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ABSTRACT 

Legionella pneumophila are water-borne pathogenic bacteria responsible for severe respiratory 

disease known Legionnaire’s disease (LD). Engineered water systems such as cooling towers and 

plumbing are leading sources of the bacteria, therefore rapid detection of Lp in these systems is 

required to prevent future LD outbreaks. Infections occur when the bacteria are aerosolized, and 

the contaminated bio-aerosols are inhaled. Current standard ISO certified detection strategies for 

Lp are the standard plate count method and qPCR which entail either long processing times or 

multiple, laborious and costly processing steps. Biosensors would help overcome the limitations 

of such traditional microbial detection methods. SPR biosensors specifically are considered a gold 

standard in optical biosensing due to their sensitivities as well as ability to be label free and use 

samples in their native state. To adapt the SPR system for Lp, biorecognition elements such as 

antibodies or aptamers need be used. Aptamers are single stranded short DNA or RNA 

oligonucleotides that fold into specific structures and bind to a wide variety of targets ranging from 

small molecules to cells. Their chemical make-up gives them numerous advantages over traditional 

biorecognition molecules i.e antibodies, in terms of cost and stability. Prior to this work no 

aptamers and thus no aptamer-based technology existed for the detection of Lp.  

In the first study, Systemic Evolution of Ligands through EXponential enrichment (SELEX) was, 

therefore, used to identify aptamers that bound specifically to Lp. Ten rounds of positive selection 

and two rounds of negative selection against two Pseudomonas species were performed. which 

lead to the identification of two aptamers binding specifically to Lp with KD in the 100nM range. 

These two aptamers were characterized using flow cytometry and fluorescence microscopy. 

In the second study, the aptamer R10C5 was optimized for use in a Surface Plasmon Resonance 

imaging (SPRi) sensing platform to develop a titration assay, where the concentration of Lp was 

determined by quantifying the amount of unbound aptamers. The combination of aptamer titration 

assay with SPR enabled specific detection of Lp to an LOD of 104.3 CFU/ml, without the use of 

labelling or signal amplification strategies. The SPR based assay also showed how different media-

namely PBS, model tap water (Fraquil) and SSC, affects the ability of the aptamers to bind to Lp.  

In terms of specificity, the assay shows minimal detection of Pseudomonas, a common inhabitant 

of water systems. 
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In the third study, a single round of four parallel selections were used in combination with high 

throughput sequencing to identify higher-order aptamers binding to cells of Lp Serogroup 1. The 

combination of HTS and parallel selections enabled the evaluation of aptamer pools that evolved 

in the presence of different Lp variants as well as non-Lp water bacteria. The pools were then 

examined for sequences that were enriched in the presence of target Lp and depleted in the presence 

of non-target bacteria. HTS data revealed that following one round of selection, only a small 

fraction of sequences was enriched. Analyzing the enrichment of these sequences in the presence 

of target Lp versus non-target bacteria revealed four structurally complex, candidate aptamers of 

which only three are specific to the clinically dominant, Lp serogroup 1. 
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RESUME 

La Legionella pneumophila (Lp) est une bactérie pathogène d'origine hydrique responsables d'une 

maladie respiratoire sévère connue sous le nom de maladie du légionnaire (ML). Les 

infrastructures d'eau tels que les tours de refroidissement et les réseaux de plomberie sont les 

principaux lieux où prolifèrent ces bactéries. Par conséquent, une détection rapide de Lp dans ces 

systèmes est nécessaire pour prévenir de futures épidémies de ML. Les infections se produisent 

lorsque les bactéries sont aérosolisées et que les bio-aérosols contaminés sont inhalés. 

Actuellement, la culture sur plaque et la qPCR qui impliquent soit de longs temps de traitement, 

soit des étapes de traitement multiples, laborieuses et coûteuses, sont les méthodes certifiées ISO 

considérée comme stratégies standard pour la détection de Lp. Les biocapteurs aideraient à 

surmonter les limites de ces méthodes traditionnelles de détection microbienne. Les biocapteurs 

SPR sont spécifiquement considérés comme une référence en matière de biodétection optique en 

raison de leurs sensibilités ainsi que de leur capacité à fonctionner sans étiquette et à utiliser des 

échantillons dans leur état natif. Pour adapter le système SPR à la Lp, des éléments de 

bioreconnaissance tels que des anticorps ou des aptamères doivent être utilisés. Les aptamères sont 

des oligonucléotides d'ADN ou d'ARN courts simple brin qui se replient dans des structures 

spécifiques et se lient à une grande variété de cibles allant des petites molécules à des cellules 

entières. Leur constitution chimique leur confère de nombreux avantages par rapport aux 

molécules de bioreconnaissance traditionnelles que sont les anticorps, notamment en termes de 

coût et de stabilité. Aucun aptamère et donc aucune technologie à base d'aptamère n’a été publié 

jusqu’à présent pour la détection de Lp. 

Dans la première partie de nos études, l'évolution systémique des ligands par enrichissement 

EXponentiel (SELEX) a donc été utilisée pour identifier les aptamères qui se lient spécifiquement 

à Lp. Dix cycles de sélection positive et deux cycles de sélection négative contre deux espèces de 

Pseudomonas ont été effectués qui ont conduit à l'identification de deux aptamères se liant 

spécifiquement à Lp avec un KD d’une valeur de l’ordre de 100nM. Ces deux aptamères ont été 

caractérisés par cytométrie en flux et microscopie à fluorescence. 

Dans la deuxième partie de nos études, l'aptamère R10C5 a été optimisé pour une utilisation dans 

une plate-forme de détection d'imagerie par résonance plasmonique de surface (SPRi) pour 

développer un test de titrage, où la concentration de Lp a été déterminée en quantifiant la quantité 
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d'aptamères non liés. La combinaison du test de titrage aptamère avec SPR a permis une détection 

spécifique de Lp à une limite de détection de 104,3 UFC/ml, sans l'utilisation de stratégies de 

marquage ou d'amplification du signal. Le test basé sur la SPR a également montré comment 

différents milieux, à savoir le PBS, l'eau du robinet (Fraquil) et le SSC, affectent la capacité des 

aptamères à se lier à Lp. En termes de spécificité, le test montre une détection minimale de 

Pseudomonas, un habitant commun des systèmes d'eau. 

Dans la troisième partie de nos études, un seul cycle de quatre sélections parallèles a été utilisé en 

combinaison avec un séquençage à haut débit (SHD) pour identifier des aptamères d'ordre 

supérieur se liant aux cellules du sérogroupe Lp 1. La combinaison de SHD et de sélections 

parallèles a permis l'évaluation des pools d'aptamères qui ont évolué en présence de différentes 

variantes de Lp ainsi que de bactéries aquatiques autres que Lp. Les contenus des pools en 

séquences enrichies en présence de Lp cible et appauvries en présence de bactéries non-cibles ont 

ensuite été examinés. Les données SHD ont révélé qu'après un cycle de sélection, seule une petite 

fraction des séquences était enrichie. L'analyse de l'enrichissement de ces séquences en présence 

du Lp cible par rapport à des bactéries non-cibles a révélé quatre aptamères candidats aux 

structures complexes, dont trois se sont avéré spécifiques au sérogroupe 1 cliniquement dominant 

chez Lp. 
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(Lp) detection. This thesis does this by 

 

1. Reporting the identification of the first two Legionella pneumophila (Lp) aptamers. This is 

the first time SELEX has been done using Lp cells as a target. 

 

2. Reporting the use of aptamers in a SPRi based titration assay where the concentration of 

Lp cells is determined by measuring free or unbound aptamers. The study shows for the 

first time the use of aptamers in such a titration assay and illustrates a strategy to overcome 

the optical limits of SPR for bacterial detection.  

 

3. Reporting the use of a parallel selection method (branched SELEX) in conjunction with 

high-throughput sequencing (HTS), using bacterial whole cells representative of source 

environments to identify aptamers. No study to date has utilized the branched SELEX 

method for whole bacterial cells. Additionally, the study highlights, for the first time, some 

important limitations to using the branched SELEX method. Finally, by generating 

sequencing data, the study contributes to the field since there is currently a lack of SELEX-

HTS datasets. 

 
4. Identifying and reviewing properties of waterborne microbes that would act as potential 

determinants towards optimal aptamers and aptamer-based biosensor development. 
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INTRODUCTION: RATIONALE AND OBJECTIVES 

Legionella pneumophila (Lp) is a pathogenic, Gram-negative bacterium responsible for two types 

of respiratory diseases, namely the severe Legionnaires Disease (LD) and a milder form of flu-like 

pneumonia known as Pontiac fever (McDade, Shepard et al. 1977). The water-borne bacterium 

occur in both natural and man-made water systems (Kozak, Lucas et al. 2013). In natural water 

systems the bacterium is present in low concentrations; however, its preference for increased 

temperatures (above 25◦C) and assimilating in biofilms make it one of the most prevalent water-

based pathogens in engineered water systems (Abdel-Nour, Duncan et al. 2013, Kozak, Lucas et 

al. 2013).   

Lp infections occur when the bacteria are aerosolized from engineered water systems and the 

contaminated bio-aerosols are inhaled by humans (Parr, Whitney et al. 2015). Man-made water 

systems provide optimal transmission conditions for Lp by generating aerosols. Leading sources 

of infection are aerosols produced from cooling towers, hot water distribution systems, 

humidifiers, misters, showers, fountains, spa pools and evaporative condensers (Parr, Whitney et 

al. 2015).  

Outbreaks of LD occur consistently globally and have increased in recent years (PHAC 2019, 

(ECDC) 2021, CDC 2021). The true incidence rates of Lp infection however are often 

underreported  (PHAC 2018, Cassell, Gacek et al. 2019). Legionellosis has high population and 

individual disease burdens (Cassini, Colzani et al. 2018). 

Most Legionellae-associated outbreaks are instigated by management failure of man-made water 

systems such as allowing water to stagnate, lack of regular disinfection protocols as well as 

variability in monitoring strategies (Parr, Whitney et al. 2015, Proctor, Rhoads et al. 2020). As 

with any infectious agent, preventive maintenance is key to keeping Lp presence and transmission 

under control. Routine monitoring and surveillance strategies for the bacterium are critical to 

evaluate risk, initiate treatment of water sources, and prevent future outbreaks (Ashbolt 2015, 

Ramírez-Castillo, Loera-Muro et al. 2015). Detection of Lp is critical for monitoring and 

surveillance programs.  

Current ISO certified standards to detect Lp from environmental matrices include (i) plate count 

culture methods (AFNOR NF T90-431, ISO 11731), and (ii) qPCR (AFNOR NF T90-471, ISO/TS 
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12869) (ISO 2017, ISO 2019). Plate count methods are the gold standard for Lp detection (Whiley 

and Taylor 2016). This method selects for Lp by exposing an environmental sample to various 

physical factors such as high temperatures and low pH followed by cultivation on selective media 

and the enumeration of bacterial colonies showing Lp specific morphology (Bopp, Sumner et al. 

1981). These culture methods are extremely time consuming and often require extensive material 

and specialized labour. The culture method can take up to 15 days before obtaining a result with 

regards to an environmental sample (Trudel, Veillette et al. 2014, Whiley and Taylor 2016). 

Another limitation is the presence of viable but non culturable (VBNC) Lp cells. VBNC cells are 

problematic because since they cannot be cultured, true Lp cell counts are often underestimated 

(Whiley and Taylor 2016, Wang, Bédard et al. 2017).  

qPCR methods quantify Legionella specific genes. In comparison to plate count methods, they 

have more rapid turn-around times, high sensitivities and specificities, lower limits of detection, 

as well as the ability to detect viable but non culturable cells (VBNC) cells (Díaz-Flores, Montero 

et al. 2015, Whiley and Taylor 2016). However, given that the method detects both VBNC and 

dead cells, a caveat is an overestimation of microbial burden (Whiley and Taylor 2016). 

Additionally, environmental samples are often complex matrices that may have inhibitors such as 

humic or fulvic compounds which would adversely impact the qPCR reactions and thus microbial 

recovery rates (Gentry-Shields, Wang et al. 2013). Finally, the multiple sample processing steps 

for DNA/RNA extraction increase the overall costs and complexity of this method. 

Neither of these methods can be developed into rapid, cost-effective, sensitive tests that would 

identify the whole Lp bacterium in real-time, in situ, without any additional processing steps. 

Biosensors are promising detection technology that would provide a solution to these problems. 

Biosensors are analytical devices that measure the presence or concentration of a bioanalyte such 

as protein, a cell, etc (Turner 2013). They can provide a quick, cost-effective, sensitive, real-time 

method of bacterial detection while eliminating the need for specialized labour (Ahmed, 

Rushworth et al. 2014).  Surface plasmon resonance imaging sensors (SPRi) are optical biosensors 

whose properties make it attractive for bacterial detection (Dudak and Boyacı 2009). SPRi sensors 

are sensitive to changes in the refractive index (RI) of a media and thus can measure changes in 

RI that occur as a result of target-bioreceptor binding. This means samples can be used in their 

native state without any labelling (Dudak and Boyacı 2009). This sensor characteristic eliminates 
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the need for arduous processing steps while concurrently providing real time, continuous 

measurements vital for detection and analysis (Dudak and Boyacı 2009). To ensure the SPRi 

sensor is selective for specific microbial targets, biorecognition elements are required (Kumar, Hu 

et al. 2018). Antibodies are currently the most widely used bioreceptors in biosensor development 

and research, but aptamers are rapidly becoming an increasingly attractive alternative (Morales 

and Halpern 2018, Saad and Faucher 2021). 

Aptamers are antibody analogues (Bunka and Stockley 2006). They are short single stranded DNA 

or RNA oligonucleotides that can bind to a wide range of targets, from small molecules to whole 

cells, with high affinity and specificity (Bunka and Stockley 2006, McKeague, De Girolamo et al. 

2015, Davydova, Vorobjeva et al. 2016). They form stable complex structures to interact with their 

targets via shape complementarity, hydrogen bonding, electrostatic interactions or stacking 

interactions (Mayer 2009). A key characteristic of an aptamer is that it can be generated in vitro in 

a wide array of conditions, unlike antibodies which require strict physiological conditions 

(McKeague, McConnell et al. 2015). Due to their chemical make-up aptamers are easily 

modifiable, heat-labile and can be cost effectively, chemically synthesized in a high throughput 

manner (Mayer 2009). Prior to this work, no aptamers and thus no aptamer-based technology 

existed for the detection of Lp. 

Considering their advantages, we hypothesized that aptamers could serve as viable bioreceptors 

on an SPRi sensing platform to detect whole Lp cells. Given the hypothesis, our research objectives 

for this thesis were to (i) generate candidate aptamers that bind to Lp (ii) validate and characterize 

the Lp binding aptamers, (iii) develop and optimize the SPR sensing system for use with aptamers, 

and (iv) evaluate the aptamer based SPRi biosensing system as a method to detect Lp in complex 

water matrices. 

Prior to delving into the details of how each research objective was achieved, the next chapter 

(Literature Review) aims to address in detail the multiple elements involved in this study so as to 

equip the reader with the necessary background knowledge required to gain insight on this body 

of work. 
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CHAPTER 1: BACKGROUND AND LITERATURE REVIEW 

1.1 Introduction 

Air. The subject of breathing pure sanitary air has frequently been hijacked by politicians for 

reasons other than biology and health (Selin and VanDeveer 2003, Gonzalez 2012, Zheng and 

Chen 2020). With good reason, as it is an indicator for quality of life and so serves as a powerful 

tool for furthering any political or economic agenda. Take for instance the window tax, introduced 

in England in 1696 (Oates and Schwab 2015). The window tax was a property tax based on the 

number of windows in one’s home. To avoid the tax, many homeowners bricked or boarded their 

windows. It wasn’t until 1851 that the tax was repealed, thanks to pressure from doctors and 

activists, who argued that the lack of light and fresh air caused many illnesses (Oates and Schwab 

2015). Though much time has passed since 17th-19th century England, breathing fresh air remains 

a polarizing subject, forever caught in a battle between economics, politics, and environment 

(Oates and Schwab 2015).  

The year 2020 brought in another dimension on breathing fresh air. From the “I can’t breathe” 

statement of a dying George Floyd to anti-maskers co-opting the phrase for their agenda during 

the COVID-19 pandemic, the subject of fresh air and breathing was everywhere (Klinenberg and 

Sherman 2021). The infectious agent behind the COVID-19 pandemic i.e, the SARS-CoV2 virus, 

had managed to turn the world upside down by using a basic bodily function, i.e breathing, as a 

tool for its propagation. 

Every exhale meant the release of aerosols and the transmission of the notorious coronavirus. 

Given the viruses public health significance, much research has been done in recent years on the 

production and spread of the small microbe containing aerosols (El Baz and Imziln 2020, Singh, 

Sanghvi et al. 2021, Zaneti, Girardi et al. 2021). However, this viral microbe is not the first 

pneumonia causing agent transmitted by aerosols. Years before COVID, there was another. A 

bacterium transmitted by aerosols produced by water systems. This infectious agent is known as 

Legionella pneumophila (Lp). 
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1.1.1 General Biology of Legionella pneumophila  

Legionnaire’s disease (LD) is the name of the severe, often deadly, pneumonia caused by bacteria 

belonging to the genus Legionella. To date over 61 species of Legionella have been identified, 

with the majority of them being implicated in human disease (Phin, Parry-Ford et al. 2014, 

Amemura-Maekawa, Kura et al. 2018, Mondino, Schmidt et al. 2020, Walker and McDermott 

2021). The species Lp is responsible for most LD cases with serogroup 1 being the most dominant 

disease-causing variant (Phin, Parry-Ford et al. 2014, Amemura-Maekawa, Kura et al. 2018, 

Mondino, Schmidt et al. 2020, Walker and McDermott 2021)  

Lp is a Gram-negative, aerobic, rod shaped gammaproteobacteria (Edelstein and Lück 2015). The 

bacteria first came into prominence in 1976 when 182 members of the American Legion who had 

attended a conference at the Bellevue-Stratford Hotel in Philadelphia, developed a severe 

pneumonia. Thirty-four conference attendees succumbed to the illness, causing widespread alarm 

and a rush to identify the etiologic agent. To reflect the patients and clinical disease, the causative 

agent was thus called Legionella pneumophila (Fraser, Tsai et al. 1977, McDade, Shepard et al. 

1977). Though the bacterium was identified following the Philadelphia outbreak, the first 

Legionella spp. are believed to have been isolated in 1944 and 1959 (Tatlock 1944, Bozeman 

1968)  

Lp is an intracellular pathogen. This enables the bacteria to occupy an array of niches making it 

widely prevalent in both natural and engineered water systems. In natural and engineered 

reservoirs, the main hosts for Lp are protozoa such as Vermamoeba vermiformis and 

Acanthamoeba castellanii whereas in humans its host cells are alveolar macrophages and 

monocytes (Figure 1) (Comas 2016). 
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Figure 1. In the environment Legionella species infect protozoan hosts and exist in biofilms which can be found in 

most engineered modern water systems. Infections in humans occur when Legionella containing aerosols, produced 

by modern engineered water systems, are inhaled. In humans, Legionella species infect alveolar macrophages. In both 

protozoa and macrophages, the bacteria replicate and survive with the aid of a Legionella containing vacuole (LCV). 

The Icm/Dot T4SS (Type IV Secretion system) translocates hundreds of effector proteins that help maintain the LCV. 

Image created in Biorender and adapted from Comas, 2016 

 Lp replicates and persists intracellularly in multispecies biofilms or in free-living protozoan cells 

found in environmental (man-made or natural) reservoirs (Declerck 2010, Ashbolt 2015) or as 

planktonic cells provided the medium is rich with nutrients such as in laboratory conditions 

(Abdel-Nour, Duncan et al. 2013). The bacteria target hosts when shifting from the replicative to 

the transmissive phase. During the replicative phase the bacteria are nonmotile and not pathogenic 

whereas during the transmissive phase the bacteria grow flagella, become motile and consequently 

become infectious (Albert-Weissenberger, Cazalet et al. 2007). This phase shift from replicative 

to transmissive forms is governed by depletion of nutrients (Fonseca, Sauer et al. 2008, Fonseca 

and Swanson 2014). As with most foreign microbes, the host cells engulf the bacteria by 
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phagocytosis and deliver them to the lysosomal system in order to eliminate them. Lp, however, 

evades elimination by forming a bacterial phagosome known as the Legionella containing vacuole 

(LCV) (Mondino, Schmidt et al. 2020). This LCV protects Lp from being recognized by the hosts 

immune system and provides the bacterium with nutrients for its replication (Fonseca and Swanson 

2014, Mondino, Schmidt et al. 2020). The maintenance of this LCV is governed by the Icm/Dot 

type IV secretion system (T4SS) (Mondino, Schmidt et al. 2020). The latter is a protein complex 

that traverses bacterial and phagosomal membranes and translocates over 300 effector proteins 

necessary for the bacterium’s survival (Albert-Weissenberger, Cazalet et al. 2007, Gomez-Valero, 

Rusniok et al. 2019) Genomic sequencing data of over 60 Legionella species suggests a diversity 

of over 18,000 potential effector proteins illustrating the bacterium’s adaptive potential ((Gomez-

Valero, Rusniok et al. 2019)  

Infections from Lp occur when aerosols and droplets contaminated with the bacterium are inhaled 

(Lin, Vidic et al. 1998). Engineered water systems such as cooling towers, hot water distribution 

systems, humidifiers, misters, showers, fountains, spa pools and evaporative condensers provide 

optimal transmission conditions by producing aerosols (Lin, Vidic et al. 1998, National Academies 

of Sciences and Medicine 2020). Infections and outbreaks from natural water systems rarely occur 

due to low concentrations of the bacteria (National Academies of Sciences and Medicine 2020). 

Apart from one case reported in Portugal in 2014, human-to-human transmission of Lp generally 

does not occur (Correia, Ferreira et al. 2016). 

1.1.2 Epidemiology of Legionella pneumophila 

Legionella spp., are one of the key water-borne environmental pathogens that contribute 

significantly to water-borne disease burden, a consequence of which is  high human and financial 

costs (Gargano, Adam et al. 2017, Cassini, Colzani et al. 2018, Greco, Drudge et al. 2020, Collier, 

Deng et al. 2021). In fact Legionella was reported as one of the top five infectious agents in Europe  

that had a high number of disability adjusted life years (DALYS), which are years lost  due to ill-

health, disability or early death (Cassini, Colzani et al. 2018). Together with Pseudomonas and 

non-tuberculosis mycobacteria, the total healthcare costs from Legionella infections were US 

2.39$ billion annually (Collier, Deng et al. 2021).  

Outbreaks  due to Lp occur consistently globally and have increased in recent years with Lp 

serogroup 1 accounting for 90% of global human infections (National Academies of Sciences and 
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Medicine 2020). The fatality rate for LD ranges between 5-30% depending on the location and 

environmental setting and can be as high as 50% in hospital and healthcare 

environments.(Garrison, Kunz et al. 2016). According to the Centre for Disease Control (CDC-

USA), incidences of diseases associated with Lp infections have increased by nine times between 

the years 2000 and 2018 (CDC 2021). The ECDC (European Centre for Disease Control) reports 

a 57% increase in incidence rates of LD from 2015 to 2019 ((ECDC) 2021). Epidemiologic studies 

from Europe, Australia and the USA indicate that the average incidence rate is about 10-15 cases 

per million people (World Health Organizaton 2018, National Academies of Sciences and 

Medicine 2020, (ECDC) 2021). In Canada, Legionellosis incidence rates per 100,000 people have 

increased by 700% between 2000 and 2019 (Canadian Notifiable Diseases Surveillance System 

(CNDSS) 2020). The true incidence rates however are much higher and often underreported either 

due to low rate of testing or a lack of diagnostic tests that can detect other Legionella species and 

L. pneumophila serogroups (Collier, Deng et al. 2021). The rise in Lp outbreaks is multifactorial 

and can be attributed to several reasons. One is the aging infrastructure of water distribution 

systems of most population dense cities (Parr, Whitney et al. 2015). These deteriorating 

distribution systems are at an increased risk for breaks and corrosion all of which promote 

Legionella colonization (Parr, Whitney et al. 2015, Proctor, Rhoads et al. 2020). Increasing 

population densities and urbanization also means more exposure to water facilities and devices 

such as sprinklers, fountains, spas, and cooling towers etc. (National Academies of Sciences and 

Medicine 2020). Climatic factors such as increased temperatures, rainfall and flooding have been 

known to increase the number waterborne diseases and Legionella infections show a similar 

pattern (Walker 2018). In fact, many studies have reported that Legionella outbreaks tend to occur 

in the summer or early fall which are characterized as being warmer with high moisture conditions 

(Walker 2018). The rise of an aging population, which are more vulnerable to infections, is another 

reason for increased Lp associated diseases (Cooley, Pondo et al. 2020). Advances in reporting 

methods and increased diagnosis and reporting have also contributed to increased incidence rates 

(Collier, Deng et al. 2021). Risk factors for Lp infection include old age, compromised immune 

systems, smoking and chronic illness which include respiratory cardiovascular and kidney diseases 

(Cooley, Pondo et al. 2020). Most infections however are primarily due to exposure to 

contaminated man-made water systems, which can lead to an outbreak (Walker and McDermott 

2021). 
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 Outbreaks due to Lp can occur either as sporadic cases or major epidemics. Usually, sporadic 

cases affect few people and are caused by domestic water systems, such as showerheads and 

premise plumbing   (van Heijnsbergen, Schalk et al. 2015). Epidemics, such as the landmark major 

outbreak in Quebec City in 2012 that resulted in 182 cases and 13 declared fatalities, are caused 

by larger public water systems, such as cooling towers and recreational water parks (Lévesque, 

Plante et al. 2014). Most reported infections are sporadic cases (MacIntyre, Dyda et al. 2018). 

Legionellae-associated outbreaks are instigated by management failure of man-made water 

systems. Examples of these failures include keeping water distribution system temperatures below 

50°C, allowing water to stagnate, lack of regular cleaning and disinfection protocols as well as 

lack of consensus on monitoring strategies and protocols (CWWA-ACEPU 2020, Proctor, Rhoads 

et al. 2020). The recent SARS-CoV2 pandemic is an example of a high environmental risk factor 

for Lp transmission (CWWA-ACEPU 2020, Proctor, Rhoads et al. 2020). The unprecedented 

global “stay-at-home” orders have led to the closures of buildings, institutions, and offices. These 

widespread closures and “shut-downs” have reduced water usage and flow, running the risk of 

stagnation of water (CWWA-ACEPU 2020, Proctor, Rhoads et al. 2020). Stagnation of water leads 

to a decrease in disinfectant residuals, degradation in water quality, temperature fluctuations that 

promote microbial growth conditions, as well as the formation of biofilm, all of which are optimal 

conditions for Legionella growth and proliferation (CWWA-ACEPU 2020, Proctor, Rhoads et al. 

2020). At the time of writing this thesis, no data has come forth that pandemic related building 

shutdowns have led to increased Legionellosis incidence rates. This may be in part to strict 

guidelines released by various institutions and organizations for the safe re-opening of buildings 

(CDC 2020, CDC 2020). 

1.1.3 Legionella pneumophila and Engineered Water Systems 

The growth of Lp to high, pathogenic levels is dictated primarily by two characteristics of an 

engineered water system. One is the ability of the water system to provide ideal conditions for 

biofilm formation such as stagnation of water, warm temperatures, low disinfectant residual, type 

of plumbing material, corrosion of plumbing material, all of which support protozoan growth. 

Second is the ability of the water system to produce aerosols. Aerosols contaminated with Lp can 

be inhaled by susceptible individuals (Buse, Schoen et al. 2012). 
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As mentioned previously, given Lp’s parasitic lifestyle, the bacteria replicate in protozoa which 

are normally found in biofilms. A biofilm is an aggregation of microbial cells that are attached to 

a surface and enclosed by an extrapolymeric gel-like substance (Donlan 2002). The microbial 

communities of a biofilm are often complex containing many species of bacteria but also higher 

order eukaryotes such amoeba, nematodes, ciliates, etc. (Paranjape, Bédard et al. 2020, Paranjape, 

Bédard et al. 2020). Biofilms form on all moist surfaces which include engineered water systems 

and their various components such as filters, gaskets, pipes etc. Specific regions of a water system, 

and its temperature affect Lp concentration levels (Bédard, Fey et al. 2015, Bédard, Paranjape et 

al. 2019, Bédard, Trigui et al. 2021). For example, distal regions of hot water distribution systems 

-including taps and showerheads-, where the temperatures are warm to lukewarm and water is 

prone to stagnation, provide optimal conditions for biofilm formation and thus Lp propagation 

(Boppe, Bedard et al. 2016, Bédard, Paranjape et al. 2019). The material used to fabricate the 

plumbing or water system also has an impact on Lp levels (Wang, Masters et al. 2014). Several 

studies demonstrated an increased presence of Legionella in biofilms grown on copper compared 

to biofilms grown on cross-linked polyethylene (PEX), polyvinyl chloride (PVC) or unplasticized 

PVC (uPVC) (Buse, Lu et al. 2014, Gião, Wilks et al. 2015). A recent study investigating to 

susceptibility of Legionella to copper, identified two biofilm-derived Legionella isolates with 

increased expression of copper resistance gene copA, suggesting that exposure to copper plumbing 

leads to adaptation of Legionella to local environments (Bédard, Trigui et al. 2021). This local 

adaptation also provides insight on how other stressors, such as disinfectants, can affect Lp levels. 

Disinfectants and biocides are the primary strategy for treating engineered water systems. 

Compared to free-living bacterial cells, biofilm integrated microbes are more resistant to 

disinfectant treatment (Falkinham 2020). Lp is just one member of a group of biofilm-associated 

waterborne pathogens, collectively called opportunistic premise plumbing pathogens (OPPPs). A 

characteristic of OPPPs is that they are relatively resistant to a common disinfectant used to treat 

water systems namely chlorine (Falkinham 2020). 

Corrosion products can also affect Lp levels by consuming disinfectant residuals (Buse, Schoen et 

al. 2012). During the notorious Flint, Michigan water crisis, a lack of corrosion inhibitors led to 

an increased level of corrosion products which in turn reduced chlorine disinfectant levels resulting 

in high levels of Legionella in the waters. This led to an outbreak of LD in 2016 (Rhoads, Garner 

et al. 2017). Corrosion products can also affect Lp levels by providing bioavailable metals such as 
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iron which are important for Lp growth (Buse, Schoen et al. 2012, Rhoads, Pruden et al. 2017). 

Similarly corrosion products can also promote biofilm growth by providing a source of electron 

donors and hydrogen (Rhoads, Pruden et al. 2017). 

There are several types of engineered water systems that could promote biofilm formation and 

produce aerosols leading to Lp propagation. These include building water distribution systems 

(premise plumbing) ,cooling towers, drinking water treatment plants, wastewater treatment plants 

that receive warm industrial effluents, and other devices with moderate temperature waters such 

as hot tubs, humidifiers or sprinklers (van Heijnsbergen, Schalk et al. 2015). Though drinking 

water systems are the most common source of LD outbreaks, cooling towers are the primary cause 

behind large community-associated outbreaks, as well as over a quarter of sporadic cases 

(Llewellyn, Lucas et al. 2017, Walker and McDermott 2021). A cooling tower is a large structure 

that acts as a heat exchanger in which air and water are mixed to reduce the temperature of water 

that has previously been increased as a consequence of trapping heat from industrial processes 

(Mouchtouri, Goutziana et al. 2010). Cooling towers provide an ideal environment for Lp growth 

due to their warm temperatures and large surface areas for biofilm formation (Mouchtouri, 

Goutziana et al. 2010). Additionally they can produce aerosols that can be dispersed hundreds of 

kilometers away, increasing the risk of Lp infections (Nhu Nguyen, Ilef et al. 2006). 

1.1.4 Legionella pneumophila Life Cycle and Pathogenesis  

Legionella’s life cycle and mechanisms of pathogenicity have mostly been studied using Lp 

serogroup 1 as a model. Given its prevalence in a wide array of niches and its ability to propagate 

itself in the environment and in host cells, it is now well understood that Lp is a versatile microbe 

able to adapt to a range of niches by altering its physiology. Lp can exist intracellularly and in 

multispecies biofilms (Robertson, Abdelhady et al. 2014). Depending on its environment Lp can 

be found in either replicative, transmissive, VBNC (viable but non culturable), filamentous, or 

MIF (mature infectious forms) forms (Robertson, Abdelhady et al. 2014). Each metabolic state 

plays a specific role in the bacterium’s growth, survival or propagation. (Robertson, Abdelhady et 

al. 2014).  

The replicative state of Lp is analogous to exponential phase whereas the transmissive form of Lp 

resemble post-exponential/stationary phase in laboratory conditions (Byrne and Swanson 1998).  

The shift from replicative to transmissive form results in a change in the transcriptomic and 
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metabolic profile (Faucher, Mueller et al. 2011, Li, Mendis et al. 2015). In nutrient rich media or 

in the presence of host cells such as protozoa or macrophages, Lp expresses regulatory proteins 

which in turn inhibits the production of virulence factors such as flagella that would otherwise 

make the bacterium express transmissive traits and be infectious (Molofsky and Swanson 2004, 

Trigui, Dudyk et al. 2015). Upon nutrient depletion, signal molecules are produced, in response to 

starvation, which sets off the “stringent” response (Trigui, Dudyk et al. 2015). The expression of 

regulatory proteins is inhibited, and Lp begin to alter their surface structures, produce flagella, and 

express a number of virulence factors that enable it to successfully infect a host cell (Molofsky 

and Swanson 2004, Trigui, Dudyk et al. 2015). In summary during the replicative phase the 

bacteria focus on growth whereas in the transmissive phase the focus is on escaping and finding a 

new favorable niche. 

MIF of Lp occur intracellularly in amoeba or are excreted by ciliate hosts (Faulkner and Garduno 

2002). Lp in this form are metabolically dormant, thickened cells and observed to be more resistant 

to a wide range of stressors such as chlorine, pH, and antibiotics. MIF are released as membrane 

bound vesicles, which enhance the bacterium’s airborne viability making it ideal for propagation 

via aerosols. Both MIF and transmissive Lp will switch to a replicative state in response to nutrient 

rich conditions (Abdelhady and Garduño 2013, Robertson, Abdelhady et al. 2014) 

Filamentous forms of Lp are observed after exposure to environmental stress such as high 

temperatures, low level of nutrients, pH or oxidative stress as result of UV light or disinfectants 

and biocides (Robertson, Abdelhady et al. 2014). These elongated mesh-like forms are thought to 

aid in attachment, biofilm formation, ability to adhere to host cells as well as inhibiting phago-

lysosomal destruction by creating an incomplete vesicle/vacuole (Piao, Sze et al. 2006, Robertson, 

Abdelhady et al. 2014). 

Lp differentiate into VBNC forms in response to prolonged environmental stress due to nutrient, 

temperature or chemical factors (Li, Mendis et al. 2014). VBNC cells can are dormant, viable cells 

that can no longer be cultured with routine agar plating methods. Unlike dead cells, VBNC cells 

have intact membranes and are metabolically active (Li, Mendis et al. 2014). Though they share 

many characteristics with viable cells, they are morphologically distinct, differing in cell wall and 

membrane compositions and consequently adhesion and virulence potential. These VBNC forms 

increase bacterial resistance to chemical and physical stressors but hinder detection of bacterial 



38 
 

cells via culture methods. Though several resuscitation methods exist, VBNC Lp are not always 

easily resuscitated when cultured in rich media, in the presence of host cells or oxidative stress 

scavengers (Li, Mendis et al. 2014). The molecular mechanisms behind Lp’s switch from 

replicative to VBNC forms or vice versa as well its risk to public health is still poorly understood 

(Li, Mendis et al. 2014).  

During infection, transmissive flagellated Lp attach to host cells with the help of flagella, pili and 

outer membrane proteins such as MIP (macrophage infectivity potentiator), Lcl (Legionella 

collagen-like protein), PilE (pilin E protein) and MOMP (outer membrane pore forming protein). 

The bacteria are then engulfed by coiling phagocytosis and internalized (Mondino, Schmidt et al. 

2020). Once inside the host cell, the bacteria establish a Legionella containing vacuole (LCV) with 

the help of a very important virulence factor - the Icm/Dot Type IVb secretion system (Mondino, 

Schmidt et al. 2020). The icm (intracellular multiplication) and dot (defective organelle trafficking) 

genes encode the Type IVb secretion system, which is a complex that translocates hundreds of 

effector proteins across the membrane. These effector proteins are critical for maintaining the LCV 

and inhibiting phagosome-lysosome fusion (Ensminger 2016). Once the LCV is established the 

bacteria start replicating within 4-8 hours, following infection, and multiply its numbers to the 

hundreds within the host (Molmeret, Bitar et al. 2004). When nutrients are limited in the host, Lp 

will differentiate into the transmissive phase, lyse the host cell and enter the cytoplasm. Lp can 

also exit the host cells without lysis as MIF (Chen, de Felipe et al. 2004, Bouyer, Imbert et al. 

2007). These released MIFs will be in membrane bound vacuoles which will enhance the 

bacterium’s survival and allow it to be highly infectious for several weeks.   

1.1.5 Legionella spp. Diversity 

To date roughly 60 species of Legionella have been identified. The Legionella genus genome is 

highly dynamic with diversity due to high rates of recombination and DNA exchange (Khodr, Kay 

et al. 2016, Gomez-Valero, Rusniok et al. 2019).). This diversity is characterized by (i) the 

presence of secretion systems e.g the Type 1 secretion system is unique to only Lp strains, (ii) a 

wide repertoire of diverse effectors, (iii) mobile genetic elements and (iv) the presence of various 

eukaryotic domains containing proteins as well as eukaryotic-like proteins - which may explain 

why only some species of Legionella are pathogenic. A recent study, where representative species 

of nearly the entire genus of Legionella was sequenced and analyzed, showed an effector repertoire 
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of over 18,000 proteins that contain at least 137 different eukaryotic domains and over 200 

different eukaryotic-like proteins (Gomez-Valero, Rusniok et al. 2019). Comparative genomics 

and evolutionary analyses indicated that Legionella species have acquired these eukaryotic 

domains and eukaryotic-like proteins from either plants, animals, fungi, and archaea (Gomez-

Valero, Rusniok et al. 2019).  

A pangenome represents the entire set of genes within a species. This consists of a (i) core genome 

-where sequences are common amongst species individuals- (ii) a “dispensable” or variable 

genome- where sequences are shared by 2 or more individuals of a species, and (iii) a unique 

genome-where sequences are unique to species individuals. A comparative pangenomic analysis 

revealed that amongst these Legionella species only 6% of genes were common across species 

once again illustrating the flux and diversity of the genus (Gomez-Valero, Rusniok et al. 2019). 

Legionellas’ high genomic diversity contribute to the bacteria’s fitness and adaptability. 

Lp subspecies are classified by their serogroups. Sixteen serogroups of Lp have been identified 

with over half having been isolated from patients (Peci, Winter et al. 2016, Byrne, McColm et al. 

2018) .Though several of the serogroups have been implicated in causing pneumonia and isolated 

from clinical patients, serogroup 1 consistently remains the dominant and frequently isolated 

clinical serotype in the majority of cases worldwide  ((ECDC) 2021) 

Lp is also the most reported species in building water system outbreaks (Walker and McDermott 

2021). Other Legionella species account for less than 1% of total LD cases (Kruse, Wehner et al. 

2016). In Germany and Hungary 58 to 84 % of the building water system isolates were identified 

as L. pneumophila (Barna, Kádár et al. 2016, Dilger, Melzl et al. 2018) whereas in the US a 

nationwide study revealed that despite identifying 47% of cooling tower isolate es as non-

pneumophila, no cooling tower outbreaks have been attributed to non-pneumophila species 

(Llewellyn, Lucas et al. 2017) . Similarly in France, 98% of LD cases from cooling tower outbreaks 

were attributed to L. pneumophila (Campese, Bitar et al. 2011). 

These studies are just a few that illustrate that the clinical dominance of Lp does not reflect its 

relative environmental abundance. This coupled with the fact that the Lp genome is dynamic, 

necessitates identifying isolates from source environments and matching these environmental 

strains to clinical isolates. This is done by using molecular methods such as multi-locus sequence 

typing (MLST). MLST also known as sequence-base typing (SBT) classifies Lp into sequence-
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types based on the sequences of seven different genes namely pilE, flaA,asd ,mip, mOmpS, proA 

and neuA. The combination of this “bar-coding” approach and classical epidemiology has enabled 

outbreak source identifications as well the study of patterns in spread and proliferation. 

