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Abstract

One of the key design requirements of communication circuits is that of linearity, and one of the

main figures of merit for measuring the amount of nonlinear distortion at the output of Radio

Frequency (RF) circuits is the third order intercept point (IP3). There are two general classes

of methods for calculating the IP3 of a circuit. The first is analytical and is usually based on

Volterra series. This approach is cumbersome and is difficult to automate for arbitrary circuits

with arbitrary non-linearities. The second class of methods is based on multi-tone simulations

and is general and flexible but requires significant computational cost due to the large number of

variables present in the circuit equations and due to the need to perform a steady-state simulation.

In this thesis, a new simulation based approach is presented for efficiently computing the value

of IP3 and its sensitivity in RF circuits. The approach relies on the numerical computation of the

Volterra series terms from the circuit moments by evaluating closed form expressions that link the

distortion terms to the moments (The moments are defined as the Taylor series expansion of the

system solution with respect to the RF input power). Obtaining the value of IP3 and its sensitivity

therefore is reduced to solving a set of linear sparse equations. The new approach is simple to

apply, fully automated and presents significant reduction in computational cost over existing

simulation based approaches while being as accurate as Harmonic Balance based methods. The

thesis consists of three main contributions. The first being the moments based approach for

finding the IP3 of mixer circuits, which exhibit strong nonlinearities outside the signal path. The

second contribution is a method for computing the value of IP3 using only single-tone inputs,

which significantly reduces the size of the system of equations that need to be solved. The third

contribution is the adjoint sensitivity computation of IP3 using moments. This adds insight to the

numerical results of the moments based approach for computing IP3 which provides a critical

advantage for optimization, design centering and yield analysis applications.
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Résumé

Une des conditions essentielles dans la conception de circuits de communication est la linéarité.

L’un des principaux facteurs de mérite pour mesurer la distorsion non linéaire des circuits de

radiofréquence (RF) est le point d’interception du troisième ordre (IP3). Les méthodes de calcul

de l’IP3 peuvent être divisées en deux categories: La première regroupe les méthodes analytiques

généralement basées sure les séries Volterra. Cette méthode est difficile à automatiser d’une

façon independante de la topologie des circuits et du type de la nonlinéarité. Les méthodes de la

deuxième classe sont basées sur des simulations du type Harmonic Balance (HB). Ces méthodes

necessitent un coût de calcul élevé en raison du grand nombre de variables dans les équations à

resoudre. Dans cette thèse, on présente une approche nouvelle pour l’évaluation de l’IP3. Cette

approche est basée sur les méthodes de simulation sans pour autant necessiter la solution des

equations Harmonic Balance. Cette méthode repose sur le calcul numérique des termes de la série

Volterra à partir des moments du circuit en évaluant les expressions de forme fermée qui relient

les termes de distorsion aux moments (les moments sont définis comme l’expansion de la série de

Taylor de la solution du système par rapport à la puissance d’entrée RF). L’obtention de la valeur

de l’IP3 et sa sensibilité est donc réduite à résoudre un ensemble d’équations linéaires creuses.

Cette nouvelle approche est simple à appliquer, entièrement automatisée et présente une grande

réduction en calcul par rapport aux approches courrantes basées sur la simulation tout en étant

aussi précises que les méthodes basées sur la balance harmonique. Cette thèse comprend trois

contributions principales. La première est une approche basée sur les moments afin de trouver

l’IP3 des circuits mélangeurs. La deuxième est une méthode de calcul de la valeur IP3 en utilisant

une seule fréquence, ce qui réduit considérablement la taille du système d’équations qui doivent

être résolu. La troisième contribution est le calcul de la sensibilité adjointe de l’IP3 à l’aide des

moments. Cela ajoute un aperçu sur les résultats numériques provenant de l’approche basée sur

les moments pour le calcul de l’IP3, ce qui offre un avantage déterminant pour l’optimisation, et

l’analyse de rendement.
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Chapter 1

Introduction

1.1 Background and Motivation

The market for wireless industrial and consumer electronics has experienced remarkable growth

over the past decade. The demand for wireless technology continues to be fueled by the need

to enable people to communicate and share all forms of media at anytime, anywhere and in an

efficient cost-effective way. This has lead to the popularity of devices such as notebook comput-

ers and cellular smartphones, which are now considered to be staples of modern life. Increased

competition in the marketplace and the need to rapidly introduce new technologies to replace out-

going products with ever decreasing life cycles has in turn led to the need to reduce design, testing

and manufacturing time. This has to be accomplished while also simultaneously improving the

performance of increasingly complex circuits and systems. As an example of how complex mod-

ern wireless systems have become, consider a common smartphone such as the one illustrated in

Fig. 1.1. At any one instance in time, this device could be wirelessly connecting through any

combination of methods simultaneously, including a Global System for Mobile Communication

(GSM) connection for voice, an IEEE 802.11b/g connection to a Wireless Local Area Network

(WLAN) for data, and a Global Positioning System (GPS) satellite connection for navigation,

among others [8]. As a result of this complexity, a significant emphasis is now placed on better

Electronic Design Automation (EDA) tools as a way to reduce time to market and bring down

development costs. While the increased complications of modern designs has led to a growing

reliance on Computer Aided Design (CAD) tools, these same complications have stretched the

limits of these tools. In fact, for many applications the overall performance of the system is now

limited by the capabilities of a CAD tool rather than by the actual technological limitations. Fig.
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Fig. 1.1 Multiple simultaneous wireless activities on a smartphone

1.2 shows the RF section of a cellphone [1], and is a good illustration of the complexity of modern

transceiver circuits.

Wireless industry standards, such as GSM and IEEE 802.11b/g/n, stipulate many stringent

technical specifications which the RF circuit designers must meet. These specifications translate

to overall requirements at the system level, at the building-block level and also at the circuit level

as illustrated in Fig. 1.3. Therefore, it is of particular importance for circuit designers to have at

their disposal tools that can measure specific performance figures of merit such as the Signal to

Noise Ratio (SNR) or the Power Gain of common RF transceiver circuits in order to ensure they

meet the standard specifications. One of the most important requirements is that of linearity,

and more specifically the linearity of core RFIC building blocks such as Low Noise Amplifiers

(LNAs) and mixers of RF circuits similar to that shown in Fig. 1.2. The design requirements of

such circuits typically include stringent conditions on intermodulation distortion. The main figure

of merit used by RF engineers to quantify the amount of intermodulation distortion has typically

been that of the third order intercept point (IP3), which provides a measure of the third order

nonlinearity in a circuit [6]. It is also very important for circuit designers to be able to perform

an efficient sensitivity analysis of the circuit’s intermodulation distortion without the need for

inefficient brute-force perturbation of the system solution. This would give the designers insight

into the numerical results of the circuit simulator by showing how much of an effect changes to
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certain circuit parameters or variables will have on the linearity of the output. This is particularly

important for design centering, optimization and yield analysis applications among others [9].

Radio Frequency circuits are typically designed to be as linear as possible in order to reduce

nonlinear distortion. Nonlinear distortion is due to the inherent nonlinearity of circuit compo-

nents and results in the harmonics of input tones, as well as the intermodulation products, being

present at the output. Of particular interest are third order intermodulation products because they

mix back into the frequency band of operation and result in many undesirable effects such as gain

compression and adjacent channel interference. In a communication system, nonlinear distortion

along with noise and interference in the transmission channel can then affect the receiver side Bit

Error Rate (BER) [10]. In a typical laboratory measurement setup on a workbench, the circuit

hardware can be tested and the value of IP3 can be obtained by applying a 2-tone input and mea-

suring the third order intermodulation product which mixes back into the passband of the circuit.

Note that applying a single-tone input and attempting to characterize the third order nonlinearity

by measuring the third harmonic is not a suitable approach because the third harmonic typically

falls outside the passband of the circuit. This has lead to the popularity of obtaining IP3 based

on the measurement of the third order intermodulation product of a two-tone input as a figure of

merit for linearity. At the design and development stage of the process, most of the common and

efficient methods for the distortion analysis of analog and RF circuits can be categorized under

one of two general classes of techniques. The first class of methods is that of simulation based

approaches and the second class is that of analytical techniques.

In a simulation environment, the most common approach for determining IP3 is to mimic

the laboratory measurement by applying a two-tone input and performing a steady-state analysis

using time-domain techniques such as the Shooting method [11], or frequency domain techniques

such as the Harmonic Balance method [5], [12], [13]. These approaches are general and give very

accurate results; however these methods are often very CPU expensive. For example, in the case

of Harmonic Balance, the simulation requires a large CPU cost because of the large number of

variables present due to the two-tone input. This concept is illustrated in Fig. 1.4 which shows the

output spectra of a combination of linear and nonlinear time invariant (amplifier) and periodically

time varying (mixer) systems excited by single-tone and two-tone inputs [2]. As can be seen from

Fig. 1.4 (d) and (h), the nonlinear systems with multi-tone inputs exhibit a significantly larger

number of distortion tones at the output even for a small number of harmonics (only 3 harmonics

are considered in Fig. 1.4). This is particularly the case for mixer circuits which would, in

this instance, have a three-tone input (the local oscillator tone in addition to the two RF tones).
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Another factor which leads to a high CPU cost is that in order to obtain the steady-state solution of

nonlinear systems, a set of nonlinear equations needs to be solved using iterative techniques such

as Newton iteration [11], [14] which comes with its own set of limitations, including accuracy

and convergence issues. Furthermore, most of the simulation based approaches provide little

or no insight into the numerical results, which means that a sensitivity analysis algorithm must

then be applied as a post-processing step in order obtain this insight. Many sensitivity analysis

algorithms could also exhibit a high CPU cost. It is also possible to obtain the nonlinear steady-

state response using a SPICE-like simulator by performing a long enough transient analysis until

the transients die out. Such an approach is, however, extremely inefficient due to large deviations

in the time constants of the circuit and also due to the input frequencies which result in a very

large number of time steps being required before reaching steady-state [15].

Alternatively, the value of IP3 can be obtained analytically through the use of the Volterra

functional series [3], [16]. This approach requires complex mathematical analysis for obtaining

expressions for higher order Volterra kernels which can then be used to compute a whole range

of distortion figures of merit such as IP3. The advantage of these approaches is that, once the an-

alytical expressions are derived, the CPU cost of evaluating them is extremely low. Furthermore,

these expressions provide considerable insight which help designers identify the key sources of

nonlinearity in a given circuit. However, such approaches suffer from two main shortcomings.

The first is due to the complex analytical manipulations that are required to obtain the closed form

expressions for the Volterra kernels. These typically involve solving multi-dimensional convo-

lution integrals which makes these analytical methods very difficult to automate in a general

purpose simulator that must handle circuits with arbitrary topologies. The second shortcoming

results from the fact that Volterra series are most suitable for weakly nonlinear circuits and are

difficult to apply to circuits with inherent strong nonlinearities such as switching circuits and

mixers.

In this thesis, a new approach is presented for analyzing the linearity of Radio Frequency

circuits in an efficient and accurate manner. The new method does not attempt to mimic labora-

tory measurements by performing multi-tone steady-state analysis. Instead, the value of IP3 and

its sensitivity are computed directly from the Harmonic Balance equations by applying efficient

algorithms that compute the system moments [17], [18]. It is important to note that, in this case,

the nonlinear Harmonic Balance equations do not need to be solved, and that the computational

complexity of obtaining IP3 is reduced to that of computing the moments which is essentially the

solution of a set of sparse linear equations. Furthermore, given that the new approach is based
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on the Harmonic Balance formulation, it is general and can be applied to any arbitrary circuit

topology, nonlinearity or model in a fully automated environment unlike Volterra series based

methods. The scope of the new method presented in this thesis spans that of RF amplifier circuits

in addition to mixers.

1.2 Contributions of the Thesis

In this thesis, a number of advanced novel simulation algorithms have been developed to ef-

ficiently analyze the effects of the third order intermodulation distortion on the linearity of RF

building blocks such as Low Noise Amplifiers and Mixers. These new algorithms provide signifi-

cant computational cost savings without sacrificing accuracy when compared to existing methods.

More specifically, the main contributions of this thesis are listed as follows.

1. Moments based computation of intermodulation distortion in mixer circuits [19], [20] (see

Chapter 4): In this thesis, a new method for the efficient computation of the value of IP3

in mixer circuits based on the system moments is presented. These circuits are designed to

be highly linear in the signal path, but contain highly nonlinear internal switching due to

the large signal Local Oscillator (LO) input. Using this new approach, the circuit moments

expansion around the local oscillator power is used to compute the value of IP3. This

method is shown to be equivalent to the numerical computation of the necessary Volterra

series distortion terms. This approach does not require any analytical manipulation but is

rather applied directly to the Harmonic Balance equations based on the Modified Nodal

Analysis (MNA) [21] formulation of the circuit. It can therefore be applied to circuits of

arbitrary topology and complexity. The moments computation is done numerically around

a given LO input power (operating point) and with the input frequencies known, and thus

produces very accurate results. Furthermore, the computation of all the moments requires

only one LU decomposition of a moments computation matrix that is very sparse. The

method for computing this moments matrix for mixers in addition to the proof of its sparsity

is also presented in this contribution.

2. Single-tone computation of the third order intercept point [22], [23] (see Chapter 5): In

this thesis, a novel approach for obtaining the IP3 of general RF circuits is presented where

the number of variables is the same as a Harmonic Balance formulation with a single-

tone input, thus making the size of the system of linear equations that need to be solved
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considerably smaller than what is proposed in the literature. Furthermore, the computation

complexity of this method is that of solving a set of linear equations and does not require

the solution of the nonlinear Harmonic Balance equations which results in a considerable

reduction in computation cost. In this contribution, the general framework of the method is

presented that spans mixers in addition to amplifier circuits. The details of the mathematical

derivations linking the single-tone moments to the IP3 of the circuit for both amplifiers

and mixers are also provided. The new approach offers a fast alternative to the two-tone

moments method with a considerably reduced CPU cost, as will be seen in the numerical

examples section for this contribution. The speedup is mainly due to the significantly

smaller size of the set of linear equations to be solved.

3. Sensitivity Analysis using multi-dimensional moments [24] (see Section 6.2): In this con-

tribution, an analytical relationship is presented between the value of IP3 and the multi-

dimensional Harmonic Balance moments (the moments with respect to the input RF power

as well as the design parameters). This allows for the derivation of closed form expressions

for the sensitivity of IP3 as a function of these multi-dimensional moments and thus pro-

vides insight into the numerical results of the moments based methods for computing IP3.

The CPU cost of the operation is that of finding the multi-dimensional moments which is

of the same order as solving a system of sparse linear equations.

4. Adjoint Sensitivity Analysis of nonlinear distortion [25], [26] (see Section 6.3): In this

thesis, a new approach for computing the sensitivity of IP3 based on the adjoint sensitivity

method is presented. The adjoint method has been a classical tool for the sensitivity analy-

sis of linear circuits in addition to nonlinear circuits in the time-domain and DC [27], [28]

and has also been extended to cover the sensitivity analysis of nonlinear circuits operating

under large signal periodic and almost-periodic conditions as is the case with the Harmonic

Balance method [7]. The new method presented in this contribution benefits from the same

CPU cost advantage of the moments based techniques while providing the sensitivity of

IP3 with respect to all circuit parameters. This would provide a critical advantage enabling

circuit optimization, design space exploration and design centering. This method is gen-

eral and easily automated for any arbitrary circuit topology. The method also shares the

same properties of the adjoint approach, namely those of having low incremental CPU cost

to the original algorithm, and the ability to find the sensitivity with respect to all circuit

parameters.
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1.3 Organization

This thesis is organized into seven chapters. Following this introduction, Chapter 2 provides a

review of nonlinear intermodulation distortion analysis methods for RF circuits and some of the

most common approaches in the literature for obtaining the value of the third order intercept

point. This is then followed by Chapter 3, in which the formulation of the Harmonic Balance

equations is presented in addition to an overview of nonlinear steady-state circuit simulation using

Harmonic Balance. An overview of sensitivity analysis methods is also presented in Chapter 3.

The first main contribution of this research work is presented in Chapter 4, which is that of

computing the value of IP3 in mixer circuits using moments. The second main contribution is

found in Chapter 5, which includes the definition of the single-tone IP3 formulation and the

derivation of the link between the single-tone moments and the value of IP3. Chapter 6 presents

the two moments based sensitivity analysis techniques that were developed. Finally a summary

and the conclusions are presented in Chapter 7.
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Chapter 2

Review of Intermodulation Distortion

Analysis Techniques

2.1 Introduction

In general, distortion is defined to be simply the deviation of the output signal from the expected

or desired waveform [3]. The distortion that is a result of the nonlinear behavior of circuit pa-

rameters is referred to as nonlinear distortion. One example of nonlinear distortion is crossover

distortion at the output of a Class B output stage [3]. Linear distortion can also affect the behavior

of linear circuits driven by signals with complex spectral distributions such as square waves. A

good example of linear distortion is the response of an RC circuit to a square wave input, which

could deviate quite considerably from a square wave depending on its time constant even though

the circuit only contains linear elements. In Radio Frequency and microwave circuits, nonlinear

distortion is of particular importance since it is an important and usually an undesired behavior

that limits their performance. It is therefore very important to be able to measure the amount of

nonlinear distortion efficiently using CAD tools and is thus the focus of this research work. In

this chapter, an overview of nonlinear distortion is presented in addition to a review of some of

the main methods described in the literature for quantifying the amount of nonlinear distortion in

RF circuits.
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2.2 Importance of Nonlinear Distortion

Nonlinear distortion presents several significant challenges to circuit designers. If a nonlinear

circuit is driven by a single-tone sinusoidal source at a frequency of ω1 with a sufficiently small

amplitude, then the output spectrum will contain only one frequency component above the noise

floor. This frequency is the same as that of the input and is referred to as the fundamental fre-

quency. This represents the linear response of the circuit and in this case, the circuit can be

analyzed using small signal models since it is basically considered to exhibit linear behavior.

However, when a larger input amplitude is applied, the output signal spectrum will now also

contain frequency components at multiples of the fundamental frequency, known as harmonics,

which will distort the desired linear response and therefore the small signal models become no

longer valid. A fundamentally similar analysis can be performed for a nonlinear circuit that is

driven by a multi-tone sinusoidal input signal. For the case of a two-tone input signal of frequen-

cies ω1 and ω2, the output spectrum will resemble that shown in Fig. 2.1.

f1 f22f1-f2 2f2-f1 2f1 2f2f1+f2 3f1 3f22f1+f2 2f2+f1f2-f1

Fig. 2.1 Output spectrum of narrow-band circuit driven by two closely spaced si-

nusoidal tones

As illustrated in Fig. 2.1, the output not only contains the responses at the fundamental

frequencies of ω1 and ω2 and their harmonics, but also additional intermodulation products at

frequencies that result from the mixing of the fundamental frequency tones and their harmonics

(i.e. mω1 +nω2). This is where some of the major problems associated with nonlinear intermod-

ulation distortion start to become visible. First of all, the number of frequency tones at each node

in the circuit becomes very large, even when only a small number of harmonics is considered. In

addition, for a narrow-band circuit excited by two frequency tones that are narrowly separated in

frequency, the third order intermodulation products located at 2ω1,2 − ω2,1 become of particular

importance since they often mix back into the passband of the circuit and are thus extremely
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difficult to filter out as shown in Fig. 2.1. This leads to many undesirable effects such as adjacent

channel interference.

2.3 Terminology and Figures of Merit

The nonlinear behavior and performance of analog integrated circuits is often characterized in

terms of parameters and figures of merit measured in the frequency domain [3], [6]. There are

many such figures of merit that are commonly used in the literature. In this section, only the main

figures of merit and terminology used by RF circuit engineers to quantify nonlinear distortion in

addition to those that are used extensively in this thesis are presented. In general, the definitions

refer to the output variable of a nonlinear circuit that is excited with one or more input sinusoidal

signals. The definitions below all refer to Fig. 2.2 which shows the output power levels of the

fundamental tone in addition to the second and third harmonics as a function of the input power

level.

2.3.1 Weakly Nonlinear System Behavior

Consider a nonlinear circuit that is excited with a small input signal. If the signal is small enough

such that the energy of the output signal is mainly concentrated in the lower order harmonics, then

this is referred to as weakly nonlinear behavior. This implies that the amplitude of the second

harmonic will be much higher than the following higher order even harmonics, and the amplitude

of the third harmonic will be much higher than the following higher order odd harmonics. A

circuit excited by a small input signal that satisfies this criteria is referred to as a weakly nonlinear

circuit. The amplifier circuits covered in this thesis fall under this category of circuits. For the

case of mixer circuits, these exhibit strong nonlinear behavior outside the signal path due to the

switching nature of the large Local Oscillator (LO) amplitude, but are still considered weakly

nonlinear around the LO.

2.3.2 Gain Compression and the 1 dB Compression Point

The output of a nonlinear circuit that is excited by a single input frequency tone consists of the

desired linear response at the fundamental frequency in addition to responses at the harmonics of

the fundamental frequency. For input amplitudes that are sufficiently small, the circuit behaves

in a weakly nonlinear fashion which implies that the fundamental response increases linearly
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Fig. 2.2 Harmonic levels at the output of a nonlinear circuit [3]

with the input amplitude. However, there is a point at which higher input levels will lead to the

fundamental response no longer increasing in a proportional manner. Instead, as is illustrated in

Fig. 2.2, the gain starts to decrease due to the effects of higher order terms. This behavior is

known as gain compression. Alternatively, gain expansion could occur depending on the sign of

the higher order terms that influence the fundamental response. A popular way to quantify the

amount of gain compression is by finding the 1-dB compression point which indicates the point

at which the fundamental response deviates from the expected extrapolated linear response by 1

dB.
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2.3.3 Intercept Points

As the input amplitude level is increased, the fundamental response increases linearly with the

amplitude, as does the response at the second and third harmonics. However, the fundamental

response increases with a slope of 1 on a dB scale, while the second and third harmonics increase

with slopes of 2 and 3 on a dB scale, respectively. These linear increases will continue until

the output begins to compress. However, if an extrapolation of the linear increases is made, the

responses of the second and third harmonics will theoretically cross those of the fundamental

response due to the difference in slope, as shown in Fig. 2.2. The points at which the harmonics

meet the fundamental response are known as the intercept points and can be measured at either

the corresponding input or output power levels. The 3rd order intercept point (IP3) can be defined

in one of two ways. The first is the power level at which the third harmonic theoretically meets

the fundamental as shown in Fig. 2.2. The second and more common definition is the power

level at which the third order intermodulation tone would be equal to that of the fundamental, as

shown in Fig. 2.3, in the presence of multi-tone inputs. The input IP3 power level is referred to

as IIP3 while the output power level is referred to as OIP3. Other intercept points such as IP2

and IP5 can also be obtained if the appropriate harmonics are considered.

2.3.4 Other Figures of Merit

There are many other parameters that engineers use to quantify distortion in RF circuits. Total

Harmonic Distortion for example measures the amount of energy in the harmonics relative to

the energy in the fundamental and thus indicates how closely the output waveform resembles

a pure sinusoidal wave. Intermodulation Free Dynamic Range is another commonly used term

that shows the ratio of the largest and smallest signal levels the circuit can handle without the

appearance of an intermodulation component. Fig. 2.2 shows the dynamic range relative to the

3rd order component. Other parameters in the literature include Harmonic Distortion, Cross-

Modulation factor and 3-dB compression point among others [3], [6], [29].

2.4 Simulation Based Distortion Analysis Methods

In the literature, there are two general classes of methods for analyzing the distortion in RF cir-

cuits. The first class is that of simulation based methods. Typically, simulation based approaches

aim to mimic a measurement environment using a workbench by finding the steady-state solution
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of the nonlinear circuit with multi-tone inputs. The intermodulation distortion is then obtained

from the resulting output spectrum. Sensitivity analysis can then be performed on the results

by applying a sensitivity analysis algorithm. Simulation based approaches are easy to automate.

However, they typically suffer from a large CPU cost due to the presence of multi-tone inputs

and the need to perform a steady-state solution. An excellent introduction to simulation meth-

ods for RF circuits is presented in [30]. In this section, an overview of the most common and

state-of-the-art simulation based approaches for distortion analysis is presented.

2.4.1 Distortion Analysis Using Harmonic Balance
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Fig. 2.3 Definition of the input and output third order intercept points (IIP3 and

OIP3, respectively)

To determine the value of the third order intercept point using brute force simulation, the

steady-state solution for a circuit due to a two tone input is obtained using the Harmonic Balance

method (as will be described in Chapter 3). Then, noting the input power Pi, the output powers at

the fundamental frequency Po1, and at third order intermodulation product Po3, and considering

that the slope of P1 as a function of Pi is 1 on a dB scale, and the slope of P3 as a function of Pi

is 3 on a dB scale, the graphs of P1 and P3 can be extrapolated as shown in Fig. 2.3 in order to
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obtain the values of the third order intercept points. This results in the following relations for the

input third order intercept point (IIP3) and the output third order intercept point (OIP3) [6]

IIP3 = Pi +
1

2
[Po1 − Po3] (2.1)

OIP3 = IIP3 + G (2.2)

where G is the linear power gain of the circuit. This approach is fully automated and applicable

to general circuit types and topologies. The main disadvantage with this approach is that it is very

CPU expensive. This is a result of the presence of a large number of frequency tones that are a

product of the multi-tone input, in addition to the fact that a full steady-state simulation needs to

be performed by solving a system of nonlinear equations using iterative techniques [31], [32]. A

more detailed formulation and analysis of the Harmonic Balance method is presented in Chapter

3.

2.4.2 Distortion Analysis Using the Simplified Newton Method

The most CPU expensive task in performing a Harmonic Balance solution is solving the system

of equations with a dense Jacobian matrix at each step of an iterative process. This CPU cost can

be reduced through the application of the simplified Newton method [31] for distortion analysis

purposes in communication circuits [33] [34]. In addition to being efficient, these methods are

simple to apply as they do not require the computation of higher order derivatives of the device

model nonlinearities.

The simplified Newton method, when applied to solving a nonlinear set of equations of the

form f(x) = 0, results in the following iterative formula

J(x(0))∆x(i) = −f(xi); x(i+1) = x(i) + ∆x(i) (2.3)

where J is the Jacobian matrix that does not require updating under the simplified Newton

method. After formulating the Harmonic Balance equations in the frequency domain, the pe-

riodic large signal solution is found using a single-tone input to determine a periodic steady state

Jacobian matrix (JPSS), which is of a smaller order than the regular HB Jacobian matrix. The

solution is then obtained by solving

JPSS(ω)∆X(j)(ω) = −F (j)(ω); X(j+1) = X(j) + ∆X (j) (2.4)
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twice, first to determine X(1) and then to determine X(2). To determine X(1), the right hand side

vector of (2.4) contains contributions of small signal sources at the fundamental frequencies of ω1

and ω2. For determining IP3, it is sufficient to solve only one linear system at the IM3 frequency

when determining the value of X(2). In these relations, F (ω) is the formulation of the function

f(x) of the system in the frequency domain. During the solution process, switching between the

time and frequency domains occurs using the Direct Fourier Transform (DFT) and the Inverse

Direct Fourier Transform (IDFT) to evaluate the nonlinear components of the system in order to

compute the right-hand-side of equation (2.4), at each iteration.

Because distortion analysis typically requires computing only up to 3rd order nonlinearities,

this method can only involve as little as two steps of the simplified Newton method. What makes

this method efficient is the need to only compute one fixed Jacobian matrix which is also of a

smaller size and order than the HB Jacobian matrix. In addition, this approach does not require

the computation of higher order derivatives of device model nonlinearities.

2.4.3 Fast IP3 Using Periodic Steady State Analysis

One of the approaches to improve the memory usage and time of computing the value of IP3

is to reduce the number of variables by using only single-tone inputs instead of the typical two

tones. This is the motivation for the method illustrated in [30], [35] which first computes the

periodic steady-state solution of the circuit using only a single frequency tone with a large signal

(or a single-tone in addition to the LO for mixers). A second small signal tone with a frequency

close to that of the first tone (one sideband spacing) is then applied using Periodic AC Analysis

to compute the value of the intercept point with minimal additional CPU cost. This means that

the first tone is used to drive the circuit hard enough to cause distortion, while the second small

signal tone is used to cause intermodulation distortion. The value of IIP3 is then computed from

the results of both sets of analysis using the relation given by

IP3 = VL1 −
VS3 − VS1

2
(2.5)

where VL1 is the fundamental response due to the large signal tone, VS1 is the response due to the

small signal tone and VS3 represents the intermodulation distortion. These are illustrated in Fig

2.4.

