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Abstract

Natural image matting is the task of precisely estimating alpha mattes to separate fore-

ground objects from background images. Existing matting methods only focus on clas-

sical closed-set problems where object categories and data distributions are similar be-

tween training and test sets. However, in the open world setup, there exists a situation

where testing samples are drawn from a different distribution than the training data. To

handle this situation, we present the first open set matting (OSM) framework that con-

tains two networks: (1) an out-of-distribution (OOD) detection network to identify OOD

to-be-matted objects; and (2) an incremental few-shot learning matting module to en-

large the existing knowledge base of to-be-matted objects. Our OOD detection network

leverages metric-based prototype learning to be aware of unseen objects and increase

inter-class separability, utilizing intra-batch connections to enhance intra-class compact-

ness. Compared to other OOD detection methods, our network achieves state-of-the-art

performance on SIMD dataset. Further, our incremental few-shot learning matting mod-

ule improves the performance on unseen to-be-matted objects by gradually incorporating

novel classes into the existing knowledge base without catastrophic forgetting and over-

fitting.
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Abrégé

Le matage naturel des images consiste à estimer avec précision les caches alpha pour

séparer les objets de premier plan des images d’arrière-plan. Les méthodes de matage

existantes se concentrent uniquement sur les problèmes classiques en ensembles fermé

où les catégories d’objets et les distributions des données sont similaires entre les ensem-

bles d’apprentissage et de test. Cependant, dans la configuration du monde ouvert, il

existe une situation où les échantillons de test sont tirés d’une distribution différente de

celle des données d’apprentissage. Pour gérer cette situation, nous présentons le premier

cadre de matage en ensemble ouvert (OSM) qui contient deux réseaux : (1) un réseau de

détection hors distribution (OOD) pour identifier les objets OOD à mater ; et (2) un mod-

ule de matage d’apprentissage incrémental en apprentissage few shot pour élargir la base

de connaissances existante des objets à mater. Notre réseau de détection OOD s’appuie

sur l’apprentissage de prototypes basé sur la métrique pour être conscient des objets in-

connus et augmenter la séparabilité inter-classes en utilisant des connexions intra-lots

pour améliorer la compacité intra-classe. Comparé à d’autres méthodes de détection

OOD, notre réseau atteint des performances à l’état de l’art sur l’ensemble de données

SIMD. De plus, notre module de matage d’apprentissage incrémentiel en apprentissage

few shot améliore les performances sur les objets invisibles matage en incorporant progres-

sivement de nouvelles classes dans la base de connaissances existante sans oubli catas-

trophique ni surapprentissage.
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Marilyse Solis for comments on French abstract.

iii



Contribution of Authors

I completed this thesis on my own. This thesis is based on a joint work with Issam Hadj

Laradji, Liguang Zhou, and Derek Nowrouzezahrai, appearing at the BMVC 2022 con-

ference [203] as a spotlight. The paper link is https://bmvc2022.mpi-inf.mpg.de/

0092.pdf. Inspired by Liguang Zhou, I proposed this topic. Prof. Derek Nowrouzezahrai

introduced Dr. Issam Hadj Laradji to help me. I came up with the idea, conducted ex-

periments, and wrote the manuscript. Dr. Issam Hadj Laradji guided me throughout this

project, taught me how to write, polished the manuscript a bit, and taught/helped me do

the rebuttal.

iv

https://bmvc2022.mpi-inf.mpg.de/0092.pdf
https://bmvc2022.mpi-inf.mpg.de/0092.pdf


Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
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Chapter 1

Introduction

The goal of natural image matting is to estimate alpha mattes to exactly extract fore-

ground objects from background images. The matting problem can be formulated in a

general mathematical manner that an image I is defined as a linear combination of alpha

matte α, foreground F , and background B image,

I = αF + (1− α)B, (1.1)

where I is known, but F,B and α are unknown.

Apart from traditional matting approaches [4,28,31,52,57,61,80–82,146,153,166,167],

deep learning has presented its powerful capability in matting tasks, which can be di-

vided into three primary categories, including background-required [89, 124, 143, 179],

only-image input [75,83,85,93,125,170,200], and trimap-needed [29,35,86,94,102,104,121,

156, 157, 177]. We focus on the most popular trimap-needed matting approaches where

the trimap provides deterministic foreground, unknown, and background regions of an

image. After Cho et al. [29] introduced deep neural networks into image matting task,

Xu et al. [177] proposed a deep learning matting solution with a comprehensive matting

database, also known as the Adobe Image Matting dataset (AIM). Different from various

matting works that emerged after Xu et al.work, recently, Sun et al. [156] has identified
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Figure 1.1: The overview of our open set matting (OSM) framework. The out-of-

distribution (OOD) detection network detects unseen samples whose appearance within

unknown region of trimap is unseen during training. After annotation of a few unseen

samples, we conduct few-shot adaptation.

a bias issue of previous matting datasets, including AIM [177] and the Distinctions-646

dataset [125]. To this end, they introduced a more balanced Semantic Image Matting

Dataset (SIMD) as well as Semantic Image Matting network (SIM). The SIMD divides

data into 20 different object categories according to object appearance within unknown

region of trimap. Since the emergence of SIM, properly leveraging object information

into matting task has caught researchers’ interest. Although past matting methods have

shown excellent performance in existing datasets, we notice that previous matting meth-

ods only focus on closed-set object categories whose performance can be degraded when

encountering unseen objects. Therefore, we put matting into a real-world scenario and

consider it as an open set task that is able to detect out-of-distribution (OOD) to-be-matted

objects and find a matting performance balance between in-distribution (ID) and OOD to-

be-matted objects.

Despite well-investigated open set learning [137], especially open set recognition (OSR),

open set matting (OSM) remains an unexplored field. OSM is significantly valuable in
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practice because it makes detecting OOD to-be-matted objects possible, which can then

be annotated by humans to obtain desirable results. However, challenges arise when deal-

ing with OSM in the following aspects. First, in real application, there can exist various

kinds of matting objects that are unseen and challenging for the matting network trained

on the closed-set knowledge base. Hence, identifying approaches for a closed-world dis-

criminative model to be aware of unseen objects and training matting networks to mat

new objects with a few labels are worth exploring and researching. Second, the network

could suffer from interference of complex foreground and background information since

it only detects whether the appearance of to-be-matted objects within unknown region of

trimaps is OOD. Hence, without enhancing the expressiveness ability of the network, the

capability of OOD detection could be degraded.

Therefore, in this paper, we propose the first open set matting framework: (1) an OOD

detection network to identify OOD to-be-matted objects; (2) an incremental few-shot

learning matting module to gradually enlarge the existing knowledge base of matting

objects. To make the discriminative model trained on closed world be unseen-aware and

increase inter-class feature separability, we leverage metric-based prototype learning to

embed samples into the low-dimensional prototype space. Further, to enhance the expres-

siveness ability of OOD detection network on matting data, we exploit metric-based intra-

batch feature connection to maintain intra-class feature compactness, in which “intra-

batch” also means mini-batch while emphasizing the connectivity between samples [142].

With these two carefully-designed components, our OOD detection network becomes

unseen-aware and more adaptive to the matting task. Then, we adapt the matting net-

work that is trained on closed-set data to unseen objects with only a few samples and

without catastrophic forgetting/over-fitting. We compare our OOD detection network

with other state-of-the-art OOD detection methods on SIMD dataset and show that our

method obtains the new state-of-the-art results, e.g., 11.58%, 42.80%, and 28.57% relative

improvements in AUROC, FPR95(OUT), and Detection Error metrics compared to the

3



state-of-art 1-D Subspaces [193]. We conduct experiments and analysis to validate the

effectiveness of our few shot learning matting module.

To summarize, our contributions are as follows:

• We propose the first open set matting (OSM) framework to tackle matting task from

an open set perspective.

• We show that our OOD detection network achieves the new state-of-the-art perfor-

mance on SIMD dataset compared to other OOD detection methods.

• We validate that our few-shot learning matting module can not only prevent catas-

trophic forgetting but also avoid over-fitting.

4



Chapter 2

Related Work

In this section, we cover related works about natural image matting, out-of-distribution

detection, prototype learning, incremental learning, open set domain adaptation, and

open set learning.

2.1 Natural Image Matting

Natural image matting is a task to estimate alpha mattes to precisely extract foregrounds

from background images. Traditional image matting can be roughly categorized into

sampling-based [4, 31, 52, 61, 146, 166, 167] and propagation-based [28, 57, 70, 80–82, 153,

175] approaches that usually require trimap as additional input. Sampling-based ap-

proaches [4,31,52,61,146,166,167] sample colors from foreground and background pixels

for each unknown region defined by trimap and then leverage quantitative metrics to se-

lect the best foreground-background color pair for computing alpha values. Propagation-

based approaches [28, 57, 80–82, 153] propagate alpha values from known pixels to un-

known ones based on some similarity measurements.

Recently, deep learning has shown its prominent performance on matting task. Learning-

based image matting can be divided into three primary categories, i.e., trimap-needed [29,
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35, 86, 94, 102, 104, 121, 156, 157, 177, 189, 191], background-required [89, 124, 143, 179], and

only-image [75, 83–85, 125, 170, 200] input, i.e., trimap-free.

For background-required matting, background matting [143], with an image and its

corresponding background and soft segmentation as input, obtains appealing estima-

tion but is not robust to images with shadow or under complex light conditions. Lin et

al. [89] introduce a real-time, high-resolution background matting technique along with

two large-scale video and image matting datasets, i.e., VideoMatte240K and PhotoMatte13K/85.

For trimap-needed matting, Cho et al. [29] first introduce deep neural networks into

image matting task. Xu et al. [177] propose a deep neural matting network as well as a

comprehensive matting dataset that has significantly promoted research progress. Lutz et

al. [104] explore matting task with a generative adversarial framework. Then, appealing

matting results are achieved by Lu et al. [102] and Tang et al. [157]. Subsequently, GCA-

Matting [86], a matting network with guided contextual attention, not only simulates

information flow of affinity-based methods but also models matting in a view of image

inpainting. HDMatt [189] attempts to tackle high-resolution matting problem by intro-

ducing three non-local attentions to propagate each trimap region of context patches into

the corresponding region of query patches. Semantic Image Matting (SIM) [156] lever-

ages semantic information to boost matting performance by introducing Semantic Image

Matting Dataset (SIMD), which divides matting data into 20 categories. MGMatting [191]

takes a general coarse mask as guidance and leverages a progressive refinement network

design to provide self-guidance and progressively refine uncertain regions in the decod-

ing process. MatteFormer [121] proposes the first transformer-based image matting ap-

proach that uses trimap as prior-token to participate in the self-attention mechanism of

each prior-attentive swin transformer block.

