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Abstract

Measurement of milk composition is a necessary step in production in the
dairy industry. Determination of the major constituents of milk, fat, lactose and protein,
provides important information in estimating animal health, economic value of milk,
monitoring dairy herd management, and designation of milk for various dairy products.
Current practices for routine milk composition determination employ commercial
infrared systems. The use of SW-NIR and NIR FT-Raman spectra coupled with
conductivity and refractive index could lead to more frequent .and less costly analysis of
fat, lactose and protein in milk.

The present study examines the potential of both SW-NIR absorbance
spectrophotometry and NIR FT-Raman spectrophotometry to develop a model to estimate
fat, lactose, and protein in whole milk of cows. To accomplish this, 79 milk standards,
spanning the range of composition seen in practice, were obtained. Acquisition of NIR
spectra over the wavelength range of 700 nm to 1018 nm was conducted. Between 0 and
3700 cm™’, NIR FT-Raman spectrophotometric measurements of the milk samples were
made using a 1064 nm Nd: YAG laser source. Conductivity and refractive index
measurements were also obtained for the milk standards.

A partial least squares calibration with leave-N-out cross validation was made
using spectra with conductivity and refractive index to estimate fat, lactose and protein
contents. Calibrations were developed using 75% of the milk standards. Models were

further validated using an independent test set comprised of the remaining 25% of the



data that had been excluded from the calibration. A second calibration was conducted
using a genetic algorithm approach.

Increased accuracy was observed between estimated and reference concentrations
when SW-NIR spectra with conductivity and refractive index were used as compared to
using spectra alone. This is evidenced by standard errors for fat, lactose, and protein
calibration being 0.59, 0.04, and 0.36 g/100g respectively. Accuracy achieved using
Raman spectra was better than the SW-NIR calibration for fat and protein as indicated by
standard errors for fat, lactose, and protein calibration being 0.21, 0.05, and 0.30 g/100g
respectively. The genetic algorithm technique was found to improve estimation of
lactose in both cases compared to the PLS calibrations. These findings show promise and
emphasize the need to develop calibrations using NIR and NIR FT-Raman

spectrophotometry for milk composition determination.

Résumé

Mesurer la composition du lait est une étape de production nécessaire dans
Pindustrie laitiere. La détermination des composantes principales du lait, c.-a-d. gras,
lactose et protéines, donne des renseignements importants pour estimer la santé animale
et la valeur économique du lait, surveiller les troupeaux laitiers pour les gérer, et désigner
’usage du lait pour différents produits laitiers. Les méthodes courantes d’analyse laitiére
emploient des spectrométres infra-rouges commerciaux. L’emploi de spectres d’ondes
courtes du proche infrarouge (SW-NIR) et NIR FT-Raman couplés avec des mesures de
conductivité et d’indice de réfraction pourraient permettre des déterminations plus

fréquentes et moins cofiteuses du gras, du lactose et des protéines dans le lait.
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Cette étude examine les spectrophotométries NIR et FT NIR-Raman en vue de
développer un modéle pour estimer le gras, le lactose et les protéines dans le lait de vache
entier. A ce but, 79 étalons de lait couvrant la gamme habituelle de compositions furent
obtenus. Des spectres NIR furent mesurés entre 700 nm et 1018 nm. La spectrométrie FT
NIR-Raman fut exécutée entre 0 et 3700 cm™ sur les échantillons de lait en employant un
laser Nd:YAG a 1064 nm comme source lumineuse. La conductivité et I’indice de
réfraction des étalons de lait furent aussi enregistrés.

Un étalonnage par algorithme des moindres carrés avec validation croisée “leave-
N-out” fut construit a partir des spectres et des données de conductivité et d’indice de
réfraction pour estimer la teneur en gras, lactose et protéines. Les étalonnages furent
développés a partir de 75% des étalons de lait. Les modeles furent ensuite validés au
moyen d’un “test set” composé des 25% des données qui avaient été exclu de
I’étalonnage. Un deuxiéme €talonnage fut construit a ’aide d’un algorithme génétique.

Un bon accord entre les concentrations estimées et les valeurs de référence fut
observé quand les spectres SW-NIR furent utilisés en liaison avec la conductivité et
I’indice de réfraction. Ceci se manifeste dans les erreurs associées a 1’estimation du gras,
du lactose et des protéines (respectivement 0.59, 0.04 et 0.36 g/100g). Au moyen de
spectres Raman, les estimations de gras et de protéines furent améliorées. Les erreurs de
calibration associées au gras, lactose et protéines sont de 0.21, 0.05 et 0.30 g/100g
respectivement. L’algorithme génétique améliora 1’estimation du lactose dans les deux
cas. Ces conclusions prometteuses soulignent la nécessité de développer des étalonnages
exploitant les spectrophotométries NIR et NIR-Raman pour déterminer la composition du

lait.
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Chapter 1 Introduction

1.1  Research Objectives

Milk composition analysis is necessary for estimating animal health, determining
economic value of milk, decision-making in dairy herd management, and designating
milk for various dairy products. Current practices for routine milk composition
determination employ commercial infrared systems that are costly and cannot be used for
daily measurements. Use of NIR and/or NIR-Raman spectra coupled with conductivity
and refractive index could lead to more frequent and less expensive analysis of fat,
lactose and protein analysis in milk. In addition, these measurements are relatively easy
to conduct and have the potential to be incorporated in automated milking
instrumentation. This could lead to simultaneous acquisition of product and analysis.
The objective of this research is to accurately estimate concentrations of the major
constituents of milk, fat, lactose, and protein. Towards this goal, two approaches have
been applied to quantify these milk constituents: 1) short-wave near-infrared (SW-NIR)
spectrophotometry and 2) NIR-Raman spectrophotometry. Further accuracy was sought
for by combining spectrophotometry with conductivity and index of refraction
measurements. Multivariate statistical analysis of these measurements was used to
develop calibrations for milk composition.

In this chapter, an outline of research objectives will first be covered, followed by
a description of milk and its major constituents, fat, lactose, and protein. Standard

reference methods for milk composition determination are then discussed. Finally, an



elaboration of tools used in this study, short-wave NIR spectrophotometry, refractive

index, conductivity, and NIR FT-Raman measurements, are presented.

1.2 Overview of Milk Composition

All mammals nourish their offspring with milk, which is secreted by mammary
glands. This nourishment is provided by the numerous constituents in this complex
biological fluid. Composition of milk varies with each species, within each species, from
animal to animal, geographically and temporally. Factors that have been found to
influence milk composition are lactation stage, nutrition of the animal, seasonal and
temperature variation, udder infection, and variations in milking procedure’. An
overview of milk composition is presented in Table 1.1. The reported ranges were found
to be typical for lowland breeds. Water is the largest constituent, comprising upwards of
85% by weight in bovine milk. All other constituents are emulsified, dispersed
colloidally, or dissolved in the water of milk.

1.2.1. Lipids in Milk

Approximately 98% (by weight) of the lipids of milk are triglycerides while the
rest are diacylglycerols (0.28 — 0.59%), free sterols (0.22 — 0.41%), phospholipids (0.2 —
1.0%), free fatty acids (0.10 — 0.44%), monoacylglycerols (0.016 — 0.038%),
hydrocarbons (trace), sterol esters (trace)'. Almost all of the lipids in milk are in globule
form with diameters ranging from 0.1 to 15 um with a mean diameter of 3.5 um in
bovine milk®. These globules, which are suspended in the aqueous phase of milk and are

protected by a surface membrane called the milk fat globule membrane (MFGM).



Table 1.1. Approximate distribution of milk constituents®.

Constituent Range in milk (% w/w)
Water 85.3 -88.7
Lactose ' 3.8-5.3
Fat 25-55
Protein 23-44

casein (type of protein) 1.7-3.5
Mineral substances 0.57-0.83
Organic acids 0.12-0.21

The MFGM contains 60% of the phospholipid content and 85% of the cholesterol content
in milk but phospholipids also exist as lipoprotein complexes*. Fat in milk contributes to
its flavour, aroma, colour and texture. Triacylglycerols are an important source of energy
and have been found to produce twice the amount of energy per gram of carbohydrates®.
Milk fat is also a quick source of energy because of the short chain fatty acids, which are
absent in vegetable oils. The short-chained fatty acids can be absorbed through the
intestinal wall and do not have to be re-synthesized into glycerides. Another role milk fat
plays in human nutrition is that it contains many fat-soluble vitamins such as vitamins A,
D, E, and K. Fat content of milk has traditionally been a large factor in monetary value
of milk especially when milk was used primarily for butter production. Protein level in
milk now influences economic value due to its importance in the manufacturing of dairy
products such as cheese. As an example, a differential payment plan has been established

in the Netherlands to dairymen depending on fat and protein content in milk’.



1.2.2. Lactose in Milk

The main carbohydrate in milk is lactose, a distinct and unique product formed by
the mammary gland. Lactose concentration in bovine milk ranges from 3.8 to 5.3 g/100g.
Small amounts of other carbohydrates are present in the form of monosaccharides,
mainly glucose and galactose, and oligosaccharides. Glucose and galactose concentration
ranges from 0.00002 to 0.00014 g/100g and 0.00000524 to 0.0000875 g/100g
respectively®. Oligosaccharide content ranges from 0.0117 to 0.0136g/ 100g®. Lactose is
a disaccharide that is composed of galactose linked to glucose by a glycosidic bond. One
of the carbons in the glucose molecule of lactose is anomeric and unstable. It therefore
mutarotates from the o to the B isomer and vice versa until an equilibrium is established
between the two isomers as shown in Figure 1.1.

Lactose with soluble salts such as sodium, potassium and chloride ions maintains
osmotic pressure in the mammary system. Fluctuations in lactose content are associated
with changes in the amount of soluble salts. The presence of lactose in milk is
advantageous nutritionally because as a disaccharide, it provides twice the amount of
energy provided by a monosaccharide at a given osmotic pressure. Lactose is responsible
for the low relative sweetness in milk. Presence of lactose in milk is a concern to many
people due to two undesirable conditions: lactose intolerance and galactosaemia. Those
who are lactose intolerant are unable to hydrolyze lactose sufficiently in the small
intestine and the result is a large influx of water. This leads to symptoms such as nausea,
cramps, bloating, gas, and diarrhea. Those who have galactosacmia are unable to
metabolize galactose as a result of a hereditary deficiency of the necessary enzymes. The

outcome is a buildup of galactitol in the lenses of eyes and subsequently cataracts.



Figure 1.1. Conformational structures of B-lactose (a) and a-lactose (b)

1.2.3. Protein in Milk

The amount of protein in bovine milk changes during lactation and the changes
reflect the two-fold function of milk proteins to young mammals. One function is to
provide offspring with essential amino acids to develop muscle and other protein-
containing tissue. The other function of protein is to supply biologically active proteins
such as immunoglobins, vitamin-binding proteins, metal-binding proteins and protein
hormones®. There are two main classes of proteins in milk, casein and whey protein.
Casein refers to the fraction of protein in milk that precipitates out of solution when milk
is acidified to pH 4.6 at 30 °C>. This accounts for nearly 80% of all protein in milk’. The
remainder, which is soluble under the same conditions, is referred to as whey protein.
Casein is stable at high temperatures and will not coagulate in milk when heated up to

100 °C at its natural pH>. Whey protein is more sensitive to heat and will be completely



denature if heated at 90 °C for 10 minutes®. Casein is a phosphoprotein, containing about
0.85% phosphorous whereas phosphorous is not a constituent of whey protein®. Presence
of phosphorous (in the form of phosphate) is responsible for the ability of casein to bind
to calcium, which increases its nutritional significance. Whey proteins are more rich in
sulfur compared to casein and these sulfur-containing amino acids are partially
responsible to some changes in heated milk such as cooked flavour and increased time for
rennet coagulation. Rennet, found in the stomachs of cows, 1s used to coagulate milk for
cheese manufacture. Casein is unique to the mammary gland while some of the whey
proteins are blood-derived. Casein exists in milk as large colloidal aggregates (micelles)
while whey protein is dispersed in solution. Milk protein has high nutritional value
compared to other proteins because it contains all of the amino acids required by humans
and the distribution pattern of the amino acids in milk resembles what is needed in
humans'. Both casein and whey protein contain more of the following essential amino
acids lysine, threonine, methionine, and isoleucine. Vegetable proteins, especially in
cereals, are limited in these amino acids. It is for this reason that milk plays a large role
in food interventions in developing countries where many children who have a diet

heavily based in cereals, suffer from protein-energy malnutrition.

