ 77 
5 ChA~'~Gt=ALPH:.I.~*(4e'i=U(I"'ltJ)+U(I,J+U+U( I,J-1I-6.*U(I,J) 

GU Td 77 
6 ~ttA~;~=ALPHA3'i=(AK3(1,1)*U(I+l,J)+AK3(1,2)*U(I,J+l»+AK3{1,3)*U(I,J

; 1)-4.1\.7(1 ,l)*U( I,J» 
GL T:J 77 

7 C~A~Gl=ALPHA3*(AK3(1,1)*U(I+l,J}+AK3(1,3)*U(I,J+l)+AK3(1,2)*U(I, 
lJ-l)-AK7{1,1)*U{I,J» 

Gl) T J 77 
8 ;.J L = r \J 0 X -1. () 



î 

'NU;:'NO-IEPsa*123 
IEPS7=NO/6!t 
NO=;'W- lE P S 7;::64 

IEPS6=NO/3~~ 

NO=ND-IEPS6*32 
IEPS5=i'lU/J.6 
NO=NQ-IEPS5'i<16 
IEPS4=ND/S 
NG=N'J- lEP S4* 5 
IEPS3=I'lO/4 
NO=~~O-l EPS 3~:c4 
IEPS2=NG/2 
IEPS1=NO-1 EPS2:::2 

RELAX2 

C '.=AK.l ( 1,1 EPSI +~.) +AK5t 1,1 EPS'8+11 
IP1=lfPSZ+IEPSJ+l 
C3=AK3l 1,1 Pt) 
C 5 = A K II l ,lE P S 4 + 1 1 + (.\K :; ( l , lEP S 5 + l 1 

IP2=IEPS6+IEPS1+1 
C7=AK7(I,IP21 

186 

CP=Cl+C3+C5+C7 > 

ChANGE=ALPHA/CP*(C3*U(I+l,JI+C7~U(I-\,J)+Cl*U(I,
J+ll+C5*U(I,J~1)-

lCP::'U( I,J)) 
77 IFU\t~S(CHM1GE)oGToUDIFI KONVRG=J 

U( l, J)=U( I,J HCHANGE 
99 CUNT li'-lUE 

c 

IF{KONV~GoEQo01 RETURM 
ITE;R=lTER+l 
IF(ITE~oGEoNPASSj RETURN 
GO TO l 
E~lD 

SETUP2 

C" THIS SUBROJTINt SETS THE STARTING POTEf-HIAL V.ALUES AND IS TO BE 

C USED ~ITH SU3ROUTINES 'FIELD2 AND 'RELAX2'o 

C Ml,M2--PORTION OF FI~LD IN R-DIRECTION 

C Nl,N2--PORTION OF FIELD IN Z-DIR~CTION 

C' Vl,V2,V3--CONSTANT pJTE~TIALS AS IN ;FIEL02' CONMENTS 

C V4--ALL OTHER POINTS SET TO THIS POTENTIAL 

C 
o ir-lE N S 1 J N Hl J ( 4) ,3 J) ,U ( .;. 0 ,8 J ) , POT ( 21 ) 
COM~JN IN~,U,POT 

on 1.' 1 = t·; l. ,r-12 
DO l J=în ,t~2 
u(I,J)=V .... 
IF(F.JD(I,j)., Qolt U(I,J)=Vl 

IF(I'H;(i,J)o \jo~) U(I,J)=VI.' 

IF{l'.~[{l,J}o Q,,3} U(I,J)=V3 

l Cl!~n H,UE 
KETURi\l 
END 



", 

c 
C 
C 
C 
C 
C 
C 

c 
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VECTOR 

SUBROUTINE VËCT-JK. 012,N1.,N2, BIGEST, ENORI'~, ESQ) 

SUBROUTINE FORM~REQUIREO POTENTIAL VECTORS,USING MATRIX P, FOR 
FIELD OF (1,M2) SV (Nl, NZ) WHEkE M = l IS THE AXIS AND (2*M2+N2-
-Nl-5)oLEolOOo U\RGEST SOU\JDt,RY POTEtHIAL DIFFERENCE IS RETURNED 
U~D~~ 'SIGEST', ARITHMETIC SUM OF QIFFERENCES UNOER 'ENORM', AND 
SUM OF SQUARES UNDER 'ESQ' 