Since trimap-needed matting methods usually require high-quality handmade trimap

whose production process is time-consuming and background-required matting needs

an inconvenient background acquisition process, a few works attempt to take only im-

ages as input and produce alpha mattes. Trimap-free matting works can be distinguished

6



into two families, including single-category trimap-free matting, such as human/animal

matting [27, 83, 84, 93], and general trimap-free matting, also known as automatic image

matting [85, 125, 191, 200]. For human/animal matting, Chen et al. [27] propose an au-

tomatic human matting algorithm, Semantic Human Matting (SHM), to learn semantic

information and high quality details from data with a novel fusion strategy. Liu et al. [93]

refine coarse masks sequentially by coupling coarse annotated data with fined one to im-

prove end-to-end semantic human matting without trimap as extra input. Li et al. [84]

propose a Glance and Focus Matting network (GFM) that employs a shared encoder

and two separate decoders to learn high-level semantic segmentation and low-level de-

tails collaboratively with AM-2k and BG-20k datasets. They also investigate the domain

gap issue between synthetic images and real-world images and design a composition

route RSSN to improve the model generalization ability. Li et al. [83] introduce P3M-10k

benchmark, the first large-scale anonymized benchmark for Privacy-Preserving Portrait

Matting, and a corresponding strong baseline P3M-Net based on GFM. Sun et al. [154]

propose Semantics-Adding Flaw-Erasing network (SAFE-Net) to first compute an initial

alpha matte, detect its errors by a flaw detector, and then correct it using a refinement

process. They also construct a large human matting dataset containing 4,729 unique fore-

grounds with fine annotations. For the general trimap-free matting methods, Zhang et

al. [200] design two convolutional decoder branches for foreground and background clas-

sifications, and then a fusion branch to integrate two classification results for trimap-free

matting. Qiao et al. [125] introduce the Distinction-646 trimap-free matting dataset and

HAttMatting by using channel/spatial-wise attention to filter out noise from hierarchi-

cal appearance cues and boost alpha mattes. Yu et al. [191] use general coarse masks

as guidance for matting but could suffer from performance degradation due to inaccu-

rate masks. Li et al. [85] propose AIM-Net by investigating the possibility of extending

to images with salient transparent/meticulous foregrounds and non-salient foregrounds

with unified semantic representation. However, the shared encoder of AIM-Net might

be unable to fully represent semantic/matting information, resulting in artifacts of “hard

7



fusion” between results from semantic and matting decoders. And since their proposed

Automatic Image Matting-500 benchmark mostly contains clean/blurred backgrounds

without complicated multiply objects that conforms with real-world photography but

simplifies the problem, their approach could degrade when encountering images with

clear/complicated backgrounds.

Different from previous matting works, we notice that past matting works only focus

on closed-set datasets, where training and test data are assumed to be drawn from a sim-

ilar distribution, and then can be problematic in real application. Therefore, we introduce

an open set matting framework that can detect OOD to-be-matted objects, deliver them to

human for post-processing, and then obtain better results on OOD to-be-matted objects.

2.2 Out-of-Distribution (OOD) Detection

Out-of-distribution (OOD) detection aims to detect testing samples drawn from a dif-

ferent distribution compared to training samples. OOD detection can be roughly cat-

egorized into two domains, i.e., uncertainty estimation-based methods and generative

model-based methods.

For uncertainty estimation-based OOD detection approaches, the maximum softmax

probability (MSP) [64] serves as a baseline for uncertainty estimation. Hendrycks et al. [63]

explore OOD detection in large-scale multi-class and multi-label settings and introduce

maximum logit (MaxLogit) detector. However, one issue of MSP and MaxLogit is that

DNNs tend to produce a wrong prediction with high confidence in that DNNs are usu-

ally poorly calibrated [59]. Therefore, there are many works that aim to achieve better

uncertainty estimation. For example, Guo et al. [59] evaluate various post-processing cali-

bration methods and provide a temperature scaling solution at calibrating predictions.

Monte Carlo dropout (MC-dropout) [49] and ensembles [79] approaches leverage ap-

proximate Bayesian inference to better estimate uncertainty. Maddox et al. [105] propose

Stochastic Weight Averaging-Gaussian (SWAG), which fits a Gaussian using Stochastic

8



Weight Averaging as the first moment and derives a low rank plus diagonal covariance

from SGD iterations to form an approximate posterior distribution over neural network

weights with sampling based Bayesian model averaging. Thulasidasan et al. [158] find

that DNNs trained with mixup [197] or label smoothing in mixup training are signif-

icantly better calibrated. Furthermore, Zaeemzadeh et al. [193] attempt to embed in-

distribution data onto a union of 1-dimensional subspaces and leverage sampling-based

approximate Bayesian inference for OOD detection (1D-subspaces).

For reconstruction-based OOD detection approaches, its core idea is that a reconstruc-

tion network trained on ID data usually produces smaller reconstruction error for ID

data than that for OOD data [40]. The auto-encoder (AE) [3,11], variational auto-encoder

(VAE) [9], GAN [194], U-Net [95], and Restricted Boltzman Machine neural network

(RBM) [34] are popular backbones that can be used for this method. Zhou et al. [202]

introduce semantic reconstruction, data certainty decomposition, and normalized L2 dis-

tance to improve auto-encoder based methods without any extra data, complicated struc-

ture, time-consuming pipeline, and degrading the classification accuracy of seen classes.

Yang et al. [182] propose an OOD detection framework, MOODCat, for image classifiers

that can naturally learn the semantic information of in-distribution data. MOODCat ran-

domly masks out a portion of an input image, leverages conditional GAN to synthesize

a new image with the masked image as input according to the classification result, and

then adopts the semantic difference between the original image and synthesized one for

OOD detection.

2.3 Prototype Learning

Prototype learning is a deep learning counterpart of traditional nearest neighbor classi-

fication and Learning Vector Quantization (LVQ) [77] that relates each class to its corre-

sponding prototype and conducts classification according to the distance based similarity

between samples and prototypes. Prototype learning has demonstrated excellent perfor-
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mance in one-shot learning [45, 162], OOD/anomaly detection [19, 26, 180, 181], few-shot

learning [117, 152, 169], and person re-identification [185]. It aims to learn a deep fea-

ture embedding whose semantic similarity possesses small intra-class variation but large

inter-class variation. Since its goal also matches OOD detection where there should be

large inter-class gap between OOD data and ID data, we introduce prototype learning

into our OOD detection network for open set matting.

Prototype learning loss function can be divided into classification-based loss func-

tions, e.g., large-margin softmax loss [97] and center loss [171], and distance-based loss

functions, e.g., contrastive loss [30,155], triplet loss [140,141], and tuplet margin loss [187].

For classification-based loss functions, center loss minimizes the distance between each

example and its defined class center to form a class-dependent constraint while the large-

margin softmax loss [97] defines more rigorous boundary for correct classification train-

ing. Then, the large-margin softmax loss has been further improved by feature normal-

ization [99, 126, 164, 201] and weight normalization [98]. Furthermore, different types of

margin, such as additive cosine margin [163, 165] and additive angular margin [39], have

also been introduced to improve the large-margin softmax loss. For distance-based loss

functions, triplet loss is formed by triplets, each of which consists of an anchor, a pos-

itive, and a negative sample, and is designed to make the distance between the anchor

and positive sample smaller than the distance between the anchor and negative sample.

Tuplet margin loss [187] disentangles the norm and direction of feature embedding to im-

plicitly up-weight hard samples and down-weight easy samples with a slack margin in

angular space and mitigates over-fitting on the hardest sample. This loss also reduces the

influence of class-dependent information to improve the generalization ability.

2.4 Incremental Learning

Deep learning have exhibited its impressive performance on individual learning task, but

are unable to scale its behavior over time and could suffer from catastrophic forgetting
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when new data becomes available. To address this issue, incremental learning investi-

gates the task of gradually extending existing knowledge to an infinite stream of data.

Incremental learning methods can be distinguished into three families [36], i.e., replay

methods, regularization-based methods, and parameter isolation methods.

Replay methods keep samples or generate pseudo-samples using a generative model

and then replay previous task samples while adapting into a new task to alleviate for-

getting. These samples are either re-used as model inputs for rehearsal [25, 37, 67, 127,

130, 147], or involved in constraining the optimization of the new task loss to prevent

interfering with previous tasks [8, 24, 101].

Different from replay methods, regularization-based methods avoid storing previous

task samples and introduce an extra regularization term into the loss function which

consolidates previous knowledge while learning new data. These methods can be fur-

ther categorized into data-focused and prior-focused methods. The basic idea of data-

focused methods is knowledge distillation from a pretrained model on the previous task

to the model on the new data [73, 88, 151, 199]. For example, Learning without Forget-

ting (LwF) [88] trains on new data by optimizing the new task accuracy and response

preservation of the existing tasks from the original network. Prior-focused methods [1,

5, 7, 76, 76, 116, 195, 196] estimate the importance of model parameters for the previous

task and consider it as prior to constrain the change of important parameters during the

next-stage adaptation. For instance, Elastic Weight Consolidation (EWC) [76] is the first

well-established work. Zenke et al. [195] simplifies EWC to estimate importance weights

online during task training.

