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Abstract 

Measurement of milk composition is a necessary step in production in the 

dairy industry. Determination of the major constituents of milk, fat, lactose and protein, 

provides important information in estimating animal health, economic value of milk, 

monitoring dairy herd management, and designation of milk for various dairy products. 

CUITent practices for routine milk composition determination employ commercial 

infrared systems. The use of SW-NIR and NIR FT-Raman spectra coupled with 

conductivity and refractive index could lead to more frequent and less costly analysis of 

fat, lactose and protein in milk. 

The present study examines the potential of both SW-NIR absorbance 

spectrophotometry and NIR FT -Raman spectrophotometry to develop a model to estimate 

fat, lactose, and protein in whole milk of cows. To accomplish this, 79 milk standards, 

spanning the range of composition seen in practice, were obtained. Acquisition of NIR 

spectra over the wavelength range of 700 nm to 1018 nm was conducted. Between 0 and 

3700 cm-\ NIR FT-Raman spectrophotometric measurements of the milk samples were 

made using a 1064 nm Nd: Y AG laser source. Conductivity and refractive index 

measurements were also obtained for the milk standards. 

A partial least squares calibration with leave-N-out cross validation was made 

using spectra with conductivity and refractive index to estimate fat, lactose and protein 

contents. Calibrations were developed using 75% of the milk standards. Models were 

further validated using an independent test set comprised of the remaining 25% of the 



data that had been excluded from the calibration. A second calibration was conducted 

using a genetic algorithm approach. 

Increased accuracy was observed between estimated and reference concentrations 

when SW-NIR spectra with conductivity and refractive index were used as compared ~o 

using spectra alone. This is evidenced by standard errors for fat, lactose, and protein 

calibration being 0.59, 0.04, and 0.36 g/100g respectively. Accuracy achieved using 

Raman spectra was better than the SW-NIR calibration for fat and protein as indicated by 

standard errors for fat, lactose, and protein calibration being 0.21, 0.05, and 0.30 g/lOOg 

respectively. The genetic algorithm technique was found to improve estimation of 

lactose in both cases compared to the PLS calibrations. These findings show promise and 

emphasize the need to develop calibrations using NIR and NIR FT-Raman 

spectrophotometry for milk composition determination. 

Résumé 

Mesurer la composition du lait est une étape de production nécessaire dans 

l'industrie laitière. La détermination des composantes principales du lait, c.-à-d. gras, 

lactose et protéines, donne des renseignements importants pour estimer la santé animale 

et la valeur économique du lait, surveiller les troupeaux laitiers pour les gérer, et désigner 

l'usage du lait pour différents produits laitiers. Les méthodes courantes d'analyse laitière 

emploient des spectromètres infra-rouges commerciaux. L'emploi de spectres d'ondes 

courtes du proche infrarouge (SW -NIR) et NIR FT -Raman couplés avec des mesures de 

conductivité et d'indice de réfraction pourraient permettre des déterminations plus 

fréquentes et moins coûteuses du gras, du lactose et des protéines dans le lait. 

11 



Cette étude examine les spectrophotométries NIR et FT NIR-Raman en vue de 

développer un modèle pour estimer le gras, le lactose et les protéines dans le lait de vache 

entier. À ce but, 79 étalons de lait couvrant la gamme habituelle de compositions furent 

obtenus. Des spectres NIR furent mesurés entre 700 nm et 1018 nm. La spectrométrie FT 

NIR-Raman fut exécutée entre 0 et 3700 cm-! sur les échantillons de lait en employant un 

laser Nd:YAG à 1064 nm comme source lumineuse. La conductivité et l'indice de 

réfraction des étalons de lait furent aussi enregistrés. 

Un étalonnage par algorithme des moindres carrés avec validation croisée "leave­

N-out" fut construit à partir des spectres et des données de conductivité et d'indice de 

réfraction pour estimer la teneur en gras, lactose et protéines. Les étalonnages furent 

développés à partir de 75% des étalons de lait. Les modèles furent ensuite validés au 

moyen d'un "test set" composé des 25% des données qui avaient été exclu de 

l'étalonnage. Un deuxième étalonnage fut construit à l'aide d'un algorithme génétique. 

Un bon accord entre les concentrations estimées et les valeurs de référence fut 

observé quand les spectres SW-NIR furent utilisés en liaison avec la conductivité et 

l'indice de réfraction. Ceci se manifeste dans les erreurs associées à l'estimation du gras, 

du lactose et des protéines (respectivement 0.59, 0.04 et 0.36 g/100g). Au moyen de 

spectres Raman, les estimations de gras et de protéines furent améliorées. Les erreurs de 

calibration associées au gras, lactose et protéines sont de 0.21, 0.05 et 0.30 g/lOOg 

respectivement. L'algorithme génétique améliora l'estimation du lactose dans les deux 

cas. Ces conclusions prometteuses soulignent la nécessité de développer des étalonnages 

exploitant les spectrophotométries NIR et NIR-Raman pour déterminer la composition du 

lait. 
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Chapter 1 Introduction 

1.1 Research Objectives 

Milk composition analysis is necessary for estimating animal health, determining 

economic value of milk, decision-making in dairy herd management, and designating 

mi1k for various dairy products. CUITent practices for routine milk composition 

determination emp10y commercial infrared systems that are costly and cannot be used for 

daily measurements. Use of NIR. and/or NIR.-Raman spectra coup1ed with conductivity 

and refractive index could lead to more frequent and less expensive analysis of fat, 

lactose and protein ana1ysis in milk. In addition, these measurements are re1ative1y easy 

to conduct and have the potential to be incorporated in automated mi1king 

instrumentation. This could 1ead to simultaneous acquisition of product and ana1ysis. 

The objective of this research is to accurately estimate concentrations of the major 

constituents of milk, fat, lactose, and protein. Towards this goal, two approaches have 

been applied to quantify these mi1k constituents: 1) short-wave near-infrared (SW-NIR) 

spectrophotometry and 2) NIR.-Raman spectrophotometry. Further accuracy was sought 

for by combining spectrophotometry with conductivity and index of refraction 

measurements. Multivariate statistica1 ana1ysis of these measurements was used to 

deve10p calibrations for milk composition. 

In this chapter, an outline ofresearch objectives will first be covered, followed by 

a description of milk and its major constituents, fat, lactose, and protein. Standard 

reference methods for milk composition determination are then discussed. Finally, an 
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elaboration of tools used in this study, short-wave NIR spectrophotometry, refractive 

index, conductivity, and NIR FT-Raman measurements, are presented. 

1.2 Overview of Milk Composition 

All mammals nourish their offspring with milk, which is secreted by mammary 

glands. This nourishment is provided by the numerous constituents in this complex 

biological fluid. Composition of milk varies with each species, within each species, from 

animal to animal, geographically and temporally. Factors that have been found to 

influence milk composition are lactation stage, nutrition of the animal, seasonal and 

temperature variation, udder infection, and variations in milking procedure 1. An 

overview of milk composition is presented in Table 1.1. The reported ranges were found 

to be typical for lowland breeds. Water is the largest constituent, comprising upwards of 

85% by weight in bovine milk. AlI other constituents are emulsified, dispersed 

colloidally, or dissolved in the water ofmilk. 

1.2.1. Lipids in Milk 

Approximately 98% (by weight) of the lipids of milk are triglycerides while the 

rest are diacylglycerols (0.28 - 0.59%), free sterols (0.22 - 0.41 %), phospholipids (0.2 -

1.0%), free fatty acids (0.10 - 0.44%), monoacylglycerols (0.016 - 0.038%), 

hydrocarbons (trace), sterol esters (trace)1. Almost aIl of the lipids in milk are in globule 

form with diameters ranging from 0.1 to 15 Ilm with a mean diameter of 3.5 Ilm in 

bovine milk2
• These globules, which are suspended in the aqueous phase ofmilk and are 

protected by a surface membrane caIled the milk fat globule membrane (MFGM). 
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Table 1.1. Approximate distribution ofmilk constituents3
• 

Constituent Range in milk (% w/w) 

Water 

Lactose 

Fat 

Protein 

casein (type ofprotein) 

Mineral substances 

Organic acids 

85.3 - 88.7 

3.8 - 5.3 

2.5 - 5.5 

2.3 -4.4 

1.7 - 3.5 

0.57 - 0.83 

0.12-0.21 

The MFGM contains 60% of the phospholipid content and 85% of the cholesterol content 

in milk but phospholipids also exist as lipoprotein complexes4
• Fat in milk contributes to 

its flavour, aroma, colour and texture. Triacylglycerols are an important source of energy 

and have been found to produce twice the amount of energy per gram of carbohydrates4
. 

Milk fat is also a quick source of energy because of the short chain fatty acids, which are 

absent in vegetable oils. The short-chained fatty acids can be absorbed through the 

intestinal wall and do not have to be re-synthesized into glycerides. Another role milk fat 

plays in human nutrition is that it contains many fat-soluble vitamins such as vitamins A, 

D, E, and K. Fat content of milk has traditionally been a large factor in monetary value 

of milk especially when milk was used primarily for butter production. Protein level in 

milk now influences economic value due to its importance in the manufacturing of dairy 

products such as cheese. As an example, a differential payment plan has been established 

in the Netherlands to dairymen depending on fat and protein content in milk5
. 
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1.2.2. Lactose in Milk 

The main carbohydrate in milk is lactose, a distinct and unique product formed by 

the mammary gland. Lactose concentration in bovine milk ranges from 3.8 to 5.3 g/lOOg. 

Small amounts of other carbohydrates are present in the form of monosaccharides, 

mainly glucose and galactose, and oligosaccharides. Glucose and galactose concentration 

ranges from 0.00002 to 0.00014 g/lOOg and 0.00000524 to 0.0000875 g/lOOg 

respectivell. Oligosaccharide content ranges from 0.0117 to 0.0136g/100g6
. Lactose is 

a disaccharide that is composed of galactose linked to glucose by a glycosidic bond. One 

of the carbons in the glucose molecule of lactose is anomeric and unstable. It therefore 

mutarotates from the a to the P isomer and vice versa until an equilibrium is established 

between the two isomers as shown in Figure 1.1. 

Lactose with soluble salts such as sodium, potassium and chloride ions maintains 

osmotic pressure in the mammary system. Fluctuations in lactose content are associated 

with changes in the amount of soluble salts. The presence of lactose in milk is 

advantageous nutritionally because as a disaccharide, it provides twice the amount of 

energy provided by a monosaccharide at a given osmotic pressure. Lactose is responsible 

for the low relative sweetness in milk. Presence of lactose in milk is a concem to many 

people due to two undesirable conditions: lactose intolerance and galactosaemia. Those 

who are lactose intolerant are unable to hydrolyze lactose sufficiently in the small 

intestine and the result is a large influx of water. This leads to symptoms such as nausea, 

cramps, bloating, gas, and diarrhea. Those who have galactosaemia are unable to 

metabolize galactose as a result of a hereditary deficiency of the necessary enzymes. The 

outcome is a buildup of galactitol in the lenses of eyes and subsequently cataracts. 
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Figure 1.1. Conformational structures of p-Iactose ( a) and a-lactose (b) 

1.2.3. Protein in Milk 

The amount of protein in bovine milk changes during lactation and the changes 

reflect the two-fold function of milk proteins to young mammals. One function is to 

provide offspring with essential amino acids to develop muscle and other prote in-

containing tissue. The other function of prote in is to supply biologically active proteins 

such as immunoglobins, vitamin-binding proteins, metal-binding proteins and protein 

hormones3
. There are two main classes of proteins in milk, case in and whey prote in. 

Casein refers to the fraction of protein in milk that precipitates out of solution when milk 

is acidified to pH 4.6 at 30 °C3
. This accounts for nearly 80% of all protein in milk3

. The 

remainder, which is soluble under the same conditions, is referred to as whey protein. 

Casein is stable at high temperatures and will not coagulate in milk when heated up to 

100 oC at its natural pH3
. Whey prote in is more sensitive to heat and will be completely 
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denature ifheated at 90 oC for 10 minutes3
. Casein is a phosphoprotein, containing about 

0.85% phosphorous whereas phosphorous is not a constituent ofwhey protein3
. Presence 

of phosphorous (in the form of phosphate) is responsible for the ability of casein to bind 

to calcium, which increases its nutritional significance. Whey proteins are more rich in 

sulfur compared to casein and these sulfur-containing amino acids are partially 

responsible to sorne changes in heated milk such as cooked flavour and increased time for 

rennet coagulation. Rennet, found in the stomachs of cows, is used to coagulate milk for 

cheese manufacture. Casein is unique to the mammary gland while sorne of the whey 

proteins are blood-derived. Casein exists in milk as large colloidal aggregates (micelles) 

while whey protein is dispersed in solution. Milk protein has high nutritional value 

compared to other proteins because it contains aIl of the amino acids required by humans 

and the distribution pattern of the amino acids in milk resembles what is needed in 

humans 1• Both casein and whey protein contain more of the following essential amino 

acids lysine, threonine, methionine, and isoleucine. Vegetable proteins, especially in 

cereals, are limited in these amino acids. It is for this reason that milk plays a large role 

in food interventions in developing countries where many children who have a diet 

heavily based in cereals, suffer from protein-energy malnutrition. 

1.3 Methods for Determining Milk Composition 

The International Dairy Federation (IDF), International Organization for 

Standardization (ISO), and Association of Official Analytical Chemists (AOAC 

International) cooperate in the establishment of methods for analysis of milk and milk 
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products. Inter-Iaboratory studies are conducted to establish and evaluate the 

performance of these methods. The methods have been designated as either reference or 

routine. This section covers official reference methods by the IDF, ISO, and AOAC 

International for the determination of fat, lactose, and protein in milk. 

1.3.1. Fat Determination 

Reference methods for fat determination in milk inc1ude Roese-Gottlieb method, 

Babcock Method and modified Mojonnier method. The modified Mojonnier method 

(IDF method ID, 1996, ISO method 1211, 1999, AOAC International Method 989.05) 

was used in this study7. In the Mojonnier method, the milk sample is warmed to 38.0 +/-

0.1 oC to melt the fat. The homogenized sample is then weighed into an extraction flask. 