1.3  Methods for Determining Milk Composition

The International Dairy Federation (IDF), International Organization for
Standardization (ISO), and Association of Official Analytical Chemists (AOAC

International) cooperate in the establishment of methods for analysis of milk and milk



products.  Inter-laboratory studies are conducted to establish and evaluate the
performance of these methods. The methods have been designated as either reference or
routine. This section covers official reference methods by the IDF, ISO, and AOAC
International for the determination of fat, lactose, and protein in milk.
1.3.1. Fat Determination

Reference methods for fat determination in milk include Roese-Gottlieb method,
Babcock Method and modified Mojonnier method. The modified Mojonnier method
(IDF method 1D, 1996, ISO method 1211, 1999, AOAC International Method 989.05)
was used in this study’. In the Mojonnier method, the milk sample is warmed to 38.0 +/-
0.1 °C to melt the fat. The homogenized sample is then weighed into an extraction flask.
Ethanol is added to the sample followed by ammonium hydroxide to neutralize acid and
dissolve casein. Phenolphthalein indicator is also added to sharpen the appearance of the
boundary between the organic and aqueous layers. Nonpolar solvents ethyl and
petroleum ether are used as the extracting agents. The extraction is repeated at least
twice and the combined ether phases, which include the fat constituent of the milk, are
evaporated at <100 °C. ”fhe dried extracted phase is subjected to 70 °C under pressure in
a vacuum oven to reach a constant weight. Reproducibility for this technique, defined as
standard deviation of inter-laboratory data, was found to be 0.020 g/100g®.
1.3.2. Lactose Determination

The IDF, ISO, and AOAC International have been unable to reach a consensus
upon a reference method for lactose determination. Lactose can be determined using a
number of techniques such as gravimetrically (AOAC International method 930.28),

enzymatically (AOAC International method 984.15), polarimetrically (AOAC



International method 896.01), and titrimetrically with chloramine T and potassium 1odide
(IDF method 28A, 1974)°. Likewise, lactose can also be determined by HPLC®. This
was the method used in this study. For HPLC analysis, a milk sample is combined with
0.9 N sulfuric acid to form a precipitate, consisting mainly of protein and lactose. This
precipitate is diluted with laboratory grade water and filtered. The filtrate, typically a
clear and colourless liquid, is analyzed by HPLC using a mixture of acetonitrile and
water as the mobile phase. As standards, a-lactose and f-lactose are employed. Using
the HPLC method, precision has been found to be 0.06 g/100g®.
1.3.3. Protein Determination

The reference method (IDF method 20B, 1993, ISO draft international standard
method 8968-5, AOAC International method 991.22) for protein determination in milk is
based on the Kjeldahl principle®. This method was used in the work presented here. In
this method, protein is precipitated from the milk using trichloroacetic acid in a Kjeldahl
flask. The nonprotein nitrogen constituents (such as urea) are removed by filtration.
Potassium sulfate, a boiling point elevator, sulfuric acid for digestion and copper sulfate,
a catalyst, are combined with the filtrate. The resulting mixture is digested in a Kjeldahl
flask, which releases nitrogen from the protein and the nitrogen is retained as an
ammonium salt. Following digestion, concentrated sodium hydroxide is added to the
acid digestion mixture to release ammonia. The ammonia is distilled and collected in a
boric acid solution to be titrated with hydrochloric acid. The necessary calculations are:

%Nitrogen = [1.4*(Vs — Vb)*N}/W ° (1.1)

where Vs and Vb is the volume of hydrochloric acid used for the sample and blank in ml

respectively, N represents the normality of the hydrochloric acid and W is the weight of



the original milk sample in g. The factor 1.4 is used because 1 ml of 0.1 N hydrochloric
acid is equivalent to releasing 0.0014 g of nitrogen. The percent content of protein in the
original milk sample is then calculated by:

% protein = % Nitrogen * 6.38  ® (1.2)

Here, the factor 6.38 is used because in dairy products, one part nitrogen is
equivalent to 6.38 parts protein. This factor reflects the sample matrix. Reproducibility
of this technique based on inter-laboratory studies is 0.021 g/100g'°.

1.3.4. Current Practices for Routine Measurement of Fat, Lactose, and Protein

The outlined referenced methods are often both time-consuming and destructive
to the sample. All of these methods involve wet chemistry. For dairy herd management
rapid and accurate measurements of fat, lactose and protein are necessary.

Commercial instruments such as the Milko-Scan (Foss Electric, Denmark) have
been developed to analyze milk by infrared spectrophotometry specifically for semi-
routine milk analysis. These are typically filter-based instruments that measure the
absorbance at a .speciﬁc wavelength in the mid-infrared region found to correlate with
constituent quantity.

Infrared analysis in filter instruments consists of a single beam infrared system
with one cuvette and no mirrors. It is equipped with an infrared light source that passes
through filters to only allow light at the desired frequency to pass through a cuvette
containing the sample and finally to the detector. Samples are homogenized prior to
analysis.

The use of this type of instrument for fat, lactose, and protein analysis in milk has

been deemed a standard method (IDF method 141B, 1996, ISO standard method 9622,



1999, AOAC International method 972.16)°. The wavelengths employed by the

spectrometer are summarized in Table 1.2.

Table 1.2. Wavelengths in mid infrared spectral region used to determine fat, lactose

and protein in milk’.

Constituent Wavelength (um) Functional Group
Fat 3.480 CH groups in fatty acid chains
5.723 Carbonyl groups in ester linkages of
glyceride
Protein 6.465 Secondary amide groups of peptide bonds
Lactose 9.610 Hydroxyl groups

This instrument must be calibrated regularly with standards that have been analyzed by
the prior mentioned chemical reference methods. Accuracy of filter instruments is
affected by changes in concentration of some interfering compounds not measured by the
instrument and by the fluctuation in the composition of measured constituents''. For
example, the accuracy of fat determination is influenced by the average molecular weight
of the fatty acids and proportion of unsaturated fatty acids'’. Likewise, protein
determination is influenced by the proportion of non-protein nitrogen constituents, citrate,
free fatty acids and phosphorous'!. In addition, turn-around time for laboratories
equipped with MilkoScan instruments to return milk constituent concentration
information can be up to two weeks and in this case, MilkoScan instruments would not

aid in daily management of dairy farms'?.
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According to the International Dairy Federation, acceptable accuracy in a robust
calibration is defined by the magnitude of the standard error of calibration (SEC). This is
the standard deviation between reference constituent concentration and constituent

concentration determined by the method being evaluated:

(1.3)

where c is the constituent concentration provided by the reference method, ¢ is the
constituent concentration provided by the method being tested, and » is the number of
samples in the calibration set.

The standards set by the International Dairy Federation is that SEC should be no
greater than 0.07 g per 100 g of milk for herd milk samples and 0.10 g per 100 g of milk
for individual milk samples. A study by Lefier et al. compared the accuracy of fat,
lactose, and protein determination determined by a conventional filter-based infrared
milk analyzer, the MilkoScan to that determined by chemical reference methods''. Lefier
et al. reported that an SEC less than 0.07 g/100g could be achieved using MilkoScan
when performing calibrations in 6 trials, where each trial involved the analysis of 11
reconstituted milks made from raw milk constituents'. However, when a single
calibration was made using all 66 milk samples, collected over six months, SEC results
were: 0.130 g/100 g for fat, 0.121 g/100 g for protein, and 0.083 g/100 g for lactose'!. In
the research presented here, calibrations were also conducted using a set of reconstituted
samples collected over a year. Because MilkoScan is the current accepted method for
routine milk analysis and due to the similarity in calibration methodology, results of this

research will be compared to results found by Lefier et al.
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1.4  Short-Wave Near-Infrared Spectrophotometry of Milk

Near-infrared spectrophotometry is an attractive option for the dairy industry for a
number of reasons. Acquiring near-infrared spectra is fast and non-destructive, requiring
no sample pre-treatment. Furthermore, it is a multi-purpose technique because each
spectrum contains information about a multitude of milk constituents. It can provide
quantitative assessment of milk composition in real-time by monitoring milk spectra
during milking and through the use of fibre optics, remote acquisition is possible. These
features could allow for daily measurement of milk composition for dairy management
and bio-monitoring.

The near-infrared region of the electromagnetic spectrum lies in the wavelength
range from 770 nm to 2500 nm. Low energy electronic transitions, overtones, and
combinations of hydrogen vibrations in C-H, N-H, and O-H groups can be observed in
this region, indicating the presence of functional groups in the sample that can be
quantified. Assignment of some near-infrared wavelengths to food constituents is
presented in Table 1.3.

The challenge of near-infrared spectrophotometry for milk analysis is that spectra
of many individual constituents have broad regions of overlapping bands and therefore,
the spectra consist of wide absorption bands that appear difficult to interpret and

quantify'.
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Table 1.3.  Assignment of infrared absorption bands to food constituents.

Wavelength (nm) Food Constituent Bond Vibration
910 Protein 3 overtone C-H "

928 Lipid 3" overtone C-H

990 Carbohydrate 2™ overtone O-H "

1200 Lipid 2" overtone C-H ™

1440 Carbohydrate 1* overtone O-H

1730 Lipid 1* overtone C-H '

1780 Lipid 1* overtone C-H '

1980 Protein Combination N-H '

2080 Carbohydrate Stretching+deformation O-H '
2180 Protein Combination C=0, N-H '
2320 Lipid Combination C-H

2350 Lipid 2™ overtone C-H '

Further complication arises in this region from the water absorption, which is very large
compared to the absorption of fat, protein and lactose'”.  Fat globules and protein
micelles of milk cause spectral deformations by scattering light, resulting in an increase
in absorbance from the increase in optical pathlength. Tﬁese are major reasons why this
spectral region has been widely ignored for milk composition analysis until the advances
of computers and chemometrics.

Through application of statistical analysis, near-infrared spectrophotometry has
been used in the determination of fat, lactose, and protein in milk and other dairy

products. Much of the published work on milk constituent determination using near
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infrared spectrophotometry has focused on analysis between 1100 and 2400 nm'% 1% 1617,

1519 " Of these, the most accurate results were found using the following techniques. Sato
et al. were able to achieve an SEC of 0.0901 g/100g for fat estimation in 50 homogenized
milk samples analyzed in transflectance mode in the region of 1100 to 2498 nm using a
0.25 mm pathlength'®. Transflectance methods involve passing light through sample and
reflecting the light from the bottom of the sample holder to a detector. Stepwise multiple
linear regression analysis between reference concentrations and near-infrared data was
used to choose wavelengths for the calibration. The samples used in this study were from
Holstein cows but no information is provided about the number of cows or the length of
time over which the samples were collected. Tsenkova et al. were able to obtain SEC of
0.066 g/100g for lactose calibration by obtaining near infrared transmittance spectra in
the wavelength range from 1100 to 2400 nm of 84 samples from one cow using a 1 mm
path length'®. Partial least squares regression was used to form the calibration, however,
an independent sample set was not used to validate the model. It should also be pointed
out that more than one cow is necessary to acquire samples to achieve a robust calibration
because milk is such a complex biological fluid. The most accurate protein estimation
using near infrared spectrophotometry was found by Laporte et al. '’. This study
analyzed 96 homogenized and unhomogenized milk samples by transmittance
spectrometry from 1100 to 2500 nm using a 0.5 mm pathlength'’. Partial least squares
was used to perform the calibration yielding an SEC of 0.04 g/100g for protein
calibration.

Very few studies have examined the use of short-wave near infrared (SW-NIR)

12, 20, 21

spectrophotometry (700 nm to 1000 nm) for milk analysis . Increasingly, dairy
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farming is moving toward automated milking. This move presents an opportunity for on-
line instrumentation for routine milk analysis. With the advent of inexpensive silicon
sensors in the 700 to 1100 nm range on the market, coupled with fibre optic probes, on-
line instrumentation could be developed if an accurate calibration is possible. Of the
mentioned references, the best results for fat, lactose and protein estimation using SW-
NIR are as follows. Sadié et al. were able to obtain an SEC of 0.102 g/100g for fat
calibration using transmission spectra of 40 homogenized milk samples from 800 to
1100nm collected using a 1.0 mm pathlength?’. Partial least squares analysis with leave
one out cross validation was used to develop the calibration model. Further validation
was conducted using an independent set of 60 samples that yielded a standard error of
0.119 g/100g *°. Limitations of this study are found in sample variation because the
samples were acquired over 2 days and in the use of the Milkoscan instrument as a
reference method. For a robust calibration, temporal variation is necessary in the sample
set and Milkoscan is not a primary reference method. In addition, it was not mentioned
how many cows the samples were collected from. Tsenkova et al. have obtained results
for lactose and protein estimation using SW-NIR with the lowest error, comparatively'?.
For lactose calibration, SEC was found to be 0.084 g/100g using 4.0mm pathlength
transmittance spectra, over 700 to 1100 nm, of 258 unhomogenized milk samples
collected from 3 cows over six. months'®>. The calibration was performed using partial
least squares with leave-N-out cross validation. For protein calibration, SEC was found
to be 0.082 g/100g using the same spectra and regression method'?. Limitations of this
model are the lack of independent validation set, small number of animals samples were

collected from, and use of MilkoScan as a reference method.
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1.5 Refractive Index of Milk

Protein, lactose, and mineral salts contribute to refractive index of milk*2. The
index of refraction of a liquid is represented by, n, and is defined as the ratio of the
velocity of light in a vacuum to the velocity of light in the liquid. Refractive index is a
function of wavelength and temperature and in milk, this property is normally in the
range of 1.3440 — 1.3485 using the sodium D line at 20°C >. A linear relationship has
been found between the solids content of milk and its refractive index but in spite of this,
the estimation of percent solids in milk using refractometry is challenging since the
contribution of each milk constituent differs and is additive’. Due to the high degree of
opacity of milk, refractive index is difficult to measure but the most satisfactory
measurements have been made on an Abbe refractometer where only a thin layer of
sample is used'. In this research, an Abbe refractometer with a white light sources was
used. In an Abbe refractometer, the prisms used are Amici prisms, which are a composite
of two different kinds of glass. This produces a large amount of dispersion without
angular deviation of light. Therefore, it is possible to use a white light source instead of
the usual sodium D line because the prisms compensate for the dispersion of the
sample?. It has been found that a linear differentiating refractometer can measure

refractive index of milk more accurately than the Abbe refractometer®.

1.6  Electrical Conductivity of Milk

Electrical conductivity of milk has been used to detect udder infection at the

subclinical level, including mastitis since elevated levels of sodium, potassium, and
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chloride ions cause an increase in conductivity’”. Conductance is the reciprocal of the
resistance measured between opposing faces of 1 cm cube of the liquid of interest. Units
for conductance is Q'cm” but the SI unit for Q"' is siemens (S) and therefore,
conductance is typically expressed in S/cm. Instrumentation has been developed to
convert conductance to conductivity, a property that can be used to compare results from
different experiments. Conductivity is the conductance multiplied by the cell constant.
The cell constant, a function of the physical characteristics of the measuring cell,
specifically refers to the distance between the two measuring electrodes divided by the
cross sectional area of the electrodes. Recently manufactured conductivity meters
automatically multiply the measured conductance by the cell constant unique to the
measuring probe so that the output is in Siemens directly.

