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Abstract

One of the key design requirements of communication circuits is that of linearity, and one of the
main figures of merit for measuring the amount of nonlinear distortion at the output of Radio
Frequency (RF) circuits is the third order intercept point (IP3). There are two general classes
of methods for calculating the IP3 of a circuit. The first is analytical and is usually based on
Volterra series. This approach is cumbersome and is difficult to automate for arbitrary circuits
with arbitrary non-linearities. The second class of methods is based on multi-tone simulations
and is general and flexible but requires significant computational cost due to the large number of
variables present in the circuit equations and due to the need to perform a steady-state simulation.
In this thesis, a new simulation based approach is presented for efficiently computing the value
of IP3 and its sensitivity in RF circuits. The approach relies on the numerical computation of the
Volterra series terms from the circuit moments by evaluating closed form expressions that link the
distortion terms to the moments (The moments are defined as the Taylor series expansion of the
system solution with respect to the RF input power). Obtaining the value of IP3 and its sensitivity
therefore is reduced to solving a set of linear sparse equations. The new approach is simple to
apply, fully automated and presents significant reduction in computational cost over existing
simulation based approaches while being as accurate as Harmonic Balance based methods. The
thesis consists of three main contributions. The first being the moments based approach for
finding the IP3 of mixer circuits, which exhibit strong nonlinearities outside the signal path. The
second contribution is a method for computing the value of IP3 using only single-tone inputs,
which significantly reduces the size of the system of equations that need to be solved. The third
contribution is the adjoint sensitivity computation of IP3 using moments. This adds insight to the
numerical results of the moments based approach for computing IP3 which provides a critical

advantage for optimization, design centering and yield analysis applications.
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Résumé

Une des conditions essentielles dans la conception de circuits de communication est la linéarité.
L’un des principaux facteurs de mérite pour mesurer la distorsion non linéaire des circuits de
radiofréquence (RF) est le point d’interception du troisieme ordre (IP3). Les méthodes de calcul
de I’IP3 peuvent étre divisées en deux categories: La premiere regroupe les méthodes analytiques
généralement basées sure les séries Volterra. Cette méthode est difficile a automatiser d’une
facon independante de la topologie des circuits et du type de la nonlinéarité. Les méthodes de la
deuxieme classe sont basées sur des simulations du type Harmonic Balance (HB). Ces méthodes
necessitent un coiit de calcul élevé en raison du grand nombre de variables dans les équations a
resoudre. Dans cette theése, on présente une approche nouvelle pour 1’évaluation de I'IP3. Cette
approche est basée sur les méthodes de simulation sans pour autant necessiter la solution des
equations Harmonic Balance. Cette méthode repose sur le calcul numérique des termes de la série
Volterra a partir des moments du circuit en évaluant les expressions de forme fermée qui relient
les termes de distorsion aux moments (les moments sont définis comme 1’expansion de la série de
Taylor de la solution du systeme par rapport a la puissance d’entrée RF). L’ obtention de la valeur
de I'IP3 et sa sensibilité est donc réduite a résoudre un ensemble d’équations linéaires creuses.
Cette nouvelle approche est simple a appliquer, entiecrement automatisée et présente une grande
réduction en calcul par rapport aux approches courrantes basées sur la simulation tout en étant
aussi précises que les méthodes basées sur la balance harmonique. Cette thése comprend trois
contributions principales. La premiere est une approche basée sur les moments afin de trouver
I’IP3 des circuits mélangeurs. La deuxieme est une méthode de calcul de la valeur IP3 en utilisant
une seule fréquence, ce qui réduit considérablement la taille du systeme d’équations qui doivent
étre résolu. La troisieme contribution est le calcul de la sensibilité adjointe de I’IP3 a I’aide des
moments. Cela ajoute un apergu sur les résultats numériques provenant de I’approche basée sur
les moments pour le calcul de I'IP3, ce qui offre un avantage déterminant pour 1’optimisation, et

I’analyse de rendement.
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Chapter 1

Introduction

1.1 Background and Motivation

The market for wireless industrial and consumer electronics has experienced remarkable growth
over the past decade. The demand for wireless technology continues to be fueled by the need
to enable people to communicate and share all forms of media at anytime, anywhere and in an
efficient cost-effective way. This has lead to the popularity of devices such as notebook comput-
ers and cellular smartphones, which are now considered to be staples of modern life. Increased
competition in the marketplace and the need to rapidly introduce new technologies to replace out-
going products with ever decreasing life cycles has in turn led to the need to reduce design, testing
and manufacturing time. This has to be accomplished while also simultaneously improving the
performance of increasingly complex circuits and systems. As an example of how complex mod-
ern wireless systems have become, consider a common smartphone such as the one illustrated in
Fig. 1.1. At any one instance in time, this device could be wirelessly connecting through any
combination of methods simultaneously, including a Global System for Mobile Communication
(GSM) connection for voice, an IEEE 802.11b/g connection to a Wireless Local Area Network
(WLAN) for data, and a Global Positioning System (GPS) satellite connection for navigation,
among others [8]. As a result of this complexity, a significant emphasis is now placed on better
Electronic Design Automation (EDA) tools as a way to reduce time to market and bring down
development costs. While the increased complications of modern designs has led to a growing
reliance on Computer Aided Design (CAD) tools, these same complications have stretched the
limits of these tools. In fact, for many applications the overall performance of the system is now

limited by the capabilities of a CAD tool rather than by the actual technological limitations. Fig.
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Fig. 1.1 Multiple simultaneous wireless activities on a smartphone

1.2 shows the RF section of a cellphone [1], and is a good illustration of the complexity of modern
transceiver circuits.

Wireless industry standards, such as GSM and IEEE 802.11b/g/n, stipulate many stringent
technical specifications which the RF circuit designers must meet. These specifications translate
to overall requirements at the system level, at the building-block level and also at the circuit level
as illustrated in Fig. 1.3. Therefore, it is of particular importance for circuit designers to have at
their disposal tools that can measure specific performance figures of merit such as the Signal to
Noise Ratio (SNR) or the Power Gain of common RF transceiver circuits in order to ensure they
meet the standard specifications. One of the most important requirements is that of linearity,
and more specifically the linearity of core RFIC building blocks such as Low Noise Amplifiers
(LNAs) and mixers of RF circuits similar to that shown in Fig. 1.2. The design requirements of
such circuits typically include stringent conditions on intermodulation distortion. The main figure
of merit used by RF engineers to quantify the amount of intermodulation distortion has typically
been that of the third order intercept point (IP3), which provides a measure of the third order
nonlinearity in a circuit [6]. It is also very important for circuit designers to be able to perform
an efficient sensitivity analysis of the circuit’s intermodulation distortion without the need for
inefficient brute-force perturbation of the system solution. This would give the designers insight

into the numerical results of the circuit simulator by showing how much of an effect changes to
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certain circuit parameters or variables will have on the linearity of the output. This is particularly
important for design centering, optimization and yield analysis applications among others [9].

Radio Frequency circuits are typically designed to be as linear as possible in order to reduce
nonlinear distortion. Nonlinear distortion is due to the inherent nonlinearity of circuit compo-
nents and results in the harmonics of input tones, as well as the intermodulation products, being
present at the output. Of particular interest are third order intermodulation products because they
mix back into the frequency band of operation and result in many undesirable effects such as gain
compression and adjacent channel interference. In a communication system, nonlinear distortion
along with noise and interference in the transmission channel can then affect the receiver side Bit
Error Rate (BER) [10]. In a typical laboratory measurement setup on a workbench, the circuit
hardware can be tested and the value of IP3 can be obtained by applying a 2-tone input and mea-
suring the third order intermodulation product which mixes back into the passband of the circuit.
Note that applying a single-tone input and attempting to characterize the third order nonlinearity
by measuring the third harmonic is not a suitable approach because the third harmonic typically
falls outside the passband of the circuit. This has lead to the popularity of obtaining IP3 based
on the measurement of the third order intermodulation product of a two-tone input as a figure of
merit for linearity. At the design and development stage of the process, most of the common and
efficient methods for the distortion analysis of analog and RF circuits can be categorized under
one of two general classes of techniques. The first class of methods is that of simulation based
approaches and the second class is that of analytical techniques.

In a simulation environment, the most common approach for determining IP3 is to mimic
the laboratory measurement by applying a two-tone input and performing a steady-state analysis
using time-domain techniques such as the Shooting method [11], or frequency domain techniques
such as the Harmonic Balance method [5], [12], [13]. These approaches are general and give very
accurate results; however these methods are often very CPU expensive. For example, in the case
of Harmonic Balance, the simulation requires a large CPU cost because of the large number of
variables present due to the two-tone input. This concept is illustrated in Fig. 1.4 which shows the
output spectra of a combination of linear and nonlinear time invariant (amplifier) and periodically
time varying (mixer) systems excited by single-tone and two-tone inputs [2]. As can be seen from
Fig. 1.4 (d) and (h), the nonlinear systems with multi-tone inputs exhibit a significantly larger
number of distortion tones at the output even for a small number of harmonics (only 3 harmonics
are considered in Fig. 1.4). This is particularly the case for mixer circuits which would, in

this instance, have a three-tone input (the local oscillator tone in addition to the two RF tones).
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Another factor which leads to a high CPU cost is that in order to obtain the steady-state solution of
nonlinear systems, a set of nonlinear equations needs to be solved using iterative techniques such
as Newton iteration [11], [14] which comes with its own set of limitations, including accuracy
and convergence issues. Furthermore, most of the simulation based approaches provide little
or no insight into the numerical results, which means that a sensitivity analysis algorithm must
then be applied as a post-processing step in order obtain this insight. Many sensitivity analysis
algorithms could also exhibit a high CPU cost. It is also possible to obtain the nonlinear steady-
state response using a SPICE-like simulator by performing a long enough transient analysis until
the transients die out. Such an approach is, however, extremely inefficient due to large deviations
in the time constants of the circuit and also due to the input frequencies which result in a very
large number of time steps being required before reaching steady-state [15].

Alternatively, the value of IP3 can be obtained analytically through the use of the Volterra
functional series [3], [16]. This approach requires complex mathematical analysis for obtaining
expressions for higher order Volterra kernels which can then be used to compute a whole range
of distortion figures of merit such as IP3. The advantage of these approaches is that, once the an-
alytical expressions are derived, the CPU cost of evaluating them is extremely low. Furthermore,
these expressions provide considerable insight which help designers identify the key sources of
nonlinearity in a given circuit. However, such approaches suffer from two main shortcomings.
The first is due to the complex analytical manipulations that are required to obtain the closed form
expressions for the Volterra kernels. These typically involve solving multi-dimensional convo-
lution integrals which makes these analytical methods very difficult to automate in a general
purpose simulator that must handle circuits with arbitrary topologies. The second shortcoming
results from the fact that Volterra series are most suitable for weakly nonlinear circuits and are
difficult to apply to circuits with inherent strong nonlinearities such as switching circuits and
mixers.

In this thesis, a new approach is presented for analyzing the linearity of Radio Frequency
circuits in an efficient and accurate manner. The new method does not attempt to mimic labora-
tory measurements by performing multi-tone steady-state analysis. Instead, the value of IP3 and
its sensitivity are computed directly from the Harmonic Balance equations by applying efficient
algorithms that compute the system moments [17], [18]. It is important to note that, in this case,
the nonlinear Harmonic Balance equations do not need to be solved, and that the computational
complexity of obtaining IP3 is reduced to that of computing the moments which is essentially the

solution of a set of sparse linear equations. Furthermore, given that the new approach is based
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on the Harmonic Balance formulation, it is general and can be applied to any arbitrary circuit
topology, nonlinearity or model in a fully automated environment unlike Volterra series based
methods. The scope of the new method presented in this thesis spans that of RF amplifier circuits

in addition to mixers.

1.2 Contributions of the Thesis

In this thesis, a number of advanced novel simulation algorithms have been developed to ef-
ficiently analyze the effects of the third order intermodulation distortion on the linearity of RF
building blocks such as Low Noise Amplifiers and Mixers. These new algorithms provide signifi-
cant computational cost savings without sacrificing accuracy when compared to existing methods.

More specifically, the main contributions of this thesis are listed as follows.

1. Moments based computation of intermodulation distortion in mixer circuits [19], [20] (see
Chapter 4): In this thesis, a new method for the efficient computation of the value of IP3
in mixer circuits based on the system moments is presented. These circuits are designed to
be highly linear in the signal path, but contain highly nonlinear internal switching due to
the large signal Local Oscillator (LO) input. Using this new approach, the circuit moments
expansion around the local oscillator power is used to compute the value of IP3. This
method is shown to be equivalent to the numerical computation of the necessary Volterra
series distortion terms. This approach does not require any analytical manipulation but is
rather applied directly to the Harmonic Balance equations based on the Modified Nodal
Analysis (MNA) [21] formulation of the circuit. It can therefore be applied to circuits of
arbitrary topology and complexity. The moments computation is done numerically around
a given LO input power (operating point) and with the input frequencies known, and thus
produces very accurate results. Furthermore, the computation of all the moments requires
only one LU decomposition of a moments computation matrix that is very sparse. The
method for computing this moments matrix for mixers in addition to the proof of its sparsity

is also presented in this contribution.

2. Single-tone computation of the third order intercept point [22], [23] (see Chapter 5): In
this thesis, a novel approach for obtaining the IP3 of general RF circuits is presented where
the number of variables is the same as a Harmonic Balance formulation with a single-

tone input, thus making the size of the system of linear equations that need to be solved
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considerably smaller than what is proposed in the literature. Furthermore, the computation
complexity of this method is that of solving a set of linear equations and does not require
the solution of the nonlinear Harmonic Balance equations which results in a considerable
reduction in computation cost. In this contribution, the general framework of the method is
presented that spans mixers in addition to amplifier circuits. The details of the mathematical
derivations linking the single-tone moments to the IP3 of the circuit for both amplifiers
and mixers are also provided. The new approach offers a fast alternative to the two-tone
moments method with a considerably reduced CPU cost, as will be seen in the numerical
examples section for this contribution. The speedup is mainly due to the significantly

smaller size of the set of linear equations to be solved.

3. Sensitivity Analysis using multi-dimensional moments [24] (see Section 6.2): In this con-
tribution, an analytical relationship is presented between the value of IP3 and the multi-
dimensional Harmonic Balance moments (the moments with respect to the input RF power
as well as the design parameters). This allows for the derivation of closed form expressions
for the sensitivity of IP3 as a function of these multi-dimensional moments and thus pro-
vides insight into the numerical results of the moments based methods for computing 1P3.
The CPU cost of the operation is that of finding the multi-dimensional moments which is

of the same order as solving a system of sparse linear equations.

4. Adjoint Sensitivity Analysis of nonlinear distortion [25], [26] (see Section 6.3): In this
thesis, a new approach for computing the sensitivity of IP3 based on the adjoint sensitivity
method is presented. The adjoint method has been a classical tool for the sensitivity analy-
sis of linear circuits in addition to nonlinear circuits in the time-domain and DC [27], [28]
and has also been extended to cover the sensitivity analysis of nonlinear circuits operating
under large signal periodic and almost-periodic conditions as is the case with the Harmonic
Balance method [7]. The new method presented in this contribution benefits from the same
CPU cost advantage of the moments based techniques while providing the sensitivity of
IP3 with respect to all circuit parameters. This would provide a critical advantage enabling
circuit optimization, design space exploration and design centering. This method is gen-
eral and easily automated for any arbitrary circuit topology. The method also shares the
same properties of the adjoint approach, namely those of having low incremental CPU cost
to the original algorithm, and the ability to find the sensitivity with respect to all circuit

parameters.
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1.3 Organization

This thesis is organized into seven chapters. Following this introduction, Chapter 2 provides a
review of nonlinear intermodulation distortion analysis methods for RF circuits and some of the
most common approaches in the literature for obtaining the value of the third order intercept
point. This is then followed by Chapter 3, in which the formulation of the Harmonic Balance
equations is presented in addition to an overview of nonlinear steady-state circuit simulation using
Harmonic Balance. An overview of sensitivity analysis methods is also presented in Chapter 3.
The first main contribution of this research work is presented in Chapter 4, which is that of
computing the value of IP3 in mixer circuits using moments. The second main contribution is
found in Chapter 5, which includes the definition of the single-tone IP3 formulation and the
derivation of the link between the single-tone moments and the value of IP3. Chapter 6 presents
the two moments based sensitivity analysis techniques that were developed. Finally a summary

and the conclusions are presented in Chapter 7.
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Chapter 2

Review of Intermodulation Distortion

Analysis Techniques

2.1 Introduction

In general, distortion is defined to be simply the deviation of the output signal from the expected
or desired waveform [3]. The distortion that is a result of the nonlinear behavior of circuit pa-
rameters is referred to as nonlinear distortion. One example of nonlinear distortion is crossover
distortion at the output of a Class B output stage [3]. Linear distortion can also affect the behavior
of linear circuits driven by signals with complex spectral distributions such as square waves. A
good example of linear distortion is the response of an RC circuit to a square wave input, which
could deviate quite considerably from a square wave depending on its time constant even though
the circuit only contains linear elements. In Radio Frequency and microwave circuits, nonlinear
distortion is of particular importance since it is an important and usually an undesired behavior
that limits their performance. It is therefore very important to be able to measure the amount of
nonlinear distortion efficiently using CAD tools and is thus the focus of this research work. In
this chapter, an overview of nonlinear distortion is presented in addition to a review of some of
the main methods described in the literature for quantifying the amount of nonlinear distortion in

RF circuits.
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2.2 Importance of Nonlinear Distortion

Nonlinear distortion presents several significant challenges to circuit designers. If a nonlinear
circuit is driven by a single-tone sinusoidal source at a frequency of w; with a sufficiently small
amplitude, then the output spectrum will contain only one frequency component above the noise
floor. This frequency is the same as that of the input and is referred to as the fundamental fre-
quency. This represents the linear response of the circuit and in this case, the circuit can be
analyzed using small signal models since it is basically considered to exhibit linear behavior.
However, when a larger input amplitude is applied, the output signal spectrum will now also
contain frequency components at multiples of the fundamental frequency, known as harmonics,
which will distort the desired linear response and therefore the small signal models become no
longer valid. A fundamentally similar analysis can be performed for a nonlinear circuit that is
driven by a multi-tone sinusoidal input signal. For the case of a two-tone input signal of frequen-

cies wy and ws, the output spectrum will resemble that shown in Fig. 2.1.

LA 25 i b2 2h fith 2 20 3£ 3 264

Fig. 2.1 Output spectrum of narrow-band circuit driven by two closely spaced si-
nusoidal tones

As illustrated in Fig. 2.1, the output not only contains the responses at the fundamental
frequencies of w; and w- and their harmonics, but also additional intermodulation products at
frequencies that result from the mixing of the fundamental frequency tones and their harmonics
(i.e. mwy + nw-). This is where some of the major problems associated with nonlinear intermod-
ulation distortion start to become visible. First of all, the number of frequency tones at each node
in the circuit becomes very large, even when only a small number of harmonics is considered. In
addition, for a narrow-band circuit excited by two frequency tones that are narrowly separated in
frequency, the third order intermodulation products located at 2w; » — wo; become of particular

importance since they often mix back into the passband of the circuit and are thus extremely
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difficult to filter out as shown in Fig. 2.1. This leads to many undesirable effects such as adjacent

channel interference.

2.3 Terminology and Figures of Merit

The nonlinear behavior and performance of analog integrated circuits is often characterized in
terms of parameters and figures of merit measured in the frequency domain [3], [6]. There are
many such figures of merit that are commonly used in the literature. In this section, only the main
figures of merit and terminology used by RF circuit engineers to quantify nonlinear distortion in
addition to those that are used extensively in this thesis are presented. In general, the definitions
refer to the output variable of a nonlinear circuit that is excited with one or more input sinusoidal
signals. The definitions below all refer to Fig. 2.2 which shows the output power levels of the
fundamental tone in addition to the second and third harmonics as a function of the input power

level.

2.3.1 Weakly Nonlinear System Behavior

Consider a nonlinear circuit that is excited with a small input signal. If the signal is small enough
such that the energy of the output signal is mainly concentrated in the lower order harmonics, then
this is referred to as weakly nonlinear behavior. This implies that the amplitude of the second
harmonic will be much higher than the following higher order even harmonics, and the amplitude
of the third harmonic will be much higher than the following higher order odd harmonics. A
circuit excited by a small input signal that satisfies this criteria is referred to as a weakly nonlinear
circuit. The amplifier circuits covered in this thesis fall under this category of circuits. For the
case of mixer circuits, these exhibit strong nonlinear behavior outside the signal path due to the
switching nature of the large Local Oscillator (LO) amplitude, but are still considered weakly

nonlinear around the LO.

2.3.2 Gain Compression and the 1 dB Compression Point

The output of a nonlinear circuit that is excited by a single input frequency tone consists of the
desired linear response at the fundamental frequency in addition to responses at the harmonics of
the fundamental frequency. For input amplitudes that are sufficiently small, the circuit behaves

in a weakly nonlinear fashion which implies that the fundamental response increases linearly
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Fig. 2.2 Harmonic levels at the output of a nonlinear circuit [3]

with the input amplitude. However, there is a point at which higher input levels will lead to the
fundamental response no longer increasing in a proportional manner. Instead, as is illustrated in
Fig. 2.2, the gain starts to decrease due to the effects of higher order terms. This behavior is
known as gain compression. Alternatively, gain expansion could occur depending on the sign of
the higher order terms that influence the fundamental response. A popular way to quantify the
amount of gain compression is by finding the 1-dB compression point which indicates the point
at which the fundamental response deviates from the expected extrapolated linear response by 1
dB.
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2.3.3 Intercept Points

As the input amplitude level is increased, the fundamental response increases linearly with the
amplitude, as does the response at the second and third harmonics. However, the fundamental
response increases with a slope of 1 on a dB scale, while the second and third harmonics increase
with slopes of 2 and 3 on a dB scale, respectively. These linear increases will continue until
the output begins to compress. However, if an extrapolation of the linear increases is made, the
responses of the second and third harmonics will theoretically cross those of the fundamental
response due to the difference in slope, as shown in Fig. 2.2. The points at which the harmonics
meet the fundamental response are known as the intercept points and can be measured at either
the corresponding input or output power levels. The 3rd order intercept point (IP3) can be defined
in one of two ways. The first is the power level at which the third harmonic theoretically meets
the fundamental as shown in Fig. 2.2. The second and more common definition is the power
level at which the third order intermodulation tone would be equal to that of the fundamental, as
shown in Fig. 2.3, in the presence of multi-tone inputs. The input IP3 power level is referred to
as I1IP3 while the output power level is referred to as OIP3. Other intercept points such as P2

and IP5 can also be obtained if the appropriate harmonics are considered.

2.3.4 Other Figures of Merit

There are many other parameters that engineers use to quantify distortion in RF circuits. Total
Harmonic Distortion for example measures the amount of energy in the harmonics relative to
the energy in the fundamental and thus indicates how closely the output waveform resembles
a pure sinusoidal wave. Intermodulation Free Dynamic Range is another commonly used term
that shows the ratio of the largest and smallest signal levels the circuit can handle without the
appearance of an intermodulation component. Fig. 2.2 shows the dynamic range relative to the
3rd order component. Other parameters in the literature include Harmonic Distortion, Cross-

Modulation factor and 3-dB compression point among others [3], [6], [29].

2.4 Simulation Based Distortion Analysis Methods

In the literature, there are two general classes of methods for analyzing the distortion in RF cir-
cuits. The first class is that of simulation based methods. Typically, simulation based approaches

aim to mimic a measurement environment using a workbench by finding the steady-state solution
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of the nonlinear circuit with multi-tone inputs. The intermodulation distortion is then obtained
from the resulting output spectrum. Sensitivity analysis can then be performed on the results
by applying a sensitivity analysis algorithm. Simulation based approaches are easy to automate.
However, they typically suffer from a large CPU cost due to the presence of multi-tone inputs
and the need to perform a steady-state solution. An excellent introduction to simulation meth-
ods for RF circuits is presented in [30]. In this section, an overview of the most common and

state-of-the-art simulation based approaches for distortion analysis is presented.

2.4.1 Distortion Analysis Using Harmonic Balance

A

OIP;
Po,
Output
Level
(dBm)
Pos
>
P; 1IP; Input Level
(dBm)

Fig. 2.3 Definition of the input and output third order intercept points (IIP3 and
OIP3, respectively)

To determine the value of the third order intercept point using brute force simulation, the
steady-state solution for a circuit due to a two tone input is obtained using the Harmonic Balance
method (as will be described in Chapter 3). Then, noting the input power F;, the output powers at
the fundamental frequency F,;, and at third order intermodulation product P,3, and considering
that the slope of P, as a function of P; is 1 on a dB scale, and the slope of P; as a function of P,

is 3 on a dB scale, the graphs of P, and P; can be extrapolated as shown in Fig. 2.3 in order to
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obtain the values of the third order intercept points. This results in the following relations for the
input third order intercept point (// P3) and the output third order intercept point (O P3) [6]

1
TIP3 = P, + [Py — P 2.1)

OIP3=1IP3+G (2.2)

where G is the linear power gain of the circuit. This approach is fully automated and applicable
to general circuit types and topologies. The main disadvantage with this approach is that it is very
CPU expensive. This is a result of the presence of a large number of frequency tones that are a
product of the multi-tone input, in addition to the fact that a full steady-state simulation needs to
be performed by solving a system of nonlinear equations using iterative techniques [31], [32]. A
more detailed formulation and analysis of the Harmonic Balance method is presented in Chapter
3.

2.4.2 Distortion Analysis Using the Simplified Newton Method

The most CPU expensive task in performing a Harmonic Balance solution is solving the system
of equations with a dense Jacobian matrix at each step of an iterative process. This CPU cost can
be reduced through the application of the simplified Newton method [31] for distortion analysis
purposes in communication circuits [33] [34]. In addition to being efficient, these methods are
simple to apply as they do not require the computation of higher order derivatives of the device
model nonlinearities.

The simplified Newton method, when applied to solving a nonlinear set of equations of the

form f(z) = 0, results in the following iterative formula
J(@NAzD = —f(2h); 20D =20 4 Az® (2.3)

where J is the Jacobian matrix that does not require updating under the simplified Newton
method. After formulating the Harmonic Balance equations in the frequency domain, the pe-
riodic large signal solution is found using a single-tone input to determine a periodic steady state
Jacobian matrix (J©°%), which is of a smaller order than the regular HB Jacobian matrix. The

solution is then obtained by solving

JPSS(W>AX(J')(M) — —F(j)(w); X0+t — x0) L AX0) (2.4)
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twice, first to determine X (") and then to determine X ®. To determine X "), the right hand side
vector of (2.4) contains contributions of small signal sources at the fundamental frequencies of w;
and w,. For determining IP3, it is sufficient to solve only one linear system at the IM3 frequency
when determining the value of X, In these relations, F'(w) is the formulation of the function
f(zx) of the system in the frequency domain. During the solution process, switching between the
time and frequency domains occurs using the Direct Fourier Transform (DFT) and the Inverse
Direct Fourier Transform (IDFT) to evaluate the nonlinear components of the system in order to
compute the right-hand-side of equation (2.4), at each iteration.

