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Introduction 

Cable dynamics theory 

2.1 Early inextensible cable theory development 
 

Cables are widely used structural elements because of their mechanical 
efficiency. Their physical and mechanical properties, such as light weight, flexibility, 
high tension resistance, make them appropriate choice for different engineering 
applications such as cable-stayed and suspension bridges, rope-ways, modern 
guyed masts for power transmission lines and towers for the telecommunication 
industry, offshore and mooring structures (e.g. oil platforms, drilling rigs). Therefore, 
cable static and dynamic behavior has been an object for detailed and extensive 
studies for more than a century. Various cable problems have been already looked at 
since times of Renaissance in Europe and these have become a base for the 
following development of cable mechanics. Sketches of Leonardo da Vinci [1] from 
the fifteenth century have described the catenary notion. Stevin [2] in 1586 has 
performed experiments with loaded strings. Studies accomplished for suspension 
bridges have stated that a cable hangs in a parabolic arc [2]. In contrast to this view, 
the Bernoulli brothers (James and John), Leibnitz and Huygens, more or less jointly, 
have concluded that a hanging cable has a shape of catenary (or chainette) [3]. The 
first studies of vibrations of a taut string were presented in treatises by Brook Taylor, 
d’Alembert, Euler, Johan and Daniel Bernoulli during the first half of the eighteenth 
century.  In 1732 D. Bernoulli has performed the analysis of the transverse 
oscillations of a uniform cable, supported at one end and hanging under gravity. A 
few decades later, the same problem has been examined by L. Euler. Both Bernoulli 
and Euler have given the natural frequency solutions studied previously but in the 
form of infinite series.  At that time, considerable work had been focused on the 
analysis of discrete systems. In 1788 Lagrange et al. [4] have developed solutions for 
the vibrations of an extensible, massless string, fixed at each end, from which 
numerous dead weights were hung. Such an arrangement of hung masses 
represented the cable continuum under uniform gravity loading.  

In 1820 Poisson [5] has developed the general partial differential equations of 
the motion of a cable element under the action of general force system, thus, making 
a milestone contribution to the theory of cable vibrations. Poisson has used these 
equations to improve the solutions previously obtained for the vertical cable and the 
taut string. Therefore, by 1820, correct solutions had been obtained for the linear free 
vibrations of uniform cables having the limiting static form of a catenary. However, 
apart from Lagrange’s study on the equivalent discrete system, solutions for cables 
with sag were not known at that time. In 1851 Rohrs [6], in collaboration with Stokes, 
has given an approximate solution for the symmetric vertical vibrations of a uniform 
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suspended inextensible cable with a small sag-to-span ratio. The solution had been 
obtained by using a form of Poisson’s general equations, correct to first order and, in 
addition, another equation had been used to describe the continuity of the chain: The 
chain was assumed to be inextensible, so the continuity equation related only to 
geometric compatibility. In 1868 Routh [7] has given exact solutions for an 
inextensible heterogeneous sagging cable, which hung in cycloid. These solutions 
have described the symmetric vertical in-plane vibrations (and associated longitudinal 
motion).  Like Rohrs before him, Routh assumed the cable to be inextensible and has 
demonstrated that his results for the cycloidal cable reduced to Rohr’s solution for the 
uniform cable when the ratio of sag-to-span was small. Routh has also obtained an 
exact solution for the anti-symmetric modes (and associated longitudinal motion) of 
the cycloidal cable (See Figure 1). The equations of motion proposed by Routh have 
the general form 

 
 
 

 
 
 
 
 
 
 
 
 
Where x , y  are rectangular coordinates of any point P on a suspension chain 

when hanging in equilibrium, x  being measured horizontally; s  is a distance along 
the arc of the chain to P from some convenient origin; m  is a mass per unit length of 
the chain at P. When the chain is executing a small oscillation, P, at time t, takes 
coordinates ξ+x  and η+y  with U being an increase in tension noted byT . If the 
chain is inextensible, its geometry at any instant must conform to a third equation 

 
 

 

2.2 Modern cable dynamics theory 
 

After Routh’s contributions, the subject has not got any further development 
until 1941 when Rannie and von Karman independently obtained natural frequencies 
for both the symmetric and anti-symmetric in-plane modes of an inextensible three-
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span cable [8]. In 1942 Kloppel and Lie [9] for the first time have considered the 
cable elasticity. In 1945 Vincent [10] has further developed the work by Rannie and 
von Karman including the effects of cable elasticity on the symmetric modes. 
However, he had not fully explored the nature of the obtained solutions from an 
engineering perspective. 

In 1950 Bleich et al. [11] have developed a comprehensive study on the theory 
of vibration in suspension bridges, in which consideration has been given to the 
effects of cable elasticity. Since the authors of the theory were concerned with long 
span cables with large ratios of sag/span, the effects of cable elasticity were not 
appreciable compared to geometric effects. Pugsley’s [12] semi-empirical theory for 
the natural frequencies of the first three in-plane modes was presented in 1949. He 
has demonstrated the applicability of the results by conducting experiments on 
cables with deep profiles in which the ratio of sag/span ranged from 1:10 up to about 
1:4. In 1953 Saxon and Cahn [13] have presented theoretical solutions for cables 
with significant sag by assuming again that the cable was inextensible. They have 
obtained solutions that effectively reduced to the previously known results for 
inextensible cables of small sag/span and for which asymptotic solutions gave 
excellent results for large sag/span ratios. Goodey in 1961 in [14] has also 
investigated deep-sag cables, but by different methods. According to Goodey, the 
element *PP undergoes the motion in the principal form with the shape tAC ωsin= , 
where A  is the arbitrary constant (See Figure 2), ω  is the angular frequency. If 

tx ωξ sin+ , ty ωη sin+  are the coordinates of P at the time t , s is the arc of chain 
measured from the chain midpoint and αψ ±= , the solution for the frequency of the 
odd modes has the following form 
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Where cg22 ωλ = , ( ) αcot21 Lc = , g is the gravitational force. 

αp , αq  are evaluated as  
 
 
 
 
 

ασ is expressed as 
 
 
  

 

2.3 Linear Elastic Cable Theory proposed by Irvine and Caughey 
 
However, until the 1970s practically no experimental work had been done to 

validate the proposed theories that displayed remarkable discrepancies between the 
natural frequencies of the symmetric in-plane modes of an inextensible sagging cable 
and those of a taut inextensible string.  In this perspective, as shown by Irvine and 
Caughey in 1974 [15], a proper description of that transition range requires the 
consistent inclusion of cable elasticity. Their work has revealed an extensive 
comprehension of the linear theory of free vibrations of a rigidly supported horizontal 
cable (level span with fixed ends) with a ratio of sag/span from approximately 1:8 to 
zero (perfectly straight). Their fundamental assumption was that the dynamic cable 
tension is a function of time alone (i.e. the elastic deformation is assumed to be 
quasi-static). On that basis, the authors have demonstrated that the dynamic 
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behavior of an elastic cable essentially depends on only one geometric-elastic 
parameter, now well-known as Irvine’s 2λ  elastic cable parameter. The parameter is 
expressed as 

 
 

 
 
Where mg is the self-weight of the cable per unit length; H is the horizontal 

component of cable tension; l  is the distance between the supports (span length) 
and eL is the length of the cable. 