One study found the mean conductivity in uninfected bovine milk to be
4916 * 506 uS based on a sample population of 92 cows; however the temperature at
which the measurements were made was not listed °. Quantitative conductivity can be
measured to * 1 to 2 % when the resistance between electrodes is within 1000 Q and the
temperature is maintained to within + 0.1°C ¥’. Keeping a constant temperature is
important in conductivity analysis since, as the temperature of the sample increases, there
is a corresponding increase in the dissociation of electrolytes and a decreasing viscosity'.
Likewise, fat globules reduce the conductivity measured of milk because they occupy
volume and impede ionic movement but homogenization has not been found to influence

the conductivity'.
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1.7  NIR FT-Raman Spectrophotometry of Milk

NIR FT-Raman techniques demonstrate potential in food analysis because unlike
conventional Raman spectrophotometry with excitation in the visible range, fluorescence
typical of major food constituents is dramatically reduced®®. Also, NIR FT-Raman
spectrophotometry can be used for remote sampling where laser and scattering
wavelengths can be transmitted efficiently through fibre optics. In general, Raman
spectrophotometry can be an alternative to infrared spectrophotometry because water
produces only a weak signal and thus aqueous samples can be analyzed without major
interference of water peaks.

In Raman spectrophotometry, light scattered by molecules at wavelengths
different from the incident radiation, is monitored. Raman transition occurs when a
photon excites an atom to a virtual state and then quickly relaxes to an eigenstate by
releasing a photon. This is different from fluorescence because Raman scattering does
not involve transfer of electron population to the intermediate state. The scattered light is
dispersed and separated according to wavelength to produce a spectrum that corresponds
to orbital energy levels.

Raman spectrophotometry has been used qualitatively to study the effect of
various conditions on dairy products. For example, Raman spectroscopy was used to
investigate the effect of freezing upon casein in ewe’s milk®. A recent study looked at
the Raman spectra of butter, potassium caseinate and alpha lactose for indication of band
positions for fat, protein and carbohydrates and milk®®. Casein was precipitated from the

milk and then analyzed in the 1800 to 1350 cm’ region using an argon ion laser.
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Fehrmann et al. were able to achieve SEC of 0.32 g/100g for fat estimation using Raman

spectrophotometry compared to the chemical reference method '

1.8 Overview of Research

The next chapter details the experimental methods implemented in this study for
SW-NIR, conductivity, refractive index, and NIR FT-Raman measurements of milk. The
statistical approaches used to develop the calibrations are then described. In Chapter 3,
SW-NIR spectrophotometric calibrations and subsequent SW-NIR, conductivity and
refractive index calibrations are developed using PLS analysis. The final section of
Chapter 3 describes the SW-NIR spectral, conductivity and refractive index calibrations
constructed using the genetic algorithm approach. Similarly, Chapter 4 examines PLS
analysis of NIR FT-Raman spectra and then NIR FT-Raman spectra with conductivity
and refractive index for milk composition estimation. As a comparison, the GA method
for constructing calibrations using NIR FT-Raman, conductivity and refractive index is
then investigated. In the last chapter, conclusions are presented along with

recommendations for future work.
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Chapter 2 Experimental Methods

2.1 Milk Standards

Milk Standards were obtained from Programme d’analyse des troupeaux laitiers
du Quebec (PATLQ, Quebec). These standards are sold commercially for the intended
use of infrared spectrometer calibration in order to quantify raw milk composition.
Standards are prepared using a physical fractionation of milk to ensure consistency and
meet the estimated shelf life needs of industry. Methodology for sample preparation is in
accordance with that defined by the International Dairy Federation®. In this method, a
bulk milk sample is made by pooling at least 60 herd milks. From this bulk milk sample,
5 fractions are obtained. The first fraction is the whole bulk milk sample itself. Bulk
milk pasteurized and then stored for 12 hours at 4 °C for natural creaming. Cream is
skimmed off to yield a cream fraction and a skim milk fraction. The skim milk fraction is
centrifuged to reduce its fat content. The skim milk fraction is then filtered using an
ultrafiltration module with a 10000 Daltons separation membrane. Ultrafiltration
technology refers to the separation of components based on solvated size and structure
using pressure and a semi-perm.eable membrane without the use of heat. The
ultrafiltration step yields the fourth and fifth fractions. The fraction that moves through
the membrane is called the “ultrafiltrate” and the fraction that doesn’t is the “retentate”.
Of the original skim milk, the retentate contains approximately 100% fat, 100% protein,
50% lactose, and 50% minerals. To make the milk samples, the skim milk, cream,

permeate and retentate fractions are combined. The standards were pasteurized and
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partially homogenized (65°C at 4000 psi). All standards contained Brotab, a commercial
preservative specifically made for milk used in analytical testing laboratories. Brotab is
composed of 30% 2-Bromo-2-Nitropropane-1,3-Diol (Bronopol) and 1.4% Pimaricin.
Both of these ingredients are antimycotic preservatives that prevent yeast and mold. The
milk standards were stored at 4 °C in the dark and were reported, by the manufacturer, to
be stable in composition for a month from the production date. Reference values for fat,
protein, and lactose were provided by the supplier citing the following methods: Kjeldahl
for protein, HPLC for lactose, and Mojonnier fér fat. The experimental design included
milk with a range, by weight, of protein content 2.4 to 5.2%, lactose content 4.30% to

4.65 %, and fat content 0% to 6%.

2.2 Near Infrared Spectrophotometry of Milk Standards

The NIR transmittance system used in the analysis of the milk standards was
composed of several components. The light source was a current regulated 250 W
Quartz Tungsten Halogen lamp (Oriel, Stratford, CT). Non-contact measurements were
made via two 3 mm diameter fiber optics for illumination and collection. Through the
use of optics, a collimated source was possible by placing the fiber optic cables at the
focal length of the lenses. Milk samples were contained in a glass cuvette with 10 mm
pathlength (Cole-Parmer, Quebec). The cuvette was stationary in a thermally controlled
copper cell holder. This cell was warmed with a water bath circulator (Neslab, NH) so
that the temperature of the milk at the time of analysis was 40 °C. The cell was fixed

atop a magnetic stirrer with a stir bar in the cuvette to ensure thorough mixing of the
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sample contents. The collection fiber was connected to a spectrograph (100S, American
Holographic, MA), equipped with a concave grating (model #446.34/L, American
Holographic, MA) with 20 nm/ mm dispersion and wavelength range of 360 to 1095 nm.
The wavelength range of analysis was adjusted to 510 to 1020 nm using a micrometer
connected to the grating. Width of the entrance slit to the detector was set to 100 pm.
The spectrograph had a 512 linear diode array detector (C4070, Hamamatsu Corp., NJ)
with a pixel size of 2.5 mm x 25 um. Each diode sampled 0.97 nm. A 16-bit 100 kHz
data acquisition board (AT-MIO-16X, National Instruments, TX) sampléd the spectra
from the diode array. Software in the C language served as an interface from the diode
array and data acquisition board. Data was collected and stored in a 486-66 MHz PC.
Integration time for each scan was set to 0.083 seconds and 30 scans were averaged for
each resulting spectrum. Wavelengths of the spectrophotometer were calibrated using a
didymium filter prior to each day of milk analysis. Absorbance spectra of the didymium
filter were found to be reproducible and did not drift over the entire year. Absorbance

was calculated using the negative log of the ratio of milk to air spectra.

2.3  Conductivity Analysis of Milk Standards

A TDS/conductivity meter (Oakton Instruments, IL) was used to perform all
conductivity measurements. The meter was calibrated with a potassium chloride standard
solution (Fisher Scientific, ON) prior to milk analysis. Measurements were made in the

automatic temperature compensation mode so that the meter calculated conductivity
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values referenced to 25 °C. All measurements were made with constant stirring of the

milk to ensure thorough mixing of sample contents.

2.4  Refractive Index Analysis of Milk Standards

Refractive Index measurements were made using an Abbe refractometer
(Bausch&Lomb, NY) illuminated by a white light source. A temperature-controlled
water bath was connected to the refractometer so that the prisms of the refractometer and

milk samples were at 20.0 °C.

2.5  Raman Spectroscopy of Milk Standards

The milk standards were analyzed in flint glass test tubes (6 mm ID, 10 mm OD)
using a NIR Fourier Transform Raman system (Bruker IFS-88). A 1064nm Nd:YAG
laser was used as the excitation source. The air-cooled, diode-pumped laser had a
maximum output power of 350 mW. A lens with focal length 150 mm was used to focus
the laser beam to 100pum and 180° scattering arrangement was implemented. In the 180°
arrangement, the laser beam hits the sample at the same side which emits the scattered
radiation. The detector element, consisting of a Ge diode, and pre-amplifier were cooled
with liquid nitrogen before analysis. Software provided by Bruker was used to record the
intensities and frequencies of the Stokes lines. Spectral acquisition was set from 0 to
3700 cm™ with a resolution 2 cm™”. This frequency range was selected since bands
corresponding to fat, lactose, and protein in milk have been identified previously using

Fourier transform infrared spectrophotome’try33 . Integration time of one scan was 2
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seconds but each spectrum was an average of 200 scans. Therefore spectral acquisition
time was approximately 6.7 minutes. Samples were analyzed at ambient temperatures

(22 - 25 °C).

2.6  Pre-processing of Data for PLS

Much of the published work in this field presents NIR spectra that have been
referenced to a scattering standard such as a ceramic plate. As mentioned, the spectra
presented here were referenced to air leading to absorbance spectra quite different in
appearance to those published. Air is a relatively weak scattering medium compared to a
ceramic plate. Scattering intensity is a function of wavelength and therefore, lower
attenuation of is found at shorter wavelengths. Rayleigh scattering is the type of
scattering obtained using a ceramic plate. For a comparison to published work, a
calibration transfer was made on all of the NIR spectra. This was done by taking the
difference between the average spectrum of milk samples and the average spectrum of
milk samples from a collaboration with the Department of Environmental Information
and Bio-production Engineering, Kobe University, Kobe, Japan'?. This was then added
to each spectrum in the data set. Calibration transfer does not affect the results because
the mean spectrum is subtracted from the data set when mean-centering prior to any of
the analyses used in this study.

Only the 700 nm to 1019 nm range of NIR spectra was used in this study.
Boxcar smoothing was done on the NIR spectral data set over a 3-point window (3 nm)

and over a 21 point (42 cm™) window on the Raman spectral data set to reduce the

24



random noise. Spectra were mean-centered by calculating the mean spectrum from the
spectral data set and then subtracting this average spectrum from each spectrum in the
data set.

Conductivity data of the milk samples was autoscaled. This was accomplished by
first calculating mean and standard deviation of the conductivity of the milk samples.
Mean conductivity of the milk samples was subtracted from the conductivity of each
sample. Following this subtraction, conductivity was divided by the standard deviation
of the conductivity for the sample set. Refractive index data was also autoscaled using

the same procedure.

2.7  Partial Least Squares Analysis

Partial least squares (PLS) regression, a multivariate statistical analysis approach,
was used to analyze the correlation of spectral changes with changes in milk composition.
The PLS method involves condensing spectral variations to predominant factors. These
factors are used to create a calibration that relates spectra to milk constituent
concentration. In this study, each milk sample had fat, lactose, and protein
concentrations determined by chemical reference methods. The vector of fat, lactose, or
protein reference values can be represented by Y. The number of rows in Y is equal to
the number of samples, m.

The matrix of dependent variables is represented by S with m rows and the
number of columns equal to the number of wavelengths or wavenumbers, n. For
example, if S represents the Raman spectra, conductivity and refractive index, S would

consist of 68 rows by 1921 columns because the spectra were collected over 1919
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wavelengths/wavenumbers plus 2 additional wavelengths/wavenumbers for conductivity

and refractive index data.

The independent and dependent variables are related to each other by the

expression:
Y =S * P 2.1
dimensions (mx1) (mxn) (nx1)
where P is a column of calibration coefficients, each corresponding to each
wavelength/wavenumber of S. PLS is used to determine P.

A subset of the data is designated as the calibration set, consisting of spectral
absorbances S and milk constituent concentrations Y. By multiplying each side of
equation 2.1 by the inverse of S, P is solved for:

P = S'* Y (2.2)

Whén the inverse of a matrix is multiplied by that matrix, the result is the identity
matrix, I, or 1. Calculating the inverse of a matrix is a complex undertaking and PLS can
be used to approximate the inverse. This is done by decomposing S into the matrices T
and L. The loading matrix, L, defines a new spectral coordinate system and T is the
scores matrix, which defines intensities in the new coordinate system. Therefore S is
defined in the new coordinate system as:

S = T*B +E; 2.3)
Dimensions of L are f by m, where the n spectral wavelengths are now represented by f
basis vectors. Dimensions of T are n by f, where f represents intensity in the new

coordinate system. The residual portion of the data that could not be correlated is
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represented as E;. Thus the prominent features of the spectra have been described using f
optimal factors.

Independent variable Y must also be described in the coordinate system. This is
done by relating T to the constituent concentration using vector V in the following
manner:

Y = T*V +E ‘ 24
where V, with dimensions % by 1, is specific to the independent variable and E, is the
residual data that could not be described in the new coordinate system.

Matrices T, L, and V are found by examining the covariance between the
dependent and independent variables. The PLS algorithm consists of a series of iterations
where each iteration is designated by 4. Each iteration uses a linear least squares analysis

between the spectra and concentration.

The first factor Wy, is found by the regression of S onto Y:
W,=S *Y/(Y *Y) (2.52)
The first score vector T} is found by the regression of S on W,:
Th=S * W,/ W, *W, (2.5b)
Similarly V,, the scalar score vector is found by the regression of T, on Y:
Vi=Th *Y/ Tk * T (2.5¢)
The loading vector L is found by regression of S on Tp:
Li=S *Ts/Ts *Th (2.5d)
By multiplying T, by Ly, the h™ order approximation to S is obtained. For

example, during the first iteration, #» = 1 the first factor W, represents the spectral
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contributions of pure components to component concentration. To calculate the rest of
the factors, the first approximations (PLS estimates) to S and Y must be subtracted from
S and Y respectively to calculate the residuals:
E,=S-T,*L, (2.5e)
E.=Y-V,*T, (2.59)
Matrices S and Y are then re-defined as E, and E respectively and calculations
2.5a through 2.5f are repeated to calculate the next factor. This is repeated until 4 factors
have been computed.
The vector of calibration coefficients, P, using #* factors is then found by:
Psu = W *(L'* W) '*V! (2.6)
By substituting Pgs+ in equation 2.1, an estimate of the constituent concentration,
Y, is obtained. As described, there are 4 factors. Early factors capture a greater amount
of the variance as compared to later factors. In fact, later factors might weaken the
calibration model to estimate independent samples as the later factors are modeling
interferences and noise. The optima} number of factors, 4*, is the minimum number of
statistically significant factors leading to a model that neither under-estimates nor over-
estimates.
Predicted Residual Error Sum of Squares (PRESS) was used to determine the
optimum number of factors to form the calibration model. The PRESS was calculated
between the PLS estimates and the known concentrations for all values of 4, where:

PRESS =X (Y; - Si * Py)° 2.7)
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An F-test at 95% significance on the ratios of PRESS at adjacent values of h was
used to determine the minimum number of factors with an associated PRESS that was
statistically the same as the absolute minimum PRESS of all factors™.