Ethanol is added to the sample followed by ammonium hydroxide to neutralize acid and 

dissolve casein. Phenolphthalein indicator is also added to sharpen the appearance of the 

boundary between the organic and aqueous layers. Nonpolar solvents ethyl and 

petroleum ether are used as the extracting agents. The extraction is repeated at least 

twice and the combined ether phases, which incIude the fat constituent of the milk, are 

evaporated at ~1 00 oC. The dried extracted phase is subjected to 70 oC under pressure in 

a vacuum oven to reach a constant weight. Reproducibility for this technique, defined as 

standard deviation ofinter-Iaboratory data, was found to be 0.020 g/100g8
• 

1.3.2. Lactose Determination 

The IDF, ISO, and AOAC International have been unable to reach a consensus 

upon a reference method for lactose determination. Lactose can be determined using a 

number of techniques such as gravimetrically (AOAC International method 930.28), 

enzymatically (AOAC International method 984.15), polarimetrically (AOAC 
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International method 896.01), and titrimetrically with chloramine T and potassium iodide 

(IDF method 28A, 1974t Likewise, lactose can also be determined by HPLC8. This 

was the method used in this study. For HPLC analysis, a milk sample is combined with 

0.9 N sulfuric acid to form a precipitate, consisting mainly of protein and lactose. This 

precipitate is diluted with laboratory grade water and filtered. The filtrate, typically a 

clear and colourless liquid, is analyzed by HPLC using a mixture of acetonitrile and 

water as the mobile phase. As standards, a-lactose and p-Iactose are employed. Using 

the HPLC method, precision has been found to be 0.06 g/100g8. 

1.3.3. Protein Determination 

The reference method (IDF method 20B, 1993, ISO draft international standard 

method 8968-5, AOAC International method 991.22) for protein determination in milk is 

based on the Kjeldahl principle8
. This method was used in the work presented here. In 

this method, protein is precipitated from the milk using trichloroacetic acid in a Kj eldahl 

flask. The nonprotein nitrogen constituents (such as urea) are removed by filtration. 

Potassium sulfate, a boiling point elevator, sulfuric acid for digestion and copper sulfate, 

a catalyst, are combined with the filtrate. The resuIting mixture is digested in a Kjeldahl 

flask, which releases nitrogen from the protein and the nitrogen is retained as an 

ammonium salt. Following digestion, concentrated sodium hydroxide is added to the 

acid digestion mixture to release ammonia. The ammonia is distilled and collected in a 

boric acid solution to be titrated with hydrochloric acid. The necessary caIculations are: 

%Nitrogen = [1.4*(Vs - Vb)*N]/W 9 (1.1) 

where Vs and Vb is the volume ofhydrochloric acid used for the sample and blank in ml 

respectively, N represents the normality of the hydrochloric acid and W is the weight of 
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the original milk sample in g. The factor 1.4 is used because 1 ml of 0.1 N hydrochloric 

acid is equivalent to releasing 0.0014 g ofnitrogen. The percent content ofprotein in the 

original milk sample is then calculated by: 

% protein = % Nitrogen * 6.38 8 (1.2) 

Here, the factor 6.38 is used because in dairy products, one part nitrogen is 

equivalent to 6.38 parts protein. This factor reflects the sample matrix. Reproducibility 

ofthis technique based on inter-laboratory studies is 0.021 g/100glO
. 

1.3.4. Current Practices for Routine Measurement of Fat, Lactose, and Protein 

The outlined referenced methods are often both time-consuming and destructive 

to the sample. AlI of these methods involve wet chemistry. For dairy herd management 

rapid and accurate measurements of fat, lactose and protein are necessary. 

Commercial instruments such as the Milko-Scan (Foss Electric, Denmark) have 

been developed to analyze milk by infrared spectrophotometry specifically for semi­

routine milk analysis. These are typically filter-based instruments that measure the 

absorbance at a specific wavelength in the mid-infrared region found to correlate with 

constituent quantity. 

Infrared analysis in filter instruments consists of a single beam infrared system 

with one cuvette and no mirrors. It is equipped with an infrared light source that passes 

through filters to only allow light at the desired frequency to pass through a cuvette 

containing the sample and finally to the detector. Samples are homogenized prior to 

analysis. 

The use ofthis type of instrument for fat, lactose, and protein analysis in milk has 

been deemed a standard method (IDF method 141B, 1996, ISO standard method 9622, 
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1999, AOAC International method 972.16)9. The wavelengths employed by the 

spectrometer are summarized in Table 1.2. 

Table 1.2. Wavelengths in mid infrared spectral region used to determine fat, lactose 

and protein in milk9
. 

Constituent Wavelength (/lm) Functional Group 

Fat 3.480 CH groups in fatty acid chains 

5.723 Carbonyl groups in ester linkages of 

glyceride 

Protein 6.465 Secondary amide groups of peptide bonds 

Lactose 9.610 Hydroxyl groups 

This instrument must be calibrated regularly with standards that have been analyzed by 

the prior mentioned chemical reference methods. Accuracy of filter instruments is 

affected by changes in concentration of sorne interfering compounds not measured by the 

instrument and by the fluctuation in the composition of measured constituents 11
. For 

example, the accuracy of fat determination is influenced by the average molecular weight 

of the fatty acids and proportion of unsaturated fatty acids l1
. Likewise, protein 

determination is influenced by the proportion of non-protein nitrogen constituents, citrate, 

free fatty acids and phosphorous11
• In addition, tum-around time for laboratories 

equipped with MilkoScan instruments to retum milk constituent concentration 

information can be up to two weeks and in this case, MilkoScan instruments would not 

aid in daily management of dairy farms 12
• 

10 



According to the International Dairy Federation, acceptable accuracy in a robust 

calibration is defined by the magnitude of the standard error of calibration (SEC). This is 

the standard deviation between reference constituent concentration and constituent 

concentration determined by the method being evaluated: 

SEC = ;=1 

n-1 
(1.3) 

where c is the constituent concentration provided by the reference method, ê is the 

constituent concentration provided by the method being tested, and n is the number of 

samples in the calibration set. 

The standards set by the International Dairy Federation is that SEC should be no 

greater than 0.07 g per 100 g ofmilk for herd milk samples and 0.10 g per 100 g ofmilk 

for individual milk samples. A study by Lefier et al. compared the accuracy of fat, 

lactose, and protein determination determined by a conventional filter-based infrared 

milk analyzer, the MilkoScan to that determined by chemical reference methods 11
• Lefier 

et al. reported that an SEC less than 0.07 gl100g could be achieved using MilkoScan 

when performing calibrations in 6 trials, where each trial involved the analysis of Il 

reconstituted milks made from raw milk constituentsll . However, when a single 

calibration was made using all 66 milk samples, collected over six months, SEC results 

were: 0.130 gl100 g for fat, 0.121 gl100 g for protein, and 0.083 gllOO g for lactosell
. In 

the research presented here, calibrations were also conducted using a set of reconstituted 

samples collected over a year. Because MilkoScan is the CUITent accepted method for 

routine milk analysis and due to the similarity in calibration methodology, results of this 

research will be compared to results found by Lefier et al. 
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1.4 Short-Wave Near-Infrared Spectrophotometry ofMilk 

Near-infrared spectrophotometry is an attractive option for the dairy industry for a 

number of reasons. Acquiring near-infrared spectra is fast and non-destructive, requiring 

no sample pre-treatment. Furthermore, it is a multi-purpose technique because each 

spectrum contains information about a multitude of milk constituents. It can provide 

quantitative assessment of milk composition in real-time by monitoring milk spectra 

during milking and through the use of fibre optics, remote acquisition is possible. These 

features could allow for daily measurement of milk composition for dairy management 

and bio-monitoring. 

The near-infrared region of the electromagnetic spectrum lies in the wavelength 

range from 770 nm to 2500 nm. Low energy electronic transitions, overtones, and 

combinations of hydrogen vibrations in C-H, N-H, and O-H groups can be observed in 

this region, indicating the presence of functional groups in the sample that can be 

quantified. Assignment of sorne near-infrared wavelengths to food constituents is 

presented in Table 1.3. 

The challenge of near-infrared spectrophotometry for milk analysis is that spectra 

of many individu al constituents have broad regions of overlapping bands and there fore , 

the spectra consist of wide absorption bands that appear difficult to interpret and 

quantify14. 
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Table 1.3. Assignment of infrared absorption bands to food constituents. 

Wavelength (nm) Food Constituent Bond Vibration 

910 Protein 3rd overtone C-H I3 

928 Lipid 3rd overtone C-H 13 

990 Carbohydrate 2nd overtone O-H 13 

1200 Lipid 2nd overtone C-H 14 

1440 Carbohydrate 1 st overtone 0-H 14 

1730 Lipid 1 st overtone C-H 14 

1780 Lipid 1 st overtone C-H 14 

1980 Protein Combination N-H 14 

2080 Carbohydrate Stretching+deformation O-H 14 

2180 Protein Combination C=O, N-H 14 

2320 Lipid Combination C-H 14 

2350 Lipid 2nd overtone C-H 14 

Further complication arises in this region from the water absorption, which is very large 

compared to the absorption of fat, protein and lactosel5
. Fat globules and protein 

micelles of milk cause spectral deformations by scattering light, resulting in an increase 

in absorbance from the increase in optical pathlength. These are major reasons why this 

spectral region has been wide1y ignored for milk composition analysis until the advances 

of computers and chemometrics. 

Through application of statistical analysis, near-infrared spectrophotometry has 

been used in the determination of fat, lactose, and protein in milk and other dairy 

products. Much of the published work on milk constituent determination using near 
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infrared spectrophotometry has focused on analysis between 1100 and 2400 nm12, 15, 16, 17, 

18,19. Ofthese, the most accurate results were found using the following techniques. Sato 

et al. were able to achieve an SEC of 0.0901 g/100g for fat estimation in 50 homogenized 

milk samples analyzed in transflectance mode in the region of 1100 to 2498 nm using a 

0.25 mm pathlengthl8
. Transflectance methods involve passing light through sample and 

reflecting the light from the bottom of the sample holder to a detector. Stepwise multiple 

linear regression analysis between reference concentrations and near-infrared data was 

used to choose wavelengths for the calibration. The samples used in this study were from 

Holstein cows but no information is provided about the number of cows or the length of 

time over which the samples were collected. Tsenkova et al. were able to obtain SEC of 

0.066 g/100g for lactose calibration by obtaining near infrared transmittance spectra in 

the wavelength range from 1100 to 2400 nm of 84 samples from one cow using a 1 mm 

path lengthl6
. Partialleast squares regression was used to form the calibration, however, 

an independent sample set was not used to validate the model. It should also be pointed 

out that more than one cow is necessary to acquire samples to achieve a robust calibration 

because milk is such a complex biological fluid. The most accurate protein estimation 

using near infrared spectrophotometry was found by Laporte et al. 17. This study 

analyzed 96 homogenized and unhomogenized milk samples by transmittance 

spectrometry from 1100 to 2500 nm using a 0.5 mm pathlength17
. Partial least squares 

was used to perform the calibration yielding an SEC of 0.04 g/100g for protein 

calibration. 

Very few studies have examined the use of short-wave near infrared (SW-NIR) 

spectrophotometry (700 nm to 1000 nm) for milk analysisl2
, 20, 21. Increasingly, dairy 
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farming is moving toward automated milking. This move presents an opportunity for on­

line instrumentation for routine milk analysis. With the advent of inexpensive silicon 

sensors in the 700 to 1100 nm range on the market, coupled with fibre optic probes, on­

line instrumentation could be developed if an accurate calibration is possible. Of the 

mentioned references, the best results for fat, lactose and protein estimation using SW­

NIR are as follows. Sasié et al. were able to obtain an SEC of 0.102 g/100g for fat 

calibration using transmission spectra of 40 homogenized milk samples from 800 to 

1l00nm collected using a 1.0 mm pathlength2o. Partialleast squares analysis with leave 

one out cross validation was used to develop the calibration model. Further validation 

was conducted using an independent set of 60 samples that yielded a standard error of 

0.119 g/100g 20. Limitations of this study are found in sample variation because the 

samples were acquired over 2 days and in the use of the Milkoscan instrument as a 

reference method. For a robust calibration, temporal variation is necessary in the sample 

set and Milkoscan is not a primary reference method. In addition, it was not mentioned 

how many cows the samples were collected from. Tsenkova et al. have obtained results 

for lactose and protein estimation using SW-NIR with the lowest error, comparatively12. 

For lactose calibration, SEC was found to be 0.084 g/lOOg using 4.0mm pathlength 

transmittance spectra, over 700 to 1100 nm, of 258 unhomogenized milk samples 

collected from 3 cows over six. monthsl2
. The calibration was performed using partial 

least squares with leave-N-out cross validation. For prote in calibration, SEC was found 

to be 0.082 g/100g using the same spectra and regression method12. Limitations of this 

model are the lack of independent validation set, small number of animaIs samples were 

collected from, and use ofMilkoScan as a reference method. 
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1.5 Refractive Index of Milk 

Protein, lactose, and mineraI salts contribute to refractive index of milk22
. The 

index of refraction of a liquid is represented by, n, and is defined as the ratio of the 

velo city of light in a vacuum to the velocity of light in the liquid. Refractive index is a 

function of wavelength and temperature and in milk, this property is normally in the 

range of 1.3440 - 1.3485 using the sodium D line at 20°C 3. A linear relationship has 

been found between the solids content of milk and its refractive index but in spite of this, 

the estimation of percent solids in milk using refractometry is challenging since the 

contribution of each milk constituent differs and is additive3
. Due to the high degree of 

opacity of milk, refractive index is difficult to measure but the most satisfactory 

measurements have been made on an Abbe refractometer where only a thin layer of 

sample is used 1• In this research, an Abbe refractometer with a white light sources was 

used. In an Abbe refractometer, the prisms used are Amici prisms, which are a composite 

of two different kinds of glass. This produces a large amount of dispersion without 

angular deviation of light. Therefore, it is possible to use a white light source instead of 

the usual sodium D line because the prisms compensate for the dispersion of the 

sample23
. It has been found that a linear differentiating refractometer can measure 

refractive index ofmilk more accurately than the Abbe refractometer24
• 

1.6 Electrical Conductivity of Milk 

Electrical conductivity of milk has been used to detect udder infection at the 

subc1inical level, inc1uding mastitis since elevated levels of sodium, potassium, and 

16 



chloride ions cause an increase in conductivitl5
• Conductance is the reciprocal of the 

resistance measured between opposing faces of 1 cm cube of the liquid of interest. Units 

for conductance is O-Icm-I but the SI unit for 0-1 is siemens (S) and therefore, 

conductance is typically expressed in S/cm. Instrumentation has been developed to 

convert conductance to conductivity, a property that can be used to compare results from 

different experiments. Conductivity is the conductance multiplied by the cell constant. 

The cell constant, a function of the physical characteristics of the measuring cell, 

specifically refers to the distance between the two measuring electrodes divided by the 

cross sectional area of the electrodes. Recently manufactured conductivity meters 

automatically multiply the measured conductance by the cell constant unique to the 

measuring probe so that the output is in Siemens directly. 

One study found the mean conductivity in uninfected bovine milk to be 

4916 ± 506 ~S based on a sample population of 92 cows; however the temperature at 

which the measurements were made was not listed 26. Quantitative conductivity can be 

measured to ± 1 to 2 % when the resistance between electrodes is within 1000 0 and the 

temperature is maintained to within ± O.I°C 27. Keeping a constant temperature is 

important in conductivity analysis since, as the temperature of the sample increases, there 

is a corresponding increase in the dissociation of electrolytes and a decreasing viscosityl. 