Following Figure 3 from [15] 
 
 
 
 
 

 
Figure 3. Components of displacement in displaced profile 

 
the equations of motion obtain the form 
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For certain values of this 2λ  parameter, the so-called “crossover” points, the 
natural frequencies of the symmetric in-plane modes and the respective anti-
symmetric in-plane modes coincide. (See Figure 4) This study is considered a 
milestone in cable vibration theory since it has become the base for an extensive 
following research. Later on, Irvine has extended his theory to inclined cables [16]. 
However, in this paper, the weight component parallel to the cable chord has been 
neglected. Jointly with Griffin [17], Irvine has performed the analysis of cable 
response to dynamic loading as it occurs in the case of support acceleration due to 
earthquake.  
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Figure 4. General dimensionless curves for the first four natural frequencies of a flat-

sag suspended cable: (a) first symmetric in-plane mode, (b) first antisymmetric in-
plane mode, (c) second symmetric in-plane mode, (d) second antisymmetric in-plane 

mode. 
 

A more precise solution for the free vibrations of an inclined extensible cable 
has been developed by Triantafyllou in 1984 [18]. For this, the spatial variation of the 
dynamic cable tension and the weight component parallel to the chord have been 
duly taken into consideration. As a result, for the frequency curves of inclined cables 
as a function of 2λ  the “cross-overs” have been replaced by an “avoided crossing” 
(i.e., nearly a “cross-over”, (see Figure 5), while the two modes of nearly coinciding 
frequencies become hybrid modes, a mixture of symmetric and anti-symmetric 
shapes, with a significant effect on the dynamic tension. Based on the developed 
general asymptotic solution, Triantafyllou and Grinfogel in 1986 [19] have proposed 
simple expressions for natural frequencies and mode shapes for inclined cables 
neglecting the cable inertia in the longitudinal direction, which is equivalent to a 
quasi-static stretching assumption originally made by Irvine and Caughey. In 1984 
Shih and Tadjbaksh [20] have presented the equations governing small-amplitude 
free vibrations of extensible elastic cables. The resulting eigenvalue problem has 
been solved using the Galerkin procedure and the numerical results obtained have 
agreed with previous results in the inextensible limit. 

Yamaguchi and Ito [21], Yamaguchi [22] have also developed the theory of 
inclined cables, stating that the in-plane natural vibration properties of inclined cables 
differed from those of horizontal cables. 
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Figure 5. First two natural frequencies as a function of 2λ  
 

Wu et al. [23] have modified the expressions for in-plane natural frequencies 
of an inclined cable derived by Irvine by considering a geometric parameter, which 
had been neglected by Irvine. By doing so, additional properties of inclined cables 
can be captured. The parameter taken into account by Wu et al. is 2ε ( θβε cos8= ), 
where ( )θβ sec8HmgL=  with mg being a self-weight of the cable, L - the distance 
between the cable supports, θ - angle between the horizontal line and the line 
connecting the cable supports. The equations of the cable free motion proposed by 
the authors take the following form 
 

 
 
 
 
 
 

Where T  is the initial tension of the cable;τ is the additional tension 
generated; **,uw are the displacements in the local coordinate system; mg is the self-
weight of the cable 

However, the bending stiffness of an inclined cable has not been considered 
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cable bending stiffness will influence its natural frequencies and modal shapes. In 
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plane natural vibrations of small-sag inclined elastic cables considering their bending 
stiffness [29]: 
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Where **, zx are longitudinal and transversal coordinates, respectively; EI  is 

the bending stiffness. All the other notations are mentioned above. 
 

2.4 Nonlinear Elastic Cable Theory 
 

2.4.1 Small kinematics 
 

The research mentioned so far has been focused on the investigation of 
small amplitude cable vibrations forming linear elastic cable vibration theory. 
However, certain resonance phenomena such as cable galloping and large wake-
induced vibrations have been observed in different types of cable structures and 
exposed strongly nonlinear cable behavior. Therefore, it has become essential to 
study cable vibrations in the framework of nonlinear mechanics. In [30] Irvine has 
introduced the geometrically nonlinear model of a taut inclined cable, though without 
solving it. The behavior of a nonlinear model has been also analyzed by Carrier 
[31,32]. Meirovitch [33] has shown that the undamped nonlinear steady state in a 
plane response of a taut flat cable is given by the solution of a Duffing equation. 
Consequently, nonlinear free vibrations of a suspended cable have been studied by a 
number of researchers: West et al. [34], Hengold and Russel [35], Hagedon and 
Schafer [36], Luongo et al. [37,38], Rega et al. [39], Benedettini et al. [40]. All of them 
have investigated simple cable models, with one or two degrees of freedom, 
developed and utilized to obtain analytical solutions. In the same theoretical 
research, both single-degree-of-freedom [41] and multiple-degree-of-freedom 
formulations [42,43,44,45,46] have been studied to explore numerous nonlinear 
phenomena arising in cable forced vibrations including the effects of nonlinear modal 
coupling under various external/internal resonance conditions and the possibility of 
non-periodic responses. Consequently, nonlinear cable dynamics theory has been 
verified through systematic physical experiments [47,48]. All the theoretical models 
developed and used for the analysis possessed a certain number of assumptions to 
simplify the analytical treatment. Among those, the initial static strain has been 
neglected in order to obtain an inextensible parabolic profile of the cable equilibrium 
configuration where the sag-to-span ration was of the order 1/8 or less. Besides the 
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initial strain assumption, the dynamic tension has been defined as a function of time 
only, thus being spatially uniform, which ensued from the inertial force in the 
longitudinal direction being neglected according to a quasi-static stretching model of 
the cable in motion. Nevertheless, in 1996 Behbanhi-Nejad and Perkins [49] have 
demonstrated that the analysis of tension waves propagating freely along the cable 
length cannot be implemented using those simplifying assumptions. Pakdemirli et al. 
[50] and Rega et al. [51] have illustrated that the results obtained by analyzing 
reduced-mode discrete models of cables may be quantitatively erroneous for cables 
with non-zero sag. Above that, several investigations have demonstrated that the 
effect of axial strain on the dynamic behavior can be significant depending on elasto-
geometric properties. Takahashi and Konishi [52] have examined sagged cables with 
either horizontal or inclined supports qualitatively, discussing geometrically nonlinear 
effects, but they have neglected the significance of cable extensibility. Luo and Mote 
[53] have developed a comprehensive 3-D model governing the steady response of a 
travelling tension wave in an arbitrarily sagged, elastic cable, and have obtained 
exact, closed-form solutions for steady motion under various loadings. Nevertheless, 
a further 3-D nonlinear coupling, as well as the assessment of the variability of 
dynamic tension during vibration, had yet to be done.  