Because distortion analysis typically requires computing only up to 3rd order nonlinearities,
this method can only involve as little as two steps of the simplified Newton method. What makes
this method efficient is the need to only compute one fixed Jacobian matrix which is also of a
smaller size and order than the HB Jacobian matrix. In addition, this approach does not require

the computation of higher order derivatives of device model nonlinearities.

2.4.3 Fast IP3 Using Periodic Steady State Analysis

One of the approaches to improve the memory usage and time of computing the value of IP3
is to reduce the number of variables by using only single-tone inputs instead of the typical two
tones. This is the motivation for the method illustrated in [30], [35] which first computes the
periodic steady-state solution of the circuit using only a single frequency tone with a large signal
(or a single-tone in addition to the LO for mixers). A second small signal tone with a frequency
close to that of the first tone (one sideband spacing) is then applied using Periodic AC Analysis
to compute the value of the intercept point with minimal additional CPU cost. This means that
the first tone is used to drive the circuit hard enough to cause distortion, while the second small
signal tone is used to cause intermodulation distortion. The value of IIP3 is then computed from

the results of both sets of analysis using the relation given by

Vs — Va1

[P3:VL1— 2

(2.5)
where V7 is the fundamental response due to the large signal tone, Vg is the response due to the
small signal tone and Vg3 represents the intermodulation distortion. These are illustrated in Fig
2.4.

This approach was shown to present a speedup of around 6 times when compared with tra-

ditional two-tone steady-state simulations, but with results that slightly differ from the value of
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A it

Fig. 2.4 Measurement of intermodulation distortion using periodic-steady-state /
periodic AC analysis

the two-tone IP3 due to a difference in definition. While this method does significantly reduce
the number of variables and thus the CPU cost, a steady-state analysis still needs to be performed
which means systems of nonlinear equations still need to be solved using inefficient steady-state

simulation methods.

2.4.4 Linear Centric Distortion Analysis

The linear centric distortion analysis approach is part of what is referred to as per-nonlinearity
distortion analysis [4], [36], [37] methods of which Volterra series analysis is also a part. This
methodology provides insight on the circuit linearity by splitting the output distortion obtained
via a regular simulation to per-component distortion contributions in an efficient post-simulation
step. The linear-centric circuit model can be used to perform distortion analysis with any steady-
state simulation method as a post-simulation processing step. A good example of this is in con-
junction with the Harmonic Balance method [38].

This distortion analysis approach relies on an iterative Successive Chord method in which
the Jacobian matrix for the solution of the nonlinear system is constructed through the use of
constant linearizations of nonlinear elements. The nonlinear effects only appear in the right-
hand-side vector of the general circuit equations (see Chapter 3) through the use of nonlinear
device model evaluations. Each nonlinear element is replaced by its linear centric model, which
consists of a linear element in addition to a varying current source at each iteration. The final
circuit can therefore be viewed as a constant linear circuit driven by external inputs, in addition
to contributions to the right-hand-side vector representing the circuit nonlinearities. This concept
is illustrated in Fig. 2.5 [4].

The linear centric models for most circuit elements are simple to determine, unlike traditional

Volterra series. No higher order derivatives need to be evaluated explicitly during the process,
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Fig. 2.5 Overall linear-centric circuit model showing how a nonlinear circuit can
be viewed as a linearized one driven by external inputs in addition to chord current
sources due to the nonlinearities [4]

which means the method is easily automated and directly applied to widely adopted device mod-
els. The method is applicable to both amplifiers and mixers. The CPU cost of this approach is
the solution of one linear system of equations followed by simple device-model evaluations. The
accuracy of the obtained results is quite high and is similar to the accuracy of general circuit-level

simulation.

2.4.5 Weakly Nonlinear RF Circuit Reduction and Other Simulation Enhancement
Methods

In the literature, there are many simulation based techniques for efficient intermodulation distor-
tion analysis that enhance and optimize some of the existing approaches. One of the main trends
in RF circuit simulation is to develop methods with the aim of reducing the size of the systems
of equations by implementing model order reduction and macromodeling of weakly nonlinear
RF circuits [39]-[42]. For these methods to work, the nonlinearity information information has
to be preserved in the reduced order systems. Krylov subspace projection based reduction algo-

rithms preserve the critical nonlinearity data necessary for accurate and efficient intermodulation
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distortion analysis.

Another current trend in circuit simulation is the development of algorithms that take advan-
tage of emerging parallel hardware platforms which have become very popular recently. Distor-
tion analysis algorithms and steady-state simulation methods are serial in nature, but there is a
lot of work aimed at performing efficient parallel algorithms such as parallel Harmonic Balance
implementations based on hierarchical HB preconditioners [43], [44] and domain decomposition
methods [45]. This allows distortion analysis simulations to run faster on multi-core computing

platforms.

2.5 Analytical Techniques for Distortion Analysis

The other general class of methods for analyzing nonlinear distortion is that of analytical tech-
niques. Such methods are for the most part based on the Volterra Series [46], [47]. These methods
rely on deriving complex analytical expressions for the different order nonlinearities in the cir-
cuit. The main advantage of such methods is that the equations provide insight into the sources
of distortion in the circuit, which simplifies tasks such as performing a sensitivity analysis. The
main limitation is that such methods are difficult to automate and apply in a general circuit sim-
ulator on arbitrary circuits and models. In this section, an overview of how to obtain the value of

IP3 using Volterra series is presented.

2.5.1 Volterra Series Formulation

Consider the case of a general linear system with memory elements, that is excited by an input
signal v(¢) and produces an output signal z(¢). The input-output relation of the system can
be represented with the use of a transfer function h(¢). In the frequency domain, this would

correspond to the relation
X(jw)
V(jw)

Now, consider the case of a nonlinear memoryless system (i.e. without the presence of in-

H(jw) =

(2.6)

ductors or capacitors). In this case the input-output relation of the system can be represented with

the use of a power series expansion as follows

= ko + kyvin + ko], + kvl 4 =) k0" (2.7)
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In this relation, k,, represents n'" order response of the circuit.
For the more general case of nonlinear systems with memory, a Volterra series can be used to
represent the input output relation of the system. A time-domain Volterra series can be expressed

using the expansion given by
2(t) = Hy[o()] + Ha [v(t)] + - - + Hy [u(t)] (2.8)

In this relation, H,, is the n'* order Volterra operator and can be viewed as the n'" order transfer
function when expressed in the frequency domain [3], [48]. The block diagram representation

of a Volterra series is illustrated in Fig. 2.6. Each Volterra operator in (2.8) is a function of its

H,

0 ® H, x()

Fig. 2.6 Block diagram representation of a Volterra series

corresponding Volterra kernel and therefore can be expressed as

n

H, [o(t)] :/_Oo /_Oo Bl 1) [[olt = 7)dm, 2.9)

r=1

for an input function v(t), where h,, (71,72, ...,7,) is the n'® order Volterra kernel. It is also
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possible to represent a Volterra series in the frequency domain through the use of a Laplace or
Fourier transform [3]. The multi-dimensional Laplace transform for functions of p variables, in

this case h,(7y, ..., 7,) is defined as

Hy(s1, -, 5,) :/ ...... / hy(T, - -

2.5.2 TIP3 Computation Using Volterra Kernels

Ty e It g (2.10)

Consider the power series expansion of the input-output relationship of a memoryless nonlinear
system given in (2.7). For simplicity, only the first four terms of the series in (2.7) will be
accounted for. Now consider an input voltage signal consisting of two sinusoidal input tones
given by v;, = Vj coswit + V5 coswst. By substituting this term into (2.7) and expanding using

trigonometric identities, the frequency components shown in Table 2.1 are obtained.

Table 2.1 Summary of distortion components [6]

Frequency | Component Amplitude

DC ko + % (Vi +V5)
w1 kaVi+ ksVi(BVE + 2V7)
) k1Va + k3V2(%V22 + %‘/12)
2w k2—;/12
2ws k2;/ y

wy + weo ko ViV

wy = wy IANE
3wy kgl/lg
Swsy kSTVQS

2wy £ wo %/@,VEVQ

2we £ wy SV VZ

The 3rd order intercept point is theoretically where the amplitude of the fundamental tone is
the same as that of the intermodulation tones at either 2w; — wq or 2ws — w;. To determine the

value of the input third order intercept point voltage, we equate the linear part of the fundamental
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component to that at one of the third order intermodulation tones. Assuming the amplitudes of

the two input signals are the same such that V), = V, = V;p3, we obtain

3
kiVips = S hsVips (2.11)

[4 K
Vips =/ 27— 2.12
1P3 3 k33 ( )

The relation given by (2.12) is used to determine the value of the input third order intercept point

which then simplifies to

voltage. To determine the output third order intercept point voltage, simply multiply this quantity
by the voltage gain of the system.

For systems that contain memory elements such as inductors and capacitors, the input-output
relationship given by (2.7) becomes a function of the Volterra kernels, where the n'"* order kernel
is given by H, (jw, ..., jw,). In this case, the distortion components at each output frequency
are summarized in Table 2.2. It can be shown that the value of the input third order intercept

point voltage now becomes

4 | H1(jwn)|
Vipa = 4/ — . : _ (2.13)
1 \/3|H3(.]w17.7w17_jw2)‘

For the case of mixer circuits, the input signal is defined as v = V; cos(wyt) 4+ V3 cos(wat) +
V5o cos(wot), with w; and wy being two input radio frequency signals and wy being the local
oscillator frequency. In this case, the distortion components will be different to that of amplifier
circuits and the expression for IP3 will be a function of the LO power. The intermodulation
distortion analysis of mixers can be accomplished through the use of periodically time varying
Volterra series and is outlined in section 2.5.3. The main difficulty of this approach is that, in
order to obtain the Volterra kernels, complex analytical solutions of equations for each nonlinear
element has to be performed [3]. Recently, several methods have been proposed in the literature
with some modifications and variations on traditional Volterra series to make their application
more intuitive and flexible [49]-[51]. However, the fundamental advantages and limitations of

traditional Volterra series remain.
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Table 2.2 Distortion components described by Volterra kernels at the corresponding
output frequencies [3]

Frequency Component Amplitude Type of Response
DC V2 |Hs(jwr, —jwr )| DC Shift
DC sVE | Ha(jws, —jws)| DC Shift
Wy Vi |Hq(jw)] Linear
Wy Vo |Hq(jws) Linear
2w, SVE [ Ha(jwr, jwn)] 2nd harmonic
2ws V2 |Ho(jws, jws)| 2nd harmonic
w1y + wo ViVa |Ha(jwy, jwo)| 2nd order intermodulation
lwr — wal ViV | Ha(jwy, —jwo)| 2nd order intermodulation
3wy V3 | Hs(jwr, jwr, jwr )| 3rd harmonic
3we V3 |Hs(jws, jws, jws))| 3rd harmonic
2w1 + wa %VEVQ |H3(jw, jwi, jws)| 3rd order intermodulation
12wy — wy| SV2Va |Hs(jws, jwi, —jws)| | 3rd order intermodulation
|wy — 2w SViVi | Hs(jwr, —jws, —jws)| | 3rd order intermodulation
w1 + 2ws SViVE |Hz(jwi, jwa, jws)| 3rd order intermodulation

2(,()1 — W =W

SV3 | Hs(jwr, —jwr, —jwr)]

3rd order compression

2(,()2 — Wy = W2

%‘/23 ‘H3(jw27jw27 _jWQ)‘

3rd order compression

WL+ Wy — Wy =w

%‘/1‘/22 |H3<.jw17jw27 —ng)‘

3rd order desensitization

W] — W1 + Wy = ws

SV, |Hs(jwr, —jwr, jus)]

3rd order desensitization
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2.5.3 Distortion Analysis Using Time-Varying Volterra Series

Traditional Volterra series are referred to as time invariant and are only applicable to weakly
nonlinear amplifier circuits. However, extensions to an important class of strongly nonlinear cir-
cuits such as active switching mixers have been made using time-varying Volterra series [2], [52].
These types of circuits are typically driven by one large periodic input signal such as a local os-
cillator (LO) signal or a clock [4]. In this case, the input RF signal in the signal path is at a small
level and therefore the circuit is considered to behave in a weakly nonlinear fashion about the pe-
riodically varying operating point that is generated by the LO or the clock. This then allows the
strongly nonlinear circuits to be analyzed as periodically time varying weakly nonlinear systems
with respect to a small-signal input of interest.

For nonlinear time-varying systems, a multi-frequency network function is given by

Hy(t,wy, - wn) = / """ / ho(t, 71, ,Tn)e*j““(t*ﬁ) e T g o d,
- - (2.14)
where h,,(t, 7y, -+ ,7,) is the n'* order Volterra kernel. With these relations, the response of a

nonlinear periodically time varying system to a two-tone sinusoidal input of v(t) = A(coswt +
coswst) is of the form [2]

=, [A? A 9A3 . A 9A3 .
x(t) ~ Z {—szk + (_Hl,k 4+ = 3,k) plwrt + (_Hl,k 4+ = 3,k) elwzt +

k=—00 2 2 8 2 8

A? . A2 . A3 ) A3 ‘

1 2k€ 1+ ZHz,keﬂwzt + §H3,k€j3w1t + §H3,k€j3w2t +

intermod.terms] I kwot (2.15)

where wy is the frequency of the LO or clock. As can be seen from this relation, due to the
periodically time varying nature of these systems, an output spectrum pattern that is similar to

that in the base band will appear at multiples of wy.

2.5.4 Sensitivity Analysis Using Volterra Series

Sensitivity analysis of mildly nonlinear circuits can be performed from a Volterra series analysis
since the closed form expressions for the Volterra kernels provide the necessary insight into the

circuit. Having access to the closed form expressions allows for very efficient evaluation of sensi-
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tivity using software. Recently, a simulation based algorithm was implemented for computing the
sensitivity using Volterra Series directly in the frequency domain [53], [54]. The method is based
on Schetzen’s multilinear theory for separating the nonlinear circuit into circuits of different or-
der [55], in conjunction with Volterra series equivalent circuits. Sensitivity analysis performed
with this approach was shown to be computationally efficient as it implemented the adjoint sensi-
tivity approach to Volterra series and only required one LU decomposition of a sparse matrix for
all the different order circuits. Since this method requires access to the equivalent higher order
Volterra series circuits, its application to arbitrary circuit models and nonlinearities in a general

purpose simulator is limited.

2.5.5 Rapid Estimation of IP3 Using the Three-Point Method

A very simple procedure for a rapid estimation of the value of IP3 that can easily be imple-
mented in simulators like SPICE is presented in [29]. It relies on the fact that knowing the
incremental gain of the circuit at three different input amplitudes is enough to be able to deter-
mine the power series coefficients needed for finding IP3 according to (2.12). The incremental
gain (transconductance) is the derivative of the power series equation given by (2.7) [29] and is

therefore approximately equal to
g(v) = ky + 2kov + 3k3v? (2.16)

Any three different input voltages would do the trick, but convenient ones are those at deviations
of 0, V, -V from the DC bias value. With these choices of voltages, the incremental gains would
be

k1, (2.17)
ki + 2koV + 3ksV? (2.18)
g(=V) = ki —2kV 4 3kV? (2.19)

L«
==
Q&R
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The coefficients of the power series then become

ky = g¢(0), (2.20)
o g(V)=g(=V)
ky = T (2.21)
g(V) +g(=V) —29(0)
ky = e (2.22)

Substituting into (2.12) then gives the final relation for the value of IIP3. The three-point method
is used for a rapid estimation of the value of IP3 in the early stages of a design and is also valuable

in guiding the selection of design parameters to maximize the value of IP3.

2.6 Moments Based Technique for the Distortion Analysis of Amplifier

Circuits

Recently, a method based on the computation of the circuit moments was presented for obtaining
the value of IP3 in weakly nonlinear amplifier circuits [56], [57]. The new approach was shown to
be equivalent to the numerical computation of the values of the appropriate Volterra kernels at the
frequencies of interest. This approach does not require any analytical manipulation but is rather
applied directly to the MNA [21] formulation of the circuit. It can therefore be applied to circuits
of arbitrary complexity. Furthermore, the computation of all the moments only requires one LU
decomposition of the Jacobian evaluated at the DC operating point which is very sparse unlike
the typical Harmonic Balance (HB) Jacobian which is usually both large and dense, especially
for large RF circuits that exhibit strong nonlinearities. The computation is done numerically with
the input frequencies known, and thus produces very accurate results. The methods presented
in this thesis are based on the same methodology as that introduced in this technique, but have
been developed extensively to cover more types of RF circuits, improve CPU efficiency and
present new sensitivity information. In this section, the moments computation algorithm used
in [56], [57] is introduced, followed by the presentation of the relation between the moments and

the value of IP3 in amplifier circuits.



2 Review of Intermodulation Distortion Analysis Techniques 28

2.6.1 Moments Computation Algorithm

The moments are defined as the Taylor series coefficients of the expansion of the Harmonic

Balance vector of unknowns X, with respect to the signal amplitude voltage «, given by

X = My+ Mo+ Msa?+ Msa®+ ... (2.23)
— Z Mo (2.24)
=0

These moments can be evaluated using a very efficient algorithm [17], [18]. The zeroth moment
vector My, is obtained by finding the DC solution of the general HB system of equations (Refer
to Chapter 3 for more details on the HB formulation). If the nonlinear HB Jacobian, J, is also

expressed as a Taylor series expansion with respect to the signal amplitude voltage « as given by
J=) T (2.25)
i=0

then the remaining moment vectors M ,, can be found by solving the system of equations given
by [17]

®M, = Bpr (2.26)
n—1
1
_ = — )T M,_:, n>?2 :
M, n;(n NT; onon (2.27)

where ® is the moments computation matrix, and By is a vector containing the contributions
of the RF input signal (Refer to Chapter 3 for more details). In these relations, the moment
vectors can be obtained using one LU Decomposition to solve (2.26) and (2.27) recursively. It
is important to note that the matrix ® has the same structure as that of the HB Jacobian matrix
but with only the DC components present, which makes it very sparse. As can be seen from
(2.26) and (2.27), the computation of the moment vectors is a solution of a set of linear algebraic

equations where the left-hand-side matrix is the same throughout and is therefore very efficient.

2.6.2 Computation of IP3 From the Moments

In this section the relation between the circuit moments and the desired Volterra kernels is shown

for general amplifier circuits. In order to simplify the presentation, a memoryless system is
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considered first where the output variable z is expressed as a power series of the input v as given
by (2.7). Substituting v = «a(cos(w;t) + cos(wst)) into (2.7), truncating after k3, and expanding

using trigonometric identities then gives

k
r = ko4 [k cos(wit) + ki cos(wat)]a + [ko + 52 cos(2wit) + ko cos((wy + wo)t)
k k k
+ko cos((w1 — wo)t) + 52 cos(2wot)]a® + [% cos(wit) + Z?’ cos(3wat)

9k k 3k 3k
+Tg cos(wat) + Zg cos(3w1t) + T?’ cos((2wy — wn)t) + T?’ cos((2wy + wo)t)

+3Tk3 cos((2ws + wq)t) + 37]% cos((2w; — wy)t)]a® (2.28)

From (2.28) and (2.23) the relationship between k,, and the system moments can be deduced
since the solution vector X in (2.23) is essentially the output variable = in (2.28). By equating
the same powers of « in these two equations and noting the frequencies, the location of the k,

terms in the moment vectors M, can be determined. In fact, their locations are given by

DC |— |ko 0 ko 0
2wy £ ws| — | 0 3ks

wi | = |0 [ka| | O |3k

Wa — |0 k, 0 §k3 (229)
2wy Fwi|— | 0 2ks

2w |— |0 kol | O

2wy | — |0 Ska| | O

SR A A
Frequency M, M, M, M,
For example, consider the first power of « and it be can seen that the vector M consists of k;
at the frequency of w; and also another k; at the frequency of wy. The relation in (2.29) shows
the first 3 moment vectors in addition to the zeroth moment vector, with the entries at the sample

frequencies of interest for the computation of the third order intercept point shown in bold [6].
In the case of systems with memory (i.e. containing energy storage elements such as capaci-

tors and inductors), a fundamentally similar analysis can be performed. The additional complex-

ity here comes from the fact that the output is now represented as a Volterra series rather than a

power series. In this case a relation between the system moments and the Volterra kernels that is



2 Review of Intermodulation Distortion Analysis Techniques 30

similar to equation (2.29) is developed. In order to derive these relationships, first consider the
system representation in terms of the Volterra series as defined in (2.8). To determine the location
of the kernels in the moment vectors, an input function with two tones of the same amplitude o
defined as

v(t) = afcos(wit) + cos(wat)) (2.30)
= S SeTI g St S 2.31)

is substituted into (2.8). The resulting equations for each Volterra operator are then used to
evaluate and express the Volterra kernels in the frequency domain [57]. The final expression,
when arranged by grouping like powers of a and only considering the terms up to the third order

(i.e. n = 3), is given by the following input output relation
y = Ho+ [Re(Hy(jwr)e’") + Re(H(jwr)e™*)] o+
1 . . 1 , _ 1 . . .
{ﬁRe(Hﬂ]Wl, —jwi)) + §R€(H2(jw2, —jwa)) + §R€(H2(jw1,jw1)eﬂ 1t) +
Re(Hy(jwy, jws)e? 1 2)h) 4+ Re(Hy(jwy, —jw,)e’ @ 72)) +

1 )
§R€(H2 (Jwa, jwa)e*?') | a® +

3 . 3 .
[ZRe(H?’(jwl’jwl’ —juwn)el @) 4 ZRQ(H3(_3W17JW27jw2)€J(2w27w1)t)+

3 S 4 ; 3 S 4 :
§R6(H3(jw1’jw2’ —jwa)e? ) + ZRG(H?,(]M,]M, —jwy )l +

3 ) . . A 3 ) ) . ;
§R6(H3(]w1, —]W1,]W2)€]w2t) + ZRG(HZ”(]W%]WQ’ —]WQ)emt) +...]a (2.32)

The Volterra Series expression in (2.32) is similar to the expression shown in (2.28) which
proves that this method is essentially that of numerically computing the required Volterra kernels
evaluated at the frequencies of interest. In a similar fashion to memoryless systems, the location

of the parameters to compute the value of the third order intercept point are the entries in bold
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found in the moment vectors at the locations shown in

DC — [ 171 0 ]
2w £ wy| — %|H3(jwlajwla —jws)|
wi | = [[Hy(Goo)|| | 2[Hs(jwr, jwa, —jws)| + 2| Hs(jwr, jwi, —jwr)]
wy | = | [Hy(jw2)|| | 3[Hs(jws, jwi, —jwr)| + 2| Hs(jwa, jws, —jws)]
2we £ wy| — §|H3(jw17 —jwa, —jwa)| (239
2w — 0
2o — 0
Frequency M, M,

For the case of memoryless systems, the expressions for these kernels simplify to the terms
ky and k3 in (2.29). This method presents significant CPU speedup over traditional Harmonic
Balance approaches and is fully automated. The main disadvantage of this approach is that it is
limited to weakly nonlinear amplifier circuits. In addition, the number of equations in the general
Harmonic Balance equations remains quite large due to the multi-tone inputs. The fact that the
kernels are evaluated numerically also means that the numerical results give no insight to the

circuit performance.

2.7 Conclusion

In this chapter, an overview of the significance of distortion analysis as a means for RF design
engineers to analyze linearity has been discussed. In addition, a literature survey of some of the
traditional and more recent approaches for computing IP3 and other distortion parameters for
different types of circuits has been presented. A special emphasis was placed on Volterra Series

since it is directly related to the contributions that are presented in the remainder of this thesis.
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Chapter 3

Circuit Simulation Using Harmonic

Balance

3.1 Introduction

There are several important design specifications for RF circuits, most of which are typically
centered around the computation of key performance parameters that include gain, power, inter-
modulation distortion, noise and frequency bandwidth [1], [5], [6]. Such figures of merit require
the computation of the steady-state response of the circuit after all the transients have died out,
which is essentially computing the frequency domain response of the circuit. One way to obtain
the frequency response is by using small signal analysis. This is achieved by first linearizing
the circuit around the DC operating point followed by using small signal analysis to obtain the
frequency response. This approximation, however, does not provide sufficient accuracy for the
analysis of RF circuits, especially when computing the intermodulation distortion. In such a case,
the nonlinear steady-state response is required. For circuits with constant inputs, the steady-state
response is simply the DC response, while for circuits with periodic inputs, the output in the
steady-state will also be periodic with the same period as the input. The brute force way to ob-
tain the steady-state response is to perform a long transient analysis until all the transients die
out. Such an approach is, however, very inefficient due to the very large number of time steps
required, and suffers from several limitations such as the inability to determine exactly when the
transients completely die out in addition to the resulting Fourier transform noise. Alternatively,

the steady-state response of a nonlinear circuit can be obtained directly in an accurate and effi-
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cient manner using one of several algorithms that have been proposed in the literature [30]. These
include time domain methods such as the Shooting method [5], [11], [58], and frequency domain
methods such as the Harmonic Balance approach [5], [12], [13].

The Shooting method determines the steady-state response of a nonlinear circuit excited with
a periodic input by solving a Boundary Value Problem (BVP). Standard circuit simulators such
as SPICE [59] solve an initial value problem by integrating the differential algebraic equations
(DAES) representing the circuit in the time domain from a known initial condition. In order to
directly find the steady-state response (also called the periodic solution), the Shooting method
relies on the fact that for a periodic input, the output in the steady-state is also periodic and thus
recasts the problem as a BVP which is then solved using Newton Iteration [11], [14], or using
other iterative methods such as conjugate gradient [60] or Krylov techniques [61].

There are two problems that arise when trying to apply the Shooting method to analog and
microwave circuits. The first problem is that shooting methods find the periodic steady-state
response of a circuit by assuming that the periodicity constraint of (t) = x(t+ T") for all ¢ holds
as a two-point boundary-value constraint [62]. However, the steady-state response of a mixer
circuit, for example, is in general not periodic but rather quasi-periodic which makes the method
inappropriate for such circuits. This has led to the development of mixed time frequency envelope
techniques [30] that extend the applicability of this method. The second problem is that being
a time domain method, it has difficulties with distributed elements such as transmission lines
which are best described in the frequency domain. For each iteration, a new initial condition
is computed. However, if the circuit contains distributed elements, then their initial conditions
cannot be expressed using a finite set of numbers, but rather with functions which then result in
significant complexity when applying the method [63].

