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Abstract

This thesis presents a deep learning framework, along with key insights and design deci-

sions, for the problem of Multiple Sclerosis (MS) lesion segmentation and detection. Our

approach, inspired by nnU-Net (’No-New-Net’), confirms that a baseline UNet, properly

configured and optimized, can achieve state-of-the-art performance on medical image

segmentation tasks. Our approach shows significant performance gains over previously

published results on the same dataset. Next, we examine the segmentation-detection

tradeoff that exists when segmenting MS lesions of different sizes. Specifically, in cases

where there is a mix of small and large lesions, standard binary cross entropy loss will

result in better segmentation of large lesions at the expense of missing small ones. We

propose Lesion Size Reweighing (LSR) to reweigh the loss function such that good detec-

tion performance does not come at the cost of segmentation quality. Experiments show

significant improvements in small lesion detection performance while maintaining seg-

mentation accuracy. Finally, we examine the role of dataset bias in the context of ag-

gregated datasets, proposing a generalized affine conditioning framework to learn and

account for complex cohort biases across multi-source datasets.
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Abrégé

Cette thèse présente un cadre d’apprentissage profond, ainsi que des perspectives clés

et des décisions de conception, pour les problèmes de segmentation et de détection des

lésions de sclérose en plaques (SEP). Notre approche, inspirée de nnU-Net («No-New-

Net»), confirme qu’un UNet de base, correctement configuré et optimisé, peut attein-

dre des performances de pointe sur la tâche de segmentation d’images médicales. Notre

méthode montre des gains de performance significatifs par rapport aux résultats précédem-

ment publiés sur le même jeu de données. Ensuite, nous examinons le compromis segmentation-

détection inhérent à la segmentation des lésions de SEP de tailles différentes. Plus pré-

cisément, dans les cas où il existe un mélange de petites et de grandes lésions, l’utilisation

de la perte d’entropie croisée binaire standard se traduit par une meilleure segmentation

des grandes lésions au détriment des petites lésions qui ne sont pas détectées. Nous pro-

posons la repondération de la taille des lésions (LSR) pour pondérer la fonction de perte

de telle sorte que les bonnes performances de détection ne se fassent pas aux dépens de

la qualité de la segmentation. Les expériences montrent une amélioration significative

de la performance de détection des petites lésions tout en maintenant la précision de la

segmentation. Enfin, nous examinons le rôle du biais de données dans le contexte des

jeux de données agrégés, en proposant un cadre de conditionnement affine généralisé

pour apprendre et tenir compte des biais de cohorte complexes dans des jeux de données

multi-sources.
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Chapter 1

Introduction

Deep learning has become an important method across a number of fields, bringing about

breakthroughs in processing text, speech, audio, images, and video [56]. In the context

of computer vision, deep learning gained widespread attention with the publication of

AlexNet [53] in 2012, with deep learning methods becoming state-of-the-art across a num-

ber of computer vision tasks shortly thereafter [104]. Comparatively speaking, the adop-

tion of deep learning in the medical imaging field has been relatively slow, in part due to

the increased computation required to process large 3D medical data. However, with the

publication of a landmark biomedical image segmentation approach, the UNet in 2015,

the field saw explosive growth, with the UNet outperforming competing methods on

a number of public challenges [1, 65]. However, while UNet-based methods have per-

formed well based on overlap metrics biased towards larger structures and pathologies

such as DICE, some neurological diseases such as Multiple Sclerosis (MS), typically entail

multiple lesions that span a wide range of sizes, from as little as three voxels to thousands

of voxels. In such contexts, initial results appeared to indicate that the UNet performed

poorly or otherwise under-performed other approaches [42, 93]. As a result, numerous

publications have proposed new mechanisms or enhancements to improve or otherwise

build upon the UNet architecture.
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More recent work, nnU-Net (’No New-Net’), has shown that a UNet, without major

modifications, can achieve State Of the Art (SOTA) performance on not just larger focal

pathologies, but small ones too, provided that the model is well-tuned, and trained using

a well engineered pipeline [38]. Although these findings appear to contradict a signifi-

cant portion of the published literature, they are persuasive as they were established on

49 segmentation tasks across 19 public medical imaging datasets with test sets that are

not accessible to participants. Overall, nnU-Net sets a new SOTA on 29 of the 49 tasks,

while otherwise achieving results that are on par with, or near SOTA on the remaining

tasks. More recently, this same approach was entered into two different medical image

segmentation challenges, achieving 1st place out of 78 teams in the 2020 BRATS brain

tumor segmentation challenge [40], and 2nd place out of 98 teams in the 2020 COVID19

lung lesion segmentation challenge (ranked 1st place among the 97 teams that did not

have access to additional COVID19 lung lesion data) [79].

Overall, the No New-Net publication claims that in practice the large performance dif-

ferences observed between methods typically have more to do with differences between

experimental pipelines (i.e. implementation, hyperparameter optimization, pipeline con-

figuration, etc.), rather than differences between the model architecture itself. This was

also pointed out by Litjens et al. who made the case that "the exact architecture is not

the most important determinant in getting a good solution" [60]. However, while the No

New-Net publication does claim that many previously published architecture modifica-

tions are likely not superior to baseline, they do not make this claim in general, pointing

out on the CREMI dataset [26] that: "while nnU-Net’s performance is highly competi-

tive (rank 6/39), manual adaptation of the loss function as well as electron microscopy-

specific preprocessing may be necessary to surpass state-of-the-art performance" [38].

This indicates that while a well engineered pipeline is a necessary condition to obtain

SOTA performance, it is not a sufficient one.

While the No New-Net publication is an important contribution to the literature,

demonstrating the need to properly engineer a robust pipeline and to establish a strong

2



baseline before attempting to build upon it, it is focused on obtaining SOTA performance

in the context of challenge datasets. However, in practice, achieving SOTA performance

is not the only consideration. Uncertainty estimates, for instance, are particularly impor-

tant in medical imaging contexts, and only require that dropout layers be added to the

model [71]. Another emerging area of interest is generalization across datasets in the con-

text of medical imaging segmentation problems. Medical images contain many sources of

variability including differences in scanners, imaging acquisition parameters, and resolu-

tions, with significant research being done in this area [8, 48, 100]. Variability in labeling,

uncommon in the context of natural images, is a significant source of variability in the

medical image segmentation context. Medical experts (i.e. raters) commonly disagree

with respect to where the boundary of a lesion actually is [31], leading to high inter-rater

variability. Recent work has examined modeling labeling style differences between indi-

vidual raters in the context of a single dataset [15,45,89,103]. However, as all of this work

is done within the context of a single dataset, it does not investigate how labeling style

differences affect generalization across datasets. Furthermore, labeling style differences

between datasets prevents combining datasets, which is a significant disadvantage given

the small size of most medical datasets.