Worldwide, Lp serogroup 1 (ST1) has been identified as the most prevalent sequence type 

(Harrison, Afshar et al. 2009, Euser, Bruin et al. 2013, Kozak-Muiznieks, Lucas et al. 2014, Qin, 

Zhou et al. 2014, Al-Matawah, Al-Zenki et al. 2015, Bianchi, Pregliasco et al. 2016, Lévesque, 

Lalancette et al. 2016). Regional variations do occur with regards to Lp spread and infection. An 

example is a 10-year study of Lp 1 isolates from the province of Quebec, Canada, which identified 

ST-62, ST-213, ST-1 and ST-37 as the most frequent sequence types from sporadic cases. The 

study also identified ST-62 as the causal sequence type from an outbreak in 2012 in Quebec City 

(Lévesque, Lalancette et al. 2016). 

1.1.6 Legionella pneumophila Surface 

The cell envelope of Lp is key to its survival and pathogenicity. Like most gram-negative bacteria, 

Lp possess an outer membrane (OM) and inner membrane (IM) separated by a periplasm. Several 

structures are complexes that traverse either the inner or outer membranes such as the Type 1 

secretion system (unique to pneumophila strains) (Fuche, Vianney et al 2015, Qin, Zhou et al 2017) 

and Type II secretion system which also involves the twin arginine translocation system (Tat) 

(Cianciotto, 2009). Lp’s characteristic Type IV secretion system traverses both the inner and outer 

membranes (Ronaldo, Buchweiser et al 2014). Each secretion system has its respective effectors 

or proteins that are translocated across the membranes. Other structures that can traverse the 

membranes and are critical to Lp virulence and survival are single polar flagellum as well as pili.  

The bacterium Lp does not possess a capsule or an extra-polysaccharide layer. The OM of Lp is a 

lipid bilayer. This bilayer is asymmetric with a phospholipid dense inner leaflet and with an outer 

leaflet containing lipopolysaccharides (LPS) as well key proteins that are necessary for bacterial 

attachment, adherence and invasion. These include the Mip (macrophage infectivity potentiator), 

Lcl (legionella collagen like proteins), and mOmp (outer membrane pore forming protein). In 

addition to these proteins other surface structures that mediate attachment and invasion are pilli 

and flagella. Several key structures and complexes, such as the Type IV secretion system, have 

subunits embedded in the OM. The Type IV secretion system of Lp has been structurally resolved 

by cryogenic electron microscopy (Cryo-EM) and cryogenic electron tomography (cryo-ET) in 
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recent years. It was found to have a dome/outer membrane cap integrated in the outer membrane 

made up of a core complex of 5 proteins namely DotC, DotD, DotF, DotG, and DotH  (Ghosal, 

Chang et al. 2017, Ghosal, Jeong et al. 2019, Durie, Sheedlo et al. 2020). ∆dotG mutants were 

observed to be lacking the dome/outer membrane cap structure (Durie, Sheedlo et al. 2020). Since 

there is no exhaustive list of outer membrane proteins and lipoproteins, this section will focus on 

well-studied surface exposed Lp structures found on the outer membrane namely, the LPS, flagella 

and pili. 

1.1.6.1 Legionella pneumophila LPS: 

LPS is the dominant molecule on the surface of Lp (Figure 2) and contributes significantly to the 

cell surface properties and thus its interaction with host cells (Gabay and Horwitz 1985, Rietschel, 

Kirikae et al. 1994) The importance of LPS in attachment and host cell penetration was shown in 

a study by Palusinska-Szysz et al. where a mutant Lp producing a low molecular weight LPS, 

influenced the membranes lipid and protein composition. The mutant was less efficient in binding 

and penetration host amoeba cells (Palusinska-Szysz, Luchowski et al. 2019).  
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Figure 2: Schematic structure of Legionella lipopolysaccharide (LPS). The LPS comprises of 3 regions. The O-

antigen region which contains legionaminic acid (Leg). The core region which contains rhamnose (Rha); O-acetyl 

(OAc); acetylquinovosamine (QuiNAc); acetylglucosamine (GlcNAc); mannose (Man); 3-deoxy-d-manno-oct-2-

ulosonic acid (Kdo) and the Lipid A region which contains phosphate (P); and 2,3 diamino-2,3-dideoxy-D-glucose 

(GlcN3N). Image adapted from (Kowalczyk, Chmiel et al. 2021) and created in Biorender. 

Several genes are responsible for the synthesis, modification, and translocation of LPS 

components. These include lag1, neuA, wzm, and wzt (Shevchuk, Jäger et al. 2011). The LPS 

biosynthesis cluster genes are shared by more than 200 serogroup 1 strains (Cazalet, Jarraud et al. 

2008) . This suggests that this specific LPS of serogroup 1 plays a role in the predominance of this 

serogroup in disease (Cazalet, Jarraud et al. 2008). 

LPS consists of three regions namely, lipid A, the core-which comprises and inner and outer core- 

and the O-antigen. Lipid A, also known as endotoxin, is highly branched with long chains and 

anchors LPS molecules to the outer membrane through hydrophobic interactions with the acyl 
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fatty acid chains of the phospholipids (Moll, Knirel et al. 1997). These phospholipids make up the 

inner leaflet of the outer membrane. It was shown that Lipid A of Lp is less toxic than other 

classical endotoxins (Neumeister, Faigle et al. 1998) 

The inner core of the polysaccharide core is hydrophilic. It is characterized by a 3-deoxy-d-manno-

oct-2-ulosonic acid (Kdo) disaccharide [α-Kdo-(2α4)-α-Kdo-(2α6)] linked to lipid A. The 

presence of disaccharide as well as the lack of heptoses and phosphate residues are characteristic 

of the inner core of L. pneumophila LPS (Moll, Knirel et al. 1997).  

The outer core is hydrophobic and consists of a seven-sugar oligosaccharide composed of 

rhamnose (Rha), mannose (Man), acetylquinovosamine (QuiNAc), and acetylglucosamine 

(GlcNAc) (Knirel, Moll et al. 1996, Moll, Knirel et al. 1997). The presence of the N-acetyl groups 

(QuiNAc and GlcNAc) and methyl groups of 6-deoxy sugars (Rha and QuiNAc) contribute to its 

hydrophobicity. 

The O-antigen chain of Lp Serogroup 1 is composed of a homopolymer termed legionaminic acid. 

This unique sugar lacks free hydroxyl groups, making it extremely highly hydrophobic and 

consequently more virulent as the hydrophobicity facilitates attachment and invasion of host cells, 

(Knirel, Rietschel et al. 1994, Zähringer, Knirel et al. 1995).  

The O-antigen chain is the target for most immunoassays and shows variations in the types, 

linkages, and arrangements of its sugar chains (Knirel, Senchenkova et al. 2001). This makes the 

LPS one of the most variable cell surface components which results in a diversity of serotypes i.e, 

16 serotypes, for Lp. This diversity in serotypes could be traced to variations in LPS biosynthetic 

gene clusters amongst the serogroups (Petzold, Thürmer et al. 2013). In fact, these gene variations 

were used to develop multiplex PCR assays that could identify 15 distinct serogroups of Lp based 

on the LPS biosynthetic sequences (Cao, Tian et al. 2015, Nakaue, Qin et al. 2021). These PCR 

serotyping assays are an improvement over traditional immune-serotyping assays which are 

expensive and tedious given they typically require the use of antibodies (Helbig, Kurtz et al. 1997).  

1.1.6.2 Legionella pneumophila Pili: 

Lp produce long and short pili. The long pili are about 0.8 to 1.5 µm, whereas the short form, 

measure 0.1 to 0.6 µm. The PilE protein is an integral part of the long pili form. Prepilin peptidase 

(PilD) is another protein important for the production of the pili (Stone and Kwaik 1998). These 
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pili mediate attachment, adherence, natural competence, biofilm formation and intracellular 

replication (Shevchuk, Jäger et al. 2011). A study by Hoppe et al. showed that the fimbrial/pili 

protein PilY1 was produced by Lp in the transmissive stage and that deletion of this protein resulted 

in low adhesion to macrophages and lung epithelial cells (Hoppe, Ünal et al. 2017). This illustrates 

the significance of the pili for host cell attachment and infection. Pili also enable Lp to move 

forwards and backwards and slide, a phenomenon known as “twitching motility” (Stewart, Rossier 

et al. 2009, Hoppe, Ünal et al. 2017). 

1.1.6.3 Legionella pneumophila Flagella: 

Lp express a single polar flagellum, which traverses the outer and inner membranes as well as the 

peptidoglycan layer. The flagellum is critical for Lp infection and is differentially expressed. It is 

only present in specific physiological states such as the MIF or transmissive state (Albert-

Weissenberger, Sahr et al. 2010). Its expression is thus influenced by environmental factors such 

as nutrient availability, temperature, and oxidative stress all of which result in transcriptomic 

changes and expression of specific regulators (Albert-Weissenberger, Sahr et al. 2010, Appelt and 

Heuner 2017) . The flagellum plays a critical  role in Lp motility, adhesion, and infection (Heuner 

and Albert-Weissenberger 2008, Albert-Weissenberger, Sahr et al. 2010).  

The production of the flagella is tightly regulated, complex and metabolically expensive, 

comprising over 50 genes (Albert-Weissenberger, Sahr et al. 2010, Altegoer and Bange 2015, 

Appelt and Heuner 2017). Flagella are associated with a virulence phenotype since they are 

expressed when Lp are in the infectious states. In response to nutrient depletion, Lp become 

flagellated and do not replicate (Albert-Weissenberger, Sahr et al. 2010). This flagellated form is 

a characteristic of the transmissive state and enables the bacteria to be motile and find a suitable 

niche.  

The flagella of Lp consist of a basal body, hook and filament. Subunits and components are 

excreted by a type 3 secretion system to assemble the flagella (Altegoer and Bange 2015). Various 

flagellin proteins are required to synthesize the flagella. Lp mutants lacking flagellin proteins- 

∆fliA, ∆fliD and ∆fliC- are reported to have straight hooks as opposed to the wildtype curved hooks 

(Schulz, Rydzewski et al. 2012). The flagellin proteins FliC and FliD are necessary to synthesize 

the flagellum filament and cap the filament respectively (Heuner and Albert-Weissenberger 2008, 
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Altegoer and Bange 2015). FliC-also known as FlaA- is the major subunit/protein of the flagella. 

Absence of FliC affects motility and thus host cell invasion (Dietrich, Heuner et al. 2001). 

 

1.2 Legionella Detection 

“An ounce of prevention is worth a pound of cure”. Benjamin Franklins’ adage is pertinent when 

dealing with infectious agents such as Legionella pneumophila. To prevent the spread of Lp, it is 

critical to be able to detect the bacteria. Current strategies to detect Lp from environmental matrices 

include (i) conventional culturing methods, (ii) Nucleic acid-based methods and (iii) Phenotypic 

assays. 

1.2.1 Conventional Culturing Methods  

These are the gold standard for detecting Lp and involve the selection of Lp from an environmental 

sample via exposure to various physical factors such as high temperatures and low pH followed 

by cultivation of Lp on selective media and the enumeration of bacterial colonies showing Lp 

specific morphology. To elaborate, environmental samples (from cooling towers, water 

distribution systems, potable water etc.) must first be heat and/or acid treated to reduce the amount 

of non-legionella microbial growth. Heat treatment is typically performed between 50–59 °C for 

30 minutes given that Lp can grow at temperatures above 63°C (CDC 2005, ISO 2019). Acid 

treatment is performed by initially concentrating a sample via centrifugation or filtration. The 

concentrate is then treated at a pH of ~2.2 for approximately 3-15 mins. Both pre-treatment 

methods take advantage of Lp’s tolerance to these conditions (CDC 2005, ISO 2019). 

To cultivate Legionella, various complex media formulations exist to select for various Legionella 

species. These media can be supplemented with a range of amino acids (L-cysteine, serine,  

isoleucine, arginine etc.), trace elements (iron, zinc, magnesium , cobalt, manganese etc.) and 

antibiotics (polymyxin, vanomycin) depending on the desired species (CDC 2005, ISO 2019). 

Buffered charcoal yeast extract BCYE is the standard media for Legionella culturing and 

maintenance but most Legionella will require supplementation with L-cysteine and iron for growth 

(ISO 2019). Examples of specific growth requirements are L. micdadei and L. bozemanii who 

require BCYE with 1% bovine serum albumin (ABCYE) (CDC 2005, ISO 2019). Current ISO 

11731:2017 and CDC protocols require the use of BCYE containing L-cysteine to culture Lp. 
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Selective GVPC agar (BCYE supplemented with glycine, vancomycin, polymyxin B, 

cycloheximide) and PCV agar (BCYE supplemented with polymyxin B, cycloheximide, and 

vancomycin) are also listed in standard operating protocols to enhance Legionella recovery.  The 

CDC uses BCYE, PCV and GVPC whereas under ISO the medias listed are BCYE and GVPC. 

Treated environmental samples are plated on BCYE or PCV without L-cysteine to serve as a 

negative control.  

There are several caveats to conventional culture methods for Lp detection. The primary limitation 

is that these techniques are not rapid (National Academies of Sciences and Medicine 2020). The 

growth of culturable Lp takes at least 5-7 days which can translate into 15 days before obtaining a 

result with regards to an environmental sample. This delays timely interventions which is 

detrimental especially during an outbreak (Trudel, Veillette et al. 2014). The long growth time 

could also result in competitive microbial growth which in turn would confound cell counts (Bopp, 

Sumner et al. 1981). A second major limitation is the presence of viable but non culturable (VBNC) 

Lp cells. VBNC cells are problematic because since they cannot be cultured, true Lp cell counts 

are often underestimated (Li, Mendis et al. 2014, Epalle, Girardot et al. 2015). Consequently, 

conventional culturing techniques often fail to provide a comprehensive picture of the bacterial 

hazard (Li, Mendis et al. 2014). Heat and acid pre-treatment can further affect Lp cultivability by 

producing VBNC cells (Epalle, Girardot et al. 2015, Cervero-Aragó, Schrammel et al. 2019). 

Indeed, a study by Epalle et al. (2015) showed that heat treatment at 70C for 30 min of various L. 

pneumophila strains resulted in 10–40% of VBNC cells (Epalle, Girardot et al. 2015). The 

presence of monochloramine in treated water systems can also induce VBNC cell formation 

(Casini, Baggiani et al. 2018). Additionally, the low nutrient conditions typically found in a man-

made water system also contribute to VBNC cell formation (Dietersdorfer, Kirschner et al. 2018, 

Schrammel, Cervero-Aragó et al. 2018). An approach to improve cultivability and resuscitate 

VBNC cells is by co-culturing with amoeba (Ducret, Chabalier et al. 2014). This method however 

adds more labour and time to an already tedious culturing process. The tedious multiple steps of 

culture methods also cannot distinguish between pathogenic or non-pathogenic strains, which is 

problematic in risk assessment analysis (National Academies of Sciences and Medicine 2020). A 

third problem with conventional culturing techniques, as with most detection strategies, is the 

variation across labs in sampling strategies, (frequency, location, preservation) pre-treatment 

methods, cultivation methods and incubation times (Wang, Bédard et al. 2017). An example that 
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can illustrate this is the 2011 study conducted by the Environmental Legionella Isolation 

Techniques Evaluation (ELITE) Program in the USA. Environmental samples were sent to 20 

different U.S. laboratories for Legionella detection and compared with data obtained from the 

(CDC) reference laboratory. 37% of these samples were identified incorrectly as negative when 

compared to the CDC reference laboratory results. In general culture recovery rates are affected 

by many factors such as concentration/enrichment method, sample type (bulk water or biofilm), 

sampling sites, sampling frequency, sample concentration, sample volume, holding time and 

temperature (Wang, Bédard et al. 2017). 

In recent years a simpler culture method using the most-probable-number (MPN) approach 

(IDEXX Legiolert™) has been developed. Legiolert, makes use of an enzyme uniquely produced 

by Lp which reacts with a substrate present in the provided Legiolert reagent. The detection limit 

for the Legiolert test is 10 cfu/100ml with results obtained in 7 days. Large scale comparative 

studies show that the strength of the method is equivalent to standard ISO certified plate culture 

methods but yields generally higher numbers of bacteria since it is a MPN approach (Sartory, Spies 

et al. 2017, Petrisek and Hall 2018, Rech, Swalla et al. 2018, Spies, Pleischl et al. 2018, 

LeChevallier 2019). Though the studies listed here did not confirm results with molecular methods 

there is recent work that shows Legiolert numbers align with Lp estimates from qPCR (Monteiro, 

Robalo et al. 2021). Additionally, the test is very user-friendly. Like standard culture, Legiolert is 

not rapid and cannot distinguish between Lp nor non-pneumophila species, but its primary 

drawback is that the isolated colonies are not readily available for further molecular testing. 

Isolation of Lp however is comparatively quick. 

The limitations with culture methods have led to a shift towards molecular methods either as a 

confirmatory or primary method for microbial detection (Wang, Bédard et al. 2017, National 

Academies of Sciences and Medicine 2020). These include PCR, qPCR, FISH, MLST (multi-locus 

sequence typing), pyrosequencing, High Throughput Sequencing (HTS), and Immunoassays such 

as ELISA, immunochromatography, lateral flow assays etc. 

1.2.2 Nucleic Acid (NA) Based Methods 

These involve the manipulation and analysis of Legionella DNA and RNA to quantify Lp present 

in environmental samples. PCR, qPCR, viable qPCR, ddPCR and HTS) are examples of nucleic 

acid-based methods for Lp detection (National Academies of Sciences and Medicine 2020). The 
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advantage of said techniques, in comparison to conventional culture techniques, are their rapid 

turn-around times, high sensitivities and specificities, lower limits of detection, as well as their 

ability to detect VBNC cells (Whiley and Taylor 2016). PCR entails the amplification of 

Legionella specific genes such as 16S and/or macrophage infectivity potentiator (mip) which 

serves as a biomarker for Lp. The presence/absence of Legionella is verified if a band is visible on 

an agarose gel. This method, however, only confirms if there are any bacteria present in the sample. 

qPCR is more useful for determining the quantity of Lp cells. Target genes for Lp qPCR also 

include 16srRNA and/or mip (Wilson, Yen-Lieberman et al. 2003, Stølhaug and Bergh 2006). The 

amount of Lp determined through qPCR is given as genomic units per litre (GU/L). Given its 

reproducibility and quantitative abilities, it is a widely used method to quantify Legionella. 

Examples that illustrate this are the presence of commercial Legionella detection kits (Legionella 

iQ check BioRad). Additionally, there are standards in place to detect and quantify said bacterium 

by qPCR under the the Association Française de Normalisation (AFNOR) NF T90-471 protocol 

and ISO/TS 12869:2012. When used in conjunction with the culture method, qPCR can serve as a 

powerful tool. There are however several caveats to using qPCR as a detection and quantification 

method. Given that the method detects both VBNC and dead bacterial cells, its main limitation is 

an overestimation of Lp burden (Whiley and Taylor 2016). Additionally, environmental samples 

are often complex matrices that may have inhibitors/compounds which would adversely impact 

the PCR/qPCR reactions and hence Lp recovery rates (Gentry-Shields, Wang et al. 2013, Whiley 

and Taylor 2016). Though there are kits and buffers that could mitigate the impact of certain 

compounds, the variation in DNA/RNA extraction techniques can further impact Lp recovery 

rates, while concurrently increasing reagent prep time. qPCR numbers are often several folds 

higher than culture results (Ditommaso, Ricciardi et al. 2015, Whiley and Taylor 2016). The 

variations in sampling strategies, DNA/RNA extraction techniques, expression in genomic units/l 

or ml, as well as its poor correlation with culture methods, has made it difficult to interpret data 

from qPCR thus adopt it as a stand-alone standard for Lp detection. 

Viable qPCR is an alternative to method to qPCR to overcome the caveat of discerning between 

live and dead Lp bacteria (Nocker, Cheung et al. 2006). It entails the use of NA intercalating dyes 

such as propidium monoazide (PMA) or ethidium monoazide (EDA) which traverse damaged cell 

membranes and bind to target DNA/RNA after photoactivation. This in turn prevents amplification 

of the dead/membrane compromised cells’ nucleic acids (Nocker, Cheung et al. 2006). Several 
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studies have shown that this method leads to a quantification of Lp with numbers higher than 

conventional culture but lower than qPCR due to the inclusion of VBNC cells (Chen and Chang 

2010, Lizana, López et al. 2017, Kontchou and Nocker 2019). This method however is not without 

its limitations (Kontchou and Nocker 2019). The effectiveness of EMA/PMA-qPCR is contingent 

upon several factors, amplicon length, such as dye selection and dosage, sample types, target cell 

concentration, presence of dead/live microbial flora etc (Taylor, Bentham et al. 2014, Ditommaso, 

Giacomuzzi et al. 2015, Kontchou and Nocker 2019) Therefore, optimization steps would need to 

be taken prior to application of EMA/PMA-qPCR. Furthermore PMA/EMA dyes cannot easily 

penetrate and thus target Lp cells embedded in biofilm (Taylor, Bentham et al. 2014).. 

Additionally, the same limitations that make it difficult to interpret qPCR data apply to viable 

qPCR. 

A newer alternative to qPCR for Legionella detection ,that is less sensitive to PCR inhibitors and 

provides rapid absolute quantification, without needing a standard curve is ddPCR (Falzone, 

Gattuso et al. 2020, Alshae'R, Flood et al. 2021). It can be multiplexed in that it can be applied to 

more than one genetic marker at a time. The method works by dividing the sample into thousands 

of individual droplets wherein the PCR reaction occurs; the numbers of positive and negative 

droplets then provide a most probable number of the concentration. 

HTS is a term that encompasses several different modern sequencing technologies that allows 

rapid and simultaneous sequencing of large numbers of NA fragments. HTS is a powerful tool for 

understanding the microbial composition, ecology and diversity in a sample water system (Pereira, 

Peplies et al. 2017). Consequently, it can provide information on the presence of Lp in a particular 

water system (Pereira, Peplies et al. 2017). Universal primers targeting 16S rRNA genes are used 

to detect the relative abundance of Legionella. A major limitation of HTS for environmental 

monitoring and detection is that sequencing is based on 16S rRNA gene PCR products which have 

limited taxonomic resolution. This inhibits the ability to differentiate at the species level 

(Borthong, Omori et al. 2018). Furthermore, the limit of detection (LOD) of Lp for most HTS 

methods are high which is challenging given Lp have low relative abundances compared to other 

microbes in a water system (Borthong, Omori et al. 2018, Dai, Rhoads et al. 2018, Paranjape, 

Bédard et al. 2020).  
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In general, nucleic acid methods are more rapid, sensitive, and specific. Their main drawbacks 

however lie in the multiple processing steps and the use of complex equipment which increases 

overall costs and times associated with this method. 

1.2.3 Phenotypic Assays 

These assays involve techniques that measure and detect phenotypic characteristics such as a cells 

morphological, biochemical, physiological, serological trait. Examples of such assays that exploit 

Lp’s biochemical make-up are the commercially available Click4Tag assay and Legiolert. 

Click4Tag identifies Lp by using species specific metabolic lipopolysaccharide (LPS) labelling 

(Mas Pons, Dumont et al. 2014). Legioaminic acid is an exclusive Lp LPS component. A labelled 

azido analog of legioaminic acid is incorporated in the bacterial membrane via click chemistry and 

the analog is then used to detect Lp (Mas Pons, Dumont et al. 2014)  Legiolert is also a phenotypic 

assay in that it exploits the use of an enzyme uniquely produced by Lp.  

Currently, the most widely studied phenotypic assays for Lp detection are immunological assays 

(Bedrina, Macián et al. 2013, Párraga-Niño, Quero et al. 2018). These involve the use of 

monoclonal or polyclonal antibodies specific to Lp antigens. Immunoassays have a wide repertoire 

of formats ranging from enzyme linked immunosorbent assays (ELISA) and lateral flow assays 

(LFA) to microscopy, immune-sensors and immunomagnetic bead separation (IMS) (Bedrina, 

Macián et al. 2013, Albalat, Broch et al. 2014, Congestrì, Morotti et al. 2019). For direct detection 

such as in flow cytometry and microscopy, antibodies against Lp are conjugated with fluorescent 

tags. After interaction with an Lp antigen a fluorescent signal is obtained. Antibodies can also be 

conjugated with reporter enzymes to give a colorimetric signal as shown with the commercially 

available lateral flow assay Duopath (Helbig, Lück et al. 2006). IMS is a simple powerful tool to 

increase capture of Lp cells through magnetic beads coated with anti-Lp antibodies (Bedrina, 

Macián et al. 2013). These cells can further be analyzed using techniques such as ELISA, qPCR 

or flow cytometry. Traditional ELISA detection for Lp has detection limits as high as 105 CFU/mL. 

This limit may be improved to 103 by concentrating for Lp using IMS. An example of how IMS is 

used to improve detection limits is the Legipid® Legionella Fast Detection kit. It combines the use 

of IMS with an enzyme linked colorimetric assay to obtain a detection limit of 93 CFU/ml for Lp 

(Rodríguez Albalat, Bedrina Broch et al. 2012, Albalat, Broch et al. 2014).  Polyclonal 

fluorescently tagged Lp antibodies were combined with an on-site microfluidic sensor  to detect 
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Lp in the low range of 101 -103 CFU/mL in cooling tower water samples (Yamaguchi, Tokunaga 

et al. 2017).  

Antibodies serve as useful capture elements that can increase specificity and sensitivity for Lp in 

immunoassays. However, key limitations are the tedious labour and high costs that go into 

producing an antibody. Biorecognition elements such as aptamers can be viable as well as cost-

effective alternatives to antibodies. 

Amidst the above-mentioned strategies the most widely accepted and industry standard methods 

for detecting Lp in environmental samples are the standard plate count method (AFNOR NF T90-

431, ISO 11731) as well as qPCR (AFNOR NF T90-471, ISO/TS 12869) with Legiolert having 

recently joined industry certification ranks (AFNOR NF IDX 33/06-06/19). It is prudent to note 

however that studies from the past ten years show a disconcertingly high lack of agreement 

between the standard plate count and qPCR methods. Further comparative studies are still 

underway with Legiolert and qPCR methods. After combining the results of 28 studies, Whiley et 

al. showed that 72% of environmental samples tested positive for Legionella using qPCR while 

only 34% tested positive using culture-based methods (Whiley and Taylor 2016). Furthermore, 

culture and qPCR methods showed good agreement for 20 drinking water samples but poor 

agreement for water samples from 52 cooling towers For L. pneumophila SG1 detection 

specifically, the agreement between both methods was poor for drinking water and only slightly 

enhanced among cooling tower samples (Toplitsch, Platzer et al. 2018). Generally, qPCR reported 

10- to 100-fold higher concentrations than the culture method (Toplitsch, Platzer et al. 2018). A 

recent study by the same group demonstrated that qPCR was more accurate than culture methods 

for determining true negatives i.e, no Legionella, in water samples that had a high microbial burden 

(Toplitsch, Platzer et al. 2021) . These numbers illustrate the need for improved standardized 

detection methods for Lp. Additionally, these methods cannot be developed into rapid, cost-

effective, sensitive tests that would identify the whole Lp bacterium in real-time, in situ/at point-

of-care without any additional processing steps. An Lp biosensor could be a viable solution. 

 

1.3 Biosensors 

Biosensors are analytical devices used to quantify or detect a specific biological target or analyte 

such as proteins and cells (Turner 2013). Extensive research in the field of biosensing has shown 
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that biosensors can be selective and detect a specific analyte from a mixture (Turner 2013). They 

are ideal for detection as they can have high sensitivities with low limits of detection, be 

reproducible and give discrete measurable responses over a wide range of concentrations (Turner 

2013). Other advantages are the ability to be regenerative for multiple uses, be miniaturized, 

multiplex and analyze multiple targets at a time (Turner 2013). They can also be cost-effective, 

portable and user-friendly (Turner 2013). All these characteristics make them attractive as part of 

detection strategies for biological agents such as waterborne pathogens (Ahmed, Rushworth et al. 

2014, Kumar, Hu et al. 2018).  

 

Figure 3. Components of a biosensor. Image created using Biorender. 

A biosensor set-up typically consists of three elements (Figure 3); (i) A biorecognition element, 

which upon interaction with a target, produces a physico-chemical signal. (ii) A transducing 

element into converts that signal into a form captured by a detection element. (iii) A detection 

element that takes the converted signal and gives an output readout (Figure 3). 

Biosensors can be categorized based on either their transducing element (mechanical, optical, 

electrochemical) or biorecognition element (affinity, catalytic) (Ahmed, Rushworth et al. 2014, 

Bhalla, Jolly et al. 2016). 
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1.3.1 Mechanical Biosensors 

Mechanical biosensors consist of Quartz Crystal Microbalance and microcantilevers. These are 

mass sensitive sensors operating at a specific frequency. For both, analyte binding results in 

increased mass on the sensor surface, which leads to measurable changes in resonance frequencies 

(Arlett, Myers et al. 2011) . Though these sensors can be highly sensitive, quick, and require no 

processing steps a key caveat is the inability to use samples in their native state or in physiological 

media. This is because the signal resulting from a given analyte varies depending on the surface 

energy and binding region both of which are influenced by the surrounding medium (Waggoner, 

Varshney et al. 2009, Kumar, Hu et al. 2018). Consequently, sensitivities in air or fluid are much 

lower than in vacuum. Furthermore due to damping effects cantilevers cannot function in fluid 

mediums which means samples would have to be desiccated prior to application (Waggoner, 

Varshney et al. 2009, Kumar, Hu et al. 2018). These limitations make this set-up difficult for real-

time monitoring.  

1.3.2 Electrochemical Sensors 

Electrochemical biosensors rely on principles of electrochemistry and consist of amperometric, 

potentiometric and impedimetric sensors (Cesewski and Johnson 2020, Curulli 2021). Due to their 

low cost, sensitivity, and ability to be miniaturized, they have been very popular for detecting 

bacterial pathogens although there is an increasing number of viral pathogen detection with such 

sensors in recent years (Cesewski and Johnson 2020). Amperometric biosensors measure the 

current created as result of redox reactions from analyte-bioreceptor interaction (Ahmed, 

Rushworth et al. 2014, Kumar, Hu et al. 2018, Cesewski and Johnson 2020). Potentiometric 

biosensors measure electric potential between a working electrode and a reference electrode in 

response to a fixed current (Ahmed, Rushworth et al. 2014, Kumar, Hu et al. 2018, Cesewski and 

Johnson 2020). This method measures the change in potential that occurs upon analyte recognition 

at the working electrode. Impedimetric biosensors operate because of change in capacitance and 

electron transfer resistance across a working electrode where the analyte-bioreceptor interaction 

occurs. Higher analyte concentration leads to an increase in analyte binding causing the impedance 

across the electrode surface to change and be detected at a transducer (Ahmed, Rushworth et al. 

2014, Kumar, Hu et al. 2018, Cesewski and Johnson 2020). For real-time monitoring 

electrochemical sensors have several limitations. One is the presence of reactive species causing 
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unwanted redox reactions at the electrode surface (Cesewski and Johnson 2020). Another is the 

cost of the electrode material, though carbon is being increasingly studied and used as an 

alternative to metallic and ceramic electrodes. Additionally, large sized microbes such as protozoa 

Cryptosporidium parvum have a small effect on charge transfer at the electrode-electrolyte 

interface, adversely affecting readouts (Cesewski and Johnson 2020). Fouling/saturation at the 

electrode surface is also a concern requiring optimized regeneration strategies (Cesewski and 

Johnson 2020).  Finally, an electrochemical sensor by itself has limited molecular selectivity and 

is prone to reactions from non-specific binding (Kumar, Hu et al. 2018, Cesewski and Johnson 

2020). This necessitates the use of a bioreceptor/probe. 

1.3.3 Optical Biosensors 

Optical biosensors measure changes in optical properties that occur at the sensor surface/interface, 

because of analyte-bioreceptor interaction (Ahmed, Rushworth et al. 2014, Chen and Wang 2020). 

Microbial detection using optical methods can be broadly classified under either vibrational 

spectroscopy, fluorescence spectroscopy or plasmonic methods (Hu, Bohn et al. 2017). Vibrational 

spectroscopy includes Surface Enhanced Raman Spectra (SERS) or Infrared (IR) spectroscopy. 

These methods have the capacity to identify bacteria based on vibration patterns of specific 

molecules present on the bacteria which creates a spectral fingerprint. For example, Martok et al. 

were able to identify P. aeruginosa, K. pneumoniae, and E. cloacae isolates belonging to the same 

sequence types based on their IR fingerprint (Martok, Valot et al. 2019). Fluorescence 

spectroscopy for microbial detection requires the use of a fluorophore which have specific 

excitation and emission spectra. When using fluorescence spectroscopy for specific microbial 

detection, typically an exogenous synthetic fluorophore is conjugated to a biorecognition element, 

such as antibodies. The resulting complex labels targets such as bacterial cells enabling their 

detection via flow cytometry or microscopy. Such fluorophore labelled antibodies were used to 

detect Lp bacteria to a limit of 101 to 103 cells/ml (Yamaguchi, Tokunaga et al. 2017). Plasmonic 

methods take advantage of properties of nanometer sized metals. These metals generate various 

oscillations of electrons in response to incident photons. Surface Plasmon Resonance (SPR) 

sensors and evanescent field-based fibre optics (EV-FO) are some examples of plasmonic methods 

to detect bacteria. Examples of SPR for microbial detection are given in further detail below. 
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In general, commonly employed optical biosensors include fluorescence-based (FB) sensors, 

chemiluminescence (CL) sensors, Colorimetric-based sensors (CB), Surface Plasmon Resonance 

(SPR) sensors and evanescent field-based fibre optic (EV-FO) sensors (Ahmed, Rushworth et al. 

2014, Chen and Wang 2020).. Fluorescence, chemiluminescence and colorimetric based sensors 

have been widely used in research and diagnostics with competitive sensitivities and, in the case 

of colorimetric based sensors, often at low cost. Enzyme linked immunosorbent assays (ELISAs) 

and gold (Au) nanoparticle aggregation are just some examples of FB and CL and CB sensing. 

However, these sensing methods require multiple reagents, sample preparation and labelling 

(Kumar, Hu et al. 2018, Chalklen, Jing et al. 2020). In contrast EV-FO and SPR are sensitive to 

changes in refractive index (RI) and thus measure changes in RI in response to analyte-bioreceptor 

binding. This means they require no labelling and samples can be used in their native state (Ahmed, 

Rushworth et al. 2014, Chen and Wang 2020). Drawbacks for microbial detection are the low 

sensitivities and high LODs, as a result of the limited range of the electromagnetic field ( ~ 300-

500nm), the similarity of the refractive index (RI) of the microbial cytoplasm and aqueous 

medium, and the diffusion-limited mass transport of the microbe to the metal-dielectric surface 

where the resonance phenomenon occurs and thus where surface plasmons are generated (Torun, 

Boyacı et al. 2012, Galvan, Parekh et al. 2018). However, much research is being done to mitigate 

these problems with progress in assay design, signal amplification strategies such as the use of 

nanoparticles and nanorods, photonic technologies such as LSPR, and transducer surface 

modifications (Gasparyan and Bazukyan 2013, Boulade, Morlay et al. 2019, Castiello and 

Tabrizian 2019, Chen and Wang 2020). Like electrochemical sensors, optical biosensors also 

require the use of a bioreceptor/probe to be selective for a microbial target. In the realm of optical 

biosensors, SPR is considered the gold standard for biosensing (Breitsprecher, Fung et al. 2018). 

1.3.3.1 SPR Biosensors and Bacterial Detection: 

Between 1902 and 1912, R.W. Woods at the John Hopkins University in Baltimore, MD, USA, 

noticed that when polarized light is shone on a metal coated diffraction grating, a pattern of light 

and dark bands appears (Wood 1902, Wood 1912). Although he speculated as to how this 

phenomenon occurred, he did not obtain a clear answer. Subsequent decades of research would 

identify and utilize this phenomenon to unveil, Surface Plasmon Resonance (SPR). SPR is an 

optical phenomenon (Homola and Piliarik 2006, Prabowo, Purwidyantri et al. 2018). Under total 
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internal reflection conditions-a phenomenon in which waves at the interface of two different media 

are completely reflected back into the first media- a portion of polarized light penetrates and hits 

a thin metal film coated on the surface of a glass prism (Homola and Piliarik 2006, Prabowo, 

Purwidyantri et al. 2018). This small portion of light generates an evanescent wave and transfers 

energy to free valence electrons of the metal to generate surface plasmons and a “plasmon wave” 

(Homola and Piliarik 2006, Prabowo, Purwidyantri et al. 2018). At a specific angle of incidence 

or wavelength, the surface plasmons and evanescent waves can “resonate” with equal frequencies, 

hence, resonance. This “resonance” is sensitive to changes in the refractive index near the surface 

of the metal coated prism (Homola and Piliarik 2006, Prabowo, Purwidyantri et al. 2018). This is 

because the polarized incident light will be absorbed resulting in a subsequent drop in the energy 

of the reflected light. The lowest “drop” in this reflected light spectrum gives rise to a resonance 

peak which will vary in response to any changes near the thin metal film (Homola and Piliarik 

2006, Prabowo, Purwidyantri et al. 2018). An example of such a change can be the binding of a 

target analyte to a surface immobilized ligand (Figure 4) (Homola and Piliarik 2006, Prabowo, 

Purwidyantri et al. 2018). 

 

                                 Figure 4. Surface plasmon resonance (SPR). Image created in Biorender. 
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Biacores development of the first commercial SPR sensor in 1990 (Liedberg, Nylander et al. 1995)  

led to an impetus towards the studying of many molecular interactions with SPR. One of the 

earliest whole microbial cells to be detected with an SPR system was E. coli O157:H7 (Fratamico, 

Strobaugh et al. 1998, Fratamico, Strobaugh et al. 1998). In one study the authors used 

immobilized antibodies or a sandwich assay to detect the bacterium (Fratamico, Strobaugh et al. 

1998). In another study, the authors used pre-enriched bacterial cultures as a strategy to detect the 

E. coli cells to the limit of 106-107 CFU/ml (Fratamico, Strobaugh et al. 1998). These initial studies 

illustrate the primary challenge of SPR-based microbial detection i.e low sensitivities and high 

limits of detection.  

Over the years many researchers have successfully overcome this limitation and detected as low 

as <10 CFU/ml of bacteria through a variety of strategies (Ahmed, Rushworth et al. 2014, Kumar, 

Hu et al. 2018, Bocková, Slabý et al. 2019, Saad and Faucher 2021). For example, instead of whole 

cells, microbial biomarkers such as 16Sr RNA or specific proteins or antigens were used to 

determine bacterial cell concentrations indirectly (Wang, Ye et al. 2011, Foudeh, Trigui et al. 2015, 

Taheri, Rezayan et al. 2016, Melaine, Saad et al. 2017, Sikarwar, Singh et al. 2017, Masdor, 

Altintas et al. 2019). These strategies minimize steric hindrance as well as the diffusion-limited 

mass transport of the microbial target to the metal-dielectric surface. Other strategies include 

transducer modifications, in an attempt to enhance the evanescent field and resonance effect by 

using nanoparticles, nanorods or long range SPR (LSPR) (Ahmed, Rushworth et al. 2014, Chen 

and Wang 2020). The extension of this field means the changes in the RI can be better captured.  

Hu et al used a LSPR system with a gold nano-triangle array to detect whole Pseudomonas 

aeruginosa cells at an LOD of 1 CFU/ml (Hu, Fu et al. 2018). Using gold coated silica 

nanoparticles on the metal-dielectric surface, Yoo et al were able to detect Salmonella spp. down 

to the level of 30 CFU/ml (Yoo, Kim et al. 2015) . 