The contributions presented in this thesis are based on the formulation of the nonlinear system
in the frequency domain using the general Harmonic Balance equations. Therefore, this chapter
will focus strictly on the HB approach as time-domain methods are not required. This Chapter
begins with introducing the method for formulating a general nonlinear system in a circuit sim-
ulator based on the Modified Nodal Analysis (MNA) approach [21] and the general Harmonic
Balance equations. This will provide the necessary background to the contributions presented
in later chapters of this thesis which are all based on this general formulation. This is then fol-
lowed by an analysis of steady-state nonlinear circuit simulation using the Harmonic Balance
method. In particular, the various limitations of this approach are highlighted and some of the

recent methods that have been proposed in the literature to address these issues are presented. In
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this chapter, the formulation for performing sensitivity analysis is also presented. The brute-force
way to perform a sensitivity analysis is through perturbation which was first used by Rizzoli et
al. to approximate gradients for design optimization [64], [65]. However this method is very
inefficient and suffers from accuracy limitations. Other more efficient sensitivity analysis algo-
rithms have been developed such as differentiation and the adjoint approach [27], [28] which are

presented in this chapter.

3.2 Modified Nodal Analysis Formulation

The formulation of the MNA circuit equations corresponds to the summation of currents accord-
ing to Kirchoff’s Current Law (KCL) at the circuit nodes as well as additional equations for
dealing with voltage sources, inductors and other special elements [66]. The MNA formulation
provides a simple and general approach that allows for the automated representation of circuits
containing both linear and nonlinear elements as a set of equations in matrix form.

Consider a non-linear circuit excited by one or more input tones. The MNA circuit equations

can be expressed in the time domain as [21]
Gz(t) + Cz(t) + f(x) = b(t), (3.1

where
e x(t) € R" is the vector of n unknown voltages and currents,

e G € R™" is the matrix that contains the contributions of the linear memoryless circuit

elements,

e C € R™" is the matrix that contains the contributions of the linear memory circuit ele-

ments,

f(x) € R™is a vector of nonlinear algebraic scalar functions of the form
F@(®) = [fi(x), fo(@), -, ()] (32)

e b(t) is a vector that contains the independent input sources.

n is the total number of variables in the circuit equations.
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Fig. 3.1 Simple nonlinear circuit

As an example, consider the simple non-linear circuit shown in Fig. 3.1. Applying KCL to all

three nodes would give us the following set of equations:

g1 (’Ul — ’UQ) — ’ZE = 0 (33)

g1 (vs —v1) + ¢ (i) + 1, (e—”vf3 - 1) ~ 0 (3.4)
vy —vg

1, (e vt 1) Y govs = 0 3.5)

v = Uzn(t) (36)

The MNA equations for this circuit can be obtained by expressing (3.3)-(3.6) in matrix form
using the matrices defined in (3.1). Doing so results in the following MNA formulation for this

particular circuit:

g —g 0 1 vy 00 0O o 0
-1 g1 0 0 v | 0 ¢c 00 Vs I(es/Ve —1) | | 0
0 0 g 0 Vs 0000 by —I(es/Ve 1) |
1 0 00 ig 0000 ig 0 Vin
JH/—/ -~ S/ /
G x(t) C T(t) f@ b

(3.7
Note that one of the key advantages of the MNA formulation is that these MNA systems of
equations can be automatically generated by a computer with the use of component signatures,

or ‘stamps’ [9], [67], for each circuit element. Several stamps for common circuit elements can
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be found in [9]. Another advantage is that the resulting system of equations is typically very

sparse.

3.3 Harmonic Balance Formulation

The Harmonic Balance (HB) method is a technique for obtaining the steady-state response due
to a periodic input directly in the frequency domain. A number of variations of this approach
designed to improve the CPU efficiency have been proposed such as piecewise Harmonic Balance
[12], [13], domain decomposition [68], Harmonic Balance using inexact Newton [69], and model
order reduction based methods [17]. All these models are based on the one fundamental concept
behind Harmonic Balance that is, given a periodic input, the steady-state output will also be
periodic and can thus be expressed as a Fourier series. The HB algorithm reformulates the system
of nonlinear differential algebraic equations into a system of nonlinear algebraic equations where
the unknowns are the Fourier coefficients. In this section, the HB approach is explained in detail
since the formulation of the HB equations is used as a basis for the contributions in this thesis.
Consider a circuit containing linear and nonlinear elements described by its MNA equations
as shown in (3.1). Given a periodic input b(¢), the response is also known to be periodic in
the steady-state. The Harmonic Balance approach expresses the periodic solution as a truncated
series of sine and cosine functions at the frequencies of the harmonics of the inputs as well as the
intermodulation products. For a single tone simulation, the Harmonic Balance solution vector
simplifies to a truncated Fourier Series including the first /7 harmonics since there would be no

intermodulation frequencies present. In general, the solution vector can then be represented as

H
x(t) = Ao+ Z(Ak cos(wyt) + By, sin(wyt)) (3.8)
k=1
where
e wy, are the harmonic and intermodulation frequencies present in the circuit.
e A, € R" is a vector containing the DC amplitudes of all n variables.

e A, € R"is a vector containing the amplitudes of all the cosine terms at frequency wy

e B € R" is a vector containing the amplitudes of all the sine terms at frequency wy.
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Substituting (3.8) into the MNA equations in (3.1) and equating the coefficients of the sine and

cosine terms results in a set of nonlinear algebraic equations in the form of
GX +CX + F(X) = By + B, (3.9)

where

e X ¢ RM is a vector of unknown cosine and sine coefficients for each of the variables in
x(t).

e By. € R and B,. € R™» represent the contributions of the DC and AC independent

sources respectively.

e G € RY"M g a block matrix G = [G;] representing the contribution of the linear
memoryless elements of the network to the frequency components. The blocks G;; €

RNo*No are diagonal matrices given by

Gy = diag(gij, - -, 9i) (3.10)
with g;; being the corresponding entry in the G’ matrix in (3.1).

o C € RY>M s a block matrix C = [C;] representing the contribution of the linear
memory elements of the network to the frequency components. The blocks C;; € RVe*Ms

are diagonal matrices given by

[0 0 0
0 0 w1
0O —w; 0 --- 0 0
Ci=1. . .. o (3.11)
0 Wi
— Wk 0

where w; — wy, are the harmonics of the operating frequency and with ¢;; being the corre-

sponding entry in the C matrix in (3.1).

e F(X) contains the sine and cosine coefficients of the nonlinear vector f(x) defined in
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(3.1) and is expressed as

F(X) = (3.12)

e N, is the expanded number of variables for each original unknown variable in «(t). For a
system excited with a single frequency input tone, this is equal to 2H + 1 if H harmonics

are considered. For multi-tone systems, this number becomes significantly higher.

e N, is total number of variables for the HB system of equations and is given by N, = nx N,
For a single-tone excited system this would be equal to N, = n(2H + 1). This quantity is

usually very large even for modest size systems.

The relation between the vectors X, f(x(t)) and F'(X) is established through the use of the Fast
Fourier Transform (FFT) and the Inverse Fast Fourier Transform (IFFT) [70]. These transforms
are utilized while performing Newton Iterations to obtain the solution of the HB equations and
are explained in the following section.

To illustrate how much bigger the HB matrices become relative to the original system, the
simple 3-node circuit shown in Fig. 3.1 is taken as an example. If only 2 Harmonics are consid-

ered (i.e. H=2), then G becomes a 20x20 matrix, as seen in equation (3.13).
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Q)

g1 —01 0
g1 —01 0
g1 —01 0
g1 —01 0
g1 —g1 0
-0 g1 0
-0 g1 0
-0 g1 0
—91 g1 0
—g1 g1 0
0 0 g2
0 0 )
0 0 )
0 0 g2
0 0 g2
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0

dimensions=20x 20

(3.13)

Alternatively, if 20 harmonics are needed in the simulation, then the size of the matrix would

become 164 %164, and for multi-tone inputs, this number would be much larger. This dramatic

increase in size presents a significant CPU cost problem. Despite the fact that the matrices G and

C are sparse, this is not the case with the HB Jacobian matrix which is usually very dense, and

has to be manipulated at each Newton Iteration, as will be explained more clearly in the following

sections.

3.4 Solution of the Harmonic Balance Equations

The solution to the set of nonlinear algebraic HB equations, where the unknowns are the Fourier

coefficients of the steady state solution, is obtained by applying iterative numerical techniques

such as Newton Iteration [71], [72] or the Conjugate Gradient method [32]. However, each iter-

ation of the solution is very CPU expensive without a guarantee of convergence [67]. A number
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of relaxation based techniques have been introduced to improve the CPU cost of iterative solu-
tions [12], [73], [74]. In this chapter the Newton Raphson Iteration, which benefits from quadratic
convergence near the solution, is presented.

To apply the Newton Raphson iteration, the HB equations in (3.9) are reformulated as
U X)=GX+CX+F(X)-B=0 (3.14)

where W (X)) is referred to as the objective function. In this expression, the terms B, and B,
have been combined into one vector such that B = B,. + B,.. The target solution vector X is
found iteratively using Newton Raphson Iteration [31] by starting with an initial guess and then
updating the solution at each iteration until convergence occurs. At each iteration, the solution

vector is updated using
x @+ — x (@) _ JHB(X(i))*l\I;(X(i)) (3.15)

where i is the iteration number, X is the old guess and J;5(X @) is the Jacobian Matrix
defined as OF(X
Gyoy EX) (3.16)

B o (X) o
ox | XV~ 0X |x®

Jup(X (@) ) =
To solve for the harmonic balance solution vector X, the following steps are applied

1. Select a good initial guess for the solution vector to be used in (3.15) for the first iteration.
A good initial guess is one that is close to the solution vector which will in turn lead to

faster convergence and thus result in a lower CPU cost.

2. Compute the objective function using the current value of the vector X which includes the

evaluation of the nonlinear vector F'(X).
3. Evaluate the Jacobian matrix according to (3.16) using the current value of the vector X.
4. Determine the new updated solution X ,,.,, according to (3.15).

5. Check if the error between X ., and X, is less than a predetermined error tolerance
value ¢, if not then repeat from step 2 using the latest value of X as X, until the error
between X ., and X ;4 is smaller than the acceptable tolerance value, in which case the

solution would have converged and the iteration loop is stopped.
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To evaluate the value of the objective function, W (X'), all the terms in (3.14) with the exception of
the nonlinear vector F'(X ) are found by expanding the original MNA matrices into block matrix
forms as highlighted earlier. The evaluation of the nonlinear vector F'(X) given by (3.12) is a
bit more complex as use of the Direct Fourier Transform (DFT) is required. Thus, an overview

of the DFT algorithm is provided before proceeding with the method for evaluating F'(X).

3.4.1 Direct Fourier Transform

The Fourier Transform is used in the calculation of the objective function and the Jacobian matrix
at each Newton iteration of the HB algorithm. Consider a periodic signal x(¢) with a period

T = 2= expressed as a Fourier Series given by
w

M=

x(t,) = ao+ Y (apcos(kwt,) + by sin(kwt,)) (3.17)
k=1
This signal is then sampled at N, time points [to, 1, - - - , tx,—1] that are equally spaced across the
interval [0, T'] with
T
th,=n—;n=0,1,--- N, — 1 3.18
"N b (3.18)

The Fourier Series expressions at each sampled time point results in

H

x(ty) = ap+ Z(ak cos(kwty) + by sin(kwty)) (3.19)
k;l

x(ty) = ap+ Z(ak cos(kwty) + by sin(kwty)) (3.20)
k=1

(3.21)
H

x(ty,—1) = aop+ Z(ak cos(kwtn, 1) + by sin(kwty, 1)) (3.22)

k=1
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which can be re-written in matrix form as

Qo

x(to) 1 cos(wty)  sin(wty) -+ cos(Hwty)  sin(Hwty) ay

x(ty) 1 cos(wty)  sin(wty) --- cos(Hwty)  sin(Hwty) by
: = . : : . : : | (B3:23)

x(tn,—1) Leos(wtn,—1) sin(wty,—1)- - -cos(Hwty,_1)sin(Hwty,—1) | |an

bu

This relation is that of the Inverse Direct Fourier Transform (IDFT), with the times samples
obtained by multiplying the vector of Fourier coefficients with the IDFT matrix, which will be
referred to as I'. Similarly the DFT can be performed with the use of I'"'. The arguments in

matrix I' of the form kwt,, can be re-written as

2m T 2m

which shows that the arguments are independent of frequency. In fact, matrix I' can be expressed

independently of frequency as

1 cos(©g1) sin(©p1) -+ cos(Oom) sin(Oo, i)
=1 cos(©,1) sin(©p1) -+ cos(Onm) stn(On, 1) (3.25)
1 cos(On,—11) sin(On,—11) -+ cos(On,—1.1) Sin(@er,H)_
with 5
T
O = kn <ﬁb) (3.26)

3.4.2 Evaluation of the Nonlinear Vector F'(X)

To simplify matters, only one nonlinear scalar function from the vector f(x) shown in (3.2) is
considered. The evaluation of the other functions is done in a similar fashion. f(x) is also
assumed to be a function of one variable z;.

To evaluate the nonlinear vector F'(X ), as a function of X;, which is the vector containing
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the sine and cosine coefficients of x(t), the following relation is used
F(X,)=T"F, (3.27)
where F' is the vector that contains the time samples of f(z(t)) and is given by

F, = [f(z0), f(21),.... flaw,)]" (3.28)

and I is the inverse DFT matrix. The vector of time samples X = [z, 1, ..., zy,]” needed to

determine F'; is also evaluated by using the DFT, namely

X.=TX, (3.29)

3.5 Harmonic Balance Jacobian

The computation, storage and inversion of the HB Jacobian matrix at each iteration of the New-
ton Raphson algorithm constitutes the bulk of the CPU cost for obtaining the HB solution as
this matrix is usually very large and dense, especially when simulating circuits with multi-tone
inputs. The number of iterations needed to obtain the final solution vector also varies and can be
quite large, therefore requiring that the expensive process of manipulating the Jacobian matrix be
repeated several times.

The HB Jacobian matrix is evaluated using the expression shown in (3.16). The matrices G

and C are the same as those defined in (3.9). The remaining term is found using

OF1 .. OFn
0X1 0Xn
op) | 50
8X . . *
0X1 0Xn

where F',, and X, contain the Fourier coefficients of f, and x, respectively. Each of the terms

in (3.30) is a matrix in itself, forming a block matrix structure. Each term is evaluated using

OF, _ 0F, . ,0F,0X, . ,0F,

00X, 0X, 0X,0X, 8XSF 33D
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where I is the DFT matrix and

OF, _ .. [d(a(t))  — df(a(tni-1))
0x, T Tdn(t) T datyy )

(3.32)

In practice, the multiplication by I and I'"* is not done, and is replaced by the FFT and IFFT

algorithms. It is also important to note that although gf;i is a diagonal matrix, the multiplication
by I and "' makes g% a full matrix, which then makes the Jacobian matrix dense. As an

example of the density of the HB Jacobian matrix, Fig. 3.2 shows the sparsity pattern for the HB
Jacobian matrix of the simple nonlinear circuit of Fig. 3.1. As can be seen, the matrix contains

dense blocks at the location of the nonlinear function in the MNA equations.

Fig. 3.2 Sparsity pattern of the Harmonic Balance Jacobian matrix. White space
shows location of zero entries, dark space shows location of non-zero entries.

3.6 Harmonic Balance Difficulties and Improvements to the Harmonic
Balance Method

The Harmonic Balance method for steady state analysis comes with significant problems. One
of the method’s major problems is that of convergence since there is a dependence on numerical

iterations to achieve the solution. Convergence can be improved through the use of a good initial
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guess which can lead to two major improvements. The first is to reduce the number of iterations
by choosing an initial guess that is closer to the solution, and the second is to improve the chances
of converging to the correct solution. Although Newton Iteration benefits from quadratic conver-
gence near the solution, convergence is not guaranteed. In recent years, there have been several
improvements and refinements to the classical Harmonic Balance algorithm in order to improve

CPU efficiency and memory requirements.

3.6.1 Continuation Methods

A number of techniques such as Gauss-Jacobi Newton harmonic relaxation [12] and inexact New-
ton Iteration [69] have been presented to improve convergence. The main challenge is that there
are no rules for selecting a good initial guess. Continuation or homotopy methods [75]-[77] have
been introduced to circuit simulation to address the issue of convergence in locally convergent
iterative methods such as Newton Iteration. The main idea behind continuation methods is to
augment the system of equations (X ) shown in (3.14) with a new variable y as a continuation
parameter to form a new set of equations (X, 1) with a trivial solution when p = 0, and the
solution of the original system when ¢ = 1, such that (X ,1) = ¥(X). The continuation
parameter is swept from O to 1 using a discrete number of values, and the solution at each value
is obtained and tracked, such that the solution at each value is used as the initial guess for the

obtaining the next solution.

3.6.2 Use of Preconditioning

Convergence of a system can be made much more robust through the use of preconditioners [78].
A preconditioner matrix is selected and applied to the original system that is a good approxima-
tion of the solution of the system of equations and relatively easy to invert. For example, consider

the linear system of equations given by
AX =B (3.33)
Then applying a preconditioner matrix A, to this system would give
A'AX = A'B (3.34)

Recent linear iterative techniques such as the quasi-minimal residual (QMR) [79] and the
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generalized minimal residual (GMRES) [80] approaches were used for solving the HB equa-
tions. However, the efficiency of these techniques depends heavily on the ability to select a good
preconditioner. If a poor preconditioner matrix is selected, this could end up making the solution
more CPU expensive. The challenge therefore shifts to selecting a good preconditioner. There
are a number of techniques in the literature for selecting a preconditioner [43], [81]. The first and
most simplest is the averaging diagonal preconditioner [79]. In this case, the preconditioner is a
block diagonal matrix with each block having the sparsity structure of the circuit transient matrix,
meaning the matrix can be easily inverted. This technique works extremely well for circuits with
only mild nonlinearities and is probably the best preconditioner for such circuits [43].

As the circuit becomes more strongly nonlinear, the off-diagonal entries in the Jacobian ma-
trix become larger and therefore the diagonal preconditioner becomes less effective. In this case,
a one step correction can be applied [43] or super diagonals can be included [81]. In the latter
case, when harmonics are large, only the super diagonal entries of one ore more harmonics can
be included, while the sub-diagonal entries can be discarded. The resulting matrix becomes an
upper triangular one, which can be more easily inverted than a full one. However, discarding en-
tries for a system with a large harmonic index makes the preconditioner less effective, especially
in the case of systems with multi-tone inputs, where the artificial frequency mapping may place
significant harmonics far away from the diagonal [81].

Alternatively the preconditioner of the finite difference Jacobian can be used for circuits that
are highly nonlinear. However, this technique is limited to circuits with only single-tone inputs.
The Schur-complement preconditioner can be also used assuming the number of columns con-
taining nonlinear elements is small relative to the size of the overall system, and that permuting

these columns to the side of the matrix does not cause significant fill-ins [80], [81].

3.7 Fourier Transform for Almost Periodic Input Signals

When a circuit is excited with an input signal that contains multiple tones, the signal is usually
quasi-periodic, i.e. the two input frequencies are non-commensurate, and are therefore not mul-
tiples of each other [67]. These frequency values thus create problems when performing Fourier
Transforms and also when calculating the Jacobian matrix [67]. A number of algorithms in the
literature have been proposed to address this problem [82]-[85]. A simple and efficient way to
address this problem is through the use of frequency mapping techniques presented in [5] which

are known as the Diamond and Block truncation methods for two input tones. This analysis can
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also be extended for the case of greater input tones. These truncation methods are used to map
actual harmonic frequencies (including intermodulation terms) to arbitrary artificial frequencies.
In particular, the fundamentals of the input signal are chosen to be multiples of some arbitrary fre-
quency so that the resulting signals will be periodic and can also be expressed as shown in (3.8).
This trick is best illustrated with an example. Consider a nonlinear circuit with an input-output

relation as follows
flo(t)) = v(t)? (3.35)

Assuming that the input signal consists of a voltage signal with two input tones as follows
v(t) = Acos(at) + B cos(ft) (3.36)

Substituting (3.36) into (3.35) and expanding using trigonometric identities the output function

becomes

flo(t)) ==+

2.5y
2

N[

cos(2at) + g cos(20t) + % cos(at + (t) + ATB cos(at — Bt) (3.37)

It is important to note how the coefficients of the cosine terms are independent of the actual values
of the frequencies « and (3, therefore allowing the possibility of mapping these frequencies to
convenient values. The type of truncation algorithm selected depends on the type of circuit and

the frequencies used in the analysis.

3.7.1 Block Truncation

The Block Truncation algorithm is applied when a two-tone input is used with frequencies w; and
wo that are well spaced out from each other on the frequency spectrum i.e. w; >> wy. Consider

the following set of frequencies given by
wy = kiwy + kzu)z;o <k < Hl, |]€2‘ < HQ, kq # 0ifky <O (3.38)

where H; and H, are the number of harmonics of w; and w, respectively. The new artificial set
of frequencies that are equally spaced and do not overlap is given by kw = ajkiw; + askows,

with the scaling factors for the two fundamental frequencies (a; and a) being

w1

o (2H, £ 1) (3-39)

ar=1,a9 =
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k>

Fig. 3.3 Frequency mapping using block truncations [5]

The mapping of the quasiperiodic frequencies to periodic frequencies using Block truncations is

graphically illustrated in Fig. 3.3.

3.7.2 Diamond Truncation

For the more frequent case in RF circuits where the two fundamental frequencies of the input
signal are very close to each other on the output spectrum such that w; ~ ws, the Diamond

Truncation algorithm is used. Considering the set of frequencies given by
w = kiw + kng; ‘kl‘ + ‘kg‘ < H, ki + ko > 0, k1 7£ ko if ke >0 (3.40)

where H is the highest order of harmonics of w; and w, that is accounted for. The new artificial
set of frequencies that are equally spaced and do not overlap is given by kw = a1 kyw; + askows,

with the scaling factors for the two fundamental frequencies (a; and ai) being

le

o =l =

The mapping of the quasiperiodic frequencies to periodic frequencies using Diamond truncation

is shown in Fig. 3.4.
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k;

ki

Fig. 3.4 Frequency mapping using diamond truncations [5]

3.7.3 Three Tone Truncation

In some cases, there is a need to simulate the circuit with three input frequency tones. In the case
of mixer circuits, for example, there could be two RF input tones present (w; and w,) in addition
to one local oscillator tone (w3). For this reason, a three-tone truncation algorithm is required,
which is a natural extension of the two-tone diamond and block truncation algorithms. Consider

the set of frequencies given by
Wk = k:lwl + k2w2 + k’g&)g; |]€1| -+ |k32| S H, k?g S H, k?l + k?g Z 0, k?l 7& k’g lfk?g >0 (342)

The new artificial set of frequencies that are equally spaced, do not overlap and account for the
mixing property would be given by kw = aykyw; + askows + asksws. For the case of k3 = 0, this
algorithm would be the same as that of diamond truncation. For the case of k3 > 0 the mapping of
these frequencies would correspond to those illustrated in Fig. 3.5 and the corresponding scaling

factors are
(H + 1)(4}3 HQJ?,

G CHH D)+ 1) G@H(H +1) + 1)

cag =1 (3.43)

a1 =

The resulting scaled set of frequencies is equally spaced with no two frequencies overlapping.
Other implementations of three-tone truncation algorithms is possible, however this implementa-

tion works well with the frequency characteristics of mixer circuits and thus is the one selected.
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Fig. 3.5 Frequency mapping using three-tone truncation with k3 > 0

3.8 Sensitivity Analysis Techniques

Sensitivity analysis is of particular importance for circuit designers as it is critical for perform-
ing several applications, including design centering, yield analysis, optimization and computing
group delay. In this section an overview of some of the main methods used for performing sensi-
tivity analysis in the frequency domain is presented. First, the general formulation and definitions

of sensitivity are presented, followed by the sensitivity analysis methods.

3.8.1 Sensitivity Analysis Formulation
The absolute sensitivity of a variable V' with respect to a general circuit parameter ) is defined as

P=ax

(3.44)

The above definition is not scale free and therefore makes it difficult to compare the sensitivities
of various elements. In practical applications, it is more useful to quantify sensitivities as relative

or normalized quantities. In such a case, the relative sensitivity of a variable V' with respect to a
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general circuit parameter A is defined as

v_AI Ay

-2 _Z 3.45
AVoN TV ©45)
while the normalized sensitivity is given by
ov
Y =A——=A\DY 4
Sx B3 A (3.46)

3.8.2 Perturbation

The brute-force approach to performing a sensitivity analysis is through the perturbation of the

system. To apply this approach on a linear system described by the set of equations
AX = B, (3.47)

first, the nominal solution of the system X is determined. Next, the parameter A\ of interest is

modified by a small delta amount A\ such that the new system of equations becomes
(A+ AA) (X +AX)=B (3.48)

The solution of the perturbed system (X + AX) is then determined. The sensitivity of the

system to the parameter A can now be computed by evaluating

09X AX

F -_
Dy = o\ A\

(3.49)
The Perturbation sensitivity approach has several major problems. The first problem is that it
is very computationally inefficient. This approach computes the sensitivity of one variable with
respect to one parameter. Therefore an entire simulation must be performed for each different
parameter and each variable. In addition, this approach suffers from issues with round-off errors

depending on the size of the A\ used, which varies on a case by case basis [9].
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3.8.3 Differentiation

A more efficient sensitivity analysis technique is that of differentiation. Consider the same set of
linear equations given by
AX =B (3.50)

The partial derivative of (3.50) with respect to A (assuming B is not a function of a \) is given

by
aAX AaX B

Ay T

Rearranging this relation results in an expression that can be solved for determining %—f

0 (3.51)

X  0A

E R\ (552)

It is important to observe that for different cases of A, the equation above will have a different
right-hand-side, but will retain the same left-hand-side. This method therefore finds the sensi-
tivity of all variables with respect to one parameter and is more computationally efficient than
brute-force perturbation. This approach is often referred to in the literature as the sensitivity
network approach [9]. However, the sensitivity of all components of X is rarely required. A
more probable scenario is the need to determine the sensitivity of one scalar variable with respect
to many parameters. Therefore, significant CPU saving can be achieved if the sensitivity with

respect to all the circuit parameters can be found at once.

3.8.4 Adjoint Sensitivity

The Adjoint sensitivity approach is a very popular and common traditional sensitivity analysis
technique [27], [28]. It is attractive because it exhibits very low incremental CPU cost and also
computes the sensitivity of one scalar variable with respect to all the parameters in the system.
Suppose the output scalar variable of interest is V,,,; and we would like to determine its sensitivity
with respect to a parameter \. In this case, V,,,; can be extracted from the solution vector X with

the aid of a selection vector d by using the relation

Vour = d' X (3.53)
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To compute the sensitivity, the first step is to take the derivative of this relation with respect to A

which yields
=d —— 54
O\ d O\ (3-54)

For a general linear system of equations AX = B, an expression for

ox

5y can be obtained by

re-arranging the expression in (3.52) as

0X  , ,0A
- ATSCX (3.55)

Substituting (3.55) into (3.54) results in the general Adjoint sensitivity equation given by

a‘/out
o\

r0X
o\

= (Xa) (3.56)

where X, is the Adjoint solution vector and is defined as
(Xq) = —d"A™ (3.57)

The adjoint sensitivity algorithm thus simplifies to following steps:
1. Solve the original network AX = B.