This approach was shown to present a speedup of around 6 times when compared with tra-

ditional two-tone steady-state simulations, but with results that slightly differ from the value of
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L1

S3

S1

Fig. 2.4 Measurement of intermodulation distortion using periodic-steady-state /

periodic AC analysis

the two-tone IP3 due to a difference in definition. While this method does significantly reduce

the number of variables and thus the CPU cost, a steady-state analysis still needs to be performed

which means systems of nonlinear equations still need to be solved using inefficient steady-state

simulation methods.

2.4.4 Linear Centric Distortion Analysis

The linear centric distortion analysis approach is part of what is referred to as per-nonlinearity

distortion analysis [4], [36], [37] methods of which Volterra series analysis is also a part. This

methodology provides insight on the circuit linearity by splitting the output distortion obtained

via a regular simulation to per-component distortion contributions in an efficient post-simulation

step. The linear-centric circuit model can be used to perform distortion analysis with any steady-

state simulation method as a post-simulation processing step. A good example of this is in con-

junction with the Harmonic Balance method [38].

This distortion analysis approach relies on an iterative Successive Chord method in which

the Jacobian matrix for the solution of the nonlinear system is constructed through the use of

constant linearizations of nonlinear elements. The nonlinear effects only appear in the right-

hand-side vector of the general circuit equations (see Chapter 3) through the use of nonlinear

device model evaluations. Each nonlinear element is replaced by its linear centric model, which

consists of a linear element in addition to a varying current source at each iteration. The final

circuit can therefore be viewed as a constant linear circuit driven by external inputs, in addition

to contributions to the right-hand-side vector representing the circuit nonlinearities. This concept

is illustrated in Fig. 2.5 [4].

The linear centric models for most circuit elements are simple to determine, unlike traditional

Volterra series. No higher order derivatives need to be evaluated explicitly during the process,
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Input

Fig. 2.5 Overall linear-centric circuit model showing how a nonlinear circuit can

be viewed as a linearized one driven by external inputs in addition to chord current

sources due to the nonlinearities [4]

which means the method is easily automated and directly applied to widely adopted device mod-

els. The method is applicable to both amplifiers and mixers. The CPU cost of this approach is

the solution of one linear system of equations followed by simple device-model evaluations. The

accuracy of the obtained results is quite high and is similar to the accuracy of general circuit-level

simulation.

2.4.5 Weakly Nonlinear RF Circuit Reduction and Other Simulation Enhancement

Methods

In the literature, there are many simulation based techniques for efficient intermodulation distor-

tion analysis that enhance and optimize some of the existing approaches. One of the main trends

in RF circuit simulation is to develop methods with the aim of reducing the size of the systems

of equations by implementing model order reduction and macromodeling of weakly nonlinear

RF circuits [39]–[42]. For these methods to work, the nonlinearity information information has

to be preserved in the reduced order systems. Krylov subspace projection based reduction algo-

rithms preserve the critical nonlinearity data necessary for accurate and efficient intermodulation
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distortion analysis.

Another current trend in circuit simulation is the development of algorithms that take advan-

tage of emerging parallel hardware platforms which have become very popular recently. Distor-

tion analysis algorithms and steady-state simulation methods are serial in nature, but there is a

lot of work aimed at performing efficient parallel algorithms such as parallel Harmonic Balance

implementations based on hierarchical HB preconditioners [43], [44] and domain decomposition

methods [45]. This allows distortion analysis simulations to run faster on multi-core computing

platforms.

2.5 Analytical Techniques for Distortion Analysis

The other general class of methods for analyzing nonlinear distortion is that of analytical tech-

niques. Such methods are for the most part based on the Volterra Series [46], [47]. These methods

rely on deriving complex analytical expressions for the different order nonlinearities in the cir-

cuit. The main advantage of such methods is that the equations provide insight into the sources

of distortion in the circuit, which simplifies tasks such as performing a sensitivity analysis. The

main limitation is that such methods are difficult to automate and apply in a general circuit sim-

ulator on arbitrary circuits and models. In this section, an overview of how to obtain the value of

IP3 using Volterra series is presented.

2.5.1 Volterra Series Formulation

Consider the case of a general linear system with memory elements, that is excited by an input

signal v(t) and produces an output signal x(t). The input-output relation of the system can

be represented with the use of a transfer function h(t). In the frequency domain, this would

correspond to the relation

H(jω) =
X(jω)

V (jω)
(2.6)

Now, consider the case of a nonlinear memoryless system (i.e. without the presence of in-

ductors or capacitors). In this case the input-output relation of the system can be represented with

the use of a power series expansion as follows

x = k0 + k1vin + k2v
2
in + k3v

3
in + · · · =

∑

n

knv
n (2.7)
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In this relation, kn represents nth order response of the circuit.

For the more general case of nonlinear systems with memory, a Volterra series can be used to

represent the input output relation of the system. A time-domain Volterra series can be expressed

using the expansion given by

x(t) = H1 [v(t)] + H2 [v(t)] + · · ·+ Hn [v(t)] (2.8)

In this relation, Hn is the nth order Volterra operator and can be viewed as the nth order transfer

function when expressed in the frequency domain [3], [48]. The block diagram representation

of a Volterra series is illustrated in Fig. 2.6. Each Volterra operator in (2.8) is a function of its

H1

H2

H3

Hn

v(t) x(t)

Fig. 2.6 Block diagram representation of a Volterra series

corresponding Volterra kernel and therefore can be expressed as

Hn [v(t)] =

∫
∞

−∞

· · ·
∫

∞

−∞

hn(τ1, · · · , τn)
n∏

r=1

v(t − τr)dτr (2.9)

for an input function v(t), where hn (τ1, τ2, . . . , τn) is the nth order Volterra kernel. It is also
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possible to represent a Volterra series in the frequency domain through the use of a Laplace or

Fourier transform [3]. The multi-dimensional Laplace transform for functions of p variables, in

this case hp(τ1, . . . , τn) is defined as

Hn(s1, · · · , sp) =

∫
∞

−∞

· · · · · ·
∫

∞

−∞

hp(τ1, · · · , τp)e
−(s1τ1+···+spτp)dτ1 · · · dτp (2.10)

2.5.2 IP3 Computation Using Volterra Kernels

Consider the power series expansion of the input-output relationship of a memoryless nonlinear

system given in (2.7). For simplicity, only the first four terms of the series in (2.7) will be

accounted for. Now consider an input voltage signal consisting of two sinusoidal input tones

given by vin = V1 cos ω1t + V2 cos ω2t. By substituting this term into (2.7) and expanding using

trigonometric identities, the frequency components shown in Table 2.1 are obtained.

Table 2.1 Summary of distortion components [6]

Frequency Component Amplitude

DC k0 + k2

2
(V 2

1 + V 2
2 )

ω1 k1V1 + k3V1(
3
4
V 2

1 + 3
2
V 2

2 )

ω2 k1V2 + k3V2(
3
4
V 2

2 + 3
2
V 2

1 )

2ω1
k2V 2

1

2

2ω2
k2V 2

2

2

ω1 ± ω2 k2V1V2

ω2 ± ω1 k2V1V2

3ω1
k3V 3

1

4

3ω2
k3V 3

2

4

2ω1 ± ω2
3
4
k3V

2
1 V2

2ω2 ± ω1
3
4
k3V1V

2
2

The 3rd order intercept point is theoretically where the amplitude of the fundamental tone is

the same as that of the intermodulation tones at either 2ω1 − ω2 or 2ω2 − ω1. To determine the

value of the input third order intercept point voltage, we equate the linear part of the fundamental
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component to that at one of the third order intermodulation tones. Assuming the amplitudes of

the two input signals are the same such that V1 = V2 = VIP3, we obtain

k1VIP3 =
3

4
k3V

3
IP3 (2.11)

which then simplifies to

VIP3 =

√

4

3

k1

k3
(2.12)

The relation given by (2.12) is used to determine the value of the input third order intercept point

voltage. To determine the output third order intercept point voltage, simply multiply this quantity

by the voltage gain of the system.

For systems that contain memory elements such as inductors and capacitors, the input-output

relationship given by (2.7) becomes a function of the Volterra kernels, where the nth order kernel

is given by Hn(jω1, . . . , jωn). In this case, the distortion components at each output frequency

are summarized in Table 2.2. It can be shown that the value of the input third order intercept

point voltage now becomes

VIP3 =

√

4

3

|H1(jω1)|
|H3(jω1, jω1,−jω2)|

(2.13)

For the case of mixer circuits, the input signal is defined as v = V1 cos(ω1t) + V2 cos(ω2t) +

VLO cos(ω0t), with ω1 and ω2 being two input radio frequency signals and ω0 being the local

oscillator frequency. In this case, the distortion components will be different to that of amplifier

circuits and the expression for IP3 will be a function of the LO power. The intermodulation

distortion analysis of mixers can be accomplished through the use of periodically time varying

Volterra series and is outlined in section 2.5.3. The main difficulty of this approach is that, in

order to obtain the Volterra kernels, complex analytical solutions of equations for each nonlinear

element has to be performed [3]. Recently, several methods have been proposed in the literature

with some modifications and variations on traditional Volterra series to make their application

more intuitive and flexible [49]–[51]. However, the fundamental advantages and limitations of

traditional Volterra series remain.
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Table 2.2 Distortion components described by Volterra kernels at the corresponding

output frequencies [3]

Frequency Component Amplitude Type of Response

DC 1
2
V 2

1 |H2(jω1,−jω1)| DC Shift

DC 1
2
V 2

2 |H2(jω2,−jω2)| DC Shift

ω1 V1 |H1(jω1)| Linear

ω2 V2 |H1(jω2)| Linear

2ω1
1
2
V 2

1 |H2(jω1, jω1)| 2nd harmonic

2ω2
1
2
V 2

2 |H2(jω2, jω2)| 2nd harmonic

ω1 + ω2 V1V2 |H2(jω1, jω2)| 2nd order intermodulation

|ω1 − ω2| V1V2 |H2(jω1,−jω2)| 2nd order intermodulation

3ω1
1
4
V 3

1 |H3(jω1, jω1, jω1)| 3rd harmonic

3ω2
1
4
V 3

2 |H3(jω2, jω2, jω2)| 3rd harmonic

2ω1 + ω2
3
4
V 2

1 V2 |H3(jω1, jω1, jω2)| 3rd order intermodulation

|2ω2 − ω1| 3
4
V 2

1 V2 |H3(jω1, jω1,−jω2)| 3rd order intermodulation

|ω1 − 2ω2| 3
4
V1V

2
2 |H3(jω1,−jω2,−jω2)| 3rd order intermodulation

ω1 + 2ω2
3
4
V1V

2
2 |H3(jω1, jω2, jω2)| 3rd order intermodulation

2ω1 − ω1 = ω1
3
4
V 3

1 |H3(jω1,−jω1,−jω1)| 3rd order compression

2ω2 − ω2 = ω2
3
4
V 3

2 |H3(jω2, jω2,−jω2)| 3rd order compression

ω1 + ω2 − ω2 = ω1
3
2
V1V

2
2 |H3(jω1, jω2,−jω2)| 3rd order desensitization

ω1 − ω1 + ω2 = ω2
3
2
V 2

1 V2 |H3(jω1,−jω1, jω2)| 3rd order desensitization
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2.5.3 Distortion Analysis Using Time-Varying Volterra Series

Traditional Volterra series are referred to as time invariant and are only applicable to weakly

nonlinear amplifier circuits. However, extensions to an important class of strongly nonlinear cir-

cuits such as active switching mixers have been made using time-varying Volterra series [2], [52].

These types of circuits are typically driven by one large periodic input signal such as a local os-

cillator (LO) signal or a clock [4]. In this case, the input RF signal in the signal path is at a small

level and therefore the circuit is considered to behave in a weakly nonlinear fashion about the pe-

riodically varying operating point that is generated by the LO or the clock. This then allows the

strongly nonlinear circuits to be analyzed as periodically time varying weakly nonlinear systems

with respect to a small-signal input of interest.

For nonlinear time-varying systems, a multi-frequency network function is given by

Hn(t, ω1, · · · , ωn) =

∫
∞

−∞

· · · · · ·
∫

∞

−∞

hn(t, τ1, · · · , τn)e−jω1(t−τ1) . . . e−jω1(t−τn)dτ1 · · · dτn

(2.14)

where hn(t, τ1, · · · , τn) is the nth order Volterra kernel. With these relations, the response of a

nonlinear periodically time varying system to a two-tone sinusoidal input of v(t) = A(cosω1t +

cosω2t) is of the form [2]

x(t) ≈
∞∑

k=−∞

[
A2

2
H2,k +

(
A

2
H1,k +

9A3

8
H3,k

)

ejω1t +

(
A

2
H1,k +

9A3

8
H3,k

)

ejω2t +

A2

4
H2,ke

j2ω1t +
A2

4
H2,ke

j2ω2t +
A3

8
H3,ke

j3ω1t +
A3

8
H3,ke

j3ω2t +

intermod.terms
]

ejkω0t (2.15)

where ω0 is the frequency of the LO or clock. As can be seen from this relation, due to the

periodically time varying nature of these systems, an output spectrum pattern that is similar to

that in the base band will appear at multiples of ω0.

2.5.4 Sensitivity Analysis Using Volterra Series

Sensitivity analysis of mildly nonlinear circuits can be performed from a Volterra series analysis

since the closed form expressions for the Volterra kernels provide the necessary insight into the

circuit. Having access to the closed form expressions allows for very efficient evaluation of sensi-
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tivity using software. Recently, a simulation based algorithm was implemented for computing the

sensitivity using Volterra Series directly in the frequency domain [53], [54]. The method is based

on Schetzen’s multilinear theory for separating the nonlinear circuit into circuits of different or-

der [55], in conjunction with Volterra series equivalent circuits. Sensitivity analysis performed

with this approach was shown to be computationally efficient as it implemented the adjoint sensi-

tivity approach to Volterra series and only required one LU decomposition of a sparse matrix for

all the different order circuits. Since this method requires access to the equivalent higher order

Volterra series circuits, its application to arbitrary circuit models and nonlinearities in a general

purpose simulator is limited.

2.5.5 Rapid Estimation of IP3 Using the Three-Point Method

A very simple procedure for a rapid estimation of the value of IP3 that can easily be imple-

mented in simulators like SPICE is presented in [29]. It relies on the fact that knowing the

incremental gain of the circuit at three different input amplitudes is enough to be able to deter-

mine the power series coefficients needed for finding IP3 according to (2.12). The incremental

gain (transconductance) is the derivative of the power series equation given by (2.7) [29] and is

therefore approximately equal to

g(v) ≈ k1 + 2k2v + 3k3v
2 (2.16)

Any three different input voltages would do the trick, but convenient ones are those at deviations

of 0, V, -V from the DC bias value. With these choices of voltages, the incremental gains would

be

g(0) ≈ k1, (2.17)

g(V ) ≈ k1 + 2k2V + 3k3V
2 (2.18)

g(−V ) ≈ k1 − 2k2V + 3k3V
2 (2.19)



2 Review of Intermodulation Distortion Analysis Techniques 27

The coefficients of the power series then become

k1 = g(0), (2.20)

k2 =
g(V ) − g(−V )

4V
(2.21)

k3 =
g(V ) + g(−V ) − 2g(0)

6V 2
(2.22)

Substituting into (2.12) then gives the final relation for the value of IIP3. The three-point method

is used for a rapid estimation of the value of IP3 in the early stages of a design and is also valuable

in guiding the selection of design parameters to maximize the value of IP3.

2.6 Moments Based Technique for the Distortion Analysis of Amplifier

Circuits

Recently, a method based on the computation of the circuit moments was presented for obtaining

the value of IP3 in weakly nonlinear amplifier circuits [56], [57]. The new approach was shown to

be equivalent to the numerical computation of the values of the appropriate Volterra kernels at the

frequencies of interest. This approach does not require any analytical manipulation but is rather

applied directly to the MNA [21] formulation of the circuit. It can therefore be applied to circuits

of arbitrary complexity. Furthermore, the computation of all the moments only requires one LU

decomposition of the Jacobian evaluated at the DC operating point which is very sparse unlike

the typical Harmonic Balance (HB) Jacobian which is usually both large and dense, especially

for large RF circuits that exhibit strong nonlinearities. The computation is done numerically with

the input frequencies known, and thus produces very accurate results. The methods presented

in this thesis are based on the same methodology as that introduced in this technique, but have

been developed extensively to cover more types of RF circuits, improve CPU efficiency and

present new sensitivity information. In this section, the moments computation algorithm used

in [56], [57] is introduced, followed by the presentation of the relation between the moments and

the value of IP3 in amplifier circuits.
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2.6.1 Moments Computation Algorithm

The moments are defined as the Taylor series coefficients of the expansion of the Harmonic

Balance vector of unknownsX , with respect to the signal amplitude voltage α, given by

X = M 0 +M 1α +M 2α
2 +M 3α

3 + . . . (2.23)

=

∞∑

i=0

M iα
i (2.24)

These moments can be evaluated using a very efficient algorithm [17], [18]. The zeroth moment

vectorM 0, is obtained by finding the DC solution of the general HB system of equations (Refer

to Chapter 3 for more details on the HB formulation). If the nonlinear HB Jacobian, J , is also

expressed as a Taylor series expansion with respect to the signal amplitude voltage α as given by

J =

∞∑

i=0

T iα
i, (2.25)

then the remaining moment vectors Mn can be found by solving the system of equations given

by [17]

ΦM 1 = BRF (2.26)

ΦMn = −1

n

n−1∑

j=1

(n − j)T jMn−j, n ≥ 2 (2.27)

where Φ is the moments computation matrix, and BRF is a vector containing the contributions

of the RF input signal (Refer to Chapter 3 for more details). In these relations, the moment

vectors can be obtained using one LU Decomposition to solve (2.26) and (2.27) recursively. It

is important to note that the matrix Φ has the same structure as that of the HB Jacobian matrix

but with only the DC components present, which makes it very sparse. As can be seen from

(2.26) and (2.27), the computation of the moment vectors is a solution of a set of linear algebraic

equations where the left-hand-side matrix is the same throughout and is therefore very efficient.

2.6.2 Computation of IP3 From the Moments

In this section the relation between the circuit moments and the desired Volterra kernels is shown

for general amplifier circuits. In order to simplify the presentation, a memoryless system is



2 Review of Intermodulation Distortion Analysis Techniques 29

considered first where the output variable x is expressed as a power series of the input v as given

by (2.7). Substituting v = α(cos(ω1t) + cos(ω2t)) into (2.7), truncating after k3, and expanding

using trigonometric identities then gives

x = k0 + [k1 cos(ω1t) + k1 cos(ω2t)]α + [k2 +
k2

2
cos(2ω1t) + k2 cos((ω1 + ω2)t)

+k2 cos((ω1 − ω2)t) +
k2

2
cos(2ω2t)]α

2 + [
9k3

4
cos(ω1t) +

k3

4
cos(3ω2t)

+
9k3

4
cos(ω2t) +

k3

4
cos(3ω1t) +

3k3

4
cos((2ω2 − ω1)t) +

3k3

4
cos((2ω1 + ω2)t)

+
3k3

4
cos((2ω2 + ω1)t) +

3k3

4
cos((2ω1 − ω2)t)]α

3 (2.28)

From (2.28) and (2.23) the relationship between kn and the system moments can be deduced

since the solution vector X in (2.23) is essentially the output variable x in (2.28). By equating

the same powers of α in these two equations and noting the frequencies, the location of the kn

terms in the moment vectorsM k can be determined. In fact, their locations are given by
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For example, consider the first power of α and it be can seen that the vector M 1 consists of k1

at the frequency of ω1 and also another k1 at the frequency of ω2. The relation in (2.29) shows

the first 3 moment vectors in addition to the zeroth moment vector, with the entries at the sample

frequencies of interest for the computation of the third order intercept point shown in bold [6].

In the case of systems with memory (i.e. containing energy storage elements such as capaci-

tors and inductors), a fundamentally similar analysis can be performed. The additional complex-

ity here comes from the fact that the output is now represented as a Volterra series rather than a

power series. In this case a relation between the system moments and the Volterra kernels that is
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similar to equation (2.29) is developed. In order to derive these relationships, first consider the

system representation in terms of the Volterra series as defined in (2.8). To determine the location

of the kernels in the moment vectors, an input function with two tones of the same amplitude α

defined as

v(t) = α(cos(ω1t) + cos(ω2t)) (2.30)

=
α

2
ejω1t +

α

2
e−jω1t +

α

2
ejω2t +

α

2
e−jω2t (2.31)

is substituted into (2.8). The resulting equations for each Volterra operator are then used to

evaluate and express the Volterra kernels in the frequency domain [57]. The final expression,

when arranged by grouping like powers of α and only considering the terms up to the third order

(i.e. n = 3), is given by the following input output relation

y = H0 +
[
Re(H1(jω1)e

jω1t) + Re(H1(jω2)e
jω2t)

]
α +

[
1

2
Re(H2(jω1,−jω1)) +

1

2
Re(H2(jω2,−jω2)) +

1

2
Re(H2(jω1, jω1)e

j2ω1t) +

Re(H2(jω1, jω2)e
j(ω1+ω2)t) + Re(H2(jω1,−jω2)e

j(ω1−ω2)t) +

1

2
Re(H2(jω2, jω2)e

j2ω2t)

]

α2 +

[
3

4
Re(H3(jω1, jω1,−jω2)e

j(2ω1−ω2)t) +
3

4
Re(H3(−jω1, jω2, jω2)e

j(2ω2−ω1)t)+

3

2
Re(H3(jω1, jω2,−jω2)e

jω1t) +
3

4
Re(H3(jω1, jω1,−jω1)e

jω1t) +

3

2
Re(H3(jω1,−jω1, jω2)e

jω2t) +
3

4
Re(H3(jω2, jω2,−jω2)e

jω2t) + . . .

]

α3 (2.32)

The Volterra Series expression in (2.32) is similar to the expression shown in (2.28) which

proves that this method is essentially that of numerically computing the required Volterra kernels

evaluated at the frequencies of interest. In a similar fashion to memoryless systems, the location

of the parameters to compute the value of the third order intercept point are the entries in bold
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found in the moment vectors at the locations shown in
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︸ ︷︷ ︸

M 3

(2.33)

For the case of memoryless systems, the expressions for these kernels simplify to the terms

k1 and k3 in (2.29). This method presents significant CPU speedup over traditional Harmonic

Balance approaches and is fully automated. The main disadvantage of this approach is that it is

limited to weakly nonlinear amplifier circuits. In addition, the number of equations in the general

Harmonic Balance equations remains quite large due to the multi-tone inputs. The fact that the

kernels are evaluated numerically also means that the numerical results give no insight to the

circuit performance.

2.7 Conclusion

In this chapter, an overview of the significance of distortion analysis as a means for RF design

engineers to analyze linearity has been discussed. In addition, a literature survey of some of the

traditional and more recent approaches for computing IP3 and other distortion parameters for

different types of circuits has been presented. A special emphasis was placed on Volterra Series

since it is directly related to the contributions that are presented in the remainder of this thesis.



32

Chapter 3

Circuit Simulation Using Harmonic

Balance

3.1 Introduction

There are several important design specifications for RF circuits, most of which are typically

centered around the computation of key performance parameters that include gain, power, inter-

modulation distortion, noise and frequency bandwidth [1], [5], [6]. Such figures of merit require

the computation of the steady-state response of the circuit after all the transients have died out,

which is essentially computing the frequency domain response of the circuit. One way to obtain

the frequency response is by using small signal analysis. This is achieved by first linearizing

the circuit around the DC operating point followed by using small signal analysis to obtain the

frequency response. This approximation, however, does not provide sufficient accuracy for the

analysis of RF circuits, especially when computing the intermodulation distortion. In such a case,

the nonlinear steady-state response is required. For circuits with constant inputs, the steady-state

response is simply the DC response, while for circuits with periodic inputs, the output in the

steady-state will also be periodic with the same period as the input. The brute force way to ob-

tain the steady-state response is to perform a long transient analysis until all the transients die

out. Such an approach is, however, very inefficient due to the very large number of time steps

required, and suffers from several limitations such as the inability to determine exactly when the

transients completely die out in addition to the resulting Fourier transform noise. Alternatively,

the steady-state response of a nonlinear circuit can be obtained directly in an accurate and effi-
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cient manner using one of several algorithms that have been proposed in the literature [30]. These

include time domain methods such as the Shooting method [5], [11], [58], and frequency domain

methods such as the Harmonic Balance approach [5], [12], [13].

The Shooting method determines the steady-state response of a nonlinear circuit excited with

a periodic input by solving a Boundary Value Problem (BVP). Standard circuit simulators such

as SPICE [59] solve an initial value problem by integrating the differential algebraic equations

(DAEs) representing the circuit in the time domain from a known initial condition. In order to

directly find the steady-state response (also called the periodic solution), the Shooting method

relies on the fact that for a periodic input, the output in the steady-state is also periodic and thus

recasts the problem as a BVP which is then solved using Newton Iteration [11], [14], or using

other iterative methods such as conjugate gradient [60] or Krylov techniques [61].

There are two problems that arise when trying to apply the Shooting method to analog and

microwave circuits. The first problem is that shooting methods find the periodic steady-state

response of a circuit by assuming that the periodicity constraint of x(t) = x(t+T ) for all t holds

as a two-point boundary-value constraint [62]. However, the steady-state response of a mixer

circuit, for example, is in general not periodic but rather quasi-periodic which makes the method

inappropriate for such circuits. This has led to the development of mixed time frequency envelope

techniques [30] that extend the applicability of this method. The second problem is that being

a time domain method, it has difficulties with distributed elements such as transmission lines

which are best described in the frequency domain. For each iteration, a new initial condition

is computed. However, if the circuit contains distributed elements, then their initial conditions

cannot be expressed using a finite set of numbers, but rather with functions which then result in

significant complexity when applying the method [63].

The contributions presented in this thesis are based on the formulation of the nonlinear system

in the frequency domain using the general Harmonic Balance equations. Therefore, this chapter

will focus strictly on the HB approach as time-domain methods are not required. This Chapter

begins with introducing the method for formulating a general nonlinear system in a circuit sim-

ulator based on the Modified Nodal Analysis (MNA) approach [21] and the general Harmonic

Balance equations. This will provide the necessary background to the contributions presented

in later chapters of this thesis which are all based on this general formulation. This is then fol-

lowed by an analysis of steady-state nonlinear circuit simulation using the Harmonic Balance

method. In particular, the various limitations of this approach are highlighted and some of the

recent methods that have been proposed in the literature to address these issues are presented. In
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this chapter, the formulation for performing sensitivity analysis is also presented. The brute-force

way to perform a sensitivity analysis is through perturbation which was first used by Rizzoli et

al. to approximate gradients for design optimization [64], [65]. However this method is very

inefficient and suffers from accuracy limitations. Other more efficient sensitivity analysis algo-

rithms have been developed such as differentiation and the adjoint approach [27], [28] which are

presented in this chapter.

3.2 Modified Nodal Analysis Formulation

The formulation of the MNA circuit equations corresponds to the summation of currents accord-

ing to Kirchoff’s Current Law (KCL) at the circuit nodes as well as additional equations for

dealing with voltage sources, inductors and other special elements [66]. The MNA formulation

provides a simple and general approach that allows for the automated representation of circuits

containing both linear and nonlinear elements as a set of equations in matrix form.