In this thesis, we explore the process of engineering a deep learning systems, and

making several distinct contributions along the way. First, we discuss the process of en-

gineering a robust deep learning baseline for focal pathology segmentation and detec-

tion, which with the success of methods like No New-Net, we would argue is currently

the most significant challenge the research community currently faces. We cover sev-

eral important considerations with respect to metrics, pointing out easily made errors

with respect to how metrics are calculated, monitored, and interpreted. Furthermore, we

cover techniques to improve computational efficiency, which with common deep learning

models taking days or even weeks to train, are an important consideration. We cover the

process of establishing a robust baseline model on which to build on, examining common

optimization difficulties, the process of tuning and configuring each baseline to the task
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at hand, and several other important considerations that must be made when comparing

methods. Second, through close metric analysis, we show that a significant gap exists

between the optimal operating points (i.e. thresholds) for segmentation vs. detection,

and present a method to close this gap such that optimal segmentation and detection per-

formance can be obtained simultaneously. Third, we present the first approach that, by

modeling rater biases across datasets, enables a single model to be trained on an aggre-

gated dataset, containing multiple different cohort biases, without a significant drop in

performance.

1.1 Multiple Sclerosis

Multiple Sclerosis (MS) is a neurological disease in which the insulating cover neurons in

the brain and spinal cord become damaged over time. According to the Multiple Sclero-

sis International Federation, an estimated 2.3 Million people are afflicted with the disease,

with Canada having the highest rates of MS in the world, with a prevalence of 291 per

100,000 people [12]. MS results in a wide range of signs and symptoms, with progres-

sively worse sensory, motor, and cognitive deficits developing over time. There is no cure

for the disease, with life expectancy 5 to 10 years lower than the general population, and

with those toward the end of life requiring significant supportive care to carry out daily

activities [18].

In Multiple Sclerosis, a common hallmark of the disease is the appearance of focal

lesions in the brain and spinal cord as a result of the breakdown in the insulating cover

of neurons [18]. Through the use of brain Magnetic Resonance Imaging (MRI), clinicians

can monitor the development of focal lesions to monitor and stage the disease, or to deter-

mine the efficacy of treatment [69]. Labelling focal lesions remains a challenge, requiring

trained experts to delineate lesions across 3D medical volumes. This process is subject

to significant inter-rater and intra-rater variability, in which different raters will annotate

the same sample differently, as will the same rater across different reads of the same sam-
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Figure 1.1: A cross-sectional slice from five random data samples. Example shows the

degree of variability in Multiple Sclerosis imaging data, both in terms of lesion size (from

very small to very large), and in terms of imaging differences across samples. All samples

are of the fluid-attenuated inversion recovery (FLAIR) sequence type.

ple [27, 86]. The lesions themselves also present a great deal of variability, with lesions

presenting in all sorts of shapes and sizes, and can range anywhere from three voxels to

thousands of voxels in size. In Figure 1.1, we provide an example of the extent of variabil-

ity that can be expected across different data samples. We discuss automated methods for

segmentation in the context of multiple sclerosis in more detail in Section 2.3.

1.2 Contributions of Thesis

In this thesis, we will be examining the process of engineering deep learning systems in

the context of focal pathology segmentation, presenting unique solutions to some of the

problems we encountered along the way.

1. Engineering Deep Learning Systems: We discuss the importance of a well-engineered

pipeline, backing this up with several sets of experiments to show the need for care-

ful consideration of several inter-related factors, particularly with respect to com-

puting and interpreting metrics, and computational efficiency. Next, we establish

a robust model for segmentation and detection of focal pathologies, demonstrating

the need to properly configure and tune models to the problem at hand.
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Figure 1.2: System overview showing training on the left and testing on the right. The

left shows how we train with multiple cohorts and use auxiliary cohort information to

learn the associated bias. On the right is how we use cohort information during testing to

generate multiple labels for an image in a desired style.

2. Lesion Size Reweighting: Multiple Sclerosis lesions can span a range of sizes, from

as little as 3 voxels, to well over 1000 voxels (see Figure 1.1). Given the wide range

of lesion sizes, segmentation models trained with standard loss functions typically

better segment large lesions at the expense of missing small ones. We present a

novel loss reweighing strategy that substantially improves small lesion detection

performance while maintaining segmentation performance.

3. Cohort Bias Adaptation in Aggregated Datasets: Medical datasets are typically

small, which can be an obstacle to training a robust model that can generalize well.

Combining datasets isn’t straightforward given the high degree of intra-rater and

inter-rater variability, along with differences in scanner, site, and acquisition pa-

rameters. We present a novel mechanism to model biases between patient cohorts

as manifested in the labeling. We demonstrate how this mechanism can be used
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to aggregate datasets with different labeling distributions. An overview of the ap-

proach can be found in Figure 1.2.

1.3 Outline of Thesis

This thesis discusses the process of engineering deep learning systems for focal pathology

segmentation and detection.

Chapter 2 introduces relevant literature. We first discuss image segmentation in the

context of natural images, discussing both machine learning and deep learning, high-

lighting important differences between the two approaches. Next, we cover image seg-

mentation in the context of medical imaging in more detail, discussing recent develop-

ments which establish that a well-engineered U-Net (2015) remains state-of-the-art in

2021. We review work related to aggregating datasets, particularly with respect to the

unique dataset-specific biases that must be taken into account.

Chapter 3 presents background on deep learning, the process of training deep learn-

ing models, and an in-depth look at the metrics used in the context of focal pathology

segmentation.

Chapter 4 describes the engineering process involved in building deep learning sys-

tems, demonstrating the importance of several key implementation decisions, and the

implications of these decisions on the model development and analysis process. Next,

we examine several important configuration and hyperparameter decisions, demonstrat-

ing the importance of domain knowledge, in both deep learning and the problem under

consideration, to effectively configure and tune deep learning models for the task of focal

pathology segmentation.

Chapter 5 presents Lesion Size Reweighting (LSR) [75], an approach that reweights

each lesion as a function of the number of voxels that it contains. LSR addresses a prob-

lem inherent with voxel-wise loss functions, which while effective at training models to

produce accurate segmentations as measured by voxel-wise metrics such as DICE, suffer
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from an inherent bias towards large lesions that contain more voxels at the expense of

missing small ones. LSR closes the segmentation/detection performance gap, showing

that with the right lesion reweighing strategy, high overall simultaneous detection and

segmentation accuracies are achievable.

Chapter 6 proposes Source-Conditioned Instance Normalization (SCIN) [74], an ap-

proach that models source-specific (or cohort-specific) biases in aggregated datasets. By

doing so, SCIN makes it possible to train a high performance model on an aggregate

dataset, avoiding the performance penalty observed when naively pooling datasets with

different biases together.