2. Solve the adjoint network A” X, = —d.

3. For each parameter )\, determine % and compute the sensitivity according to (3.56).

It is important to note that the matrix % is an extremely sparse matrix which makes the CPU
cost of the final step negligible to that of the first two. As can be seen, the same left-hand-side
matrix A is used to determine solutions of both the original network and the adjoint network,
meaning only one decomposition of the matrix A is needed for determining the sensitivity of all
the parameters in the circuit.

Adjoint sensitivity analysis can also be performed on the solution of nonlinear circuits using
methods such as Harmonic Balance [7]. In this case, the adjoint solution vector X , for nonlinear

circuits is defined using the general relation given by

J'X,=d (3.58)
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where
OF(X)

0X

is the Harmonic Balance Jacobian matrix. The sensitivity of the output variable V,,,; with respect

J=A+

(3.59)

to any parameter connected to branch b can then be obtained by solving the simplified expression

given by
— > . Real [X;,(k) X (k)G; (k)] if 2 € linear subnetwork,
WVou
I\ =l > . Real [X;,(k)Gy (k)] if € nonlinear VCCS or nonlinear resistor,
— > Imag [ X}, (k)G (k)] if x € nonlinear capacitor.
(3.60)

In these equations, k is the k" harmonic and G (k) is the appropriate parameter from Table 3.1.

Table 3.1 Harmonic Balance adjoint sensitivity expressions for different elements

[7]

Type of Element Gy(k)
Linear G 1
Linear R - %
Linear C JWr
Linear L - m;LQ
Nonlinear VCCS or R with i = i(z(¢),\) | [kth Fourier coefficient of %]
Nonlinear C with ¢ = q(z(t), \) wi[kth Fourier coefficient of %]

3.9 Conclusion

In this chapter, the formulation of nonlinear circuits using the Modified Nodal Analysis equations
and the general Harmonic Balance equations was presented. In addition, the steady-state simula-
tion of nonlinear RF circuits using classic Harmonic Balance and an overview of the fundamen-
tals for performing exact and efficient sensitivity analysis were presented. For intermodulation
distortion analysis applications, the Harmonic Balance approach presents several limitations and

computational bottlenecks, thereby making it a very CPU expensive approach. In this thesis, a
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new approach for the intermodulation distortion analysis of RF circuits based on the Harmonic

Balance moments is presented to address some of the critical CPU bottlenecks.
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Chapter 4

Moments Based Computation of
Intermodulation Distortion of Mixer

Circuits

4.1 Introduction

Mixer circuits such as the doubly-balanced Gilbert cell [86] are widely encountered in modern
telecommunication circuits and their main purpose is to convert a signal from one frequency to
another. In a receiver circuit, this conversion is from the Radio Frequency (RF) to the Interme-
diate Frequency (IF). Mixer circuits are therefore inherently nonlinear devices since nonlinearity
is necessary to generate the new frequencies [6]. In addition to the desired nonlinearity, mixer
circuits also contain undesired nonlinearities in the RF signal path. The increased complexity of
modern circuits in addition to the reduction of supply voltages and the scaling of MOS devices
into deep sub-micron regions have aggravated the effect of the nonlinear device characteristics
in these circuits [2]. Therefore, it is of particular importance to be able to perform efficient
and accurate nonlinear distortion analysis for mixer circuits, especially for wireless applications.
Simulation of intermodulation distortion can be performed in either the time domain or the fre-
quency domain. Frequency domain approaches such as Harmonic Balance are more effective for
weakly nonlinear circuits. However, there are several challenges to simulating intermodulation
distortion in mixer circuits. As mentioned in Chapter 1, the number of frequency tones in the

Harmonic Balance equations becomes extremely large due to the mixing of the two RF tones in
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addition to the LO tone. In addition, for complete switching in mixer circuits, the LO power is
typically quite large, thereby causing strong nonlinearities outside the signal path which means a
high order of harmonics have to be accounted for in the steady-state simulations.

In section 2.6, a simulation approach based on computing the moments of the harmonic bal-
ance equations was described for obtaining the third order intercept point of mildly nonlinear
circuits. This method eliminated the complex analytical computations required for Volterra anal-
ysis by numerically computing the Volterra kernels of a circuit with an arbitrary topology. The
approach is, however, limited to weakly nonlinear circuits such as low noise amplifiers. In this
chapter, the method in section 2.6 is extended to address circuits such as mixers which are de-
signed to be highly linear in the signal path, but contain highly nonlinear internal switching
due to the large signal local oscillator input (i.e. weakly nonlinear periodically time varying
circuits) [19], [20]. Using such an approach, the circuit moments expansion around the local os-
cillator power is used to compute the value of IP3. This approach does not require any analytical
manipulation but is rather applied directly to the general MNA Harmonic Balance formulation of
the circuit. It can therefore be fully automated in a general simulator environment and applied
to circuits of arbitrary topology and complexity. It is important to note that the value of 1P3
is in fact obtained from the general Harmonic Balance equations without the need to compute
the steady-state harmonic balance solution, which requires a large computational cost due to the
dense nature of the Jacobian and the number of Newton iterations required. Furthermore, the
computation of all the moments only requires one LU decomposition of a moments computation
matrix that has the same structure as a Jacobian matrix, except it is very sparse unlike the typical
Harmonic Balance Jacobian which is usually both large and dense. In addition, the computa-
tion is done numerically around a given LO input power (operating point) and with the input
frequencies and the local oscillator power known, and thus produces very accurate results.

The general steps of the moments based approach for computing the IP3 of mixer circuits are
as follows. First the moments of the harmonic balance equations with respect to the input radio
frequency power are computed. Second, the values of the relevant distortion analysis terms are
extracted from the appropriate locations in the moment vectors. Finally, the third order intercept
point is obtained from the computed terms. This chapter is organized into seven sections. After
the introduction, section 4.2 formulates the computation of IP3 in mixer circuits using series
expansion. This is followed by section 4.3 which presents the moments computation algorithm
for mixer circuits including the sparsity pattern analysis of the moments computation matrix. The

main method is then presented in sections 4.4 and 4.5. A numerical example is shown in section
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4.6 in order to illustrate the speedup and accuracy of the new method, followed by the conclusion

in section 4.7.

4.2 Obtaining the IP3 From Series Expansion

Consider the following power series expansion of the input-output relationship of a memoryless
nonlinear system
Tr = k?o + k?lvm -+ kQUZ'Qn -+ k’gl}?n 4+ .= Z k‘nvn (41)

Now consider an input voltage signal consisting of two sinusoidal RF input tones given by v =
Vrr(cos(wit)+cos(wat))+ Vo cos(wot), with wy and w, being two input radio frequency signals
and wy being the local oscillator frequency. Substituting this term into (4.1) and expanding using

trigonometric identities results in the frequency components shown in Table 4.1.

Table 4.1 Summary of distortion components in mixer circuits

Frequency Component Amplitude

DC ko + kaVip

wo £ wy koVreVio + kaVerVio(3Vio + 2VEr)

wo £ wo koVreVio + kaVerVio(3Vio + 2VEr)
wo £ 2wy %k:sV}%FVLO
wo £ 2wy %k:sV}%FVLO
wo £ (w1 £ ws) %k:’,V}%FVLO
wo £ (wo £ w1) %k:’,V}%FVLO
wo & 3wy TkdVERVio
wo £ 3w %k4V§FVLo
wo £ (2wy £ wo) %k4V}%FVLO
wo £ (2wy + wy) %k4V}%FVLO

The 3rd order intercept point is theoretically where the amplitude of the fundamental tone is
the same as that of the intermodulation tones at either wy £ (2w; — ws) or wy £ (2w — wy) [87].

To determine the value of the input third order intercept point voltage, the linear part of the
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fundamental component is equated to that at one of the third order intermodulation tones. Solving

for Vg = Vips is done by evaluating

3 3
(@VLO + §k4VL30 +.. ) Vips = (§k4VLO +.. ) Vs (4.2)

which then simplifies to

(koVio + 3kaVig +...)
= 4.
Vies \/ (3kaVio +...) @3

The relation given by (4.3) is used to determine the value of the input third order intercept point
voltage. For systems that contain memory elements such as inductors and capacitors, the input
output relationship given by (4.1) becomes a function of the Volterra kernels, where the n'* order
kernel is given by H,,(jws, ..., jw,). In this case the value of the input third order intercept point

voltage becomes

3VE,

\VioHa(jwo, jwr) + =22 Hy(jwo, jwo, —jwo, jwr) + - . . |
|3V2L—O H4(jw07jw17jw17 _]WQ) + e |

Vips = (4.4)

To determine the output third order intercept point voltage, this quantity is multiplied by the
voltage gain of the system. The fundamental difference between computing IP3 in mixers and
in amplifier circuits using circuit expansion is that the mixer relations are a function of the LO
power. It is important to observe that in order to determine the value of IP3 accurately using the
above formulations, several terms of the summations need to be accounted for since the value
of the LO power is typically quite large. In the new moments based approach, the moments

expansion is performed around the LO power which makes the computation of IP3 very accurate.

4.3 Definition and Calculation of the Moments For Mixers

The computation cost of the overall algorithm is essentially the CPU cost of computing the Har-
monic Balance moments from the general Harmonic Balance equations. Once the moments are
determined, the distortion analysis parameters can be obtained. In this section, the definition
of the system moments and the method used to compute them efficiently for mixer circuits is
presented [67].
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4.3.1 System Formulation

The system moments are essentially the derivatives of the unknown Harmonic Balance solu-
tion vector X defined in (3.9) with respect to the input radio frequency voltage amplitude [18]
evaluated with the amplitude set to zero. To develop the algorithm for calculating the moments
efficiently, it is useful to express the Harmonic Balance equations defined in (3.9) in the following

format

where

e « is the amplitude of the input RF signals.

[ is the power of the local oscillator tone.

Brgr is a vector with the only non-zero entries being entries of value ‘1’ at the input radio

frequencies of interest.

B is a vector containing the contributions of the Local Oscillator input.

B p¢ contains the values of the DC independent sources.

e G, C, F(X)and X remain as defined in section 3.3.

The system moments M, ... M, are defined as the coefficients of the Taylor series expansion of

the Harmonic Balance solution vector X as a function of «v in

q
X = M0+M104+M2(12+M3043+"':ZMkak (4.6)
k=0

where M, is the k" moment vector of the system.

4.3.2 Moments Computation Algorithm

The derivation of the moments computation algorithm begins by substituting (4.6) into (4.5),

which results in the following expression:

q q q
G Z M, o* +C Z M,a* + Z D,o* — Bpe — 3Bro — aBrr =0 4.7)

k=0 k=0 k=0
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The terms Dy, are the Taylor expansion coefficients of F'(X') with respect to a given by
q
F(X)=) D" 4.8)
k=0

To solve for the zeroth moment M, the value of o in (4.7) is set to zero. Setting o = 0 gives:
GM,+ CM,+ F(M,) = Bpc + B0 (4.9)

Note that equation (4.9) is a Harmonic Balance equation with only one input tone at the local
oscillator frequency and can thus be solved very efficiently. To solve for the remaining moments
(M ,; n > 1), like powers of « are equated on both sides of (4.7). Equating the first power of «
results in

GM,+CM, + D, = Bgr (4.10)

It is useful to apply the chain rule to rewrite D = g—ﬂa:o as D; = g—f( . %—if a0 = ToM;.

Substituting this expression into (4.10) then yields

(G+C +To) My = Bgp @.11)
—_————
P
The first moment can now be obtained using one LU Decomposition to solve (4.11). It is impor-
tant to note that the matrix ® = (G + C + T) is simply the sparse Jacobian matrix which is
already computed when obtaining the initial solution. To obtain the remaining moments, the n'"

power of o on both sides of (4.7) is equated to obtain:
GM,+CM,+D,=0 n>1 (4.12)

To solve the system given in (4.12) efficiently for each value of n, D,, needs to be expressed using

a different notation. Applying the chain rule means that D,, can be expressed as

8_F_8F 8X_T8X
da 90X Oa O«

(4.13)
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where T',, are the moments of the nonlinear Jacobian matrix and represent the coefficients of the
OF(X)
X

Taylor series expansion of as given by

OF (X
T(a) = ( ) Z T).0F (4.14)
Substituting (4.6), (4.8) and (4.14) into (4.13) then gives
q A q _ q _
D iD= Tty iMa'! (4.15)
i=1 i=0 i=1

Taking the n'" derivative of (4.15) and setting o to zero means that D,, can be expressed as

—1
1
D, =T\M —Zn NT;M,_; (4.16)

3

Finally by substituting (4.16) into (4.12) and rearranging yields

n—1

- 1 .
(G+C+Ty) M, = _gjz;(n—j)TjMn_j 4.17)
—f—’cb -

This recursive relationship is used to calculate the remaining moment vectors. The right-hand
side of equation (4.17) is calculated using the values of the previous moments (M ,,_;) that have
already been obtained, in addition to the values of T'; which are the moments of the nonlinear
Jacobian evaluated with only the DC and LO tones. All that remains is to show how to compute
T;. Since F(X) and X are vectors, the term T'(«) in (4.14) will be a matrix of the form

or .. 9R

(a) = x| : (4.18)
oy .. OF
0X1 0Xn

where each J - term is a block matrix in itself. To simplify the presentation of calculating these

OF

. 5x» Will be considered. Let

terms, only one of the terms in the T'(«) matrix shown in (4.18)
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3—?1 be the matrix 7', then its Taylor series expansion with respect to « is given by

OF, 1 ,
3%, ;0 5 (4.19)

where the Taylor coefficient P; is entered in T'; at the location corresponding to g—fg. The P;

matrices are computed using

8f1(8$$11(t1))j 0
P, = r—t T (4.20)
Of1(z1(ts))
0 189011 j

where t; to ¢ are time sample points that are equally spaced over the fundamental period (note
that frequency mapping and truncation methods [5] are used in order to handle quasi-periodic
inputs efficiently using the Fast Fourier Transform as described in section 3.7), and I' is the In-
verse Direct Fourier Transform matrix shown in (3.25). Note that the matrix vector multiplication
with I' can be done efficiently by taking advantage of the Fast Fourier Transform algorithm. The
moments of the derivatives of the nonlinear functions with respect to each variable in the solution
vector are also determined using an efficient algorithm that is very similar to that of the regular
harmonic balance moments. The analytical expressions are derived once for each device model
and then evaluated in the simulator for each moment. A list of common nonlinearities and their
derivatives can be found in [18], [67].

It is to be noted that the moments computation matrix is the same for all moments as can be
seen from (4.11) and (4.17). Furthermore, this matrix is very sparse since it is evaluated with
only the LO tones present. A detailed analysis of the sparsity of this matrix is presented in the

next section.

4.3.3 Sparsity of the Moments Computation Matrix

One of the key advantages of the new method is that the moments computation matrix ® in equa-
tions (4.11) and (4.17) is very sparse compared to the typical Harmonic Balance Jacobian, as will
be illustrated in the examples. In this section, the sparsity pattern for the moment computation

matrix ® of mixer circuits is presented. The definition of the matrix ® in equation (4.11) which
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has the same structure as a Harmonic Balance Jacobian is given by

IF(X)

P=G+C+—r

4.21)
a=0

Note that the matrices G and C are sparse, and the Jacobian of the nonlinear vector F(X) is

given by
ok O
8F X— 0X1 0Xn
SO (4.22)
0X
OFy ,, OFa
0X1 0Xn
In a standard Harmonic Balance Jacobian, each gz’)jl- = g—fé term is, when present, a full block
matrix [17] which is computed from the relation
¢;; =T ""4p,;T (4.23)
where I' is the Direct Fourier Transform matrix [70] and
Ofi(xi(t)) 0
9z (t=to)
Ofi(zi(t))
0 Ja:vi

(t=tnn—1)

The dense blocks 1) ; are the main reasons why a Harmonic Balance Jacobian matrix is dense.

Note however, that for the case of the moment computation matrix ®, the term g—f( 1s evaluated

with the RF input set to zero. This makes the matrix ¢;; very sparse as will be shown next.

In order to analyze the sparsity of the matrix ¢, we must first look at the structure of the

3o
Direct Fourier Transform (DFT) matrix I' used in (4.23) and given by

1 cos(wtp) sin(wtg)  ---  cos(Hwty) sin(Hwty)
1 cos(wt sin(wt <o cos(Hwt sin(Hwt
P |1 eslen) ) o eoHen) s |0
1 cos(wty,_,) sin(wty, ,) --- cos(Hwty, ,) sin(Hwty, ,)
= Ao, A1, A (4.26)

From equation (4.25) we note that each column \; of I' is a sampled time function of a time
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domain waveform which contains only one spectral component. Next, consider the diagonal
entries of the matrix 1) ;. These are essentially a sampled time version of the function g—z. For
the case of the moment computation matrix, the spectral components present in this function are
only DC and the harmonics of the local oscillator frequency.

If the matrix resulting from the product of 4 ;,I" in (4.23) is now considered, and the subscript

is dropped for simplicity of notation, the product can be expressed as:

= [Co, Cl, ey Cz] (428)

Note that in this case, the columns C; = 1\, are sampled time functions whose spectral compo-
nents are those of the local oscillator frequency mixed with the one frequency corresponding to

the column A;. Finally if the matrix ¢, is re-written as
¢p=T""'[yI=T""[C,Cy,...,C| (4.29)

it can be seen that the columns of ¢ contain the spectral components of C, to C'; respectively, and
given the sparsity of those spectral components discussed earlier, the matrix ¢ will be very sparse.
Finally, it is important to note that since the frequencies being used are non-commensurate, in
order to benefit from the use of the DFT operation the frequency mapping technique, and more
specifically the three tone truncation algorithm in section 3.7.3, is used. As an example, the
sparsity pattern for one frequency tone f; and one LO tone f, with the harmonic limit set at 2 in
the three tone truncation algorithm is that shown in Fig. 4.1 where an X shows the location of a

non-zero entry.

4.4 Derivation of the Link Between the Moments and the IP3 Terms

Linear circuits produce output frequencies that are the same as the input frequencies, which im-
plies that no mixing can occur in purely linear circuits. Mixers are therefore inherently nonlinear
devices with both desired and undesired nonlinearities. Intermodulation distortion analysis mea-
sures the amount of undesired nonlinear distortion at the translated IM3 frequency relative to
the desired nonlinearity at the translated fundamental frequency. Therefore, measuring the third

order intercept point in mixer circuits is performed in a similar manner to amplifier circuits ex-
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DC £ 2, f2f, oy £, fefy fgr2fy 2626 26 26,

e | X X X
f X X X X
% X X X | X
fof X X X | X
o2, X X X X
Pl X X X
fot X X X
for2f X X X
2628y X X X
26 X X X
% | X X X

Fig. 4.1 Sparsity pattern of a single block in the moments computation matrix of
mixer circuits

cept that now there is a frequency translation [6]. This means that the desired ‘linear’ signal is
essentially the result of a second order response (linear response mixed with the LO), and the
‘third order’ intermodulation signal is essentially the result of a fourth order response (third order
nonlinearity mixed with the LO). In this section, the derivation of the link between the moment
vectors and the higher order terms required for computing IP3 is presented. In order to simplify
the presentation, the case of memoryless systems is considered first, followed by the derivation

for general circuits that contain memory elements.

4.4.1 Memoryless Systems

In the case of memoryless systems, the output x can be written as a power series expansion of

the input v as given by
T = ]{70 + lﬁU + ]€2U2 + /{73’(13 + /{74’(14 + ... (430)
In mixers, the input signal is defined as

v = a(cos(wit) + cos(wat)) + [ cos(wpt), (4.31)
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where
e w; and wy are the two input radio frequencies.
e wy is the local oscillator frequency.
e « is the amplitude of the RF signal.
e (3 is the amplitude of the LO voltage.

Substituting this expression into (4.30), expanding using trigonometric identities and grouping
terms with equal powers of « together results in

= [ko+ (ke +3ks3®+...) %] +
(k18 +...) + (3ksB +...) a?] cos(wot) +
(3k4ﬁ +.. ) a?’} cos((wo + 2wy — we)t) +

)
T )a (9’f45+ )a}cos (w0 +w)t) +
)

(k2ﬁ+3k4ﬁ3 )a (9k45+

a } cos((wo + wa)t) +
31{?45

. ) 3} cos((wp + 2wy — w1 )t) +

( 1 ) a ] cos((wo + 2wa)t) + . .. (4.32)

Due to the large number of harmonics present at the output, only the components at the fre-
quencies of interest for the calculation of the third order intercept point are shown in (4.32). By
comparing (4.32) with the general equation for the moments defined in (4.6), the location of the

k, terms in the system moment vectors M is determined. This is more clearly seen when the
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moments are represented in vector form by

wo — (2w £ wy)| — 0 0 0 %k4ﬁ+...

Wo — W1 — 0 kof + 3kaf® + ... 0 SkaB+ ...

Wo — Wa — 0 ko3 + 2ka33 + ... 0 kB + ...

wo — 2wy £ wr)| — 0 0 0 %k4ﬁ+...
Wy — w1 +wy | — 0 0 %kgﬁ—i—... 0
wo — k1ﬁ+k3%ﬁ3+... 0 3ksB+ ... 0
wot+wy +wy | — 0 0 %kgﬁJr... 0

wo + (2w + wy)| — 0 0 0 SkaB+...

wo + Wy — 0 ko3 + 2ka33 + ... 0 YhaB+ ...

wo + wo — 0 ko3 + 3ka3% + ... 0 a3+ ...

wo + (2we wy)| — 0 0 0 %k4ﬁ+...

e V3 V2 v Y

The relation in (4.33) shows the contents of the first four moments vectors with the entries of

interest for the computation of IP3 shown in bold at the fundamental frequencies of (wy £ w; 2)

and third order intermodulation frequencies of (wy £ (2w 2 — w21)).

4.4.2 Systems With Memory Elements

For the more general case of mixer circuits that contain memory elements, the circuit expansion

is represented by a Volterra series with terms up to the 4th order Volterra operator included in the

derivation. The Volterra series representation of a nonlinear system with memory is given by

x(t) = Hy [v(t)] + Ho [v(t)] + Hz [v(t)] + Hy [v(t)] + . ..

(4.34)
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To determine the location of the Volterra terms in the moment vectors, the three frequency input

function defined in (4.31) is re-written as

v(t) = [eos(wot) + a(cos(wit) + cos(wat)) (4.35)
— gejwot + ge—jwot + %ejmt + %e—jwlt + %ejwmf + %e—jwzt (4.36)
= U,(t) + vp(t) + ve(t) + va(t) + ve(t) + vy (2) (4.37)

This function is then substituted into (4.34). The resulting expressions for each Volterra operator
are too large to be stated in their entirety. Instead, only the expressions at the frequencies of
interest are shown. At the fundamental intermediate frequency of an up-conversion mixer at
wo + w1, a combination of second order, fourth order and higher even order terms appear. The
second order response at this specific frequency can be represented as

Hy [v(t)] = Ho{v,,v.} + Ho{ve,va} + Hof{vy, vq} + Ho{vg, vy} (4.38)

wotw1

The first term of (4.38) is now written in terms of the second-order Volterra kernel using the

two-dimensional convolution [3]

Hy{v,,v.} = /OO /00 ho (71, To)va (t — T1)vp(t — To)dT1dTs (4.39)
- % /OO /Oo ho(11, 72) €0t edr(t=72) g (4.40)
= O‘Tfejwotemt / N / N ha (71, T2)e 70T e 1 dry dy (4.41)
_ % Hy (g, jooy Jedeotont (4.42)

In a similar fashion, the remaining terms in (4.38) can also be expressed in terms of the second

order kernel and are given by

« . . (w1 4w

Hofve v} = 2 Ho(jun, jup)e/ 443)
o : : —Jj(wo+w1

Ho{vy,va} = Tﬁf&(—jwo,—jwl)e Jluorton )t (4.44)
« : : —Jj(w1+w

Hoy{vg, v} = —ﬁH2(—JW17—]W0)€ Jlertwo)t (4.45)

4
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If the second order kernel /5 is assumed to be symmetric, then its Fourier transform can also be

considered symmetric such that
Ho(jwo, jwr) = Ha(jwr, jwo) (4.46)

Then (4.38) can be re-written as

Hy [0(t)] 10, = 2 (%) Hy(jwo, jwr)e/ 0t 42 (%) Hy(—jwo, —jwr)e 7ot
(4.47)
The two terms in (4.47) are complex conjugates of each other since it easy to prove that
Hy(—jwo, —jwi) = Hy(jwo, jwr) (4.48)
This reduces the final result to the expression
Hy [0(t)], 10, = aRe (Ha(jwo, jwr)e/ o) (4.49)

The fourth order responses at wy + w; are due to the combination of frequencies at wy + wy —
wo + wy, at wy + w1 + w1 — wy and at wy + wy + wo — wo. Assuming the fourth order kernels to

be symmetric, a similar analysis to that of the second order response is considered which gives

Hy[v(t)] = 12H,{vq, vy, Uy, v} + 12H {0y, Vp, Vg, V4 }

wo+tw1

—|—12H4{Ua, Ve, Vg, Ud} + 12H4{Ub, Vg, Vd, UC}
+24Hy{v,, Ve, Ve, v5 } + 24Hy{vp, vg, v5, Ve } (4.50)

When the above expressions are expressed using Volterra kernels they would simply to

3 . S (ot
50453Re (H4(]W07]W07 —JWOJM)@J( o l)t)
3 L ‘ (w0t
+§043ﬁR€ (H4(]w0,]w1,]w17 —jwy)el ot l)t)
6 L ‘ (ot
+§043ﬁR€ (H4(]w0,]w1,]w27 —]W2)€J( ot l)t) 4.51)

At the translated 3rd order intermodulation frequency of wy + 2w; — ws, only fourth order terms

appear in addition to higher even-order terms. At this frequency, the fourth order Volterra operator
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can be written as
Hy [0(1)] 100, —wy = 12H4{Va, Ve, Ve, vp } + 12Hy{vy, v4, V4, Ve } (4.52)

By following a similar analysis to that performed at the fundamental frequency, the above ex-

pression would simplify to

3 . . . . j(wo+2w1—2w2
Hi [o(t)] = 0" Re (Ha(jwo, jwr, jun, —jun)el 0 2a22)) (4.53)

wo+2w1 —w2

By substituting (4.49), (4.51), (4.53) and expressions at other frequencies into (4.34) then rear-

ranging by grouping like powers of «, the following input output relation is obtained

[ N L« .
X = Re (ﬁHQ(]WO,]M) + %Hzl(]woa]wo, —Jjwo, jwi) + .. ) QGJ(MOWI)t] +

3

3 . . .
Re ﬁHQ ]wo’]WQ + iH‘l(ijaija ]WO,]WQ) + .. ) 0[6](w0+w2)t:| -+

2

3 .
Re BH4 (Jwo, jwr, jwi, jws) + . ) a3e](“0+2w1+w)t} +

Re Hy(jwo, jwi, jws, jwa) + . ) a3€j(wo+2w2+w1)t:| n

7
Re 36

(7
35 3 j(wo+2wi—w2)t
Re Hy(jwo, jwr, jwi, —jws) + . a’e +

Hy(jwo, —jwi, jwa, jws) + . ) oz?’ej(“’”z“’?”l)t} +... (4.54)
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This expression can be re-written in terms of magnitudes and angles which results in the following

notation that is easier to follow

[ . 33° o o

X = ||fH3(jwo, jwr) + 7H4(]W07]W07 —jwo, jwi) + ...
[ . 33° . o
5H2(JW07]W2) + —H4(]W07]W07 —onajwz) +..