Regardless of the biosensing system, the development of versatile, stable bioreceptors is critical to 

improve the sensitivity and specificity of a biosensor. Though there are several bioreceptors 

namely- antibodies, lecithin’s, bacteriophages, and molecularly imprinted polymers (MIPS)- 

currently antibodies are the most widely used bioreceptors in biosensor development and research 

(Morales and Halpern 2018). They serve as the gold standard in biorecognition elements due their 

selective properties and strong affinities to a range of microbial targets, many of which have been 
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validated over the past few decades (Morales and Halpern 2018). Limitations to the use of 

antibodies as bioreceptors are cross-reactivity (polyclonal antibodies), high production and 

purification costs, batch-to-batch variability, stringent handling conditions such as low 

temperature storage, requirement of an immunogenic target, stability in response to changes in 

temperature, humidity, pH ,etc (Jayasena 1999, Toh, Citartan et al. 2015, Bauer, Strom et al. 2019). 

Their relatively larger size also means lower packing densities which reduces sensor surface 

coverage and thus can impact sensor sensitivity (Morales and Halpern 2018). An increasingly 

popular alternative to antibodies that addresses these drawbacks are aptamers (Morales and 

Halpern 2018, Bauer, Strom et al. 2019). 

 

1.4 Aptamers  

Aptamers are just one in a series of fascinating nucleic acid elements that have functional 

properties beyond what is typically associated with DNA and RNA. Nucleic acids have additional 

functional roles other than being a “blueprint “or code for most life forms. They can fold into 

complex, 3D conformational structures and thus recognize molecules and cells  with high affinities 

and specificities as well as modulate expression of genes and cellular processes (Savinov, Perez et 

al. 2014). These structures can be dynamic and form quickly, which is critical for binding and 

discerning target sites. For example, a slow off-rate and fast on-rate is important for tight, stable 

binding to targets. Additionally, nucleic acids can fold into complex structures slowly, such as in 

the case of riboswitches which alternate their secondary structures to better regulate gene 

expression (Savinov, Perez et al. 2014). Structural diversities are what lend nucleic acids their 

functional features. (Micura and Höbartner 2020). 

There are several types of functional nucleic acid (FNA) elements such as aptamers, riboswitches, 

RNAzymes and DNAzymes, each with unique physical and chemical properties and thus 

functionality (Silverman 2009, Micura and Höbartner 2020). The latter three nucleic acid elements 

all possess an aptamer motif  which serves as the target recognition region (Silverman 2009). For 

brevity and keeping in line with the topic of this thesis, this excerpt will focus on the functional 

nucleic acid element known as aptamers. Additionally, though aptamers or aptameric regions of 

FNAs do exist widely in nature, such as in riboswitches, (Silverman 2009, Savinov, Perez et al. 

2014), this section focuses on laboratory derived aptamers. 
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First discovered in the 1990s by the labs of Szostak and Gold ((Ellington and Szostak 1990, Tuerk 

and Gold 1990), aptamers are antibody analogues. They are short, single stranded DNA or RNA 

oligonucleotides typically up to 100 nucleotides in length. They can bind to a wide variety of 

targets such as small molecules, peptides, proteins, whole cells etc. with high affinity and 

specificity. They can interact with their targets via a wide array of chemical interactions such as 

shape complementarity, hydrogen bonding, electrostatic interactions and/or stacking interactions 

(Tan, Acquah et al. 2016, Cai, Yan et al. 2018).  

A key characteristic of an aptamer is that it can be generated chemically, in vitro to function in 

desired conditions, unlike an antibody which requires strict physiological conditions for its 

development (Jayasena 1999, Bauer, Strom et al. 2019). Unlike antibody targets, aptamer targets 

do not have to be immunogenic (Jayasena 1999, McKeague, De Girolamo et al. 2015, Rozenblum, 

Lopez et al. 2016). Aptamers’ chemical properties make them more thermotolerant and stable, and 

much easier to modify as compared to antibodies (McKeague, De Girolamo et al. 2015, 

Röthlisberger and Hollenstein 2018). In addition to their chemical characteristics, their small size 

(15-30 kDa versus ~150 kDa for a full-size antibody) facilitates functionalization and high packing 

densities on surfaces which is advantageous for biosensor development (Morales and Halpern 

2018). This versatility coupled with decreasing complexities and costs of synthesizing 

oligonucleotides add to the appeal of aptamers as ideal bioreceptors (Dunn, Jimenez et al. 2017, 

Komarova, Barkova et al. 2020). Current oligonucleotide synthesizing technology also means that 

aptamers can be produced in a high throughput manner with minimal batch to batch variation and 

at low cost (Komarova, Barkova et al. 2020). The fact that they are nucleotides also means that 

they can be easily integrated with other technologies involving nucleic acid-based systems, such 

as sequencing technologies, amplification systems and nucleic acid computational modelling 

(Buglak, Samokhvalov et al. 2020, Komarova, Barkova et al. 2020). 

A class of laboratory derived aptamers known as aptasensors has been gaining traction in research. 

Aptasensors are engineered aptamers that act as stand-alone, ligand-responsive devices which 

“activate”, either by cleavage or altering its configuration, in the presence of a specific cognate 

analyte. In other words, aptasensors are capable of coupling binding with signaling the 

concentration of a specific analyte of interest. This has led to an outburst of research aimed at 

designing sensors and other genetically controlled elements for various applications.  Several types 
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of aptasensors exist and have been reported in the literature e.g structure switching, molecular 

beacon, target induced strand displacement, and duplex aptamers (Tyagi and Kramer 1996, 

Yoshizumi, Kumamoto et al. 2008, Feagin, Maganzini et al. 2018, Munzar, Ng et al. 2019). This 

aspect of aptamer engineering however is beyond the scope of this thesis. 

Over the last three decades aptamers have been made against a wide array of targets ranging from 

small molecules to whole cells (McKeague, De Girolamo et al. 2015, Davydova, Vorobjeva et al. 

2016, Saad and Faucher 2021). For example, aptamers have been incorporated as target binders 

for detection in analytical assays such as ELISA (Lee and Zeng 2017) and lateral flow (Bruno 

2014), in therapeutic applications (Ishiguro, Akiyama et al. 2011, Adachi and Nakamura 2019) 

and in nano-delivery systems or assays (Lao, Phua et al. 2015). 

Many aptamers have been developed and used in biosensing platforms to detect many targets such 

as proteins, molecules such as thrombin and theophylline as well toxins such as aflatoxins and 

various environmental contaminants (Morales and Halpern 2018, McConnell, Nguyen et al. 2020). 

Aptamers developed against bacteria, for example, have been used on multiple platforms ranging 

from lateral flow assays (Bruno 2014, Saad and Faucher 2021) to electrochemical impedance 

spectroscopy (Brosel-Oliu, Ferreira et al. 2018, Saad and Faucher 2021) to SPR-based systems 

(Yoo, Kim et al. 2015, Oh, Heo et al. 2017, Saad and Faucher 2021).  

Aptamer research has increased exponentially over the years since the discovery of the first 

aptamer in 1990 (Dunn, Jimenez et al. 2017). In 25 years, aptamers were the subject of 4,795 

articles. Among those articles, 3,995 were experimental articles and 800 were review articles 

(Dunn, Jimenez et al. 2017). A quick search in PubMed database, chosen for its least redundancies, 

showed that the number of review articles for aptamers increased from 172 in 2015 to 305 in 2020, 

illustrating the surge of research activity and interest in this domain. This interest has also led to 

the creation of several aptamer-based companies and corporations (Table 1)  (McKeague). 
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APTAMER COMPANIES 

2bind, GmbH, Germany 

Altermune LLC, Sandwich, Kent or CA, USA (Acquired by Cantauri 

Therapeutics) 

AM Biotechnologies, LLC, TX, USA 

AMS Biotechnology, Abingdon, UK 

APTAGEN, LLC, PA, USA 

AptaMatrix, NY, USA 

Aptamer Group, York, UK 

Aptamer Sciences Inc, Korea 

Apta Targets Madrid, Spain 

Aptabiosciences, UK and Singapore 

AptaIT GmbH, Germany 

Apterna, UK 

Aptitude Medical Systems Inc, USA 

AptusBiotech, Spain 

Astrazeneca 

ATDBio Ltd, Southampton, UK 

AuramerBio, New Zealand 

Base Pair Biotechnologies, Inc, USA 

BBI Group, Cardiff, UK 

DSM Biotechnology, The Netherlands 

Firefly Bioworks, MA, USA 

iba GmbH Germany 

IDT DNA, Iowa, USA 

Izon Science Oxford, UK 

LC Sciences, TX, USA 

LFB Biotechnologies, France 

Nal von Minden Germany 

Neoventures, Ontario, Canada 
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Novaptech 

Noxxon Pharma, AG Germany 

Ophthotech NY, USA 

OTC Biotech TX, USA 

Piculet Biosciences The Netherlands 

Pure Biologics Poland 

Ribomic Japan 

SomaLogic CO, USA 

Tobira Therapeutics CA, USA 

Tocris Bioscience Bristol, UK 

TriLink Biotechnologies CA, USA 

Veraptus, China 
Table 1. List aptamer companies. List compiled by Dr. Maureen McKeague, Dr. Sarah Shigdar and Dr. Mohammad 

Sohail. Retrieved from http://aptamersociety.org/aptamer-companies/. 

Most of the published research are studies of aptamer-based applications versus aptamer 

development (Dunn, Jimenez et al. 2017). In studies that report the development of aptamers, most 

work list proteins as the primary target for aptamers, followed by small molecules and then whole 

cells (Dunn, Jimenez et al. 2017). A large proportion of these protein targets are of mammalian 

origin such as thrombin, VEGF etc. whereas the majority of whole cell targets are pathogenic 

microbes followed by cancer cells (Dunn, Jimenez et al. 2017).   

Studies that report the development of aptamers also predominantly use a DNA backbone for 

selection, followed by the RNA backbone (McKeague, McConnell et al. 2015, Dunn, Jimenez et 

al. 2017). In initial years, RNA backbone aptamers were primarily selected due to the well 

established fact that RNA could have functional motifs and fold into complex secondary structures, 

thus increasing the chances for finding high affinity probes (McKeague, McConnell et al. 2015, 

Dunn, Jimenez et al. 2017). However, further investigation revealed that DNA secondary 

structures could have high binding affinities (Lin and Patei 1997). This coupled with the stability 

of DNA, due the lack of 2’-hydroxyl moiety on the DNA sugar, lead to a shift towards aptamers 

with DNA backbones (McKeague, McConnell et al. 2015, Dunn, Jimenez et al. 2017, Micura and 

Höbartner 2020). This stability also contributes to the ease of handling DNA (Amero, Lokesh et 
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al. 2021). Traditional in vitro selection steps would require the RNA aptamer pool be converted to 

cDNA followed by reverse transcription to develop the input pool for the next round of selection. 

Interestingly, aptamer studies with modified or unnatural nucleotides i.e neither a DNA nor RNA 

backbone, have been increasing over recent years (Dunn, Jimenez et al. 2017).  Our own literature 

review of aptamers against water-borne pathogens, which will be discussed in the next chapter, 

unveiled similar trends with regards to backbone chemistry. In over 110 studies, only 4% of studies 

used or developed RNA aptamers (TableS1, Saad et al 2021) (Appendix, FileA1). 

Aptamer performance is dependant on the quality of the experimental design of the selection 

procedure. This selection procedure, known as SELEX (systemic evolution of ligands through 

exponential enrichment), is discussed in the following section. 

 

1.5 SELEX 

The procedure by which an aptamer is created is known as Systemic Evolution of Ligands through 

EXponential enrichment (SELEX). SELEX, also known as in vitro selection, is an iterative 

process which involves repeatedly exposing a target molecule with a large random library of 

oligonucleotides, up until the final pool of oligos are enriched with sequences that bind to the target 

with high affinity and specificity (Figure 5). 
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Figure 5. Schematic of SELEX procedure. Image created in Biorender. 

 

The classical SELEX approach involves incubating a target molecule with a large (1016), diverse 

nucleotide library, separating the target bound sequences from the unbound oligonucleotides and 

then amplifying the target bound sequences via PCR for the next round of selection (Gold 2015). 

Generally, the selection rounds are repeated until the oligonucleotide pool is enriched with 

sequences that bind to the target specifically with high affinity (Gold 2015).  

There are multiple steps in the SELEX method. These include library design and selection, target 

preparation, reaction conditions, partitioning steps, purification, and sequence pool recovery steps 

(Gold 2015, McKeague, McConnell et al. 2015, Kalra, Dhiman et al. 2018). Given the multiple 

steps of this technique, the SELEX process lends itself to being modular. This is evidenced by the 

multitude of SELEX techniques currently present in the literature (Table 2).  
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Type of SELEX Reference 

Duplexed Aptamer SELEX (Munzar, Ng et al. 2019) 

One-Pot SELEX (Missailidis, Thomaidou et al. 2005, Jauset-

Rubio, Botero et al. 2019) 

Cell-SELEX (Morris, Jensen et al. 1998, Daniels, Chen et al. 

2003) 

Capillary Electrophoresis SELEX (Mendonsa and Bowser 2004) 

FluMag SELEX (Stoltenburg, Reinemann et al. 2005) 

Differential SELEX (Cerchia, Esposito et al. 2009) 

Branched SELEX (Dupont, Larsen et al. 2015) 

Capture SELEX (Stoltenburg, Nikolaus et al. 2012) 

In silico SELEX (Ikebukuro, Okumura et al. 2005, Zhou, Xia et 

al. 2015) 

AEGIS SELEX (Sefah, Yang et al. 2014) 

SMART Selex (Song, Zheng et al. 2019) 

Bead based SELEX (Tok and Fischer 2008) 

Complex Target/Deconvolution SELEX (Morris, Jensen et al. 1998) 

DRIVR and CleaveSeq SELEX (Townshend, Xiang et al. 2021) 

Primerless/Tailored SELEX (Vater, Jarosch et al. 2003) 

Microfluidic SELEX (Lou, Qian et al. 2009)  

Genomic SELEX (Lorenz, Von Pelchrzim et al. 2006) 

Toggle SELEX (White, Rusconi et al. 2001) 

Table 2: List of different types of SELEX. 

Each step in SELEX must be designed and optimized to maximize the likelihood of a high affinity 

aptamer for a specific downstream application. For example, by incubating an aptamer library with 

serum of lung cancer patients and doing negative selection with serum from healthy individuals, 

Li et al were able to identify 6 DNA aptamers that were highly specific in detecting lung cancer in 

the serum of 20 lung cancer patients but not in 20 healthy patients (Li, Xiu et al. 2017). Similarly, 

to identify aptamers that would retain functionality in physiological conditions, Ferreira et al.  

incubated their aptamer library with metastatic breast cancer MDA-MB-231 cells at a temperature 

of 37°C during their reaction incubation steps (Ferreira, Barbosa et al. 2021). The latter study is 
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also one of many examples of a technique adapted from the original SELEX methodology known 

as Cell-SELEX. 

Cell-SELEX utilizes a different target preparation approach by using live whole cells as the target 

for selection instead of a specific biomarker (Sefah, Shangguan et al. 2010, Kaur 2018). This 

eliminates the need for prior knowledge of a specific target biomolecule as well as cumbersome 

purification and separation experiments. Indeed, this adaptation has even led this approach to be 

called Blind-SELEX by one group (Yoon, Armstrong et al. 2017).  

The goal of the SELEX process is to produce specific, high affinity aptamers. These aptamers are 

characterized as having low equilibrium dissociation constants (KD) (Tan, Acquah et al. 2016, 

Plach and Schubert 2020). Therefore, many aptamer development and discovery works report this 

metric as part of their characterization studies. The flexibility of the SELEX process also means 

its outcomes can be unpredictable or have a high failure rate (Zhou and Rossi 2017, Komarova 

and Kuznetsov 2019, Micura and Höbartner 2020). Several parameters must therefore be 

investigated and analyzed to increase the probability of recovering robust aptamers. We will now 

briefly describe several parameters affecting the outcome of SELEX.   

1.5.1 Library Design 

1.5.1.1 Backbone: 

As previously mentioned, the use of DNA backbone libraries facilitates handling and manipulation 

in addition to reducing multiple processing steps that could otherwise contribute to variability in 

experimental procedures e.g cDNA generation and reverse transcription (McKeague, McConnell 

et al. 2015, Dunn, Jimenez et al. 2017, Micura and Höbartner 2020). Additionally, the absence  of 

2’OH group makes the DNA sugar more stable (Röthlisberger and Hollenstein 2018). Though 

RNA and DNA backbone libraries are purported to result in aptamers with similar affinities 

(Röthlisberger and Hollenstein 2018, Amero, Lokesh et al. 2021), functional motifs and secondary 

structures of RNA are more diverse and well-studied (McKeague, McConnell et al. 2015, 

Komarova, Barkova et al. 2020, Micura and Höbartner 2020). In fact, a lot of robust aptamers 

come from aptasensor libraries that are typically RNA based due to complex secondary structures 

and functional features. Examples are riboswitches and ribozymes (Micura and Höbartner 2020, 

Townshend, Xiang et al. 2021). 
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1.5.1.2 Modified and Unnatural Nucleotides: 

Regardless of backbone, given that only four nucleotides (A, G, C and T) exist in nature, aptamer 

libraries must be large (1015) and thus diverse enough to increase chances of finding motifs with 

required functional properties. Binding sites of antibodies can have six segments of variable 

structures composed of either 110-130 amino acids of 20 different types (Schroeder Jr and 

Cavacini 2010). The diverse combinations of amino acids also mean that antibodies can have more 

variety of physicochemical characteristics such as charges, pKa etc. Previously, altering the 

composition of the library by including more G’s and C’s instead of using a randomized library 

has been found to enhance diversity by  developing more secondary structures (Vorobyeva, 

Davydova et al. 2018). One other way to achieve enhanced diversity is by using “artificial” and/or 

modified nucleotides. The use of such nucleotides/sequence backbones has steadily increased over 

the past 15 years (Dunn, Jimenez et al. 2017). Some of these modifications are either on the 

nitrogenous base such as 5’methyluridine or on the sugar backbone such as 2’Fluoro. Locked 

nucleic acid aptamers (LNA) and SOMAmers are examples of aptamers with modified nucleotides 

(Schmidt, Borkowski et al. 2004, Brody, Gold et al. 2010). In fact, AEGIS-SELEX (artificially 

expanded genetic information system – SELEX) is a technique adapted from the original SELEX 

method by the inclusion two new artificial nucleotides in the library (Sefah, Yang et al. 2014). 

1.5.1.3 Presence of primer binding sites/constant regions: 

To enable amplification of target bound sequences via PCR, traditional SELEX methods require 

the presence of primer binding regions flanked on either side of the variable sequence region. 

These primer binding regions are constant and could, plausibly, contribute to the overall structure 

of the final aptamer but they also have the risk of non-specific binding and can interfere with the 

variable sequence region that specifically binds the target (Pan and Clawson 2009). An analysis of 

more than 2000 structures from AptamerDatabase showed that the constant regions had minimal 

to no effect on the secondary structure formation as the majority of the structural motifs occurred 

in the randomized region (Cowperthwaite and Ellington 2008). This data however is not recent 

and contains several outliers. Several studies have minimized the effect of primer binding sites 

during SELEX by either replacing the constant sites after a certain number of rounds using 

restriction enzymes or blocking the primer binding sites with complementary oligonucleotides  

(Shtatland, Gill et al. 2000, Ouellet, Lagally et al. 2014). Primer less SELEX has also been 



68 
 

developed (Jarosch, Buchner et al. 2006, Pan and Clawson 2009). Several of these strategies 

involve cumbersome removal, cleavage and re-ligation steps. To tackle these limitations a recent 

article suggests the use of structure-switching primers coupled with an electrophoretic gradient. 

Upon changing buffer conditions, the structured primers would unfold and release the target. 

Variable region sequences that bind to the target would not be altered by the changed buffer 

conditions and so an electrophoretic gradient could be applied to release the target (Wang 2020). 

1.5.1.4 Length of variable region:  

Investigation of several SELEX experiments reveals that the length of the randomized or variable 

region of libraries does not appear to affect the affinities of the final selected aptamers (Wang, 

Chen et al. 2019). However the majority of libraries in SELEX studies have variable regions sized 

between 30-90 nucleotides (McKeague, McConnell et al. 2015, Vorobyeva, Davydova et al. 2018). 

Variable region lengths must strike a balance between diversity and the complexity of secondary 

structures. Longer sequences may have more secondary structures but could have lower sequence 

space. For example, a sequence of 30 nucleotides could reach a diversity of 1018, (given 4n). This 

empirical high diversity, though desired, means the risk of subsampling the initial library and since 

each distinct sequence is initially present in only one copy number, this could lead to the “loss” of 

unique sequences and hence reduced diversity (Pobanz and Lupták 2016). Additionally, longer 

sequence libraries also have increased costs with synthesis and purification and run the risk of 

producing PCR artifacts (Vorobyeva, Davydova et al. 2018, Wang, Chen et al. 2019). Variable 

regions as short as 20nt and 15nt have been successful in producing aptamers (Kupakuwana, Crill 

et al. 2011, Thiel, Bair et al. 2011). 

1.5.2 Temperature  

Aptamers can be dynamic and have alternative configurations depending on their environment. 

Therefore, the temperature most relevant to the target application tends to be used for selecting 

robust aptamers. The majority of selections are done at 25 °C which mimic ambient conditions 

(McKeague, McConnell et al. 2015). Other common selection temperatures are 37 °C which 

represent physiological conditions followed by 4 °C. The latter temperature minimizes cellular 

uptake of oligonucleotides (Sefah, Shangguan et al. 2010). When DU145 cells were incubated with 

the fluorophore-labelled DML-7 aptamer at 4 ºC or 37 ºC for 2 hours, fluorescence was only 

observed inside the cells incubated at 37ºC (Zhang, Sefah et al. 2012, Duan, Long et al. 2016). The 
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low temperature of 4ºC is also a common preparatory step, following heating, in many SELEX 

procedures to enable nucleic acid folding. Thiel et al. developed a cell-based aptamer fluorescence 

binding and internalization (AFBI) assay for high throughput screening of aptamer performance 

under various conditions (Thiel and Giangrande 2016). Interestingly, through this assay, they 

determined that most temperature protocols had negligible impact on aptamer function post folding 

and that aptamer folding is more dependent on buffer components than the temperature protocol 

(Dickey, Giangrande et al. 2016).  

1.5.3 Buffer Conditions (pH, buffering agent, metal cations) 

The selection media has significant influence on target properties as well aptamer properties such 

as structure, charge, protonation and thus affinities (McKeague, McConnell et al. 2015). 

Protonation can cause different base pairings to occur and thus affect aptamer target binding 

(Belleperche and DeRosa 2018). For example, an in-depth study of the thrombin aptamer showed 

varying pH altered the aptamers binding affinities (Hianik, Ostatná et al. 2007). Programmable 

aptamers that respond to pH have also been developed (Li, Jiang et al. 2018, Thompson, Zheng et 

al. 2020). 

The effect of buffering agent on aptamer affinities is not well studied. Most SELEX reactions use 

phosphate buffered saline, Tris buffered saline or HEPES buffer, Tris buffered saline seems to be 

the most widely used buffering agent (McKeague, McConnell et al. 2015). All three buffers are 

well known in molecular biology for their osmotic properties and compatibility with most 

biologics. Typically, the same buffer is adapted and used in washing steps to separate unbound 

oligos from target bound oligos. However some researchers found that by increasing the ionic 

strength of the “wash” buffer, using a gradient of 0.1 to 1M, the most tightly bound aptamers were 

eluted by the highest salt concentration, thus enabling the selection of aptamers with different 

binding characteristics (Hernandez, Flenker et al. 2013). Another research group separated target 

bound sequences from unbound using a combination of salt gradient with chromatography (Martin, 

Parekh et al. 2013). 

Cations have been observed to influence aptamer KD. A review of 25 years of published aptamers 

suggested that higher affinity aptamers (low KD ) were correlated with lower metal ion (K+, Na+, 

Mg+2) concentrations (McKeague, McConnell et al. 2015). However this correlations between 

metal cation concentration and KD was stronger for target type versus nucleic acid type suggesting 
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that when deciding the metal cation composition of the SELEX buffer, the target should be 

considered more than the nucleic acid type (McKeague, McConnell et al. 2015). The presence of 

ions, such as K+ and Mg+2, has been previously reported to highly stabilize key secondary structure 

elements known as G-quadruplex regions (Bhattacharyya, Mirihana Arachchilage et al. 2016). 

This however can be problematic during subsequent SELEX rounds which often require PCR 

amplification steps (Ruggiero and Richter 2018). 

1.5.4 Number of SELEX Rounds 

Currently the average number of selection rounds for most SELEX experiments is somewhere 

between 5–15 (McKeague, McConnell et al. 2015).This number depends on many factors and are 

often a tradeoff between cost, time and throughput. For example, if there are no negative selection 

steps with non-target molecules then more rounds of SELEX may be needed to achieve aptamers 

that are highly specific to a desired target (Hamula, Peng et al. 2015). By contrast increasing the 

number of SELEX rounds would lead to multiple PCR steps. This would result in PCR bias which 

results in the increase of sequences more amenable to amplification and consequently an extreme 

loss in the diversity of functional molecules (Gentry-Shields, Wang et al. 2013, Head, Komori et 

al. 2014, Dunn, Jimenez et al. 2017, Witt, Phung et al. 2017). PCR bias also tends to result in 

shorter sequences further reducing potential key secondary structural elements (Head, Komori et 

al. 2014, Witt, Phung et al. 2017). To mitigate the effects of PCR bias researchers have come up 

with various strategies such as optimizing the number of PCR cycles required, also known as 

preparative PCR (Sefah, Shangguan et al. 2010), limiting the number of SELEX rounds through 

parallel selection (Dupont, Larsen et al. 2015) or using emulsion and droplet PCR (Kanagal-

Shamanna 2016). Partitioning methods, which involve separating unbound non-specific sequences 

from target-bound hence specific sequences, also influence the number of SELEX rounds. The 

more efficient a partitioning method is at separating unbound from bound sequences, the fewer 

number of SELEX rounds will be required (Hernandez, Flenker et al. 2013, Dunn, Jimenez et al. 

2017). To monitor the enrichment and “evolution” of the sequence pools per round of SELEX, 

researchers typically use either flow cytometry (Sefah, Shangguan et al. 2010) or-more recently 

due to improved technologies and decreasing costs- sequencing (Dupont, Larsen et al. 2015, 

Hoinka and Przytycka 2016, Hoinka, Backofen et al. 2018). The advent of high throughput 
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sequencing has enabled deeper insights into the “evolution” of sequence pools over the course of 

SELEX rounds. 

1.5.5 Partitioning Methods 

The separation of target bound sequences from unbound non-specific sequences, is critical to the 

success of the SELEX procedure. Some more advanced SELEX methods have been published 

using specialized partitioning methods with the help microfluidic platforms or capillary 

electrophoresis (Wang, Chen et al. 2019). Washing steps are the most common for the removal of 

unbound molecules. As mentioned previously, using different ionic buffers with the help of salt 

gradients or adjusting the number of washing steps can increase stringency of the selection process 

(Sefah, Shangguan et al. 2010, Hernandez, Flenker et al. 2013, Kim, Song et al. 2013). 

Fluorescence cell sorting and electromobility shift assay (EMSA) are also some partitioning 

methods where aptamer-target complexes are separated from the reaction milieu (Mayer, Ahmed 

et al. 2010, Szeto, Latulippe et al. 2013, Wu and Kwon 2016)..Heat gradients, urea and DNAase 

have also been used as denaturing agents to separate loosely bound or unbound sequences (Wang, 

Chen et al. 2019). 

1.5.6 Recovery Methods 

Following partitioning and/or PCR amplification steps, it is necessary to obtain high integrity pools 

as the input or template for subsequent rounds of SELEX. Consequently, the efficient recovery of 

high-quality ssDNA or RNA that retain functional motifs and complex secondary structures, is 

important. Given the context of the experimental work conducted in this thesis and the increase in 

research towards developing DNA aptamers, ssDNA recovery methods are described. 

There are four primary methods for recovering ssDNA from the dsDNA formed during PCR 

amplification. 

(i) Asymmetric PCR: This involves the preferential amplification of one strand of template 

DNA by using an unequal ratio of forward and reverse primers. Though it is a low cost 

and straightforward method, the multiple steps involved with fragment purification 

from the gel impact the speed and efficiency of this method which can also result in the 

loss of some sequences (Citartan, Tang et al. 2012, Svobodová, Pinto et al. 2012).. 
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Furthermore, conditions would need to be optimized for maximum yield and efficiency 

(Heiat, Ranjbar et al. 2017, Tolnai, Harkai et al. 2019).  

(ii) Magnetic bead-based separation: This method makes use of the tight interaction 

between biotin and streptavidin. Using a biotinylated primer during PCR tags the 

aptamer pool with biotin. The PCR product – biotinylated dsDNA – is then captured 

by streptavidin coated magnetic beads and denatured by heat or high alkaline pH. One 

strand remains on the bead and is separated with the help of a magnet while the 

supernatant containing the other strand is collected and purified. The most common 

method, this technique is simple and quick but expensive due to the use of labelling 

moieties and magnetic beads. Additionally, the denaturing conditions can result in a 

dissociation of streptavidin from beads, leading to poor quality ssDNA and the presence 

of another SELEX target. A recent study reviewed SELEX experiments over the past 

13 years and noted that alkaline denaturation was a significant factor in low quality 

aptamer selection (Oteng, Gu et al. 2020). The study also conducted two parallel 

SELEX to compare the impact of two different methods i.e magnetic bead-based vs, 

lambda nuclease based, for ssDNA recovery on the efficiency of aptamer enrichment. 

They discovered that the lambda nuclease method for ssDNA recovery resulted in more 

aptamer enrichment (Oteng, Gu et al. 2020). 

(iii) Lambda nuclease digestion method: This method involves the incorporation of a 5’ 

phosphate group, with the help of specific primer and PCR, in the undesired strand. 

This will enable digestion by the lambda nuclease (Svobodová, Pinto et al. 2012). This 

method is relatively simple to do and can have a high recovery rate of ssDNA 

(Svobodová, Pinto et al. 2012). To minimize non-specific digestion of the non-

phosphorylated target strand, the target strand must be labelled with a moiety such as 

fluorophore (Svobodová, Pinto et al. 2012). Other limitations associated with this 

technique are the cost of the enzyme, the risk of having by-products, and adversely 

impacting ssDNA yields following enzyme and buffer removal (Wang, Chen et al. 

2019). 

(iv) Denaturing polyacrylamide gel electrophoresis (PAGE) separation method: This 

method involves the use of specially modified primers which results in two strands of 

PCR products with different lengths. These two strands are then separated by 
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denaturing gel electrophoresis (Komarova and Kuznetsov 2019). The ssDNA is then 

extracted and collected. The separation of different lengths and hence different 

molecular weight bands minimizes chances of collecting PCR by products and thus 

improves ssDNA recovery. This process however is very tedious and time consuming 

and can take up to 12 hours to elute the ssDNA from the gel block (Komarova and 

Kuznetsov 2019). 

1.5.7 Negative Selection/Counter SELEX conditions 

The incorporation of appropriate negative selection steps can greatly improve SELEX outcomes 

(Hamula, Peng et al. 2015, Wang, Chen et al. 2019). Not only will negative selection steps greatly 

minimize the number of SELEX rounds and minimize PCR bias, but it can also lead to a highly 

specific aptamer with increased functionality in a relevant downstream application. For example, 

given that the bacterial pathogen, Campylobacter jejuni, is found on raw poultry and the 

gastrointestinal tract and feces of animals (Mughini-Gras, Penny et al. 2016) , Dwivedi et al. used 

a large number, approximately 20 non-target bacterial species for negative selection. These 

included other food-borne pathogens, native enteric bacteria, native non-enteric bacteria and lactic 

acid bacteria (Dwivedi, Smiley et al. 2010). The result was a species-specific aptamer with high 

affinities in the nanomolar range. 

1.5.8 Target Preparation Steps 

The nature of the target can dictate the SELEX outcome. The more available binding pockets and 

forces of attraction the higher the chances of avidity and selecting high affinity aptamers (Kalra, 

Dhiman et al. 2018). The majority of aptamers currently published in literature bind to proteins 

(Dunn, Jimenez et al. 2017). Most aptamers targeting small molecules have lower affinities 

compared to aptamers binding more complex targets (McKeague, McConnell et al. 2015). In the 

case of larger multimeric complex targets such as cells, multiple factors need to be taken into 

account to develop efficient aptamers that make sense for specific applications. We will now 

review, in the next chapter, how target properties can impact SELEX specifically for finding 

aptamers for water-borne pathogens. 
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CHAPTER 2: CONNECTING TEXT 

Understanding the context and downstream environment for an aptamer’s application is important 

for aptamer development. Consequently, we examined the literature reporting the development of 

aptamers against waterborne microbes and identified several properties that would serve as 

determinants to aptamer development. 

This chapter was published in the journal Frontiers in Microbiology. The supplementary data for 

this chapter is found in the Appendix (Appendix, Chapter 2, File A1). 
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2.1 ABSTRACT 

Aptamers can serve as efficient bioreceptors for the development of biosensing detection 

platforms. Aptamers are short DNA or RNA oligonucleotides that fold into specific structures, 

which enable them to selectively bind to target analytes. The method used to identify aptamers is 

SELEX. Target properties can have an impact on aptamer efficiencies. Therefore, characteristics 

of water-borne microbial targets must be carefully considered during SELEX for optimal aptamer 

development. Several aptamers have been described for key water-borne pathogens. Here, we 

provide an exhaustive overview of these aptamers and discuss important microbial aspects to 

consider when developing such aptamers.  
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2.2 INTRODUCTION:  

Access to water that is safe for use and consumption is a basic human right. As a result, most 

countries have strict guidelines, regulations and standards for managing water sources and water 

distribution systems to supply high quality water free from chemical and microbial contaminants. 

In most cases, microbial contaminants must be removed from the water before distribution. These 

microbes include pathogens that cause gastroenteritis, such as Cryptosporidium, Giardia, 

Norovirus, Rotavirus, Campylobacter, and E. coli (WHO 2017). Other water-borne diseases are 

caused by pathogens growing inside water distribution systems or within engineered water 

systems, such as cooling tower, fountains, spas and humidifiers (Wang, Bédard et al. 2017). The 

latter include Legionella pneumophila, Pseudomonas spp. and non-tuberculosis mycobacteria. In 

recent years, several studies have shown a high proportion of water associated deaths and illnesses 

are due to the aforementioned three environmental water-borne pathogens (Gargano, Adam et al. 

2017, Greco, Drudge et al. 2020). In fact, L. pneumophila, the causative agent of Legionnaires 

disease, has become the number one cause of water-borne outbreaks in recent years (McClung, 

Roth et al. 2017). The presence of coliforms is not indicative of the presence of several key water-

based pathogens that are of significance to public health (Payment and Locas 2011). Consequently, 

specific detection methods are needed to ensure safe water from the source to the point of use.  

Monitoring and surveillance of specific water-borne microbes require robust detection methods. 

Challenges in select current detection methods for waterborne pathogens have been reviewed 

excellently in detail elsewhere (Ramírez-Castillo, Loera-Muro et al. 2015, Wang, Bedard et al. 

2017). In general, traditional microbial detection methods rely heavily on culture methods, which 

is fraught with several limitations. Culture methods are extremely time consuming and often 

require extensive material, specialized labour, and time. Culture recovery rates are also adversely 

affected by many factors such as the presence of competing microbes, the presence of viable but 

non culturable (VBNC) cells, methods used for concentration of the sample or enrichment of the 

target microbe and sample type (bulk water or biofilm) (Wang, Bedard et al. 2017). Drawbacks 

with culture techniques has led to a shift towards the use of molecular methods, including PCR, 

quantitative PCR (qPCR), high throughput sequencing, and immunoassays such as ELISA, 

immunochromatography and immuno-lateral flow assays. The most widely used molecular 

method is qPCR (Ramírez-Castillo, Loera-Muro et al. 2015, Wang, Bedard et al. 2017). The 
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advantage of qPCR, over conventional culture techniques, is more rapid turn-around times, high 

sensitivities and specificities, lower limits of detection, as well as an ability to detect VBNC cells. 

However, by detecting live, VBNC and dead cells qPCR leads to an overestimation of microbial 

burden. Additionally, qPCR involves multiple sample processing steps which requires specialized 

labor. qPCR is also inhibited by several compounds routinely found in water samples resulting in 

possible false negatives (Gentry-Shields, Wang et al 2013).  

Biosensors can mitigate some of the problems associated with traditional detection methods 

(Ahmed, Rushworth et al. 2014). They are analytical devices used to quantify or detect a specific 

analyte (Turner 2013). Qualities of biosensors includes high specificity, high sensitivity, 

multiplexing capability, cost-effectiveness, portability and ease of use (Ahmed, Rushworth et al. 

2014, Kumar, Hu et al. 2018, Cesewski and Johnson 2020, McConnell, Nguyen et al. 2020). A 

biosensor set-up typically consists of three elements. A biorecognition element, which upon 

interaction with a target, produces a physico-chemical signal that is converted by a transducing 

element into a signal captured by a detection element (Turner 2013). Biosensors are categorized 

based on either their transducing element (mechanical, optical, electrochemical) or the nature of 

the biorecognition element (affinity, catalytic) (Ahmed, Rushworth et al. 2014). 

A versatile and stable biorecognition element is a critical component of any biosensing platform 

(Ahmed, Rushworth et al. 2014, Kumar, Hu et al. 2018). Antibodies are the most used bioreceptors 

in biosensor development and research, but aptamers are an increasingly widespread popular 

alternative (Song, Wang et al. 2008, Morales and Halpern 2018). Aptamers are single stranded 

DNA or RNA oligonucleotides that fold into specific complex structures and interact with their 

targets via shape complementarity, hydrogen bonding, electrostatic interactions and stacking 

interactions (McKeague, McConnell et al. 2015). Besides having high affinities and selectivity, 

they can bind to a wide range of targets from small non-immunogenic compounds to whole cells 

(McKeague, McConnell et al. 2015). Aptamers can be generated in vitro in conditions one can 

preferentially select making them stable and versatile for a variety of applications (Song, Wang et 

al. 2008). They are cost-effective to synthesize with minimal batch to batch variation (Strehlitz, 

Reinemann et al. 2012, McConnell, Nguyen et al. 2020). Their easily modifiable nature facilitates 

functionalization on sensing surfaces (Song, Wang et al. 2008, McConnell, Nguyen et al. 2020). 

Their inherent small size also promotes high packing densities during functionalization (Song, 
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Wang et al. 2008, Crivianu-Gaita and Thompson 2016). In this minireview, we will briefly provide 

examples of aptamers with potential for detection of water-borne pathogens and discuss microbial 

determinants for the development of optimal aptamers and thus improved aptamer-coupled 

biosensors. Examples of aptamers is provided in Table 1 and a complete list of aptasensing 

platforms is provided in Supplementary Table 1. 

 

2.3 APTAMER DEVELOPMENT: 

Aptamers are typically identified by SELEX (Systematic Evolution of Ligands through 

Exponential Enrichment). SELEX is an iterative process where repeated exposure of a target to a 

large pool of random oligonucleotides results in the gradual enrichment of specific sequences that 

bind with the highest affinity to the target. Since the technique’s inception in 1990, many variations 

of the original SELEX method have been published (Darmostuk, Rimpelova et al. 2015). These 

experimental variations differ based on desired aptamer properties and details have been reviewed 

elsewhere (Wang, Chen et al. 2019). Of note, cell-SELEX can be used to select aptamers against 

whole cells in solution, to ensure cell surface target epitopes are in their native state (Kaur 2018). 

This method is particularly useful for developing aptamers to detect water-borne pathogens. Cell-

SELEX may include counter-selection steps to remove sequences binding to non-target microbes 

thus minimizing cross-reactivity and improving the specificity of the resulting aptamers (see Table 

1 for examples).  

Several aptamer-coupled biosensing systems or aptasensors have been described for the detection 

of water-borne pathogens or toxins accumulating in water (Table 1 and Supplementary Table S1) 

with the majority targeting bacterial pathogens. Nevertheless, none have been officially adopted 

for routine detection of water-borne pathogens. The development of successful aptamer-coupled 

biosensors to detect water-borne pathogens requires a multi-pronged approach. Besides intricate 

knowledge of the sensing system, its transducer, the physico-chemical phenomenon that mediate 

signal responses, and a deep understanding of aptamer chemistries, careful consideration of the 

physiology and ecology of the target microorganism is required. This is because physio-ecological 

factors affect microbial morphologies and surface structures and thus the presence of aptamer 

targets (Figure 1). Although several works discuss transducing systems and aptamer design and 

chemistries in detail, relatively fewer studies consider the physio-ecological context of water-
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borne microbes for sensing platforms. Since most aptamers and aptasensing systems described in 

the literature detects water-borne bacterial pathogens, properties of bacteria are discussed in more 

detail to illustrate the importance of considering the target’s microbial characteristics for aptamer 

and aptasensor development.  

