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ABSTRACT

A new aﬁcura’re and efficient numerical method, belonging to the recently
discovered class of boundary relaxation techniques, is presented for the solution of
infinitely extending problems of elliptic type, with particular application to un-
bounded problems of Laplace's or Poisson's equation. The boundary conditions at
infinity are transformed to an arbitrary, finite, closed contour in terms of a potential
shift operator. The solution within the arbitrary contour is obtained as the solution
of an interior Dirichlet problem simultaneously with the shift relationship, and corres=
ponds exactly with that of the infinitely extending problem. The problem is folrmulafed
in finite differences and standard iterative theory applied to the resulfiné linear systeém
of equations. Optimization of the iteroﬁve schemes is considered and an error analysis
is developed. Application of the method is illusirated for two-dimensional, three-
dimensional axially symmetric and coaxial line problems. ~All pertinent computational

algorithms are presented in detail.




SOLUTION OF UNBOUNDED FIELD PROBLEMS
BY BOUNDARY RELAXATION

by

Ivan A, Cermak, B.Eng., M.Eng.

A thesis submitted to the Faculty of Graduate Studies
and Research in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Department of Electrical Engineering,
McGill University,

Montreal, Quebec,

' March, 1969.

(&Y Ivan A. Cermak 19549



ABSTRACT

A new accurate and efficient numerical method, belonging
to the recently discovered class of boundary relaxation tech-
niques, is presented for the solution of infinitely extending
problems of elliptic type, with particular application to
unbounded problems of Laplace's or Poissorn‘s equation. The
boundary conditions at infinity are.transformed to an arbi-
trary, finite, closed contour in terms of a potential shift
operator. The solution within the arbitrary contour is
obtained as the solution of -an interior Dirichlet problem
simultaneously with the shift relationship, and corresponds
exactly with that of thé.infinitely extending problem. The
problem is formulated in finite differences and standard ifera-
tive theory applied to the resulting linear system of equations.
Optimization of the iterative schemes is considered and an
error analysis is developed. 2oplication of the method is
illustrated'for two-dimensional . ﬁhsee—dimensional axially
symmetric and coaxial lin- problems. All pertinent computa~

tional algorithms are prese:® =3 in detail.
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CHAPTER 1

INTRODUCTION

A great variety of physical problems that arise in en-
gineering or physics may be represented by differential equations

of the form

2 2 2
A(x,y)3—9-+ 2B(x,y)3—2 + C(x,y)?-—-‘E = F(¢,¢x.¢y,x,y)
ox? dxdy ax?

which have the property that the sign of the gquantity
(B2 - AC)

is unaffected by a change of variable [11,[21. The equations
are classified as elliptic, parabolic, oX hyperbolic according
to whether the above expression is less than, equal to, or
greater than zero respectively. Oonly special cases of the ellip-
tic equation will be considered in this thesis, namely the
degenerate elliptic class corresponding to the Laplace or
Poisson equation, although some of the theory possibly holds
for more general cases.

Solutions of elliptic problems fall, in general, into
one of three categories:analytic, analogue and numerical.

Analytic solutions in general are 1imited to problems which can



be posed in -a coordinate system in which the variables are
separable, not only for the elliptic operator but for. the
given boundary conditions as well. There exist, of course,
many special prob;ems that may be solved by special techni-
ques such as conformal tranéformation, by the method of
images, or some other special analytic method, but, in
general, analytic solution is usually practical only for
simple problems that have limited application.

Analogue methods do not suffer from the same limita-
tions»asVanalyticlmethods, in that problems that are fairly
complicated are sclved almost as easily as ones with simple
configurations of sources and boundaries. of all the various
available analogue methods, the ones used most widely in
engineering appl;pations have been the electrolytic tank and
the resistive mesh analogue. In the electrolytic tank, a
conductive liquid sheet represents the plane in which the pro-

blem is formulated [3],[4]. Accuracy is limited, however,

and special models have to be constructed for each problem to
be solved. The resistive mesh analogue [5] is versatile

enough to eliminate need for construction of special jigs for

#
Z
px
e

each problem, and, indeed, may be constructed so that infinite-
ly extending problems may be solved [6]; however, accuracy is
again limited and special measuring equipment may be required

for meaningful solutions to be obtained. Higgins [7] gives an

extensive bibliography of various electro-analogic methods,

and the reader is referred to his papers for further details.
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Numerical methods have come into prominence in
recent years, since the widespread availability 6f large dig-
ital computers has made solution of complicated problems
possible without the need for special equipment. Numerical
methods have also extended‘the practical range of,problems
that are analytically solvable, since the evaluation»of com-
plicated functions and the evaluation of series of many terns,
to name just two, is now not only practical, but simple and
convenient as well. Of all numerical methods available for
solution of elliptic problems, none has come into as widespread
use as finite differences; an extensive literature exiéts on
the subject. Finite differences have proved popular for two
main reasons that.are not entirely separate: they are rela-
tively simple to program or code for digital computer solution
and a large variety of complicated problems can be handled
fairly easily. Theoretical consideration of finite differences
is not trivial; however, their wide acceptance by academe and
industry ﬁas prompted an extensive theoretical literature and
the subject is far fzom exhausted.

Flexibility and wide use of finite differences not-
withstanding, there exists a large category of elliptic problems
that have up to now resisted rigorous treatment. This is the
class of infinitely extending problems, i.e., those problems
that have boundary conditions at infinity. It is these pro-
blems that are considered in this thesis, specifically those
problems that may be posed in terms of the Laplace or Poisson
equation. First, however, finite differences in general will

be considered briefly.



1.1 FiniTE DIFFERENCE FORMULATION OF FIELDS

As the name suggests, finite difference methods are
based oﬁ theifeplacing of a partial differential equation by a
number of difference approximations and then solving the large
number of resulting algebraic equations. The solutions to the
approximate system represent solution values at discrete
points in the region of interest. The continuous differential
operator is replaced, or approximated by, a matrix operator.
Necessary and sufficient conditions for uniform approximation
of a contihuous'operator by a .matrix may be found in any text
on linear spaces [8], and will not be detailed here. The
elliptic operators under consideration here conform to these
conditions and hence may be approximated by matrices. To
jllustrate the method of approximation, one finite difference
equivalent of the Laplacian will be derived.

Suppose a regular rectangular mesh is superimposed
on the continuous plane. Let the function values V at the
nodes of the mesh be representative of the continuous function
¢ at that point in the continuous plane. Define a five-point

star in the mesh by the compass notation shown in Figure 1l.1.

N
W 0O E
o ——0

FIGURE 1.l: REGULAR FIVE-POINT STAR




The first partial derivatives about the point O in
the star may be approximated in terms of the forward and back

differences as,

3| = v -vy), 38| = L(va-vi), 30| = L(v -v.), 38| = L(v,-vg)
axf-hanxbhowaythoaybh s

The second partial derivatives may be taken as the second

divided differences, [91],

%
2

« 1(3¢
o h ox

- 201, ¢
£ 3x|p 3y?

X o hoyls oy

:l(a_(b _3¢|)
b

so that the approximation to the Laplacian becomes,

920 4 %0 + 1l (V+ V4 V+V- 4V
ox? oy’ H?( n" Vet Vst Yy 4V

(o)

This derivation serves to illustrate the finite differ-
ence approximation but does not, however, give rise to any con-
venient estimate of the error incurred, though it is seen by
inspection that the error involved is of the order of h2.
Moreover, the mesh lengths have been assumed equal; A more
precise expression may be obtained by taking a Taylor expansion
about the point 0 and ignoring high order terms [10],[11]. The
resulting system of equations, however, may not always be
symmetric. A symmetric system is guaranteed by derivation of

the finite difference formulas by a variational method [12],



which is based on minimizing an integral of the form

I(9) = ”[-w; *o2) + Fel 4.4,

Whatever the method used, the resulting formula at each point
is the so-called five-point finite difference Laplacian, with
an error of 0(h%?). The approximating error may be reduced by
including more points in the formula. For example, inclusion
of four more mesh points in the star, as shown in Figure 1.2,
yields a much more accurate nine-point equation [10] which,
however, is often ﬁot as easily incorporated in computer pro-
grammes, particularly if complicated material interfaces are
encountered. The reader is agéin'referred to the literature
for details of the various approximating techniques ([10], [11],

(121, f(13].

N

FIGURE 1l.2: NINE-POINT STAR

When a finite difference formula is written for each
node in the mesh, there results a large number of algebraic
equations which must be solved simultaneously. Written in

matrix form, the resulting system is of high order and very



sparse, i.e., the coefficient matrix contains a large number
of zero elements. Direct methods, such as invers?on of the
large matrix, are, as a rule, inconvenient, although they have
been \ ~ed [14]. Iterative solutions of such systems are
more common since the coefficient matrix need not be stored,
but is generated as needed and the iterative processes are,
as a rule, free from round-off error propagation.

Finite differences can be traced back to Gauss [15]
and one of the oldest iterative methods, the classical Gauss-
Seidel, dates back to 1873 [16]. The word "relaxation" is
due to Southwell [17] who described a method of solving a
'strgssed, jointed framework by the systematic felaxation of
strains. _Some of the more common as well as historical

iterative methods are discussed in the next section.

1.2 ITERATIVE SOLUTION OF THE RESULTING SYSTEM OF EQUATIONS

1.2.1 SOUTHWELL RELAXATION: Southwell relaxation [17] is

intended for hand solution of elliptic problems. The method
consists of rewriting the difference equations at each node

in the mesh in the form

CNVN + CEVE + CSVS + CWVW - COV -t =R

where the c¢; are positive constants, the constant t repre-

sents the forcing function (if any), and the quantity RO is

termed the "residual". If V is the solution, then the



residual R0 is zero. At first, arbitrary values are assigned
to the vector V at each point O. The residual is then evalu-
ated at each point, and the mesh is scanned for the residual
with the largest magnitude. At that point, the residual is
brought to zero by solving for VO as

c.V c c -
Wt CeVe T %sVs * SwVw T F

o

Changing Vo at any point chénges the value of the
residual for each of its neighbours. The neighbouring resi-
duals are then ub-dated and the field is scanned again for the
residual with the largest magnitude and the process repeated.

This process can be speeded up by overrelaxing as

follows

Vénew) - Vc()old) + w[vg _ Vé°1d)]

where if w = 1, the process is called normal relaxation, if
w > 1, overrelaxation and w < 1, underrelaxation. This
process is not well suited for use on digital computing
machines since the search for the largest residual is a rela-

tively inefficient process.

1.2.2 RICHARDSON'S METHOD: This method [181, alsc known as

the method of simultaneous displacements, was first considered
in 1845 by Jacobi [19]. 1In this method, the residuals are

systematically evaluated at each point in the field and the



potential at each point is then subsequently corrected. If
the superscript (k) refers to the number of complete itera-

tions, the correction scheme may be stated as

c V(kl c V(kl c V(kl c V(kl t
V(()k+l)= Vék)+w[NN E E sS W W

(k)
- V31

Convergence of the method is poor and, in general, the best
value of w is different for each iteration. The method
also suffers from the disadvantage that two full sets of

function values must be stored. It is rarely used in practice.

1.2.3 LIEBMANN'S METHOD OR GAUSS-SEIDEL: The classical Gauss-

Seidel method [16], which when applied to the Dirichlet pro-
blem is termed the Liebmann method [20], {211, and also called
the method of successive displacements [22], is a simple modi-
fication of Richardson's method. In this scheme, the most
recently computed values of the function V are used at each
stage. If the superscript (k) again refers to the number of

completed iterations, one possible correction formula is

Kbl (k+1) (k+1) (k) , o yik)-
Vé ) = oyVy + oV + cgVg  + SgVg t

o)

This method requires storage of only one complete set of values
of V and it can be shown [12] that the rate of convergence is
twice that of Richardson's method. A complete discussion of

the method is contained in a paper by Frankel [23].
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1.2.4 YOUNG-FRANKEL SUCCESSIVE OVERRELAXATION: This method

developed independently by Young [24] and Frankel [23] is
also known as the extrapolated Liebmann method, since it is
derived from the ordinary Liebmann method by the introduction

of an overrelaxation factor. Using the above notation,

(k+1) (k+1) (k) (k)
v(()k+l)= Vék) + wl°ny + oWy + cgVp  + cgVg - t ’Vék)]
: o (o] :

0

When o = 1 this reduces to the above Liebmann method. It
can be shown that the method converges for O < w <. 2, [12].
Consider the set of linear equations that has to be
solved
AV = B

Split the coefficient matrix A into three matrices
A=L+D+0U

where I is the lower triangular matrix of A with zeros on
the diagonal, D is a diagonal matrix whose elements are the

diagonal elements of A, U is an upper triangular matrix con-
taining the elements of A above the diagonal. The extrapol-

ated Liebmann method then reduces to

ik peny v L (-Lypsu vR) =B (1.1)
w w




Define an error vector e

where

11
e (k) whose components are.

{8 =yl - v,

1 i

\' Substitute into (l1.1) to yield

Vs is the solution.

S L peury L [(w-1)Dtwu] e ) (1.2)

which is the fundamental erroxr equation'for successive over-

relaxation.

and in order that 1lim e

eigenvalues of M lie within the unit circle.

Equation 1.2 may be written as

S (kHl) _ gy oK)

(k) - O it is necessary for all
koo
It can be

shown that [24]

where

A= oy t¥p?p? - 4(w-1) (1.3)
2

A is an eigenvalue of M and u is an eigenvalue of

(L - D'lA), which is the Jacobi matrix corresponding to the

Jacobi iteration in § 1.2.2.

Young's property "A" on the matrix A [24].

This may be done by invoking

Moreover, it can

be shown that the optimum value of w lies between 1 and 2.

The problem of choosing Wopt has received consider-

able attention in the literature [11]1,(25],[26] and will not
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be discussed here. In general, the methods depend on the
acquisition‘of a good estimate of p in equation 1.3, thus
allowing a better estimate of A and hence w0pt'

1.2.5 PEACEMAN-RACHFORD ALTERNATING DIRECTION LINE RELAXATION:
In this method, lines of nodes are considered simultaneously
[27],[11]. This method, although extremely fast for rec-
tangular regions in comparison with the above methods, is
difficult to optimize and involves tedious programming for

problems with complicated boundaries.

1.2.6 OTHER METHODS: Many variations of the standard itera-

tive methods have been presented in the literature. These
methods fall roughly into two classes: In the first class
Chebyshev polynomials are used for acceleration of the usual
iterative schemes [28] and are reported to be useful even in
the case of problems for which the relaxation matrix has
complex eigenvalues [29]. The second class involves con-
version of the standard schemes into a quasi-doubly-iterative
scheme, again in order to hasten convergence, or in fact to

obtain convergence at all [30],[31],[11]. The reader is

|

above subjects for details {11],{12],1{2271,(317,1(32]1.
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1,3 Main LimiTATioN oF PReSENT-DAY FINITE DIFFERENCE SCHEMES

It has been shown, though perhaps sketchily, that
formulation of an elliptic problem in finite differences pro-
duces a finite, though large, system of equations and unknowns.
However, it has been implicitly assumed in the above dis-
cussion that the problem is defined‘over a finite portion of
space and hence may be modeled by a mesh of finite size. A
large humber of elliptic problems are unbounded, i.e., they
extend to infinity in épace, with at least one boundary
condition at infinity. Straightforward application of
finite differences to this type of problem would result in
an infinite number of equations and unknowns. vVarious
attempts have been made to reduce the problem to one of finite
size, usually by means of some approximation. The infinitely

extending problem is discussed in the next chapter.
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CHAPTER 2

THE EXTERIOR ELLIPTIC PROBLEM

2.1 STATEMENT OF PROBLEM

‘Assume some prescribed distribution of sources and
boundaries exists within a finite region R of the (x,y) or
(r,z) plane. The region R may contain any combination of
material inhomogeneities, time-varying fields and material
non-linearities. Outside the regionocoupied by these distri-
butions assume Laplace's equation is valid everywhere (see
Figure 2.1)*. Three-dimensional axially symmetric problems,
i.e., problems in the (r,z) plane, will be éreated here,
although the discussion is valid for two-dimensional problems
in the (x,y) plane except for a few differences which will be

pointed out.

* It is not necessary that the z-axis form a part of R,

and certainly in the (x-y) plane R may be located anywhere.

The development, in any case, is the same.
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z
r
V¢ = 0
| problem
R

FIGURE 2.1l: PROBLEM DEFINITION

The problem to be solved is as follows:

V2 = £, (r,z)eR (2.1)

o, (r,z) R (2.2)

v2¢
with the boundary conditions

BL(¢) = by(r,2)¢ + by(r,2)2% + b_(r,2)2 + b, (r,2)= 0,
or 02

(r,z)eR (2.3)

39,9 50, r,z+>w (2.4)
dr 23z :

where ¢ = ¢ (r,z) is the potential, and Bl(¢) represents the
prescribed sources and boundaries in the region R. As was

stated above, formal formulation of this problem in finite
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differences requires the superposition of an infinitely
extending mesh on the problem, resulting in an infinite number
of equations and unknowns. Various past methods designed

to cope with the infinity boundary condition are discussed

in the next section. Some theoretical background literature
on the subject is considered by Greenspan [32], who considers

the problem largely unsolved.

2,2 Past MeTHobs DESIGNED To COPE WITH THE INFINITY
BounpAry ConDITION

Since the solution to the problem is rarely desired
over the entire infinite plane, all approximations to the
infinitely extending problem involve solution of the problem
in a finite "region of interest", within which the solution

is desired. The methods fall roughly into four classes:

2.2.1 IMPOSITION OF AN ARTIFICIAL BOUNDARY: By far the most

widespread method of conversion of the infinitely extending
problem to one of finite size has been the imposition of an
artificial boundary which encloses the region of interest.
The problem is, in this way, converted into an interior
boundary value problem and the artificial boundary is intui-
tively chosen in such a way that the resulting interior
problem is thought to possess properties that are similar

to the infinitely extending problem. For example, Binns and

Lawrenson [ll] solve the problem of a rectangular permeable
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conductor in space by calculating values of potential along

a boundary some distance away, the values on the boundary
being obtained by imagining all the current in the conductor
to be concentrated at the center. In this examplé, the
accuracy of the solution depends on the distance of the
artificial boundary from the conductor and the method suffers
from two major disadvantages: many more nodes than are actually
required are used in the solution and the errors incurred by
the usé,of the artificial boundary are not easily estimated.
The most common procedure in this class of approximations is
merely to impose a flux-line or equipotential boundary some
distance away from the region of interest and then ?roceed

to solve the resulting interior problem [14],[33],[34],[35].
Again, the accuracy of the solution cannot easily be estiméted
and a very large mesh is required, along with an unnecessarily

large increase of computing time and core storage requirement.

2.2.2 CONFORMAL MAPPING TECHNIQUES: An inversion trans-

formation may be used to convert the infinite region outside
the region of interest into a second finite region. It is
then possible to perform a finite difference solution over
both regions [361, where the transformed region becomes a
"terminating region" much as in the case of the infinitely
extending resistive mesh analogue [6]. The disadvantages in
this method are again largely twofold: many more nodes are
used than are actually required, and special equations must

be written for the irregular configurations at the dividing
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line between the'region of interest and the terminating
region.. i

A technique similar in principle has been used by
Greenspan [37], who describes a numerical inversion mapping
technique for the solution of the exterior Dirichlet problem.
Greenspan's solution is valid only for simple Dirichlet pro-
blems, namely those problems in which the desired region of

solution is the exterior of a simply-connected Dirichlet

boundary and its applications are therefore limited.

2.2.3 FOURIER EXPANSION OF THE INFINITE REGION SOLUTION:

For problems in which the region exterior to the region of
interest has a special'geoqftric configuration (such as the
exterior to a circle, or an infinitely extending strip),

the solution in this exterior source-free region may be ex-
panded in a Fourier series, which, though containing an
infinite number of terms, may be truncated without too much
error after a finite number of terms. One such solution con-
cerned the scattering of plane waves from conducting cylinders
[38]. The scattering body was modeled in a polar mesh just
large enough to enclose it; the scattered field exterior to
the resulting circular "region of interest" was expanded in
terms of the Hankel functions, the expansion being terminated
after a finite number of terms. The coefficients in the

expansion were kept variable and the problem solved by a

doubly-iterative scheme in which the coefficients in the

expansion were corrected after each finite difference solu-
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tion of the interior region of interest.

Anothér suéh solution concerned the eddy currents
in a conductive strip infinite in length [39],[40]. The
technique used was similar to the above. The disadvantages
of these methods are as follows: First, the geometrical
configuration of the region of interest must be such that
a Fourier expansion can be found for the exterior region.
This may involve use of an awkward mesh (such as the polar
mesh in the first above example) or a difficult expansion.
Second, there is no a Eriori_knowledge-as.to Where the
series expanéion may be terminated and hence errors incurred
in. this meﬁhod of approximation are not easily (if at all)
estimable. Third, an efficient correction scheme for the
coefficients of the Fourier expansion is difficult to deter-
mine. These methods are then, in general, practical only for

special classes of problems.

2.2.4 BOUNDARY RELAXATION TECHNIQUES: Similar to the above
class, boundary relaxation, as the name implies, consists

of the imposition of an arbitrary contour, or boundary,

around the region of interest. A mathematical expression is
then derived that relates the potential values on the boundary
(and therefore the infinite region solution) to the values

of potential (or the potential gradient) in-the interior re-

gion of interest. The potential values on the arbitrary

contour are then corrected iteratively until the solution in

the interior region of interest corresponds to the infinitely
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extending solution. Some experimental work, limited to
2-dimensional regions of interest with balanced sources:has
been done [41]. The work was- subsequently extended to
include«unbalanced sources and externally applied fields [42].
In both the above references, the boundary relaxation pro-
cess was based on a relationship between the potentials and
their gradients on the arbitrary artificial boundary. In-
vestigation of convergence and acceleration of the iterative
process was empirical, -and no errof analysis could be given.
Boundary relaxation as developed in this thesis,
differs from the above reported methods in four major res-
pects:
1. A potential shift operator is used
on the artificial boundary thus
eliminating the need to evaluate.gradients.
2. The process is formulated in such a way:
that the standard iterative theory may:
be applied for its solution.
3. An efficient acceleration algorithm is
used to hasten convergence of the
iterative process.
4, The need for special boundary operators
for different source balances in the
region of interest is eliminated.
The above as well as the following are claimed to

be original work:



Rigorous soiution_of the infinitely
éxtending‘problem without physical
alterétion, applied to (x,y), (r,z),
coaxial'and strip configurations
including proof of existence, uniqueness
and convergence;

Formulation of the problem such that
standard iterative theory may be applied
for its solution;

A consistent finite difference formula-
tion that links interior and exterior
problerms and shows that ordinary interior
problems are a special case of‘theigeﬂeral
problem;

Formulation of the problem in a familiar
form so that errors may be easily esti-
mated; errors are rigorously-examinedrand
an upper bound is derived;

Development of an accurate, efficient.
solution algorithm including two accelera-
tion techniques for the iterative process,
and

Derivation of an iterative scheme for the
determination of boundary operators for

coaxial lines and strips.