Parameter isolation methods leverage different model parameters for each task to pre-

vent catastrophic forgetting. For example, Rusu et al. [134] and Xu et al. [176] keep grow-

ing new branches for new tasks while freezing previous task parameters. Aljundi et al. [6]

allocate model copy for each task. Alternatively, some approaches [47, 106, 144] keep the

network architecture static but allocates fixed parts of the network architecture to each

task. Fernando et al. [47] introduce embedded agents to a neural network, whose task is

11



to discover which parts of the network should be re-used for new tasks, denoted as Path-

Net. Mallya et al. [106] propose an approach called PackNet. PackNet first uses weight-

based pruning techniques to free up redundant parameters across all layers of a deep

neural network trained for previous tasks with minimal accuracy degradation. Then, it

modifies the freed up parameters while preserving the surviving parameters for learning

a new task. Serra et al. [144] introduce a hard attention mechanism that preserves pre-

vious tasks’ information but does not affect the current task’s learning. Each task learns

its corresponding hard attention mask concurrently with previous task masks applied to

constrain the learning.

2.5 Open Set Domain Adaptation

Open set domain adaptation (OSDA) attempts to align distributions of shared classes

between source and target domains while also perceiving unseen classes in the absence

of target domain labels. Busto et al. [120] consider open set domain adaptation as an

assignment task. Saito et al. [136] leverage adversarial training for an open set domain

adaptation scenario where unseen samples only exist in the target domain. Specifically,

they train a generator to extract features, which distinguishes unseen target samples from

seen target samples, with a classifier building the boundary between seen and unseen

classes. Liu et al. [91] consider the openness of the target domain and introduce the Sepa-

rate to Adapt (STA) method that divides the training procedure into a seen/unseen sep-

aration step and a weighted adversarial adaptation step to progressively separate seen

and unseen samples and align features of seen classes between source and target domains.

Feng et al. [46] introduce Semantic Categorical Alignment and Semantic Contrastive Map-

ping to exploit the semantic structure of open set data and enlarge margins across seen

classes and margins between seen and unseen classes. Pan et al. [119] introduce category-

agnostic clustering in the target domain into Self-Ensembling. Further, instead of group-

ing unseen samples as one generic class that might lead to suboptimal solution, they
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exploit the inherent data structure by clustering in the target domain to learn domain-

invariant representations of seen classes and discriminative representations among seen

and unseen classes in the target domain. Xu et al. [178] propose the Joint Partial Optimal

Transport (JPOT) approach that uses the joint discriminative prototypical compactness

loss to obtain intra-class compactness and inter-class separability and estimate the mean

and variance of the unseen class. Luo et al. [103] propose a Progressive Graph Learning

(PGL) framework with adversarial learning to achieve a tighter upper bound of the target

error. Bucci et al. [15] introduce the self-supervised task of predicting image rotation into

open set domain adaptation to achieve a competitive performance. Jing et al. [71] propose

a balanced OSDA approach that finds the trade-off between the accuracy of identifying

the unseen samples and the classification ability of the seen samples by projecting the

feature into a hyper-spherical latent space and bounding the centroid deviation angle.

Saito et al. [135] introduce a one-vs-all classifier for each class in the source domain to

learn both inter-class and intra-class distances for the separation of seen and unseen sam-

ples and then apply an open set classifier in the target domain for OSDA. Jang et al. [69]

propose Unknown-Aware Domain Adversarial Learning (UADAL) that aligns the source

and the target-seen distribution and simultaneously segregates the target-unseen distri-

bution during the feature alignment. UADAL not only learns the target-unknown feature

space but also theoretically guarantees alignment and segregation. Liu et al. [100] propose

a novel prototype-based shared-dummy classifier (PSDC) model for OSDA, which con-

sists of three training steps, i.e., open set recognition, weighted alignment, and pseudo-

unknown learning. First, PSDC is applied to the source domain in order to estimate

class prototypes and place the dummy prototypes near class decision boundaries. Sec-

ond, PSDC estimates the novel class distributions using the generated open-set samples

by pushing decision boundaries tighter. Third, the weighted alignment module adapts

the trained model to the target domain. Fourth, the pseudo-unknown learning module

pushes the selected pseudo-unknown target instances away from the estimated proto-

types by maximizing entropy. Bucci et al. [14] propose a distance-based hyper-spherical
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classification method, denoted as HyMOS, for multi-source open set domain adaptation.

Liu et al. [92] introduce a novel Unknown-Oriented Learning (UOL) framework with a

multi-unknown detector and graph learning for OSDA, which consists of three stages,

including true unknown excavation, false unknown suppression, and known alignment,

in order to explore the rich semantic information and intra-class variation of unknown

classes. Yu et al. [190] introduce a new problem setting in OSDA, that is, few-shot OSDA.

They propose a self-labeling framework that leverages prototypical contrastive learning

and maximizes the mutual information between labels and input data to classify seen and

unseen classes in source and target domains.

2.6 Open Set Learning

Traditional supervised learning assumes a situation where training and testing samples

follow the same distribution while open set learning is a more challenging and realistic

setting where there are unseen testing samples. Except well-studied open set recognition

(OSR) [137], there are open world segmentation [19] and open set action recognition [10].

To the best of our knowledge, this is the first work that tackles matting problem in an

open-set perspective. Here we focus on well-investigated OSR. OSR requires classifiers

to not only accurately classify seen class but also effectively deal with unseen classes. In

this section, we will first cover some basic notations and definitions related to OSR and

then introduce OSR by categorization.

2.6.1 Basic Notations and Definitions

Here we briefly review the OSR formulation by Scheirer et al. [137]. The space far from

seen data is usually considered as open space O. Labeling any sample in open space as

an arbitrary seen class incurs risk, which is called open space risk RO. Scheirer et al. [137]

formulate RO as the relative measure of open space O compared to the overall measure
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space So,

RO(f) =

∫
O f(x)dx∫
So
f(x)dx

, (2.1)

where f denotes the measurable recognition function. f(x) = 1 means recognizing sam-

ple x as one seen class, otherwise f(x) = 0. According to Eq. (2.1), the more samples in

open space is considered as seen classes, the larger RO is.

Further, Scheirer et al. [137] also introduce the concept of openness, which can evaluate

the difficulty level of OSR:

Definition 1 (The Openness) Let Ctarget, Ctrain, and Ctest respectively represent the set of seen

classes during testing, the set of seen classes in training, and the set of seen and unseen classes

used during testing. Then, the openness of the corresponding recognition task O is:

O = 1−

√
2× |Ctrain|

|Ctarget|+ |Ctest|
, (2.2)

where | · | denotes the number of classes in the corresponding set.

Larger openness indicates more open and challenging problems while zero openness

means closed-set problem.

After introducing the concepts of open space risk and openness, the definition of OSR

problem can be given as follows:

Definition 2 (The Open Set Recognition Problem [137]) Considering training data V , an

open space risk RO, and a data error measure D, open set recognition is to find a measurable

recognition function f ∈ H, where f(x) > 0 implies correct recognition, and f is defined by

minimizing the open set risk:

argmin
f∈H
{RO(f) + λrD(f(V ))} , (2.3)

where λr is a regularization constant.
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The open set recognition is to minimize the open set risk, which balances the tradeoff

between the open space risk and empirical data error terms, over the space of all possible

inputs.

2.6.2 Open Set Recognition (OSR)

OSR can be categorized into two domains [54], including traditional and deep learning

based methods.

Traditional OSR methods

There are many attempts [12,20–23,44,68,107,113,133,137–139,159,161,198] that extends

traditional machine learning methods, e.g., Support Vector Machine (SVM) [32], sparse

representation, and nearest neighbor, to the OSR setting.

(1) SVM based: Based on SVM, Scheirer et al. [137] propose 1-vs-Set machine that adds

another hyperplane paralleled with the separating hyperplane obtained by SVM and ini-

tializes the planes to contain all positive training data. Then, the open space risk is

RO =
δΩ − δA

δ+
+

δ+

δΩ − δA
+ pAωA + pΩωΩ, (2.4)

where δA and δΩ denote marginal distances of the near and far planes respectively, δ+ is

the separation needed to account for all positive data, δΩ−δA
δ+

is the expansion of plane dis-

tance that serves as the overgeneralization risk, and δ+

δΩ−δA
is the overspecialization risk.

Moreover, user-specified parameters pA and pΩ weight the importance between the mar-

gin space ωA around the near plane and ωΩ around the far plane. In this case, a testing

sample that appears within these two hyperplanes would be labeled as positive; other-

wise, it would be considered as non-target class or rejected, depending on which side

of the hyperplane it resides. Cevikalp et al. [20, 23] propose the best fitting hyperplanes

approach that makes each hyperplane close to the samples of one of the classes and far

from the other class samples. Scheirer et al. [138] incorporate non-linear classifiers with
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open space risk limiting classification in a multi-class setting. They introduce a compact

abating probability (CAP) model, where the probability of class membership decreases as

points move away from seen data to open space, and a Weibull-calibrated SVM (W-SVM)

method that is integrated with the extreme value theory (EVT) [50]. Jain et al. [68] lever-

age EVT to model positive training samples at the decision boundary and introduce PI-

SVM that estimates the unnormalized posterior probability of class inclusion. Scherreik et

al. [139] introduce probabilistic open set SVM (POS-SVM) that can empirically determine

rejection threshold for each seen class. Cevikalp et al. [21, 22] introduce a family of quasi-

linear “polyhedral conic” discriminants that define acceptance regions for positive seen

classes and help discriminate positive samples from negative ones.

(2) Sparse Representation based: The sparse representation-based classifier (SRC) [123,

132,173,174] has been widely used in computer vision and image processing fields, which

makes the prediction by seeking sparsest representations for testing samples with learned

redundant dictionaries. In order to adapt SRC into OSR, Zhang et al. [198] introduce

the sparse representation based open set recognition method, SROSR. SROSR models the

tail part of the matched and sum of nonmatched reconstruction error distributions using

Extreme Value Theory (EVT) to simplify OSR into hypothesis testing problems.

(3) Distance-based: Bendale et al. [12] extend Nearest Class Mean (NCM) classifier [108,

129] to OSR and introduce a Nearest Non-Outlier (NNO) algorithm. The classification of

NNO is based on the distance between the testing sample and the means of seen classes

and rejecting a sample if all classifiers reject it. And NNO can dynamically incorporate

new classes by using manually labeled data. Júnior et al. [107] introduce an open set

Nearest Neighbor classifier (OSNN). OSNN leverages a Nearest Neighbor Distance Ratio

(NNDR) technique that thresholds the ratio of similarity scores between a test sample and

its two most similar classes.