Consider a non-linear circuit excited by one or more input tones. The MNA circuit equations

can be expressed in the time domain as [21]

Gx(t) +Cẋ(t) + f (x) = b(t), (3.1)

where

• x(t) ∈ R
n is the vector of n unknown voltages and currents,

• G ∈ R
n×n is the matrix that contains the contributions of the linear memoryless circuit

elements,

• C ∈ R
n×n is the matrix that contains the contributions of the linear memory circuit ele-

ments,

• f(x) ∈ R
n is a vector of nonlinear algebraic scalar functions of the form

f(x(t)) = [f1(x), f2(x), · · · , fN(x)]T (3.2)

• b(t) is a vector that contains the independent input sources.

• n is the total number of variables in the circuit equations.
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g1

c

ID=Is(e
(v2-v3)/Vt-1)

vin(t)
iE

v1 v2 v3

Fig. 3.1 Simple nonlinear circuit

As an example, consider the simple non-linear circuit shown in Fig. 3.1. Applying KCL to all

three nodes would give us the following set of equations:

g1 (v1 − v2) − iE = 0 (3.3)

g1 (v2 − v1) + c (v̇2) + Is

(

e
v2−v3

Vt − 1
)

= 0 (3.4)

−Is

(

e
v2−v3

Vt − 1
)

+ g2v3 = 0 (3.5)

v1 = vin(t) (3.6)

The MNA equations for this circuit can be obtained by expressing (3.3)-(3.6) in matrix form

using the matrices defined in (3.1). Doing so results in the following MNA formulation for this

particular circuit:









g1 −g1 0 1

−g1 g1 0 0

0 0 g2 0

1 0 0 0









︸ ︷︷ ︸

G









v1

v2

v3

iE









︸ ︷︷ ︸

x(t)

+









0 0 0 0

0 c 0 0

0 0 0 0

0 0 0 0









︸ ︷︷ ︸

C









v̇1

v̇2

v̇3

i̇E









︸ ︷︷ ︸

ẋ(t)

+









0

Is(e
v2−v3/Vt − 1)

−Is(e
v2−v3/Vt − 1)

0









︸ ︷︷ ︸

f (x)

=









0

0

0

vin









︸ ︷︷ ︸

b(t)

(3.7)

Note that one of the key advantages of the MNA formulation is that these MNA systems of

equations can be automatically generated by a computer with the use of component signatures,

or ‘stamps’ [9], [67], for each circuit element. Several stamps for common circuit elements can
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be found in [9]. Another advantage is that the resulting system of equations is typically very

sparse.

3.3 Harmonic Balance Formulation

The Harmonic Balance (HB) method is a technique for obtaining the steady-state response due

to a periodic input directly in the frequency domain. A number of variations of this approach

designed to improve the CPU efficiency have been proposed such as piecewise Harmonic Balance

[12], [13], domain decomposition [68], Harmonic Balance using inexact Newton [69], and model

order reduction based methods [17]. All these models are based on the one fundamental concept

behind Harmonic Balance that is, given a periodic input, the steady-state output will also be

periodic and can thus be expressed as a Fourier series. The HB algorithm reformulates the system

of nonlinear differential algebraic equations into a system of nonlinear algebraic equations where

the unknowns are the Fourier coefficients. In this section, the HB approach is explained in detail

since the formulation of the HB equations is used as a basis for the contributions in this thesis.

Consider a circuit containing linear and nonlinear elements described by its MNA equations

as shown in (3.1). Given a periodic input b(t), the response is also known to be periodic in

the steady-state. The Harmonic Balance approach expresses the periodic solution as a truncated

series of sine and cosine functions at the frequencies of the harmonics of the inputs as well as the

intermodulation products. For a single tone simulation, the Harmonic Balance solution vector

simplifies to a truncated Fourier Series including the first H harmonics since there would be no

intermodulation frequencies present. In general, the solution vector can then be represented as

x(t) = A0 +

H∑

k=1

(Ak cos(ωkt) +Bk sin(ωkt)) (3.8)

where

• ωk are the harmonic and intermodulation frequencies present in the circuit.

• A0 ∈ R
n is a vector containing the DC amplitudes of all n variables.

• Ak ∈ R
n is a vector containing the amplitudes of all the cosine terms at frequency ωk

• Bk ∈ R
n is a vector containing the amplitudes of all the sine terms at frequency ωk.
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Substituting (3.8) into the MNA equations in (3.1) and equating the coefficients of the sine and

cosine terms results in a set of nonlinear algebraic equations in the form of

ḠX + C̄X + F (X) = Bdc +Bac, (3.9)

where

• X ∈ R
Nh is a vector of unknown cosine and sine coefficients for each of the variables in

x(t).

• Bdc ∈ R
Nh and Bac ∈ R

Nh represent the contributions of the DC and AC independent

sources respectively.

• Ḡ ∈ R
Nh×Nh is a block matrix Ḡ = [Gij] representing the contribution of the linear

memoryless elements of the network to the frequency components. The blocks Gij ∈
R

Nb×Nb are diagonal matrices given by

Gij = diag(gij , · · · , gij) (3.10)

with gij being the corresponding entry in theG matrix in (3.1).

• C̄ ∈ R
Nh×Nh is a block matrix C̄ = [Cij] representing the contribution of the linear

memory elements of the network to the frequency components. The blocksC ij ∈ R
Nb×Nb

are diagonal matrices given by

Cij =














0 0 0 · · · 0 0

0 0 ω1 · · · 0 0

0 −ω1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 ωk

0 0 0 · · · −ωk 0














(3.11)

where ω1 → ωk are the harmonics of the operating frequency and with cij being the corre-

sponding entry in the C matrix in (3.1).

• F (X) contains the sine and cosine coefficients of the nonlinear vector f (x) defined in
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(3.1) and is expressed as

F (X) =









F1(X)

F2(X)
...

FN(X)









(3.12)

• Nb is the expanded number of variables for each original unknown variable in x(t). For a

system excited with a single frequency input tone, this is equal to 2H + 1 if H harmonics

are considered. For multi-tone systems, this number becomes significantly higher.

• Nh is total number of variables for the HB system of equations and is given by Nh = n×Nb.

For a single-tone excited system this would be equal to Nh = n(2H + 1). This quantity is

usually very large even for modest size systems.

The relation between the vectorsX , f(x(t)) and F (X) is established through the use of the Fast

Fourier Transform (FFT) and the Inverse Fast Fourier Transform (IFFT) [70]. These transforms

are utilized while performing Newton Iterations to obtain the solution of the HB equations and

are explained in the following section.

To illustrate how much bigger the HB matrices become relative to the original system, the

simple 3-node circuit shown in Fig. 3.1 is taken as an example. If only 2 Harmonics are consid-

ered (i.e. H=2), then Ḡ becomes a 20×20 matrix, as seen in equation (3.13).
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Ḡ =

















































g1 −g1 0 1

g1 −g1 0 1

g1 −g1 0 1

g1 −g1 0 1

g1 −g1 0 1

−g1 g1 0 0

−g1 g1 0 0

−g1 g1 0 0

−g1 g1 0 0

−g1 g1 0 0

0 0 g2 0

0 0 g2 0

0 0 g2 0

0 0 g2 0

0 0 g2 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

















































︸ ︷︷ ︸

dimensions=20×20

(3.13)

Alternatively, if 20 harmonics are needed in the simulation, then the size of the matrix would

become 164×164, and for multi-tone inputs, this number would be much larger. This dramatic

increase in size presents a significant CPU cost problem. Despite the fact that the matrices Ḡ and

C̄ are sparse, this is not the case with the HB Jacobian matrix which is usually very dense, and

has to be manipulated at each Newton Iteration, as will be explained more clearly in the following

sections.

3.4 Solution of the Harmonic Balance Equations

The solution to the set of nonlinear algebraic HB equations, where the unknowns are the Fourier

coefficients of the steady state solution, is obtained by applying iterative numerical techniques

such as Newton Iteration [71], [72] or the Conjugate Gradient method [32]. However, each iter-

ation of the solution is very CPU expensive without a guarantee of convergence [67]. A number
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of relaxation based techniques have been introduced to improve the CPU cost of iterative solu-

tions [12], [73], [74]. In this chapter the Newton Raphson Iteration, which benefits from quadratic

convergence near the solution, is presented.

To apply the Newton Raphson iteration, the HB equations in (3.9) are reformulated as

Ψ(X) = ḠX + C̄X + F (X) −B = 0 (3.14)

where Ψ(X) is referred to as the objective function. In this expression, the terms Bac and Bdc

have been combined into one vector such that B = Bac +Bdc. The target solution vector X is

found iteratively using Newton Raphson Iteration [31] by starting with an initial guess and then

updating the solution at each iteration until convergence occurs. At each iteration, the solution

vector is updated using

X(i+1) = X(i) − JHB(X(i))−1Ψ(X(i)) (3.15)

where i is the iteration number, X(i) is the old guess and JHB(X(i)) is the Jacobian Matrix

defined as

JHB(X(i)) =
∂Ψ(X)

∂X

∣
∣
∣
∣X

(i) = Ḡ+ C̄ +
∂F (X)

∂X

∣
∣
∣
∣
X

(i)
(3.16)

To solve for the harmonic balance solution vectorX , the following steps are applied

1. Select a good initial guess for the solution vector to be used in (3.15) for the first iteration.

A good initial guess is one that is close to the solution vector which will in turn lead to

faster convergence and thus result in a lower CPU cost.

2. Compute the objective function using the current value of the vectorX which includes the

evaluation of the nonlinear vector F (X).

3. Evaluate the Jacobian matrix according to (3.16) using the current value of the vectorX .

4. Determine the new updated solutionXnew according to (3.15).

5. Check if the error between Xnew and Xold is less than a predetermined error tolerance

value ǫ, if not then repeat from step 2 using the latest value of X as Xold until the error

between Xnew and Xold is smaller than the acceptable tolerance value, in which case the

solution would have converged and the iteration loop is stopped.
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To evaluate the value of the objective function, Ψ(X), all the terms in (3.14) with the exception of

the nonlinear vector F (X) are found by expanding the original MNA matrices into block matrix

forms as highlighted earlier. The evaluation of the nonlinear vector F (X) given by (3.12) is a

bit more complex as use of the Direct Fourier Transform (DFT) is required. Thus, an overview

of the DFT algorithm is provided before proceeding with the method for evaluating F (X).

3.4.1 Direct Fourier Transform

The Fourier Transform is used in the calculation of the objective function and the Jacobian matrix

at each Newton iteration of the HB algorithm. Consider a periodic signal x(t) with a period

T = 2π
ω

expressed as a Fourier Series given by

x(tn) = a0 +

H∑

k=1

(ak cos(kωtn) + bk sin(kωtn)) (3.17)

This signal is then sampled at Nb time points [t0, t1, · · · , tNb−1] that are equally spaced across the

interval [0, T ] with

tn = n
T

Nb

; n = 0, 1, · · · , Nb − 1 (3.18)

The Fourier Series expressions at each sampled time point results in

x(t0) = a0 +
H∑

k=1

(ak cos(kωt0) + bk sin(kωt0)) (3.19)

x(t1) = a0 +

H∑

k=1

(ak cos(kωt1) + bk sin(kωt1)) (3.20)

... (3.21)

x(tNb−1) = a0 +
H∑

k=1

(ak cos(kωtNb−1) + bk sin(kωtNb−1)) (3.22)
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which can be re-written in matrix form as









x(t0)

x(t1)
...

x(tNb−1)









=









1 cos(ωt0) sin(ωt0) · · · cos(Hωt0) sin(Hωt0)

1 cos(ωt1) sin(ωt1) · · · cos(Hωt1) sin(Hωt1)
...

...
...

. . .
...

...

1cos(ωtNb−1)sin(ωtNb−1)· · ·cos(HωtNb−1)sin(HωtNb−1)






















a0

a1

b1

...

aH

bH














(3.23)

This relation is that of the Inverse Direct Fourier Transform (IDFT), with the times samples

obtained by multiplying the vector of Fourier coefficients with the IDFT matrix, which will be

referred to as Γ. Similarly the DFT can be performed with the use of Γ−1. The arguments in

matrix Γ of the form kωtn can be re-written as

kωtn = k

(
2π

T

)

n

(
T

Nb

)

= kn

(
2π

Nb

)

(3.24)

which shows that the arguments are independent of frequency. In fact, matrix Γ can be expressed

independently of frequency as

Γ =












1 cos(Θ0,1) sin(Θ0,1) · · · cos(Θ0,H) sin(Θ0,H)
...

...
...

. . .
...

...

1 cos(Θn,1) sin(Θn,1) · · · cos(Θn,H) sin(Θn,H)
...

...
...

. . .
...

...

1 cos(ΘNb−1,1) sin(ΘNb−1,1) · · · cos(ΘNb−1,H) sin(ΘNb−1,H)












(3.25)

with

Θn,k = kn

(
2π

Nb

)

(3.26)

3.4.2 Evaluation of the Nonlinear Vector F (X)

To simplify matters, only one nonlinear scalar function from the vector f(x) shown in (3.2) is

considered. The evaluation of the other functions is done in a similar fashion. f(x) is also

assumed to be a function of one variable x1.

To evaluate the nonlinear vector F (X1), as a function ofX1, which is the vector containing
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the sine and cosine coefficients of x1(t), the following relation is used

F (X1) = Γ−1F s (3.27)

where F s is the vector that contains the time samples of f(x(t)) and is given by

F s = [f(x0), f(x1), . . . , f(xNh
)]T (3.28)

and Γ is the inverse DFT matrix. The vector of time samplesXs = [x0, x1, . . . , xNh
]T needed to

determine F s is also evaluated by using the DFT, namely

Xs = ΓX1 (3.29)

3.5 Harmonic Balance Jacobian

The computation, storage and inversion of the HB Jacobian matrix at each iteration of the New-

ton Raphson algorithm constitutes the bulk of the CPU cost for obtaining the HB solution as

this matrix is usually very large and dense, especially when simulating circuits with multi-tone

inputs. The number of iterations needed to obtain the final solution vector also varies and can be

quite large, therefore requiring that the expensive process of manipulating the Jacobian matrix be

repeated several times.

The HB Jacobian matrix is evaluated using the expression shown in (3.16). The matrices Ḡ

and C̄ are the same as those defined in (3.9). The remaining term is found using

∂F (X)

∂X
=







∂F1

∂X1
· · · ∂F1

∂Xn

...
. . .

...
∂Fn

∂X1
· · · ∂Fn

∂Xn







(3.30)

where F n and Xn contain the Fourier coefficients of fn and xn respectively. Each of the terms

in (3.30) is a matrix in itself, forming a block matrix structure. Each term is evaluated using

∂F n

∂Xn

= Γ−1 ∂F s

∂Xn

= Γ−1 ∂F s

∂Xs

∂Xs

∂Xn

= Γ−1 ∂F s

∂Xs

Γ (3.31)
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where Γ is the DFT matrix and

∂F s

∂Xs
= diag

[
df(x(t0))

dx(t0)
, · · · ,

df(x(tNb−1))

dx(tNb−1)

]

(3.32)

In practice, the multiplication by Γ and Γ−1 is not done, and is replaced by the FFT and IFFT

algorithms. It is also important to note that although ∂Fs

∂Xs
is a diagonal matrix, the multiplication

by Γ and Γ−1 makes ∂Fn

∂Xn
a full matrix, which then makes the Jacobian matrix dense. As an

example of the density of the HB Jacobian matrix, Fig. 3.2 shows the sparsity pattern for the HB

Jacobian matrix of the simple nonlinear circuit of Fig. 3.1. As can be seen, the matrix contains

dense blocks at the location of the nonlinear function in the MNA equations.

Fig. 3.2 Sparsity pattern of the Harmonic Balance Jacobian matrix. White space

shows location of zero entries, dark space shows location of non-zero entries.

3.6 Harmonic Balance Difficulties and Improvements to the Harmonic

Balance Method

The Harmonic Balance method for steady state analysis comes with significant problems. One

of the method’s major problems is that of convergence since there is a dependence on numerical

iterations to achieve the solution. Convergence can be improved through the use of a good initial
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guess which can lead to two major improvements. The first is to reduce the number of iterations

by choosing an initial guess that is closer to the solution, and the second is to improve the chances

of converging to the correct solution. Although Newton Iteration benefits from quadratic conver-

gence near the solution, convergence is not guaranteed. In recent years, there have been several

improvements and refinements to the classical Harmonic Balance algorithm in order to improve

CPU efficiency and memory requirements.

3.6.1 Continuation Methods

A number of techniques such as Gauss-Jacobi Newton harmonic relaxation [12] and inexact New-

ton Iteration [69] have been presented to improve convergence. The main challenge is that there

are no rules for selecting a good initial guess. Continuation or homotopy methods [75]–[77] have

been introduced to circuit simulation to address the issue of convergence in locally convergent

iterative methods such as Newton Iteration. The main idea behind continuation methods is to

augment the system of equations Ψ(X) shown in (3.14) with a new variable µ as a continuation

parameter to form a new set of equations Ω(X, µ) with a trivial solution when µ = 0, and the

solution of the original system when µ = 1, such that Ω(X, 1) = Ψ(X). The continuation

parameter is swept from 0 to 1 using a discrete number of values, and the solution at each value

is obtained and tracked, such that the solution at each value is used as the initial guess for the

obtaining the next solution.

3.6.2 Use of Preconditioning

Convergence of a system can be made much more robust through the use of preconditioners [78].

A preconditioner matrix is selected and applied to the original system that is a good approxima-

tion of the solution of the system of equations and relatively easy to invert. For example, consider

the linear system of equations given by

AX = B (3.33)

Then applying a preconditioner matrixAp to this system would give

A−1
p AX = A−1

p B (3.34)

Recent linear iterative techniques such as the quasi-minimal residual (QMR) [79] and the
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generalized minimal residual (GMRES) [80] approaches were used for solving the HB equa-

tions. However, the efficiency of these techniques depends heavily on the ability to select a good

preconditioner. If a poor preconditioner matrix is selected, this could end up making the solution

more CPU expensive. The challenge therefore shifts to selecting a good preconditioner. There

are a number of techniques in the literature for selecting a preconditioner [43], [81]. The first and

most simplest is the averaging diagonal preconditioner [79]. In this case, the preconditioner is a

block diagonal matrix with each block having the sparsity structure of the circuit transient matrix,

meaning the matrix can be easily inverted. This technique works extremely well for circuits with

only mild nonlinearities and is probably the best preconditioner for such circuits [43].

As the circuit becomes more strongly nonlinear, the off-diagonal entries in the Jacobian ma-

trix become larger and therefore the diagonal preconditioner becomes less effective. In this case,

a one step correction can be applied [43] or super diagonals can be included [81]. In the latter

case, when harmonics are large, only the super diagonal entries of one ore more harmonics can

be included, while the sub-diagonal entries can be discarded. The resulting matrix becomes an

upper triangular one, which can be more easily inverted than a full one. However, discarding en-

tries for a system with a large harmonic index makes the preconditioner less effective, especially

in the case of systems with multi-tone inputs, where the artificial frequency mapping may place

significant harmonics far away from the diagonal [81].

Alternatively the preconditioner of the finite difference Jacobian can be used for circuits that

are highly nonlinear. However, this technique is limited to circuits with only single-tone inputs.

The Schur-complement preconditioner can be also used assuming the number of columns con-

taining nonlinear elements is small relative to the size of the overall system, and that permuting

these columns to the side of the matrix does not cause significant fill-ins [80], [81].

3.7 Fourier Transform for Almost Periodic Input Signals

When a circuit is excited with an input signal that contains multiple tones, the signal is usually

quasi-periodic, i.e. the two input frequencies are non-commensurate, and are therefore not mul-

tiples of each other [67]. These frequency values thus create problems when performing Fourier

Transforms and also when calculating the Jacobian matrix [67]. A number of algorithms in the

literature have been proposed to address this problem [82]–[85]. A simple and efficient way to

address this problem is through the use of frequency mapping techniques presented in [5] which

are known as the Diamond and Block truncation methods for two input tones. This analysis can
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also be extended for the case of greater input tones. These truncation methods are used to map

actual harmonic frequencies (including intermodulation terms) to arbitrary artificial frequencies.

In particular, the fundamentals of the input signal are chosen to be multiples of some arbitrary fre-

quency so that the resulting signals will be periodic and can also be expressed as shown in (3.8).

This trick is best illustrated with an example. Consider a nonlinear circuit with an input-output

relation as follows

f(v(t)) = v(t)2 (3.35)

Assuming that the input signal consists of a voltage signal with two input tones as follows

v(t) = A cos(αt) + B cos(βt) (3.36)

Substituting (3.36) into (3.35) and expanding using trigonometric identities the output function

becomes

f(v(t)) =
A

2
+

B

2
+

A

2
cos(2αt) +

B

2
cos(2βt) +

AB

2
cos(αt + βt) +

AB

2
cos(αt− βt) (3.37)

It is important to note how the coefficients of the cosine terms are independent of the actual values

of the frequencies α and β, therefore allowing the possibility of mapping these frequencies to

convenient values. The type of truncation algorithm selected depends on the type of circuit and

the frequencies used in the analysis.

3.7.1 Block Truncation

The Block Truncation algorithm is applied when a two-tone input is used with frequencies ω1 and

ω2 that are well spaced out from each other on the frequency spectrum i.e. ω1 >> ω2. Consider

the following set of frequencies given by

ωk = k1ω1 + k2ω2; 0 ≤ k1 ≤ H1, |k2| ≤ H2, k1 6= 0 if k2 < 0 (3.38)

where H1 and H2 are the number of harmonics of ω1 and ω2 respectively. The new artificial set

of frequencies that are equally spaced and do not overlap is given by kω = α1k1ω1 + α2k2ω2,

with the scaling factors for the two fundamental frequencies (α1 and α2) being

α1 = 1; α2 =
ω1

ω2(2H2 + 1)
(3.39)
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k1

k2

Fig. 3.3 Frequency mapping using block truncations [5]

The mapping of the quasiperiodic frequencies to periodic frequencies using Block truncations is

graphically illustrated in Fig. 3.3.

3.7.2 Diamond Truncation

For the more frequent case in RF circuits where the two fundamental frequencies of the input

signal are very close to each other on the output spectrum such that ω1 ≈ ω2, the Diamond

Truncation algorithm is used. Considering the set of frequencies given by

ωk = k1ω1 + k2ω2; |k1| + |k2| ≤ H, k1 + k2 ≥ 0, k1 6= k2 if k2 > 0 (3.40)

where H is the highest order of harmonics of ω1 and ω2 that is accounted for. The new artificial

set of frequencies that are equally spaced and do not overlap is given by kω = α1k1ω1 + α2k2ω2,

with the scaling factors for the two fundamental frequencies (α1 and α2) being

α1 = 1; α2 =
Hω1

ω2(H + 1)
(3.41)

The mapping of the quasiperiodic frequencies to periodic frequencies using Diamond truncation

is shown in Fig. 3.4.
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k1

k2

Fig. 3.4 Frequency mapping using diamond truncations [5]

3.7.3 Three Tone Truncation

In some cases, there is a need to simulate the circuit with three input frequency tones. In the case

of mixer circuits, for example, there could be two RF input tones present (ω1 and ω2) in addition

to one local oscillator tone (ω3). For this reason, a three-tone truncation algorithm is required,

which is a natural extension of the two-tone diamond and block truncation algorithms. Consider

the set of frequencies given by

ωk = k1ω1 + k2ω2 + k3ω3; |k1| + |k2| ≤ H, k3 ≤ H, k1 + k2 ≥ 0, k1 6= k2 if k2 > 0 (3.42)

The new artificial set of frequencies that are equally spaced, do not overlap and account for the

mixing property would be given by kω = α1k1ω1+α2k2ω2+α3k3ω3. For the case of k3 = 0, this

algorithm would be the same as that of diamond truncation. For the case of k3 > 0 the mapping of

these frequencies would correspond to those illustrated in Fig. 3.5 and the corresponding scaling

factors are

α1 =
(H + 1)ω3

ω1(2H(H + 1) + 1)
; α2 =

Hω3

ω2(2H(H + 1) + 1)
; α3 = 1 (3.43)

The resulting scaled set of frequencies is equally spaced with no two frequencies overlapping.

Other implementations of three-tone truncation algorithms is possible, however this implementa-

tion works well with the frequency characteristics of mixer circuits and thus is the one selected.
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k1

k2

Fig. 3.5 Frequency mapping using three-tone truncation with k3 > 0

3.8 Sensitivity Analysis Techniques

Sensitivity analysis is of particular importance for circuit designers as it is critical for perform-

ing several applications, including design centering, yield analysis, optimization and computing

group delay. In this section an overview of some of the main methods used for performing sensi-

tivity analysis in the frequency domain is presented. First, the general formulation and definitions

of sensitivity are presented, followed by the sensitivity analysis methods.

3.8.1 Sensitivity Analysis Formulation

The absolute sensitivity of a variable V with respect to a general circuit parameter λ is defined as

DV
λ =

∂V

∂λ
(3.44)

The above definition is not scale free and therefore makes it difficult to compare the sensitivities

of various elements. In practical applications, it is more useful to quantify sensitivities as relative

or normalized quantities. In such a case, the relative sensitivity of a variable V with respect to a
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general circuit parameter λ is defined as

SV
λ =

λ

V

∂V

∂λ
=

λ

V
DY

λ (3.45)

while the normalized sensitivity is given by

SV
λ = λ

∂V

∂λ
= λDV

λ (3.46)

3.8.2 Perturbation

The brute-force approach to performing a sensitivity analysis is through the perturbation of the

system. To apply this approach on a linear system described by the set of equations

AX = B, (3.47)

first, the nominal solution of the system X is determined. Next, the parameter λ of interest is

modified by a small delta amount ∆λ such that the new system of equations becomes

(A+ ∆A) (X + ∆X) = B (3.48)

The solution of the perturbed system (X + ∆X) is then determined. The sensitivity of the

system to the parameter λ can now be computed by evaluating

DF
λ =

∂X

∂λ
=

∆X

∆λ
(3.49)

The Perturbation sensitivity approach has several major problems. The first problem is that it

is very computationally inefficient. This approach computes the sensitivity of one variable with

respect to one parameter. Therefore an entire simulation must be performed for each different

parameter and each variable. In addition, this approach suffers from issues with round-off errors

depending on the size of the ∆λ used, which varies on a case by case basis [9].
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3.8.3 Differentiation

A more efficient sensitivity analysis technique is that of differentiation. Consider the same set of

linear equations given by

AX = B (3.50)

The partial derivative of (3.50) with respect to λ (assuming B is not a function of a λ) is given

by
∂A

∂λ
X +A

∂X

∂λ
= 0 (3.51)

Rearranging this relation results in an expression that can be solved for determining ∂X
∂λ

A
∂X

∂λ
= −∂A

∂λ
X (3.52)

It is important to observe that for different cases of λ, the equation above will have a different

right-hand-side, but will retain the same left-hand-side. This method therefore finds the sensi-

tivity of all variables with respect to one parameter and is more computationally efficient than

brute-force perturbation. This approach is often referred to in the literature as the sensitivity

network approach [9]. However, the sensitivity of all components of X is rarely required. A

more probable scenario is the need to determine the sensitivity of one scalar variable with respect

to many parameters. Therefore, significant CPU saving can be achieved if the sensitivity with

respect to all the circuit parameters can be found at once.

3.8.4 Adjoint Sensitivity

The Adjoint sensitivity approach is a very popular and common traditional sensitivity analysis

technique [27], [28]. It is attractive because it exhibits very low incremental CPU cost and also

computes the sensitivity of one scalar variable with respect to all the parameters in the system.

Suppose the output scalar variable of interest is Vout and we would like to determine its sensitivity

with respect to a parameter λ. In this case, Vout can be extracted from the solution vectorX with

the aid of a selection vector d by using the relation

Vout = dTX (3.53)
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To compute the sensitivity, the first step is to take the derivative of this relation with respect to λ

which yields
∂Vout

∂λ
= dT ∂X

∂λ
(3.54)

For a general linear system of equations AX = B, an expression for ∂X
∂λ

can be obtained by

re-arranging the expression in (3.52) as

∂X

∂λ
= −A−1∂A

∂λ
X (3.55)

Substituting (3.55) into (3.54) results in the general Adjoint sensitivity equation given by

∂Vout

∂λ
= (Xa)T ∂X

∂λ
(3.56)

whereXa is the Adjoint solution vector and is defined as

(Xa)T = −dTA−1 (3.57)

The adjoint sensitivity algorithm thus simplifies to following steps:

1. Solve the original networkAX = B.

2. Solve the adjoint networkATXa = −d.

3. For each parameter λ, determine ∂A
∂λ

and compute the sensitivity according to (3.56).