21
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2.3 SOLUTION OF THE INFINITELY EXTENDING PROBLEM AS THE
SIMULTANEOUS SoLuTioN OoF Two SimMpLE PROBLEMS

Let S1 be an arbitrary closed contour enclosing the

regioﬁ 'R of the problem defined in Section 2.1, -as shown in

Figure 2.2.

sl

ke

FIGURE 2.2: DIVISION OF THE INFINITE PLANE

BY AN ARBITRARY CONTOUR Sl

The potential in the region exterior to Sl may be considered

to be caused by a source distribution o(r,z) on Sl, uniquely

defined by [1],

¢(xr,z) = H K(r,z;p,2) csl(p.c)dpdc (2.5)
sl
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where K is the elementary solution of Laplace's equation
in free space *.. The source density may be expressed in
terms of the outward normal derivative of potential on si,

P—L (2.6)

an
e

where'ne denotes the outward normal to Sl. Equation 2.5 may

now be written as

olr,2) = H K(z,zip,z) 22Lp:L) Gpdr (2.7) -
Sl ane
Given the potential values ¢Sl on S1, the normal derivatives

everywhere on Sl can be found by solving the integral equation
2.7. The potential everywhere may then be determined by
evaluating (2.7) for eny desired (r,z). Solving the system
(2.1) and (2.2) within S1 simultaneously with (2.7) and im-
posing continuity of potential and derivatives on Sl yields the

solution to the problem.

* In the r-z plane the kernel K is given as the solution to

a ring charge [43],

’

( 3 1 1
K(r,z;p,g) = L '9-] 2(xp)% 2 (o) 3
b
2m r {(Z—§)2+(r+p)2}2 {(Z—C) 2+(r+p)2}'2‘
L

J
where M is the complete elliptic integral of the first kind.

In the (x,y) plane,K is the familiar solution to a line charge,

Kix,y:;&,n) = 1 log V/(x-g)*+ (y-n)°®
27 e
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Although (2.7) can be formulated in finite differ-
ences [41],[42] the presence of the derivative makes it
inconvenient to handle. The derivative may be eliminated
from the problem as follows: let S2 be another arbitrary
closed contour outside Sl1, -within which it is desired to
inspect the solution as shown in Figure 2.3. Equation 2.5
holds for the entire region exterior to Sl, including S1.

Hence, the potentials ¢Sl and ¢SZ may be expressed as

rFr
¢gp (£,2) = K(x,2ip,8) 0gy(p,5) dpdz, (r,z)e Sl (2.8)
JJ)sgl
¢32(r,z) = K(x,2;p,2) csl(p,c) dpdz, (x,z)esS2 (2.9)
JJS]_
2
-I—-—-—'r
sl

s2

S

FIGURE 2.3: DEFINITION OF THE CONTOUR S2
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Equations 2.8 and 2.9 may be expressed in the symbolic form,

¢Sl =L,0 (2.10)

¢Sz = s1 (2:11)

which may be combined to eliminate the source distribution as
-1 2.12
bgp = LaLi 6gp (2.12)

Equation 2.12 represents the solution along S2 of the exterior
Dirichlet problem of Sl. It, in fact, describes a potential
shift from S1 to S2. This shift is unique [44] since ¢ is
harmonic outside Sl. Since the solution to the original infin-
itely extending problem is unique [1], simultaneous solution
of (2.12) with the interior problem defined by the system.(z.l)
and (2.2) within S2 provides the required solution to the
problem.

A relationship of the form (2.12) is not easy to
determine in explicit analytic terms but as will be shown
below, is entirely practicable when done by finite difference

techniques.
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2.4 LINEAR SPACE FORMULATION AND DERIVATION OF BOUNDARY
~ RELAXATION

The original problem may be stated as follows (see

Figure 2.4):

D¢ = £, (r,2)eR

Db = 0, (r,z)éR (2.13)
FIGURE 2.4 with boundary conditions

Bl(¢) =0, (r,z)ER

lim ¢ = const (2.14)

>0

where D is the Laplacian and the boundary conditions in R
defined by Bl have been defined in the preceding section. It
has also been shown in the preceding section that if the plane
is divided as shown in Figure 2.5, where R€Rl, the problem

may be reduced to solving

Um

FIGURE 2.5
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D ¢ = £, (r,z)e& R1US1UR2US2 (2.15)

Fint

with conditions

Bl (¢,

1nt) =0, (r,z)E€R

$(82) = ¢g,, (xr,2)e S2
simultaneously with

bgp = Q b;p4 (2.16)

where Q contains the second boundary condition (2.14) and is
an integro-differential operator. Equations 2.15 and 2.16

may be represented in the symbolic form

$. = g(¢g5) : (2.17)

q(¢int) (2.18)

It has been shown in the preceding section that simultaneous

solution of (2.17) and (2.18) gives the required unique solu-

tion. Equation 2.17 defines a mapping of ¢SZ into b;,e and
equation 2.18 defines a mapping of ¢, . into ¢82'
[
LEMMA 2.1: The mapping defined by
bine T g(¢52) (2.17)

exists.
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Proof: Given the potential ¢32, ¢ is defined as

int
the solution of the resulting interior Dirichlet problem. For
any properly posed problem in the class considered here,  this
solution exists [1],[44]. Furthermore, this solution is
unique [1],[44]. |

This is stated as

LEMMA 2.2: The mapping defined by (2.17) is unique.

LEMMA 2.3: The mapping defined by

exists.

Proof: As has been shown in section 2.3, the opera-
tor g acts only on that part of~¢int on 81, i.e., on ¢Sl ¢int'
The mapping (2.18) defines an exterior Dirichlet problem with
given potentials on Sl. The solution again exists [1],[371,[44].
Furthermore, the solution is again unique [1],([37],[44]. Hence,

LEMMA 2.4: The mapping defined by (2.18) is unique.

Let F. be the space of all functions by satisfying

1

(2.17) with ¢sz as independent variable. Let F, be the space

of all functions ¢., satisfying (2.18) with ¢, as independent
2 int

variable. The required solution is then given by
b = Fl(\ F, (2.19)

THEOREM 2.l: The required solution to the original

problem exists and is uniquely defined by (2.19).
Proof: Existence and uniqueness of the solution to

the (well-posed) original problem have been shown elsewhere [1],
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[44].. The proof of the second statement of the theorem may
be developed as follows: Suppose the solution ¢ to the
original problem is known. Considering Lemmas 2.1 to 2.4
and the uniqueness of ¢, it need merely be shown that the
solution ¢ satisfies both (2.17) and (2.18). Given the
solution ¢ on S2, suppose that ¢« R2 \UJ S1\URLl does not
satisfy (2.17). This implies that there exists another

solution ¢* to (2.17) with ¢;2 = ¢ and hence at least two

s2’
solutions to the original problem, an obvious contradiction.
Hénce ¢ satisfies (2.17). Now since R2 \J S2 \JR3 is a source-
free région (by definition) and since ¢ = ¢ext is harmonic [44]
4in R2 ) S2 U R3, then given ¢ along and exterior to an arbitrary

contour Sl, the principle of virtual sources [45] guarantees

that ¢ext & ¢ and the theorem is proved.

For numerical solution of (2.17) and (2.18), the
continuous spaces Fl and F2 are inconvenient. Let Q@ be a
space defined by a point set {Pj}, j=1,...,n, and let V, an
n-vector be the projection of ¢&R1 U S1 \UR2U S2 on the
point set {Pj}, where each element Vj is a representative
value of ¢ at that point. Further, define the mapping of ¢
intovﬂ such that V»+¢ as n»>x, Let {; be the projection of
Fl onto £ and 92 be the projection of FZ onto . Then the
solution in V is given as

v=20,MNa, (2.20)
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THEOREM 2.2: The finite difference formulation of

¢ in V is convergent.

Proof: The convergent nature of finite differences
is shown elsewhere [10],[11],[12]. Hence the formulation
is convergent for consistent finite difference mappings (2.17)
and (2.18). Equation 2.17 is the standard interior Dirichlet
problem. Moreover, it is shown in the next chapter that a
consistent finite difference formulation can be found for
(2.18).

Often the construction of the operator g in
(2.18) is not convenient in finite differences. As shown in
section 2.3, q = Llel where L, and L, are integral opera-

tors of the type

ch =.J] K(r,z;p,;)csl ds
S

where K is the elementary solution of D and is well-known.

Let Ll and L2 be approximated by

Ljo = h [ni}(l K§(i)ds) o + D(K)olo} = Llo (2.21)
i=l /s

where the prime on the summation sign means that the singul-

arity point is omitted, h is the mesh length and the

contribution due to the singularity is given by the additional

additive term, defined by the finite difference operator D.

This approximation is convergent (and indeed very useful),

i.e., Li¢ -+ Ll¢, n > . The additive term is justified
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since K is a weakly-singular kernel [46]. The approximation
belongs to the class of moment methods [47] with impulse
functions as the space of testing functions. This result
will be exploited in Chapter 3, section 3.2 and Appendices
1 and 2.

Direct simultaneous solution of (2.17) and (2.18)
may not always be practical, or indeed possible. An itera-

tive process is suggested by these two equations, as follows:

0) pick a starting vector (or function)

¢é§) in the domain of g.

1) Form a trial solution ¢ik) Fl from (2.17)

2) Form ¢ék) F2 from (2.18)

3) Form an error vector (function) as

RONNCI

4) is ||e(k1|m < A?, m =1, or 2, etc.

if not,
.L_Nnot, ¢(k+l) - (k) +Be(k)

return to 1)
if yes, solution complete.

The above process can be jllustrated as shown in

Figure 2.6.
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FIGURE 2.6: ITERATIVE SOLUTION OF THE DUAL PROBLEM

It is not yet certain that the above iterations
converge. However, the known uniqueness and existence of the
solution indicate that if the iterations converge at all,
they converge to the solution. In the following chapters
it will be shown that the finite difference equivalent itera-
tive schemes converge for &2 n + . The iterative process |

is thus convergent, since lim V = ¢. Finite difference
n* « .

formulation of the problem is considered in the next chapter.
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CHAPTER 3

FINITE DIFFERENCE FORMULATION

3.1 THE INTERIOR PROBLEM

The méthod chosen for solution of the interior
region was point successive overreléxation (hereafter
abbreviated S.0.R.) using a five-point finite difference
formula in a regular square mesh [11],[12]. Although a
more sophisticated solution method for the interior region
could have been used, it was felt that this method would be
the most useful in the study of boundary relaxation for the
following two main reasons: First, the method is easily
programmed, allowing solution of problems with complicated
boundaries and/or material interfaces without extremely com-
plicated or sophisticated housekeeping routines, and secondly,
the solution is easily terminated when some desired accuracy

is reached, the solution accuracy being easily estimated at

any stage. The second reason may seem, at first, trivial;
however, .as will be seen later, it is by no means necessary

(nor desirable) to carry the interior region solution to a

high degree of accuracy in the initial stages of boundary

relaxation, thus making the boundary relaxation process com-
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putationally more efficient. The validity of the first
reason may easily be seen on inspection of some of the illus-
trative examples in Chapter 6.

The five-point formula used for problems in Cartesian
coordinates (or x-y) plane) was one allowing material inter-
faces centered between meshlines. The most general configura-
tion of the five-point star is illustrated in Figure 3.1,

which also shows the compass notation used.

h/2 |
h/2

O0————w—0 mesh line

————— material interface

FIGURE 3.1: FIVE-POINT STAR IN X-Y PLANE SHOWING POSSIBLE

MATERIAL INTERFACES HALFWAY BETWEEN MESH LINES.

With reference to the figure, if the constént Kij is defined

as

, - Salresion ) _ uy(region 1 3.1
1] €4 (region i) uj(reglon 3)

where €; is the permittivity of region i and u; is the permea-

bility of region i, the five-point formula is given as [41]
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—_— + —— V —— ¥, —_— Vv
N o E o S ...
1+Kgy (L+Kop) 1+Kog (1+Kgop) T+Kog

1-K 2K (1-Ry)
(1Kos) ¢ 4 ow Vgt M Vg - 4V + £ =0 (3.2)

oW (1+KOW)

F— ¢}
(1+KOS) 1+K

The term t in (3.2) represents the source (if any) at the
point O*. For the case where the region is homogeneous, i.e.,
all Kij=l, equation 3.2 reduces to the familiar

VN + VE + VS + VW - 4VO +t=0 (3.3)

The five-point formula used for 3-dimensional axially
symmetric problems (or r-z plane) was one allowing material
interfaces along mesh lines as well as along diagonals in the
mesh. Figure 3.2 shows the most éeneral configuration of the
five-point star, where the permittivity of the medium is assumed
to be different in each octant about the point O. Following
the convention in Figure 3.2, the finite difference formula at

the point 0 is given as [33]

o’

* TFor electrostatic problems, t is the discretized Poissonian
term t = h? % where g is the charge at O and € is the permit-
tivity. - In magnetostatics, t = hqu, where p is the permeabil-

ity of the region O and J is the current density.
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N
\\ { )
\ 8'3 Ez//
g, O . L// €
w N7 O
85 // | \ €
8
" y \\\ h
Y €¢ | €, N
/ N A
2 S

FIGURE 3.2: FIVE-POINT STAR IN R-Z PLANE SHOWING ALL

POSSIBLE ALLOWED MATERIAL INTERFACES

1 =
where Kg = (1 + h/4R)sl + (1 - h/4R)e8

Ky = (1 + h/2R)(e2 + 83)

K, = (1 + h/4R)e, + (1 - h/4R)eg

K. = (1 - h/2R) (e, + €4)
Ko = K + Ky Ky * Kg

and R is the distance of the point O from the axis of symmetry

(the z-axis). For €1 = E,%...% Egy equation 3.4 again re-

2
duces to the familiar

Vg + Vg t (1 - h/2R)Vg + (L + h/2R)Vy - vy = 0 (3.5)




37

Let the problem be posed in a square mesh. Let
the vector V represent the poﬁential values at all the nodes
within and on S82. Let V be partitioned so that the sub-
vector Vi, represents all the potentials at the nodes.
interior to S2, and the sub-vector VSZ contains all the:
potentials on the contour S2, viz.,

T T

vt = [V,

7T
int’ VSZ] (3.6)

It is readily seen that the five-point formula (3.2) or (3.4)
may be written for all interior potentials Vint' but not for
VSZ' since the mesh is not defined exterior to S2.

The interior problem may now be written as a matrix:
equation, |

[a' - Cl] (B']

V.

s2

where A' is a square coefficient submatrix relating the

interior potentials Vint? C is a rectangular connection matrix
with zero or positive elements relating the interior potentials
to those on S2, and the column vector B' depends on the ?re—
scribed sources and fixed potentials in the interior region.
C has been written with a minus sign for reasons of convenience
which will be apparent later. The system (3.7), as it stands,
has no solution since the overall coefficient matrix is not

square, i.e., there are more unknowns than there are equations.
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If, however, the potentials Vs2 are. known (orlgiven), then
there is obtained, by direct substitution, the familiar

solvable system for the interior Dirichlet problem,
AV = B (3.8)

However, since the potentials on S2 are not known
a_priori for the exterior problem, more equations are re-

quired. This is considered in the next section.

3,2 APPROXIMATION OF THE BoUNDARY OPERATOR

It was shown in Chapter 2 that the solution of the
infinitely extending problem may be obtained as the solution

to the interior problem within the contour 82, simultaneously

with
0gy(xs2) = H K(r,z;p,t)0gq (p,T) dpdz, (r,2)eSl (2.8)
sl
and
¢g,(x,2) = H K(r,2:p,8)0g (p,8) dpdz, (r,2)€82 (2.9)
Si

which were combined as

-1

¢SZ =~L2Ll ¢Sl (2.12)

The problem, as was stated in the previous section,
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is posed in a regular square mesh*. Let the contours Sl and
S2 be contours of adjacent nodes in the mesh as shown in
Figute»3.3. sl is represented by x's and S2 by o's. The
potentials on-S1 and S2 are represented by the vectors VSl'
an n-vector, and by Vg,, an m-vector, respectively. Suppose
the potential distribution due to a source at one point in

the infinite mesh is known to be,
V(r,z) = Iglrorzg) V(X,2iTgs20) (3.9)

where (rg,2o) are the coordinates of the source, V is the

potential at the point (r,z) and I, is the source strength.

For problems in Cartesian coordinates, (x,2) should be re-

placed by (%,¥). Equations 2.8 and 2.9 may now be approxi-
mated by
dgy = Vizs2) g = ] Io(xyizvir,zir iz ), (X,2) €51 (3.10)
(r,,2,) €8l
¢SZ = V(r,2) lSZ = Z Io(ro’zo)w(r’Z;ro'zo)' : (r,Z)éSZ (3.11)

(ro’zo)é- sl

* The mesh does not necessarily have to be square, nhor
even regular. Use of a square mesh simplifies computation
considerably, but does not detract from the generality of

the analysis.
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PRESCRIBED | . /
%RﬁBtFM SOURUES|AND
B

U DAPIFQ I - ' r

V—’-\J

FIGURE 3.3: DEFINITION OF Sl AND S2 FOR A RECTANGULAR

INTERIOR REGION IN THE R-Z PLANE

which may be written in matrix notation as

VSl =-SIo ) (3.12)
and
v =-PI (3.13)
S2 o

where S is an n by n square matrix, P is an m by n
rectangular matrix, and each element of P and S is -an appro-
priate value of .

Equations 3.12 and 3.13 vield an expression for VSZ

in texrms of vSl’ ViZ.,

=- \Y4 3.14
VS2 PS s1 ( )

or,
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VSZ ='QVSl_ (3.15)

where Q is an m by n  rectangular matrix. Egquation 3.15 is‘
the finite difference equivalent of (2.12).

In order to maintain a consistent finite difference
formulation, the function Yy (values of which form the matrices
P and S) must be chosen to be the exact elementary solution
of the finite difference Laplacian. Such a solution can be
found for both the x-y and r-z planes. The discretized Green's
function for the x-y plane has been found by Amstutz [48] who

'gives the solution as a convergent integral of the form

P(m,n) = 1 | L= cos(matnb) da db (3.16)
82| 2 - cos a - cos'b :

r

where T is the sguare (-m<a<w,-m<b<m). This integral is con-
veniently evaluated for the case m=n and by symmetry and
application of the five-point operator may be evaluated fér
other values of m and n. fhis is discﬁssed in detail in
Appendix 1, as well as the methods of computing Q matrices.
for rectangular regions in the x-y plane.

The Green's function for the discretized Laplacian
in the r-z plane has been discussed by Sander [4S], who
formulates Yy as a convergent integral involving trigonometric
and hypergeometric functions. His solution is computationally
prohibitive; however, point values of the Green's function

in the continuous plane (the complete elliptic integral of the
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first kind) have been found to give godd results. Sander's
solution as well as the method used to general Q matrices for
the r-z plane are discussed in Appendix 2.

The matrix Q in equation 3.15 is feferred to as a
"shift" matrix, since it .represents the potehtial shift from
the contour S1 to the contour S2. As will be shown, the
shift matrix provides the necessary remaining equations (for
equation 3.7) to make solution of the problem possible.

The shift matrix relates potentials.on Sl to those
on S2.. As is readily seen, the pétentials Vél>on Sl are a
subset of the potentials V;, of the interior region. Equa-
tion 3.15 may therefore be rewritten as

[-Q' I] Vint

1l
o

(3.17)
- |Vs2
where the rectangular submatrix Q' contains columns of Q and
columns of zeros, and I is the identity matrix. The system
(3.17) along with the system (3.7) allows solution of the
problem. Before the actual solution is discussed, however,

some of the properties of the shift matrix Q will be examined

briefly.

3.3 SoMe SHIFT MATRIX PROPERTIES

A variation of the maximum principle [12],[32] will

be stated first:
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Let the mesh exterior to the contour S1 be denoted
by Ry. Further, let the nodes on the contour S1 be denoted
by S+ Assume that the region R is connected and that in

Rh the function V satisfies

D(V)=E¢c¢V +cV +c¢cV + CV -cV =20 3.18

h(O) N N E E S S WWwW 00 ( )

where °N,E,S,W > 0 and c_ = ]} c,. Then the maximum princi-
NESW

ple may be stated as

THEOREM 3.1: A function V which satisfies (3.18)

at each grid point in Rh, takes on its maximum value in Sy -
Proof: Assume the contrary, namely that at some
point P in R, the function takes on its maximum value, say M.

Then, from equation 3.18,

c.V.. + c.V_+ c. V. + ¢C

NN T CeVE sVs T oV~ (oygte

E+CS+CW)VB =0
or

- + - + - + - =
CN(VN VP) cE(VE VP) cS(VS VP) cW(VW VP) 0

which implies that

In other words, V must assume the value M at the four adja-
cent points. Since Ry, was assumed to be connected, the process
may be continued for all points in Rh’ including those adja-

cent to S,. Hence all points in Rh and Sh take on the value
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M. This, however, contradicts the original assumption that
V takes on its maximum value at P, Q.E.D. |

The maximum principle may be used to show unique-
ness of (3.15), i.e., that the shift operation (or the shift
matrix) is unique for given contours S1 and S2. This may
be done as follows: All points in S2 are in the region Ry
where (3.18) holds. Assume that, for given potentials in Sy
the solution V in Ry is not unique. Then there must exist
at least two solutions Vl and‘Vz, both of which satisfy the

given boundary conditions, namely,

and

Dh(Vy) =0 in R, V, = £(5) in §,

h
Since Dh is a linear operator,

vV, - DbV, =0

Dh(Vl—Vz) ='Dh 1 hYs

and if Vd =-VlfV2,,the problem in Vd becomes ,

Dh(Vd) = 0 in Ry, V4= 0 in Sh

From the maximum principle, the solution satisfies

Vd < 0 in Rh
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However,

hence

—-Vd £0 1n Rh.

Therefore, V4 = 0, Vl.= X, and the solution is unique. The
potential values on S2 are a subset of the solution V, hence,
~given potentiaié on S1, the potentials on S2 are uniquely
determined. A similar proof holds for.equationg 3.12 and
3.13, though slight modifications are required. (All sources
but one are sequentially set to zero and a source term is
introduced in the difference operator D, ; the maximum princi-
ple is used to show uniqueness of each solution, and all solu-
tions are then added to obtain the total solution). Existence
of (3.12) and (3.13) has been shown [48],[49]. Since the
matrix in (3.12) is square, and the solution is unique, the
matrix S in (3.12) possesses an inverse, and Q can be found.

All the above results are stated in

THEOREM 3.2: Given the contours Sl and S2, the

potential shift from S1 to S2 is uniquely determined by

equation 3.14 or 3.15.

The shift matrix Q also possesses two positivity

properties * that are useful in the derivation of further

* It is implicitly assumed that the potential reference is

zero potential, located outside S2 in the case of the x-y
plane, and at infinity in the r-z plane.
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results. These properties are stated in two lemmas:.

LEMMA 3.1: All elements qij of the matrix Q in

(3.15) satisfy

? qij < l, i=l,2,...,m
j=1

LEMMA 3.2: All elements qij of the matrix Q in
(3.15) satisfy

0 < qij<~ 1

Proof: Since S2 is in a Laplacian region, the proof
of the first lemma follows easily from the maximum principle
on setting all potentials on Sl to unity. This applies to
any simply-connected contour S2. -The proof of the second lemma
follows on setting all potentials on Sl to zero and then

setting each, in turn, to unity.