(4) Margin Distribution based: Since there is few OSR work taking distribution infor-

mation into consideration, Rudd et al. [133] propose theoretically sound Extreme Value

Machine (EVM) based on margin distribution [2, 51, 122, 128] and Extreme Value Theory
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(EVT). EVM can perform the nonlinear kernel-free variable bandwidth OOD detection

with incremental learning and has been applied to open set face recognition [58] and open

set intrusion detection [65]. However, EVM suffers in situations where the geometries of

seen and unseen classes are different. In order to address this limitation, Vignotto et

al. [161] propose GPD and GEV classifiers relying on approximations from EVT.

Deep learning based OSR methods

(1) Discriminative methods: Recently, Deep Neural Networks (DNNs) have shown im-

pressive performance in classification. Since DNNs usually leverage a SoftMax cross-

entropy loss, which involves normalization and has a closed-set nature, DNNs might

make the prediction wrongly with high confidence when encountering unseen classes [56,

115]. To this end, there are various works attempting to solve this problem [13, 16, 17, 41,

60, 74, 118, 131, 148, 149, 160, 186]. Bendale et al. [13] replace SoftMax layer with OpenMax

layer as a solution for open set deep networks. Specifically, after training a deep neural

network with the SoftMax cross-entropy loss, they consider the network values from the

penultimate layer as the activation vector and represent each class as a mean activation

vector (MAV) that is calculated by correctly classified training samples. Then, they cal-

culate the distances between training samples and their corresponding MAVs to fit the

separate Weibull distribution for each class. Further, they redistribute the activation vec-

tor’s values by the Weibull distribution fitting score and use it for final classification and

unknown/unseen classes rejection. Hassen et al. [60] introduce a neural representation

which maintains inter-class separability and intra-class compactness. Venkataram [160]

follow OpenMax to explore open set text classification. Shu et al. [148] propose a Deep

Open Classification (DOC) method with a 1-vs-rest final layer containing a sigmoid func-

tion for each seen class. Kardan et al. [74] introduce the competitive overcomplete output

layer (COOL) neural network to tackle the overgeneralization issue of neural networks

over regions far from the training data. Cardoso et al. [16, 17] illustrate how to use WiS-

ARD, a weightless neural network model, for open set recognition, which is based on
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an elaborate distance-like computation a weightless neural network provides. Dhamija et

al. [41] introduce novel Entropic Open-Set and Objectosphere losses for OSR. Yoshihashi et

al. [186] present the Classification-Reconstruction learning algorithm for open set recogni-

tion (CROSR) that leverages latent representations for reconstruction and leads to robust

OOD detection without hurting the classification accuracy of seen classes. Oza et al. [118]

introduce class conditioned auto-encoders with novel training and testing methods for

OSR. Shu et al. [149] focus on discovering hidden unseen classes of rejected samples and

introduce a joint open classification model with a sub-model distinguishing whether a

pair of samples resides in the same class or not. This sub-model can be considered as a

distance function for clustering to discover hidden classes of rejected samples.

(2) Generative methods: Since generative adversarial networks (GAN) [55] have shown

impressive performance, there are some OSR works [53, 72, 112, 183, 192] leveraging un-

seen samples generated by GAN. Ge et al. [53] extend OpenMax by employing generative

adversarial networks for unseen class image synthesis, denoted as Generative OpenMax

(G-OpenMax). G-OpenMax can provide explicit modelling and decision score for unseen

classes. Neal et al. [112] introduce a novel dataset augmentation technique, called coun-

terfactual image generation, which generates synthetic samples that are close to training

samples but do not belong to any training category, for OSR. Jo et al. [72] adopt GAN

to generate fake data as unseen data to further enhance the robustness of classifiers for

OSR by modelling noisy distribution on the classifier feature space using the proposed

marginal denoising auto-encoder. Yu et al. [192] propose an adversarial sample genera-

tion (ASG) framework for OSR, which generates positive and negative samples of seen

classes in an unsupervised manner. Yang et al. [183] propose OpenGAN, where the gen-

erator produces fake samples and the redesigned discriminator outputs multiple classes

together with an unseen class, for OSR.

19



Chapter 3

Approach

In this section, we first define our problem setup and then introduce our OOD detection

network and incremental few-shot learning matting network.

3.1 Problem Setup

In Figure 1.1, we provide the overview of our open set matting framework. This frame-

work contains an OOD detection network and an incremental few-shot learning matting

module. Consider that I = {I1, I2, ..., In} are a set of images, T = {T1, T2, ..., Tn} de-

note corresponding trimaps, and A = {α1, α2, ..., αn} refer to corresponding alpha mattes.

The closed-set data belongs to N ID classes Cin = {Cin,1, ..., Cin,N} while K OOD classes,

Cout = {Cout,1, ..., Cout,K}, are excluded from the closed-set data. Given Ii and Ti as input,

the OOD detection network produces anomalous score SIi and identify OOD images by

λout thresholding, that is, Ii ∈ Cout (denoted as Iout) if SIi > λout, otherwise Ii ∈ Cin. Then,

Iout would be forwarded to labelers who can provide the corresponding alpha matte Aout.

With a few available samples of novel classes, the incremental few-shot learning matting

module gradually enlarges the knowledge base of the closed-set matting network from

Cin to Cin+K where Cin+t = Cin ∪ {Cout,1, Cout,2, ..., Cout,t}, t ∈ {1, 2, ..., K}.
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Figure 3.1: Our OOD Detection Network (OOD-DN). Our OOD-DN leverages prototype

learning with intra-batch connection to be unseen-aware and generate informative logit

features.

3.2 OOD Detection Network (OOD-DN)

Figure 3.1 shows our OOD detection network that can be disentangled into a feature

extractor and a discriminant function. The ResNet-50 [62] serves as a feature extractor

f(X; θf ) where X denotes the input image/trimap and θf serves as the parameters of fea-

ture extractor. The standard classification of DNNs is targeted to closed world that can

be unsuitable for OOD detection. Hence, in order to increase the unseen-awareness and

expressiveness of the network, we utilize prototype learning to build up distance features

on top of the feature extractor. We calculate distances between the feature extractor out-

put and predefined scaled one-hot prototypes to serve as the input of the discriminant

function g(·) for classification [19,109,180]. Since prototypes are orthogonal to each other

and prototypes can be easily extended to novel classes, it helps to increase inter-class

separability and enable the network to be unseen-aware.

To be precise, consider all prototypes as P = {pi ∈ R1×N |i ∈ {1, 2, ..., N}}, where

pi = [0, ...,m
i
, ..., 0] corresponds to Cin,i. We embed the latent feature output of the network

that has the same length as the prototype into distance features by

di = −||f(X; θf )− pi||22. (3.1)
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The final input feature for the discriminant function g(·) is formed by D = {di ∈ R|i ∈

{1, 2, ..., N}}. Then, for classification, we optimize f(X; θf ) and g(·) by minimizing the

prototype learning based cross entropy loss, LCE. LCE can be formulated as

LCE = − log

(
exp(dy)∑N
i=1 exp(di)

)
, (3.2)

where y is the ground-truth class label of input X and dy refers to the distance feature

between f(X; θf ) and the prototype py. With prototype learning, we explicitly increase

inter-class separability and enable the unseen-awareness of the network. Therefore, we

expect our network to be more appropriate for OOD detection task.

3.2.1 Intra-Batch Connection Regularization

In order to enhance the intra-class compactness and fully exploit data information we

have, we leverage intra-batch connectivity, that is, for samples with the same label, their

latent distance distributions should be similar while, for samples with different labels,

their latent distance distributions should be distinguished. Therefore, we minimize Kullback-

Leibler divergence between latent distance distributions of each pair of intra-batch sam-

ples that have the same class label over a total of N ID classes. The intra-batch connection

loss LIBC is defined as

LIBC =
N∑
i=1

Ci∑
j=1,j<k

DKL(D
(j)
Ci
||D(k)

Ci
), DKL(p||q) =

N∑
i=1

pi log

(
pi

qi

)
, (3.3)

where D
(m)
Ci

= softmax([d1, d2, ..., dN ]) and Ci represents a cluster of samples that have the

same label i.
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Figure 3.2: The pipeline of our incremental few-shot learning matting module (IFL-MM).

After training the matting network on ID data, we extend it to OOD data with a few

samples but without catastrophic forgetting.

3.2.2 OOD Detection During Inference

Since the partition function constrains features to seen data and ignores unseen data, we

use the negative maximum value of logit output D as the anomalous score for OOD de-

tection without partition during inference [63]. Specifically, given input X , the anomalous

score is defined as

S(f(X; θf )) = −max(di), i ∈ {1, 2, ..., N}. (3.4)

3.3 Incremental Few-Shot Learning Matting Module (IFL-

MM)

The detected OOD to-be-matted images can then be delivered to labelers for annotation.

We aim to enlarge the existing knowledge base of matting network to embrace novel

classes without introducing external parameters and catastrophic forgetting under the
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situation where only a few labels are available. Thus, as shown in Figure 3.2, we intro-

duce incremental few-shot learning matting module (IFL-MM) by (1) Train the matting

network on 15-class ID data as the pre-trained model G; (2) Adapt the pre-trained model

G to OOD domain with a few labels as the adapted model G′.

To illustrate our IFL-MM, we adopt U-Net architecture [86] as matting network. Con-

sidering the pre-trained matting network function G(X; θ) where θ is model parameters

and X denotes input image and its corresponding trimap, we can obtain the estimated

alpha matte α̂ = G(X; θ). To improve OOD matting performance, first, we show that

adapting the weights of matting network from ID domain to OOD domain directly by

fine-tuning is inefficient since OOD data follows a different distribution than ID data and

remodelling the statistics of Batch Normalization with exponential learning rate decay

schedule can effectively handle this problem. Second, we quantify the importance of

weights of matting network in ID domain for weight regularization of OOD data adapta-

tion since a direct adaptation without regularization leads to over-fitting and knowledge

forgetting.