 

Figure 1. Factors affecting Cell-SELEX and thus the efficiency of aptamers targeting water-borne 

microbial pathogens. Most factors have been reviewed elsewhere, except the properties of the 

target, which are the topics of this review. Images were created in Biorender 

(https://biorender.com).  

 

2.4 APTAMERS TARGETING MICROBES IN SPECIFIC STATES AND 

GROWTH CONDITIONS: 

Protozoan microbes have varying life cycles which can alternate between metabolically active 

feeding states i.e trophozoites, or inactive, dormant states such as oocysts or cysts (Aguilar-Díaz, 

Carrero et al. 2011, Jain, Costa Melo et al. 2019). Both oocysts and cysts are infectious forms that 

persist for long periods of time in environmental waters and resist a wide range of stressors 

(Omarova, Tussupova et al. 2018). The Cryptosporidium parvum oocyst-specific aptamer R4-6 

was thus developed using cell-SELEX (Table 1) (Iqbal, Labib et al. 2015). A counter selection 
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step against Giardia duodenalis, another protozoan commonly found in water samples (Ongerth 

2013, WHO 2017) was included to enhance aptamer specificity. This aptamer was first used in 

multiple assay formats on electrochemical biosensing platforms to detect oocysts of C. parvum 

down to 50 oocysts in river and lake water samples (Iqbal, Labib et al. 2015, Iqbal, Liu et al. 2019). 

Recently, a fluorescence plate assay coupled with magnetic beads labelled with a truncated version 

of the aptamer R4-6, named Min_Crypto2 achieved a detection limit of 5 oocysts (Hassan, Dixon 

et al. 2021). The low LOD of this system is promising for oocyst detection in water given that the 

infectious dose of C. parvum is between 10 and 30 oocysts, (Jain, Costa Melo et al. 2019). Aptamer 

Min_Crypto2 was selective for Cryptosporiudum species, despite differences in size amongst 

species, but did not bind to Giardia oocysts. These features combined with its robust performance 

in water samples highlights its potential for oocyst detection in water.  

Bacteria suspended in water are in a different metabolic state than bacteria growing in laboratory 

media. For example, L. pneumophila adopts a specific regulatory program when suspended in 

water due to starvation (Li, Mendis et al. 2015). Consequently, the aptamers R10C5 and R10C1 

were created by cell-SELEX using L. pneumophila suspended in water for 24 hrs, to allow the 

bacterium to adopt the associated metabolic state (Table 1). Counter selection was performed on 

two Pseudomonas spp strains, prevalent in environmental waters (Paranjape, Bédard et al. 2020). 

Both aptamers have excellent specificity for L. pneumophila (Saad, Chinerman et al. 2020).  

Water borne bacteria can also be biofilm-associated. These bacteria can gain adaptive traits which 

make it harder to eliminate or disinfect them. To that end, biofilm-derived Pseudomonas 

aeruginosa cells were used to select aptamers through Cell-SELEX, without counter selection 

(Soundy and Day 2017). The resulting aptamers were specific for 4 out of 5 clinical Pseudomonas 

aeruginosa isolates, minimally labelled non-Pseudomonas bacteria, and bound to both biofilm 

derived and planktonic Pseudomonas cells.  The authors created chimeras and generated aptamers 

St17Lp21, St21Lp17.The chimeric aptamers showed improved binding and enhanced specificity 

for Pseudomonas bacteria as compared to the parent non-chimeric aptamers but were still unable 

to differentiate between biofilm and planktonic cells. This is not surprising since the biofilm-

derived cells were washed and vortexed to release cells and remove alginate and 

exopolysaccharides. Mechanical stress induced by vortexing can destroy larger surface structures 

such as fimbriae and flagella. The lack of counter-selection coupled with the vigorous washing 
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steps may have exposed cell surface structures not unique to the biofilm-derived Pseudomonas. 

Using counter selection could have eliminated sequences that bind to surface structures such as 

LPS or ubiquitous OMPS that are common in both planktonic and biofilm-derived Pseudomonas. 

Aptamers against Yersinia enterocolitica were generated using Cell-SELEX with bacteria grown 

at, 26 °C  (Shoaib, Shehzad et al. 2020). After counter selecting with several bacterial pathogens, 

the three aptamers M1, M5 and M7 were isolated (Table 1). Y. enterocolitica grown at 37 °C 

showed reduced binding by the aptamers compared to bacteria grown at 25 °C. Presumably this 

aptamer is specific for a cell surface component mostly expressed at low temperature. This study 

illustrates another characteristic of bacteria, which are temperature dependent surface structure and 

morphological changes. In the case of Y. enterocolitica specifically, the bacterium inhibits 

flagellum synthesis at 37 °C (Kapatral, Olson et al. 1996). Components of the LPS are also 

temperature regulated (Białas, Kasperkiewicz et al. 2012). 

 

2.5 APTAMERS TARGETING VIABLE CELLS: 

The ability to differentiate between dead and viable cells has important implications when 

assessing the risk or hazard of a microbe. For example, it would be costly and inefficient to 

administer shutdowns or disinfection protocols for the presence of dead pathogens in a system. 

The detection of viable cells is also important to determine the efficacy of water disinfection 

protocols. Some aptamers are able to differentiate between live and dead cells. Aptamer 33, 

specific for Salmonella enterica serovar Typhimurium, does not bind heat-killed cells (Table 1) 

(Joshi, Janagama et al. 2009). This aptamer might therefore be useful for monitoring the efficiency 

of heat-based disinfection. This aptamer is described in more detail below. Another example is 

aptamer ONS-23 created against whole cell C. jejuni (Table 1) (Dwivedi, Smiley et al. 2010). This 

aptamer was developed, using cell-SELEX, against a chicken isolate showing characteristic C. 

jejuni morphology (Thomas, Hill et al. 2002). Given that C. jejuni is found on raw poultry as well 

as in the gastrointestinal tract and feces of animals (Mughini-Gras, Penny et al. 2016), 20 bacterial 

species were used for counter selection, including food-borne pathogens, enteric bacteria, non-

enteric bacteria and lactic acid bacteria. ONS-23 is therefore highly specific to C. jejuni strains 

showing minimal binding to  non-C. jejuni strains (Dwivedi, Smiley et al. 2010). 

Furthermore,ONS-23 does not bind non-viable C. jejuni (Kim, Kim et al. 2018) indicating that it 
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is specific for a surface structure only present on live C. jejuni cells (Kim, Kim et al. 2018). Though 

this aptamer was not tested for water application, its selective properties for viable C. jejuni makes 

it promising for monitoring disinfection processes. 

 

2.6 APTAMERS TARGETING SOURCE- OR APPLICATION-SPECIFIC 

ISOLATES: 

Isolates that are representative of the sample source of the downstream application should be used 

during aptamer development to ensure usefulness of the aptasensor. Aptamers E1, E2 and E10 

were generated against a non-pathogenic E.coli strain of fecal origin (Crooks strain) using cell-

SELEX (Table 1) (Kim, Song et al. 2013). For counter selection a combination of fecal coliform 

species and two Gram positives were used. The resulting aptamers were better at binding E. coli 

isolates of fecal origin than others and showed low binding to other species including laboratory 

strains of E. coli (Kim, Song et al. 2013, Jin, Wang et al. 2017, Wu, Dai et al. 2017). A detection 

system using aptamer E2 was able to detect the Crooks strain in spiked tap water, pond water and 

milk, making it promising for E. coli detection in water (Jin, Wang et al. 2017). 

 

2.7 APTAMERS TARGETING SPECIFIC SURFACE STRUCTURES: 

Surface structures can be differentially expressed in response to growth states and environment 

(Justice, Hung et al. 2004, Van Der Woude and Bäumler 2004, Liu, Hu et al. 2012, Fonseca and 

Swanson 2014, Li, Mendis et al. 2015). If the aptamer surface target is not differentially regulated 

then aptamers may bind cells in several conditions, including exponential and post-exponential 

phase. Examples of these are the ST2P aptamer against whole cell S. enterica Typhimurium (Duan, 

Wu et al. 2013, Duan, Wu et al. 2014, Duan, Chang et al. 2016) and the E. coli E2 aptamer (Kim, 

Song et al. 2013, Jin, Wang et al. 2017, Wu, Dai et al. 2017). Instead of whole cells, surface 

structures related to virulence can also be used as aptamer targets. The pathotype EHEC (E. coli 

enterohaemorrhagic) contains the infamous O157:H7 serotype which is strongly linked to deadly 

outbreaks from contaminated drinking water (Solomon, Yaron et al. 2002, Ali 2004, Saxena, 

Kaushik et al. 2015). For detecting this serotype, the specific variant of LPS can be exploited. E. 

coli aptamers a-aptamer and c-aptamer were created against LPS of E. coli O157:H7 (Table 1) 
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(Bruno and Chanpong 2009). These aptamers were used in several aptasensing platforms to detect 

whole E. coli O157:H7 cells with great specificity, showing minimal signals with other serotypes 

(Wu, Zhao et al. 2015, Díaz-Amaya, Lin et al. 2019, Díaz-Amaya, Zhao et al. 2019, Hao, Yeh et 

al. 2019, Jiang, Qiu et al. 2020). The aptamers could bind to heat-killed and formalin killed E. coli 

(Hao, Yeh et al. 2019, Jiang, Qiu et al. 2020). This is likely due to the fact that these treatments do 

not negatively affect the LPS (Gao, Wang et al. 2006, Chafin, Theiss et al. 2013). This approach 

allowed for very specific aptamers to be developed; however, since the target persists after killing 

of cells, the aptamers are of limited use for monitoring the efficacy of disinfection programs in 

water. This illustrates the need for designing aptamers relevant to the downstream application. 

Outer membrane proteins (OMP) of Typhimurium were used to create Aptamer 33. Counter 

selection was done with purified LPS of the Salmonella isolate as well as OMPs and LPS from E. 

coli. Aptamer 33 showed pan-serovar specificity, binding to 7 different serovars of S. enterica in 

one study and 4 different S. enterica serovars in another study (Joshi, Janagama et al. 2009, Hasan, 

Pulingam et al. 2018). The aptamer was used in a fluoresence aptasensor to detect whole 

Typhimurium in water samples from different sources highlighting its potential for detection in 

water (Duan, Wu et al. 2012). The aptamer does not bind to heat-killed Typhimurium which is to 

be expected as most OMPs are heat labile (Oh, Heo et al. 2017). The authors also observed that 

the aptamers could not bind S. enterica serovars Tennessee and Muenchen. This suggests that the 

aptamer may not have broad serovar specificity.  

 

2.8 DISCUSSION: 

Aptamer-coupled biosensors are promising systems for the detection of pathogens in water 

samples but are limited in real-world applications. There are a few things to consider to improve 

aptamers practicality in aptasensing technology. Many studies do not explicitly report the growth 

states and conditions used during cell-SELEX or during subsequent testing of the aptamers (Table 

1 and supplementary Table1). For example, OD600 values are meaningless without details about 

the growth conditions, including medium, temperature and aeration. We suggest that instead of 

reporting OD600, the growth phase should be determined and reported, as done by (Zou, Duan et 

al. 2018), as this would offer insight into an aptamer’s potential for specific applications. 

Regardless, it is important to keep the end goal in mind while developing aptamers. For example, 
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monitoring efficiency of disinfection program will require discerning viable cells from dead cells. 

Aptamer ONS23 and Aptamer 33 are able to distinguish between live and dead cells (Dwivedi, 

Smiley et al. 2010, Kim, Kim et al. 2018) (Joshi, Janagama et al. 2009, Oh, Heo et al. 2017). A 

cell-SELEX strategy for such an application could use dead cells for counter selection. Another 

factor to consider is the physio-morphological state of microbes. This ensures that the microbial 

target possesses traits and characteristics that are representative of what’s typically found in the 

environment that will be sampled. For example, biofilm-derived cells might be used (Soundy and 

Day 2017), but care must be taken not to remove the biofilm-specific target when preparing the 

target for cell-SELEX. Alternatively, if the end goal is to detect pathogens in water, then bacteria 

suspended in water may be used as the target (Saad, Chinerman et al. 2020). Lastly, it is not trivial 

to select appropriate strains for counter selection. This will impact aptamer affinities for targets in 

source environments. A possible approach is to use a cocktail of strains for the target species and 

a cocktail of species typically found in the same environment for counter-selection (Dwivedi, 

Smiley et al. 2010, Kim, Song et al. 2013). In conclusion, it is necessary to better elucidate the 

microbial target and the limitation of its cognate aptamer to help push microbial aptasensing 

platforms to market. As such a collaborative effort is needed between academics and stakeholders 

(governments, industry, engineers) to develop both transducer and aptamer technologies for 

specific microbial contaminants in the context of source water, taking into account the 

particularities of the microbe and its physiological state.  
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Table 1: Aptamers developed against water-borne bacteria 

Aptamer Name Target  Culture 
condition1  

OD/ 
Growth 
stage1,2 

Counter-Selex 
Strains3 

Type of Sensors  LOD Reference 

Norovirus        
AG3 MuNoV NA NA feline calicivirus (FCV) Electrochemical  180 

virus 
particle
s 

(Giamberardino, 
Labib et al. 2013) 

    NA Optical 
(colorimetric) 

200 
virus/ml 

(Weerathunge, 
Ramanathan et 
al. 2019) 

Aptamer 
25/SMV-25 

SMV NA NA HuNoV-negative 
human stool 
suspension, bead-
antibody complex 

NA NA (Escudero-
Abarca, Suh et 
al. 2014) 

 Non-toxic 
norovirus GII 
capsid 
recombinant 

  NA Optical 
(Chemiluminesce
nce) 

80 
ng/ml 

(Kim, Chung et 
al. 2018) 

Aptamer 
21/SMV-21 

SMV NA NA HuNoV-negative 
human stool 
suspension, bead-
antibody complex 

NA NA (Escudero-
Abarca, Suh et 
al. 2014) 

 Norovirus Gr
oup II 
(recombinant
 VLP) 

  NA Electrochemical 100 pM (Chand and 
Neethirajan 
2017) 

C.parvum        
R4-6 Oocysts NA NA Giardia 

duodenalis cysts 
Electrochemical 100 

oocysts 
(Iqbal, Labib et 
al. 2015) 

    NA Electrochemical  50 
oocysts 

(Iqbal, Liu et al. 
2019) 

Min_Crypto2 Oocysts NA NA NA Optical 
Fluorescence 

5 
oocysts 

(Hassan, Dixon 
et al. 2021) 

Acinetobacter        
Aci49 whole-cell-A. 

baumannii 
(ATCC 19606) 

BHI broth, 
37 °C, 
overnight 

0.4/E Acinetobacter lwoffii, 
Acinetobacter 
calcoaceticus, and 11 
species 

Optical 
(colorimetric) 

103 
CFU/ml 

(Rasoulinejad 
and Gargari 
2016) 

    NA Optical 
(Fluorescence) 

3 
CFU/ml 

(Li, Yang et al. 
2020) 

    NA Optical 
(Fluorescent) 

10 
CFU/ml 

(Yang, Guo et al. 
2020) 

AB aptamer whole-cell A. 
baumannii 

NR NR NR Optical 
(Colorimetric) 

450 
CFU/rxn 

(Wu, Wang et al. 
2018) 

     NA Optical 
(Fluorescence) 

105 
CFU/ml 

(Su, Tsai et al. 
2020) 

     NA Optical 
(Fluorescence) 

100 
CFU/ml 

(Su, Tsai et al. 
2020) 
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    NA Optical 
(Fluorescence) 

300 
CFU/ml 

(Bahari, Babamiri 
et al. 2021) 

Aeromonas        
Apt1 whole-cell (A. 

hydrophila) 
LB,37 °C, 
18hrs 

NR NR Optical 
(Fluorescence) 

1.5 
CFU/ml 

(Zhu, Zhang et al. 
2019) 

Campylobacter        
Aptamer C2 and 
Aptamer C3 

surface 
protein (C. 
jejuni) 

NR NR NR Optical 
(Fluorescence) 

2.5 
CFU/ml 

(Bruno, Phillips 
et al. 2009) 

    NA Optical 
(colorimetric) 

5-10 
CFU/ml 

(Bruno and Sivils 
2017) 

ONS-23 whole-cell (C. 
jejuni A9a) 

BBL 
brucella 
broth, 42 
°C, 48 
hours, 
microaerop
hillic 
conditions 

PE*  20 strains 
(enteric,non-enteric, 
lactic acid) 

NA NA (Dwivedi, Smiley 
et al. 2010) 

    NA Optical 
(colorimetric) 

10 
CFU/ml 

(Dehghani, 
Hosseini et al. 
2018) 

    NA Optical 
(colorimetric) 

7.2 x105 
CFU/ml 

(Kim, Kim et al. 
2018) 

CJA1 whole-cell (C. 
jejuni) 

  NR Optical 
(colorimetric) 

10 
CFU/ml 

(Chen, Teng et 
al. 2020) 

Cyanobacteria        
ATX8 anatoxin-a 

(ATX) 
NA NA ATX free beads Electrochemical 0.5nM (Elshafey, Siaj et 

al. 2015) 
MC-LR 
aptamer/AN6 

Microcystin-
LR 

NA NA blank sepharose 
beads 

Electrochemical 10pM (Ng, Chinnappan 
et al. 2012) 

    NA Optical 
(Fluoresence) 

0.002 
ng/ml 

(Lv, Zhao et al. 
2017) 

E.coli        
L9F O111-LPS (E. 

coli 
O111:K58) 

35 °C, TSB, 
overnight 

NR NR NA NA (Bruno, Carrillo 
et al. 2008) 

    NA Electrochemical 112 
CFU/ml 

(Luo, Lei et al. 
2012) 

Eco4R/ECAII Outer 
membrane 
protien 
(OMP) - E. 
coli 8739 

37 °C, 
blood agar, 
overnight 

NR NR NA NA (Bruno, Carrillo 
et al. 2010) 

    NA Electrochemical NR (Queirós, de-los-
Santos-Álvarez 
et al. 2013) 

Eco4F OMP- E. coli 
8739 

37 °C, 
blood agar, 
overnight 

NR NR NA NA (Bruno, Carrillo 
et al. 2010) 
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    NA Optical 
(colorimetric/flu
oresence) 

300 
CFU/ml 

(Bruno 2014) 

Eco3R/ECAI OMP- E. coli 
8739 

37 °C, 
blood agar, 
overnight 

NR NR NA NA (Bruno, Carrillo 
et al. 2010) 

    NA Electrochemical NR  (Queirós, de-los-
Santos-Álvarez 
et al. 2013) 

    NA Optical 
(colorimetric/flu
oresence) 

300 
CFU/ml 

(Bruno 2014) 

    NA Optical 
(Evanescent 
wave fiber 
optics) 

0.1nM (Queirós, 
Gouveia et al. 
2014) 

E1 whole cell (E. 
coli fecal 
isolate) 

NB, 37 °C 0.45/E E. coli (non-fecal 
isolate), other fecal 
isolates 

NA NA (Kim, Song et al. 
2013) 

E2 whole cell (E. 
coli fecal 
isolate) 

NB, 37 °C 0.45/E E. coli (non-fecal 
isolate), other fecal 
isolates 

NA NA (Kim, Song et al. 
2013) 

    NA Optical 
(fluorescence) 

3 
CFU/ml 

(Jin, Wang et al. 
2017) 

    NA Electrochemical 100 
CFU/ml 

(Wu, Dai et al. 
2017) 

E10 whole cell (E. 
coli fecal 
isolate) 

NB, 37 °C 0.45/E E. coli (non-fecal 
isolate), other fecal 
isolates 

NA NA (Kim, Song et al. 
2013) 

E1+E2+E10 
(pooled) 

   NA Electrochemical 371 
CFU/ml 

(Kim, Chung et 
al. 2014) 

AptB12 whole cell (E. 
coli ETEC 
K88) 

LB E ETEC K99, S. 
enteritidis, S. aureus, 

Optical 
(Fluorescence) 

1.1×103 
CFU/ml 

(Peng, Ling et al. 
2014) 

RNAaptamer NR LB, 37 °C, 
2-3 hrs 

NR NA Electrochemical  NR (So, Park et al. 
2008) 

    NA immunomagneti
c separation and 
RT-PCR 

10 
CFU/ml 

(Lee, Kim et al. 
2009) 

     NA Electrochemical 6-26 
CFU/ml 

(Zelada-Guillén, 
Bhosale et al. 
2010) 

Aptamer I-1 O-antigen LPS 
(E. coli 
O157:H7) 

Brucella 
broth,37 °C 
,24 h 
(+0.04% 
formaldehy
de) 

NR E. coli K12 NA NA (Lee, Han et al. 
2012) 

    NA Electrochemical 4 
CFU/ml 

(Burrs, Bhargava 
et al. 2016) 

Ec3(31) whole cell (E. 
coli DH5α) 

 LB 0.4 B. subtilis Electrochemical 2 × 104 
CFU/ml 

(Dua, Ren et al. 
2016) 
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P12-31 whole cell (E. 
coli O6) 

37 °C, LB 0.3 NR NA NA (Marton, Cleto 
et al. 2016) 

AM-6 whole cell (E. 
coli O157:H7) 

LB 0.6 E. coli strains O42, 
K12, Top10, DH5α, S. 
flexneri, S. Typhi  

NA NA (Amraee, Oloomi 
et al. 2017) 

S1 whole cell (E. 
coli O157:H7) 

BHI, 37 °C E S. 
aureus, S. Typhyimuri
um, L. monocytogens 

Mechanical 
(Quartz Crystal 
Microbalance-
QCM) 

1.46 × 
103 
CFU/ml 

(Yu, Chen et al. 
2018) 

Apt-5 whole cell (E. 
coli O157:H7) 

LB, 37 °C NR  E. coli ETEC and 3 
other species 

NA NA (Zou, Duan et al. 
2018) 

a-aptamer/E-
17F72* 

O157:H7 LPS LB, 37 °C NR NR NA NA (Bruno and 
Chanpong 2009) 

c-aptamer/E-
18R72* 

O157:H7 LPS LB, 37 °C NR NR NA NA (Bruno and 
Chanpong 2009) 

a-aptamer, c-
aptamer 

   NA Optical 
(colorimetric) 

10 
CFU/ml 

(Wu, Zhao et al. 
2015) 

a-aptamer, c-
aptamer 

   NA Optical 
(colorimetric) 

25 
CFU/ml 

(Díaz-Amaya, 
Zhao et al. 2019) 

a-aptamer, c-
aptamer 

   NA Optical (Surface 
Enhanced Raman 
Spectroscopy -
SERS) 

100 
CFU/ml 

(Díaz-Amaya, Lin 
et al. 2019) 

c-aptamer    NA Optical 
(fluorescence) 

100 
CFU/ml  

(Hao, Yeh et al. 
2019) 

    NA Optical 
(fluorescence) 

80 
CFU/ml 

(Jiang, Qiu et al. 
2020) 

Helicobacter 
pylori 

       

Hp-Ag aptamer recombinant 
Hp surface 
antigen 

NR NR BSA NA NA (Gu, Yan et al. 
2018) 

Hp4 recombinant 
Hp surface 
antigen 

blood agar, 
37 °C, 3 
days 

NR BSA NA NA (Yan, Gu et al. 
2019) 

Legionella        
R10C5, R10C1 whole cell (Lp 

120292) 
CYE agar 
plate, 37 
°C, 3 days 
followed by 
AYE 
media,37 
°C, 24hr 

2.5/PE Pseudomonas 
putida KT2440,   
Pseudomonas 
fluorescens LMG1794 

NA NA (Saad, 
Chinerman et al. 
2020) 

NTM        
BM2/N31 ManLAM, 

M.bovis 
(BCG) 

L-J medium E NR Optical (ELONA) 104 

CFU/ml 
(Sun, Pan et al. 
2016) 

     Electrochemical NR (Sodia, Poch et 
al. 2020) 

Pseudomonas 
aeruginosa 

       



113 
 

F23 whole cell (P. 
aeruginosa 
clinical 
isolate) 

Mueller-
Hinton 
(MH) 
media, 37 
°C, 24 hrs 

NR S. maltophilia ,A. 
baumannii 

Optical 
(fluoresence) 

NR (Wang, Zeng et 
al. 2011) 

    NA Optical 
(fluorescence) 

100 
CFU/ml 

(Gao, Zhong et 
al. 2018) 

    NA Optical (Long 
range Surface 
Plasomon 
Resonance-LSPR) 

1 
CFU/ml 

(Hu, Fu et al. 
2018) 

    NA Optical 
(Fluoresence) 

1 
CFU/ml 

(Zhong, Gao et 
al. 2018) 

    NA Electrochemical 
and Optical 
(colorimetric) 

60 
CFU/ml 

(Das, Dhiman et 
al. 2019) 

    NA Electrochemical 33 
CFU/ml 

(Roushani, 
Sarabaegi et al. 
2019) 

    NA Mechanical 
(piezoelectric 
quartz crystal) 

9 
CFU/ml 

(Shi, Zhang et al. 
2019) 

St17Lp21, 
St21Lp17, 
St08Lp17 

biofilm-
derived 
whole cells 
(PA 692 
/ATCC 14502) 

 LB broth, 
37 °C, 16 
hrs 
followed by 
22 °C, 42 
hours to 
make 
biofilm. 

E NR NA NA (Soundy and Day 
2017) 

F23+St08Lp17 
(pool) 

   NA Optical 
(Fluoresence) 

1 
CFU/ml 

(Zhong, Gao et 
al. 2020) 

Salmonella        
aptamer 33 OMP (S. 

tyhpimurium 
PT10) 

BHI, 37 °C, 
2-3 hrs 

 E. coli OMP and LPS, 
Salmonella LPS 

Magentic bead 
based pull down 
assay and qPCR 

10-100 
CFU/ml 

(Joshi, Janagama 
et al. 2009) 

    NA Optical 
(Fluoresence) 

5 
CFU/ml 

(Duan, Wu et al. 
2012) 

    NA Electrochemical 3 
CFU/ml 

(Ma, Jiang et al. 
2014) 

    NA Electrochemical 55 
CFU/ml 

(Hasan, 
Pulingam et al. 
2018) 

    NA Optical (LSPR) 30 
CFU/ml 

(Yoo, Kim et al. 
2015) 

    NA Optical (LSPR) 104 
CFU/ml 

(Oh, Heo et al. 
2017) 

ST2P whole cell (S. 
typhimurium 
ATCC 50761) 

BBL-BHI, 37 
°C, 
overnight 

0.3/E L. monocytogenes,   
E. coli, S. aureus, S. 
pneumoniae, V. 
parahemolyticus, C. 
sakazakii 

Optical 
(Fluoresence) 

25 
CFU/ml 

(Duan, Wu et al. 
2013) 
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    NA Optical 
(Colorimetric, 
SERS)   

10 
CFU/ml 

(Duan, Chang et 
al. 2016) 

    NA Optical 
(Fluorescence) 

25 
CFU/ml 

(Duan, Wu et al. 
2014) 

S8-7 whole cell  
(S. 
typhimurium 
S913) 

TSB-amp, 
37C, 
overnight 

NR L. 
monocytogenes    Scot
t A                         E. 
coli O157: H7, B. 
cereus, E. faecalis  

NA NA (Dwivedi, Smiley 
et al. 2013) 

C4 whole cell (S. 
typhimurium) 

BHI, 35 °C, 
overnight 

NR E. coli, S. enteritidis, S. 
aureus 

NA NA (Moon, Kim et al. 
2013) 

Apt22 whole cell (S. 
paratyphi A) 

NB,37C 2.1/E S. Enteritidis, 
S. Typhimurium, S. Ch
olerasuis, S. Arizonae 

Optical 
(chemiluminesce
nce) 

1000 
CFU/ml 

(Yang, Peng et al. 
2013) 

S25 whole cell (S. 
enteriditis-
multiple) 

TSB, 
overnight 

NR Salmonella serovars-
multiple 

  (Hyeon, Chon et 
al. 2012) 

SAL26 whole cell 
(S. 
typhimurium 
ATCC14028) 

TSB,37 °C, 
overnight 
culture 
followed by 
TSB,37 °C, 
3 hours 
then fixing 
with 
methanol 

E  4 Salmonella enterica 
serovars  and 9 
bacterial species. 

Optical 
(Colorimetric) 

100 
CFU/ml 

(Lavu, Mondal et 
al. 2016) 

SAL1 whole cell 
(S.paratyphi-
A ATCC 9150 
) 

LB broth, 
37 °C 

E S. Typhimurium,  
S .flexneri, 
 E. coli O157:H7, 
Yersinia enterocolitica 

Optical 
(fluorescence) 

10 
CFU/ml 

(Rm, Maroli et 
al. 2020) 

B5 whole cell (S. 
typhimurium 
ATCC14028) 

BHI broth, 
37 °C 

PE S. aureus, L. 
monocytogenes, E. 
coli O157:H7 

Mechanical 
(QCM) 

1000 
CFU/ml 

(Wang, Wang et 
al. 2017) 

Shigella        
Aptamer S 1 whole cell 

(Shigella 
dysenteriae) 

LB E S .aureus, S. 
typhimurium, E. coli, 
L. monocytogenes, V. 
parahaemolyticus 

Optical 
(Fluorescence) 

50 
CFU/ml 

(Duan, Ding et al. 
2013) 

    NA Electrochemical 1 
CFU/ml 

(Zarei, 
Soleimanian-Zad 
et al. 2018) 

Sp1 whole cell 
(Shigella 
sonnei ATCC 
51334) 

LB, 37 °C, 
overnight 

NR S. dysenteriae, S. 
flexneri, S. boydii, S. 
typhimurium, E. coli 

Optical 
(fluorescence) 

30CFU/
ml 

(Gong, Duan et 
al. 2015) 

    NA Optical (SERS) 10 
CFU/ml 

(Wu, Duan et al. 
2020) 

Sp20 whole cell 
(Shigella 
sonnei ATCC 
51334) 

LB, 37 °C, 
overnight 

NR S. dysenteriae, S. 
flexneri, S. boydii, S. 
typhimurium and E. 
coli 

Optical 
(Fluorescence) 

30 
CFU/ml 

(Gong, Duan et 
al. 2015) 
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S.flexneri 
aptamer1 

whole cell 
(Shigella 
flexneri) 

 NR NR Optical 
(fluorescence) 

100 
CFU/ml 

(Zhu, Li et al. 
2015) 

SS-3,SS-4 whole cell 
(Shigella 
sonnei) 

NB,37 °C NR E. coli  Optical 
(Fluoresence) 

1000 
CFU/ml 

(Song, Sekhon et 
al. 2017) 

S.flexneri 
aptamer` 

whole cell 
(Shigella 
flexneri ATCC 
12022) 

NB,37 °C, 
12 hrs 

NR NR Optical 
(colorimetric) 

80 
CFU/ml 

(Feng, Shen et al. 
2019) 

Vibrio cholerae        
 CT916 Cholerae 

toxin 
NA NA ethanolamine-blocked 

magnetic beads 
Optical 
(colorimetric) 

2.1 
ng/ml 

(Frohnmeyer, 
Frisch et al. 
2018) 

    NA Optical 
(colorimetric) 

1-
100ng/
ml 

(Frohnmeyer, 
Tuschel et al. 
2019) 

 whole cell (V. 
cholerae O1 -
Inaba, ATCC 
39315 and 
Ogawa) 

LB broth, 
37 °C 

0.4/E E. coli O157:H7, S.a 
dysenteriae, S. 
enteritidis, 
S. Typhimurium, Yersi
nia spp., S.flexneri. 

Optical 
(colorimetric) 

104 
CFU/ml 

(Mojarad and 
Gargaria 2020) 

Yersinia         
N30yc5, N71yc2 recombinant 

Yop51 
NR NR NR NA NA (Bell, Denu et al. 

1998) 
M1, M5, M7 whole cell 

(Yersinia 
entercolitica) 

Specific 
media 
(NaCl, beef 
extract, 
peptone, 
pH 7.2-7.4), 
26 °C 

0.3 (L), 
0.6 (E), 
0.9 (PE) 

B. cereus, S. 
dysenteriae, L. 
monocytogenes, S. 
typhimurium, S. 
aureus, and E. coli  

NA NA (Shoaib, Shehzad 
et al. 2020) 

NR : Not Reported,  NA: Not applicable, *: Extrapolated from culture conditions 

1) Microbial culture conditions and growth conditions are listed for aptamer development only. The 

Microbial culture and growth conditions used for aptasensors development are listed in TableS1  

2) State: L, lag phase; E, exponential; PE, post-exponential.  

3) If number of strains used for counter selection is higher than to 5, they are listed in Table S1. 
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CHAPTER 3: CONNECTING TEXT 

Taking into consideration the source environment and certain physiological traits of the microbial 

target, Legionella pneumophila, we performed Cell-SELEX to identify aptamers binding to the 

bacterium. 

This chapter was published in the journal Nature Scientific Reports. 
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3.1 ABSTRACT  

Legionella pneumophila (Lp) is a water borne bacterium causing Legionnaires’ Disease (LD) in 

humans. Rapid detection of Lp in water system is essential to reduce the risk of LD outbreaks. The 

methods currently available require expert skills and are time intensive, thus delaying intervention. 

In situ detection of Lp by biosensor would allow rapid implementation of control strategies. To 

this end, a biorecognition element is required. Aptamers are considered promising biorecognition 

molecules for biosensing. Aptamers are short oligonucleotide sequence folding into a specific 

structure and are able to bind to specific molecules. Currently, no aptamer and thus no aptamer-

based technology exists for the detection of Lp. In this study, Systemic Evolution of Ligands 

through EXponential enrichment (SELEX) was used to identify aptamers binding specifically to 

Lp. Ten rounds of positive selection and two rounds of counter-selection against two Pseudomonas 

species were performed. Two aptamers binding strongly to Lp were identified with KD of 116 and 

135 nM. Binding specificity of these two aptamers to Lp was confirmed by flow cytometry and 

fluorescence microscopy. Therefore, these two aptamers are promising biorecognition molecules 

for the detection of Lp in water systems.  

  

Key words: Legionella pneumophila, aptamers, SELEX, flow cytometry, fluorescence 

microscopy, Pseudomonas 
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3.2 INTRODUCTION 

Legionella pneumophila (Lp) is a pathogenic Gram-negative bacterium responsible for two types 

of respiratory diseases, namely the severe pneumonia Legionnaires’ Disease (LD) and the milder 

flu-like Pontiac fever 34. Lp occurs in both natural and engineered water systems and is one of the 

most prevalent pathogens in man-made, engineered water systems 26. Infections occur when the 

bacteria are aerosolized, and the contaminated aerosols are inhaled, at which point Lp can then 

infect and replicate inside alveolar macrophages3. Modern water systems provide optimal 

transmission conditions for Lp by generating aerosols 40. Leading sources of infection are cooling 

towers, hot water distribution systems, humidifiers, misters, showers, fountains, spa pools and 

evaporative condensers 51. 

Outbreaks of LD occur consistently globally and have increased in recent years. The average 

incidence rate is about 10-15 cases per million people32. According to the Centre for Disease 

Control, incidences of legionellosis have increased by four and a half times between 2000 and 

2016 39. The Public Health Agency of Canada reports a 485% increase in the rate per 100,000 

Legionellosis cases between the years 2000 to 2017 6. The rise in LD outbreaks can be attributed 

to several factors such as aging infrastructures and an aging population who is more vulnerable to 

such infections, as well as an increase in diagnosis and reporting of LD 40,13. Most LD outbreaks, 

however, are the result of mismanagement of man-made water systems41. Examples of 

mismanagement of water distribution systems include keeping the temperature of the water below 

50°C and allowing water to stagnate41. In the case of cooling towers, a lack of regular cleaning and 

disinfection is associated with an increased risk of Lp spread41. In both cases, routine monitoring 

of Lp is critical to evaluate risk, initiate treatment of water systems, and prevent outbreaks41. The 

European Center of Disease Control (ECDC) specifies that immediate corrective measures must 

be taken when Lp levels reach a value of 10,000 CFU/L 19.  

Currently, there are two ISO-certified strategies to detect Lp from water systems: the standard plate 

count method (AFNOR NF T90-431, ISO 11731) and qPCR (AFNOR NF T90-471, ISO/TS 

12869). The plate count method is the gold standard for detecting Lp and involves its cultivation 

on selective media and the enumeration of bacterial colonies showing Lp-specific morphology  
5,8,22. The whole procedure takes up to 14 days which delays the application of corrective measures 

and increases the chances of an outbreak49. A pilot study performed in 2011 evaluated the 
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consistency of the results obtained by this method between several different laboratories. 

Qualitative results did not differ drastically between laboratories, but quantitative results showed 

large variation, within and between laboratories31. Therefore, the culture method should be used 

with caution to precisely enumerate Lp. A second major limitation is the presence of viable but 

non-culturable (VBNC) Lp cells which leads to an underestimation of the true amount of infectious 

Lp in a system 29,18. The qPCR method relies on the quantification of Legionella DNA. Its major 

advantages in comparison with conventional culture method is the rapid turn-around time, high 

sensitivity and specificity, low limit of detection, as well as the ability to detect VBNC cells. When 

used in conjunction with the culture method, qPCR can serve as a powerful tool. There are, 

however, several drawbacks: qPCR typically overestimates Lp burden because it detects dead cells 

and the presence of PCR inhibitors may limit the use of this method 12,48. In addition, multiple 

processing steps are required which increases the overall cost of the qPCR method52. 

Unfortunately, it is impossible to develop these two methods into rapid, cost-effective, sensitive 

tests that would detect Lp in real-time, on-site, without any additional processing steps27,11.  

Biosensors are attractive detection technology that could address the problems associated with 

culture-based bacterial detection methods. These analytical devices are commonly used to assess 

and quantify in real-time, with high sensitivity, the presence of an analyte such as a protein, peptide 

or cell in a fluid1. However, a biosensing approach to Lp detection would require a specific 

biorecognition element, which, when coupled with a transducer, translates its interaction with Lp 

cells into a meaningful readout1. 

Various biorecognition elements, such as antibodies, lectins or aptamers, can be used. The latter 

are becoming the primary choice for biosensing strategies due to their easily modifiable nature and 

versatility54,10. Aptamers are antibody analogues. They are short single stranded DNA or RNA 

oligonucleotides that can be cost effectively synthesized in a high throughput manner. The aptamer 

folds into a specific, stable structure and can interact with its targets via shape complementarity, 

hydrogen bonding, electrostatic interactions and stacking interactions20. This allows aptamers to 

bind with high affinity and specificity to a wide variety of targets ranging from small molecules, 

peptides, proteins to whole cells20. A key characteristic of aptamers is the possibility to generate 

them in vitro in the same condition as those used for detecting the analyte. This is a clear advantage 

over antibodies which are produced under strict physiological conditions 25. In addition, aptamers 
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can be easily modified and therefore be optimized for various sensing platforms such as lateral 

flow assays, surface plasmon resonance sensors, flow cytometry or fluorescence microscopy 42.  

The procedure by which an aptamer is created is known as Systemic Evolution of Ligands through 

EXponential enrichment (SELEX). Developed in 1990 by the teams of Gold and Szostak50,16, 

SELEX is an iterative process which involves incubating a target with a large library of 

oligonucleotides, separating the target bound and unbound oligonucleotides and then amplifying 

the target bound sequences via PCR for the next round of selection. The selection rounds are 

repeated until the oligonucleotide pool is enriched with sequences that bind specifically and with 

high affinity to the target16. Over the years, many variations of the original SELEX methods were 

published. Among those, one is particularly useful for the present study. Cell-SELEX can be used 

to select aptamers binding to whole living cells and, thus, eliminate the need for prior knowledge 

of a target molecule 9,23. Rounds of counter-selection are typically used to reduce aptamer cross-

reactivity across targets by eliminating non-specific aptamers42. Cell-SELEX has been 

successfully employed to isolate aptamers against various bacterial species such as E. coli, 

Salmonella typhimurium, Campylobacter jejuni, Listeria monocytogenes, Staphylococcus aureus 

and Vibrio parahaemolyticus 25,14,33,15,37,23,2. Several of these aptamers are used in conjunction with 

optical, mechanical or electrical/electrochemical biosensors to mitigate the problems associated 

with traditional bacterial detection methods. Although numerous works have been done to detect 

Lp with the use of biosensors 53,35,17no aptamers binding to Lp have been reported yet. 