Chapter 7 concludes the thesis, summarizing the key contributions detailed in Chap-

ter 4 (Engineering Deep Learning Systems), Chapter 5 (Lesion Size Reweighting), and

Chapter 6 (Cohort Bias Adaptation in Aggregated Datasets).
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Chapter 2

Related Work

This chapter reviews pertinent literature related to image segmentation in the medical

imaging context. First, we review previous work on image segmentation in the context

of natural images. Second, we review prior work in the medical image segmentation

field, pointing out recent developments that highlight the need for an increased focus on

reproducibility. Third, we take a closer look at previous work related to medical image

segmentation in the context of multiple sclerosis. Fourth, we review prior literature on

learning with aggregated medical imaging datasets.

2.1 Image Segmentation

Image segmentation is the task of labeling every pixel of an image with a specific class,

partitioning the image into specific segments. An example of image segmentation in the

context of natural images can be found in Figure 2.1, where an image of a cat against

an outdoor background is segmented into four classes: Cat, Grass, Sky, and Trees. Clas-

sification methods originally developed for unstructured data, such as Support Vector

Machines [107], or Random Forests [83], when applied to the raw pixel intensities in an

image, make the implicit assumption that each pixel is completely independent. How-

ever, this assumption clearly doesn’t hold in the context of imaging data, as the intensities
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(a) Cat (b) Segmentation: Grass, Cat, Trees, Sky

Figure 2.1: An image segmentation example. Images courtesy of [58]

of nearby pixels in images are generally correlated. For example, in Figure 2.1a, we see

that small neighborhoods of pixels belonging to the ’Grass’ class end up forming a com-

mon pattern. To take advantage of correlations between neighboring pixel intensities, we

can utilize feature extraction techniques that implicitly model spatial relationships, such

as the convolution operation. Features extracted with such techniques are a function of

the pixel intensity values of more than a single pixel, allowing spatial relationships be-

tween pixels to be modelled. For example, the Sobel Operator [47], a type of convolution,

emphasizes edges in imaging data.

One limitation of pixel-wise classifiers is that while spatial relationships between pix-

els were modeled implicitly through feature extraction techniques (e.g. sobel operator,

textures, etc.), pixel-wise classifiers do not explicitly model spatial relationships between

neighboring predictions. In other words, pixel-wise classifiers do not explicitly take into

account the consistency of a particular pixel’s class prediction with the class prediction of

neighboring pixels. To address these limitations, Markov Random Fields (MRFs) [59] and

Conditional Random Fields (CRFs) [35] were introduced, allowing spatial relationships

between neighboring labels to be considered.
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Although MRFs and CRFs improved upon pixel-wise classifiers that did not explic-

itly consider spatial relationships, it is important to note that the benefit produced by

these methods is directly related to the degree to which the extracted features are able to

model spatial relationships. If extracted features incorporate sufficient context, explicitly

modeling spatial relationships with MRFs and CRFs is not necessary. Indeed, recently

developed methods that make use of deep learning [78] are able to learn features that in-

corporate much more context that hand-crafted methods, alleviating the need to explicitly

model spatial relationships between pixels. We discuss deep learning applied to the task

of image segmentation in more detail in the following section.

2.1.1 Deep Learning for Image Segmentation

Although feature extraction techniques, like the Sobel Operator [47], allow the modeling

of spatial relationships between image pixels, they are hand-crafted, requiring manual

design and thus limiting the complexity of any individual feature extractor to that which

can be designed by a human expert. Much more recent work has focused on learning

features via deep learning, which allow arbitrarily complex features to be learned through

backpropagation [56].

Deep learning based techniques form the basis of most state-of-the-art techniques in

use today. Deep learning models have been more successful than traditional methods

because they can learn complex features (also known as representations) optimized for

the task at hand rather than using much less complex hand-crafted features that are cre-

ated by domain experts. Deep learning models learn these features through the use of

multi-layer models, that sequentially build up representations of data at multiple levels

of abstraction [56]. In the context of natural images, common pixel-wise segmentation

models include FCN [61], an type of encoder-only architecture that combines predictions

from multiple scales. Skip connections of this kind resemble deep supervision [106], but

also help provide more fine-grained predictions. This technique was improved upon by

SegNet [6], a type of encoder-decoder architecture, which uses a fully convolutional de-
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coder in combination with Max Unpooling to make use of fine-grained location, but not

content, information from the encoder. This was further improved upon by methods

such as FC-DenseNet [41], a type of encoder-decoder architecture, which uses a fully con-

volutional decoder in combination with feature maps from the encoder to make use of

fine-grained location and content information.

2.2 Image Segmentation in Medical Imaging

Medical image segmentation is the process of subdividing medical images into two or

more salient regions. Some examples include identifying specific brain structures such as

the hippocampus, corpus callosum, or thalamus. Or identifying pathologies such as brain

lesions. Automatic segmentation is useful for diagnosis, treatment, surgery planning, and

clinical trials. Various imaging modalities, including Ultrasound, PET, X-Ray, CT, and

MRI can be used to understand the internal anatomy of the patient. Examples of a few of

these modalities can be found in Figure 2.2.

Medical image segmentation poses a set of unique challenges that differ from natural

image segmentation. One of the most overt differences is the 3D nature of many types of

medical imaging, which can require significantly more computational resources to pro-

cess compared to natural images. Other important differences include the varied nature

of many types of pathologies, which can range from just a few voxels, to thousands of

voxels in size. Depending on the modality (X-Ray, MRI, etc.), there is also considerable

uncertainty with respect to where the boundary of a pathology actually is. In practice, this

results in rates of intra-rater and inter-rater reliability that are much higher then can gen-

erally be expected when labeling natural images. Furthermore rating protocols designed

to increase inter-rater reliability within a dataset, are not uniform across the field, and can

thus introduce systematic biases across datasets. In Section 2.4, we discuss common forms

of variance and bias in medical datasets in more detail.
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Figure 2.2: Examples of different imaging modalities of several different parts of anatomy. Task
01: Brain Tumour MRI, Task 02: Heart MRI, Task 03: Liver CT, Task 04: Hippocampus MRI, Task
05: Prostate MRI, Task 06: Lung CT. Images courtesy of: [90]

The medical image segmentation field has evolved substantially over time. Early

approaches typically used simple thresholding techniques [57], although these methods

were limited as they did not make use of contextual information. More recent work in-

cludes atlas based methods, that make use of prior information regarding the location

of key brain structures to produce an approximate segmentation [66, 109]. However,

atlas-based methods are only applicable to the segmentation of well-defined structures

(hippocampus, thalamus, cortex, etc.) in a healthy brain, rather than focal pathologies

which can potentially appear anywhere. Methods that utilize machine learning classifiers

(e.g. Logistic Regression [21], SVM [20], etc.) and hand-crafted features (e.g. SPIN [43],

SIFT [62], etc.) are another common approach, and have been applied to both healthy

structure segmentation and pathology segmentation [30,93]. However, standard machine

learning classifiers do not explicitly model spatial relationships (e.g. consistency) between
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class predictions. Probabilistic graphical models, such as Markov Random Fields (MRFs)

or Conditional Random Fields (CRFs), improved on traditional machine learning clas-

sifiers by explicitly modeling spatial relationships between voxels [35, 59]. Hierarchical

CRFs, allowed the modeling of even higher-level relationships [55]. However, machine

learning and probabilistic graphical models, like in the case of natural images, are lim-

ited by the quality of the features extracted, with performance highly dependent on the

feature extraction process [23]. Like natural images, deep learning has allowed models

to learn arbitrarily complex high-level features, but adoption has lagged behind that of

natural images due to a number of practical considerations, the most important of which

we discuss in Section 2.2.1.