3.3.1 Remodelling the Statistics of Batch Normalization with Exponen-

tial Learning Rate Decay

In practice, we found that directly fine-tuning the pre-trained model on novel samples

results in slow convergence and unstable training. It is due to the fact that (1) the traits

of past data dominate over the statistics of Batch Normalization (BN) [66]; (2) the train-

ing can be ill-conditioned if the feature transformation does not satisfy the condition of

transforming inputs to be zero-mean, unit-variance, and uncorrelated [110,172]; (3) when

the existing knowledge base encounters novel samples, a non i.i.d. mini-batch situation

arises and BN can fail.

Therefore, we propose to remodel the BN statistics with exponential learning rate de-

cay to alleviate this issue. First, we are inspired from domain adaptation techniques,
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especially Adaptive Batch Normalization that recalculates the batch-wise mean and vari-

ance of BN at different layers of the network over the whole target domain before infer-

ence [87]. We reset the mean (resp. variance) of each BN of the pre-trained model to zero

(resp. one) before fine-tuning. Upon resetting BN statistics and remodelling BN statistics

as the running mean and variance over novel samples, we, to some extent, circumvent

an non i.i.d. mini-batch situation and enable the network to obtain efficient adaptation

ability. Second, to avoid unstable training, we exponentially decrease the learning rate η̂

with respect to training iteration t, η̂ = η0 ∗γ t, where the initial learning rate η0 is 0.01 and

γ is the hyperparameter. The η̂ will become 0.0001 after 3,000 iterations.

3.3.2 Weight Constrain by Synaptic Intelligence

We argue that constraining the previous important model parameters can not only pre-

vent over-fitting to limited samples but also avoid training collapse and divergence ac-

cording to the following two reasons: (1) the direct fine-tuning without any regularization

results in not only slow convergence but also over-fitting and catastrophic forgetting; (2)

a matting network trained on ID data, different from well-investigated few-shot classifi-

cation, can also be directly applied on OOD data although it turns out to be less accurate.

Elastic Weight Consolidation (EWC) [76] is a regularization approach that aims to

overcome catastrophic forgetting by constraining the model weights according to their

importance for previous tasks. It uses Fisher Information F to tell how much the model

parameters θi commit to the observations. It can be achieved by adding an additional

regularization term to the loss function when doing adaptation,

L = |α− α̂|+ λ

2
·
∑
i

Fi · (θi − θ∗i )
2, (3.5)

where α is the alpha matte label, θ∗i is the optimal value from previous tasks and λ is the

regularization hyperparameter. The diagonal of the Fisher information matrix F , which
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can be computed from first-order derivatives alone, is equivalent to the second derivative

of the loss near a minimum.

Synaptic Intelligence (SI) [195] is a simplified variant of EWC. Instead of expensive

Fisher information matrix computation, Fi is calculated online by integrating the loss

over the weight trajectories during gradient descent,

∆Li = ∆θi ·
∂L

∂θi
, (3.6)

Fi =

∑
∆Li

∆2
i + ξ

, (3.7)

where ∆θi is the weight update amount during each training step, ∂L
∂θi

is the gradient, ∆i

is the total weight parameter distance, and ξ is a small constant for numerical stability.

We simplify the importance calculation by considering it as the expectation of the

square of the partial derivative of the log-likelihood function with respect to θi. We mini-

mize

L = |α− α̂|+ λ

2
·
∑
i

Fi · (θi − θ∗i )
2, (3.8)

Fi = E

[(
∂

∂θi
L(α|X; θ)

)2
]
, (3.9)

where L(α|X; θ) is the log-likelihood function of previous tasks.
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Chapter 4

Experiments

In this section, we conduct experiments on SIMD to validate the effectiveness of our OOD

detection network, incremental few-shot learning matting network, and open set matting

framework.

4.1 OOD Detection Network (OOD-DN)

4.1.1 Datasets

We conduct experiments on Semantic Image Matting Dataset (SIMD) that contains 20

classes with 726 training foregrounds and 89 testing foregrounds. To have a similar setup

as Shaban et al. [145], we consider 5 classes, i.e., glass ice, fire, water drop, spider web,

and water spray, out of 20 classes as OOD data and exclude these 5 classes from training

set. During training, as commonly used with the SIMD dataset [156], we randomly com-

posite training foregrounds with randomly selected background images from COCO [90].

For the test set, we follow Sun et al. [156] to synthesize 890 images that consist of 15 ID

and 5 OOD classes. We also composite each SIMD training foreground with 10 randomly

selected background images from COCO to synthesize 7,260 images as toy samples (de-

noted as Toy SIMD dataset). See additional results of another different OOD-ID split

setting in the supplementary material.
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Methods AUROC(IN)↑ AUPR(IN)↑ FPR95(IN)↓ AUROC(OUT)↑ AUPR(OUT)↑ FPR95(OUT)↓ DetectionError↓

MSP [64] 0.673 0.879 0.882 0.673 0.360 0.621 0.332
MaxLogit [63] 0.623 0.855 0.959 0.623 0.290 0.740 0.363
EnergyScore [96] 0.605 0.847 0.995 0.605 0.278 0.751 0.363
1-D Subspaces [193] 0.734 0.896 0.795 0.734 0.501 0.722 0.322
MMSP [19] 0.660 0.864 0.941 0.660 0.328 0.837 0.360
EDS [19] 0.630 0.810 0.959 0.630 0.319 1.000 0.367

OOD-DN (Ours) 0.819 0.940 0.791 0.819 0.541 0.413 0.230

Table 4.1: OOD detection results on SIMD dataset.

λ PL LCE LIBC MSP MaxLogit AUROC(IN)↑ AUPR(IN)↑ FPR95(IN)↓ AUROC(OUT)↑ AUPR(OUT)↑ FPR95(OUT)↓ DetectionError↓
✓ ✓ ✓ 0.315 0.663 0.996 0.315 0.183 0.964 0.485
✓ ✓ ✓ 0.664 0.857 0.841 0.664 0.353 0.722 0.349

λ = 0.1

✓ ✓ ✓ 0.589 0.807 0.945 0.589 0.293 0.919 0.406
✓ ✓ ✓ 0.717 0.891 0.850 0.717 0.414 0.703 0.328

✓ ✓ ✓ ✓ 0.493 0.738 0.955 0.493 0.247 0.979 0.464
✓ ✓ ✓ ✓ 0.819 0.940 0.791 0.819 0.541 0.413 0.230

λ = 1.0

✓ ✓ ✓ 0.763 0.917 0.923 0.763 0.431 0.576 0.283
✓ ✓ ✓ 0.752 0.917 0.950 0.752 0.390 0.558 0.279

✓ ✓ ✓ ✓ 0.547 0.791 0.914 0.547 0.308 0.891 0.445
✓ ✓ ✓ ✓ 0.743 0.876 0.655 0.743 0.573 0.848 0.287

Table 4.2: Ablation study results of our OOD detection network on SIMD dataset. PL

refers to prototype learning.

4.1.2 Evaluation Metrics

We evaluate OOD detection performance using the following metrics: (1) AUROC(IN):

The area under the receiver operating characteristic; (2) AUPR(IN): The area under the

precision-recall curve; (3) FPR95(IN): The false positive rate at 95% true positive rate; (4)

AUROC(OUT); (5) AUPR(OUT); (6) FPR95(OUT); (7) Detection Error that indicates the

minimum misclassification probability. Metrics suffixed by (IN) are calculated when ID

data is treated as positive. Opposite to (IN), metrics suffixed by (OUT) are calculated

when OOD data is treated as positive.

4.1.3 Implementation Details

We follow similar data processing and augmentation procedure as GCA-Matting [86] to

generate random trimaps and augmented images. We randomly crop square patches

from the unknown region of composited images and then resize them to 320×320 patches.
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The network is trained for 50,000 iterations with 20 batch size. The Adam optimizer with

β1 = 0.5 and β2 = 0.999 is adopted with initialized learning rate, 0.01, plus warm-up and

cosine decay techniques. The hyperparameter of LIBC, λ is set to 0.1 and m is 3.

4.1.4 Results

We compare our OOD-DN results with MSP [64], MaxLogit [63], energy score [96], 1D-

subspaces1 [193], metric-based maximum softmax probability (MMSP) [19], and Euclidean

distance sum (EDS) [19]. We reproduce these methods according to their official public

available code under the same training configuration as ours. In Table 4.1, we present the

quantitive comparison. The results show that our OOD-DN achieves the state-of-the-art

performance in all OOD detection related metrics. Compared to the state-of-the-art 1D-

subspaces, our OOD-DN outperforms it with a relevantly big margin, especially 11.58%

in AUROC(IN), 11.58% in AUROC(OUT), 42.80% in FPR95(OUT), and 28.57% in Detec-

tion Error metrics. Besides, different from 1D-subspaces that needs sample from training

data after training to compute the first singular vector of each class for the later OOD

detection inference, our OOD-DN does not require this time-consuming sampling proce-

dure and can directly use the negative maximum value of logits as the anomalous score

during inference.

4.1.5 Ablation Study

We present ablation experimental results of our OOD-DN to study the effect of differ-

ent hyperparameters of LIBC, loss functions, and OOD inference strategies, as shown in

Table 4.2. We can see that when prototype learning (PL) incorporates with intra-batch

connection regularization, the network can produce informative logit features for OOD

detection, thus showing the effectiveness of MaxLogit. Furthermore, the ablation study

1For 1D-subspaces, the first singular vector of each class is calculated by using the extracted features
from Toy SIMD dataset of the corresponding class.
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shows that, by utilizing either PL or LIBC, the network can improve most of OOD detec-

tion metrics compared to baselines, which demonstrates the superiority of our OOD-DN.

4.2 Incremental Few-Shot Learning Matting Module (IFL-

MM)

4.2.1 Datasets

In the initial training stage, we utilize 15-class ID data of SIMD training set as training

data. In the adaptation stage, we randomly sample 5-way 6-shot images from 5-class

OOD data of Toy SIMD dataset as training set and consider the remaining images of

5-class OOD data of Toy SIMD dataset as validation set by excluding images whose fore-

grounds are overlapped with that of training set. We leverage SIMD test set as test set.

4.2.2 Evaluation Metrics

We use common matting evaluation metrics, i.e., Sum of Absolute Differences (SAD),

Mean Squared Error (MSE) that is ×103, Gradient error (Grad), and Connectivity error

(Conn), to evaluate matting performance. Metrics suffixed by (IN) (resp. (OUT)) are

calculated on ID (resp. OOD) data. We conduct few-shot adaptation experiments 10

times and report average metrics and their corresponding standard deviations.