 

2.4.2 Large kinematics 
 

An extensive research of nonlinear vibrations of inclined cables has been 
performed by Srinil et al. [54,55,56,57,58]. Initial detailed comprehensive discussion 
and comparison of large amplitude free vibrations of inclined cables have been 
presented in [56]. The major findings presented in this paper consisted in describing 
the extent of two- and three-dimensional couplings, the occurrence of nonlinear 
dynamic tensions, and the meaningfulness of modal transition phenomena ensuing 
from the activation of various internal resonance conditions. In [54] Srinil et al. have 
investigated internally resonant dynamics of the free nonlinear vibrations of horizontal 
and inclined suspended cables by means of a multi-mode Galerkin-based 
discretization and second-order multiple scales. The paper has been aimed at the 
study of planar internal 2:1 resonances. The developed equations of motion have 
considered the system asymmetry due to the cable inclination and its dynamic 
extensibility. Closed-form solutions for nonlinear amplitudes, frequencies and 
dynamic configurations have been obtained with considering higher-order effects due 
to quadratic nonlinearities.  

According to [56] the governing equations of motion in the global coordinate 
system read: 
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Where the total strain of the cable centerline at the displaced state read: 
 

 
 
 
 

And where wvu ,, are the displacements in the global Cartesian coordinate 
system; ds is the elemental length of the cable in the unstretched state; 0y is the 
coordinate of a cable point in the equilibrium state; AE, are the modulus of elasticity 
and cross-sectional area of the cable, respectively; g  is the gravitational force; cw is 
the cable weight per unit of unstreched length. The differentiation of a function by 
time is indicated by two dots. 

The theoretical predictions have been verified by finite difference solutions. 
In [59] the authors have described the experimental modeling of the linear free and 
nonlinear forced vibrations of sagged inclined cables followed by experimental 
testing. The paper has been focused on identifying cable hybrid modes due to 
system asymmetry, which causes the presence of an avoidance phenomenon in the 
natural frequency spectrum. Some 3-D nonlinear dynamics under the simultaneous 
parametric/external excitation due to a harmonically time-varying support movement 
has been investigated. The effect of non-planar/planar internal resonances producing 
large –amplitude out-of-plane multi-modal interactions has been experimentally 
observed and complemented by space-time numerical simulation of the 
corresponding (geometrically nonlinear) partial-differential equations of 
parametrically-forced cable motion. The authors have presented the experimental 
and numerical results that reflect the fundamental linear/nonlinear dynamic 
characteristics of inclined cables with the presence of the cable asymmetry, its sag 
and dynamic extensibility. In [57] Srinil et al. have dealt with the analytical 
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investigation of resonant multi-modal dynamics due to 2:1 internal resonances in 
finite amplitude free vibrations of inclined and horizontal cables. Based on the 
formulated cable model, approximate partial differential equations of 3-D coupled 
motion of small sagged cables have been developed. These equations account for 
both spatio-temporal variation of non-linear dynamic tension and system asymmetry 
due to inclined sagged configuration. In order to perform the solution of non-
planar/planar motion, a multi-dimensional Galerkin’s expansion has been performed. 
A second-order asymptotic analysis under planar 2:1 has been also accomplished by 
the method of multiple scales. The analysis of approximate closed-form solutions of 
nonlinear amplitudes, frequencies and dynamic configurations of resonant nonlinear 
normal modes has presented the cable response on resonant/non-resonant modal 
contributions. In the following paper [58] Srinil and Rega have investigated the multi-
modal dynamics due to planar 2:1 resonances in the nonlinear, finite-amplitude free 
vibrations of horizontal and inclined cables based on the second-order multiple-
scales solution from [54].  In the conclusions of this paper, the dependence of 
resonant dynamics on coupled vibrations amplitudes, and the significant effects of 
cable sag, inclination and extensibility on system non-linearity are underlined 
together with contributions of longitudinal dynamics as it has been done in [54]. 
Again, the authors have illustrated the spatio-temporal variation of non-linear 
dynamic configurations together with dynamic tension associated with 2:1 resonant 
non-linear normal modes. The analytical solutions have been evaluated by finite 
difference-based numerical investigations of the original partial differential equations 
of motion as this validation has been applied in [54]. Despite detailed and precise 
analysis of the nonlinear cable dynamics, Srinil et al. have not reflected, for example, 
the effect of the supports flexibility, as absolutely rigid fixed supports represent an 
approximation of reality. Berlioz and Lamarque [60] have also investigated nonlinear 
vibrations of inclined cables, and have implemented an experimental and theoretical 
study in order to highlight the nonlinear dynamic behavior of an inclined cable. Their 
results have presented good agreement between theory and experiment, and several 
nonlinear motions have been observed and identified under periodic external 
stresses. Zuo et al. [61] have developed a set of governing equations of nonlinear 
free transverse in-plane vibration of an inclined cable with small sag. The equations 
have reflected the effects of the cable's Irvine parameter ( 2λ ) and vibration modes on 
its natural frequencies, and internal nonlinear couplings between the cable modes. 
When single mode vibration occurs, the governing equations are simplified as a 
classical Duffing equation with a quadratic term. The averaging method has been 
used to solve approximately the Duffing equation. As an example, dynamic 
responses of a practical inclined cable have been analyzed. The results have been 
verified by numerical methods. These, however, do not reflect the out-of-plane 
behavior. Li et al. [62] have studied the influence of the tension variability on 
nonlinear natural frequencies of an inclined cable. Considering the bending stiffness 
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of the cable, the authors have formulated a nonlinear vibration equation based on 
Newton’s law neglecting the vibration coupling of in-plane and out-of-plane motion 
and ignoring the axial vibration along the cable.  
 

3. Dynamics of Cable Structures 
 

3.1 General 
 

As it has been mentioned above, cables are typically used as elements of a 
more complex structure. Therefore, there is a need for investigating the problem of 
interaction between cables and other system elements that induce cable vibrations. 
There is extensive research available on inclined cables considering supports 
motions, as well as composite analysis of cables and supported structures (guyed 
towers, cable-stayed bridges). In 1965 boundary induced vibrations have been 
treated by Davenport and Steels [63], while a more refined theory has been 
developed by Velestos and Darbre [64].  

Starossek has studied the dynamic response of an extensible sagging cable 
and presented in [65] a dynamic stiffness matrix whose coefficients were functions of 
the frequency of motion, and that is suitable for dynamic direct stiffness analysis of 
composite/coupled mechanical systems such as cable-stayed bridges and guyed 
masts. The study has been restricted to small displacements (linear theory) and 
considered structural motion within the vertical cable plane only.  

In [66] Kim and Chang presented the free vibration analysis and a dynamic 
matrix derivation for an inclined cable. In the paper the cable was assumed to have 
an elastic catenary profile, and the chord-wise component of self-weight and viscous 
damping have been considered. After linearization of the equations of motion, 
closed-form solutions of free vibrations have been derived. Based on the solution of 
free vibration of a cable with displaceable boundaries, the dynamic stiffness matrix 
has been assembled. The dynamic stiffness coefficients and the effects of damping 
have been investigated. Such a matrix for an inclined cable can be applied to the 
dynamic analysis of cable-supported structures such as cable-stayed bridges or 
guyed masts. However, the authors have stated that for tightly stretched inclined 
cables utilization of more accurate theory was indispensable.  