3.4 THeE CoMBINED PROBLEM

Equations 3.7 and 3.17 may be conjoined into a

single matrix equation, written in the partitioned form,

Al -c) (v.._.) B'

= (3.19)
-Q I \% 0

where the square submatrix A’ is the same as would be obtained

for an interior problem with a Dirichlet boundary at S2, I is
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the identity matrix, C is the connection matrix defined in
section 3.1 above, and Q' is as defined in séctionv3.2 above.
The submatrix A' has positive diagonal elements and negative
or zero off-diagonal elements. All elements of C and Q are
either positive or zexo. _

In the formulation of the problem as in (3.19), the
set of equations may be thought of as follows: All interior

potentials Vin satisfy a five-point difference formula of

t
the form

) cjvj - cqVy = 0
NESW '

At all nodes on S2, the potentials V satisfy an n-point

S2
formula of the form

n
z (qij VS].-) - VSZ. = 0' l=l,2'o-a,m
=1 J 1 :

where the potentials VSl are a subset of the interior poten-

tials V. .. Equation 3.19 may thus be written in the form
AV =2B (3.20)
in the manner of an interior problem. It remains to prove

. -1
THEOREM 3.3: A > 0

Proof: The usual coefficient matrix for the interior

problem satisfies the theorem (i.e., the submatrix A' in

e —
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equation 3.19).» It is therefore only necessary to show that
the introduction of the’n—point formula for the potentials
on S2 does not change the conditions for which this result
is known to hold true. Specifically, A is a real, square

matrix with a;; 0 and aij < 0, i#j (by Lemma 3.2). Also,

aj; 2 Zlaijl, by Lemma 3.1 with strict inequality for some
3 ., |

i, i.e., A is diagonally dominant. The matrix A is also

irreducible (this can be shown though very tedious, as in

ref. 31, pp. 19-20). Therefore [31l], det(A) # 0 and A_1>0,

Q.E.D.
A solution to the problem may thus be obtained as
V=A"B (3.21)

Since the matrix A is ﬁsually of very high order, direct
invefsion is rarely convenient. The next chapter shows
how standard iterative theory may be applied to the system
(3.19) or (3.20). First, however, the relationship of the
exterior problem, as formulated here, to the interiox pro-

blem will be discussed.

3.5 RELATIONSHIP BETWEEN INTERIOR AND EXTERIOR PROBLEMS

Consider a slightly generalized version of equation

3.19, viz.,
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= (3.22)

where the zero subvector in the right-hand side of (3.19) has
been replaced by the more general subvector D. It will be
shown that the interior Dirichlet, interior Neumann as well

as the exterior problem can be formulated as in (3.22).

INTERIOR DIRICHLET PROBLEM: In this problem, the

potential on S2 is prescribed, i.e., D is non-zero in general.
The problem may be put into the form (3.22) by setting the

shift operator to zero, viz.,

I

and by substitution, may be reduced to
A" V- = B" (3-23)
int

which is the familiar form.

INTERIOR PROBLEM WITH A CLOSED NEUMANN BOUNDARY

HALFWAY BETWEEN MESH LINES: For this problem, the contours

Sl and S2 are chosen to lie one-half mesh unit inside and
outside the given Neumann boundary respectively. The pro-

blem may now be written as
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where the submatrix I' contains columns of zeros interspersed
with columns that contain one unity element with the rest
zero. In the case that the boundary is a flux line, i.e;,

a homogenéous Neumann boundary, the subvector D is zero. By
substitution, the problem may again be reduced to the form

(3.23).

CLOSED NEUMANN BOUNDARY ALONG MESH LINES: This

problem is similar to the above, with S1 and S2 chosen to lie
one mesh unit inside and outside the given boundary res- |
pectively. Again, for a homogeneous Neumann boundary, D is
zero and the problem may be formulated as above. The matrix
operator I' may be thought of as bkeing a "unity shift" opera-
tor, since it reflects potentials from S1 to S2.

Thus it is seen that interior and exterior problems
of the type considered here differ only in the definition of
the boundary operator, a fact that may be useful in further

research in this area.
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CHAPTER 4

ITERATIVE SOLUTION

As was mentioned in Chapter 3, the matrix problen,
because of its size, is probably most conveniently solved by
some iterative method. Direct inversion of the coefficient
matrix has been considered [l14] to overcome convergence
difficulties due to inhomogeneous regions with widely-differing
material constants. Iterative convergence difficulties of
such problems have been overcome, however [30], so that this
reason-is assuming less importance. Iterative methods offer,
in the main, two distinct advantages over the so-called direct
methods. First, the coefficient matrix is such that indiv-
idual elements are easily generated as needed and do not need
to be‘stored. These matrices are, as a rule, very sparse;
that is, they contain a large number of zero elements. Direct
inversion destroys, in general, the sparsity of these mat-
rices. As more and more fast access memory becomes avail-
able to the programmer, however, this advantage is becoming
less important. Second, many iterative methods do not suffer
from round-off error propagation as, for the most part, they
tend to -be self-correcting in this respect. It is shown in
this Chapter that the standard iterative theory may be applied

to the linear system (3.19) or (3.20).
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L,1 PRELIMINARY BACKGROUND THEORY

In order to demonstrate how an iterative method
may be arrived at, consider a system of equations such as the
following

Ax =D (4.1)
Write the coefficient matrix A as the sum of two matrices.
A=M-N (4.2)
Substitute (4.2) into (4.1) to yield

Mx = NXx + Db
or:

x = M inx + M lp (4.3)
Equation 4.3 suggests an- iterative method as,

£ (k+1) o Ly (KD MY, x>0 (4.4)

where the superscript (k) again refers to the number of com-

pleted iterations. Define an error vector as

Sk o (k)

X=X,

where x is the solution. Then, substitution into (4.4) and

use of (4.3) yields

QL) oyl (R)

M “Ne (4.5)

In order for convergence to be obtained, that is, for the

condition
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@ lim e(k)= 0
kK + o
to hold for any arbitrary e(OZ it is necessary that all eigen-
values of the matrix M_lN lie within the unit circle; ox.
stated another way, the spectral radius, u(M'lN) must be
less than unity.
A definition and a theorem from matrix theory [31]

will now be stated:
1

DEFINITION 4.l: For nxn real matrices A, M and N,.

A = M-N is a regular splitting of the matrix A if M is non-

singular with M1 >0 and N > 0.

THEOREM 4.1: If A = M-N is a regular splitting of

the matrix A and al > 0 then

1 H(A_lﬁ) < 1
HIMTTN) =g 4 i)

i.e., the spectral radius of M_lN is less than one.

The iterative method associated with this splitting
convexrges for any initial vector. That is, the sequence of -

V(k) obtained from

S B T (4.6)

which can be written as

v(k+l) 1

= Iyw® 4+ mB, x > 0 (4.7)

converges for any V(O). The proof may be found in ref. 31, p.89.
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4,2 CONVERGENCE OF SOME STANDARD ITERATIVE SCHEMES

The regular-splitting theorem 4.1 may be used to
prove convergence of the classical Jacobi [19] and Gauss-
Seidel [16] methods when applied to the system of equations
(3.19) or (3.20). Application to the system (3.20) yields
what are conventionally termed "point methods", while
application to the system as posed in (3.19) suggests the
iterative "block methods", which correspond to the iterative.
method suggested in Chapter 2, § 2.4. The point methods will
be discussed first.

In the system of equations
AV = B ' (3.20)

the coefficient matrix A may be written as the matrix sum

A=D-L-0T (4.7)

where D= diag. {a;;,3,57c++/2 } and L and U are respectively.
22 nn
strictly lower and upper triangular nxn matrices, i.e., possess
zero diagonal elements. Note that D has all positive, non-
zero diagonal elements, the elements of L and U are all posi-
tive or zero and no special ordering of A has been assumed.
To obtain the point-Jacobi method, the matrices M

and N in equation 4.6 or 4.7 are chosen as
M = D, N=L+ T (4.8)

Equation 4.7 then becomes
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v _ 5Ly v 4 pls ' (4.9)

Since all diagonal elements of D are positive, clearly D'lg 0.
Also by inspection, (L+U)2 0. The splitting is therefore
regular and by Theorem 4.1 the point-Jacobi method converges.

This is stated as

COROLLARY 4.1: The point Jacobi method for solution

of (3.20) converges.
To obtain the point Liebmann method, or point Gauss-

Seidel; the matrices M and N are chosen as
M=D -1, N=1U (4.10)

By Theorem 3.3, (p-1)~1 > 0. Also, by inspection, U 2 0.
The splitting is again regular, and by Theorem 4.1, the point.

Liebmann method converges. This is stated as

COROLLARY 4.2: The point Liebmann method for solu-

tion of (3.20) converges.
The extrapolated Liebmann method, or point successive

overrelaxation (S.0.R.) is obtained by choosing M and N as

M=2L (D- ol), N =
w

€|+

wl + (l-w)é] w#O0 (4.11)

14
where w is a real constant, termed the overrelaxation or accelera-
tion factor. The splitting is regular for 0 < w £ 1. The
iterative method associated with this splitting therefore con-

verges for that interval of w, and, by continuity, point S.O.R.
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converges for some interval of w containing one. This result

is stated as

COROLLARY 4.3: The point S.0.R. method for solution

of (3.20) converges for some interval of w containing one,

and convergence is assured for 0 < w < 1.

The lack of an upper bound of w for which conver-
gence is assured is discussed further in section 4.4 below.
The fact that such a bound does not yet exist does not, however, .

detract from the usefulness of the method.

The block methods are derived from the formulation

of the problem ds in

1 - ]
A c P [B
= (3.19)

-0
Q I VSZ 0

The block Jacobi method is obtained by choosing M and N as

Al 0 | [0 c]

0 I Q' 0

This splitting is regular. Hence the block Jacobi method

(k)

int

vint}(k+l) o (@an) "t (v an~t o) (%)

+ (4.13)

Vg, Q" 0) Vg 0 )0

converges. This is stated as
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COROLLARY 4.4: The block Jacobi method for solu-

tion of (3.19) converges.

"A more useful method is the block successive relaxa-
tion, or block Gauss-Seidel method, obtained by choosing M and

N- as
M= , N = (4.14)

The splitting is clearly regular. Hence, the iterative method

v. ) (k+D)

int

Al o\'l 0 (v, W ar oTH(E"
int

V.

= + (4.15)
52 -0’ I} 0

0) { V¢ -Q' I 0

converges according to Theorem 4,1. Note- that

-1 -1
A’ 0 (a") 0}
Q' I or@ant
so that (4.15) may be written as

(k+1) -1 (k) -]
3\ ' B ' - h) ¥
int 0 (A'y C vinti (a') 0}i|B

w1 -1

vSz 0 Q'(A") "Cj(Vgy Q'(a') I]{0

and decomposed intd its two constituent equations
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(k+1) _ Py =1, (K) S
vint = (A')TCVg, + (A') "B (4.17)

and

V(k+]_) = Q'V (k+1)

In equation 4.18, the vector V, ., may be replaced
by the subvector VSl if Q' is replaced by Q (see equation 3.15).

Hence (4.18) becomes

(k+1) (k+1)
VS2 = QVSl (4.19)

Equations 4.17 and 4.19 describe an iterative scheme as

follows: an estimate is made of Vs§0)‘ The resulting interior

(1)
nt

Vsil). Vsél) is then found from (4.19) and the process is

Dirichlet problem is then solved to findAVi , and hence

repeated until convergence is obtained. This result is stated

as

COROLLARY 4.5: The block successive relaxation

method described by equations 4.17 and 4.19 converges.

This result will be useful in the derivation of further results, .

as shown below. The next section deals with error estimates.

4,3 ERROR ESTIMATES

It has been shown that a consistent finite differ-

ence formulation can be found for the infinitely extending
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problem, in the manner of an inteiior problem. Solutions

of problems.-in finite differences are, as a rule, subject to
+wo sources of error. The first main source of error SEE=SES
arises from the fact that even an exact solution to the
matrix problem is just that, a solution to the matrix pro-
blem, which, it will be recalled, is merely an approximation
to the original differential or integral equation. The
approximation or discretization error may be reduced to an.
arbitrarily small value by decreasing the mesh size. This:
subject has received (and indeed is still receiving) attention
in ‘the literature [10],[11],[12],[50] and will not be ex-
pounded upon here.

The other source of error arises from the fact that
the set of linear equations is not solved exactly. This is
true, in general, whether an iterative method is used or not.
In direct solution of the eguations (such as by Gaussian elimina-
tion or direct inversion of the matrix), finite-precision
arithmetic limits the accuracy of solution (round-off error).
This can sometimes be compensated by one or more iterative
passes subsequent to the direct solution; however, this is not
always practical or possible. The iterative methods discussed
here are self-correcting as regards round-off error [12].
However, the iterative process is usually terminated before
solution accuracy comparable to machine precision is reached.
It is therefore desirable that the error, or at least a bound,

at any stage in the iterative process be determinable.
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Since the finite difference formulation of the.
problem is consistent, the iteration,errois for the point
methods are consistent with errors in interior problems,
and may be determined in the same manner [101,[11],([12],[25],
[32]. Error estimates have to be derived for the block methods,

however. Again, in the block methods, point methods are used

for the solution of the interior region. Hence, all that is

required is an estimate of the error on the contour S2 at any
stage of the process. An analysis similar to that of Schiske
and Uhlig [51] yields the following:
Equation 4.18 may be written as
(k+1)

— ' 1y -1 (k) ' y o
VS2 = Q'(A'") C VSz + Q' (a")

lgs (4.20)

An upper bound Yy < 1 on the row-sums of the matrix Q'(A')-lC

is required. This may be obtained as follows:

a) Set all VSz to unity and all other sources

to zero (making B' identically zero). Solve

the interior problem for Vint' Let

}

0, = max {Vintj

oy is then the highest row-sum of the matrix

(A')’lc.

n
b) Let o, = max { ) qij}' i=1,2,...,m
j=1
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Y = 030, is then an upper bound on the row-sums of Q'(A')— cC.
When, after the kth step of the iteration procedure, it is

found that, for all j,

(k) _ gy (k-1}

|v <€
S2. .
j S25
- th .
then after the (k+1) step, for all j,
(k+1) (k)
|v -Vl s ey
. 2. -
SZJ' ] 3
after k+n steps,
(k+n) (k) i
ez, =~ Vsp, |51y
J 3 =1
. . (k+n) . .
Now, since lim V =V , where V is the solution, then
Koo szj szj szj

v.. -v 8 |ce_x (4.21)
2. 1S
j 523 1-y

which gives the required error estimate.

4,4. AcceLERATION oF THE ITERATIVE METHODS

As in the iterative solution of the interior problem,
the iterative methods discussed here may be accelerated by
overcorrecting the potential values at each stage of the pro-
cess. The standard methods of acceleration can be applied to

boundary relaxation, though many of the theoretical results
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valid for interior problems do not necessarily apply. As
before, the point methods are discussed first.

Extension of point successive overrelaxation to
boundary relaxation has been introduced in section 4.2 above,

where point successive underrelaxation was shown to be con-

vergent (Corollary 4.3), and, by continuity, has been shown

to be convergent for some interval of overrelaxation factor w,
containing unity. An upper bound of w for which convergence

is assured has not been derived. Numerical studies have shown
that acceleration is obtained for w > 1, though the increase
in the rate of convexgénce is not so dramatic as for the
corresponding interior probiem.. The reason for this is that
the coefficient matrix in (3.20) is not symmetric, and. the
corresponding Jacobi matrix D_l(L+U) of equation 4.9 has eigen-

values  that have significant imaginary parts. Wrigley [29]

discusses acceleration of problems .of this type and concludes-
that very significant acceleration cannot be achieved. In

any event, the point S.0.R. method has not been found computa-
tionally efficient because of the large number of arithmetic
operations in-application of the n-point formula on the contour
S2. Moreover, the coefficient matrix of equation 3.20 does

not possess Young's property "aA" [24], so that the standard
theoretical results for point S.0.R. do not necessarily apply.
Further research is indicated in this area.

The block methods, specifically the block Gauss-Seidel, -

have been found to be more practical. Acceleration of the above

block Gauss-Seidel method may be accomplished as follows. 1In
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@EB equation 4.6 or 4.7 the matrices M and N are chosen as
) 0 (l-w)A' wC
M:.].'.- v N=.l_ ,w'#O
W w .
-wQ' I : 0 (1-w)I

Substituting into (4.7) and noting that

@t 0
M_l = W
wo' a7t 1
there is obtained
(k+1) o -1 : (k)
int| (1-w) I w@a') e (v, .
= 2 -1
\'E w(l-w)Q' wQ"(A') TC+(1l-w)Ij |V,
S2 S2
=1
(a') 0jiIB'
+ w | (4.22)
mQ'(A')"l (0

Equation 4.22 may be decomposed into its two constituent
equations, viz.,
1., (k)

(k+1) _ (1- (k) o ‘ Lo,
Vint = (1 w)IVint, + w(A') cvs2 + w(A') B (4.23)
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(k+1) _ _ (k) L -1 __ (k) -1
VSz = wQ' [(1-w)I.V; " + w(A') CVSZ + w(A') "B']
_ (k) _ o, (k+1) _ (k)
+ (l-w)I Vg, = wQ Vint + (l-w)I Vsz (4.24)
which can be interpreted as follows:
(k+1) (k) * _ (x)
Vint + Vipe + w(V int Vint ) (4.25)
where
v o= @) rev B+ @nlee (4.26)
int 52
and .
(k+1) _ (k) * (k)
V52 V82 + m(vSz Vgo ) (4.27)
where
x =0 (k+1) 4,28
v s2 Q Vint ¢ )

Equations 4.25 through 4.28 describe an iterative scheme as

follows:

(0)

An estimate is made 0f V

. V*, is found from (4.26), i.e.:
s2 int .
by solving the interior problem. The interior potentials are
then corrected as in (4.25). V* is found by application of

s2
the shift matrix, as in equation 4.28, VSz is then corrected

as in (4.27) and the process is repeated until convergence is.

obtained. -
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A loose upper bound on the block overrelaxation
factor w can be easily ascertained. In the partitioning of-
the coefficient matrix-as in equation 3.19, the square sub-
matrices A' and I are clearly nonsingular (Theorem 3.3).

For this partitioning, the coefficient matrix is 2-cyclic [31].

The block Jacobi matrix corresponding to this partitioning is

the iteration matrix of (4.13),

Also, the coefficient matrix is consistently ordered [31] for
this partitioning. From Corollary 4.4, the block Jacobi

method converges. Now let J = L+U where

Q' 0 0 0

The block successive overrelaxation scheme may be written as

(1 - wny v = v+ (1-0) 1 v 4+ wp7'B (4.29)
where V is the vector of all potential values VT=[Vi§t, Vszlp
sT = [B'7,0] and

al 0
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The block successive overrelaxation matrix corresponding to

(4.29) is

1

£ = (1 - w7 [0+ (1 -0)1] (4.30)

Then ([31]

wid,) > lo-1] (4.31)

where u({w) is the spectral radius-of J;. This means that
in investigating the convergence of (4.29), only the intexval

0 <w<2 need be considered. This is stated as

LEMMA 4.1: The block successive overrelaxation method

does not converge outside the interval 0<w<2.

As was the case for the point methods above, .the
most common methods for determination of the best value of w
cannot be used, since the matrices A and J are not symmetric.
Wachspress [11l] gives a method for determination of Yopt for
the case when J is non-symmetric. The method has not been
found particularly effective in numerical trials, as the
eigenvalues y of J have significant imaginarybparts. However,
the optimum value of w has not proved to be very critical for
the problems attempted. Computation time can be reduced by
approximately one half (as compared to the case w=1) , but

this decrease can be achieved by use of values of w signifi-

cantly lower than Wopt (10-20%) .
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Block successive overrelaxation as developed above
is not efficient from the standpoint of core memory require-
ment, as two vectoxrs of potential values Vint for the interior
region need to be stored. A more attractive correction scheme
can be obtained by overcorrecting only the potentials.VSz on
the contour S2 (and not the interior potentials V;,.). 1In
this way,storage of only one vector Vint is required. If
overcorrection is to be applied only to either Vg, Or Vintf
the acceleration obtained is the same whichever vector:is
overcorrected. This may be shown as follows:

Let By be the overcorrection factor applied to Vint
and let B, be the corresponding f;ctor applied to Vsz, Sub-
stitute B8, for w in (4.25) and B, for w i; (4.27). Substitute
(4.25), (4.26) and (4.28) into (4.27). After some manipulation

there results

(k+1) _ ¢ (n_g.- Coary =lar(K) 4 (1- 1y (k-1
VSz = [(2-84 62)1 + B,8,Q (A') C]VS2 + (1-84) (82 l)VSz
+ 8.8, Q' (A1) 1B | (4.31)
1”2 :
Define an error vector as
B Ly )y (4.32)
s2 s2 T

where VSz is the solution. Substitution into (4.31) and noﬁing-

that
1l

-1 -
(1 -Q'(a") C) Vgy = Q'(a') "B
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yields

i | (k-1)
e(k+l) =~(2—Bl‘32)1 + BlBZQ'(A') lC e(kx* (1-31)(32-1)6

(4.33)

from which it is apparent that either-Bl or B, may be set
to unity with the same results.
The modified practical block overrelaxation scheme

thus becomes

(k+1) - vy~ (k ' -1 '
Ving = @N7C Vsz) + (a") "B (4.34)
and
(k+1) - (k) _ (k)
VSZ VSz + B(V;2 VSz ) (4.35)
where
_ Aty (k+l)
V;z = Q vint (4.28)

Computational experiments have shown that the modifieZd block
method is comparable in efficiency.to the more standard block
overrelaxation described by equations 4.25 to 4.28. As_in the
standard block scheme, the value of acceleration parameter B
has not been found to be very critical. This is discussed
further in the next chapter. Theoretical investigation of
determination of best value of w or B has thus not been
attempted, particularly in view of the fact that yet another
means of- accelerating convergence was available for all pro-

blems considered. This acceleration method is derived
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empirically and is discussed in the next. section.:

4,5 EXTRAPOLATION OF THE BLocK SOLUTION

After some initial iterations of the contour S2, the
individual components egk) of the error vector e‘k) defined
by equation 4.32 typically show monotonic convergence towards

zero, in the form

oK)

J

k+1) - T
e,

J
where the constant Tj is a measure of the magnitude of the
dominant eigenvalue of the block Jacobi matrix J. Monotonic
convergence of this type has been found to occur for wvalues

of B< 1.5 in all problems attempted. Hence,"

o (k) v (k+1)
Vsz. Vsz_ VS2. vsz.
= . _ ., J I _ g, (4.36)
gy <D vy ool
3 3 525 7 Ts2y

Equations 4.36 may be solved to yield

(k) (k+1)
Vg2, = Vg2

T, = ] J (4.37)

(k+1) _ k+2
Va2, Vézj )

and
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(k) T4 (k) (k+1)
\ =V + —3 (v -V ) (4.38)
2. . 82, s2,
S 3 SZj 1 TJ i ‘3 '
or alternately,
Coo(k#1) T3 (k+1) (k+2),
Ys2, ~ Vs2;  * I—?T;(Vszj Vszj ) (4.39)

Equations 4.38 and 4.39 represent extrapolated estimates.of

the solution value Vg, on the contour S2. The incorporation
J N

of the extrapolation process in boundary relaxation is dis-

cussed further in the next chapter.
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CHAPTER 5

PRACTICAL COMPUTATIONAL ASPECTS OF
BOUNDARY. RELAXATION

Solution of the infinitely extending problem is,
in practice, best accomplished in two stages: The generation
of a suitable shift matrix Q and subsequent solution of the
problem itself. It has been found most practical to gener-
ate Q by a separate program, since Q is independent of the
interior problem.. Once a shift matrix is generated, it may
be used for solution of a great variety of problems, provided
that the choice of the contours S1 and S2 and the mesh size
is satisfactory. The shift matrix is punched on data cards
or stored on magnetic tape and is then read in as part.of the
data in the boundary relaxation programs. Generation of the
shift matrix has been discussed in Chapter 3, § 3.2. A
detailed discussion of Q matrix generation for rectangular
regions in the (x,y) and (r,z) planes is contained in
Appendices 1 and 2, and shift matrix generation for coaxial
line problems is discussed in the next chapter, § 6.3, and

in Appendix 3.
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5.1 Point MeTHODS

The point methods, as was seen-previously,.make use
of the shift matrix Q in regarding each row of Q as a many-
point formula for the nodes on the contour S2. For this rea-
son, computational economy dictates storage of Q entirely
within the fast-access memory of the digital computer used.
Because of the large number of arithmetic operations involved
in the use of the many-point formula, the point methods have
not been found efficient from a computational standpoint.