Likewise, fat globules reduce the conductivity measured of milk because they occupy 

volume and impede ionic movement but homogenization has not been found to influence 

the conductivityl. 
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1.7 NIR Fr-Raman Spectrophotometry ofMilk 

NIR FT-Raman techniques demonstrate potential in food analysis because unlike 

conventional Raman spectrophotometry with excitation in the visible range, fluorescence 

typical of major food constituents is dramatically reduced28. AIso, NIR FT-Raman 

spectrophotometry can be used for remote sampling where laser and scattering 

wavelengths can be transmitted efficiently through fibre optics. In general, Raman 

spectrophotometry can be an alternative to infrared spectrophotometry because water 

produces only a weak signal and thus aqueous samples can be analyzed without major 

interference of water peaks. 

In Raman spectrophotometry, light scattered by molecules at wavelengths 

different from the incident radiation, is monitored. Raman transition occurs when a 

photon excites an atom to a virtual state and then quickly relaxes to an eigenstate by 

releasing a photon. This is different from fluorescence because Raman scattering does 

not involve transfer of electron population to the intermediate state. The scattered light is 

dispersed and separated according to wavelength to produce a spectrum that corresponds 

to orbital energy levels. 

Raman spectrophotometry has been used qualitatively to study the effect of 

various conditions on dairy products. For example, Raman spectroscopy was used to 

investigate the effect of freezing upon casein in ewe's milk29. A recent study looked at 

the Raman spectra of butter, potassium caseinate and alpha lactose for indication of band 

positions for fat, protein and carbohydrates and milk3o. Casein was precipitated from the 

milk and then analyzed in the 1800 to 1350 cm-1 region using an argon ion lase~9. 
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Fehnnann et al. were able to achieve SEC of 0.32 glI00g for fat estimation using Raman 

spectrophotometry compared to the chemical reference method 31. 

1.8 Overview of Research 

The next chapter details the experimental methods implemented in this study for 

SW-NIR, conductivity, refractive index, and NIR FT-Raman measurements ofmilk. The 

statistical approaches used to develop the calibrations are then described. In Chapter 3, 

SW-NIR spectrophotometric calibrations and subsequent SW-NIR, conductivity and 

refractive index calibrations are developed using PLS analysis. The final section of 

Chapter 3 de scribes the SW-NIR spectral, conductivity and refractive index calibrations 

constructed using the genetic algorithrn approach. Similarly, Chapter 4 examines PLS 

analysis of NIR FT-Raman spectra and then NIR FT-Raman spectra with conductivity 

and refractive index for milk composition estimation. As a comparison, the GA method 

for constructing calibrations using NIR FT -Raman, conductivity and refractive index is 

then investigated. In the last chapter, conclusions are presented along with 

recommendations for future work. 
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Chapter 2 Experimental Methods 

2.1 Milk Standards 

Milk Standards were obtained from Programme d'analyse des troupeaux laitiers 

du Quebec (PATLQ, Quebec). These standards are sold commercially for the intended 

use of infrared spectrometer calibration in order to quantify raw milk composition. 

Standards are prepared using a physical fractionation of milk to ensure consistency and 

meet the estimated she1f life needs of industry. Methodology for sample preparation is in 

accordance with that defined by the International Dairy Federation32
. In this method, a 

bulk milk sample is made by pooling at least 60 herd milks. From this bulk milk sample, 

5 fractions are obtained. The first fraction is the whole bulk milk sample itself. Bulk 

milk pasteurized and then stored for 12 hours at 4 oC for natural creaming. Cream is 

skimmed off to yield a cream fraction and a skim milk fraction. The skim milk fraction is 

centrifuged to reduce its fat content. The skim milk fraction is then filtered using an 

ultrafiltration module with a 10000 Daltons separation membrane. Ultrafiltration 

technology refers to the separation of components based on solvated size and structure 

using pressure and a semi-permeable membrane without the use of heat. The 

ultrafiltration step yields the fourth and fifth fractions. The fraction that moves through 

the membrane is called the "ultrafiltrate" and the fraction that doesn't is the "retentate". 

Of the original skim milk, the retentate contains approximately 100% fat, 100% protein, 

50% lactose, and 50% mineraIs. To make the milk samples, the skim milk, cream, 

permeate and retentate fractions are combined. The standards were pasteurized and 
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partially homogenized (65°C at 4000 psi). AIl standards contained Brotab, a commercial 

preservative specifically made for milk used in analytical testing laboratories. Brotab is 

composed of 30% 2-Bromo-2-Nitropropane-l,3-Diol (Bronopol) and 1.4% Pimaricin. 

Both of these ingredients are antimycotic preservatives that prevent yeast and mold. The 

milk standards were stored at 4 oC in the dark and were reported, by the manufacturer, to 

be stable in composition for a month from the production date. Reference values for fat, 

protein, and lactose were provided by the supplier citing the following methods: Kjeldahl 

for protein, HPLC for lactose, and Mojonnier for fat. The experimental design included 

milk with a range, by weight, of protein content 2.4 to 5.2%, lactose content 4.30% to 

4.65 %, and fat content 0% to 6%. 

2.2 Near Infrared Spectrophotometry ofMilk Standards 

The NIR transmittance system used in the analysis of the milk standards was 

composed of several components. The light source was a CUITent regulated 250 W 

Quartz Tungsten Halogen lamp (Oriel, Stratford, CT). Non-contact measurements were 

made via two 3 mm diameter fiber optics for illumination and collection. Through the 

use of optics, a collimated source was possible by placing the fiber optic cab les at the 

focal length of the lenses. Milk samples were contained in a glass cuvette with 10 mm 

pathlength (Cole-Parmer, Quebec). The cuvette was stationary in a thermally controlled 

copper cell holder. This cell was warmed with a water bath circulator (Neslab, NH) so 

that the temperature of the milk at the time of analysis was 40 oC. The cell was fixed 

atop a magnetic stiITer with a stir bar in the cuvette to ensure thorough mixing of the 
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sample contents. The collection fiber was connected to a spectrograph (100S, American 

Holographic, MA), equipped with a concave grating (model #446.34/L, American 

Holographic, MA) with 20 nmI mm dispersion and wavelength range of 360 to 1095 nm. 

The wavelength range of analysis was adjusted to 510 to 1020 nm using a micrometer 

connected to the grating. Width of the entrance slit to the detector was set to 100 !lm. 

The spectrograph had a 512 linear diode array detector (C4070, Hamamatsu Corp., NJ) 

with a pixel size of 2.5 mm x 25 !lm. Each diode sampled 0.97 nm. A 16-bit 100 kHz 

data acquisition board (AT-MIO-16X, National Instruments, TX) sampled the spectra 

from the diode array. Software in the C language served as an interface from the diode 

array and data acquisition board. Data was collected and stored in a 486-66 MHz Pc. 

Integration time for each scan was set to 0.083 seconds and 30 scans were averaged for 

each resulting spectrum. Wavelengths of the spectrophotometer were calibrated using a 

didymium filter prior to each day of milk analysis. Absorbance spectra of the didymium 

filter were found to be reproducible and did not drift over the entire year. Absorbance 

was calculated using the negative log of the ratio of milk to air spectra. 

2.3 Conductivity Analysis of Milk Standards 

A TDS/conductivity meter (Oakton Instruments, IL) was used to perform aIl 

conductivity measurements. The meter was calibrated with a potassium chloride standard 

solution (Fisher Scientific, ON) prior to milk analysis. Measurements were made in the 

automatic temperature compensation mode so that the meter calculated conductivity 
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values referenced to 25 oc. AH measurements were made with constant stirring of the 

milk to ensure thorough mixing of sample contents. 

2.4 Refractive Index Analysis of Milk Standards 

Refractive Index measurements were made usmg an Abbe refractometer 

(Bausch&Lomb, NY) illuminated by a white light source. A temperature-controlled 

water bath was connected to the refractometer so that the prisms of the refractometer and 

milk samples were at 20.0 oc. 

2.5 Raman Spectroscopy of Milk Standards 

The milk standards were analyzed in flint glass test tubes (6 mm ID, 10 mm OD) 

using a NIR Fourier Transform Raman system (Bruker IFS-88). A 1064nm Nd:YAG 

laser was used as the excitation source. The air-cooled, diode-pumped laser had a 

maximum output power of350 mW. A lens with focallength 150 mm was used to focus 

the laser beam to IOOllm and 1800 scattering arrangement was implemented. In the 1800 

arrangement, the laser beam hits the sample at the same si de which emits the scattered 

radiation. The detector element, consisting of a Ge diode, and pre-amplifier were cooled 

with liquid nitrogen before analysis. Software provided by Bruker was used to record the 

intensities and frequencies of the Stokes lines. Spectral acquisition was set from 0 to 

3700 cm- l with a resolution 2 cm- l
. This frequency range was selected since bands 

corresponding to fat, lactose, and protein in milk have been identified previously using 

Fourier transform infrared spectrophotometry33. Integration time of one scan was 2 
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seconds but each spectrum was an average of 200 scans. Therefore spectral acquisition 

time was approximately 6.7 minutes. Samples were analyzed at ambient temperatures 

(22 - 25 OC). 

2.6 Pre-processing of Data for PLS 

Much of the published work in this field presents NIR spectra that have been 

referenced to a scattering standard such as a ceramic plate. As mentioned, the spectra 

presented here were referenced to air leading to absorbance spectra quite different in 

appearance to those published. Air is a relatively weak scattering medium compared to a 

ceramic plate. Scattering intensity is a function of wavelength and therefore, lower 

attenuation of is found at shorter wavelengths. Rayleigh scattering is the type of 

scattering obtained using a ceramic plate. For a comparison to published work, a 

calibration transfer was made on aIl of the NIR spectra. This was done by taking the 

difference between the average spectrum of milk samples and the average spectrum of 

milk samples from a collaboration with the Department of Environmental Information 

and Bio-production Engineering, Kobe University, Kobe, Japan12
• This was then added 

to each spectrum in the data set. Calibration transfer do es not affect the results because 

the mean spectrum is subtracted from the data set when mean-centering prior to any of 

the analyses used in this study. 

Only the 700 nm to 1019 nm range of NIR spectra was used in this study. 

Boxcar smoothing was done on the NIR spectral data set over a 3-point window (3 nm) 

and over a 21 point (42 cm- I
) window on the Raman spectral data set to reduce the 
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random noise. Spectra were mean-centered by calculating the mean spectrum from the 

spectral data set and then subtracting this average spectrum from each spectrum in the 

data set. 

Conductivity data of the milk samples was autoscaled. This was accomplished by 

first calculating mean and standard deviation of the conductivity of the milk samples. 

Mean conductivity of the milk samples was subtracted from the conductivity of each 

sample. Following this subtraction, conductivity was divided by the standard deviation 

of the conductivity for the sample set. Refractive index data was also autoscaled using 

the same procedure. 

2.7 Partial Least Squares Analysis 

Partial least squares (PLS) regression, a multivariate statistical analysis approach, 

was used to analyze the correlation of spectral changes with changes in milk composition. 

The PLS method involves condensing spectral variations to predominant factors. These 

factors are used to create a calibration that relates spectra to milk constituent 

concentration. In this study, each milk sample had fat, lactose, and protein 

concentrations determined by chemical reference methods. The vector of fat, lactose, or 

protein reference values can be represented by Y. The number of rows in Y is equal to 

the number of samples, m. 

The matrix of dependent variables is represented by S with m rows and the 

number of colurnns equal to the number of wavelengths or wavenumbers, n. For 

example, if S represents the Raman spectra, conductivity and refractive index, S would 

consist of 68 rows by 1921 columns because the spectra were collected over 1919 
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wavelengths/wavenumbers plus 2 additional wavelengths/wavenumbers for conductivity 

and refractive index data. 

The independent and dependent variables are related to each other by the 

expression: 

y = S * P 

dimensions (m x 1) (m x n) (n x 1) 

where P is a column of calibration coefficients, each corresponding to each 

wavelength/wavenumber ofS. PLS is used to determine P. 

(2.1) 

A subset of the data is designated as the calibration set, consisting of spectral 

absorbances S and milk constituent concentrations Y. By multiplying each side of 

equation 2.1 by the inverse of S, P is solved for: 

P = S-1 * y (2.2) 

When the inverse of a matrix is multiplied by that matrix, the result is the identity 

matrix, l, or 1. Calculating the inverse of a matrix is a complex undertaking and PLS can 

be used to approximate the inverse. This is done by decomposing S into the matrices T 

and L. The loading matrix, L, de fines a new spectral coordinate system and T is the 

scores matrix, which de fines intensities in the new coordinate system. Therefore S is 

defined in the new coordinate system as: 

S = T * B (2.3) 

Dimensions of L are fby m, where the n spectral wavelengths are now represented by f 

basis vectors. Dimensions of T are n by f, where f represents intensity in the new 

coordinate system. The residual portion of the data that could not be correlated is 
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represented as Es. Thus the prominent features of the spectra have been described usingf 

optimal factors. 

Independent variable Y must also be described in the coordinate system. This is 

done by relating T to the constituent concentration using vector V in the following 

manner: 

y = T * V +Ec (2.4) 

where V, with dimensions h by 1, is specific to the independent variable and Ec is the 

residual data that could not be described in the new coordinate system. 

Matrices T, L, and V are found by examining the covariance between the 

dependent and independent variables. The PLS algorithm consists of a series of iterations 

where each iteration is designated by h. Each iteration uses a linear least squares analysis 

between the spectra and concentration. 

The first factor Wh is found by the regression of S onto Y: 

Wh=S'*Y/(Y'*y) (2.5a) 

The first score vector Th is found by the regression ofS on Wh: 

Th=S'*WhIWh'*Wh (2.5b) 

Similarly V h, the scalar score vector is found by the regression of Th on Y: 

Vh = Th' *y 1 Th' * Th (2.5c) 

The loading vector Lh is found by regression ofS on Th: 

Lh = S' * Th 1 Th' * Th (2.5d) 

By multiplying Th by Lh, the hth order approximation to S is obtained. For 

example, during the first iteration, h = 1 the first factor Wh represents the spectral 
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contributions of pure components to component concentration. To calculate the rest of 

the factors, the tirst approximations (PLS estimates) to S and Y must be subtracted from 

S and Y respectively to calculate the residuals: 

Es= S-Th*Lh 

Ec=Y-Vh*Th 

(2.5e) 

(2.5t) 

Matrices S and Y are then re-detined as Es and Ec respectively and ca1culations 

2.5a through 2.5f are repeated to ca1culate the next factor. This is repeated until h factors 

have been computed. 