In [67] Li and Wang have dealt with the vibration of a guy that may be excited 
by small motions of the mast. A theoretical model has been developed for the study 
of nonlinear vibration of an inclined guy. Numerical analysis has been used to predict 
the parametric vibration. The authors have shown that reasonably small anchorage 
motion amplitudes may lead to important guy vibration. It has also been found that 
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excitation amplitude, pretension, tilt angle and internal damping ratio all play very 
important roles in parametric resonance.  

Wei et al. [68] have implemented analysis of the characteristics of the 
parametric vibrations of the cable in cable-stayed bridge, especially the vibration 
amplitude and the tension fluctuation by using Finite Elements Method. The nonlinear 
response of a cable-stay under a synchronous excitation has been studied. It has 
been observed that the in-plane vibration of the support can induce the out-of-plane 
symmetric vibration modes leading to coupling vibration. However, the out-of-plane 
symmetric vibration modes of the cable support can only induce the out-of-plane 
symmetric modes, and not the in-plane vibration of the cable. The authors have also 
found that the increase of cable damping dwindles the frequency bandwidth of large-
amplitude vibrations, but enlarges the tension fluctuations.  

The effects of excitation amplitude, pretension, tilt angle and damping ratio 
on parametric and external resonances have also been studied by Wu [69]. The 
study has focused on in-plane nonlinear dynamics of a heavy elastic suspended 
cable whose lower end is fixed to the ground and the upper end is pin supported and 
movable horizontally to simulate the bending motion of a guyed stack due to vortex 
shedding. The parametric cable vibration has been studied extensively as well.  

In [70] Cai and Chen have investigated nonlinear dynamics of a heavy elastic 
suspended cable for application to stack/wire systems. Small oscillations of the cable 
at the support attached to the stack, resulting from the bending motion of the stack 
due to vortex shedding, lead to parametric and external excitation. Numerical 
analysis has been used to predict the parametric and external resonances of the 
elastic suspended cable, which contained cubic nonlinearities due to cable stretching 
and quadratic nonlinearities due to equilibrium cable curvature in a tilted 
configuration. Numerical results agree well with the original stack/wire response, 
which had been previously by the same authors using an analytical prediction with a 
finite element code and observation of the stack/wire behavior. Additional parametric 
analyses have been pursued to distinguish between parametric and external 
resonances and their couplings. It was found that excitation amplitudes and tilted 
angles play very important roles in parametric and external resonances.  

Sparling and Davenport [71] have studied the nonlinear dynamic behavior of 
guy cables in turbulent winds in relation to tall guyed telecommunication masts. A 
numerical study has therefore been undertaken to investigate the dynamic behavior 
of inclined cables excited by imposed displacements. It has been found that the 
nonlinear coupling of related harmonic response components has been significant 
and acted in the plane of the guy. Positive aerodynamic damping has been shown to 
effectively suppress resonant and nonlinear coupling responses.  

Wu [72] has investigated in-plane nonlinear dynamics of a heavy elastic 
suspended cable having its lower end fixed to the ground and the upper end pin 
supported. The upper support has been set as movable simulating the motion of the 
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supported structure under vortex shedding. The author has confirmed that the nature 
of the excitation (amplitude and forcing frequency), pretension, tilt angle and internal 
damping ratio all play roles in parametric and external resonances. Most of the 
studies considering cable support movements have been focused on in-plane cable 
vibrations and none has been found that would consider different base support 
conditions simulating different soil mechanical properties, if it is a cable anchored to 
the ground. 

 

3.2 Cable-stayed bridges 
 

Some researchers have focused their investigations on parametric 
excitations of cables. For example, for cable-stayed bridges, Lilien and Costa [73] 
have found that very large amplitude vibrations can be induced by low-frequency 
mechanical tension oscillation of the stay cables in long span bridges. A global/local 
mode approach, which can analyze the coupled vibration of cables and bridges, has 
been introduced by Warnitchai et al [74]. Gatulli et al. [75, 76] and Gatulli and Lepidi 
[77] have developed a cable-stayed beam model and found that vibration energy can 
transfer from low frequencies to high frequencies through parametric resonance; the 
numerical results have been confirmed by experimental studies. Gattulli et al. [78] 
have also studied the coupled stay cable- bridge deck vibration and the influence of 
strong mode localization on the structural response. Their investigation has shown 
that a veering phenomenon may occur under particular parameter combinations that 
enable internal resonance between local and global modes. These conclusions have 
been confirmed by a refined finite element analysis of the existing Bill Memorial 
Emerson Bridge, USA.  

Georgakis and Taylor [79] have performed finite element analysis of a cable 
under harmonic excitations and studied the changes of initial cable conditions. A 
research by Caetano et al. [80] has described several possible mechanisms of cable 
vibration of the International Guadiana Bridge at the border of Spain and Portugal. 
On-site measurements and finite element analysis have indicated that internal 
resonance of the cable-deck system may be a major cause of large-amplitude cable 
motions.  

Fujino et al. [81] have proposed a three-degrees-of-freedom nonlinear model 
of a cable-stayed-beam and accomplished analytical steady-state solutions of the 
auto-parametric resonance between the out-of-plane cable vibration and the beam 
vibration. Using this model, Warnitchai et al. [74] have also examined active tendon 
control of cable-stayed bridge vibrations. It was found that excitation amplitudes and 
tilted angles play very important roles on parametric and external resonances. Kang 
et al. [82] have aimed to investigate the coupled nonlinear vibration response of the 
cable-deck system by numerical analysis of a proposed three-degree-of-freedom 
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model. The authors have attempted not only to take account of the coupling effect of 
the in-plane and out-of-plane vibrations of the cable, but also to consider the vertical 
vibration of the bridge deck as an independent degree of freedom. Implementing 
analytical and numerical analysis, the authors have made conclusions about several 
coupling vibration effects of the cable-deck system.  

Khadaroui [83] has introduced a one-degree-of-freedom model of an inclined 
cable subjected to an external excitation of the cable support. This model has been 
modified and analyzed later by Berlioz and Lamarque [84]. The authors have studied 
both primary and sub-harmonic resonances by using multiple scales method. Both in-
plane and out-of-plane motions have been studied. Despite modifying the original 
model, Berlioz and Lamarque have neglected longitudinal displacements of the 
cable. Nevertheless, an experimental validation of the theoretical results has 
demonstrated qualitative agreement. In conclusion, the authors have suggested 
studying the effect of external random excitation. An overview of the literature and 
results on the response of cables under random excitation has been done by Raouf 
in 2002 [85]. 
 
 
3.3 Guyed telecommunication masts 
 

Many research works have been done to study the static and dynamic 
behavior of guyed towers. The simplest way to analyze a guyed tower has been to 
assume the mast of the structure to be a continuous beam on elastic supports with a 
set of springs to idealize the taut guy-wires attached to the tower mast. Cohen and 
Perrin [86,87] have made the earliest contributions to the study of guyed masts. Their 
first paper [86] has investigated wind loading and presented a set of charts that could 
be used to predict the drag loads produced by wind. The second paper [87] has 
presented a model that described the dynamic response of a guyed mast. The mast 
has been treated as a cantilever beam column on elastic supports and the guy 
cables have been considered to have a parabolic profile. Starossek has also 
performed similar studies for cables supporting masts or towers [88]. 