The PLS regression analysis was conducted using pre-processed spectra and then
pre-processed spectra combined with auto-scaled refractive index and conductivity data
with Matlab (The MathWorks Inc., MA, Version 5.3 Release 11) software developed in
our laboratory.

The PLS algorithm was first computed using the leave-N-out cross validation
method. The calibration model was constructed using 75% of the data. This data set,
called the “calibration set”, included the samples that were at the extreme concentrations
of fat, lactose, and protein. In the leave-N-out method, N spectra are left out of the data
set for a set number of iterations. For each iteration, the calibration model is constructed
using the samples in the calibration set with the exception of the N samples that are kept
aside. The PRESS is then calculated using the N samples and the calibration model. At
the end of the iterations, the cumulative PRESS is calculated and the 95% F-test is used
to determine the optimal number of factors. The calibration vector is then developed
using PLS analysis of the entire calibration set at the optimal number of factors. Using
this calibration model, SEC and R? are calculated for the calibration data set. The test
set, which consisted of the 25% of the data that were set aside and not used at all to
compute the calibration, is used to calculate the-SEP and R%. In the leave-N-out cross
validation method, PLS was configured to leave 10 samples out for five iterations.

As mentioned, the milk samples were collected in 6 monthly sets. To investigate

the influence of variation between milk sample sets upon the calibration, the regressions
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were determined using another mode of cross-validation, leave-one-set-out cross
validation. In this configuration, one set of samples is excluded from the calibration and
the calibration is determined using the remainder of the samples. The calibration model
is then used to estimate the set that has been excluded. This is repeated until each set has
been left out once, resulting in 6 calibration vectors. Résidual errors between estimated
and reference values are combined and standard error is computed. In this case, the
standard error calculated was called the standard error of cross validation (SECV)

because the samples used to form the calibration are also used in the estimation.

2.8 Genetic Algorithm Approach for Analysis of Data

Genetic algorithms (GA) can be described as methods for selecting variables most
correlated to a component of interest using Darwinian selection theory to optimize the fit
of a regression. In Darwinian natural selection theory, evolutionary change is the result
of the production of vast genetic variation in each generation. The few individuals who
survive give rise to the next generation due to a well-adapted combination of inheritable
qualities. Mutation and recombination introduce variation into the population. Mutation
is a random event where a gene is transformed and recombination occurs during a mating
event when genes of two parents combine to produce new genes in an offspring.
Introduction of variation may lead to an elevated or depressed fitness compared to that of
the parents.

Wavelengths (SW-NIR) or wavenumbers (NIR FT-Raman) in the dependent

variables were selected using the GA approach to estimate fat, lactose, and protein by
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multiple linear regression (MLR). The objective was to obtain robust estimations of fat,
lactose, and protein using SW-NIR or Raman measurements and physical properties
(conductivity and refractive index) of milk.

Before outlining the specific design of the GA method used in this study, one
must note the following. The NIR spectra span 160 wavelengths and the conductivity
and refractive index data were added as two additional wavelength/wavenumbers to each
spectrum making a total of 162 “wavelengths”. The Raman spectra consisted of 1919
wavenumbers and with the physical property measurements, this results in a total of 1921
wavenumbers. For use in the GA method, spectra and corresponding reference
concentrations were divided into calibration and validation subsets. Calibration sets
consisted of 75% of the original data including the smallest and largest fat, lactose, and
protein concentrations. The remaining 25% of the original data were designated as the
validation set.

There are many ways to configure GA techniques®™ *® *7. The version of GA
employed in this study is an alteration of that used by Jang3 ¥ In this implementation of
GA, the objective was to determine the combination of wavelengths leading to the best

estimation of milk constituent concentration according to the expression:

Y =c1*Saa t 2*Sap + €3*Sac + 4*Saa ..+ en*Sant D (2.8)

where Y is the milk constituent concentration, S,, is the absorbance at wavelength n, m 1s

the number of wavelengths in the model, ¢ are the coefficients determined by MLR and b

is an offset (intercept) determined by MLR. The following is an outline of the sequence
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of steps involved in the GA approach developed. A brief description of each step (with

the exception of steps 5 and 6) follows the outline.

1. Define:

a. Range of potential wavelength/wavenumbers (wavelengths,
conductivity, refractive index).

b. Number of wavelength/wavenumbers to be used in the model of
estimation.

c. Number of generations

d. Mutation rate

2. Create a random initial population of individuals.

3. Evaluate standard error associated with each individual.

4. Create the next population consisting of the two most fit individuals of the
preceding population and new individuals resulting from crossover in the
preceding population.

5. Repeat steps 3 and 4 for the number of generations defined in step le.

6. Repeat 1 through 5 incrementing the number of wavelength/wavenumbers to
be used in the model (defined in 1¢) by 1.

7. Choose the optimal number of wavelength/wavenumbers.

1a. Defining the range of potential wavelength/wavenumbers.

The region of analysis of the NIR spectra of milk samples was from 700 to

1018 nm, which consisted of 322 wavelengths. Conductivity and refractive index were
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included with the spectra, which resulted in a total of 324 potential
wavelength/wavenumbers to  choose  from. Therefore the range of
wavelength/wavenumbers was defined from 1 to 324. Each Raman spectrum was 1919
wavenumbers. Time consumption of GA was decreased by including only every 8"
wavenumber in the data set, which reduced the number of wavenumbers to 240. With
conductivity and refractive index, the range of wavelength/wavenumbers for Raman
analysis by GA was defined from 1 to 240.

1b. Define number of wavelength/wavenumbers to be used in the model of
estimation.

The model was initially constructed using 2 wavelength/wavenumbers. This
number was incremented in steps of one to a maximum of 15 wavelength/wavenumbers.
1c. Define number of generations.

Through trial and error, it was decided that a maximum of 750 generations was suitable.
1d. Define mutation rate.

The mutation rate was defined as 0.50. This parameter will be discussed further in step 4.
2. Create a random initial population of individuals.

Each individual in the population consisted of the number of
wavelength/wavenumbers to be included in the model. The number of each
wavelength/wavenumber was binary encoded. For example, the decimal equivalent of 1
0100101 is 165 but only 240 potential wavelength/wavenumbers were in the Raman
spectra. Therefore, the decimal values were scaled to obtain the encoded wavelength
using the following formula:

A = {decval *[(maxr — minr)+(2"-1) ]}+ 1 (2.9
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where A was the output wavelength within the specified range, decval was the decimal
value, maxr was the maximum value of the range, minr was the minimum value of the
range, and » was the length of the binary code. Therefore 10100 1 0 1 corresponded to
the 105™ wavelength/wavenumber in the wavelength range.

3. Evaluate standard error associated with each individual.

Coefficients ¢; to ¢, of equation 2.8 were calculated for each individual using the
spectral measurements in the calibration set at the selected wavelengths/wavenumbers.
By comparing the GA estimates to the known concentrations in the calibration set, the -
SEC was determined. This was repeated using the validation set but in this case, the
standard error was referred to as SECV. Fitness was maximized by using the GA
technique where both SECV and SEC were to be minimized. Therefore, similar to work
by Ding et al., the fitness of the individual was defined as 1/(SEC*SECV) *.

4. Create the next population.

The two most fit individuals of the preceding population were automatically
incorporated into the new population. The rest of the population was formed through
crossover and recombination of the other individuals in the previous population.
Crossover was conducted by randomly choosing two individuals in the preceding
population and also randomly, choosing a bit, deemed the crossover point, in the parent
strings. All bits after the crossover point were exchanged between the two individuals,
creating two new individuals. This was repeated until the new population was complete.
The new population, with the exception of the two previously most-fit individuals, was

subject to mutation. This was desirable to avoid getting trapped into local optima.
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Mutation rate, in this configuration, represented the percentage of bits in the population

that reverted to their other binary form.

7. Choose the optimal number of wavelength/wavenumbers.

Steps 5 and 6 are skipped as they are self-explanatory. The product of SEC and
SECV was plotted versus the number of wavelength/wavenumbers in the model. The
optimal number of wavelength/wavenumbers selected was determined to be the minimum
number that showed no statistical difference between its associated SEC*SECV and the
absolute minimum SEC*SECYV based on F-tests at the 95% confidence level.

The use of the GA method in selecting wavelengths for near infrared calibrations
has been attempted in previous work by others and it was found that the GA approach
leads to a reduction in prediction errors compared to PLS*. One of the differences
between the GA method and PLS is that in PLS, the entire spectrum is used to generate a
calibration vector whereas when using the GA technique, only the wavelengths that lead
to the best fitness are used. In fact, the GA-MLR approach has been found in some
instances to be superior fo PLS because it reduces the influence of data not containing
critical information on the calibration models®®. One of the drawbacks of the GA method
is that the user is faced with a large number of adjustable parameters that affect the
outcome such as fitness function, mutation rate, crossover scheme, number of generations
and population size*®. However, extensive investigation has been done to determine

optimum values for these parameters®,
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Chapter 3 Estimation Of Milk Composition Using SW-NIR
Spectrophotometry

The potential utility of SW-NIR spectrophotometry for quantitative analysis of
major constituents of milk could be an asset in evolving dairy herd management
practices. It is a fast, non-destructive, inexpensive technique with the capacity for remote
sensing via fibre optics. In this chapter, SW-NIR spectrophotometry of milk to determine
composition is examined. First, calibrations were made using PLS analysis of spectra
alone and then on the spectra combined with conductivity and refractive index
measurements. As an alternative method, the GA approach was used to construct a

calibration using SW-NIR spectra, conductivity and refractive index.

3.1 Near Infrared Spectra of Milk

To develop a calibration for milk composition determination using SW-NIR
spectrophotometry, milk samples with reference values for fat, lactose, and protein
content were obtained. The monthly sample sets were collected from July to December
2001. Each set consisted of either 12 or 16 samples but due to sample mishandling, one
sample was rejected of the 80 samples. These 79 samples were analyzed as they were
acquired on a monthly basis, using SW-NIR transmittance spectrophotometry.
Absorbance spectra of the milk samples are presented in Figure 3.1a. The most striking
feature of the spectra is the peak at 970 nm, which corresponds to 2™ overtone O-H
stretching of water. Baseline changes occur in NIR spectra of milk due mainly to light

scattering by fat globules?®. However in Figure 3.1a, offsets are observed
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Figure 3.1.  Original NIR absorbance (a) spectra of 79 milk samples where each

symbol represents a different sample set and smoothed, mean centered
spectra for PLS (b)
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corresponding to sample sets. Analysis of this effect on calibration is given in Section
3.5. Baseline changes are also visible in smoothed and mean-centered spectra presented
in Figure 3.1b. Though the baseline variation is still evident, these spectra are centered

about zero absorbance units with subtle variations between 900 and 950 nm emphasized.

3.2  Calibration of Fat, Lactose, and Protein in Milk by Short-Wave Near
Infrared Spectrophotometry Using PLS with Leave N Out Cross Validation

To assess the use SW-NIR spectrophotometry for milk constituent determination,
calibrations were conducted using PLS analysis. To fulfill this, 75% of the samples were
designated as the calibration set and subsequent models for fat, lactose, and protein were
developed using PLS analysis of the spectra. In the configuration of PLS used, leave-N-
out cross validation was implemented. Of the calibration set, 10 randomly selected
samples were left out for 5 iterations. At each iteration, the calibration model was
validated using the samples that were left out. The optimum number of factors used to
construct the final calibration was found using the cumulative PRESS. An F-test at a
95% confidence level determined that fat, lactose, and protein calibrations required 7, 6,
and 7 factors respectively as described in Chapter 2. Calibration vectors, each consisting
of PLS regression coefficients from 700 to 1018 nm, are shown in Figure 3.2. Heavily
weighted regions in the vectors are those that have large magnitude coefficients, both
negative and positive. Regression coefficients give information relevant for the
calibration of a constituent but weighting of certain wavelengths may not arise solely

from this constituent. Milk constituents largely responsible for spectral variation
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Figure 3.2  Calibration coefficients for fat (a), lactose (b), and protein (c) estimation

using SW-NIR spectra using PLS with leave-N-out cross validation
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influence the calibration of those constituents that have only minor contributions to
spectra. Proposed assignment of heavily weighted regions in the calibration vector to
functional groups was done using correlation charts and previously published results.

Triglycerides, the major constituent of milk fat, are composed of esters and C-H
groups in fatty acid chains. The calibration vector for fat is shown in Figure 3.2a. The
general trend of the calibration vector for fat consists of positive correlation between 750
and 800 nm, positive correlation at 920 nm, and negative correlation centered at 948 nm.
All of these regions correspond to C-H stre’tching13 . Also, there is negative correlation
from 830 nm to 900 nm, which is not a region typical of C-H but instead corresponds to
overtones of N-H stretching"’.

The carbohydrate, lactose, was shown in Figure 1.1. It has C-H groups, O-H
groups and ether groups. These groups are accounted for in the calibration vector for
lactose estimation, presented in Figure 3.2b. General trends in the calibration vector
include positive correlation from 800 to 890 nm, intense negative correlation from 906 to
914 nm, and infense positive correlation from 922 to 926 nm, which all agree to C-H
stretching'®. Negative weighting from 750 to 790 nm and from 940 nm to 950 nm can be
assigned to O-H stretching®?.