DH1ENSDi\J IND(40,8Q) ,U(40,80) ,POT(21) ,RADJT(40) ,RADIN(4) ,AK3(40,3' 
1),AK7(40,3),AK1(40,2),AK5(40,2) 

DIFiENSION VI(lOO),VEO(!02),VEN(202),P( 51,].00) 
COM~JN IND,U,POT,RADOT,RADIN,AK3,AK7,AK1,AK5,VI,VEO,VEN,P 
N=Nl+l 
1'4=1'12-1 
NN2=:~2-1 

NN =i\j 2-Nl- 3 
,\.1I'·1=i\J2-Nl-t 
KK =~1+ ;\'i+ i':i"1 
LL=i<K-2 
!\jU =;'1j14 /? 
IF(NO*2oNEoMM) NO=NO+l 
NP=H2-1+NO 

C F'lNO VI AND VEO 
C 

C 
C 
C 

DO 1 1 = J, ~1 
V ( 1 ) =u ( 1 , N ) 

l VEO' (1)= U(I,N!) 
D02 1 =1, !\1:..J 
11=[-1+1 
JJ=Nl+l+1 

'- VltIl )=ü(-'1,JJ) 
bo 3 l=l,;-îM 
1 1 =i-' + 1 
JJ = N}. + 1 

3 VEO (II) = U(M2,JJ) 
DO 4 1 = l, ,'4 
II = h+i..JN+ 1 
JJ = f-12 - 1 

4 VI (II) = U(JJ,NN~) 
D05 1 = 1, j'l 
Il = H+i-H-l+ l 
J J = Î·12 - 1 

5 VED(II; = U(JJ,:'J2) 

FINi) VEN 

D06 l = 1,KK 
6 VEN(I)=Oo 

DO 7 1=1 ,~.JP 
00 7 J=l,LL 

7 Vé\l(I) = VE:'.!(I) + P(I,J) ;: VI{,J) 
UOl='~l-'+l 

DO ~ I=N01,KK 



1 

C 
C 
C 

DO 9 J=l,LL 
l1=KK+I-I 
Jl=LL+l-J 

VECTOR 

9 VEN ( 1 ) = V E;\I ( 1 ) + r ( 1 .t , J 1. ) * V 1 ( J ) 

FIND BIGGEST DIFo AND NJ~M 

BIGEST = 0 0 

ENORr4=O 0 

ESQ=Oo 
DO 8 I=l,KK 
Dl F = AciS (VEO (1) - VE>J (1» 
IF (OIFoGTo BIGEST) alG~ST = DIF 
ENOR~ = ENORM + DIF. 

8 ES~ = ESW + DIF * GIF 
RETURr~ 
END 

CHANGE 

SUBKOUTINE CHANGE(M2,Nl,N2,BETA) 

· 188 

o 1 i": E ,\~ S ION 1 N D ( 40 , 8 0) ,U ( .;. 0 , 8 Cl ) , POT( 21 ) , P. ~\ DJ T ( 40 ) ,R AD 1 N ( 4:> ) , A K 3 ( 40., 3 
1) , AK 7 ( 40,3) ,Â.K l( 4),2) ,AK 5 (4:),?') 
QJj~i:::NSI0N VI (H)!) ,VEO(102) ,VEN(}.02) ,Pl 51,'\.00) 
CU~~ON INO,U,PUT~RADOT,RAOIN,AK3,AK7,AK1,AK5,VI,VEa,VEN,p 

r\=M2-!. 
['1 ~1 = N 2 - ~ J J. - 1 
KK=tHr·1+Mi"l 
-ou l I=J,KK 

r· . 

1 VEN(I)=VE:~J(l)+bt:TA*(VEiHI )-VEO(I)) 
OC 2 1= l, i'" 

2 U( I,~n)=VEN( 1) 
DO 3 1 = l. ,,·th 
1 1=,\1 + 1 
JJ='H + l 

3 U (i-j Z , J J ) = V E ~.J ( II) 
00 4 1 =1, 1\\ 

! ! =:',1 +i-ir:.+ ! 
JJ=,'i 2- l 

4 U(JJ,i~2l=VE:HII) 
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VALUES L 
SUBROUTI NE VA'LUéS UU ,M2,Nl,M2, IFORM, IWI DTH,NCONTR, IFLAG) 

