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ABSTRACT

Though inefficient, tumbling mills play an important role in modern mineral

processing. By virtue of the mill’s action, the internal forces make instrumentation

of the mill difficult. One solution to this problem is the use of an instrumented ball.

An instrumented ball, equipped with an accelerometer, rotation rate sensors and a

temperature sensor has been built. The instrumented ball and a camera system are

used to measure the state of the charge within a laboratory mill. Also, a discrete

element model (DEM) of the laboratory mill, a type of simulation, is written. From

the distributions and moments of the energy terms of the charge (the material within

the mill), the simulation and experimental results are analyzed and compared. The

moments are used to tune the DEM, such that the simulation results are in agreement

with the experimental results. A model order, a measure of DEM accuracy, is defined.

Based on concepts borrowed from thermodynamics and statistical mechanics, mill

entropy is calculated. Critical behavior, similar to a phase transition, is observed

in the entropy, mean energy and energy fluctuation. From this, another definition

of the critical speed is introduced. The critical speed of the mill is defined as the

speed about which the entropy, mean energy and energy fluctuations exhibit critical

behavior. Unlike other definitions, which rest on geometric and dynamic analyses of

the charge, this new definition is based on distributions and moments. Finally, areas

requiring more research and development are presented.
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ABRÉGÉ

Bien qu’inefficace, les broyeurs jouent un rôle important dans la minéralurgie

moderne. En vertu de l’action du broyer, les forces internes font en sorte que

l’instrumentation du broyeur est difficile. Une solution à ce problème est l’utilisation

d’un boulet instrumenté. Un boulet instrumenté, ayant un accéléromètre, des cap-

teurs de vitesse de rotation et un capteur de température, est mis au point. Le

boulet instrumenté et un système vidéo sont utilisés pour mesurer l’état de la charge

(le matériel contenu par le broyeur) dans un moulin de laboratoire. Parallèlement,

un modèle d’éléments discrets (DEM) du moulin, une sorte de simulation, est con-

struit. À partir des distributions et des moments, tous dérivés des formes d’énergie

de la charge, la simulation et les résultats expérimentaux sont analysés et comparés.

Les moments sont utilisés pour ajuster la simulation, de sorte que les résultats de la

simulation sont en accord avec les résultats expérimentaux. L’ordre du modèle, une

métrique de précision pour les DEMs, est défini. Basée sur des concepts provenant de

la thermodynamique et la physique statistique, l’entropie de la charge est calculée.

Un comportement semblable à une transition de phase est observé dans l’entropie,

la moyenne de l’énergie et la fluctuation de l’énergie. Sur ces résultats, une nouvelle

définition de la vitesse critique est introduite. La vitesse critique du moulin est définie

comme la vitesse à laquelle l’entropie, la moyenne de l’énergie ou la fluctuation de

l’énergie ont un comportement de phénomène critique. D’autres définitions de la

vitesse critique reposent sur des analyses géométriques et dynamiques de la charge;

v



cette nouvelle définition est basée sur les distributions et les moments. Enfin, des

sujets nécessitant davantage de recherche et de développement sont présentés.
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CHAPTER 1

Introduction

The study of human history does not rest on the discovery of human remains

alone. It is also guided by the study of artifacts, objects manufactured, modified

or shaped by human craft or culture. Since, at the moment of their creation, they

reflect the state of technology and human thought, these artifacts, such as tools,

documents, weapons, implements, utensils, buildings, and ornaments, complete the

historical narrative, filling in what human remains cannot. The Antikythera Mecha-

nism is an example of an important artifact (Figure 1–1). The Antikythera Mecha-

nism, the world’s oldest known geared mechanism, was a sophisticated and intricate

bronze astronomical clock and calendar—a portable mechanical planetarium, and

possibly, the first analog computer [Wri07]. The mechanism seems to have been

able to calculate and display celestial information such as the phases of the moon,

predict lunar and solar eclipses, and display planetary positions. The Mechanism is

thought to date from between 150 and 100 BCE [FBM+06, Mor84]. Though con-

structed thousands of years ago, the device demonstrates sophisticated knowledge

of the heavens. Yet, without the proper tools and materials, the construction of

such a device would have been very difficult, if not impossible. The materials and

methods used by humankind, such as in the creation of artifacts, are not static—they

have changed over time, closely following the evolution and advancement of human

thought. Such is the importance of the materials that the major periods of human
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(a) A fragment of the An-
tikythera Mechanism [FBM+06]

(b) A radiograph of the An-
tikythera Mechanism [Mor84]

Figure 1–1: The Antikythera Mechanism

history are divided by the use of various minerals and metals [Gre01, Kap90, KH74]

(Table 1–1).

Regardless of the age, metals and minerals play an important role. As the

technology improves, a greater variety and a better quality of metals and minerals

are available. In turn, better tools are manufactured. Since tools are often necessary

to the acquisition of knowledge, better tools lead to a greater understanding of the

Table 1–1: The ages of human history

Historical Age Historical Period1

Paleolithic Age 400000 to 10000 BCE
Neolithic Age 10000 to 8000 BCE
Copper Age 8000 to 3500 BCE
Bronze Age 3500 to 1400 BCE
Iron Age 1400 BCE to 1600 CE
Coal Age 1600 to 1850 CE
Petroleum Age 1850 to 1950 CE
Uranium Age 1950 to 2000 CE
Carbon Age 2000 to ? CE
1The dates are approximations.
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natural world. With the greater understanding comes improved technology. So the

cycle continues [Kap90]. Mining and mineral processing are the main methods used

to obtain the metals and minerals. As was the case in the past [Gre01], most modern

minerals and metals are obtained in this fashion [Tec08, Bam00].

1.1 Mineral Processing

The general steps necessary to extract and concentrate minerals are shown in

Figure 1–2 [Wil97, FH03, GY06]. There are three fundamental steps to this process:

mining, liberation and concentration [Wil97]. Mining is the set of processes asso-

ciated with the extraction of ores from the earth [Har92], liberation is the release

of the mineral from the gangue, the worthless part of the ore. Of interest here, the

liberation is accomplished by crushing and grinding. Collectively, these crushing and

grinding processes are called comminution. Finally, concentration separates the min-

eral from the gangue, and valuable minerals from each other [Wil97, VW91]. The

valuable mineral is processed and refined, whereas the gangue, which possesses a low

economic value, is considered waste and must be disposed of.

Since the capital and operating costs of mineral processing are high, the process-

ing choices are always driven by economic concerns. Consequently, mineral processors

constantly strive to increase the economic value of the ore [Wil97], by seeking the

most efficient processing circuit for each particular site, by selecting the most efficient

machinery, and by adopting the most efficient methodology.
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Mining

Crushing

Grinding

Separation

Processing
and Refining

Waste
Disposal

Figure 1–2: Mineral processing [FH03]

1.2 Comminution

Comminution is the process by which the application of a large stress causes

a body to break into smaller bodies. It encompasses both crushing and grinding,

and has the objective of physically freeing the valuable mineral from the gangue, the

worthless part of the ore (Figure 1–3), at the coarsest possible particle size, while

preserving the maximal recovery of materials during separation, processing and refin-

ing. The advantages of comminuting the ore to the optimal particle size are twofold.

Firstly, less energy is used, since no energy is wasted in overgrinding. As shown in
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Table 1–2: Classification of comminution products by size [Pra87]

Stage of Product size Specific energy
reduction Typical machine 80% passing (µm) (kWh/tonne)
Primary crushing Compression or 106 − 105 0.1− 2

impact crusher
Secondary crushing Compression or 105 − 104 0.1− 2

impact crusher
Coarse grinding Rod mill 104 − 103 2− 4
Fine grinding Ball or vertical 103 − 102 5− 20

spindle mill
Very fine grinding Tube mill 102 − 10 20− 100
Super-fine grinding Attrition or 10− 1 100− 1000

fluid energy mill

Table 1–2, the smaller the desired ore particles, the greater the energy required. Sec-

ondly, subsequent separation stages are easier and cheaper to operate since particles

have been reduced to a size appropriate for separation [Wil97].

Ore

Gangue

Valuable Mineral

Crushing and Grinding

Figure 1–3: Comminution

1.2.1 Comminution Processes in Industry

A report of Canadian mining operations lists the operational configuration of a

number of mineral concentrating plants [Bam00]. A selection of itemized operational

power consumption values reveals the importance of comminution, and grinding in
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particular, in mineral processing (Table 1–5). In the selected cases, 47 percent to 81

percent of the power is dedicated to comminution processes. A large percentage of

this comminution power (67 percent to 90 percent) is used to grind the ore.

Furthermore, the annual milling tonnage of a Canadian mining and metals com-

pany underlines the scale of the operations (Table 1–4). Massive amounts of material

are processed, requiring large amounts of power. The consumption of large amounts

of energy is not limited to Canadian mineral processing plants. The scale of inter-

national operations is apparent in Table 1–3.

Table 1–3: Comminution energy consumption [Tro08]

Annual Energy Consumption (2001)
Country Total, ET (PJ) Comminution (% of ET )
USA 101.161× 103 0.39
Canada 7.89× 103 1.86
Australia 5.155× 103 1.48
South Africa 5.159× 103 1.80

1.2.2 Comminution Efficiency

Since comminution processes are resource intensive (Table 1–3), increasing their

efficiency drives the research, design and operation of modern comminution processes.

Nearly half of the operating costs of a mineral processing plant are associated with

comminution processes [Wil97, RDD06, Che07], and they often represent more than

Table 1–4: Teck Cominco annual milled tonnage (000’s tonnes/yr) [Tec08]

Site 2007 2006 2005
Highland Valley Copper 42 593 45 356 50 666
Antamina 31 174 30 256 30 344
Duck Pond 205 - -
Red Dog 3 381 3 238 3 087
Pogo 649 - -
Williams and David Bell 3 036 3 355 3 503
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Table 1–5: Energy consumption (kWh/t) of mineral processing operations (1997)
[Bam00]

Mount Polley Mine, Imperial Metals Corporation
Crushing, conveying and screening 3.13
Grinding 19.61

Flotation 1.60
Thickening, dewatering, and drying 0.19
Pumping 0.58
Reclaim pumping 1.16
Compressors and blowers 1.60
Total 27.87

Troilus Project, Inmet Mining Corporation
Crushing, conveying and screening 2.0
Grinding 18.0

Miscellaneous mill 6.0
Miscellaneous 6.0
Total 32.0

Timmins Operations, Kinross Gold Corporation
Crushing, conveying and screening 7.6
Grinding, classification 15.1

Thickening, dewatering and drying 18.9
Lighting 3.7
Tailings 1.3
Fresh Water Pumps 1.3
Total 47.9

Gibraltar Mine, Boliden Westmin Limited
Crushing, conveying and screening 1.865
Grinding 7.015

Flotation 1.127
Tailings 0.687
Mill building—general 0.940
Moly circuit 0.191
Fresh water pumps 1.089
Miscellaneous 3.436
Total 16.350
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half of the capital costs [Wil97]. Moreover, comminution is inefficient. The average

energy efficiency of comminution machinery is either less than 10 percent [SKSM05],

less than 5 percent [Wil97], or may be as low as 1 percent [FA02]. Even if the 10

percent efficiency is assumed accurate, the individual efficiency of most comminution

machines is low, a shown in Table 1–6.

Table 1–6: The energy efficiency of size-reduction machinery [SKSM05]

Equipment Class Efficiency (Ecomminution/Ein)
Jaw and roll crushers 0.7–0.9
Impact crushers 0.3–0.4
Roller-ring mills 0.007–0.15
Ball mills 0.05–0.1
Impact mills 0.1

Since energy consumption when milling may represent 85 percent of the total

consumption of an open pit operation and 40 percent for an underground operation

[RC04], and with the rising costs of energy, mineral processing companies have un-

dertaken the work necessary to increase the energy efficiency of their facilities. Part

of the research in this area has focused on the improvement of the performance and

efficiency of their processes and technology [Tec08]. Due to the scale of the problem,

as shown in Tables 1–4 and 1–5, research on grinding is an active area, with the goals

of increasing the efficiency of grinding processes, understanding and characterizing

the dynamics of grinding machinery [CR04].

1.3 Comminution Machines

There exists a number of comminution machines used in industry. Typically,

they are defined by the nature of their action, a characteristic is strongly related to
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Table 1–7: The annual consumption of products requiring grinding in their processing
[LR05]

Product 1900 1930 1960 1990 2000
Gold (tons) 448 746 1049 2133 2576
Copper (millions of tons) 0.50 1.06 4.10 9.00 14.56
Coal (millions of tons) 780 1100 2000 3500 5300
Cement (millions of tons) NA* 200 500 1000 1700
Wheat (millions of tons) NA* 145 220 592 594
Phosphate, US (millions of tons) 1.52 4.02 17.80 46.3 38.6
* NA = not available

the size of the ore they process, as suggested in Table 1–2. Generally, comminution

machines are group within the following two families, crushers and grinders [Pra87]:

1.3.1 Crushing

Crushers are used during the early stages of mineral processing. In industry,

this type of device is applied to ores large that 104µm (Table 1–2), and reduces the

size of the ore by impact and compression. This class of comminution device includes

compression rollers, jaw crushers, hammer mills, gyratory and cone crushers.

1.3.2 Grinding

Generally, grinding mills comprise the last stages of the comminution process. At

this point in the processing, the ore prepared by the crushing stage is further reduced

by the grinding circuit (Table 1–2). Here, the principal reasons for grinding are a) to

liberate the important material from the unrequired constituents of a mixture, in

preparation for the separation of the ore; b) to expose a large surface area per unit

mass of a material in order to promote reactivity; and c) to reduce the material to

the desired form [RS58]. As listed in Table 1–7, many materials require grinding

in their processing. An extrapolation of these data suggests that the tonnage of

materials requiring grinding is expected to increase in the near future. The grinding
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circuit is composed of a several types of machinery, such as grinding rolls, stirred

mills, hammer mills, vertical mills, and tumbling mills [Wil97]. The tumbling mill is

one of the most used in industry, as illustrated by Figures 1–4 and 1–5.

1960 1970 1980 1990 2000
0

10

20

30

40

50

60

70

Year

N
u

m
b

e
r 

o
f 
M

ill
s 

S
o

ld
 p

e
r 

Y
e

a
r

Figure 1–4: Annual number of SAG and AG mills sold [Jon06]

1.3.3 Tumbling Mills

The tumbling mill (Figure 1–6) is a rotating cylindrical shell filled with a charge,

a heterogeneous mixture of ore—or whatever material is to be reduced in size—and,

in many cases, water. The charge enters the mill at the feed end and exits at the

discharge. Due to the rotation, the charge is lifted towards the shoulder, the point at

which the charge material separates from the mill shell (Figure 1–7) [PM04]. From

the shoulder, the charge drops towards the toe, the zone of intersection where the

tumbling charge impacts the material below. As the charge transits from the toe,

back to the shoulder, it is subject to grinding forces. Throughout the cycle, the
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Figure 1–5: Annual installed SAG and AG mill capacity [Jon06]

charge is subject to both impact and grinding forces. The forces also affect the mill.

To protect the shell from the comminutive action of the charge, a set of sacrificial

plates are fixed to its inner surface. With some modification, liners can have a second

purpose: to promote the circulation of the charge, thereby enhancing the action of

the comminution processes upon the ore. These modified liners are called lifters.

Examples of lifter geometries are illustrated in Figures 1–8 and 1–9.

Several types of tumbling mills exist. Rod mills are characterized by their use of

long rods as the grinding media, whereas ball mills, unsurprisingly, use balls as their

grinding media. Autogenous mills (AG mills) substitutes the ore for the grinding

media, relying only on ore-ore interactions for the size reduction. To some degree,

Semi-autogenous mills (SAG mills) operate in the same manner as autogenous mills.
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Drive GearLining
Grate

Discharge

Feed

Charge

Shell

Figure 1–6: A tumbling mill [The08]

The difference lies with the addition of a small quantity of grinding media in semi-

autogenous mills.

Mills can be operated either in a batch mode or a continuous mode. In a batch

mode, a fixed quantity of charge is milled and subsequently discharged, When filling

or discharging, the mill must be stopped. In continuous mode, the charge is added

to the mill at the feed, is milled and exits at the discharge, without halting the

operation of the mill.

1.3.4 Charge Motion

The modern grinding mill took form in the late 19th century. The ball mill was

invented in Germany by Brückner in 1876 [Hab06]. With over a century of usage

in industry [LR05], the theory of operation of the tumbling mill is well understood.

The behavior of the charge defines a number of specific zones, where particular

phenomena dominate [Rad99, RV84, YYMB08]. In a typical charge motion profile,

the charge acts as follows: i) in the flight zone, the charge particles follow a parabolic
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Figure 1–7: A typical tumbling mill charge motion

flight, under the influence of gravity; ii) in the impact zone, the falling particles re-

enter the charge body, crushing the rock particles below at relatively high energy;

iii) in the grinding zone, the charge layers slide over each other, grinding any trapped

material; and, iv) in the tumbling zone, the charge rolls over itself, generating low

energy breakage events. Also, a set of characteristic features (Figure 1–7), as defined

by Powell and McBride, are useful for describing the behavior and characteristics of

the charge in tumbling mills [PM04].

1. Shoulder: The uppermost point at which the charge material leaves the mill
shell and enters the flight zone.
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Figure 1–8: Examples of mill lifter profiles. From left to right: smooth lifters,
differential wave lifters, wave lifters, and step lifters [Wil97].