2.2.1 Deep Learning for Medical Image Segmentation

Deep learning has also revolutionized the Medical Image Segmentation Field, addressing

the same key issue that also existed in natural image segmentation, namely the limited

representational capacity of handcrafted features. However, in the context of medical

images, progress has been hindered by a number of practical considerations. Medical

images are typically much larger (e.g. 256x256x256) compared to natural images, which

even at high resolution (e.g. 1200x1200) take up much less memory. As a result, methods

and training procedures designed for natural images do not typically translate well to the

medical imaging field. Indeed, given GPU memory constraints, batch sizes are typically

limited to just one or two samples. Smaller batch sizes entail significantly more gradi-

ent noise, and don’t permit the use of methods that typically speed up the optimization

process, such as batch normalization, making models much more difficult to optimize.

To make matters worse, wall-clock training times of several days on a single GPU are

common, making the number of models a researcher can train in a given time period

extremely limited. Indeed, given the computational resources required to train a model,

researchers have no choice but to tune hyperparameters by hand, as hyperparameter op-

timization algorithms (e.g. AutoML) are too costly, with a single hyperparameter opti-
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Figure 2.3: The UNet architecture originally proposed by Ronneberger et al. Each level of the
contracting path (left), consists of two 3x3 Convolution-ReLU blocks and, with the exception of
the last level, a max pooling operation to downsample the multi-channel feature maps. Each level
of the expanding path (right), consists of an ’up-conv’ (upsampling+convolution) which halves
the number of feature maps, a concatenation with the corresponding cropped feature maps from
the contracting path, and two 3x3 Convolution-ReLU blocks. The output classifier consists of a
single 1x1 Convolution. Figure courtesy of [78].

mization process with 50 experimental runs potentially taking up to a year to complete

on a single GPU.

The development of better optimization algorithms, like Adam [51], or SGD with in-

creased Momentum (e.g. 0.99) [61], and methods such as instance normalization [96],

have made training high performance models with small batch sizes much more tenable.

Indeed, one such method, the UNet [78], was a key milestone for deep learning based

medical image segmentation, with the approach taking first place in the 2015 ISBI cell

tracking challenge [65] by a large margin. The UNet architecture consists of a contracting

path that builds up representations at coarser and coarser scales, and a expanding path

that integrates higher-level representations with finer grained representations via skip

connections from the expanding path. The skip connections also play a role in gradient

flow, improving the rate at which the network converges. The UNet architecture can be
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found in Figure 2.3. Other important deep learning architectures proposed for medical

image segmentation include DeepMedic for Brain Tumor and Stroke Lesion Segmenta-

tion [46] and VNet for prostate segmentation [70].

Reproducibility and the Current State of the Art

Despite the strides made towards training deep learning models in the context of med-

ical image segmentation, deep learning models remain difficult to optimize due to the

sheer number of codependent design choices involved. This is further complicated by

the amount of computational resources required to train each model. Indeed, with mod-

els taking days, and even weeks to train, automated hyperparameter optimization meth-

ods, such as random search [7], become intractable, with a 50 experiment hyperparameter

optimization process taking up to a year to complete on a single GPU. Within these con-

straints, most researchers must tune hyperparameters ’by hand’ (see Figure 2.4), a process

that is highly dependent on the skill and experience of the researcher, inevitably leading

to suboptimal models and pipelines [38].

Since its publication in 2015, the UNet architecture has been the default baseline for

medical image segmentation tasks. Indeed, the UNet publication has garnered over

29, 000 citations as of mid-2021, with many publications proposing new extensions to

further improve the architecture. However, despite the sheer number of publications

that propose improvements to the UNet architecture, the top performing method across a

Figure 2.4: Current practice for developing biomedical image segmentation models is iterative.
Model configuration is manually designed, and hyperparameters are manually tuned. Figure
courtesy of [38].
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wide variety of public medical imaging segmentation challenges is nn-UNet (No-New

Net) [38]. As the name suggest, nn-UNet is not a new deep learning architecture or

method, instead the paper advocates that a properly implemented, well-trained UNet can

achieve competitive state-of-the-art performance without major modifications. Although

contrary to much of the literature, the findings of nn-UNet are persuasive as they are

demonstrated in the context of public challenges with test set labels that are not accessi-

ble to participants. nn-UNet has further proven itself as the current state-of-the-art in a

number of recent challenges, including a first place finish in BRATS 2020 [40], and a sec-

ond place finish in the COVID19 lung lesion segmentation challenge (ranked first among

methods that did not use additional data) [79].

It should be noted that the findings of nn-UNet, although suggestive, do not prove

that all purposed extensions to the UNet architecture are of no benefit. Rather, the find-

ings demonstrate that basic, often overlooked design, methodological, and optimization

choices have the most significant impact on model performance.

While it is impossible to conclusively demonstrate why the vast majority of published

modifications to the UNet architecture have not seen widespread adoption among the

community, the shear difficulty involved in properly configuring deep learning systems

(including competitive baselines), has been suggested as a key factor [39]. Numerous

expert decisions are involved in configuring a deep learning system for medical image

segmentation, with factors such as the optimal learning rate schedule, loss function, nor-

malization strategy, and data augmentation strategy varying widely between datasets.

Given the amount of time required to train a deep learning system for medical image seg-

mentation, extensive expert knowledge and experience is required to efficiently configure

and optimize the overall system, necessitating insight into the relationship between not

only each sub-component (e.g. loss function, learning rate schedule, etc.), but the proper-

ties of the dataset itself (e.g. distribution of voxel spacing, class ratio, imaging characteris-

tics, etc.). Indeed, given that a typical experiment can take days to run, the the number of

experiments that can be run in a given period of time is severely limited, with automated
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hyperparameter optimization methods, tuning just a small subset of the available con-

figuration and hyperparameter choices, taking up to a year to complete given the large

number of experimental runs required [7].