Oé:| cos((wp + w1 )t + O1) +

Oé:| cos((wp + wa)t + O9) +

i 2
3., . 3
?H4(]wo,]w17]w17]w2) +...|a’| cos((wo + 2w +wo)t + O3) +
3. . ‘ 3
?H4(jw0,jw1,jw1, —jws) 4+ ... |’ | cos((wp + 2w — wa)t + Oy) +
3., . . 3
?H4(jw0,jw1,jw2,jw2) +...|a’| cos((wo + 2we + wy)t + O5) +
363, . S 3
?H4(jw0, —jwy, jwa, jwa) + ... | | cos((wo + 2wy —wq)t +Og) + ... (4.55)

It can be seen that the Volterra series expression in (4.55) is similar to the expression shown
in (4.32), which means that the contents of the first moment vector, M, at the fundamental

frequencies are

0

wo — (2w £ wy)| —
wo — w1 — | |Ha(jwo, —jw1)B + S Hy(juwo, jwo, —jwo, —jwr1) 5% + . .. |
wo—wy | = ||Ha(jwo, —jws)B + LHa(jwo, jwo, —jwo, —jw2) B + ... |
wo — 2wy £w)| — 0
wo— w1 +wy | — 0
Wo — 0 (4.56)
wo+wi+wy | — 0
wo + (2w £ wy)| — 0
wotwr | — | |Ha(jwo, jwi)B + EHa(jwo, jwo, —jwo, jwr) B2 + . .. |
wotwy | = | |Ha(jwo, jws)B + EHa(jwo, jwo, —jwo, jwa) B2 + . . |
-

wo + (2wa £ wy) 0

~~ ~~

Frequency M 1
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Similarly, the third moment vector M 3 contains the distortion terms given by

wo — (2w —wy)| — |%H4(jw0,—jwl,—jwl,ng)ﬁJr...|
Wo — w1 — |13 Ha(jwo, —jwr, —jwr, jw1)B + § Ha(jwo, jwr, jwa, —jw2)B + .. .|
Wo — Wo — | |3 Hy(jwo, —jwa, —jws, jwe) B 4+ §Hu(juwo, jws, jwi, —jwi) B+ .. .|
wo — (2wy —w1)| — |%H4(jw0,—ng,—ij,jwl)ﬁJr...|
wo—wy +wy | — 0
Wo — 0
wo +w +wy | — 0
wo + 2wy —wsy)| — |%H4(jw0,jw1,jw1,—jw2)5+...|
wo + w1 — | [2H4(jwo, jwr, jw1, —jwr1)B + SHa(jwo, jwr, jws, —jwa)B + .. .|
Wo + wo — |%H4(jw0,jw2,jw2,—jw2)ﬁ+ gH4(jw0,jw2,jw1,—jw1)ﬁ+...|
wo + (2ws —w1)| — |%H4(jw0,jw2,jw2,—jw1)5+...|

(4.57)
It is important to observe that the terms required for computing IP3 are a function of the LO
power (3, which means that for large LO powers, several higher order terms need to be accounted
for. The moment vectors contain the values equivalent to that of the whole summations, rather
than individual distortion components, which means that this method does not suffer from ill-

conditioning and problems with convergence.

4.5 Computation of the IP3 From the Moments

To determine the value of the input third order intercept point, we use the relation developed in
section 4.4. The relations shown in (4.3) and (4.4) can be generalized to obtain the following

expression for the input third order intercept point referred to below as /1 P3
IIP3 =, ,|—= (4.58)

The terms m; ; and ms 3 represent the entries in the first moment vector at the fundamental fre-

quency, and in the third moment vector at the third order intermodulation frequency, respectively.
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For memoryless systems, these terms correspond to

3 3
my1 = kQ/B —+ %/{?4 + ... (459)
3
ms3s3 = 76]{;4 + ... (460)

In the presence of memory elements such as capacitors and inductors, the entries in the moment

vectors are equivalent to the Volterra kernels, which means that

o 33 o .
mi1 = |BH2(jwo, jwr1) + BN 4(jwo, jwo, —jwo, jw1) + .. .| 4.61)
33 L .
mgz = |7H4(]W07]W17]W17 —jws) + ... | (4.62)

A summary of the main steps of the algorithm can be found in Fig. 4.2. It is important to
notice that the relation for the moments based computation of IP3 in amplifier circuits presented
in section 2.6 is actually very similar to the one given by (4.58), with only the contents of the
moments at the terms m; ; and ms 3 differing between the two approaches. This means that
the relation in (4.58) can now be used as part of a unified framework for the moments based
computation of IP3 in general RF circuits. It is to be noted that the computation cost required for
obtaining IP3 using this algorithm is only one LU decomposition of the moments computation
matrix. Furthermore, this matrix is evaluated at either the DC operating point, or with only the
local oscillator tones present for the case of mixers, and it is therefore very sparse unlike a typical
HB Jacobian matrix. In contrast, the brute force steady-state simulation based approach requires
the solution of a system of equations with a dense Jacobian at each Newton iteration, which
requires a high computational cost.

It is important to note that, although the derivation of the algorithm for computing the mo-
ments is quite involved, its application is systematic and can be easily automated. Furthermore,
all the moments are solutions of systems of linear equations where the left hand side matrix
remains the same, and is very sparse as compared to the Harmonic Balance Jacobian which is
both large and dense. In addition, although the proofs showing the link between the circuit mo-
ments and Volterra kernels require complex analytical manipulations, these proofs are only done
once for the general harmonic balance equations, and the results presented here are thus general.
From an implementation perspective, the portion of the new algorithm linking the moments to

the distortion terms is trivial and requires a negligible computational expense as the value of the
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third order intercept point is computed from the system moments which only require one LU

decomposition of a sparse matrix.

1. Set up the system equations in the frequency domain according to the formulation
shown in (4.5)

2. Calculate the zeroth moment M, as defined in (4.6) by finding the solution of the
sparse system shown in (4.9)

3. Calculate the first moment M5 by solving the formulation in (4.11)

4. Calculate the remaining moments (M,,; n > 1) by solving (4.17) recursively

5. Obtain the Volterra kernels from the entries in the moment vectors at the
fundamental frequencies (wy + w; 2) and at the third order intermodulation
frequencies (wy + 2wy 2 — wo 1) as outlined in (4.33)

6. Determine the distortion by calculating the third order intercept point according to
(4.58)

Fig. 4.2 Summary of the moments based algorithm for computing IP3 in mixer
circuits.

4.6 Numerical Example

In this section, the numerical results of IP3 simulations performed on an example circuit are
shown in detail in order to illustrate the accuracy and speedup of the new method. The value of
the third order intercept point obtained using the moments technique, which does not require a
harmonic balance solution, is compared with that obtained using the brute force method which
is based on multi-tone harmonic balance simulation. The new method was also tested on several

other circuit topologies, the numerical results of which are shown at the end of Chapter 6.

4.6.1 Detailed Analysis of a Doubly Balanced Mixer Circuit

The example considered for a detailed analysis is an active doubly-balanced (Gilbert Cell) up-
conversion Mixer with a local oscillator frequency of 1 GHz and input and output matching
networks as shown in Fig. 4.3 [20]. The power of the local oscillator signal is -16 dBm. To

measure the linearity of the circuit, the brute force method was first used by applying two -53.5
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Fig. 4.3 Active doubly-balanced mixer (Gilbert Cell) circuit diagram.

dBm tones at the RF signal input, with f; = 99.5 MHz and f> = 100.5 MHz, and performing
a standard harmonic balance analysis. The results are shown in Fig. 4.4 and Fig. 4.5. The
calculated input third order intercept point in this case was 13.774 dBm and the output third
order intercept point was found to be 33.36 dBm.

The distortion was then analyzed using the new approach by computing the moments of the
system and extracting the Volterra summations at the appropriate frequencies. The resulting
values of the input third order intercept point and the output third order intercept point were
found to be 13.772 dBm and 33.36 dBm respectively. As can be seen, the results are consistent
with the brute force approach based on Harmonic Balance simulations. The error between the
two methods was less than 0.01%.

In order to illustrate the differences between the HB Jacobian matrix used in the brute-force
approach and the moments computation matrix used in the new method, Figs. 4.6 and 4.7 show
the sparsity pattern of the HB Jacobian while Figs. 4.8 and 4.9 show the sparsity pattern of the
moments matrix. Since the two matrices are significant in size, to clearly illustrate the difference
in block sparsity between the two, the diagram in Fig. 4.7 shows the sparsity pattern of a section
of the Harmonic Balance Jacobian, while Fig. 4.9 shows the sparsity pattern of the same cor-

responding section of the moments matrix, which contains only the DC and the local oscillator
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tones.

4.6.2 Computation Cost Comparison

The data in Table 4.2 shows a comparison of the computation times and the speed-up between the
new moments method and the Harmonic Balance solution obtained using a prototype MATLAB
simulator. The hardware platform on which the simulations were run was a single-core Intel
Xeon machine with a clock speed of 3.6 GHz and 4GB of RAM. The speed-up over a Harmonic
Balance simulation was 39.7 times for this particular circuit when run with 4 harmonics. This
speed-up is due to three main reasons. First of all, the moments used in the new method are
found by solving a linear equation without the need for any Newton Iteration. The second reason
is that the left-hand-side matrix in (4.17) for finding the moments is the same for all moments,
while the Harmonic Balance Jacobian is different at each Newton Iteration. Finally the Harmonic
Balance Jacobian is significantly more dense than the Jacobian used for solving for the moments
as was shown earlier. For this specific example, the 11,174 x 11, 174 Harmonic Balance Jacobian
contains 1, 378, 486 non-zero elements as shown in Fig. 4.6, while the 11, 174 x 11, 174 matrix for
finding the moments contains only 122, 927 non-zeros as shown in Fig. 4.8. It is also important to
note that the greater the number of non-linear elements present in the system, the more significant

the speed-up will become between the two approaches.

4.7 Conclusion

In this chapter, a new simulation method for measuring distortion at the output of a non-linear
system based on the calculation of the system moments was presented. It was demonstrated that
by using this new simulation based approach to compute the third order intercept point from
the moments, it becomes significantly more efficient to analyze distortion in RF mixer circuits
while remaining as accurate as Harmonic Balance methods. It was also shown that the method is
general and applicable in a fully automated simulator on arbitrary circuit topologies and nonlin-

earities.
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Table 4.2 Comparison of computation times between the moments method and the

Harmonic Balance solt

jtion

Harmonic Balance | Moments Method | Speed-up
CPU time (s) CPU time (s)
IP3 Computation 154.02 3.88 39.7 times
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Chapter 5

Computation of IP3 Using Single-Tone

Moments Analysis

5.1 Introduction

Nonlinear distortion is due to the inherent nonlinearity of circuit components and results in the
harmonics of input tones, as well as the intermodulation products, being present at the output.
Radio Frequency circuits are typically designed to be as linear as possible in order to reduce such
nonlinear distortion. Of particular interest are third order intermodulation products because they
mix back into the frequency band of operation and result in many undesirable effects such as
gain compression and adjacent channel interference [1]. The third order nonlinearity is a result
of, and is proportional to, the third order term in the Taylor expansion of memoryless nonlinear
systems, or to the third order Volterra kernel of a nonlinear circuit with memory [3], [16]. The
most common metric for characterizing and quantifying the third order nonlinearity is the third
order intercept point (IP3) [6]. In a typical measurement setup, IP3 is obtained by applying a
2-tone input and measuring the third order intermodulation product which mixes back into the
passband of the circuit. Note that applying a single-tone input and attempting to characterize the
third order nonlinearity by measuring the third harmonic is not a suitable approach because the
third harmonic typically falls outside the passband of the circuit. This has lead to the popularity
of IP3 which is based on the measurement of the third order intermodulation product of a two-
tone input as a figure of merit for linearity. It is important to note, however, that the fundamental

quantity behind IP3 is the third order Taylor coefficient or the third order Volterra kernel.
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In a simulation environment, the most common approach for determining IP3 is to mimic
a laboratory measurement by applying a two-tone input and performing a steady-state analysis
using techniques such as the Harmonic Balance method. This approach is general and gives very
accurate results; however, the Harmonic Balance simulation requires a large CPU cost because
of the large number of variables present due to the two-tone input. This is particularly the case
for mixer circuits which would, in this instance, have a three-tone input (the local oscillator tone
in addition to the two RF tones). The moments based approach described in Chapter 4 does not
attempt to mimic laboratory measurements by applying a two-tone input and performing a steady-
state analysis. Instead, the linearity figures of merit are computed directly from the Harmonic
Balance equations. In this case, the nonlinear Harmonic Balance equations do not need to be
solved, and the computational complexity of obtaining IP3 is reduced to the solution of a set of
sparse linear equations. Furthermore, given that this approach is based on the Harmonic Balance
formulation, it is general and can be applied to any arbitrary circuit topology. Note that while the
moments method reduces the computational complexity of computing IP3 to that of solving a set
of very sparse linear equations, the size of this system of equations remains large. This is because
the number of variables is the same as the Harmonic Balance equations which can be very large
for amplifier circuits requiring two input tones, and even much higher for mixer circuits requiring
three-tone inputs.

In this chapter, a new method for the fast estimation of the value of IP3 in nonlinear RF
circuits using only a single-tone RF input is presented [22], [23]. The computation complexity
of this method is that of solving a set of linear equations and does not require the solution of the
nonlinear Harmonic Balance equations. Furthermore the number of variables is the same as a
Harmonic Balance formulation with a single-tfone input, thus making the size of the system of
linear equations that need to be solved considerably smaller than the two-tone moments method
while still being very sparse. This results in a considerable reduction in computation cost as
will be seen in the examples. For mixer circuits, the necessary distortion terms are computed
numerically from the moments of the Harmonic Balance equations with only two input tones
(one RF in addition to one local oscillator) instead of the traditional three tones. The new method
presents a fast alternative to the two-tone method presented in Chapter 4 for an estimation of the
value of IP3.

The general idea behind the new method is to numerically compute the value of IP3 directly
from the single-tone Harmonic Balance circuit equations by separating the linear response from

the third order distortion terms at the fundamental frequency. To that end, a mathematical relation
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is derived linking the value of IP3 to the single tone moments of the circuit. The computation of
IP3 is thus reduced to the computation of these single-tone moments. It is important to note that,
while the solution of the Harmonic Balance equations is not needed, the starting point of the new
method is the Harmonic Balance formulation. This makes it general to any circuit topology and
easily automated unlike traditional Volterra series based methods.

This chapter is organized into six sections. Following the introduction, section 5.2 provides
a brief background on the effects of third order nonlinear distortion on system performance and
highlights some of the main differences between different approaches for obtaining the third order
intercept point. The main algorithm is presented in section 5.3 including the single-tone definition
of IP3 and the derivation of the link between the single-tone moments and the value of IP3. The
computational cost analysis of the method is presented in section 5.4. Two numerical examples
are shown in section 5.5 (one amplifier circuit and one mixer circuit) in order to illustrate the

speedup and accuracy of the new method, followed by the conclusion in section 5.6.

5.2 Third Order Nonlinearity and IP3 Definitions

In this section the importance of third order nonlinear distortion and its effects on system perfor-
mance is presented. In addition, the various approaches for computing the third order intercept
point are outlined in order to provide the necessary background for the remainder of this chapter.
Consider a memoryless nonlinear system. Its input-output relationship can be expressed as
follows
X = ko + kvin + kav], + ksl + - = k", (5.1)
n

where X is the output, v;, is the input and k,, are the Taylor Series coefficients. For Radio
Frequency circuits, the third order nonlinearity caused by kj is of particular interest to designers.
For the more general case of nonlinear circuits with memory, the Taylor series in (5.1) is replaced
by a Volterra series. In this case, the third order nonlinearity is represented by the Laplace
transform of the third order Volterra kernel H3(jws, jws, jws) [3]. This third order nonlinearity
causes signal distortion which can be an important bottleneck in the system performance. This
distortion manifests itself in two important ways.

The first is through gain compression where the third order nonlinearity k3 is mixed back
down to the fundamental frequency causing gain compression at high input powers as illustrated

in Fig. 5.1. As can be seen from the summary of frequency components shown in Table 2.1, the
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Fig. 5.1 Definition of the 1-dB compression point

amplitude of the fundamental frequency tone (w;) consists of the terms (k;V; + %k;),Vf’), where
k1V) represents the linear response, and gk;?,vﬁ represents the nonlinear distortion. As can be
seen from Fig. 5.1, the effects of gain compression are more significant at high input powers.
The main figure of merit used to quantify this effect is the “1-dB compression point” (A14p),
defined as the input signal power at which the gain drops by 1-dB as illustrated in Fig. 5.1.

The second significant effect of the third order nonlinearity is the intermodulation distortion
observed in the presence of multi-tone inputs. When a nonlinear circuit is excited with two input
tones (w; and w-), the third order intermodulation product (IM3) results in tones at (2w; — ws)
and (2ws — wy) which falls within the system bandwidth and interferes with adjacent channels.
As shown in Fig. 5.2, if a weak signal accompanied by two strong interferers experiences third
order nonlinear distortion, then one of the IM3 products will appear within the passband of the
desired channel, thereby corrupting the desired component. The primary figure of merit used to
quantify this type of distortion is the third order intercept point (IP3).

In order to compute the value of IP3, first there is a need to determine the numerical values
of both the %k, and k3 terms from the series expansion in (5.1). Since the two components &V}
and %k:g,Vf’ are impossible to separate from a single measurement of the output amplitude, the
only way to determine the value of k3 in a single-tone simulation is by measuring the amplitude
of the output spectral component at 3w; which corresponds to ik?,Vf’. While this measurement
might be accurate for memoryless circuits, unfortunately such a measurement often results in
inaccurate results for quantifying the third order nonlinearity in circuits with memory elements

since measuring 3w, typically involves measuring an output outside the pass-band of the system
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Fig. 5.2 Adjacent channel interference due to intermodulation distortion [1]

as illustrated in Fig. 5.3 (a). To tackle this problem, a two-tone input must be applied to the
circuit in order to measure the third order nonlinearity at either 2w; — wsy or 2wy — w; which
would fall in the pass-band as illustrated in Fig. 5.3 (b). Unfortunately, such a solution would

add significant and unnecessary computation cost overhead.
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Fig. 5.3 Single-tone vs. two-tone third order nonlinearity and system bandwidth
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5.2.1 Evaluation of IP3 From the 1-dB Compression Point

Both the 1-dB compression point and IP3 are due to the same third order nonlinearity and are
thus related. It is possible to show that the value of IP3 is related to the 1-dB compression point

using the following relation [1],

Ai_qs V0145
IIP3 |\ /4/3

~ —9.6dB (5.2)

It is important to point out however that the 1-dB compression point is determined by the circuit
behavior (measured or simulated) at a relatively high input power and can thus be affected by
nonlinearities that are only activated in the device models at those power levels. The expression
in (5.2) is thus considered only a first order approximation for IP3.

It is possible to determine the value of IP3 using only simulations or measurements with a
single-tone input. This is accomplished by evaluating the 1-dB compression point and then using
the relation in (5.2). However such an approach has several limitations. First of all, it is not
a computationally efficient method. In order to obtain the 1-dB compression point, the input
power of the RF circuit must be swept, and the output power must be computed at each sweep
point using steady-state analysis techniques. In order to obtain accurate results, the number of
sweep points needs to be large. Another limitation of using such an approach is that the gain
compression that occurs at high input powers does not always follow such a typical curve as
that illustrated in Fig. 5.1. Finally, designers usually rely on the 1-dB compression point as a
useful tool for measuring distortion at high input powers, whereas the third order intercept point

is utilized to measure distortion at lower input powers.

5.2.2 Computing IP3 Using Volterra Series

In addition to the simulation based approaches discussed above, it is possible to obtain IP3 by
performing an analysis of the circuit using Volterra series as described in section 2.5 [16]. Con-
sider a nonlinear circuit containing energy storage elements such as capacitors and inductors.

The input-output relation of this circuit can be expressed as [16]
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where H,, is the n'" Volterra operator. For memoryless circuits the expression in (5.3) simplifies
to a Taylor expansion as expressed in (5.1). It is possible to derive analytical expressions relating
IP3 to the expressions in (5.1) and (5.3). These relations are outlined next for both amplifier and

mixer circuits.

Amplifier Circuits

Consider an amplifier with an input given by v;, = Vj cos(wit) + V5 cos(wst). By substituting
this input signal into (5.1) and expanding the terms, the following analytical expression for the

third order intercept point voltage can be derived [6].

4 ky
Vipa = 4] —— 54
P3 =1/ 3 ks (5.4)

For the general case of circuits with memory, the value of IP3 can also be expressed analyti-
cally in terms of the Volterra kernels. Note that in this case, it is possible to define IP3 in terms

of both the upper side tones and the lower side tones as follows [3],

[]P3L: é |H1(jwl)| (5 5)
3 |H3(.jw17.jw17 _jw2)‘

1 | Hi(jws)|
TIP3y =4/ = - - - 5.6
v \/3 | H3(jwa, jwa, —jwr )| 60

Both definitions of IP3 in (5.5) and (5.6) are equally valid, and since the two fundamental tones
are typically chosen in the passband and close enough to each other on the frequency spectrum

such that
Hy(jwr) = Hy(jws), (5.7)

Hs(jwy, jwi, —jwa) = Hy(jwa, jws, —jwi), (5.8)

the value of IP3 found using either (5.5) or (5.6) would be approximately the same. In other
words, the standard definition of IP3 assumes that the approximations in (5.7) and (5.8) are
valid [16].
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Mixer Circuits

Consider a mixer with an input signal v;,, = V{ cos(wot) + Vi cos(wqt) + Vs cos(wot), with wy and
wo being two input radio frequencies and wy being the local oscillator frequency. By substituting
this input signal into (5.3) and expanding the terms, the following expressions for the lower and

upper side IP3 can be derived [19]

. . 3 ] ) ‘ .
IIP3, = |%H2(]WO,]W1)+%H4(]w0,]w0,—]wo,jw1)+.,,| (5 9)
L - . . . . .
|52 Ha(jwo, jwr, jwi, —jws) + .. |
: . 3V3 . , , ,
[1P3, — [VoHs(jwo, jwa) + == Hy(jwo, jwo, —jwo, jwz) + ... | .
\ | 252 Hy (juwo, jws, jwa, —jwi) + .. |

For the case of mixer circuits without memory, these expressions simplify to the following rela-

tion in terms of the power series expansion coefficients given in (5.1)

%k2+¥]€4+...

I1IP3 =
Moky+ ...

(5.11)

Note that both the numerators and the denominators in (5.9) and (5.10) are power series of the
local oscillator power V[. Notice that these power series terms are difficult to converge for large
values of 1, as is often the case in mixer circuits. Similarly to the case of amplifier circuits, the
two fundamental RF tones are typically chosen in the passband and close enough to each other

on the frequency spectrum such that the following approximations can be made [16]
Hj(jwo, jwi) = Ha(jwo, jwa) (5.12)

Hy(jwo, jwi, jwi, —jws) = Hy(jwo, jwa, jws, —jw) (5.13)

5.3 Computation of IP3 Using Single-Tone Moments

In Section 5.2.2 the value of IP3 was expressed as a function of the Volterra kernels of the circuit.
However, obtaining IP3 from these relations has not been practical due to two main reasons. First,

it is very difficult to obtain analytical expressions for the Volterra kernels and to automate this



5 Computation of IP3 Using Single-Tone Moments Analysis 90

process for arbitrary circuit topologies. Second, the formula for the IP3 of mixer circuits contains
a power series of the local oscillator power which does not easily converge, therefore limiting
such an approach to weakly nonlinear circuits such as low noise amplifiers. In this section, a new
method is presented where the expressions needed for computing IP3 from the relations given in
(5.4)—(5.5) and (5.9)—(5.11) are numerically evaluated, without the need to explicitly compute the
analytical expressions for the Volterra kernels or the power series terms in (5.1), and with only
a single RF input frequency (w;) rather than the traditional two input frequencies (w; and ws).
To that end a closed form relation between the moments of the Harmonic Balance equations and
the terms in the single-tone Volterra series relations for obtaining IP3 is derived, which reduces
the problem of finding IP3 to that of computing the circuit moments. Although the expressions
are extracted from the Harmonic Balance moments, there is no need to perform a full Harmonic
Balance simulation. In fact the CPU cost of the moments computation algorithm is reduced to
finding the solution of a set of linear algebraic equations with only one LU-decomposition of a
sparse moments computation matrix that is significantly smaller in size than a Harmonic Balance
Jacobian matrix. This makes this method computationally much cheaper than than traditional
multi-tone simulation methods. Also, since the expressions are obtained numerically, this method
is automated and can easily be applied to arbitrary circuit topologies and nonlinearities.

In this section the details of the new algorithm are presented, beginning with the single-tone
IP3 formulation using Volterra series in section 5.3.1. This is then followed by the derivation of

the relation between these moments and IP3 for both amplifiers and mixers in section 5.3.3.

5.3.1 IP3 Formulation Using Single-Tone Volterra Kernels

It has been shown earlier that the IP3 of a nonlinear circuit can be obtained by first determining
the Volterra kernels of the circuit, then using the relation in (5.5) or (5.6) for amplifiers, and the
relation in (5.9) or (5.10) for mixers. Note however, that the presence of two input tones in these
formulations is simply to be consistent with measurement and simulation based approaches where
two input tones are necessary in order to obtain the intermodulation products. When the values
of the Volterra kernels can be analytically obtained for a given frequency, the approximations in

(5.7) and (5.8) are no longer necessary because for wy ~ wo,

Hs(jwy, jwr, —jws) ~ H3(jwy, jwi, —jwr) (5.14)
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and the intercept point IP3 can be defined using only a single input frequency as

A H, (i
IIP3 = /= ‘| 1(;7“’1”, (5.15)
3|H3(]w17]w17_jw1)|

It is important to note that with the condition given by (5.14), the formulation in (5.15) gives
similar results as that of the two-tone IP3 in (5.5), and any variations are due to a difference of
definition rather than numerical error.