Figure 1–9: Examples of mill installed lifter profiles: smooth lifters (left), rectangular
lifters (center), and hi/low lifters (right) [Rad97, Wil97]

2. Head: The highest point of charge trajectory.

3. Bulk Toe: The point of intersection of tumbling charge motion with mill shell.
When the tumbling zone is extended towards the bottom of the charge, the
point at which it intersects with the shell is the bulk toe.

4. Impact Toe: The highest point at which cataracting (flight zone) material
strikes the mill shell

5. Angle of Repose: Cascade angle of the charge. It is equivalent to the angular
position of the centre of circulation (Figure 1–7, angle θ).

6. Centre of Circulation (CoC): Axis about which all charge in the mill circulates.

Tumbling mill behavior depends on a large number of parameters: the rotational

speed of the mill, the hardness of the ore, the filling of the mill, the length of the

mill, the diameter of the mill, the solids to liquids ratio, etc [RS58]. Simply changing

the speed of the mill results in very different charge dynamics, as is illustrated in

14



Figure 1–10. At low speeds, no flight of the charge is observed. At an intermediate

speed, flight of the charge is present, with impacts playing a role in how the charge

behaves. Finally, at high speeds, the charge undergoes centrifugal locking, and is,

from the point of view of the mineral processor, a useless configuration.
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Figure 1–10: The charge motion as the speed of the mill increases [YYMB08].

1.3.5 The Charge Filling of a Mill

The quantity of material within the mill greatly affects the dynamics of the

charge. This effect is best illustrated by the behavior of the charge at the two

fill extremes. At very low fill levels, the charge will dwell at the bottom of the

mill, experiencing small impact and grinding forces. If the mill is filled to capacity,

preventing any addition of material, the behavior of the charge is different. Here,

only small, local motion of the charge is possible; all other motion is inhibited by

the tight-packing constraint. This effectively locks the charge in place, allowing it to
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essentially rotate with the mill. At this fill level, the charge acts like a rigid body.

Typically, the mill is not operated under these two conditions. An intermediate level

of fill is often selected such that impact and grinding effects are present, and manifest

themselves through the presence of impact, tumbling, grinding and falling zones.

The level of fill of the charge, or the fractional fill, J is defined as

J =
Vcharge

Vmill

(1.1)

the ratio of the charge volume, Vcharge, including voids, to the mill volume, Vmill. In

Table 1–8, the relationship between the fill, J, and a number of geometric measure-

ments of the charge, as defined in Figure 1–11, are given.

a

b

c

R

d

Figure 1–11: The charge filling of the mill [RS58].

1.3.6 The Critical Speed of a Mill

The critical speed is a characteristic speed associated with the mill. Several

definitions of the critical speed exist. Rose and Sullivan [RS58] give the critical

16



Table 1–8: The mill filling parameters [RS58]

δ◦ J C/R a/R b/R

0 0.000 0.000 1.000 0.000
15 0.003 0.259 0.966 0.034
30 0.028 0.500 0.866 0.134
45 0.090 0.707 0.707 0.297
60 0.194 0.886 0.500 0.500
75 0.335 0.966 0.259 0.741
90 0.500 1.000 0.000 1.000
105 0.665 0.996 -0.259 1.259
120 0.804 0.866 -0.500 1.500
135 0.910 0.707 -0.707 1.707
150 0.972 0.500 -0.866 1.866
165 0.997 0.259 -0.966 1.966
180 1.000 0.000 -1.000 2.000

speed as the rotation rate of the mill at which an element of the charge, with a size

r, remains in contact with the mill shell, with a radius R. In this case, the centripetal

and gravitational accelerations balance at the highest point of the trajectory (Figure

1–12). The critical speed is

Nc,Rose =

√

g

R − r
(1.2)

Watanabe defines the critical speed as rotation rate at which all the elements in the

charge are stationary [Wat99].

Nc,Watanabe =

√

g

R sinΘc

√
1− α

(1.3)

where Θc is the angle of repose of the charge, g is the gravitational acceleration, α

is the volumetric fill fraction and R is the radius of the mill (Figure 1–13). From the
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Figure 1–12: The critical speed of a mill

definitions, it is observed that

Nc,Watanabe

Nc,Rose

≥ 1 (1.4)

A third definition balances the frictional forces with the gravitational forces

[Rad86].

Nc,Hooke =

√

g

µ(R− r)
(1.5)

where µ is the friction coefficient of the charge/shell interface (Figure 1–14).

Finally, a definition of the critical speed, which is independent of the charge

properties, is given by the following expression [Dav19],

Nc,Davis = lim
r→0

Nc,Rose =

√

g

R
(1.6)
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Figure 1–13: The Watanabe critical speed of a mill

Nc,Davis represents the minimum possible critical speed, as defined by Rose, for any

arbitrary charge, independent of particle size r. This definition of the critical speed

is adopted here.

For tumbling mills, the rotation rate of the mill is not expressed as the rotation

rate of the mill, ωmill, but as as a percentage of the critical speed,

Nmill =
ωmill

Nc

× 100 (1.7)

1.3.7 The Effect of Mill Parameters on Mill Performance

As stated in previous sections, many parameters have an effect on the dynamics

of the charge. For example, a modification of the lifter angle give rise to changes

in the particle trajectories (Figure 1–15). A change of the spacing-to-height ratio of

the lifters produces changes in the power draw, as illustrated in Figure 1–16. The
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Figure 1–14: The Hooke critical speed of a mill

complex relationship between the parameters and the charge dynamics has long been

the focus of grinding mill studies.

80
75

70 65% c.s. 80 75 70
65% c.s.

Lifter Angle 0.0 Lifter Angle 30.0

Figure 1–15: The effect of lifter angle on the single particle trajectory [McI83].

1.3.8 Power Draw

The power draw of the mill is controlled by the configuration of the charge

and the internal dynamics[RS58]. The power required to drive a mill is expected to
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Figure 1–16: The effect of liners on the mill[HV86].

depend on the length of the mill, L, the diameter of the mill, D, the diameter of the

balls, d, the density of the balls, ς, the fractional ball filling of the mill (the fraction

of the total volume occupied by the charge, including voids), J , the rotation speed

of the mill, N , the acceleration due to gravity, g, and the coefficient of restitution

of the ball and mill materials, e. Furthermore, the mill power can be a function of

the characteristic diameter of the particles, b, the energy required to produce a unit

increase in the specific area of the ore, E, the fraction of the total volume occupied

21



by the powder including voids, V , the effective kinematic viscosity of the powder and

fluid mixture within the mill, ν, the density of the mixture, ρ, and, in the case of

wet milling, the ratio, by volume for the solids with respect to the liquid in the pulp,

U . Finally, if lifters are used to promote the charge motion, the number of lifters, n,

and the lifter height, h, play a role in the power draw [RS58].

P = φ(L,D, d, ς, J, N, g, f, e, b, E, V, ν, σ, U, h, n) (1.8)

Using dimensional analysis, Rose and Sullivan express the power as a function of

dimensionless groups [RS58].

(

P
D5N3ς

)

= φ
{(

h
D

)

,
(

L
D

)

,
(

d
D

)

,
(

g
DN2

)

,
(

b
D

)

,
(

E
D3N2ς

)

,
(

ν
D2N

)

,
(

σ
ς

)

, (J), (f), (e), (V ), (U), (n)
}

(1.9)

Rose and Sullivan further reduce the power to the following expression:

(

P
D5N3ς

)

=
(

1 + 0.4σ
ς

)

·
(

L
D

)

· φ1

(

Nc

N

)

· φ3(J)

×φ4

(

d
D

)

· φ5(n) · φ6

(

h
D

)

· φ9

(

b
D

)

· φ11(V )
(1.10)

where φ1, φ3, φ4, φ5, φ6, φ9 and φ11 are functions of a single dimensionless parameter

that affects the power of the mill. The calculated mill power, as given by Equation

1.10, agrees with the observed power (Figure 1–17). Other methods of estimating

the power involve the analysis of the ball charge dynamics, circumferential mass flow

rates, and empirical results (Equation 1.11) [RBL+05, GY06].

P = 3.627 ρLD2.5f(J)

P = 3.627 ρNmillLD
2.5 sin3 θ

P = 12.262 ρLD2.3J(1− 0.937J)
(

1− 0.1
29−10Nc

)

(1.11)
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Figure 1–17: Estimating the mill power draw [RS58]

where ρ is the solid volume fraction in slurry, Nmill is the mill speed expressed as

a fraction of the critical speed, Nc, L is the length of the mill, D is the diameter of

the mill, θ is the toe angle of the mill, and J is the fractional filling of the mill.

A final method of calculating the mill power uses a torque-arm method, as

illustrated in Figure 1–18. An applied torque is necessary to support the charge,
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Figure 1–18: The torque arm model for estimating the mill power draw

with a center of gravity offset from the rest position [RBL+05, DM03, GY06].

T = Mg RCOG sin(α) (1.12)

where M is the mass of the charge, RCOG is the distance from the center of the mill

to the center of gravity of the charge, g is the gravitational acceleration, and α is the

angular offset of the charge, with respect to the rest position. The power required

to maintain the applied torque is [GY06]:

P = Tωmill = Mg RCOG sin(α)
Nmill

100
Nc (1.13)

where Nc is the critical speed of the mill and Nmill is defined by Equation 1.7.

The torque-arm method does have some shortcomings. For instance, cascading,

cataracting and frictional components have a complex relationship with the applied

torque [FKV90]. The specific power required to maintain the charge in its position
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is

pM =
P

M
= g RCOG sin(α)

Nmill

100
Nc (1.14)

The calculation of the power draw illustrates several points. Firstly, the mill perfor-

mance is very complex and difficult to analyze. Often, simplifications are necessary,

with empirical values playing an important role. Finally, the ease of calculation of the

power, as defined by Equation 1.14, is an advantage, as long as the loss in accuracy

is acceptable. This expression of the power is rewritten as,

pM = g X̄COG
Nmill

100
Nc (1.15)

where X̄COG = RCOG sin(α) is the horizontal distance of the center of gravity of

the charge from the rotation axis of the mill.

1.3.9 Instrumentation

Due to the complex nature of mill dynamics, measurement and characterization

stand as preferred avenues to improving the understanding of what occurs within the

mill [CR04]. To this aim, several instruments have been developed, such as micro-

phone systems, thermocouples, load cells, and strain gauges [CR04]. Due to the harsh

internal environment and some technical difficulties, few instruments have been de-

signed to operate within the charge, or to measure bulk charge properties. This class

of instrument must be able to either peer into the charge or move with the charge.

Peering into the charge is difficult, but high energy particles and X-rays provide a

solution, as pictured in Figure 1–19 [GPN01, CBBW+02, BGC+09, MGPC04]. Until

the scalability of the instrument is demonstrated, a solution, applicable to small mills

and pilot mills, is the construction of an instrumented ball, which is an electronics
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Figure 1–19: An X-ray measurement system. The person preparing the experiment
(left) provides a scale of the image.

package protected by a rigid shell, thereby permitting its addition to the charge.

By adding the instruments to the charge, the expectation is that the measurements

will be representative of the dynamics since the instrument is subject to the same

environment as the rest of the charge [CR04].

Not all instruments have a physical embodiment. Due to their many contribu-

tions to the understanding of mill dynamics, simulations of the charge motion are con-

sidered to be indirect instruments [CR04, CMM03, Cle04, Cle01a, Cle98, ZZRA08,

Ach00, RM98, TR90, RBL+05, MC99, MR92, VR01, Mis03, RMVD00, MR94a].

When properly calibrated, a simulation can infer quantities that can be determined

through measurement, and others that cannot be measured.

In the next chapter, the past instrumented balls are discussed and a general

description of the discrete element method (DEM) simulations is given.
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1.4 Research Goal

Though the history of mineral processing spans thousands of years, it remains

one of humanity’s cornerstone technologies. Without it, obtaining a number of the

many modern materials would be difficult. A fundamental part of mineral processing

is comminution, a collection of processes where a material is broken down though

crushing and grinding, in preparation for the concentration of the minerals. This

work is accomplished with the aid of a number of specialized machines such as grind-

ing mills. Grinding mills operate by lifting the charge and dropping it back onto

itself, by virtue of the rotation of the mill, thus creating impact and grinding forces.

Such a system forms a rotating granular flow, with complex properties and behaviors,

making predicting important quantities, like the power draw, difficult. Furthermore,

the details of the internal dynamics of the charge are not well understood. The lack of

instruments capable of operating within or peering into the charge is a factor limiting

the understanding. With the ability to operate within the charge, instrumented balls

are a class of instrumentation showing some promise. In conjunction with virtual

instrumentation, the DEM simulations, the expectation is that the understanding of

mill behavior will improve, benefiting mineral processors, through an improvement

in efficiency of grinding mills.

Therefore, the goal is to develop a better understanding of tumbling mill dy-

namics through the development, use and validation of an instrumented sensor ball.

First, this development is framed by the literature review of past instrumented ball

27



technologies. Current simulation methods are presented, as they offer another inde-

pendent means of determining a wide set of states, comparable to what the instru-

mentation produces. This is followed by the description of the instrument and the

methodology used to analyze the results. The results of the measurements are pre-

sented and, in certain cases, are set in parallel with the simulation results. Finally,

an outline of the potential applications of the instrumented ball technology and its

associated methodology is given.
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CHAPTER 2

Literature Review and Objectives

2.1 Introduction

The search for understanding is based on the recursive, iterated and interlaced

processes where one observes, proposes, tests, and predicts aspects of a system. For

tumbling mills, a major weakness in understanding the system is the lack of instru-

mentation capable of operating within the charge—the observations are limited. A

number of novel systems exist, with the purpose of observing aspects of the internal

state of the charge. Example systems make use of X-rays [MGPC04] and positron

emissions [BGC+09]. Unfortunately, the scalability of these devices is has not yet

been demonstrated. Until it is possible to apply these techniques to a large mill, the

best tools for the task remain the instrumented ball and, indirectly, DEMs. First,

the objectives of this study are presented. In this work, the objectives are:

1. To show that an instrumented ball can be designed and built, with improved

electronics;

2. To show that it is possible to obtain measurements from the mill interior,

particularly measurements that are not impact forces;

3. To show that these measurements allow for a different type of analysis of the

mill;

4. To show that the data are comparable to DEM simulation results;

5. To show that the data are helpful with regards to DEMs, as follows.
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(a) The instrument measurements can be used to verify that the DEM results

accurately represent the system;

(b) The instrument measurements can be used to tune the DEM simulations,

enhancing their accuracy; and

(c) The instrument measurements can be used to identify aspects of the DEMs

in need of improvement.

As background to the work, the descriptions of the instrumented balls of (i) Dunn

and Martin, (ii) Rolf and Vongluekiet, (iiI) Gao and Thelen, and (iv) Rajamani,

Delgadillo and Duriseti are presented. Since the DEMs, considered to be indirect

instruments, are important tools in the understanding of tumbling mill dynamics, a

brief description of the modeling is given.

2.2 The Dunn and Martin Instrumented Ball

Tumbling mills are designed to direct the comminution processes towards the

charge—impacts must fracture the charge; abrasion must grind it down. Impacts due

to falling grinding balls, rods or pebbles play an important role in the fine grinding

of the ore. As this occurs within the mill, both the charge and the liner are subject

to impact and abrasion.

In 1978, Dunn and Martin [DM78] designed an instrumented ball (Figure 2–

1) to measure the impact forces in tumbling mills so that they may, in turn, be

used to determine the stresses within the liners. Since the work was undertaken at

the Climax Molybdenum Company, a producer of alloy steels used for components

in mining equipment, the objective was to the correlate the liner stresses with the

service performance of mill liner alloys.

30



Figure 2–1: A photograph of the Dunn and Martin instrumented ball [DM78]

The Dunn and Martin instrumented ball (Figure 2–2) consists of two bored

hemispheres. A pipe nipple fastens the two threaded hemispheres together. The

cavity within the hemisphere can house six Protect-A-Pack accelerometers (Figure 2–

3). A set of spring loaded steel balls constitute the heart of the accelerometer. When

subject to an acceleration greater than the instrument rating, the accelerometer balls

become dislodged, indicating that the rated acceleration had been exceeded [Rag07].

At the time of the study, the Protect-A-Pack accelerometers were available in ratings

of 10 g to 500 g, in 10 g increments.

When placed within a mill, the Dunn and Martin instrumented ball experiences

comminution forces, as does the rest of the charge. These forces will accelerate the

instrumented ball. By direct observation of the accelerometers, it can be determined
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Accelerometers - 3 Per Half

Figure 2–2: The Dunn and Martin instrumented ball [DM78]

if the instrumented ball is subject to accelerations greater than the Protect-A-Pack

rating. By changing the rated Protect-A-Pack accelerometers, the maximum accel-

eration a, and consequently the maximum force P , applied on the instrumented ball,

can be found, given the mass of the ball m.

P = ma (2.1)

The forces applied to the instrumented ball are also interaction forces the it applies

to either the rest of the charge or the mill liners. Therefore, the instrumented ball

provides an estimate of the impact forces on mill liners due to grinding balls.

Hertzian theory develops expressions for compressive stress in the plane of con-

tact between elastic materials. For the maximum compressive surface stresses in

spheres and plates, the expressions are [DM78]:

σsphere,plate = 0.616

(

FE2

D2

)1/3

(2.2)
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Figure 2–3: The Protect-A-Pack accelerometer [Rag07]

σsphere,sphere = 0.616

(

FE2 D1 +D2

D1D2

)1/3

(2.3)

where F is the impact force on the body, E is the modulus of elasticity, and D, D1

and D2 are the diameters of spheres. In this analysis, the modulus of elasticity and

Poisson’s ratio is the same for all bodies.