The point $.0.R. method was programmed and several small trial
problems were solved, mainly to verify the theoxy. The core
memory,requirement‘is the same as detailed below for the

block methods with.internally stored shift matrix.

In the problems attempted, cdnvergencg was found
to be slow overall, though the number of iterations required
was comparable to that of interior problems with a flux-line
boundary along S2. The overall computation time, however,
was considerably greater than for the same problems solved
by block methods. The point S.0.R. method was moreover found
hard to optimize, i.e., the optimum overrelaxation factor
Wopt Was difficult to determine, though it was not found to
be overly critical. A time saving of approximately fifty
percent could be realized by use of a value of w close to
optimum, as compared to w=l. Figure 5.1 shows the convergence
behaviour of the problem of a charged conductive sphere, of

radius one mesh unit, in free space. The number of iterations
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is plotted versus the arithmetic sum of the residuals in the
interior region and on S2. The region size is 7 by 14 nodes
and the potential on the sphere is 10 volts. Note that the
average residual is approximately two orders of magnitude lower .
than the sum and that the solution has been taken to approxi-
mately the limit of floating point precision of the IBM 360/50

used.

5.2 BLock MeTHoDs

Block boundary relaxation programé typically require
two principal routines: a routine for solution of the problem
in £he interior region and a routine for the correction of thé
potentials on the contour S2. Since the interior region con-
tains an interior Dirichlet problem, existing interior pro-
grams may be used if available. As typically of the order of
twenty-five corrections are required for the potentials on S2,
i.e., twenty-five block iterations, the shift matrix Q may be:
stored on magnetic tape or disc without sacrificing computa-
tional economy. In this case, the only extra storage require-
ment is a buffer to store one row of the shift matrix. Where
computer hardware permits data transfers concurrently with the
arithmetic, almost no time is wasted.

Since the entire mesh used is the region of interest,
storage of Q in the fast-access memory is practical for a
great many problems. In this case, the greatest storage re-

guirement is due to the shift matrix. It has been found that
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a rectangular interior region is most convenient as regards
programming simplicity as well as from the standpoint of Q
matrix storage. Shift matrices for rectangular regions.
possess cextain symmetries, so that the entire matrix need
not be stored. Core memory requirement will be discussed for
rectangular regions -in the x-y and r-z planes.

In the x-y plane, let the rectangular region of
interest be a square mesh of (M+2) nodes. by (N+2) nodes. Let
tpe contour S2 consist of the outermost nodes, omitting the
corners, and let the contour Sl be the rectangular contour
one mesh unit interior to S2. This is illustrated in Figure
5.2, where the contour.S2 is indicated by-o's and Sl by x's..
For even M and N, the Q matrix for this region has
(2M+2N) (2M+2N - 4) elements, of-which only one quarter are.
independent*. (See Appendix 1 for a more detailed discussion
of the structure of Q). Allowing for storaée of a field

description array, the overall storage requirement becomes:

independent elements of Q : (M+N) (M+N - 1)
field values + (M+2) (N+2)

field description array : (M+2) (N+2)

locations, plus the program itself. For example, if M=N=56,

the field values and the field description array each occupy

* The shift matrix actually has less independent elements,
as can be seen from symmetry considerations. The word
"independent" is used here to mean "easily programmable
symmetry", as explained in Appendix 1.
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3364 locations. The shift matrix is, in this case, 224x220
and contains 12,320 independent elements. Hence, 19,048
storage locations are required in addition to the program
itself. A problem of this size may be conveniently solved

on an IBM 360/50.computer with:-110 Kbytes of core memory and
a word size -of four bytes.

| The size of problem that may conveniently be done
in the r-z plane is approximately the same; though the figures
vary somewhat. Let the region of interest be the rectangular
region described by Figure 3.3. Let the number of radial .
nodes in the mesh be (M+1l) and the axial nodes (N+2). The
shift matrix in this case has (2M+N) (2M+N - 2) elements, of
which, for even N, one-half are independent. The ovefall

storage requirement thus becomes:

independent elements of Q : 3 (2M+N) (2M+N - 2)
field values : (M+1) (N+2)

field description array : (M+1) (N+2)
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locations plus the program itself.- For: example, if N=2M=80,
i.e., the region size is 41 by 82, the field values and the
field description array each occupy 3362 locations. The
associated 160x158 shift matrix has 12,640 independent ele-
ments. Hence the storage requirement is 19,640 locations
in addition to the program itself, which can again be:
accommodated by an IBM 360/50 computer. Larger machines can,
of course, handle much larger problems.

| Computation times are rather hard to state for
boundary relaxation-since they depend greatly on the com-=
plexity of the problem as well .as mesh size-and the various
parameters of the problem. Comparison of boundary relaxation.
to the other methods that have been used for solution of the
infinitely extending problem is not meaningful, since com-
putation times in. the.earlier methods depend to a great extent
on the choice of approximation. The methods reported here are
significantly faster than boundary relaxation using potential
gradients [41], [42], particularly when extrapolation is used,
as discussed in the next section. Without extrapolation, -
computation times are comparable to optimized interior pro-
blems with a flux line boundary at S2. It has been. found
that computation time varies approximately linearly with the
number of nodes in the interior region of interest and with
the order of magnitude of error reduction required. Practical.
block relaxation dictates overcorrection of only the potentials
on S2 and not in the interior region. The overcorrection

factor B is not overly critical, provided it is on the low side:
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of optimum. This is shown in Figure 5.3, where the arithmetic
sum of the corrections to the potentiéls on S2 is plotted
against the number of block iterations (k) for the conductive:
sphere problem described in- the preceding section. - The
behaviour- shown here is typical, with most problems differing
in the first few iterations. Practical application of the

block methods is discussed in. the next section.

5,3 PracTicAL Brock MeTHOD

In the initial stages of block S.O.R., it is point-
less to solve the interior region to a high degree of accuracy..
For this reason, point S.0.R. is convenient as an "interiox"
solution method, since:it is easily terminated at any stage of
accuracy. It has been found that a simple method of incorpora-
ting this in the block method- is to simply limit the number of
interior S.0.R. passes -to some fixed number varying from 10 for
small regions of the order of 100 nodes, to 40 or 50 for regions
of 1000 nodes or more. After the first few boundary iterations,

the interior S.0.R. routine typically terminates interior solu-

tion well before the maximum interior passes are executed,
since a second terminating criterion is the condition- that

all residuals are smaller in magnitude than some prescribed
constant. This constant is normally specified one-half an
order of magnitude lower- than the maximum allowed boundary (S2)
correction, which is the terminating criterion for the boundary

relaxation program.
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No attempt was made to optimize- the solution of the
interior region, although for problems with many nodes
determination of -an optimum interior overrelaxation factor
is most likely worthwhile. This factor, once determined,
remains fixed for each block iteration, since the contour
§2 is temporarily converted to a Dirichlet boundary.

The block relaxation factor B is-not overly criti-

cal, and it has been found that a value of B=1l.5 gave suffi-
cient acceleration for most problems attempted, particularly
when combined with the extrapolation method of § 4.5 above.
The extrapolation, when properly used, was found to provide
the equivalent of 5-30 full block iterations. It was found
that the extrapoiation-process, if applied too early, caused
block relaxation to divé:ge. This is shown in Figure 5.4,
. which shows. the behaviour.of the arithmetic sum of the
corrections on-S2 with the iteration number (k). The plot is
for the pin insulator problem of Figure 6.6 in the following
chapter. The region size is 20 by 40 nodes and the block
overcorrection factor 8 is 1.5. The oscillating curve shows.
the behaviour for extrapolation after every eighth block itera-
tion. The lower- converging curve shows extrapolation applied
after the twentieth block iteration. In this example, the
number of interior relaxation passes was limited to 40 for
each block iteration and the final overall solution- accuracy
is .001%. In a practical problem of this type, the solution
is rarely required to this degree of accuracy. .

It is interesting to note that, in most cases, the

convergence behaviour of the problem changes somewhat after a



81

properly applied extrapolation. Figures 5.5 and 5.6 show

the behaviqur of the corrections on S2 versus iteration
number for the insulator problems of Figures 6.8 and 6.9.

In Figure 5.5, extrapolation is applied after the twentieth
Block iteration, whereas in Figure 5.6, after the fifteenth.
The interior region size is approximately the same for each
case. Note that in the former case, convergence (to .001%)
is obtained within two iterations after the extrapolation,’
while in the latter, nine block iterations-are required
subsequent to extrapolétion. In both cases, however, the
total number of block iterations is approximately the same.:
The convergence rate in both cases is also substantially
increased after extrapolation. The computation time in all the
above convergent caées was substantially less than one minute

of machine time on. an IBM 360/75.

5,4 ProGrAMs. USED

' The boundary relaxation programs used in this in-
vestigation_consist.of-two main sections: routines for solu-
tion of the interior region and boundary_potential corrections
routines. The shift matrix is generated by a separate program
and read in.as data from punch cards. As has been mentioned
above, point S.0.R. is used for the solution of the interior
region of interest at each block iteration. -

The interior point S.0.R. rogtines were written soO

as to allow arbitrary sources and material interfaces to be
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specified. The probleﬁ'geometry is read-in in quasi-
graphical form from a data deck in which punches indicate
the presence or absence of conductors oOr dielectrics. 1In.
the x-y plane,»material interfaces halfway between mesh lines
are allowed, while in the r-2z plane,routines, material inter-
faces are allowed to follow mesh lines as well as diagonals
in the mesh. A field coding routine then forms a field des-
cription matrix which is stored in-an array identical to the
array containing the field values, i.e., one code number is
stored for eachAfieldypoint,.»Thevcode number- at- each node
determines the formula to be used in the interior point -S.0.R..
routine. The details of these routines have been described
pbefore for x-y plane programs [4l}. A more detailed discussion
of the interior -routines for the r-z plane is contained in
Appendix 4. |
Theminterior;solution_routines,may be- thought of as
one package, in that any method. for solution of the interioxr
region may be used, provided .that consistency of formulation
is preserved at the..contours sl and S2. The boundary
correction-routines~arewquite simple, requiring care only in:
the indexing involved. The -problem is considered to have con~-
- verged whenever the maximum.correctien to the potential values
on S2 does not exceed an arbitrarily small preassigned numbexr.
The maximum boundary correction, as well as the arithmetic sum
of the corrections and the sum of the squares, is printed out
at each block iteration. Once convergence is attained, output.

routines are then used to print the field values, plot equi-.
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potential maps, calculate capacitances and any other required
data.

Appendices 1 and 2 describe in detail all the‘nec?
essary:indexing.for.generation (and subsequent use) of Q
matrices foxr rectapgular_regionsvin the x-y and r-z planes.
An additional feature incorporated in the x-y plane programs
is -the facility to impose‘an:externally applied field on the
problem. The'solution of the problem is the same as for no
externally-applied.fieldfwwith_a slight«modification‘in the
correction-of,theupotentials on S2. The-externally applied-
potentials are subtracted : from the potentials Vg, before
multiplicationuby.the shift matrix. The'shifted;potentials

v are then augmented by the external field on S2 and the

s2
'process.continued as for the normal problem.

Figure 5.7 shows a flow chart of the.modified block

-boundary relaxation program.
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CHAPTER 6

TLLUSTRATIVE EXAMPLES

In this chapter, several sample solutions are pre-
sented in order to illustrate the application of boundary
relaxation to practical problems. The selection of examples
is quite arbitrary and is by no means intended to be exhaustive.
Some -of the solutions,preéented-are standard "textbook" pro-
blems having known..analytic solution, some are solutions to.
problems.found in practice, and the remainder are presented

for their illustrative qualitieé.

6.1 Two-DIMENSIONAL PROBLEMS

The two-dimensional discretized Green's function of
Laplace'S'equatien-represents, in fact, a point source in an
infinite mesh. Hence, solution of a unit point source by
boundary relaxation should yield values of the Green's function
(see-Appendix 1) . Such a solution is shown in Figure 6.1, in
which the computer printout for a small rectangular region is
reproduced. Enlarging or reducing the region has no effect
on the actual potential values. Tt .is interesting to note that

if the mesh lines are replaced by unit resistances, the po-
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tential values represent.node voltages, and. the resistance
between.two diagonally opposing nodes- in.the mesh is obtained, -
as by Amstutz- [48], to be 2/m.

Figures 6.2 and 6.3 show the equipotential plots
of the familiar -problem-of a cireular dielectric:cylinder. in
an externally applied uniform field [10]. The actual
dielectric interface is shown.by the -dashed lines.  The region
of interest in each.case is a square region of 18x18, oxr 324
nodes. The first example shoﬁs the plot for cylinder-die-
lectric permittivity er=2,'while the second is for e,=5. Note
that the equipotential lines run- true right to the edge.of the
region of interest,-i.e.; right. to the contour.S2, quite;unlike-
any solution obtained. by -assuming S2 to be a flux line orx.
other hypothetical boundary. .An-interesting point to note’
in.these two-examples is the fact that even a crude modeling
of a circular- cylinder-as-shown here produces a‘solution that
is almost identical to the classical analytic one.

The last 2-dimensional .example is an artificial
problem whose accurate solution is difficult by analytic means.
Figure 6.4 shows the equipotential map of a-charged wire in
the presence of -a dielectric cylinder of rectangular cross-
section, -easily obtained by boundary relaxation. Once more,
£,=5. 0f course, more complicated conductor and cylindexr
shépes are solved just as easily, -as may:any configuration of
sources and boundaries; provided they can be contained in the

region of interest.
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FIGURE 6.2: CIRCULAR DIELECTRIC CYLINDER IN UNIFORM
APPLIED FIELD, €, 2.
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CHARGED WIRE NEAR RECTANGULAR DIELECTRIC
CYLINDER _

FIGURE 6.4:
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6.2 AXIALLY SYMMETRIC THREE-DIMENSIONAL PROBLEMS

The first example in-this section is the classical
problem of the -conductive sphere-in free space. The square
mesh used is not natural to the problem, noxr is the rectangular
region of interest that was chosen. As can be seen from
Figure 6.5, thé solution nonetheless corresponds to the one
obtained analytically. The region shown in the figure is 7
radial nodes-py 14 axial nodes in size. The radius of the
sphere is one mesh unit and the conductive surface is thus
coincident with nodes .in the mesh. Once more, alternately
reducing or enlarging-the region of intexest produces the:
same. solution.

Figure 6.6 -depicts the equipotential plot of a typi-
cal 69 Kv. pin insulator.  The region size is 20 by 40 nodes
‘and the contours shown axe equispaced, with an- intermediate
contour shown by the dashed line. The smooth dielectric inter-
faces are modeled by straight-line segments along mesh lines
and diagonals, as. shown by the fine linee in the figure. The-

dielectric permittivity is e, =2.1. The convergence behaviour

of this problem has been discussed in the previous chapter and
shown in Figure 5.4. This example, as well as the following

three insulator problems are not intended as design data, .but

|
?

merely to illustrate the. complexity of sources and material
interfaces  that may be handled with relative ease.

The equipotential plot of a typical suspension insula-
tor is shown in Figure 6.7. The region size is again 20 by 40

nodes. and solution is straightforward, requiring less than one
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FIGURE 6.6: TYPICAL 69 Kv. PIN INSULATOR
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FIELD MAP OF TYPICAL SUSPENSION INSULATOR

FIGURE 6.7:
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minute of machine.time:onban-IBMa360/75. Economical solu-
tion, such as-.allowed by boundary relaxation, -permits analysis
of such problems with various environmental and physical
factors, such as contamination, taken into acéount. Figure
6.8 .shows the field map of the above suspension insulator
with a conductive contaminant on its upper face. This pro-—
blem requires but a slight.modification-of-the.data deck for-
the previous one; and .solution is again straightforward and
economical. ~ The convergence pehaviour of this problem has
been shown-in- Figure 5.5. |

>FiguEe~5u9-ShOWS ye£ another suspension“insulator
unit, this time modeled in a mesh-of 26 radial by 34.axial
nodes. Convergence behaviour of this‘problem,isvshown in
Figure 5.6 above. -This example; as all the.above,~show
clearly the fact that the problem.under consideration is not
physically altered in any way; the arbitraxry contour S2
merelyvspecifies‘the.region;ef spacerinvwhich»it_is desired

to inspect the solution but does-not alter it.

6.3 CoAxiAL LINE PROBLEMS

The theory, methods and examples presented up to
this point have been for problems that are infinitely extending.
in two dimensions. As -will be shown in this section, boundary
relaxation is applicable as well tc problems that are infinite-
in extent in only one direction, or coordinate, as a special

case of problems and will be discussed here. It will be shown
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FIGURE 6.8: SUSPENSION INSULATOR UNIT OF FIGURE 6.7 WITH CONDUCTIVE
CONTAMINANT ON UPPER FACE
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FIGURE 6.9: ANOTHER COMMON SUSPENSION INSULATOR
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that,-by trivial modification, the methods are also appli-
cable to infinitely extending plane strips of finite width.
Pure TEM waves can be propagated only along uni-

form transmission lines. Discontinuities or nonuniformities

~give rise to coupling between this mode-and higher order.

modes. For lines that- have small dimensions compared to
wavelength, the higher order modes are evanescent, i.e., .at.
some -distance away from the discontinuity they decay enough
to be negligible. Their associated stored energy,;howevéi,
cannot be neglected. even at very low frequencies. Figure 6.10
shows one possible .type-of discontinuity created by.the joining
of two long uniform:.coaxial:lines. The lines are assumed
infinitely extending in either direction-on each:side of the
discontinuity region. |

The type of discontinuity most commonly treated in
the literature-thus.far..is.the. type-which.is.confined to a
singlerplané;~egg.,~a_step discontinuity -in the inner or outer
conductor, or:.both: Whinnery and Jamieson [52] showed that .
this type of discontinuity can be  accounted for by an- equi-
valent shunt- capacitance.at the .discontinuity. plane. Their
technique is an -application of mode matching [53] and was:
later extended [54],[55] to produce tabulated results and
curves.

One of the first finite difference treatments of
coaxial line discontinuities to appear.in-the literature
was that of Green [35], who approximated the infinitely ex- .

tending lines by imposing a flux line boundary one diameter

>
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away from the discontinuity region. The equivalent shunt:
capacitances were then.obtained from the static field map.
Green's- approach suffers from.several defects.- First, the
artificial flux line boundary alters the problem physically,
and though Green-asserited . that-this boundary, -if taken one
diameter away from the discontinuity region, did not affect
the overall solution, ‘it has been found in-this investiga-
tion that this-distance..is-toe optimistic. Secondly, many
more nodes than are actually required need to be introduced
into the problem,. increasing computation time  accordingly.
Thirdly, Green's approach to calculate the equivalent shunt

capacitance involves calculation of the total capacitance

of the line section between the artificial flux line boundaries

and then subtraction of the capacitance of an equivalent.
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length of uniform line(s), i.e., the subtraction of two large
numbers that are almost’equél, a dangerous process, at best.

Equivalent capacitance may be derived from energy
considerations in a very small region containing the dis--
continuity [56], so that boundary relaxation provides a very
economical and efficient means of treatment of this type of.
problem. In-order to apply boundary relaxation, a shift
operator for the uniformﬂcoaxial line has- to be found.-

The method of: construction of shift operators, or.
matrices, thus far, has been by means of the elementary
solution, or the Green's funetion,; of.the Laplacian foxr the
appropriate region, such as the infinite plane. Such a
function -can be found- for the uniform coaxial line by use of
the finite Hankel transform-[57], as shown in Appendix 3.

The solution is-obtained in-the form of a convergent series.
of~Bessel_functigns,<which,_unfortunately,-convefges too
slowly to be of practical use:. Because of the uniform nature-
of the problem, however,. another simple means of construction
of a shift matrix is available.

Consider an infinite uniform coaxial line, such as
shown in Figure 6.1l.  Let some charges q be placed on the
plane numbered-(l) in-the figure. Let the planes numbered
(2) and (3) coincide with the adjacent radial mesh lines as

shown: The inner and outer conductors of the line are assumed
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at. zero potential¥*.. If. the vectors V;, V, and V3 represent
the potential values on the planes (1), (2) and - (3) res-

pectively, then writing the finite difference equation at

each node on the planes results in a system of equations

c. -2I 03 (vy -q)
-I  C -I|{Vy| = |O (6.1)
0 -0 Ij{vy 0,

where C is a tri-diagonal matrix (for uniform inward or out-
ward ordering of. the potentials) containing the self and radial.
coefficients of the finite difference eqguations, I is the

identity matrix, and Q is the required shift matrix. Note

* potentials other than zero are treated in the same fashion
as external fields in the x-y plane. - It is merely nec-
essary to subtract the uniform potential before application
of the shift relationship and then to add it prior to solu-

tion of the interior problem.
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that C is written with positive diagonal elements. The doubling:
bffthe~ceefﬁicientsnin~theifirst~equation results from the fact
that plane (l) is a ﬁlane of symmetry. Note-that in this case,
the shift matrix Q is a square matrix of order n where.n is
the number of radial nodes within the inner aﬁd outer conduc-
tors of- the line.

The third row-of equation- (6.1)-is the shift rela-
tionship from plane. (2) -to plane-(3). .However, -since plane (2)
is in a Laplacian region,<the same shift relationship holds
between planes (1) and (2).: Application of the shift to the

second’ equation:(6.1) results in
Q-CQ+I=0 | (6:2)

Calculation of Q from the relationship (6.2) is not convenient.
Equation 6.2 may be postmultiplied by Q'lTand rearranged to
yield

Q=1[c-qt (6.3)

which suggests an iterative ‘process as
o(ktl) - ¢ - oK)~ (6.4)

The above equation may- be. deduced in another fashion which gives
a.physical interpretation of the process involved. In equation
6.1, let the initial iterate of Q be taken as the identity
matrix, zero, or.any other convenient starting point. - This
initial iterate may be imagined to represent a certain boundary

cperator. Solution of the equation for unit charges-q taken
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one at a time yields values of potential on-the planes (1)
and (2). These values may be used to construct another shift-
matrix Q which can be used to relate the planes (2) and (3),

i.e., the'initially assumed boundary operator is effectively.

. displaced one mesh unit to the right. Successive application

of this procedure effectively shifts. the flux line or other
boundary farther and farther away, until a uniform iterate.
of 'Q is obtained. Implementation of this procedure in mathe-
matical terms results ‘in equation 6.4. Convergence of this
process.may be-anticipated on purely physical.grounds and has
been found true in.practice.

The extrapolation procedure-of § 4.5 may be applied
to the iterative process describedginlequation 6.4, -so that
iterative construction of Q is very efficient from a computa-.
tional standpoint. It has been- found practical to continue the
iterations to the limit of precision available, i.e., zero
computed: difference on. an IBM 360/50, a binary machine with
24—bit,mantissé; For this accuracy, the flux line oxr other
boundary is effectively.shifted 1.5-2.0 diameters away, thus
casting doubts on Green's [35] artificial boundary as.regards
accuracy of solution.

Once a shift matrix is obtained for each of the two
semi-infinite lines in question, the calculation of the static
field map in the neighbourhood of the discontinuity is but a
trivial application of boundary relaxation. For plane dis-
continuities, e.g., steps, only three radial mesh lines need

be considered, as shown in Figure 6.12. Problems of this type
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FIGURE 6.12:~PLANE:DISCONTINUITY_IN~GOAXIALwLINE-ILLUSTRATING-

RADIAL MESH LINES REQUIRED FOR SOLUTION.

may be- satisfactorily modéled by. matrices. of order 100-200,
‘so that direct inversidn;may be - used. For discontinuities-
other than plane;, e.g., such as-shown in Figure 6.10, point or
block S.O;R._is-likely.to be. more practical.

‘The'field pattern obtained.reprééents a. superposition
of the propagating TEM mode. with other evanescent modes. that -
exist only in and near the discontinuity region. The dis-
continuity capacitance is the equivalent network representa-
tion to account for the stored energy of the higher order modes.
It is therefore only necessary to find this energy in the dis- -
continuity region.