A fundamentally similar analysis can be applied to mixer circuits. The standard definition of
IP3 assumes that the approximations in (5.12) and (5.13) are valid. If the two RF input funda-
mental frequencies are chosen sufficiently far away from each other such that (5.12) and (5.13)
are no longer valid, the standard definition of IP3 in mixer circuits is no longer valid. In other
words, similar to the case of amplifier circuits, when using Volterra series analysis it is possible
to determine the input IP3 of mixer circuits using only a single RF frequency in addition to the

local oscillator because for w; ~ wo,

Hy(jwo, jwi, jwi, —jws) = Hy(jwo, jwr, jwi, —jwr) (5.16)

In the case where the condition given by (5.16) is true, then the following single RF tone relation

can be used:

3
Vo Ha(jwo, jwn) + 220 Hy(jwo, jwo, —jwo, jwr) + - .|

IIP3 = . - | '
|%H4(JW07]W1,]W1, —jwi) + ... |

(5.17)

A general relation for computing the third order intercept point using a single-tone input for both

mixers and amplifiers is provided at the end of section 5.3.3.

5.3.2 Definition of Single-Tone Moments

The Harmonic Balance equations for a general nonlinear system, as described in detail in Chapter
3, are of the form [17]

GX +CX + F(X) = Bpc + aBgrr + B0, (5.18)

where
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G € RM>*Mu js a block matrix representing the contributions of the linear memoryless

elements.

o C € RM M is a block matrix representing the contributions of the linear memory ele-

ments.

e X € R is a vector of unknown cosine and sine coefficients for each of the variables in
x(t).

e The vectors Bpc € R and B € R™» show the contributions of the DC independent

sources and, if present, the LO frequency tone, respectively.

e By € R¥ shows the location of the single-tone RF input (a vector of all zero entries

except for a ’1’ at the location of the RF frequency).
e « refers to the amplitude of the input RF voltage signal

e [ refers to the amplitude of the LO voltage. Note that ( is only present in mixer circuits,

and is otherwise equal to zero.

e F(X) € R" is the vector of nonlinear equations.

The moments of the system are defined as the Taylor series expansion of the output solution

vector X with respect to the input RF amplitude «. This can be expressed as [17]
q
X = Mo+ Mo+ Mya® + Msa® +--- =Y Ma* (5.19)
k=0

where M, is the k' moment vector. The expansion is carried out at the DC operating point for
the amplifier case, and at the LO frequency for mixers. The CPU cost of obtaining the moments is
that of a solution of a system of sparse linear equations. An overview of the moments computation

algorithm can be found in section 5.4.

5.3.3 Relation Between IP3 and the Harmonic Balance Moments

In this section, a closed form expression for IP3 as a function of the Harmonic Balance moments
will be developed based on the single-tone definitions of IP3 in (5.15) and (5.17). First, the
cases of amplifier circuits and mixer circuits will be considered separately, and then an overall

framework will be provided at the end.
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Amplifier Circuits

Consider an amplifier circuit with an input v;,, = a cos(wt), with w being the Radio Frequency.
If the circuit is memoryless, the output can be obtained by substituting this input into equation

(5.1) and expanding using trigonometric identities, which results in
Lo
X = k’o + 5]{320{ + e +
3, 3
ki + Zkgoz + ... | cos(wt) +
Lo
5]{;204 + ... | cos(2wt) +
L, 3
Zk30[ + ... ) cos(3wt) + ... (5.20)

The relation in (5.20) can now be compared to that in (5.19), since the solution vector X in
(5.19) is essentially the output variable X in (5.20). By equating the same powers of « in these
two equations and noting the frequencies, the location of the k,, terms in the moment vectors M,

can be determined and are as follows

DC| — |ko| | O] |3ka| | ©

w — kl 0 §k3

w| — %/{:2 0 (5.21)
3w| — 0 ik’g

: SRR RN

Frequeny N, M, M, M,

Notice that each row of the moment vectors consists of the coefficients of the Taylor series ex-
pansion of one of the harmonic amplitudes. For example, the second row contains the Taylor
expansion coefficients of the amplitude of the fundamental frequency tone, w. In this row, we
observe that the vector M ; contains the value of £ and the vector M 5 contains the value of %kg.
The relation in (5.21) shows the first 3 moment vectors in addition to the zeroth moment vector,
with the parameters required for the computation of the third order intercept point according to
(5.4) shown in bold.

In the case of systems with memory, a fundamentally similar analysis can be performed.
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The additional complexity here comes from the need to represent the output as a Volterra series
expansion rather than a power series. To derive the relationship between the moments and the
terms required for computing IP3 according to (5.15), consider the system representation as a
Volterra series as defined in (5.3), where H;[v(t)] is the i*" Volterra operator and is of the "
order. For this derivation, it is useful to begin by expressing the single-tone input function with

an amplitude of « in the following format

v(t) = acos(wt) (5.22)
_ g jwt g —jwt
= 26] + 7€ J (5.23)
= ,(t) + vp(t) (5.24)

Substituting (5.22) into (5.3) then results in the following expressions for the first three Volterra

operators [3]

Hi[v(t)] = Hiv.] + Hi[w) (5.25)

Hy[v(t)] = Halv,) + Halvp) + Ha{va, vy} + Ho{vp, v4} (5.26)

Hiv(t)] = Hsve) + Hs[v] + Hs{va, va, Up} + H3{vVa, Vs, va} + Hz{vVp, Ve, va} +
Hs{vy, vy, v} + Hs{vp, v, Up} + Hz{vq, vy, vy} (5.27)

Each of the above operators are then evaluated and expressed using Volterra kernels in the fre-

quency domain via the following expression [3]

Hn{v1,~-,vn}:/ dﬁ-.-/ drahn(i, - ) [ Jort = 72) (5.28)
% - r=1

o0

In these expressions, h, (71, -+ ,7,) is the nt" order time-domain Volterra kernel and can be

assumed to be symmetric without loss of generality. With this being the case, using (5.28) to
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determine all the terms in (5.25)-(5.27) gives the following results

Hiv(t)] = %Hl(jw)ew+%Hl(—jw)e_m (5.29)
N e ) ) ot o? ‘ ‘

Hyv(t)] = ZHQ(]W,]W)GJ Y+ IHQ(—jw,—jw)e_J Y42 R Hs(jw, —ju(5.30)
o? ; a? ,

Hylu(®)] = 5 Haljow, jo, ju)e™ + S Hy(—jo, —ju, —jw)e 7" + (531)

3 a3

3 <%) Hy(jw, jw, —jw)e™" +3 ( 8 ) Hy(jw, —jw, —jw)e " (5.32)

(5.33)

Observing the terms for each Volterra operator reveals that they are all complex conjugates of

each other since it is easy to prove that [3]
Hy(—jws, ..., —jwn) = Hy(jwr, - ., jwn) (5.34)

Applying this property reduces the final result to the expressions given by

Hi[v(t)] = aRe (H;(jw)e™") (5.35)
2 2

Hyu(t)] = %Re(Hg(jw,jw)eﬂ”t)+%H2(jw,—jw) (5.36)
3 3

Hs[v(t)] = %Re(Hg(jw, jw, jw)eﬂ'3wt)+3%Re (Hs(jw, jw, —jw)e’™")  (5.37)

Substituting (5.35)-(5.37) into (5.3), the following input-output relation is obtained

1
X = Hp+ éHg(jw, —jw)a’ +
. 3 :
Re(H, (jw)e™ ) + TRe(Hy(jw, juw, —jw)e™)a’ +
1 .
5Re(HQ(jw,jw)eﬂwt)oﬂ -

1 .
ZRe(H?,(jw, jw, jw)e* o’ + ... (5.38)



5 Computation of IP3 Using Single-Tone Moments Analysis 96
which can then be re-written as

_ . | O

X = |Ho+ §HQ(]W, —jw)a®| +
|Hq(jw)| oz] Cos(wt + AHl(jw)) +

1 |Hs(jw, jw, —jw)| o | cos(wt + £ZH;(jw, jw, —jw)) +

' -

5 |Hy(jw, jw)] QQ} cos (2wt + ZHs(jw, jw)) +

1

1 |H3(jw, jw, jw)| 043] cos (3wt + LHs(jw, jw, jw)) + . . . (5.39)

By comparing the Volterra Series expression in (5.39) to the expression shown in (5.20), it can

be seen that they are very similar in structure. As was the case with memoryless systems, the

location of the parameters of (5.39) in the moment vectors can now be deduced and is given by

DC
w
2w
3w

Ll

Frequency

Hy

N~ ——

M,

0 31 Ha(jw, jw) 0
|H1(jw)| 0 HHs(jw, jw, —jw)|
0 5| Ha(jw, jw)| 0
0 0 i\Hg(jw,jw,jwﬂ
1\21 MQ 1\23

(5.40)

The parameters required to compute the value of IP3 according to (5.15) are the entries high-
lighted in bold.

Mixer Circuits

For the case of mixer circuits, the extra frequency component due to the Local Oscillator must

be accounted for in the derivation. A similar derivation to that shown in the previous section

is performed to determine the location of the necessary intermodulation distortion terms in the

moment vectors. Note that in this case, the computation of the moments is done using only a

single RF tone in addition to the local oscillator tone (i.e. two tones total) as opposed to three

tones in traditional Harmonic Balance. The moments computation algorithm is therefore similar

to the one described in Chapter 4 where the expansion is done around the LO which is considered
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outside the signal path, which in turn means that the local oscillator amplitude (5 is embedded
inside the moment vectors. After computing the moments, the next step would be to extract the
summations of terms needed to compute IP3 according to the formulation given in (5.17) from
the moment vectors, before finally proceeding with the computation of IP3.

To derive the link between the moment vectors and the terms required to compute IP3 ac-
cording to equation (5.17), the case of memoryless systems is first considered to simplify the
presentation. The input signal is now defined as v = « cos(wit) + (3 cos(wot), with w; being the
single-tone input radio frequency, and wy being the local oscillator frequency. Substituting this

expression into (5.1) and expanding using trigonometric identities results in the expression given

by

X = -<k26+ 3k;ﬁ3 +.. ) a+ <3k24ﬁ - ) a?’} cos((wo — wr)t) +
-<k16 + Zkgﬁ?’ + .. ) + <§k35 + .. ) aﬂ cos(wot) +

r 3
<k2ﬁ + 3k;ﬁ +.. ) a+ <3k24ﬁ + .. ) ag} cos((wp + w1)t) +

(5.41)

Note that equation (5.41) contains many frequency terms, but only the ones that are relevant for
the computation of IP3 are shown. By comparing (5.41) with (5.19), the location of the k,, terms

in the system moment vectors M. can be determined. This is more obvious when the contents



5 Computation of IP3 Using Single-Tone Moments Analysis 98
of the moments are presented in the following format,
wy — 3wy | — 0 0 0 skaB+ ...
Wop — W1 | — 0 k2,3+%k4ﬁ3+-.. 0 gk4ﬁ—|—...
wo | |kiB+ 3k + .. 0 kB4 ... 0
wo t+wy | — 0 k2,3+%k4ﬁ3—|—... 0 %k4ﬁ—|—...
WQ+3W1 — 0 0 0 %k’4ﬁ‘|‘
Fre(i]rency MU Ml M2 M3
(5.42)

By comparing (5.42) with (5.11), it can be seen that the terms needed for computing IP3 are
located in the first and third moment vectors. In fact, we observe that the moments contain the
whole summations needed, thereby resulting in accurate values of IP3 for circuits that experience
difficulty in convergence of the local oscillator power series. For the more general case of mixer
circuits that contain memory elements, the derivation is performed using a Volterra series expan-
sion with the inclusion of the Volterra operators up to the 4th order in the derivation. The Volterra
Series representation of a nonlinear system with memory is given by (5.3). The first step is to
substitute the expression for an input function with two tones, one being at the RF frequency of
interest with amplitude «, and a local oscillator tone with a separate amplitude (3, which is given
by

v(t) = acos(wit) + B cos(wot) (5.43)
— & et | X —jort é Jwot é —jwol

5O+ ge T+ G 4 Te (5.44)

= valt) + (t) + velt) + valt) (5.45)

into (5.3). The resulting expressions for each Volterra operator are too large to be stated in their
entirety. Instead, only the expressions at the frequencies of interest are shown. For the case of an
up-conversion mixer with wy >> w;, at the fundamental IF frequency of wy + w;, the distortion
terms present will be a result of a second order nonlinearity and a fourth order nonlinearity due

to the mixing of the frequencies wy + wy — wp +wy and wy + wy + w1 —w;. These distortion terms
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can be represented as

Ho[v()]worw, = 2Ho{va,v.} + 2Ho{vp, va} (5.46)
H4[U(t)]WO+W1 = 12H4{Uaavaavbavc} + 12H4{Uaavbavbavd} +
12H4{vq, Ve, Ve, vg} + 12H4{vp, Ve, Vg, V4 } (5.47)

Each of the above Volterra operators are then expressed in the frequency domain using Volterra
kernels by using the relation in (5.28) to determine all the terms in (5.46), similarly to the case of

amplifier circuits. This results in

Hy ()]0, = aPRe(Ha(jwo, jwy)e/orer) (5.48)
3 o S (ot
H4 [v(t)]wo-i-wl = §aﬁ3Re (H4(j(.d0,]u)0, _]WOM]wl)ej( ot l)t)
3 .
+5 0’ IRe (Hi(jwo, jw, jwr, —jwr)e ) (5.49)

By substituting (5.48)—(5.49) and the remaining terms at the other intermodulation and harmonic
frequencies into (5.3), then rearranging by grouping similar frequencies together, the following
input output relation is obtained

333

X = Re <BH2(jw07 —jwi)a + 7H4(jwo,jw0, —jwo, —jwi)a + .. ) ej(“’o““)t} +

Re 4(Jwo, jwr, —jwi, —jwl)a?’ + .. ) ej(wowl)t:| +

3p

Re | [ —
2

36° . o A
Re <5H2 (Jwo, jwr)or + %H4(]wo,]w0, — jwo, jwi)a + .. ) e](“"*““)t] +

Hy(jwo, jwr, jwr, —jw:)a® + . ) 6j(w0+wl)t] +... (5.50)



5 Computation of IP3 Using Single-Tone Moments Analysis 100

Which can also be expressed in the following format

2

. ) 332 ) ) . )
X = H5H2(ona —jwr) + £H4(]W07]W07 —jwo, —jw1) + ... 0‘} cos((wp — w1 )t + O1)

36
N |:’7H4(jw07jw17 —jwr, —jwi) + - ..

oﬁ’} cos((wp — w1 )t + Og) +

o 36° . S
HﬁHQ(jwo,jwl)a + £H4(jw0,jwo, —jwo, jwr)a+ ... a} cos((wo + wq)t + O3)

2

33, .
- H?Hﬁl(]u)m]wlvjwl’ —jwi) + ...

a?’] cos((wo +w1)t +0O3) + ... (5.51)

The Volterra series expression in (5.50) is similar in structure to the expression shown in (5.41)
which implies that the location of the parameters to compute the value of IP3 according to (5.17)
are the entries at the fundamental IF frequency locations in the first and third moment vectors.
More specifically, in the first moment vector M, the following summations at the frequencies

of wy + nw; are present,

wo — 3w | — 0
wo — 2w | — 0
wo —wi | — | |[Ha(jwo, —jw1)B + %H4(jwo,jw0, —jwo, —Jw1)B® + ... |
wo — 0 (5.52)
wotwr | = | [Ha(jwo,jw1)B + 3 Ha(jwos jwo, —jwo, jw1)B + ... |
wo + 2wy | — 0
wpy + 3wy | — 0
ey Y3 .

While in the third moment vector M3, the following summations are present at the same fre-
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quencies
wo — 3wi|— | |[5Hi(jwo, —jwi, —jwr, —jw1)B + ...
Wy — 2&)1 - 0
wo —wi | = ||2Ha(jwo, jwr, —jwi, —jw1)B + ... |
wo | — 0 (5.53)
wo+wi | = | |SHy(jwo, jwi, jwi, —jw1)B + ... |
wo + 2(,()1 — 0
wo + 3wy | — |%H4(jw07jwlajwlujwl)ﬁ+""
Fre(i]rency M3

As can be seen from (5.52) and (5.53), the moments contain the whole summations of terms
necessary for computing IP3, thereby making this method accurate for circuits that experience

local oscillator power series convergence issues.

General Formulation for Single-Tone IP3 Computation

The value of the third order intercept point is determined by evaluating the single-tone relations
developed in Section 5.3.1. The relations shown in (5.15) and (5.17) can be generalized to obtain

the following expression for the input third order intercept point referred to below as 17 P3

IIP3 = ,|—= (5.54)

The terms m, ; and m; 3 represent the entries at the fundamental output frequency in the first and
third moment vectors, respectively, as illustrated in Fig. 5.4 for amplifiers and Fig. 5.5 for mixers.
In the expressions for mixer circuits, it is important to note that /3 is the local oscillator amplitude

and that the entire summation of series terms (not just the ones shown here) are present.

5.3.4 Summary of the New Algorithm

An overview of the main steps of the new algorithm for computing IP3 using single-tone moments
is given in Fig. 5.6. The computation cost of this approach is primarily due to the computation

of the moments in step 2 of the algorithm. This amounts to a solution of a linear set of equations
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Fig. 5.4 Location of distortion terms in the moments for amplifiers
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2
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Fig. 5.5 Location of distortion terms in the moments for mixers
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which is very sparse and contains a small number of variables since only a single-tone input is
needed. The details of the computational cost of obtaining the moments is discussed in section
5.4. Also, it is important to note that, while the new approach does not require the solution of the
nonlinear Harmonic Balance equations, it is based on the Harmonic Balance formulation which

makes its general steps both topology independent and easy to automate.

1. Set up the system equations in the frequency domain according to the formulation
shown in (5.18).

2. Calculate the single RF tone moment vectors M, as defined in (5.19) by solving the
formulations in (5.55) and in (5.57) recursively.

3. Obtain the necessary terms for computing IP3 from the entries in the moment
vectors at the locations shown in Fig. 5.4 for amplifiers and in Fig. 5.5 for mixers.

4. Determine the distortion by calculating the third order intercept point according
to (5.54).

Fig. 5.6 Summary of the algorithm for computing IP3 using single-tone moments
analysis.

5.4 Computational Cost Considerations

For this new approach, the moments algorithm presented in [17] and derived in detail in section
4.3.2 is used to compute the moments of the Harmonic balance equations as defined in (5.19).
In this section, a brief overview of the algorithm is presented and insight into the sparsity of
the moment computation matrix is provided in order to show the computational efficiency of
obtaining the moments as compared to a traditional multi-tone Harmonic Balance simulation.
The moments of a system are defined as the coefficients of the Taylor series expansion of
the solution vector X of the system described by (5.18) with respect to the input RF amplitude
. If the solution is expressed using (5.19), then M is the k" moment vector. The zeroth
moment vector M, is obtained by finding the solution of the system described by (5.18) with
RF amplitude («) set to zero. The first moment vector M, is then found by solving the system

of equations given by
®M, = Bgrr (5.55)
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where
OF(X)

®=G+C+ X o (5.56)
In this relation, the first moment vector can be obtained using one LU Decomposition to solve
(5.55). It is important to note that the matrix ® is the sparse moment computation matrix which
has the same structure as a Jacobian matrix but contains only DC and LO spectral components.
As for the remaining moment vectors M ,,, these are found by solving the following recursive

relation

i
L

dM, = — (n— j)T; M, _; (5.57)

1

S|
?.

The right-hand side of equation (5.57) is calculated using the values of the previous moments
(M ,,—;) that have already been obtained, in addition to the values of the moments of the Jacobian
(T'j). As can be seen from (5.55)—(5.57), the computation of the moment vectors is a solution of
a set of linear algebraic equations where the left-hand-side matrix is the same throughout and is
therefore very efficient. Furthermore, this left-hand-side matrix is essentially the same as a single
tone Harmonic Balance Jacobian evaluated using only DC and LO frequencies, which is a very
sparse matrix compared to a typical Harmonic Balance Jacobian.

Finally, it is important to make a note about the effects of numerical tolerance and round-off
errors in the moments computation algorithm. It is very important to monitor that the numerical
errors in the computation of the moments are low relative to the signal levels in order to have
accurate numerical values of the distortion terms using single-tone inputs. Since the moments
are computed in a recursive manner (as shown in equation (5.57)), numerical errors grow as
subsequent moments are computed. The entries in the moments that are particularly affected
are the higher order terms at a specific frequency, including the term m; 3. This in turn could
result in a large deviation from the expected value of the single-tone IP3. From the experience of
testing several numerical examples, circuit topologies which would not converge to small error
tolerances in a regular Harmonic Balance simulation, in addition to highly nonlinear circuits
were especially susceptible to this problem. In these cases, it is preferable to use the more robust
two-tone moments analysis method for computing IP3 described in Section 2.6 and in Chapter
4, which uses the term ms3 3 instead of m; 3 and gives IP3 results that are as accurate as those

obtained using Harmonic Balance with a significantly smaller CPU cost.
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Fig. 5.7 Circuit diagram example 1

5.5 Numerical Examples

In this section, numerical results of simulations performed on two example circuits are shown in

order to illustrate the speedup of the single-tone moments approach for computing IP3.

5.5.1 Example 1

Consider the cascode amplifier circuit shown in Fig. 5.7. This amplifier has lumped element
input and output matching networks for 50¢2 source and load impedances at the standard GSM
frequency of 900 MHz. The linear gain of this amplifier is 12.3 dB. In order to test the accuracy
and CPU efficiency of the new method, the value of IP3 for the above circuit was computed
using three different methods. The first approach was the standard brute force method of multi-
tone Harmonic Balance simulation. The second approach was the multi-tone moments based
approach presented in Chapter 4 of this thesis. The third approach was the single-tone moments
analysis method.

First, using the brute force approach, by applying two —50 dBm input tones at f; = 900
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MHz and f; = 900.1 MHz and performing a standard harmonic balance analysis, the measured
lower-side input IP3 was found to be -4.0 dBm and the upper side IP3 was found to be -4.1 dBm.
This simulation was run with 10 harmonics, therefore the size of the dense Jacobian which had
to be solved was 5083 x5083 due to the 10 harmonics of the fundamental tones in addition to the
diamond truncation tones [5]. The diagram in Fig. 5.8 shows the sparsity pattern of the Harmonic
Balance Jacobian matrix which contains 699, 167 non-zero elements.

The distortion was next analyzed using the multi-tone moments based method. In this method,
the same two input frequency tones at f; = 900 MHZ and f, = 900.1 MHz were applied to
the circuit with 10 harmonics. The multi-tone moments were then evaluated and the value of
IP3 was computed by extracting the required terms from the moments. In this case, the size
of the moments computation matrix was identical to that of the Harmonic Balance Jacobian
(5083 x 5083) since the number of variables was the same. However, the moments computation
matrix was significantly more sparse. The computed values of IP3 were also —4.0 dBm and —4.1
dBm for the lower and upper side IP3, respectively.

Finally the distortion was analyzed using the new approach by computing the moments of
the system using only a single tone input at f/ = 900MHz, and extracting the required terms at
the appropriate frequencies. The size of the sparse moments computation matrix that had to be
used was only 483 x483. Fig. 5.9 shows the sparsity pattern of the moments computation matrix.
As can be seen, this matrix has only 1, 784 non-zero elements. The resulting value of the input
third order intercept point was found to be -4.3 dBm. Note that since only a single-input tone is
present, there is only a single value for IP3 rather than an upper side IP3 and a lower side IP3.
The results obtained are summarized in Table 5.1. As can be seen, the discrepancy between the
two approaches was around 0.2 dBm or approximately 5.1% when comparing the value in Volts.
It is important to note that this discrepancy occurs due to the approximation in (5.14) and is a
matter of definition of IP3 rather than numerical error. Furthermore, as can be seen from the
results, the discrepancy between the single tone IP3 and the two tone IP3 is of the same order of
magnitude as the discrepancy between the lower-side and upper-side two-tone IP3.

The significant reduction in size and in number of non-zero elements between the Harmonic
Balance Jacobian matrix and the Moments computation matrix has resulted in a large reduction
in computational cost and therefore a significant speedup between the two approaches. The data
in Table 5.2 shows a comparison of the computation times between the single-tone moments
method, the two-tone moments method and the Harmonic Balance technique using a prototype

MATLAB simulator. The hardware platform on which the simulations were run was a single-core
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Intel Pentium 4 machine with a clock speed of 3.2 GHz and 3GB of RAM. As can be seen, the
speed-up of the new method over the harmonic balance approach was found to be 235 times using
10 harmonics for this example. It is important to note that the number of harmonics required in a
simulation depends on the particular circuit, the input power level and the desired accuracy. On
the other hand the number of harmonics also affects the CPU cost and the relative advantage of
using the new approach. In order to illustrate this fact, the circuit in this example was simulated
using a various number of harmonics and the speed-up for each case was computed and reported
in Table 5.3.

5.5.2 Example 2

The second example considered is the Gilbert cell bipolar mixer with a local oscillator frequency
of 1 GHz shown in Fig. 5.10. The power of the local oscillator signal is -16 dBm. In order
to analyze the distortion of this circuit, a similar procedure to that performed in Example 1 is
followed. For comparative purposes only, the brute force simulation approach was first used by
applying three input tones and performing a full harmonic balance simulation, then measuring
IP3 from the output spectrum. The second approach was by finding the value of IP3 from the
multi-tone moments that were evaluated also with three input tones according to the method
presented in Chapter 4. Finally the value of IP3 was computed from the single-tone moments
method with only two input tones total (single RF tone in addition to the local oscillator).

First, using the Harmonic Balance method, the two RF input tone frequencies were f; = 99.5
MHz and f; = 100.0 MHz, with power levels of -53.5 dBm. The calculated lower-side input
IP3 from the steady-state solution was found to be -9.7 dBm, while the upper-side input IP3 was
found to be -9.8 dBm. The diagram in Fig. 5.11 shows the sparsity pattern of the Harmonic
Balance Jacobian. The size of the Harmonic Balance Jacobian matrix was 18,450 x 18,450
and as can be seen from Fig. 5.11, the matrix contains many dense blocks and therefore has
7,271,954 non-zero entries.