Consequently, no aptamer and thus no aptamer-based technology currently exists for the detection 

of Lp. 

In this work, the cell-SELEX procedure was employed to generate aptamers binding to Lp. Two 

Pseudomonas species were used for counter-selection to improve the specificity of the aptamers. 

These species were chosen because they are γ-proteobacteria like Lp and are routinely found in 

premise plumbing and water systems where Lp is prevalent 46,24. Two aptamers were identified 

and their binding affinity and specificity for Lp were evaluated by flow cytometry and fluorescence 

microscopy.  
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3.3 MATERIALS AND METHODS 

3.3.1 Bacterial Strains and Culture Conditions 

The environmental Lp strain lp120292, isolated from a cooling tower implicated in the 2012 

outbreak in Quebec City, was used as the target strain for aptamer generation28. The strain Lp*GFP 

is lp120292 transformed with plasmid pXDC31 expressing the green fluorescent protein (GFP) 

under the Ptac promoter21. The thymidine auxotroph Lp strain Lp02, derived from Lp Philadelphia-

1 was used to confirm binding of the aptamers4. Lp was cultured on CYE (ACES-buffered charcoal 

yeast extract) agar plates supplemented with 0.25 mg/ml L-cysteine and 0.4 mg/ml ferric 

pyrophosphate, at 37 °C for 3 days. Lp*GFP strain was grown on CYE media supplemented with 

5 µg/ml chloramphenicol and 1 mM isopropyl β-D-1-thiogalactopyranoside. For liquid culture, Lp 

was suspended in AYE (ACES-buffered yeast extract) broth supplemented with 0.25 mg/ml L-

cysteine and 0.4 mg/ml ferric pyrophosphate until post-exponential phase (OD600 of 2.5). 

Pseudomonas putida KT2440 and Pseudomonas fluorescens LMG1794, were first cultured on LB 

agar plates at 30 °C for 24 hours and then grown in LB medium (Difco) until the cultures reached 

post-exponential phase (OD600 of 2.0). Pseudomonas sp., Brevundiomonas sp., Bacillus sp., 

Staphylococcus sp. Sphingomonas sp., Stenotrophomonas sp. and Cupriavidus sp. were isolated 

from cooling towers as part of a different study (Paranjape, in preparation). Briefly, the bacteria 

were isolated on nutrient agar incubated at 30 °C for 24h. Isolates were then classified using 16S 

rDNA sequencing. These strains were first cultured on nutrient agar plates (Difco) at 30 °C for 24 

hours and then grown in nutrient broth medium (Difco) overnight until the cultures reached post-

exponential phase (OD600 of 2.0-2.5). 

3.3.2 Oligonucleotides Library and Primers 

A random ssDNA library of 1015 sequences was chemically synthesized and purified by HPLC 

(Integrated DNA Technologies). The library consisted of a central random region of 45 nucleotides 

flanked by two different primer binding regions at the 5’ and 3’ ends: 5’-

GCAATGGTACGGTACTTCC-45N-CAAAAGTGCACGCTACTTTGCTAA-3'. The forward 

and reverse primers were conjugated with fluorescein (FITC) and biotin, respectively. The forward 

primer (FP) sequence is 5’-fluorescein-GCAATGGTACGGTACTTCC-3’. The reverse primer 

(RP) sequence is 5’-biotin-TTAGCAAAGTAGCGTGCACTTTTG-3’25. FITC was used to 

quantify ssDNA and monitor the SELEX procedure via flow cytometry. The biotin was used in 
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conjunction with streptavidin coated magnetic beads (Promega) to generate ssDNA from the 

amplified double-stranded aptamer pool following PCR. For cloning and sequencing, PCR was 

performed with unmodified versions of the primers.  

3.3.3 Bacterial Cell-SELEX procedure 

Cell-SELEX was performed as previously described 25. Each round of SELEX consisted of three 

steps: Binding and elution, amplification, and recovery of ssDNA. Ten rounds of positive selection 

and two rounds of counter selection were performed (Figure 1). The first round of counter selection 

was performed with P. putida KT2440; the second one with P. fluorescens LMG1794. 

Binding and Elution: Cell-SELEX was performed with cells suspended in an artificial freshwater 

medium (Fraquil) to replicate the physiological state of nutrient-limited environmental 

conditions36, 30. Fraquil was prepared as described previously 38 with a final iron concentration of 

10 nM and filter-sterilized using a 0.2 µm filter (Sarstedt). Post-exponential phase cultures were 

rinsed twice with Fraquil (6000 g, 15 minutes) and suspended in Fraquil at an OD600 of 1 

corresponding to a concentration of 109 CFU/ml. The concentration of cells was confirmed by CFU 

counts for each round. The suspension was incubated at room temperature for 24 h. Fraquil 

exposed cells were washed three times in 1X binding buffer (phosphate buffered saline with 0.1 

mg/ml salmon sperm DNA, 1% bovine serum albumin, and 0.05% Tween 20) at room temperature 

(25°C) using 6,000 g for ten minutes. The cell pellets were then suspended in 330 µl of 1X binding 

buffer. The aptamer pool was denatured by heating at 95 °C for 10 minutes, cooled immediately 

on ice for 10 minutes, and added to the cell suspension. Finally, 1X binding buffer was added to a 

total volume of 1 ml. For the first round, 32 µg of the initial library was used. For the subsequent 

rounds, approximately 400 ng of aptamer pool was used. The final mixture was incubated at 25 °C 

for 1 hour with mild shaking using a tube rotator at 150 rpm. Following incubation, the mixture 

was centrifuged at 6000 g for 10 minutes and washed twice with wash buffer (phosphate buffered 

saline containing 0.05% Tween 20) to remove unbound sequences. To elute the bound sequences 

from the cells, the final cell pellet was resuspended in 100 µl nuclease free water (Ambion) and 

heated at 95 °C for 10 minutes and immediately placed on ice for 10 minutes. After centrifuging 

at 6,000 g for 10 minutes at 25°C, the supernatant was collected and purified using overnight 

ethanol precipitation at -20 °C with 5 µg of glycogen as a carrier to recover the eluted ssDNA. The 

pellet was recovered, dried and suspended in nuclease free water (Ambion). The concentration and 
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quality of the ssDNA was determined using a Nanodrop spectrophotometer (Thermofisher). For 

counter-selection the supernatant containing the unbound sequences was collected and purified via 

ethanol precipitation, as described above. To ensure there was no amplification or collection of 

unwanted bacterial DNA (instead of the desired amplification and collection of ssDNA 

oligonucleotides), a control sample consisting of bacterial cells without aptamer was included in 

each round.  

PCR amplification: The purified aptamer pool was then amplified by PCR with One Taq DNA 

polymerase (NEB), according to the manufacturer’s protocol. All primers were used at a final 

concentration of 0.5 µM.  PCR conditions were as follows: initial heat activation at 95 °C for 5 

min and 25 cycles of 95 °C for 30 s, 56.3 °C for 30 s, 72 °C for 10 s, and a final extension step of 

10 min at 72 °C. After amplification, the concentration and size of the PCR product were confirmed 

by gel electrophoresis using a 2.0% agarose gel. PCR products were then purified using a MinElute 

PCR Purification Kit (Qiagen). As expected, no amplification was observed for the control 

samples, lacking aptamer template. 

Recovery of ssDNA: Streptavidin coated magnetic beads (Promega Technology) were used, 

according to the manufacturer’s recommendation. Briefly, 600 µg of magnetic beads were washed 

twice and then resuspended in 900 µl of washing buffer (phosphate buffered saline with 0.05% 

Tween 20). Next, approximately1 µg of PCR product was incubated with the magnetic beads for 

10 min, mixing gently by inversion after every few minutes. The mixture was then washed in 1 ml 

of washing buffer. Finally, the beads were incubated with 500 µl of 200 mM NaOH for 5 minutes. 

The supernatant was then collected, and the FITC-labelled ssDNA was purified using ethanol 

precipitation as mentioned previously and quantified with a Nanodrop spectrophotometer 

(Thermofisher). 
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Figure 1:  Schematic illustration of bacterial cell-SELEX procedure used in this study. A random 

library of oligonucleotides is incubated with Lp lp120292 at room temperature for 1h. Sequences 

that do not bind are washed off and the cell-bound sequences are then released and amplified via 

PCR. The resulting sequences are then submitted to another round of positive selection. P. 

fluorescens and P. putida were used to perform counter-selection rounds to eliminate non Lp-

specific sequences. 

 

3.3.4 Monitoring of SELEX by flow cytometry 

The binding of the FITC-labelled aptamer pools from rounds 1 (R1), 6 (R6), 7 (R7), 8 (R8) and 10 

(R10) to Lp was assessed using flow cytometry. Briefly, 35 nM of aptamer pools from each of 

these rounds was incubated with 106 CFU/ml of Lp cells at 25 °C for 1 hour. Analysis was 

performed on a Guava easyCyte (Millipore) using the green fluorescence channel. A total of 5,000 

events were recorded. Unlabeled cells were used as a control to measure autofluorescence. The 

Lp*GFP strain, producing strong green fluorescence from GFP, was used to adjust the gain of the 

green fluorescence channel. For analysis, a gate was first defined based on the forward and side 

scatters that included most of the cells. Then, a histogram of the number of cells vs the fluorescence 

intensity was used to define a region named Green_Lp where cells were considered positive for 
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green fluorescence and therefore stained with aptamers. This region was setup to include very few 

cells of the unstained control and therefore represent fluorescence above the autofluorescence. 

Aptamer pools from R10 alone, without cells, was also analyzed to ensure that the aptamer alone 

was not forming aggregates that would be confused with cells.  

3.3.5 Cloning and Sequencing  

To identify sequences binding to Lp, the aptamer pool from the 10th round of SELEX was cloned 

with the pGEMT-easy Cloning and Ligation Kit (Promega). To investigate the effect of counter-

selection on the aptamer pools, we also cloned and sequenced aptamers from the 6th round of 

SELEX. Positive colonies, containing aptamer inserts, were determined via blue-white screening 

and confirmed by PCR. Plasmids were extracted and purified using a Miniprep Kit (Qiagen) and 

sequenced by Sanger Sequencing at the Plate-forme d’Analyse Génomique of Laval University. 

Secondary structures of the aptamer sequences were determined using the Mfold web server using 

default parameters. 56 

3.3.6 Characterization of aptamers R10C5 and R10C1 

The binding of the aptamers R10C5 and R10C1 to Lp and to the species used for counter-selection 

was further characterized. R10C5 and R10C1 were individually synthesized with FITC at the 5’ 

end (Integrated DNA Technology).  

Determination of the Disassociation constant (KD): To determine the KD of R10C5 and R10C1, 

varying concentrations of FITC-tagged aptamers (1000 nM, 100 nM, 10 nM, and 1 nM) were 

incubated with 106 CFU/ml of Lp cells suspended in Fraquil and the fluorescence obtained at each 

concentration was measured using flow cytometry, as described above, in triplicate. The number 

of bound cells (FITC-positive) were recorded and used to determine the KD by interpolating the 

logarithmic curve using GraphPad Prism 7.03.  

Specificity assay: To determine the specificity of R10C5 and R10C1 for Lp cells, the binding to 

counter-SELEX Pseudomonas strains as well as cooling tower isolates was tested using flow 

cytometry. All cells were suspended in Fraquil and prepared as described above for cell-SELEX. 

Briefly, 100 nM of R10C5 and R10C1 was incubated with 107 CFU/ml of the strain used for 

SELEX (lp120292), another Lp strain (Lp02), the strains used for counter-selection (P. putida 

KT2440 and P. fluorescens LMG1794), and the isolates from cooling towers (Pseudomonas sp., 
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Brevundimonas sp., Bacillus sp., Staphlyococcus sp., Sphingomonas sp., Stenotrophomonas sp. 

and Cupriavidus sp.) for 1 hour at 25 °C with mild shaking. lp120292 was also incubated with 100 

nM of a FITC-labeled scrambled sequence of aptamer R10C5 (5’-fluorescein-

ACAGAATCAGTTCGAGTACATACGCGCGAAGACTCCTAAGGCCGTAGCGTTCTTCCC

GGTAATACCATG) and R10C1 (5’-fluorescein-

TGTACTCCCGCGTCCCACCTGCTACCCGAAATAGAGTTTCCCTAGAAAGGCTTGCCC

AAC). The suspension was centrifuged for 10 minutes at 6000 g to eliminate excess aptamer and 

resuspended in Fraquil. These suspensions were then analyzed using flow cytometry as described 

above. This experiment was done in triplicate. Cells suspended in Fraquil without any aptamer 

added were used as controls. The percentage of bound cells was determined as described above. 

Statistical differences were assessed using a one-way ANOVA and Dunnett correction for multiple 

comparison using GraphPad Prism 7.03. 

3.3.7 Confocal Fluorescence microscopy assay 

FITC-labelled R10C5 and R10C1 aptamer (100 nM) were incubated with 108 CFU/ml of target 

cell lp120292 or counter-selection strain P. fluorescens LMG1794 for 1 hour at 25 °C on a tube 

rotator at 150 rpm. Cells were suspended in Fraquil as mentioned previously. Negative controls 

included cells suspended in Fraquil without any aptamers. The suspensions (10 µl) were dropped 

on a glass slide (Fisherbrand), and a #1.5 cover slip (VWR) was used to make a thin layer. The 

slides with suspensions were then transferred onto a microscope chamber and imaged using a Zeiss 

LSM 710 confocal microscope (Carl Zeiss, Oberkochen, Germany), a 100 X oil objective (Plan-

Apochromat 100x/1.40 Oil DIC M27a) and a 488 nm argon laser (25 mW,). A pre-set FITC filter 

was used with excitation and emission wavelengths of 488 and 564 nm respectively. Images were 

analyzed using Fiji (Schindelin et al. 2012). 

 

3.4 RESULTS AND DISCUSSION  

3.4.1 Selection of Aptamers binding to Lp  

Cell-SELEX was used to select aptamers binding specifically to lp120292. This strain was selected 

because it was involved in the Quebec City Outbreak in 2012 28. To mimic the physiological state 

of Lp in a water system, Lp cells were grown to post-exponential phase and suspended in Fraquil 
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for 24 h at 25 °C to induce starvation and the associated morphological and physiological changes 
36,30. Seven rounds of positive selection were performed, followed by one round of counter-

selection, two rounds of positive selection, an additional round of counter-selection and a final 

round of positive selection (Figure 1). Two Pseudomonas strains were used for counter-selection 

because they are also Gram-negative γ-proteobacteria frequently isolated from water systems 

where Lp is found as mentioned previously.  

To monitor the progress of the SELEX procedure and ensure that the proportion of sequences 

binding to Lp was increasing, the binding of the FITC-labelled aptamer pools from rounds 1 (R1), 

6 (R6), 7 (R7), 8 (R8) and 10 (R10) to Lp was examined using flow cytometry. Cells incubated 

with the initial aptamer library showed minimal fluorescence compared to the negative controls 

(Figure 2d, Lp Lib). Cells incubated with aptamer from the first positive selection round showed 

a drastic increase in fluorescence (Figure 2e, Lp R1). The saturation in the fluorescence intensity 

and the percentage of bound cells starting at R6 suggests that the pool is dominated by sequences 

binding to Lp (Figure 2f-i, R6, R7, R8, R10). A small decrease in fluorescence and percentage of 

bound cells at R8 suggests that the first counter-selection step removed a few sequences. The 

fluorescence intensity remains similar between round 8 and 10 indicating that the second round of 

counter-selection did not remove Lp-specific sequences and that our strategy was successful in 

retrieving aptamers binding to Lp. 
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Figure 2: Fluorescent labeling of Lp with FITC-labeled aptamers pools obtained after selected 

round of SELEX. Lp strain lp120292 was incubated without aptamers (Lp, a), with 35 nM of the 

aptamer library (Lp-lib, d) and with the aptamer pools obtained after round 1 (Lp-R1, e), 6 (Lp-

R6, f), 7 (Lp-R7, g), 8 (Lp-R8, h) and round 10 (Lp-R10, i). The fluorescence obtained with 

aptamer from round 10 alone (R10, b), without cells, was also evaluated. Lp*GFP is a GFP 

producing version of lp120292 and is used as a positive control (c). The percentages refer to the 

proportion of cells with fluorescence above the autofluorescence, falling in the Green_Lp region.  

 

3.4.2 Cloning and Sequencing 

Analyzing the sequences obtained from the 10th round of positive selection allowed for identifying 

two different ssDNA aptamers, named R10C5 and R10C1 (Table 1 and Figure 3). Of the 13 

sequences that were retrieved, 12 of them were R10C5 whereas 1 was R10C1. In contrast, the 

survey of a non-exhaustive list of the sequences present in the R6 aptamer pool revealed eight 

different sequences out of 9 clones, but none similar to R10C1 and R10C5. This illustrates the 



140 
 

directional evolution of the pool as a result of the additional positive selection rounds and counter-

selection steps 44,47. A strong bottleneck effect was likely caused by the last four positive selection 

rounds and the apparently stringent counter-selection rounds, which most likely led to the removal 

of several aptamers. 

 

 

Figure 3: The structure of the aptamers R10C5 and R10C1 were determined using Mfold.  
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Table 1: Aptamer’s sequences from round 6 and round 10. 

APTAMER ID SEQUENCE FREQUENCY (%) 

Before counter-SELEX (Round 6)  

R6C1 
GCAATGGTACGGTACTTCCCCACTAACGCG

CCCACGCACCCCTCGGCTACATCCAGCACC

CGCCCAAAAGTGCACGCTACTTTGCTAA 

2/9 (22.2%) 

R6C3 GCAATGGTACGGTACTTCCCCACTCCACGCA

TCACAGCCTTTCACTGCCCACGCCTCAAAAG

TGCACGCTACTTTGCTAA 

1/9 (11.1%) 

R6C7 GCAATGGTACGGTACTTCCACCACCGGAGT

GTGCTTCAGCCGTGGTACAATACTGCCGTGT

ATCCAAAAGTGCACGCTACTTTGCTAA 

1/9 (11.1%) 

R6C11 GCAATGGTACGGTACTTCCCCCACTGCACAC

ACAAAGGGCCAGCATCAACACACGCGCCGT

TCCAAAAGTGCACGCTACTTTGCTAA 

1/9 (11.1%) 

R6C12 GCAATGGTACGGTACTTCCCACCCCGCCAC

GCCGATAGCCTCCCATACTCCCCCCGCANGT

CCAAAAGTGCACGCTACTTTGCTAA 

1/9 (11.1%) 

R6C15 GCAATGGTACGGTACTTCCCGCGCACCCCA

CACCTCCGCACACCGCATGCCTCCCCTTAGG

CCCCAAAAGTGCACGCTACTTTGCTAA 

1/9 (11.1%) 
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3.4.3 Determination of KD  

The calculated KD is 116 nM for R10C5 and 135 nM for R10C1 (Figure 4). These values are 

comparable to high affinity antibodies that typically show nanomolar ranges of KD for small 

protein targets55. These values are also comparable to values of published aptamers created against 

whole bacterial pathogens. For example, aptamers isolated against Escherichia coli, Enterobacter 

aerogenes, Klebsiella pneumoniae, Citrobacter freundii, Bacillus subtilis, and Staphylococcus 

epidermidis showed KD ranging from 9.22–38.5 nM 45. Additionally two 62 nucleotide aptamers 

were isolated that bind to Staphylococcus aureus with KD  of 35 nM and 129 nM 7.  

R6C16 GCAATGGTACGGTACTTCCCACTGCCGAAC

GCGCCCTCTCCTGCTGCCTCCACACATGGTC

GCCAAAAGTGCACGCTACTTTGCTAA 

1/9 (11.1%) 

R6C18 GCAATGGTACGGTACTTCCCCCACCAAGCC

CATACACGTACAGCCTACCACAATCCACAT

CGGGCCAAAAGTGCACGCTACTTTGCTAA 

1/9 (11.1%) 

Post Counter-SELEX (Round 10)  

R10C5 GCAATGGTACGGTACTTCCGGACAGTGCTG

AAAACTGTGACCCCCCAAAAGTGCACGCTA

CTTTGCTAA 

12/13 (92.3%) 

R10C1 GCAATGGTACGGTACTTCCCCACCCCACGCT

GCTCCCAAAAGTGCACGCTACTTTGCTAA 
1/13 (7.7%) 
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Figure 4: Determination of the KD of the aptamers R10C5 (a) and R10C1 (b). Lp (lp120292) was 

incubated with 10-fold dilutions of the FITC-tagged aptamers and the fluorescence was measured 

by flow cytometry. The number of cells displaying fluorescence above the autofluorescence were 

counted as bound cells, as described in Figure 2. The graphs show individual values of three 

experiments. The equilibrium dissociation constant, KD was calculated using GraphPad Prism 

7.03. The non-linear regression (solid line) with 95% confidence interval error envelopes (dotted 

lines) is shown. 

 

3.4.4 Specificity of R10C5 and R10C1  

Figure 5A shows the binding of R10C5 and R10C1 to the strains used for counter-selection. 

Around 60% of lp120292 cells are stained by R10C5, consistent with previous results shown in 

Figure 2, but only 20% of Pseudomonas strains are labelled. Similarly, R10C1 shows significantly 

more binding to Lp than to Pseudomonas (Figure 5b). Of note, the scrambled sequences of aptamer 

R10C5 and R10C1 bind minimally to lp120292 (Figure 5a and b). The aptamer R10C5 stained 

Lp02 similarly to lp120292, suggesting that the binding of this aptamer is not restricted to a 

particular strain of Lp (Figure 5a). Moreover, both aptamers show very low binding to 

environmental isolates from cooling tower water. For the majority of the isolates, less than 10% 

of cells were labeled by the aptamers (Figure 5c and 5d). The specificity of these aptamers for Lp 

was further analyzed by confocal fluorescence microscopy. Both aptamers strongly stained Lp 

(Figure 6) but not P. fluorescens LMG1794, one of the strains used for counter-selection. These 

results support the notion that the aptamers R10C5 and R10C1 are highly specific to Lp.  
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Figure 5: The specificity of FITC-labelled R10C5 and R10C1 aptamers binding to Lp strain 

lp120292 (positive control), to counter SELEX Pseudomonas strains (a and b) as well as to 

environmental isolates (c and d) was analyzed by flow cytometry. The binding of R10C5 to Lp 

strain Lp02 was also analyzed. The percentage of cells bound by R10C5 (a and c) and R10C1 (b 

and d) to counter-SELEX strains (a and b) and environmental isolates (c and d) are presented. The 

binding of a scrambled sequence of aptamer R10C5 and a scrambled sequence of aptamer R10C1 

to Lp strain lp120292 was also investigated (scrambled). The values of three experiments are 

shown with the mean and standard deviation. A one-way ANOVA with a Dunnett correction for 

multiple comparisons was used to infer statistical significance compared to Lp strain lp120292: 

*** P < 0.001; ns, not significant.  
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Figure 6: The specificity of FITC-labelled R10C5 and R10C1 aptamer was tested by measuring 

their ability to bind to Lp strains lp120292 (a, c and e) and to P. fluorescens LMG1794 (b, d and 

f) by confocal fluorescence microscopy. The No aptamer controls consists of cells alone (a,b). 

Cells were incubated with aptamer R10C5 (c,d) and aptamer R10C1 (e,f). 

 

In conclusion, our cell-SELEX strategy was successful in identifying two aptamers binding to Lp 

with high affinity (KD = 116 nM for R10C5 and 135 nM for R10C1). Whereas R10C5 seems to 

stain Lp more strongly then R10C1, the latter seems more specific to Lp, showing minimal binding 

to the counter SELEX Pseudomonas strain. Both aptamers showed minimal binding to cooling 

towers isolates, indicating that the aptamers are suitable to detect Lp in complex water samples. 
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Modification of these aptamers could be attempted to further increase their affinity and specificity 

to Lp. Based on the results presented here, these aptamers are promising candidates as 

biorecognition elements to develop a biosensor to detect Lp in real time and in situ.   
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CHAPTER 4: CONNECTING TEXT 

The aptamer R10C5, identified in the previous chapter, was then integrated with the SPRi sensing 

platform to detect Legionella pneumophila (Lp). 

This chapter was published in the journal Sensors and Actuators Chemical: B.  
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4.1 ABSTRACT 

Legionella are waterborne bacteria and the causative agents behind a severe respiratory disease 

known as Legionnaires Disease (LD). Standard ISO-certified methods to detect Legionella (plate 

count and qPCR) are time-consuming and tedious necessitating the development of novel detection 

strategies. This study introduces an SPRi-based titration assay that uses L. pneumophila (Lp) 

aptamers. Multiple parameters including buffer conditions, aptamer concentrations, 

complementary aptamer probe (cApt) concentrations and incubation times were investigated and 

evaluated for optimal signal response. For maximum hybridization efficiency on the sensor 

surface, high salt buffer (SSC) as well 500nM of immobilized cApt resulted in a maximum signal 

response. Additionally, it was observed that of the three buffers (PBS, Fraquil, SSC) tested in this 

assay only SSC facilitated incremental binding of aptamers to Lp such that varying concentrations 

of Lp could be determined. We were able to detect varying concentrations of Lp down to a limit 

of 104 cells/ml without any sample processing or signal amplification steps, highlighting the 

potential of this system for SPRi-based Lp detection. The assay is also specific to Lp and shows 

negligible detection of Pseudomonas, a common inhabitant of water systems. 

Keywords: aptamer, Legionella, SPR, biosensor, waterborne pathogen 
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4.2 INTRODUCTION  

Legionellosis is a severe form of pneumonia caused by the opportunistic pathogen known as 

Legionella. These bacteria are found primarily in water. Inhalation of microdroplets and aerosols 

from water systems containing Legionella results in an infection of the lungs. Though widely 

prevalent in natural water systems, it is the elevated numbers of these bacteria in engineered water 

systems that cause the disease as the latter are prone to producing aerosols which harbour the 

bacteria. Examples of aerosol producing engineered water systems include cooling towers, misters, 

showers and premise plumbing. 

The National Academies of Sciences, Engineering, and Medicine (NASEM) in the United States 

reports that incidences of legionellosis in 2017 are 5 times higher than they were 20 years ago 

(National Academies of Sciences and Medicine 2020). Similar trends are observed in Canada 

according to the Public Health Agency of Canada (PHAC 2018). In both the USA and Canada, the 

actual number of cases is considered to be much higher, (PHAC 2019, CDC 2021). The situation 

is particularly pressing in recent times, in the context of the SaRs-CoV2 pandemic, as the 

unprecedented worldwide “stay-at-home” orders has created favorable environment for Legionella 

growth and proliferation (CWWA-ACEPU 2020, Proctor, Rhoads et al. 2020). The orders have 

led to the closures of buildings, institutions, and offices in response to the novel coronavirus 

pandemic. These widespread closures and “shut-downs” have reduced water usage and flow, 

consequently leading to a stagnation in water. Stagnation of water leads to a decrease in 

disinfectant residuals, degradation in water quality, temperature fluctuations that promote 

microbial growth conditions, as well as the formation of biofilm, all of which favor Legionella 

growth (CWWA-ACEPU 2020, Proctor, Rhoads et al. 2020). Routine surveillance and detection 

are therefore critical for monitoring the spread of the Legionella and limiting the risk of infection. 

Standard Legionella detection and testing procedures consist of the ISO 2017 culture methods 

(AFNOR NF T90-431, ISO 11731) and the qPCR method (AFNOR NF T90-471, ISO/TS 12869). 

The culture method is very time-consuming, highly affected by variation in sampling strategies 

(Lucas, Taylor et al. 2011, Wang, Bédard et al. 2017, National Academies of Sciences and 

Medicine 2020), and is plagued by false negative results due to the presence of interfering flora 

and VBNC cells thereby underestimating true Legionella load (Whiley and Taylor 2016, Wang, 

Bédard et al. 2017). The qPCR method is a more sensitive and quick method, but it has the added 
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caveat of overestimating Lp amounts because it cannot distinguish between viable and non-viable 

bacteria (Taylor, Bentham et al. 2014, Whiley and Taylor 2016, Wang, Bedard et al. 2017) It also 

requires additional steps to process and eliminate compounds from complex matrices that would 

have adverse effects on the qPCR reactions (Gentry-Shields, Wang et al. 2013, Taylor, Bentham 

et al. 2014). Several of the problems incurred by these methods can be overcome with the use of 

SPRi biosensors. Unlike the currently used methods, SPRi technology has the potential to offer 

real-time detection, allow the use of complex samples, multiplexing capabilities as well as 

regeneration of detection surfaces, all of which would eliminate multiple processing steps and 

ensure timely operation of the system at a low cost (Nguyen, Park et al. 2015, Wang, Loo et al. 

2019). For bacterial detection, SPRi systems can be adapted to be highly sensitive, providing low 

limits of detection, as well as highly specific, with the aid of a selective biorecognition element 

(Ahmed, Rushworth et al. 2014, Nguyen, Park et al. 2015, Kumar, Hu et al. 2018). 

Aptamers are an increasingly promising choice as biorecognition elements. They are antibody 

analogues, made up of short single-stranded DNA or RNA oligonucleotides (McKeague, De 

Girolamo et al. 2015). Unlike antibodies which require strict physiological conditions, aptamers 

can be generated in vitro in tailored conditions. Their physicochemical properties make them 

versatile and cost-effective to synthesize with high fidelity as compared to antibodies. They also 

have high affinities to a wide array of targets including non-immunogenic targets (McKeague, De 

Girolamo et al. 2015). Given their chemical make-up, aptamers are also easily modifiable which 

allow for ease of functionalization and use in bio-sensing applications (Morales and Halpern 2018, 

McConnell, Nguyen et al. 2020) Several aptamers have already been made against various bacteria 

and used on multiple platforms ranging from lateral flow assays (Bruno 2014, Saad and Faucher 

2021) to electrochemical impedance spectroscopy (Brosel-Oliu, Ferreira et al. 2018, Saad and 

Faucher 2021) to SPR-based systems (Yoo, Kim et al. 2015, Oh, Heo et al. 2017, Saad and Faucher 

2021). In previous work, we reported on the development of two aptamers specific to Legionella 

pneumophila (Lp). Following ten rounds of positive selection and two rounds of counter-selection 

against two Pseudomonas species, two aptamers (R10C5 and R10C1) binding strongly to Lp were 

identified with KD in 100nM range. The binding specificity of these two aptamers to Lp was then 

confirmed by flow cytometry and fluorescence microscopy (Saad, Chinerman et al. 2020). This 

study aimed to use the aptamer R10C5 to develop an SPRi-based assay for the detection of Lp in 

water systems. 
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Generally, the use of SPR for whole-cell bacterial detection suffers from inherent drawbacks such 

as the limited range of the evanescent electromagnetic field wave ( ~ 300nm) produced by the 

instrument, the similarity of the refractive index (RI) of the bacterial cytoplasm, and aqueous 

medium, and the diffusion-limited mass transport of the bacteria to the metal-dielectric surface 

(Torun, Boyacı et al. 2012, Galvan, Parekh et al. 2018). Although much research is dedicated to 

circumventing the aforementioned limitations, such as the use of nanoparticles, nanorods, Long 

Range-SPR (LSPR), and transducer surface modifications (Gasparyan and Bazukyan 2013, 

Boulade, Morlay et al. 2019, Castiello and Tabrizian 2019), several researchers also make use of 

specific molecules such as 16 sRNA gene or biomarkers such as outer membrane protein antigens 

to mitigate these problems and assess bacterial cell concentrations indirectly (Wang, Ye et al. 2011, 

Taheri, Rezayan et al. 2016, Melaine, Saad et al. 2017, Sikarwar, Singh et al. 2017, Masdor, 

Altintas et al. 2019) The use of specific molecules and biomarkers, however, requires cumbersome 

extraction, purification and enrichment steps as in the case of RNA or DNA isolation. To overcome 

drawbacks from sample processing, in this work an SPRi-based titration assay is proposed for 

whole Lp cell detection. The titration assay format was previously used with antibodies to enable 

SPR-based detection of Campylobacter jejuni to a LOD of 131 CFU/ml  (Masdor, Altintas et al. 

2019). However, the present work shows for the first time that aptamers can be adapted in this 

format for SPRi-based detection of bacteria providing enhanced specificity and simplicity. The 

use of aptamers improves this method by minimizing complex handling steps as well as costs since 

antibodies are less stable and more expensive to produce. 

The present assay determines the number of Lp by measuring the amount of unbound aptamers 

hybridizing to a complementary sequence (cApt) immobilized on the SPRi chip. Consequently, 

increasing Lp concentrations results in reduced signal responses, enabling detection of Lp without 

the use of labeling or signal amplification strategies. This type of assay is advantageous as it 

eliminates the need to inject whole bacterial cells, thus circumventing the SPR limitations with 

field range and similar RI while minimizing sample processing. To develop the titration assay 

format for SPRi-based detection of Lp using aptamer R10C5, we analyzed conditions for optimal 

hybridization of the aptamer to the cApt probe, as well as aptamer binding to the Lp cell. Using 

these optimal conditions, we determined both sensitivity and specificity of our titration assay for 

SPRi-based detection of Lp. To our knowledge, this work presents the first use of an SPRi-based 

titration assay using Lp-specific aptamers. 
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4.3 MATERIALS AND METHODS 

4.3.1 Bacterial Culture Strains and Conditions 

The thymidine auxotroph Lp strain Lp02, derived from Lp Philadelphia-1 was used to perform the 

titration assay (Berger et al.1993). Lp was cultured on CYE (ACES-buffered charcoal yeast 

extract) agar plates supplemented with 10 ug/ml thymidine, 0.25 mg/ml L-cysteine, and 0.4 mg/ml 

ferric pyrophosphate, at 37 °C for 3 days. For liquid culture, Lp was suspended in AYE (ACES-

buffered yeast extract) broth supplemented with 10 ug/ml thymidine, 0.25 mg/ml L-cysteine, and 

0.4 mg/ml ferric pyrophosphate until post-exponential phase (OD600 of approximately 2.5). 

Following growth in liquid culture, the cells were suspended in an artificial freshwater medium 

(Fraquil) to replicate the physiological state of nutrient-limited environmental conditions (Li, 

Mendis et al. 2015, Mendis, McBride et al. 2015). Fraquil was prepared as described previously 

(Morel, Westall et al. 1975) with a final iron concentration of 10 nM and filter-sterilized using a 

0.2 µm filter (Corning). Post-exponential phase cultures were rinsed twice with Fraquil (6000 ×g 

15 minutes) and suspended in Fraquil at an OD600 of 1 corresponding to a concentration of 109 

CFU/ml. This final suspension was left to incubate at room temperature for 24 hours. 

For the specificity assay experiment Pseudomonas fluorescens LMG1794, was first cultured on 

LB agar plates at 30 °C for 24 hours and then grown in LB medium (Difco) until the cultures 

reached post-exponential phase (OD600 of 2.0). Following growth in liquid culture, the cells were 

resuspended in Fraquil and left to incubate at room temperature for 24 hours as described for Lp.  

4.3.2 Lp Aptamer Development 

Aptamers were previously created against Lp using Cell-SELEX (Saad, Chinerman et al. 2020). 

In total, ten rounds of positive selection and two rounds of negative selection were performed. 

Briefly, a random ssDNA library of 1015 sequences was chemically synthesized and flanked by 

primer binding regions at the 5’ and 3’ ends (IDT). This library served as the input pool for Cell-

SELEX. Each round of SELEX consisted of three steps: Binding and elution, PCR amplification, 

and recovery of ssDNA. For binding and elution, 24 hours Fraquil exposed cells were incubated 

with denatured aptamer pools in 1X binding buffer (phosphate buffered saline with 0.1 mg/ml 

salmon sperm DNA, 1% bovine serum albumin, and 0.05% Tween 20) at 25 °C for 1 hour with 

mild shaking (150 rpm). Following incubation, the mixture was pelleted and washed twice with 



158 
 

wash buffer (phosphate buffered saline containing 0.05% Tween 20) to remove unbound 

sequences. To elute the bound sequences from the cells, the final cell pellet was resuspended in 

100 µl nuclease-free water (Ambion) and heated at 95 °C for 10 minutes. After centrifugation, the 

supernatant was collected and purified using overnight ethanol precipitation at -20 °C. The pellet 

was recovered, dried and suspended in nuclease-free water (Ambion). The purified aptamer pool 

was then amplified by PCR with One Taq DNA polymerase (NEB), according to the 

manufacturer’s protocol. All primers were used at a final concentration of 0.5 µM. To recover 

ssDNA for subsequent rounds of SELEX, streptavidin-coated magnetic beads (Promega 

Technology) were used, according to the manufacturer’s recommendation. Aptamer R10C5, was 

identified as the dominant sequence following cloning and sequencing, (pGEMT-easy Cloning 

and Ligation Kit, Promega) of the aptamer pool from the 10th round of SELEX (Figure 1).  

                                                              

Figure 1. Predicted secondary structure of R10C5 using Mfold (Zuker 2003) 

 

4.3.3 Buffer Test on Lp Growth 

Lp was cultured on thymidine supplemented CYE plates followed by culture in AYE broth as 

mentioned above. The culture was aliquoted into three tubes, and each tube was then resuspended 

in either 1X PBS, 1X Fraquil, or 5X SSC respectively. The cultures were rinsed twice with the 

corresponding buffer (1X PBS, 1X Fraquil, 5X SSC) each time at 6000 ×g for 15 minutes and left 

to incubate for 1 hour at room temperature. Serial dilutions were made in triplicate at the beginning 

of incubation, T=0, and at one hour following incubation, T=1 hr to determine buffer effects on 
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Lp survival. The dilutions were plated on thymidine supplemented CYE plates and incubated at 

37 °C for 3 days. Colony counts were then taken, and the CFU/ml was calculated. 

4.3.4 Substrate Preparation for SPRi Sensing 

Cleaned microscope glass slide (12 mm × 25 mm × 1 mm, n = 1.518) substrates were coated with 

2 nm Cr as an adhesion layer, followed by the deposition of a thin Au layer of 48 nm using E-

beam vapor deposition under ultra-high vacuum. Au coated slides were cleaned using acetone, 

isopropanol and nuclease-free water before being dried under a nitrogen stream. Post surface 

modification, the slides were then coupled to an SF11 equilateral triangular prism (nSF-11 = 1.765) 

using a refractive index matching liquid (Horiba Scientific). For experiments determining the 

optimal concentration of cApt (sequence complementary to the R10C5 aptamer), gold-coated 

prisms were used. Gold-coated prisms (n = 1.765) were purchased from Horiba Scientific, NJ, 

USA, and used as received. 

4.3.5 Surface Immobilization of Nucleic Acids 

Cleaned Au-coated slides were immersed and incubated in a solution of 5X SSC and 500nM of 

thiolated cApt (IDT DNA) for 2 hours (Table 1). After incubation, the slides were rinsed with 

nuclease-free water and dried under a nitrogen stream. To minimize nonspecific adsorption, the 

slide was further blocked for 16 hours with a solution of 1mM Triethylene glycol mono-11-

mercaptoundecyl ether (Sigma-Aldrich) dissolved in 200 proof EtOH. This was followed by an 

additional rinsing step and drying under nitrogen stream. The slides were used no longer than 48 

hours after functionalization and were stored at 4°C. 

Table 1: List of DNA sequences used in this study 

ID Sequence 

Aptamer R10C5/ +ve 

control 

GCAATGGTACGGTACTTCCGGACAGTGCTGAAAACTGTGACCCCCC

AAAAGTGCACGCTACTTTGCTAA 

Scrambled R10C5/-

ve control 

ACAGAATCAGTTCGAGTACATACGCGCGAAGACTCCTAAGGCCGTA

GCGTTCTTCCCGGTAATACCATG 
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cApt  

(complementary 

sequence) 

TTTT-

TTAGCAAAGTAGCGTGCACTTTTGGGGGGTCACAGTTTTCAGCACT

GTCCGGAAGTACCGTACCATTGC 

 

4.3.6 SPRi Measurements 

SPRi detection was performed using a scanning-angle SPRi instrument (model SPRi Lab+, Horiba, 

France). The SPRi apparatus is equipped with an 800 nm LED source, a CCD camera, and a 

microfluidic flow cell. All experiments were performed at 25 °C by keeping the instrument inside 

an incubator (Memmert Peltier, Rose Scientific, Canada). 