 Rowe [89] has investigated the amplification of stresses and displacements 
in guyed towers when changes in the mast geometry are included. This paper has 
also developed charts to investigate the structural behavior of a mast based on 
modeling the guys as bars. Hull [90] has studied the sectional critical moment of 
inertia corresponding to a critical buckling wind load and conducted a stability 
analysis of guyed towers in terms of static mast behavior. Goldberg and Myers [91] 
have investigated the importance of including wind effects on guy cables in the 
overall tower response. Odley [92] has presented a solution where other effects (ice 
loads, shear deformations, etc.) have been included in the guyed tower model. 
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Williamson and Margolin [93] have showed the importance of including mast shear 
deformations in the analysis of guyed masts.  

In [94] Madugula et al. have underlined that due to the flexibility associated 
with both the slender mast and the guy cables, guyed towers are very sensitive to 
dynamic excitation from gusty winds, which has been investigated by Sparling et al. 
[95,96]. In addition, the strong dynamic interaction that exists between the motion of 
the mast and the relatively massive guys, each of which has frequency dependent 
stiffness properties, leads to rather complex dynamic behavior. Unlike conventional 
building structures, guyed towers routinely exhibit 20 or more active vibration modes 
when excited by turbulent winds. The lowest mode is typically dominated by large 
amplitude vibrations of one or more guys at the top support level, with little flexural 
bending in the mast, while the next few modes involve significant vibrations at 
progressively lower guy support levels in turn. Higher modes, on the other hand, are 
dominated by flexural vibrations of the mast alone, with the degree of curvature in the 
mast increasing for progressively higher modes. Intermediate modes feature varying 
degrees of coupled motion involving both the mast and guys. In [97] a three-
dimensional dynamic response of a guyed tower subjected to turbulent buffeting has 
been investigated by Sparling and Davenport. Nonlinear dynamic response has been 
determined in the time domain using Newmark’s Beta step-by-step integration of the 
governing equations of motion. A simulated windstorm containing both along-wind 
and across-wind turbulences has been generated. The authors have focused their 
analysis mainly on the tower behavior giving some attention to dynamic guy tension.  

Peil et al. [98] have also studied the dynamic behavior of guys and guyed 
masts under wind load. The authors have implemented comparisons of theoretical 
and experimental results that have shown that a precise prediction of the dynamic 
response of guyed systems is possible if the dynamic behavior of the guys is taken 
into account.  

A theoretical and experimental research on the dynamic behavior of guyed 
masts under wind has been accomplished by Ma et al. [99]. Recently Bastos et al. 
[100] have presented a numerical dynamic analysis of a cable stayed mast under a 
time domain simulating turbulent wind. Several finite elements models have been 
studied in order to assess the importance of nonlinear effects associated with the 
mast slenderness and significant cable sag.  
 

4. Mitigation of cable vibrations 

4.1 General 

 
As it has been described above, cable structures are of frequent use in a 

wide range of practical applications for supplying both support and stability to large 
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structures. Due to their overall slenderness and inherent flexibility, cable structures 
possess dynamical susceptibility to excitation from surrounding mediums, so, cable 
vibrations may happen in some circumstances, which eventually may degrade the 
system performance. For example, large-amplitude amplitude cable vibrations have 
negative effects on the cables integrity causing the fatigue accumulation and their 
even possible rupture. Hence, appropriate countermeasures have to be applied to 
reduce or suppress the large amplitude vibrations. In general, these 
countermeasures can be classified into three types: aerodynamic, structural and 
mechanical, and belong to a category of so-called passive techniques of control. 
Having been used with proven effectiveness in structural performance, these 
techniques have certain limitations.  

Among the first attempts to address vibration control for guyed masts was the 
paper prepared by Hirsch [101], who summarized some results of full-scale tests 
involving passive vibration control of a guyed mast vibrations equipped with two 
tuned-mass dampers on the mast top part (See Figure 6a). The paper has mentioned 
the optional approach of the guy vibrations mitigation by installing a damper on the 
cable (see Figure 6b). The observations have been compared with theoretical 
considerations, and the conclusions have been focused on optimum vibration control. 
It was derived that natural mode shapes and frequencies could be computed 
considering linear behavior of the guyed mast, but the results have been judged to be 
qualitative. In all cases it was considered impossible to ensure the cables to be 
dynamically stable relating to all possible solutions of vibrations, including galloping 
and parametric excitation. A full dynamic analysis of a guyed mast exposed to 
various forms of wind excitations has been considered unfeasible.  

 
 
 
 
 
 

 
 
Figure 6. Guyed mast with a tuned-mass damper on top. Cable with a damper. 
 
Several damping devices types installed in practice on guyed masts are 

described in [94]. However, no detailed investigation on damping devices installed on 
inclined guy cables have been found in literature. 

Recently, several attempts have been made to accomplish active and semi-
active control of guy cable vibrations. In particular, cables are essential structural 
elements in cable-stayed bridges stating their vibration control as a crucial task. 
Therefore, an extensive research has been done for this critical issue. Aerodynamic 
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control methods have been studied and applied to mitigate large-amplitude vibrations 
of stay cables in bridges [102], which occur under wind oblique to a cable with or 
without rainfall. Modifications of circular cylinder surfaces, such as strakes and helical 
wires, effectively mitigate Karman vortex-induced vibrations normal to wind flow. The 
authors of the mentioned paper studied a flow around a yawed cylinder with various 
strake patterns using three-dimensional detached eddy simulation at a specific 
Reynolds number in order to understand their effectiveness in reducing large-
amplitude, low-frequency vibrations of stay cables. The results of the research have 
demonstrated that a suitable strake pattern causes disturbance of the development 
of coherent flow structures around an oblique cable. It consequently suppresses or 
weakens the associated forces at low frequency.  However, further investigations on 
the performance of strakes have been announced necessary in terms of their optimal 
number, size, and pitch of the windings.  

Structural damping for bridge stay cables has been used very frequently as a 
temporary measure before the installation of damping devices on cables or as a 
permanent measure. A popular mitigation method consists in installing cross ties 
connecting several stay cables together. For example, Yamaguchi and Nagahawatta 
[103] have investigated analytically a cable system comprising two main cables with 
two cross ties. It has been established that there is more or less damping effect 
associated with the use of cross ties and this effect  can be increased by using more 
flexible and more dissipative ties compared with the stay cables. The authors have 
shown that their energy-based method of damping evaluation is very effective and 
the modal damping of cable systems can be estimated analytically by evaluating the 
modal strain energy and modal potential energy of the initial cable tension. 
 

4.2 Vibrations of a cable equipped with a viscous damper 
 
The phenomenon of free vibrations of a taut cable with an attached viscous 

dashpot damper (external mechanical damping) has been studied by a large number 
of authors. Carne [104] and Kovacs [105] were among the first to determine first-
mode damping ratios for damper locations near the cable lower end (See Figure 7). 
Carne has introduced an approximate analytical solution obtaining a transcendental 
equation for the complex eigenvalues of the damped cable and an accurate 
approximation for the first-mode ratio as a function of the viscous damper coefficient 
and location. Later, Kovacs has developed approximate solutions for the maximum 
attainable damping ratio and the corresponding optimal damper coefficient.  