Prior to in-service tests, drop weight tests are used to determine the expected

range of acceleration. The instrumented ball is dropped from a number of heights

onto either bare liner steel or liner steel with a layer of sized ore. From these tests,

a linear plot of the deceleration as a function of impact velocity is found (Figure

2–4). During in-service tests, the instrumented ball was used to measure the impact

forces for three different mill types. Using the Hertzian expressions, the maximum

calculated compressive stresses generated by ball-liner impacts are summarized in

Table 2–1.

The results confirm the qualitative observations of the mill operators. The

operation of the mill with ore does not generate impact stresses greater than the
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Figure 2–4: The grinding ball impact rate [DM78]

yield stress of the liner. Without the ore, the compressive stresses generated by

ball-liner impacts equal or exceed the yield strength of iron and steel, damaging the

liner and shortening its operational life. Consequently, Dunn and Martin suggest

avoiding situations where the mill is operated without ore, such as intentional grind-

outs, which clear the mill of product buildup. Additionally, the large mill results

(Table 2–1, 8.53 m mill results) underline that the greater the mass of the grinding

ball, the greater the Hertzian stresses on the liner. Therefore, Dunn and Martin

stress the benefits of the use of grinding balls with the minimum mass necessary for

the processing of the ore.

Dunn and Martin conclude that such testing on operating mills could identify

situations detrimental to the operational life of the machine.
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Table 2–1: Grinding ball impact force and stress [DM78]

Mill Diameter (m) 2.74 3.96 8.53
Mill Speed (rpm) 20 14.5 10.2
Mill Speed (percent critical speed) 78 66 69
Total Ball Drop (m) 2.03 2.28 6.39
Impact Velocity (m/s) 6.55 6.79 11.39
Ball Diameter (mm) 76 76 101, 127
Ball Weight (kg) 1.8 1.8 4.3, 8.4
Estimated Impact Deceleration (g)

with ore 350 380 650
no ore 760 820 1 300

Estimated Impact Force (N)
with ore 6 230 6 760 27 500, 53 700
no ore 13 500 14 600 54 900, 108 000

Hertzian Imapact Stress (MPa)
with ore 2 200 2 270 2 980, 3 210
no ore 2 850 2 920 3 760, 4 050

2.2.1 The Austin Reanalysis

A reanalysis of the Dunn and Martin results by Austin [Aus01] questions the

initial findings. According to Austin, Hertzian theory gives the following decrease

in distance between a sphere of radius, R1, impacting a surface with a radius of

curvature R2:

z =
r2

R
(2.4)

where

1

R
=

1

R1

+
1

R2

(2.5)

and the radius of the contact circle r is

r =

[

3

4
FR

(

1− ν2
1

E1

+
1− ν2

2

E2

)]1/3

(2.6)

where F is the compressive impact force, νi is the Poisson ratio of the ith body, Ei

is the young’s modulus of the ith body. To simplify the equations, the constant K
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is defined as,

K =
3

4
R

(

1− ν2
1

E1
+

1− ν2
2

E2

)

(2.7)

From Equations 2.4, 2.6 and 2.7, the expression for the compressive impact force

becomes

F = z3/2
R3/2

K
(2.8)

The energy absorbed as reversible strain energy, J , is

J =

∫ z

0

F dz =
2

5

R3/2

K
z5/2 (2.9)

When the sphere impacts the surface, the strain energy comes from the decrease in

the kinetic energy of the sphere. The maximal loss in kinetic energy gives the largest

strain energy, which in turn, generates the largest force. The strain energy, J , as a

function of the kinetic energy loss, is

J =
1

2
MV 2 − 1

2
Mv2 (2.10)

where M is the mass of the sphere, V is the initial velocity of the sphere, and v is

the final velocity of the sphere. The maximal strain energy occurs when v = 0,

Jmax =
1

2
MV 2 (2.11)

With Equations 2.9 and 2.11, the maximum compression, zmax, is

zmax =

(

M

2C

)2/5

V 4/5 (2.12)
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and the maximum compressive force, Fmax, is

Fmax =
(Rzmax)

3/2

K
(2.13)

where the constant, C, is defined as

C =

(

2

5K

)

R3/2 (2.14)

The maximum deceleration, amax occurs at zmax,

amax =
Fmax

M
=

(

R3/2

KM2/5

)(

1

2C

)3/5

V 6/5 (2.15)

With the above modifications, Austin observes that the plot of the deceleration

as a function of impact velocity (Figure 2–4) may not be linear. Instead, as given

by Equations 2.13 and 2.15, the maximum force is function of V 6/5 (Figure 2–5).

Furthermore, the linear functions used by Dunn and Martin (Figure 2–4) do not

pass through the origin, which is unphysical. Using Equations 2.13 and 2.15, Austin

recalculates the results presented by Dunn and Martin. The new results are presented

in Table 2–2 (cf. Table 2–1). Furthermore, assuming that Poisson’s ratio is the same

for both materials, the effective Young’s modulus, E, defined by

1

E
=

1

E1

+
1

E2

(2.16)

can be calculated. By solving for E in Equation 2.13,

E =
6

53/2V 3
(1− ν2)

√

F 5

M3R
(2.17)
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Figure 2–5: The grinding ball impact rate reanalysis—steel ball dropped on a liner
plate [Aus01]

the effective modulus of elasticity, using the original data, can be calculated (Table

2–3). Compared to the expected results, the Dunn and Martin modulus of elasticity

is smaller by a factor of 103. The Dunn and Martin modulus is not comparable to

either the expected modulus, based on the Austin analysis, the ore modulus or the

steel modulus.

Austin concludes that the results of the drop weight test were correct, but in

the analysis of the drop weight results, the use of the linear model was incorrect.

As for the in-service experimental results, Austin questions the validity due to the
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Table 2–2: Re-analyzed grinding ball impact force and stress [Aus01]

Mill Diameter (m) 2.74 3.96 8.53
Mill Speed (rpm) 20 14.5 10.2
Mill Speed (percent critical speed) 78 66 69
Total Ball Drop (m) 2.03 2.28 6.39
Impact Velocity (m/s) 6.55 6.79 11.39
Ball Diameter (mm) 76 76 127
Ball Weight (kg) 1.8 1.8 8.4
Estimated Impact Deceleration (g)

with ore 360 380 420
no ore 690 720 800

Estimated Impact Force (N)
with ore 6 400 6 700 34 800
no ore 12 300 12 800 66 000

Table 2–3: Estimated modulus of elasticity [Aus01]

Modulus of Elasticity, E (Pa)
Dunn and Martin (1978) (Effective) 2.4× 107 to 12× 107

Austin (2001) (Expected Effective) 5× 1010

Steel 2× 1011

Ore 6× 1010

difference in the Young’s modulus. The rough surfaces and the high impact velocities

may limit the validity of the Hertzian analysis.
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2.3 The Rolf and Vongluekiet Instrumented Ball

An improved instrumented ball was developed by Rolf and Vongluekiet [RV83,

RV84, RS90, Rol99, Ano90], with the aim of directly recording energy distributions

within the ball charge.

The Rolf and Vongluekiet instrumented ball [RV84] is illustrated in Figure 2–6.

A pestle is mounted flush with the external surface of the shell and is held in place by

a rubber spring. If an impact occurs, the pestle is pushed down. If the force is large

enough to overcome the resistance offered by the spring, the pestle travels far enough

to activate a switch. The switch generates an electric pulse which is recorded by an

electronic counter, whose power is supplied by a battery pack. The balancing mass

within the instrumented ball adjusts the mass properties of the instrument, with the

goal of matching the mass properties of the rest of the charge. Finally, the shell, with

an external diameter of 40 mm, is designed to protect the electronics, while keeping

the size and surface properties as close as possible to those of the charge. Due to

the risk of jamming the pestle, the instrumented ball can only be used without the

presence of the material to be milled—no ore is present. Since the area of the pestle,

Apestle is smaller than the total area of the instrumented ball, Aball, the impact count

must be corrected by a factor equal to the area ratio

R =
Aball

Apestle
(2.18)

The number of impacts per ball, per revolution is

Zk =
ZR

2N
(2.19)
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where Z is the number of measured impacts, N is the number of revolutions of the

mill. Since two balls participate in the collisions, only half the impacts are counted.

Since the instrumented ball is an engineered device, the stiffness of the spring

is known. Also, the maximum displacement of the pestle required to activate the

switch is known. An impact causing a grater displacement will cause the pestle to

hit a geometrical stop, limiting its travel to the maximum displacement. Due to the

geometry of the instrument, the displacement of the pestle is also the compression

of the rubber spring. Therefore, the impact energy, Eimpact, associated with the

activation of the counting circuit is

Eimpact ≥
1

2
ked

2
max (2.20)

where ke is the effective stiffness of the rubber spring and dmax is the maximum

travel of the pestle. Several instrumented balls, each with a different spring stiffness,

are used to collect the data within a ball mill. The mill has an internal diameter of

800 mm, and a length of 400 mm. The mill is operated either with or without 12

lifters, each with a height of 40 mm.

The instrumented ball measurements are collected and combined. The aggre-

gate measurements are classified by the mill speed, the presence or lack of lifters,

and the charge filling fraction. According to Rolf and Vongluekiet, Figure 2–7, an

example of the instrumented ball results, can be interpreted as the (complementary)

cumulative frequency distribution of the impacts, Zk, with respect to the impact

energy, Eimpact. The derivative of the cumulative frequency distribution is the fre-

quency distribution (Figures 2–8 and 2–9). Since there are no collisions with zero
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Figure 2–6: The Rolf instrumented ball [RV83]

impact energy, the frequency distribution curves must pass through the origin. The

cumulative frequency distribution, Zs(E), the number of impacts with impact en-

ergy between E and E + dE can be found. For all cases, the number of impacts

decreases as the speed of the mill speed increases. Also, when the mill is equipped

with lifters, a maximum in the impact frequency distributions occur at an impact

energy approximately equal to 40 mJ (Figure 2–8). This value corresponds to the

potential energy of a ball as it drops a distance equivalent to 15 mm. This distance

corresponds to the mean free path, and is constant for the range of ball charges used

in the experiments, with mill speeds between 55 and 95 percent critical. Further-

more, the maxima occur only at mill speeds less than the critical speed. Above the

critical speed, the frequency distributions change markedly—the maxima observed
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Figure 2–7: The cumulative frequency distribution of the impact energy. [RV84]

below the critical speed are absent. A possible explanation of the frequency distribu-

tions at speeds greater than the critical speed is the effect of the centrifugal field and

the lifters. Large relative displacements between the balls are prevented, whereas

slippage, a low energy process, can occur. When using a mill without lifters, the

slip of the charge is important, regardless of the charge and the mill speed. Since

the frequency distribution passes through the origin, the maximum of the frequency

distribution occurs at an impact energy less than 20 mJ. Such low energy impacts are

an indication of very small potential energy drops—the ball does not fall far before

it is a party to an impact event, which is not the case when it is slipping.
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Figure 2–8: The frequency distribution of the impact energy, for a ball mill with
lifters. The ball charge is 17.9 percent, and the speed of the mills is between 55 and
130 percent critical. [RV84]

The frequency distributions give the number of impacts per unit energy per ball

over one rotation of the mill. If the distribution is integrated over the energy, the

impact energy a ball is subjected to per rotation is obtained. Also, if the distribution

is integrated, the number of impacts a ball is subject to is found.

Etot =

∫ 100 mJ

20 mJ

EimpactZs(Eimpact)dE (2.21)

Ntot =

∫ 100 mJ

20 mJ

Zs(Eimpact)dE (2.22)
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Figure 2–9: The frequency distribution of the impact energy, for a ball mill without
lifters. The ball charge is 17.9 percent, and the speed of the mill is between 55 and
130 percent critical. [RV84]

Rolf and Vongluekiet use the discrete versions of the above equations, given as,

Etot =
100 mJ
∑

20 mJ

EimpactZs(Eimpact)∆E (2.23)

Ntot =
100 mJ
∑

20 mJ

Zs(Eimpact)∆E (2.24)

to obtain the impact energy per ball (Figure 2–10), and the number of impacts per

ball (Figure 2–11), as the mill speed is changed.

Rolf and Vongluekiet conclude that it is possible to obtain a large quantity of

information from within the charge. They note that the presence of lifters promote
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Figure 2–10: The variation of the impact energy as the mill speed changes. [RV83]

high energy impacts when the mill operates below the critical speed. At speeds above

the critical speed, the lifters are not effective. They hinder the slippage of the charge.

Ordinarily, the slippage generates impacts even though the centrifugal forces greatly

affect the charge behavior, as is the case when the mill is operated without lifters.
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Figure 2–11: The variation of the impact frequency as the mill speed changes. [RV83]

2.4 The Gao and Thelen Instrumented Ball

According to Gao and Thelen, the comminution research, particularly grinding

mill research, is limited by the inaccessibility of the measurand and the lack of suit-

able electronics [GT94], motivating their development of an instrumented ball. Gao

and Thelen characterize the grinding processes by the types of loadings found within

the mills: dynamic and quasi-static loadings [GT94]. Dynamic loadings involve two

colliding bodies, which produce a large force within a short period of time. Further-

more, in addition to the properties of the bodies, the force strongly depends on the

kinetic energy of the bodies. By measuring the impact force, the impact energy can

be determined [GT94].

The relative motion between bodies are modeled as a combination of rubbing and

shearing, characterized by a minimal change in the magnitude of the force throughout
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the duration of the interaction. During this quasi-static loading of the bodies, the

force between the bodies weakly depends the kinetic energy (and its conversion to

other types of energy) [GT94].

In their analysis, Gao and Thelen neglect the quasi-static loading case. Conse-

quently, the weak relation between forces and energy suggests that little optimization

is possible. Instead, Gao and Thelen concentrate their research on the dynamic load-

ing cases.

Since grinding mill are machines designed to break ore, they are effective at

breaking any instrument installed within the mill. Also, grinding media, such as the

steel balls added to the charge that are used to promote the comminuting processes,

can effectively destroy measurement systems. Furthermore, Gao and Thelen find

it difficult to obtain electronic devices small enough and sophisticated enough for

the required data acquisition and processing. Consequently, milling systems are

considered black boxes, forcing the adoption of empirical methods in determining a

number of parameters, motivating the development of instruments. Bearing in mind

the mill environment and the charge motion, the instrumented ball must satisfy the

following conditions. Firstly, the instrumented ball must have the same size, mass

and surface characteristics as an unmodified grinding ball. Secondly, the diameter of

the instrumented ball must not exceed 60 mm. Larger balls are difficult to handle.

Thirdly, the instrument must be able to withstand temperatures of 350 K and impacts

up to 450 g. Also, the instrument must protect the electronics from any dust and

water. Finally, the instrument must process a 100 µs impact signal. A design based

on a piezoelectric sensor (Figure 2–12) is proposed by Gao and Thelen. In response
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to an applied pressure or stress, a piezoelectric material generates a voltage. The

instrumented ball is composed of the following modules:

1. Pre-amplifiers. The high impedance charge signals produced by the

piezoelectric sensor is converted to a low impedance voltage.

2. Signal conditioners. A low-pass filter eliminates some of the distor-

tions of the sensor signal.

3. Analog-to-digital converters. The sensor signal is converted to a

digital number by a set of voltage comparators.

4. Electronic memory. The converted signal is stored in memory, with

a capacity of 64K.

5. I/O ports. An off-line version of the instrumented ball can transfer

previously stored data to an external console. An on-line version

can modulate and transmit the data at a frequency of 433 MHz.

The test mill for the Gao and Thelen instrumented ball is 400 mm in length,

with a diameter of 800 mm. For the tests, the grinding media void ratio, Φm, defined

as the ratio of the bulk volume of the grinding media—in this case, quartz—to that

of the balls, was varied between 0.0 and 1.0. The rotation speed of the mill was set

to 40, 60, 80, or 100 percent of the critical speed.

A dynamic impact process produces a compression and a restoration phase. The

change in the kinetic energy of a body, Eb, before and after the collision, is

Eb = ∆Eke =
1

2
(1− ǫ2)(δv)2

m1m2

m1 +m2
(2.25)
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where m1 and m2 are the masses of the colliding bodies, ǫ is a material dependent

coefficient (0 ≤ ǫ ≤ 1), and δv is the change in speed. Assuming an elastic defor-

mation during the impact process, the maximal force amplitude, Fmax, is expressed

as

Fmax =











1.25 m1 m2 (v2 − v1)
2

(m1 +m2)

{

9
64

(

1
R1

+ 1
R2

)1/3 (
1−ρ1
G1

+ 1−ρ2
G2

)

}2/3











3/5

(2.26)

where Ri is the radius of the i
th colliding body. Also, Gi is the shear elastic coefficient,

ρi is the Poisson ratio and Ei is the modulus of elasticity of the ith material, associated

with the ith body. The maximal effective grinding energy, Ep, is equal to the maximal

loss of mechanical energy, Eb (with ǫ = 0), giving

Fmax =
1.94 E 0.6

p
(

1
E1

+ 1
E2

)0.4 (
1
R1

+ 1
R2

)0.2 (2.27)

Using Equation 2.27, the distribution of the grinding energy can be determined from

the measurement of the impact forces, as long as the ball dimensions and material

properties are known. The number of measured impacts per revolution of the mill,

scaled to account for the measurement zone area in comparison to the whole surface of

the ball—the active area does not encompass the entire ball area, as shown in Figure

2–12—gives the impact frequency, Hi. The impact frequency, Hi, is a measurement

of the number of times the ball impacts other bodies during one mill revolution. At

the same time, the impact force measurements help determine the impact energy,

Ep. The results are presented in Figures 2–13, 2–14 and 2–15.
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When the mills speed is increased, more of the charge is thrown, creating larger

spaces within the charge (see Figure 1–10). With less material available to damp

any interactions, high energy impacts occur more often. This effect, seen in Figures

2–13 and 2–14, continues until the speed of the mill approaches the critical speed,

when the charge begins to settle. A further increase in the speed of the mill will

lock the charge, greatly reducing the number of impacts. As shown in Figure 2–15,

a maximal impact frequency, Hi, exists within the range of 60 to 80 percent critical

speed.