Protein is comprised of amino acids connected by peptide linkages. Functional
groups in proteins are C-H, N-H, and C=0 groups. The shape of the calibration vector
for protein estimation in Figure 3.2c consists of negative weighting from 780 nm to
840nm, corresponding to N-H groups, positive correlation at 904 nm, assigned to C-H
stretching, and negative correlation at 922 nm, corresponding to N-H stretching in

protein’’.
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Figure 3.3  Estimation of fat, lactose, and protein in calibration set (a - ¢) and test set

(d - f) using SW-NIR using PLS with leave-N-out cross validation
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Utility of calibration vectors in Figure 3.2 was assessed by using them to determine fat,
lactose, and protein in the calibration sample set. Estimation of milk constituents from
PLS with leave-N-out cross validation is shown in Figure 3.3(a to ¢). The line of identity
represents an ideal estimation. The models were further validated by using them to
estimate milk constituent concentration in the independent validation set. These
estimations are presented in Figure 3.3 (d - f). Measures of accuracy were indicated by
R? and standard error (SEC for calibration set and SEP for validation set) between

estimates and line of identity, which are listed in Table 3.1.

Table 3.1. Estimation of fat, lactose and protein in milk using NIR spectra using PLS

with leave-N-out cross validation

Calibration Set Validation Set
Constituent R? SEC R? SEP
(g/100 g) (g/100 g)
Fat 0.76 0.74 0.66 0.68
Lactose 049 0.09 0.35 0.08
Protein 0.46 0.49 0.14 0.58

These results show that the models do not satisfactorily estimate milk
composition. Although the general trends in the calibration vectors were accounted for,
the vectors were quite detailed. It is likely that the fine details of the calibration vector
indicate the modeling of noise. This may have enhanced the estimation of some samples
and hindered that of others. For example, in Figure 3.3a, estimation of milk samples with

a fat content greater than S g/100g and less than 2 g/100g have reduced accuracy
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compared to the standards with moderate fat content. Estimation of the samples in the
validation set deviate further from the reference values compared to estimation of
calibration set. This implies that the calibrations have described specifically the samples
in the calibration set but not an overall picture of milk composition that could be applied

to samples outside of the calibration set.

3.3  Conductivity and Refractive Index of Milk

Conductivity and refractive index are physical properties of milk related to
composition. Conductivity has been used to indicate mastitis and monitor concentration
and composition of solids during dairy processing'. Refractive index has also been
investigated as a means to determine total solids and added water in milk'. In order to
irhprove accuracy in estimation of milk composition by SW-NIR spectrophotometry,
conductivity and refractive index were included in the calibration.

Conductivity in the milk samples ranged from 4.05 to 4.85 mS with an average
conductivity of 4.39 mS and standard deviation of 0.15 mS. Refractive index
measurements of the samples ranged from 1.3454 to 1.3570 with an average of 1.3528
and standard deviation of 0.0027.

To evaluate the use of conductivity or refractive index without spectral input for
milk composition determination, linear regression was carried out between each physical
property and reference fat, lactose, and protein concentrations of the milk. The capability
of the physical properties to estimate milk constituents was judged by R? and standard

error between the actual constituent concentrations and the regression values. Results of
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the linear regression are presented in Table 3.2. From the results in Table 3.2, it is
apparent that the two physical properties are not suitable for accurately estimating milk
composition. Of all constituents, lactose demonstrates the strongest correlation to the
physical properties, particularly conductivity. This is expected because lactose
concentration changes have been found to relate to changes in sodium, potassium, and
chloride ions in milk as a means of maintaining osmotic pressure in the mammary
system®. The two properties show some relation to each other inversely, as presented in
Figure 3.4. Therefore, it is expected that where one constituent shows a positive
relationship with conductivity, refractive index should be negatively related to the same

constituent.

Table 3.2.  Regression of reference constituent concentration on conductivity and

refractive index

Conductivity Refractive Index
Constituent R? Standard error R? Standard error
Faf 0.50 1.50 0.66 1.42
Lactose 0.76 0.01 0.65 0.12
Protein 0.24 0.71 0.24 0.65

In the case of fat, lactose and protein, this trend was observed. Both fat and protein were
found to have an inverse relationship to conductivity whereas lactose had the opposite
trend. A positive relationship was observed between refractive index and fat and protein

content and again, lactose shows the opposite trend. It is not surprising that fat and
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protein would have similar trends in refractive index because both exist colloidally in

milk and contribute to the light-scattering properties of milk.

3.4  Calibration of Fat, Lactose, and Protein in Milk using Short-Wave Near
Infrared Spectrophotometry With the Addition of Conductivity and
Refractive Index Using PLS with Leave N Out Cross Validation

Calibration of fat, lactose and protein was not sufficient using SW-NIR spectra.
Although the calibration vectors demonstrated expected trends, marked noise content
interfered with the estimation. Conductivity and refractive index have been found to be
related to milk composition. By including this added information with spectra for PLS
analysis, construction of a more accurate calibration was attempted.

The optimum number of factors used to construct each calibration was found by
PRESS using leave-N-out cross validation. At a 95% confidence level, an F-test was
used to ascertain that 8, 3, and, 9 factors were significant for fat, lactose, and protein
calibrations, respectively. On the entire calibration set, PLS regression was then
conducted to develop models using the optimal number of factors. Resulting calibration
vectors for fat, lactose and protein are shown in Figure 3.5 (a - ¢).

The calibration vector for fat estimation using SW-NIR spectra, conductivity, and
refractive index is presented in Figure 3.5a. It has been split into two windows, one
consisting of the spectral regression coefficients and the other for viewing regression
coefficients corresponding to conductivity and refractive index. Spectral coefficients in
Figure 3.5a showed the same weighting pattérn observed in the calibration vector for fat,
constructed using only SW-NIR spectra (Figure 3.2a). This included C-H stretching

corresponding to positive correlation between 750 and 800 nm, at 920 nm, and negative
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weighting near 948 nm"’. In addition, negative weighting of the region from 830 nm to
910 nm, assigned to N-H stretching was observed'’. Conductivity and refractive index
were not strongly weighted according to the magnitude of their correlation coefficients.
However, inclusion of these two properties influenced the calibration. Although a larger
number of factors was used to construct the calibration, spectral regression coefficients
were less noisy than those observed in the calibration using only SW-NIR spectra. This
indicates that the addition of conductivity and refractive index accentuate variation in
spectra and thus weighting of irrelevant information is reduced.

Calibration for lactose, presented in Figure 3.5b, required only 3 factors. Only the
two physical properties were primarily used to describe lactose content in milk with
minor contributions from the spectra. This theory is supported by the weak magnitudes
of the spectral coefficients relative to the dominating conductivity and refractive index.
In the spectral portion of the calibration vector, significant correlation is only visible near
900 nm, which was also observed in the spectra-only calibration vector for lactose, and
from 970 nm to 1018 nm. Weighting near 900 nm agrees to C-H stretching and the
second region corresponds to O-H stretching®!.

Like fat, calibration for protein using SW-NIR spectra, conductivity and refractive
index used more factors compared to the calibration constructed without the physical
properties. The calibration vector for protein, presented in Figure 3.5c, was noisier than
the spectra-only calibration. Neither conductivity nor refractive index were weighted
significantly relative to the magnitudes of the spectral calibration coefficients. This

indicated that the increased number of factors reflects description of noise in the spectra.
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using SW-NIR spectra with the addition of conductivity, (Cond.) and

refractive index (Refr.) using PLS with leave-N-out cross validation
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Overall pattern of spectral regression coefficients was equivalent to the calibration
without conductivity and refractive index. In general, N-H stretching was apparent in the
negative weighting between 780 nm and 840 nm and at 920 nm*'. Correlation at 904 nm
corresponded to C-H stretching®'.

Once the calibration vectors had been constructed, they were used to estimate fat,
lactose, and protein content in the calibration set milk samples, shown in Figure 3.6 (a-c).
Validation set estimates are presented in Figure 3.6 (d-f). There was a striking
improvement in accuracy as compared to the estimation found using spectra alone. Table
3.3 lists R” values and standard errors found between the estimated and reference milk
constituent concentrations. Including conductivity and refractive index improved
estimation of fat, lactose, and protein by 27%, 55%, and 27% respectively, based on
decreases in SEC, compared to spectra-only calibrations. Improvements in SEP for fat,

lactose, and protein were 29%, 50%, and 52 % respectively.

Table 3.3.  Estimation of fat, lactose and protein in milk using SW-NIR spectra with
the addition of conductivity and refractive index using PLS with leave-N-

out cross validation

Calibration Set Validation Set
Constituent R’ SEC R’ SEP
(g/100g) (g/100 g)
Fat 0.84 0.59 0.83 0.48
Lactose 0.81 0.05 0.82 0.04
Protein 0.71 0.36 0.80 0.28
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In the case of fat, the calibration required more factors when including the additional
parameters and the calibration vector appeared less noisy. Judging by the improvement
in accuracy using this calibration vector, it is likely that inclusion of conductivity and
refractive index accentuated relevant changes in the spectra. Influence of conductivity
and refractive index on the calibration for lactose is somewhat different. In this case,
conductivity and refractive index directly aided the calibration and weighting of the
majority of the spectral wavelengths was diminished. = Nevertheless, spectral
contributions, although minor were significant. In Table 3.2, linear regression of
conductivity on lactose content only resulted in an R* of 0.76 and for refractive index,
only 0.65 but as shown in Table 3.3, using the combination of spectra, conductivity and
refractive index for lactose estimation exceeds those results. Although protein calibration
using spectra with the two physical properties shows an improvement in accuracy over
that achieved using only spectra, it is suspected that a significant amount of noise is
modeled in the calibration. One extra factor was needed to construct the calibration using
spectra, conducti.vity and refractive index but the general trend of the calibration vector
remained unchanged. It was, however, noisier, which implied that the extra factor
described noise.

Also of note is the under-estimation of high (> 5 g/ 100 g) protein milk samples as
shown in Figure 3.5 c¢) and f). It was observed that high protein standards coagulated
after 1 week when the reported shelf life of the standards at 4 °C was 4 weeks. When the
manufacturer was informed of this, it was advised that the standards be analyzed within a
week of shipment, because the high protein samples would denature completely after one

week. The manufacturer also informed us that high protein standards had been prepared
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in different vessels compared to the other standards but they were unable to link the
source of the problem to this. Slow denaturing of the protein in these standards reduced
the protein concentration. Because of this, reference concentrations for high protein
standards were not representative at the time of SW-NIR analysis. The calibration was
repeated with the omission of the higher protein samples but the calibration was found to
be less accurate. It is possible that the high protein standards were necessary in the
calibration due to the information provided even if the concentration was non-linearly

represented.

3.5 Investigation of inter-sample set variation using PLS analysis of SW-NIR

measurements with leave-one-set-out cross validation

In Figure 3.1, in addition to baseline offsets due to scattering, offsets between
sample sets were observed. Influence of variation between sample sets was examined by
re-constructing the calibrations using PLS with leave-one-set-out cross validation. In this
cross validation mode, thé calibration was done 6 times leaving out one sample set each
time and estimating the samples in the set that were left out with the calibration models
developed using the samples of the remaining sets. In the absence of inter-sample set
variation, the calibration vectors should overlap entirely.

For fat, lactose and protein calibration using SW-NIR spectra using PLS using
leave-one-set-out cross validation, it was found that 7, 2, and 3 factors respectively were
necessary at the 95 % confidence level. The calibration vectors are presented in Figure

3.7. Baseline offsets were apparent in the calibration vectors in Figure 3.7 between each
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iteration where a sample set was removed from the data. All six calibrations resulted in
similar spectral weighting but there is a magnitude difference between vectors. No
obvious trend was observed, meaning, one wavelength may be weighted less in one
calibration vector compared to the other calibrations, but another wavelength would be
weighted more in the same calibration vector. In the calibration vectors for lactose
estimation, not only does the baseline vary but also the general trend of the calibration
vectors differs between 900 nm and 950 nm. This is of particular interest because this
wavelength region was significantly weighted in the calibration obtained using PLS with
leave-N-out cross validation for lactose estimation.

Calibration was repeated with the same type of cross-validation using SW-NIR
spectra with the addition of conductivity and refractive index. For fat, lactose and
protein, the calibrations were found to require only 1 factor at the 95 % confidence level.
Regression coefficient vectors of these calibrations are presented in Figure 3.8. The same
variation was apparent in the spectral calibration coefficients. In addition, regression
coefficients corresponding to both conductivity and refractive index differ in magnitude
between calibrations.

Accuracy in the estimation by leave-one-set-out cross validation approach is
much worse than that found using leave-N-out cross validation. Correlation between
cumulative estimates and reference values for fat, lactose, and protein content using the

leave-one-set-out cross validation approach is listed in Table 3.4.
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Table 3.4.  Estimation of fat, lactose and protein using PLS analysis with leave-one-
set-out cross validation of SW-NIR spectra and SW-NIR spectra with the

inclusion of conductivity and refractive index

Estimation using NIR spectra Estimation using NIR spectra with

conductivity and refractive index

SECV SECV
Constituent R? (g/ 100 g) R? (g/100 g)
Fat 0.49 091 0.60 0.90
Lactose 0.00 0.13 0.76 0.01
Protein 0.00 0.71 0.24 0.70

In comparison with the SEC results found using leave-N-out cross validation,
SECV determined using leave-one-set-out cross validation increases by 23%, 44%, and
45% for fat, lactose, and protein estimation, respectively, when using only SW-NIR
spectra. Similarly, in the calibrations using SW-NIR, conductivity, and refractive index,
SECV increases by 32% and 21% for fat and protein when implementing leave-one-set-
out compared to leave-N-out cross validation. However in the case of lactose, SECV
decreases by 88% compared to SEC achieved using leave-N-out cross validation using
spectra and the two physical properties. The R? and SECV calculated using leave-one-
set-out cross validation for lactose estimation is the same as that achieved using the linear
regression of conductivity on the reference values as listed in Table 3.2. This implies that
the variation in spectra between sample sets is so significant that lactose is estimated
almost entirely by conductivity. In general, the diminished accuracy in fat, lactose and

protein estimation using this type of cross validation demonstrates that variation between
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sample sets is detrimental to the calibration. In order to develop a robust and accurate

calibration, description of this inter-sample set variation is necessary.