The potential at an§ point within the -line- is the
superposition of a logarithmic potential (for a-uniform line)
which is characteristic of the TEM mode, and an added potential
which can be attributed to the effect. of the discontinuity.

If the reference logarithmic potential is V*, the additional
potential -is then-V-V#, Within the discontinuity region-
itself, this viewpoint is not justified (for the case of a

non-planar discontinuity),'since the potential due to the



108

TEM mode is not known. 1In this region, however, V* may well
be taken equal to V (the actual solution), or some. other
convenient reference satisfying the Laplace. equation_ in the
discontinuity region. The energy associated with the differ-

ence potential V-V* may be expressed as -

Wy = 2| (v-vx) &i(‘li:_‘.’_)_du (6.5)

U
where the region of integration extends over both coaxial lines, .
including the discontinuity region. The integral vanishes
everywhere except-at the -two planes boundiﬁg the discontinuity
region,. hence it is necessary- to know- the potential.at these
two planes only. . Note-that-in the case of a plane discontinuity, .
the two bounding planes:- for the discontinuity region are coin-
cident. -

The actual integration is done numerically and care
must be taken in obtaining-the necessary second. derivatives.
If V* is defined to satisfy Laplace's.equation everywhere ex-
cept at the planes bounding the discontinuity region, the
energy associated with the discontinuity may be obtained as
follows: (V*-V) is formed for the uniform lines on either
side of the discontinuity region (V*-V is by the above defini-
tion equal to zero within the region). The energy associated.
with each bounding plane is then obtained as half the energy:

associated with a potential distribution (V#-V) symmetric

about each plane in turn. The five-point Laplacian is easily

applied to this distribution, 'so that the energy is readily



109

calculated. The discontinuity capacitance is then derived

from the energy as

! (6.6)

where Vg is the potential difference between the inner and
outer conductors.of the line.

Thewabove»methods'havevbeen-implemented and - several
sample_problemSwsolved‘u Plane discontinuity capacitances
were found to agreevwithmthoseygiven;by éomlo [55]. Several
samplerﬁield maps -are presented below.. |

Figure 6.13 shows the equipotential lines near-a
step discontinuity.- .-The entire computed solution is shown.
The mesh used was 61 by 9 nodes in extent,‘though a region 3
nodes wide would havevbeen~shfficient. Such a narrow region
does not lend itself well to plotting, however. The figure
serves to illustrate~theiminimal~rggion»that has to be. solved
for this kind of problem.

The field map of a double step discontinuity is
shown. in Figure—6.14.- Though in this case it is only necessary
to solve a mesh extending one unit beyond the step on either
side, the solution is again taken slightly further beyond the
steps for {l1lustrative purposes..  The mesh in this case was- 31
radial by 20 axial nodes. seven block iterations were re-
quired, with extrapolation after the sixth, for a maximum
boundary correction of 0.0006 v., with 10 v. on the inner

conductor and 0 v. on the outer.
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Figure 6;15 illustrates the field map for the pro-
blem of a spherical dielectric 5ead support. . The mesh size
in this example is 16 radial by 31 axial:nodes. The die-
lectric constant of the bead is er=2. Five block iterations
with no extrapolation-reduced the. maximum boundary correction
to 0.0004 v., with the potential difference between the outer
and inner conductors being, once more, 10 v.

- Application of bouhdaryvrelaxationwto plane strip
problems is identical to the above procedures. A slight.
modification is required in. the matrix C of equation 6.4
since  a different;coordinate,system is used. -It is shown-in:
Appendix: 3-that the shift matrix.fer-strips can be related:to
the admittance matrix -ebtained by Sander [58] -for a similar
configuration. Sander's-matrix has served to verify the.
accuracy of the iterativenmethodgemployed-here.~ Calculation.
of»the-shift~matrix-for.coaxial lines as well as strips is

discussed further-in Appendix 3.
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CHAPTER 7

CONCLUSIONS.

An accurate, efficient and rigorous method has been
presented for solution of infinitely extending field problems
in two dimensions and three dimensions with axial symmetry.
The boundary conditions at infinity are transformed: to.an
arbitrary, finite, closed contour in terms of a potential
shift operator. The solution within the arbitrary contour is-
obtained as the solution of an interior Dirichlet problem
simultaneously with the shift relationship, and corresponds
exactly with that of the infinitely extending problem. All:
necessary pertinent- algorithms are given in detail.

Tﬂe method is termed "boundary relaxation" and it
is shown that the common interior Dirichlet and Neumann pro-—-
blems may be.formulated in the same fashion as the infinitely
extending problem, differing only in the definition of  the
shift operator.

Aside from the few special cases referred to in the
text, this thesis has presented the first. general numerical
solution of the infinitely extending static field problem by:
finite -differences. Existence of solutién,-as well as unigque-

ness and convergence, have been demonstrated theoretically
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and by practical examples. Several convergent . iterative schemes
for solution of the problem are presented, and two optimizing
algorithms are shown.

Boundary relaxation is shown to be an efficient
solution algorithm whenever all sources and material inhomo-
geneities can be confined to a reasonably finite volume of
space. Application has been shown. to x-y, r-z and coaxial
line problems by a variety of illustrative examples.

There is no objection, in principle, to application
of boundary relaxation to three dimensional problems.
Practical,considerations of core memory and computation time
have, however, prevented investigation of this topic. Prac-
tical solution of the general three dimensional problem will
depend very greatly on the method of approximation used in
the interior region of interest and further research is indi-
cated in this area. Aside from a more efficient approximation
of the problem in the interior region, the next obvious-area
of research seems to be extension of boundary relaxation to
the more general elliptic operators, such as‘the Helmholtz
operator. The applications might include scattering and
diffraction problems, extension of the method used for coaxial
lines to waveguide discontinuity problems and many more.

It is felt that the foundations of boundary relaxa-

tion as developed in- this thesis will serve as a starting point:

for development of methods of solution for a great many classes
of infinitely extending prcblems that are of interest in engi-

neering and physics.
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APPENDIX 1

SHIFT MATRICES FOR X-Y PLANE

Al.1 DiscreTizeD GREEN'S FuNcCTION .

The elementary solution of-the finite difference Lablacian;v
is derived in this section- following the method of Amstutz [48], -
with some of the intermediate mathematical steés.presented in
more detail. Following the derivation, practical implementa-
tion of Amstutz's procedure is discussed.

The function sought.ié»one defined on.discrete points of-
the x-y plane, for example the points that have integer co-
ordinates  (m,n), and which satisfies the discretized form of

Laplace's- -equation
DY (m,n) = 0 (aAl.1)
where D is the linear operator defined by

DY (m,n) = ¢ (m+l,n) + y(m-1,n) + P(m,n+l) + Y (m,n-1)

- 4y (m,n) (a1.2)

Amstutz imposes the following conditions (condition 4 shall

be changed later) on the function V:
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a) Dy

-0 for (m,n) # (0,0);
b) Dy

1l for (m,n) = (0,0);

c) that there exist integers m, and'no, such that
$(m,n) - ¥(m-my,n-n.) tends to zero as r? = m* +.n® tends
to infinity;

d) v(0,0) = 0.

A suitable function ¥ is»found by. a heuristic rea-
soning as follows. From
D cos(ma+nb) = -2(2- cos a - cos b) cos(ma+nb)

one deduces that one solution of

D F-= cos{(ma+nb)
is

-cos(ma%nb)
2(2 - cos a - cos b)

One can hence hope to find a solution of-

Dy ‘J cos (ma+nb) da db

r

0 for (m,n) # 0

= 472 for (m,n)= 0,

on integrating F with respect to a and b over the square
I'(-mgasm,-r<bgm). However, F-has to be adjusted by a
guantity independent of m and n in order to obtain a con-

vergent integral. One is thus led to:
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Y(m,n) = go=

da db Co (Al.,3)
2 - cos a-cosb

1 J‘ 1l - cos (ma + nb)
r
where.T is as defined above. Amstutz shows that the function
defined by - (Al.3) satisfies the above conditions a) to d).
Evaluation of the integral in»(Al;3) may- be. accomplished
in. a straightforward manner for the case m=n. . The chaﬁge-of

variable is introduced

a.+ b

2s

b - a =2t

which changes the region- of integration from-the-square-to,the
diamond-shaped area shown in Figure Al.l. The resulting

A\t function is even in s -and the mapping_
of the function is such that the-
integral over area (1) in the figure-

equals  the integral over area (2),

and similarly for areas (3) and (4).

The integration is done for: the right.

half-plane only, and the integral in

t may be taken as fw

dt..

-

T

FIGURE Al.l

The integral  thus becomes

TP
812 Y(m,m) =- J J 1 - cos 2ms dtds’
0! -1 l - cos s cos t.
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The integral in t may be performed by taking for-a variable
z = eJt; so that
s

1 - dt. = 2dz
1l - cos s cos t j(2z - z°cos's - cos s)

where C is the contour given by the unit circle. This inte-
gral may be evaluated by means of residues. The integrand has
one pole within the contour C and the residue at this pole is.

readily evaluated as

1

Residue = - _ :
2y 1/cos“s - 1

so that the integral-in t beceomes- 4m/2sin s. Hence the re-

maining integration is

m

21 ¢(m,m) = 1l - Qos'2ms_'ds

. 2sin-s

The last integral is the real part of

¢
1 - e2mjs-

dejs

l 1 - e23s
JO

‘s
: 2 (m-1)Jjs :
- I [ 1 -i-_ez:'s + ... + e ( ] ] ded®

0

n

2(1 + 1/3 4 oou + L
/ ' 2m=-1
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from which

=

1

————

m \P(m,m) = zp_l

p

It~

1.

However, ‘there follows immediately, from'(A1.3)

'-IP(O,l), = %
Y(n,m) = y(m,-n)

v(1l,0)
and ¥ (m,n)

Hence § may be evaluated at all points in the plane from
symmetry considerations. and by application of the five-point
operator of (Al.2). )

For large values -of-m and -, the function V¥ approaches
the limiting function

¥ (m,n) ~+ 1 (lpge(m2 + n?) +:27 + log 8), r > o,
am
where 'y is Euler's constant. Convergence to the-limit-is»
- quite rapid. At the point (5,5), foxr example, the difference-
between ¥ and the limiting function is 0.00026.

Actual evaluation of ¢ as suggested by the above pro-
cedure - leads to a few complications. The function ¥ (m,m) is
easily evaluated but repeated. application of the five-point:
operator  (with symmetry considerations) leads to significant
round-off error-propagation.  Hence a practical Green's
function subroutine may be written. so as to contain stored
values of ¥ in a small region surrounding the singularity-
and for values outside this region to use the limiting formula

above.
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The actual values of ¥ as calculated here are not
practical, especially the zero potential value at the singular-
ity itself. Furthermore, it is desirable that ¢y decrease in
value for increasing radius. If the potential at: the singu-
larity point is chosen to be unity, then a suitable normalized

Green's function is
Yy (m,n) =-1 - y(m,n) (al.4)

This choice:is justified, since a constant reference potential.

may be added or. subtracted without affecting the problem.

Al.2 CONSTRUCTION OF THE SHIFT MATRIX

A rectangular interior region of -interest is convenient.
in the x-y plane, mainly through programming considerations,
since the indexing is relatively simple, and the shift
matrices possess certain symmetries which reduce -the storage.
requirement.

Consider a rectangular region of -MEZ by N& nodes as
shown. in Figure Al.2. The discussion will be restricted to.
even values of M and N, purely. for reasons of convenience. -
The contour S2 is indicated by x's and Sl by o's. If sources:

are placed in S1, with source strengths I, then

Vs1 Sio

v -PI
52 ©
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N-2

FIGURE Al.2: RECTANGULAR REGION OF INTEREST IN X-Y PLANE

where each element:of the matrices P and S is-an appropriate

value of y. From the above,

_lv

Vgy = QVgy = BS "Vgy

s2

which defines the desired shift matrix.

If the origin. (of the x-y coordinate system) is chosen
to be the top right-hand center node of the region of interest,
as shown in Figure Al.2, and if the numbering of the points:
on:S1l and S2 is clockwise from the points (1,0) and (0,0)
respectively, each of the indices (i,j) of the matrices P, S
and Q may be mapped into coordinates in the mesh by a simple
indexing scheme. For .example, each element Sij of the matrix
S may be interpreted as follows: sij is the potential at the
node corresponding to the index i, when the source is located
at the noée corresponding to the index j. Hence all that is

required is a mapping of each of i and j into the coordinates
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(m,n) of-Sl. This mapping will be termed the "S" mapping
and may be:carried out as follows:

Let I be the index i or j of the S matrix element to
be mapped into Sl. Then the "S" mapping may be constructed

as

I<N/2
m=1
n=1I-1

N/2<I < N/2 + M -5

m=1-=-0N/2 + 2

n N/2 - 2

N/2 +M-4<TI<N2+M+N-=-7

——

m=M-2

N+M-6-1I

o]
i

N/2 + N +M=-6 < I <N/2+ N+ 2M- 11

—

m=2M+N+N/2-9 -1
n=1-N/2

N/2 + N + 2M-- 10 <TI <2(M + .N) - 12

m=.1

n=I=-2(MH+0N) + 1l

In mapping of the S matrix elements as above, let the index i
be mapped onto the coordinates. (m,n), (the "measuring" point),.
and the index j be mapped onto the ceordinatesA(mo,no),’(the

"source" point). The appropriate value of ¢ then is

0
It

13 Y (m,n;my,n,)

y (m-m,, n-ng)
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The  mapping of the elements Pij for the matrix P may

be accemplished in the same fashion. The index j (correspon-

ding to the source location) is mapped into (my,n,) on S1 by

the above "S"

mapping. - The irndex i, however, has to be mapped

into S2. This may be done by means of the following "P"

mapping:

I < N/2
m=20
n=1I-1

N/2 < I <M+ N/2 - 3
m=1I-0N/2+1
n=N/2-1

M+N2-2<TI<M+N + N/2 -5
m=M-1
n=M+N-I-4

M+ N + N/2 —‘4 s.I¢ 2M_+VNA+ N/2 - 7”
m=2M+ N+ N/2 ~1I -6
n=-N/2

2M + N+ N/2 - 6 < I < 2(M+N) -8

m =

n

k]
0]
fte
]
ct
o
o

0

I+ 7 - 2(M+ N)

case of the S matrix, the elements of P are obtained

]

Plj w(mln;moln‘o)

U{m-m

o n-no)
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where (m,n) are obtained from i by the "P" mapping and
(mg,ny) are obtained from j by the "S" mapping. Note that
the "S" and "P" mappings may also be used in the boundary
relaxation programs to construct the vectors VSl and VSZ from
the field values.

On inspection of Figure Al.2 it is readily seen that
not all elements of the matrices P, S and Q are independent, -
since the region chosen is symmetric about two planes as
shown by the dashed lines*. The corresponding matrices
possess a certain structural symmetry which may be exploited.
If the ordering of points on S1 and S2 is clockwise from right
top center of the region, . the resulting symmetries are not
of~thé usual type. It will therefore be convenient to define:

a certain matrix ordering property as follows:

DEFINITION: If A=aij is a matrix of size K by L, (i.e., K

rows and L columns), then the reverse matrix A is defined as

AT = (a,.)f = (a

i.e., the reverse matrix A contains the elements of A, ordered

"in reverse".

* This does not mean that the problem within the mesh has to
possess any symmetry, since the symmetries in the shift
matrix arise from the geometry of the region and not the

problem.
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This may easily be visualized by means of a simple example:

1 2 6 5
A= |3 4, AY = |4 3
5 6 2 1

form

3
Q =
Q3 Q4 Ql Q2
r X r r
LQ4 Q3 Q2 Qlj

where the submatrices Ql’ Q2,Q3 and Q4 refer to the effect of
the potentials on that part of S1 in the gquadrant numbered (1)
in the Figure Al.2 on those potentials on S2 in quadrants (1)
to (4) respectively. The above is true of the matrices S
and P as well. The elements of the submatrices Q; to Q4 are
easily programmable as independent elements of Q, since the
entire matrix Q may be easily generated if they are known. The
matrix Q has fewer independent elements than are indicated by
the above partitioning, but exploitation of this fact is- pro-
hibitive as regards programming.

The matrices S—l, P and Q may easily be constructed using
only approximately three quarters of the memory required for

storage of the entire Q matrix had the symmetries not been
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exploited. The matrix § is of the form

X Y
S =
Y X
so that st may be written as
-1 -1 -1' -1 -1
(X y (X - ¥X ' ¥) (Y - XY X)
S = =
‘ -1 -1 -1 -1
Y X (Y - XY X) (X - ¥Xx Y)

where (Y - XY~ 1x)~! may be written as -(X - YX-lY)—lYX-l.

The procedure for calculating Q is now as- follows:
Storage is reserved for the matrices X-and Y. Working storage
is reserved for a matrix W, which is the same size as X and Y.
The elements of X and Y are then calculated. The procedure
for obtaining s1 (that is, the independent elements of s~

may be described in a simple fashion by using the ALGOL

assignment operator: (meaning- "set equal to"), as follows:

W := X_l

-1
W = YW eee (YX 7))

-1
Y := WY ... ( ¥YX Y.)
X 1= (X - vt ... (x- yx‘lY)'l

. -1

Y 1= -XW ee. =(X - ¥X 1Y) lyx

. -1
The matrices X and Y now contain the top half of S8 . The

storage space allotted to W may next be used to construct the
top quarter of the matrix P. A special matrix multiplication

routine is used to construct the top quarter of~Ps—l; or Q.
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Al.3 FORTRAN PRoGRAM LISTINGS

This section lists the various programs necessary for
implementation of the preceding computational procedures. The
programs are in FORTRAN IV Language, Level G, suitable for use:
without modification on IBM 360 series computers. The programs
are quite heavily commented, so that the preceding discussion
along with the comments in the programs should be sufficient
for full comprehension of the various steps in the generation
of shift matrices for rectangular regions in the x-y plane.

The matrix inversion routine used is a leocally available Gauss-

Jordan routine, called by
CALL INVERT(A,IJ,IK,M,N,DELTA,EPS)

A is the matrix to be. inverted. A is replaced
by its inverse in the routine.

1J,IK are the dimensions of- the array-A in the
calling program.

M,N are the dimensions.of the matrix to be inverted.
Normally, M=N for direct inversion. There is
provision in the routine for the solution of
simultaneous equations, hence N may- exceed M
by the number of right hand vectors to be
solved for.

DELTA is the value of the determinant of A

EPS is the smallest pivot used in the inversion.



R XzisRalska

o 6o 0o o

(@] OO0

OO0

_ o MAIN R

" SHIFT MATRIX GENERATOR FOR RECTANGULAR REGIONS

IN (X,Y)-PLANS, REGION SIZE IS MM POINTS BY NN POINTS
WHERE BITH MM AND NN ARE RESTRICTED TO EVEN NUMBERS,
NUMBERING STARTS RIGHT OF CENTER AT TAZ .TCP OF- THE
JEGION AND PROGRESSES CLOCKWISE ARIUND THE REGIONo

OGNLY THE TOP 1/4 OF THE SHIFT MATRIX IS GENERATEDo .

DIMENSION P(359h35)1&(68,68)38(68,53)'C(68168)1W(136’
EQUIVALENCE (P{1+2),C(L,1))
11=3%2 .
JJ=126

) 1J=58

INPUT ROUTINE

1 READ(S,108) MMyNN

100 FORMAT(L6ID)

[F(MMoEQod) STCP

SUILD TOP HALF GF § MATRIX AS A AND B
CALL SMATHXUA,B,1JsMMyMN)
WK INVEXT S BY BLOCKSwk*
LL?=MM+NN-6
STORE A IN ALTERNATE LOCATION
DN 2 I=l4LL2 '
-DO 2 J=i,LL2
2 Cllsd)=Aa(1,J)
FORM Al= & INVERSE ’
CALL INVERT(C,1J41JyLL2,LL24DELLSEPSY)
FOERM L
FORM B*AI=B
' CALL PREHUL(CvSvIJvMMqNNQW)
FORM (A-BxAI%*B)I. AND STORE IN A
DT 2 I=1,LL2
DD 3 J=i,LL?2
3 ATy 3Y=A(T143)-B(],J) :
cAaLL INVERT(Av1J11JsLL?7LL21DEL2;EpSZ)
FOR A —{A-3%AIxB) [ x3%Al AND STGRE IN B

~D e~ 0
-

4_\
[

~ R o

1

a2

-

-

-

]

wwwo o
—

- AN O

«

J1=ALT1 2 K)%C (K, J)

-

RA TIP 1/6 OF P MATRIX

CALL PMATRXIPIT;J0d: MM, NN)

EARY T3P 1/4 OF SHIFT MATRIX

CALL PSHMULT(P 11 5dJsAs3eTdeiy NNt

JUTPUT RCUTIMNE
LL=2% (HM+NN =12
KR=LL/4+2
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CMAIN,

| © CALL DUTPUTI(P,II,Jd,KK,LL)
_ ‘g’ © WRITE(4,10%) DEL1,EPS1,DEL2,EPS? : :
101 FURMAT(14D,'DELY=",1PEG,2,' EPSI=',EQ9.2,"' DEL2=',ESo2,
. ' EPS2=T1,EG.n) » '
G0 TO i
CEND
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SUBROUTINE SVAP(M‘,NV,I,M N)

‘MAPS INDEX OF S MATRIX INTO PUSITICN IN FIELD ARRAY
" ==T1--INPUT INDEX

~=MyN=-=-QUTPUT COORDINATES OF POINT IN ARRAY .
-~ THE PCOINT (2,0) IS LACATED JUST RIGHT OF CENTER,
AT THE T3P OF THE FIZLD ARRAY .
N2=NM/2 .
ITF{IoGEoN2) Gu T0 1
54_
N=T-1
RETURN :
1 IF(I1,GToN24MM-5) GO TO 2
M=I-NE+?
N=N2=-2
RETURN
[F{IoGToN2+MM+NN=-T7) 30 TO 3
A=2ii4=-2
N=NN+M=6=-1
RETURN 7
3 IF(IoGToN2+INEMM+MM=-11) GU TO 4
MMA+MM+N 2= =T +NN
N=-N2+1
RETURN
4 M=} ‘
M=T+01-MM-MM=NN-NN
RETURN
END

3]
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@ | SMATRX

SUBRJUTINE SMATRX{AyByIIyMMyNN)
GEVERATES TIP HALF OF S MATRIX, PARTITIONED INTO
MATRICES A AND Be
MATRICES A AND B ARE DIMENSIONED (IL,IL) IN THE CALLING
PRIGRAM
REQUIRES MAPPING ROUTINE *SMAPY AND GREEN'S FUNCTION
ROUTINE  PHI(I,J) WHERE THE SINGULARITY IS PHI(0s0).