C PRINTS fIELD VALUES IN SQUARE GRIDACCO~OlNG TO--

C IFORHN1, FORMAT F5.2 ' 
C IFORM#2, FORMAT flO.ô 
C IFORMgO, NO FIELD VALUES PRINTED 
C IF NUMBER OF FIELD VALUES ACROSS ONE PAGE IS TOO GREAT FOR 

C ONE PAGE, FIELD 15 SPLIT UP AND PRINTED ONE PAGE WIOE AT 

C A TIME. . 
C ALSO ALLOWS WIOTH SPECIFICATION TO iPlOTiROUTINE 

C TO eXCeEO 130. PLOT IS'SPLIT UP AND PRODUCED ONE PAGE WIOE AT' 

C A TIME. SPECIfIED BY @lWIOTH@. AlL OTHER ARGUMENTS SAME AS 

C IN OTHER PRQGRAMS. 
C 

DIMENSION INO(40,BO),U(40,80),POT(21' 
COMMON IND,U,POT 
IF(IWIOTH.EQ.O' GO TO 20 
IF«(WICTH.GT.130' GO TO l 
WRITE:(6,lOO' 
CALL PLOTIM1,M2,Nl,N2,NCONTR,IWIOTH,IflAG,1) 
GO TO 20 

1 NA=IWIDTH/(N2-Nl' 
IWIDTH=NA*IN2-Nl) 
NSPACE:=130/NA 
LwIDTH=NSPACE*NA 
NPAGE:=IwIDTH/LWIOTH 
LAST=IWIDTH-NPAGE*lWIOTH 
IF(IFLAG.EQ.Ol GO 10 97 
BIG=O. 
SML=O. 
DO 95 I=Ml,M2 
DO 95 J=Nl, N2 
IF(Utl,J).GT.BIG) BIG=U(I,J' 
IF(U(I,J).LT.SML) SMl=UII,JJ 

95 CONTINlJE 
CONTR=(SIG-SML'/FLOAT(NCONTR-l) 
DO q6 I=l,NCONTR 

96 POT(I)=SML+CONTR*FLOATII-l) 
IF LAG=O 

97 CONTINUE 
DO 2 I=l,NPAGE 
NN1=Nl+(!-l'*NSPACE 
NN2=NN1+NSPACE 
WRITE(6,lOO) 

2 CALL PLOT(MliM2~NN1,NN2,NCONTR,LWIDTH,IFLAG,1)
 

IFllAST.EQ.O) GO TO 20 
WRITEi6,lûO) 
CALL PLGT(Ml,M2,NN2,N2,NCONTR,lAST~090) 

20 IF(IFOPM.NE.l) GO TG 21 
NA=26 
GO TG 22 

21 IF(IFORM.NE.2' GO TO 23 
NA=13 

22 NPAGE=(N2-Nl+l)/NA 
IF(NPAGE.EQ.O' GO TG 5 
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I 
ii 

VALUES .1 

lAST=N2-Nl+l-NA*NPAGE' 
DO 3 l=l,NPAGE 
NN1=Nl+N~*(I-l' 
~N2=NNl+NA-1 
WRITE(6,100' 
DO 3 J=M.l, t-12 
IF(IFORM.EQ.2) GU TD .30 . 
WRITE(b,lOl'lU(J,K"K=NN1,NN2' 
GU TO 3 

30 k~ITE(6,102t(U(J,K.,K=NN1,NN2' 
3 CONTINUE 

GO TO 1 
5 Nl=Nl 

GO TO 6 
7 iF(LAST.EQ.O' GO TO 23 

NL=NNZ+l 
6 WRITE{6,lOO) 

DO 4 l=r-n,M2 
IFCIFORM.EQ.Z' GO TO 31 
WRITE(6,lOl)(U(I,Jl,J=Nl,NZ' 
GO TO 4 

31 WRITEC6,lOZ)(U(I,J',J=Nl,NZ' 
4 CONT INUE 

23 RETLJRN 
100 FORMAT ClHll 
101 FORMAT(/IHO,26F5.2' 
102 FORMAT(IIIIIHO,13FIO.6' 

END 

EXTRA 1 

SUBROUTINE EXTRA(M2,Nl,N2J 
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01 MENSION 1 NO(40, 80' ,U(40 ,80) ,POT (21. ,RAOOT' 40 J, RADIN (40) ,AK3'( 40,3· . 
1),AK1(40,3),AK1(40,2"AK5(40,2J 