The vector of calibration coefficients, P, using h* factors is then found by: 

Pfih* = W *(Lt * wyl*VI (2.6) 

By substituting P fih* in equation 2.1, an estimate of the constituent concentration, 

Y, is obtained. As described, there are h factors. Early factors capture a greater amount 

of the variance as compared to later factors. In fact, later factors might weaken the 

calibration model to estimate independent samples as the later factors are modeling 

interferences and noise. The optimal number of factors, h*, is the minimum number of 

statistically signiticant factors leading to a model that neither under-estimates nor over­

estimates. 

Predicted Residual Error Sum of Squares (PRESS) was used to determine the 

optimum number of factors to form the calibration mode!. The PRESS was ca1culated 

between the PLS estimates and the known concentrations for aIl values of h, where: 

PRESS = ~ (Yi - Si * Ph)2 (2.7) 
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An F-test at 95% significance on the ratios of PRESS at adjacent values of h was 

used to detennine the minimum number of factors with an associated PRESS that was 

statisticaUy the same as the absolute minimum PRESS of aU factors34
. 

The PLS regression analysis was conducted using pre-processed spectra and then 

pre-processed spectra combined with auto-scaled refractive index and conductivity data 

with Matlab (The MathWorks Inc., MA, Version 5.3 Release Il) software developed in 

our laboratory. 

The PLS algorithm was first computed using the leave-N-out cross validation 

method. The calibration model was constructed using 75% of the data. This data set, 

caUed the "calibration set", inc1uded the samples that were at the extreme concentrations 

of fat, lactose, and protein. In the leave-N-out method, N spectra are left out of the data 

set for a set number of iterations. For each iteration, the calibration model is constructed 

using the samples in the calibration set with the exception of the N samples that are kept 

aside. The PRESS is then ca1culated using the N samples and the calibration model. At 

the end of the iterations, the cumulative PRESS is ca1culated and the 95% F-test is used 

to detennine the optimal number of factors. The calibration vector is then developed 

using PLS analysis of the entire calibration set at the optimal number of factors. Using 

this calibration model, SEC and R2 are ca1culated for the calibration data set. The test 

set, which consisted of the 25% of the data that were set aside and not used at all to 

compute the calibration, is used to calculate the· SEP and R2
• In the leave-N-out cross 

validation method, PLS was configured to leave 10 samples out for five iterations. 

As mentioned, the milk samples were coUected in 6 monthly sets. To investigate 

the influence of variation between milk sample sets upon the calibration, the regressions 
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were detennined using another mode of cross-validation, leave-one-set-out cross 

validation. In this configuration, one set of samples is exc1uded from the calibration and 

the calibration is detennined using the remainder of the samples. The calibration model 

is then used to estimate the set that has been exc1uded. This is repeated until each set has 

been left out once, resulting in 6 calibration vectors. Residual errors between estimated 

and reference values are combined and standard error is computed. In this case, the 

standard error calculated was called the standard error of cross validation (SECV) 

because the samples used to fonn the calibration are also used in the estimation. 

2.8 Genetic Algorithm Approach for Analysis of Data 

Genetic algorithms (GA) can be described as methods for selecting variables most 

correlated to a component of interest using Darwinian selection theory to optimize the fit 

of a regression. In Darwinian natural selection theory, evolutionary change is the result 

of the production of vast genetic variation in each generation. The few individuals who 

survive give rise to the next generation due to a well-adapted combination of inheritable 

qualities. Mutation and recombination introduce variation into the population. Mutation 

is a random event where a gene is transfonned and recombination occurs during a mating 

event when genes of two parents combine to produce new genes in an offspring. 

Introduction of variation may lead to an elevated or depressed fitness compared to that of 

the parents. 

Wavelengths (SW-NIR) or wavenumbers (NIR FT-Raman) in the dependent 

variables were selected using the GA approach to estimate fat, lactose, and protein by 
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multiple linear regression (MLR). The objective was to obtain robust estimations of fat, 

lactose, and protein using SW -NIR or Raman measurements and physical properties 

(conductivity and refractive index) ofmilk. 

Before outlining the specific design of the GA method used in this study, one 

must note the following. The NIR spectra span 160 wavelengths and the conductivity 

and refractive index data were added as two additional wavelength/wavenumbers to each 

spectrum making a total of 162 ''wavelengths''. The Raman spectra consisted of 1919 

wavenumbers and with the physical property measurements, this results in a total of 1921 

wavenumbers. For use in the GA method, spectra and corresponding reference 

concentrations were divided into calibration and validation subsets. Calibration sets 

consisted of 75% of the original data inc1uding the smallest and largest fat, lactose, and 

protein concentrations. The remaining 25% of the original data were designated as the 

validation set. 

There are many ways to configure GA techniques35
, 36, 37. The version of GA 

employed in this study is an alteration of that used by Jang38
• In this implementation of 

GA, the objective was to determine the combination of wavelengths leading to the best 

estimation of milk constituent concentration according to the expression: 

(2.8) 

where Y is the milk constituent concentration, SM is the absorbance at wavelength n, m is 

the number of wavelengths in the model, c are the coefficients determined by MLR and b 

is an offset (intercept) determined by MLR. The following is an outline of the sequence 
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of steps involved in the GA approach developed. A brief description of each step (with 

the exception of steps 5 and 6) follows the outline. 

1. Define: 

a. Range of potential wavelength/wavenumbers (wavelengths, 

conductivity, refractive index). 

b. Number of wavelength/wavenumbers to be used ln the model of 

estimation. 

c. Number of generations 

d. Mutation rate 

2. Create a random initial population of individuals. 

3. Evaluate standard error associated with each individual. 

4. Create the next population consisting of the two most fit individuals of the 

preceding population and new individuals resulting from crossover in the 

preceding population. 

5. Repeat steps 3 and 4 for the number of generations defined in step 1 e. 

6. Repeat 1 through 5 incrementing the number of wavelength/wavenumbers to 

be used in the model (defined in 1 c) by 1. 

7. Choose the optimal number ofwavelength/wavenumbers. 

la. Defining the range of potential wavelength/wavenumbers. 

The region of analysis of the NIR spectra of milk samples was from 700 to 

1018 nm, which consisted of 322 wavelengths. Conductivity and refractive index were 
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included with the spectra, which resulted III a total of 324 potential 

wavelengthlwavenumbers to choose from. Therefore the range of 

wavelength/wavenumbers was defined from 1 to 324. Each Raman spectrum was 1919 

wavenumbers. Time consumption of GA was decreased by including only every 8th 

wavenumber in the data set, which reduced the number of wavenumbers to 240. With 

conductivity and refractive index, the range of wavelength/wavenumbers for Raman 

analysis by GA was defined from 1 to 240. 

1 b. Define number of wavelength/wavenumbers to be used in the model of 

estimation. 

The model was initially constructed using 2 wavelength/wavenumbers. This 

number was incremented in steps of one to a maximum of 15 wavelength/wavenumbers. 

le. Define number of generations. 

Through trial and error, it was decided that a maximum of750 generations was suitable. 

1 d. Define mutation rate. 

The mutation rate was defined as 0.50. This parameter will be discussed further in step 4. 

2. Create a random initial population of individu ais. 

Each individual III the population consisted of the number of 

wavelength/wavenumbers to be included in the mode!. The number of each 

wavelength/wavenumber was binary encoded. For example, the decimal equivalent of 1 

o 1 00 1 0 1 is 165 but only 240 potential wavelengthlwavenumbers were in the Raman 

spectra. Therefore, the decima1 values were sca1ed to obtain the encoded wavelength 

using the following formula: 

Â. = {decval * [(maxr - minr)+(2n-l) ]}+ 1 (2.9) 
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where Â. was the output wavelength within the specified range, decval was the decimal 

value, maxr was the maximum value of the range, minr was the minimum value of the 

range, and n was the length of the binary code. Therefore 1 0 1 0 0 1 0 1 corresponded to 

the 1 05th wavelength/wavenumber in the wavelength range. 

3. Evaluate standard error associated with each individu al. 

Coefficients Ct to Cm of equation 2.8 were calculated for each individual using the 

spectral measurements in the calibration set at the selected wavelengths/wavenumbers. 

By comparing the GA estimates to the known concentrations in the calibration set, the 

SEC was determined. This was repeated using the validation set but in this case, the 

standard error was referred to as SECV. Fitness was maximized by using the GA 

technique where both SECV and SEC were to be minimized. Therefore, similar to work 

by Ding et a1., the fitness of the individual was defined as l/(SEC*SECV) 35. 

4. Create the next population. 

The two most fit individuals of the preceding population were automatically 

incorporated into the new population. The rest of the population was formed through 

crossover and recombination of the other individuals in the previous population. 

Crossover was conducted by randomly choosing two individuals in the preceding 

population and also randomly, choosing a bit, deemed the crossover point, in the parent 

strings. AU bits after the crossover point were exchanged between the two individuals, 

creating two new individuals. This was repeated until the new population was complete. 

The new population, with the exception of the two previously most-fit individuals, was 

subject to mutation. This was desirable to avoid getting trapped into local optima. 
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Mutation rate, in this configuration, represented the percentage of bits in the population 

that reverted to their other binary fonn. 

7. Choose the optimal number of wavelength/wavenumbers. 

Steps 5 and 6 are skipped as they are self-explanatory. The product of SEC and 

SECV was plotted versus the number of wavelength/wavenumbers in the model. The 

optimal number ofwavelength/wavenumbers selected was detennined to be the minimum 

number that showed no statistical difference between its associated SEC*SECV and the 

absolute minimum SEC*SECV based on F-tests at the 95% confidence level. 

The use of the GA method in selecting wavelengths for near infrared calibrations 

has been attempted in previous work by others and it was found that the GA approach 

leads to a reduction in prediction errors compared to PLS39
. One of the differences 

between the GA method and PLS is that in PLS, the entire spectrum is used to generate a 

calibration vector whereas when using the GA technique, only the wavelengths that lead 

to the best fitness are used. In fact, the GA-MLR approach has been found in sorne 

instances to be superior to PLS because it reduces the influence of data not containing 

critical infonnation on the calibration models40
• One of the drawbacks of the GA method 

is that the user is faced with a large number of adjustable parameters that affect the 

outcome such as fitness function, mutation rate, crossover scheme, number of generations 

and population size40
• However, extensive investigation has been done to detennine 

optimum values for these parameters40
• 
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Chapter 3 Estimation Of Milk Composition Using SW-NIR 

Spectrophotometry 

The potential utility of SW-NIR spectrophotometry for quantitative analysis of 

major constituents of milk could be an asset in evolving dairy herd management 

practices. It is a fast, non-destructive, inexpensive technique with the capacity for remote 

sensing via fibre optics. In this chapter, SW -NIR spectrophotometry of milk to determine 

composition is examined. First, calibrations were made using PLS analysis of spectra 

alone and then on the spectra combined with conductivity and refractive index 

measurements. As an alternative method, the GA approach was used to construct a 

calibration using SW -NIR spectra, conductivity and refractive index. 

3.1 Near Infrared Spectra of Milk 

To develop a calibration for milk composition determination using SW-NIR 

spectrophotometry, milk samples with reference values for fat, lactose, and protein 

content were obtained. The monthly sample sets were collected from July to December 

2001. Each set consisted of either 12 or 16 samples but due to sample mishandling, one 

sample was rejected of the 80 samples. These 79 samples were analyzed as they were 

acquired on a monthly basis, using SW -NIR transmittance spectrophotometry. 

Absorbance spectra of the milk samples are presented in Figure 3.1 a. The most striking 

feature of the spectra is the peak at 970 nm, which corresponds to 2nd overtone O-H 

stretching of water. Baseline changes occur in NIR spectra of milk due mainly to light 

scattering by fat globules2o. However in Figure 3.1a, offsets are observed 
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corresponding to sample sets. Analysis of this effect on calibration is given in Section 

3.5. Baseline changes are also visible in smoothed and mean-centered spectra presented 

in Figure 3.1 b. Though the baseline variation is still evident, these spectra are centered 

about zero absorbance units with subtle variations between 900 and 950 nm emphasized. 

3.2 Calibration of Fat, Lactose, and Protein in Milk by Short-Wave Near 

Infrared Spectrophotometry Using PLS with Leave N Out Cross Validation 

To assess the use SW -NIR spectrophotometry for milk constituent determination, 

calibrations were conducted using PLS analysis. To fulfill this, 75% of the samples were 

designated as the calibration set and subsequent models for fat, lactose, and protein were 

developed using PLS analysis of the spectra. In the configuration ofPLS used, leave-N­

out cross validation was implemented. Of the calibration set, 10 randomly selected 

samples were left out for 5 iterations. At each iteration, the calibration model was 

validated using the samples that were left out. The optimum number of factors used to 

construct the final calibration was found using the cumulative PRESS. An F-test at a 

95% confidence level determined that fat, lactose, and protein calibrations required 7, 6, 

and 7 factors respectively as described in Chapter 2. Calibration vectors, each consisting 

of PLS regression coefficients from 700 to 1018 nm, are shown in Figure 3.2. Heavily 

weighted regions in the vectors are those that have large magnitude coefficients, both 

negative and positive. Regression coefficients give information relevant for the 

calibration of a constituent but weighting of certain wavelengths may not arise solely 

from this constituent. Milk constituents largely responsible for spectral variation 
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influence the calibration of those constituents that have only minor contributions to 

spectra. Proposed assignment of heavily weighted regions in the calibration vector to 

functional groups was done using correlation charts and previously pub li shed results. 

Triglycerides, the major constituent of milk fat, are composed of esters and C-H 

groups in fatty acid chains. The calibration vector for fat is shown in Figure 3.2a. The 

general trend of the calibration vector for fat consists of positive correlation between 750 

and 800 nm, positive correlation at 920 nm, and negative correlation centered at 948 nm. 

AIl of these regions correspond to C-H stretching13
. AIso, there is negative correlation 

from 830 nm to 900 nm, which is not a region typical of C-H but instead corresponds to 

overtones ofN-H stretchingl3
. 

The carbohydrate, lactose, was shown in Figure 1.1. It has C-H groups, O-H 

groups and ether groups. These groups are accounted for in the calibration vector for 

lactose estimation, presented in Figure 3.2b. General trends in the calibration vector 

include positive correlation from 800 to 890 nm, intense negative correlation from 906 to 

914 nm, and intense positive correlation from 922 to 926 nm, which all agree to C-H 

stretching13
• Negative weighting from 750 to 790 nm and from 940 nm to 950 nm can be 

assigned to O-H stretching13
. 