OOOOOO0O0

DIMENSION A(II, II'yB(llplI'
DETERMINE SIZE OF A AND B
LL=MM+NN=6
LLZ=LL/2
LLI=LL2+1
C BUILD TOP HALF OF EACH OF A AND b
20 v I=1,LL?
00 © J=1,LL
CALL SMAPIMit,NNyIyMyN)
CALL SMAP(MAsNNyJeMO,NC)
ALTyJ)=PHL(4=M7 4 N=NO)
Ju=d+LL ,
CALL SMAP‘MM ,NN'JJ'MO'NO)
B(IyJ)=PHI(M=MTyN=NN)
1 CONTINUE
C BUILD BOTTOM HALVES OF A AND B
* DO 2 I=LL1l,LL
Ii=LL-1+1
OC 2 J=1,LL
Jl=LL-Jg+]
A{l,J)=A(11,41)
BUIyJ)=B(I1,41)
RETURN
END

(q]

AV
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PMAP

SUBRUUTINE PMAP{MMoNNyoTyMsN)
C  SAME AS SMAP, 6UT MAPS P MATRIX
N2=NN/2
IFl1sGEeN2) GO TO 1
M=0
N=1-1L
RETURN
IF(IobTo MM+N2-3) GO T0 2
=-N2+1
N NZ-l
RETURN
2 IF(IeGTeMM+NN+N2-5) GO TO 3
M=MM-1 '
N=MM+NN=4~-1
RETURN
3 IF(]eGTeMM+MM+NN+N2-T) GO TD 4
M=MM+MM+NN+N2-6~1
N==\2
RETURN
4 M=0
W=+ T-MM=MM=- -NN- NN
RETURN
END

-t




PMATRX

SUBRQUTINE PHATRX(PQIIOJJ,HH;NN'
GENERATES TOP QUARTER OF P MATRI X,
DIMENSIONED P(If,JJ) IN CALLING PROGRAM

DIMENSIUN P({II,4J)

DETERMINE SIZE OF P

LL=2% {MM+NN)-12

KK=LL/4+1
BUILD TOP QUARTER OF P

00 1 I=1,KK

DC 1 J=1,LL

CALL PMAP (MM NN, I yMyN)

CALL SMAP(MMyNNyJyMO,ND)

PEIyJ)=PHI (M=MDyN=-NO)

1 CONTINUE

RETURN -

END

143
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PSMULT

SUBROUTINE PSMULTUPII yJJgAeBelJyMMyNNyH)
POSTMULTIPLIES P BY S, TOP HALF OF S BEING STORED IN A AND B
ALL DIMENSIUNS AS BEFQRE
W—=ACRK VECTUR OF LENGTH JJ :
JUuTPUT IS P .

DIMENSIUN PUIIyJJ)sACIJoIJd)yB(TdyeIJ) W (L)
DETEZRMINE SIZE OF MATRICES '

LL=2% (MM+NN)-12

KK=LL/4+)

LLZ=LL/2
PERFIRM MULTIPLICATION

DU 1 I=1,KK

DL 2 J=1,LL

WlJd) =0, '

IF(JeGTelLL2) GO TI 3

DO & K=1,LL2

4 AlJ)=WlJ)+P (] oK) *A(KyJ)

DU 5 K=1l,LL2

Kl=K+LL2

5 WlJ)=wlJI+P{1,,KL)%B(KyeJ)
GO T 2
3 Jl=Jd-LL2
DO 6 K=1,LL2
6 WlJ)=WIJI+P(I,K)*B(KyJl)
DO 7 K=1,LL2
Kl=K+LL2 _
A(J)=W(J)+P(I,KL)*A(K4JY)
CONTINUE
D0 8 J=1,LL
P{I.d)=wlJ)
1 CONTINUE
RETURN
END

[g] o000

(@]

N~

(5]

]
q
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PREMUL

SUBROUTINE PREMUL(A¢ByIJyMMyNN,yK) .
FORMS PRODUCT AB AND RETURMNS RESULY UNDER Be
[J--DIMENSIONS OF A AND B IN CALLING PROGRAM
W==-WORKING VECTOR OF LENFTH IJ OR MOREe

DIMENSION A(IJoI1J)4B(IJyTJ),N{L)
DETERMINE SIZE OF MATRICES

LL=MM+NN=-6
PERFDRM MULTIPLICATION

DD 1 J=1,yLL

DO 2 I=1,LL

W(I)=0,

DU 2 K=l,LL

2 WII)=W{(I)+A(LIyK)%B(KyJ)

DD 3 1=1,LL

3 B{IyJd)=WlI)
1 CUNTINUE
RETURN
END

145
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PHI

FUNCTIUN PHI(MyN) _
GREEN'S FUNCTION SUBROUTINE FOR THE (XsY) LAPLACIAN
PLANEY CeFey'PeAMSTUTZ y ANNe DES TELECOMMey VOLe22,
1907,PP0149-1520. . )
THE FUNCTIONS uP 7O INDEX: (NN,NN) ARE STORED INTERNALLY
ANU THE REMAINDER IS CALCULATED EXPLICITLY BY AMSTUTZ'S
FORMULA (10)e THE STORED VALUES ARE STORED ROWWISE»
UPPER TRIANGLE INCLUDING THE DIAGONAL«
DIMENSION VAL{2L) '
DATA VAL/l.p.75..63662,.56972,.52301'.48710,
1 968169vo61338'o55962,.51760,.48375.
2 0575599537790 504049047470,
3 651192904 86009046181,
4 0460459444685,

5 o4sil8/ _

VATA FPI9@&MHA/.0795775110154431/
NN=5 ‘
MA=1ABS(M)

WHA=TALSIN)D B .
IF(MAeGTeNN) GO TO 1 :
IF(NAeGTeNN) GO TO 1
IF(NAoGEeiMA) GU TO 2
1=haA
J=MA
Su Ta 3
2 I=MA
J=NA
3 K=NN®xI=(fx%2=-1)1/72 +J+1
PhHI=VALI(K)
RETURN : : . '
1 PHI=1.-FPI*(ALUG(FLDAT(B*(M**Z*N**Z)))+GAMMA)
RETURN
END
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14
15
12
il
105

102
104

ouTPUT

SUBROQUTINE OUTPUT(PoI19JJsKK,yLL)

DIMENSION PLI14JJ)CARDI(9)
WRITE(69104)

LP=(LL=1)/9+¢1

IND=0

DO 11 I=1,KK

DO 12 I1=1,LP

IND=IND+1

JJ=9%(II-1)

DO 13 J=1,9

CARD(J)=Co

DO 14 J=1,9

JP=J+JJ

IF{JPeGTolLL) GO TO 15
CARD(J)=P{1,4JP)

CONTINUE

WRITE(6y 101)(CARD(J!.J=1:9),IND
NPITE(79102)(CARD(JI:J 1,9),IND
CUNTINUE ‘
WRITE(6,9105)

CONTINUE

RETURN

FURMAT(1H )

FuRMAT(lH 91?951305!18’
FORMAT(928,18)

FORMAT({1H1)

END
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APPENDIX 2

SHIFT MATRICES FOR R-Z PLANE

A2,1 DiscrReTIZED GREEN'S FUNCTIONS

Elementary.solution of the finite difference Laplacian
for the r-z plane may be accomplished by separation of
variables. This has been done by Sander. [49] and his method
of solution is discussed briefly. As Sander's method is
computationally prohibitive, a practical alternative method
is presented for the evaluation of the required functions.

Following Sander's development, the finite difference

Poisson's eqguation is written as

(r + %) V(r+h,z) + (r - %) Vv(r-h,z) - 2xV(r,z)

+ r{V(r,z+h) + V(r,z-h) - 2V(r,z)} =-rhc (a2.1)

For Laplace's equation, i.e., when the right hand side is.

£ B

zero, the substitution V(r,z) = R(r)Z(z) yields two eqguations,

% (z+h) + Z(z-h) - 2Z(z) = 2k7(2) (a2.2)

S S R A L

(r + %)R(r+h) + (r - %)R(r-h) - 2rR(r) = -2krR(r) (A2.3)



Equation A2.2 may be normalized by the substitutions

z = ¢th, 2(zh) = F(z). Equation A2.2 then becomes-

F(z+l) + F(z-1) = 2(1+k)F(z)

The solution of (A2.4) are
F(z) = eM%

where

cosh u =1+ Xk

Equation A2.3 may be normalized by the: substitutions

r = ph, R(ph) = H(p). The equation for H is then
(p + 3)H(p +'1) + (p - 3)H(p - 1) - 2p coshi H(p)

where
cosh A =1 - k =.2 - cosh u

149

(A2.4)

(a2.5)

Equation A2.5 may be solved by standard methods. Two types

of solution are required; the first representing the decaying:

solution of a charge distribution in an enclosed region, the

second for the case of zero charge on the axis.

Solutions of equations of the form (A2.5) may be obtained

as contour  integrals of the type
= p-1
H(p) = [t ~v(t) 4t

Sander shows that one solution, valid for p>3 is
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-
(e +)
e oM e - e ae

A. second solution, for all p is

- -1 oy -3
£P™% (t-e?) "2 (t-e™M) ¥ ae

(e~ ? +,ek —,e_k+)

The two above-solutions may be expressed in terms of the hyper-

2
are specified, the Wronskian L for equation A2.5 may be- found.

geometric-functions'andvare denoted Ul and'Uz. Once Ul and U,

The solution (corresponding to a ring:charge) is finally found

as
2ng " _ cosfiz __
n.2n : Y(n,g3ng,0) = —— U, (ng, M) Uy (n,}) du
' T ' L(0,2)
0
2ng |T cosug. _
n 2ng: w(nlC;nolo’) = - U, _(n'IA)U]_ (nol}\) L(0,X) du
0

Evaluation of y as. in the above expressions is com-
putationally prohibitive, both from a programming standpoint
as well as required machine time. Point values of the
Green's function to the continuous Laplacian may be used to
approkimate the required functions, as shown. in Chapter 2

above.
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The elementary solution to the continuous Laplacian in
the r-z plane is the solution to a fine ring charge. This

solution may be expressed as [43]

1 /%o
_w(r,z;ro,zo) Eﬁ/ T k K(k) , r, # 0 (A2.6)
where
k = 2VTI (A2.7)

4 (z=2 )% + (x+r,)?

and K(k) is the complete elliptic integral of the first kind,
modulus k. At the singularity itself, ¥ may be approximated
by means of the five-point operator, viz.,

V(x r2zgiry,2y) = alv(x ,z +hir_,z ) + ¥(r_,z -hir

o'"o’'“0o 'zo)

o

. h .
+. (1 =) w(ro h,zo,ro,zo)

2ro

., h .
+ (1 +2r ) w(ro+h,zo,ro,zo) + 1] (A2.8)
o
It is advisable from a computational standpoint to
normalize Y so.that all potentials at the singularity itself

are unity. This is accomplished by

_ ¥(x,2;r4,20)

V. (xr,z2;r ,2:) = = {(A2.9)

The subscript n will be dropped for convenience and it will be
assumed from this point that the functions y have been

normalized.
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The potential due to a point charge on the z axis; i.e.,-
¥(x,2;0,24), is .still required. An approximate expression
may be obtained as follows: The finite difference Poissbn's
equation for a point charge on the axis is

V. +V_+ 4v. -6v =-42
N VS vE 6 €

0

I1f g/e = 4m, the potential everywhere (in the continuous case)

is 1//¢% + (Zfzé)z- Substituting in the above equation and

solving for V0 yields
V0 =-1 +-21/3

Hence if the potential at the charge point in the mesh . is
taken as unity, the normalized Green's function corresponding

to a point charge on.the axis may be taken as

l .

w(rIZ;olzo)_ (A2.10) :

@ + 21/3)/x? + (z-2)°
72,2 ConsTRuUcTiON OF @ FOR A RECTANGULAR REGION

Though a "P" and "S" mapping may be used to construct
Q as for the x-y plane, the structure of the shift matrix
for a rectangular region is simple enough to warrant writing
the elements of P and S explicitly. Consider a rectangular
region in the r-z plane bounded on one side by the z-axis, -
as shown in Figure A2.l. The mesh size is M+1 radial by

N+2 axial nodes and the contours Sl and S2 are indicated by
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o's and x's respectively. Let the points on S1 and S2 be
numbered counterclockwise, starting from the top left corner. .
Then, referring to the three sides of the region separately,

the S and P matrices may be partitioned as

rs(l) S(Z) S(3)1 fP(l) P(2) P(3)~
s = |g® g3 &) 5 _ |4 (5 (6)
<5(7) S(8) s(g)j LP(7) P(8) P(9)J
If i,j3 a;e the indices of the submatrices, there results,

for s,

o G—f
2
3 Finl
M 2 Pia) Y r
L -
< o—X
v :f i N I & 4
N

FIGURE A2.l1l: RECTANGULAR REGION OF INTEREST IN R-Z PLANE
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i = Y(i-j-1,M;M-1,0) . l<is<N, 1
Pég) = y(N-i,M;M-3,0) 1<ic<nN, 1
Pi;) = Y(N,M-i;3-1,0) 1<isMl
Pig) = y(N-§,M~i;M-1,0) 1<is<mMl
Pig)  W(LljMei;M-§,0) 1<icgmM 1

The matrices S and P as well as the resulting

a "reverse" symmetry, in that

0 =Q, |
2M+N+1-1i, 2M+N-1-3 i,j

IN

IA

IN

IN
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(.
N
=z

|
[\M]

j < M (A2.12)

[}
IA
2
1
N

matrix possess

(A2.13)

so that, for even N, the matrix Q may be written in the

partitioned form

Hence only one half of Q need be stored.



A2,3 FORTRAN ProGRAM: LISTINGS

This section lists the various programs necessary for
implementation of the above. As before, the programs are
in FORTRAN IV Language, Level G. The matrix inversion rou-

tine 'INVERT' has been described in Appendix 1.
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'SHIFT MATRIX PROGRAMME FOR THE R-Z PLANE. THE SIZE OF THE REGION
IS M2 BY N2 (TOTAL) AND (2%M2EN2-4) SHOULD BE LESS THAN OR EQUAL
TO 100. REQUIRES SUBPROGRAMMES 'RING','ELINK® AND 'ARAD'.

DIMENSION S(100,100),P{ 51,100),4K(100)
DIMENSION RAD{40)
COMMON RAD
READ(5,100) M2,N2
M=M2-1
N=N2-2
NN=N-2
NN=N/2 '
IFINO%2,NEJN) NO=NO#+1
KK=M4+ND
LL=2%M+NN
CALL ARAD(M)
DO 1 I=1,M
DO 1 J=1,M
CALL RING(OyI=19d=1,X)
S(Iyd)=X ~
J3=MeNN+]J
CALL RING{(N=1y4I-1¢M=-J,X)
S(IqJ3’=X
I 7=M+NN+T

CALL PRING(N=1¢M=1,J-1,4X}
S(I?qJ)=X
CALL RING{NyM=1,M=J,X)
S(17,J3)=X
CALL RING(l,I-19J-1,X)
P{l,J)=X
CALL RINGIN,I=1yM=-J,X)

1 PlI,Jd3)=X

DN 2 I=14M

DO 2 J=14NN

J2=M+J

CALL RING(J,I-14M-14X)
S{IeJd2)=X

CALL RING{J+1,I—1yM-1,X)
P{I,Jd2)=X

[B=M+NN+I

CALL RINGIN=L1=JyM=I M—=1,X} -

2 S{18,4J2)=X

DO 3 1I=1,NN

DN 3 4d=1,M

T4=M+1

J6=M+NN+J

CALL RINGIIM—=19J-14X}

S{I49d)=X

CALL RING{N=1-I4M-1,M—-J¢X)
3 S{14,J6)=X

o T T RS T T 7 F e e e e e S e e R S e e




100
103

MAIN !

DO 4 I=1,N0D

DO 4 J=1,M

[4=M+1

JH=M+NN+J

CALL RING(I-1gM,J-14X)
P(T4,J)=X :
CALL RINGIN-TIyM,M=j,X)

Pl{l14,0A) =X

D75 I=14NN

DO 5 J=1,NN

I15=M+1

J5=M+y

CALL RING(-I+J,M-1,M-1,X)
S(I54J45)=X

N3 6 I=1,N0

DO 6 J=1.NN

[5=M+]

J5=M+J :
CALL RING(-T+J#1,M,M=-1,X)
P(15,J5)=X

CALL INVERT(S»100,100sLLoLLyDELTA,EPS) .

DN 7 T=1,KK -

90 R II=1,LL

WKI{II)=0,

DN 9 J=1,LL

DO 9 K=1,LL
WKIJ)=WK(JI+P (I ,K)IES(K,yJ)
DO 10 J=1,LL

P(I,J)1=WK(J)

CONTINUE

CALL DUTPUT(P.KKsLL)
WRITF(6,4103) DELTALEPS
STNP

FORMAT(212)

END

EPS=4E12.3)
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PING

SUBROUTINE RING(M1yN1,NR1,VALU)

RIMENSINN RAD(40)

COMMON RAD

M=IA3S(M])

N=148S(M1)

NR=IABS(NRL)

TFIN.NE.NR) GO TO 1

IF(M,NE.C) GO TO 1

VALU=1,

RETURN

IF(M.NELD) GO TG 3

IF(NR.EQ.0) GG TO 3

VALU= .5+FLGAT{NR)RAD(NR) /SQRT (FLOAT{ M*#2 ¢NR*%2))
RETUFN

IFINR.EQ.C) GO TN &
AK=2+#SORT(FLOAT(NR*N)) /SQRT(FLOAT (M* %24 (N+NR)%%2) )
VALU=0 15915492*AK*ELINK(AK)*RAD(NR)*SQRT(FLOAT(NR)/FLDAT(V))
RETURN

RACSG=FLOAT (ME:24N*%2)

VALU=1./(3. 0943933*SQRT(RADSQ))

RETURN

END .
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ARAD

SUBRNUTINE ARAD(N)

DIMENSION RAD(40)

COMMON RAD

FACTOR=0.5/3.14159

DN 1 I=1,N

IF(I.NEs1) GO TO 2

VI=0.5

GO 70 3 : '
AKI=2.*SQRT(FLDATl!‘(l-l)ll/SQRT(FLDAT((I*!—l’**Z))
VI=FACTOR*SQRT(FLDAT(I)IFLDAT(I*l)l*AKl*ELINK(AK[’
AKE=2.*SQRT(FLOAT(I*(I*l)l)ISQRI(FLDAT(l+I+1)**2)
VE=FACTOR*SQRT(FLOAT(I)IFLUAT(l+1l)*AKE*ELINK|AKE)
AKN=2 *FLOAT(I)/SQRT (1. +FLOAT(([+1)%%2))
VN=FACTOR®AKN*EL INK(AKN)

QH=1./FLOAT(2%*1)
VO=.25%(VI%{ 1. ~RH) +VF*( 1. +RH) #2.*VN+1,)
RAD(I)=1./V0 ' o

CONTINUE

RETHRN

ENC



l6l

" ELINK

.FUNCTIUN ELINK(Z)
P=l.=1%1 :
IF(P) 1,1,2
.. ?2 ELINK=1.38629436+P*(0, 096663443+P*(0 035900924+P*(0 037425637+
1 0.014511962%P) ) )1—ALOG(P)*{0.5+P*(0.12498594+P*(0. 068802486+ P%
2 (0.0332835534+0,0044178701%P))))
RETURN
1 FLINK=EXP(28,)
RETURN
END

QUTPUT

SUBRJIJTINE UUTPUT(P &K LL)
DIMENSION P(51,100),CARD(G)
WRITE(5,4124)

LP={LL-1)/5G+1

IND=9
DO 11 1 KK
P LP

=1
[ =]
ImD [V]+l
I..
=\

13 CARD(J) =9
DO 14 J=1,9
JP=d+JdJ _
IF(JPoBTLLL)Y GO T 15
14 CTARD(JI=P({I44P)
15 CONTINUE
WRITE(5,101)(CARD(J) 4d=1,C
© WRITEA(T7,12Z2)M(CARDII) 4J=1,5
12 CONTINJE
WRITE(4,103)
11 CONTINUE
RETURN
105 FLORYMAT{14 )
101 FIRMAT(14 ,iP9EY13,5,18)
1N02 FORMATICLA,13)
104 FIRMAT(THL)
END

~-1)
y S
a2

)y INW
)¢ IND
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APPENDIX 3

SHIFT MATRICES FOR COAXIAL LINES AND STRIPS

A3,1 ExISTENCE OF THE CONTINUOUS GREEN'S FUNCTION

y

- - -t
]b

FIGURE A3.l

Consider the uniform infinite coaxial line shown in
Figure A3.l. Assuming axial symmetry, i.e.; %%'= 0, the

Green's function y is found by solving

32y 13 329  S(xr-rgy)
_E% t T 3% *%9zz T T ¢ 2= 8(z-2p) (a3.1) -

where (ro,zo) are the coordinates of the singularity. Take

a finite Hankel transform [57, p.85] of equation (A3.1),
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resulting in

a

23 2Py = 8 (r-r,) §(z- J ) .
I _ H ) __]_:__Q_ (z-2) [T _(rE;)G,(ak;)
- Jolag;)G (xrE3)] dr
or
Yy, -
— ~ B} ¥y = W(zmzp) (A3.2)
where.
W= Jo(rogi)Go(aEi) - Jo(aEi)Go(rogi) (A3.3)

and §; are all the positive roots of
Jo(gib)GO(gia) - Jo(Eia)Go(Eib) = 0 (A3.4)
Jo is the Bessel function at the first kind, order zero, and
Gy is defined in terms of the familiar Hankel function* as
6, (x) = 3mi m{Y (x)

Taking a Fourier transform as

==}

Fog) = L_. f(x)iOLx dx
2m

=00

* See, for example, M. Abramowitz and I. Stegun, Handbook

of Mathematical Functions, New York: Dover, p. 358.
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there results

- o?F - Ef F = Wv <S(z-zo)ei°‘z dz
vam’ '
—-00
= W eiOf.Zo
vam '
from which,
-W eiazo

VIT (R+E4?)

Take the inverse transform of F as.

TR N
B Var | F e*% au

-00

~io(z-2.)
e o

b, = -W da
H 2T
a?+ g2
—-00 1
= - cosla(z-25)] -i sinfa(z-24)] do
27 0? + 2 ‘
1

-—00

In the last integral, sinfa(z-z))] is an odd function about

2o, so for a finite value of z, the contribution due to the

sine term vanishes. Hence,

oo
by = - W cosla(z=20)] Qgo
2m (12 + g;

-—0
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The last integral may be put in a standard form as

by =- U4 cos[g; (z-2z,) * 0/E;]
ol E4T - da/g;
0 ocz/Ei2 + 1
which is evaluated from tables* as
EH =-" e—Ei(zrzo) y Z>2Zg
ZEi
_ _ W _-Ei(zy-2)
= z_g_. e 1'*70 z<zo
i

Taking the inverse Hankel transform there results

v =7 281 3o* (51P) by
i Jo2(E3a)-T5% (§;b)

[3, (§17) G (E3a) —Tq (E52) Go (E51) ]

= -7 £500% (£5D) [35(B5F5) G5 (E4a) =05 (84@) Go (E5TG) 1 vvee
i Jo2(E5a) = J5%(E4b)

e [T (E4TIGo(Ega) = To(E53) G (E5T) ] exp (- |z-24])

Cconvergence of the above series is very poor for the case z=0.

Hence, the above development is useful only since it proves

* H.B. Dwight, Tables of Integrals and Other Mathematical

Data, New York: Macmillan, (#859.3).
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uniqueness and existence of the Green's function as h+0.

A3,2 ITeRATIVE CONSTRUCTION OF THE SHIFT MATRIX

An iterative scheme for calculation of the shift matrix

Q has been developed in Chapter 6, § 6.3 as

olk+l) = ¢ - oK)t (6.4)

The structure of the matrix C will now be examined. Each rbw
of C represents the negative of the self and radial coeffi-
cients of the finite difference formula for the r-z plane.
Hence, the diagonal elements of C are equal to 4. 1If the
potentials on the radial planes defined:in Figure 6.11 are
numbered sequentially outward from the z-axis, the matrix C
is tri-diagonal. The uppeerff-diagonal elements are set to
—(l+2% } while the lower off-diagonal elements are set to
-(1 - h ), where r is the radius of the point corresponding
to thgrcoefficient in the diagonal. For example, if the
radius of the first node on each plane in Figure 6.11 is Xy
that of the second is r, and so on, since the inner and outer
conductors have been assumed at zero potehtial, the matrix C

is structured as
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In the case of strips, the off-diagonal coefficients are

unity, so that the matrix C-is structured as

The initial iterate of-Q is usually taken as zero or as the
identity matrix. The iterations are continued until the
difference between two successive iterates of Q is floating
point zero or. some other small preassigned number. In the

case of strips, the Q matrix is symmetric.