To select the working angle for kinetic analysis, the slope of the plasmon curves was computed 

automatically using the instrument's software. The selected angle corresponds to the point of the 

plasmon curve at which the slope was maximum. For all measurements, reflectivity shift (ΔR (%)) 

was recorded upon stabilization of the baseline. Prior to injections, the sensor surface was pre-

conditioned by exposing it to 200 mM NaOH (regeneration solution) to eliminate loosely bound 

substances, and to establish a stable baseline. After each analyte/supernatant injection, the surface 

was rinsed with running buffer 5X SSC (sodium saline citrate buffer, pH 7.6) (3M NaCl, 300mM 

NaCit, pH adjusted with 1M HCl). ΔR was calculated by the difference between the signals before 

and after the analyte injection. The signal was recorded at minimum on three spots for each analyte 

and control to determine the average ΔR values. Final ΔR values reported are the average of 3 

independent experiments (using 3 different glass slices of prims). All experiments were performed 

using an injection loop with a fixed volume of 200 μL and a constant flow rate of 20 μL min−1.  

4.3.7 Selection of Hybridization Buffer 

50nM of R10C5 aptamer buffer was dissolved in either 5X SSC, 1X PBS or 1X Fraquil and was 

injected onto the SPRi sensing surface. The running buffer of the SPR was changed each time to 

match the buffer of the analyte solution and rinsed with the specified buffer for 30 minutes before 

subsequent analyte injections. 
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4.3.8 Titration Assay  

The working principle of the assay is the capture of biorecognition probes (aptamers) directly by 

the target cells (Lp) and measurement of the free unbound aptamers by SPRi (Figure 2). The free 

aptamers are detected following hybridization to complementary sequences (cApt) functionalized 

on the Au-coated sensor chip. A higher concentration of cells would result in an increased capture 

of the aptamer and thus reduce concentration of free aptamers. 

All handling and incubation steps were performed at room temperature. Serial dilutions were made 

of 24hr Fraquil-exposed bacterial cultures in 5X SSC (sodium saline citrate buffer, pH 7.6) to 

obtain bacterial concentrations from 108 to 102 cells/ml. For experiments involving the effect of 

buffers on bacteria-aptamer binding, serial dilutions were also made in 1X Fraquil and 1X PBS. 

Each bacterial concentration was then incubated with 100 nM of R10C5 aptamer under gentle 

agitation for 45 minutes. The mixtures were then centrifuged for 15 minutes at 6000 ×g after which 

the supernatant containing the free aptamer was collected and injected into the SPRi system. For 

supernatants collected from the dilution series made in PBS and Fraquil, the final concentration 

was adjusted to 5X SSC, by the addition of 20X SSC. Supernatants from each bacterial 

concentration (highest to lowest) were then serially injected over the functionalized sensor chip 

(Figure 2).  
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Figure 2. Schematic illustration of the titration assay. Aptamers are added to the water samples. Aptamers 

are captured by the bacteria. After centrifugation, the free aptamers are collected in the supernatant and 

detected following hybridization to a complementary probe (cApt) immobilized on the surface of the sensor. 

Created with BioRender.com. 

 

Prior to injections, the sensor surface was pre-conditioned by exposing to 200 mM NaOH 

(regeneration solution) to eliminate loosely bound substances, and to establish a stable baseline. 

As a positive control, a solution containing a fixed concentration (100nM) of R10C5 aptamer 

dissolved in 5X SSC was injected over the sensor chip (Table 1). As negative controls, a scrambled 

sequence of R10C5 (Table 1) dissolved in 5X SSC and supernatants of bacterial suspensions 

without any aptamer were injected over the sensor chip. The sensor surface was regenerated with 

200 mM NaOH following each injection. Consequently, each sensing cycle consisted of 

supernatant injection with a contact time of 13 minutes, buffer rinsing, and regeneration injections 

with a contact time of 30 seconds. 

4.3.9 Determination of Incubation Time 

To determine the time required for the bacteria-aptamer complex formation, serial dilutions were 

made of bacterial cultures to obtain a concentration of 106 cells/ml in 5X SSC. This concentration 
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of 106 cells/ml was then incubated with 100nM of R10C5 aptamer under gentle agitation for 5, 15, 

30, and 45 minutes. At the specified time points the mixtures were then centrifuged for 10 minutes 

at 6000 ×g after which the supernatant was collected. Following the pre-conditioning steps as 

outlined in the titration assay, the supernatants from each specified time point were serially injected 

over the functionalized sensor chip. 

4.3.10 Statistics 

The difference in cell concentrations because of buffer effects (Figure 3a) was calculated using a 

One-Way ANOVA with a Tukey multiple comparison test in GraphPad Prism 8.3.0. The 

difference in signal response as a result of varying bacterial concentrations (Figure 5C) was 

calculated using a One-Way ANOVA with Dunnetts Multiple Comparison Test in Graphpad Prism 

8.3.0 The change in signal response (∆R) was determined by subtracting the baseline following 

analyte injection from the previous baseline. The calibration curves were fitted using a non-linear 

4 parameter logistic (4PL) model using GraphPad Prism 8.3.0. The signal change of the positive 

control solution, containing only a fixed concentration of aptamer, is (C0). The LOD for the assays 

was calculated from the calibration curve as the maximum signal from the positive control (C0) 

subtracted from the average (C0), minus three times its standard deviation. The dynamic range for 

the titration assay was established between 0.2C0 and 0.8C0 and was determined from fitting the 

data to a non-linear 4PL regression model shown in the calibration curve in Figure 5(d). All data 

are expressed as the average of and with the standard deviation of 3 experiments. 

 

4.4 RESULTS 

To test the feasibility of the titration assay, two different parameters needed to be evaluated, 

namely (i) conditions that would allow efficient hybridization of the aptamer to cApt sequence and 

result in an optimal signal response (ii) conditions that would allow proportional binding of the 

aptamer to viable whole Lp cells. 

(i) Effect of Experimental Conditions on Hybridization Efficiency 

First, to visually evaluate the specific hybridization of the complementary aptamer sequences to 

the SPR chips, FITC-labelled R10C5 aptamer was flooded over the sensor chip spotted with 
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unlabeled cApt and then visualized using a fluorescence microscope. Figure 3a shows that 

hybridization occurs between the R10C5 aptamer and only the cApt spots with no binding 

elsewhere on the sensor surface.  

Next, to determine whether buffer composition affects nucleic acid hybridization, three buffers 

were selected to determine the optimal media for hybridization. 1X PBS, 1X Fraquil and 5X SSC. 

SSC is a high salt media common in hybridization buffers used for molecular biology applications 

whereas Fraquil is a low salt media, modeled after tap water. Figure 3b shows that maximum signal 

was obtained in 5X SSC, whereas hybridization of the R10C5 aptamer to cApt seems to be minimal 

in 1X PBS or 1X Fraquil. Consequently, 5X SSC was used for all hybridization steps listed in this 

study. 

Next, the amount of cApt immobilized on the sensor surface was studied to observe its effect on 

hybridization efficiencies. Figure 3c demonstrates the change in signal upon injection of 100 nM 

of R10C5, following hybridization to varying concentrations of cApt immobilized on the sensor 

surface. The negative (-ve) control (Table 1) is a sequence that is not complementary to the R10C5 

aptamer and thus shows a negligible change in signal. The highest concentration of the cApt (10 

µM) shows a lower signal as do concentrations below 500 nM. When using 1 nM the signal 

response becomes too low and close to the limit of the instrument signal detection range. cApt 

concentrations of 1 µM and 500 nM provide maximal signal responses. Therefore, a cApt 

concentration of 500nM was chosen for further characterization of this assay. 

Finally, varying concentrations of aptamer R10C5 were investigated to observe its effect on the 

SPR signal. The goal was to achieve a detectable signal following hybridization in order to 

optimize the use of reagents while still being reliable and sensitive similar to its SPR immunoassay 

counterparts (Estevez, Belenguer et al. 2012). Figure 3d indicates the signal range obtained 

following hybridization of R10C5 aptamer of different concentrations. Decreasing aptamer 

concentration results in a proportional signal decrease. Below 100nM the signal range becomes 

barely detectable, limiting the performance of a titration assay. For this reason, 100nM was 

selected as the optimal concentration to perform all titration assays. 
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Figure 3. Conditions for optimal hybridization efficiency: a) Fluorescence microscopy image of FITC-

labelled R10C5 aptamer hybridized to non-labeled cApt spots immobilized on an Au coated glass slide. b) 

∆R from hybridization of 50nM R10C5 aptamer dissolved in 1X PBS, 1X Fraquil or 5X SSC. c) ∆R from 

hybridization of 100nM aptamer with different concentrations of cApt functionalized on the sensor surface. 

The negative control refers to the scrambled sequence which is not complementary to R10C5. d) ∆R in 

response to different aptamer R10C5 concentration hybridizing with 500nM cApt. 

 

(ii) Effect of Experimental Conditions on Aptamer-Lp Binding and efficiency of the 

SPRi Titration Assay   

Figure 4 illustrates the effects of PBS, Fraquil, and 5X SSC buffers on the capture of the R10C5 

aptamer by Lp cells. The positive control consisted of pure R10C5 aptamer solutions (100nM) to 

show the range and maximum response of the SPR aptamer sensing system. The negative control 

(scrambled sequence) shows that the hybridization of the aptamer to cApt is specific. As additional 

controls, supernatants were taken from solutions containing 108 cells/ml in either PBS, Fraquil or 
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5X SSC with no aptamer. This step eliminates any possible non-specific binding coming from the 

cell culture supernatant to the sensor surface.  

Next, the titration assay was performed, and supernatants were taken from solutions in the various 

buffers- PBS, Fraquil or SSC- containing either 108 cells/ml or 104 cells/ml of bacterial cells 

incubated with 100 nM R10C5 aptamer added. For aptamer-bacteria solutions made in PBS and 

Fraquil, the supernatants show negligible changes in signal between high (108 cells/ml) and low 

(104 cells/ml) bacterial concentrations (Figure 4a and 4b). However, when using 5X SSC, a lower 

signal is obtained for the cell suspension containing 108 Lp cells (Figure 4c). In this condition, 

higher Lp concentration corresponds to lower levels of free aptamer proving the working principle 

of the titration assay. 5X SSC buffer was, thus, selected as the optimal media for binding the 

aptamer to the bacteria in the titration assays. 

Figure 4d illustrates that a one-hour exposure of Post Exponential phase Lp to either PBS, Fraquil, 

or 5X SSC buffer results in no adverse effects on cell cultivability. This indicates that 5X SSC is 

safe for use with this assay and does not alter cell counts, at least in the time frame necessary to 

perform the assay.  

After this, to determine the effect of incubation time on the capture of aptamers by Lp, 100nM of 

R10C5 aptamer was incubated in solutions containing 106 cells/ml diluted in 5X SSC and were 

gently mixed for either 5, 15, 30, or 45 minutes. After specified time points the supernatants were 

collected and the signal response was measured. Figure 4e shows that the signal response for 106 

Lp cells/ml incubated with R10C5 aptamer at varying time lengths remains unchanged suggesting 

that levels of free aptamer are similar at all time points. This means that the binding occurs within 

5 minutes and a longer incubation time does not lead to more binding of the aptamer to Lp. We 

therefore selected a binding time of 5 minutes to perform the assay. 

Finally, the specificity of the assay was evaluated using P. fluorescens. Figure 4f shows the signal 

change in response to R10C5 aptamer incubated with P. fluorescens. For high concentrations of 

bacteria, there are high levels of free aptamer suggesting that very little aptamer binds to the 

bacterium P. fluorescens. This illustrates the specificity and selectivity of the aptamer R10C5 for 

Lp as previously reported and the specificity of the titration assay (Saad, Chinerman et al. 2020) . 

The 5X SSC buffer also does not cause high cross-reactivity of the aptamers to the P. fluorescens 

strain given that a similar signal was obtained with aptamer alone.  
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Figure 4. Parameters affecting aptamer-bacterial binding and titration assay efficiency. -ve control is the 

scrambled sequence. +ve refers to 100nM of R10C5. a) Signal change in response to aptamers incubated 

with Lp in 1X PBS. b) Signal change in response to aptamers incubated with Lp in Fraquil. c) Signal change 

in response to aptamers incubated with Lp in 5X SSC. d) Viability test showing Lp concentrations following 

1-hour exposure 1X Fraquil, 5X SSC, and 1X PBS. e) Signal change in response to incubation of 100 nM 

R10C5 aptamer mixed with 106 Lp cells/ml for 5, 15, 30, and 45 minutes. f) Specificity test using 

Pseudomonas fluorescens LMG1794 in the titration assay which shows the signal response is not inversely 

proportional to bacterial concentrations. 
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(iii) Titration Assay and Calibration Curve  

Next, we evaluated the response of the system to a dilution series of Lp in Fraquil with the optimal 

experimental parameters determined in previous sections (100 nM R10C5, 500 nM cApt, 5X SSC 

for hybridization, 5X SSC for binding, 5 minutes incubation time). Figure 5a and 5b show 

sensograms whereas Figure 5c show a bar graph of the titration assay experiments. The figures 

indicate that decreasing bacterial cell concentrations from 108 cells/ml to 104 cells/ml causes a 

direct increase in the SPR reflectivity signal. This signifies that the SPR sensor response is 

inversely proportional to the concentration of Lp, as expected. A higher concentration of cells 

results in an increased capture aptamer, thereby reducing the concentration of unbound aptamer 

detected. The specificity of the detection is reported in Figure 5b and 5c, which show the signal 

change in response to positive and negative controls. The limit of detection for this system was 

found to be 104.4 cells/ml with a linear dynamic range of 104.3 cells/ml – 107.7 cells/ml as 

determined from fitting the data to a non-linear 4 parameter logistic regression model shown in 

the calibration curve in Figure 5(d). The R2 for this region was calculated as 0.9544 indicating a 

strong goodness of fit.   
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Figure 5. The titration assay shows a proportional inverse relationship between the number of cells and 

signal response. a) Sensograms showing increasing signals in response to decreasing bacterial 

concentrations. b) Sensograms showing signal response for the positive control (100nM R10C5 without 

cells) and negative controls (supernatant without aptamer and 100 nM scrambled sequence without cells). 

c) Average change in signal in response to the concentration of free aptamers which is inversely 

proportional to bacterial concentrations. Statistical significance compared to the positive control was 

determined using a one-way ANOVA with Dunnetts Multiple Comparison Test was done using Graphpad 

Prism 8.3.0. d) Calibration curve from three independent titration assay experiments. Curves were fitted 

using a non-linear 4 parameter logistic regression model using Graphpad Prism 8.3.0.  

 

4.5 DISCUSSION 

To date, only two studies using an SPR-based immunosensor have detected whole Lp cells both 

with detection limits of 105 cells/ml (Oh, Kim et al. 2003, Oh, Lee et al. 2005). Previously reported 
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methods using SPR to detect Lp involved antibodies-protein complexes (Enrico, Manera et al. 

2013) and detecting 16S rRNA of Lp (Foudeh, Daoud et al. 2014, Foudeh, Trigui et al. 2015, 

Melaine, Saad et al. 2017). None of these studies used aptamers as biorecognition elements or as 

part of a titration assay. 

In comparison, this work presents the first report of an SPRi, aptamer-based Lp biosensor using a 

titration assay to establish a novel Lp detection strategy. Several parameters were studied in concert 

for the first time, including the use of an Lp-associated aptamer, conditions on the sensor surface 

(hybridization) as well as the parameters of bacterial-aptamer binding that affect SPR signal 

efficiency. The result is a simple method that requires no additional labeling, no extra amplification 

steps, and allows rapid detection of Lp (roughly 30 minutes).  The use of aptamers in the titration 

assay also reduces the overall cost and tedious handling steps associated with this detection 

method. This is because aptamers are cheaper to synthesize, easier to functionalize, and more 

stable across a range of conditions as compared to their antibody counterparts (Morales and 

Halpern 2018).  

SPR-based biosensors are an attractive technology for bacterial detection due to their intrinsic 

sensitivity to changes in refractive index (RI),produced during  analyte-bioreceptor binding, which  

means they require no labelling or sample processing steps  (Wang, Loo et al. 2019). Drawbacks 

for whole-cell microbial detection using SPR however are the low sensitivities and high LODs, as 

a result of the limited range of the electromagnetic field ( ~ 300 nm), the similarity of the refractive 

index (RI) of the microbial cytoplasm and aqueous medium, and the diffusion-limited mass 

transport of the microbe to the metal-dielectric surface (Torun, Boyacı et al. 2012, Galvan, Parekh 

et al. 2018). Consequently, microbial surrogate biomarkers and molecules are used as alternative 

detection strategies, but the main limitations of these methods are the requirement of multiple 

sample processing steps as well as an inability to discern whole, membrane-intact, viable cells. A 

titration assay can thus prove beneficial by eliminating the need to inject whole bacterial cells, thus 

circumventing the SPR problems with field range and similar RI while detecting membrane-intact 

and potentially viable microbial cells. 

In the present work, using a titration assay, we have determined the concentration of Lp cells by 

measuring the reflectivity change in response to the amount of available free aptamer left in the 

supernatant after exposure to Lp cells. The free aptamer in the supernatant was allowed to bind to 
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its complementary sequence (cApt) previously functionalized to the SPRi sensor surface. Thus, 

the response of the SPRi sensor was inversely proportional to the concentration of the bacteria, in 

that, a higher concentration of cells would result in increased binding of aptamer, reducing the 

concentration of unbound/free aptamer detected. To test the feasibility of the assay, two different 

conditions needed to be evaluated namely, (i) conditions that would allow efficient hybridization 

of the aptamer to the cApt cognate sequence and (ii) conditions that would allow proportional 

binding of the aptamer to Lp. Figure 3 outlines optimal conditions for hybridization. The aptamer 

does not interact with non cApt regions on the sensor chip (Figure 3a) signifying that any signal 

observed is the result of specific aptamer-cApt hybridization. Since the sensor signal response is 

dependent on hybridization, it was critical to select a high ionic strength buffer as well as to 

determine the optimal spacing of the cApt (Zhang, Chen et al. 2012, Giamblanco, Petralia et al. 

2017). Optimal cApt spacing is necessary to reduce high surface coverage density which can 

inhibit binding or analyte access due to steric or electrostatic hindrances (Macedo, Miller et al. 

2017). SSC is a high ionic strength buffer widely used in DNA microarrays and hybridization 

studies (Figure 3b). For our assay, the combination of 5X SSC’s (high ionic buffer strength) with 

a low cApt surface density achieved through spacing by using lower concentrations of cApt 

resulted in the optimal hybridization efficiencies, and thus the best signal intensity (Figure 3b and 

3c).  

Given that this titration assay is contingent on the amount of free aptamer, it was critical for the 

aptamer to be the limiting factor for the assay to be sensitive. If aptamers are in excess, then the 

concentration of free unbound aptamers will not differ for different bacterial concentrations. As 

such, a trade-off was made in selecting the minimum amount of aptamer possible i.e., 100nM, 

while still yielding a sufficient SPR signal response range (Figure 3d). Additionally, in previous 

work, 100 nM of R10C5 aptamer was deemed optimal to label at least 50% of Lp cells (Saad, 

Chinerman et al. 2020). Consequently, all titration assays mentioned in this study were conducted 

with 100 nM of R10C5 aptamer.  

When determining optimal conditions for binding efficiency, 5X SSC buffer results in more 

sequestering of the aptamer by Lp cells at higher concentrations signifying that the buffer affects 

the formation of aptamer-target complex (Figure 4c). Previous studies using thrombin and cocaine 

aptamers have shown that electrostatic interactions between an aptamer and its target are affected 
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by salt concentrations. (Lin, Chen et al. 2011, Sachan, Ilgu et al. 2016). Additionally, low salt 

buffers have been shown to promote the formation of complexes which enhance aptamer stability 

(Wiedman, Zhao et al. 2017, Wildner, Huber et al. 2019). If an aptamer or aptamer complexes are 

in a highly stable configuration, then they would be too rigid to bind to cognate targets in an 

induced-fit manner suggesting that the use of PBS and Fraquil would result in stable aptamer 

complexes that do not bind to Lp (Grytz, Marko et al. 2016, Munzar, Ng et al. 2018). Following 

the results presented in (Figure 4c), it was crucial to assess the buffers’ effects on Lp viability to 

ensure that any changes in free aptamer levels were not confounded by death or lysis of Lp (Figure 

4d). Several studies show that Lp can tolerate high salt conditions at lower temperatures (Heller, 

Höller et al. 1998, Ohno, Kato et al. 2003, Vatansever and Türetgen 2015), confirming that the 

short exposure time to 5X SSC would not be harsh enough to affect Lp cultivability (Figure 4d). 

Furthermore, the 5X SSC buffer also does not cause high cross-reactivity of the aptamers to the P. 

fluorescens strain given that similar signals were obtained with a pure aptamer solution alone 

(Figure 4f). This is an important validation of the assay, since environmental water samples are 

often complex matrices ranging from tap water to cooling tower water  (Wang, Bédard et al. 2017). 

The complex microbial flora of a real environmental sample may have microbial strains whose 

membranes or surface structures are susceptible to the effects of 5X SSC, resulting in loose binding 

of free aptamers (Helander and Mattila-Sandholm 2000, Nagaoka, Murata et al. 2010, Gandhi and 

Shah 2016, Santos, Chaumette et al. 2019, Kundukad, Udayakumar et al. 2020). This effect of 

non-specific binding however was not observed with a pure culture of P. fluorescens (Figure 4f). 

This confirms the specificity and selectivity of the aptamer R10C5 for Lp as previously reported 

(Saad, Chinerman et al. 2020).  

Incubation temperature as well as target properties and characteristics can influence aptamer 

binding capabilities, as discussed previously (Saad and Faucher 2021). Our assay was validated at 

a temperature of 25 °C to facilitate environmental testing. It is important to note that samples 

should be allowed to come to room temperature before doing the assay to ensure optimal binding 

of the aptamer with Lp. Others have shown that aptamers may differentiate a bacterium’s 

physiological state. An example is the Campylobacter jejuni aptamer ONS-23 which can discern 

live cells from non-viable cells (Dwivedi, Smiley et al. 2010, Kim, Kim et al. 2018). In our case, 

we used Fraquil-exposed bacteria to mimic the physiological state of Lp in water systems, which 

is the target application.   
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Given that the incubation time for aptamer-bacterial binding in this assay is just 5 minutes (Figure 

4e), the titration assay is very quick to perform with minimal labour required. A result can be 

obtained in just 30 minutes which is more rapid when compared to current Legionella detection 

standards which take 7-15 days for conventional culture methods and 60-90 minutes for qPCR 

methods. 

Several SPR techniques have been coupled with signal amplification strategies for the detection 

of waterborne bacterial contaminants (Saad and Faucher 2021). The current SPRi-based aptamer 

titration assay was able to reach a detection limit of 104.3 cells/ml (Figure 5) which is comparable 

to various SPR-based sensors for whole-cell bacterial detection having either limited or no 

amplification strategies (Usachev, Usacheva et al. 2014, Yamasaki, Miyake et al. 2016, Oh, Heo 

et al. 2017, Nakano, Nagao et al. 2018, Saad and Faucher 2021). For example, SPRi was used by 

two groups to identify various serogroups of Shiga-Toxin producing Esherichia coli (STEC) cells 

via antibodies with limits of detection that were roughly 106 cells/mL and 104 cells/ml respectively 

(Yamasaki, Miyake et al. 2016, Nakano, Nagao et al. 2018). An aptamer labeled- gold nanoparticle 

(AuNP) coated sensor surface coupled with localized SPR detected whole Salmonella 

Typhimurium cells to an LOD of 1.0 × 104 cells/ml (Oh, Heo et al. 2017). The current assays LOD 

was also consistent with detection limits obtained using a similar titration assay but with antibodies 

where the LOD was 105 Listeria monocytogenes cells/ml and 104 E. coli cells/ml (Leonard, Hearty 

et al. 2004, Wang, Ye et al. 2011).  

 

4.6 CONCLUSION 

The SPRi aptamer-based titration assay in this study builds the ground for detecting Lp cells in a 

rapid, simple manner by eliminating multiple processing steps and circumventing the penetration 

depth of the evanescent electromagnetic field of a conventional SPR biosensing system. The assay 

strategy is quick compared to conventional culture methods (7-15 days) and qPCR (60-90 minutes) 

since it requires only 30 minutes to give a result. Furthermore, the use of aptamers also minimizes 

costs and tedious handling and manipulation steps associated with this method. While a detection 

limit of 104.3 CFU/ml of Lp could be achieved without any labeling or signal amplification 

strategies, the development of a signal amplification strategy would push this simple SPRi-based 

titration assay over the competitive edge to enable real-time monitoring of bacteria on several 
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fields such as environmental monitoring or point-of-care diagnosis. In future work, we expect to 

further decrease the LOD of the present titration assay by means of SPR signal amplification 

strategies, using AuNPs-labelled aptamers or a sandwich aptamer assay format (Melaine, Saad et 

al. 2017, Castiello and Tabrizian 2019). These signal amplification strategies would help further 

reduce the LODs to 50 CFU/ml, which is the desired standard for Lp detection in environmental 

water, thus allowing the application of this technology for direct monitoring of Lp in environmental 

water samples. (National Academies of Sciences and Medicine 2020).  
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CHAPTER 5: CONNECTING TEXT 

In Chapter 3 it was observed that the length of sequences and thus complexity of the secondary 

structures decreased with increasing rounds of SELEX. To minimize the loss of key secondary 

structural regions, we performed Branched-SELEX which comprised just one round of parallel 

selections followed by an examination of the resulting sequence pools using HTS data. To identify 

potential Lp specific aptamers, we incubated the initial input pool across different “branches” of 

non-target bacteria and then narrowed down the pool by eliminating sequences that were present 

in the pools from non-target bacteria. These non-target bacteria were subject to one round of cell-

SELEX in parallel with the target Lp bacteria.  

Chapter 5 shows the usefulness of the Branched SELEX methodology for large cellular targets as 

well the search for higher-order aptamers that could have enhanced binding properties and thus be 

more robust for downstream applications. The supplementary data for this chapter is found in the 

Appendix (Appendix, Chapter 5, File A2). 
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5.1 ABSTRACT 

Aptamers are short oligonucleotides with complex secondary structures that enable them to bind 

to a wide variety of targets. The classical SELEX method used to identify aptamers, however, 

requires several rounds of selections, and hence the use of multiple PCR steps, which result in an 

increase of sequences amenable to amplification rather than sequences with desired structural and 

binding properties. The Branched SELEX method can mitigate this unwanted effect by utilizing 

only one round of selection in combination with high throughput sequencing (HTS). In the 

Branched SELEX method, the input sequence pool is divided across four branches to identify 

aptamers binding to cells of the waterborne pathogen, Legionella pneumophila (Lp). One branch 

contained the target Lp strains whereas the remaining three branches were a Lp serogroup 5 strain, 

a Lp mutant strain (∆fliC) and a cocktail of water-associated bacteria. Candidate sequences could 

then be identified by eliminating sequences that were enriched in non-target branch pools. HTS 

data revealed that after one round of selection the proportion of unique sequences was low and that 

only a small subset of sequences was enriched in each of the branch pools. A large proportion of 

sequences are common to both the target Lp pools and non-target bacterial pools. Sequence 

enrichment analysis revealed four aptamers (11547,19654, 5210 and 68339) that were enriched in 

the target pool and depleted in the respective non-target pools. Three aptamers bind specifically to 

Lp whereas aptamer 68339, despite being depleted in the non-target (∆fliC) pool, exhibits non-

specific binding to the Lp mutant variant (∆fliC). The study demonstrates the profile of sequence 

pools after one round of selection and the feasibility of using the branched SELEX method for 

identifying aptamers to bacterial cells isolated from specific water environments. 

 

Keywords: Branched SELEX, aptamer, HTS, Legionella  
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5.2 INTRODUCTION 

Traditional bacterial detection methods are labour intensive and require multiple processing steps 

to enumerate and monitor bacteria (Ramírez-Castillo, Loera-Muro et al. 2015). A rapid, 

quantitative cost-effective biosensing platform that could detect the bacteria would facilitate 

monitoring and surveillance (Ahmed, Rushworth et al. 2014). Aptamers, which are short, folded 

strands of either DNA or RNA, are a promising alternative to antibodies for use in biosensing 

platforms (Morales and Halpern 2018). These antibody analogues are developed using Systemic 

Evolution of Ligands (SELEX).  

Systemic Evolution of Ligands (SELEX) is a library screening methodology where a large diverse 

pool of sequences (up to 1016) is exposed to targets in order to select and enhance a subset of 

sequences that have affinity for said targets (Komarova and Kuznetsov 2019). The SELEX process 

consists of iterative rounds of selection and PCR amplification of the pool in order to isolate target 

binding sequences known as aptamers (Komarova and Kuznetsov 2019). This strategy has proven 

successful in isolating aptamers with high affinities and specificities against a wide array of targets 

ranging from whole cells to small molecules (McKeague, De Girolamo et al. 2015, McConnell, 

Nguyen et al. 2020, Saad and Faucher 2021). Indeed, we have previously used cell-SELEX to 

identify aptamers binding to Legionella pneumophila (Lp) bacterial cells (Saad, Chinerman et al. 

2020). 

One of the drawbacks of the traditional SELEX procedure is the use of multiple PCR amplification 

steps (Tolle, Wilke et al. 2014). Besides being laborious and increasing the time involved with the 

SELEX process, PCR amplification steps are prone to PCR bias and the production of artefacts 

(Tolle, Wilke et al. 2014). This means that sequences that are amenable to amplification are 

enriched rather than those possessing desired structural-functional properties. These highly 

complex aptamers may have delayed enrichment as well, meaning that earlier rounds of SELEX 

pools may contain potentially useful aptamers that are lost or missed, not because they are not 

binding to the targets, but because of methodological biases. 

Reducing SELEX rounds and minimizing the number of PCR steps alone, however, would make 

it difficult to select and characterize high-affinity aptamers given the extensive size of the pool. 

To overcome this problem, a combination of high-throughput sequencing (HTS) and parallel 

selection, rather than iterative selection, could be used to streamline potential aptamers and select 



185 
 

for sequences with desired properties. This is because HTS enables deeper insights into the 

evolution of the SELEX sequence pools (Komarova, Barkova et al. 2020). This enables better 

comparative analysis on variations between different pools generated from parallel selections 

(Komarova, Barkova et al. 2020). Several studies have demonstrated how the use of HTS has 

improved SELEX outcomes (Dupont, Larsen et al. 2015, Stoltenburg and Strehlitz 2018). Indeed, 

the benefits of HTS has led to the development of several aptamer specific HTS data processing 

softwares such as FASTAptamer, APTANII and Aptasuite (Alam, Chang et al. 2015, Caroli, 

Taccioli et al. 2016, Hoinka, Backofen et al. 2018). 

Parallel selection can also help SELEX outcomes by narrowing down the sequence pools.  The 

principle behind parallel selection is that by exposing a series of different targets to the same initial 

library (input pool) the sequences in each specific target pool would evolve differentially, enabling 

the identification of unique aptamers that would provide insight on specific target properties and 

functionalities. For example, Dupont et al used a single round of parallel selection and exposed 

their sequence pools to different variants of the target protein plasminogen activation inhibitor -1 

(PAI-1) (Dupont, Larsen et al. 2015). The pools that evolved in the presence of different variants 

of the target protein provided detailed information about aptamer binding sites, and the functional 

effects of these aptamers. Another group split their pool at the 4th and 11th selection rounds to 

perform parallel selections on target renal cell carcinoma (ccRCC) RCC-MF cell line and non-

target RC-124 cell line from healthy kidney tissue (Pleiko, Saulite et al. 2019). They were 

subsequently able to evolve and select aptamers with differential binding properties.  

In the present study, we explored the utility of using HTS and parallel selections, also referred to 

as branched SELEX, for identifying aptamers binding specifically to serogroup 1 Lp. This 

bacterium causes a pneumonia in humans and is transmitted via aerosols generated by engineered 

water systems (Lin, Vidic et al. 1998). Incidences of Lp infections have increased over recent years 

with serogroup 1 of Lp accounting for most infection cases (Canadian Notifiable Diseases 

Surveillance System (CNDSS) 2020, (ECDC) 2021, CDC 2021).  

For the branched SELEX method conducted in this study, a pre-enriched library of sequences-

input pool- was exposed to four different “branches”; (i) Two Lp serogroup 1 strains-referred to 

as target pool, (ii) Lp serogroup 5 strain-referred to as Sg5 pool, (iii) an Lp mutant lacking a gene 

(∆fliC) that expresses filament subunit proteins of the flagella (Heuner, Bender-Beck et al. 1995, 
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Dietrich, Heuner et al. 2001), referred to as the ∆fliC pool,  (iv) a cocktail of water-associated 

bacteria isolated from environments where Lp was present (Paranjape, Bédard et al. 2020), is 

referred to as the non-Lp pool (Figure 1). The objective of the latter branch was to isolate aptamers 

that would potentially have specific affinities for Lp in representative water environments. Each 

differentially evolved pool from each “branch” was then subjected to HTS. This combination of 

HTS and branched SELEX enabled the evaluation of aptamer pools that evolved in the presence 

of different Lp variants as well as non-Lp water bacteria. The pools were then examined for 

sequences that were enriched in the presence of target Lp and depleted in the presence of non-

target bacteria. Additionally, since the method consists of doing four cell-SELEX processes in 

parallel, branched-SELEX significantly reduced the number of PCR rounds from the classical cell-

SELEX method. To our knowledge this is the first study demonstrating the use of a single round 

of parallel selections i.e. branched-SELEX, with whole cell bacterial strains relevant to the 

application source environment. 

 
Figure 1: Branched-SELEX schema. Image created in Biorender (biorender.com) 
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5.3 MATERIALS AND METHODS 

5.3.1 Bacterial Strains and Culture Conditions 

A cocktail of the environmental Lp strain lp120292, isolated from a cooling tower implicated in 

the 2012 outbreak in Quebec City, (Lévesque, Lalancette et al. 2016) and Lp strain Philadelphia-

1 (ATCC 33152) (Fraser, Tsai et al. 1977), were used as the target branch  pool for aptamer 

generation. Lp serogroup 5, and ∆fliC were used as strains for each individual branch of the SELEX 

procedure. All Lp strains were cultured on CYE (ACES-buffered charcoal yeast extract) agar 

plates supplemented with 0.25 mg/ml L-cysteine and 0.4 mg/ml ferric pyrophosphate, at 37 °C for 

3 days. For liquid culture, Lp were suspended in AYE (ACES-buffered yeast extract) broth 

supplemented with 0.25 mg/ml L-cysteine and 0.4 mg/ml ferric pyrophosphate until post-

exponential phase (OD600 of 2.5). A cocktail of non-Lp bacteria, which included isolates from 

cooling towers, namely, Brevundiomonas sp., Bacillus licheniformus., Stenotrophomonas sp. and 

Sphingomonas sp. as well as Pseudomonas putida KT2440 and Pseudomonas fluorescens 

LMG1794, were used as strains for another branch of SELEX (Paranjape, Bédard et al. 2020, Saad, 

Chinerman et al. 2020). These strains were first cultured on nutrient agar plates (Difco) at 30 °C 

for 24 hours and then grown in nutrient broth medium (Difco) overnight until the cultures reached 

post-exponential phase (OD600 of 2.0-2.5). For each strain the concentration of cells was 

determined by evaluating plate counts to its corresponding OD600.  

5.3.2 Preparation of SELEX input pool 

The input pool was created by PCR amplification of the original SELEX template that was 

generated after three rounds of positive selection, (R3) (Saad, Chinerman et al. 2020) . The PCR 

amplification conditions are outlined below in the section Branched-SELEX procedure. The 

forward and reverse primers were conjugated with fluorescein (FITC) and biotin, respectively. The 

forward primer (FP) sequence is 5’-fluorescein-GCAATGGTACGGTACTTCC-3’. The reverse 

primer (RP) sequence is 5’-biotin-TTAGCAAAGTAGCGTGCACTTTTG-3’. Following 

amplification, PCR products were purified using a MinElute PCR Purification Kit (Qiagen). The 

total amount of amplified template following purification was 3500 ng. The purified, biotinylated 

PCR products were then used in conjunction with streptavidin coated magnetic beads (Promega) 

to generate ssDNA. Streptavidin coated magnetic beads (Promega Technology) were used, 

according to the manufacturer’s recommendation. Briefly, 600 µg of magnetic beads were washed 
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twice and then resuspended in 900 µl of washing buffer (phosphate buffered saline with 0.05% 

Tween 20). Next, approximately 3500 ng of PCR product was incubated with the magnetic beads 

for 10 min, mixing gently by inversion after every few minutes. The mixture was then washed in 

1 ml of washing buffer. Finally, the beads were incubated with 500 µl of 200 mM NaOH for 5 

minutes. The supernatant was then collected, and the FITC-labelled ssDNA was purified using 

ethanol precipitation as mentioned previously and quantified with a Nanodrop spectrophotometer 

(Thermofisher). The total amount of ssDNA recovered was 800 ng. Consequently, 800ng of 

ssDNA was used as the input pool for the branched-SELEX procedure.  Prior to being used for 

SELEX, the input pool was incubated using a tube rotator with mild shaking for 1 hour at 25 °C 

in 13ml tubes (Sarstedt) with the absence of any bacteria in order to eliminate any nonspecific 

sequences that would bind to the reaction tubes. 

5.3.3 Branched-SELEX procedure 

Briefly, cell-SELEX was performed as previously described (Saad, Chinerman et al. 2020). One 

round of selection was performed for each branch (Figure 1). Each selection consisted of three 

steps: Binding, elution, and amplification.  

5.3.3.1 Binding and Elution: 

SELEX was performed with cells suspended in an artificial freshwater medium (Fraquil) to 

replicate the physiological state of nutrient-limited environmental conditions Fraquil was prepared 

as described previously with a final iron concentration of 10 nM and filter-sterilized using a 0.2 

µm filter (Sarstedt) (Morel, Westall et al. 1975). Post-exponential phase cultures of all bacteria 

were rinsed twice with Fraquil (6000 × g, 15 minutes) and suspended in Fraquil. Lp cells were 

suspended in Fraquil at an OD600 of 1 corresponding to a concentration of 109 CFU/ml for. The 

concentration of cells was confirmed by CFU counts. For bacteria from each branch (target Lp 

cocktail, Lp serogroup 5, ∆fliC and non-Lp bacteria cocktail) the suspensions were adjusted to 108 

CFU/ml. The suspensions were incubated at room temperature for 24 h in Fraquil. Following 

Fraquil exposure, the cell suspensions were adjusted to obtain 107 cells per selection reaction. The 

Fraquil exposed cells were washed three times in 1X binding buffer (phosphate buffered saline 

with 0.1 mg/ml salmon sperm DNA, 1% bovine serum albumin, and 0.05% Tween 20) at room 

temperature (25°C) using 6,000 × g for ten minutes. The cell pellets were then suspended in 330 

µl of 1X binding buffer. The aptamer pool was denatured by heating at 95 °C for 10 minutes, 
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cooled immediately on ice for 10 minutes, and added to the cell suspension. Finally, 1X binding 

buffer was added to a total volume of 1 ml. The final mixture was incubated at 25 °C for 1 hour 

with mild shaking using a tube rotator at 50 rpm. Following incubation, the mixture was 

centrifuged at 6000 × g for 10 minutes and washed twice with wash buffer (phosphate buffered 

saline containing 0.05% Tween 20) to remove unbound sequences. To elute the bound sequences 

from the cells, the final cell pellet was resuspended in 100 µl nuclease free water (Ambion) and 

heated at 95 °C for 10 minutes and immediately placed on ice for 10 minutes. After centrifuging 

at 6,000 × g for 10 minutes at 25°C, the supernatant was collected and purified using overnight 

ethanol precipitation at -20 °C with 5 µg of glycogen as a carrier to recover the eluted ssDNA. The 

pellet was recovered, dried and suspended in nuclease free water (Ambion). The concentration and 

quality of the ssDNA was determined using a Nanodrop spectrophotometer (Thermofisher).  