Protein is comprised of amino acids connected by peptide linkages. Functional 

groups in pro teins are C-H, N-H, and C=O groups. The shape of the calibration vector 

for protein estimation in Figure 3.2c consists of negative weighting from 780 nm to 

840nm, corresponding to N-H groups, positive correlation at 904 nm, assigned to C-H 

stretching, and negative correlation at 922 nm, corresponding to N-H stretching in 

. 13 protem . 
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Utility of calibration vectors in Figure 3.2 was assessed by using them to determine fat, 

lactose, and protein in the calibration sample set. Estimation of milk constituents from 

PLS with leave-N-out cross validation is shown in Figure 3.3(a to c). The line ofidentity 

represents an ideal estimation. The models were further validated by using them to 

estimate milk constituent concentration in the independent validation set. These 

estimations are presented in Figure 3.3 (d - f). Measures of accuracy were indicated by 

R2 and standard error (SEC for calibration set and SEP for validation set) between 

estimates and line ofidentity, which are listed in Table 3.1. 

Table 3.1. Estimation of fat, lactose and protein in milk using NIR spectra using PLS 

with leave-N-out cross validation 

Calibration Set Validation Set 

Constituent SEC 

(g/ 100 g) 

SEP 

(g/ 100 g) 

Fat 

Lactose 

Protein 

0.76 

0.49 

0.46 

0.74 

0.09 

0.49 

0.66 

0.35 

0.14 

0.68 

0.08 

0.58 

These results show that the models do not satisfactorily estimate milk 

composition. Although the general trends in the calibration vectors were accounted for, 

the vectors were quite detailed. It is likely that the fine details of the calibration vector 

indicate the mode1ing of noise. This may have enhanced the estimation of sorne samples 

and hindered that of others. For example, in Figure 3.3a, estimation ofmilk samples with 

a fat content greater than 5 g/100g and less than 2 g/100g have reduced accuracy 
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compared to the standards with moderate fat content. Estimation of the samples in the 

validation set deviate further from the reference values compared to estimation of 

calibration set. This implies that the calibrations have described specifically the samples 

in the calibration set but not an overall picture of milk composition that could be applied 

to samples outside of the calibration set. 

3.3 Conductivity and Refractive Index of Milk 

Conductivity and refractive index are physical properties of milk related to 

composition. Conductivity has been used to indicate mastitis and monitor concentration 

and composition of solids during dairy processing1
• Refractive index has also been 

investigated as a means to determine total solids and added water in milk1
• In order to 

improve accuracy in estimation of milk composition by SW-NIR spectrophotometry, 

conductivity and refractive index were inc1uded in the calibration. 

Conductivity in the milk samples ranged from 4.05 to 4.85 mS with an average 

conductivity of 4.39 mS and standard deviation of 0.15 mS. Refractive index 

measurements of the samples ranged from 1.3454 to 1.3570 with an average of 1.3528 

and standard deviation of 0.0027. 

To evaluate the use of conductivity or refractive index without spectral input for 

milk composition determination, linear regression was carried out between each physical 

property and reference fat, lactose, and protein concentrations of the milk. The capability 

of the physical properties to estimate milk constituents was judged by R2 and standard 

error between the actual constituent concentrations and the regression values. Results of 
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the linear regression are presented in Table 3.2. From the results in Table 3.2, it is 

apparent that the two physical properties are not suitable for accurately estimating milk 

composition. Of an constituents, lactose demonstrates the strongest correlation to the 

physical properties, particularly conductivity. This is expected because lactose 

concentration changes have been found to relate to changes in sodium, potassium, and 

chloride ions in milk as a means of maintaining osmotic pressure in the mammary 

system6
. The two properties show sorne relation to each other inversely, as presented in 

Figure 3.4. Therefore, it is expected that where one constituent shows a positive 

relationship with conductivity, refractive index should be negatively related to the same 

constituent. 

Table 3.2. Regression of reference constituent concentration on conductivity and 

refractive index 

Conductivity Refractive Index 

Constituent R2 Standard error R2 Standard error 

Fat 0.50 1.50 0.66 1.42 

Lactose 0.76 0.01 0.65 0.12 

Protein 0.24 0.71 0.24 0.65 

In the case of fat, lactose and protein, this trend was observed. Both fat and protein were 

found to have an inverse relationship to conductivity whereas lactose had the opposite 

trend. A positive relationship was observed between refractive index and fat and protein 

content and again, lactose shows the opposite trend. It is not surprising that fat and 
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protein would have similar trends in refractive index because both exist colloidally in 

milk and contribute to the light-scattering properties ofmilk. 

3.4 Calibration of Fat, Lactose, and Protein in Milk using Short-Wave Near 

Infrared Spectrophotometry With the Addition of Conductivity and 

Refractive Index Using PLS with Leave N Out Cross Validation 

Calibration of fat, lactose and protein was not sufficient using SW-NIR spectra. 

Although the calibration vectors demonstrated expected trends, marked noise content 

interfered with the estimation. Conductivity and refractive index have been found to be 

related to milk composition. By inc1uding this added information with spectra for PLS 

analysis, construction of a more accurate calibration was attempted. 

The optimum number of factors used to construct each calibration was found by 

PRESS using leave-N-out cross validation. At a 95% confidence level, an F-test was 

used to ascertain that 8, 3, and, 9 factors were significant for fat, lactose, and protein 

calibrations, respectively. On the entire calibration set, PLS regression was then 

conducted to develop models using the optimal number of factors. Resulting calibration 

vectors for fat, lactose and protein are shown in Figure 3.5 (a - c). 

The calibration vector for fat estimation using SW-NIR spectra, conductivity, and 

refractive index is presented in Figure 3.5a. It has been split into two windows, one 

consisting of the spectral regression coefficients and the other for viewing regression 

coefficients corresponding to conductivity and refractive index. Spectral coefficients in 

Figure 3.5a showed the same weighting pattern observed in the calibration vector for fat, 

constructed using only SW-NIR spectra (Figure 3.2a). This inc1uded C-H stretching 

corresponding to positive correlation between 750 and 800 nm, at 920 nm, and negative 
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weighting near 948 nm 13. In addition, negative weighting of the region from 830 nm to 

910 nm, assigned to N-H stretching was observed13
• Conductivity and refractive index 

were not strongly weighted according to the magnitude of their correlation coefficients. 

However, inclusion of these two properties influenced the calibration. Although a larger 

number of factors was used to construct the calibration, spectral regression coefficients 

were less noisy than those observed in the calibration using only SW-NIR spectra. This 

indicates that the addition of conductivity and refractive index accentuate variation in 

spectra and thus weighting of irrelevant information is reduced. 

Calibration for lactose, presented in Figure 3.5b, required only 3 factors. Only the 

two physical properties were primarily used to describe lactose content in milk with 

minor contributions from the spectra. This theory is supported by the weak magnitudes 

of the spectral coefficients relative to the dominating conductivity and refractive index. 

In the spectral portion of the calibration vector, significant correlation is only visible near 

900 nm, which was also observed in the spectra-only calibration vector for lactose, and 

from 970 nm to 1018 nm. Weighting near 900 nm agrees to C-H stretching and the 

second region corresponds to O-H stretching41
• 

Like fat, calibration for protein using SW-NIR spectra, conductivity and refractive 

index used more factors compared to the calibration constructed without the physical 

properties. The calibration vector for protein, presented in Figure 3.5c, was noisier than 

the spectra-only calibration. Neither conductivity nor refractive index were weighted 

significantly relative to the magnitudes of the spectral calibration coefficients. This 

indicated that the increased number of factors reflects description of noise in the spectra. 
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Overall pattern of spectral regresslon coefficients was equivalent to the calibration 

without conductivity and refractive index. In general, N-H stretching was apparent in the 

negative weighting between 780 nm and 840 nm and at 920 nm41
• Correlation at 904 nm 

corresponded to C-H stretching41
• 

Once the calibration vectors had been constructed, they were used to estimate fat, 

lactose, and protein content in the calibration set milk samples, shown in Figure 3.6 (a-c). 

Validation set estimates are presented in Figure 3.6 (d-t). There was a striking 

improvement in accuracy as compared to the estimation found using spectra alone. Table 

3.3 lists R 2 values and standard errors found between the estimated and reference milk 

constituent concentrations. Inc1uding conductivity and refractive index improved 

estimation of fat, lactose, and protein by 27%, 55%, and 27% respectively, based on 

decreases in SEC, compared to spectra-only calibrations. Improvements in SEP for fat, 

lactose, and protein were 29%, 50%, and 52 % respectively. 

Table 3.3. Estimation of fat, lactose and protein in milk using SW-NIR spectra with 

the addition of conductivity and refractive index using PLS with leave-N­

out cross validation 

Calibration Set Validation Set 

Constituent SEC SEP 

Fat 

Lactose 

Protein 

0.84 

0.81 

0.71 

(g! 100 g) 

0.59 

0.05 

0.36 
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In the case of fat, the calibration required more factors when including the additional 

parameters and the calibration vector appeared less noisy. Judging by the improvement 

in accuracy using this calibration vector, it is likely that inclusion of conductivity and 

refractive index accentuated relevant changes in the spectra. Influence of conductivity 

and refractive index on the calibration for lactose is somewhat different. In this case, 

conductivity and refractive index directly aided the calibration and weighting of the 

majority of the spectral wavelengths was diminished. Nevertheless, spectral 

contributions, although minor were significant. In Table 3.2, linear regression of 

conductivity on lactose content only resulted in an R2 of 0.76 and for refractive index, 

only 0.65 but as shown in Table 3.3, using the combination of spectra, conductivity and 

refractive index for lactose estimation exceeds those results. Although protein calibration 

using spectra with the two physical properties shows an improvement in accuracy over 

that achieved using only spectra, it is suspected that a significant amount of noise is 

modeled in the calibration. One extra factor was needed to construct the calibration using 

spectra, conductivity and refractive index but the general trend of the calibration vector 

remained unchanged. It was, however, noisier, which implied that the extra factor 

described noise. 

Aiso ofnote is the under-estimation ofhigh (> 5 g/ 100 g) protein milk samples as 

shown in Figure 3.5 c) and f). It was observed that high protein standards coagulated 

after 1 week when the reported shelf life of the standards at 4 oC was 4 weeks. When the 

manufacturer was informed of this, it was advised that the standards be analyzed within a 

week of shipment, because the high protein samples would denature completely after one 

week. The manufacturer also informed us that high protein standards had been prepared 
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in different vessels compared to the other standards but they were unable to link the 

source of the problem to this. Slow denaturing of the protein in these standards reduced 

the protein concentration. Because of this, reference concentrations for high protein 

standards were not representative at the time of SW-NIR analysis. The calibration was 

repeated with the omission of the higher protein samples but the calibration was found to 

be less accurate. It is possible that the high protein standards were necessary in the 

calibration due to the information provided even if the concentration was non-linearly 

represented. 

3.5 Investigation of inter-sample set variation using PLS analysis of SW-NIR 

measurements with leave-one-set-out cross validation 

In Figure 3.1, in addition to baseline offsets due to scattering, off sets between 

sample sets were observed. Influence of variation between sample sets was examined by 

re-constructing the calibrations using PLS with leave-one-set-out cross validation. In this 

cross validation mode, the calibration was done 6 times leaving out one sample set each 

time and estimating the samples in the set that were left out with the calibration models 

developed using the samples of the remaining sets. In the absence of inter-sample set 

variation, the calibration vectors should overlap entirely. 

For fat, lactose and protein calibration using SW-NIR spectra using PLS using 

leave-one-set-out cross validation, it was found that 7, 2, and 3 factors respectively were 

necessary at the 95 % confidence level. The calibration vectors are presented in Figure 

3.7. Baseline offsets were apparent in the calibration vectors in Figure 3.7 between each 
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iteration where a sample set was removed from the data. AlI six calibrations resulted in 

similar spectral weightin,g but there is a magnitude difference between vectors. No 

obvious trend was observed, meaning, one wavelength may be weighted less in one 

calibration vector compared to the other calibrations, but another wavelength would be 

weighted more in the same calibration vector. In the calibration vectors for lactose 

estimation, not only does the baseline vary but also the general trend of the calibration 

vectors differs between 900 nm and 950 nm. This is of particular interest because this 

wavelength region was significantly weighted in the calibration obtained using PLS with 

leave-N-out cross validation for lactose estimation. 

Calibration was repeated with the same type of cross-validation using SW-NIR 

spectra with the addition of conductivity and refractive index. For fat, lactose and 

protein, the calibrations were found to require only 1 factor at the 95 % confidence level. 

Regression coefficient vectors ofthese calibrations are presented in Figure 3.8. The same 

variation was apparent in the spectral calibration coefficients. In addition, regression 

coefficients corresponding to both conductivity and refractive index differ in magnitude 

between calibrations. 

Accuracy in the estimation by leave-one-set-out cross validation approach is 

much worse than that found using leave-N-out cross validation. Correlation between 

cumulative estimates and reference values for fat, lactose, and protein content using the 

leave-one-set-out cross validation approach is listed in Table 3.4. 
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Table 3.4. 

Constituent 

Fat 

Lactose 

Protein 

Estimation of fat, lactose and protein using PLS analysis with leave-one­

set-out cross validation of SW-NIR spectra and SW-NIR spectra with the 

inclusion of conductivity and refractive index 

Estimation using NIR spectra 

0.49 

0.00 

0.00 

SECV 

(g/100 g) 

0.91 

0.13 

0.71 

Estimation using NIR spectra with 

conductivity and refractive index 

0.60 

0.76 

0.24 

SECV 

(g/100 g) 

0.90 

0.01 

0.70 

In comparison with the SEC results found using leave-N-out cross validation, 

SECV detennined using leave-one-set-out cross validation increases by 23%, 44%, and 

45% for fat, lactose, and protein estimation, respectively, when using only SW-NIR 

spectra. Similarly, in the calibrations using SW-NIR, conductivity, and refractive index, 

SECV increases by 32% and 21 % f<;lr fat and protein when implementing leave-one-set­

out compared to leave-N-out cross validation. However in the case of lactose, SECV 

decreases by 88% compared to SEC achieved using leave-N-out cross validation using 

spectra and the two physical properties. The R2 and SECV calculated using leave-one­

set-out cross validation for lactose estimation is the same as that achieved using the linear 

regression of conductivity on the reference values as listed in Table 3.2. This implies that 

the variation in spectra between sample sets is so significant that lactose is estimated 

almost entirely by conductivity. In general, the diminished accuracy in fat, lactose and 

protein estimation using this type of cross validation demonstrates that ;variation between 
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sample sets is detrimental to the calibration. In order to develop a robust and accurate 

calibration, description of this inter-sample set variation is necessary. 

3.6 GA approach for fat, lactose, and protein estimation using SW-NIR, 

conductivity and refractive index 

Milk has a high degree of opacity and efficiently scatters light. This can be 

problematic in vibrational spectrometry for quantitative analysis because of reduced light 

intensity at the detector. One way of eliminating noise is by choosing spectral regions 

that encode information unique to the analyte of interest. The GA method is used for 

wavelength selection in order to quantify a constituent. This is an alternative approach to 

PLS, which uses the entire spectrum to estimate constituent concentration. 