Several authors have investigated the free-vibration problem using Galerkin’s 
method with the sinusoidal mode shapes of an undamped cable as basic functions 
(see for example [106]. Pacheco et al. [106] have introduced non-dimensional 
parameters to develop a “universal estimation curve” (See Figure 8) of normalized 
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modal damping ratio versus normalized damper coefficient, which is applicable in 
many practical design situations.  

Xu et al. [107] have developed an efficient and accurate transfer matrix 
formulation using complex eigenfunctions in order to estimate nodal damping. In 
more recent research on cable vibration mitigation several results have been issued 
by Krenk in 2000 [108] who has proposed an exact analytical solution for the 
vibrations of a taut cable equipped with a concentrated viscous damper. 

 
 
 
 

 
 
 

 
 

Figure 7. Taut cable with a viscous damper in transverse direction 
 

 
 
 
 
 
 
 
 

Figure 8. Universal curve relating modal damping ratio nξ  with damper size c , 
location of damper cx , cable parameters Lm, and its fundamental frequency 01ω . 

 
The solution has been obtained in terms of damped complex-valued modes, leading 
to a transcendental equation for the complex eigenfrequencies; this formulation has 
permitted to determine explicitly the optimal location of the damper depending on its 
damping parameter. In this investigation only a few first modes of vibrations have 
been studied considering damper locations near the lower cable end, which is a 
usual practice.  

In 2002 Krenk and Nielsen [109] have generalized the previously developed 
analysis of a taut cable under the effect of a transverse viscous damper installed 
close to the end of a shallow cable by complex modal superposition analysis. In this 
continued research it has been found that the effect of the damper on the nearly 
antisymmetric modes is independent of the sag and axial rigidity. In contrast, the 
nearly symmetric modes develop regions of reduced motion near the ends, with 
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increasing cable stiffness, which reduces the efficiency of the viscous damper. The 
resulting modal damping ratio and optimal tuning of the damper have also been 
presented.  

Viscous damper performance in the higher modes has posed a particular 
interest since full-scale measurements by Main and Jones in 2001 [110] have 
indicated that vibrations of moderate amplitude can occur over a wide range of cable 
modes. In 2002 Main and Jones [111] have formulated the free-vibration problem in 
order to investigate the dynamics of the cable passive linear damper system in higher 
modes and without restriction on the damper location. In this research, the cable has 
been modeled as a taut horizontal string with initial sag and bending stiffness being 
neglected.  The authors have developed an analytical formulation of the complex 
eigenvalue problem in order to derive an equation for the eigenvalues that is 
independent of the damper coefficient Tmc , where c  is the viscous damper 
coefficient, T  is the tension in the cable, m  is the mass per unit length of cable.  This 
equation has the following form 

 
( ) ( ) ( ) ( ) ( )πϕπσπϕπσπϕ 2sin2cosh2sin2cosh2sin 1221 =+ LlLlLlLl , 

 
Where 1l  and 2l  are the lengths of two cable segments; σ and ϕ  are the real 

and imaginary parts of the non-dimensional eigenvalue, respectively; L  is the length 
of the cable. The solution of the equation has allowed the authors to analyze the 
behavior of the system damping ratio as a function of the damper location. 

In a companion paper [112] the same authors have investigated the dynamic 
behavior of a taut cable with a passive nonlinear viscous damper attached at an 
intermediate point using an averaging procedure. An approximate analytical solution 
for the amplitude-dependent effective damping ratio in each mode has been 
developed by assuming the same form of solution as for the linear damper. The 
analysis has revealed potential advantages that may be offered by a nonlinear 
damper over the traditional linear damper. Hoang and Fujino [113] have studied 
different types of nonlinear dampers attached to a stay cable (friction damper, bilinear 
viscous damper, quadratic-linear viscous damper). The equivalent viscous damping 
over one cycle of cable vibration has been estimated on the basis of the absorbed 
energy. An equivalent modal damping ratio has been obtained that depends on the 
damper characteristics and damper motion displacement. Potential design 
advantages over linear dampers (higher modal damping) have been shown. 
However, as in all the analytical investigations mentioned above, this study has 
focused only on horizontal taut string model for the cable.  

Koralalage and Cheng [114] have proposed a novel energy-based damping 
estimation method by introducing the concept of kinetic energy decay ratio. The 
proposed formulation takes into account the finite flexural rigidity and sag extensibility 
of the cable. Its application has no restrictions on the damper location. By introducing 
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the kinetic decay ratio as a key index, the relation between the additional damping 
provided by the external damper and the kinetic energy dissipation rate of the 
damped cable has been derived by the authors. A numerical example has been 
presented in the paper, which has provided results favorable with a few earlier 
studies. However, the case study has been limited to the horizontal cable.  

Weber et al. [115] have investigated the optimal tuning of Coulomb friction 
dampers on cables, where the optimality criterion was maximum additional damping 
in the first vibration mode. The expression for the optimal friction force level of 
Coulomb friction followed from the linear viscous damper via harmonic averaging. 
The authors have concluded that the friction force level had to be adjusted in 
proportion to cable motion amplitude at the damper location. It has been also stated 
that the resulting non sinusoidal cable motion clearly violates the assumption of pure 
harmonic motion and explains why such dampers have to be tuned differently from 
optimal linear viscous dampers.  

Zhou and Sun [116] have studied damping of taut cable by a bilinear viscous 
damper. Being mode and amplitude dependent the bilinear damper has been 
approximated by an equivalent linear viscous damper based on equivalent energy 
dissipation in one cycle of oscillation. The research has shown that the bilinear 
damper has its advantages over linear damper providing higher damping in higher 
modes of vibration. 

Huang and Jones [117] have recently studied the effects of linear elastic 
spring supports for an intermediate damper analyzing two types of dampers: linear 
elastic and friction-threshold. The authors have introduced an effective flexibility 
coefficient in order to investigate the effect of different values of support stiffness on 
the effectiveness of the linear viscous damper. The influence of the linear elastic 
support on a cable-damper system with a friction threshold has also been 
investigated by using the result of the linear viscous damper and the equivalent 
energy method. It has been established that, compared to a perfect support, the 
linear elastic support reduces the effectiveness of the damper. 

Recently, Impollonia et al. [118] have presented the results of their 
investigations on optimal damper design of inclined sagged cables with bending 
stiffness. The dynamic behavior of a cable has been studied by means of a finite 
element model considering sag, bending stiffness and inclination of the cable. In 
particular, the proposed approach has been compared with solutions proposed for 
the taut horizontal cable with bending stiffness. The results obtained have shown 
significant differences with respect to horizontal taut strings with bending stiffness. 
For the case of inclined the phenomenon of the hybrid modes has been noticed. The 
difference in mode shapes frequency values has been found more evident for higher 
modes. The proposed refined model would allow a more precise damper design for 
the case of long stay-cables.  
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Lan et al. [119] have also recently analyzed the effects of stay cable 
properties on damper effectiveness in cable-damper system. The researchers have 
concluded that for a long cable with significant sag, even though damper properties 
and other parameters are properly selected, the attainable model damping ratio in 
the first in-plane vibrational mode is much smaller than for tauter cables due to cable 
frequency avoidance caused by cable sag and inclination (See Section 2.3). The 
authors have also stated there exists a certain cable length for which the maximum 
damping will likely be reduced to zero, which means that dampers cannot provide 
efficient damping.  