Gao and Thelen conclude that an instrumented ball, capable of operating within

a realistic ball mill environment, such as one with quartz as the grinding medium,

can be designed, fabricated and tested. Furthermore, by correlating the impact

frequency, the impact energy and the specific energy required to grind a material, it

may be possible to develop guidelines useful to the design and optimization of mills.

Finally, the technology used in the development of the instrumented ball can be

adapted to other industrial applications characterized by an insufficient accessibility

to the measurands.
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Figure 2–12: The Gao and Thelen instrumented ball [GT94]
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Figure 2–13: The frequency I intensity of the impact energy at 40 percent critical
speed [GT94].
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Figure 2–14: The frequency intensity of the impact energy at 100 percent critical
speed [GT94].
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Figure 2–15: The impact frequency as a function of the mill speed [GT94].
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2.5 The Rajamani, Delgadillo and Duriseti Instrumented Ball

Rajamani, Delgadillo and Duriseti [RDD06] designed a instrumented ball capa-

ble of measuring the stresses it is subject to, providing a means of monitoring the

internal state of the mill.

Rajamani, Delgadillo and Duriseti modified a large ball (5 to 6 inches in diame-

ter), forming an internal cavity, large enough to house a strain gauge based load cell,

the telemetry electronics (FM transmitter and receiver), and a lithium ion battery

(Figure 2–16). When added to the charge, the Rajamani instrumented ball wirelessly

transmits the load cell measurements to an external receiver. A computer, connected

to the receiver, records the measurements. From this record, a time history of the

impacts and impact energy spectrum is determined. The ball continues to operate

until either the battery is drained or the instrument is damaged by the action of the

mill.

Two problems were encountered during the initial tests. Firstly, the electronics

were quickly damaged during the tests [Raj07]. Embedding a large number of micro-

electronic components within a grinding ball is challenging, especially if they must

survive for an extended period of time. Secondly, the transmission of the measure-

ments from within the mill to the receiver was not possible. The large quantity of

metal within the mill and forming the mill shell creates a barrier to electromagnetic

signals—particularly weak signals. Due to these technical challenges, the instru-

mented ball was modified. Instead of measuring the stresses on a ball, Rajamani,
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Figure 2–16: The Rajamani et al. instrumented ball [RDD06]

Delgadillo and Duriseti decided to measure the stresses on the liner. Now, the mea-

surement devices are no longer housed within a ball. Instead, they are mounted

externally on the mill shell (Figure 2–17).
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Figure 2–17: The alternative Rajamani mill instrumentation [RDD06]

2.6 Discrete Element Models

The discrete element method (DEM) is a class numerical modeling technique

used for the simulation of the behavior of a large number of discrete interacting par-

ticles [MR92]. The field of application includes granular flows, traffic and crowd dy-

namics, astronomy, computer networks, biosystem interactions, geomechanics, agri-

culture, pharmaceuticals, and mineral processing [WS08, Cle98, DEM09].

The discrete element method, developed by Cundall and Strack [CS79], calcu-

lated the finite displacements and rotations of a large number of particles, over a
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given timestep. As the calculation proceeds, the particles interact with the other

particles or with the environment, as mediated by contact and non-contact forces

[MR92, ZZRA08]. The simulation process is summarized in Figure 2–18.

Increment Timestep

Generate New
Particles

Detect Contacts

Calculate Contact
Forces

Calculate External
Forces

(Drag/Gravity)

Update Particle and
Geometry Position

Figure 2–18: The DEM calculation loop [DEM09].

2.6.1 Geometry

First, new particles and the geometry are created. The geometry consists of

solid bodies that are essential to the simulation, but are not part of the granular

particles—the mill liners and the mill shell are two examples of the geometry. The

geometry constrains the particles by defining the boundaries of the simulation. At

this point, the importance of geometric abstractions comes to light. As an example,

Mishra and Rajamani simulate a mill as a 2D DEM [MR92]. The mill cross-section

abstracts the mill geometry, the inner boundary delimiting the area within which the

charge will evolve; the charge is defined as a large assembly of discs, each identified
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separately by a radius, a mass, a moment of inertia, and collision properties. A

similar procedure can be applied to the 3D models, as demonstrated by Martins et

al. [MRP+07]. In this case, spheres represent the particles that compose the charge;

a simplified CAD drawing represents the mill. The particles can be modeled using

other shapes. Aggregations of spheres [DEM09], super-quadric geometries [Cle98],

and arbitrary shapes[PHSP07] are used to represent particles. The choice of how

the particles are modeled is driven by balancing the computational efficiency with

the accuracy of the simulation [ZZRA08]. Finally, material properties are associated

with the geometry or the particles, as they are created.

2.6.2 Contact Detection

Next, the contacts between particles are detected. This task consists of de-

termining if each individual particle contacts any other particle or geometry. One

solution is to search though the particles pairs in order to determine if the distance

between them is less than a set threshold. Such a pairwise search is computationally

demanding algorithm, of order O(N2), where N is the number of particles [Fer01].

In practice, a more efficient contact detection scheme is used—only near neighbors

of the particle are considered to be candidates in the event of a collision. A search

grid is used periodically to build a near-neighbor interaction list that contains all

the particle pairs that are likely to experience a collision in the short term. Only

the particles considered to be part of the set of nearest neighbors of the selected

particle are tested for collisions. All other particles are considered to be too far

to possibly collide with the selected particle. Though the set of nearest neighbors

must be updated with each timestep, this strategy can, in certain cases, reduce the
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Table 2–4: Contact force and torque models [ZZYY07]

Force Models Normal Force Tangential Force

linear spring-dashpot fn = −Knδnnc − Cn(vc · nc)nc ft = −Ktv
t
c + Ct(vc × nc)× nc

model

simplified Hertz-Mindlin fn = − 4

3
E∗

√
R∗δ

3/2
n nc ft = −µ|nn,e|(1 − (1− |vt

c|/δmax)
3/2)v̂t

c

and Deresiewicz model −Cn(8m
∗E∗

√
R∗δn)

1/2 +2Ct(1.5µm
∗|nn,e|

·(vc · nc)nc ·
√

1− |vt
c|/δmaxδ

−1
max)

1/2

·(vc × nc)× nc

Walton and Braun model fn = −k1δnnc, δ̇n ≥ 0 ft = f
′

t + k0t (1 −
ft−f∗

t

µfn−f∗

t

)1/3∆v
t
c

(loading) if v̇t
c in initial direction

−k2(δn − δn0)nc, δ̇n < 0 f
′

t + k0t (1 −
f∗

t
−ft

µfn+f∗

t

)1/3∆v
t
c

(unloading) if v̇t
c in opposite direction

where ft = |ft|, fn = |fn|

Torque Models Rolling friction torque Torque from ft

Method 1 mr = −krθr − Crdθr/dt mt = R× ft

Method 2 mr = −min {µr|fn|, µ′

r|ωn|} ω̂n

computational time to O(N) [Cle04, VCVQ+98]. Industrial simulations with up to a

million particles are currently possible in reasonable times on current single processor

workstations.

2.6.3 Contact Forces

Once the contacts have been detected, the contact forces are calculated. The

contact force model allows the simulation to calculate the forces applied to the par-

ticle as it undergoes a collision. Depending of the level of detail, these models take

several forms [KESR+07, KESWS07], as the examples listed in Table 2–4 demon-

strate. The details of the contact force models listed in Table 2–4 are not explained,

as the purpose is only to show the variety and differences between types of contact
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models. In many cases, the DEM models use the spring-dashpot contact model, due

to its modest computational requirement, in contrast to many other contact force

models. Regardless of the contact models, its coefficients are derived from or agree

with physical measurements. For example, when using the spring-dashpot model,

an appropriate normal damping coefficient, Cn, is selected such that the normal re-

sponse produces agreement with the observed coefficient of restitution, defined as the

ratio of the post-collision to pre-collision normal component of the relative velocity

[Cle04, MX08].

2.6.4 Body Forces

After the contact forces have been determined, the body forces are calculated.

The body forces include gravity, van der Waals forces, liquid bridge forces and elec-

tromagnetic forces [ZZYY07]. In the context of the grinding mill, only gravity is

considered.

Fb
i = mig (2.28)

where mi is the mass of the ith particle, and g is the gravitational acceleration.

2.6.5 Equations of Motion

Since a particle in a granular flow can have both translational and rotational

motion, the governing equations of motion are [ZZYY07]

miv̇i =
∑

j

Fcontact
ij + F

body
i (2.29)

Iiω̇i =
∑

j

Mij (2.30)
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where vi is the translational velocity of the ith particle, ωi is the angular velocities of

the ith particle, mi is the mass of the ith particle, Fcontact
ij andMij are the contact force

and torque acting on the ith particle due to the jth particle or any geometry (such

as walls), Fbody
i is the body force acting on the ith particle, and Ii is the moment

of inertia tensor of the ith particle. Since the forces and torques are calculated,

and the mass properties are known, it is possible to solve Equations 2.29 and 2.30,

and propagate the ith particle to the next timestep. This is done for all particles

and geometry, thereby updating their positions and velocities. At this point in the

simulation, new particles can be added to the simulation. If none are added, the

simulation proceeds to the detection of collision. Again, this cycle is illustrated in

Figure 2–18.

2.6.6 Use of Discrete Element Models

The nature of the quantitative predictions that can be made, using the extensive

states produced by the DEM model, is varied. It can be used to determine [Cle04]:

(a) the boundary stresses, for the mechanical design and the prediction of fatigue;

(b) the wear rates and distributions, for estimating the life span of the equipment and

the wear components; (c) the accretion rates, for the prediction of accretion induced

blockage or changes in open area of screens; (d) the collisional force distributions,

collision frequencies, and energy absorption spectra, for understanding breakage and

agglomeration; (e) the power consumption and torque, for equipment design; (f) the

flow rates and flow statistics, for summarizing the characteristics of complex flows;

(g) the sampling statistics, for the assessment of the accuracy of various sampling

processes; (h) the mixing and segregation rates, for the assessment of the progress
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of intended mixing and de-mixing processes, and for understanding the degree of

segregation and its effects on other processes, where segregation and/or mixing are

not intended; (i) the residence time distributions, for the assessment of the range of

times that particles are exposed to the various environments within a process, such

as granulation and comminution; and (j) the axial transport rates, for the assessment

of the axial flow along rotating or stationary cylinders.

As with all simulations, care is required. The behavior of discrete element models

is sensitive to the characteristics of the particles and to the underlying assumptions

[Cle01b]. Two examples illustrate this point. Firstly, spherical and non-spherical

particles will produce a different DEM result, as shown in Figure 2–19. For an

industrial application, such as a mill, the computational advantages of spherical

particles may outweigh the systematic computational errors due to the geometric

differences, particularly if large numbers of particles are being simulated. Secondly,

due to the differences in their implementation, the DEM model will have different

levels of accuracy and precision, as illustrated by the DEM power draw predictions

plotted in Figures 2–20 and 2–21.

The prerequisite to an accurate simulation is the validation test. Comparisons

between the in-situ and in-silico values, such as the power draw, the toe position, the

shoulder position, the position of the center-of-circulation and the trajectories, are

used to validate the simulations [CMM03, MR94b, PN96, Mis03, RMVD00]. Some of

the validation tests, such as the power draw, are reliable. Others, such as trajectory

comparisons, suffer from subjectivity [MGPC04].
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Figure 2–19: The effect of the shape of the ball size distribution on the specific power
consumption [Cle01b].

As stated previously, a DEM simulation provides a wealth of information. From

the simulation data, it is possible to generate trajectories of the charge, the spatial

distribution of the charge, over a cross-section of the mill, and distributions of the

kinetic energy, as illustrated in Figures 2–22, 2–23 and 2–24, respectively. It is

noted that Misra and Cheung present various distributions of the kinetic energy

(Figure 2–24), based on the DEM results at a specific point in time [MC99]. The

DEM results, presented by McBride et al. [MGPC04], subdivide the mill cross-

section into bins. By grouping and summing all data points falling within a bin,
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Figure 2–20: Simulated power and observed power [RM98]

a cross-sectional probability distribution is constructed. In doing so, any selected

variable, either experimental or simulated, can be expressed as a function of position

[GMP04]. For example, using this methodology, McBride et al. are able to generate

and compare velocity distributions over the cross-section between the experimental

setup and DEM simulations, as shown in Figure 2–25.
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Figure 2–21: Simulated power and observed power [CAR+06]

Figure 2–22: Ball trajectories for 4 mill revolutions at 66 percent, 83 percent, and
93 percent critical speed [MC99]

67



Figure 2–23: Percentage occupancy of a 2 mm rock particle for the mill rotating at
75 percent critical speed [BGC+09]
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Figure 2–24: DEM kinetic energy distributions [MC99]
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Figure 2–25: Experimental and DEM bin plots of selected components of particle
velocity [MGPC04]
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2.7 Summary

It is well established that standard comminution methods are energy intensive

and inefficient in promoting mineral liberation [VW91], particularly for grinding

mills, a type of machinery important in the mineral processing of ores. The mo-

tion of grinding media and the energy distribution have a profound influence on the

comminution of particles in tumbling mills [Mis03]. Furthermore, it is understood

that the mill environment is harsh. The ore-to-ore and the ore-to-steel collisions,

which leave any instrument placed within the mill vulnerable to damage, make any

measurement from within the mill very difficult. In spite of the difficulties, some

progress is reported. A small number of instrumented balls have been built and used

to collect data from within the mill, mostly for the determination of impact forces

and impact energies. This shows it is possible to build an instrumented ball. Further-

more, electronic circuitry can be embedded within the ball, allowing the operation

of a number of instruments. Though the capability exits, only a small number of in-

strumented balls have been designed. Given the limited instrumentation, DEMs are

used as surrogate instruments, thereby allowing the calculation of quantities hereto

unmeasurable. As designed, both instrumentation and simulation show promise and

are expected to improve the understanding of the dynamics of the charge.

With all this in mind, the goal of this work, which is to develop a better under-

standing of tumbling mill dynamics through the development, use and validation of

an instrumented sensor ball, will be achieved by working towards and meeting the

following objectives:
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1. To show that an instrumented ball can be designed and built, with improved

electronics;

2. To show that it is possible to obtain measurements from the mill interior,

particularly measurements that are not impact forces;

3. To show that these measurements allow for a different type of analysis of the

mill;

4. To show that the data is comparable to DEM simulation results;

5. To show that the data is helpful with regards to DEMs.

(a) The instrument measurements can be used to verify that the DEM results

accurately represent the system;

(b) The instrument measurements can be used to tune the DEM simulations,

enhancing their accuracy; and

(c) The instrument measurements can be used to identify aspects of the DEMs

in need of improvement.
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CHAPTER 3

Materials and Methods

3.1 Introduction

Due to the difficulty of obtaining measurements, ball mills are difficult systems

to understand. In this section, a framework allowing for an improved description

of ball mills, through measurement and analysis, is presented. The core of this

analysis is the instrumented ball. Its design and properties are presented. The

instrumented ball is used, in conjunction with a camera system, to measure a number

of physical quantities. The physical quantities, and derived quantities thereof, are

collectively referred to as measurands. A method of analyzing the measurand is

outlined. The methodology, applicable to both in-situ (experimental) and in-silico

(simulated) results, provides a means to compare both. As a result, the methodology

is proposed as a means to improve the understanding of tumbling mills.

3.2 Instrumentation

With the goal of investigating the behavior of tumbling mill charge, a number

of instruments have been developed within the larger scope of this work [MLRC06a,

MLRC06b, RML+06, Piced]. The improved instrumented ball is one of the cor-

nerstone technologies developed for the study of tumbling mills, and is used in the

present work. One of the supporting instruments, the video systems, adds a number

of important measurements, and is also described.

72



3.2.1 Instrumented Ball

An objective of the development of the instrumented ball is to address the issue

of measuring ball accelerations and rotations over a period of time, and to store this

information on board. The preliminary steps are to design and integrate the core

of the instrument electronics. The high strength instrument shell and wireless com-

munication capabilities are not necessary, as the initial testing would be completed

using the laboratory mill, with an engineered charge. This approach simplified the

design problem to an attainable objective [MLRC06a].

3.2.2 Instrumented Ball Electronics and Software

The core of the instrument is contained within the assembly of the shell. Cav-

ities are machined into the shells, forming pockets where the internal electronics

are secured. When fully assembled, the shell protects the internal electronics. The

electronics are separated into the following subsystems (Figures 3–1 and 3–2) [Li04]:

1. the power system

2. the microcontroller, including the clock

3. the storage array

4. the sensor array

5. the communication ports

The power system regulates the power to the instrumented ball electronics.