4.2.3 Implementation Details

In the initial training stage, we adopt the similar training strategy as GCA-Matting [86]

and use Adam optimizer to train our matting network on ID data with 20 batch size,

200,000 iterations, and 4e-4 initialized learning rate. In the adaptation stage, we perform

various data augmentation techniques before composition and random 512 × 512 patch

cropping. Specifically, for each image, we apply random scaling, horizontal flipping, ro-
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Methods SAD(IN)↓ MSE(IN)↓ Grad(IN)↓ Conn(IN)↓ SAD(OUT)↓ MSE(OUT)↓ Grad(OUT)↓ Conn(OUT)↓
Pre-trained 33.71 9.7 18.62 29.99 79.47 16.2 51.44 77.47
Finetune 154.07±17.45 146.2±23.0 124.52±9.68 161.36±17.52 147.46±9.86 72.9±7.2 144.12±20.07 149.82±10.54
IFL-MM (Ours) 44.87±5.13 17.8±4.8 24.17±2.40 43.74±5.86 68.08±3.56 14.8±1.1 44.41±3.34 63.35±4.22
OSM (Ours) 37.22±2.54 13.41±2.73 20.60±1.76 35.06±3.06 70.78±3.84 14.73±1.05 46.64±2.80 66.93±4.40

Table 4.3: Matting results on SIMD dataset.

Classes defocus fur hair easy hair hard insect motion net flower leaf tree
Pre-trained 12.75 8.02 6.98 10.90 120.34 4.73 75.15 49.75 34.27 70.25
Finetune 183.11 36.02 41.19 53.51 278.94 25.45 267.20 204.39 187.52 310.73
IFL-MM (Ours) 55.74 9.53 8.74 12.54 103.27 6.15 103.04 64.84 37.70 95.01
OSM (Ours) 44.95 8.62 7.32 11.44 90.42 5.37 85.12 57.63 33.99 76.33
Classes plastic bag sharp smoke cloud lace silk glass ice fire water drop spider web water spray
Pre-trained 32.09 2.43 28.78 75.07 60.65 92.00 80.63 40.60 162.78 46.88
Finetune 295.79 26.54 263.50 470.61 231.77 219.07 127.99 70.19 234.73 104.76
IFL-MM (Ours) 85.82 2.67 53.39 106.31 84.32 89.35 69.18 30.20 128.80 39.58
OSM (Ours) 42.47 2.61 33.42 92.41 77.96 89.08 79.21 31.31 133.16 38.18

Table 4.4: Detailed quantitive matting results of 20 classes of SIMD dataset on SAD met-

ric. Bolden classes are OOD classes, otherwise classes are ID classes.

tation, and color jittering. For trimap generation, we erode and dilate alpha matte with a

random kernel size within [1, 29] respectively. To extend limited data, we randomly merge

the foreground of another randomly selected image with the current image foreground.

The network is trained for 3,000 iterations with 20 batch size. The Adam optimizer with

β1 = 0.9999 and β2 = 0.9999 is used with initialized learning rate, 0.01. The exponential

decay schedule of learning rate is utilized. The λ is set to 2e8.

4.2.4 Results

We compare our IFL-MM with pre-trained and fine-tuned models. The Table 4.3 presents

quantitive results of ID and OOD domains. The results show that our method improves

performance on OOD data by a big margin, especially in SAD, Grad, and Conn metrics.

Besides, unlike the fine-tuned model that nearly forgets ID data, our method successfully

alleviates catastrophic forgetting about ID data. The tremendous performance gap be-

tween the fine-tuned model and ours demonstrates that the direct fine-tuning results in
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Reg ExpDecay RemodelBN SAD(IN)↓ MSE(IN)↓ Grad(IN)↓ Conn(IN)↓ SAD(OUT)↓ MSE(OUT)↓ Grad(OUT)↓ Conn(OUT)↓
✓ ✓ 43.89 16.0 24.27 42.54 69.64 14.8 44.37 65.34
✓ ✓ 47.65 18.9 25.23 46.56 69.25 15.5 46.66 64.98

✓ ✓ 153.54 142.4 118.98 160.43 149.15 74.5 141.17 151.24
✓ ✓ ✓ 44.87 17.8 24.17 43.74 68.08 14.8 44.41 63.35

Table 4.5: Ablation study results of our incremental few-shot learning matting module

on SIMD dataset. Note that Reg is the regularization term based on Elastic Weight Con-

solidation (EWC).

slow convergence and inefficiency in both time and ID/OOD data performance. Further,

we present quantitive results of 20 classes on SAD metrics in Table 4.4. Our method out-

performs the pre-trained model in every OOD class and surpasses the fine-tuned model

in all 20 classes. Besides, we found that our IFL-MM is sensitive to datasets since the pre-

trained model can generalize well with unseen categories whose correlations are close to

training data. To better illustrate the superiority of our IFL-MM, we compare the visual

matting results between baselines and ours in Figure 4.2 on 5 challenging OOD classes.

Our IFL-MM can better separate target objects from background without apparent back-

ground ghost or missing foreground details and obtain overall visual improvement com-

pared to both pre-trained and fine-tuned models.

4.2.5 Ablation Study

We conduct ablation study on our IFL-MM to investigate the effectiveness of each com-

ponent. In Table 4.5, we compares our IFL-MM with IFL-MM without regularization

(Reg), remodelling BN statistics (RemodelBN), and exponential learning rate decay (Ex-

pDecay). The results show that each component has its own contribution to OOD data

adaptation. To further demonstrate the effectiveness of RemodelBN and ExpDecay, in

Figure 4.5, we present the curve comparison of validation performance during train-

ing. The IFL-MM convergence speed is the best compared to IFL-MM without Remod-

elBN/ExpDecay and, in the end, the IFL-MM validation performance is on par with or

even better than the other two. Further, as indicated in Table 4.5, our test performance
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Figure 4.1: Comparison of training process among IFL-MM w/o RemodelBN, IFL-MM

w/o ExpDecay, and IFL-MM on SAD metric of validation set.

in OOD (resp. ID) data is overall better than (resp. comparable with) IFL-MM without

Reg/RemodelBN/ExpDecay. Therefore, the above observations demonstrate the faster

convergence speed and anti-over-fitting ability of our IFL-MM.

4.3 Open Set Matting (OSM)

We build our open set matting (OSM) framework by the following steps: (1) Train our

OOD-DN on 15 ID class data; (2) Obtain detected OOD data out of the Toy SIMD dataset;

(3) Adapt the pre-trained matting network to OOD data by leveraging our IFL-MM.

Noted that, instead of 5-way 6-shot images, we randomly sample 30 images out of de-

tected OOD data. Our OSM results are shown in Table 4.3. The detailed results of each

class are presented in Table 4.4. It is obvious that, in challenging 5 OOD classes, our OSM

is competitive against IFL-MM trained with purely OOD samples. We present the visual

results of our OSM in Figure 4.2. It is noted that our OSM significantly improves OOD
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Figure 4.2: Visual comparison of matting results on 5 OOD classes of SIMD dataset. From

the 1st row to the 5th row, glass ice, fire, water drop, spider web, and water spray. From

left to right, image, trimap, GT, Pre-trained model, Finetune, IFL-MM (Ours), and OSM

(Ours).

matting visual results and sometimes is on par with IFL-MM that is trained by purely

OOD data.

To make our open set matting framework progressively incorporate novel classes, our

OOD-DN can be combined with research about open world recognition [12, 38, 42, 150]

to scale elegantly with the increasing number of classes. Then, the cycle of our open set

matting framework can be pushed to open world matting.
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Chapter 5

Discussion

In this section, we discuss how/why we select such OOD data for our main experiments,

our limitations, and possible future works.

5.1 Out-of-distribution Class Selection

Out of 20 classes in SIMD [156], we select 5 classes, i.e., glass ice, fire, water drop, spi-

der web, and water spray, as OOD data, instead of doing leave-one-out cross validation,

where all these 5 OOD classes can be considered as transparent objects. The reason behind

this is as follows:

• We hope to have a similar setup as Shaban et al. [145]. Shaban et al. [145] propose

a new benchmark, PASCAL-5i, for k-shot image segmentation on PASCAL VOC

2012 [43] dataset, where they sample 5 classes out of 20 classes as test data, i.e.,

OOD data.

• Other OOD detection works [96, 193] also have OOD test sets with more than one

OOD class, such as LSUN (10 classes) [188] and SVHN (10 classes) [114] datasets.
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• Leaving more than one class out allows us to evaluate methods on a more chal-

lenging benchmark where multiple OOD classes need to be matted using a single

model.

• Since natural image matting is a regression task, a pretrained matting model, no

matter which data it is trained on, can be directly applied to any images. Therefore,

domains involved in adaptation should be distinguished enough to make open set

matting meaningful. For trimap-free setting [85], popular domain gaps natural im-

age matting will encounter can be human/animals ←→ all object categories except hu-

man/animals, salient solid objects ←→ salient transparent/meticulous objects, salient solid

objects ←→ non-salient objects, and salient transparent/meticulous objects ←→ non-salient

objects. Please refer to [85] for trimap-free object categories. For trimap-needed set-

ting, domain gaps might be narrowed down to solid objects←→ transparent objects and

human/animals←→ all object categories except human/animals. Therefore, as the first step

towards open set matting, we attempt to tackle solid objects −→ transparent objects in

trimap-needed setting.

• The leave-one-out cross validation would require a huge number of experiments

(twenty per method in our case) which is computationally prohibitive considering

the number of hyperparameters we have.

5.2 Limitations

• Our OOD-DN cannot maintain excellent performance on both classification of ID

classes and OOD detection at the same time.

• According to our experiments, our IFL-MM is sensitive to OOD-ID split of dataset.

More advanced incremental few shot learning approaches can be adapted to im-

prove performance.
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• We does not investigate how to increase classes in OOD-DN and incorporate infor-

mation of OOD-DN with IFL-MM.

• We tackle open set matting in trimap-needed aspect instead of more meaningful

trimap-free aspect.