A3,3 VERIFICATION OF @ FOR STRIPS

1f each mesh line is replaced by a unit resistance,
the semi-infinite conducting strip may be considered as a
semi-infinite square resistance mesh, bounded by two parallel
conducting bars, as shown in Figure A3.2. Let the nodes in
the mesh be numbered as shown in the figure. At the nodes
or "terminals" along the line n=0, the currents into the
mesh may be related to the potentials at the terminals by

an admittance matrix as
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n

e ———————
a 1z 3

L .
1 - e - —
2 oMWW - - - - - - -
m

M

FIGURE A3.2: SEMI-INFINITE STRIP

i=GV
1

However, the potentials along n=0 and n=1 are related by the

shift matrix
Vy =@y

For unit resistances in the mesh, the current vector i is

given by

so that the relationship between G and Q is

where I is the identity matrix.
The admittance matrix G for the strip may be found
analytically and has been calculated by Sander [58]. Sander's

solution is presented briefly below.
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The equation relating the potential differences between

adjacent nodes is-

V(m+l ,n) + V(m-1,n) + V(m,n+l) + V(m,n-1) = 4v(m,n)

This is satisfied by functions of the form exp (jmy + na)
provided that.

sinh A/2 = t sin u/2

The boundary conditions-are V=0 at m=0 and m=M. A trial-

general solution may therefore pbe constructed, of the form

M-1
V(m,n) = ) A _exp(-nl ) sin mE™
p=l * P M
where Ap is given by
sinh % A, = sin BT

p
2M

and p is an integer. The coefficients Ap may-be-found‘expli-

citly from:

M-1
sin E%l sin g%l’ = 0, p#q
m=1 i}
' = %M’ p=q_<_M"l
Now since
M-l mpT:
v(m,0) = § A sin TET

p=1 M

then-
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M-1
Ay =2 ] V(m,0) sin anm
M m=l M

To construct the G matrix, V(m,0) is set to unity for m=k-

and to zero for m#k. Then,-

\ A =2 gin IKT

. M ™
and
V(m,n) = 2 Mil'exp(-nk ) sin PKT sin.Pﬁ“.
M p=1 p ™ ™

The G matrix may thus be constructed as-

G.. =-- ZAMEl expk—k ) sin BT oin RIT , 57k
Jjk o Mop=1 pr oM M .
G . =1 2 Mil exp(-\.) sin? pkT =k
=41 = - N ==y 3T
Kk % ph P M

Note thatQsy =;—ij; k#j, and Q. = 1-Gy, . The shift matrix
for strips as-obtained by iteration has been verified with

Sander's results and exact agreement has been obtaine&.;

A3.4 FORTRAN ProGRAM LISTINGS'

The necessary.programs . for generation of Q matrices. for
coaxial lines are presented below. As pefore, the comments

in the prodrams are self-explanatory.
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J MATRIX GENERATION PROGRAMME FOR COAXIAL CABLE PROBLEMS.
Q IS FOUND BY ITERATIONe REQUIRES SUBROUTINES "CMATRX!
*ITER® AND. 'OUTPUT® AND THE FOLLOWING DATA--

A--OUTER RADIUS OF CABLE, ARBITRARY UNITS

b--1NNER RADIUS OF CABLE, SAME UNITS

N--NUe OF RADIAL NUDES INSIDE CABLE

ERR--REQUIRED A3SOLUTE ACCURACY OF EACH ELEMENT OF Qe

MAY BE SPECIFIED AS FLOATING POINT ZERO
NITERf-MAXlMUM NOe OF ITERATIONS ALLOUWED

DIMENSION C(50,50),Q(50,50)

READ DATA

OO 'sXskuiskakakeXeNau ol

100 FOKMAT(21593F1Ue0)
50 READ(59100) NyNITERsA9sByERR
IF(NeEWGeG) STOP

GENERATE C MATRIX

"CALL CMATRX(CyApBeN)

GENERATE INITIAL GUESS OF Q

el el OO0

DO 2 I=isN

DG 1 J=1,N
1 Q(I¢Jd)=0e
2 QIyI)=1.

ITERATION LOUP

o000

DO 3 I=1,NITER
CALL ITER(C,QsNyBIGEST¢DELTA,EPS)
IF(BIGESTeLEeERR) GO TO 4

3 CONTINUE

QUTPUT ROUTINE

sNeXe

4 CALL OUTPUT(QsNN)
WRITE(64101) BIGEST,I,DELTALEPS
101 FORMAT(1HO,'BIGEST="41PEJels® KOUNT=%,13,° DELTA='4E9e2s' EPS=%;
1E9.2}
GO TO 50
END




OO OO0

)
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CMATRX

SUBROUTINE CMATRX(CyAyByN)
FINDS RADIAL COEFFICIENT MATRIX C FOR COAXIAL CABLE PROBLEM
JUSING FIVE-POINT FINITE DIFFERENCE OPERATOR.

A--OUTER RADIUS OF CABLE

B==INNER RADIUS OF CABLE

N--NOs OF RADIAL NODES INSIDE CABLE - .
DIAGONAL ELEMENTS OF C ARE SET TO 4« SUPRA-DIAGONAL
ELEMENTS ARE SET TO ~(1+H/2R) AND LOWER DIAGONAL TO
={1-H/2R)s ALL OTHER ELEMENTS ARE ZERQO

DIMENSION C(50,450)
n=A-B
Z=8%FLOAT(N+1)%2,
Th=20%NW

"DU 1 I=1l,N

DG 1 J=1,N
ClIyJ)=0o

DU 2 I=14N
FACT=W/(FLOAT(I)*TW+2Z)
C(lyll=4e
IF(I.EQe)) GO TO 3
C(I,1-1)=FACT-1.
IF{I«EQeN} GO TO 2
Cll,I+1)=-FACT-1,
CONTINUE

RETURN

END
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() ITER -

SUBROUTINE ITER(C+QsNsBIGESTyDELTALEPS)

SUBROUTINE INPUTS MATRICES C AND Q AND RETURNS INVERSE

OF (C-Q) UNDER Qe 'BIGEST' IS THE MAXIMUM ABSOLUTE DIFFERENCE §
BETWEEN CORRESPONDING ELEMENTS IN INPUT Q AND OUTPUT Q MATRICES. R
DELTA IS DETERMINANT VALUE AND EPS IS SMALLEST PIVOT OF ;
INVERSIONe REQUIRES MATRIX INVERSION ROUTINE *INVERT®.
DIMENSION C{50,50)+Q(50450),5(50,50)

'« XaX2ksin

STORE OLD Q IN S

eNele

DO 1 I=1,N
Do 1 J=19N
1 S(I,d)=Q(I,4J)

FORM (C-Q) AND STORE IN Q

OO0

DC 2 I=14N
DO 2 J=1yN
2 QIyd)=C(I1J)=Q(I,J)

INVERT (C~-Q) AND STORE IN Q

aNaNe

CALL INVERT(Qy50+509NsNsDELTALEPS)

FIND BIGGEST DIFFERENCE

a0

BIGEST=0e

DU 3 I=1,N

DU 3 J=1,4N

DIF=ABS{Q{I,4)~-S(I,J))

IFIDIFoGTeBIGEST) BIGEST=DIF
3 CUNTINUE

RETURN

END
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OUTPUT

SUBROUTINE QUTPUT(P,KKsLL}
DIMENSION P(50,50),CARD(9)
WRITE(64104)
LP=(LL=-1)/9+1
IND=0
DO 11 I=1,KK
DO 12 II=1,LP
IND=IND+1
JJ=9%(][~-1)
DO 13 J=1,9
13 CARD{(J)=0.
00 14 J=1,9
JP=J+JdJ v
[F(JPeGTSLL) GO TO 15

14 CARD(J)=P(1,JP)

15 CONTINUE -
WRITE{65,101) {CARD(J) 9J=1+9)4+IND
ARITE(7,102) (CARD{J) »J=L+9)+IND

12 CONTINUE ‘ ’
WRITE(6,10U5) ‘

L1 CUNTINUE
RETURN

105 FORMAT(1H )
101 FORMAT(1H 41P9E13,5,18)
102 FORMAT(9Z8,18)
104 FORMAT(1H1)
END
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APPENDIX 4

INTERIOR POINT S.0.R. PROGRAMS

AlL,1 Two-DiMensionAL (X-Y PLANE) PROGRAMS

The interior routines used.in:this research for problems
in the~xfy‘plane;are'essentially the same as those used in
the previous experimental work in boundary relaxation by
using gradients [41]. The necessary housekeeping routines
are described- in. the above reference to facilitate solution
of problems with-as many as four different media in the
interior region of interest. The reader. is referred to the

above for further details of these.interior routines.

A2 AxIALLY SYMMETRIC INTERIOR PROGRAMS

As for the problems in the x-y plane, the routines for
point S.0.R. solution of the interior region in the r-z plane
make -use of a field description array to define the appro-
priate formula to.be used at. each. point of the mesh. The
problem geometry is read in from a quasi-graphical data
deck in which punches indicate the presence or. absence of

conductors and/or dielectrics at each node in the mesh. The



problem geometry is encoded as follows:

CODE MEANING
0 Dielectric interface
1 Region Rl with dielectric constant
(normally = 1)

2 Region R2 with dielectric constant
3 Constant potential V1, adjacent to
4 Constant.potential~v2, adjacent to
5 Constant potential V3, adjacent to
6 Constant potential V1, adjacent to
7 Constant potential V2, adjacent to.
8 Constant potential V3, adjacent to

€1

R1
R1
R1
R2
R2

R2

region
region
region

region

76

region

region

To illustrate how the problem geometry is.encoded,

consider the problem in Figure A4.l.

The figure shows a

hollow rectangular conductor with a dielectric rod in the

interior. The four sides are held at different fixed po-

tentials as shown. The problem is shown modelled in a mesh

of 7 x 8 nodes. Seven data cards are required to describe .the

problem, one for each horizontal row of nodes:

v2
conductor/*”’

A28 ,—— conductor
L+ ——dielectric rod
1| v2
‘r-——-‘air
|
v3 |

FIGURE A4.l: HYPOTHETICAL PROBLEM



177

Card # 1 33333333
Card # 2 41111114
Card # 3 411000114
‘Card # 4 411020014
Card #. 5 41110014
card # 6 41111114
card # 7 55555555

The above. "field geometry array" is then converted to
a field description array by the subroutiﬁe»FIELDz, one. code.
number for each node in the field. This code. number is-then
used-to determine the appropriate formula at each point in the
interior S.0.R. cycle. In_or&er to minimize the number of
- operations, all.radial multipliers (or.coefficients) are
calculated beforehand by subroutine ARAD and stored for sub-
sequent use. '

All subroutines are heavily commented, to the point where.

they are self-descriptive.

AL,3 BouNDARY RELAXATION R-Z PLANE PROGRAMS

This section gives the FORTRAN program listings of the
necessary routines for boundary relaxation in the r-z plane,-
using the interior routines described in the preceding section.
The only listing not heavily commented is- that of- the main
calling program, as this is the one part.of the overall pro-

gram that undergoes most change. The programs, as.listed
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here, will work without modification on IBM‘series 360 com—-
puters with at least 110 Kbytes of available core.

In addition to the routines, a data deck describing
problem parameters is required. The data deck is- assembled

as follows:

No. of
Cards- Name (s) Format
1) 1 M1,M2,N1,N2 415
2) deck P(I,J) 928
3)* 1l NPROB I5
4) 1 vi,v2,v3,V4,R1,R2,
ALPHA ,UDIF 8F10.0
5) deck field coding (as above) nIl
6) 1 NCOR, IFORM,IWIDTH,
NCONTR,NEXTRA,NPASS 615
N* 1 BETA,BDIF 2F10.0
g where the variable names are,
M1,M2 -- Start and end of field in radial direction; M1
§ is the Z-axis and is specified as 1;
§ N1l,N2 -- start and end of field in axial direction;
% P(I,J) -- is the shift matrix (top half) as preoduced by
|

the programs described in Appendix 2;
NPROB -- is the number of the problem. The execution is

terminated when NPROB=0. Sections 3) to 7) in the

terminated with an NPROB=0 card:;
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vl1,vV2,V3 -- are the fixed potentials corresponding to the
field codings of 3,4 or 5 respectively;
v4 -- all nodes in the mesh whose potentials are not fixed
are initially set equal to V4;
R1,R2 -- dielectric constants of regions Rl and R2. Rl is

normally specified as 1.0;

ALPHA -- interior overrelaxation factor;

UDIF -- maximum allowable interior residual;

NCOR -- maximum allowed boundary corrections;

IFORM -- determines the format of printed potential values -

see comments in subroutine VALUES;

IWIDTH -- width of equipotential- plot in printer spaces;

NCONTR -- no. of potential contours desired;
NEXTRA -- boundary correction number when- extrapolation is

desired. Extrapolation is performed at each
integer multiple of NEXTRA;
NPASS -- maximum allowed interior S.0.R. passes for each

boundary correction;

BETA -- boundary correction factor (normally = 1.5):
BDIF -- maximum permissible boundary correction for con-
vergence.

Preceding the progran listing is a sample output .printout
‘for the conducting sphere problem of Chapter 6, Figure 6.1.

In this example, NEXTRA was specified as 6.



AR AN RS

B8OUNDA
CORREC
NUMBER

KBAR

VE~NCOPHLN-

RY INTERIOR
TION RELAXATION
FACTOR

ALPHA

163500
13500
103500
1635030
13500
13500
13500
123500
13500
13500
13500
163500
1.3500
103500

UDIF= 0e1000E-04

NOeOF INTe
RELAXATIUN
PASSES

ITEK-1

25
25

25

25
25
25
25
18
17
1o
14
14
15

4

PROBLEM NOes 1

BOUNDARY
CORRECTION
FACTOR
BETA

1. 4000 -
1le 4000

144000

1. 4009
140060
1. 4000
14000

- 164000

1.,4000
1. 40C0
1. 4000
144000
1.4000
1. 4000

BDIF= 041000E-03

LARGEST
BUUNDARY

DIFFERENCE

 BIGEST

0e349E 00
O«195E 00
0el42E 00
Joll4E 0O
00904E-01
0e714E-01
06,107E-01
Oe444E-02
0.207E~-02
Oe¢109E-02
0.591E-03
Oe¢338E-03
0,225E-03
De629E-04

BOUNDARY
ERROR
NORM

ENORM

Ue526E 01
06392E 01
00318E 01}
0e256E 01
00204E 01
00163E 01
0e936E-01
Oe484E-01
0e267TE-D01
O0el49E-01
0¢849E-02
Qe481lE-02
0eT722E-03
0e336E-23

TATAL
ERRUR
NORMSQ

ESQ

0.130E
0¢650E
Ue424E
06273E
0el74E
Oe110E

04620€-

0} §
00
00
00
00
00
03

Qel29E-03
De364E-04
00112E-04
0¢362E-05
Oell7E-05
0e6TBE-OT

0.836E-08

081
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MAIN

DIMENSIUN IND(40980)vU(QQ:BO)oPOT(ZlinRADOT(#O)yRADIN(QO)pAK3(4Op3 i
1)2AKT7(4093) 9AKL(40,2) 1AK5{40,42) R
DIMENSIGN VI(100),VEO(102)4VEN(102),yP( 51,100),VEOO(L10G2)

CUMMON IND,U,POT,RADUT.RADIN AK3 JAKT 3 AKL )AKS ¢ VI s VEOQ s VENy P VEUU
READ(59100) MLl,M2,N1yN2

N=N2-N1-1

NG=N/2

IF (NU*2e NEeN) NuU=NU+1

Ak=M2=-ML+NO

LL=MZ +M2+N2-N1-5 '

DU 1 I=1,KK

READ(S59105)(P(IyJd)pd=1,LL)

CONT INUE

WRKITE(6912C)(P(1eJd)sd=1yLL)

FURMAT(1H ,6E20e7)

AbAU(54100) NPROB

IF(NPROBeEQeO) STUP

READ(5,101) V14V2,V3,4V44R]19R2¢ALPHA,UDIF

CALL FIELD2(M24N2+1)

CALL KADX(M2,R1sR2)

READ(S5,100) NCUR.IFDRM.INIDTHyNCUNTR NEXTRA,NPASS

READ(5,101) BETA,BDIF

CALL SETUPZ(MlvMZlevNZoV19V20V39V4)

WKITE(64110) NPROB

KBAR=(

CONTINUE

CALL ﬁELAXZ(Ml,MZoNl1N2'ALPHApUDIF.NPASS,ITER,O)

Ke=LL+Z

DU 7 1=1,K2

VEOU(I)=VEOL(I)

CALL VECTOR(M24N1¢N2yBIGESTENORMsESQ)

KbAR=KBAR+1 '

WKITE(69107) KBAR,ALPHA,ITER,BETAyBIGEST,ENURM,ESQ
IF(KBARoGEeNCUR) GO TO 50

IF(5IGESToeLEoBDIF) GO TO 50

CALL CHANGE (M24yN1sN2,BETA)

IF(KBAReNEe { KBAR/NEXTRA} XNEXTRA) GO 7O ¢4

Call EXTRA{M249NlyN2)

CONTINUE

QU TO &

WEITE(&6y20U4) UDIF,BDIF

U(M291)=U(M2=1 41 ) #ULM2 92) =e5*{U{M2Z=2,1)%UM2+3))

U(M2 9 N2)=U (M2 oN2=1)+U(M2-1 3N2)=e5*(UIM2yN2-2 ) +U{ M2~ -2¢N2))

CALL YALUES(M1 sM2,NL sNZsIFORMyINIDTHsNCONTR2)

60 TO 5

FURMAT(3615)

FORMAT{8BF10e0}

FGRMAT(1HO 10X s5HUDIF=9ELLle4 95Xy 5HBUIF=4ELlLle4)

FORMAT(9Z8)

FORMAT(LH 4XsI3 3L0XF60%4sTXs1398XsFBe495X93(ELLe3+2X))
FUKRMAT(1HL/35X»11HPRUBLEM NUesi2 /7 /75Xy 8BHBOU
INDARY 9EX 9 3HINTERIOR 95X 91 0HNGL OF INTe 9 3Xs BHBODUNDARY 95X s THLARGES T
20X9SHBOUNDARY 95X s BHTOTAL /5Xs10HCORRECTIONs3X 9 LOHRELAXATIUON, 3X,
310HRELAXATION,3X g LOHCORRECTION,3 X, 8HBOUNDARYy5Xy SHERRUR s 38Xy BHERRU
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© | MAIN
4R/5X 3 6HNUMBER y TX s 6HFACTOR » TX 9 6HPASSES s TX y6HFACTOR ¢ 7X s LOHD IFFERENCE
513Xy 4HNJRM ) 9K s GHNORMSQ//5X s 4HKBAR 19X s SHAL PHA 18X s GHITER=14 TXy 4HBETA
619X 16HBIGEST 17X SHENORM: 8X 13HESQ/ |
END

- RADX
SUBRIUTINE RADX({MyR1,4R2)

THLS SUBRUUTINE CUMPUTES RADIAL MULTIPLIERS FOR USE WITH *RELAX2?
RIUTINE AND STORES THEM IN COMMON

M==dil OF POINTS IN R-DIRECTION '

R1=-0IcLeCTRIC CONSTANT NJol (NURAMALLY =1,)

R2=-=31LeCTRIC CONSTANT NUo2

aOcCoOoOOOO0O0

DIMENSIUON IND(4D,80),U(40480)P0T(21)yRADIT{40) ¢RADINI(ED) 9AK2(40,°
)2 AXT(40D,3),AKL(40,2) yAK5(40,42)
COMMUN INDyU, POToRADDTsRADIN,AKB,AK7,AKI,AKS
DU 1 I=2,M

=)e5/FLOAT(I=-1)
RMH=O.25/FLJAT(I—1)
RAGIT{I)=1e+RM
RADIN(I)=1e~RM
AK3(I,1)=RADOT(I)*(R1+R1)
AK3(1,2)=RADOT(I}%*{(R1+R2)
AK3(143)=RAD0T(II®(R2+R2)
AKT(141)=RADIN{I)%®({R1+R1)
AKT7{I,42)=RADIN(I)*{R1+R2)
AKT(I43)=RADIN{(I)*(R2+R2)
AKRL{I91)=(1e+RMH] %R]
AK1(192)=(1.+RMHI*R2

AKS{I¢ii={1loc~RMH}*R1
1 AKS5(1492)=(1ie=RMH)%*R2

ARZ(141)=2e%{R1¢+R2)}

AKZ(1:2)=D0c5%(1o4R1)

AKZ(143)=0e5*( io+R2)
CAKT(Lle1)=2e5%(R1+R2)+1,

RETURN

END

(2]
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FIELD2 |

SUEIIJUTINE FIELD2(M1,N1,IREAD)
THIS SUBKOUTINE GENERATES A FIELD DESCRIPTION MATRIX IND(I,J) FROM A
FIELD CUDE MATRIX INDIC(IsJ)s THE SIZE OF BOTH BEING Ml BY Nl

M1--NO UF POINTS IN R=DIRECTION,THE ROW ML=1 BEING THE Z-AXIS

Nl--NO OF POINTS IN Z-DIRECTION
CODE MATRIX YINDIC® IS SUPPLIED ROWWISE AND MUST BE CDDED AS FOLLOWS-

0-0IeLECTRIC INTERFACE

L-UIELECTRIC CUNSTANT =R1,{(NORMALLY= 1.)