Presently, the power source is a 9V battery. Laboratory measurements indicate that

0.63 W are required to operate the instrumented ball. The system clock regulates

the sampling rate for the system. Moreover, since the sampling rate is known, the
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Microcontroller
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Figure 3–1: The instrumented ball circuit

measurements can be time stamped. Although the maximum sampling rate is 10

kHz, the initial tests were completed at a frequency of 300Hz. Subsequent test were

done at a sampling rate of either 1 kHz, 2 kHz, or 4 kHz. The storage array allows the

instrument to save the collected data as it operates within the mill. At the sampling

frequency of 300 Hz, the instrumented ball is able to collect data over a period of 30

minutes. At a sampling rate of 4 kHz, the instrumented ball can collect and store data

for only 2 minutes. Though a wireless port is present, communication with the ball

is accomplished via its serial port. The decision to exclude the wireless data transfer

capability, during or after measurement, allowed the development of the instrument

to avoid one of the major hurdles encountered by Rajamani, Delgadillo and Duriseti

[Raj07]. Currently, any commands or data transfers require the instrumented ball
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Figure 3–2: An opened instrumented ball
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to be opened. The communication port is then connected to a computer, and the

Terminal application is used to transfer the data.

Through the port, commands can be sent to the ball. The commands include

i) dump data from the ball to the console via serial port; ii) set the sample frequency;

iii) set the data collection time; and, iv) set the delay time before data collection

begins. Once initialized, the instrument begins a set of timers. These timers indicate

when certain actions are to be taken by the software, such as the collection of the

data. The instrumented ball software flowchart is outlined in Figure 3–3. Currently,

the sensors in the ball are

1. a 3-axis rotation rate sensor

2. a temperature sensor

3. two 3-axis accelerometers

The sensors allow the measurement of the acceleration, a, the rate of rotation, ω,

and the temperature within the instrumented ball, T , as a function of time.

3.2.3 Instrumented Ball Shells

The instrumented ball is designed to be flexible [MPF+08, MLRC06a, MLRC07].

Two distinct parts form the instrument: the electronics and the protective shell. De-

pending on the desired features, different shells can be used to house the electronics.

For use within the laboratory mill, a number of shells have been manufactured; their

properties are given in Tables 3–1, 3–2, 3–3, 3–4, and 3–5. The cylindrical shell (Ta-

ble 3–1) is for use in the foreshortened laboratory mill, which serves as a platform

for two-dimensional tumbling mill studies.
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Figure 3–3: The instrumented ball software flowchart
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Table 3–1: The properties of the instrumented disk

Shell Material PVC and Nylon
Shell Diameter (cm) 11.5± 0.2
Shell Length (cm) 9.2± 0.24
Mass (g) [calculated] 667.07± 0.01
Mass (g) [measured] 662.23± 2.47

Inertia Tensor(kg ·m2) [calculated]





0.001738 −0.000002 0.000000
−0.000002 0.001114 0.000001
0.000000 0.000001 0.001741





all values ±0.00048

Table 3–2: The properties of the aluminum instrumented ball

Shell Material Aluminium
Shell Diameter (cm) 10.0± 0.2
Mass (kg) [calculated] 1.2049± 0.0005
Mass (kg) [measured] 1.1708± 0.0001

Inertia Tensor(kg ·m2) [calculated]





0.001377 0.000003 0.000001
0.000003 0.001377 −0.000001
0.000001 −0.000001 0.001387





all values ±0.000084

3.2.4 Video System

A video system, developed for the study of charge motion slippage [Piced], is

added to the instrumentation package. The video recordings provide additional in-

formation. By using image analysis routines, the positions of marked instrumented

balls (or disks) and specific charge balls (or disks) can be determined as a function of

Table 3–3: The properties of the aluminum instrumented box

Shell Material Aluminium
Shell Side Length(cm) 11.5± 0.2
Shell Length (cm) 9.2± 0.24
Mass (g) [calculated] 667.07± 0.01
Mass (g) [measured] 662.23± 2.47

Inertia Tensor(kg ·m2) [calculated]





0.001738 −0.000002 0.000000
−0.000002 0.001114 0.000001
0.000000 0.000001 0.001741





all values ±0.00048
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Table 3–4: The properties of the delrin instrumented ball

Shell Material Polyoxymethylene (POM or Delrin)
Shell Diameter (cm) 10.0± 0.2
Mass (kg) [calculated] 0.6960± 0.0003
Mass (kg) [measured] 0.6872± 0.0001

Inertia Tensor(kg ·m2) [calculated]





0.000762 0.000000 −0.000001
0.000000 0.000762 0.000000

−0.000001 0.000000 0.000772





all values ±0.000010

Table 3–5: The properties of the delrin instrumented box

Shell Material Polyoxymethylene (POM or Delrin)
Shell Side Length (cm) 11.5± 0.2
Shell Length (cm) 9.2± 0.24
Mass (g) [calculated] 667.07± 0.01
Mass (g) [measured] 662.23± 2.47

Inertia Tensor(kg ·m2) [calculated]





0.001738 −0.000002 0.000000
−0.000002 0.001114 0.000001
0.000000 0.000001 0.001741





all values ±0.00048

time. In particular, these measurements complement the results obtained with the

instrumented disk.

The operation of the laboratory mill is recorded by a video camera. Particular

elements of the charge are marked with a distinctive color, such as blue or fluorescent

yellow. Once the video is transferred to a computer, Matlab is used to decompose

and analyze the video, frame by frame. Matlab, a mathematical software package,

includes a specialized library of image analysis routines. These routines can locate

specific colors in a pixel, identify clusters with the same color—these clusters of uni-

form color would generally represent an object—and determine the geometric center

of the cluster. When the cluster position is determined, a time can be associated with

the position since the fame number is known. The camera records images at a rate of
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30 Hz. Since the cluster is defined by its color, the choice of color is important. For

example, shadows will affect the identification of the clusters since the color of the

cluster is perceived as darker, hence different. Consequently, good lighting is neces-

sary to keep the colors uniform. Also, as the analysis can be imprecise for certain

frames, human verification and correction of the position is required. The addition

of brightly colored points to the video recording help in the visual inspection of the

quality of the charge tracker and the identification of problem frames. As before,

this process occurs within the Matlab environment.

Similar to the work of Dong and Moys [DM01], the velocity, vn, can be deter-

mined from the video system measurements.

vn =
∆xn

τ
=

xn+1 − xn

τ
(3.1)

where τ is the timestep, and xn is the position of the tracked particle, at the nth

timestep.

3.3 Laboratory Mill

The Comminution Dynamics Lab at McGill University is equipped with a cam

driven mill, as illustrated in Figures 3–4 and 3–5 [MLRC06a, MLRC06b, MLRC07,

RGT06]. A large diameter aluminum disk is fixed to a shaft mounted on a bearing.

The aluminum disk supports two sets of parts. Firstly, the followers for the cam

drive are fixed to its face. Secondly, the mill drum (or shell) is bolted to the disk. A

Plexiglas face closes the mill at the free end of the drum. The transparent Plexiglas

allows for the observation of the charge. Without it, the camera system could not

be used. The drum consists of a steel cylinder, with a diameter of 1.524 meters and
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Figure 3–4: The laboratory mill layout

a length of 0.3048 meters. With the use of an insert, the length of the mill can be

shortened to a length of 10.16 centimeters. In this configuration, the two-dimensional

studies of the charge motion are possible.

3.3.1 Lifters

The laboratory mill is equipped with twelve adjustable triangular lifters, as

shown in Figure 3–5. When the lifters are opened up, they flatten, thereby decreasing

their effect on the charge. When they are closed, their effect on the charge increases,

as illustrated in Figure 1–16. The range of the lifter angle is 0 ◦, which presents a

perpendicular face to the charge, to 75 ◦, which present a nearly flat 15 ◦ face to the

charge.
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Figure 3–5: The laboratory mill

3.3.2 Mill Charge

The charge used in the mill consists of either wooden balls or PVC cylinders.

The wooden balls are used when operating the full-length mill. The properties of

the wooden charge are listed in Table 3–6.

For the two-dimensional studies of the charge motion, a cylindrical charge is

used. The properties of this charge are summarized in Table 3–7.
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Table 3–6: The properties of the spherical charge used during the 3D laboratory mill
experiments

Material Birch
Diameter (cm) 5.06± 0.03
Mass (g) [calculated] 43.8± 0.4
Mass (g) [measured] 43.8± 2.3

Inertia Tensor(kg ·m2) [calculated]





0.000011 0.000000 0.000000
0.000000 0.000011 0.000000
0.000000 0.000000 0.000011





all values ±0.000005

Table 3–7: The properties of the cylindrical charge used during the 2D laboratory
mill experiments

Material PVC and Nylon
External Diameter (cm) 11.5± 0.2
Length (cm) 9.2± 0.2
Mass (g) [calculated] 477.92± 0.01
Mass (g) [measured] 484.3± 3.6

Inertia Tensor(kg ·m2) [calculated]





0.001560 0.000000 0.000000
0.000000 0.000937 0.000000
0.000000 0.000000 0.001560





all values ±0.000020

3.4 DEM Simulations

The CORSim DEM simulator was developed by COREM in order to determine

the effect of ball make-up strategies in ball mills, through the study of impact energy

distributions. Because it is built on top of a general 3D DEM simulator [Ita03],

COREM is able to use CORSim for broader research in comminution mills, including

breakage efficiency, and mill equipment design. CORSim is divided into three main

parts, as shown in Figure 3–6:

1. The DEM engine (DEM simulator), which, once configured, pro-

duces a simulation file containing particle positions and contact data

over time (the minimal data set).
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Matlab Module CORSim Viewer

DEM Simulator

Configuration Files

Simulation Files

Balls:
- Position of center
- Resultant of forces
- Resultant of moments
- Linear and angular velocity

Contacts:
- Position
- Shear and normal force
- Energy distribution
- Event distribution

Design:
- Mill dimensions
- Lifter number and shape

DEM parameters for balls and mill:
- Damping coefficients
- Friction coefficient
- Stiffness

Operating conditions:
- Rotation speed
- Ball sizes and characteristics
- Ball load

Figure 3–6: The COREM DEM simulator

2. The CORSimViewer, a data display application, which can be used

to replay the simulation in real time, and display information from

the simulation using pseudo-color. This viewer can also produce

videos and still images

3. A Matlab module, which can be used to access raw data from the

simulation file, in order to compute and display custom indicators.

A virtue of the simulations is their configurability. Without difficulty, both the

two-dimensional and the three-dimensional variants of the mill can be simulated.

Furthermore, the quantities determined experimentally (in-situ) can be calculated

by the DEM (in-silico).

3.5 Analysis

Once the simulated data is calculated and the experimental data collected, a

number of physical quantities are determined. When observing the laboratory mill
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in operation, the stochastic nature of the charge motion is apparent. Also, in their

analyses, Rolf and Vongluekiet [RV84], and Gao and Thelen [GT94] produce results

in the form of frequencies of impact energies, as shown in Figures 2–7, 2–8, 2–9, 2–

11, 2–13, 2–14, and 2–15. There are experimental and simulation analyses based on

spatial statistical distributions of the charge, as presented in Figure 2–25. Finally,

the specific kinetic energy distributions are determined from the simulations, as

illustrated by Figure 2–24. The random nature of the charge motion and the prior

work suggest that the use of statistical methods is useful for the analysis of the

charge dynamics. Therefore, the analysis of the results presented here is based on

the use of statistical methods to find distributions of the data and their moments.

A comparison of moments permits the determination of simulations which are in

agreement with the experimental results, as is explained below.

3.5.1 Physical Quantities

A tumbling mill can be thought of as an energy transformation machine. At the

most basic level, by its action, the mill pushes the charge to gain potential energy,

lifting it toward the shoulder. Next, the charge drops toward the toe, converting

the potential energy to kinetic energy. Once the charge reaches the impact area, the

kinetic energy of the charge is transformed into surface energy, as the ore breaks.

Therefore, instead of analyzing the mill in terms of velocities, trajectories and posi-

tions, an energy based description is favored.

Using the instrumented ball, in conjunction with the video system, the kinetic

energy, Eke, the translational kinetic energy, Ek, the rotational kinetic energy, Er,

the potential energy, Epe, the energy rate-of-change, P , the average mill power draw
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per unit mass, pcharge, and the velocity, v, can be determined as a function of time,

using the measured and calculated values of the position, v, the rotation rate, ω, the

mass, m, and the moment of inertia, I.

Eke = Ek + Er (3.2)

Ek =
1

2
m |v|2 (3.3)

Er =
1

2
I ijωiωj (3.4)

Ep = m(x− x0) · g (3.5)

Pi = Ėi for i = k, r, p (3.6)

Furthermore, the specific power required to maintain the charge is, as stated by

Equation 1.15,

pcharge = g X̄COG
Nmill

100
Nc (3.7)

where X̄COG is the horizontal distance of the center of gravity of the charge from the

rotation axis of the mill, g is the gravitational acceleration, Nc is the critical speed

of the mill, and Nmill is defined by Equation 1.7.

3.5.2 Statistics and Central Moments

Statistics is an inductive process that looks at the sample and predicts the

population [RH98]. A number of observations are gathered and analyzed, with the

objective of understanding the population. A basic description of a statistical system

is the cumulative distribution function, F ,

x 7→ FX(x) = P (X ≤ x) (3.8)
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which gives the probability, P , of finding a random variable, X , having a value

less than x. The probability distribution forms the basis of the analysis, inspired

by the analysis of the DEM results, described in Section 2.6.6. Associated with the

distribution are a set of numbers called moments (central), defined as

x̄n =

∫

(x− µ)n dF (x) n ∈ [2,∞) (3.9)

where µ is the mean, given by

µ = x̄1 =

∫

x dF (x) (3.10)

Since the mill is a discretely sampled systems (N samples), a set of analogous

numbers, the experimental sample central moments, mk, and the simulation sample

central moments, Mk, can be generated from the experimental (in situ) and the

simulation in silico data, x and x̂ respectively [RH98]. Here, the data are any

physical quantities defined in Section 3.5.1. For the experimental values, the central

moments are

mk(N) =
1

N

N
∑

i=1

(xi −m1(N))k where k 6= 1 (3.11)

m1(N) =
1

N

N
∑

i=1

xi (3.12)

Similarly, the simulation moments are

Mk(N) =
1

N

N
∑

i=1

(x̂i −M1(N))k where k 6= 1 (3.13)
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M1(N) =
1

N

N
∑

i=1

x̂i (3.14)

The sample mean, x̄, and the sample variance, s, of a random variable, x, are defined

as [FW87]

x̄N =
1

N

N
∑

i=1

x (3.15)

s2N =
1

N − 1

N
∑

i=1

(x− x̄)2 (3.16)

The sample mean estimates the mean, µ, of a random variable, x, and the sample

variance estimates the variance, σ2, of a random variable, x.

µ = E(x) (3.17)

σ2 = E((x− µ)2) (3.18)

When compared to the definitions of the central sample moments (Equations 3.11,

3.12, 3.13, 3.14), it is observed that the sample mean is the first sample moment,

and the sample variance approaches the second moment, as the number of samples

increases.

Here, the analysis by McBride et al. [MGPC04] and, Mishra and Cheung [MC99]

is adopted with some modification. Whereas they use spatial distributions to analyze

the mill charge, here the distribution of the time series is adopted. In the case of

a steady state distribution, the time series results map can be interpreted together

88



since, at any point in time, the system looks the same—it is, as a whole, time

invariant. For this reason, time is not explicitly part of the analysis.

3.5.3 Confidence in the Moments

Since the data consists of a finite set of in situ and in silico measurements,

the derived moments will only be estimates of the actual values—some error will

be present. Therefore, a confidence interval, an error range on the moment, can be

determined. If x̄ and s are the sample mean and sample standard deviation of a

sample of size N , then the mean is within the following range, with a probability of

1− α [FW87]:

P

(

x̄+ tα/2,N−1
s√
N

< µ < x̄+ t1−α/2,N−1
s√
N

)

= 1− α (3.19)

where tα/2,N−1 and t1−α/2,N−1 are random variables having a t distribution with

N − 1 degrees of freedom, and with the following respective probabilities,

P (t ≥ tα/2,N−1) = α/2

P (t ≥ t1−α/2,N−1) = 1− α/2
(3.20)

Similarly, the variance is within the following range, with a probability of 1 − α

[FW87]:

P

(

(N − 1)s2

χ2
α/2,N−1

< σ2 <
(N − 1)s2

χ2
1−α/2,N−1

)

= 1− α (3.21)

where χ2
α/2,N−1 and χ2

1−α/2,N−1 are random variables having a chi-square distribution

having N − 1 degrees of freedom, and respective probabilities,

P (χ2 ≥ χ2
α/2,N−1) = α/2

P (χ2 ≥ χ2
1−α/2,N−1) = 1− α/2

(3.22)
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Thus, the first and second sample central moments, and their error range, can be

calculated.

3.5.4 Comparing Distributions

The moments are used to compare distributions. The convergence of moments

states that, if F1 and F2 are two distribution functions, and if

∀n ≥ 1 :

∫ 1

0

xn dF1(x) =

∫ 1

0

xn dF2(x) (3.23)

then F1 ≡ F2 [Chu01], the distributions are equivalent. In certain cases, such as

for a distribution over a field of real numbers, a further condition is required, the

Carleman condition [Chu01]. Since a physical system is the basis for the in silico

and in situ convergence of moments, it is assumed that the convergence criteria is

met. If the estimated in silico and in situ moments converge, then it is argued that

the simulation is an accurate representation of the physical system. Thus, when two

measurements (or their derived quantities) are found, such as the in-situ and the

in-silico potential energy, the moments can be determined. If the moments prove

to be equivalent, within error, it is stated that the measurements are equivalent.

This supports the argument that the simulation is a faithful representation of the

experimental results. However, this remains a weak argument if it is only based

on one measurement. If the above condition applies to all measurements, a strong

argument for equivalence is made.