3.6  GA approach for fat, lactose, and protein estimation using SW-NIR,

conductivity and refractive index

Milk has a high degree of opacity and efficiently scatters light. This can be
problematic in vibrational spectrometry for quantitative analysis because of reduced light
intensity at the detector. One way of eliminating noise is by choosing spectral regions
that encode information unique to the analyte of interest. The GA method is used for
wavelength selection in order to quantify a constituent. This is an alternative approach to
PLS, which uses the entire spectrum to estimate constituent concentration.

To compare PLS-constructed models for estimation of milk composition using
SW-NIR spectra, conductivity and refractive index measurements, models were
constructed using the GA approach. As in PLS, a subset of samples were designated as
the calibration set, which contained 75% of the data including extreme concentrations
and the remaining 25% defined the validation set. Estimation of concentrations of the
calibration set and validation set yielded standard errors SEC and SECV respectively.
The quantity to be maximized by the GA technique was the product of SEC and SECV.

The models were constructed using 1 to 15 wavelength(s). In order to determine
the optimal number of wavelengths to be used in the model, the product of SEC and

SECYV was plotted against the number of wavelengths in the model at the maximum
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number of generations, shown in Figure 3.9. An F-test was used to determine the optimal
number of wavelengths at a 95% confidence level. For fat, lactose, and protein
estimation, 9, 8, and 8 wavelengths were used in the models respectively. As described
in the Section 2.8, the models were constructed with incrementing generation. A total of
150 generations was selected so that optimal wavelength selection could be reached. To
ensure that the solution reaches a minimum, the product of the standard errors were
plotted versus generation in Figure 3.10. This allowed observation of the evolution of the
wavelength model and the progression of error. From these plots it appears as though the
final models were stable.

The wavelengths selected by the GA method were then subjected to multiple
linear regression using the calibration set to determine the numerical coefficients. The

resulting models for fat, lactose and protein estimation are:

Fat= -893.5-224.6*S7,4- 870.9*S775+ 669.3*S750+ 915.4*Sg0s
+154.0*Sg10792.3*Sg45 - 499.5*Sge0 + 649.3*Sss;
+ 684.6*refractive index 3.D

Lactose =- 0.6 — 33~9*S716+ 41.4*S‘76o— 7.1*8790— 3-9*8846 —25.5*8910
+ 30.9*Sg4— 3.3*S1010+ 0.8*conductivity (3.2)

Protein = 59.3 + 559.4%S56— 553.1*S750— 260.7*Sgog + 309.8%*Sg4z + 142.2%*Sgss
+223.7*Sg1; — 409.4*Sg;4 + 65.0*refractive index (3.3)

where S represents SW-NIR absorbance and the numbers in subscript are the

wavelengths. Selected wavelengths for fat, lactose, and protein determination were
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indicated on an average milk spectrum in Figure 3.11. The 2" y-axis refers to the
numerical coefficients corresponding to the wavelengths selected. The O-H stretching
from water at 970 nm is largely avoided. Weighting of absorbances at 844, 861, and 879
nm correspond to C-H stretching. Selection of refractive index is due to contribution of
fat globules to scattering properties of milk.

The selected wavelengths for lactose show that the weighting is heavier outside of
the 800 nm to 900 nm region, contrary to the fat calibration. Absorbance at 716, 846,
910, and 924 nm agrees to C-H stretching and 716 nm, along with 1010 nm are assigned
to O-H groups. Similar to the PLS results, conductivity was selected, which is reasonable
because lactose concentration is correlated with the soluble salts in milk.

In the model for protein estimation, the selected wavelengths span most of the
analyzed region, avoiding the broad water stretch at 970 nm. Two of the wavelengths
selected for protein estimation can be assigned to N-H stretching, 780 and 808 nm and
828, 888, and 912 nm are correlated with C-H stretching. Refractive index was selected
by the GA approach because like fat, protein exists in milk colloidally and influences the
scattering properties of milk.

These models constructed using the GA method were used to estimate milk
composition of the calibration sample set. These estimations are presented in Figure 3.12
(a - ¢). The selected wavelengths and coefficients determined using the calibration set
were then used to estimate milk constituent concentrations in the validation set, which is
shown in Figure 3.12 (d - f). Accuracy using the models is illustrated by the R? and

standard error between the estimated and reference values. The results found for R?,
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SEC, and SECV using the GA method to estimate fat, lactose, and protein are listed in

Table 3.5.

Table 3.5.  Estimation of fat, lactose and protein using SW-NIR spectra, conductivity

and refractive index with GA.

Calibration Set Test Set

R’ SEC R’ SECV
Constituent (g/100g) (g/100g)
Fat 0.83 0.63 0.95 0.26
Lactose 0.88 0.04 0.96 0.02
Protein 0.64 0.40 0.78 0.30

Estimation of fat in the calibration set shows a 7% decrease in SEC compared to
the same property found using PLS with leave-N-out cross validation. The test set is
even better estimated, showing a 56% reduction when comparing SECV to SEC obtained
using PLS. Another notable improvement achieved using wavelength selection is that the
model is better able to estimate extreme fat content. Estimation of lactose using the GA
model shows an improvement in SEC and SECV by 20% and 60% respectively
compared to SEC found using PLS. Not only do these results exceed those by PLS in
this study, but they are better than any reported results found using SW-NIR
spectrophotometry for the estimation of lactose in milk'> %, For protein, the calculated
SEC using PLS with leave-N-out cross validation is better than the result determined

using the calibration set and the GA model by 10%. However, SECV obtained for the
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validation set using the GA technique improves on the PLS result by 17%. Results for
protein estimation from the GA approach were better than those obtained by Tsenkova et
al. using PLS analysis of log(1/T) SW-NIR spectra acquired using a 10 mm pathlength'®.
However, the work by Tsenkova et al. is different from the research presented here
because prepared primary milk standards were not used. Instead, 258 milk samples
collected from just three cows analyzed by MilkoScan were employed and comparison to
primary standards was not attemptedlz.

An advantage of the GA method is that only wavelengths that lead to the smallest
errors are used in the calibration, unlike in PLS where the entire spectrum is used.
Therefore, although results were better for fat and protein using PLS, it should be
emphasized that in the GA method no more than 10 wavelengths were used for
estimation as opposed to 160. In spite of this, it is suspected that random correlation with
some of the wavelengths was selected by the GA approach. A limitation of the present
GA configuration is the assumption that the model for estimation took the form of a
linear regression .when it is unknown whether the estimation of milk composition is due
to linear reactions. Finally, a drawback of the GA method was that it was more time
consuming than PLS. A single calibration using PLS analysis of NIR spectra only took
minutes but the same using GA took 4 hours. Once the calibration is obtained, however,
subsequent estimations using the calibration take an equivalent amount of time compared
to using the calibration developed using PLS regressions. In both cases, there is no need
to recalibrate provided the sample set used to develop the calibration was large enough to

capture sufficient variation.
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Chapter 4 Estimation Of Milk Composition Using NIR FT-

Raman Spectrophotometry

Like SW-NIR spectrophotometry, the use of NIR FT-Raman measurements for
the quantification of milk constituents, like fat, lactose, and protein, could be beneficial to
the dairy industry. These measurements are rapid without any sample pre-treatment and
do not consume the samples themselves. Near Infrared FT-Raman spectrophotometry
could be measured simultaneously as the samples are being collected using remote
sensing through the application of fibre optic technology. The structure of this chapter
follows that of Chapter 3. Fat, lactose, and protein calibrations were developed using
PLS analysis of spectra alone and then on spectra with the inclusion of conductivity and
refractive index. For comparison to calibration models found using PLS, the GA method
was used to construct models using NIR FT-Raman spectra, conductivity and refractive

index.

4.1 NIR FT-Raman spectra of milk

To investigate the use of NIR FT-Raman spectrophotometry for determining
major milk constituents, prepared primary milk standards were obtained. These 68
samples were collected in 5 sets from August to December 2001. These samples were
the same samples that were analyzed using SW-NIR excluding the July sample set. The
samples were analyzed using NIR FT-Raman spectrophotometry at ambient

temperatures. The spectra consisted of intensity of the scattered radiation versus the

66



Raman wavenumber, which is the difference between the frequency of the scattered
radiation and laser frequency. Raw spectra of the milk samples are presented in Figure
4.1a. Unlike in the NIR data, offsets corresponding to sample sets were not observed in
the Raman spectra. The intensity close to 0 cm’ is representative of Rayleigh scattering,
an elastic form of scattering where the scattered photons are of the same frequency as the
excitation source. Smoothed and mean-centered spectra are presented in Figure 4.1b.
Variations in the spectra appear at ~ 170, 350, 1050, 1250, 1450, 1950, 2950, and 3250
cm’. Bands at 170 cm™ and 3250 cm™ are indicative of the water constituent in milk.
Although water has weak Raman scattering properties, it shows several distinct bands at
60, 170, and between 3200 and 3600 cm™ *!.  Other bands are reflective of the organic
constituent in milk. 350 cm™, 1050, 1250, and 2950 cm! correspond to chain expansion
in alkanes, C-C stretching in alkane, CH; rocking, and CH stretching in fatty acids

41

respectively . As expected, the Raman spectra of milk appear less complex than NIR

spectra because overtone and combination bands are less prominent and thus overlapping

is less frequent®’.

4.2 Calibration of Fat, Lactose, and Protein in Milk by NIR FT-Raman
Spectrophotometry Using PLS

To develop calibrations using Raman spectra for milk composition analysis, a
subset of the milk samples, the calibration set, was used for PLS analysis. The
calibration set consisted of 75% of the samples including extremes for fat, lactose, and

protein concentrations. The remaining 25% of the samples were designated as the
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independent validation set. Calibration models were constructed using PLS regression
with leave-N-out cross validation. In this configuration, there were 5 iterations. At each
iteration, 10 randomly selected samples were excluded from the calibration and the 10
samples that were left out were used to validate the model. For each iteration, there was
a PRESS value for each factor. A cumulative (from all 5 iterations) PRESS plot was
used to determine the optimum number of factors to be used in the calibration model. An
F-test at a 95% confidence level determined that 5 factors were necessary for fat, lactose,
and protein calibrations. The calibration vectors, which are comprised of PLS regression
coefficients corresponding to spectral wavelengths, for each milk constituent are
presented in Figure 4.2. These regression coefficients are relevant to the calibration of
each species but may not have arisen from the species alone. Assignment of heavily
weighted bands in each calibration vector to functional groups were made using
correlation tables and published work.

All fat consists of esterified fatty acids. Fatty acids are composed of hydrocarbon
chains with a terminal carboxyl group. The calibration vector for fat estimation is in
Figure 4.2a. Low frequency bands 48 and 125 cm™ are due to elastic scattering of fat
globules. Another possibility is that these bands indicate water-lipid interactions because
stretches associated with hydrogen bonding occurs between 200 and 50 cm™ #!. The band
at 1447 cm™ is due to CH, scissoring. This type of vibration has been identified at 445
cm’ to quantify un-saturation of fat>. Weighting of 2874 cm™ falls in the expected
region of symmetric stretching of acyclic -CHa- groups*?. Furthermore, absorbance at
this wavenumber is used in commercial infrared milk analyzers for the estimation of milk

fat content. Intense weighting of 1650 cm’ was assigned to C=C stretching modes of
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lipids. This band was observed in FT-Raman spectra of butter*’. Peaks at 3171 and 3474
cm™ correspond to O-H stretching and may represent a water-fat interaction. This type of
band was also visible in the SW-NIR calibration vector for fat estimation.

Lactose, a sugar, is a ring structure that is composed of C-H, O-H, and C-O-C
groups. The calibration vector for lactose estimation is shown in Figure 4.2b. Hydrogen
bonding to lactose is expected between 200 and 50 cm” #!. The bands at 66, 112, and
350 cm™ can be assigned to this phenomenon and/or elastic scattering. Primary and
secondary alcohol C-O vibrations are visible in the weighting of 350 cm’, as this is
expected between 330 and 390 cm™ 2. Weighting of 2860 cm™' is an expression of CH,
stretching, although it is unclear what specifically the vibration is ascribed to because
asymmetric and symmetric stretching of CH, in -CH,0- and CH,OH occur in this
frequency region*’. Correlation at 2974 cm’ probably corresponds to C-H stretching
because it has been found that this type of stretching occurs at 2982 cm™ in another
sugar, sucrose>. The band at 3294 cm™ occurs in the region where O-H stretching in
carbohydrates has been tabulated*’.

Amino acids are the building blocks of proteins and consist of structures with an
amino group (NH3") at one end and a carboxy! group (COO") at the other end. Peptide
bonds (-CO-NH-) fuse the amino group and carboxyl group of different amino acids to
form proteins. Spectral regression coefficients for the calibration of protein are shown in
Figure 4.2c. The peak at 1001 corresponds to CNC symmetrical stretching in protein®’.
Weighting of 1265 cm™ was assigned to amide III modes of protein, which consists of
CN stretching, NH bending, C=O stretching, and O=C-N bending**. In addition,

1641cm™ corresponds to amide I modes of protein, consisting of C=0 stretching, C-N
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71



stretching, and NH bending vibrations*2. Bands at 2864 and 2966 cm™ were assigned to
C-H stretching in proteins®. Weighting of 3163 cm™ agrees to N-H stretching associated
with intramolecular hydrogen bonding 2.