2-CIELECTRIC COUNSTANT =32

3-CONSTANT PUTENTIAL V1,ADJACENT TO R1 REGION

4-CONSTANT POTENTIAL V2,ADJACENT TO R1 REGION

5-CONSTANT POTENTIAL V3,ADJACENT TO Rl REGION

6-CINSTANT POTENTIAL VL6I,ADJACENT TO R2 REGION

7-CUNSTANT POTENTIAL V2,ADJACENT TU R2 REGION

8=-CONSTANT PUTENTIAL V3,ADJACENT TO R2 REGION
IN THF CASE THAT A DIELECTRIC INTRFACE MEETS A CONSTANT POTENTIAL
SURFACE, THE CODE AT THAT POINT SHOULD BE THE ONE FOR DIELECTRIC RYQ,
IoFe CIDE 9% UR B¢

NG ACUTE ANGLES OF DIELECTRIC SURFACE ARE PERMITTED, CONCAVE GR
CONVEXoe THE SHARPEST ANGLE PERMITTED IS A RIGHT ANGLEe THE ONLY DIE-
LECTRIC INTERFACE ALLOWED ON THE Z-AXIS IS AT RIGHT ANGLES TO THE
L=AXKISo

THE CULDES 6,7 AND 8 ARE REALLY ONLY NECESSARY WHERE THERE MIGHT B¢
S JNFUSIUN SUCH AS ARJUND AIR-DIELECTRIC-CONSTANT POTENTIAL INTERFACES

DIMENSION IND(40,80) yINDIC(40,80),ICODE(S) o IER(S)

CLMVMON IND,INDIC

IF(IREADeEReO) GO TD 2

D0 1 I=1,M1

KEAN(5s100)(INDIC(I9J)9Jd=1,N1)

CONT INUE

DL 3 WN=1,N1

INDlLgaN)=5

IF(INUIC(1yN)eGEo3) GO TO 200

IF{INDIC(1,N)eNELO) GO TO 3

IND(LyN)I=6

[FCINDIC(LyN+1)eEQe2) IND(LsN)=7

IF(INDIC({1,N+1)aGEebi IND{1yN}=7

GG TO 3

2n0 IND(L14N)=INDIC(1,4N)=2
IFCIND(YyN)oGEe4) IND(1,N)=IND(LyN)-3

3 CUNTINUE

orr 11 N=1,yN1
IF{INDIC{MyN}oNE-O) GO TO 10
ICODE(1)=INDICIM N+1)
ICODE(2)=INDIC{M#1,yN+1)
ICOSE(3)=INDIC{M+1,yN)
ICCUE(4)=INDIC(M+1,yN=-1])
ICBOE(5)=INDIC(MyN-1)
ICODE({6)=INDIC(M=1,N-1)
ICGUE(T)=INDIC(M=1yN)
ICODE(8)=INUDIC{M=1,N+1)
LCODE(9)=1CADE(L)

1J b=
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FIELD2

NG & [=1,9

IF (ICODE(I)e6Ta5) ICODE(I)=2
IF(ICODE(1)oeGTe2) ICODE(I)=1

CONT INUE

INC(MyN)=0

DO 9 I=1+8

LF(ICODE(1)eEQaLeURe ICODE(I+1)aEQel) GO TO 7
IF(ICODE(I)oEQo2e0Re ICODE(I+1)eEQe2} GO TO 6
TF((1/2)%26EQo1) GO TO 5
IER{1)=ICODE(I+2)-1

Gh TO 8

IER(I)=ICODE(I-1)-1

GO TO 8

[ER(T)=1

GU TO 8

IER(T)=0

CUNT INUE

IFACT=2%%(1-1)
IND(MyNI=IND(M,N)+IER(I)*IFACT

IND (MyN)=IND(MyN)+10

Gt TO 11

IND(#MyN)=4

IF(INDIC{MyN)oGEo3) IND(MyN)=INDIC(M,N)-2
IF (INDIC(MyN) oGEo6) IND(MyN)=INDICIMINI=5
CONT INUE

KETURN

FORMAT(8011)

END
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RELAK2

SUBRIUTINE RELAX2(ML M2y NL yN2,ALPHA,UDIFyNPASS,ITER,NEU) -
LAXATICN ROUTINE FOR AXIALLY SYMMETRIC FIELDSe REQUIRES FIELD CODE
SCRIPTION MATRIX AS SUPPLIED BY SUBROUTINE *FIELD2' AND RADIAL
LTIPLIERS AS SUPPLIED BY XUBRQUTINE *RADX?® ' ‘

M14MM2--PORTION UJF FIELD IN R-DIRECTION

NLyN2==PORTIUN OF FIELD IN Z-DIRECTION

ALPHA=-RELAXATION FACTOR

ULIF=-=ROUTINE EXITS WHEN ALL CORRECTIONS TO POTENTIALS ARE

BELOW °*UDIF?®
NPASS--FOUTINE EXITS wHEN NUMBER OF PASSES OVER FIELD EXCEEDS
*NPASS?®
ITER=-=NU UF ACTUAL RELAXATION PASSES TAKENe IF ROUTINE EXITED
BECAUSE OUF CUNVERGENCE, THE NUMBER OF PASSES EQUALS
*ITER+1'e IF EXIT BECAUSE °*NPASS ' EXCEEDED, NUMBER OF
PASSES EQUALS *ITER?
NFU=-=-0=-NDO NEUMANN BOUNDARIES
-=1-NEUMANN BOUNDARIES AT J=N1l AND J=N2e IN THIS CASFE N1=2
ik GREATER AND N2=79 OR LESS, AND THE FIELD CODING SUPPLIED
T3 *FIELD2' WOULD FOR EXAMPLE HAVE THE SAME CODING AT J=1
AS AT J=2 wWHEN THE NEUMANN BOUNDARY IS AT J=2e IF ONLY ONE
NEUMANN BOUNDARY IS DESIKEDy THE OTHER MUST BE CODED AS A
UIRICHLET SO0UNDARY

DIMENSION IND(404,30)4,U{40,80),POT(21)4+RADOT(40)yRADIN(4D) ,AK3(40,3
1) sAKT(40493)3AK1L(40492) 9AK5{(40,2)

CuMsijis INU U PUTZRADUT RADIN,AK?,AKT,AKlyAKS
ALPHAl=ALPHA%*(0,25

ALPHAR=ALPHA/6,

ALPHA3=L4LPHA/Z/AKT(1,1)

ITER=0

CORTINUE

IF{NEUoEWeN) GU T 3

DU 2 I=M1,4M2

UCTyNI-1)=U(TyN1+})

U(Tyn2+1)=U{I4N2-1)

CUNT INUE '

KUNVRG=D

DO 63 I=M1,M2

DO 93 Jd=MNiyN2

INDX=IND(I,4J)

IF{INDXeGEe81) GU TO 8

GU T3 (99,9943G34955697)9INDX

CHANGE=ALPHAL*{U(I+1i, J)*RADJT(I)*U(I ~1oJ)RRADIN(I)+U{I4J-1)+
TULTd+1)=4xUlld)) )

GC T3 77
CHANGE=ALPHAZF{(4e*U{I+LeJ)+U(Ll4J+1)+U{Tgd-1)=6e*xU{Isd}}

GuU T 77

CHANGE=ALPHA 3R (AK3(L 1) *U(I+14J)+AK3{12)%8U(T4d+1)+AK3{1,3)xUlI,yd-
TLI-ART(T,1)%=U(T,4)) -

GL T3 77
CRANGE=ALPHAZ®(AK3{ 1,y 1) xU(I+1,J)+AK3(1,3)%U(1,J+1)+AK3(1,2)*U(I,
TJ=1)1~AKT(11)%=U(TI,J)}

Gty Tag 77

NU=INDX=-19
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IEPS8=N0/128
“NO=NO-1EPS8%128
@ 1EPST=NG/6%
NO=NO-TEPST*o4
[EPSH=NO/32
NO=NQ-1EPS6%32
IEPSS=RU/LE '
NU=NO-1EPS5%16
1EPS4=N0/8
NG=NO-TEPS4%8
IEPS3=N0/4%
NG=NO-1EPS3%4
1EPS2=ND/2
[EPS1=NO-1EPS2%2 »
C1=AK1(I,IEPSl+1)+AK5(IsIEPSB+l)
I1P1=1FPS2+IEPS3+1
C3=AK3(I,IP1)
C5=AK1(1,I1EPS4+L)+AK5(1,1EPS5+1)
1P2=TEPS6+IEPST+
CT=AKT(1,IP2)
CP=C1+4C3+C5+C7 : _ .
ChANGE=ALPHA/cp*(c3*U(1+1,J»+c7*utl—lyu)+c1*U(1,J+1)+c5*u(1,d;1)—
1CPxU(I,J1)) '
77 TF(ABS(CHAMGE)oGToUDILF) KONVRG=1 .
UL, J)=U(1,J)+CHANGE
99 CUNTINUE
IF(KONVRGeEQe D) RETURM
ITER=ITER+1
IF(ITERoGEoNPASST RETURN
GG TO 1
. ENG

SETUP2

SUBROUTINE SETUPZ(HlyMZ,leNZyVlvV21V3yVﬁ)

THIS SUBROUTIME SETS THE STARTING POTEWTIAL VALUES AND 1S Td BE
USED wITH SUBRIUTINES 'FIELD2 AND YRELAK2?' _ '
M14M2--PCORTION AF FIZLD IN R-DIRECTION '
Ni,N2-—PURTION OF FIELD IN Z-DIRECTION
ViyV2,V3-=-CIONSTANT PUTENTIALS AS IN TFIELD2Y COMMENTS
Va-—ALL OTHER PJINTS SET TO THIS POTENTIAL

COOOO000

DIMENSION IND(4D,3D),U(40,82),P0T(21)
COMMIN IND,U,PCT

DN 1 I=K1,M2

D0 1 J=NY..N2

J{l,d)=V&

CIF(IMD(IeJd)aEGol) ULl sd) =Vl
IF(INC(Isd)oE002) UlI,Jd)=V2
IF(IND{T,J)05Q53) UlIJ)=V3

1 CUNTINUE
RETURN
END
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1

SUBROUTINE VECTIR (M2,N1,N2, SIGEST, ENORH, ESQ)

SUBRDUTINE FORMS REGUIRED PDT:NTIAL VECTORSyUSING MATRIX Py FOR
FIELD OF (1,M2) BY (N1, N2) WHEKE M = 1 IS THE AXIS AND {2%M2+N2~
-Ni-5)olE0 1900 LARGEST BOUNDARY POTENTIAL DIFFERENCE IS RETURNED
UNDER 'BIGEST', ARITHMETIC SUM CF DIFFERENCES UNDER 'TENJ3RM!', AND
SUM OF SQUARES UNDER 'ESQ! : ‘

OO OO0

DIMENSION IND(40, 30)9U(4”1b0)yPDT(21)yRADjT(4D),RADIV(#)):AK*(4”;;
1) 4,AK7(40, 3)yAKL(4042) yAK5(40,2) ‘
DIMENSIUN VI(100),VEO(192),VEN(2102),P( 51,100)
COMHYIN IND,U,POT,RADUT,RADIN,AKB,AK?,AKlyAKSgVI’VED,VEN,P
N=N1+]
M=M2-1
NNZ=N2-1
NN=N2-N1-3
K MAM=ENZ-MN1-1
K=M+M+MM
LL=KK-2
NO=MM/?2
IF(NO*LOlhOMM) NO=NO+1
NP=M2-1+NO

c FIND VI AND VEOQ

DOl I=1,M
VI(I)=U(I,4N)
1 VEO (1I)= U{I,N1)
= DG2 I=1,MN
II M+ [
=N1+I+1
VI(II)=U(%,JJ)
DG 3 I=1,4M
Ii=M+1
Jd = NI + 1
3. VEG (I1) = UlM2,4J)
DO 4 I=1,4
II NN+
JJ M2 - 1 .
4 VI (I1) = UlJJyNN2)
pDos I = lyM
Il = M+MM+1

N

v
<
m
O
g
-
et
T
(e
1=
r
-
3

IND VEN

[eNeNe

DO6
6 VENI
Do 7
20 7
van(T)
NOI1=NP+1
DU 3 I=NU1,KK

Lol on ]
[
n n un

=z

[T ]
mr "o

o~
<

NADY + PLILd) = VIY)
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VECTOR
| ~ po 9 Jsl,LL N | o
© - [1=KK+1-1 |
‘ JisLL+1-
9 VEN(I)=VEN(I)+P{IL,dL)%VI(J)

FIND BIGGEST DIFo AND NJIRM

e NeNe!

BIGEST = 0o
ENCRM=00
ESO=0.
DO 8 [=1,KK
5, DIF = A3S (VEO (I) - VEN (1))
. IF (DIFoGTo BIGEST) BIGEST = DIF
, ENORM = ENGRM + DIF
8 ESG = ESG + DIF = DIF
RETURN :
END

CHANGE

SUBROUTINE CHANGT (M2,4N1,N2yBETA) o

DIMENSION IND(#O:SO)7U(40180)iPDT(Zl)1RADJT(40)1RADIN(43)1AK3(4913

)qAK7(49,3);AKl(4312),AKS(#D,Z) -

DIMENSICN VI{100) ,sVED(LD2),VEN(LO2),P( 51,100)

COMMON IND,U,PUT}RADDT,RADIN,AKE,AK?,AKI,AK5,VI:VEU,VEN,P

M=M2-1 ’ .

MM=N2-NEL-1

KK=M+M+ Mt
DO 1 1=31,KK

1 VEN(I)=VEO(L)+oETAR(VEN(I)-VED(T)) |
DG 2 I=1,M :

2 UlIaN1)=VEN(T)

DG 3 I=1,+4h

I1=M+1

JJd=H1+1

UMz, JJ)=VEN(I])

DO 4 I=14M

TTI=M+Mp+]

JJd=r2-1

4 UlddynNzi=vE(IL)
RETUKH

END

e

-~

L)
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VALUES{‘

SUBROUTINE VALUES(M14M2,N1sN2s IFORMy INIDTHoNCONTRIFLAG)
PRINTS FIELD VALUES IN SQUARE GRID ACCORDING TO--

IFORM# 1, FORMAT F5.2

IFORM#2, FORMAT F10e6 ,

IFORM#0, NO FIELD VALUES PRINTED
IF NUMBER OF FIELD VALUES ACROSS ONE PAGE IS TOO GREAT FOR
ONE PAGE, FIELD IS SPLIT UP AND PRINTED ONE PAGE WIDE AT
A TIME. : '

ALSO ALLOWS WIDTH SPECIFICATION TO aPLOTa ROUTINE ,

TO EXCEED 130. PLOT IS-SPLIT UP AND PRODUCED ONE PAGE WIDE AT

A TIME. SPECIFIED BY QIWIDTH@. ALL OTHER ARGUMENTS SAME AS

IN OTHER PROGRAMS.

DIMENS ION IND(40+60) ,U(40,80),P0OT(21)
COMMON IND,U,POT
IF(IWIDTH.EQl.O0) GG TO 20
IF{IWICTHeGT.130) GO TO 1
WRITE(6,100)
CALL PLOT(MI.MZle»NZpNCONTRyIHIDTH,IFLAG.I)
G0 70 20

1 NA=IWIDTH/(N2-N1)
IWIDTH=NA%{N2-N1)
NSPACE=130/NA
LWIDTH=NSPACE*NA
NPAGE=IWIDTH/LWIDTH
LAST=IWIDTH-NPAGE*LWIDTH
IF({IFLAG.EQ.O0) GO 10 97
BIG=0.
SML=0.
DG 65 I=M14M2
DO 95 J=N1,N2
IF(UL] 3d) e 5T «BIG) BIG=U(1,J)
IF(U(I9d)elTeSML) SML=ULI,J)

95 CONTINUE
CDNTR=(BIG-SML)/FLDAT(NCUNTR-I)
DO 96 1=1,NCONTR

. 96 POT(I)=SML+CONTR=FLOAT{I-1)

IFLAG=0
97 CONTINUE
DO 2 I=1,NPAGE
NN1=N1+(I-1)*NSPACE
NN2=NN1+NSPACE
WRITE(651090)
2 CALL PLGT(MI9M2:NN1:NNZeNCDNTR,LHIDTH.IFLAG,1)
IF{LAST.EQ.C} GO TO 20
WRITE{6,100} ) ‘
CALL PLOTE(ML,M2,NN2yN2,NCONTRsLAST¢0+0)} |
20 IF(IFORM.NE.1) GU TO 21 -
NA=26
GO TG 22
21 IF(IFORMGNEs2) GO TO 23
NA=13
22 NPAGE={N2-N1+1)}/NA
IF(NPAGE.EQ.0} GO TO 5
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LAST=N2=-N1+1-NA*NPAGE"
DO 3 1=1,NPAGE ‘ T ’
NN1=N1+NA%(I-1) o : ) o
NN2=NN1+NA-1 ' ' :
WRITE(6,4100)
DO 3 J=M1l,M2
IF(IFORM.EQe2) GU TD .30
WRITE(6,101) (U(JeK) ¢ K=NN1yNN2)
Gu TO 3 ’
30 WRITE(69102) (UlJeK) s K=NN1oNN2)
3 CONTINUE
60 10 7
5 NL=N1
GO TO0 6
_ _ 7 IF{LAST.EQ.0) GG TO 23
NL=NN2+1 :
6 WRITE(64100)
DU 4 1=M1,M2
IF(IFORM.EQe2) GO TO 31
WRITE(69101)(U(14J)9Jd=NLsN2)
GO T0 4
31 WRITE(6,102)(U(I,J)9J=NLsN2)
4 CONTINUE
23 RETURN
100 FURMAT(1H1) ‘
101 FORMAT (/1H0426F542)
102 FORMAT(////1H0,13F10.6)
END

EXTRA

SUBROUTINE EXTRA{(M2,N1sN2) ' v
DIMENSION IND(40'80)1U(40'80)'POT(Zl)sRADOT(40)oRADIN(4O):AK3440;3~
1) sAKT(40,3) 9AK1{4092) 1 AK5(40,2)

DIMENSION VI{100),VEO(102),VEN(102),P{ 51+100) 4VEOD{(102)

COMMON IND,U,POT,RADOT,RADIN'AK39AK7.AK1.AK51VI,VE01VEN'P'VEDO
M=M2-1 ' . '

MM=N2-N1-1

KK=M+M+MM

DO 1 i=1,M

C=(VECO(I)-VEO(I)}/(VEOULI)-VENLI))
U(I,N1)=VEO(I)+(C/(1.-C3)*(VEO(I)-VEN(I))

DO 2 I=1,MM
[I=M+]
JJ=N1+1 :
C=(VEOG({II)=VEOLII))/(VEO(II)-VEN{II))
U(MZ;JJ}=VEG£!!!#(Clilo~€i3*6VEG€EE§—VEN€ZE33
DO 3 I=1.M

TI=M+MM+]

JJ=mM2-1 -
C={VEOG(II)-VECG(II)) /(VEOLII)-VENIII})
U(JJvNZ)=VEO(Il)#(CI(1.'C))*(VED(!I)-VEN(IID)
RETURN

END

°.
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CONTOUR PLOTTING SUBROUTINE FOR SQUARE GRID OF FUNCTION VALUES,
CALLED BY
—~CALL PLOT(NLoM1sN2yM29M3 LWIDTHy IFLAGyIPRINT)

U--ARRAY OF FUNCTION VALUES ASSUMED EQUALLY SPACEDeSUPPLIED THRU

C OMMON
PGT-~ARRAY OF CUNTDUR VALUESe CALLING PnOoRAMHE MUST DIMENSICN
POT(21)

N1yML=—START AND END OF PLOT IN Y DIRECTION.
N2yM2-=START AND END OF PLOT IN X DIRECTION, WHERE (M2-N2) MUST
NOT EXCEED 132
THE ABOVE FOUR INTEGERS SPECIFY THE PORTION OF THE ARRAY
'U' TO BE PLOTTED, AND N1 AND N2 WOULD NORMALLY BE SPECI-
FIED AS 1
M3--NUMBER OF CONTOURS TO BE PLOTTED
LWIDTH-—WIDTH OF PLOT IN PRINTER SPACESe THE ACTUAL WIDTH OF THt
PLOT wlLL BE EQUAL TO N#(M2-N2) WHERE N EQUALS THE INTE-
GER PART OF 'YLWIDTH/(M2-N2)%'e LWIDTH MUST BE SPECIFIED AS
EQUAL TO OR GREATER THAN (M2-N2)
IFLAG--0, ARRAY 'POT* SUPPLIED BY CALLING PROGRAMME
--1, SUBROUTINE FINDS MINIMUM AND MAXIMUM *U® IN THE INTER-
VAL SPECIFIED AND PLOTS M3 CONTOURS OF EQUAL *U" INCREMeNT
IPRINT==UyNO CONTCOUR VALUES PRINTED .
--1,CONTOUR VALUES PRINTED IN Elle4 FORMAT

SUBROUTINE DUES LINEAR INTERPGLATION FIRST IN X-DIRECTION TO
*LwIDTH' VALUESeTHEN IN Y-DIRECTION FOR THE SAME INCREMENTS

CALLING PROGRAMME MUST START NEW PRINTER PAGE AND/OR PRINT A
HEADING IF DESIRED BEFORE PLOT IS CALLED '

SUBRUUTINE PLOT(N1,M1 o N2,M2,M3,LWIDTH, IFLAG, IPRINT)

(g ﬁﬁ("ﬁ(‘lﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ(‘)ﬁﬁﬁﬁﬁﬁﬁﬁﬁ

DIMENSION A(27132,’3(67132)vPUT(Zl,)VAL‘132)1V0LD(132)9LINE(131)1
1CHAR(21)

DIMENSION IND(40 ¢80)2U(40,480)

COMMON IND,U,PQT

REAL LINE

DATA BLANK,CHAR/1H ,lHlv1H2v1H311H4,1H5'1H611H7'1H871H911H0'1HA73H
1571HCleDQIHEngFylHGngH'IHI)IHJilHKl
NA=LWIDTH/ (M2—-N2}

IFINA.GTL0) GO TO 67

ARITE(65101) LWIDTH

KETURN

67 IF{IFLAGGEQs0) GO TO 68

BIG=UINLIsN2}

SML=U(N1yN2)

DO 70 I=N1,M1

DO 70 J=N2MZ

[F{U{]4d)0eGToBIG) BIG=U{I,J)
IF(U(IsJ)eblLToSML) SML= U(I'J’

70 CONTINUE
CONTR=(BIG-SML}/FLOAT(M3-1}
DU 71 I=1,.M3
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@‘ 71 POT(I)=SML+CONTR*FLOAT(I-1)
POT(1)=POT(1)++0001%CONTR
68 MM1l=M1-N1l+l
NN={M2-N2)*NA
NN1=NN+1
Jz2=1
K=0
DO 77 I=1,MM1
DG 78 J=1,NN
JJ=(J=1)7/NA+N2
FACTOR=FLOAT (J-1~- l(J-l)/NA)*NA’IFLOAT(NA)
DO 79 479=1,2
179=1+J79~2+N1
A(JT79,4J)= U(179,JJ)+FACT0R*(U(I799JJ+1)-U(I79oJJ))
79 CUNTINUE
78 CONTINUE
I77=1+N1~-1
ACLsNNL)=U(ITT M2)
A(24NNL)=ULITT+1l,M2)
D0 B8l Ji=1,4yNA
FACT=FLOAT{J1-1) /FLOAT(NA)
DO 82 J82=1,yNN1
82 B(J2,JB2)=A(1,U82)+FACT*{A(2,J82)~A(1+9482))
IF(J2eNEab6) GO TO 83
95 CUNTINUE
IF(J24LTo3) GO TO 96
DO 90 J=1,NN1
B(2yJ)=B(2yJ)+e666T*(B(3,J)=-B(2yJ))
IF(J2eLTo5) GO TO 90
B(3,J)=B(49J)+e3333%(B(54J)-Bl4yd)}
IF(J2,LTe6) GO TD 90
IF{leNEaMMl) GO TD 99
Blayd)=Bl64d)
30 CONTINUE
96 CUNTINUE
ICAL=3
IF(J2eLT03) ICAL=]
IF(J2eLToe5) ICAL=2
IF(ICALoNEe3) GO TO 300
IF({IeEQeMMl) ICAL=4
30C CONTINUE
DO 400 J400=1,1CAL
- K=K+1
D0 401 1401=1;NNi
401 VAL(I401)=B(J400,140C1)
i IF{KoEQel) GO TO 405
00 402 1402=1,;131
402 LINE(1402)=BLANK
DO 403 1403=1,NN
BIG=AMAXL{VAL(1403),vOLD(I403),VAL(I403+41),VOLD(1403+1))
SML= AMINI(VAL(I#OB)9VDLD(I40339VAL(I403+1D9VOLD(I403+1))
DO 4u3 Jd=1,M3
403 IF(BIGoGEePOT{J)oANDeSMLoLTePOT(J)) LINE(I403)=CHAR{J)
NRITE(64+100) (LINE(J) yJd=1,131)
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4G5 DO 406 J=1,NN1
406 VOLD(J)=VAL(J)
400 CGNTINUE
IF(IoEQeMM1) GO TO 99
DO 91 J=1,NNl
91 B(l.J)=B{64J)
Ja=1
83 J2=J2+1
81 CONTINUE
IF({IeNEeMML) GO TO 77
DU 92 J=14NN1l
G2 8(J24J)=A(24J)
56 TU 95
77 CONTINUE
99 IF(IPRINTeEQeO) RETURN
WR1TE(6,102)
WRITE(6+103) {CHAR(J) yPUT(J) 9J=1,4M3)
RETURN
100 FORMAT(1H ,131Al)
101 FORMAT(iH ,10Xs14HFIELD WIDTH OF+13,10H TOO SMALL)
102 FURMAT(1HO,10X,8HCONTOURS)
103 FUKMAT(T(3XyAlslH=yElle4))
eND