As N → ∞, then Mk(N) → mk(N) for all k (3.24)
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Therefore, the matching of all in silico and in situ moments, for all measurements,

is sought. In doing so, all distributions are matched. If all the statistics are the same,

then the dynamics are the same.

3.5.5 Comparative Study

The method of matching moments is useful within the context of a comparative

study. The laboratory mill is a physical system with a given set, A, of parameters.

The parameters include the diameter of the mill, D, the length of the mill, L, the

gravitational acceleration, g, and the rotational speed of the mill, N .

A = {D,L, g,N, . . .} (3.25)

The set of physical parameters can only be known with a finite degree of precision

and accuracy, represented by the set, Â, an estimate of the physical set A. In

addition, not all parameters are included in the estimated set, Â. Â is a smaller

set than A. For example, altitude and atmospheric effects, which are present in the

physical system, are not included in the estimated parameters since they are not part

of the simulation.

Â =
{

D̂, L̂, ĝ, N̂ , . . .
}

(3.26)

In addition to the set of estimated physical parameters Â, the DEM model param-

eters, B, which include the time-step, τ , the type of contact model, F , are known.

B = {τ,Ω,F} (3.27)

When the lab mill is operated, the set of parameters A define the system and how it

behaves. From this system, a set of in situ measurements, x1 . . . xN and their derived
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quantities, the moments (m1 . . .mL), are obtained.

A
experiment−→ {x1, . . . , xN} −→ {m1(N), . . . , mL(N)} (3.28)

The act of performing the experiment on the physical system, collecting the mea-

surements and determining the derived physical quantities is represented by the plant

operation, P. Again, the defined set of physical parameters give, by virtue of the

physics, a set of derived quantities.

P(A) = {m1(N), . . . , mL(N)} (3.29)

Similarly, the simulation process takes the estimated physical parameters, Â, in ad-

dition to the simulation parameters, B, and computes a number of states and in silico

measurements, x̂1 . . . x̂N and their derived quantities, the moments (M1 . . .ML).

Â, B
simulation−→ {x̂1, . . . , x̂N} −→ {M1(N), . . . ,ML(N)} (3.30)

The process of simulating the physical system, and calculating a number of states

and derived quantities is represented by the simulation operation, S. With the set of

estimated physical parameters and simulator parameters, the simulation computes a

set of derived quantities.

S(Â, B) = {M1(N), . . .,ML(N)} (3.31)

If it is assumed that the estimated physical parameters Â are equivalent, for the

purposes of the analysis, to the physical parameters, A, and if the simulation results,

M1 . . .ML, within error, converge to the measured results, m1 . . .mL, with the caveat
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that the analysis used to obtain the results be the same, then it is argued that simu-

lation, S(·, B) is an accurate representation of the physics, P(·). This methodology,

based on Equation 3.24, seeks consistency between the models and the mills, through

convergence of the in silico and in situ moments. When the moments converge, the

distributions also converge. If all distributions converge, then the dynamics under-

lying the processes which produce the distributions are equivalent.

If

Â ∼= A

and if

{M1(N), . . . ,ML(N)} −→ {m1(N), . . . , mL(N)}

then

S(·, B) ≡ P(·),

(3.32)

3.5.6 Assumptions

With regards to both the simulation and the experimental results, a number

of assumptions have been made. Firstly, the in silico and in situ processes are

steady state. No time variation of any average quantity or the statistics is expected.

Secondly, though the nature of the distributions is unknown, it is assumed that

the expressions for the confidence limits of the first and second moments are valid.

Though this is likely incorrect, as these expressions assume a normal distribution

of the random variable, the confidence limit expressions (Equations 3.19 and 3.21)

provide, at the very least, an estimate of the actual confidence limits. Thirdly, any
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two-dimensional results have no dependence on the axial coordinate. Since the two-

dimensional mill is a shortened version of the three-dimensional mill, some small

motion in the axial direction, as well as small rotations out of the plane of the mill

disk, exist and are neglected. Next, no breakage or grinding is considered though

some breakage and abrasion residue is present—one example is the wood dust gen-

erated when using the wooden charge. Finally, the time series of instrument results

are equivalent to the instantaneous spatial results of the instrument. In other words,

what is measured over time, as the instrument follows its trajectory, is equivalent to

having multiple instrumented balls at a point in time, at the positions defined by the

trajectory of the instrumented ball. This argument exploits the time symmetry of

a steady state condition where instantaneous differences on a microscopic level are

washed out at the macroscopic level, particularly when in the regime of large statis-

tics. In certain case, this assumption is extended. The time series behavior of an

element of the charge (here, the instrument) is equivalent to the spatial behavior of

the whole charge, mass properties notwithstanding. For example, the determination

of the position of the instrumented ball, over a number of rotations of the mill, is

assumed to accurately represent an instantaneous configuration of the charge.

3.6 Summary

The instrumented ball, in conjunction with other instruments—in this case, a

camera system—can produce a number of in-situ measurements pertaining to the

charge. Furthermore, the designed instrumented ball is capable of measuring the

rotations rates (3-axis). This type of measurement is new to tumbling mills, with the

advantage of providing the possibility of easily calculating an energy term (Equation
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3.4). Similarly, a DEM model can be programmed to produce an output equivalent

to the instrument measurements, the in-silico measurements. By construction, the

laboratory mill, the charge, and the instrumented ball geometry are simple, thereby

simplifying the implementation of the simulation. The statistical analysis of both the

in-situ and the in-silico measurements each give a set of moments. If the simulation

is a faithful model of the mill dynamics, then, within error, the moments will agree.

The matching of in-situ and in-silico moments can be used to identify an accurate

DEM model of the mill.
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CHAPTER 4

Observations and Results

Based on the measurements provided by the instrumented ball, in conjunction

with the camera system, a number of physical quantities are determined. A subset of

these measurements—the rotation rates in particular—are obtained using an instru-

mented ball evolving with the charge. The rotation rates have not been measured

prior to the development of this instrumented ball. The results are presented here

in the form of energies, as defined by Equations 3.3, 3.4 and 3.5. These energies can

also be simulated. From both the simulated and experimental energies, the mean

and the standard deviation, collectively referred to here as the moments, can be

found. The comparison between simulated and experimental moments of the ener-

gies allow the identification of accurate simulations. Any differences point to areas

where more development is needed. Prior to this, the performance characteristics of

the instrumented ball are given.

4.1 Instrumentation

4.1.1 Instrumented Ball

To verify the operation of the rotation rate sensors, the instrumented ball is

fixed to the shell of the empty mill. The mill is rotated at different known rates.

At the same time, the instrumented ball collects data. The mill rotation rates, as

measured externally and as measured by the instrumented ball, are compared in

Figure 4–1 [MLR+08]. A properly operating instrumented ball must agree with the
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Figure 4–1: A verification of the rotation sensor

external rotation rate measurement. As expected, the instrumented ball measures

rotation rates accurately, within error (see Equation 3.19 and 3.21, with a 95 percent

confidence limit). When the mill is stationary, the rate sensors output is noise. This

signal is shown in Figure 4–2.

The cumulative distribution of the noise is plotted in Figure 4–3. In addition,

a Gaussian distribution is fit to the data. Therefore, the noise present in the rota-

tion rate sensors can be accurately characterized as Gaussian noise, with properties

summarized in Table 4–1. Furthermore, the measurement limit of the rotation rate

sensor is known. Each axis can measure a rotation rate less than 5.23 rad/s. Above

this rate, the sensor output saturates. To account for these sensor limitations, noise
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Figure 4–2: Time series of the rotation rate sensor noise (y-axis)
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Figure 4–3: the cumulative distribution of the sensor noise (y-axis)

is added to the DEM rotation results and a saturation filter clips the simulated rota-

tion rate measurements, mirroring the operation of the sensor. Thus, the comparison

of experimental and simulated results is between similar values.

Table 4–1: The rotation rate sensor noise characteristics

Parameter Estimate (rad/s) Standard Error (rad/s)

Mean 6.02× 10−17 4.43× 10−4

Standard Deviation 9.89× 10−2 3.13× 10−4

4.1.2 Camera System

The camera system provides the capability to track the positions of the marked

instrumented ball as a function of time, as pictured in Figure 4–4. From the Matlab
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Figure 4–4: A picture of the operating mill with a measured instrumented ball
trajectory overlay

analysis, the camera system is known to give accurate positions of the tracked target

[Piced].

4.2 Mill

4.2.1 Spherical Charge Configuration

4.2.2 Instrumented Ball

In this section, the three-dimensional configuration of the mill is used as the

experimental platform. The charge of the mill consists of spherical, wooden balls.

The properties of this charge are summarized in Table 3–6. The number of balls used

is constant, giving a fractional fill level equal to 30 percent. The adjustable lifter

angle is set to 0◦, such that a perpendicular lifter face is presented to the charge.
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Table 4–2: In-Silico energy rates-of-change statistics

Year Speed Ērot (J) 95 σrot (J)

2006 60 0.0430 0.0304
70 0.0533 0.0332

2007 60 0.0438 0.0305
70 0.0548 0.0326

4.2.3 Repeatability

When the mill (3D configuration) is operated at 60 and 70 percent critical speed,

with the aluminum instrumented ball added to the wooden charge, the distribution

of the rotational kinetic energy, as defined by Equation 3.4, is obtained. The same

configurations were repeated six months later. The results are shown in Figure 4–5,

and the moments of the distributions are compared in Table 4–2. The differences be-

tween the moments are less than 2 percent. Therefore, repeated experiments produce

the same distribution; it is a characteristic of the charge, for a given configuration of

the mill. This result is extended to the translational kinetic energy and the potential

energy. The use of the translational kinetic energy and potential energy distributions

as characteristics of the charge is supported by the results obtained by McBride et

al. [MGPC04]. In their work, the spatial distributions of the charge and the velocity

distributions over the cross-section of the mill (experimental and simulated) do not

change and are used as a basis for comparison (Figure 2–25). If these results are

integrated over the whole cross-sectional area, what is obtained is a distribution of

the velocities (or positions), at a point in time, for the whole mill area. In steady

state, this distribution at a point in time is assumed equivalent to the distribution of

the values measured over time for one of the elements (the instrumented ball in this

101



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rotational Kinetic Energy (J)

E
m

p
ir
ic

al
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

 D
is

tr
ib

u
ti
on

ball, 60% critical - 2006
ball, 60% critical - 2007
ball, 70% critical - 2006
ball, 70% critical - 2007

Figure 4–5: The rotational kinetic energy distribution repeatability [MLRC07]

case), as is argued in Section 3.5.6. The time-series result is what is obtained when

the instrumented ball and camera system data are analyzed. Therefore, the results

obtained here with the instruments characterize the charge, as do the McBride et

al. results, as long as the mill remains in steady state. To some extent, the work of

Mishra and Cheung (Figure 2–24) supports this statement, though this is a weaker

argument due to the observed variability in their distributions.

In the three dimensional configuration, it is possible to determine the measured

mean rotational kinetic energy of the instrumented ball. In Figure 4–6, the mean

rotational kinetic energy is plotted as a function of the speed of the mill. From this
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Figure 4–6: The average experimental rotational kinetic energy of the instrumented
ball at different mill speeds

plot, it is noted that the rotational kinetic energy smoothly varies with the speed, in

parallel to observations of the mean energy, described in Section 5.2.

4.2.4 Cylindrical Charge Configuration

4.2.5 Instrumented Ball

In this section, the instrumented ball, in conjunction with the camera system, is

used within the two-dimensional configuration of the mill. Table 4–3 gives the mill

parameters. The same configuration is simulated using the CORSim model of the

Table 4–3: The 2D mill parameters

Mill Speed (percent critical) 38± 2
Number of 2D Instrumented Balls 2
Number of 2D Charge Elements 37
Lifter Angle (degrees) 75

103



mill. The experimental results are presented first, followed by the CORSim results.

Once the laboratory mill is stopped, and the data downloaded, the experimental

translational kinetic energy (Equation 3.3), the experimental rotational kinetic en-

ergy (Equation 3.4) and the experimental potential energy (Equation 3.5) can be

determined, as a function of the instrumented ball position. They are plotted in

Figures 4–7, 4–8 and 4–9, respectively. The spatial distribution of the translational

kinetic energy does not show as much variation as expected. This is caused by an

extreme event dominating the upper range of the color scale. In terms for kinetic

energy results, these are comparable to the simulation (see Section 4.2.7). The time

derivative of the kinetic and potential energies can be calculated since each measure-

ment has a time-stamp. The distribution of each of the energy terms, as defined

by Equation 3.6, is plotted. The probability distribution of the time rate-of-change

of the translational kinetic energy, the rotational kinetic energy and the potential

energy are plotted in Figures 4–10, 4–11 and 4–12, respectively. The mean and the

standard deviation of the rates-of-change of are given in Table 4–4. In this table, it

is observed that the mean values of all the energy terms are near zero and are much

smaller than the standard deviations. Though energy is being exchanged, as the

large standard deviations indicate, the net amount of energy exchanged over time,

between the instrumented ball and its environment, is near zero. This supports the

argument that the laboratory mill is operating in a steady state. This conclusion is

based on the instrumented ball results, which are extended to the charge. At any

given moment in time, some elements of the charge receive energy, while others lose

energy, giving a net energy exchange equal to zero.
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Figure 4–7: The spatial distribution of the translational kinetic energy—
instrumented ball

Table 4–4: In-Situ energy rates-of-change statistics

95 % confidence limits (W) 95 % confidence limits (W)
¯dE/dt (W) (Equation 3.19) SdE/dt (W) (Equation 3.21)

Ek 0.0841 (−0.5566, 0.7248) 16.9754 (16.5343, 17.4408)
Er −7.2605× 10−5 (−0.0045, 0.0044) 0.9573 (0.9542, 0.9605)
Ep −0.0604 (−0.2500, 0.1292) 4.4301 (4.3000, 4.5683)
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Figure 4–8: The spatial distribution of the rotational kinetic energy—instrumented
ball
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Figure 4–9: The spatial distribution of the potential energy—instrumented ball
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Figure 4–10: The probability distribution of the time rate-of-change of the transla-
tional kinetic energy
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Figure 4–11: The probability distribution of the time rate-of-change of the rotational
kinetic energy
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Figure 4–12: The probability distribution of the time rate-of-change of the potential
energy

110



Table 4–5: Initial CORSim model parameters

Model Parameter Value

Friction 0.35
Normal viscous damping ratio 0.4
Shear viscous damping ratio 0.4
Normal stiffness (N/m) 10000
Shear stiffness (N/m) 10000

On examining the distribution of the rotational kinetic energy (Figure 4–8), a

range of energy values, ranging from low (near 0 J) to high (0.04 J), is noted. Were

the instrumented ball to rotate at the same rate as the mill, its rotational kinetic

energy would be 0.011 J. Therefore, in the mill, the instrumented ball is observed

to rotate at rates larger than the rotation rate of the mill. Also, in certain cases,

the instrumented ball nearly stops rotating. This result, and the ability to obtain it,

with the help of the instrumented ball, is new to tumbling mills.

4.2.6 CORSIM

Parallel to the experimental results, a simulation reproduces the laboratory mill.

The simulation parameters are given in Table 4–5. These parameters are based on the

recommendation of the simulation specialists at COREM, the developers of CORSim.

These values are within the ranges published in the literature [Kre10, LLC99, Rab95,

MT61, FLFC98]. One of the elements simulated is the instrumented ball. From the

recorded states of the simulated instrumented ball, the translational kinetic energy,

the rotational kinetic energy and the potential energy are determined and plotted, as

a function of position, in Figures 4–13, 4–14, 4–15, respectively. As is the case for the

experimental results, the time rates-of-change of the translational kinetic energy, the
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Figure 4–13: The spatial distribution of the translational kinetic energy—CORSim

rotational kinetic energy and the potential energy can be calculated. They are plotted

in Figures 4–16, 4–17 and 4–18, respectively. The mean and standard deviation of

the simulated time rates-of-change are listed in Table 4–6. In keeping with the

experimental results, the means of the simulated translational kinetic energy, the

simulated rotational kinetic energy and the simulated potential energy are nearly

zero, whereas their standard deviations are large. The energy terms fluctuate, at

times increasing, at other times decreasing, but over time, the net energy exchange

is effectively zero. Again, this observation supports the argument that, similarly to

the experimental case, the simulation is steady state.
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Figure 4–14: The spatial distribution of the rotational kinetic energy—CORSim

Table 4–6: In-Silico energy rates-of-change statistics

95 % confidence limits (W) 95 % confidence limits (W)
¯dE/dt (W) (Equation 3.19) SdE/dt (W) (Equation 3.21)

Ek 1.1× 10−4 (−0.071459, 0.071682) 5.8371 (5.786954, 5.888176)
Er −3.8× 10−5 (−0.019890, 0.019813) 1.6191 (1.605146, 1.633222)
Ep −0.0172 (−0.047767, 0.013433) 2.4957 (2.474218, 2.517495)
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Figure 4–15: The spatial distribution of the potential energy—CORSim
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Figure 4–16: The probability distribution of the time rate-of-change of the transla-
tional kinetic energy
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Figure 4–17: The probability distribution of the time rate-of-change of the rotational
kinetic energy
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Figure 4–18: The probability distribution of the time rate-of-change of the potential
energy

4.2.7 Instrumented Ball and CORSim

For the purpose of comparison, both the experimental and simulated cumulative

distributions of the translational kinetic energy, the rotational kinetic energy and

the potential energy are plotted in Figures 4–19, 4–20 and 4–21. In all Figures,

differences are observed. The differences are confirmed when the measurands are

examined, as shown in Tables 4–7 and 4–8. No agreement between all measurands

can be found—the simulation fails to accurately reproduce the experimental results.