The calibration vectors obtained using PLS with leave-N-out cross validation
were used to estimate fat, lactose, and protein in the standards of the calibration set. This
was done by multiplying the spectral regression coefficients in the calibration vector by
the NIR FT-Raman spectra of the samples. For validation of the models, estimation of
the independent test set was also conducted. Figure 4.3 (a - c) illustrates the estimation of
the calibration set and (d - f) the validation set where the line of identity represents an
ideal estimation. Accuracy achieved using the models were determined by R? and the
standard error (SEC for calibration set and SEP for validation set) between the estimated
concentrations and concentrations determined by reference methods. These quantities are
listed in Table 4.1. Results found using Raman spectra show a vast improvement over
results obtained using SW-NIR spectra with and without conductivity and refractive
index using PLS with leave-N-out cross validation. The results are also better than R’
and standard errors found using the GA model of the combined SW-NIR, conductivity
and refractive index with the exception of lactose. Results for the calibration set were the
same between these two calibrations but there was a discrepancy between the validation
set data. Overall, these results demonstrate that NIR FT-Raman spectrophotometry is a

more accurate method for determining fat, lactose, and protein in milk.
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Tabled.1.  Estimation of fat, lactose and protein in milk using NIR FT-Raman spectra

using PLS with leave-N-out cross validation

Calibration Set Validation Set
Constituent R’ SEC R’ SEP
(g/100g) (g/100 g)
Fat 0.99 0.17 0.98 0.16
Lactose 0.88 0.05 0.84 0.04
Protein 0.77 0.35 0.58 0.29

4.3 Calibration of Fat, Lactose, and Protein in Milk by NIR FT-Raman
Spectrophotometry With the Addition of Conductivity and Refractive Index
Using PLS

Estimation of milk constituents using Raman spectra were found to have better
accuracy than obtained using NIR spectra. In the NIR calibration, accuracy was
improved through the inclusion of conductivity and refractive index. A similar
improvement was sought by adding the two physical properties to the Raman spectra.

Using PLS analysis with leave-N-out cross validation, the PRESS was calculated.
An F-test significance comparison was made on the PRESS values to determine the
minimum number of statistically significant factors at a 95% confidence interval. Using
this method, 6, 5, and 6 factors were used to construct calibrations for fat, lactose, and
protein respectively. The full calibration sample set was then used to compute the

calibration vectors, shown in Figure 4.4, using PLS.
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In Figure 4.4a, the calibration vector for fat is heavily weighted at 66, 1447, 2874,
and 3171 cm™. All of these bands were present in the calibration vector obtained using
PLS analysis of Raman spectra without the physical properties, as shown in Figure. 4.2a.
Assignment of these bands was discussed in Section 4.2. In addition to these bands, the
band at 1304 cm™ was intensely correlated when conductivity and refractive index were
included in the calibration. This peak corresponds to CH, twisting modes and is a
prominent feature in Raman spectra of butter*. Neither conductivity nor refractive index
was heavily weighted but their presence was found to influence the calibration. In
general, when the number of factors used in a calibration is increased, the resulting
calibration vector is noisier due to the modeling of extraneous information. However, in
this case, an increased number of factors used in the calibration showed a decrease in
noise compared to the calibration vector in Figure 4.2a. This implies that conductivity
and refractive index were used to emphasize correlation of specific Raman wavenumbers
and diminish the weighting of irrelevant spectral information

Like fat, the calibration vector for lactose estimation, shown in Figure 4.4b,
contained features that were present in the Raman spectra-only derived calibration vector.
These peaks were at 66, 112, 350, and 2860 cm™, Assignment of these Raman
wavenumbers was discussed in Section 4.2. Relatively intense weighting was also
observed at 1451 and 3204 cm”. The band at 1451 cm™ is present in the infrared
absorbance spectrum of lactose and has been ascribed to CH, deformation vibration of
the primary alcohol —CH,-OH 2. Strong negative correlation at 3204 cm™, corresponds

to O-H stretching in water, implying hydrogen bonding with lactose. Conductivity and
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refractive index were not heavily weighted in the calibration. However their addition is

necessary in the weighting of 1445 and 3204 cm™

. Also, in comparison to the spectra-
only calibration of lactose (Figure 4.2b), bands at 350 and 1908 cm’ are weighted much
less when conductivity and refractive index are included.

Very few features in the calibration vector for protein, shown in Figure 4.4c, are
weighted distinctly and heavily. Standout bands are at 62, between 100 and 400, 2864,
and from 2966 to 3300 cm™. These regions were also found to be strongly correlated in
the calibration vector constructed using Raman spectra alone, in Figure 4.2c. Discussion
of assignment of these bands is in Section 4.2. Calibration coefficients corresponding to
conductivity and refractive index are almost equal in magnitude but opposite in sign.
This canceling out effect implies that refractive index and conductivity may not be
directly significant in the calibration. However, the inclusion of these factors greatly
influences the weighting of the spectral features in the calibration. This is shown by
comparing the calibration vectors constructed using Raman spectra alone to Raman
spectra with the physical properties. The same number of factors was used in both
calibrations but on the cailibration vector based on Raman and the additional information,
the relevant frequencies are enhanced and the weighting of rest of the spectral
frequencies has been drastically reduced.

All three calibration vectors were then used to estimate fat, lactose, and protein in
the calibration set. Estimates of fat, lactose, and protein were plotted against
concentrations found using the reference methods, shown in Figure 4.5 (a - ¢). Standard

deviation (SEC) of the residual error and R? between estimated and reference values was

computed. These results are listed in the first columns of Table 4.2. Validation of the
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model was conducted by using the calibration models to estimate milk composition in an
independent test set. Estimated concentration was plotted against reference concentration
of the test set, shown in Figure 4.5 (d - f). Accuracy attained by the model for estimation
in the validation set was determined by R? and the SEP, listed in the last 2 columns of
Table 4.2.

Table 4.2. Estimation of fat, lactose and protein in milk using NIR FT-Raman spectra
with the addition of conductivity and refractive index using PLS with

leave-N-out cross validation

Calibration Set Validation Set
Constituent R? SEC R’ SEP
(g/100 g) (g/100 g)
Fat 0.99 0.21 0.99 0.16
Lactose 0.82 0.06 0.77 0.05
Protein 0.81 0.30 0.83 0.21

Results for fat estimation in the validation set were the same using Raman spectra
with or without the additional properties. However, in the calibration samples, R? is
unchanged but the SEP increases by 24% when using Raman spectra with conductivity
and refractive index. It was mentioned that the calibration vector used in this case was
less noisy than that produced using only NIR FT-Raman spectra. Therefore, although
there was an increase in SEP, this calibration may be more robust because less erroneous
noise is modeled. Conductivity and refractive index were not found to enhance accuracy

in estimating lactose using Raman spectra. In comparison to the spectra only calibration,
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SEC increases by 20% and SEP increases by 25%. As in the fat calibration, the model
constructed with all 3 measurements is likely to be more robust because the same number
of factors produced less noise in the calibration vector. The two physical properties
influenced the calibration model for protein estimation the most. With their inclusion,
the SEC and SEP improved by 51% and 28% respectively. Standard error found using
the calibration sample set is typically less than that of the validation set. This is due to
the noise in the validation samples being independent of the information in the calibration
samples for which the model was developed. Another notable improvement is that the
estimation of higher protein content milk samples was shown to be more accurate using
NIR FT-Raman spectra with the two physical properties compared to the estimation using

SW-NIR spectra.

4.4  Investigation of inter-sample set variation using PLS analysis of NiR FT-

Raman measurements with leave-one-set-out cross validation

Using PLS analygis of SW-NIR spectra with leave-one-set-out cross validation, it
was determined that the presence of variation corresponding to each sample set resulted
in a diminished accuracy of calibration models. Although results found using Raman
spectra showed a marked improvement over those obtained using SW-NIR
spectrophotometry, the influence of between sample set variation was examined. This
was accomplished by conducting PLS analysis of Raman spectral data with and without

conductivity and refractive index with leave-one-set-out cross validation.
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Using this method, fat, lactose and protein calibration based on only Raman
spectra, required 5, 6, and 6 factors respectively at a 95 % confidence level. The spectral
regression coefficients of these calibrations are presented in Figure 4.6. Similarly, fat,
lactose and protein, the calibrations using Raman spectra with the physical properties
were found to require 6, 1, and 4 factors respectively at a 95 % confidence level. These
calibration vectors are presented in Figure 4.7.

In Figure 4.6, fluctuations in magnitude of the regression coefficients are apparent
although not as pronounced as the SW-NIR calibrations using this type of cross
validation. In Figure 4.7, where conductivity and refractive index are included, variation
in calibration coefficient magnitude is apparent. However, unlike in the spectra-only
calibration vectors where the variation occurred for the duration of frequency region
examined, the variation was contained to certain wavelength regions. For example, in the
calibration vector for lactose (Figure 4.7b), the variation was distinct at around 350 cm’!
while for protein (Figure 4.7d), variation in bands at 600 and 2800 cm™ was observed.
Calibration coefficients corresponding to conductivity and refractive index also change in
magnitude with each calibration.

Overall estimates of fat, lactose, and protein were calculated using the combined
validation results from each separate calibration. Accuracy found using leaving one-set-
out cross validation was indicated by the SECV and R? between reference and estimated
concentration. These results are listed in Table 4.3.

Using spectra alone, the SECYV increased by 65, 40, and 14% for fat, lactose, and
protein respectively when leave-one-set out cross validation is used as opposed to leave-

N-out cross validation. Similarly, when spectra with conductivity and refractive index
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Figure 4.6  Calibration coefficients for fat (a), lactose (b), and protein (c) estimation
using on NIR FT-Raman spectra using PLS with leave-one-set-out cross

validation
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were used, the SECV increased by 33 and 43 % for fat and protein respectively when
leave-one-set-out cross validation versus leave-N-out cross validation. For lactose
estimation, the SECV does not change. However, R? decreases by 4% implying a
reduction in accuracy. These results supports the need for inter sample set variation to be
described in order to construct robust models for fat, lactose, and protein estimation in

milk.

Table 4.3.  Estimation of fat, lactose and protein using PLS analysis with leave-one-
set-out cross validation of NIR FT-Raman spectra and NIR FT-Raman

spectra with the inclusion of conductivity and refractive index

Estimation using Raman Estimation using Raman spectra
spectra with conductivity and refractive
index
SECV SECV
Constituent R? (g/ 100 g) R? (g/100 g)

Fat 0.98 0.28 0.97 0.28
Lactose 0.76 - 0.07 0.78 0.06
Protein 0.62 0.40 0.53 043

4.5 Estimation of fat, lactose, and protein using GA modelling of NIR FT-Raman

spectra, conductivity and refractive index

Section 4.3 presented results for fat, lactose, and protein estimation using NIR
FT-Raman spectra, conductivity, and refractive index using PLS regression, a

multivariate statistical analysis. In PLS analysis, entire spectral measurements were used
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to construct calibration models. In contrast to this method, the GA method is used to
select a small subset of variables to build a multilinear regression model. This approach
has been applied in the work of others to improve upon PLS models that were corrupted
by the influence of spectral results not containing critical information 40. 44,45 With this
work in mind, the GA method was used to estimate milk constituent concentration using
NIR FT-Raman spectra with the two physical properties, as an alternative method to PLS
analysis.

The same configuration of the GA method used in Section 3.6 was applied here
where SW-NIR was replaced by Raman spectral measurements. The calibration set
consisted of 75% of the samples including extreme concentrations and the remaining
25% made up the validation set. Numerical coefficients corresponding to Raman
wavenumbers were computed by conducting a multiple linear regression using the
calibration set. Estimation of concentration in the calibration set using this model yielded
the SEC and in the validation set SECV. Combinations of Raman wavenumbers were
selected based on maximum fitness. In this case, fitness was defined as the product of the
SEC and SECV.

To determine the number of wavenumbers (consisting of Raman wavenumbers,
conductivity and refractive index) to use in the calibration, models were constructed with
incrementing wavenumbers, from 1 to 10. The optimal number of wavenumbers was
found using an F-test to determine the model that resulted in the statistically minimum
fitness at a 95% confidence level. Fitness was plotted against the number of
wavelength/wavenumbers in the models for fat, lactose, and protein in Figure 4.8. For

fat, lactose and protein estimation, it was determined that the optimal number of
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wavelength/wavenumbers to be used in the models were 3, 6, and 5 respectively.

In the GA method, models are re-constructed with each generation. At each re-
construction, recombination and mutation of individuals leads to a new population. Each
individual in the population encodes a combination of wavelength/wavenumbers for fat,
lactose, or protein estimation. The two individuals of the population yielding maximum
fitness are carried over to the next population. At the 800" generation, the
wavelength/wavenumbers used in the model are found in the individual with the
maximum fitness. It is desired that this final model is stable and the result of evolution
through generations. As a measure of assurance in meeting this objective, fitness was
plotted versus the number of generations for each model in Figure 4.9. This figure shows
that by the 800™ generation, the final model is stable and does not appear to be caught in
a local minimum of error. In fact the model was stable in less than 200 generations but
800 iterations was retained for the analysis to ensure convergence.

Multiple linear regression was used to determine numerical coefficients
corresponding to the wavenumbers selected using the calibration sample set. The
subsequent models for fat, lactose and protein estimation were found to be:

Fat= 1.2 +3999*S,855 - 1725*S3163+ 3515*S3472 4.1)

Lactose = 2.1 - 808*S,,4+ 816*S;39- 317*S 219+ 345*S7855- 95*S2975
+ 0.6*conductivity 4.2)

Protein = -415.4*S,339+2259.3*S,063 + 309.8*refractive index (4.3)
where S represents NIR FT-Raman intensity at the GA selected subscript Raman

wavenumbers.
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Selected Raman wavenumbers for fat, lactose, and protein determination were
indicated on an average milk spectrum in Figure 4.10. The 1% y-axis corresponds to the
intensity of Raman scattering measured in the average milk spectrum. The 2™ y-axis
refers to the numerical coefficients corresponding to the spectral frequencies selected.