It is important to note that the matrix ∂A
∂λ

is an extremely sparse matrix which makes the CPU

cost of the final step negligible to that of the first two. As can be seen, the same left-hand-side

matrix A is used to determine solutions of both the original network and the adjoint network,

meaning only one decomposition of the matrixA is needed for determining the sensitivity of all

the parameters in the circuit.

Adjoint sensitivity analysis can also be performed on the solution of nonlinear circuits using

methods such as Harmonic Balance [7]. In this case, the adjoint solution vectorXa for nonlinear

circuits is defined using the general relation given by

JTXa = d (3.58)
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where

J = A+
∂F (X)

∂X
(3.59)

is the Harmonic Balance Jacobian matrix. The sensitivity of the output variable Vout with respect

to any parameter connected to branch b can then be obtained by solving the simplified expression

given by

∂Vout

∂λ
=







−∑k Real [Xb(k)X∗

b (k)G∗

b(k)] if x ∈ linear subnetwork,

−∑k Real [Xb(k)G∗

b(k)] if x ∈ nonlinear VCCS or nonlinear resistor,

−∑k Imag [Xb(k)G∗

b(k)] if x ∈ nonlinear capacitor.

(3.60)

In these equations, k is the kth harmonic and G∗

b(k) is the appropriate parameter from Table 3.1.

Table 3.1 Harmonic Balance adjoint sensitivity expressions for different elements

[7]

Type of Element Gb(k)

Linear G 1

Linear R − 1
R2

Linear C jωk

Linear L − 1
jωkL2

Nonlinear VCCS or R with i = i(x(t), λ) [kth Fourier coefficient of ∂i
∂x

]

Nonlinear C with q = q(x(t), λ) ωk[kth Fourier coefficient of ∂q
∂x

]

3.9 Conclusion

In this chapter, the formulation of nonlinear circuits using the Modified Nodal Analysis equations

and the general Harmonic Balance equations was presented. In addition, the steady-state simula-

tion of nonlinear RF circuits using classic Harmonic Balance and an overview of the fundamen-

tals for performing exact and efficient sensitivity analysis were presented. For intermodulation

distortion analysis applications, the Harmonic Balance approach presents several limitations and

computational bottlenecks, thereby making it a very CPU expensive approach. In this thesis, a
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new approach for the intermodulation distortion analysis of RF circuits based on the Harmonic

Balance moments is presented to address some of the critical CPU bottlenecks.
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Chapter 4

Moments Based Computation of

Intermodulation Distortion of Mixer

Circuits

4.1 Introduction

Mixer circuits such as the doubly-balanced Gilbert cell [86] are widely encountered in modern

telecommunication circuits and their main purpose is to convert a signal from one frequency to

another. In a receiver circuit, this conversion is from the Radio Frequency (RF) to the Interme-

diate Frequency (IF). Mixer circuits are therefore inherently nonlinear devices since nonlinearity

is necessary to generate the new frequencies [6]. In addition to the desired nonlinearity, mixer

circuits also contain undesired nonlinearities in the RF signal path. The increased complexity of

modern circuits in addition to the reduction of supply voltages and the scaling of MOS devices

into deep sub-micron regions have aggravated the effect of the nonlinear device characteristics

in these circuits [2]. Therefore, it is of particular importance to be able to perform efficient

and accurate nonlinear distortion analysis for mixer circuits, especially for wireless applications.

Simulation of intermodulation distortion can be performed in either the time domain or the fre-

quency domain. Frequency domain approaches such as Harmonic Balance are more effective for

weakly nonlinear circuits. However, there are several challenges to simulating intermodulation

distortion in mixer circuits. As mentioned in Chapter 1, the number of frequency tones in the

Harmonic Balance equations becomes extremely large due to the mixing of the two RF tones in
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addition to the LO tone. In addition, for complete switching in mixer circuits, the LO power is

typically quite large, thereby causing strong nonlinearities outside the signal path which means a

high order of harmonics have to be accounted for in the steady-state simulations.

In section 2.6, a simulation approach based on computing the moments of the harmonic bal-

ance equations was described for obtaining the third order intercept point of mildly nonlinear

circuits. This method eliminated the complex analytical computations required for Volterra anal-

ysis by numerically computing the Volterra kernels of a circuit with an arbitrary topology. The

approach is, however, limited to weakly nonlinear circuits such as low noise amplifiers. In this

chapter, the method in section 2.6 is extended to address circuits such as mixers which are de-

signed to be highly linear in the signal path, but contain highly nonlinear internal switching

due to the large signal local oscillator input (i.e. weakly nonlinear periodically time varying

circuits) [19], [20]. Using such an approach, the circuit moments expansion around the local os-

cillator power is used to compute the value of IP3. This approach does not require any analytical

manipulation but is rather applied directly to the general MNA Harmonic Balance formulation of

the circuit. It can therefore be fully automated in a general simulator environment and applied

to circuits of arbitrary topology and complexity. It is important to note that the value of IP3

is in fact obtained from the general Harmonic Balance equations without the need to compute

the steady-state harmonic balance solution, which requires a large computational cost due to the

dense nature of the Jacobian and the number of Newton iterations required. Furthermore, the

computation of all the moments only requires one LU decomposition of a moments computation

matrix that has the same structure as a Jacobian matrix, except it is very sparse unlike the typical

Harmonic Balance Jacobian which is usually both large and dense. In addition, the computa-

tion is done numerically around a given LO input power (operating point) and with the input

frequencies and the local oscillator power known, and thus produces very accurate results.

The general steps of the moments based approach for computing the IP3 of mixer circuits are

as follows. First the moments of the harmonic balance equations with respect to the input radio

frequency power are computed. Second, the values of the relevant distortion analysis terms are

extracted from the appropriate locations in the moment vectors. Finally, the third order intercept

point is obtained from the computed terms. This chapter is organized into seven sections. After

the introduction, section 4.2 formulates the computation of IP3 in mixer circuits using series

expansion. This is followed by section 4.3 which presents the moments computation algorithm

for mixer circuits including the sparsity pattern analysis of the moments computation matrix. The

main method is then presented in sections 4.4 and 4.5. A numerical example is shown in section
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4.6 in order to illustrate the speedup and accuracy of the new method, followed by the conclusion

in section 4.7.

4.2 Obtaining the IP3 From Series Expansion

Consider the following power series expansion of the input-output relationship of a memoryless

nonlinear system

x = k0 + k1vin + k2v
2
in + k3v

3
in + · · · =

∑

n

knv
n (4.1)

Now consider an input voltage signal consisting of two sinusoidal RF input tones given by v =

VRF (cos(ω1t)+cos(ω2t))+VLO cos(ω0t), with ω1 and ω2 being two input radio frequency signals

and ω0 being the local oscillator frequency. Substituting this term into (4.1) and expanding using

trigonometric identities results in the frequency components shown in Table 4.1.

Table 4.1 Summary of distortion components in mixer circuits

Frequency Component Amplitude

DC k0 + k2V
2
RF

ω0 ± ω1 k2VRF VLO + k4VRF VLO(3
2
V 2

LO + 9
2
V 2

RF )

ω0 ± ω2 k2VRF VLO + k4VRF VLO(3
2
V 2

LO + 9
2
V 2

RF )

ω0 ± 2ω1
3
4
k3V

2
RF VLO

ω0 ± 2ω2
3
4
k3V

2
RF VLO

ω0 ± (ω1 ± ω2)
3
2
k3V

2
RF VLO

ω0 ± (ω2 ± ω1)
3
2
k3V

2
RF VLO

ω0 ± 3ω1
1
2
k4V

3
RF VLO

ω0 ± 3ω2
1
2
k4V

3
RF VLO

ω0 ± (2ω1 ± ω2)
3
2
k4V

3
RF VLO

ω0 ± (2ω2 ± ω1)
3
2
k4V

3
RF VLO

The 3rd order intercept point is theoretically where the amplitude of the fundamental tone is

the same as that of the intermodulation tones at either ω0 ± (2ω1 − ω2) or ω0 ± (2ω2 − ω1) [87].

To determine the value of the input third order intercept point voltage, the linear part of the
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fundamental component is equated to that at one of the third order intermodulation tones. Solving

for VRF = VIP3 is done by evaluating

(

k2VLO +
3

2
k4V

3
LO + . . .

)

VIP3 =

(
3

2
k4VLO + . . .

)

V 3
IP3 (4.2)

which then simplifies to

VIP3 =

√(
k2VLO + 3

2
k4V 3

LO + . . .
)

(
3
2
k4VLO + . . .

) (4.3)

The relation given by (4.3) is used to determine the value of the input third order intercept point

voltage. For systems that contain memory elements such as inductors and capacitors, the input

output relationship given by (4.1) becomes a function of the Volterra kernels, where the nth order

kernel is given by Hn(jω1, . . . , jωn). In this case the value of the input third order intercept point

voltage becomes

VIP3 =

√
√
√
√ |VLOH2(jω0, jω1) +

3V 3
LO

2
H4(jω0, jω0,−jω0, jω1) + . . . |

|3VLO

2
H4(jω0, jω1, jω1,−jω2) + . . . |

(4.4)

To determine the output third order intercept point voltage, this quantity is multiplied by the

voltage gain of the system. The fundamental difference between computing IP3 in mixers and

in amplifier circuits using circuit expansion is that the mixer relations are a function of the LO

power. It is important to observe that in order to determine the value of IP3 accurately using the

above formulations, several terms of the summations need to be accounted for since the value

of the LO power is typically quite large. In the new moments based approach, the moments

expansion is performed around the LO power which makes the computation of IP3 very accurate.

4.3 Definition and Calculation of the Moments For Mixers

The computation cost of the overall algorithm is essentially the CPU cost of computing the Har-

monic Balance moments from the general Harmonic Balance equations. Once the moments are

determined, the distortion analysis parameters can be obtained. In this section, the definition

of the system moments and the method used to compute them efficiently for mixer circuits is

presented [67].
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4.3.1 System Formulation

The system moments are essentially the derivatives of the unknown Harmonic Balance solu-

tion vector X defined in (3.9) with respect to the input radio frequency voltage amplitude [18]

evaluated with the amplitude set to zero. To develop the algorithm for calculating the moments

efficiently, it is useful to express the Harmonic Balance equations defined in (3.9) in the following

format

ḠX + C̄X + F (X) −BDC − βBLO − αBRF = 0 (4.5)

where

• α is the amplitude of the input RF signals.

• β is the power of the local oscillator tone.

• BRF is a vector with the only non-zero entries being entries of value ‘1’ at the input radio

frequencies of interest.

• BLO is a vector containing the contributions of the Local Oscillator input.

• BDC contains the values of the DC independent sources.

• Ḡ, C̄, F (X) andX remain as defined in section 3.3.

The system momentsM 0 . . .M q are defined as the coefficients of the Taylor series expansion of

the Harmonic Balance solution vectorX as a function of α in

X = M 0 +M 1α +M 2α
2 +M 3α

3 + · · · =

q∑

k=0

M kα
k (4.6)

whereM k is the kth moment vector of the system.

4.3.2 Moments Computation Algorithm

The derivation of the moments computation algorithm begins by substituting (4.6) into (4.5),

which results in the following expression:

Ḡ

q
∑

k=0

M kα
k + C̄

q
∑

k=0

M kα
k +

q
∑

k=0

Dkα
k −BDC − βBLO − αBRF = 0 (4.7)
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The termsDk are the Taylor expansion coefficients of F (X) with respect to α given by

F (X) =

q
∑

k=0

Dkα
k (4.8)

To solve for the zeroth momentM 0, the value of α in (4.7) is set to zero. Setting α = 0 gives:

ḠM 0 + C̄M 0 + F (M 0) = BDC + βBLO (4.9)

Note that equation (4.9) is a Harmonic Balance equation with only one input tone at the local

oscillator frequency and can thus be solved very efficiently. To solve for the remaining moments

(Mn; n ≥ 1), like powers of α are equated on both sides of (4.7). Equating the first power of α

results in

ḠM 1 + C̄M 1 +D1 = BRF (4.10)

It is useful to apply the chain rule to rewrite D1 = ∂F
∂α

|α=0 as D1 = ∂F
∂X

· ∂X
∂α

|α=0 = T 0M 1.

Substituting this expression into (4.10) then yields

(Ḡ+ C̄ + T 0)
︸ ︷︷ ︸

Φ

M 1 = BRF (4.11)

The first moment can now be obtained using one LU Decomposition to solve (4.11). It is impor-

tant to note that the matrix Φ = (Ḡ + C̄ + T 0) is simply the sparse Jacobian matrix which is

already computed when obtaining the initial solution. To obtain the remaining moments, the nth

power of α on both sides of (4.7) is equated to obtain:

ḠMn + C̄Mn +Dn = 0 n > 1 (4.12)

To solve the system given in (4.12) efficiently for each value of n, Dn needs to be expressed using

a different notation. Applying the chain rule means that Dn can be expressed as

∂F

∂α
=

∂F

∂X
· ∂X

∂α
= T

∂X

∂α
(4.13)
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where T n are the moments of the nonlinear Jacobian matrix and represent the coefficients of the

Taylor series expansion of
∂F (X)

∂X
as given by

T (α) =
∂F (X)

∂X
=
∑

k=0

T kα
k (4.14)

Substituting (4.6), (4.8) and (4.14) into (4.13) then gives

q
∑

i=1

iDiα
i−1 =

q
∑

i=0

T iα
i

q
∑

i=1

iM iα
i−1 (4.15)

Taking the nth derivative of (4.15) and setting α to zero means that Dn can be expressed as

Dn = T 0Mn +
1

n

n−1∑

j=1

(n − j)T jMn−j (4.16)

Finally by substituting (4.16) into (4.12) and rearranging yields

(Ḡ+ C̄ + T 0)
︸ ︷︷ ︸

Φ

Mn = −1

n

n−1∑

j=1

(n − j)T jMn−j (4.17)

This recursive relationship is used to calculate the remaining moment vectors. The right-hand

side of equation (4.17) is calculated using the values of the previous moments (Mn−j) that have

already been obtained, in addition to the values of T j which are the moments of the nonlinear

Jacobian evaluated with only the DC and LO tones. All that remains is to show how to compute

T j . Since F (X) andX are vectors, the term T (α) in (4.14) will be a matrix of the form

T (α) =
∂F (X)

∂X
=







∂F1

∂X1
· · · ∂F1

∂Xn

...
. . .

...
∂Fn

∂X1
· · · ∂Fn

∂Xn







(4.18)

where each
∂Fj

∂Xi
term is a block matrix in itself. To simplify the presentation of calculating these

terms, only one of the terms in the T (α) matrix shown in (4.18), ∂F1

∂X1
, will be considered. Let
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∂F1

∂X1
be the matrix T 11, then its Taylor series expansion with respect to α is given by

∂F1

∂X1
= T 11 = P =

∑

j=0

P jα
j (4.19)

where the Taylor coefficient P j is entered in T j at the location corresponding to ∂F1

∂X1
. The P j

matrices are computed using

P j = Γ−1







∂f1(x1(t1))
∂x1 j

0

. . .

0 ∂f1(x1(ts))
∂x1 j







Γ (4.20)

where t1 to ts are time sample points that are equally spaced over the fundamental period (note

that frequency mapping and truncation methods [5] are used in order to handle quasi-periodic

inputs efficiently using the Fast Fourier Transform as described in section 3.7), and Γ is the In-

verse Direct Fourier Transform matrix shown in (3.25). Note that the matrix vector multiplication

with Γ can be done efficiently by taking advantage of the Fast Fourier Transform algorithm. The

moments of the derivatives of the nonlinear functions with respect to each variable in the solution

vector are also determined using an efficient algorithm that is very similar to that of the regular

harmonic balance moments. The analytical expressions are derived once for each device model

and then evaluated in the simulator for each moment. A list of common nonlinearities and their

derivatives can be found in [18], [67].

It is to be noted that the moments computation matrix is the same for all moments as can be

seen from (4.11) and (4.17). Furthermore, this matrix is very sparse since it is evaluated with

only the LO tones present. A detailed analysis of the sparsity of this matrix is presented in the

next section.

4.3.3 Sparsity of the Moments Computation Matrix

One of the key advantages of the new method is that the moments computation matrix Φ in equa-

tions (4.11) and (4.17) is very sparse compared to the typical Harmonic Balance Jacobian, as will

be illustrated in the examples. In this section, the sparsity pattern for the moment computation

matrix Φ of mixer circuits is presented. The definition of the matrix Φ in equation (4.11) which
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has the same structure as a Harmonic Balance Jacobian is given by

Φ = Ḡ+ C̄ +
∂F (X)

∂X

∣
∣
∣
∣
α=0

(4.21)

Note that the matrices Ḡ and C̄ are sparse, and the Jacobian of the nonlinear vector F (X) is

given by

∂F (X)

∂X
=







∂F1

∂X1
· · · ∂F1

∂Xn

...
. . .

...
∂Fn

∂X1
· · · ∂Fn

∂Xn







(4.22)

In a standard Harmonic Balance Jacobian, each φji =
∂Fj

∂Xi
term is, when present, a full block

matrix [17] which is computed from the relation

φji = Γ−1ψjiΓ (4.23)

where Γ is the Direct Fourier Transform matrix [70] and

ψji =








∂fj(xi(t))

∂xi

∣
∣
∣
(t=t0)

0

. . .

0
∂fj(xi(t))

∂xi

∣
∣
∣
(t=tNh−1)








(4.24)

The dense blocks ψji are the main reasons why a Harmonic Balance Jacobian matrix is dense.

Note however, that for the case of the moment computation matrix Φ, the term ∂F
∂X

is evaluated

with the RF input set to zero. This makes the matrix φji very sparse as will be shown next.

In order to analyze the sparsity of the matrix φji, we must first look at the structure of the

Direct Fourier Transform (DFT) matrix Γ used in (4.23) and given by

Γ =









1 cos(ωt0) sin(ωt0) · · · cos(Hωt0) sin(Hωt0)

1 cos(ωt1) sin(ωt1) · · · cos(Hωt1) sin(Hωt1)
...

...
...

. . .
...

...

1 cos(ωtNh−1
) sin(ωtNh−1

) · · · cos(HωtNh−1
) sin(HωtNh−1

)









(4.25)

= [λ0,λ1, . . . ,λi] (4.26)

From equation (4.25) we note that each column λi of Γ is a sampled time function of a time
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domain waveform which contains only one spectral component. Next, consider the diagonal

entries of the matrix ψji. These are essentially a sampled time version of the function
∂fj

∂xi
. For

the case of the moment computation matrix, the spectral components present in this function are

only DC and the harmonics of the local oscillator frequency.

If the matrix resulting from the product ofψjiΓ in (4.23) is now considered, and the subscript

is dropped for simplicity of notation, the product can be expressed as:

ψΓ = [ψλ0,ψλ1, . . . ,ψλi] (4.27)

= [C0,C1, . . . ,Ci] (4.28)

Note that in this case, the columnsCi = ψλi are sampled time functions whose spectral compo-

nents are those of the local oscillator frequency mixed with the one frequency corresponding to

the column λi. Finally if the matrix φji is re-written as

φ = Γ−1 [ψΓ] = Γ−1 [C0,C1, . . . ,Ci] (4.29)

it can be seen that the columns ofφ contain the spectral components ofC0 toCi respectively, and

given the sparsity of those spectral components discussed earlier, the matrixφwill be very sparse.

Finally, it is important to note that since the frequencies being used are non-commensurate, in

order to benefit from the use of the DFT operation the frequency mapping technique, and more

specifically the three tone truncation algorithm in section 3.7.3, is used. As an example, the

sparsity pattern for one frequency tone f1 and one LO tone f0 with the harmonic limit set at 2 in

the three tone truncation algorithm is that shown in Fig. 4.1 where an X shows the location of a

non-zero entry.

4.4 Derivation of the Link Between the Moments and the IP3 Terms

Linear circuits produce output frequencies that are the same as the input frequencies, which im-

plies that no mixing can occur in purely linear circuits. Mixers are therefore inherently nonlinear

devices with both desired and undesired nonlinearities. Intermodulation distortion analysis mea-

sures the amount of undesired nonlinear distortion at the translated IM3 frequency relative to

the desired nonlinearity at the translated fundamental frequency. Therefore, measuring the third

order intercept point in mixer circuits is performed in a similar manner to amplifier circuits ex-



4 Moments Based Computation of Intermodulation Distortion of Mixer Circuits 66

DC f1 2f1 f0 2f1 f0 f1 f0 f0+f1 f0+2f1 2f0 2f1 2f0 f1 2f0

DC X X X

f1 X X X X

2f1 X X X X

f0 f1 X X X X

f0 2f1 X X X X

f0 X X X

f0+f1 X X X

f0+2f1 X X X

2f0 2f1 X X X

2f0 f1 X X X

2f0 X X X

Fig. 4.1 Sparsity pattern of a single block in the moments computation matrix of

mixer circuits

cept that now there is a frequency translation [6]. This means that the desired ‘linear’ signal is

essentially the result of a second order response (linear response mixed with the LO), and the

‘third order’ intermodulation signal is essentially the result of a fourth order response (third order

nonlinearity mixed with the LO). In this section, the derivation of the link between the moment

vectors and the higher order terms required for computing IP3 is presented. In order to simplify

the presentation, the case of memoryless systems is considered first, followed by the derivation

for general circuits that contain memory elements.

4.4.1 Memoryless Systems

In the case of memoryless systems, the output x can be written as a power series expansion of

the input v as given by

x = k0 + k1v + k2v
2 + k3v

3 + k4v
4 + . . . (4.30)

In mixers, the input signal is defined as

v = α(cos(ω1t) + cos(ω2t)) + β cos(ω0t), (4.31)
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where

• ω1 and ω2 are the two input radio frequencies.

• ω0 is the local oscillator frequency.

• α is the amplitude of the RF signal.

• β is the amplitude of the LO voltage.

Substituting this expression into (4.30), expanding using trigonometric identities and grouping

terms with equal powers of α together results in

x =
[
k0 +

(
k2 + 3k4β

2 + . . .
)
α2
]
+

[
(k1β + . . . ) + (3k3β + . . . ) α2

]
cos(ω0t) +

[(
3k4β

2
+ . . .

)

α3

]

cos((ω0 + 2ω1 − ω2)t) +

[(

k2β +
3k4β

3

2
+ . . .

)

α +

(
9k4β

2
+ . . .

)

α3

]

cos((ω0 + ω1)t) +

[(

k2β +
3k4β

3

2
+ . . .

)

α +

(
9k4β

2
+ . . .

)

α3

]

cos((ω0 + ω2)t) +

[(
3k4β

2
+ . . .

)

α3

]

cos((ω0 + 2ω2 − ω1)t) +

[(
3k3β

4
+ . . .

)

α2

]

cos((ω0 + 2ω2)t) + . . . (4.32)

Due to the large number of harmonics present at the output, only the components at the fre-

quencies of interest for the calculation of the third order intercept point are shown in (4.32). By

comparing (4.32) with the general equation for the moments defined in (4.6), the location of the

kn terms in the system moment vectors M k is determined. This is more clearly seen when the
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moments are represented in vector form by

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

...

ω0 − (2ω1 ± ω2)

ω0 − ω1

ω0 − ω2

ω0 − (2ω2 ± ω1)

ω0 − ω1 + ω2

ω0

ω0 + ω1 + ω2

ω0 + (2ω1 ± ω2)

ω0 + ω1

ω0 + ω2

ω0 + (2ω2 ± ω1)
...

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

Frequency

...

→
→
→
→
→
→
→
→
→
→
→
...
































...

0

0

0

0

0

k1β + k3
3
4
β3 + . . .

0

0

0

0

0
...
































︸ ︷︷ ︸

M 0
































...

0

k2β + 3

2
k4β

3 + . . .

k2β + 3

2
k4β

3 + . . .

0

0

0

0

0

k2β + 3

2
k4β

3 + . . .

k2β + 3

2
k4β

3 + . . .

0
...
































︸ ︷︷ ︸

M 1
































...

0

0

0

0
3
2
k3β + . . .

3k3β + . . .
3
2
k3β + . . .

0

0

0

0
...
































︸ ︷︷ ︸

M 2
































...
3

2
k4β + . . .

9
2
k4β + . . .

9
2
k4β + . . .

3

2
k4β + . . .

0

0

0
3

2
k4β + . . .

9
2
k4β + . . .

9
2
k4β + . . .

3

2
k4β + . . .

...
































︸ ︷︷ ︸

M 3

(4.33)

The relation in (4.33) shows the contents of the first four moments vectors with the entries of

interest for the computation of IP3 shown in bold at the fundamental frequencies of (ω0 ± ω1,2)

and third order intermodulation frequencies of (ω0 ± (2ω1,2 − ω2,1)).