Another possible reason why many published methods have not seen widespread

adoption are implementation errors in the model or pipeline itself. Although there exists

little research on the prevalence of implementation errors that materially impact research

findings in the context of deep learning for medical image segmentation, recent work

by Narang et al. [73] provides some insight into the reproducibility of modifications to

the transformer architecture [101] (a model designed for natural language processing).

In this publication, the authors implement and evaluate twelve published transformer

architecture variants, finding that the majority produced no performance improvements

at all, a discovery that directly contradicted the results reported in the original publica-

tions. Additionally, they argue that hyperparameter optimization, while a contributing

factor, was not the only aspect driving the failure to reproduce the studied methods. In-

deed, an extensive hyperparameter optimization process of one of the published methods

(Universal Transformers, ICLR 2019 [22]) revealed that the method under-performed the

baseline transformer architecture no matter which hyperparameters were selected. This

despite the authors using the same dataset and validating the (re)implementation of each

method with the original authors.

Although these findings may seem shocking at first glance, there has been growing

awareness of a significant replication crisis across multiple scientific disciplines. For ex-

ample, a 2015 meta-analysis of five independent replication projects (each replicating

multiple publications) by five independent groups of researchers placed the replication

rate at 22% to 49% [28]. One landmark study, "Evaluating the replicability of social science

experiments in Nature and Science between 2010 and 2015", involving 21 publications,

with research plans approved by the original authors and with samples sizes on aver-

age five times larger than the original studies, found that only 62% of publications could
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be reproduced, with effect sizes that were approximately half of the effect size originally

reported.

2.3 Image Segmentation in Multiple Sclerosis

Early work applying deep learning to Multiple Sclerosis includes a 3D patch-based ap-

proach entered into the 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Chal-

lenge [13, 97], achieving results comparable to inter-rater variability. Later work used a

modified UNet to segment T2 lesions, however this method under-performed approaches

that did not utilize deep learning, particularly with respect to small lesions [42, 93]. Later

work cascaded two 3D patched-based approaches, where the second network is intended

to reduce the false positive rate of the first network, but the false positive rate of this

approach remains higher than traditional approaches. While early deep learning meth-

ods appeared to struggle with small lesions, more recent work on a large private dataset

showed that a UNet can indeed achieve respectable performance, even on small lesions [29].

Indeed, recent work by nnU-Net (No New-Net), demonstrated this in the context of the

public 2008 Multiple Sclerosis Segmentation Challenge Dataset [86], showing that a base-

line UNet architecture, properly trained and optimized, can outperform traditional ap-

proaches [39].

To provide some background regarding the performance range of various deep learn-

ing techniques, particularly in the context of the multiple sclerosis dataset used in this

thesis, we direct the readers attention to Table 2.1. The table lists a number of different

deep learning methods. The ’style’ of the CNN that is used is either ’patch-wise’, defined

as a model that is trained and tested on patches of data, or ’semantic-wise’ defined as

a model trained on a full volume (or slice) of data. The ’Dim’, or dimensionality of the

method refers to whether the method takes as input a 3D volume, a 2D slice, or a 2.5D slab

(a stack of 3 or more slices). Methods are stratified by ‘database’, with results reported on

ISBI 2015 [13], MICCAI 2008 [86], MICCAI 2016 [17], or a ‘Proprietary’ dataset (refer to
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Methods Database Dim CNN Style DSC PPV
Roy et al. (2018) [80] ISBI 2015 3D Semantic-wise 0.524 0.866

Birenbaum and Greenspan (2016) [9] ISBI 2015 3D Patch-wise 0.627 0.789
Valverde et al. (2019) [99] ISBI 2015 3D Patch-wise 0.63 0.840

Aslani et al. (2019) [3] ISBI 2015 2D Semantic-wise 0.61 0.899
Aslani et al. (2018) [2] ISBI 2015 2D Semantic-wise 0.698 0.74

Zhang et al. (2019a) [112] ISBI 2015 2.5D Semantic-wise 0.693 0.908
Valverde et al. (2016) [98] MICCAI2016 3D Patch-wise 0.54 N/A
McKinley et al. (2016) [67] MICCAI2016 3D Semantic-wise 0.59 N/A
Kazancli et al. (2018) [50] Proprietary 3D Patch-wise 0.58 N/A
La Rosa et al. (2020) [54] Proprietary 3D Semantic-wise 0.60 0.64
Brosch et al. (2015) [11] Proprietary 3D Semantic-wise 0.355 0.414
Gabr et al. (2020) [29] Proprietary 3D Semantic-wise 0.82 N/A

Coronado et al. (2020) [19] Proprietary 3D Semantic-wise 0.77 N/A
Zhang et al. (2018) [111] Proprietary 2D Semantic-wise 0.672 0.724

Aslani et al. (2020) [4] Proprietary 3D Semantic-wise 0.50 0.519
Gessert et al. (2020a) [33] Proprietary 4D Semantic-wise 0.64 N/A
Gessert et al. (2020b) [34] Proprietary 3D Semantic-wise 0.656 N/A
Zhang et al. (2019b) [113] Proprietary 2D Semantic-wise 0.660 N/A

Table 2.1: Proposed deep learning methods to segment T2 lesions in multiple sclerosis. Table
adapted from [110].

the publication of each method for a description of the private dataset used). The metrics

reported include ‘DSC’, which refers to voxel-level DICE performance, and ‘PPV’, which

refers to voxel-level positive predictive value. Lesion-Level detection results, despite be-

ing an important metric for this problem, were not consistently reported across methods

and therefore do not appear in this table. A description of both metrics, including the

applicability of each metric to the problem at hand, can be found in Section 3.4.

2.4 Learning with Aggregated Medical Imaging Datasets

Given that modern image segmentation techniques benefit from large amounts of data,

the relatively small size of medical imaging datasets can be an obstacle to training high

performance focal pathology segmentation systems. One strategy to increase the size of

the training set is to aggregate multiple medical imaging datasets, labeled with the same

type of focal pathology, together. However, this may actually decrease overall performance

due to cohort biases that affect the label distribution of each constituent dataset.
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Current literature has focused on accounting for distributional differences between

samples with known differences in image acquisition parameters or image sequences [8,

48, 100], or on accounting for distributional differences in the labeling of two or more

raters of the same sample [36, 44, 45, 52, 108]. However, there has been little research that

accounts for unknown cohort biases that exist between different datasets. In Chapter 6, we

discuss this problem in more detail, and propose a novel solution.

2.5 Summary

In this chapter, we reviewed relevant literature for the task of image segmentation, fo-

cusing on recent developments in deep learning applied to medical image segmentation

in particular. We began by discussing image segmentation in the context of natural im-

ages, we then discussed image segmentation in the context of medical imaging before

narrowing our focus to image segmentation in the context of Multiple Sclerosis. We pre-

sented a brief overview of published techniques in all three cases, focusing on medical

image segmentation in general, and Multiple Sclerosis lesion segmentation in particular.