5.3.3.2 PCR amplification:  

The purified ssDNA pool was then amplified by PCR with One Taq DNA polymerase (NEB), 

according to the manufacturer’s protocol. All primers were used at a final concentration of 0.5 µM.  

PCR conditions were as follows: initial heat activation at 95 °C for 5 min and 25 cycles of 95 °C 

for 30 s, 56.3 °C for 30 s, 72 °C for 10 s, and a final extension step of 10 min at 72 °C. After 

amplification, the concentration and size of the PCR products were confirmed by gel 

electrophoresis using a 2.0% agarose gel. PCR products were then purified using a MinElute PCR 

Purification Kit (Qiagen). Samples were then sent for sequencing to the McGill Genome Centre. 

To verify that the characteristics of the pool change in response to selection pressure, a pool 

following ten rounds of positive selection, (R10), from a previous study was also sequenced and 

analyzed as a super-enriched control (Saad, Chinerman et al 2020). 

 

5.3.4 High-throughput sequencing of branched SELEX samples 

All high throughput sequencing steps were conducted by the McGill Genome Centre. For each 

PCR sample forward and reverse standard selection primers- (overhang followed by indexing 

PCR)- containing Nextera specific barcode sequences were used. Samples were then sequenced 

by amplicon sequencing using the ILLUMINA MISEQ platform with a v2 ,150 PE, kit (300 

cycles). 
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5.3.5 Sequence data processing and analysis 

Forward and reverse reads were sorted and parsed using the AptaSuite demultiplexing module. 

Reads included were (i) flanked by the constant primer binding regions (Forward 5’-

GCAATGGTACGGTACTTCC-3’ and Reverse 5’-CAAAAGTGCACGCTACTTTGCTAA-3′), 

(ii) had a variable region between 10 and 45 nucleotides and (iii) had a forward reverse sequence 

pair. The read pairs were then combined for each branched SELEX sample pool as well as the 

input pool. The AptaSuite Demultiplexer program was used to generate a text file of the sequences, 

each with a specific ID code along with sequence frequencies listed as counts per million 

(CPM)(Hoinka and Przytycka 2016, Hoinka, Backofen et al. 2018). This dataset was imported into 

Microsoft Excel for further analysis. For each sample pool approximately one million read pairs 

were obtained. Since Aptasuite processes reads for linear selections rather than across parallel 

selections, sequence pools were run and analyzed in batches, and the non-target pools were treated 

as “negative selection” rounds to enable parallel comparisons. For example, in one batch the input 

pool was the starting pool or round 0 of the selection process, the target Lp pool was the first round 

of selection, and the Non-Lp pool was a negative selection round. In another batch run, the input 

pool was the starting pool or round 0 of the selection process, the target Lp pool was the first round 

of selection, and the Sg5 pool was a negative selection round. In the third batch run, the input pool 

was the starting pool or round 0 of the selection process, the target Lp pool was the first round of 

selection, and the ∆fliC pool was a negative selection round. 

5.3.5.1 Global characterization of sequence pools:  

The proportion of sequences that were enriched, singletons or unique to a specific pool was 

determined using Aptasuite version 0.9.7 (Hoinka, Backofen et al. 2018) and plotted on Graphpad 

Prism 9.1.2 (Figure 2). 

For Figure 3, sequence enrichments of all sequences present in a pool were calculated, by taking 

the ratio of a specific sequence’s CPM in the branch pool to its CPM in the input pool. This 

ratio/enrichment of that specific sequence in the target pool versus the non-target pool was then 

plotted to globally visualize the characteristics of the pool and observe if there was a trend where 

a subset of sequences present in Lp target pools, are absent or depleted in non-target pools. All 

statistical analysis (Levene’s Test, White’s Test for heteroscedasticity, Standard Deviation 

determination) on sequence enrichment data were done using Excels Analysis ToolPak and XLstat. 
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5.3.5.2 Enrichment Analysis:   

Next, to narrow down the pools and eliminate the probability a sequence was amplified due to 

random chance, sequences with low frequencies (1 copy per million sequences) and singletons 

were removed from the analysis.  If a sequence was not present at least 2 times more in the target 

pool as compared to the input pool, then it was not analyzed further. Sequences that met the criteria 

were evaluated further for their enrichment across their respective branches.  

To enhance identification of potential aptamers against target Lp, sequences that were present at 

least 2 times more in the target strain pool (Lp strains lp120292 + Philadelphia-1), than in the 

corresponding branch pools, were selected and analyzed further. Amongst these selected 

candidates, full length sequences of 88 nucleotides were chosen for further investigation.  

5.3.5.3 Alignment and secondary structure analysis:  

T-COFFEE webserver (default settings) was used for multiple sequence alignment of target Lp 

candidate sequences selected following enrichment analysis (Notredame, Higgins et al. 2000). 

Secondary structures of candidate sequences were obtained using UNAfolds, DNA folding 

program with adjusted settings. (Zuker 2003).   

5.3.6 Candidate aptamer binding assays 

All aptamers were individually synthesized with FITC at the 5′ end by IDT (Integrated DNA 

Technology). Candidate aptamers were tested for their binding to Lp cells as well as to non-Lp 

bacterial isolates, by flow cytometry. Candidate aptamers were also tested alongside with Lp 

aptamer R10C5 as a positive control (Saad, Chinerman et al. 2020). All cells were suspended in 

Fraquil and prepared as described above for the SELEX procedure. Briefly, 100 nM of each 

aptamer was incubated in 1X binding buffer with 107 CFU/ml of the strain used for SELEX 

(lp120292), or with the strains used in the non-Lp cocktail (Pseudomonas sp., Brevundimonas sp., 

Bacillus licheniformis., Sphingomonas sp., and Stenotrophomonas sp.) for 1 hour at 25 °C with 

mild shaking. As a negative control, bacteria were also incubated with 100 nM of a FITC-labeled 

scrambled sequence of aptamer R10C5 (5′-FITC-

ACAGAATCAGTTCGAGTACATACGCGCGAAGACTCCTAAGGCCGTAGCGTTCTTCCC

GGTAATACCATG). The suspension was centrifuged for 10 minutes at 6000 g to eliminate 

excess aptamer and resuspended. These suspensions were then analyzed using flow cytometry. 
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Analysis was performed on a Guava easyCyte (Millipore) using the green fluorescence channel. 

A total of 5,000 events were recorded. Cells suspended in binding buffer without any aptamer 

added were used as controls to measure autofluorescence. For analysis, a gate was first defined 

based on the forward and side scatters that included most of the cells. Then, a histogram of the 

number of cells vs the fluorescence intensity was used to define a region where cells were 

considered positive for green fluorescence and therefore stained with candidate aptamers. This 

region was setup to include very few cells of the unstained control and therefore represent 

fluorescence above the autofluorescence. Each experiment was done in triplicate and the 

percentage of stained cells was recorded. Statistical differences were assessed using ANOVA and 

Dunnett correction for multiple comparison using GraphPad Prism 9.1.2. 

 

5.4 RESULTS 

5.4.1 Choice of input pool  

Analysis of sequence pools from our previously reported SELEX methodology (original SELEX) 

confirmed our prior findings where a noticeable decrease in sequence length was observed as the 

number of SELEX rounds increased (Figure S1). Figure S1 shows that the proportion of 88 

nucleotide sequences, which correspond to the full length of the original randomized library, 

decreases as the number of SELEX rounds increase. This could lead to a loss of important 

secondary structures because of shortened sequence lengths. To reduce this adverse effect and 

ensure high diversity, we used a pre-enriched ssDNA pool, after three rounds of selection to Lp, 

as the input pool for our branched SELEX protocol. As shown in Figure 2, the pre-enriched pool 

is still diverse given it has a high proportion of sequences that are unrelated to sequences present 

in other pools (Unique fraction) and low levels of enrichment (Enriched fraction). 

5.4.2 Evaluation of SELEX pools 

Analysis of SELEX sequence pools show that the proportion of sequences that are enriched using 

the Branched SELEX protocol are low whereas multiple selection rounds result in a higher fraction 

of enriched sequences (Super-enriched pool, Figure 2). The branch pools are not significantly more 

enriched than the input pool (Figure 2). A likely reason for this low enrichment is due to the fact 
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there was only one selection round. The low enrichment also means there is a high proportion of 

unique sequences present, suggesting a highly diverse pool of sequences.   

To confirm these observations and evaluate if a proportion of sequences were differentially 

amplified or present in target Lp pools versus the non-target branch pools, we plotted the 

enrichment of sequences in the target pool versus the enrichment of those same sequences in a 

non-target pool (Figure 3). A highly dispersed scatterplot would indicate that sequences were 

differentially enriched in the target Lp branch versus the corresponding non-target branch. Overall, 

it is observed that the sequence population of the three branch pools does not dramatically differ 

from the sequence population of the target Lp pool. However, the absence of a completely linear 

trendline in the plots signifies that there exists a small subset of sequences in the target pool that 

are differentially enriched in the non-target pools (Figure 3 a,b,c). The Whites test and Levenes 

test indicate that across each selection branch, the variances of the target pool are unequal to 

variances of the non-target pool. The two population pools are thus not correlated and evolve 

independently of each other.  
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Figure 2. The proportion of reads of different types of sequences from target Lp pool, Serogroup 

5 Lp pool, ∆fliC mutant Lp pool and non-Lp bacteria pool. The Unique Fraction of each branch’s 

pool refers to the proportion of sequences unrelated to sequences in the input pool. Singleton reads 

are sequences that appear once in each pool whereas Enriched reads refers to sequences that are 

present in the pool and increase in abundance from the input pool. Super-enriched pool serves as 

a control and refers to the sequences generated following 10 rounds of selection. 
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Figure 3. Evaluation of global sequence enrichment in target versus non target branch pools. X-

axis indicates the enrichment of sequence in target pool while Y-axis shows enrichment of 
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sequences in non-target pool. Each point represents an individual sequence. (a) Enrichment of 

sequences in Serogroup 5 versus target pool. (b) Enrichment of sequences in mutant ∆fliC pool 

versus target pool. (c) Enrichment of sequences in non-Lp pool versus target pool.  

 

5.4.3 Pool reduction and selection of candidate sequences 

After eliminating singletons and low copy number sequences, sequences that were present at least 

2 times more in the target pool as compared to the input pool, were selected. These sequences were 

then analyzed for enrichment across their respective non-target branches. The target enriched 

sequence was further selected if it was enriched at least 2 times more in the target pool than the 

non-target pool. The selection criterion was based on the premise that the sequence must be present 

or enriched in the target Lp pool and reduced or “lost” in the non-target bacterial pools. This 

approach reduced our candidate pools and enabled us to identify (i) 39 sequences that were present 

in the target Lp pool but “lost” in the non-Lp bacteria cocktail (ii) 30 sequences that were present 

in the target Lp pool but “lost” in the ∆fliC pool and (iii) 34 sequences that were present in the 

target Lp pool but “lost” in the Serogroup 5 pool (Table S1, Excel).  The proportion of 88 

nucleotide sequences in these pools were 70%, 48.4% and 64.7% respectively. Full length (88nt) 

sequences (corresponding to the length of the original template library) were mostly selected for 

further analysis. The list of candidate sequences, the non-target branch in which they were “lost” 

and their enrichments are given in Tables 1-3. Alignment analysis shows that there are no 

significant regions of similarity between candidates “lost” from or depleted in a common non 

target branch (Figure S2). 
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Table 1. List of candidate sequences that met threshold criteria and were “lost” or less abundant 

in Serogroup 5 selection pool but enriched in target selection pool. CPM refers to counts per 

million. To determine enrichment the ratio of CPMs were calculated. The enrichment/increase in 

target pool versus non-target pool was calculated by taking the ratio of the target enrichment to 

non-target enrichment. 

Aptamer 
ID Sequence 

Input 
pool 
CPM 

Target 
pool CPM 

Sg5 
pool 
CPM 

Target pool 
CPM / Input 

pool CPM 

Sg5 
pool 

CPM / 
Input 
pool 
CPM 

Target 
enrichment / 

Sg5 
enrichment 

125251 

GCAATGGTACGGTACTT
CCCCATCCGCCCCCGTA
TGCACGTGTCCACCTCC
CCTCACGCCGCACCAAA
AGTGCACGCTACTTTGC
TAA 1.03E-05 3.55E-05 5.48E-06 3.45 0.53 6.48 

5210 

GCAATGGTACGGTACTT
CCCCTCCCACACCTGAC
GTCACGTACATCCTCTG
CCCCCGCCAGCGCCAAA
AGTGCACGCTACTTTGC
TAA 0.000018 4.26E-05 8.22E-06 2.36 0.46 5.18 

68337 

GCAATGGTACGGTACTT
CCCCAGCCCCCATCACA
TGCAGCCTGCCACTCCC
GCCCCAGCACATCCAAA
AGTGCACGCTACTTTGC
TAA 1.03E-05 2.37E-05 5.48E-06 2.29 0.53 4.32 

91549 

GCAATGGTACGGTACTT
CCCACGTCCACACTGAC
TGCCAGGTTCTGCTCCC
GCCCACAAAAGTGCAC
GCTACTTTGCTAA 1.29E-05 0.000026 5.48E-06 2.02 0.43 4.75 
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Table 2. List of candidate sequences that met threshold criteria and were lost or less abundant in 

∆fliC selection pool but enriched in target selection pool. CPM refers to counts per million. To 

determine enrichment the ratio of CPM was calculated. The enrichment/increase in target pool 

versus non-target pool was calculated by taking the ratio of the target enrichment to non-target 

enrichment. 

 

Aptamer 
ID Sequence 

Input 
pool 
CPM 

Target 
pool CPM 

∆fliC 
pool 
CPM 

Target pool 
CPM / Input 

pool CPM 

∆fliC 
pool 

CPM / 
Input 
pool 
CPM 

Target 
enrichment / 

∆fliC 
enrichment 

72190 

GCAATGGTACGGTACTT
CCGGCCACCGCCACCGT
TAGCACAACTTGTATGT
CCTTGCCCACCGCCAAA
AGTGCACGCTACTTTGC
TAA 1.03E-05 3.08E-05 3.82E-06 2.99 0.37 8.05 

68339 

GCAATGGTACGGTACTT
CCCCAGCCCCCATCACA
TGCAGCCTGCCACTCCC
GCCCCAGCACATCCAAA
AGTGCACGCTACTTTGC
TAA 1.03E-05 2.37E-05 3.82E-06 2.29 0.37 6.19 

34372 

GCAATGGTACGGTACTT
CCCCCTTACGCCTGCTG
CCCTGTACTTTGGTCCC
CCAAAAGTGCACGCTAC
TTTGCTAA 1.03E-05 2.37E-05 3.82E-06 2.29 0.37 6.19 

28172 

GCAATGGTACGGTACTT
CCCACGTGTATACACCC
CGGTACTCCCACCCACT
TCCCGTCCGCCCCCAAA
AGTGCACGCTACTTTGC
TAA 1.8E-05 3.79E-05 3.82E-06 2.10 0.211 9.92 

90478 

GCAATGGTACGGTACTT
CCCCGCCCCGCCCACGC
TCCACTATGATCCAAGC
CTTGACCCTGTGCCAAA
AGTGCACGCTACTTTGC
TAA 1.03E-05 2.13E-05 3.82E-06 2.07 0.37 5.58 
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Table 3. List of candidate sequences that met threshold criteria and were “lost” or less abundant 

in non-Lp selection pool but enriched in target selection pool. CPM refers to counts per million. 

To determine enrichment the ratio of CPM was calculated. The enrichment/increase in target pool 

versus non-target pool was calculated by taking the ratio of the target enrichment to non-target 

enrichment. 

 

5.4.4 Enrichment Profile of Candidate Sequence Across non-target branches 

The selected candidates in Tables 1-3 were further analyzed for their abundance/enrichment in 

other non-target branch pools. Aptamer candidates that were absent or most reduced in specific 

non-target pools were only chosen for further testing. For example, although sequence 125251 

Aptamer 
ID Sequence 

Input 
pool 
CPM 

Target 
pool CPM 

Non-Lp 
pool 
CPM 

Target 
pool 

CPM / 
Input 
pool 
CPM 

Non-Lp 
pool CPM 

/ Input 
pool CPM 

Target 
enrichment / 

Non-Lp 
enrichment 

77293 

GCAATGGTACGGTACTTCC
GCACGCCCGCCGAACGCC
ACATACCCTATCGTAGTAC
CCACGCCCCAAAAGTGCAC
GCTACTTTGCTAA 1.29E-05 4.5E-05 6.81E-06 3.49 0.53 6.60 

19654 

GCAATGGTACGGTACTTCC
CCACACCCTGGGCGCCTAT
GTAGACTGCACACGTACCA
CTCGTCCCAAAAGTGCACG
CTACTTTGCTAA 1.29E-05 4.02E-05 3.41E-06 3.12 0.26 11.81 

79396 

GCAATGGTACGGTACTTCC
CCCCCGCACGTGCCTCGCT
ACCCTGGCAAAAGTGCAC
GCTACTTTGCTAA 1.03E-05 2.6E-05 6.81E-06 2.52 0.66 3.82 

11547 

GCAATGGTACGGTACTTCC
CCCACACCCGCTATCGCAT
GTCACCTTCTGCACTACCT
CCACTGCCAAAAGTGCAC
GCTACTTTGCTAA 1.29E-05 3.08E-05 3.41E-06 2.38 0.26 9.03 

39728 

GCAATGGTACGGTACTTCC
CCACGGCCATATCCCACGT
CCAGTACTTCTTACCGACC
CGCCACCCAAAAGTGCAC
GCTACTTTGCTAA 1.29E-05 2.6E-05 3.41E-06 2.02 0.26 7.64 
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(Figure 4a) is highly enriched in the target pool and depleted in the Sg5 pool it was not selected 

for further analysis because it is partially enriched in non-Lp pools. This means they would bind 

to a broader array of non-target bacteria since the non-Lp pool has several water bacteria strains.  

The selected candidates, therefore, were aptamer 5210 (Figure 4a), 68339 (Figure 4b), 19654 and 

11547 (Figure 4c). Aptamer candidate 19654 and 11547 were enriched in the Lp target pool and 

absent in the non-Lp branch pool (Figure 4c). Both 19654 and 11547, however, are present in Sg5 

and ∆fliC branch pools. Aptamer candidate 68339 is enriched in the target Lp pool, significantly 

depleted in the ∆fliC branch pool and depleted in the Sg5 and non-Lp branch pools (Figure 4b). 

Aptamer candidate 5210 is highly enriched in the target Lp pool but significantly depleted in Sg5 

branch pool and the non-Lp branch pool (Figure 4a). Candidate 5210 is also slightly enriched in 

the ∆fliC branch pool. 

All the candidates also have complex stable secondary configurations under low salt and high salt 

conditions, with aptamer 5210 retaining the same secondary structure conformation in both low 

and high salt settings (Figure 5). Indeed, almost all candidates also possess a distinct bulge region, 

which is identified as the dominant structural element/motif, following multiple rounds of selection 

with target Lp (Figure S3). 
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Figure 4. Enrichment profile of candidate sequences across different branches. The enrichment is 

a ratio of sequence present in a specific branch versus the input pool. The enrichment is presented 

on a logarithmic scale. (a) The enrichment of candidate sequences (abundant in the target pool but 

“lost” or depleted in Serogroup 5) across all branches. (b) The enrichment of candidate sequences 
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(abundant in the target pool but “lost” or depleted in ∆fliC) across all other branch pools. (c) The 

enrichment of candidate sequences (abundant in the target pool but “lost” or depleted in non-Lp) 

across all other branch pools. 

(a)

 

(b) 

 

Figure 5. Secondary structures of selected candidate sequences as predicted by UNAfolds, DNA 

folding module, under modified settings, (a) 0.7-1M [Na+], 25° C and (b) 100mM [Na+], 25° C. 
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5.4.5 Candidate Aptamer Binding Assays 

Figure 6 shows the binding of aptamers 19654, 11547, 5210, and 68339 to Lp and non-Lp 

environmental isolates. Neither aptamer stains more Lp cells than the positive control R10C5. 

Scrambled is shuffled R10C5 sequence and serves as a negative control indicating a random 

sequence would not bind better. All four candidate aptamers show very low binding (less than 

10%) to non-Lp environmental isolates. Though aptamers 5210 and 68339 abundance were 

reduced in the non-Lp pool, in contrast to 11547 and 19654 that were completely depleted and 

“lost”, they also exhibited minimal binding to environmental isolates (Figure 6c and d). 

Given that 5210 was significantly reduced in the Serogroup 5 pool and 68339 was significantly 

reduced in the ∆fliC pool we investigated the binding ability of 5210 to Serogroup 5 and 68339 to 

the ∆fliC (Figure 7).   Aptamer 5210 shows reduced binding to serogroup 5 Lp compared to target 

serogroup 1 Lp. Aptamer 68339 binds ∆fliC strain and does not seem to significantly discern 

between target Lp and ∆fliC.  
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Figure 6. The specificity of FITC labelled aptamers (a) 19654 (b) 11547 (c) 5210 (d) 68339 

binding to target Lp strain lp120292 and to non-Lp cooling tower isolates, was analyzed by flow 

cytometry. The percentage of cells stained by each aptamer are presented. The binding of a 

scrambled sequence of aptamer R10C5 was used as a negative control whereas R10C5 was used 

as a positive control. The values of three experiments are shown with the mean and standard 

deviation. A two-way ANOVA with a Dunnett correction for multiple comparisons was used to 

infer statistical significance compared to positive control namely, R10C5 

aptamer+ Lp strain lp120292. No significant difference was observed between R10C5 labelling of 

Lp or aptamer candidates of Lp. No significant difference was observed between R10C5 labelling 

or aptamer candidates for each non Lp environmental isolate   ****P < 0.0001; ns, not significant.  
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 Figure 7. The binding of aptamer (a) 5210 to target Lp strain lp120292 and to Serogroup 5 strain 

was analyzed by flow cytometry. Similarly, the binding of aptamer (b) 68339 to 

target Lp strain lp120292 and to ∆fliC strain was analyzed by flow cytometry. The percentage of 

cells stained by each aptamer are presented. The binding of a scrambled sequence of aptamer 
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R10C5 was used as a negative control whereas R10C5 binding to Lp was used as a positive control. 

Cells refer to no aptamer added. The values of three experiments are shown with the mean and 

standard deviation. A two-way ANOVA with a Šídák correction for multiple comparisons was 

used to infer statistical significance. ****P < 0.0001; ns, not significant. (b)  68339 binds ∆fliC 

strain and target Lp strain whereas (a) 5210 binds target Lp strain but shows minimal binding to 

serogroup 5 strain. 

 

5.5 DISCUSSION 

A single round of parallel selecion (brached SELEX) was combined with HTS to reduce the 

sequence pools and select for sequences that are absent or depleted in the presence of non-target 

bacteria but amplified in the presence of target Lp. This strategy circumvents the need for multiple 

selection rounds or synthesis of thousands of individual sequence candidates for preliminary 

characterization as potential aptamers. 

Initial analysis shows that the fraction of unique sequences decreases as the number of selection 

rounds increase (Super-enriched pool, Figure 2) in an iterative classical SELEX strategy. One 

round of selection, as in the Branched SELEX method, results in higher proportion of unique 

sequences in each pool (Figure 2). This is in part due to the fact that cellular targets are 

multimeric,complex and thus have muliple binding sites (Kalra, Dhiman et al. 2018). It is observed 

that one round of selection, as in Branched SELEX, results in highly diverse sequences given the 

diversity of epitopes of the target cells. While  doing selection on renal cell lines Pleiko et al 

observed similar trends where the 4th round of selection had a higher proportion of unique 

sequences as opposed to the 11th round of selection (Pleiko, Saulite et al. 2019). The high 

complexity and diversity of the cell targets also means that the proportion of enriched sequences, 

after one round of selection, are significantly smaller compared to the proportion of enriched 

sequences following multiple rounds of selection (Figure 2). Large multimeric targets such as cells 

also have a higher chance of common aptamer binding targets (Figure 3) (Kalra, Dhiman et al. 

2018).This is observed when the enrichment of sequences in the target pools are compared to the 

enrichment of sequences in the non-target pools (Figure 3). A widely distributed scatterplot would 

signify that a large number of sequences evolve differentially, however we observed only a subset 

of sequences (0.004%)- ~40/106- that are differentially enriched. The proportion of this subset was 
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relatively similar regardless of the type of non-target used. In fact only a small fraction of 

sequences ~0.03% ,from the target pool was enriched by at least 2 times . These observations 

highlights a limitation of this technique. Reduced number of rounds for large targets means that 

sequences retreieved are present in low abundance and this makes it difficult to search for 

statistically signficant, differentially binding aptamers. Proteins and small molecules, by contrast, 

have a smaller and finite number of binding pockets and interactions, as comapared to cells, which 

can facilate the streamlining of a large pool of sequences (Kalra, Dhiman et al. 2018).  

The broad diveristy of the type of sequences, isolated from just one round of selection, is also 

illustrated in the alignment analysis (Figure S2). Despite being similarly enriched in the target Lp 

pool and depleted or absent in a common non-target branch pool, the selected candidate sequences 

had no regions of similarity or common motifs amongst them. 

 One round of selection also means that the probability of identifying non-specific aptamers also 

increases. Indeed, our enrichment analysis shows that the majority of the candidate sequences were 

present across the different branches/non-target pools despite being selected for their absence and 

reduction in a specific non-target (Figure 4). For example aptamer ID 90478 , was enriched in the 

Non – Lp cocktail pool and Serogroup 5 pool despite being reduced in the ∆fliC pool (Figure 5b). 

This is similar to observations made by Plieko et al 2019 who found that after 4 rounds of selection, 

there were sequences that bound to their negative selection renal cell lines (Pleiko, Saulite et al. 

2019). 

Stochastic variations due to handling steps can also affect sequence enrichment analysis (Spill, 

Weinstein et al. 2016, Alam, Chang et al. 2018). When identifying broad spectrum RNA aptamers 

using a poly-target, paralell selection approach, Alam et al 2018 noted that replicates of their 

sample pools, following three rounds of selection, showed a multimodal distribution for many 

sequence populations. This means that despite the similar selection protocol given the same target, 

a different subset of sequences was either enriched, reduced or stayed neutral (Alam, Chang et al. 

2018). The target for this study was lentiviral reverse transcriptases. Given the complexity and 

large diversity of our target pools –mulitmeric, live bacterial cells at 107 cells/ml- random 

variations in sequence frequencies could be similar to stochiastic variations due to handling steps, 

however a replicate analysis would be interesting to observe if variations in sequence popoulation 

pools are similar across replicates. 
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Given the small subset of enriched sequences,the stringency of the Branched SELEX protocol was 

ehnanced by  leveraging  the parallel selections and selecting candidate aptamers that were absent 

or reduced in other non-target pools as well (Figure 4).  These aptamers were 19654, 11547, 5210 

and 68339.   All four aptamers bound to target Lp and neither significantly bound to strains from 

the non Lp pool (Figure 6). Aptamers 19654 and 11547 were expected to be selective for Lp given 

they were absent in the non- Lp cocktail. Aptamer 5210 is also selective for target Lp and even 

discerns between Serogroup 5 and serogroup 1 Lp given that the target Lp (lp120292 ) is serogroup 

1 strain (Figure 7a). Bacteria belonging to a specific serogroup have a common surface expressed 

antigen. Different serogroups occur due to variations in the O-antigen chain of the 

lipopolysaccharide (LPS) structure of the bacteria (Lerouge and Vanderleyden 2002). LPS is also 

considered to be one of the most abundant surface molecules present on the bacterial membrane 

(Le Brun, Clifton et al. 2013). Given this result, it is possible that aptamer 5210 binds to LPS of 

serogroup 1 Lp, but additional experiments, beyond the scope of this manuscript will be required 

to confirm this. Structural analysis also reveals that the secondary structure of 5210 remains 

unchanged in high and low salt conditions, illustrating the potential stability of this aptamer (Figure 

5). However,examining the enrichment profile does not guarantee specific aptamers. Indeed, 

aptamer 68339 does not discern between ∆fliC mutant Lp and target Lp (Figure 7b) despite being 

reduced in the ∆fliC pool and enriched in the target Lp (Figure 4b). This could be a consequence 

of the minimal number of selection rounds leading to non specific sequences (Pleiko, Saulite et al. 

2019).  

All aptamer candidates had complex secondary structures in both high and low ionic strength 

conditions (Figure 5). The secondary structures were analyzed in both conditions since the ionic 

strength of water can vary depending on the source environment, minerals, presence of 

disinfectants and residuals etc. The secondary structures all possessed an internal bulge region. 

This is interesing since structural prediction analysis with Aptasuites AptaTrace module shows 

that following 10 rounds of positive selection, the most common secondary structural element that 

becomes enriched in later rounds is the bulge region (Figure S3). Tracking the enrichment of 

secondary structural elements/motifs improves  aptamer selection since aptamers recognize and 

bind to their targets by way of secondary structural elements. However a challenging aspect of 

structural analysis is the extremely high diversity of the sequence pools following one round of 

selection and the subsequent inability of several computational softwares (MEME, Aptasuite) to 
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identify an extensive dataset of non-canoncial secondary structures (Song, Zheng et al. 2019, 

Komarova, Barkova et al. 2020). Furthermore these programs were developed using RNA libraries 

(Komarova, Barkova et al. 2020). Both these factors make it difficult to analyze structural motif 

enrichment in a meaninful way. 

 

5.6 CONCLUSION 

Branched-SELEX in combination with HTS is a rapid way to enable identification of application-

specific aptamers ,binding to a particular target, from a diverse pool of sequences. However this 

method has several caveats for large complex targets , such as cells, which primarly include the 

limited evolution of the sequence pools given the vast diverisity of targets. Examining the 

enrichment of candidate sequences across non-target branch pools alone is challenging for 

identifying specific aptamers. Additional strategies are needed that would narrow down the pools 

further and improve aptamer selection.  An additional round of selection with replicates would  

meaningfully reduce the pool  and identify statistically significant, differentially binding aptamers. 

In addition to sequence enrichment, the enrichment of motif/structural elements should also be 

considered , to potentially enhance this Branched SELEX approach and highlight aptamers with 

key secondary structures that are selected for and thus contain the desired binding properties. 
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5.8 SUPPLEMENTARY DATA 

 

 

Figure S1: The proportion of 88 nucleotide (nt) sequences present in each SELEX round. The 

fraction of sequences that are 88 nt decrease with increasing SELEX rounds. 
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Figure S2: Multiple sequence alignment of randomized region of candidate sequences that were 

abundant in target pool but diminished in non-target branch pools namely Serogroup 5, ∆fliC, and 

non-Lp pools (T-coffee webserver, default settings). 
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Figure S3: Type and frequency of motifs over ten selection rounds. Each column corresponds to 

a selection round whereas the letters H, B,I,M,D, and P correspond to the elements; Hairpin, Bulge 

Loop, Inner Loop, Multiple Loop, Dangling End, and Paired. Each letters height is proportional to 

the probability of its occurrence in the pool. (Data generated in Aptasuites AptaTrace module 

v.0.9.7) 

 

Table S1: Excel File 

List of Sequences Enriched in Target Pool & Depleted in Non-Target Pool 

TableS1_Shortlist_Sequence_EnrichedinTargetpool_DepletedinNontarget 
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CHAPTER 6: DISCUSSION 

6.1 General Discussion 

The detection and characterization of infectious microbial agents is key for investigating outbreaks 

and perform epidemiologic studies (van Seventer and Hochberg 2017). Timely detection and 

characterization of infectious microbial agents also augments public health, food safety, well as 

water and environmental quality control (van Seventer and Hochberg 2017). Propagation of 

infectious microbial agents has heavy socioeconomic implications that extend far beyond the 

metrics of number of deaths or mortality as was all too evident in the recent global SARS-COV-2 

pandemic (Gadermann, Thomson et al. 2021, UNDP 2022). The presence of effective detection 

and diagnostic tools, therefore, plays a crucial role in the spread of infectious microbial agents 

such as viruses and pathogenic bacteria.  

Detection methods for bacterial pathogens such as Legionella have been heavily reliant on 

traditional methods such as the growth of organisms on selective, artificial growth media followed 

by characterization of this growth using biochemical and/or nucleic acid-based testing 

(Rajapaksha, Elbourne et al. 2019).  The time, labour, cost, and complexity associated with 

traditional methods necessitates the development of new tools and methods that would facilitate 

detection and thus timely interventions to minimize the spread of any bacterial pathogen 

(Rajapaksha, Elbourne et al. 2019).  To be viable and surpass traditional detection methods these 

new tools would need to be automated, sensitive, and rapid. Biosensors are the only analytical 

devices that come close to fitting the bill (Turner 2013). Ideally, the category of biosensors which, 

along with the aforementioned properties, are user-friendly, portable devices easily used by non-

specialists, for point of care or in situ analysis (Turner 2013). 

A biosensor incorporates a biorecognition element and harnesses the specific, sensitive interaction 

of said element with its cognate target to transduce physico-chemical phenomenon, the result of 

which is a meaningful bioanalytical measurement (Turner 2013). Given its multiple components, 

the development of a biosensor is a very complex undertaking and requires consideration and 

validation of many elements prior to being a meaningful tool for real world applications such as 

Lp detection.  
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The goal of this thesis was to develop a strategy to detect Lp, using aptamers with a SPR sensor, 

that would supplement the traditional plate count and nucleic acid amplification detection methods. 

This biosensing set-up would be further developed for field applications i.e portable, rapid, 

sensitive, specific, automated device. Indeed, much of the work in this thesis is preliminary, 

requiring an understanding of and thus manipulation of target properties -to develop aptamers as 

our biorecognition elements- as well as the physical optical phenomenon of the SPR biosensor to 

detect Lp. 

To achieve this goal the first objective was to develop aptamers, the biorecognition element, 

binding specifically to Lp. To ensure that the target for the Lp aptamer was in its native state, Cell-

SELEX was used. The target Lp was a strain from the Quebec City 2012 outbreak and was grown 

to post-exponential phase followed by exposure to Fraquil (nutrient poor media) to ensure the 

bacteria were in their transmissive phase and representative of the application environment. The 

enrichment of the pool for Lp-binding sequences was observed via flow cytometry. After 10 rounds 

of positive selection, interspersed with two rounds of negative selection, just two aptamers were 

identified by cloning and sequencing. These two aptamers were then characterized using flow 

cytometry and microscopy. 

In Chapter 3, we chose Cell-SELEX to develop aptamers against Lp. To generate robust aptamers 

against whole cells, Cell-SELEX has been a widely used method given that it eliminates the 

arduous task of selecting a specific biomarker to isolate, purify and enrich as targets for selection 

(Kaur 2018). This is important given Legionella’s broad species diversity in the environment 

which makes it more complex to select a single molecular biomarker (Duron, Doublet et al. 2018). 

For clinical use, since serogroup 1 is the most dominant isolate (National Academies of Sciences 

and Medicine 2020), it would have been useful to create aptamers using LPS of serogroup 1 strains, 

but steps would have to be undertaken to ensure the target remains in its native conformation 

following the cumbersome purification and isolation of the LPS target. Furthermore, in an 

environmental detection context, the stability of LPS molecules means that non-viable Legionella 

could still be detected following heat or biocide-based water disinfection protocols (Gao, Wang et 

al. 2006, Xue, Zhang et al. 2019) .  This has important implications when assessing the risk or 

hazard of Legionella burden. It would be costly and impractical to shut down a whole water system 

on account of dead nonpathogenic Legionella in a system.  
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Broad affinity aptamers would have been an attractive option for detecting various serogroups of 

the Legionella pneumophila subspecies as well as other environmental members of the Legionella 

genus. A modification of the Cell-SELEX method, called Sequential Toggle-SELEX was used to 

identify aptamers against bacteria of different genera- Escherichia coli, Enterobacter aerogenes, 

Klebsiella pneumoniae, Citrobacter freundii, Bacillus subtilis, and Staphylococcus epidermidis - 

by “toggling” or introducing different bacteria at each selection round (Song, Nguyen et al. 2017). 

The authors were successful in identifying aptamers with broad affinity to six bacterial taxa. To 

isolate such aptamers, one could envision a Cell-SELEX procedure where the selection rounds 

would “toggle” between cocktails/mixtures of Lp of varying serogroups as well as other members 

of the Legionella genus. However, in this case, an extensive number of negative selection rounds 

with non-target bacteria would need to be strictly included to minimize the number of selection 

rounds and the probability of obtaining non-specific aptamers (Hamula, Peng et al. 2015). 

As mentioned in Chapter 1, Legionella exists in planktonic forms transiently as part of a 

multispecies biofilm and, predominantly, intracellularly in protozoan hosts. Typically to detect 

total Lp in a system, nucleic acid-based markers are utilized (Wang, Bédard et al. 2017). For 

example, Lp from cooling tower water was previously detected with SPRi by quantifying 

Legionella 16S rRNA (Foudeh, Trigui et al. 2015). In terms of sample processing steps, this 

method is similar to other nucleic acid-based methods such as qPCR (Foudeh, Trigui et al. 2015). 

For intracellular microbial detection, previous work has shown it is possible to isolate aptamers 

that are specific to infected host surface proteins, facilitating detection of host-microbial 

complexes. Indeed, Oteng et al successfully identified high affinity aptamers against red blood 

cells that were infected with the malaria causing Plasmodium falciparum parasite (Oteng, Gu et 

al. 2020). The authors hypothesized that the infected erythrocytes encoded specific surface 

proteins and structures enabling development of such specific aptamers.  A project, involving a 

European consortium from academia and industry, attempted to identify aptamers against the 

Legionella-Amoeba complex but to date no results from this work have been made publicly 

available (APTARES-Eurostars 2016). Developing a viable aptamer against a Legionella-host 

complex is not a trivial task given the bacterium’s broad natural host range, the diversity of 

Legionella-protozoa interactions and the wide array of factors that influence these interactions all 

of which require further investigation (Boamah, Zhou et al. 2017). These aspects add to the 

complexity of developing aptamers relevant to intracellular Lp in environmental field applications.  
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Given the extensively studied and established models of Legionella-amoeba infection it may be 

useful to develop aptamers against such a target for preliminary work (Boamah, Zhou et al. 2017), 

but ,even though they are the natural reservoirs for the bacteria in the environment, developing 

aptamers against Legionella’s other protozoan hosts would be impractical given the broad diversity 

and poor characterization of these hosts (Boamah, Zhou et al. 2017).. 

Given the complexity of identifying a single biomarker that would detect all total, membrane intact 

Lp in a system, a single outbreak associated Lp strain was chosen as the target. Consequently, for 

our Cell-SELEX we did 13 rounds of selection (ten positive and two negative) all the while 

ensuring that our target Lp would have properties that are representative of Legionella in real water 

environments. To further streamline our SELEX process, we used two Pseudomonas strains – 

common inhabitants of water systems (Paranjape, Bédard et al. 2020)- for negative selection.  

An additional factor we considered for our Cell-SELEX process was the high number of selection 

rounds which could lead to PCR bias. To mitigate this effect, we performed a preparative PCR 

step in the first 3 rounds (data not shown) to determine the optimal number of PCR cycles (Sefah, 

Shangguan et al. 2010). 

Following aptamer identification, the next step was to incorporate aptamers on the SPR platform. 

Given the specific constraints of the SPR sensor discussed in Chapter 1 and 4, such as the limited 

penetration of the evanescent field where changes in the refractive index are captured as well as 

the diffusion-limited mass transport of large targets, we developed the titration assay to infer the 

concentration of Lp cells by measuring the amount of free aptamers. Multiple parameters including 

buffer conditions, aptamer concentrations, complementary aptamer probe (cApt) concentrations 

and incubation times were evaluated for optimal signal response. Of the three buffers (PBS, 

Fraquil, SSC) tested in this assay only the high salt SSC buffer facilitated incremental binding of 

aptamers to Lp such that varying concentrations of Lp could be determined. With this assay, 

concentrations of Lp down to a limit of 104 cells/ml could be detected, without any sample 

processing or signal amplification steps. The specificity of this assay was also demonstrated using 

Pseudomonas, a common inhabitant of water systems. As mentioned previously, the use of this 

assay meant that no extraction of microbial surrogate biomarkers would be required, which then 

eliminates multiple sample processing steps as well as the inability to discern whole, membrane-

intact, viable cells. This improves the time, costs and complexity associated with this method. By 
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eliminating the need to inject whole bacterial cells, we circumvented the SPR problems with 

limited field range, similar RI and minimal diffusion of large cellular targets to the metal-dielectric 

surface. An additional advantage of not injecting cells is that any confounding changes in RI, that 

occur due to morphological features of the bacteria, are not registered. Indeed, one study showed 

that despite their aptamer binding specifically to target Pseudomonas aeruginosa (PAO1) over 

other non-target bacteria in an LSPR sensor, their SPR assay showed less specificity for PAO1 

over S. aureus due to sensitivity of the system to the spherical S. aureus cells (Hu, Fu et al. 2018). 