To compare PLS-constructed models for estimation of milk composition using 

SW-NIR spectra, conductivity and refractive index measurements, models were 

constructed using the GA approach. As in PLS, a subset of samples were designated as 

the calibration set, which contained 75% of the data induding extreme concentrations 

and the remaining 25% defined the validation set. Estimation of concentrations of the 

calibration set and validation set yielded standard errors SEC and SECV respectively. 

The quantity to be maximized by the GA technique was the product of SEC and SECV. 

The models were constructed using 1 to 15 wavelength(s). In order to determine 

the optimal number of wavelengths to be used in the model, the product of SEC and 

SECV was plotted against the number ofwavelengths in the mode! at the maximum 
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number of generations, shown in Figure 3.9. An F-test was used to detennine the optimal 

number of wavelengths at a 95% confidence level. For fat, lactose, and protein 

estimation, 9, 8, and 8 wavelengths were used in the models respectively. As described 

in the Section 2.8, the models were constructed with incrementing generation. A total of 

150 generations was selected so that optimal wavelength selection could be reached. To 

ensure that the solution reaches a minimum, the product of the standard errors were 

plotted versus generation in Figure 3.10. This allowed observation of the evolution of the 

wavelength model and the progression of error. From these plots it appears as though the 

final models were stable. 

The wavelengths selected by the GA method were then subjected to multiple 

linear regression using the calibration set to detennine the numerical coefficients. The 

resulting models for fat, lactose and protein estimation are: 

Fat = - 893.5 - 224.6*S724 - 870.9*S778 + 669.3*S780+ 915.4*S808 

+ 154.0*S8\O 792.3*S848 - 499.5*S860+ 649.3*S882 

+ 684.6*refractive index 

Lactose = - 0.6 - 33.9*S716 + 41.4*S76o-7.1 *S790- 3.9*S846-25.5*S910 

+ 30.9*S924 - 3.3*SlOlO + 0.8*conductivity 

(3.1) 

(3.2) 

Prote in = 59.3 + 559.4*S726- 553.1 *S780- 260.7*S808+ 309.8*S848+ 142.2*S888 

+ 223.7*S912 - 409.4*S924 + 65.0*refractive index (3.3) 

where S represents SW-NIR absorbance and the numbers in subscript are the 

wavelengths. Selected wavelengths for fat, lactose, and protein detennination were 
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indicated on an average milk spectrum in Figure 3.11. The 2nd y-axis refers to the 

numerical coefficients corresponding to the wavelengths selected. The O-H stretching 

from water at 970 nm is largelyavoided. Weighting ofabsorbances at 844,861, and 879 

nm correspond to C-H stretching. Selection of refractive index is due to contribution of 

fat globules to scattering properties of milk. 

The selected wavelengths for lactose show that the weighting is heavier outside of 

the 800 nm to 900 nm region, contrary to the fat calibration. Absorbance at 716, 846, 

910, and 924 nm agrees to C-H stretching and 716 nm, along with 1010 nm are assigned 

to O-H groups. Similar to the PLS results, conductivity was se1ected, which is reasonable 

because lactose concentration is correlated with the soluble salts in milk. 

In the model for protein estimation, the selected wavelengths span most of the 

analyzed region, avoiding the broad water stretch at 970 nm. Two of the wavelengths 

selected for protein estimation can be assigned to N-H stretching, 780 and 808 nm and 

828, 888, and 912 nm are correlated with C-H stretching. Refractive index was selected 

by the GA approach because like fat, protein exists in milk colloidally and influences the 

scattering properties of milk. 

These models constructed using the GA method were used to estimate milk 

composition of the calibration sample set. These estimations are presented in Figure 3.12 

(a - c). The selected wavelengths and coefficients determined using the calibration set 

were then used to estimate milk constituent concentrations in the validation set, which is 

shown in Figure 3.12 (d - f). Accuracy using the models is illustrated by the R 2 and 

standard error between the estimated and reference values. The results found for R 2, 
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SEC, and SECV using the GA method to estimate fat, lactose, and protein are listed in 

Table 3.5. 

Table 3.5. Estimation of fat, lactose and protein using SW-NIR spectra, conductivity 

and refractive index with GA. 

Calibration Set Test Set 

R2 SEC R2 SECV 

Constituent (g/lOOg) (g/lOOg) 

Fat 0.83 0.63 0.95 0.26 

Lactose 0.88 0.04 0.96 0.02 

Protein 0.64 0.40 0.78 0.30 

Estimation of fat in the calibration set shows a 7% decrease in SEC compared to 

the same property found using PLS with leave-N-out cross validation. The test set is 

even better estimated, showing a 56% reduction when comparing SECV to SEC obtained 

using PLS. Another notable improvement achieved using wavelength selection is that the 

model is better able to estimate extreme fat content. Estimation of lactose using the GA 

model shows an improvement in SEC and SECV by 20% and 60% respectively 

compared to SEC found using PLS. Not only do these results exceed those by PLS in 

this study, but they are better than any reported results found using SW-NIR 

spectrophotometry for the estimation of lactose in milk12. 20. For protein, the ca1culated 

SEC using PLS with leave-N-out cross validation is better than the result determined 

using the calibration set and the GA model by 10%. However, SECV obtained for the 
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validation set using the GA technique improves on the PLS result by 17%. Results for 

protein estimation from the GA approach were better than those obtained by Tsenkova et 

al. using PLS analysis oflog(lIT) SW-NIR spectra acquired using a 10 mm pathlength12
. 

However, the work by Tsenkova et al. is different from the research presented here 

because prepared primary milk standards were not used. Instead, 258 milk samples 

collected from just three cows analyzed by MilkoScan were employed and comparison to 

primary standards was not attempted12
• 

An advantage of the GA method is that only wavelengths that lead to the smallest 

errors are used in the calibration, unlike in PLS where the entire spectrum is used. 

Therefore, although results were better for fat and protein using PLS, it should be 

emphasized that in the GA method no more than 10 wavelengths were used for 

estimation as opposed to 160. In spite of this, it is suspected that random correlation with 

sorne of the wavelengths was selected by the GA approach. A limitation of the present 

GA configuration is the assumption that the model for estimation took the form of a 

linear regression when it is unknown whether the estimation of milk composition is due 

to linear reactions. Finally, a drawback of the GA method was that it was more time 

consuming than PLS. A single calibration using PLS analysis of NIR spectra only took 

minutes but the same using GA took 4 hours. Once the calibration is obtained, however, 

subsequent estimations using the calibration take an equivalent amount of time compared 

to using the calibration developed using PLS regressions. In both cases, there is no need 

to recalibrate provided the sample set used to develop the calibration was large enough to 

capture sufficient variation. 
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Chapter 4 Estimation Of Milk Composition Using NIR FT­

Raman Spectrophotometry 

Like SW -NIR spectrophotometry, the use of NIR FT -Raman measurements for 

the quantification of milk constituents, like fat, lactose, and protein, could be beneficial to 

the dairy industry. These measurements are rapid without any sample pre-treatment and 

do not consume the samples themselves. Near Infrared FT -Raman spectrophotometry 

could be measured simultaneously as the samples are being collected using remote 

sensing through the application of fibre optic technology. The structure of this chapter 

follows that of Chapter 3. Fat, lactose, and protein calibrations were developed using 

PLS analysis of spectra alone and then on spectra with the inclusion of conductivity and 

refractive index. For comparison to calibration models found using PLS, the GA method 

was used to construct models using NIR FT-Raman spectra, conductivity and refractive 

index. 

4.1 NIR FT-Raman spectra of milk 

To investigate the use of NIR FT -Raman spectrophotometry for determining 

major milk constituents, prepared primary milk standards were obtained. These 68 

samples were collected in 5 sets from August to December 2001. These samples were 

the same samples that were analyzed using SW-NIR excluding the July sample set. The 

samples were analyzed using NIR FT -Raman spectrophotometry at ambient 

temperatures. The spectra consisted of intensity of the scattered radiation versus the 
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Raman wavenumber, which is the difference between the frequency of the scattered 

radiation and laser frequency. Raw spectra of the milk samples are presented in Figure 

4.1a. Unlike in the NIR data, off sets corresponding to sample sets were not observed in 

the Raman spectra. The intensity close to 0 cm-I is representative of Rayleigh scattering, 

an elastic form of scattering where the scattered photons are of the same frequency as the 

excitation source. Smoothed and mean-centered spectra are presented in Figure 4.1 b. 

Variations in the spectra appear at - 170, 350, 1050, 1250, 1450, 1950, 2950, and 3250 

cm- I
. Bands at 170 cm- I and 3250 cm- I are indicative of the water constituent in milk. 

Although water has weak Raman scattering properties, it shows several distinct bands at 

60, 170, and between 3200 and 3600 cm-I 
41. Other bands are reflective of the organic 

constituent in milk. 350 cm-l, 1050, 1250, and 2950 cm- I correspond to chain expansion 

in alkanes, C-C stretching in alkane, CH2 rocking, and CH stretching in fatty acids 

respective1y 41. As expected, the Raman spectra of milk appear less complex than NIR 

spectra because overtone and combination bands are less prominent and thus overlapping 

is less frequent41
• 

4.2 Calibration of Fat, Lactose, and Protein in Milk by NIR Fr-Raman 

Spectrophotometry Using PLS 

To develop calibrations using Raman spectra for milk composition analysis, a 

subset of the milk samples, the calibration set, was used for PLS analysis. The 

calibration set consisted of 75% of the samples including extremes for fat, lactose, and 

protein concentrations. The remaining 25% ofthe samples were designated as the 
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independent validation set. Calibration models were constructed using PLS regression 

with leave-N-out cross validation. In this configuration, there were 5 iterations. At each 

iteration, 10 randomly selected samples were excluded from the calibration and the 10 

samples that were left out were used to validate the mode!. For each iteration, there was 

a PRESS value for each factor. A cumulative (from all 5 iterations) PRESS plot was 

used to determine the optimum number of factors to be used in the calibration model. An 

F-test at a 95% confidence level determined that 5 factors were necessary for fat, lactose, 

and protein calibrations. The calibration vectors, which are comprised of PLS regression 

coefficients corresponding to spectral wavelengths, for each milk constituent are 

presented in Figure 4.2. These regression coefficients are relevant to the calibration of 

each species but may not have arisen from the species alone. Assignment of heavily 

weighted bands in each calibration vector to functional groups were made using 

correlation tables and pub li shed work. 

AH fat consists of esterified fatty acids. Fatty acids are composed of hydrocarbon 

chains with a terminal carboxyl group. The calibration vector for fat estimation is in 

Figure 4.2a. Low frequency bands 48 and 125 cm-1 are due to elastic scattering of fat 

globules. Another possibility is that these bands indicate water-lipid interactions because 

stretches associated with hydrogen bonding occurs between 200 and 50 cm-141 . The band 

at 1447 cm-1 is due to CH2 scissoring. This type of vibration has been identified at 445 

cm-1 to quantify un-saturation of fat33
• Weighting of 2874 cm-1 falls in the expected 

region of symmetric stretching of acyc1ic -CH2- groupS42. Furthermore, absorbance at 

this wavenumber is used in commercial infrared milk analyzers for the estimation of milk 

fat content. Intense weighting of 1650 cm-1 was assigned to C=C stretching modes of 
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lipids. This band was observed in FT-Raman spectra ofbutter43
• Peaks at 3171 and 3474 

cm- I correspond to O-H stretching and may represent a water-fat interaction. This type of 

band was also visible in the SW-NIR calibration vector for fat estimation. 

Lactose, a sugar, is a ring structure that is composed of C-H, O-H, and C-O-C 

groups. The calibration vector for lactose estimation is shown in Figure 4.2b. Hydrogen 

bonding to lactose is expected between 200 and 50 cm-I 
41. The bands at 66, 112, and 

350 cm- I can be assigned to this phenomenon and/or elastic scattering. Primary and 

secondary alcohol C-O vibrations are visible in the weighting of 350 cm-l, as this is 

expected between 330 and 390 cm-I 
42. Weighting of 2860 cm-I is an expression of CH2 

stretching, although it is unclear what specifically the vibration is ascribed to because 

asymmetric and symmetric stretching of CH2 in -CH20- and CH20H occur in this 

frequency region42
• Correlation at 2974 cm-I probably corresponds to C-H stretching 

because it has been found that this type of stretching occurs at 2982 cm-I in another 

sugar, sucrose33
• The band at 3294 cm-I occurs in the region where O-H stretching in 

carbohydrates has been tabulated42
. 

Amino acids are the building blocks of proteins and consist of structures with an 

amino group (NB3 +) at one end and a carboxyl group (COO-) at the other end. Peptide 

bonds (-CO-NH-) fuse the amino group and carboxyl group of different amino acids to 

form proteins. Spectral regression coefficients for the calibration of protein are shown in 

Figure 4.2c. The peak at 1001 corresponds to CNC symmetrical stretching in protein42
. 

Weighting of 1265 cm-I was assigned to amide III modes of protein, which consists of 

CN stretching, NH bending, C=O stretching, and O=C-N bending42
. In addition, 

1641cm-1 corresponds to amide 1 modes ofprotein, consisting ofC=O stretching, C-N 
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stretching, and NH bending vibrations42
. Bands at 2864 and 2966 cm-1 were assigned to 

C-H stretching in proteins33
• Weighting of3163 cm-1 agrees to N-H stretching associated 

with intramolecular hydrogen bonding 42. 

The calibration vectors obtained using PLS with leave-N-out cross validation 

were used to estimate fat, lactose, and protein in the standards of the calibration set. This 

was done by multiplying the spectral regression coefficients in the calibration vector by 

the NIR FT -Raman spectra of the samples. For validation of the models, estimation of 

the independent test set was also conducted. Figure 4.3 (a - c) illustrates the estimation of 

the calibration set and (d - f) the validation set where the line of identity represents an 

ideal estimation. Accuracy achieved using the models were determined by R2 and the 

standard error (SEC for calibration set and SEP for validation set) between the estimated 

concentrations and concentrations determined by reference methods. These quantities are 

listed in Table 4.1. Results found using Raman spectra show a vast improvement over 

results obtained using SW-NIR spectra with and without conductivity and refractive 

index using PLS with leave-N-out cross validation. The results are also better than R2 

and standard errors found using the GA model of the combined SW-NIR, conductivity 

and refractive index with the exception of lactose. Results for the calibration set were the 

same between these two calibrations but there was a discrepancy between the validation 

set data. Overall, these results demonstrate that NIR FT -Raman spectrophotometry is a 

more accurate method for determining fat, lactose, and protein in milk. 
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Table 4.1. Estimation of fat, lactose and prote in in milk using NIR FT-Raman spectra 

using PLS with leave-N-out cross validation 

Calibration Set Validation Set 

Constituent SEC SEP 

(g/ 100 g) 

Fat 

Lactose 

Protein 

0.99 

0.88 

0.77 

(g/100 g) 

0.17 

0.05 

0.35 

0.98 

0.84 

0.58 

0.16 

0.04 

0.29 

4.3 Calibration of Fat, Lactose, and Protein in Milk by NIR FT -Raman 

Spectrophotometry With the Addition of Conductivity and Refractive Index 

Using PLS 

Estimation of milk constituents using Raman spectra were found to have better 

accuracy than obtained using NIR spectra. In the NIR calibration, accuracy was 

improved through the inclusion of conductivity and refractive index. A similar 

improvement was sought by adding the two physical properties to the Raman spectra. 