Hoffman and Distl [120] have discussed the parameters allowing an efficient 
and economic design of stay cable dampers.  Specific details of the stay cable 
dampers like the stiffness of their support have shown significant influence as 
demonstrated by a real project and parametric studies. In consequence, it has been 
concluded that for longer stay cables external dampers on stiff supports provide the 
highest efficiency. The researchers have outlined that adjustment and optimization of 
passive dampers to more than one mode still present a challenge. In cases of lack of 
damping efficiency, adaptive cable dampers with semi-active control could be 
brought into use.  
 

4.3 Semi-active and active dampers 
 
Several studies have been made in order to analyze the potential for 

improved damping by semi-active or active dampers, which may have a better 
performance over traditional passive viscous dampers. For example, in [121] 
Johnson et al. have investigated damping features of semi-active devices. The 
equations of motion of a cable equipped with such a device have been derived using 
the assumed modes approach and a control-oriented model has been developed. 
The control-oriented model has been shown to be accurate and a comparative study 
of the cable response between passive, active and semi-active dampers has been 
implemented. The response with a semi-active damper has been found dramatically 
reduced compared to the optimal passive linear viscous damper for typical damper 
configurations, which has demonstrated the potential benefits of using a semi-active 
damper for absorbing cable vibratory energy. 

In another research [122], Hui et al. have investigated the vibration mitigation 
of a stay cable equipped with a shape memory alloy (SMA) damper, which dissipates 
energy through its hyperelastic behavior. The solution of the problem has been 
obtained in the closed form and used to determine the additional equivalent modal 
damping ratio provided by the SMA damper. The additional damping ratio depended 
on both the parameters and locations of the SMA damper when the cable vibrated 
with only a single mode. The responses and the additional equivalent modal damping 
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ratios of the cable with a damper attached at different locations have been studied 
under harmonic excitation in plane with single-mode only and with coupled multi-
mode vibration. The results have demonstrated that the SMA damper can suppress 
the vibrations significantly and the control effectiveness is influenced by the SMA 
parameters and locations. 
 
 

4.4 Stockbridge tuned-mass dampers 
 

4.4.1 Application to overhead line conductors 
 

The task of suppression of cable vibrations exists for overhead transmission 
line conductors under vortex-induced or Aeolian vibrations. A common mitigation 
technique to suppress these vibrations is to attach tuned-mass damping devices to 
conductors (See Figure 9). A very common type of such devices is the Stockbridge 
damper. (See Figure 10). The performance of this type of dampers has been 
investigated for decades. In 1969 Claren and Diana [123] have investigated the 
response of stranded conductors under exciting transverse harmonic forces. As a 
part of the study, the dynamical behavior of a taut cable with one or more 
Stockbridge dampers has been investigated.  

 
 
 
 
 

 
Figure 9. Taut cable with one or two dampers 

 
 
 
 
 
 
 
 
 

Figure 10. Stockbridge damper 
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 The various damper parameters (damping constant, natural frequency) on 
the cable response have been analyzed making possible to accurately measure the 
dissipated energy per cycle. Consequently, the Energy Balance Method has been 
widely used in order to investigate the aspects of the dynamic behavior of a 
conductor equipped with this type of damper [124,125].  

In [126] the free vibration of a transmission line conductor equipped with a 
number of Stockbridge dampers has been modeled by a differential equation of 
motion of a tensioned beam acted on by concentrated frequency dependent forces, 
and an exact solution of this model is obtained using integral transformation. The 
authors have obtained the expressions for the mode shapes that could be used to 
predict accurately the overall strains of lines in operation or under design. The 
numerical examples presented have shown that the usual sinusoidal mode shapes 
could be significantly distorted by the dampers to give rise to dangerous strains. A 
numerical analysis of Aeolian vibrations of a conductor equipped with a Stockbridge 
damper has been presented by Vecchiarelli et al. [127]. In the study the numerical 
model has been derived for steady-state mono-frequency vibration of a single 
overhead conductor. The developed model was capable of accounting for the effects 
of conductor flexural rigidity, more than one spatial mode of conductor vibration, 
travelling waves and damper mass. This model was based on empirical data 
pertaining to wind power input, the conductor self-damping and the energy-
dissipation characteristics of the damper.  

Recently, Li et al. [128] have applied finite element analysis to investigate 
vertical, steady-state, mono-frequency aero-vibration of a single transmission 
conductor with a Stockbridge-type damper attached. Wang et al. [129] have modeled 
a transmission line conductor equipped with a number of Stockbridge dampers using 
a differential equation of motion of a tensioned beam acted on by concentrated 
frequency-dependent forces.  

There has been some research performed on optimal design parameters of 
the Stockbridge dampers. Markiewicz [130] has proposed a method and 
computational model for the evaluation of the optimum dynamic characteristics of 
Stockbridge dampers. Richardson [131] has proposed a quantitative prediction of 
damper requirements in terms of energy or power dissipation as a function of either 
frequency or wind speed. In [132] Canales et al. have also proposed an optimal 
design procedure of a Stockbridge damper. Kalombo et al. [133] have mathematically 
modeled a Stockbridge damper in order to establish an approach to predict the 
remaining life of the damper studying a taut cable excited by a transverse harmonic 
force and equipped with a Stockbridge damper. Following [132] the stress on the 
messenger cable under the dynamic response of the damper is expressed as 
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Where aa IdU ,, are the amplitude of the damper excitation, diameter and 

section moment of inertia of a single wire of the messenger cable, respectively. The 
parameters maxA′ and maxB′ depend on the damping coefficient for the messenger 
cable.  

An optimization technique has been formed based on a criterion of the mean 
attenuation or efficiency of the damper. This includes the objective function, which 
should be maximized and which is expressed as 

 
 
 
 

Which is accompanied by inequality constraints related to the mean 
attenuation of the cable at the no damping side, and the endurance stress due to 
fatigue of the messenger cable. The first constraint is defined as 

 
  

 
In order to meet the endurance requirement it is necessary to keep the stresses of a 
wire lower than its endurance. Thus, the second constraint is expressed as 
 

 

Where DV , UV  are the mean attenuation or efficiency corresponding to the 
damping and no damping sides of the cable, respectively; 

iDV , 
iUV are the attenuation 

for the ith vibration mode on the damping and no damping sides of the cable; n  s the 
number of modes of vibration to be considered, σ is the stress due to fatigue, eS is 
the endurance stress of the messenger cable material; N is the safety factor for 
fatigue. 