Since the geometry of the mill is simple, the simulation can reproduce it, includ-

ing the geometry at the ends; it is not considered to be the source of the differences.

Transients are not the cause of the differences since, in both the experimental and

simulated cases, the condition of steady state has been established. However, the
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Figure 4–19: The cumulative distribution of the translational kinetic energy

contact model and its parameters may not reflect the forces within the mill. This is

addressed in Section 4.2.8.

4.2.8 Free Parameter DEM

The lack of agreement between the laboratory measurements and the simulation

is problematic. The methodology described in Section 3.5 was meant to resolve

this by identifying the simulations in agreement with the measurements. This is

accomplished as follows. First, a set of simulations, over four thousand in this case,

is prepared and run. The simulation parameters range over the values given in Table

4–9. Next, the first and second moments are calculated for the translational kinetic

energy, the rotational kinetic energy, the potential energy and the specific power,

117



0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Rotational Kinetic Energy (J)

C
D

F

CORSim
instrumented ball

Figure 4–20: The cumulative distribution of the rotational kinetic energy

Table 4–7: In-Situ energy and power: mean, standard deviation and confidence
limits

Ep Ek Er

Mean (J) 2.3715 0.1510 0.0165
Mean Confidence Limit (95%) (J) (2.3103, 2.4326) (0.1427, 0.1593) (0.0158, 0.0183)
Standard Deviation (J) 1.5322 0.2075 0.0157
Standard Deviation (1.4901, 1.5766) (0.2018, 0.2135 ) (0.0152, 0.0161)
Confidence Limit (95%) (J)

Mean Specific Power, pM (W/kg) 3.365
Mean Confidence Limit (95%) (W/kg) (3.217,3.512)
Standard Deviation of the Specific Power (W/kg) 4.099
Standard Deviation Confidence Limit (95%) (W/kg) (3.997,4.206)
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Figure 4–21: The cumulative distribution of the potential energy

Table 4–8: In-Silico (initial) energy and power: mean, standard deviation and con-
fidence limits

Ep Ek Er

Mean (J) 2.1173 0.1461 0.0201
Mean Confidence Limit (95%) (J) (2.0239 , 2.2107) (0.13357, 0.15863) (0.019052, 0.021148)
Standard Deviation (J) 1.3891 0.1864 0.0156
Standard Deviation (1.3257, 1.4578) (0.1779, 0.19562) (0.014889, 0.016372)
Confidence Limit (95%) (J)

Mean Specific Power, pM (W/kg) 3.104
Mean Confidence Limit (95%) (W/kg) (2.7928,3.4152)
Standard Deviation of the Specific Power (W/kg) 4.631
Standard Deviation Confidence Limit (95%) (W/kg) (4.4198,4.8601)
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Table 4–9: Range of the simulation parameters

Friction coefficient 0.1 . . . 0.5
Normal viscous damping ratio 0.1 . . . 0.6
Tangential viscous damping ratio 0.1 . . . 0.6
Normal stiffness (N/m) 5000 . . . 25000
Tangential stiffness (N/m) 5000 . . . 25000

both from the experimental results and the simulation. In addition, the confidence

limit can be determined for each of the moments. The value of the moments will lie,

95% of the time, within the range defined by the confidence limits. The confidence

limit is a reflection of the limitations of sampled data; sampled data only give an

estimate of the moments, with error.

Finally, each of the in-silico moments (the measurands) is compared with its

in-situ equivalent. These results are presented in Figures 4–23, 4–24 and 4–25.

In Figure 4–23, the mean values, and their confidence limits, of the experimental

energies are plotted over the mean values, and confidence limits, of the simulated

energies. Similarly for Figures 4–24 and 4–25, where the standard deviations and

specific power results are plotted, respectively. If the confidence ranges overlap for all

moments, the simulation is valid—it is in agreement with the experimental results,

within error. If this is not the case, the simulation is rejected. From the results,

it is seen that a simulation, where the moments match the experimental results,

exists. As shown in Figure 4–22, as the number of measurands used increases, the

number of simulations capable of reproducing the measurands decreases. With a

set of eight measurands, only one solution is found, with model parameters given in

Table 4–10. The measurands of this solution are listed in Table 4–11. When these
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Figure 4–22: Number of valid simulations for a given number of measurands
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results are compared with the experimental results (Table 4–7), it is noted that,

within error (the confidence limits), there is agreement, in contrast with the initial

simulation (Table 4–8). The quality of this best-fit solution is weaker than desired,

as illustrated by Figures 4–26, 4–27 and 4–28. There is improved agreement with

the translational kinetic energy, as demonstrated in Figure 4–27, as is the case for

the potential energy (Figure 4–28). When compared to the initial simulation, the

best-fit simulated potential energy distribution is an improvement, but some differ-

ences remain. This difference is pronounced at higher potential energies, where the

proportion of higher energies in the simulated case is lower than in the experimental

case. Since the potential energy increases linearly with height, it is concluded that

the simulated charge does not dwell long enough above the center-of-circulation, par-

ticularly near the shoulder. Therefore, the behavior of the charge at high positions

requires more development. Finally, the rotational kinetic energy is, within error, in

agreement with the experimental results. This agreement is tenuous, likely due to

sampling errors. From the distribution, as plotted in Figure 4–26, it is observed that

the in-silico rotational kinetic energy is higher than the experimental result—that

is, the higher values of rotational kinetic energy occur at a higher proportion than is

experimentally observed. When compared to a simulation at a lower mill speed, a

better agreement with the experimental results is observed. Since the kinetic energy

is in good agreement, then the velocity evolves appropriately. Therefore, the gov-

erning equation ( Equation 2.29) adequately describes the dynamics, including the

contact forces (ref. Table 2–4 for DEM contact models). The problem lies with the

rotational equation of motion, Equation 2.30. If the charge is over-rotating, then the
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Table 4–10: Best simulation parameters

Friction coefficient 0.5
Normal viscous damping ratio 0.3
Tangential viscous damping ratio 0.4
Normal stiffness (N/m) 10000
Tangential stiffness (N/m) 20000

applied torques are too high. In the case of CORSim, the torque model is

mt = R× ft (4.1)

where R is the radius vector of the body (constant magnitude in this case) and

ft is the tangential contact force. As stated above, inappropriate contact forces

would have an effect on the velocity and, consequently, on the translational kinetic

energy, which is not the case. The radius vector has a constant magnitude—it is a

charge property; it is not expected to have an effect on the dynamics. Therefore,

it is concluded that the contact model is appropriate, as it generates translational

kinetic energy distributions in agreement, within error, with the experimental results.

Furthermore, from the rotational kinetic energy distributions, the contact model

induces rotation rates far greater than what is observed in the laboratory. Thus, it is

concluded that while the force contact model is adequate, the torque contact model

is not.
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Figure 4–25: The mean and standard deviation (fluctuation) of the simulated (blue)
specific power compared to the measured specific power (red)
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Figure 4–26: Cumulative distribution of the rotational kinetic energy with the COR-
Sim best fit

Table 4–11: In-Silico (best fit) energy and power: mean, standard deviation and
confidence limits

Ep Ek Er

Mean (J) 2.5202 0.1586 0.0201
Mean Confidence Limit (95%) (J) (2.4236, 2.6168) (0.14392, 0.17328) (0.01827, 0.02193)
Standard Deviation (J) 1.4373 0.2185 0.0158
Standard Deviation (1.3718, 1.5084) (0.20854, 0.22931) (0.015079, 0.016582)
Confidence Limit (95%) (J)

Mean Specific Power, pM (W/kg) 3.172
Mean Confidence Limit (95%) (W/kg) (2.8805, 3.4635)
Standard Deviation of the Specific Power (W/kg) 4.3367
Standard Deviation Confidence Limit (95%) (W/kg) (4.1389, 4.5513)
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Figure 4–27: Cumulative distribution of the translational kinetic energy with the
CORSim best fit
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Figure 4–28: Cumulative distribution of the potential energy with the CORSim best
fit
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4.3 Summary

The instrumented ball is able to operate within an operating mill, and in the

process, measure the rotation rates (3-axis), the acceleration (3-axis) and the temper-

ature. For the first time, the instrumented ball permits the measurement of rotation

rates of an element of the charge. Furthermore, the instrumented ball is able to

produce repeatable results, for identically configured mills, as illustrated in Figure

4–5. The instrumented ball and the camera system allow for the determination of

energy distributions, an important variation of past analyses of a tumbling mill.

Based on the plots and moments of these distributions, it is possible to compare the

in-silico and in-situ results. Though the distribution curves appear to be similar in

nature, significant differences are observed when the initial simulation is compared

with the experimental results (Figures 4–19, 4–20 and 4–21). Unlike the McBride et

al. analysis [MGPC04], the comparison is not between spatial (area) distributions,

but between moments—scalars—simplifying the evaluation. A similar analysis shows

that both the experimental and simulated results are steady state, supporting a num-

ber of assumptions. Based on the comparison of moments (measurands), it is noted

that the initial configuration of the simulation is not in agreement with the experi-

mental results. Using the methodology outlined in Section 3.5, the moments are used

to identify the DEMs in agreement, within error, with the experimental results. The

experimental results are used to tune the DEM. One simulation, out of 4500, is able

to match all eight measurands. Therefore, through the measurands obtained with

the use of the instrumented ball and the camera system, it is possible to identify the

simulation (and its parameters) that best reflects the operation of the mill. Here,
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this agreement is found to be marginal. Two fronts are identified as requiring some

improvements. Firstly, the instrumented ball does not dwell long enough above the

center-of-circulation, particularly near the shoulder, as shown by the distribution of

the potential energy (Figure 4–21). Secondly, the differences in the rotational ki-

netic energy, contrasted with the good agreement between the translational kinetic

energy distributions suggest the need for a reduction in the applied torque, without

changing the force contact model.

In this chapter, the objectives of this study are met. It is demonstrated that

an instrumented ball can be designed and built, with improved electronics, able to

measure rotation rates. As part of a sensor suite, a set of measurements are ob-

tained, allowing the determination of the translational kinetic energy, the rotational

kinetic energy and the potential energy. From the measurements, distributions are

found. Also, the distributions are not associated with the cross-section of the mill,

in contrast to, and different from the past work. From these distributions, it is pos-

sible to generate a set of measurands (moments), with which the experimental and

simulation results can be compared. Though the experimental results are consistent

with the DEM results, differences are observed. By varying the DEM parameters,

the simulation that best represents the mill is found, tuning the DEM to enhance its

accuracy. Finally, from the remaining differences, areas in need of improvement are

identified.

In the next chapter, the use of the distribution-based description of the mill is

expanded. In addition, a measurand-based metric, for the evaluation of the accuracy

of DEMs, is introduced.

131



CHAPTER 5

Discussion

The functionality and usefulness of the instrumented ball and the camera system,

in the understanding of mill dynamics, in parallel with their interaction with DEM

models, were shown in the last chapter. Here, the results are used to expand the

usefulness of the distribution-based description of the mill dynamics. Moreover, a

countable set of measurands is used to constrain the DEM, forcing the elimination of

unphysical simulations. This set of measurands is developed into an accuracy metric

for DEMs.

5.1 Instrumentation, Measurands and Model Order

The instrumented ball demonstrates the ability to operate within a working

mill. In doing so, it is possible to measure the acceleration, the rotation rate and the

temperature within the mill [MLRC06a]. Furthermore, the platform is plastic. Most

components can be upgraded if need be and, expansion is easily achieved since a

number of analog and digital communication channels are presently free. Therefore,

more measurands can be added either through the incorporation of another sensor

system or by expanding the number of instruments within the instrumented ball.

The advantage of the second option is that the instrumented ball evolves with the

charge, allowing for internal measurements along the trajectory of the instrumented

ball.
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By using a selected set of sensors, a set of measurands, M , is constructed. Since

the measurands are finite, they are countable, as expressed below.

∀M, ∃N ∈ N s.t. fc :M 7−→ N (5.1)

Furthermore, by using the methodology outlined in Section 3.5, a number of valid

DEM solutions, ns for a particular measurement set, M , can be found.

∀M, ∃ns ∈ N s.t. fv :M 7−→ ns (5.2)

Both these expressions allow for a model order to be defined:

O ≡ sup[fc(M)H(fv(M)− 1)] ∀M (5.3)

where H is the right-continuous Heaviside step function. The model order, O, is

a measure of how many measurands a given model can simultaneously satisfy. The

larger the model order, the more accurate the model, since it is able to simultaneously

agree with more measurements or quantities derived thereof. The measurements

used in the determination of the model order must be based on quantities that are

characteristics of the system. A single trajectory is not a characteristic of the system

since it is not invariant with respect to reproducibility, whereas energy distributions,

the toe position, the shoulder position, and the COC position are.

In the case of CORSim, the model used to simulate the laboratory mill, the

number of solutions capable of reproducing the measurands rapidly decreases as the

number of measurands increases (Figure 5–1). With only one measurand, several

thousand simulations are able to reproduce the experimental results. With four
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measurands, the number of valid simulation falls to several hundred. For a measurand

set with eight elements, only one simulation is able to reproduce the measurands.

Therefore, the order O of the CORSim model is 8. The CORSim model order may

be 9 (or higher) but no additional measurand, which gives at least one valid solution,

has been identified. Until one is identified, the CORSim model order remains at 8.

Possible candidate measurands exist. For instance, an acoustic analysis can give both

measured and simulated results [HMR+on, MZP+06]. As shown in Figures 5–2 and

5–3, the Fourier transforms of the acoustic signal amplitude, both measured in the

lab and calculated from the DEM model shell forces, show a number of interesting

features that can become measurands . The resonant peaks, present in the in-situ and

in-silico results, are one example. From the acoustic figures, two peaks are observed

in both spectra, one at f/fmill = 1 and another at f/fmill = 2. Quantities such as

the relative strength of the two resonances can generate measurands. Also present,

but not as visible, is a peak due to the lifters at f/fmill = 12. The ratio between

the amplitude at this frequency and the peak at the mill frequency, f/fmill = 1,

may be another measurand. Additionally, during the experiment, the temperature

of the instrumented ball is recorded. On examination of the data, it is noted that the

temperature increases. Therefore, either the temperature difference or the rate of

temperature increase may be a third measurand. Incorporating temperature within

this framework would require adding thermal modeling to DEMs [DDT07, FHO07],

thereby creating a more detailed model of the mill.
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Figure 5–1: Number of valid simulations for a given number of measurands
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5.2 Entropy and Energy Fluctuations

In statistical mechanics, the entropy is a measure of the accessible states of the

system. The entropy can be interpreted as the quantity of disorder in a system. For

discrete systems, the entropy is [Hua87, PM05]

SN/k = −
N
∑

i=1

Pi ln(Pi) (5.4)

where k is a positive constant, Pi is the probability of being in the state i, and N is

the total number of states. For a continuous system, with a density of states p(x),

the entropy is generalized by [MNB08]

Sc/k = −
∫

Ω

p(x) ln(p(x)) dx (5.5)

where Ω = {x|p(x) > 0} is the support set of x. The energy distribution of the

instrumented ball, P (E), can be interpreted as being the probability of finding the

ball in a state with an energy between the values E and E+∆E. This gives rise to the

possibility of estimating the entropy of an element of the charge by applying either

Equation 5.4 to the energy distribution, or Equation 5.5 to the energy distribution

density. Since the in-situ and in-silico energies are sampled, the discrete entropy

is used (Equation 5.4). To obtain an estimate of the continuous entropy (Equation

5.5), a series of finer bins are used to calculate the discrete entropy.

Sc/k ∼= − lim
N→∞

SN/k (5.6)

A quadratic function, fitting the sequence of SN/k is found, and plotted, along with

the entropy sequence, in Figure 5–4. From the quadratic equation, the maximum
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Figure 5–4: entropy estimate as the probability bin number is increased

of the entropy is determined and is used as an estimate for Sc/k. This maximal

estimate is extrapolated from the data and will, at present, have a significant error.

Nevertheless, it is useful in the discussion of the mill behavior. To reduce the error,

a larger data set must be collected, allowing for larger values of N . The entropy and

energy fluctuations are two quantities that may potentially allow a more detailed

understanding of the internal dynamics of the mill. As support for some of this

analysis, the concept of phase transition is presented. A phase transition occurs when

there is a singularity or a discontinuity in the free energy or one of its derivatives,

such as the heat capacity [Yeo92, Hua87]. Figure 5–5 is an example of a phase

transition. As the temperature of argon, T , approaches the critical temperature, Tc,

the specific heat, Cv/k, diverges; argon exhibits critical behavior as it approaches the
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Figure 5–5: An example of a phase transition—specific heat at constant volume of
Argon [Yeo92]

critical temperature. Below the critical temperature, one phase of argon is present;

above the critical temperature, another phase of argon exists.

Using the CORSim simulator, with the parameters set to the values identified

during the process to find agreement between in-silico and in-situ results (Section

4.2.7), a number of simulations at different mill speeds are compiled. From these

simulations, the entropy (S/k), the mean energy (µE), which is the mean of the

sum of the potential and kinetic energy, and the variance of the energy (σE) are

calculated. The reason the variance is plotted lies with the relationship, in certain

simple thermodynamic system, between energy fluctuations and the heat capacity
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Table 5–1: The critical speeds of the laboratory mill

Critical Speed Expression value (% of Nc,Davis)

Nc,Davis 100
Nc,Rose 104

Nc,Watanabe 117
Nc,Hooke 155

[MRdR+09],

Cv =
∂E

∂T
=

σ2
E

kBT 2
(5.7)

where E is the internal energy, T is the temperature, σE is the variance of the energy

distribution, and kB is the Boltzmann constant. This simple relation is likely not

valid for the case of the mill charge, but underlines a relationship between fluctua-

tions and the heat capacity. Since the heat capacity can have critical behavior, as

illustrated in Figure 5–5, the energy fluctuations may also display critical behavior.