Using PLS analysis with leave-N-out cross validation, the PRESS was calculated. 

An F -test significance comparison was made on the PRESS values to determine the 

minimum number of statistically significant factors at a 95% confidence interval. Using 

this method, 6, 5, and 6 factors were used to construct calibrations for fat, lactose, and 

protein respectively. The full calibration sample set was then used to compute the 

calibration vectors, shown in Figure 4.4, using PLS. 
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In Figure 4.4a, the calibration vector for fat is heavily weighted at 66, 1447,2874, 

and 3171 cm- I
. AH of these bands were present in the calibration vector obtained using 

PLS analysis of Raman spectra without the physical properties, as shown in Figure. 4.2a. 

Assignment of these bands was discussed in Section 4.2. In addition to these bands, the 

band at 1304 cm- l was intensely correlated when conductivity and refractive index were 

inc1uded in the calibration. This peak corresponds to CH2 twisting modes and is a 

prominent feature in Raman spectra ofbutter43 . Neither conductivity nor refractive index 

was heavily weighted but their presence was found to influence the calibration. In 

general, when the number of factors used in a calibration is increased, the resulting 

calibration vector is noisier due to the modeling of extraneous information. However, in 

this case, an increased number of factors used in the calibration showed a decrease in 

noise compared to the calibration vector in Figure 4.2a. This implies that conductivity 

and refractive index were used to emphasize correlation of specifie Raman wavenumbers 

and diminish the weighting of irrelevant spectral information 

Like fat, the calibration vector for lactose estimation, shown in Figure 4.4b, 

contained features that were present in the Raman spectra-only derived calibration vector. 

These peaks were at 66, 112, 350, and 2860 cm- I
. Assignment of these Raman 

wavenumbers was discussed in Section 4.2. Relatively intense weighting was also 

observed at 1451 and 3204 cm- I
. The band at 1451 cm- I is present in the infrared 

absorbance spectrum of lactose and has been ascribed to CH2 deformation vibration of 

the primary alcohol -CH2-0H 42. Strong negative correlation at 3204 cm-l, corresponds 

to O-H stretching in water, implying hydrogen bonding with lactose. Conductivityand 
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refractive index were not heavily weighted in the calibration. However their addition is 

necessary in the weighting of 1445 and 3204 cm- l
. AIso, in comparison to the spectra­

only calibration oflactose (Figure 4.2b), bands at 350 and 1908 cm- l are weighted much 

less when conductivity and refractive index are included. 

Very few features in the calibration vector for protein, shown in Figure 4.4c, are 

weighted distinctly and heavily. Standout bands are at 62, between 100 and 400, 2864, 

and from 2966 to 3300 cm- l
. These regions were also found to be strongly correlated in 

the calibration vector constructed using Raman spectra alone, in Figure 4.2c. Discussion 

of assignment of these bands is in Section 4.2. Calibration coefficients corresponding to 

conductivity and refractive index are almost equal in magnitude but opposite in sign. 

This canceling out effect implies that refractive index and conductivity may not be 

directly significant in the calibration. However, the inclusion of these factors greatly 

influences the weighting of the spectral features in the calibration. This is shown by 

comparing the calibration vectors constructed using Raman spectra alone to Raman 

spectra with the physical properties. The same number of factors was used in both 

calibrations but on the calibration vector based on Raman and the additional information, 

the relevant frequencies are enhanced and the weighting of rest of the spectral 

frequencies has been drastically reduced. 

AIl three calibration vectors were then used to estimate fat, lactose, and protein in 

the calibration set. Estimates of fat, lactose, and protein were plotted against 

concentrations found using the reference methods, shown in Figure 4.5 (a - c). Standard 

deviation (SEC) of the residual error and R2 between estimated and reference values was 

computed. These results are listed in the first columns of Table 4.2. Validation of the 

77 



model was conducted by using the calibration models to estimate milk composition in an 

independent test set. Estimated concentration was plotted against reference concentration 

of the test set, shown in Figure 4.5 (d - f). Accuracy attained by the mode1 for estimation 

in the validation set was determined by R2 and the SEP, listed in the last 2 columns of 

Table 4.2. 

Table 4.2. Estimation of fat, lactose and protein in milk using NIR FT-Raman spectra 

with the addition of conductivity and refractive index using PLS with 

leave-N-out cross validation 

Calibration Set Validation Set 

Constituent SEC 

(gllOO g) 

SEP 

(g/ 100 g) 

Fat 

Lactose 

Protein 

0.99 

0.82 

0.81 

0.21 

0.06 

0.30 

0.99 

0.77 

0.83 

0.16 

0.05 

0.21 

Results for fat estimation in the validation set were the same using Raman spectra 

with or without the additional properties. However, in the calibration samples, R2 is 

unchanged but the SEP increases by 24% when using Raman spectra with conductivity 

and refractive index. It was mentioned that the calibration vector used in this case was 

less noisy than that produced using only NIR FT -Raman spectra. Therefore, although 

there was an increase in SEP, this calibration may be more robust because less erroneous 

noise is modeled. Conductivity and refractive index were not found to enhance accuracy 

in estimating lactose using Raman spectra. In comparison to the spectra only calibration, 

78 



6 

4 

2 

o 

4.7 

4.5 

..... = 4.3 
~ = 

a) FAT 

1 234 5 6 

5 
4 

3 
2 

d) FAT 

1 ~--'----------'----' 
1 2 3 4 

4.55 e) LACTOSE 
•• • • 

4.45 

4.35 

• 

5 

Q 4.1 """-__ ""'--.0..-.0..-..... 
4.25 • 

C-e 
Q u 
'j 5.5 
~ e 4.5 
.: 

rI'.l 
~ 3.5 

2.5 

4.1 4.3 4.5 4.7 

5.5 
5.0 

4.5 

4.0 

3.5 

3.0 

4.25 4.35 4.45 4.55 

2.5 3.5 4.5 5.5 3.0 3.5 4.0 4.5 5.0 5.5 

Ref. Component Concentration (g/lOOg) 

Figure 4.5 Estimation of fat, lactose, and protein in calibration set (a - c) and test set 

(d - f) using NIR FT-Raman spectra with the addition of conductivity and 

refractive index using PLS with leave-N-out cross validation 

79 



SEC increases by 20% and SEP increases by 25%. As in the fat calibration, the model 

constructed with all 3 measurements is likely to be more robust because the same number 

of factors produced less noise in the calibration vector. The two physical properties 

influenced the calibration model for protein estimation the most. With their inclusion, 

the SEC and SEP improved by 51 % and 28% respectively. Standard error found using 

the calibration sample set is typically less than that of the validation set. This is due to 

the noise in the validation samples being independent of the information in the calibration 

samples for which the model was developed. Another notable improvement is that the 

estimation of higher protein content milk samples was shown to be more accurate using 

NIR FT-Raman spectra with the two physical properties compared to the estimation using 

SW-NIR spectra. 

4.4 Investigation of inter-sample set variation using PLS analysis of NIR FI'­

Raman measurements with leave-one-set-out cross validation 

Using PLS analysis of SW -NIR speCtra with leave-one-set-out cross validation, it 

was determined that the presence of variation corresponding to each sample set resulted 

in a diminished accuracy of calibration models. Although results found using Raman 

spectra showed a marked improvement over those obtained using SW-NIR 

spectrophotometry, the influence of between sample set variation was examined. This 

was accomplished by conducting PLS analysis of Raman spectral data with and without 

conductivity and refractive index with leave-one-set-out cross validation. 
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Using this method, fat, lactose and protein calibration based on only Raman 

spectra, required 5, 6, and 6 factors respectively at a 95 % confidence level. The spectral 

regression coefficients of these calibrations are presented in Figure 4.6. Similarly, fat, 

lactose and protein, the calibrations using Raman spectra with the physical properties 

were found to require 6, 1, and 4 factors respectively at a 95 % confidence level. These 

calibration vectors are presented in Figure 4.7. 

In Figure 4.6, fluctuations in magnitude ofthe regression coefficients are apparent 

although not as pronounced as the SW-NIR calibrations using this type of cross 

validation. In Figure 4.7, where conductivity and refractive index are included, variation 

in calibration coefficient magnitude is apparent. However, unlike in the spectra-only 

calibration vectors where the variation occurred for the duration of frequency region 

examined, the variation was contained to certain wavelength regions. For example, in the 

calibration vector for lactose (Figure 4. 7b), the variation was distinct at around 350 cm-1 

while for protein (Figure 4.7d), variation in bands at 600 and 2800 cm-1 was observed. 

Calibration coefficients corresponding to conductivity and refractive index also change in 

magnitude with each calibration. 

Overall estimates of fat, lactose, and protein were calculated using the combined 

validation results from each separate calibration. Accuracy found using leaving one-set­

out cross validation was indicated by the SECV and R2 between reference and estimated 

concentration. These results are listed in Table 4.3. 

Using spectra alone, the SECV increased by 65,40, and 14% for fat, lactose, and 

protein respectively when leave-one-set out cross validation is used as opposed to leave­

N-out cross validation. Similarly, when spectra with conductivity and refractive index 
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were used, the SECV increased by 33 and 43 % for fat and protein respectively when 

leave-one-set-out cross validation versus leave-N-out cross validation. For lactose 

estimation, the SECV does not change. However, R2 decreases by 4% implying a 

reduction in accuracy. These results supports the need for inter sample set variation to be 

described in order to construct robust models for fat, lactose, and protein estimation in 

milk. 

Table 4.3. 

Constituent 

Fat 

Lactose 

Protein 

Estimation of fat, lactose and protein using PLS analysis with leave-one­

set-out cross validation of NIR FT-Raman spectra and NIR FT-Raman 

spectra with the inclusion of conductivity and refractive index 

Estimation using Raman Estimation using Raman spectra 

0.98 

0.76 

0.62 

spectra 

SECV 

(g/ 100 g) 

0.28 

0.07 

0.40 

with conductivity and refractive 

0.97 

0.78 

0.53 

index 

SECV 

(g/100 g) 

0.28 

0.06 

0.43 

4.5 Estimation of fat, lactose, and protein using GA modelling of NIR FT -Raman 

spectra, conductivity and refractive index 

Section 4.3 presented results for fat, lactose, and protein estimation using NIR 

FT-Raman spectra, conductivity, and refractive index using PLS regression, a 

multivariate statistical analysis. In PLS analysis, entire spectral measurements were used 
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to construct calibration models. In contrast to this method, the GA method is used to 

select a small subset of variables to build a multilinear regression model. This approach 

has been applied in the work of others to improve upon PLS models that were corrupted 

b h . f1 fIl .... l' fi . 40 44 45 W' h h' Y t e m uence 0 spectra resu ts not contammg cntIca m ormatIon ' " 11 t IS 

work in mind, the GA method was used to estimate milk constituent concentration using 

NIR FT -Raman spectra with the two physical properties, as an alternative method to PLS 

analysis. 

The same configuration of the GA method used in Section 3.6 was applied here 

where SW-NIR was replaced by Raman spectral measurements. The calibration set 

consisted of 75% of the samples including extreme concentrations and the remaining 

25% made up the validation set. Numerical coefficients corresponding to Raman 

wavenumbers were computed by conducting a multiple linear regression using the 

calibration set. Estimation of concentration in the calibration set using this model yielded 

the SEC and in the validation set SECV. Combinations of Raman wavenumbers were 

selected based on maximum fitness. In this case, fitness was defined as the product of the 

SEC and SECV. 

To determine the number of wavenumbers (consisting of Raman wavenumbers, 

conductivity and refractive index) to use in the calibration, models were constructed with 

incrementing wavenumbers, from 1 to 10, The optimal number of wavenumbers was 

found using an F-test to determine the model that resulted in the statistically minimum 

fitness at a 95% confidence level. Fitness was plotted against the number of 

wavelength/wavenumbers in the models for fat, lactose, and protein in Figure 4.8. For 

fat, lactose and protein estimation, it was determined that the optimal number of 
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wavelength/wavenumbers to be used in the models were 3, 6, and 5 respectively. 

In the GA method, models are re-constructed with each generation. At each re­

construction, recombination and mutation of individuals leads to a new population. Each 

individual in the population encodes a combination of wavelength/wavenumbers for fat, 

lactose, or protein estimation. The two individuals of the population yielding maximum 

fitness are carried over to the next population. At the 800th generation, the 

wavelength/wavenumbers used in the model are found in the individual with the 

maximum fitness. It is desired that this final model is stable and the result of evolution 

through generations. As a measure of assurance in meeting this objective, fitness was 

plotted versus the number of generations for each model in Figure 4.9. This figure shows 

that by the 800th generation, the final model is stable and do es not appear to be caught in 

a local minimum of error. In fact the model was stable in less than 200 generations but 

800 iterations was retained for the analysis to ensure convergence. 

Multiple linear regression was used to determine numerical coefficients 

corresponding to the wavenumbers selected using the calibration sample set. The 

subsequent models for fat, lactose and protein estimation were found to be: 

Fat = 1.2 + 3999*S2855 - 1725*S3163 + 3515*S3472 (4.1) 

Lactose = 2.1 - 808*SI24+ 816*S139- 317*S12\9+ 345*S2855- 95*S2978 

+ 0.6*conductivity (4.2) 

Protein = -415.4*S2839+2259.3*S2963 + 309.8*refractive index (4.3) 

where S represents NIR FT -Raman intensity at the GA selected subscript Raman 

wavenumbers. 
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Selected Raman wavenumbers for fat, lactose, and protein determination were 

indicated on an average milk spectrum in Figure 4.10. The 1 st y-axis corresponds to the 

intensity of Raman scattering measured in the average milk spectrum. The 2nd y-axis 

refers to the numerical coefficients corresponding to the spectral frequencies selected. 

For the fat calibration model, wavenumbers selected were aIl heavily weighted by 

PLS. In order to reduce the time consumption of the GA procedure, the Raman spectral 

data were reduced to 240 Raman points by on1y including every eighth wavenumber from 

the original data set consisting of 1919 wavenumbers. Of course, this resulted in a loss of 

resolution. In calibrations by PLS, 2874 cm- I and 3474 cm- I were heavily weighted. 