DIMENSION VI(100J,VEOCI02),VEN(102I,P( 51,100I,VEOOtlOZ) 
COMMON IND,U,POT,RAOOT,RADIN,AK3,AK7,AK1,AK5,YI,VEO,VEN,P,VEO0 
M=M2-1 
MM=N2-N1-1 
KK=M+M+MM 
DO l i=l,M 
C=(VEOO(I)-VEO(I)I/(VEO(I)-VEN(Ï)) 

1 U(I,N1J=YEO(I'+(C/(1.-C)'*(VEOI}'-VENII') 
DO 2 l=l,MM 
II=M+I 
JJ=Nl+I 
C=(VEûu(II)-VEOlII)'/(VEOIII)-VENCII') 

2 U(M29JJ&=VEO(!!}+(C/(le-Cj;*iVEû(ilj-V.EN'II~: 
DO 3 l=l,M 
II=M+MM+I 
JJ=M2-1 
C=(VEOO(II)-VEO(II'J/(VEO(lli-VEN(II') 

3 U(JJ,N2'=VEOCIIJ+(C'(1.-C)).(VEOIll'-VEN(I·I') 
RETURN 
END oe· 
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CONTOUR PLOTTING SUBROUTINE FOR SQUARE GRID OF FUNCTION VALUéS, 
CAL LED BY 

--CALL PLOT (Ni ,Ml, N2,M2, M3 ,LWI.DTH, IFLAG, IPRINT. 

U--ARRAY OF FUNCTION VALUES ASSUMED EQUALLY SPACEO.SUPPLIED THRU 
COMMON 
POT--ARRAY Of CONTOUR VALU~S. CALLING' PROGRAMME MUST DIMENSION 

POT(Z1) 
IH,Ml--START AND END OF PLOT IN Y DIRECTION . 
N2,M2--START AND END Of PLOT IN X DIRECTION, WHERE CM2-N2) MUST 

NOT EXCEED 132 
THE ABOVE FOUR INTEGERS SPECiFY THE PORTiON OF THE ARRAY 
'U' TO BE PLOTTED, AND NI AND N2 WOULD NORMALLY BE SPECI
FIED AS 1 

M3--NUMB~R OF CONTOURS TO BE PLOTTED 
LwIDTH--wIDTH OF PLOT IN PRINTER SPACES. THE ACTUAL WIDTH OF THE 

PLOT WILL BE EQIJAt TO N*CM2-N2J WHERE N EQUALS THE INTE
GER PART Of 'LWIDTH/CM2-N2". LWIDTH MUST BE SPECIFIED AS 
EQUAL TO OR GREATER THAN (M2-N2. 

IFLAG--Q, ARRAY 'POT' SUPPLIED SY CAlLING PROGRAMME 
--1, SUBROUTINE FINOS MINIMUM AND MAXIMUM tU' IN THE INTEK

VAL SPECIFIED AND PLOTS M3 CONTOURS OF EijUAL 'U' INCREM~~T 
IPRINT--U,NO CONTOUR VALUES PRINTED, 

--l,CONTOUR VALUES PRINTED IN Ell.4 FORMAT 

SUôROUTINE DUES LINEAR INTERPOLATION FIRST IN X-DIRECTION TU 
'LhIDTH' VALUES.THEN IN Y-DIRECTION FOR THE SAME INCREMENTS 

CALLING PROGRAMME MUST START NEW PRINTER PAGE AND/OR PRINT A 
rlEADING IF OESIRED BEFORE PLOT 1$ CALLED 

SUBRUUTINE PLOT(Nl,Ml,N2,M2,M3,LWlDTH,lfLAG y lPRINT) 

OlM~NSlüN A(2,132),B(6,l32),POT(21),VAL(132),VOLD(132),LINE(131), 
lCHAR(21) 

DIMENSION IND(40,80),U(40,80) 
CUMMU~ IND,U,POT 
REAL LINt: 
DATA BLANK,CHAR/1H ,lHl,lH2,lH3,lH4,lH5,lH6,lH7,lH8,lH9,lHO,lHA,1.H 

Id,lHC,lHD,lHE,lHF,lHG,lHH,lHI,lHJ,lHK/ 
NA=L~IDTH/(M2-N2) 