The results of this analysis are presented in Figure 5–6. Though the number of par-

ticles is low in this configuration (two-dimensional), several interesting features are

observed in Figure 5–6. As the speed of the mill increases past the critical speed,

both the entropy, the mean energy and the variance of the energy exhibit a behav-

ior similar to a phase transition, as illustrated in Figure 5–5. A transition speed,

ΩT , about which both the entropy, the mean energy and the variance of the energy

exhibit critical behavior, can be identified. For the configuration of the laboratory

mill, as described in Chapter 3, the transition speed, ΩT , occurs at approximately

150 % critical speed. For the sake of comparison, a table of critical speeds (Table

5–1), as defined in Section 1.3.6, is compiled using the laboratory mill parameters.

The onset of centrifuging of the charge, beginning with the smallest sized particles,
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Figure 5–6: Simulation entropy, mean energy and total energy fluctuations as mill
speed is increased
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occurs at the critical speed (Equation 1.6). Since the particle size of the mill is

uniform and well defined (Tables 3–1 and 3–7), the speed at which the actual cen-

trifugal forces begin to dominate is the Rose critical speed, Nc,Rose (Equation 1.2).

Here, the Rose critical speed is approximately 104 % critical. At this speed, any

element of the charge, with a diameter less than 11.5 cm and in contact with the

wall, is centrifuged to the mill shell. However, this does not prevent sliding along

the walls of the shell. Watanabe defines a critical speed at which all of the charge

centrifuges (Equation 1.3). For the laboratory mill, this value is approximately 117

% critical. Finally, Hooke defines a critical speed at which the gravitational forces

are overcome by centrifugal friction effect (Equation 1.5), even preventing the sliding

motion along the shell. Here, the Hooke critical speed has a value of 155 % critical.

Based on the behavior of the entropy, the mean energy and the energy fluctuation,

a new definition of the critical speed is introduced:

The critical speed of a mill is the speed at which the entropy, the mean

energy or the standard deviation of the energy exhibit critical behavior.

Unlike other definitions, which rely on geometric and dynamic analyses of the charge,

this new definition is based on distributions and moments (see Section 1.3.6). It is

argued that the critical point observed in Figure 5–6 represents a transition point.

Moreover, this transition point is possibly the Hooke critical speed. The Hooke

speed defines a mill rotation rate at which the charge centrifuges to the extent that

the induced frictional force are large enough to prevent any motion. The charge is

locked. This configuration may be described as a jammed state. A jammed state

occurs when the dynamics slow down dramatically to the point where the system
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can no longer relax and becomes rigid [Bir07]. States analogous to jammed states

occur in colloidal solutions, glasses and similar amorphous solids. Consequently, a

better understanding of mill dynamics may be possible by adopting and leveraging

the analysis of these other granular systems [EO89], despite the difficulty of justifying

some of this existing formalism from first principles[Her93].

At present, there are no reasons why other critical points would not exist. For

example, Rolf and Vongluekiet observe distinct changes in the impact energy distri-

butions as the mill speed increases (see Section 2.3). Below speed of 100 % critical,

a number of maxima are found in the distributions. Above the critical speed, the

peaks shift to levels below the instrument measurement range (Figure 2–8). This

suggests the presence of a second critical point, at either the Davis critical speed or

the Rose critical speed. These other critical points may be identified by adopting

other techniques from the field of thermal and statistical physics, such as the corre-

lation function [Yeo92]. Eventually, a description of the mill, analogous to a phase

diagram, could be developed once more critical points are found. This description

of the mill could simplify its operation by synthesizing the states of the mill.

Additionally, through the development of a free energy and an effective temper-

ature, the thermodynamics-inspired description of the mill could be broadened, as

illustrated by Equation 5.8, a standard thermodynamic equation [Hua87],

A = U − TS (5.8)

where A is the free energy, U is the internal energy, T is the effective temperature,

and S is the entropy. A possible method to find the effective temperature is the use
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of the fluctuation theorem, as described by Equation 5.9 [FM04].

ln

(

Π(pτ )

Π(−pτ )

)

=
pττP̄

Teff

(5.9)

where the ratio of probabilities to find both positive and negative power fluctuations,

Π(pτ ) and Π(−pτ ) respectively, is related to the dimensionless power fluctuation, pτ ,

over a time period, τ , at an average power, P̄ , and at an effective temperature, Teff .

Using the fluctuation theorem, Feitosa and Menon are able to find an effective tem-

perature for a collection of inelastic beads, maintained in a fluidized steady state by

external mechanical driving mechanism. A similar analysis could apply to tumbling

mills.

Finally, it is noted that the in-silico mean energy, plotted in Figure 5–6 (middle),

varies smoothly with the speed of the mill, as does the in-situ rotational kinetic

energy (Figure 4–6).

5.3 Distributions

The nature of the distribution of particles gives some insight into the dynamics

of the particles. From quantum mechanics, an example is the fundamental particles:

bosons and fermions. Bosons, such as photons, are the class of particles having

the property of being indistinguishable, and having no restriction in the number

of particles in a given state. On the other hand, fermions, such as electrons, are

indistinguishable, but limit the number of particles in any given state to two. These

properties of these two types of particles gives rise to very different behaviors and

dynamics [SMM89]. These differences are reflected in their statistics. For instance,

the distribution function for photons in thermal equilibrium at temperature, T, is
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described by the Bose-Einstein distribution. The probability of the bosons being in

the energy state, E, is

fBE =
1

BeE/kT − 1
(5.10)

where B is an appropriate constant. Free electrons follow a different distribution.

They follow Fermi-Dirac statistics, where the probability of the fermions being in an

energy state, E, is given by

fFD =
1

e(E−EF )/kT + 1
(5.11)

where EF is the Fermi energy. At T=0, all states above the EF level are empty, all

states below are filled. These two classes of particles point to the strong relationship

between the nature of the dynamics and the statistics of the particles. Clearly the mill

is not a quantum system, but the previous example illustrates how the identification

of the distribution could provide some insight into the behavior of the charge. For

instance, if the total energy follows a normal distribution, the entropy, as defined by

Equation 5.5, becomes

S/k =
1

2
ln(2πeσ2) (5.12)

5.4 Moments

Using the methodology outlined in Chapter 2, some differences will remain due

to the use of only the first two moments. Although three different distributions may

have the same mean and standard deviation, as illustrated in Figure 5–7, they differ

since the other moments are not the same. The condition for agreement (Equation

3.24) requires all the moments to agree. In practice, this can be relaxed to a condition
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where the number of moments are chosen such that they are sufficient to have in-situ

and in-silico agreement within tolerable error.

In this case, the distributions do indicate the necessity of higher order moments.

The skewness, µ3, a measure of the asymmetry about the mean, is defined as

µ3 =
E((x− µ)3)

σ3
(5.13)

where µ is the mean. If the skewness is negative, the random variable is spread out

more for values less than the mean than for values greater than the mean; inversely for

a positive skewness. For the laboratory mill, some degree of asymmetry exists since

the standard deviation of the kinetic energy is larger than the mean value. Without
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Table 5–2: The skewness of the in-situ rotational kinetic energy, translational kinetic
energy and potential energy

Energy Term Skewness

Rotational kinetic energy 0.997
Translational kinetic energy 10.637
Potential energy 0.3048

any asymmetry or skewness, the larger standard deviation implies the existence of

negative energies, which is not the case for the kinetic energy. The skewness of the

data collected when the mill is in its cylindrical charge configuration is found in Table

5–2. Having the simulation match the experimental skewness values, within error, is

a step to be added to the methodology presented in Section 3.5.

5.5 Summary

The distribution-based description of the mill charge is extended to give some

useful results. Firstly, the countable set of simulations satisfying a given and count-

able set (or subset) of measurands is found. Moreover, the count of valid solution

falls as the set of measurands grows. This provides the opportunity to define a mea-

sure for model accuracy, the model order. The model order is the maximal number

of measurands a simulation can satisfy simultaneously. This can be used to guide a

user in the selection of DEM implementation. If more accuracy is required, a model

with a higher order should be selected. Finally, the set of measurands is not limited

to eight. More can be added by adding higher moments or other measurements, such

as the acoustic results, to the measurand set.

The distributions of energies are also determined from the measurements. These

same distributions can be generated by the simulation. Unlike the distributions over
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the cross-section area, these distribution provide a quick means to evaluate the differ-

ences between the simulations and the measurements. Furthermore, the distribution

description allows for the introduction of a number of concepts from thermodynamics

and statistical mechanics. Though not directly applicable, the concepts are never-

theless applied to this system, similar to what is done for colloids and granular flows,

where similar applicability problems are present. From the measurement and the dis-

tributions, the entropy, the mean energy and the energy fluctuation are calculated.

Upon examination of the in-silico results, critical behavior, similar to phase transi-

tions, is seen. The critical behavior allows for an additional definition of the critical

speed of the mill. The critical speed is defined as the speed at which the entropy, the

mean energy or the energy fluctuation exhibit critical behavior. The critical point

identified here appears to be related to the Hooke definition of the critical speed.

Additionally, this new critical point is not necessarily unique. Therefore, it may be

possible to build a state diagram, similar to a phase diagram, as a description of the

state of the charge. Finally, identifying the nature of the distribution may help in

understanding the nature of the dynamics.
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CHAPTER 6

Conclusion

Mineral processing is an important part of human technology, as witnessed by its

use throughout human history. It is the principal method used to obtain many of the

minerals used today. An essential aspect of mineral processing is the breakdown of

the ore. This is done in cases where the valuable mineral is not readily accessible, such

as when it is trapped by surrounding material. How the mineral is made accessible is

by either crushing or grinding, collectively known as comminution. Machinery such

as the grinding mill, are used for such tasks.

The grinding mill operates by lifting the charge and dropping it back onto itself,

by virtue of the rotation of the mill, thus creating impact and grinding forces. The

complex behavior of the mill, coupled with its low efficiency, drive the interest in

studying grinding mills. Unfortunately, the nature of the machine makes embedding

instruments within the mill, where the charge properties can be measured, difficult.

With the ability to operate within the charge, instrumented balls are a class of

instrumentation able to overcome this problem. Therefore, the goal is to develop a

better understanding of tumbling mill dynamics through the development and use of

an instrumented ball. This is accomplished by addressing the following objectives:

1. To show that an instrumented ball can be designed and built, with improved

electronics;
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2. To show that it is possible to obtain measurements from the mill interior,

particularly measurements that are not impact forces;

3. To show that these measurements allow for a different type of analysis of the

mill;

4. To show that the data are comparable to DEM simulation results;

5. To show that the data are helpful with regards to DEMs.

(a) The instrument measurements can be used to verify that the DEM results

accurately represent the system;

(b) The instrument measurements can be used to tune the DEM simulations,

enhancing their accuracy; and

(c) The instrument measurements can be used to identify aspects of the DEMs

in need of improvement.

In this thesis, the objectives are met, as shown in Chapter 4. It is demonstrated

that an instrumented ball can be designed and built (Objective 1), with improved

electronics, able to measure rotation rates (Objective 2). With the assembly of the

sensor suite (instrumented ball and camera system), a set of measurements are ob-

tained, allowing the determination of the translational kinetic energy, the rotational

kinetic energy and the potential energy. From the measurements, distributions are

found and a set of measurands is generated, with which the experimental and sim-

ulation results are evaluated (Objective 3). Though the experimental results are

consistent with the initial DEM results, differences are observed (Objectives 4 and

5a). After analysis, it is concluded that the differences are due to the use of an

incorrect parameter set when solving the DEM. By systematically varying the DEM
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parameters, 4500 simulations results are produced, each calculating the same mea-

surands as the experimental run. Of the 4500 simulations, only one simulation that

best represents the mill is found. Since its parameter set is known, this method-

ology tunes the DEM, enhancing its accuracy (Objective 5b). Finally, from the

remaining differences, areas of improvement are identified (Objective 5c). For the

CORSim model, the behavior of the charge near the shoulder requires some correc-

tion. Also, the charge rotates faster than what is observed. Without changing the

contact forces, which leaves the translational kinetic energy distribution unchanged,

a reduced torque model is needed to slow the rotation rate.

As an extension to the above results, the set of countable simulations satisfying

a given and countable set (or subset) of measurands is found. Moreover, the valid

solution count falls as the set of measurands grows. This provides the opportunity

to define a measure for model accuracy, the model order. The model order is the

maximal number of measurands a simulation can satisfy simultaneously. This can be

used as a guide when selecting the implementation of the DEM model of the mill. If

more accuracy is required, a higher order model should be favored. Finally, the set of

measurands is not limited to eight. More measurands can be added by adding higher

moments or other measurements, such as the acoustic results, to the measurand set.

As is the case for the measurands, the energy distributions can have another

function. The distribution description allows for the introduction of a number of

concepts from thermodynamic and statistical mechanics. Disregarding any applica-

bility problems present, as is done in the study of granular flows, the entropy, the

mean energy and the energy fluctuation are calculated. From the in-silico results,
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critical behavior, similar to phase transitions, is seen. The speed about which the

critical behavior occurs is significant, and gives an additional definition of the crit-

ical speed of the mill. This new critical speed is defined as the speed at which the

entropy, the mean energy or the energy fluctuation exhibit critical behavior. The

critical point identified here appears to be related to the Hooke definition of the

critical speed. Additionally, this new critical point is not necessarily unique. There-

fore, it may be possible to build a state diagram, similar to a phase diagram, as a

description of the state of the charge.

6.1 Contribution to Knowledge

Several results are to be noted as contributions to knowledge. First, an instru-

mented ball, capable of measuring accelerations, rotation rates and temperature has

been built. Of these measurements, the rotation rates of an element of the charge

have never been measured before.

Next, the distributions of the potential energy, the translational kinetic energy

and the rotational kinetic energy, and their moments, are used to evaluate the agree-

ment between the in-situ and the in-silico mills. This permits the identification of

DEMs in agreement with the measurements, within error. This method is new to

comparing and tuning DEMs to the experimental results.

Furthering this work, the model order, a measure of a model’s ability to accu-

rately reproduce a number of measurements is defined.

Finally, the use of distributions, in the context of grinding mills, is extended with

the introduction of mill entropy, mean energy and energy fluctuation. From these

results, critical behavior is observed. Furthermore, a new critical speed is defined:
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the critical speed is the mill speed at which critical behavior in the entropy, the mean

energy or the energy fluctuation is observed.

6.2 Future Work

The development and use of the instrumented ball have provided another tool

for the measurement of mill states. Furthermore, its application, within a sensor

suite, provided the basis for an analysis, which adopted a thermodynamics-based

formalism. These findings lead to a number of open tasks, which may be the subject

of further research.

1. Adding Capabilities to the Sensor System: The sensors used to measure the

mill states can be expanded. This includes the addition of the wear sensor

to the instrumented ball [RML+06], the use of the acoustic sensors as part

of the measurement set [HMR+on], or the coupling of the instrumented ball

to the X-ray or PEPT measurement systems [BGC+09, MGPC04]. Also, the

inclusion, within the analysis methodology, of all the sensors currently on the

instrumented ball—the accelerometer and the temperature sensor—is a step to

be taken.

2. Distributions, Entropy and State Diagrams: The determination of the entropy

of the mill was an approximation. A more precise way of estimating the en-

tropy must be found. The expansion of this thermodynamics-inspired analysis,

through the development of a free energy and an effective temperature, could

be the basis of an alternative description of the mill. Also, the search for critical

behavior must continue. Perhaps the use of an autocorrelation function may

aid in this task[Yeo92]. The result of this work may be a state diagram of the
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mill, analogous to the phase diagrams of materials. Finally, the identification

of the nature of the distributions is needed, as it provides some clues as to the

nature of the dynamics.

3. Pilot Mills: The use of the instrumented ball within a larger, industrial mill

is of interest. To accomplish this, a modified shell, capable of protecting the

electronics as the instrument evolves within a pilot mill must be constructed. A

ball in contact with the mill shell can spin at speeds greater than the maximum

rate the sensor can measure. Therefore, prior to pilot mill tests, it may be

necessary to find a sensor with a higher range.

4. Measurement Sets: The construction of measurement databases based on dif-

ferent mill fills, mill speeds, mill charge composition and mill configurations

(two and three dimensional mill configurations) is another task to be com-

pleted. By doing so, a number of DEM results, such as the entropy, can be

experimentally verified. Furthermore, the collection of more samples, for given

mill configurations, will help reduce the experimental errors.

5. In-Situ and In-Silico Comparison: The application of the present methodol-

ogy, with an expanded measurand set, to different DEM models, will permit

the comparison of DEM accuracies by assigning model order to each DEM.

The compilation of model orders will effectively build a list of DEM accuracies,

giving other users the ability to quickly evaluate models. Also, the drive to

improve the model accuracy will require the addition of more measurands to

the in-situ and in-silico comparison, such as the position of the center of cir-

culation, the toe and shoulder positions, critical points, and the higher order
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moments of the distributions. Finally, with the addition of temperature to the

measurand set, the DEMs will require more thermal development if it is to

account for any observed changes in temperature.
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