• We tackle the situation where there is only one or more than one single-type object

in each image instead of multiply-type objects.

5.3 Future Works

5.3.1 Dataset

The SIMD dataset [156] consists of 20 classes with 726 training foregrounds and 89 testing

foregrounds. The full training (resp. test) sets are synthetic data by compositing fore-

grounds with background images from COCO [90] (resp. PASCAL VOC [43]) dataset.

SIMD can be considered as a representative trimap-needed open set matting benchmark.

For trimap-free setting, one possible benchmark that can be used in open set matting

task is Automatic Image Matting-500 Benchmark (AIM-500) benchmark [85]. AIM-500

is a high-resolution natural image matting test set, including 424 salient opaque (SO), 43

salient transparent/meticulous (STM), and 33 non-salient (NS) images. To evaluate on

it, the training set is the combination of DUTS [168] and the synthetic data by composit-

ing foregrounds of Adobe Image Matting [177], Distinction-646, and AM-2k [84] with the

high-resolution BG-20k [84] background dataset. There are SO, STM, and NS type labels

for synthetic training data and we consider the DUTS dataset as SO type.

As mentioned above, it is noted that, for now, there are not many matting benchmark

with category labels and our benchmark option is limited. Therefore, we look forward to

more matting benchmarks enabling us to tackle open set matting problem.
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5.3.2 Single-type Object vs. Multiply-type Objects

As mentioned in Section 5.3.1, in test sets of SIMD and AIM-500, there is only one or more

than one single-type object in each image. Under this circumstance, we can only detect

if one image is OOD or not. However, for one image, if there are ID and OOD objects

mixed in trimap-free setting or there are ID and OOD objects within unknown regions

of trimaps in trimap-needed setting, our OOD-DN cannot handle. To this end, we have

to conduct a similar experimental setup as anomaly segmentation [19] or OOD detection

in multi-label setting [63] instead of multi-class, which depends on the specific problem

setup. Sequentially, the incremental few-shot learning part should also be reformulated

to fit the problem setup. We are encouraged to find that there are so many possibilities in

open set matting task and delighted to make the first step towards this direction.

5.3.3 Trimap-needed Matting vs. Trimap-free Matting

As mentioned in Section 5.3.1, there are two possible settings in open set matting task, in-

cluding trimap-needed and trimap-free. Compared to trimap-free setting, trimap-needed

setting can produce superior matting results but is a bit less exciting because trimaps

serve as prior information and can assist matting greatly, resulting in the situation where

few-shot adaptation shows much more significant improvement in metrics than in visual

results. However, open set matting in trimap-free setting would become more meaningful

because of the following points:

• Trimap-free matting still cannot achieve excellent performance among comprehen-

sive object categories. It will be exciting to improve its performance by incremental

few-shot learning and enlarge its knowledge base.

• Unlike trimap-needed matting, trimap-free matting might fail easily in real applica-

tion. It will be beneficial to continue updating trimap-free matting algorithm by col-

lecting/annotating real-world OOD data and conducting fast adaptation for practi-

cal usage.
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• Trimap-free matting has various kinds of OOD-ID splits, which means more possi-

bilities for future research.

We look forward to open set matting work in trimap-free setting and believe that it will

greatly contribute to real-world application of trimap-free matting.

5.3.4 Open World Matting

As discussed in Section 4.3, we validate the effectiveness of our open set matting frame-

work; however, our OOD-DN is not incremental and does not scale gracefully with un-

seen classes, which is the difference between open set matting and open world matting.

Although there is no open world matting work, there exist some works about open world

recognition (OWR). Some OWR studies [18, 33, 48, 78, 111, 184] mainly focus on how to

incorporate new classes instead of recognizing unseen classes while Bendale et al. [12] in-

troduce four steps for OWR, including detecting OOD classes, choosing which samples to

annotate, annotating these samples, and enlarging the classifier. Therefore, one possible

future work of open set matting is to scale flexibly with the increasing number of classes

for open world matting.
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Chapter 6

Conclusions

We introduce the first open set matting (OSM) framework that contains two networks, an

OOD detection network (OOD-DN) and an incremental few-shot learning matting mod-

ule (IFL-MM). Our OOD-DN leverages metric-based prototype learning to embed sam-

ples into the prototype space and applies our intra-batch connection loss on this space

to be aware of unseen objects, maintain inter-class separability and intra-class compact-

ness, and achieve the state-of-the-art OOD detection performance. Our OOD-DN sup-

presses other state-of-the-art OOD detection methods significantly and improves AU-

ROC, FPR95(OUT), and Detection Error metrics by 11.58%, 42.80%, and 28.57% compared

to the state-of-art 1-D Subspaces [193]. Our IFL-MM takes advantage of the importance

of weights of matting network trained on ID data for weight regularization and remod-

els the statistics of Batch Normalization with exponential learning rate decay schedule to

effectively prevent catastrophic forgetting and over-fitting.
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Chapter 7

Appendix

Methods AUROC(IN)↑ AUPR(IN)↑ FPR95(IN)↓ AUROC(OUT)↑ AUPR(OUT)↑ FPR95(OUT)↓ DetectionError↓

MSP [64] 0.550 0.888 0.950 0.550 0.163 0.860 0.371
MaxLogit [63] 0.678 0.910 0.843 0.678 0.314 0.877 0.324
EnergyScore [96] 0.693 0.913 0.743 0.693 0.342 0.877 0.319
1-D Subspaces [193] 0.748 0.939 0.664 0.748 0.420 0.689 0.306
MMSP [19] 0.607 0.912 0.986 0.607 0.176 0.656 0.344
EDS [19] 0.436 0.825 1.000 0.436 0.149 1.000 0.500

OOD-DN (Ours) 0.758 0.949 0.800 0.758 0.337 0.513 0.274

Table 7.1: Additional OOD detection results on SIMD dataset.

We present another OOD-ID split setting of SIMD dataset where we consider 5 classes,

i.e., lace, silk, net, spider web, plastic bag, out of 20 classes as OOD data. The compari-

son of our OOD-DN and other OOD detection methods is shown in Table 7.1. The results

show that our OOD-DN is better than other state-of-the-art methods on most of evalua-

tion metrics.
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nections for deep metric learning. In International Conference on Machine Learning

(2021), PMLR, pp. 9410–9421.

[143] SENGUPTA, S., JAYARAM, V., CURLESS, B., SEITZ, S. M., AND KEMELMACHER-

SHLIZERMAN, I. Background matting: The world is your green screen. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020),

pp. 2291–2300.

58



[144] SERRA, J., SURIS, D., MIRON, M., AND KARATZOGLOU, A. Overcoming catas-

trophic forgetting with hard attention to the task. In International Conference on Ma-

chine Learning (2018), PMLR, pp. 4548–4557.

[145] SHABAN, A., BANSAL, S., LIU, Z., ESSA, I., AND BOOTS, B. One-shot learning for

semantic segmentation. In BMVC (2017).

[146] SHAHRIAN, E., RAJAN, D., PRICE, B., AND COHEN, S. Improving image matting

using comprehensive sampling sets. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (2013), pp. 636–643.

[147] SHIN, H., LEE, J. K., KIM, J., AND KIM, J. Continual learning with deep generative

replay. Advances in neural information processing systems 30 (2017).

[148] SHU, L., XU, H., AND LIU, B. Doc: Deep open classification of text documents. In

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

(2017), pp. 2911–2916.

[149] SHU, L., XU, H., AND LIU, B. Unseen class discovery in open-world classification.

arXiv preprint arXiv:1801.05609 (2018).

[150] SHU, Y., SHI, Y., WANG, Y., ZOU, Y., YUAN, Q., AND TIAN, Y. Odn: Opening the

deep network for open-set action recognition. In 2018 IEEE international conference

on multimedia and expo (ICME) (2018), IEEE, pp. 1–6.

[151] SILVER, D. L., AND MERCER, R. E. The task rehearsal method of life-long learning:

Overcoming impoverished data. In Conference of the Canadian Society for Computa-

tional Studies of Intelligence (2002), Springer, pp. 90–101.

[152] SNELL, J., SWERSKY, K., AND ZEMEL, R. Prototypical networks for few-shot learn-

ing. Advances in neural information processing systems 30 (2017).

[153] SUN, J., JIA, J., TANG, C.-K., AND SHUM, H.-Y. Poisson matting. In ACM SIG-

GRAPH 2004 Papers. 2004, pp. 315–321.

59



[154] SUN, J., KE, Z., XU, K., SHAO, F., ZHANG, L., LU, H., AND LAU, R. W. Semantics-

adding flaw-erasing network for semantic human matting. In 33rd British Machine

Vision Conference 2022, BMVC 2022, London, UK, November 21-24, 2022 (2022), BMVA

Press.

[155] SUN, Y., CHEN, Y., WANG, X., AND TANG, X. Deep learning face representation

by joint identification-verification. Advances in neural information processing systems

27 (2014).

[156] SUN, Y., TANG, C.-K., AND TAI, Y.-W. Semantic image matting. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021), pp. 11120–

11129.

[157] TANG, J., AKSOY, Y., OZTIRELI, C., GROSS, M., AND AYDIN, T. O. Learning-

based sampling for natural image matting. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (2019), pp. 3055–3063.

[158] THULASIDASAN, S., CHENNUPATI, G., BILMES, J. A., BHATTACHARYA, T., AND

MICHALAK, S. On mixup training: Improved calibration and predictive uncer-

tainty for deep neural networks. Advances in Neural Information Processing Systems

32 (2019).

[159] VARETO, R., SILVA, S., COSTA, F., AND SCHWARTZ, W. R. Towards open-set face

recognition using hashing functions. In 2017 IEEE international joint conference on

biometrics (IJCB) (2017), IEEE, pp. 634–641.

[160] VENKATARAM, V. M. Open set text classification using neural networks. University of

Colorado Colorado Springs, 2018.

[161] VIGNOTTO, E., AND ENGELKE, S. Extreme value theory for open set classification–

gpd and gev classifiers. arXiv preprint arXiv:1808.09902 (2018).

60



[162] VINYALS, O., BLUNDELL, C., LILLICRAP, T., WIERSTRA, D., ET AL. Matching net-

works for one shot learning. Advances in neural information processing systems 29

(2016).