IF(NAoGToO) GO TO 67 
wRITE(b,lOl) LWIOTH 
kETLlRN 

67 If(IFLAGoEQoO) GO TO 68 
BIG=U(N1 9 N2) 
SML=UO'i!,N21 
DO 7 0 1 = N l , Ml 
DO 70 J=N2,M2 
IF(U(I,J'oGToBIGt BIG=U(I,J) 
IF(U(I,J'.LToSML) SML=U(I,J) 

70 CONTINUe 
CONTR=(BIG-SML)/FLOAT(M3-lt 
DO 71 I=l,M3 



1 
i 
:: 

.' PLOT 

71 POT(II=SML+CONTR*FlOAT(I-l) 
POT(l'=POT(l)+.OOOl*CONTR 

68 MM1=MI-Nl+l 
NN=(M2-N2'*NA 
NN1=NN+l 
J2=1 
K=O 
DO 77 l=l,MMl 
00 78 J=l,NN 
JJ=(J-l./NA+N2 
FACTOR=FlOAT (J-l-( «J-:U 1 NA'*NAt/flOAT( NA' 
DO 79 J79=1,2 . 
179=I+J79-2+Nl 
A'J79,J)=U(I19,JJ'+fACTOR*(U(179,JJ+l)-UCI79,JJ" 

79 CUNTINUE 
7d CONTINUE 

I77=I+Nl-l 
A(1,NN1)=U(I77,M2. 
A ( 2 , N N 1 ) = U ( 117 + l , M2 ) 
DO 81 Jl=l,NA 
FACT=FLOAT(Jl-l'/fLOATCNAJ 
DO 82 J82=1,NNl 

82 B(J2,J82)=A'1,J82)+fACT*'A(2,J82)-A«1~J82)J 
IF(J2.NE.b) GO Ta 83 

95 CUNTINUE 
IF(J2.LT.3J GO TO 96 
00 90 J=l,NNl 
B(2,J)=B(2,J)+.6667*(SC3,JJ-S(2,J)) 
IF(J2.lT.S) GO TO 90 
B(3,J)=BC4,J.+.3333*(S(5,J)-S(4,J) 
If(J2.lT.b) GO TO 90 
IF(I.NE.MM1) GO TO 90 
B(4,J)=B(6,J. 

90 CONTINU~ 
96 CONTINUE 

ICAL=3 
IF(J2.LTo3' ICAL=l 
IF(J2.lToS) ICAL=2 
IF(ICAL.NE.3) GO TO 300 
IF(I.EQ.MM1) ICAl=4 

300 CONTINUE 
DO 400 J400=l,ICAl 
K=K+l 
UO 401 1401=1,NNl 

~ül VALII401)=B(J400,i401' 
IFCKoEQ.l) GO Ta 405 
DO 402 1402=1,131 

402 LINE(I402)=BLANK 

192 

OU 403 1403=1,NN 
BIG=AMAX1(VAL(I403),VOLO(I403.,VAllI403+1),VOlO(1403+1) 
SMl=AMINIlVAL(I403',VOlD(!403',VAlCI403+1',VOlO(1403+1" 
DO 403 J=l,M3 

403 IF(BIGoGE.POT(J)eAND.SMlolT.POT(J») LINE(I403)=CHAR(J) 
wRITE(6,lOO)(lINE(J"J=l,131' 

1 



• 
4Q5 DO 406 J=l,NNl 
406 VOLO(Jt=VAL(J. 
400 CONTINUE 

PLOT 

IFII.EQ.MMll GO Ta 99 
DO 91 J=l,NNl 

91 Sll,J)=B(6,J' 
J2=1 

83 J2=J2+1 
81 CONTINUE 

IFII.NE.MM1' GO TO 11 
DU 92 J=l,NNl 

92 ~(J2,J)=A(2,J' 
GO TU 95 

71 CONTINUE 
99 IF(IPkINT.EQ.O. RETU~N 

wf(lTE(6,102) 
WRITE(6,103'(CHAR(J),POT(J),J=1,M3) 
RETURN 

100 FORMAT(lH ,131Al) 
101 FORMAT(LH ,lOX,14HFIELD WIOTH OF,13,lOH TaO SMALL. 
102 FORMAT(lHO,lOX,8HCONTOURSl 
103 FLkMAT(1(3X,Al,lH=,Ell.4') 

ëND 

193 

/ 