Although these wavenumbers weren't available in the condensed spectral data set, 

wavenumbers 2855 and 3472 cm-l, close to these two frequencies, were selected by using 

the GA method. Raman signal at 2855 cm-I corresponds to acyclic -CH2- symmetric 

stretching. This band is typical offatty acids33
• Selection of 3472 cm-I corresponds to R­

OH stretching due to water-fat interaction. The negatively weighted band at 3163 cm- I 

corresponds to CH stretching in unsaturated hydrocarbons41
• 

The Raman wavenumbers used in the model for lactose estimation are presented 

in Figure 4.11b. Selection of 1219 cm-1 by GA technique was assigned to C-O-C 

antisymmetric stretching 41. Positive weighting of 2855 cm-I agrees with the PLS 

regression, where 2860 cm-I was one of the most heavily weighted Raman bands and 

corresponds to CH2 stretching of lactose. Significance of 2978 cm- I is due to CH 

stretching of carbohydrates42
. The GA model selected both 124 cm-1 and 139 cm-l, 

probably accounting for variation in scattering between samples as determined from 
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changes in the Rayleigh scattering. Conductivity was selected in the estimation of 

lactose. Conductivity showed a strong correlation to lactose concentration as 

demonstrated in Table 3.2. It was also weighted in PLS and GA analyses of SW-NIR 

calibrations for lactose estimation. Only two Raman frequencies were necessary in the 

calibration model for protein. Both of the selected wavenumbers were significantly 

weighted in the PLS calibration. 

Negative weighting of 2839 cm-1 corresponds to O-H stretching in hydrogen 

bonded secondary amide groups and 2963 cm-1 corresponds to CH stretching common in 

protein structures. In addition to these two Raman regions, refractive index was selected 

to be used in the model. This was also weighted heavily in the PLS and GA models for 

protein estimation using SW -NIR spectra. 

The calibration models derived using the GA method were then applied to 

quantify milk constituent concentration in the calibration and validation sets. Plots of 

estimated concentration versus reference concentration are presented in Figure 4.11. As 

measures of accuracy, the R2 and standard errors were calculated between the estimated 

values and line of identity. These results are listed in Table 4.4. 

Accuracy in estimation of fat in the calibration set was similar to that found using 

the PLS model. However, in the test set, standard error increases by 69% using the GA 

model versus the PLS model. This result favours the PLS model for fat estimation 

because higher accuracy was found using an independent validation set. However, the 

GA model is quite competent considering only 2 spectral frequencies along with 

conductivity were used in the model as opposed to a111919 wavenumbers. Results found 

for lactose estimation using the GA model exceed those found using the PLS model in 
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which, Raman spectra, conductivity and refractive index were applied. In the estimation 

of protein, samples with a protein concentration >5 g/100g, deviate considerably from the 

line of identity. Lack of samples in this concentration range in the validation set was a 

factor in a relatively low SECV compared to SEC. 

Table 4.4. Estimation of fat, lactose and protein usmg NIR FT -Raman spectra, 

conductivity and refractive index with GA model. 

Calibration Set Test Set 

R2 SEC R2 SECV 

Constituent (g/lOOg) (g/lOOg) 

Fat 0.99 0.21 0.97 0.27 

Lactose 0.86 0.05 0.95 0.03 

Protein 0.69 0.39 0.86 0.21 

As discussed earlier, there was a problem with the higher protein samples, where 

coagulation causing the reported reference concentrations t() be under-estimates at the 

time of spectral analysis may have been possible. Another possibility is that protein 

cannot be modeled efficiently using linear regression. Instead, another function might be 

better suited such as logarithmic. However it should be noted that these methods 

employed the same calibration samples used routinely for commercial milk composition 

analysis. The errors determined here would also be present in the commercial systems. 
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Chapter 5 Discussion and Conclusions 

This thesis has demonstrated the use of SW-NIR and NIR FT-Raman 

spectrophotometry with conductivity and refractive index in the determination of fat, 

lactose, and protein content in bovine milk. The initial stage of the project examined the 

use of PLS in calibrating SW-NIR spectra with and without conductivity and refractive 

index for fat, lactose, and protein determination. Next, the GA method was implemented 

to construct similar calibrations using spectra and the two physical properties. These 

steps were then repeated using NIR FT-Raman spectra. 

Using SW-NIR spectra alone, the models determined using PLS analysis were 

found to be insufficient for milk composition estimation. Diminished accuracy was a 

result of noise modeled into the calibration vector. A vast improvement was found when 

incorporating conductivity and refractive index into the calibration. For fat, lactose, and 

protein estimations, SEC decreased by 27%, 55%, and 27% and SEP by 29%, 50%, and 

52 %, respectively, with the inclusion of conductivity and refractive index compared to 

using only SW -NIR spectra. Using this method, good correlation between reference and 

estimated concentrations was achieved. This was indicated by R2 values of 0.84, 0.81, 

and 0.71 and SEC results of 0.59 g/100g, 0.05 g/lOOg, and 0.36 g/100g in the calibration 

sample set (59 samples) for fat, lactose, and protein. Validation of these results was 

found using the models to estimate the test set. Here, R2 was found to be 0.83, 0.82, and 

0.80 and SEP 0.48 g/100g, 0.04 g/lOOg, and 0.28 g/100g for fat, lactose, and protein 

respectively. Because the Infrared based MilkoScan instrument is the method used for 

routine milk composition analysis, results of this study should be compared to the 
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accuracy found using this instrument. Of these results, the model for lactose estimation 

using SW-NIR spectra, conductivity and refractive index was found to give better results 

than those by Lefier et al., where an SEC of 0.083 g/lOOg was achieved based on 163 

samples using a Milkoscan instrument. 

When the GA method was used to select wavelengths to be used in 

multiple linear regression models, it was found that 9, 8, and 8 wavelengths were 

necessary to estimate fat, lactose, and protein respectively. Estimation of fat using PLS 

proved to be 6% more accurate than the GA mode1 according to SEC values. The mode1 

for lactose estimation using GA, however, was more accurate than the PLS approach. 

This was indicated by an improvement in the SEC by 20%. Like fat, the PLS model was 

better for protein estimation compared to the GA model. Using the GA model, there was 

a Il % increase in SEC. In the GA calibration models for fat and protein, there were 

three mutual wavelengths. This represented an overlap in bands specifie to each 

constituent. Table 5.1 presents the best results found for fat, lactose, and protein 

estimation using SW -NIR spectra. Accuracy found for protein and fat estimation was not 

as high as desired by the International Dairy Federation. AIso, for fat and protein, the 

SEC values in Table 5.1 are 4.5 and 3 times greater than that reported by Lefier et al. 

respectively. In spite of this, results show promise for the technique. Definite correlation 

was observed when conductivity and refractive index were included with SW-NIR 

spectra. 

Significant variation between sample sets was indicated by the baseline offsets in 

NIR spectra. This was further evidenced by variation in the calibration vectors obtained 

using PLS with leave-one-set-out cross validation. Description of this variation between 
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sample sets is necessary for a successful calibration as shown by the reduced accuracy 

observed in the results from this type of cross validation. 

Table 5.1. Summary of methods yielding most accurate estimation of constituent 

concentration using SW-NIR spectra 

Constituent Measurement used in Toois Ri SEC 

Calibration (calibration) (g/ 100g) 

Fat SW-NIR spectra, conductivity, PLS 0.84 0.59 

refractive index 

Lactose SW -NIR spectra, conductivity, GA 0.88 0.04 

refractive index 

Protein SW-NIR spectra, conductivity, PLS 0.71 0.36 

refractive index 

Furthermore, 59 samples were used to acquire the calibration model and 20 

samples were used to validate the calibration model. The partially homogenized milk 

samples were prepared using fractionation technology. Each sample set originates from a 

bulk milk sample consisting of 60 herd milks. In a study by Laporte et al., it was 

reported that increasing the number of samples to greater than 150 in a calibration leads 

to improvement in calibration and validation results17
• In addition, it was found that a 

calibration consisting of both homogenized and unhomogenized milk samples leads to a 

more robust calibration with improvement in the determination of protein and casein due 

h 1 1 · . 17 to t e arger spectra vanatIOn . 
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The calibrations were repeated using NIR FT-Raman spectra in place ofSW-NIR 

spectra. In contrast to SW-NIR results, NIR FT-Raman spectra proved to be an accurate 

calibration without conductivity and refractive index for fat and lactose estimation. 

Using spectra alone, the SEC was calculated to be 0.17g/100g, 0.05g/ 100g, and 

0.35g/100g in the calibration set and the SEP was 0.16g/100g, 0.04g/100g, and 

0.29g/100g in the validation set for fat, lactose, and protein estimation. Increase in 

accuracy was also supported by results for R2
• In the calibration set, R2 was found to be 

0.99, 0.88, and 0.77 and in the validation set, calculated R2 was 0.98, 0.84, and 0.58 for 

fat, lactose, and protein respectively. Based on the SEC, these results are better than the 

best results found using SW-NIR for two of the milk constituents listed in Table 5.1. 

Calibrations were repeated where conductivity and refractive were inc1uded with the NIR 

FT-Raman spectra. For fat, lactose, and protein R2 was found to be 0.99, 0.82, and 0.81 

using the calibration set and 0.99, 0.77, and 0.83 using the validation set. Calculated 

standard error was 0.21, 0.06, and 0.30 g/lOOg in the calibration set and 0.16, 0.05, and 

0.21 g/100g in the validation set for fat, lactose, and protein. In this case, there was a 

decrease in accuracy found for fat and lactose. However, it is believed that models in 

which the physical properties were inc1uded, were more robust than the calibrations 

based solely on Raman spectra. This is evidenced by diminished noise in the calibration 

vectors. Protein, on the other hand, shows a dramatic improvement when the physical 

properties are incorporated in the calibration. With their inclusion, the SEC and SEP 

improved by 51 % and 28% respectively compared to the spectra-only calibration. In 

comparison to the best results found for protein estimation using SW-NIR spectra, 
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conductivity and refractive index, the result found using NIR FT -Raman spectra with the 

additional information is better by 17% (based on SEC) and 25% (based on SEP). 

For comparison, the GA method was used to construct calibrations using NIR FT-

Raman, conductivity and refractive index. Models used 3, 6, and 3 

wavelength/wavenumbers for fat, lactose, and protein respectively. Lactose estimation 

using the GA model was better than that found using the PLS approach using NIR FT­

Raman with conductivity and refractive index. However, accuracy in the estimation fat 

and protein decreased with the GA models. Table 5.2 lists the best results found using 

NIR FT -Raman spectra. 

Table 5.2. Summary of methods yielding most accurate estimation of constituent 

concentration using NIR FT -Raman spectra 

Constituent Measurement used in Tools R2 SEC 

Calibration (calibration) (g/100g) 

Fat Raman spectra PLS 0.99 0.17 

Lactose Raman spectra, conductivity, GA 0.86 0.05 

refractive index 

Protein Raman spectra, conductivity, PLS 0.81 0.30 

refractive index 

In companson to the accuracy found using the Milkoscan system with 163 

samples in the work of Lefier et al., NIR FT -Raman results were much closer than SW­

NIR results. Based on the information listed in Table 5.2, fat and prote in yielded SEC 

values that were only 3 to 4 times greater than those reported by Lefier et al. under ideal 
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conditions. Like SW -NIR, accuracy found in the lactose estimation using NIR FT­

Raman exceeds that found by Lefier et al. These results show promise for the use ofNIR 

FT -Raman spectrophotometry in the quantification of fat, lactose and protein since the 

sample preparation step for both SW-NIR and Raman are significantly less stringent. 

Using leave-one-set out cross validation, variation corresponding to each sample 

set was found. Without description of this variation in the calibration models, it was 

found that accuracy diminished. 

Potential for SW-NIR and NIR FT-Raman spectrophotometry with the addition of 

conductivity and refractive index has been demonstrated for the estimation of fat, lactose, 

and protein in milk. AlI four ofthese properties have the potential to be measured on-line 

while milk is being collected. Difficulty in measurement is greatly diminished if hand­

held conductivity meters and refractometers, presently available on the market presently, 

are employed. The combined cost of these items is relatively inexpensive compared to 

the cost of a commercial milk analyzer. Once a calibration has been developed that 

reaches standards set by the International Dairy Federation, mathematical treatment of the 

data could be simplistic. IdealIy, all four parameters could be measured by a 

conglomerate device with built-in software that would compute and output fat, lactose, 

and protein content. This would allow for rapid results instead of the present scenario, 

which involves the collection of milk samples by dairymen, which are then sent to a lab 

specializing in analysis. Decreasing turnaround time would allow more frequent analysis 

as well as early detection of abnormalities in the milk that indicate illness. 

Future work in this field should emphasize further development of the calibration. 

This may be accomplished using a larger sample set that includes un-homogenized raw 

99 



milk. The influence of another easily measurable parameter on the calibration such as pH 

or viscosity should be investigated as another descriptor which may improve accuracy. 

In terms of chemometrics, configuration of the GA method should be examined to 

construct the calibration with emphasis on the calibration set. AIso, especially in the case 

ofprotein, it may be fruitful to use nonlinear forms of the calibration model. 

Specifically in NIR FT-Raman spectral acquisition, several areas need 

investigation. One area is the influence of temperature on spectra. Unlike SW-NIR 

analysis, which was conducted at 40 oC, NIR FT-Raman spectra were acquired at room 

temperature. Maintaining temperature during analysis may result in a more robust 

calibration and may reduce inconsistency in inter-sample set variation. Furthermore, the 

long-term goal is to build a device that measures these properties as milk is being 

collected from the animal and it is thus important to recognize that the temperature will 

be c10ser to 40 oC. Fat melts at 40 oC, which changes its scattering properties and this 

most probably will affect resulting Raman spectra as it is a technique based on scattering. 

Another area for future work is assurance in maintenance of laser power. This could be 

achieved by employing a calibration standard that will not change over time such as a 

ceramic plate. Improvement in all of these areas may fine tune the calibration. 

The co st ofimplementing an SW-NIR or NIR FT-Raman device for milk analysis 

based on the presented calibration models, would be much less than purchasing the 

current commercial Infrared based instruments, which cost approximately $750,000. The 

Raman instrument that was used in this study costs approximately $100,000. In addition 

the calibration identified wavelengths necessary for the estimation of milk components. 

A smaller-scale Raman instrument would be possible. This instrument would employa 
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laser diode as the source, filters for wavelength isolation, and an avalanche photodiode in 

photon counting Geiger mode as the detector. Acquisition of these parts would cost 

approximately $10,000. A device at this price would be within reach of most dairy 

operations. 
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