Techniques discussed include traditional pixel-wise approaches based on hand-crafted

features and pixel-wise machine learning classifiers (e.g. SIFT + Support Vector Ma-

chines), methods that explicitly model spatial relationships (e.g. MRFs, CRFs), and more

recent state-of-the-art techniques that make use of deep learning (e.g. UNet). Beyond the

method’s themselves, we discussed recent work showing that a well-optimized baseline

UNet remains SOTA on most tasks, highlighting the need for an increased focus on re-

producibility. In the next chapter, we detail important background to set the foundation

for the rest of the thesis.

21



Chapter 3

Background

This chapter reviews background relevant to the task of engineering deep learning sys-

tems for focal pathology segmentation and detection. We review key terms and concepts

within the deep learning field and describe the metrics used to measure model perfor-

mance. Overall, this chapter provides the fundamentals required to understand and eval-

uate the techniques introduced in the next three chapters.

3.1 Deep Learning

Deep learning is a subfield of machine learning that has revolutionized the fields of com-

puter vision and natural language processing. Deep learning, in general, is the use of

multi-layer computational models to buildup representations of data at multiple levels of

abstraction [56, 84]. These models are trained through the backpropagation algorithm,

which updates the parameters of each layer such that the output of the model more

closely matches the target [81]. Deep learning can be differentiated from more traditional

machine learning by recognizing that deep learning methods can learn representations

(’features’) directly from data, whereas traditional machine learning algorithms require

representations (’features’) to be crafted by domain experts. By learning features end-to-
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end, deep learning algorithms are able to learn more complex and robust features than

can be extracted by more rigid human-written algorithms.

(a) Multi-Channel Convolution (b) 2x2 Max-Pool

Figure 3.1: Visualization of two of the most common operators in Convolutional Neural

Networks. Images courtesy of [102] and [49], respectively.

3.2 Convolutional Neural Networks

Convolutional Neural Networks (CCNs) are a form of deep learning the makes use of con-

volutional kernals. Convolutional kernals make the implicit assumption that pixels that

are spatially near each other are related. This assumption allows convolutional kernals to

act as feature detectors within a constrained receptive field (typically a 3x3 pixel/voxel

space). Such approaches are very paramamter efficent as the convolution can be applied

across the output of the entire previous layer (known as weight-sharing). The output of a

convolutional layer is the dot product of the convolutional kernal with the input to that

layer. As can be seen in figure 3.1a, spatial relationships are preserved in the output of a

convolutional layer.

CNNs employ pooling-layers to reduce the spatial dimensions of the input and al-

low subsequent layers to work at a higher level of abstraction than a single-layer con-

volutional neural network. Figure 3.1b demonstrates the application of 2x2 (stride 2)

max-pooling to a 4x4 input. We can see that the maximum activation within each non-

overlapping window is taken as the output.
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Between subsequent convolutional layers, a non-linear activation function is typically

used. The use of a non-linear activation function allows CNNs (and ANNs more gen-

erally) to learn non-linear representations of the input. In general, CNNs use the ReLU

activation function (or similar variants such as the LeakyReLU activation function [63]).

3.3 Training Neural Networks

(a) Segmentation (b) Detection

Figure 3.2: Example illustrating
the difference between segmenta-
tion (left) and detection (right).

Training neural networks consists of repeated applica-

tion of the backpropagation algorithm [56,84] followed

by a weight update step. At a very basic level, this con-

sists of passing a batch of data through the network,

computing some loss between the the neural network

output and the target output, using the backpropaga-

tion algorithm to calculate gradients for all weights in

the network with respect to this loss, and then applying

a weight update step that is a function of these gradients. In practice, there are a number

of different loss functions that can be used, but any such loss function must be differen-

tiable. Choosing the most appropriate loss function is an important consideration when

designing a deep learning system, as the network weights will be optimized to minimize

this loss.

The training process continues until the metric of interest, computed on the hold-out

validation set, plautus. Although the loss on the validation set usually serves as an ade-

quate measure of model performance, it is important to remember that the loss function

is simply a differential surrogate for the metric that we are actually interested in (Detection

F1, Segmentation DICE, etc.). In some cases, the metric of interest cannot be computed

in real-time without parallelization, a programming paradigm that can complicate the

pipeline development process.
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Deep learning models are also susceptible to overfitting, a process where the model

learns features from the training set that do not generalize to unseen data. Overfitting can

be addressed by using regularization. The most common forms of regularization include

L2 weight decay, data augmentation, and dropout [92].

3.4 Metrics

What constitutes the best model is typically based on some metric, in particular for seg-

mentation tasks: F1 (DICE) score, or average precision (AP), are most often used. Fur-

thermore, since models can take hundreds of GPU hours to train, it is important to make

sure that the chosen metric improves over the course of training so that poor models can

be terminated early, and to insure that any issues can be quickly identified.

Metrics give an indication of the performance of the model. For class imbalanced

problems, TPR (True Positive Rate, or Recall) and PPV (Positive Predictive Value, or Pre-

cision) are more informative than metrics than make use of TN (True Negative) as this

term can dominate the metric when the negative label is the majority class [82].

TPR =
TP

TP + FN
= 1− FNR (3.1)

PPV =
TP

TP + FP
= 1− FDR (3.2)

F1 =
2 · TP

2 · TP + FP + FN
= 2 · TPR · PPV

TPR + PPV
(3.3)

In the context focal pathologies, both segmentation and detection are important met-

rics to gauge model performance. Segmentation metrics, however are inherently biased

towards lesions that contain more voxels. But given that the detection of lesions of all

sizes is typically important (to diagnose disease, monitor treatment efficacy, etc.), seg-
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mentation metrics alone are insufficient in most contexts. In practice, both metrics are

considered.

3.4.1 Segmentation Metrics

Voxel-Level metrics provide an indication of the quality of the segmentation output pro-

duced by the network. They are a function of TP, FP, and FN at the voxel-level. Voxel-Level

TP, FP, and FN are computed by binarizing the output of the model at a given threshold.

3.4.2 Detection Metrics

Figure 3.3: View of the 18-
connected component neigh-
borhood of a single voxel. Im-
age courtesy of [95].

Lesion-Level metrics provide an indication of the lesion de-

tection capability of the model. These metrics are a func-

tion of TP, FP, and FN at the lesion-level. Lesion-level TP, FP,

and FN are calculated as follows: First the output of the

model is binarized. Next, a connected component anal-

ysis (using an 18-connected component neighborhood as

illustrated in Figure 3.3) is performed on both the bina-

rized output and the ’ground truth’ labeling, with each

connected component representing a distinct lesion. A lesion in the binarized model out-

put is considered a TP if it overlaps with at least three, or more than 50%, of the ground

truth lesion voxels. Otherwise, it is a FP. Ground truth lesions with insufficient overlap

are considered a FN.