4.4.2 Systems With Memory Elements

For the more general case of mixer circuits that contain memory elements, the circuit expansion

is represented by a Volterra series with terms up to the 4th order Volterra operator included in the

derivation. The Volterra series representation of a nonlinear system with memory is given by

x(t) = H1 [v(t)] + H2 [v(t)] + H3 [v(t)] + H4 [v(t)] + . . . (4.34)
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To determine the location of the Volterra terms in the moment vectors, the three frequency input

function defined in (4.31) is re-written as

v(t) = β cos(ω0t) + α(cos(ω1t) + cos(ω2t)) (4.35)

=
β

2
ejω0t +

β

2
e−jω0t +

α

2
ejω1t +

α

2
e−jω1t +

α

2
ejω2t +

α

2
e−jω2t (4.36)

= va(t) + vb(t) + vc(t) + vd(t) + ve(t) + vf (t) (4.37)

This function is then substituted into (4.34). The resulting expressions for each Volterra operator

are too large to be stated in their entirety. Instead, only the expressions at the frequencies of

interest are shown. At the fundamental intermediate frequency of an up-conversion mixer at

ω0 + ω1, a combination of second order, fourth order and higher even order terms appear. The

second order response at this specific frequency can be represented as

H2 [v(t)]ω0+ω1
= H2{va, vc} + H2{vc, va} + H2{vb, vd} + H2{vd, vb} (4.38)

The first term of (4.38) is now written in terms of the second-order Volterra kernel using the

two-dimensional convolution [3]

H2{va, vc} =

∫
∞

−∞

∫
∞

−∞

h2(τ1, τ2)va(t − τ1)vb(t − τ2)dτ1dτ2 (4.39)

=
αβ

4

∫
∞

−∞

∫
∞

−∞

h2(τ1, τ2)e
jω0(t−τ1)ejω1(t−τ2)dτ1dτ2 (4.40)

=
αβ

4
ejω0tejω1t

∫
∞

−∞

∫
∞

−∞

h2(τ1, τ2)e
−jω0τ1e−jω1τ2dτ1dτ2 (4.41)

=
αβ

4
H2(jω0, jω1)e

j(ω0+ω1)t (4.42)

In a similar fashion, the remaining terms in (4.38) can also be expressed in terms of the second

order kernel and are given by

H2{vc, va} =
αβ

4
H2(jω1, jω0)e

j(ω1+ω0)t (4.43)

H2{vb, vd} =
αβ

4
H2(−jω0,−jω1)e

−j(ω0+ω1)t (4.44)

H2{vd, vb} =
αβ

4
H2(−jω1,−jω0)e

−j(ω1+ω0)t (4.45)
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If the second order kernel h2 is assumed to be symmetric, then its Fourier transform can also be

considered symmetric such that

H2(jω0, jω1) = H2(jω1, jω0) (4.46)

Then (4.38) can be re-written as

H2 [v(t)]ω0+ω1
= 2

(
αβ

4

)

H2(jω0, jω1)e
j(ω0+ω1)t + 2

(
αβ

4

)

H2(−jω0,−jω1)e
−j(ω0+ω1)t

(4.47)

The two terms in (4.47) are complex conjugates of each other since it easy to prove that

H2(−jω0,−jω1) = H∗

2 (jω0, jω1) (4.48)

This reduces the final result to the expression

H2 [v(t)]ω0+ω1
= αβRe

(
H2(jω0, jω1)e

j(ω0+ω1)t
)

(4.49)

The fourth order responses at ω0 + ω1 are due to the combination of frequencies at ω0 + ω0 −
ω0 + ω1, at ω0 + ω1 + ω1 − ω1 and at ω0 + ω1 + ω2 − ω2. Assuming the fourth order kernels to

be symmetric, a similar analysis to that of the second order response is considered which gives

H4 [v(t)]ω0+ω1
= 12H4{va, va, vb, vc} + 12H4{vb, vb, va, vd}

+12H4{va, vc, vc, vd} + 12H4{vb, vd, vd, vc}
+24H4{va, vc, ve, vf} + 24H4{vb, vd, vf , ve} (4.50)

When the above expressions are expressed using Volterra kernels they would simply to

H4 [v(t)]ω0+ω1
=

3

2
αβ3Re

(
H4(jω0, jω0,−jω0, jω1)e

j(ω0+ω1)t
)

+
3

2
α3βRe

(
H4(jω0, jω1, jω1,−jω1)e

j(ω0+ω1)t
)

+
6

2
α3βRe

(
H4(jω0, jω1, jω2,−jω2)e

j(ω0+ω1)t
)

(4.51)

At the translated 3rd order intermodulation frequency of ω0 + 2ω1 − ω2, only fourth order terms

appear in addition to higher even-order terms. At this frequency, the fourth order Volterra operator
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can be written as

H4 [v(t)]ω0+2ω1−ω2
= 12H4{va, vc, vc, vf} + 12H4{vb, vd, vd, ve} (4.52)

By following a similar analysis to that performed at the fundamental frequency, the above ex-

pression would simplify to

H4 [v(t)]ω0+2ω1−ω2
=

3

2
αβ3Re

(
H4(jω0, jω1, jω1,−jω2)e

j(ω0+2ω1−2ω2)t
)

(4.53)

By substituting (4.49), (4.51), (4.53) and expressions at other frequencies into (4.34) then rear-

ranging by grouping like powers of α, the following input output relation is obtained

X = Re

[(

βH2(jω0, jω1) +
3β3

2
H4(jω0, jω0,−jω0, jω1) + . . .

)

αej(ω0+ω1)t

]

+

Re

[(

βH2(jω0, jω2) +
3β3

2
H4(jω0, jω0,−jω0, jω2) + . . .

)

αej(ω0+ω2)t

]

+

Re

[(
3β

2
H4(jω0, jω1, jω1, jω2) + . . .

)

α3ej(ω0+2ω1+ω2)t

]

+

Re

[(
3β

2
H4(jω0, jω1, jω1,−jω2) + . . .

)

α3ej(ω0+2ω1−ω2)t

]

+

Re

[(
3β

2
H4(jω0, jω1, jω2, jω2) + . . .

)

α3ej(ω0+2ω2+ω1)t

]

+

Re

[(
3β

2
H4(jω0,−jω1, jω2, jω2) + . . .

)

α3ej(ω0+2ω2−ω1)t

]

+ . . . (4.54)
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This expression can be re-written in terms of magnitudes and angles which results in the following

notation that is easier to follow

X =

[∣
∣
∣
∣
βH2(jω0, jω1) +

3β3

2
H4(jω0, jω0,−jω0, jω1) + . . .

∣
∣
∣
∣
α

]

cos((ω0 + ω1)t + Θ1) +

[∣
∣
∣
∣
βH2(jω0, jω2) +

3β3

2
H4(jω0, jω0,−jω0, jω2) + . . .

∣
∣
∣
∣
α

]

cos((ω0 + ω2)t + Θ2) +

[∣
∣
∣
∣

3β

2
H4(jω0, jω1, jω1, jω2) + . . .

∣
∣
∣
∣
α3

]

cos((ω0 + 2ω1 + ω2)t + Θ3) +

[∣
∣
∣
∣

3β

2
H4(jω0, jω1, jω1,−jω2) + . . .

∣
∣
∣
∣
α3

]

cos((ω0 + 2ω1 − ω2)t + Θ4) +

[∣
∣
∣
∣

3β

2
H4(jω0, jω1, jω2, jω2) + . . .

∣
∣
∣
∣
α3

]

cos((ω0 + 2ω2 + ω1)t + Θ5) +

[∣
∣
∣
∣

3β

2
H4(jω0,−jω1, jω2, jω2) + . . .

∣
∣
∣
∣
α3

]

cos((ω0 + 2ω2 − ω1)t + Θ6) + . . . (4.55)

It can be seen that the Volterra series expression in (4.55) is similar to the expression shown

in (4.32), which means that the contents of the first moment vector, M 1, at the fundamental

frequencies are
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Similarly, the third moment vectorM 3 contains the distortion terms given by
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It is important to observe that the terms required for computing IP3 are a function of the LO

power β, which means that for large LO powers, several higher order terms need to be accounted

for. The moment vectors contain the values equivalent to that of the whole summations, rather

than individual distortion components, which means that this method does not suffer from ill-

conditioning and problems with convergence.

4.5 Computation of the IP3 From the Moments

To determine the value of the input third order intercept point, we use the relation developed in

section 4.4. The relations shown in (4.3) and (4.4) can be generalized to obtain the following

expression for the input third order intercept point referred to below as IIP3

IIP3 =

√
m1,1

m3,3
(4.58)

The terms m1,1 and m3,3 represent the entries in the first moment vector at the fundamental fre-

quency, and in the third moment vector at the third order intermodulation frequency, respectively.
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For memoryless systems, these terms correspond to

m1,1 = k2β +
3β3

2
k4 + . . . (4.59)

m3,3 =
3β

2
k4 + . . . (4.60)

In the presence of memory elements such as capacitors and inductors, the entries in the moment

vectors are equivalent to the Volterra kernels, which means that

m1,1 = |βH2(jω0, jω1) +
3β3

2
H4(jω0, jω0,−jω0, jω1) + . . . | (4.61)

m3,3 = |3β
2

H4(jω0, jω1, jω1,−jω2) + . . . | (4.62)

A summary of the main steps of the algorithm can be found in Fig. 4.2. It is important to

notice that the relation for the moments based computation of IP3 in amplifier circuits presented

in section 2.6 is actually very similar to the one given by (4.58), with only the contents of the

moments at the terms m1,1 and m3,3 differing between the two approaches. This means that

the relation in (4.58) can now be used as part of a unified framework for the moments based

computation of IP3 in general RF circuits. It is to be noted that the computation cost required for

obtaining IP3 using this algorithm is only one LU decomposition of the moments computation

matrix. Furthermore, this matrix is evaluated at either the DC operating point, or with only the

local oscillator tones present for the case of mixers, and it is therefore very sparse unlike a typical

HB Jacobian matrix. In contrast, the brute force steady-state simulation based approach requires

the solution of a system of equations with a dense Jacobian at each Newton iteration, which

requires a high computational cost.

It is important to note that, although the derivation of the algorithm for computing the mo-

ments is quite involved, its application is systematic and can be easily automated. Furthermore,

all the moments are solutions of systems of linear equations where the left hand side matrix

remains the same, and is very sparse as compared to the Harmonic Balance Jacobian which is

both large and dense. In addition, although the proofs showing the link between the circuit mo-

ments and Volterra kernels require complex analytical manipulations, these proofs are only done

once for the general harmonic balance equations, and the results presented here are thus general.

From an implementation perspective, the portion of the new algorithm linking the moments to

the distortion terms is trivial and requires a negligible computational expense as the value of the
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third order intercept point is computed from the system moments which only require one LU

decomposition of a sparse matrix.

1. Set up the system equations in the frequency domain according to the formulation

shown in (4.5)

2. Calculate the zeroth momentM0 as defined in (4.6) by finding the solution of the

sparse system shown in (4.9)

3. Calculate the first momentM1 by solving the formulation in (4.11)

4. Calculate the remaining moments (Mn; n > 1) by solving (4.17) recursively

5. Obtain the Volterra kernels from the entries in the moment vectors at the

fundamental frequencies (ω0 + ω1,2) and at the third order intermodulation

frequencies (ω0 + 2ω1,2 − ω2,1) as outlined in (4.33)

6. Determine the distortion by calculating the third order intercept point according to

(4.58)

Fig. 4.2 Summary of the moments based algorithm for computing IP3 in mixer

circuits.

4.6 Numerical Example

In this section, the numerical results of IP3 simulations performed on an example circuit are

shown in detail in order to illustrate the accuracy and speedup of the new method. The value of

the third order intercept point obtained using the moments technique, which does not require a

harmonic balance solution, is compared with that obtained using the brute force method which

is based on multi-tone harmonic balance simulation. The new method was also tested on several

other circuit topologies, the numerical results of which are shown at the end of Chapter 6.

4.6.1 Detailed Analysis of a Doubly Balanced Mixer Circuit

The example considered for a detailed analysis is an active doubly-balanced (Gilbert Cell) up-

conversion Mixer with a local oscillator frequency of 1 GHz and input and output matching

networks as shown in Fig. 4.3 [20]. The power of the local oscillator signal is -16 dBm. To

measure the linearity of the circuit, the brute force method was first used by applying two -53.5
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Fig. 4.3 Active doubly-balanced mixer (Gilbert Cell) circuit diagram.

dBm tones at the RF signal input, with f1 = 99.5 MHz and f2 = 100.5 MHz, and performing

a standard harmonic balance analysis. The results are shown in Fig. 4.4 and Fig. 4.5. The

calculated input third order intercept point in this case was 13.774 dBm and the output third

order intercept point was found to be 33.36 dBm.

The distortion was then analyzed using the new approach by computing the moments of the

system and extracting the Volterra summations at the appropriate frequencies. The resulting

values of the input third order intercept point and the output third order intercept point were

found to be 13.772 dBm and 33.36 dBm respectively. As can be seen, the results are consistent

with the brute force approach based on Harmonic Balance simulations. The error between the

two methods was less than 0.01%.

In order to illustrate the differences between the HB Jacobian matrix used in the brute-force

approach and the moments computation matrix used in the new method, Figs. 4.6 and 4.7 show

the sparsity pattern of the HB Jacobian while Figs. 4.8 and 4.9 show the sparsity pattern of the

moments matrix. Since the two matrices are significant in size, to clearly illustrate the difference

in block sparsity between the two, the diagram in Fig. 4.7 shows the sparsity pattern of a section

of the Harmonic Balance Jacobian, while Fig. 4.9 shows the sparsity pattern of the same cor-

responding section of the moments matrix, which contains only the DC and the local oscillator
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Fig. 4.6 Sparsity pattern of the Harmonic Balance Jacobian for the doubly balanced

mixer circuit example.

Fig. 4.7 Sparsity pattern of the dense blocks of the Harmonic Balance Jacobian

matrix.
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tones.

4.6.2 Computation Cost Comparison

The data in Table 4.2 shows a comparison of the computation times and the speed-up between the

new moments method and the Harmonic Balance solution obtained using a prototype MATLAB

simulator. The hardware platform on which the simulations were run was a single-core Intel

Xeon machine with a clock speed of 3.6 GHz and 4GB of RAM. The speed-up over a Harmonic

Balance simulation was 39.7 times for this particular circuit when run with 4 harmonics. This

speed-up is due to three main reasons. First of all, the moments used in the new method are

found by solving a linear equation without the need for any Newton Iteration. The second reason

is that the left-hand-side matrix in (4.17) for finding the moments is the same for all moments,

while the Harmonic Balance Jacobian is different at each Newton Iteration. Finally the Harmonic

Balance Jacobian is significantly more dense than the Jacobian used for solving for the moments

as was shown earlier. For this specific example, the 11, 174×11, 174 Harmonic Balance Jacobian

contains 1, 378, 486 non-zero elements as shown in Fig. 4.6, while the 11, 174×11, 174 matrix for

finding the moments contains only 122, 927 non-zeros as shown in Fig. 4.8. It is also important to

note that the greater the number of non-linear elements present in the system, the more significant

the speed-up will become between the two approaches.

4.7 Conclusion

In this chapter, a new simulation method for measuring distortion at the output of a non-linear

system based on the calculation of the system moments was presented. It was demonstrated that

by using this new simulation based approach to compute the third order intercept point from

the moments, it becomes significantly more efficient to analyze distortion in RF mixer circuits

while remaining as accurate as Harmonic Balance methods. It was also shown that the method is

general and applicable in a fully automated simulator on arbitrary circuit topologies and nonlin-

earities.
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Fig. 4.8 Sparsity pattern of the moments computation matrix Φ for the doubly bal-

anced mixer circuit example.

Fig. 4.9 Sparsity pattern of the sparse blocks of the moments computation matrix.
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Table 4.2 Comparison of computation times between the moments method and the

Harmonic Balance solution
Harmonic Balance Moments Method Speed-up

CPU time (s) CPU time (s)

IP3 Computation 154.02 3.88 39.7 times
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Chapter 5

Computation of IP3 Using Single-Tone

Moments Analysis

5.1 Introduction

Nonlinear distortion is due to the inherent nonlinearity of circuit components and results in the

harmonics of input tones, as well as the intermodulation products, being present at the output.

Radio Frequency circuits are typically designed to be as linear as possible in order to reduce such

nonlinear distortion. Of particular interest are third order intermodulation products because they

mix back into the frequency band of operation and result in many undesirable effects such as

gain compression and adjacent channel interference [1]. The third order nonlinearity is a result

of, and is proportional to, the third order term in the Taylor expansion of memoryless nonlinear

systems, or to the third order Volterra kernel of a nonlinear circuit with memory [3], [16]. The

most common metric for characterizing and quantifying the third order nonlinearity is the third

order intercept point (IP3) [6]. In a typical measurement setup, IP3 is obtained by applying a

2-tone input and measuring the third order intermodulation product which mixes back into the

passband of the circuit. Note that applying a single-tone input and attempting to characterize the

third order nonlinearity by measuring the third harmonic is not a suitable approach because the

third harmonic typically falls outside the passband of the circuit. This has lead to the popularity

of IP3 which is based on the measurement of the third order intermodulation product of a two-

tone input as a figure of merit for linearity. It is important to note, however, that the fundamental

quantity behind IP3 is the third order Taylor coefficient or the third order Volterra kernel.
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In a simulation environment, the most common approach for determining IP3 is to mimic

a laboratory measurement by applying a two-tone input and performing a steady-state analysis

using techniques such as the Harmonic Balance method. This approach is general and gives very

accurate results; however, the Harmonic Balance simulation requires a large CPU cost because

of the large number of variables present due to the two-tone input. This is particularly the case

for mixer circuits which would, in this instance, have a three-tone input (the local oscillator tone

in addition to the two RF tones). The moments based approach described in Chapter 4 does not

attempt to mimic laboratory measurements by applying a two-tone input and performing a steady-

state analysis. Instead, the linearity figures of merit are computed directly from the Harmonic

Balance equations. In this case, the nonlinear Harmonic Balance equations do not need to be

solved, and the computational complexity of obtaining IP3 is reduced to the solution of a set of

sparse linear equations. Furthermore, given that this approach is based on the Harmonic Balance

formulation, it is general and can be applied to any arbitrary circuit topology. Note that while the

moments method reduces the computational complexity of computing IP3 to that of solving a set

of very sparse linear equations, the size of this system of equations remains large. This is because

the number of variables is the same as the Harmonic Balance equations which can be very large

for amplifier circuits requiring two input tones, and even much higher for mixer circuits requiring

three-tone inputs.

In this chapter, a new method for the fast estimation of the value of IP3 in nonlinear RF

circuits using only a single-tone RF input is presented [22], [23]. The computation complexity

of this method is that of solving a set of linear equations and does not require the solution of the

nonlinear Harmonic Balance equations. Furthermore the number of variables is the same as a

Harmonic Balance formulation with a single-tone input, thus making the size of the system of

linear equations that need to be solved considerably smaller than the two-tone moments method

while still being very sparse. This results in a considerable reduction in computation cost as

will be seen in the examples. For mixer circuits, the necessary distortion terms are computed

numerically from the moments of the Harmonic Balance equations with only two input tones

(one RF in addition to one local oscillator) instead of the traditional three tones. The new method

presents a fast alternative to the two-tone method presented in Chapter 4 for an estimation of the

value of IP3.

The general idea behind the new method is to numerically compute the value of IP3 directly

from the single-tone Harmonic Balance circuit equations by separating the linear response from

the third order distortion terms at the fundamental frequency. To that end, a mathematical relation
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is derived linking the value of IP3 to the single tone moments of the circuit. The computation of

IP3 is thus reduced to the computation of these single-tone moments. It is important to note that,

while the solution of the Harmonic Balance equations is not needed, the starting point of the new

method is the Harmonic Balance formulation. This makes it general to any circuit topology and

easily automated unlike traditional Volterra series based methods.

This chapter is organized into six sections. Following the introduction, section 5.2 provides

a brief background on the effects of third order nonlinear distortion on system performance and

highlights some of the main differences between different approaches for obtaining the third order

intercept point. The main algorithm is presented in section 5.3 including the single-tone definition

of IP3 and the derivation of the link between the single-tone moments and the value of IP3. The

computational cost analysis of the method is presented in section 5.4. Two numerical examples

are shown in section 5.5 (one amplifier circuit and one mixer circuit) in order to illustrate the

speedup and accuracy of the new method, followed by the conclusion in section 5.6.

5.2 Third Order Nonlinearity and IP3 Definitions

In this section the importance of third order nonlinear distortion and its effects on system perfor-

mance is presented. In addition, the various approaches for computing the third order intercept

point are outlined in order to provide the necessary background for the remainder of this chapter.

Consider a memoryless nonlinear system. Its input-output relationship can be expressed as

follows

X = k0 + k1vin + k2v
2
in + k3v

3
in + · · · =

∑

n

knv
n, (5.1)

where X is the output, vin is the input and kn are the Taylor Series coefficients. For Radio

Frequency circuits, the third order nonlinearity caused by k3 is of particular interest to designers.

For the more general case of nonlinear circuits with memory, the Taylor series in (5.1) is replaced

by a Volterra series. In this case, the third order nonlinearity is represented by the Laplace

transform of the third order Volterra kernel H3(jω1, jω2, jω3) [3]. This third order nonlinearity

causes signal distortion which can be an important bottleneck in the system performance. This

distortion manifests itself in two important ways.

The first is through gain compression where the third order nonlinearity k3 is mixed back

down to the fundamental frequency causing gain compression at high input powers as illustrated

in Fig. 5.1. As can be seen from the summary of frequency components shown in Table 2.1, the
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Fig. 5.1 Definition of the 1-dB compression point

amplitude of the fundamental frequency tone (ω1) consists of the terms (k1V1 + 3
4
k3V

3
1 ), where

k1V1 represents the linear response, and 3
4
k3V

3
1 represents the nonlinear distortion. As can be

seen from Fig. 5.1, the effects of gain compression are more significant at high input powers.

The main figure of merit used to quantify this effect is the “1-dB compression point” (A1dB),

defined as the input signal power at which the gain drops by 1-dB as illustrated in Fig. 5.1.

The second significant effect of the third order nonlinearity is the intermodulation distortion

observed in the presence of multi-tone inputs. When a nonlinear circuit is excited with two input

tones (ω1 and ω2), the third order intermodulation product (IM3) results in tones at (2ω1 − ω2)

and (2ω2 − ω1) which falls within the system bandwidth and interferes with adjacent channels.

As shown in Fig. 5.2, if a weak signal accompanied by two strong interferers experiences third

order nonlinear distortion, then one of the IM3 products will appear within the passband of the

desired channel, thereby corrupting the desired component. The primary figure of merit used to

quantify this type of distortion is the third order intercept point (IP3).

In order to compute the value of IP3, first there is a need to determine the numerical values

of both the k1 and k3 terms from the series expansion in (5.1). Since the two components k1V1

and 3
4
k3V

3
1 are impossible to separate from a single measurement of the output amplitude, the

only way to determine the value of k3 in a single-tone simulation is by measuring the amplitude

of the output spectral component at 3ω1 which corresponds to 1
4
k3V

3
1 . While this measurement

might be accurate for memoryless circuits, unfortunately such a measurement often results in

inaccurate results for quantifying the third order nonlinearity in circuits with memory elements

since measuring 3ω1 typically involves measuring an output outside the pass-band of the system
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Fig. 5.2 Adjacent channel interference due to intermodulation distortion [1]

as illustrated in Fig. 5.3 (a). To tackle this problem, a two-tone input must be applied to the

circuit in order to measure the third order nonlinearity at either 2ω1 − ω2 or 2ω2 − ω1 which

would fall in the pass-band as illustrated in Fig. 5.3 (b). Unfortunately, such a solution would

add significant and unnecessary computation cost overhead.

System Band-Width
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Fig. 5.3 Single-tone vs. two-tone third order nonlinearity and system bandwidth
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5.2.1 Evaluation of IP3 From the 1-dB Compression Point

Both the 1-dB compression point and IP3 are due to the same third order nonlinearity and are

thus related. It is possible to show that the value of IP3 is related to the 1-dB compression point

using the following relation [1],

A1−dB

IIP3
=

√
0.145
√

4/3
≈ −9.6dB (5.2)

It is important to point out however that the 1-dB compression point is determined by the circuit

behavior (measured or simulated) at a relatively high input power and can thus be affected by

nonlinearities that are only activated in the device models at those power levels. The expression

in (5.2) is thus considered only a first order approximation for IP3.

It is possible to determine the value of IP3 using only simulations or measurements with a

single-tone input. This is accomplished by evaluating the 1-dB compression point and then using

the relation in (5.2). However such an approach has several limitations. First of all, it is not

a computationally efficient method. In order to obtain the 1-dB compression point, the input

power of the RF circuit must be swept, and the output power must be computed at each sweep

point using steady-state analysis techniques. In order to obtain accurate results, the number of

sweep points needs to be large. Another limitation of using such an approach is that the gain

compression that occurs at high input powers does not always follow such a typical curve as

that illustrated in Fig. 5.1. Finally, designers usually rely on the 1-dB compression point as a

useful tool for measuring distortion at high input powers, whereas the third order intercept point

is utilized to measure distortion at lower input powers.

5.2.2 Computing IP3 Using Volterra Series

In addition to the simulation based approaches discussed above, it is possible to obtain IP3 by

performing an analysis of the circuit using Volterra series as described in section 2.5 [16]. Con-

sider a nonlinear circuit containing energy storage elements such as capacitors and inductors.

The input-output relation of this circuit can be expressed as [16]

x(t) = H0 + H1[vin(t)] + H2[vin(t)] + H3[vin(t)] + . . . , (5.3)
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where Hn is the nth Volterra operator. For memoryless circuits the expression in (5.3) simplifies

to a Taylor expansion as expressed in (5.1). It is possible to derive analytical expressions relating

IP3 to the expressions in (5.1) and (5.3). These relations are outlined next for both amplifier and

mixer circuits.

Amplifier Circuits

Consider an amplifier with an input given by vin = V1 cos(ω1t) + V2 cos(ω2t). By substituting

this input signal into (5.1) and expanding the terms, the following analytical expression for the

third order intercept point voltage can be derived [6].

VIP3 =

√

4

3

k1

k3
(5.4)

For the general case of circuits with memory, the value of IP3 can also be expressed analyti-

cally in terms of the Volterra kernels. Note that in this case, it is possible to define IP3 in terms

of both the upper side tones and the lower side tones as follows [3],

IIP3L =

√

4

3

|H1(jω1)|
|H3(jω1, jω1,−jω2)|

(5.5)

IIP3U =

√

4

3

|H1(jω2)|
|H3(jω2, jω2,−jω1)|

(5.6)

Both definitions of IP3 in (5.5) and (5.6) are equally valid, and since the two fundamental tones

are typically chosen in the passband and close enough to each other on the frequency spectrum

such that

H1(jω1) ≈ H1(jω2), (5.7)

H3(jω1, jω1,−jω2) ≈ H3(jω2, jω2,−jω1), (5.8)

the value of IP3 found using either (5.5) or (5.6) would be approximately the same. In other

words, the standard definition of IP3 assumes that the approximations in (5.7) and (5.8) are

valid [16].



5 Computation of IP3 Using Single-Tone Moments Analysis 89

Mixer Circuits

Consider a mixer with an input signal vin = V0 cos(ω0t)+V1 cos(ω1t)+V2 cos(ω2t), with ω1 and

ω2 being two input radio frequencies and ω0 being the local oscillator frequency. By substituting

this input signal into (5.3) and expanding the terms, the following expressions for the lower and

upper side IP3 can be derived [19]

IIP3L =

√
√
√
√ |V0H2(jω0, jω1) +

3V 3
0

2
H4(jω0, jω0,−jω0, jω1) + . . . |

|3V0

2
H4(jω0, jω1, jω1,−jω2) + . . . | (5.9)

IIP3U =

√
√
√
√ |V0H2(jω0, jω2) +

3V 3
0

2
H4(jω0, jω0,−jω0, jω2) + . . . |

|3V0

2
H4(jω0, jω2, jω2,−jω1) + . . . | (5.10)

For the case of mixer circuits without memory, these expressions simplify to the following rela-

tion in terms of the power series expansion coefficients given in (5.1)

IIP3 =

√
√
√
√V0k2 +

3V 3
0

2
k4 + . . .

3V0

2
k4 + . . .

(5.11)

Note that both the numerators and the denominators in (5.9) and (5.10) are power series of the

local oscillator power V0. Notice that these power series terms are difficult to converge for large

values of V0, as is often the case in mixer circuits. Similarly to the case of amplifier circuits, the

two fundamental RF tones are typically chosen in the passband and close enough to each other

on the frequency spectrum such that the following approximations can be made [16]

H2(jω0, jω1) ≈ H2(jω0, jω2) (5.12)

H4(jω0, jω1, jω1,−jω2) ≈ H4(jω0, jω2, jω2,−jω1) (5.13)

5.3 Computation of IP3 Using Single-Tone Moments

In Section 5.2.2 the value of IP3 was expressed as a function of the Volterra kernels of the circuit.

However, obtaining IP3 from these relations has not been practical due to two main reasons. First,

it is very difficult to obtain analytical expressions for the Volterra kernels and to automate this
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process for arbitrary circuit topologies. Second, the formula for the IP3 of mixer circuits contains

a power series of the local oscillator power which does not easily converge, therefore limiting

such an approach to weakly nonlinear circuits such as low noise amplifiers. In this section, a new

method is presented where the expressions needed for computing IP3 from the relations given in

(5.4)–(5.5) and (5.9)–(5.11) are numerically evaluated, without the need to explicitly compute the

analytical expressions for the Volterra kernels or the power series terms in (5.1), and with only

a single RF input frequency (ω1) rather than the traditional two input frequencies (ω1 and ω2).

To that end a closed form relation between the moments of the Harmonic Balance equations and

the terms in the single-tone Volterra series relations for obtaining IP3 is derived, which reduces

the problem of finding IP3 to that of computing the circuit moments. Although the expressions

are extracted from the Harmonic Balance moments, there is no need to perform a full Harmonic

Balance simulation. In fact the CPU cost of the moments computation algorithm is reduced to

finding the solution of a set of linear algebraic equations with only one LU-decomposition of a

sparse moments computation matrix that is significantly smaller in size than a Harmonic Balance

Jacobian matrix. This makes this method computationally much cheaper than than traditional

multi-tone simulation methods. Also, since the expressions are obtained numerically, this method

is automated and can easily be applied to arbitrary circuit topologies and nonlinearities.

In this section the details of the new algorithm are presented, beginning with the single-tone

IP3 formulation using Volterra series in section 5.3.1. This is then followed by the derivation of

the relation between these moments and IP3 for both amplifiers and mixers in section 5.3.3.