[163] WANG, F., CHENG, J., LIU, W., AND LIU, H. Additive margin softmax for face

verification. IEEE Signal Processing Letters 25, 7 (2018), 926–930.

[164] WANG, F., XIANG, X., CHENG, J., AND YUILLE, A. L. Normface: L2 hypersphere

embedding for face verification. In Proceedings of the 25th ACM international confer-

ence on Multimedia (2017), pp. 1041–1049.

[165] WANG, H., WANG, Y., ZHOU, Z., JI, X., GONG, D., ZHOU, J., LI, Z., AND LIU,

W. Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition (2018), pp. 5265–5274.

[166] WANG, J., AND COHEN, M. F. An iterative optimization approach for unified im-

age segmentation and matting. In Tenth IEEE International Conference on Computer

Vision (ICCV’05) Volume 1 (2005), vol. 2, IEEE, pp. 936–943.

[167] WANG, J., AND COHEN, M. F. Optimized color sampling for robust matting. In

2007 IEEE Conference on Computer Vision and Pattern Recognition (2007), IEEE, pp. 1–

8.

[168] WANG, L., LU, H., WANG, Y., FENG, M., WANG, D., YIN, B., AND RUAN, X.

Learning to detect salient objects with image-level supervision. In Proceedings of the

IEEE conference on computer vision and pattern recognition (2017), pp. 136–145.

[169] WANG, Y.-X., GIRSHICK, R., HEBERT, M., AND HARIHARAN, B. Low-shot learning

from imaginary data. In Proceedings of the IEEE conference on computer vision and

pattern recognition (2018), pp. 7278–7286.

[170] WEI, T., CHEN, D., ZHOU, W., LIAO, J., ZHAO, H., ZHANG, W., AND YU, N.

Improved image matting via real-time user clicks and uncertainty estimation. In

61



Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(2021), pp. 15374–15383.

[171] WEN, Y., ZHANG, K., LI, Z., AND QIAO, Y. A discriminative feature learning

approach for deep face recognition. In European conference on computer vision (2016),

Springer, pp. 499–515.

[172] WIESLER, S., AND NEY, H. A convergence analysis of log-linear training. Advances

in Neural Information Processing Systems 24 (2011).

[173] WRIGHT, J., MA, Y., MAIRAL, J., SAPIRO, G., HUANG, T. S., AND YAN, S. Sparse

representation for computer vision and pattern recognition. Proceedings of the IEEE

98, 6 (2010), 1031–1044.

[174] WRIGHT, J., YANG, A. Y., GANESH, A., SASTRY, S. S., AND MA, Y. Robust face

recognition via sparse representation. IEEE transactions on pattern analysis and ma-

chine intelligence 31, 2 (2008), 210–227.

[175] XIAO, C., LIU, M., XIAO, D., DONG, Z., AND MA, K.-L. Fast closed-form matting

using a hierarchical data structure. IEEE Transactions on Circuits and Systems for Video

Technology 24, 1 (2013), 49–62.

[176] XU, J., AND ZHU, Z. Reinforced continual learning. Advances in Neural Information

Processing Systems 31 (2018).

[177] XU, N., PRICE, B., COHEN, S., AND HUANG, T. Deep image matting. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 2970–

2979.

[178] XU, R., LIU, P., ZHANG, Y., CAI, F., WANG, J., LIANG, S., YING, H., AND YIN,

J. Joint partial optimal transport for open set domain adaptation. In IJCAI (2020),

pp. 2540–2546.

62



[179] XU, Y., LIU, B., QUAN, Y., AND JI, H. Unsupervised deep background matting

using deep matte prior. IEEE Transactions on Circuits and Systems for Video Technology

(2021).

[180] YANG, H.-M., ZHANG, X.-Y., YIN, F., AND LIU, C.-L. Robust classification with

convolutional prototype learning. In Proceedings of the IEEE conference on computer

vision and pattern recognition (2018), pp. 3474–3482.

[181] YANG, H.-M., ZHANG, X.-Y., YIN, F., YANG, Q., AND LIU, C.-L. Convolutional

prototype network for open set recognition. IEEE Transactions on Pattern Analysis

and Machine Intelligence (2020).

[182] YANG, Y., GAO, R., AND XU, Q. Out-of-distribution detection with semantic mis-

match under masking. In European Conference on Computer Vision (2022), Springer,

pp. 373–390.

[183] YANG, Y., HOU, C., LANG, Y., GUAN, D., HUANG, D., AND XU, J. Open-set

human activity recognition based on micro-doppler signatures. Pattern Recognition

85 (2019), 60–69.

[184] YEH, T., AND DARRELL, T. Dynamic visual category learning. In 2008 IEEE Con-

ference on Computer Vision and Pattern Recognition (2008), IEEE, pp. 1–8.

[185] YI, D., LEI, Z., LIAO, S., AND LI, S. Z. Deep metric learning for person re-

identification. In 2014 22nd international conference on pattern recognition (2014), IEEE,

pp. 34–39.

[186] YOSHIHASHI, R., SHAO, W., KAWAKAMI, R., YOU, S., IIDA, M., AND NAEMURA,

T. Classification-reconstruction learning for open-set recognition. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019), pp. 4016–

4025.

63



[187] YU, B., AND TAO, D. Deep metric learning with tuplet margin loss. In Proceedings

of the IEEE/CVF International Conference on Computer Vision (2019), pp. 6490–6499.

[188] YU, F., ZHANG, Y., SONG, S., SEFF, A., AND XIAO, J. Lsun: Construction of a

large-scale image dataset using deep learning with humans in the loop.

[189] YU, H., XU, N., HUANG, Z., ZHOU, Y., AND SHI, H. High-resolution deep image

matting. In Proceedings of the AAAI Conference on Artificial Intelligence (2021), vol. 35,

pp. 3217–3224.

[190] YU, Q., IRIE, G., AND AIZAWA, K. Self-labeling framework for open-set domain

adaptation with few labeled samples. IEEE Transactions on Multimedia (2023).

[191] YU, Q., ZHANG, J., ZHANG, H., WANG, Y., LIN, Z., XU, N., BAI, Y., AND YUILLE,

A. Mask guided matting via progressive refinement network. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021), pp. 1154–

1163.

[192] YU, Y., QU, W.-Y., LI, N., AND GUO, Z. Open-category classification by adver-

sarial sample generation. In Proceedings of the 26th International Joint Conference on

Artificial Intelligence (2017), pp. 3357–3363.

[193] ZAEEMZADEH, A., BISAGNO, N., SAMBUGARO, Z., CONCI, N., RAHNAVARD, N.,

AND SHAH, M. Out-of-distribution detection using union of 1-dimensional sub-

spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (2021), pp. 9452–9461.

[194] ZENATI, H., FOO, C. S., LECOUAT, B., MANEK, G., AND CHANDRASEKHAR, V. R.

Efficient gan-based anomaly detection. arXiv preprint arXiv:1802.06222 (2018).

[195] ZENKE, F., POOLE, B., AND GANGULI, S. Continual learning through synaptic

intelligence. In International Conference on Machine Learning (2017), PMLR, pp. 3987–

3995.

64



[196] ZENO, C., GOLAN, I., HOFFER, E., AND SOUDRY, D. Task-agnostic continual learn-

ing using online variational bayes with fixed-point updates. Neural Computation 33,

11 (2021), 3139–3177.

[197] ZHANG, H., CISSE, M., DAUPHIN, Y. N., AND LOPEZ-PAZ, D. mixup: Beyond

empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017).

[198] ZHANG, H., AND PATEL, V. M. Sparse representation-based open set recognition.

IEEE transactions on pattern analysis and machine intelligence 39, 8 (2016), 1690–1696.

[199] ZHANG, J., ZHANG, J., GHOSH, S., LI, D., TASCI, S., HECK, L., ZHANG, H., AND

KUO, C.-C. J. Class-incremental learning via deep model consolidation. In Pro-

ceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (2020),

pp. 1131–1140.

[200] ZHANG, Y., GONG, L., FAN, L., REN, P., HUANG, Q., BAO, H., AND XU, W. A

late fusion cnn for digital matting. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (2019), pp. 7469–7478.

[201] ZHENG, Y., PAL, D. K., AND SAVVIDES, M. Ring loss: Convex feature normaliza-

tion for face recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition (2018), pp. 5089–5097.

[202] ZHOU, Y. Rethinking reconstruction autoencoder-based out-of-distribution detec-

tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (2022), pp. 7379–7387.

[203] ZHOU, Y., LARADJI, I. H., ZHOU, L., AND NOWROUZEZAHRAI, D. Osm: An

open set matting framework with ood detection and few-shot learning. In 33rd

British Machine Vision Conference 2022, BMVC 2022, London, UK, November 21-24,

2022 (2022), BMVA Press.

65


	Abstract
	Abrégé
	Acknowledgements
	Contribution of Authors
	List of Figures
	List of Tables
	Introduction
	Related Work
	Natural Image Matting
	Out-of-Distribution (OOD) Detection
	Prototype Learning
	Incremental Learning
	Open Set Domain Adaptation
	Open Set Learning
	Basic Notations and Definitions
	Open Set Recognition (OSR)


	Approach
	Problem Setup
	OOD Detection Network (OOD-DN)
	Intra-Batch Connection Regularization
	OOD Detection During Inference

	Incremental Few-Shot Learning Matting Module (IFL-MM)
	Remodelling the Statistics of Batch Normalization with Exponential Learning Rate Decay
	Weight Constrain by Synaptic Intelligence


	Experiments
	OOD Detection Network (OOD-DN)
	Datasets
	Evaluation Metrics
	Implementation Details
	Results
	Ablation Study

	Incremental Few-Shot Learning Matting Module (IFL-MM)
	Datasets
	Evaluation Metrics
	Implementation Details
	Results
	Ablation Study

	Open Set Matting (OSM)

	Discussion
	Out-of-distribution Class Selection
	Limitations
	Future Works
	Dataset
	Single-type Object vs. Multiply-type Objects
	Trimap-needed Matting vs. Trimap-free Matting
	Open World Matting


	Conclusions
	Appendix