Metrics are stratified by size. With each TP, FP, or FN lesion classified as either ’Tiny’

(1-2 voxels), ’Small’ (3-10 voxels), ’Medium’ (11-50 voxels), or ’Large’ (51+ voxels). Met-

rics are computed over a range of thresholds to produce a precision-recall (PR) curve.
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Ground Truth

It important to point out that perfect ground truth labels, in the case of medical imaging,

do not exist [16, 64, 105]. This is a direct result of the considerable uncertainty involved

in evaluating medical imaging data, from which it can be difficult to distinguish between

various types of tissues or anatomical structures. Furthermore, given the relatively low

resolution of medical images, multiple tissues may contribute to a single voxel, making

it impossible to classify a single voxel into one class or the other. Indeed, there is con-

siderable debate on what constitutes the boundary of a focal pathology in the first place.

Practically, this means that the labels produced by any two experts will not necessarily be

exactly the same [16, 64, 105]. In fact, even labels produced by the same expert are likely

to be somewhat different across ratings [10, 32, 64].

Metric Conventions

Per-Scan metrics are calculated on a per-scan basis. In particular, TP, FP, and FN counts

are tallied for each scan and then used to compute a scan-specific TPR, PPV, and F1-score

which are then averaged across all scans. Per-Scan metrics can be problematic in cases

where there exists scans without any lesions identified in ground truth (TPR, PPV, and F1

are undefined). In such cases, a arbitrary convention can be defined.

It should be noted that there is also ambiguity with respect to how per-scan PR curves

should be merged. One approach, suggested in a popular machine learning library tuto-

rial scikit-learn*, while appropriate in the context suggested, computes the sample mean

approximating TPR = E[TPR|PPV] without explicitly setting a fixed threshold. Since we

must select a fixed threshold to produce a binary segmentation map at test time, the sam-

ple mean approximating (PPV,TPR) = E[(PPV,TPR)|THRESHOLD] is more correct, as

this will produce a sample mean (PPV,TPR) that is representative of the expected value

of these variables given a fixed threshold. The former implementation is overly opti-

*https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_
crossval.html
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mistic, computing an average TPR at a fixed PPV (rather than at a fixed THRESHOLD),

averaging together TPR values obtained at potentially different thresholds. Small imple-

mentation details like this can have a significant impact on the results reported, making a

fair comparison across methods difficult or impossible. Furthermore, detection metrics,

can be even more arbitrary. Consider just a single implementation consideration: How

will lesions that are less than 3 voxels in size be removed from consideration? One option

is to simply remove 1-2 voxel lesions from the ground truth and the prediction. But in

that case, a 3 voxel lesion predicted where a 2 voxel lesion exists in ground truth would

be considered a FP. Does this make sense considering the uncertainty in the underlying

segmentations? In practice, we’ve found that it is not uncommon for different implemen-

tations of this metric to produce very different detection curves.

Dataset-Level metrics are calculated at the trial level. That is, TP, FP, and FN counts are

aggregated over all patients in a trial at a particular threshold. Aggregated counts are

then used to calculate a single TPR, PPV, and F1-score.

3.5 Summary

In this chapter, we reviewed the fundamentals required to understand and evaluate the

upcoming three chapters. Specifically, we discussed deep learning, focusing on convolu-

tional neural networks and the procedure through which they are trained, namely back-

propagation. We then discussed the segmentation and detection metrics we use to evalu-

ate our models, emphasizing the importance of detection metrics in problems that contain

multiple focal pathologies that span a range of sizes. In the following chapter, we intro-

duces our approach, discussing the importance of the engineering process in building

deep learning systems for focal pathology segmentation.
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Chapter 4

Engineering Deep Learning Systems

Deep learning became more popular in the context of medical imaging as GPUs with in-

creased computation/memory became available and with the development of more eas-

ily trained architectures and better optimization algorithms. As solutions to the unique

challenges posed by applying deep learning in the context of medical imaging became

available, deep learning began to significantly advance the state-of-the-art across the

medical image segmentation field [38]. However, given the shear number of codependent

design decisions involved when designing a model, and given the high computational

cost of training a model (days or even weeks), model configuration and hyperparame-

ter optimization necessarily becomes an iterative process, highly dependent on the skill,

experience, and computation available to individual researchers. This process inevitably

leads to significant variability in results as reported for any method, including baselines.

This is further complicated by subtle implementation errors and/or the failure to develop

and employ subtle engineering ’tricks’, which in practice can impact results just as much

as the choice of method itself. After discussing the experimental methodology, we discuss

the process of engineering a deep learning pipeline, demonstrating the importance of sev-

eral key implementation decisions, and the implications of these decisions on the model

development and analysis process. Next, we examine several important configuration

and hyperparameter decisions, demonstrating the importance of domain knowledge, in
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both deep learning and the problem under consideration, to effectively configure and

tune deep learning models for focal pathology segmentation.

4.1 Methodology

This section describes the model and dataset. Since each experiment can take up to one

week to complete, the base approach for each set of experiments will differ modestly from

the exact configuration we describe here. In each experiment, important configuration

differences, if they exist, are identified.

4.1.1 Dataset

We describe the datasets that we conduct experiments on in this chapter. The vast ma-

jority of experiments were conducted on the proprietary Multiple Sclerosis clinical trial

dataset we describe in the next section for the task of T2 lesion segmentation. Otherwise,

a single experiment is conducted on the MSSEG-2 dataset [14] for the task of segmenting

New T2 lesions that develop between two sequential brain scans.

Proprietary MS Clinical Trial Dataset (w/ T2-Lesion Labels)

We make use of a large proprietary, multi-center, multi-scanner clinical trial dataset in-

cluding 1000 patients. Each patient sample consists of 5 MRI sequences (T1-Weighted, T1-

Weighted with Gadolinium Contrast Agent, T2-Weighted, Fluid Attenuated Inverse Re-

covery, and Proton Density), with an example provided in Figure 2.2. All MRI sequences

were acquired at 1mm x 1mm x 3mm resolution. T2 lesion labels were generated at the

end of the clinical trial, and were produced through an external process where trained ex-

pert annotators manually corrected a proprietary automated segmentation method. We

use a 60/20/20 split for training/validation/testing respectively. An example of the data

can be found in Figure 4.1.
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(a) FLAIR (b) PDW (c) T1P (d) T1C (e) T2W

Figure 4.1: Sample Image from a Multiple Sclerosis dataset acquired over the course of a clinical
trial. We visualize five different MRI sequences: Fluid-Attenuated Inversion Recovery (FLAIR),
Proton-Density Weighted (PDW), T1-Weighted (T1P), T1-Weighted w/ Gadolinium Contrast
(T1C), T2-Weighted (T2W). Images courtesy of NeuroRX.