Next, using the multi-tone moments method, and with the same input frequencies and power
levels as those used for the Harmonic Balance approach, the calculated lower-side and upper-side
input IP3 were also found to be -9.7 dBm and -9.8dBm, respectively. The size of the moments
computation matrix was also 18,450 x 18,450 since it is of the same structure as the harmonic
balance Jacobian while being significantly more sparse.

The distortion was then analyzed using the new approach by computing the moments of the
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Table 5.1 Comparison of IP3 values between traditional Harmonic Balance and the
single-tone moments method

Harmonic Balance

Harmonic Balance

Single-tone

IIP3 (Lower) ITP3 (Upper) Moments IIP3
Example 1 -4.0 dBm -4.1 dBm -4.3 dBm
Example 2 -9.7 dBm -9.8 dBm -9.5dBm

Table 5.2 Comparison of computation times between the single-tone moments

method and the Harmonic Balance solution
H Example 1 ‘ Example 2 ‘

Harmonic Balance 2594 s 432.16's
2-tone Moments 1.30s 4.63s
Initial Speedup 20 times 93 times
1-tone Moments 0.11s 1.03 s
Further Speedup 11.8 times | 4.5 times

Overall Speedup || 235 times | 420 times |

Table 5.3 The effects of increasing harmonics on speedup of IP3 simulation of
example 1 between the single-tone moments method and Harmonic Balance.

Number of Harmonics | Speedup
7 times
5 12 times
7 53 times
10 235 times
15 1218 times
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system using a single RF input tone at f = 100MHz, and extracting the necessary terms at the
appropriate frequencies without the need to perform a harmonic balance simulation. The single
resulting value of the input IP3 was found to be -9.5 dBm. A summary of the results obtained
for this example mixer circuit is given in Table 5.1. Fig. 5.12 shows the sparsity pattern of the
moments computation matrix used to find the single-tone moments, which contains only the DC
and the local oscillator tones. Since this matrix is significant in size, to clearly illustrate the
difference in sparsity between it and the Harmonic Balance Jacobian matrix, Figs. 5.11 and 5.12
contain a close-up of a selection of the blocks within the matrices. The single-tone moments
computation matrix is significantly smaller, measuring only 4, 050 x 4, 050. It is also much more

sparse, with only 67, 788 non-zero entries. The data in Table 5.4 shows a comparison of the sizes
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of the moments computation matrices between this approach and the two-tone moments method
for both example circuits.

The data in Table 5.2 shows a comparison of the computation times between the single-tone
moments method, the two-tone moments method and the Harmonic Balance technique using a
prototype MATLAB simulator. The hardware platform on which the simulations were run was a
single-core Intel Xeon machine with a clock speed of 3.6 GHz and 4GB of RAM. The speed-up
over a harmonic balance simulation was found to be 420 times for this mixer using 4 harmonics.
This speed-up is due to two significant reasons. Firstly, the moments are computed using only
a single RF tone in the new method (as opposed to two RF tones in the other methods) which
significantly reduces the size of the matrices. The second reason is that the Harmonic Balance

Jacobian is significantly more dense than the moments computation matrix as was shown earlier.

Table 5.4 Comparison of moments computation matrix sizes between the single-

tone and the two-tone moments methods.
| 2-tone moments | 1-tone moments |

Example 1 5,083x5,083 483 x483
Example 2 || 18,450x 18,450 4,050x4,050

5.6 Conclusion

In this chapter, a new method based on single-tone moment analysis was presented for the compu-
tation of the third order intercept point of RF circuits. This method does not require the solution
of the Harmonic Balance equations and its computational cost is of the order of a solution of a
sparse set of linear equations whose size is the same as the single-tone Harmonic Balance equa-
tions. The new method was shown to provide a speed-up that can be orders of magnitude faster

than traditional multi-tone Harmonic Balance simulations.
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Chapter 6

Efficient Sensitivity Analysis of Nonlinear

Intermodulation Distortion

6.1 Introduction

One of the main bottlenecks in the design of RF front ends is the linearity requirement of some of
the core blocks such as low noise amplifiers and mixers. Specifically, the effects of the third or-
der nonlinear distortion are of particular importance since they mix back into the passband of the
system and lead to many undesirable effects such as gain compression and adjacent channel in-
terference. The key figure of merit for quantifying the third order nonlinear distortion is the third
order intercept point (IP3). The computation of IP3 has, however, been a challenging problem
due to the multi-tone input requirement which considerably slows down steady-state simulators
based on techniques such as the Harmonic Balance method.

In this thesis, a new efficient method for computing the value of IP3 was presented. This
method is based on the computation of the Harmonic Balance moments and does not require the
solution of the Harmonic Balance equations. This reduced the CPU cost of finding the value
of IP3 to that of solving a system of sparse, linear equations. However, the moments based
approach presented in this thesis does not provide any insight into the sensitivity of IP3 with
respect to various circuit parameters. In this chapter, two new approaches for computing the
sensitivity of IP3 based on moments analysis are presented [24]-[26]. In the first approach, an
analytical relationship is derived between the value of IP3 and the multi-dimensional Harmonic

Balance moments [88]-[90]. In the second approach, closed form expressions are derived linking
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the sensitivity of IP3 to the moments of the adjoint solution [7], [27], [28]. The new approaches
benefit from the same CPU cost advantage of the moments based approach while providing the
sensitivity of IP3 with respect to circuit parameters. This would provide a critical advantage
enabling circuit optimization, design space exploration and design centering. It is to be noted that
similarly to the moments based approach for intermodulation distortion analysis, these methods
are general and easily automated for any arbitrary circuit topology.

This chapter is organized into two main parts. The first part presents the method for sen-
sitivity analysis using multi-dimensional moments while the second part focuses on the more
efficient adjoint sensitivity analysis technique. The multi-dimensional moments section begins
with a description of the multi-dimensional Harmonic Balance moments and how to compute
them efficiently in section 6.2.1. The method by which sensitivity of IP3 is determined is pre-
sented in section 6.2.2. An example is shown in section 6.2.3 to demonstrate the accuracy of the
results obtained using the new approach compared to those obtained using perturbation. The mo-
ments based adjoint sensitivity approach is presented in sections 6.3—6.8. Finally the conclusion

is given in section 6.9.

6.2 Sensitivity Analysis Using Multi-Dimensional Moments

In the multi-dimensional moments approach, an analytical relationship is derived between the
value of IP3 and the multi-dimensional Harmonic Balance moments (the moments with respect
to the input RF power as well as the design parameters). This allows for the derivation of closed
form expressions for the sensitivity of IP3 as a function of these multi-dimensional moments.
The CPU cost of the operation is thus reduced to that of finding the moments which is of the

same order as solving a system of sparse linear equations.

6.2.1 Computation of the Multi-Dimensional Moments

In order to define the multi-dimensional harmonic balance moments, the general harmonic bal-

ance formulation defined in (3.9) is re-written as

GX +CX +\DX + F(X) = Bpc + aBgp, (6.1)
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In this relation, A is the change in the value of a general circuit parameter -, such that

with )\ being the nominal value of the parameter. The matrix D shows the location of the
parameter in the Harmonic Balance equations.

The multi-dimensional moments of the system are defined as the coefficients of the Taylor
Series expansion of the output solution vector X with respect to the input RF amplitude o and

the change in the circuit parameter value A. This can be expressed as
X => ) Nipa'N (6.3)

where IN(; ;) is the (i, 7)™ moment vector. Next, the algorithm for computing each of these
moments efficiently is presented.
To determine the (0,0) moment vector, the coefficients of a°\° on both sides of equation (6.1)

are equated, which yields
GN 00+ CN o) + F(N0) = Bpc (6.4)

Solving this system of equations is basically finding the DC solution of the system from which
the value of N (o) is obtained. To determine the first order moments [N (; gy and IN (g 1), once

again powers of o' \? and o\, respectively, on both sides of (6.1) are equated, which results in

®N@q0 = Brr (6.5)

®Nqp1 = —DN(QO) (6.6)
where

®=(G+C+Top) (6.7)

is the moments computation matrix that has the same structure as a Harmonic Balance Jacobian
matrix evaluated at DC and is therefore significantly more sparse than a typical Harmonic Balance
Jacobian. This is also the same moments computation matrix that was used in Chapters 4 and
5 to determine the harmonic balance moments for computing IP3. To compute the remaining

moments, the following general relation can be solved recursively having already determined the
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N 0.0y N (0,1) and N 1 o) vectors,

( 1 p—1 ¢ .
—= Z Z(p — DTG N p-ja—r)
p j=1 k=0
q
- Z T 00N (p,g—i) (if g =0)
=1
PN ) = (6.8)
1 p q—1
- (@ = K)T i1y N p—jg—r)
e
p
_DN(p,q—l) - Z T(i,O)N(p—i,q)a (if ¢ # 0)
\ =1

In (6.7) and (6.8), the matrix 7T is defined as the partial derivatives of the nonlinear functions

with respect to the variables in the circuit. This can be expressed as

OF(X) &K< o
=0 5=0
or . OF
0X1 o0Xn
= s : (6.10)
oF, .,  OF,
0X1 o0Xn

Each g;;’; in the matrix above is a block matrix in itself. To simplify the presentation, only one
aF

of these terms, ¥ = XL

there is a need to determine T'(; ;). More specifically, there is a need to determine the block matrix

is considered. For the case of computing multi-dimensional moments,

¥ ; jy» which can be found by evaluating the following relation

_ %> ;
(a“ @) | i—g,
Py =T" T 6.11)
@
L ACH) t=t, ]
The matrix I is the inverse Fourier Transform matrix and (¢, t1, . . ., t,) are equally spaced time

samples [70]. The parameters g ;) = (g—ﬂ)(ij) are the partial derivatives of the nonlinear
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equations in the circuit with respect to one of the variables. For example, for a nonlinear diode
current described by the relation f; = I,(e(®/Vr) — 1) the following recursive relation can be

utilized to evaluate 9(.5)

1 p—1 q - .
V. Z Z(p = 1)9GRMp—jq-r), fq=0
IR B gy ‘12
9(i.5) 12 g—1 (6.12)
v ZZ(‘J — k)gGmmp—jq-r), ifq#0
VT 520 k=0

A list of common nonlinear circuit elements and equations along with the recursive relations to

evaluate their derivatives can be found in [17], [18].

6.2.2 Sensitivity of IP3

The objective of the multi-dimensional moments method is to determine the relative sensitivity

of IP3 with respect to a parameter v which is defined as follows

OIP3) _, O(IP3)

1P3
:>\ =
% "oy O oN

(6.13)

since (A = 7 — \g) as given in (6.2).
In this section, an analytical closed form relation for the relative sensitivity of IP3 as a func-
tion of the multi-dimensional harmonic balance moments is presented. The first step is that of

expanding the relation given in (6.3) and re-writing it as

X = iiN(l7])O[ N

i=0 j=0
= (Noo+Nopr+ NeaA’ +...) +
(N +Nay >\+N12)\ +..)a+
(N@o + NenA+ NggA’ +...)a° +
(6.14)

In order to show the link between the multi-dimensional moments and the value of IP3, it is
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useful to label the summations that comprise the coefficients of o™ as follows

M, = N(Op) +N(0’1))\+N(072)>\2+...
M1 = N(l,O) +N(171))\+N(172)>\2+...
M2 - N(270) +N(271))\+N(272)>\2+...

M, = Ngo+ NupA+ N>+ ... (6.15)
By substituting (6.15) into (6.14), the moments can be expressed using the following relation [17],

X = My+ Mo+ Msa?+ Msa®+ ...

q
= ) Mot (6.16)
k=0

This relation expresses the output solution vector X as a Taylor Series expansion of the input
RF amplitude o only. The single-dimensional moment vectors M, of the system are therefore
defined as the coefficients of this Taylor series expansion. In sections 2.6 and 4.5, it was shown
that the value of the input referred IP3 (IIP3) can be determined from the single-dimensional

moments using the following relation
IIP3 =, ,|—— (6.17)

The term m, ; represents the entry in the first moment vector at the fundamental frequency of
(w1,2) while the term mj 3 represents the entry in the third moment vector at the third order
intermodulation frequency (IM3) of (2w; 2 — wo1). For more details on how to obtain the terms
my 1 and ms3 3, please refer to Chapter 4 of this thesis.

To perform a sensitivity analysis using the new approach, the sensitivity of the moments
defined in (6.16) to changes in circuit parameters must first be determined. Once this is done,

then the sensitivity of IP3 to these changes can be determined. To find the sensitivity of IP3 with



6 Efficient Sensitivity Analysis of Nonlinear Intermodulation Distortion 121

respect to the parameter )\, taking the partial derivative of (6.17) results in

1
P 0 (miq)?
—(IIP3) = —(—— 018
m( ) o\ <m3,3) ( )
-5 (e) M) = g () (6.19)
2 \ms3 (m3,3)

From these relations, it can be seen that the task of determining the sensitivity of IP3 with respect
to a certain circuit parameter ), is reduced to finding the sensitivity of the first and third moment
vectors with respect to that same parameter. With this being the case, the relation in (6.19) now

becomes

(VI

1 - 3 1 1 3

grrps _ 2o (oo ) "0 " T MGy (6.20)

A 2 \ nd (n3, ,))? '
(3.0) (3.0

In the above relation, n%l 0) is the entry in the (0,0) moment vector at the fundamental frequency

and n‘(g’g’o) is the entry in the (3,0) moment vector at the third order intermodulation frequency.
Both of these terms are equivalent to 1, ; and ms 3, respectively, when evaluated at v = A(. The
new terms, n%m) and n?3,1) represent the first derivatives of the first and third moment vectors with
respect to the parameter v evaluated at v = \q. These correspond to the entries in the (1,1) mo-
ment vector at the fundamental frequency, and in the (3,1) moment vector at the IM3 frequency,
respectively. The location of these terms in the moment vectors is more clearly illustrated in Fig.
6.1.

In summary, the new approach presents an efficient way to determine the sensitivity of IP3
from the Harmonic Balance moments of a circuit, without the need for a Harmonic Balance
simulation. This therefore adds insight into the main sources of nonlinear distortion to the mo-
ments method presented in this thesis, while still being easily automated and general for arbitrary
topologies. This method is computationally very cheap since the CPU cost of determining these
moments is the solution of a system of linear and sparse algebraic equations. An overview of the

main steps of the algorithm is given in Fig. 6.2.

6.2.3 Numerical Example

In this section the value of IP3 and its sensitivity with respect to some parameters are determined
for an example amplifier circuit using the multi-dimensional moments method. These results

are then compared to those obtained using perturbation to demonstrate the accuracy of the new
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Fig. 6.1 Location of sensitivity terms in the multi-dimensional moment vectors

1. Determine the value of the third order intercept point efficiently using the
relation in (6.17).

2. Select which parameter v needs to be changed by an amount A, and set-up the
modified circuit equations as given by (6.1).

3. Compute the multi-dimensional moments with respect to A and the RF amplitude «
as defined in (6.3) by solving the relations given (6.4)—(6.8).

4. Determine the value of IP3 sensitivity with respect to A by solving (6.20) using the
terms extracted from the moments at the locations illustrated in Fig.6.1.

Fig. 6.2 Summary of the algorithm for computing the sensitivity of IP3 using multi-
dimensional moments.
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approach. In addition, the CPU cost of obtaining IP3 and its sensitivity using the new approach
is compared to the CPU cost of using Harmonic Balance. Typically, the value of IP3 is expressed
in dBm in the literature. However, for the sake of sensitivity analysis the results are expressed in
Volts as the numbers are more meaningful.

Consider the Low Noise Amplifier circuit shown in Fig. 6.3. The value of IIP3 in this circuit
was found to be —12.02 dBm with two input tones at frequencies of f; = 1 GHz and f, = 1.01
GHz using the moments computation method. We wish to compute the normalized sensitivities
of IP3 with respect to changes in the parameters of Ry and Cr.

To find the sensitivity of IP3 with respect to the resistor Ry, the multi-dimensional moments
are first computed, with the matrix D in (6.1) being the Harmonic Balance stamp of the resistor.
Once these moments are computed, the sensitivity is determined using (6.20). The relative sen-
sitivity found was 7.0864 x 10~4V. To compute the sensitivity with respect to the capacitor C'r,
the multi-dimensional moments are computed with the matrix D being the Harmonic Balance
stamp of the capacitor. The relative sensitivity obtained was 6.9464 x 10~%V. The results for

both circuit parameters are summarized in Table 6.1 where they are also compared to the results
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obtained using perturbation. As can be seen from the table, the results are very accurate. It is
also important to note that the accuracy of the results obtained using the moments approach is

independent of step size unlike those obtained using perturbation.

Table 6.1 Normalized sensitivity of IP3 with respect to circuit parameters for the
example circuit

Perturbation | Moments Method %0
Sensitivity Sensitivity Error

Ry || 7.0828 x 107V | 7.0864 x 107V | 0.005%

Cr || 6.9459 x 1074V | 6.9464 x 107V | 0.002%

Table 6.2 shows a comparison of the computation times between traditional Harmonic Bal-
ance and the multi-dimensional moments method for determining IP3 and its sensitivity with
respect to the two parameters R and C'r. As can be seen, the moments method presents sig-
nificant computational speedup. The CPU cost of both the moments approach and the harmonic
balance based approach [7] consists of two parts: A fixed cost due to the computation of 1P3,
and an incremental cost per parameter for computing the sensitivity. In this example the fixed
cost for Harmonic balance was 19.58 seconds, and for the moments approach it was 0.94 sec-
onds. For the incremental cost, it was (.16 seconds/parameter for the moments approach, and
0.01 seconds/parameter for harmonic balance. Note that the small incremental cost for Harmonic
Balance (which is due to the use of the adjoint technique [7]) is more than offset by the very large
initial fixed cost. The hardware platform on which the simulations were run was a single-core
Intel Pentium 4 machine with a clock speed of 3.2 GHz and 3GB of RAM.

Table 6.2 CPU cost comparison of finding IP3 and its sensitivity with respect to 2
parameters for the example circuit

Harmonic Balance || Multi-Dimensional Moments Method | Speed-up

19.61 seconds 1.26 seconds 15.5 times
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6.3 Adjoint Moments Sensitivity Method

In this thesis, an efficient method for computing the value of IP3 was presented based on the
computation of the Harmonic Balance moments which reduced the CPU cost to that of solving
a system of sparse, linear equations. However, this approach did not provide any insight into
the sensitivity of IP3 with respect to various circuit parameters. For any sensitivity analysis
to be performed, only the brute-force perturbation approach could be employed, which is very
inefficient, or the multi-dimensional moments method presented in section 6.2. However, the
multi-dimensional moments method also has some key limitations, first in that it is limited to
sensitivities of linear parameters, and also the fact that it computes the sensitivity of all variables
with respect to one parameter at a time.

In this section, a new approach for computing the sensitivity of IP3 based on the adjoint
sensitivity method is presented. The new method computes the sensitivity with respect to all
parameters in the general circuit equations including parameters of linear and nonlinear circuit
elements. For this approach, closed form expressions for the sensitivity of IP3 as a function of
the entries in the adjoint moments for all circuit parameters are developed. The adjoint moments
are computed using the same set of linear equations used to determine the harmonic balance mo-
ments. The new moments method thereby retains the main advantages of the adjoint sensitivity
algorithm, namely that of low incremental computation cost and the ability to find the sensitiv-
ity of one variable with respect to all the parameters in the system while providing significant
speedup over traditional harmonic balance methods. It is to be noted that similarly to the mo-
ments based approach for computing IP3, the method is general and easily automated for any
arbitrary circuit topology.

The derivation of the moments based adjoint sensitivity algorithm begins with brief overviews
of the harmonic balance adjoint formulation and the moments based technique for computing IP3
in sections 6.4 and 6.5 respectively. These sections provide the necessary background informa-
tion for the method which starts with the adjoint sensitivity derivation using moments in section
6.6. This is followed by the algorithms for the efficient computation of the harmonic balance
moments, the moments of the adjoint equation and the moments of the nonlinear vector in sec-
tion 6.7. Finally, numerical examples are shown in section 6.8 to demonstrate the accuracy of the

results obtained as compared to those obtained using the harmonic balance adjoint method.
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6.4 Harmonic Balance Adjoint Sensitivity

The adjoint approach has been a classical tool for the efficient and exact sensitivity analysis of
circuits. This can be achieved by solving an adjoint system. In this section, the harmonic balance
adjoint system formulation for nonlinear circuits with respect to a general circuit parameter A
is presented [7]. This will lay the foundation for the new approach presented in section 6.6, in
which the method for obtaining the adjoint solution efficiently using the adjoint moments without
the need for a harmonic balance solution will be shown.

It is useful to begin the derivation by expressing the harmonic balance equations in (3.9) as
ANMNXN+F(\NX(\)=B (6.21)

where
A=G+C (6.22)

is a matrix that represents the linear elements in the circuit. The output variable of interest, X,

can be expressed using a selection vector as
Xow =d'X (6.23)

where d is a selection vector with all entries set to zero except at the location of the variable X,
in the general vector of unkowns X where the entry is equal to ‘1’. The harmonic balance adjoint

solution vector X , for nonlinear circuits is defined using the general relation given by [7]

J'X,=—-d (6.24)
where 8F(X)
J=A-+ X (6.25)

is the harmonic balance Jacobian matrix.
The general expression for the adjoint sensitivity with respect to a general circuit parameter

A can now be written as [7]

OXows 1 0A .
= X X+ X

OF (X)
B))

(6.26)
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For the case when )\ is a parameter that only affects a linear circuit element, only A and X will

be functions of \. Therefore, the relation given in (6.26) can be simplified to

X g OA
Tlout _ x T 27
N “ O\ (6:27)

with the matrix g—f\l being the harmonic balance ‘stamp’ of the derivative of the circuit element

that \ is a parameter of.

IF(X)
X

be functions of A. The general adjoint equation given in (6.26) would then simplify to become

In the case when the parameter ) is that of a nonlinear circuit element, only X and will

aX out
o\

OF (X)

— X7
“ 0N

(6.28)

OF(X)

with the matrix B

being the sensitivity of the nonlinear vector.

6.5 Moments Based Sensitivity Computation

In this thesis, an efficient method for the computation of IP3 based on the harmonic balance
moments was presented. The harmonic balance moments are defined as the Taylor coefficients
of the unknown variable X in (3.9) with respect to the input signal amplitude o [17], [18]. The

vector X can therefore be written as
X = M0+M10[+M2042—|—M3043—|—...

= i M, (6.29)
=0

where M, is the k' moment vector. In this thesis, a relationship was derived between the above

moments and the value of the input referred third order intercept point (IP3) such that
P3=,/—= (6.30)

where m; ; and mg 3 are specific entries in the moment vectors M and M3, respectively. The
locations of m; ; and mg 3 for circuits excited with a two-tone input signal at frequencies of w,

and wo are shown in Fig. 6.4 for amplifier circuits and in Fig. 6.5 for mixer circuits. Note that
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the additional frequency tone wy is that of the local oscillator signal in the mixer case. Using
this method, the computation of IP3 is reduced to that of finding the harmonic balance moments,
which is a much cheaper problem in terms of computational cost than that of solving the harmonic

balance equations.

Frequency M, M, M, M3

DC
02— 0
20)1_(’)2 ms3
@ ni
W2
20)2-0)1
20)1
W+ M
2(02
201+0>

I:‘ = Non-zero entry D = Zero entry

Fig. 6.4 Location of sensitivity terms in the moment vectors for amplifier circuits

Using equation (6.30), the sensitivity of IP3 with respect to A\ can be expressed as

0 1 (myy 2 my 3—87391)1\’1 —my 187;;’3
—(IP3) = - : : : 6.31
6)\( ) 2 (m373) (m373)2 ( )

The evaluation of the sensitivity therefore requires the terms my; and ms3 which were also re-
quired for obtaining the value of IP3 according to (6.30) and are already available from the

computation of IP3. In addition to these terms, now the values of their derivatives with respect

to A (agj\’l and agj’\"‘) are also required, the efficient computation of which is the subject of the

remainder of this chapter.
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Frequency M, M; M, M;

DC
o + (02— ®1)
0 £ Co1—y) ms33
Wo £ 0 My
ONEROD)
(ONE= (20)2—0)1)
) = 20)1
o £ (0 + )
) = 2(02
(ONE= (20)1+(02)

D = Non-zero entry D = Zero entry

Fig. 6.5 Location of sensitivity terms in the moment vectors for mixer circuits

6.6 Adjoint Sensitivity Derivation Using Moments

In this method, a sensitivity analysis algorithm is derived that is applicable to the moments based
method and shares the same properties as the adjoint algorithm, namely those of low incremental
computation cost to the original algorithm and the ability to determine the sensitivity of one vari-
able with respect to all the circuit parameters. This is accomplished by the efficient computation
of the adjoint moment vectors.

In the previous section, the problem of computing the sensitivity of IP3 was reduced to that of
finding the derivatives with respect to A of the terms m; ; and ms3 3. In this section the derivation
of an efficient adjoint based approach for computing these derivatives is presented. We start by

recalling the definition of the harmonic balance moments
X =My+ Mo+ Mya? + Msa® + ... (6.32)
As illustrated in Fig. 6.4 and Fig. 6.5, the terms m, ; and m3 3 can be written as

my = leMl (6.33)
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mas = da M (6.34)

where d; and dj are selection vectors. Note that m; and m33 appear in the Taylor expansions of
X ,1 and X 3 defined as

Xol = d,{X =MmMio + my« + m172a2 + m173a3 + ... (635)

Xog = ng = Mm3o + msi + m372a2 + m373a3 + ... (636)

The derivatives of X ,; and X ,3 with respect to A can now be written as

6X01 8m1 0 aml 1 (’3m1 2 9 8m1 3 3
= ’ ’ ’ — . 6.37
) N> W) W W (6.37)
ang 8m3 0 8m3 1 8m3 2 9 8m3 3 3
= ’ ’ ’ —= . 6.38
™ o oy ‘T e ¢ (6.38)
From these equations, it can be deduced that the terms ag;’l and agi’s required in (6.19) are the
first and third moments of the expansions of a(g)(/{,l and 85(;3, respectively. In order to compute

these moments, the first step is to use the adjoint sensitivity expression in (6.26) to write

=X, —X+X .
) S ) (€39
= X, = X 6.40
o eyt T AaTy (640)
where X ,; and X .3 are the solutions of the Adjoint equations
J'X = —d, (6.41)
J'X 3 = —ds (6.42)

From (6.39) and (6.40) it can be seen that the moments of a(g)(/{,l and 85(;3 can be expressed in
OF(

3 /\X ) The evaluation of these moments is the focus

of the next two subsections. First, the case of \ being a parameter of a linear element is presented

terms of the moments of X, X ,;, X ,3 and

followed by the case of A being a parameter of a nonlinear element.
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6.6.1 Linear Parameter Sensitivity

For the case of A\ being a parameter of a linear element, equations (6.39) and (6.40) can be

simplified to
=X =X 4
a)\ al a)\ (6 3)
= XTI === 44
a)\ a3 a)\ (6 )

with X ,; and X ,3 being the solutions of the adjoint equations shown in (6.41) and (6.42). The
adjoint moment vectors are defined as the Taylor series coefficients of the expansion of the ad-
joint solution vector X ,, defined in (6.24), with respect to the signal amplitude voltage o. The

expansions of X ,; and X .3 can therefore be expressed as

Xal = Mal(]+Ma110(+Ma12Oé2+Ma13063+...