5.3.1 IP3 Formulation Using Single-Tone Volterra Kernels

It has been shown earlier that the IP3 of a nonlinear circuit can be obtained by first determining

the Volterra kernels of the circuit, then using the relation in (5.5) or (5.6) for amplifiers, and the

relation in (5.9) or (5.10) for mixers. Note however, that the presence of two input tones in these

formulations is simply to be consistent with measurement and simulation based approaches where

two input tones are necessary in order to obtain the intermodulation products. When the values

of the Volterra kernels can be analytically obtained for a given frequency, the approximations in

(5.7) and (5.8) are no longer necessary because for ω1 ≈ ω2,

H3(jω1, jω1,−jω2) ≈ H3(jω1, jω1,−jω1) (5.14)
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and the intercept point IP3 can be defined using only a single input frequency as

IIP3 =

√

4

3

|H1(jω1)|
|H3(jω1, jω1,−jω1)|

(5.15)

It is important to note that with the condition given by (5.14), the formulation in (5.15) gives

similar results as that of the two-tone IP3 in (5.5), and any variations are due to a difference of

definition rather than numerical error.

A fundamentally similar analysis can be applied to mixer circuits. The standard definition of

IP3 assumes that the approximations in (5.12) and (5.13) are valid. If the two RF input funda-

mental frequencies are chosen sufficiently far away from each other such that (5.12) and (5.13)

are no longer valid, the standard definition of IP3 in mixer circuits is no longer valid. In other

words, similar to the case of amplifier circuits, when using Volterra series analysis it is possible

to determine the input IP3 of mixer circuits using only a single RF frequency in addition to the

local oscillator because for ω1 ≈ ω2,

H4(jω0, jω1, jω1,−jω2) ≈ H4(jω0, jω1, jω1,−jω1) (5.16)

In the case where the condition given by (5.16) is true, then the following single RF tone relation

can be used:

IIP3 =

√
√
√
√ |V0H2(jω0, jω1) +

3V 3
0

2
H4(jω0, jω0,−jω0, jω1) + . . . |

|3V0

2
H4(jω0, jω1, jω1,−jω1) + . . . |

(5.17)

A general relation for computing the third order intercept point using a single-tone input for both

mixers and amplifiers is provided at the end of section 5.3.3.

5.3.2 Definition of Single-Tone Moments

The Harmonic Balance equations for a general nonlinear system, as described in detail in Chapter

3, are of the form [17]

ḠX + C̄X + F (X) = BDC + αBRF + βBLO, (5.18)

where
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• Ḡ ∈ R
Nh×Nh is a block matrix representing the contributions of the linear memoryless

elements.

• C̄ ∈ R
Nh×Nh is a block matrix representing the contributions of the linear memory ele-

ments.

• X ∈ R
Nh is a vector of unknown cosine and sine coefficients for each of the variables in

x(t).

• The vectors BDC ∈ R
Nh and BLO ∈ R

Nh show the contributions of the DC independent

sources and, if present, the LO frequency tone, respectively.

• BRF ∈ R
Nh shows the location of the single-tone RF input (a vector of all zero entries

except for a ’1’ at the location of the RF frequency).

• α refers to the amplitude of the input RF voltage signal

• β refers to the amplitude of the LO voltage. Note that β is only present in mixer circuits,

and is otherwise equal to zero.

• F (X) ∈ R
Nh is the vector of nonlinear equations.

The moments of the system are defined as the Taylor series expansion of the output solution

vectorX with respect to the input RF amplitude α. This can be expressed as [17]

X = M 0 +M 1α +M 2α
2 +M 3α

3 + · · · =

q
∑

k=0

M kα
k (5.19)

where M k is the kth moment vector. The expansion is carried out at the DC operating point for

the amplifier case, and at the LO frequency for mixers. The CPU cost of obtaining the moments is

that of a solution of a system of sparse linear equations. An overview of the moments computation

algorithm can be found in section 5.4.

5.3.3 Relation Between IP3 and the Harmonic Balance Moments

In this section, a closed form expression for IP3 as a function of the Harmonic Balance moments

will be developed based on the single-tone definitions of IP3 in (5.15) and (5.17). First, the

cases of amplifier circuits and mixer circuits will be considered separately, and then an overall

framework will be provided at the end.
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Amplifier Circuits

Consider an amplifier circuit with an input vin = α cos(ωt), with ω being the Radio Frequency.

If the circuit is memoryless, the output can be obtained by substituting this input into equation

(5.1) and expanding using trigonometric identities, which results in

X =

(

k0 +
1

2
k2α

2 + . . .

)

+

(

k1α +
3

4
k3α

3 + . . .

)

cos(ωt) +

(
1

2
k2α

2 + . . .

)

cos(2ωt) +

(
1

4
k3α

3 + . . .

)

cos(3ωt) + . . . (5.20)

The relation in (5.20) can now be compared to that in (5.19), since the solution vector X in

(5.19) is essentially the output variable X in (5.20). By equating the same powers of α in these

two equations and noting the frequencies, the location of the kn terms in the moment vectorsM k

can be determined and are as follows
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0

0
...












︸ ︷︷ ︸

M 0












0

k1

0

0
...












︸ ︷︷ ︸

M 1












1
2
k2

0
1
2
k2

0
...












︸ ︷︷ ︸

M 2












0
3

4
k3

0
1
4
k3

...












︸ ︷︷ ︸

M 3

(5.21)

Notice that each row of the moment vectors consists of the coefficients of the Taylor series ex-

pansion of one of the harmonic amplitudes. For example, the second row contains the Taylor

expansion coefficients of the amplitude of the fundamental frequency tone, ω. In this row, we

observe that the vectorM 1 contains the value of k1 and the vectorM 3 contains the value of 3
4
k3.

The relation in (5.21) shows the first 3 moment vectors in addition to the zeroth moment vector,

with the parameters required for the computation of the third order intercept point according to

(5.4) shown in bold.

In the case of systems with memory, a fundamentally similar analysis can be performed.
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The additional complexity here comes from the need to represent the output as a Volterra series

expansion rather than a power series. To derive the relationship between the moments and the

terms required for computing IP3 according to (5.15), consider the system representation as a

Volterra series as defined in (5.3), where Hi[v(t)] is the ith Volterra operator and is of the ith

order. For this derivation, it is useful to begin by expressing the single-tone input function with

an amplitude of α in the following format

v(t) = α cos(ωt) (5.22)

=
α

2
ejωt +

α

2
e−jωt (5.23)

= va(t) + vb(t) (5.24)

Substituting (5.22) into (5.3) then results in the following expressions for the first three Volterra

operators [3]

H1[v(t)] = H1[va] + H1[vb] (5.25)

H2[v(t)] = H2[va] + H2[vb] + H2{va, vb} + H2{vb, va} (5.26)

H3[v(t)] = H3[va] + H3[vb] + H3{va, va, vb} + H3{va, vb, va} + H3{vb, va, va} +

H3{vb, vb, va} + H3{vb, va, vb} + H3{va, vb, vb} (5.27)

Each of the above operators are then evaluated and expressed using Volterra kernels in the fre-

quency domain via the following expression [3]

Hn{v1, · · · , vn} =

∫
∞

−∞

dτ1 · · ·
∫

∞

−∞

dτnhn(τ1, · · · , τn)

n∏

r=1

vr(t − τr) (5.28)

In these expressions, hn(τ1, · · · , τn) is the nth order time-domain Volterra kernel and can be

assumed to be symmetric without loss of generality. With this being the case, using (5.28) to
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determine all the terms in (5.25)-(5.27) gives the following results

H1[v(t)] =
α

2
H1(jω)ejωt +

α

2
H1(−jω)e−jωt (5.29)

H2[v(t)] =
α2

4
H2(jω, jω)ej2ωt +

α2

4
H2(−jω,−jω)e−j2ωt + 2

(
α2

4

)

H2(jω,−jω)(5.30)

H3[v(t)] =
α3

8
H3(jω, jω, jω)ej3ωt +

α3

8
H3(−jω,−jω,−jω)e−j3ωt + (5.31)

3

(
α3

8

)

H3(jω, jω,−jω)ejωt + 3

(
α3

8

)

H3(jω,−jω,−jω)e−jωt (5.32)

(5.33)

Observing the terms for each Volterra operator reveals that they are all complex conjugates of

each other since it is easy to prove that [3]

Hn(−jω1, . . . ,−jωn) = H∗

n(jω1, . . . , jωn) (5.34)

Applying this property reduces the final result to the expressions given by

H1[v(t)] = αRe
(
H1(jω)ejωt

)
(5.35)

H2[v(t)] =
α2

2
Re
(
H2(jω, jω)ej2ωt

)
+

α2

2
H2(jω,−jω) (5.36)

H3[v(t)] =
α3

4
Re
(
H3(jω, jω, jω)ej3ωt

)
+

3α3

4
Re
(
H3(jω, jω,−jω)ejωt

)
(5.37)

Substituting (5.35)-(5.37) into (5.3), the following input-output relation is obtained

X = H0 +
1

2
H2(jω,−jω)α2 +

Re(H1(jω)ejωt)α +
3

4
Re(H3(jω, jω,−jω)ejωt)α3 +

1

2
Re(H2(jω, jω)ej2ωt)α2 +

1

4
Re(H3(jω, jω, jω)ej3ωt)α3 + . . . (5.38)
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which can then be re-written as

X =

[

H0 +
1

2
H2(jω,−jω)α2

]

+

[

|H1(jω)|α
]

cos
(
ωt + ∠H1(jω)

)
+

[
3

4
|H3(jω, jω,−jω)|α3

]

cos
(
ωt + ∠H3(jω, jω,−jω)

)
+

[
1

2
|H2(jω, jω)|α2

]

cos
(
2ωt + ∠H2(jω, jω)

)
+

[
1

4
|H3(jω, jω, jω)|α3

]

cos
(
3ωt + ∠H3(jω, jω, jω)

)
+ . . . (5.39)

By comparing the Volterra Series expression in (5.39) to the expression shown in (5.20), it can

be seen that they are very similar in structure. As was the case with memoryless systems, the

location of the parameters of (5.39) in the moment vectors can now be deduced and is given by
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1
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1
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0
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|H3(jω, jω,−jω)|

0
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4
|H3(jω, jω, jω)|

...
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M 3

(5.40)

The parameters required to compute the value of IP3 according to (5.15) are the entries high-

lighted in bold.

Mixer Circuits

For the case of mixer circuits, the extra frequency component due to the Local Oscillator must

be accounted for in the derivation. A similar derivation to that shown in the previous section

is performed to determine the location of the necessary intermodulation distortion terms in the

moment vectors. Note that in this case, the computation of the moments is done using only a

single RF tone in addition to the local oscillator tone (i.e. two tones total) as opposed to three

tones in traditional Harmonic Balance. The moments computation algorithm is therefore similar

to the one described in Chapter 4 where the expansion is done around the LO which is considered
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outside the signal path, which in turn means that the local oscillator amplitude β is embedded

inside the moment vectors. After computing the moments, the next step would be to extract the

summations of terms needed to compute IP3 according to the formulation given in (5.17) from

the moment vectors, before finally proceeding with the computation of IP3.

To derive the link between the moment vectors and the terms required to compute IP3 ac-

cording to equation (5.17), the case of memoryless systems is first considered to simplify the

presentation. The input signal is now defined as v = α cos(ω1t) + β cos(ω0t), with ω1 being the

single-tone input radio frequency, and ω0 being the local oscillator frequency. Substituting this

expression into (5.1) and expanding using trigonometric identities results in the expression given

by

X =

[(

k2β +
3k4β

3

2
+ . . .

)

α +

(
3k4β

2
+ . . .

)

α3

]

cos((ω0 − ω1)t) +

[(

k1β +
3

4
k3β

3 + . . .

)

+

(
3

2
k3β + . . .

)

α2

]

cos(ω0t) +

[(

k2β +
3k4β

3

2
+ . . .

)

α +

(
3k4β

2
+ . . .

)

α3

]

cos((ω0 + ω1)t) +

. . . (5.41)

Note that equation (5.41) contains many frequency terms, but only the ones that are relevant for

the computation of IP3 are shown. By comparing (5.41) with (5.19), the location of the kn terms

in the system moment vectors M k can be determined. This is more obvious when the contents
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of the moments are presented in the following format,
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(5.42)

By comparing (5.42) with (5.11), it can be seen that the terms needed for computing IP3 are

located in the first and third moment vectors. In fact, we observe that the moments contain the

whole summations needed, thereby resulting in accurate values of IP3 for circuits that experience

difficulty in convergence of the local oscillator power series. For the more general case of mixer

circuits that contain memory elements, the derivation is performed using a Volterra series expan-

sion with the inclusion of the Volterra operators up to the 4th order in the derivation. The Volterra

Series representation of a nonlinear system with memory is given by (5.3). The first step is to

substitute the expression for an input function with two tones, one being at the RF frequency of

interest with amplitude α, and a local oscillator tone with a separate amplitude β, which is given

by

v(t) = α cos(ω1t) + β cos(ω0t) (5.43)

=
α

2
ejω1t +

α

2
e−jω1t +

β

2
ejω0t +

β

2
e−jω0t (5.44)

= va(t) + vb(t) + vc(t) + vd(t) (5.45)

into (5.3). The resulting expressions for each Volterra operator are too large to be stated in their

entirety. Instead, only the expressions at the frequencies of interest are shown. For the case of an

up-conversion mixer with ω0 >> ω1, at the fundamental IF frequency of ω0 + ω1, the distortion

terms present will be a result of a second order nonlinearity and a fourth order nonlinearity due

to the mixing of the frequencies ω0 +ω0−ω0 +ω1 and ω0 +ω1 +ω1−ω1. These distortion terms
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can be represented as

H2[v(t)]ω0+ω1 = 2H2{va, vc} + 2H2{vb, vd} (5.46)

H4[v(t)]ω0+ω1 = 12H4{va, va, vb, vc} + 12H4{va, vb, vb, vd} +

12H4{va, vc, vc, vd} + 12H4{vb, vc, vd, vd} (5.47)

Each of the above Volterra operators are then expressed in the frequency domain using Volterra

kernels by using the relation in (5.28) to determine all the terms in (5.46), similarly to the case of

amplifier circuits. This results in

H2 [v(t)]ω0+ω1
= αβRe

(
H2(jω0, jω1)e

j(ω0+ω1)t
)

(5.48)

H4 [v(t)]ω0+ω1
=

3

2
αβ3Re

(
H4(jω0, jω0,−jω0, jω1)e

j(ω0+ω1)t
)

+
3

2
α3βRe

(
H4(jω0, jω1, jω1,−jω1)e

j(ω0+ω1)t
)

(5.49)

By substituting (5.48)–(5.49) and the remaining terms at the other intermodulation and harmonic

frequencies into (5.3), then rearranging by grouping similar frequencies together, the following

input output relation is obtained

X = Re

[(

βH2(jω0,−jω1)α +
3β3

2
H4(jω0, jω0,−jω0,−jω1)α + . . .

)

ej(ω0−ω1)t

]

+

Re

[(
3β

2
H4(jω0, jω1,−jω1,−jω1)α

3 + . . .

)

ej(ω0−ω1)t

]

+

Re

[(

βH2(jω0, jω1)α +
3β3

2
H4(jω0, jω0,−jω0, jω1)α + . . .

)

ej(ω0+ω1)t

]

+

Re

[(
3β

2
H4(jω0, jω1, jω1,−jω1)α

3 + . . .

)

ej(ω0+ω1)t

]

+ . . . (5.50)
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Which can also be expressed in the following format

X =

[∣
∣
∣
∣
βH2(jω0,−jω1) +

3β3

2
H4(jω0, jω0,−jω0,−jω1) + . . .

∣
∣
∣
∣
α

]

cos((ω0 − ω1)t + Θ1)

+

[∣
∣
∣
∣

3β

2
H4(jω0, jω1,−jω1,−jω1) + . . .

∣
∣
∣
∣
α3

]

cos((ω0 − ω1)t + Θ2) +

[∣
∣
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The Volterra series expression in (5.50) is similar in structure to the expression shown in (5.41)

which implies that the location of the parameters to compute the value of IP3 according to (5.17)

are the entries at the fundamental IF frequency locations in the first and third moment vectors.

More specifically, in the first moment vector M 1, the following summations at the frequencies

of ω0 ± nω1 are present,
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(5.52)

While in the third moment vector M 3, the following summations are present at the same fre-
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(5.53)

As can be seen from (5.52) and (5.53), the moments contain the whole summations of terms

necessary for computing IP3, thereby making this method accurate for circuits that experience

local oscillator power series convergence issues.

General Formulation for Single-Tone IP3 Computation

The value of the third order intercept point is determined by evaluating the single-tone relations

developed in Section 5.3.1. The relations shown in (5.15) and (5.17) can be generalized to obtain

the following expression for the input third order intercept point referred to below as IIP3

IIP3 =

√
m1,1

m1,3

(5.54)

The terms m1,1 and m1,3 represent the entries at the fundamental output frequency in the first and

third moment vectors, respectively, as illustrated in Fig. 5.4 for amplifiers and Fig. 5.5 for mixers.

In the expressions for mixer circuits, it is important to note that β is the local oscillator amplitude

and that the entire summation of series terms (not just the ones shown here) are present.

5.3.4 Summary of the New Algorithm

An overview of the main steps of the new algorithm for computing IP3 using single-tone moments

is given in Fig. 5.6. The computation cost of this approach is primarily due to the computation

of the moments in step 2 of the algorithm. This amounts to a solution of a linear set of equations
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which is very sparse and contains a small number of variables since only a single-tone input is

needed. The details of the computational cost of obtaining the moments is discussed in section

5.4. Also, it is important to note that, while the new approach does not require the solution of the

nonlinear Harmonic Balance equations, it is based on the Harmonic Balance formulation which

makes its general steps both topology independent and easy to automate.

1. Set up the system equations in the frequency domain according to the formulation

shown in (5.18).

2. Calculate the single RF tone moment vectorsM k as defined in (5.19) by solving the

formulations in (5.55) and in (5.57) recursively.

3. Obtain the necessary terms for computing IP3 from the entries in the moment

vectors at the locations shown in Fig. 5.4 for amplifiers and in Fig. 5.5 for mixers.

4. Determine the distortion by calculating the third order intercept point according

to (5.54).

Fig. 5.6 Summary of the algorithm for computing IP3 using single-tone moments

analysis.

5.4 Computational Cost Considerations

For this new approach, the moments algorithm presented in [17] and derived in detail in section

4.3.2 is used to compute the moments of the Harmonic balance equations as defined in (5.19).

In this section, a brief overview of the algorithm is presented and insight into the sparsity of

the moment computation matrix is provided in order to show the computational efficiency of

obtaining the moments as compared to a traditional multi-tone Harmonic Balance simulation.

The moments of a system are defined as the coefficients of the Taylor series expansion of

the solution vector X of the system described by (5.18) with respect to the input RF amplitude

α. If the solution is expressed using (5.19), then M k is the kth moment vector. The zeroth

moment vector M 0, is obtained by finding the solution of the system described by (5.18) with

RF amplitude (α) set to zero. The first moment vector M 1, is then found by solving the system

of equations given by

ΦM 1 = BRF (5.55)
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where

Φ = Ḡ+ C̄ +
∂F (X)

∂X

∣
∣
∣
∣
(α=0)

(5.56)

In this relation, the first moment vector can be obtained using one LU Decomposition to solve

(5.55). It is important to note that the matrix Φ is the sparse moment computation matrix which

has the same structure as a Jacobian matrix but contains only DC and LO spectral components.

As for the remaining moment vectors Mn, these are found by solving the following recursive

relation

ΦMn = −1

n

n−1∑

j=1

(n − j)T jMn−j (5.57)

The right-hand side of equation (5.57) is calculated using the values of the previous moments

(Mn−j) that have already been obtained, in addition to the values of the moments of the Jacobian

(T j). As can be seen from (5.55)–(5.57), the computation of the moment vectors is a solution of

a set of linear algebraic equations where the left-hand-side matrix is the same throughout and is

therefore very efficient. Furthermore, this left-hand-side matrix is essentially the same as a single

tone Harmonic Balance Jacobian evaluated using only DC and LO frequencies, which is a very

sparse matrix compared to a typical Harmonic Balance Jacobian.

Finally, it is important to make a note about the effects of numerical tolerance and round-off

errors in the moments computation algorithm. It is very important to monitor that the numerical

errors in the computation of the moments are low relative to the signal levels in order to have

accurate numerical values of the distortion terms using single-tone inputs. Since the moments

are computed in a recursive manner (as shown in equation (5.57)), numerical errors grow as

subsequent moments are computed. The entries in the moments that are particularly affected

are the higher order terms at a specific frequency, including the term m1,3. This in turn could

result in a large deviation from the expected value of the single-tone IP3. From the experience of

testing several numerical examples, circuit topologies which would not converge to small error

tolerances in a regular Harmonic Balance simulation, in addition to highly nonlinear circuits

were especially susceptible to this problem. In these cases, it is preferable to use the more robust

two-tone moments analysis method for computing IP3 described in Section 2.6 and in Chapter

4, which uses the term m3,3 instead of m1,3 and gives IP3 results that are as accurate as those

obtained using Harmonic Balance with a significantly smaller CPU cost.
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5.5 Numerical Examples

In this section, numerical results of simulations performed on two example circuits are shown in

order to illustrate the speedup of the single-tone moments approach for computing IP3.

5.5.1 Example 1

Consider the cascode amplifier circuit shown in Fig. 5.7. This amplifier has lumped element

input and output matching networks for 50Ω source and load impedances at the standard GSM

frequency of 900 MHz. The linear gain of this amplifier is 12.3 dB. In order to test the accuracy

and CPU efficiency of the new method, the value of IP3 for the above circuit was computed

using three different methods. The first approach was the standard brute force method of multi-

tone Harmonic Balance simulation. The second approach was the multi-tone moments based

approach presented in Chapter 4 of this thesis. The third approach was the single-tone moments

analysis method.

First, using the brute force approach, by applying two −50 dBm input tones at f1 = 900
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MHz and f2 = 900.1 MHz and performing a standard harmonic balance analysis, the measured

lower-side input IP3 was found to be -4.0 dBm and the upper side IP3 was found to be -4.1 dBm.

This simulation was run with 10 harmonics, therefore the size of the dense Jacobian which had

to be solved was 5083×5083 due to the 10 harmonics of the fundamental tones in addition to the

diamond truncation tones [5]. The diagram in Fig. 5.8 shows the sparsity pattern of the Harmonic

Balance Jacobian matrix which contains 699, 167 non-zero elements.

The distortion was next analyzed using the multi-tone moments based method. In this method,

the same two input frequency tones at f1 = 900 MHZ and f2 = 900.1 MHz were applied to

the circuit with 10 harmonics. The multi-tone moments were then evaluated and the value of

IP3 was computed by extracting the required terms from the moments. In this case, the size

of the moments computation matrix was identical to that of the Harmonic Balance Jacobian

(5083 × 5083) since the number of variables was the same. However, the moments computation

matrix was significantly more sparse. The computed values of IP3 were also −4.0 dBm and −4.1

dBm for the lower and upper side IP3, respectively.

Finally the distortion was analyzed using the new approach by computing the moments of

the system using only a single tone input at f = 900MHz, and extracting the required terms at

the appropriate frequencies. The size of the sparse moments computation matrix that had to be

used was only 483×483. Fig. 5.9 shows the sparsity pattern of the moments computation matrix.

As can be seen, this matrix has only 1, 784 non-zero elements. The resulting value of the input

third order intercept point was found to be -4.3 dBm. Note that since only a single-input tone is

present, there is only a single value for IP3 rather than an upper side IP3 and a lower side IP3.

The results obtained are summarized in Table 5.1. As can be seen, the discrepancy between the

two approaches was around 0.2 dBm or approximately 5.1% when comparing the value in Volts.

It is important to note that this discrepancy occurs due to the approximation in (5.14) and is a

matter of definition of IP3 rather than numerical error. Furthermore, as can be seen from the

results, the discrepancy between the single tone IP3 and the two tone IP3 is of the same order of

magnitude as the discrepancy between the lower-side and upper-side two-tone IP3.

The significant reduction in size and in number of non-zero elements between the Harmonic

Balance Jacobian matrix and the Moments computation matrix has resulted in a large reduction

in computational cost and therefore a significant speedup between the two approaches. The data

in Table 5.2 shows a comparison of the computation times between the single-tone moments

method, the two-tone moments method and the Harmonic Balance technique using a prototype

MATLAB simulator. The hardware platform on which the simulations were run was a single-core
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Intel Pentium 4 machine with a clock speed of 3.2 GHz and 3GB of RAM. As can be seen, the

speed-up of the new method over the harmonic balance approach was found to be 235 times using

10 harmonics for this example. It is important to note that the number of harmonics required in a

simulation depends on the particular circuit, the input power level and the desired accuracy. On

the other hand the number of harmonics also affects the CPU cost and the relative advantage of

using the new approach. In order to illustrate this fact, the circuit in this example was simulated

using a various number of harmonics and the speed-up for each case was computed and reported

in Table 5.3.

5.5.2 Example 2

The second example considered is the Gilbert cell bipolar mixer with a local oscillator frequency

of 1 GHz shown in Fig. 5.10. The power of the local oscillator signal is -16 dBm. In order

to analyze the distortion of this circuit, a similar procedure to that performed in Example 1 is

followed. For comparative purposes only, the brute force simulation approach was first used by

applying three input tones and performing a full harmonic balance simulation, then measuring

IP3 from the output spectrum. The second approach was by finding the value of IP3 from the

multi-tone moments that were evaluated also with three input tones according to the method

presented in Chapter 4. Finally the value of IP3 was computed from the single-tone moments

method with only two input tones total (single RF tone in addition to the local oscillator).

First, using the Harmonic Balance method, the two RF input tone frequencies were f1 = 99.5

MHz and f2 = 100.0 MHz, with power levels of -53.5 dBm. The calculated lower-side input

IP3 from the steady-state solution was found to be -9.7 dBm, while the upper-side input IP3 was

found to be -9.8 dBm. The diagram in Fig. 5.11 shows the sparsity pattern of the Harmonic

Balance Jacobian. The size of the Harmonic Balance Jacobian matrix was 18, 450 × 18, 450

and as can be seen from Fig. 5.11, the matrix contains many dense blocks and therefore has

7, 271, 954 non-zero entries.

Next, using the multi-tone moments method, and with the same input frequencies and power

levels as those used for the Harmonic Balance approach, the calculated lower-side and upper-side

input IP3 were also found to be -9.7 dBm and -9.8dBm, respectively. The size of the moments

computation matrix was also 18, 450 × 18, 450 since it is of the same structure as the harmonic

balance Jacobian while being significantly more sparse.

The distortion was then analyzed using the new approach by computing the moments of the
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Table 5.1 Comparison of IP3 values between traditional Harmonic Balance and the

single-tone moments method

Harmonic Balance Harmonic Balance Single-tone

IIP3 (Lower) IIP3 (Upper) Moments IIP3

Example 1 -4.0 dBm -4.1 dBm -4.3 dBm

Example 2 -9.7 dBm -9.8 dBm -9.5 dBm

Table 5.2 Comparison of computation times between the single-tone moments

method and the Harmonic Balance solution
Example 1 Example 2

Harmonic Balance 25.94 s 432.16 s

2-tone Moments 1.30 s 4.63 s

Initial Speedup 20 times 93 times

1-tone Moments 0.11 s 1.03 s

Further Speedup 11.8 times 4.5 times

Overall Speedup 235 times 420 times

Table 5.3 The effects of increasing harmonics on speedup of IP3 simulation of

example 1 between the single-tone moments method and Harmonic Balance.

Number of Harmonics Speedup

3 7 times

5 12 times

7 53 times

10 235 times

15 1218 times
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system using a single RF input tone at f = 100MHz, and extracting the necessary terms at the

appropriate frequencies without the need to perform a harmonic balance simulation. The single

resulting value of the input IP3 was found to be -9.5 dBm. A summary of the results obtained

for this example mixer circuit is given in Table 5.1. Fig. 5.12 shows the sparsity pattern of the

moments computation matrix used to find the single-tone moments, which contains only the DC

and the local oscillator tones. Since this matrix is significant in size, to clearly illustrate the

difference in sparsity between it and the Harmonic Balance Jacobian matrix, Figs. 5.11 and 5.12

contain a close-up of a selection of the blocks within the matrices. The single-tone moments

computation matrix is significantly smaller, measuring only 4, 050× 4, 050. It is also much more

sparse, with only 67, 788 non-zero entries. The data in Table 5.4 shows a comparison of the sizes
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Fig. 5.11 Sparsity pattern of the Harmonic Balance Jacobian for the mixer circuit

in example 2
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Fig. 5.12 Sparsity pattern of the moments computation matrix for the mixer circuit

in example 2
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of the moments computation matrices between this approach and the two-tone moments method

for both example circuits.