For the fat calibration model, wavenumbers selected were all heavily weighted by
PLS. In order to reduce the time consumption of the GA procedure, the Raman spectral
data were reduced to 240 Raman points by only including every eighth wavenumber from
the original data set consisting of 1919 wavenumbers. Of course, this resulted in a loss of

""and 3474 cm™ were heavily weighted.

resolution. In calibrations by PLS, 2874 cm’
Although these wavenumbers weren’t available in the condensed spectral data set,
wavenumbers 2855 and 3472 cm™, close to these two frequencies, were selected by using
the GA method . Raman signal at 2855 cm™ corresponds to acyclic -CH,- symmetric
stretching. This band is typical of fatty acids®®. Selection of 3472 cm™ corresponds to R-
OH stretching due to water-fat interaction. The negatively weighted band at 3163 cm™
corresponds to CH stretching in unsaturated hydrocarbons*'.

The Raman wavenumbers used in the model for lactose estimation are presented
in Figure 4.11b. Selection of 1219 cm™ by GA technique was assigned to C-O-C
antisymmetric stretching *'. Positive weighting of 2855 cm™ agrees with the PLS
regression, where 2860 cm™” was one of the most heavily weighted Raman bands and
corresponds to CH stretching of lactose. Significance of 2978 cm’ is due to CH

stretching of carbohydrates*?. The GA model selected both 124 cm™ and 139 cm™

probably accounting for variation in scattering between samples as determined from
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changes in the Rayleigh scattering. Conductivity was selected in the estimation of
lactose.  Conductivity showed a strong correlation to lactose concentration as
demonstrated in Table 3.2. It was also weighted in PLS and GA analyses of SW-NIR
calibrations for lactose estimation. Only two Raman frequencies were necessary in the
calibration model for protein. Both of the selected wavenumbers were significantly
weighted in the PLS calibration.

Negative weighting of 2839 cm™ corresponds to O-H stretching in hydrogen
bonded secondary amide groups and 2963 cm™ corresponds to CH stretching common in
protein structures. In addition to these two Raman regions, refractive index was selected
to be used in the model. This was also weighted heavily in the PLS and GA models for
protein estimation using SW-NIR spectra.

The calibration models derived using the GA method were then applied to
quantify milk constituent concentration in the calibration and validation sets. Plots of
estimated concentration versus reference concentration are presented in Figure 4.11. As
measures of accuracy, the R? and standard errors were calculated between the estimated
values and line of identity. These results are listed in Table 4.4.

Accuracy in estimation of fat in the calibration set was similar to that found using
the PLS model. However, in the test set, standard error increases by 69% using the GA
model versus the PLS model. This result favours the PLS model for fat estimation
because higher accuracy was found using an independent validation set. However, the
GA model is quite competent considering only 2 spectral frequencies along with
conductivity were used in the model as opposed to all 1919 wavenumbers. Results found

for lactose estimation using the GA model exceed those found using the PLS model in
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which, Raman spectra, conductivity and refractive index were applied. In the estimation
of protein, samples with a protein concentration >5 g/100g, deviate considerably from the
line of identity. Lack of samples in this concentration range in the validation set was a

factor in a relatively low SECV compared to SEC.

Table 4.4. Estimation of fat, lactose and protein using NIR FT-Raman spectra,

conductivity and refractive index with GA model.

Calibration Set Test Set
R’ SEC R’ SECV
Constituent (g/100g) (g/100¢g)
Fat 0.99 0.21 0.97 0.27
Lactose 0.86 0.05 0.95 0.03
Protein 0.69 0.39 0.86 0.21

As discussed earlier, there was a problem with the higher protein samples, where
coagulation causing the reported reference concentrations to be under-estimates at the
time of spectral analysis may have been possible. Another possibility is that protein
cannot be modeled efficiently using linear regression. Instead, another function might be
better suited such as logarithmic. However it should be noted that these methods
employed the same calibration samples used routinely for commercial milk composition

analysis. The errors determined here would also be present in the commercial systems.
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Chapter 5 Discussion and Conclusions

This thesis has demonstrated the use of SW-NIR and NIR FT-Raman
spectrophotometry with conductivity and refractive index in the determination of fat,
lactose, and protein content in bovine milk. The initial stage of the project examined the
use of PLS in calibrating SW-NIR spectra with and without conductivity and refractive
index for fat, lactose, and protein determination. Next, the GA method was implemented
to construct similar calibrations using spectra and the two physical properties. These
steps were then repeated using NIR FT-Raman spectra.

Using SW-NIR spectra alone, the models determined using PLS analysis were
found to be insufficient for milk composition estimation. Diminished accuracy was a
result of noise modeled into the calibration vector. A vast improvement was found when
incorporating conductivity and refractive index into the calibration. For fat, lactose, and
protein estimations, SEC decreased by 27%, 55%, and 27% and SEP by 29%, 50%, and
52 %, respectively, with the inclusion of conductivity and refractive index compared to
using only SW-NIR spectra. Using this method, good correlation between reference and
estimated concentrations was achieved. This was indicated by R? values of 0.84, 0.81,
and 0.71 and SEC results of 0.59 g/100g, 0.05 g/100g, and 0.36 g/100g in the calibration
sample set (59 samples) for fat, lactose, and protein. Validation of these results was
found using the models to estimate the test set. Here, R? was found to be 0.83, 0.82, and
0.80 and SEP 0.48 g/100g, 0.04 g/100g, and 0.28 g/100g for fat, lactose, and protein
respectively. Because the Infrared based MilkoScan instrument is the method used for

routine milk composition analysis, results of this study should be compared to the
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accuracy found using this instrument. Of these results, the model for lactose estimation
using SW-NIR spectra, conductivity and refractive index was found to give better results
than those by Lefier et al., where an SEC of 0.083 g/100g was achieved based on 163
samples using a Milkoscan instrument.

When the GA method was used to select wavelengths to be used in
multiple linear regression models, it was found that 9, 8, and 8 wavelengths were
necessary to estimate fat, lactose, and protein respectively. Estimation of fat using PLS
proved to be 6% more accurate than the GA model according to SEC values. The model
for lactose estimation using GA, however, was more accurate than the PLS approach.
This was indicated by an improvement in the SEC by 20%. Like fat, the PLS model was
better for protein estimation compared to the GA model. Using the GA model, there was
a 11% increase in SEC. In the GA calibration models for fat and protein, there were
three mutual wavelengths. This represented an overlap in bands specific to each
constituent. Table 5.1 presents the best results found for fat, lactose, and protein
estimation using SW-NIR spectra. Accuracy found for protein and fat estimation was not
as high as desired by the International Dairy Federation. Also, for fat and protein, the
SEC values in Table 5.1 are 4.5 and 3 times greater than that reported by Lefier et al.
respectively. In spite of this, results show promise for the technique. Definite correlation
was observed when conductivity and refractive index were included with SW-NIR
spectra.

Significant variation between sample sets was indicated by the baseline offsets in
NIR spectra. This was further evidenced by variation in the calibration vectors obtained

using PLS with leave-one-set-out cross validation. Description of this variation between
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sample sets is necessary for a successful calibration as shown by the reduced accuracy

observed in the results from this type of cross validation.

Table 5.1. Summary of methods yielding most accurate estimation of constituent

concentration using SW-NIR spectra

Constituent Measurement used in Tools R® SEC
Calibration (calibration) (g/ 100g)
Fat SW-NIR spectra, conductivity, PLS 0.84 0.59

refractive index

Lactose SW-NIR spectra, conductivity, GA 0.88 0.04
refractive index

Protein SW-NIR spectra, conductivity, PLS 0.71 0.36

refractive index

Furthermore, 59 samples were used to acquire the calibration model and 20
samples were used to validate the calibration model. The partially homogenized milk
samples were prepared using fractionation technology. Each sample set originates from a
bulk milk sample consisting of 60 herd milks. In a study by Laporte et al., it was
reported that increasing the number of samples to greater than 150 in a calibration leads
to improvement in calibration and validation results'’. In addition, it was found that a
calibration consisting of both homogenized and unhomogenized milk samples leads to a
more robust calibration with improvement in the determination of protein and casein due

to the larger spectral variation'’.
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The calibrations were repeated using NIR FT-Raman spectra in place of SW-NIR
spectra. In contrast to SW-NIR results, NIR FT-Raman spectra proved to be an accurate
calibration without conductivity and refractive index for fat and lactose estimation.
Using spectra alone, the SEC was calculated to be 0.17g/100g, 0.05g/ 100g, and
0.35g/100g in the calibration set and the SEP was 0.16g/100g, 0.04g/100g, and
0.29g/100g in the validation set for fat, lactose, and protein estimation. Increase in
accuracy was also supported by results for R%. In the calibration set, R? was found to be
0.99, 0.88, and 0.77 and in the validation set, calculated R? was 0.98, 0.84, and 0.58 for
fat, lactose, and protein respectively. Based on the SEC, these results are better than the
best results found using SW-NIR for two of the milk constituents listed in Table 5.1.
Calibrations were repeated where conductivity and refractive were included with the NIR
FT-Raman spectra. For fat, lactose, and protein R? was found to be 0.99, 0.82, and 0.81
using the calibration set and 0.99, 0.77, and 0.83 using the validation set. Calculated
standard error was 0.21, 0.06, and 0.30 g/100g in the calibration set and 0.16, 0.05, and
0.21 g/100g in the validation set for fat, lactose, and protein. In this case, there was a
decrease in accuracy found for fat and lactose. However, it is believed that models in
which the physical properties were included, were more robust than the calibrations
based solely on Raman spectra. This is evidenced by diminished noise in the calibration
vectors. Protein, on the other hand, shows a dramatic improvement when the physical
properties are incorporated in the calibration. With their inclusion, the SEC and SEP
improved by 51% and 28% respectively compared to the spectra-only calibration. In

comparison to the best results found for protein estimation using SW-NIR spectra,
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conductivity and refractive index, the result found using NIR FT-Raman spectra with the
additional information is better by 17% (based on SEC) and 25% (based on SEP).

For comparison, the GA method was used to construct calibrations using NIR FT-
Raman, conductivity and refractive index. Models used 3, 6, and 3
wavelength/wavenumbers for fat, lactose, and protein respectively. Lactose estimation
using the GA model was better than that found using the PLS approach using NIR FT-
Raman with conductivity and refractive index. However, accuracy in the estimation fat
and protein decreased with the GA models. Table 5.2 lists the best results found using

NIR FT-Raman spectra.

Table 5.2. Summary of methods yielding most accurate estimation of constituent

concentration using NIR FT-Raman spectra

Constituent Measurement used in Tools R’ SEC
Calibration (calibration) (g/ 100g)

Fat Raman spectra PLS 0.99 0.17

Lactose Raman spectra, conductivity, GA 0.86 0.05

refractive index
Protein Raman spectra, conductivity, PLS 0.81 0.30

refractive index

In comparison to the accuracy found using the Milkoscan system with 163
samples in the work of Lefier et al., NIR FT-Raman results were much closer than SW-
NIR results. Based on the information listed in Table 5.2, fat and protein yielded SEC

values that were only 3 to 4 times greater than those reported by Lefier et al. under ideal
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conditions. Like SW-NIR, accuracy found in the lactose estimation using NIR FT-
Raman exceeds that found by Lefier et al. These results show promise for the use of NIR
FT-Raman spectrophotometry in the quantification of fat, lactose and protein since the
sample preparation step for both SW-NIR and Raman are significantly less stringent.

Using leave-one-set out cross validation, variation corresponding to each sample
set was found. Without description of this variation in the calibration models, it was
found that accuracy diminished.

Potential for SW-NIR and NIR FT-Raman spectrophotometry with the addition of
conductivity and refractive index has been demonstrated for the estimation of fat, lactose,
and protein in milk. All four of these properties have the potential to be measured on-line
while milk is being collected. Difficulty in measurement is greatly diminished if hand-
held conductivity meters and refractometers, presently available on the market presently,
are employed. The combined cost of these items is relatively inexpensive compared to
the cost of a commercial milk analyzer. Once a calibration has been developed that
reaches standards set by the International Dairy Federation, mathematical treatment of the
data could be simplistic. Ideally, all four parameters could be measured by a
conglomerate device with built-in software that would compute and output fat, lactose,
and protein content. This would allow for rapid results instead of the present scenario,
which involves the collection of milk samples by dairymen, which are then sent to a lab
specializing in analysis. Decreasing turnaround time would allow more frequent analysis
as well as early detection of abnormalities in the milk that indicate illness.

Future work in this field should emphasize further development of the calibration.

This may be accomplished using a larger sample set that includes un-homogenized raw
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milk. The influence of another easily measurable parameter on the calibration such as pH
or viscosity should be investigated as another descriptor which may improve accuracy.
In terms of chemometrics, configuration of the GA method should be examined to
construct the calibration with emphasis on the calibration set. Also, especially in the case
of protein, it may be fruitful to use nonlinear forms of the calibration model.

Specifically in NIR FT-Raman spectral acquisition, several areas need
investigation. One area is the influence of temperature on spectra. Unlike SW-NIR
analysis, which was conducted at 40 °C, NIR FT-Raman spectra were acquired at room
temperature. Maintaining temperature during analysis may result in a more robust
calibration and may reduce inconsistency in inter-sample set variation. Furthermore, the
long-term goal is to build a device that measures these properties as milk is being
collected from the animal and it is thus important to recognize that the temperature will
be closer to 40 °C. Fat melts at 40 °C, which changes its scattering properties and this
most probably will affect resulting Raman spectra as it is a technique based on scattering.
Another area for future work is assurance in maintenance of laser power. This could be
achieved by employing a calibration standard that will not change over time such as a
ceramic plate. Improvement in all of these areas may fine tune the calibration.

The cost of implementing an SW-NIR or NIR FT-Raman device for milk analysis
based on the presented calibration models, would be much less than purchasing the
current commercial Infrared based instruments, which cost approximately $750,000. The
Raman instrument that was used in this study costs approximately $100,000. In addition
the calibration identified wavelengths necessary for the estimation of milk components.

A smaller-scale Raman instrument would be possible. This instrument would employ a
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laser diode as the source, filters for wavelength isolation, and an avalanche photodiode in
photon counting Geiger mode as the detector. Acquisition of these parts would cost
approximately $10,000. A device at this price would be within reach of most dairy

operations.
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