The attenuation is defined as function of the amplitude of vibration of the cable 
Y  by the following equations: 
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Where, as mention above, the subindex in V and the first subindex in Y are 
related to the damping side ( D ) or no damping side (U ) of the cable, while the 
second subindex in Y refers to the presence ( D ) or absence (O ) of the damper. 
 

4.4.2 Application to inclined guy cables 
 

However, despite all the research on conductors equipped with Stockbridge 
dampers, no studies have been found in literature for Stockbridge dampers 
performance when they are installed on inclined taut cables such as guy wires. Such 
an application of this type of dampers is encountered in practice. For example, the 
largest producer of electricity in Canada, Hydro Quebec, uses Stockbridge dampers 
on guy wires supporting transmission towers. Several studies on this passive 
damping solution have been reported in [134,135,136,137] and have focused on the 
guyed transmission towers used by Hydro Quebec. This technique has been used 
successfully to suppress guy wire vibrations for wires anchored in rock. However, the 
dampers themselves have suffered damage and their behavior is not yet fully 
understood [138,139,140].  

The geometry and boundary conditions of inclined cables used for guyed 
towers differ from those used in cable-stayed bridges and have never been studied 
as extensively. Guyed transmission towers share similarities with guyed 
telecommunication towers, especially for shorter telecommunication masts, in terms 
of overall flexibility and transverse lateral stiffness. A number of studies have been 
performed on the dynamic response of guyed telecommunication towers. The first 
detailed finite element modelling study has been realized by Guevara and McClure 
[141,142] in relation to seismic motion. Subsequently, the study has been continued 
by Amiri [143], Dietrich [144], Faridafshin [145], and more recently by Ghafari Oskoie 
[146,147]. However, all these investigations have dealt with the seismic response of 
the tower to an earthquake and have not examined the effect of cycling loadings in 
cables leading to fatigue phenomena requiring mitigation solutions.  

A recent monograph [148] on communication structures, based on the work 
of members of Working Group 4 (Masts and Towers) of the International Association 
for Shells and Spatial Structures, addresses several aspects of guy response to wind 
effects but does not propose a detailed treatment of guywire fatigue. It essentially 
recommends relying on regular cable inspections to identify cable damage and 
subsequent replacement. It is evident that frequent inspection may not guarantee 
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high reliability of the structure. It is possible for a cable to undergo a rupture without 
exterior signs of damage. Although this approach may be acceptable for 
telecommunication masts, it is not practical for transmission towers that are far more 
numerous and typically located in much less accessible areas. 
 

 
 

4.5 Marine cable structures 
 
Cables are employed in marine structures and undergo similar dynamic 

phenomenon as guyed structures or cable-stayed bridges, although in much different 
frequency ranges.  

Among recent studies on mooring cables, the paper by Zhang et al. [149] can 
be mentioned. The authors have analyzed the dynamic response of mooring systems 
under heave motion at the end of the cable on the sea bed. The effects of sway and 
fluid-drag forces have been considered as well. The results have indicated super-
harmonic (self-excited through coupling) response of the mooring system, which are 
caused by the harmonic motion of the cable upper point. The authors have pointed 
out that this super-harmonic response component has a significant influence of 
fatigue cumulative damage of the cable and should be considered in fatigue analysis.  

Couliard and Langley [150] have reported on the results of an investigation of 
the statics and dynamics of station-keeping systems for floating production platforms 
using taut leg configuration and moored in ultra deep waters. The results have shown 
that lateral motions occur mostly near the top of cables while the lower part is mainly 
subjected to axial deformations. In [151] Gobat and Grosenbaugh have presented an 
empirical model for the cable oscillations induced by vertical motions at the top of a 
catenary mooring. Yu and Tan [152] have proposed an efficient two-dimensional 
finite element model for a mooring cable and seabed interaction employing a hybrid 
beam element to simulate the mooring cable.  

Modarres-Sadeghi et al. [153] have analyzed vortex-induced vibrations of 
long distributed cable structures (risers and mooring cables); this is an inherently 
complicated phenomenon since various combinations of travelling and standing wave 
patterns develop along the cable length due to the riser multi-mode excitations. The 
authors have made a comparison in terms of dynamical behavior (travelling waves 
versus standing waves, amplitudes and frequencies of oscillations) as well as the 
fatigue life calculations using a Van der Pol wake oscillator model. In the classic Van 
der Pol model, the dynamics of the rigid cylinder is described using a linear forced 
oscillator model, in which the external force (external to the rigid cylinder) comes from 
the wake and the wake itself is described by a forced Van der Pol oscillator equation. 
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The external force in the Van der Pol oscillator is related to the cylinder oscillation by 
a coupling term proportional to the cylinder displacement, velocity or acceleration. In 
the mentioned paper, the Van der Pol model extended to a long flexible structure is 
used. The research has demonstrated that the theoretical model can predict fatigue 
damage of the cable fairly well. Although, the study has been dedicated to the 
phenomenon similar to the one taking place in guyed aerial structures, but in a 
different frequency band, this approach may be used to investigate the behavior of 
the guyed masts experiencing Aeolian vibrations. 

Vibration suppression is also critical for marine cables because of the 
adverse effects of fatigue accumulation.  Fatigue life estimation techniques have 
been proposed following cable monitoring. For example, in [154] Makundan at al. 
have used ambient vibration measurements (typically using strain gages and 
accelerometers) in order to understand the evolution of the riser VIV (vortex-induced 
vibrations), with the final aim of estimating the fatigue damage. For this purpose the 
authors have employed systematic techniques to reconstruct riser VIV response 
using the data from the available sensors. The reconstructed riser response allows 
estimation of the dynamic axial stresses due to bending and consequently the 
estimates of the fatigue damage along the entire riser. The above methods can take 
into account the fatigue damage arising from complicated riser motions involving the 
presence of travelling waves even with the use of very few sensors. An alternate 
approach using a Van der Pol wake oscillator model is also explored to obtain fatigue 
life estimates caused by riser VIV.  

The most popular suppression devices used for marine risers are helical 
strakes and fairings. [155,156,157]. The length of the surface treatment may vary. At 
about 40% of the cable length covered with suppression devices, response may 
reach the model without any suppression technique while 70% or greater of the cable 
length covered o is effective at suppressing significant response [155]. Although the 
geometry and excitation frequencies of marine cables differ from the guywires used 
in transmission towers, the methodology in analyzing the vibration phenomenon and, 
especially, technique for fatigue accumulation estimation can be very useful if 
properly adapted to inclined cables used for guyed towers. 

5. Conclusions 
 
The above presented literature review has demonstrated that there is no 

available research on mitigation techniques for vibrations of guyed transmission 
towers, which would consider different excitation mechanisms, different soil 
conditions, precise dynamic behavior of inclined cables. Therefore, such a research 
represents an innovative scientific contribution to the related technical field. As the 
literature has also presented, the Finite Elements Method is a proven and useful tool 
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for the analysis of complex dynamic problems and this will be used in the mentioned 
research. 

The proposed research will be based on the aspects of the presented 
literature review such as guyed mast computational modeling under different types of 
dynamic excitation and mitigation techniques for the guyed structure vibrations and 
their efficiency. 
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