The data in Table 5.2 shows a comparison of the computation times between the single-tone

moments method, the two-tone moments method and the Harmonic Balance technique using a

prototype MATLAB simulator. The hardware platform on which the simulations were run was a

single-core Intel Xeon machine with a clock speed of 3.6 GHz and 4GB of RAM. The speed-up

over a harmonic balance simulation was found to be 420 times for this mixer using 4 harmonics.

This speed-up is due to two significant reasons. Firstly, the moments are computed using only

a single RF tone in the new method (as opposed to two RF tones in the other methods) which

significantly reduces the size of the matrices. The second reason is that the Harmonic Balance

Jacobian is significantly more dense than the moments computation matrix as was shown earlier.

Table 5.4 Comparison of moments computation matrix sizes between the single-

tone and the two-tone moments methods.
2-tone moments 1-tone moments

Example 1 5,083×5,083 483×483

Example 2 18,450×18,450 4,050×4,050

5.6 Conclusion

In this chapter, a new method based on single-tone moment analysis was presented for the compu-

tation of the third order intercept point of RF circuits. This method does not require the solution

of the Harmonic Balance equations and its computational cost is of the order of a solution of a

sparse set of linear equations whose size is the same as the single-tone Harmonic Balance equa-

tions. The new method was shown to provide a speed-up that can be orders of magnitude faster

than traditional multi-tone Harmonic Balance simulations.
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Chapter 6

Efficient Sensitivity Analysis of Nonlinear

Intermodulation Distortion

6.1 Introduction

One of the main bottlenecks in the design of RF front ends is the linearity requirement of some of

the core blocks such as low noise amplifiers and mixers. Specifically, the effects of the third or-

der nonlinear distortion are of particular importance since they mix back into the passband of the

system and lead to many undesirable effects such as gain compression and adjacent channel in-

terference. The key figure of merit for quantifying the third order nonlinear distortion is the third

order intercept point (IP3). The computation of IP3 has, however, been a challenging problem

due to the multi-tone input requirement which considerably slows down steady-state simulators

based on techniques such as the Harmonic Balance method.

In this thesis, a new efficient method for computing the value of IP3 was presented. This

method is based on the computation of the Harmonic Balance moments and does not require the

solution of the Harmonic Balance equations. This reduced the CPU cost of finding the value

of IP3 to that of solving a system of sparse, linear equations. However, the moments based

approach presented in this thesis does not provide any insight into the sensitivity of IP3 with

respect to various circuit parameters. In this chapter, two new approaches for computing the

sensitivity of IP3 based on moments analysis are presented [24]–[26]. In the first approach, an

analytical relationship is derived between the value of IP3 and the multi-dimensional Harmonic

Balance moments [88]–[90]. In the second approach, closed form expressions are derived linking
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the sensitivity of IP3 to the moments of the adjoint solution [7], [27], [28]. The new approaches

benefit from the same CPU cost advantage of the moments based approach while providing the

sensitivity of IP3 with respect to circuit parameters. This would provide a critical advantage

enabling circuit optimization, design space exploration and design centering. It is to be noted that

similarly to the moments based approach for intermodulation distortion analysis, these methods

are general and easily automated for any arbitrary circuit topology.

This chapter is organized into two main parts. The first part presents the method for sen-

sitivity analysis using multi-dimensional moments while the second part focuses on the more

efficient adjoint sensitivity analysis technique. The multi-dimensional moments section begins

with a description of the multi-dimensional Harmonic Balance moments and how to compute

them efficiently in section 6.2.1. The method by which sensitivity of IP3 is determined is pre-

sented in section 6.2.2. An example is shown in section 6.2.3 to demonstrate the accuracy of the

results obtained using the new approach compared to those obtained using perturbation. The mo-

ments based adjoint sensitivity approach is presented in sections 6.3–6.8. Finally the conclusion

is given in section 6.9.

6.2 Sensitivity Analysis Using Multi-Dimensional Moments

In the multi-dimensional moments approach, an analytical relationship is derived between the

value of IP3 and the multi-dimensional Harmonic Balance moments (the moments with respect

to the input RF power as well as the design parameters). This allows for the derivation of closed

form expressions for the sensitivity of IP3 as a function of these multi-dimensional moments.

The CPU cost of the operation is thus reduced to that of finding the moments which is of the

same order as solving a system of sparse linear equations.

6.2.1 Computation of the Multi-Dimensional Moments

In order to define the multi-dimensional harmonic balance moments, the general harmonic bal-

ance formulation defined in (3.9) is re-written as

ḠX + C̄X + λD̄X + F (X) = BDC + αBRF , (6.1)
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In this relation, λ is the change in the value of a general circuit parameter γ, such that

γ = λ0 + λ (6.2)

with λ0 being the nominal value of the parameter. The matrix D̄ shows the location of the

parameter in the Harmonic Balance equations.

The multi-dimensional moments of the system are defined as the coefficients of the Taylor

Series expansion of the output solution vector X with respect to the input RF amplitude α and

the change in the circuit parameter value λ. This can be expressed as

X =

∞∑

i=0

∞∑

j=0

N (i,j)α
iλj (6.3)

where N (i,j) is the (i, j)th moment vector. Next, the algorithm for computing each of these

moments efficiently is presented.

To determine the (0,0) moment vector, the coefficients of α0λ0 on both sides of equation (6.1)

are equated, which yields

ḠN (0,0) + C̄N (0,0) + F (N (0,0)) = BDC (6.4)

Solving this system of equations is basically finding the DC solution of the system from which

the value of N (0,0) is obtained. To determine the first order moments N (1,0) and N (0,1), once

again powers of α1λ0 and α0λ1, respectively, on both sides of (6.1) are equated, which results in

ΦN (1,0) = BRF (6.5)

ΦN (0,1) = −D̄N (0,0) (6.6)

where

Φ = (Ḡ+ C̄ + T (0,0)) (6.7)

is the moments computation matrix that has the same structure as a Harmonic Balance Jacobian

matrix evaluated at DC and is therefore significantly more sparse than a typical Harmonic Balance

Jacobian. This is also the same moments computation matrix that was used in Chapters 4 and

5 to determine the harmonic balance moments for computing IP3. To compute the remaining

moments, the following general relation can be solved recursively having already determined the
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N (0,0),N (0,1) and N (1,0) vectors,

ΦN (p,q) =







−1

p

p−1
∑

j=1

q
∑

k=0

(p − j)T (j,k)N (p−j,q−k)

−
q
∑

i=1

T (0,i)N (p,q−i), (if q = 0)

−1

q

p
∑

j=0

q−1
∑

k=1

(q − k)T (j,k)N (p−j,q−k)

−D̄N (p,q−1) −
p
∑

i=1

T (i,0)N (p−i,q), (if q 6= 0)

(6.8)

In (6.7) and (6.8), the matrix T is defined as the partial derivatives of the nonlinear functions

with respect to the variables in the circuit. This can be expressed as

T =
∂F (X)

∂X
=

p
∑

i=0

q
∑

j=0

T (i,j)α
iλj (6.9)

=







∂F1

∂X1

· · · ∂F1

∂Xn

...
. . .

...
∂Fn

∂X1

· · · ∂Fn

∂Xn







(6.10)

Each ∂Fk

∂Xk
in the matrix above is a block matrix in itself. To simplify the presentation, only one

of these terms, ψ = ∂F1

∂X1

, is considered. For the case of computing multi-dimensional moments,

there is a need to determine T (i,j). More specifically, there is a need to determine the block matrix

ψ(i,j), which can be found by evaluating the following relation

ψ(i,j) = Γ−1










(
∂f1

∂x1

)

(i,j)

∣
∣
∣
∣
t=t0

0

. . .

0
(

∂f1

∂x1

)

(i,j)

∣
∣
∣
∣
t=tq










Γ (6.11)

The matrix Γ is the inverse Fourier Transform matrix and (t0, t1, . . . , tn) are equally spaced time

samples [70]. The parameters g(i,j) =
(

∂f1

∂x1

)

(i,j)
are the partial derivatives of the nonlinear
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equations in the circuit with respect to one of the variables. For example, for a nonlinear diode

current described by the relation f1 = Is(e
(x1/VT ) − 1) the following recursive relation can be

utilized to evaluate g(i,j)

g(i,j) =







1

pVT

p−1
∑

j=0

q
∑

k=0

(p − j)g(j,k)m(p−j,q−k), if q = 0

1

qVT

p
∑

j=0

q−1
∑

k=0

(q − k)g(j,k)m(p−j,q−k), if q 6= 0

(6.12)

A list of common nonlinear circuit elements and equations along with the recursive relations to

evaluate their derivatives can be found in [17], [18].

6.2.2 Sensitivity of IP3

The objective of the multi-dimensional moments method is to determine the relative sensitivity

of IP3 with respect to a parameter γ which is defined as follows

SIP3
γ = λ0

∂(IP3)

∂γ
= λ0

∂(IP3)

∂λ
(6.13)

since (λ = γ − λ0) as given in (6.2).

In this section, an analytical closed form relation for the relative sensitivity of IP3 as a func-

tion of the multi-dimensional harmonic balance moments is presented. The first step is that of

expanding the relation given in (6.3) and re-writing it as

X =

p
∑

i=0

q
∑

j=0

N (i,j)α
iλj

= (N (0,0) +N (0,1)λ +N (0,2)λ
2 + . . . ) +

(N (1,0) +N (1,1)λ +N (1,2)λ
2 + . . . )α +

(N (2,0) +N (2,1)λ +N (2,2)λ
2 + . . . )α2 +

. . . (6.14)

In order to show the link between the multi-dimensional moments and the value of IP3, it is
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useful to label the summations that comprise the coefficients of αn as follows

M 0 = N (0,0) +N (0,1)λ +N (0,2)λ
2 + . . .

M 1 = N (1,0) +N (1,1)λ +N (1,2)λ
2 + . . .

M 2 = N (2,0) +N (2,1)λ +N (2,2)λ
2 + . . .

...
...

Mn = N (n,0) +N (n,1)λ +N (n,2)λ
2 + . . . (6.15)

By substituting (6.15) into (6.14), the moments can be expressed using the following relation [17],

X = M 0 +M 1α +M 2α
2 +M 3α

3 + . . .

=

q
∑

k=0

M kα
k (6.16)

This relation expresses the output solution vector X as a Taylor Series expansion of the input

RF amplitude α only. The single-dimensional moment vectors Mn of the system are therefore

defined as the coefficients of this Taylor series expansion. In sections 2.6 and 4.5, it was shown

that the value of the input referred IP3 (IIP3) can be determined from the single-dimensional

moments using the following relation

IIP3 =

√
m1,1

m3,3

(6.17)

The term m1,1 represents the entry in the first moment vector at the fundamental frequency of

(ω1,2) while the term m3,3 represents the entry in the third moment vector at the third order

intermodulation frequency (IM3) of (2ω1,2 − ω2,1). For more details on how to obtain the terms

m1,1 and m3,3, please refer to Chapter 4 of this thesis.

To perform a sensitivity analysis using the new approach, the sensitivity of the moments

defined in (6.16) to changes in circuit parameters must first be determined. Once this is done,

then the sensitivity of IP3 to these changes can be determined. To find the sensitivity of IP3 with
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respect to the parameter λ, taking the partial derivative of (6.17) results in

∂

∂λ
(IIP3) =

∂

∂λ

(
m1,1

m3,3

) 1
2

(6.18)

=
1

2

(
m1,1

m3,3

)
−

1
2 m3,3

∂
∂λ

(m1,1) − m1,1
∂
∂λ

(m3,3)

(m3,3)2
(6.19)

From these relations, it can be seen that the task of determining the sensitivity of IP3 with respect

to a certain circuit parameter λ, is reduced to finding the sensitivity of the first and third moment

vectors with respect to that same parameter. With this being the case, the relation in (6.19) now

becomes

SIIP3
λ =

λ0

2

(

n1
(1,0)

n3
(3,0)

)
−

1
2 n3

(3,0)n
1
(1,1) − n1

(1,0)n
3
(3,1)

(n3
(3,0))

2
(6.20)

In the above relation, n1
(1,0) is the entry in the (0,0) moment vector at the fundamental frequency

and n3
(3,0) is the entry in the (3,0) moment vector at the third order intermodulation frequency.

Both of these terms are equivalent to m1,1 and m3,3, respectively, when evaluated at γ = λ0. The

new terms, n1
(1,1) and n3

(3,1) represent the first derivatives of the first and third moment vectors with

respect to the parameter γ evaluated at γ = λ0. These correspond to the entries in the (1,1) mo-

ment vector at the fundamental frequency, and in the (3,1) moment vector at the IM3 frequency,

respectively. The location of these terms in the moment vectors is more clearly illustrated in Fig.

6.1.

In summary, the new approach presents an efficient way to determine the sensitivity of IP3

from the Harmonic Balance moments of a circuit, without the need for a Harmonic Balance

simulation. This therefore adds insight into the main sources of nonlinear distortion to the mo-

ments method presented in this thesis, while still being easily automated and general for arbitrary

topologies. This method is computationally very cheap since the CPU cost of determining these

moments is the solution of a system of linear and sparse algebraic equations. An overview of the

main steps of the algorithm is given in Fig. 6.2.

6.2.3 Numerical Example

In this section the value of IP3 and its sensitivity with respect to some parameters are determined

for an example amplifier circuit using the multi-dimensional moments method. These results

are then compared to those obtained using perturbation to demonstrate the accuracy of the new
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N10 N11 N30 N31

DC

1

n(1,1)
1

n(3,1)
3

Frequency

: : : :

= Non-zero entry = Zero entry

n(1,1)
1

n(1,0)
1

n(1,0)
1

n(3,1)
3

n(3,0)
3

n(3,0)
3

Fig. 6.1 Location of sensitivity terms in the multi-dimensional moment vectors

1. Determine the value of the third order intercept point efficiently using the

relation in (6.17).

2. Select which parameter γ needs to be changed by an amount λ, and set-up the

modified circuit equations as given by (6.1).

3. Compute the multi-dimensional moments with respect to λ and the RF amplitude α

as defined in (6.3) by solving the relations given (6.4)–(6.8).

4. Determine the value of IP3 sensitivity with respect to λ by solving (6.20) using the

terms extracted from the moments at the locations illustrated in Fig.6.1.

Fig. 6.2 Summary of the algorithm for computing the sensitivity of IP3 using multi-

dimensional moments.
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Fig. 6.3 Example circuit diagram

approach. In addition, the CPU cost of obtaining IP3 and its sensitivity using the new approach

is compared to the CPU cost of using Harmonic Balance. Typically, the value of IP3 is expressed

in dBm in the literature. However, for the sake of sensitivity analysis the results are expressed in

Volts as the numbers are more meaningful.

Consider the Low Noise Amplifier circuit shown in Fig. 6.3. The value of IIP3 in this circuit

was found to be −12.02 dBm with two input tones at frequencies of f1 = 1 GHz and f2 = 1.01

GHz using the moments computation method. We wish to compute the normalized sensitivities

of IP3 with respect to changes in the parameters of RT and CT .

To find the sensitivity of IP3 with respect to the resistor RT , the multi-dimensional moments

are first computed, with the matrix D̄ in (6.1) being the Harmonic Balance stamp of the resistor.

Once these moments are computed, the sensitivity is determined using (6.20). The relative sen-

sitivity found was 7.0864 × 10−4V . To compute the sensitivity with respect to the capacitor CT ,

the multi-dimensional moments are computed with the matrix D̄ being the Harmonic Balance

stamp of the capacitor. The relative sensitivity obtained was 6.9464 × 10−4V . The results for

both circuit parameters are summarized in Table 6.1 where they are also compared to the results
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obtained using perturbation. As can be seen from the table, the results are very accurate. It is

also important to note that the accuracy of the results obtained using the moments approach is

independent of step size unlike those obtained using perturbation.

Table 6.1 Normalized sensitivity of IP3 with respect to circuit parameters for the

example circuit

Perturbation Moments Method %

Sensitivity Sensitivity Error

RT 7.0828 × 10−4 V 7.0864 × 10−4 V 0.005%

CT 6.9459 × 10−4 V 6.9464 × 10−4 V 0.002%

Table 6.2 shows a comparison of the computation times between traditional Harmonic Bal-

ance and the multi-dimensional moments method for determining IP3 and its sensitivity with

respect to the two parameters RT and CT . As can be seen, the moments method presents sig-

nificant computational speedup. The CPU cost of both the moments approach and the harmonic

balance based approach [7] consists of two parts: A fixed cost due to the computation of IP3,

and an incremental cost per parameter for computing the sensitivity. In this example the fixed

cost for Harmonic balance was 19.58 seconds, and for the moments approach it was 0.94 sec-

onds. For the incremental cost, it was 0.16 seconds/parameter for the moments approach, and

0.01 seconds/parameter for harmonic balance. Note that the small incremental cost for Harmonic

Balance (which is due to the use of the adjoint technique [7]) is more than offset by the very large

initial fixed cost. The hardware platform on which the simulations were run was a single-core

Intel Pentium 4 machine with a clock speed of 3.2 GHz and 3GB of RAM.

Table 6.2 CPU cost comparison of finding IP3 and its sensitivity with respect to 2

parameters for the example circuit

Harmonic Balance Multi-Dimensional Moments Method Speed-up

19.61 seconds 1.26 seconds 15.5 times
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6.3 Adjoint Moments Sensitivity Method

In this thesis, an efficient method for computing the value of IP3 was presented based on the

computation of the Harmonic Balance moments which reduced the CPU cost to that of solving

a system of sparse, linear equations. However, this approach did not provide any insight into

the sensitivity of IP3 with respect to various circuit parameters. For any sensitivity analysis

to be performed, only the brute-force perturbation approach could be employed, which is very

inefficient, or the multi-dimensional moments method presented in section 6.2. However, the

multi-dimensional moments method also has some key limitations, first in that it is limited to

sensitivities of linear parameters, and also the fact that it computes the sensitivity of all variables

with respect to one parameter at a time.

In this section, a new approach for computing the sensitivity of IP3 based on the adjoint

sensitivity method is presented. The new method computes the sensitivity with respect to all

parameters in the general circuit equations including parameters of linear and nonlinear circuit

elements. For this approach, closed form expressions for the sensitivity of IP3 as a function of

the entries in the adjoint moments for all circuit parameters are developed. The adjoint moments

are computed using the same set of linear equations used to determine the harmonic balance mo-

ments. The new moments method thereby retains the main advantages of the adjoint sensitivity

algorithm, namely that of low incremental computation cost and the ability to find the sensitiv-

ity of one variable with respect to all the parameters in the system while providing significant

speedup over traditional harmonic balance methods. It is to be noted that similarly to the mo-

ments based approach for computing IP3, the method is general and easily automated for any

arbitrary circuit topology.

The derivation of the moments based adjoint sensitivity algorithm begins with brief overviews

of the harmonic balance adjoint formulation and the moments based technique for computing IP3

in sections 6.4 and 6.5 respectively. These sections provide the necessary background informa-

tion for the method which starts with the adjoint sensitivity derivation using moments in section

6.6. This is followed by the algorithms for the efficient computation of the harmonic balance

moments, the moments of the adjoint equation and the moments of the nonlinear vector in sec-

tion 6.7. Finally, numerical examples are shown in section 6.8 to demonstrate the accuracy of the

results obtained as compared to those obtained using the harmonic balance adjoint method.
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6.4 Harmonic Balance Adjoint Sensitivity

The adjoint approach has been a classical tool for the efficient and exact sensitivity analysis of

circuits. This can be achieved by solving an adjoint system. In this section, the harmonic balance

adjoint system formulation for nonlinear circuits with respect to a general circuit parameter λ

is presented [7]. This will lay the foundation for the new approach presented in section 6.6, in

which the method for obtaining the adjoint solution efficiently using the adjoint moments without

the need for a harmonic balance solution will be shown.

It is useful to begin the derivation by expressing the harmonic balance equations in (3.9) as

A (λ)X (λ) + F (λ,X (λ)) = B (6.21)

where

A = Ḡ+ C̄ (6.22)

is a matrix that represents the linear elements in the circuit. The output variable of interest, Xout,

can be expressed using a selection vector as

Xout = dTX (6.23)

where d is a selection vector with all entries set to zero except at the location of the variable Xout

in the general vector of unkownsX where the entry is equal to ‘1’. The harmonic balance adjoint

solution vectorXa for nonlinear circuits is defined using the general relation given by [7]

JTXa = −d (6.24)

where

J = A+
∂F (X)

∂X
(6.25)

is the harmonic balance Jacobian matrix.

The general expression for the adjoint sensitivity with respect to a general circuit parameter

λ can now be written as [7]

∂Xout

∂λ
= XT

a

∂A

∂λ
X +XT

a

∂F (X)

∂λ
(6.26)
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For the case when λ is a parameter that only affects a linear circuit element, only A and X will

be functions of λ. Therefore, the relation given in (6.26) can be simplified to

∂Xout

∂λ
= XT

a

∂A

∂λ
X (6.27)

with the matrix ∂A
∂λ

being the harmonic balance ‘stamp’ of the derivative of the circuit element

that λ is a parameter of.

In the case when the parameter λ is that of a nonlinear circuit element, onlyX and
∂F (X)

∂λ
will

be functions of λ. The general adjoint equation given in (6.26) would then simplify to become

∂Xout

∂λ
= XT

a

∂F (X)

∂λ
(6.28)

with the matrix
∂F (X)

∂λ
being the sensitivity of the nonlinear vector.

6.5 Moments Based Sensitivity Computation

In this thesis, an efficient method for the computation of IP3 based on the harmonic balance

moments was presented. The harmonic balance moments are defined as the Taylor coefficients

of the unknown variable X in (3.9) with respect to the input signal amplitude α [17], [18]. The

vectorX can therefore be written as

X = M 0 +M 1α +M 2α
2 +M 3α

3 + . . .

=

∞∑

i=0

M iα
i (6.29)

whereM k is the kth moment vector. In this thesis, a relationship was derived between the above

moments and the value of the input referred third order intercept point (IP3) such that

IP3 =

√
m1,1

m3,3
(6.30)

where m1,1 and m3,3 are specific entries in the moment vectors M 1 and M 3, respectively. The

locations of m1,1 and m3,3 for circuits excited with a two-tone input signal at frequencies of ω1

and ω2 are shown in Fig. 6.4 for amplifier circuits and in Fig. 6.5 for mixer circuits. Note that
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the additional frequency tone ω0 is that of the local oscillator signal in the mixer case. Using

this method, the computation of IP3 is reduced to that of finding the harmonic balance moments,

which is a much cheaper problem in terms of computational cost than that of solving the harmonic

balance equations.

M0 M1 M2 M3

DC

1

m11

m33

Frequency

: : : :

= Non-zero entry = Zero entry

Fig. 6.4 Location of sensitivity terms in the moment vectors for amplifier circuits

Using equation (6.30), the sensitivity of IP3 with respect to λ can be expressed as

∂

∂λ
(IP3) =

1

2

(
m1,1

m3,3

)
−

1
2 m3,3

∂m1,1

∂λ
− m1,1

∂m3,3

∂λ

(m3,3)2
(6.31)

The evaluation of the sensitivity therefore requires the terms m11 and m33 which were also re-

quired for obtaining the value of IP3 according to (6.30) and are already available from the

computation of IP3. In addition to these terms, now the values of their derivatives with respect

to λ (
∂m1,1

∂λ
and

∂m3,3

∂λ
) are also required, the efficient computation of which is the subject of the

remainder of this chapter.
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Fig. 6.5 Location of sensitivity terms in the moment vectors for mixer circuits

6.6 Adjoint Sensitivity Derivation Using Moments

In this method, a sensitivity analysis algorithm is derived that is applicable to the moments based

method and shares the same properties as the adjoint algorithm, namely those of low incremental

computation cost to the original algorithm and the ability to determine the sensitivity of one vari-

able with respect to all the circuit parameters. This is accomplished by the efficient computation

of the adjoint moment vectors.

In the previous section, the problem of computing the sensitivity of IP3 was reduced to that of

finding the derivatives with respect to λ of the terms m1,1 and m3,3. In this section the derivation

of an efficient adjoint based approach for computing these derivatives is presented. We start by

recalling the definition of the harmonic balance moments

X = M 0 +M 1α +M 2α
2 +M 3α

3 + . . . (6.32)

As illustrated in Fig. 6.4 and Fig. 6.5, the terms m1,1 and m3,3 can be written as

m11 = dT
1M 1 (6.33)
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m33 = dT
3M 3 (6.34)

where d1 and d3 are selection vectors. Note that m11 and m33 appear in the Taylor expansions of

Xo1 andXo3 defined as

Xo1 = dT
1X = m1,0 + m1,1α + m1,2α

2 + m1,3α
3 + . . . (6.35)

Xo3 = dT
3X = m3,0 + m31α + m3,2α

2 + m3,3α
3 + . . . (6.36)

The derivatives ofXo1 andXo3 with respect to λ can now be written as

∂Xo1

∂λ
=

∂m1,0

∂λ
+
∂m1,1

∂λ
α +

∂m1,2

∂λ
α2 +

∂m1,3

∂λ
α3 + . . . (6.37)

∂Xo3

∂λ
=

∂m3,0

∂λ
+

∂m3,1

∂λ
α +

∂m3,2

∂λ
α2 +

∂m3,3

∂λ
α3 + . . . (6.38)

From these equations, it can be deduced that the terms
∂m1,1

∂λ
and

∂m3,3

∂λ
required in (6.19) are the

first and third moments of the expansions of ∂Xo1

∂λ
and ∂Xo3

∂λ
, respectively. In order to compute

these moments, the first step is to use the adjoint sensitivity expression in (6.26) to write

∂Xo1

∂λ
= XT

a1

∂A

∂λ
X +XT

a1

∂F (X)

∂λ
(6.39)

∂Xo3

∂λ
= XT

a3

∂A

∂λ
X +XT

a3

∂F (X)

∂λ
(6.40)

whereXa1 and Xa3 are the solutions of the Adjoint equations

JTXa1 = −d1 (6.41)

JTXa3 = −d3 (6.42)

From (6.39) and (6.40) it can be seen that the moments of ∂Xo1

∂λ
and ∂Xo3

∂λ
can be expressed in

terms of the moments ofX ,Xa1,Xa3 and
∂F (X)

∂λ
. The evaluation of these moments is the focus

of the next two subsections. First, the case of λ being a parameter of a linear element is presented

followed by the case of λ being a parameter of a nonlinear element.
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6.6.1 Linear Parameter Sensitivity

For the case of λ being a parameter of a linear element, equations (6.39) and (6.40) can be

simplified to
∂Xo1

∂λ
= XT

a1

∂A

∂λ
X (6.43)

∂Xo3

∂λ
= XT

a3

∂A

∂λ
X (6.44)

with Xa1 and Xa3 being the solutions of the adjoint equations shown in (6.41) and (6.42). The

adjoint moment vectors are defined as the Taylor series coefficients of the expansion of the ad-

joint solution vector Xa, defined in (6.24), with respect to the signal amplitude voltage α. The

expansions ofXa1 and Xa3 can therefore be expressed as

Xa1 = M a10 +Ma11α +Ma12α
2 +Ma13α

3 + . . .

=
∞∑

i=0

Ma1iα
i (6.45)

Xa3 = M a30 +Ma31α +Ma32α
2 +Ma33α

3 + . . .