Our assay in chapter 4 showed that the high ionic strength of the SSC buffer facilitated incremental 

binding of aptamers to Lp such that varying concentrations of Lp could be determined down to a 

limit of 104 cells/ml. Given the complexities of aptamer characterization, the configuration of this 

assay and the fact that the interaction is not a 1:1 stoichiometry, it would be difficult to ascertain 

KD values and rash to make broad conclusions regarding aptamer-target binding in real world 

settings. This assay, however, is attractive given that it is quick to perform, validated at 

temperatures in environmental settings and requires no signal amplification steps. The 

incorporation of AuNPs could improve the sensitivities of this assay by enhancing the plasmon 

resonance effect but this would have to be commensurate with aptamer-target binding for cell 

concentrations <10,000 CFU/ml (Castiello and Tabrizian 2019).  For real-world environmental 

samples, pre-enrichment and mixing modules could easily be supplemented with this assay to 

improve sensitivity. Indeed, a study from Japan where Legionella was detected onsite, in cooling 

tower water, used a portable, microfluidic, optical sensing device with the help of fluorescent 

polyclonal antibodies. Pre-enrichment of the water sample in conjunction with the mixing module 

enabled detection of Legionella down to a limit of 10 cells/ml, in contrast to 1000 cells/ml without 

pre-enrichment (Yamaguchi, Tokunaga et al. 2017).  Another promising aspect of the SPR based 

titration assay is its specificity. When using Pseudomonas there was no gradual binding of 

aptamers and thus the signal responses obtained for unbound aptamers was similar across different 

concentrations.  Furthermore, the viability test (Chapter 4, Figure 4d), confirmed that the assay 

was detecting viable, membrane intact Lp since bacterial cell concentrations were not affected 

following 1-hour exposure to the high salt SSC buffer.  

The detection limit of our assay of 104 cells/ml was not practical for Lp field applications which 

requires a detection limit of 50 cells/ml (National Academies of Sciences and Medicine 2020). 
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Furthermore, it was also observed, in the cloning and sequencing results from our first study in 

Chapter 3, that we could only identify very few candidate aptamers and that the complexity of 

these aptamers with interesting structural features was diminished with increasing rounds. 

Consequently, in Chapter 5, we set out to rapidly identify more aptamers possessing complex 

structural elements, using a combination of HTS and parallel selections. The parallel selections 

were to evolve sequences and isolate aptamers that would potentially have enhanced affinities for 

Lp in representative water environments, by using non Lp environmental water-associated bacteria 

and variants of Lp, as separate “branches” of our parallel selection (also referred to as Branched 

SELEX). The aim of this study was to utilize a combination of HTS and Branched SELEX to 

obtain deeper insights into these differentially evolved aptamer pools and isolate higher-order, 

higher affinity aptamers that would perform better in our assay setting.  The results of this study 

revealed that though we were able to identify Lp binding aptamers with selective properties, none 

of these aptamers labeled more cells than R10C5 and thus did not have enhanced binding 

properties. The study in Chapter 5, however is significant since currently, there is a limited number 

of datasets that are aptamer sequence pools following SELEX with bacterial cells. Additionally, 

highly enriched sequences were also observed which were not previously identified in Chapter 3, 

through conventional cloning and sequencing (Appendix, Table A3). The large dataset improved 

the potential of our SELEX outcomes, since the cloning and sanger sequencing of the final 

selection round in Chapter 3 only enabled identification of two aptamers, R10C5 and R10C1 from 

just 13 sequenced clones. Perhaps unsurprisingly, HTS data confirmed that both these aptamer 

sequences were also the most enriched (Appendix, Table A3). The benefit of HTS, over cloning 

and sanger sequencing, was similarly observed in a study to identify aptamers binding to Protein 

A found on the cell wall of Staphylococcus aureus bacteria. The number of candidate sequences 

identified from cloning and sanger sequencing increased from 88 to 2597 with HTS, which resulted 

in the identification of two more aptamers (Stoltenburg and Strehlitz 2018).   

The Branched-SELEX method coupled with HTS enhanced the selection process by identifying 

sequences that would have otherwise been missed in target sequence pools or present in non-target 

aptamer sequence pools. The benefit of parallel selections, in the Branched SELEX method, is that 

aptamers common to the target bacterial strain and multiple non-target bacterial strains could be 

eliminated simultaneously, without having to undergo multiple iterative SELEX rounds. This 

reduces the number of time and steps of the classic SELEX methodology. Additionally, the 
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increased set of sequences from HTS gives more options for further aptamer and aptamer-based 

assay development using either post SELEX strategies and modifications or affinity-based assays.  

 

6.2 Limitations and Considerations   

A high number of amplification steps can adversely impact SELEX outcomes. To offset this effect, 

we performed preparative PCR and removed additional salts, such as MgCl2, from our initial 

binding buffer. This was to minimize the loss of sequences that would form complex structures  

which  are not easily amplified, since the presence of salts aids in the formation of these complex 

secondary structures (Wang, Chen et al. 2019). Additionally, a previous study had successfully 

isolated several aptamers against E. coli without the use of additional salts such as MgCl2 (Kim, 

Song et al. 2013). Many groups however have successfully isolated aptamers against bacterial cells 

despite incorporating MgCl2 in their binding buffers (Bruno, Carrillo et al. 2010, Duan, Ding et al. 

2013, Marton, Cleto et al. 2016, Chen, Teng et al. 2020).  

Despite the preparative PCR step and salt exclusion it was observed that the proportion of full-

length nucleotides and thus more complex structures decreased with increasing number of rounds 

(Chapter 5, Figure S1). High throughput sequencing of multiple SELEX rounds, with or without 

MgCl2, could perhaps better illustrate the effect of the salt on SELEX outcomes. If formation of 

salt- mediated secondary structures causes loss of sequences in later rounds due to PCR 

amplification bias (Le, Krylova et al. 2019), then HTS would help identify aptamers with 

interesting structural features in earlier rounds and thus balance out any potential negative effects 

from salt inclusion.  

Though the SELEX methodology in Chapter 3 did result in two Lp binding aptamers, they are less 

structurally complex than sequences from previous rounds such as Round 6 (Chapter 3, Table 1). 

A factor that could have impacted the SELEX process was our recovery method i.e the use of 

magnetic beads for separating the PCR product to recover ssDNA for subsequent rounds of 

selection. During each round of SELEX, the average loss of product with the magnetic bead-based 

recovery method was ~77% (Table A1).  This is particularly detrimental in initial SELEX rounds 

where the diversity is high and thus sequences are present in low abundances. A low yield would 

then mean loss of these low abundance sequences with potentially desired binding properties. The 
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effect of recovery method can have negative consequences for SELEX outcomes and reduce 

aptamer enrichment (Wang, Chen et al. 2019, Oteng, Gu et al. 2020). Few works report their yields 

from recovery methods or list the amount of the ssDNA used in each round of selection. In studies 

where there are minimal or single rounds of selection, such as in Branched SELEX (Chapter 5), it 

becomes even more important to list the recovery yield to enable insights into the diversity of the 

sequence pools. Cloning and Sanger sequencing or HTS would then allow examination of these 

sequence pools for diversity. 

In addition to evaluating diversity of sequence pools, HTS can also validate and examine the 

effects of the initial library on the SELEX process (Komarova, Barkova et al. 2020). As mentioned 

previously in Chapter 1, library characteristics also affect SELEX outcomes (Vorobyeva, 

Davydova et al. 2018). Our study did not utilize any complex library design strategies such as the 

inclusion of modified or artificial nucleotides or primer-less regions. The randomized/variable 

region of our library was 45 nucleotides which is average and consistent with other studies 

(McKeague, McConnell et al. 2015, Vorobyeva, Davydova et al. 2018). A sequence distribution 

analysis of our initial library, using Aptasuite, shows that 70.2% of the sequences correspond to a 

randomized region of length 45 nucleotides (Appendix, Figure A1). This suggests that given  IDTs 

reported efficiencies, the synthesis process was adequate and primarily contained the expected 

products (Pazdernik 2020). The chemical synthesis of a random library can be subject to bias which 

means that its nucleotide composition is not necessarily in equimolar distributions i.e 25% for each 

nucleotide (Takahashi, Wu et al. 2016, Scoville, Uhm et al. 2017, Vorobyeva, Davydova et al. 

2018). Indeed, sequencing data showed that the nucleotide composition of our library had a bias 

in the randomized region towards G (~ 29%) as opposed to A, C or T (~26 %, 22%, 23%) 

(Appendix, Table A2). However, this bias seemed to have a negligible effect on the selection 

process since by the tenth round of selection, the nucleotide composition in the randomized region 

shifted towards C (~36%) followed by G (~29%). Nucleotide A was only slightly reduced (~22%) 

whereas T was significantly depleted (~ 13%) (Appendix, Table A2). This information coupled 

with the large diversity of our initial library (1015 sequences) suggests that our library did not 

negatively impact our SELEX process. 

Characterization of aptamer-target interactions is important in determining an aptamers 

performance for a specific assay. The identified two aptamers from Chapter 3 were characterized 
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for their binding affinity and selectivity prior to being used on the SPR platform in Chapter 4. 

Though SPR is well-established for characterizing ligand-target interactions, the physical 

limitations of the SPR system prompted the use of flow cytometry to evaluate the binding affinities 

by determining the equilibrium dissociation constant (KD).  Flow cytometry is also a common 

method for evaluating aptamer-cell interactions (Tan, Acquah et al. 2016).  

For both aptamers, R10C5 and R10C1, the KD values were in the ~100nM range. These values are 

not only comparable to high affinity antibodies binding to small protein targets but also consistent 

with reported dissociation constants of other bacterial binding aptamers, many of which have KD 

values in the low nanomolar range (Zhou and Rossi 2017, Trunzo and Hong 2020, Saad and 

Faucher 2021).These KD values, though very good, should not be considered definitive when 

describing aptamer functionality for specific biosensing applications. In a study identifying E. coli 

OMP binding aptamers using competitive- displacement FRET assay, Bruno et al 2010 observed 

that their aptamer Eco8F, despite exhibiting strong binding affinities with an ELISA-like 

colorimetric plate assay, performed poorly in SPR affinity analysis (Bruno, Carrillo et al. 

2010).The authors also concluded that the highest affinity aptamers identified by their ELISA-like 

colorimetric plate assay were not the most sensitive aptamers in a competitive displacement FRET 

assay format (Bruno, Carrillo et al. 2010).These affinity discrepancies were the result of inherent 

differences of the methodologies (Ostatná, Vaisocherová et al. 2008, Bruno, Carrillo et al. 2010). 

A 2013 study further highlights how aptamer binding affinities and thus functionality can be 

affected by the type of assay. With the aid of an SPRi biosensor, Daniel et al determined that the 

solution and surface-phase affinities of a well-studied thrombin binding aptamer, KD-Sol and KD-Surf   

respectively, revealed significantly distinct values (Daniel, Roupioz et al. 2013). This is because 

surface- phase affinities are affected by surface grafting density which impact both aptamer-

surface as well as aptamer-target interactions (Daniel, Roupioz et al. 2013, Simon, Bognár et al. 

2020). Avidity also affects aptamer binding strength and needs to be considered when evaluating 

KD values (Kalra, Dhiman et al. 2018). If there are multiple affinity sites, a single KD is not 

sufficient or informative with regards to aptamer binding strength. Consequently, it is critical to 

consider the method/strategy used to determine KD or conduct characterization experiments, as 

that will provide insights into an aptamer’s performance in a particular biosensing application 

(Kalra, Dhiman et al. 2018, Plach and Schubert 2020, Khan, Burciu et al. 2021). One way to obtain 
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a more accurate KD would be to identify the exact biomarker of an aptamer cellular target. In the 

case of Lp, not only would identifying the biomarker enable more accurate aptamer-target affinity 

studies, it would also determine if the biomarker target is indicative of the presence of viable 

bacteria. For example, if the biomarker is an outer membrane protein (OMP) which is susceptible 

to denaturation by heat or oxidants, unlike LPS, then such a biomarker would better illustrate the 

bacterial load and subsequently the efficacy of any disinfection protocols. 

 Affinity based assays are also not sufficient to explain aptamer-target binding. A recent study 

investigating 3 ampicillin binding aptamers showed no aptamer-target interaction following the 

use of multiple analytical techniques -namely AuNP gold nanoparticle aggregation assay, 

isothermal titration calorimetry (ITC), native nano-electrospray ionization mass spectrometry 

(native nESI-MS), and 1H-nuclear magnetic resonance spectroscopy (1H NMR) (Bottari, Daems 

et al. 2020). This was even though the aptamers had affinities in the nanomolar range and were 

independently reported and characterized multiple times in the literature (Bottari, Daems et al. 

2020). In addition to the type of assay or analytical technique -ELISA, SPR, Lateral flow assay 

(LFA) etc.- assay design or configuration also affect biosensor performance and sensitivities 

(Khan, Burciu et al. 2021). An anti-cholera toxin aptamer in multiple LFA formats, such as 

sandwich assay and competitive assay, yielded varying detection limits ranging from between 1 

and 100 ng/ml (Frohnmeyer, Tuschel et al. 2019). 

With regards to the SPR based titration assay, it was observed that there was no gradual binding 

of aptamers in the presence of Pseudomonas and thus the signal responses obtained for unbound 

aptamers was similar across different concentrations of the bacteria.  It would be largely 

speculative however, to assume that such selectivity would be retained in real world settings given 

the ionic capacity of the high salt buffer and the complexity of a water system which can contain 

Gram-positive bacteria, protozoa as well as all sorts of detritus, each with varying surface physico-

chemical properties and thus susceptible to the effects of the ionic high salt buffer (Winslow and 

Haywood 1931, Helander and Mattila-Sandholm 2000, Nagaoka, Murata et al. 2010, Gandhi and 

Shah 2016, Wang, Bédard et al. 2017, Santos, Chaumette et al. 2019, Kundukad, Udayakumar et 

al. 2020, Paranjape, Bédard et al. 2020). Indeed, despite the supernatant from 108 cells/ml of 

Pseudomonas not containing any aptamer (Chapter 4 Figure 4f), there is still a slight signal 

response measured. Whether this is because of byproducts released by the Pseudomonas 



226 
 

bacterium, that interact with the sensor surface due to the high salt buffer, remains to be 

investigated. 

A further aspect of this assay which complicates its use for real world Lp detection is the sensitivity 

of the assay. The high LOD of 104 cells/ml is a far cry from the 50 cells/ml detection limit needed 

to mitigate any propagation risk (National Academies of Sciences and Medicine 2020). Finding  

high concentrations of Legionella in maintained water systems such as premise plumbing or 

potable water is may be of limited use as there is some evidence that  other biological or abiotic 

factors would be indicative of water quality long before Legionella would reach such amounts 

(Rhoads, Garner et al. 2017). However, current biological indicators of water quality are not 

reflective of the presence of opportunistic premise plumbing pathogens (OPPPs) such as 

Legionella (Ashbolt 2015) which has led to the argument to use Legionella as a supplementary 

indicator to determine microbial drinking water quality (Zhang and Lu 2021). Furthermore, to 

develop a biosensor that is in a portable, user-friendly format instead of large instrumentation that 

could detect such small quantities of Legionella, the assay sensitivity would have to be drastically 

improved and pre-enrichment/pre-concentration as well as mixing modules would need to be 

incorporated. The titration assay developed here utilized large analytical instrumentation. The 

transducer elements of the SPR would need further development to achieve similar sensitivities on 

a smaller portable scale. The complex plasmonic phenomena means this is more challenging than 

developing portable detection technology such as lateral flow assays which often employ 

colorimetric, chemiluminescence or fluorescence phenomenon. Furthermore “signal-off” 

methods, such as the titration assay, are less practical for real world applications as they can 

increase the probability of false negatives and have higher LOD’s given they have an upper limit 

to signal suppression (Zuo, Song et al. 2007).   

One potential way to improve assay sensitivities is to identify multiple, higher order aptamers, 

meaning aptamers with more secondary structural elements. These could have enhanced binding 

properties and thus perform better in a “signal-on” format. In Chapter 5.  Branched SELEX in 

conjunction with HTS was used to identify such aptamers. However a signficant limitation of this 

technique was the reduced number of rounds for large complex targets such as cells. One round of 

selection resulted in a high diversity and thus minimal evolution of the pool. This means that the 
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sequences retreieved were present in low abundance which made it challenging to identify 

statistically signficant, differentially binding aptamers.  

One round of selection also increases  the probability of identifying non-specific aptamers. One 

group found that following 4 rounds of selection, there were  still sequences that bound to their 

negative selection renal cell lines (Pleiko, Saulite et al. 2019). Indeed our own study in Chapter 5, 

identified a sequence that bound to both the target and non-target cell, despite being depleted in 

the non-target cells sequence pool.  

Yet another limitation of the Branched SELEX protocol is due to the the complexity and large 

diversity of the targets i.e large, multimeric cells . Given the extensive target diversity random 

variations in sequence frequencies could be similar to stochiastic variations due to handling steps, 

This coupled with low sequence abundaances due to the limited number of selection rounds makes 

it difficult to identify meaninfully enriched sequences. 

These limitations also highlight a disadvantage inherent to aptamers. Unlike their proteinaceous 

counterparts i.e antibodies, aptamers have fewer possible complex configurations to adopt given 

that there are only 4  nucleotides for nucleic acids as opposed to 20 amino acids for antibodies. 

This limits their affinity and avidity. Avidity is important for aptamer interactions with complex 

targets such as bacterial cells. Furthermore aptamer structures are highly dependant on solution 

conditions. Water systems can differ in disinfectant residuals, total dissolved solids and 

conductivity as a result of ionic strength, pH and temperature fluctuations all of which can affect 

aptamer structure formation (McKeague, McConnell et al. 2015). Furthermore complex water 

matrices may have compounds or nucleases that could promote degradation of aptamers. These 

parameters are significant to consider when developing an aptamer for detection of Lp in complex 

water matrices. 

Given aptamers recognize and bind to their targets by way of secondary structural elements , 

another aspect of aptamer development to consider is structural analysis. A challenging aspect of 

this analysis, however, is the extremely high diversity of the sequence pools following one round 

of selection and the limitation of computational softwares (MEME, Aptasuite) to process an 

extensive dataset of non-canoncial secondary structures (Song, Zheng et al. 2019, Komarova, 

Barkova et al. 2020). Additionally these programs were developed using RNA libraries and limited 

in their capacity to resolve a large number od DNA based secondary structural elements. 
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(Komarova, Barkova et al. 2020). Both these aspects  make it difficult to analyze structural motif 

enrichment in a meaninful way.The aptamers identified from the parallel selection method possess 

more secondary structural elements given they are longer.  While there are reports of truncated or 

shorter length aptamers having enhanced binding efficiencies (Hu, Wang et al. 2017, Iqbal, Labib 

et al. 2015, Hassan, Dixon et al. 2021) there is also evidence that longer sequences result in more 

sequence complexity which leads to aptamers with higher affinities (Zhu, Li et al 2019). When 

identifying aptamers against programmed cell death-ligand (PD-L1), using ssDNA libraries with 

random-region lengths of 15, 30, 40, and 60 nucleotides, Zhu et al. observed candidates’ with 

longer random-region lengths (60 nt) had lower dissociation constant (Kd) and higher affinity 

compared to shorter length sequences (Zhu, Li et al 2019). 

6.3 Future Work 

The works developed in this thesis are preliminary and as such leave multiple avenues for further 

investigation and study. 

6.3.1 Branched SELEX 

The primary caveat of the Branched SELEX method, in Chapter 5, is the minimal evolution of the 

sequence pools given the vast diversity of targets. The incorporation of an additional round of 

parallel selection would reduce diversity and highlight sequences that are meaningfully enriched 

thereby narrowing down the pool and improving aptamer selection. A replicate analysis would 

minimize stochastic variations and identify aptamer candidates that are consistently enriched in 

the presence of targets. The combination of additional selection rounds and replicates would 

meaningfully reduce the pool and identify statistically significant, differentially binding aptamers. 

In addition to sequence enrichment. analysis of the enrichment of key secondary structures in the 

presence of targets would further improve the selection of high functionality aptamers. 

6.3.2 SPR Assay 

The aptamer based SPR titration assays primary limitation is the high limit of detection for Lp 

cells. To improve the assay sensitivity, AuNP labelled aptamers could be incorporated to enhance 

the plasmon resonance effect and thus amplify the signal (Castiello and Tabrizian, 2019). 

However, the effects of AuNP on the conformational folding and subsequent binding to Lp would 

first need to be examined.  The unbound aptamers could be isolated and labelled with AuNP but 
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this adds a layer of complexity and increases the cost of this method. Furthermore, the new AuNP 

labelled aptamers would have mass bulk properties that would affect any RI changes and could 

also be subject to steric hindrance. This means that surface grafting densities and chemistries 

would need to be investigated for effects for effects on signal response. 

As previously mentioned, to determine the titration assays robustness in terms of specificity, The 

use of environmental water samples would provide better insights into the applicability of this 

assay for field settings. For real world samples, pre-enrichment and mixing modules would need 

to be incorporated to better isolate Lp from a water sample. 

6.3.3 Post SELEX Modifications 

Post SELEX modifications involve strategies to improve aptamer functionality and stability 

without having to alter the SELEX process by developing modified libraries or using costly 

enzymes to amplify selected pools (Gao, Zheng et al. 2016). One such strategy is using a cocktail 

or mixture of multiple aptamer candidates. This strategy is particularly useful in enhancing 

affinities for large diversity targets such as cells who can have dynamic membrane surface 

structures in response to temperature, growth stage, nutrient availability, and oxidative stress 

agents. One of the earliest reported works using this strategy showed that a mixture of five anti-S. 

aureus aptamers showed enhanced binding efficiencies over the individual aptamers in pyogenic 

fluid samples (Cao, Li et al. 2009). Similarly, Kim et al 2014 demonstrated that a mixture of 

previously identified E. coli aptamers- E1, E2 and E10- enhanced binding efficiencies and enabled 

detection of the bacterium down to a limit of 371 CFU/ml using an electrochemical sensor with 

Au coated electrodes (Kim, Chung et al. 2014).In another study, the polyclonal aptamer library, 

R16, generated against the bacterium P. aeruginosa (PAO1), exhibited significantly higher 

labelling efficiency for 51 Pseudomonas isolates as compared to the individual C1R1 aptamer 

(Kubiczek, Raber et al. 2020). R16 was also selective for the bacteria over E. coli (Kubiczek, Raber 

et al. 2020). The authors suggested that since the composition of the bacterium’s cell wall is tightly 

regulated and thus dynamic, the diverse polyclonal library (R16) compensates for the reduced 

labelling efficiency of C1R1, by binding to targets the individual aptamer does not recognize 

(Kubiczek, Raber et al. 2020).  A mixture of aptamers identified from the HTS datasets in Chapter 

5 could be used to enhance labelling efficiencies for Lp provided the aptamers do not compete for 
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the same epitope. The effect on target specificity of such a mixture would also need to be 

investigated.  

 The use of multiple aptamers to construct a multivalent aptamer is another strategy to enhance 

capture and labelling of cellular targets. By immobilizing long sequences with >500 

aptameric/binding regions on their magnetic nanoparticles, Chen et al 2019 were able to capture 

and isolate cancer cells from whole blood (Chen, Tyagi et al. 2019). However, steps would have 

to be taken to ensure the aptameric regions orientation or structural binding component is not 

compromised. To do this a suitable scaffold/linker length and flexibility would need to be 

optimized (Vorobyeva, Vorobjev et al. 2016, Kalra, Dhiman et al. 2018). 

Aptamer truncation is another post-SELEX modification strategy that has been reported to increase 

aptamer binding affinities. The rationale for aptamer truncation is to remove non-essential 

sequence regions that could form secondary structures that would destabilize the aptamer-target 

interaction (Shangguan, Tang et al. 2007). Two aptamers identified after 12 rounds of Cell SELEX 

with the bacterium Bifidobacterium breve had lower KD values following removal/truncation of 

primer binding regions (Hu, Wang et al. 2017). A truncated version of the aptamer, R4-6, named 

Min_Crypto2, that was developed against water-borne Cryptosporidium parvum oocysts, 

performed better in a fluorescence plate-based assay than the original aptamer (Iqbal, Labib et al. 

2015, Hassan, Dixon et al. 2021).There are several works, however, where truncation of the 

aptamer has had no effect on binding affinities (Duan, Wu et al. 2012, Duan, Wu et al. 2013). This 

is because, in all likelihood, the key structural regions are conserved and unaffected by primer 

binding regions. This strategy may not be feasible for aptamers with short, randomized regions 

(~20 nt) such as R10C1, given the limited number of structural elements but R10C5, sequences 

from R6 (Chapter 3,Table 1) or the full-length sequences identified through HTS in Chapter 5 may 

be truncated and further investigated, 

Post SELEX strategies are just one avenue of improving aptamer-based assays. The modular 

nature of the SELEX process means that it can be modified to better align with our SPR biosensing 

strategy.  A type of SELEX that does this, and would be interesting to investigate for future 

research, is Capture-SELEX.  

6.3.4 Capture SELEX 
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The SELEX design in Chapter 3 does not guarantee high functionality, surface immobilized 

aptamers. An interesting SELEX strategy would be Capture-SELEX, first described by the Yingfu 

Li lab in 2005 and further developed by Stoltenberg et al. to identify aptamers binding to 

aminoglycoside antibiotics (Nutiu and Li 2005, Stoltenburg, Nikolaus et al. 2012).  Much of the 

Capture-SELEX process is similar to the classical SELEX approach in that it includes incubation 

of the library with the target, elution/extraction of target bound sequences, followed by subsequent 

amplification of these sequences. The difference however is that during Capture-SELEX, the first 

step is to immobilize the library onto a solid matrix. This is achieved with the help of special 

libraries that contain a small region known as “docking” sequences, which are complementary to 

oligos immobilized on a surface (Stoltenburg, Nikolaus et al. 2012). These sequences help “dock” 

or tether individual members of the library onto the solid surface matrix. Addition of the target to 

the immobilized oligonucleotide library will induce a conformational change or switch, which 

separates the candidate sequences from the surface matrix, leaving only the “weaker” sequences 

that preferentially hybridize to the immobilized oligos. Consequently, only target bound sequences 

are recovered. These target bound sequences are then amplified and subjected to repeated rounds 

of selection until an aptamer pool with desired properties is obtained (Stoltenburg, Nikolaus et al. 

2012).  

To eliminate any false positives, that would arise from the release of library sequences that are 

loosely bound to the matrix, Stoltenberg et al. employed numerous, stringent washing steps several 

of which were included at temperatures slightly higher (~28) than application temperatures 

(Stoltenburg, Nikolaus et al. 2012). They also incubated their immobilized DNA library-bead 

complex in selection buffer for 45 min with mild shaking (Stoltenburg, Nikolaus et al. 2012). 

These steps were to eliminate any background release/elution of hybridized oligonucleotides from 

the beads that were caused by their protocol’s incubation steps. In addition to these steps, it is also 

very important to include counter or negative selection steps. Given the large diversity of epitopes 

on bacterial cell surfaces, the negative selection steps would be crucial to enhancing affinities as 

well the selective properties of the resulting aptamer pools from such a SELEX strategy. The 

negative selection steps could be interspersed and sequentially included in the Capture SELEX 

process or even as a separate parallel Capture SELEX selection process. In either selection strategy 

HTS could be used to monitor the selection process and distinguish between sequences that are 

highly enriched in the target bound pools versus non-target bound pools. 
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We know from Chapter 4 and the regeneration steps therein, that both aptamer hybridization and 

de-hybridization result in an SPR signal response that is not dependent on large bacterial cells 

penetrating the electromagnetic field and approaching the sensor chip surface. The aptamers 

identified from Capture-SELEX could be immobilized on the surface of the SPR sensor chip in a 

specific array to minimize any steric hindrance (Hu, Fu et al. 2018) and used to detect Lp in a more 

direct manner. The release of the sensor chip-bound sequences in the presence of their bacterial 

target would result in a signal response and thus Lp could be detected and quantified. As a result 

of Capture-SELEX, these surface immobilized aptamers would have functionalities that better 

align with our SPR sensing application. The aptamers identified from the Capture-SELEX method 

could be succcesful in a “signal-on” method of detection. 

The Capture-SELEX strategy was originally designed to prevent immobilization of targets and 

thus retain their native conformation. To date, no Capture-SELEX strategy has employed the use 

of whole cell bacteria as targets (Lyu, Khan et al. 2021). A possible reason for this may be the 

complexity of the cellular target which has diverse, dynamic epitopes, running the risk of 

generating low efficiency or non-specific aptamers. One group attempted to circumvent this 

problem by using LPS of Salmonella enterica Typhimurium as the target (Ye, Duan et al. 2017).  

By combining Capture-SELEX with Toggle-SELEX, referred to as orientation selection by the 

authors, the broad affinity aptamers EA5, EA7 and EA10 were identified (Ye, Duan et al. 2017). 

BSA was used for counter selection. The authors “toggled” the selection process after the 6th round 

by using whole Salmonella typhimurium and Escherichia coli cells. They subsequently observed 

that all three aptamers could identify LPS from other Gram-negative bacteria namely Salmonella 

enterica serotype enteritidis, Escherichia coli 055: B5 and Pseudomonas aeruginosa but 

minimally labelled Salmonella typhimurium and Escherichia coli cells. Aptamer EA7 was 

determined to be the most selective aptamer and used in an assay to detect LPS in drinking water 

at the limit of 3 ng/ ml (Ye, Duan et al. 2017). This study did not identify aptamers binding to 

bacterial cells, since the target was just LPS and only one round of selection was done for each 

whole cell bacterium. However, it does demonstrate how Capture-SELEX can be used to identify 

broad affinity aptamers for water-borne pathogen detection. As mentioned previously, given the 

diversity of the Legionella genus, broad spectrum aptamers would be useful for environmental 

monitoring and risk mitigation. Instead of LPS, however, which, as previously mentioned, is 

resistant to disinfection protocols (Gao, Wang et al. 2006, Xue, Zhang et al. 2019) and not 
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indicative of viable Legionella amounts, outer membrane proteins could be used as a target in the 

Capture-SELEX protocol. The absence of target immobilization steps means that the target would 

be in its native state increasing the robustness of the aptamer for detection of viable Legionella in 

water.  
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CONCLUSION 

The past two decades have seen significant growth in aptamer research and development not least 

because they are cost-effective and have versatile chemical properties. This versatility has led to 

an impetus in aptamer-based applications ranging from therapeutics and diagnostics to bioimaging 

and detection. Commercial interest in aptamer-based sensing is also high given their economic 

advantage over antibodies. Recently, the UK based company Aptamer Group, plc developed an 

aptamer against a common epitope found in the spike protein of all SARS-CoV-2 variants. This 

aptamer is being integrated onto the biotech company DeepVerge’s clinically validated 

Microtox®PD platform for the detection of SARS-CoV-2 in wastewater. Such news highlights the 

potential of aptamer-coupled sensors for detection of water-borne pathogens. 

The goal of this thesis was to develop an aptamer-coupled biosensor that would help overcome the 

limitations set by traditional methods for detecting whole Lp cells.  Given this goal, our objectives 

were to first generate potential aptamers that bind to Lp, validate, and characterize these aptamers, 

and then incorporate them onto the SPRi sensing system to determine their feasibility as a method 

to detect Lp in complex water matrices.  Though we were successful in identifying aptamers 

binding to Lp and adapting them onto the SPR platform for Lp detection, the platform requires 

further development for real world applications primarily because of the high LOD for Lp as well 

as the constraints of the SPR system. Furthermore, there is a limited understanding of the aptamer-

Lp interactions given the simple affinity-based characterization studies described in this thesis.  

The classical iterative SELEX approach in Chapter 3 coupled with cloning and sanger sequencing 

also impeded the identification of multiple, structurally complex aptamers with potentially 

improved binding properties, leading to the use of Branched SELEX in Chapter 5. 

For the Branched SELEX method, the use of HTS, in conjunction with parallel selections, 

streamlined the selection process by identifying more potential Lp aptamers that were also absent 

in non-Lp bacteria sequence pools. However, this method is limited by the complexity of the target 

which led to a minimal evolution of the aptamer pools, given just one round of selection. The 

resulting high diversity of the pools means that potentially interesting candidate sequences are 

present in low abundances making it difficult to identify significant, differentially binding 

aptamers. An additional round of parallel selection coupled with replicate analysis would enable 
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identification of higher order, structurally complex aptamers that are significantly enriched in the 

presence of target Lp and depleted or absent in the presence of non-Lp bacteria. 

As discussed in Chapters 1 and 2, the SELEX methodology, must take into consideration many 

elements which include target properties since these dictate the type of sequences enriched in 

SELEX pools. The partitioning, recovery and analysis of these sequences must then be carefully 

optimized in order to minimize the loss of any potential high-affinity aptamers. Additionally, to 

achieve the ideal aptamer kinetics of a specific assay, the SELEX process should also, if possible, 

align as close as possible to the end application platform.  
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APPENDIX 

 

File A1 (Chapter 2, Table S1):  

Characteristics of aptamers and biosensors developed to detect water-borne pathogens 

https://www.frontiersin.org/articles/10.3389/fmicb.2021.643797/full#supplementary-material 

 

File A2 (Chapter 5, Table S1):  

Shortlisted sequences enriched in the target pool and depleted in the non-target pools. 

TableS1_Shortlist_Sequence_EnrichedinTargetpool_DepletedinNontarget 

 

 

 

Figure A1: Frequencies of randomized region sequences of varying lengths. The total number of 

sequence reads are 1424749. Sequences with randomized region of 45 nucleotides are present in 

the highest proportion. Data and figure generated in Aptasuite version 0.9.7. 

 

 

 

 

https://www.frontiersin.org/articles/10.3389/fmicb.2021.643797/full#supplementary-material
https://mcgill-my.sharepoint.com/:x:/g/personal/mariam_saad_mail_mcgill_ca/EVUgZOiwpcpLt-dq0nUHYzQBE2IuBRai00q8WM-1gdQEiA?e=TDFn5q
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Elution PCR Strand Separation 

ROUND Added 
library/pool(ng) 

Eluted ssDNA(ng) Post PCR 
purification (ng) 

Post strand-recovery 
purification (ng) 

1 32,840 4,560 2,007.90 260.6 
2 260.6 4,627.20 2485 / 1,635 427.2 / 313.6 
3 427.2 7,869.4  1,685  323.4 
4 323.4 12,681.20 1,730 499.8 
5 499.8 7369.6 2120 333.2 
6 333.2 6634.6 2,323 672 
7 672 9,148.80 2,755.20 837.2 
NS1 837.2  NA (Buffer mixture) 5,260.80 487.6 
8 487.6 9,329.60 2,241.60 872.2 
9 872.2 10,291.20 2,424 672 
NS2 672 NA (Buffer mixture) 1,809.60 333.2 
10 333.2 21,971.60 

  

 

Table A1: Nucleic acid yield, listed in nanograms(ng) for each SELEX round following either 

elution, amplification (PCR) or single strand recovery steps 

 

 

 
 

Library Round 1 Round 3 Round 10 
A 25.64 24.01 19.75 22.02 
G 28.7 26.71 22.6 29.36 
C 22.38 25.25 36.1 36.14 
T 23.28 24.03 21.55 12.49 

 

Table A2: Nucleotide composition of initial library pool as well sequence pools from rounds 1,3 

and 10. The proportion of each nucleotide in different rounds is given. 
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  R10 
 

R3 
 

Library 
Randomized region sequence CPM Enrichment CPM Enrichment CPM 
GGACAGTGCTGAAAACTGTGACCCCC 530713.8 68700 7.729 7.729 0 
CACGCCGCCCTCCCCCAC 72856.65 14100 5.152 5.152 0 
CCACCCCACGCTGCTCC 8846.118 1140 7.729 7.729 0 
GGACAGTGCTGAAAACTGTGACCCCC 2507.758 973 2.576 2.576 0 
GGGGCGGGGGG 4134.667 802 5.152 5.152 0 
GCCCAAACTGTGACCCCTACTG 4582.928 445 10.305 10.305 0 
GGGGGGGGGGG 1075.201 417 2.576 2.576 0 
GGGGGGGGGGGG 1068.932 415 2.576 2.576 0 
GGGGCGGGGGGG 116513.6 243 479.17 479.17 0 
GGGGGGGGTGGG 479.609 186 2.576 2.576 0 
GGGGCGGGGAGG 445.127 173 2.576 2.576 0 
GGGGCGGGTGGG 739.789 144 5.152 5.152 0 
GGGGCGGGAGGG 366.76 142 2.576 2.576 0 
CACACCCCCGCCCCCCAC 708.442 137 5.152 5.152 0 
CCACATGCACCCTCCC 341.682 133 2.576 2.576 0 
GGGGCGGGGGGC 275.853 107 2.576 2.576 0 
GGGGCGGGGGGG 235.102 91.3 2.576 2.576 0 
GGGGCGGGGGGG 231.968 90 2.576 2.576 0 
GGGGCGGGGGGG 206.89 80.3 2.576 2.576 0 
GGGCGGGGGGG 178.678 69.4 2.576 2.576 0 
CCCTGCCGCCCTCCTCAC 178.678 69.4 2.576 2.576 0 
CCACGCCACGCCCCTCCC 175.543 68.1 2.576 2.576 0 
GGGGCGGGGGGG 689.634 66.9 10.305 10.305 0 
CACTCCCCACACCGCCC 169.274 65.7 2.576 2.576 0 
CAACCGGCCC 9930.723 55.9 177.757 177.757 0 
GGGGCGGTGGGG 134.792 52.3 2.576 2.576 0 
CACGCCGCCCTCCCCCA 128.523 49.9 2.576 2.576 0 
GGGGCGGGGGGG 125.388 48.7 2.576 2.576 0 
GGGGCGGGGGAG 247.641 48.1 5.152 5.152 0 
CCCCCCACGC 122.253 47.5 2.576 2.576 0 
CCACGGCCCCAC 238.237 46.2 5.152 5.152 0 
CACACACGCCC 115.984 45 2.576 2.576 0 
CACCCCACGCC 103.445 40.2 2.576 2.576 0 
GGCGGCATGCACATCGGGGGTCACATG 307.2 39.7 7.729 7.729 0 
CACACCCCCCGC 97.176 37.7 2.576 2.576 0 
CACCCCACGC 94.041 36.5 2.576 2.576 0 
ACCCGGGCTGCC 6849.315 33.2 206.095 206.095 0 
CACGCCGCCCCCCTC 84.637 32.9 2.576 2.576 0 
CCACGCCCCACCACCCTTCGC 81.502 31.6 2.576 2.576 0 
CACCCCGCCC 78.367 30.4 2.576 2.576 0 
CCACGCCACCTCATTACCC 78.367 30.4 2.576 2.576 0 
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Table A3: Top 50 sequences enriched in Round 10, listed in descending order of enrichment. 

Sequences are listed without primer binding sites. CPM refers to counts per million. The 

underlined sequences correspond to R10C5 and R10C1, respectively. Data generated in 

Aptasuite version 0.9.7. 

CACGCCGCCCTCCCCCAC 75.233 29.2 2.576 2.576 0 
CCACACCCCACCACCCTATACGCAC 147.331 28.6 5.152 5.152 0 
CACGCCCCTACCCCCAC 144.196 28 5.152 5.152 0 
GGGGGAGGGGT 68.963 26.8 2.576 2.576 0 
CCACCCCACGCTGCTCC 68.963 26.8 2.576 2.576 0 
CACGCCACCCC 68.963 26.8 2.576 2.576 0 
CACACCCCCGCCCCCCGC 59.559 23.1 2.576 2.576 0 
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