= 3 M (6.45)
=0

Xa,3 = Ma3(] +Ma310[+Ma32042 +Ma33063+

= 3 My (6.46)
=0

where M 1}, is the k" adjoint moment vector of X ,; and M .3, is the k" adjoint moment vector
of X ;3. By substituting (6.29), (6.37) and (6.45) in (6.43), and also substituting (6.29), (6.38) and
(6.46) in (6.44), the final expressions in terms of the moments are obtained. Then, by equating

powers of o and o on both sides of the resulting expressions, the following relations are obtained

621;,1 = M7, (%‘;‘) M, + M7, (%—‘;‘) M, (6.47)
87({;1;,,3 = Mgso (%) M +]\4aT31 (%) M +
ML, (%) M+ M, (%) M, (6.48)
It is important to note that the matrix % contains only the harmonic balance ‘stamp’ of the

derivative of the element that \ is a parameter of, and is therefore an extremely sparse matrix
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with at most four non-zero block entries [9]. In fact the computations above can be further

simplified based on the type of element that \ is a parameter of without the need for g—f\l. For

example, in the case of a linear resistor of nominal value R, that is connected between indexes ¢
and 7, (6.47) and (6.48) become

om 1
a;’l - TR (M7, — My ;) (My; — My )
+ (M3, — My, ;) (Mo; — My;)] (6.49)
8m3,3 1

O\ = _R—o2 [(MaTso,i - MaTso,j) (MB,i - M3,j)
+ (MaT:n,z‘ - MaT31,j) (M2,i - M2,j)
+ (MaT32,z‘ - MaT32,j) (Ml,i - Ml,j)

+ (MZ33,Z' - Mz;?,s,j) (M, — MO,j)] (6.50)

6.6.2 Nonlinear Parameter Sensitivity

For the case of \ being a parameter of a nonlinear element, equations (6.39) and (6.40) can be

simplified to
0Xo1 o OF(X)
B\ =X, B\ (6.51)
0Xo3 o OF(X)
N X .3 B\ (6.52)

For this case, we also need to define and compute the moments of the derivative of F'(X) with

respect to A. This is given by

OF (X)

B\ =G(X) = Gy+Gia+Gya? +Gsa® ...

- Z Grat (6.53)
k=0

where G is the &** moment of £ By substituting (6.37), (6.45) and (6.53) into (6.51) and

also (6.38), (6.46) and (6.53) into (6.52), then equating powers of o and o on both sides of the
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resulting expressions, we obtain

om

m“ = M!,G,+ ML, G, (6.54)
6m373

= ML Gs+ ML, G, +

ML.G, + ML,.G, (6.55)

What remains now is to show how the computation of all the moments (M, M .15, M ,3i
and G) in (6.49), (6.50) and in (6.54),(6.55) can be achieved with very low computation cost.

This is the focus of section 6.7.

6.6.3 Extension to IP3 Sensitivity Using Single-tone Moments

It was shown in Chapter 5 that it is possible to determine the value of IP3 using only single-tone
moments analysis [22], [23], thereby considerably reducing the size of the system of equations
which leads to significant CPU cost savings. In this case, it was shown that the value of IP3
can be obtained from the single-tone moments expansion by evaluating the expression given by

(5.54) and repeated here as
mia

IIP3=,]—= (6.56)

mi3
It is possible to determine the sensitivity of IP3 when only single-tone inputs are used by
applying a logical extension of the adjoint moments method presented in this section. More
specifically, the term 13 3 in equations (6.30)-(6.55) is replaced by m; 3 and by using the selection
vector d; instead of ds. The remainder of the algorithm remains essentially the same, including

all the moments computation algorithms presented in the next section.

6.7 Moments Computation Algorithms

In the previous sections, simple closed form relationships were derived for computing IP3 and
its sensitivity as a function of the harmonic balance moments and the adjoint moments. The bulk
of the computation cost is thus spent on computing the moments. In this section, the moments
computation algorithms are presented and their efficiencies as compared to traditional harmonic
balance simulations are discussed. In section 6.7.1 the traditional harmonic balance moments

computation is reviewed, followed by the adjoint moments and the moments of the nonlinear
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vector in sections 6.7.2 and 6.7.3.

6.7.1 Computation of the Harmonic Balance Moments

In this section, the moments algorithm presented in section 4.3 for computing the harmonic bal-
ance moments M ;. defined in (6.29) is briefly reviewed.

The zeroth moment vector M is obtained by finding the solution of the system described by
the Harmonic Balance formulation given in (3.9) with the RF signal amplitude « set to zero. For
the remaining moments, the nonlinear harmonic balance Jacobian is expressed as a Taylor series

expansion with respect to « as given by

IF(X) i
X —;Tza (6.57)

Substituting (6.29) and (6.57) into (3.9), then equating powers of « on both sides of the resulting
expression allows for the computation of the remaining moment vectors M ,,. The system of

equations that need to be solved are given by

®M, = Bpgr (6.58)
n—1
1
OM, = ——p (n=j)T;M,j, n>2 (6.59)
j=1
with,
OF (X)
P=A :
+ =5 - (6.60)

It is important to note that the matrix ® has the same structure as a Jacobian matrix but with
only the DC and local oscillator components present, which makes it very sparse. The first
moment vector (M ;) is obtained by using one LU Decomposition to solve (6.58). As for the
remaining moment vectors M ,,, these are found by recursively solving (6.59). As can be seen
from (6.58) and (6.59), the computation of the moment vectors is a solution of a set of linear
algebraic equations where the left-hand-side matrix is the same throughout and is therefore very

efficient.
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6.7.2 Computation of the Adjoint Moments

The adjoint moment vectors M ;. are defined as the Taylor series coefficients of the expansion
of the adjoint solution vector X, in (6.24) with respect to the signal amplitude voltage . By
substituting the general form of the adjoint moments given in (6.45)-(6.46) and the moments of
the Jacobian matrix given in (6.57) into the definition of the adjoint vector shown in (6.24), the

following relation is obtained

o T o
<A +) Tio/) (Z Maio/) = —d 6.61)
i=0 =0

Equating powers of « on both sides of (6.61) then results in the following set of equations that

can be solved sequentially to obtain the adjoint moments.

&"'M,, = —d (6.62)
®'M, = -TTM, (6.63)
®'M,, = —-TTM, —TIM, (6.64)
® "My = —TTMuy—Ti My —T5 Mg (6.65)

Notice that in these relations, the adjoint moments computation matrix
dP=A+T, (6.66)

is the same sparse moments computation matrix that was used to determine the original moments
in (6.58) and (6.59) for computing IP3. This means that no additional LU decompositions are
required to find the adjoint moments. Furthermore, the matrices T'; are also available from the
original computation of IP3. The computation of the adjoint moments is therefore very efficient.
To determine the two sets of adjoint moment vectors M, and M .3, equations (6.62)—(6.65)

are solved twice, the first time using d; and the second time with d.

6.7.3 Computation of the Nonlinear Vector Moments

2 defined in (6.53) is presented.

To simplify the presentation, we will discuss this algorithm for one of the nonlinear entries in

In this section, the algorithm for computing the moments of

F(X). The extension to the whole vector is trivial. Consider an entry in F'(X) corresponding
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to a simple diode current equation
f(a) = L(e®/") —1) (6.67)

Suppose we would like to compute the sensitivity of this function with respect to the saturation

current /. In this case, A = I, and g(x) would be defined as

g(z) = g—‘]f = (el@/V1) 1) (6.68)

The first step toward computing G, is to express (6.68) as a Taylor series expansion with respect

to the radio frequency voltage amplitude « as follows
9(x) = go + grov + g20® + gsa® + ... (6.69)

From this relation, we can then deduce the following expressions

go = 9()|a=o (6.70)
o = S_Zao (6.71)
29, = %ao (6.72)
6gs = %azo (6.73)

The derivatives 24 can be expressed analytically as

dam
dg dg Ox
- JZ 74
Oa Ox O ©.74)
0?g dg O*x 0 [dg\ Ox
99 _ 0999x O (0g\ o 7
da? Ox 0o * O (83:) O (6.75)

dg 0%z 9% [0x]?

Pg g PBx  _02q0x Oz PBg [ox]°
908~ 0200° 02 9adad T 9ad {a—a] ©77)
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oz
,87’7,

available from the computation of IP3 itself. As for the derivatives of the function g(z) with

ong
ox™

equation in (6.68), the derivatives with respect to = would be

In these relations are the moments of the solution vector as defined in (6.29) and are already

respect to = (5-2), the expressions are determined analytically. For example, for the diode current

o @/ Vr)
a_i = 4 (6.78)
629 e(m/VT)
ARl Ty (6.79)
639 e(m/VT)
5 = (6.80)

The G, terms in (6.53) are the frequency domain versions of g in (6.70)—(6.73). To obtain Gy,
we need to express each of the relations in (6.74)—(6.77) in the frequency domain which we do

so with the aid of the Fourier Transform matrix I" [70].

9(@)]a=o
Gy, = ! (6.81)
_ 9(@)]a
Co -
ag|a =0
G, =TIt my (6.82)
0
L ai|oz 0
—8g| Z &
5z 1a=0 922 la=0
G, = I 2my +T71 m? (6.83)
2
L gi|a 0 % a=0
% a=0 % a=0
G3 = F_l . 6m3 + 3F_1 e m12m2 +
8g| 99
L Oz o= 0 oz la=0
% a=0
- m? (6.84)
_ 2 la=o]
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In these relations, the vectors m, are the time domain versions of the Harmonic Balance moment

vectors are therefore defined as

For the more general case of multi-node circuits with multi-variable nonlinearities, a funda-
mentally similar analysis to that of the single-node circuits is performed. The resulting derivations
and expressions of the partial derivatives are too long and redundant to be stated in their entirety.

Essentially, the analytical expression for the first derivative g_g is given by
(%

da  Ory Do Oy O 8—37,1 Oa

dg  0Og Ox, n dg O dg Ox, 6.86)

The higher order derivatives are then deduced from this relationship by following a similar ap-
proach as that of the one variable case. It is important to note that while the derivation of this
method might seem complex, this only needs to be done once, and the rest of the complexity
is shielded from the user at the implementation stage. Fig. 6.6 provides a summary of the new

moments based adjoint algorithm in pseudo-code format.

1. Set up the general harmonic balance equations of the circuit according to the
formulation shown in (6.21).

2. Calculate the moment vectors M, as defined in (6.29) by solving the formulations
in (6.58) and in (6.59) recursively.

3. Obtain the terms m; ; and ms 3 from the entries in the moment vectors at the locations
shown in Fig. 6.4 for amplifiers and in Fig. 6.5 for mixers.

4. Calculate the Adjoint moment vectors M .. as defined in (6.45) by solving the
formulations in (6.62)—(6.65) recursively.

5. For every parameter )\, perform the following

(a) If A is a parameter of a nonlinear element, compute the moments GG, as defined in
(6.53) by solving the formulations in (6.81)—(6.82).

(b) Obtain the terms 2741 9mss by evaluating (6.47) and (6.48) if ) represents a

X X
linear element, or (6.54) and (6.55) if \ represents a nonlinear element.

and

(c) Determine the value of the IP3 sensitivity according to (6.19).

Fig. 6.6 Summary of the algorithm for the adjoint sensitivity analysis of nonlinear
distortion in RF circuits.
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6.8 Numerical Examples

In this section, the new algorithm is applied to several common example Radio Frequency circuit
topologies. The results are then compared with those obtained using the harmonic balance adjoint

sensitivity technique in order to demonstrate the accuracy and speed-up of the new approach.

6.8.1 Circuit Descriptions

The example circuits tested are a common emitter low noise amplifier, a differential amplifier,
a singly balanced mixer and a doubly balanced Gilbert/Jones mixer circuit. All of these circuit
topologies are implemented using Bipolar Junction transistors. For each of these circuits, we
wish to compute the relative sensitivities of the third order intercept point with respect to changes
in the values of both linear and nonlinear parameters. In all cases, the linear parameter selected
was the collector resistance of the RF input transistor, while the nonlinear parameter selected was
the saturation current of the collector-base pn junction of the transistor.

The first example circuit tested is a standard common emitter type amplifier. This circuit
is quite linear in nature and the value of the input referred third order intercept point in this
circuit was found to be 20.2 dBm using the moments computation method with two input tones
at frequencies of f; = 100 MHz and f; = 100.1 MHz. For the differential amplifier circuit, the
two input frequency tones were f; = 1000 MHz and f> = 1001 MHz and the resulting input IP3
was found to be —7.24 dBm.

As for the mixer circuits, in both cases we used up-conversion mixers with the local oscillator
frequency being f;,o = 1 GHz and the RF signal frequencies were f; = 100 MHz and f, = 100.1
MHz. The value of the input referred IP3 was —3.4dBm for the singly balanced mixer, and 13.77

dBm for the doubly balanced Jones mixer.

6.8.2 Methodology and Results

To compute the adjoint moments sensitivity with respect to the linear resistance, first the adjoint
moments are computed using the relations given in (6.62)—(6.65). Once these moments are com-
puted, the sensitivity expressions are determined using (6.47) and (6.48) with the matrix % being
the harmonic balance stamp of the resistor. The sensitivity of the third order intercept point is
then computed by evaluating (6.19). The same procedure is applied to all of the example circuits.

The results obtained are all summarized in Table 6.3.
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Table 6.3 Comparison of relative sensitivities of IP3 with respect to a linear and
nonlinear parameter for the example circuits.

Type of Sensitivity | Harmonic Balance | Moments Method %
Circuit parameter Sensitivity Sensitivity Error
Common Emitter |  Linear 8.601 x 1071 8.604 x 101 0.035%
Amplifier Nonlinear 2.180 x 1073 2.179 x 1073 0.046%
Differential Linear —2.354 x 10~ —2.354 x 107* | 0.004%
Amplifier Nonlinear || —4.1526 x 1071 | —4.1533 x 10713 | 0.017%
Singly Balanced Linear 3.1040 x 1072 3.1146 x 102 0.340%
Mixer Nonlinear ~1.375 x 1071 —1.402 x 1071 | 1.925%
Doubly Balanced Linear 2.840 x 1072 2.816 x 1072 0.816%
Mixer Nonlinear —1.860 x 10715 —1.891 x 10~ | 1.640%

Table 6.4 CPU cost comparison of finding the adjoint sensitivity of IP3 for the

example circuits

Type of Circuit Harmonic Balance | Moments Method | Speed-up

CPU time (s) CPU time (s)
Common Emitter Amplifier 0.81 0.31 2.6 times
Differential Amplifier 6.03 0.52 11.7 times
Singly Balanced Mixer 21.63 2.59 8.4 times
Doubly Balanced Mixer 41.66 3.34 12.4 times
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To compute the IP3 sensitivity with respect to the nonlinear parameter, the additional step

that needs to be taken is computing the moments of the nonlinear vector sensitivity, Gj. Once
8m1,1 8m3,3
X X

(6.55). The relative sensitivity obtained was 0.002 V for the common emitter topology. The same

and

these moments are computed, the values of are obtained by solving (6.54) and
procedure is applied to all of the example circuits and the results for both circuit parameters are
summarized in Table 6.3 where they are also compared to the results obtained using the harmonic

balance adjoint sensitivity approach. As can be seen from the table, the results are very accurate.

6.8.3 Computation Cost Analysis

A comparison of the computation times between traditional harmonic balance and the new mo-
ments method for determining the sensitivity of IP3 using the adjoint approach is shown in Table
6.4. These computation times are obtained using a prototype MATLAB simulator on a local
workstation powered by a single-core Intel Xeon processor with a clock speed of 3.6 GHz and
4GB of RAM. As can be seen, the moments method presents a significant speedup in the compu-
tation time needed to determine the relative IP3 sensitivity.

It is also important to note that both the harmonic balance approach and the moments method
cannot be taken independently. In the case of harmonic balance we must first compute the value
of IP3 from a standard harmonic balance simulation in order to obtain the harmonic balance
Jacobian that is needed for computing the sensitivity. In the case of the moments approach,
we also need to obtain IP3 using the moments based method in order to have access to the
moments computation matrix. With this being the case, it is more meaningful to combine the
computation times for computing both the nominal value of IP3 and its sensitivity using both
approaches, which will give us an idea of the speedup for the overall simulation. Therefore when
the computation times shown in Table 6.4 are coupled with the time of the original moments
technique for obtaining IP3 as described in Chapter 4, the result is a very efficient technique for
finding both IP3 and its sensitivity with an overall speedup shown in Table 6.5 over harmonic
balance. It is important to note that the computational cost of the overall algorithm is very low
since the moments computation matrix is the same for determining both the original harmonic
balance moments and also the adjoint moments. In addition, this matrix is very sparse since
it is the harmonic balance Jacobian matrix evaluated with the amplitude of the radio frequency
tones set to zero (i.e. a« = 0). For both the moments method and the harmonic balance method,

the computation time for finding the sensitivity with respect to additional circuit parameters was
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Table 6.5 Computation cost comparison of finding both IP3 and its adjoint sensi-
tivity for the example circuits

Type of Type of Harmonic Balance | Moments Method | Speed-up
Circuit Computation CPU time (s) CPU time (s)
Common IP3 8.78 1.22 7.2 times
Emitter Sensitivity 0.81 0.31 2.6 times
Amplifier Total 9.59 1.53 6.3 times
Differential 1P3 44.67 3.45 13.0 times
Amplifier Sensitivity 6.03 0.52 11.7 times
Total 50.7 3.97 12.7 times
Singly IP3 118.43 4.01 29.5 times
Balanced Sensitivity 21.63 2.59 8.4 times
Mixer Total 140.06 6.60 21.2 times
Doubly IP3 158.91 5.08 31.3 times
Balanced Sensitivity 41.66 3.34 12.4 times
Mixer Total 200.57 8.42 23.8 times

Table 6.6 Computation cost comparison of finding both IP3 and its adjoint sensi-
tivity using single-tone moments analysis

Type of Type of Harmonic 1-tone Moments | Speed-up
Circuit Computation || Balance time (s) | Method time (s)
Differential IP3 44.67 0.34 129.8 times
Amplifier Sensitivity 6.03 0.03 201 times
Total 50.7 0.37 137.0 times
Singly IP3 118.43 0.43 275 times
Balanced Sensitivity 21.63 0.21 103 times

Mixer Total 140.06 0.64 218 times
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negligible, which is a property of the adjoint method.

Additional savings in computation times can be achieved when single-tone moments analysis
is used to compute IP3 and its sensitivity. To illustrate this point, the sensitivity of IP3 obtained
from a single-tone moments analysis was determined for the common emitter amplifier and the
singly-balanced mixer circuits. The CPU time and the overall speedups for computing both IP3

and its sensitivity is shown in Table 6.6

6.9 Conclusion

In this chapter, two new methods were presented for the efficient sensitivity analysis of third or-
der nonlinear distortion using moments analysis. The first approach was based on computing the
moments expansion with respect to a sensitivity parameter and the second approach was based
on the adjoint moments analysis. These approaches complement the moments based method for
computing IP3 presented in Chapters 4 and 5 by providing insight into the sources of distortion
while still remaining significantly more efficient than traditional simulation approaches for com-
puting IP3 based on Harmonic Balance. The sensitivity obtained using the moments approach

was as accurate as the Harmonic Balance adjoint sensitivity method.
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Chapter 7

Summary and Future Work

7.1 Summary

In this thesis, a new simulation method for measuring nonlinear intermodulation distortion and
its sensitivity at the output of a non-linear system based on the calculation of the system moments
was presented. It has been demonstrated that by using the new algorithms to compute IP3 and
its sensitivity from the moments, distortion analysis of RF circuits becomes significantly more

efficient. The new method is also very flexible and works for many types of systems.

1. The first contribution presented was an efficient moments based technique for computing
the value of IP3 in mixer circuits. The main advantages that the new method exhibits over

the Harmonic Balance method are summarized as follows:

e The moments computation matrix ¢ used to obtain the moment vectors from the
expanded set of MNA equations is very sparse as it is evaluated with the RF amplitude
set to zero. This is in contrast to the Harmonic Balance Jacobian matrix which is

dense.

e The moments computation matrix that is used is also static and does not change
throughout the algorithm. For this reason, it needs to be computed, stored and in-
verted only once. The Harmonic Balance Jacobian matrix changes at each iteration
of the solution, which could be a significant number of times. This means it has to be
computed and manipulated at each iteration, which when you also consider its dense

structure, leads to increased CPU cost.
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e The new method is essentially equivalent to numerically computing the summation of
necessary Volterra Series terms for analyzing intermodulation distortion. This avoids
the need to perform complex analytical manipulations to compute the Volterra ker-
nels. It also provides accurate results for circuits that experience LO convergence

iSsues.

The speedup obtained on a double-balanced Gilbert cell mixer was found to be 40 times.
When the method in this contribution is combined with the moments based approach for
computing IP3 in amplifier circuits [57], an overall framework for the computation of IP3

using moments analysis in general RF circuits is now available.

2. The second method presented was a new approach for the fast computation of IP3 using
single-tone inputs. This method shares the same properties as the moments based technique
for computing IP3 but with the added advantage of significantly reduced circuit equations
due to the presence of only single-tone RF signal inputs instead of the traditional multi-
tone inputs for computing IP3. This is made possible by the separation of the third order
nonlinear response that causes gain compression at the fundamental frequency from the
desired linear response through access to the closed form expressions for each component.
The significantly reduced size of the systems of equations leads to further speed-ups in
computation time over traditional multi-tone steady-state simulation methods, with com-
putation times that were orders of magnitude faster. This is especially the case in mixer
circuits where only two frequency tones are required (the single-tone RF input in addition

to the LO) as opposed to the traditional 3 input tones.

3. The third contribution of this thesis consists of new techniques for the sensitivity anal-
ysis of intermodulation distortion. This was accomplished using two methods, the first
through finding the multi-dimensional moments expansion of the solution, and the second
through finding the moments of the adjoint solution which is a more efficient and practical
approach. In the first approach, closed form expressions linking the IP3 sensitivity terms
to the expansion of the Harmonic balance moments with respect to the input amplitude in
addition to a sensitivity parameter were developed. The method was fully automated and

very efficient when the sensitivity of only a few parameters was required.

In the adjoint approach, a general adjoint moments method for computing the sensitivity

of IP3 that covers all parameters in the general circuit equations including parameters of
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linear and nonlinear circuit elements was presented. Closed form expressions for the sen-
sitivity of IP3 as a function of the entries in the adjoint moments for all circuit parameters
were developed. The adjoint moments are computed using the same set of linear equations
used to determine the harmonic balance moments. The new method for sensitivity analysis
thereby retains the main advantages of the adjoint sensitivity algorithm, namely that of low
incremental computation cost and the ability to find the sensitivity of one variable with
respect to all the parameters in the system while providing significant speedup over tradi-
tional harmonic balance methods. The new algorithm was tested on a number of different
circuit topologies including LNAs and mixers and retained the same speedup of the original

moments approach for finding IP3 but now with added option of finding its sensitivity.

7.2 Future Work

1. Benchmarking results with other IP3 computation methods: To verify the accuracy and
speed-up of the new methods presented in this thesis, the numerical results of the sim-
ulations were compared with those of brute-force Harmonic Balance. There are several
other methods for computing IP3 that are available in the literature, as shown in [30]-
[38] and as described in Sections 2.5 and 2.6. These include using periodic steady-state
and periodic AC analysis (PSS/PAC) for fast IP3 computation, distortion analysis using
simplified Newton, linear centric distortion analysis methods and weakly nonlinear circuit
reduction methods, among others. All of these methods present a speed-up in computation
time for computing IP3 over brute-force harmonic balance simulations, with some methods
achieving this at the expense of accuracy. Implementing these alternative IP3 computation
techniques in the same circuit simulator environment and on the same hardware platform
as that of the moments technique would provide the basis for a 1:1 comparison between

the methods and would further verify the effectiveness of the new moments based method.

2. Improvements to the Harmonic Balance method: In the implementation of the brute-force
Harmonic Balance method, Newton iteration combined with the FFT and IFFT algorithms
were used to solve the system of nonlinear algebraic equations to find the steady-state
solution of the nonlinear circuits. In practice, several variations on the solution algorithm
can be implemented to try and improve the convergence and CPU cost of the Harmonic

Balance method as described in Section 3.6. Some algorithms use direct approaches to
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solve the nonlinear equations while others use different iterative methods in the place of
Newton iteration. Some modifications are also aimed at improving convergence through
the use of preconditioners or relaxation methods, for example. However, the improvement
in computation time by using these modifications is not guaranteed for all types of circuit
topologies. Nevertheless, a comparison of the speed-ups obtained when using moments
analysis as opposed to using modified Harmonic Balance techniques would be important

for the completeness of the results.

3. Parallel algorithms for the Moments based computation of intermodulation distortion: In
this thesis, new methods for the efficient computation of the value of IP3 and its sensitivity
in RF circuits based on the system moments were presented. The presented algorithms
however, are serial in nature. The trend in microprocessors design has shifted from in-
creasing clock speed to increasing the number of cores. Existing simulation algorithms can
no longer rely on increased clock speed to offset the slowdown due to increased complex-
ity. Changing the algorithms presented in thesis to run on emerging parallel processing

platforms will allow the algorithm to scale in tandem with new processor technology.

4. Intermodulation Distortion Analysis of RF Microsystems: Integrating microelectronics
with circuits of different energy domains such as RF MEMS based oscillators [91], [92]
has led to dramatically increased circuit complexities. In addition, designers are increas-
ingly being faced with having to use components that are characterized by measurements
or extensive numerical simulations, but for which a circuit model is not readily available in
the CAD tools. For these reasons, there is a strong demand for efficient EDA tools that can

handle complex RF microsystems in an efficient, accurate and cost effective manner.

5. Use of the Moments computation algorithm for other applications of Volterra series: The
moments computation algorithm used in this thesis was shown to be essentially equivalent
to the numerical computation of the Volterra kernels. The algorithm was used to compute
IP3 since an important use of Volterra series in RF circuits is in the analysis of nonlinear
distortion. However, there are also many other important applications of Volterra series.
One of the most important applications is in the fields of medicine (biomedical engineering)
and biology, especially neuroscience [93]-[95]. An interesting extension of this research
work would be trying to numerically compute the Volterra kernels to model nonlinear ef-

fects in biomedical applications and target some of the bottlenecks in the simulation and
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modeling of biomedical system devices and behavior.
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