=
∞∑

i=0

Ma3iα
i (6.46)

whereMa1k is the kth adjoint moment vector ofXa1 andMa3k is the kth adjoint moment vector

ofXa3. By substituting (6.29), (6.37) and (6.45) in (6.43), and also substituting (6.29), (6.38) and

(6.46) in (6.44), the final expressions in terms of the moments are obtained. Then, by equating

powers of α and α3 on both sides of the resulting expressions, the following relations are obtained

∂m1,1

∂λ
= MT

a10

(
∂A

∂λ

)

M 1 +MT
a11

(
∂A

∂λ

)

M 0 (6.47)

∂m3,3

∂λ
= MT

a30

(
∂A

∂λ

)

M 3 +MT
a31

(
∂A

∂λ

)

M 2 +

MT
a32

(
∂A

∂λ

)

M 1 +MT
a33

(
∂A

∂λ

)

M 0 (6.48)

It is important to note that the matrix ∂A
∂λ

contains only the harmonic balance ‘stamp’ of the

derivative of the element that λ is a parameter of, and is therefore an extremely sparse matrix



6 Efficient Sensitivity Analysis of Nonlinear Intermodulation Distortion 132

with at most four non-zero block entries [9]. In fact the computations above can be further

simplified based on the type of element that λ is a parameter of without the need for ∂A
∂λ

. For

example, in the case of a linear resistor of nominal value R0 that is connected between indexes i

and j, (6.47) and (6.48) become

∂m1,1

∂λ
= − 1

R0
2

[(
MT

a10,i −MT
a10,j

)
(M 1,i −M 1,j)

+
(
MT

a11,i −MT
a11,j

)
(M 0,i −M 0,j)

]
(6.49)

∂m3,3

∂λ
= − 1

R0
2

[(
MT

a30,i −MT
a30,j

)
(M 3,i −M 3,j)

+
(
MT

a31,i −MT
a31,j

)
(M 2,i −M 2,j)

+
(
MT

a32,i −MT
a32,j

)
(M 1,i −M 1,j)

+
(
MT

a33,i −MT
a33,j

)
(M 0,i −M 0,j)

]
(6.50)

6.6.2 Nonlinear Parameter Sensitivity

For the case of λ being a parameter of a nonlinear element, equations (6.39) and (6.40) can be

simplified to
∂Xo1

∂λ
= XT

a1

∂F (X)

∂λ
(6.51)

∂Xo3

∂λ
= XT

a3

∂F (X)

∂λ
(6.52)

For this case, we also need to define and compute the moments of the derivative of F (X) with

respect to λ. This is given by

∂F (X)

∂λ
= G(X) = G0 +G1α +G2α

2 +G3α
3 + . . .

=

∞∑

k=0

Gkα
k (6.53)

where Gk is the kth moment of
∂F (X)

∂λ
. By substituting (6.37), (6.45) and (6.53) into (6.51) and

also (6.38), (6.46) and (6.53) into (6.52), then equating powers of α and α3 on both sides of the
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resulting expressions, we obtain

∂m1,1

∂λ
= MT

a10G1 +MT
a11G0 (6.54)

∂m3,3

∂λ
= MT

a30G3 +MT
a31G2 +

MT
a32G1 +MT

a33G0 (6.55)

What remains now is to show how the computation of all the moments (M k, Ma1k, M a3k

and Gk) in (6.49), (6.50) and in (6.54),(6.55) can be achieved with very low computation cost.

This is the focus of section 6.7.

6.6.3 Extension to IP3 Sensitivity Using Single-tone Moments

It was shown in Chapter 5 that it is possible to determine the value of IP3 using only single-tone

moments analysis [22], [23], thereby considerably reducing the size of the system of equations

which leads to significant CPU cost savings. In this case, it was shown that the value of IP3

can be obtained from the single-tone moments expansion by evaluating the expression given by

(5.54) and repeated here as

IIP3 =

√
m1,1

m1,3
(6.56)

It is possible to determine the sensitivity of IP3 when only single-tone inputs are used by

applying a logical extension of the adjoint moments method presented in this section. More

specifically, the term m3,3 in equations (6.30)-(6.55) is replaced by m1,3 and by using the selection

vector d1 instead of d3. The remainder of the algorithm remains essentially the same, including

all the moments computation algorithms presented in the next section.

6.7 Moments Computation Algorithms

In the previous sections, simple closed form relationships were derived for computing IP3 and

its sensitivity as a function of the harmonic balance moments and the adjoint moments. The bulk

of the computation cost is thus spent on computing the moments. In this section, the moments

computation algorithms are presented and their efficiencies as compared to traditional harmonic

balance simulations are discussed. In section 6.7.1 the traditional harmonic balance moments

computation is reviewed, followed by the adjoint moments and the moments of the nonlinear



6 Efficient Sensitivity Analysis of Nonlinear Intermodulation Distortion 134

vector in sections 6.7.2 and 6.7.3.

6.7.1 Computation of the Harmonic Balance Moments

In this section, the moments algorithm presented in section 4.3 for computing the harmonic bal-

ance momentsM k defined in (6.29) is briefly reviewed.

The zeroth moment vectorM 0 is obtained by finding the solution of the system described by

the Harmonic Balance formulation given in (3.9) with the RF signal amplitude α set to zero. For

the remaining moments, the nonlinear harmonic balance Jacobian is expressed as a Taylor series

expansion with respect to α as given by

∂F (X)

∂X
=

∞∑

i=0

T iα
i (6.57)

Substituting (6.29) and (6.57) into (3.9), then equating powers of α on both sides of the resulting

expression allows for the computation of the remaining moment vectors Mn. The system of

equations that need to be solved are given by

ΦM 1 = BRF (6.58)

ΦMn = −1

n

n−1∑

j=1

(n − j)T jMn−j, n ≥ 2 (6.59)

with,

Φ = A+
∂F (X)

∂X

∣
∣
∣
∣
(α=0)

(6.60)

It is important to note that the matrix Φ has the same structure as a Jacobian matrix but with

only the DC and local oscillator components present, which makes it very sparse. The first

moment vector (M 1) is obtained by using one LU Decomposition to solve (6.58). As for the

remaining moment vectors Mn, these are found by recursively solving (6.59). As can be seen

from (6.58) and (6.59), the computation of the moment vectors is a solution of a set of linear

algebraic equations where the left-hand-side matrix is the same throughout and is therefore very

efficient.
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6.7.2 Computation of the Adjoint Moments

The adjoint moment vectors Mak are defined as the Taylor series coefficients of the expansion

of the adjoint solution vector Xa in (6.24) with respect to the signal amplitude voltage α. By

substituting the general form of the adjoint moments given in (6.45)-(6.46) and the moments of

the Jacobian matrix given in (6.57) into the definition of the adjoint vector shown in (6.24), the

following relation is obtained

(

A+

∞∑

i=0

T iα
i

)T (
∞∑

i=0

Maiα
i

)

= −d (6.61)

Equating powers of α on both sides of (6.61) then results in the following set of equations that

can be solved sequentially to obtain the adjoint moments.

ΦTMa0 = −d (6.62)

ΦTMa1 = −T T
1Ma0 (6.63)

ΦTMa2 = −T T
1Ma1 − T T

2Ma0 (6.64)

ΦTMa3 = −T T
1Ma2 − T T

2Ma1 − T T
3Ma0 (6.65)

Notice that in these relations, the adjoint moments computation matrix

Φ = A+ T 0 (6.66)

is the same sparse moments computation matrix that was used to determine the original moments

in (6.58) and (6.59) for computing IP3. This means that no additional LU decompositions are

required to find the adjoint moments. Furthermore, the matrices T i are also available from the

original computation of IP3. The computation of the adjoint moments is therefore very efficient.

To determine the two sets of adjoint moment vectors Ma1k and M a3k, equations (6.62)–(6.65)

are solved twice, the first time using d1 and the second time with d3.

6.7.3 Computation of the Nonlinear Vector Moments

In this section, the algorithm for computing the moments of
∂F (X)

∂λ
defined in (6.53) is presented.

To simplify the presentation, we will discuss this algorithm for one of the nonlinear entries in

F (X). The extension to the whole vector is trivial. Consider an entry in F (X) corresponding
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to a simple diode current equation

f(x) = Is(e
(x/VT ) − 1) (6.67)

Suppose we would like to compute the sensitivity of this function with respect to the saturation

current Is. In this case, λ = Is and g(x) would be defined as

g(x) =
∂f

∂Is
= (e(x/VT ) − 1) (6.68)

The first step toward computingGk is to express (6.68) as a Taylor series expansion with respect

to the radio frequency voltage amplitude α as follows

g(x) = g0 + g1α + g2α
2 + g3α

3 + . . . (6.69)

From this relation, we can then deduce the following expressions

g0 = g(x)|α=0 (6.70)

g1 =
∂g

∂α

∣
∣
∣
∣
α=0

(6.71)

2g2 =
∂2g

∂α2

∣
∣
∣
∣
α=0

(6.72)

6g3 =
∂3g

∂α3

∣
∣
∣
∣
α=0

(6.73)

The derivatives ∂ng
∂αn can be expressed analytically as

∂g

∂α
=

∂g

∂x

∂x

∂α
(6.74)

∂2g

∂α2
=

∂g

∂x

∂2x

∂α2
+

∂

∂α

(
∂g

∂x

)
∂x

∂α
(6.75)

=
∂g

∂x

∂2x

∂α2
+

∂2g

∂x2

[
∂x

∂α

]2

(6.76)

∂3g

∂α3
=

∂g

∂x

∂3x

∂α3
+ 3

∂2g

∂x2

∂x

∂α

∂2x

∂α2
+

∂3g

∂x3

[
∂x

∂α

]3

(6.77)
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In these relations, ∂nx
∂αn are the moments of the solution vector as defined in (6.29) and are already

available from the computation of IP3 itself. As for the derivatives of the function g(x) with

respect to x ( ∂ng
∂xn ), the expressions are determined analytically. For example, for the diode current

equation in (6.68), the derivatives with respect to x would be

∂g

∂x
=

e(x/VT )

VT
(6.78)

∂2g

∂x2
=

e(x/VT )

(VT )2
(6.79)

∂3g

∂x3
=

e(x/VT )

(VT )3
(6.80)

The Gk terms in (6.53) are the frequency domain versions of gk in (6.70)–(6.73). To obtain Gk

we need to express each of the relations in (6.74)–(6.77) in the frequency domain which we do

so with the aid of the Fourier Transform matrix Γ [70].

G0 = Γ−1







g(x)|α=0

. . .

g(x)|α=0







(6.81)

G1 = Γ−1







∂g
∂x
|α=0

. . .

∂g
∂x
|α=0






m1 (6.82)

G2 = Γ−1







∂g
∂x
|α=0

. . .

∂g
∂x
|α=0







2m2 + Γ−1







∂2g
∂x2 |α=0

. . .

∂2g
∂x2 |α=0






m2

1 (6.83)

G3 = Γ−1







∂g
∂x
|α=0

. . .

∂g
∂x
|α=0







6m3 + 3Γ−1







∂g
∂x
|α=0

. . .

∂g
∂x
|α=0






m12m2 +

Γ−1







∂g
∂x
|α=0

. . .

∂g
∂x
|α=0






m3

1 (6.84)
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In these relations, the vectorsmk are the time domain versions of the Harmonic Balance moment

vectors are therefore defined as

mk = Γ−1M k (6.85)

For the more general case of multi-node circuits with multi-variable nonlinearities, a funda-

mentally similar analysis to that of the single-node circuits is performed. The resulting derivations

and expressions of the partial derivatives are too long and redundant to be stated in their entirety.

Essentially, the analytical expression for the first derivative ∂g
∂α

is given by

∂g

∂α
=

∂g

∂x1

∂x1

∂α
+

∂g

∂x2

∂x2

∂α
+ · · ·+ ∂g

∂xn

∂xn

∂α
(6.86)

The higher order derivatives are then deduced from this relationship by following a similar ap-

proach as that of the one variable case. It is important to note that while the derivation of this

method might seem complex, this only needs to be done once, and the rest of the complexity

is shielded from the user at the implementation stage. Fig. 6.6 provides a summary of the new

moments based adjoint algorithm in pseudo-code format.

1. Set up the general harmonic balance equations of the circuit according to the

formulation shown in (6.21).

2. Calculate the moment vectorsM k as defined in (6.29) by solving the formulations

in (6.58) and in (6.59) recursively.

3. Obtain the terms m1,1 and m3,3 from the entries in the moment vectors at the locations

shown in Fig. 6.4 for amplifiers and in Fig. 6.5 for mixers.

4. Calculate the Adjoint moment vectorsMak as defined in (6.45) by solving the

formulations in (6.62)–(6.65) recursively.

5. For every parameter λ, perform the following

(a) If λ is a parameter of a nonlinear element, compute the moments Gk as defined in

(6.53) by solving the formulations in (6.81)–(6.82).

(b) Obtain the terms
∂m1,1

∂λ
and

∂m3,3

∂λ
by evaluating (6.47) and (6.48) if λ represents a

linear element, or (6.54) and (6.55) if λ represents a nonlinear element.

(c) Determine the value of the IP3 sensitivity according to (6.19).

Fig. 6.6 Summary of the algorithm for the adjoint sensitivity analysis of nonlinear

distortion in RF circuits.
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6.8 Numerical Examples

In this section, the new algorithm is applied to several common example Radio Frequency circuit

topologies. The results are then compared with those obtained using the harmonic balance adjoint

sensitivity technique in order to demonstrate the accuracy and speed-up of the new approach.

6.8.1 Circuit Descriptions

The example circuits tested are a common emitter low noise amplifier, a differential amplifier,

a singly balanced mixer and a doubly balanced Gilbert/Jones mixer circuit. All of these circuit

topologies are implemented using Bipolar Junction transistors. For each of these circuits, we

wish to compute the relative sensitivities of the third order intercept point with respect to changes

in the values of both linear and nonlinear parameters. In all cases, the linear parameter selected

was the collector resistance of the RF input transistor, while the nonlinear parameter selected was

the saturation current of the collector-base pn junction of the transistor.

The first example circuit tested is a standard common emitter type amplifier. This circuit

is quite linear in nature and the value of the input referred third order intercept point in this

circuit was found to be 20.2 dBm using the moments computation method with two input tones

at frequencies of f1 = 100 MHz and f2 = 100.1 MHz. For the differential amplifier circuit, the

two input frequency tones were f1 = 1000 MHz and f2 = 1001 MHz and the resulting input IP3

was found to be −7.24 dBm.

As for the mixer circuits, in both cases we used up-conversion mixers with the local oscillator

frequency being fLO = 1 GHz and the RF signal frequencies were f1 = 100 MHz and f2 = 100.1

MHz. The value of the input referred IP3 was −3.4dBm for the singly balanced mixer, and 13.77

dBm for the doubly balanced Jones mixer.

6.8.2 Methodology and Results

To compute the adjoint moments sensitivity with respect to the linear resistance, first the adjoint

moments are computed using the relations given in (6.62)–(6.65). Once these moments are com-

puted, the sensitivity expressions are determined using (6.47) and (6.48) with the matrix ∂A
∂λ

being

the harmonic balance stamp of the resistor. The sensitivity of the third order intercept point is

then computed by evaluating (6.19). The same procedure is applied to all of the example circuits.

The results obtained are all summarized in Table 6.3.



6 Efficient Sensitivity Analysis of Nonlinear Intermodulation Distortion 140

Table 6.3 Comparison of relative sensitivities of IP3 with respect to a linear and

nonlinear parameter for the example circuits.

Type of Sensitivity Harmonic Balance Moments Method %

Circuit parameter Sensitivity Sensitivity Error

Common Emitter Linear 8.601 × 10−1 8.604 × 10−1 0.035%

Amplifier Nonlinear 2.180 × 10−3 2.179 × 10−3 0.046%

Differential Linear −2.354 × 10−4 −2.354 × 10−4 0.004%

Amplifier Nonlinear −4.1526 × 10−13 −4.1533 × 10−13 0.017%

Singly Balanced Linear 3.1040 × 10−2 3.1146 × 10−2 0.340%

Mixer Nonlinear −1.375 × 10−13 −1.402 × 10−13 1.925%

Doubly Balanced Linear 2.840 × 10−2 2.816 × 10−2 0.816%

Mixer Nonlinear −1.860 × 10−15 −1.891 × 10−15 1.640%

Table 6.4 CPU cost comparison of finding the adjoint sensitivity of IP3 for the

example circuits

Type of Circuit Harmonic Balance Moments Method Speed-up

CPU time (s) CPU time (s)

Common Emitter Amplifier 0.81 0.31 2.6 times

Differential Amplifier 6.03 0.52 11.7 times

Singly Balanced Mixer 21.63 2.59 8.4 times

Doubly Balanced Mixer 41.66 3.34 12.4 times
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To compute the IP3 sensitivity with respect to the nonlinear parameter, the additional step

that needs to be taken is computing the moments of the nonlinear vector sensitivity, Gk. Once

these moments are computed, the values of
∂m1,1

∂λ
and

∂m3,3

∂λ
are obtained by solving (6.54) and

(6.55). The relative sensitivity obtained was 0.002 V for the common emitter topology. The same

procedure is applied to all of the example circuits and the results for both circuit parameters are

summarized in Table 6.3 where they are also compared to the results obtained using the harmonic

balance adjoint sensitivity approach. As can be seen from the table, the results are very accurate.

6.8.3 Computation Cost Analysis

A comparison of the computation times between traditional harmonic balance and the new mo-

ments method for determining the sensitivity of IP3 using the adjoint approach is shown in Table

6.4. These computation times are obtained using a prototype MATLAB simulator on a local

workstation powered by a single-core Intel Xeon processor with a clock speed of 3.6 GHz and

4GB of RAM. As can be seen, the moments method presents a significant speedup in the compu-

tation time needed to determine the relative IP3 sensitivity.

It is also important to note that both the harmonic balance approach and the moments method

cannot be taken independently. In the case of harmonic balance we must first compute the value

of IP3 from a standard harmonic balance simulation in order to obtain the harmonic balance

Jacobian that is needed for computing the sensitivity. In the case of the moments approach,

we also need to obtain IP3 using the moments based method in order to have access to the

moments computation matrix. With this being the case, it is more meaningful to combine the

computation times for computing both the nominal value of IP3 and its sensitivity using both

approaches, which will give us an idea of the speedup for the overall simulation. Therefore when

the computation times shown in Table 6.4 are coupled with the time of the original moments

technique for obtaining IP3 as described in Chapter 4, the result is a very efficient technique for

finding both IP3 and its sensitivity with an overall speedup shown in Table 6.5 over harmonic

balance. It is important to note that the computational cost of the overall algorithm is very low

since the moments computation matrix is the same for determining both the original harmonic

balance moments and also the adjoint moments. In addition, this matrix is very sparse since

it is the harmonic balance Jacobian matrix evaluated with the amplitude of the radio frequency

tones set to zero (i.e. α = 0). For both the moments method and the harmonic balance method,

the computation time for finding the sensitivity with respect to additional circuit parameters was
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Table 6.5 Computation cost comparison of finding both IP3 and its adjoint sensi-

tivity for the example circuits

Type of Type of Harmonic Balance Moments Method Speed-up

Circuit Computation CPU time (s) CPU time (s)

Common IP3 8.78 1.22 7.2 times

Emitter Sensitivity 0.81 0.31 2.6 times

Amplifier Total 9.59 1.53 6.3 times

Differential IP3 44.67 3.45 13.0 times

Amplifier Sensitivity 6.03 0.52 11.7 times

Total 50.7 3.97 12.7 times

Singly IP3 118.43 4.01 29.5 times

Balanced Sensitivity 21.63 2.59 8.4 times

Mixer Total 140.06 6.60 21.2 times

Doubly IP3 158.91 5.08 31.3 times

Balanced Sensitivity 41.66 3.34 12.4 times

Mixer Total 200.57 8.42 23.8 times

Table 6.6 Computation cost comparison of finding both IP3 and its adjoint sensi-

tivity using single-tone moments analysis

Type of Type of Harmonic 1-tone Moments Speed-up

Circuit Computation Balance time (s) Method time (s)

Differential IP3 44.67 0.34 129.8 times

Amplifier Sensitivity 6.03 0.03 201 times

Total 50.7 0.37 137.0 times

Singly IP3 118.43 0.43 275 times

Balanced Sensitivity 21.63 0.21 103 times

Mixer Total 140.06 0.64 218 times
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negligible, which is a property of the adjoint method.

Additional savings in computation times can be achieved when single-tone moments analysis

is used to compute IP3 and its sensitivity. To illustrate this point, the sensitivity of IP3 obtained

from a single-tone moments analysis was determined for the common emitter amplifier and the

singly-balanced mixer circuits. The CPU time and the overall speedups for computing both IP3

and its sensitivity is shown in Table 6.6

6.9 Conclusion

In this chapter, two new methods were presented for the efficient sensitivity analysis of third or-

der nonlinear distortion using moments analysis. The first approach was based on computing the

moments expansion with respect to a sensitivity parameter and the second approach was based

on the adjoint moments analysis. These approaches complement the moments based method for

computing IP3 presented in Chapters 4 and 5 by providing insight into the sources of distortion

while still remaining significantly more efficient than traditional simulation approaches for com-

puting IP3 based on Harmonic Balance. The sensitivity obtained using the moments approach

was as accurate as the Harmonic Balance adjoint sensitivity method.
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Chapter 7

Summary and Future Work

7.1 Summary

In this thesis, a new simulation method for measuring nonlinear intermodulation distortion and

its sensitivity at the output of a non-linear system based on the calculation of the system moments

was presented. It has been demonstrated that by using the new algorithms to compute IP3 and

its sensitivity from the moments, distortion analysis of RF circuits becomes significantly more

efficient. The new method is also very flexible and works for many types of systems.

1. The first contribution presented was an efficient moments based technique for computing

the value of IP3 in mixer circuits. The main advantages that the new method exhibits over

the Harmonic Balance method are summarized as follows:

• The moments computation matrix Φ used to obtain the moment vectors from the

expanded set of MNA equations is very sparse as it is evaluated with the RF amplitude

set to zero. This is in contrast to the Harmonic Balance Jacobian matrix which is

dense.

• The moments computation matrix that is used is also static and does not change

throughout the algorithm. For this reason, it needs to be computed, stored and in-

verted only once. The Harmonic Balance Jacobian matrix changes at each iteration

of the solution, which could be a significant number of times. This means it has to be

computed and manipulated at each iteration, which when you also consider its dense

structure, leads to increased CPU cost.
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• The new method is essentially equivalent to numerically computing the summation of

necessary Volterra Series terms for analyzing intermodulation distortion. This avoids

the need to perform complex analytical manipulations to compute the Volterra ker-

nels. It also provides accurate results for circuits that experience LO convergence

issues.

The speedup obtained on a double-balanced Gilbert cell mixer was found to be 40 times.

When the method in this contribution is combined with the moments based approach for

computing IP3 in amplifier circuits [57], an overall framework for the computation of IP3

using moments analysis in general RF circuits is now available.

2. The second method presented was a new approach for the fast computation of IP3 using

single-tone inputs. This method shares the same properties as the moments based technique

for computing IP3 but with the added advantage of significantly reduced circuit equations

due to the presence of only single-tone RF signal inputs instead of the traditional multi-

tone inputs for computing IP3. This is made possible by the separation of the third order

nonlinear response that causes gain compression at the fundamental frequency from the

desired linear response through access to the closed form expressions for each component.

The significantly reduced size of the systems of equations leads to further speed-ups in

computation time over traditional multi-tone steady-state simulation methods, with com-

putation times that were orders of magnitude faster. This is especially the case in mixer

circuits where only two frequency tones are required (the single-tone RF input in addition

to the LO) as opposed to the traditional 3 input tones.

3. The third contribution of this thesis consists of new techniques for the sensitivity anal-

ysis of intermodulation distortion. This was accomplished using two methods, the first

through finding the multi-dimensional moments expansion of the solution, and the second

through finding the moments of the adjoint solution which is a more efficient and practical

approach. In the first approach, closed form expressions linking the IP3 sensitivity terms

to the expansion of the Harmonic balance moments with respect to the input amplitude in

addition to a sensitivity parameter were developed. The method was fully automated and

very efficient when the sensitivity of only a few parameters was required.

In the adjoint approach, a general adjoint moments method for computing the sensitivity

of IP3 that covers all parameters in the general circuit equations including parameters of
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linear and nonlinear circuit elements was presented. Closed form expressions for the sen-

sitivity of IP3 as a function of the entries in the adjoint moments for all circuit parameters

were developed. The adjoint moments are computed using the same set of linear equations

used to determine the harmonic balance moments. The new method for sensitivity analysis

thereby retains the main advantages of the adjoint sensitivity algorithm, namely that of low

incremental computation cost and the ability to find the sensitivity of one variable with

respect to all the parameters in the system while providing significant speedup over tradi-

tional harmonic balance methods. The new algorithm was tested on a number of different

circuit topologies including LNAs and mixers and retained the same speedup of the original

moments approach for finding IP3 but now with added option of finding its sensitivity.

7.2 Future Work

1. Benchmarking results with other IP3 computation methods: To verify the accuracy and

speed-up of the new methods presented in this thesis, the numerical results of the sim-

ulations were compared with those of brute-force Harmonic Balance. There are several

other methods for computing IP3 that are available in the literature, as shown in [30]-

[38] and as described in Sections 2.5 and 2.6. These include using periodic steady-state

and periodic AC analysis (PSS/PAC) for fast IP3 computation, distortion analysis using

simplified Newton, linear centric distortion analysis methods and weakly nonlinear circuit

reduction methods, among others. All of these methods present a speed-up in computation

time for computing IP3 over brute-force harmonic balance simulations, with some methods

achieving this at the expense of accuracy. Implementing these alternative IP3 computation

techniques in the same circuit simulator environment and on the same hardware platform

as that of the moments technique would provide the basis for a 1:1 comparison between

the methods and would further verify the effectiveness of the new moments based method.

2. Improvements to the Harmonic Balance method: In the implementation of the brute-force

Harmonic Balance method, Newton iteration combined with the FFT and IFFT algorithms

were used to solve the system of nonlinear algebraic equations to find the steady-state

solution of the nonlinear circuits. In practice, several variations on the solution algorithm

can be implemented to try and improve the convergence and CPU cost of the Harmonic

Balance method as described in Section 3.6. Some algorithms use direct approaches to
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solve the nonlinear equations while others use different iterative methods in the place of

Newton iteration. Some modifications are also aimed at improving convergence through

the use of preconditioners or relaxation methods, for example. However, the improvement

in computation time by using these modifications is not guaranteed for all types of circuit

topologies. Nevertheless, a comparison of the speed-ups obtained when using moments

analysis as opposed to using modified Harmonic Balance techniques would be important

for the completeness of the results.

3. Parallel algorithms for the Moments based computation of intermodulation distortion: In

this thesis, new methods for the efficient computation of the value of IP3 and its sensitivity

in RF circuits based on the system moments were presented. The presented algorithms

however, are serial in nature. The trend in microprocessors design has shifted from in-

creasing clock speed to increasing the number of cores. Existing simulation algorithms can

no longer rely on increased clock speed to offset the slowdown due to increased complex-

ity. Changing the algorithms presented in thesis to run on emerging parallel processing

platforms will allow the algorithm to scale in tandem with new processor technology.

4. Intermodulation Distortion Analysis of RF Microsystems: Integrating microelectronics

with circuits of different energy domains such as RF MEMS based oscillators [91], [92]

has led to dramatically increased circuit complexities. In addition, designers are increas-

ingly being faced with having to use components that are characterized by measurements

or extensive numerical simulations, but for which a circuit model is not readily available in

the CAD tools. For these reasons, there is a strong demand for efficient EDA tools that can

handle complex RF microsystems in an efficient, accurate and cost effective manner.

5. Use of the Moments computation algorithm for other applications of Volterra series: The

moments computation algorithm used in this thesis was shown to be essentially equivalent

to the numerical computation of the Volterra kernels. The algorithm was used to compute

IP3 since an important use of Volterra series in RF circuits is in the analysis of nonlinear

distortion. However, there are also many other important applications of Volterra series.

One of the most important applications is in the fields of medicine (biomedical engineering)

and biology, especially neuroscience [93]–[95]. An interesting extension of this research

work would be trying to numerically compute the Volterra kernels to model nonlinear ef-

fects in biomedical applications and target some of the bottlenecks in the simulation and
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modeling of biomedical system devices and behavior.
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