Public MSSEG-2 Dataset (w/ New T2 Lesion Labels)

T0 T1

Figure 4.2: New T2 segmentation/detection
task. FLAIR scan of the same subject at two dif-
ferent points in time. Samples from the MSSEG-2
Dataset [14]. Apparent differences in brain shape
and size as compared to Figure 4.1 are the result
of differences in scanner resolution.

New T2 lesion detection is the process of

identifying T2 lesions that develop in the

interval between two scans taken at two

different points in time (months or years

apart). An example of new T2 lesion de-

tection can be found in Figure 4.2. We

make use of the dataset made available

through the public 2021 MSSEG-2 New T2

Lesion Segmentation and Detection Chal-

lenge [14]. The dataset contains a total of 40 samples, with each sample consisting of

two Fluid Attenuated Inverse Recovery (FLAIR) scans of the same patient taken at two

different points in time, and a label identifying New T2 lesion voxels.

4.1.2 Model

Inspired by nnU-Net, we develop a robust and accurate approach for focal pathology

segmentation. The full architecture can be found in Figure 4.3, and important hyper-

parameters in Table 4.1. On the proprietary clinical trial dataset, the inputs are the five
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Input MRI Sequences

3D Conv

3D Conv + Instance Normalization + LeakyReLU Max Pool

ConcatenationNearest Neighbor Upsample

Segm
entation

k k

2k 2k

4k

8k

4k

3D Dropout + 3D Conv + Instance Normalization + LeakyReLU

Figure 4.3: Overview of modified nnU-Net [39] architecture used to segment Multiple Sclerosis
T2 lesions.

Hyperparameter Value
Capacity (K) 32
Batch Size 1
Optimizer Adam
Learning Rate 1E-4
Exponential Moving Average Metric Dataset-Level Average Precision
Exponential Moving Average Metric Beta 0.90
Learning Rate Scheduler Factor 0.20
Learning Rate Scheduler Patience 20 Epochs
Early Stopping Patience 40 Epochs
Dropout Probability 0.20
Random Flip (Symmetric Axis) Probability 0.50
Random Affine Augmentation Probability 0.80
Random Affine Augmentation Rotate U(-0.14, 0.14)
Random Affine Augmentation Shear U(-0.08, 0.08)
Random Affine Augmentation Scale U(0.92, 1.08)
Random Contrast Augmentation Probability 0.80
Random Contrast Augmentation Gamma U(0.67, 1.50)

Table 4.1: Hyperparameters for the proposed method. ’U(a, b)’ represents a uniform distribution
defined between a and b. The criteria for the learning rate schedule and early stopping are based
on the exponential moving average of the specified metric.

available MRI sequences, and the output is the predicted T2 lesion segmentation map.

On the MSSEG-2 dataset, the inputs are the two FLAIR sequences (one from each time

point), and the output is the predicted New T2 lesion segmentation map. Both datasets

are described in Section 4.1.1.
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It is important to note that, in many respects, our approach is focused more on the

engineering process involved in implementing, configuring, and optimizing deep learn-

ing systems rather than on a particular configuration or a specific set of hyperparameters.

We emphasize this point because the optimal system configuration or hyperparameters

will vary significantly depending on the characteristics of the dataset at hand [40]. While

many of the insights we describe here will transfer to other medical image segmentation

or detection tasks to an extent, the optimal system configuration or hyperparameters will

always be dependent on the dataset.

4.2 Engineering a Deep Learning Pipeline

In this section, we discuss several key implementation decisions, and the implications of

these decisions on the model development and analysis process.

4.2.1 Metrics

We explore several implementation-level concepts on the calculation and interpretation

of metrics. Since metrics are the measure by which model performance is evaluated, an

understanding of how these metrics are implemented, particularly with respect to any

assumptions that are made, is crucial to fully evaluate and fairly compare methods.

Thresholding

Binary segmentation tasks involve classifying each voxel as one class or the other. To

do so, a particular threshold must be selected to produce a binary output (0 or 1) from

the real-valued output of the segmentation model. Selecting a threshold should not be

arbitrary, as there exists inherent trade-offs between, for instance, TPR and PPV, with

higher thresholds (more confident predictions) resulting in a lower TPR but a higher PPV.

Therefore, what constitutes an ’optimal threshold’ is highly dependent on the purpose of

the output segmentation. If the output segmentation is to be corrected by a human rater,
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we may use a lower threshold in order to identify as many TP as possible, and then direct

the human rater to ’clean up’ any remaining FP. On the other hand, if the output of the

model is to be utilized as-is, we may use a threshold corresponding to the maximum F1

(a.k.a. maximum DICE).

Figure 4.4: Voxel-Level F1 by threshold for a seg-
mentation model with a weighted loss function.
Thresholds correspond to σ−1 (e.g. thresholds
−3.00, 0.00, and 3.00 before the sigmoid corre-
spond to 0.05, 0.50, and 0.95 after the sigmoid).
In this example, the common practice of select-
ing a pre-sigmoid threshold of 0.00 (0.50 after the
sigmoid) would clearly be suboptimal.

Whatever the purpose of the output

segmentation, it is important to note that

an optimal threshold can not be selected

in advance, rather it must be computed

based on the segmentation output of the

model. As a result, it is necessary to cal-

culate TPR and PPV at a wide variety of

thresholds to produce what is known as

a precision-recall curve. From this curve,

an optimal threshold can be selected based

on the purpose of the produced segmenta-

tion output. Figure 4.4 shows F1 plotted

against the corresponding thresholds for a

segmentation model trained with weighted cross entropy. From this figure, we see why

the practice of selecting an arbitrary threshold such as 0.00 (or 0.50 after the sigmoid) is

ill-advised. Indeed, using a threshold of 0.00 will result in a DICE of 0.56, which is clearly

sub-optimal when considering that a threshold of 4.7 will result in a DICE of 0.79. Inter-

estingly, this was also discussed in a 2015 publication by Sculley et al. [85] where "Fixed

Thresholds in Dynamic Systems" was described as a common source of error when incor-

porating machine learning into commercial products.

Notwithstanding the need to compute metrics at multiple thresholds, it is generally

not feasible to do so during model training without the use of multi-processing, a pro-

gramming paradigm that not all researchers have the ability to effectively employ. If re-

searchers are unable to effectively employ multiprocessing in their deep learning pipelines,
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(a) Validation Loss (b) Validation F1-score (DICE)

Figure 4.5: Left: Validation loss during training; Right: Validation F1-score (DICE) during training.

researchers may instead monitor metrics at an arbitrary threshold, or use a surrogate

metric such as the loss. Previously, we showed why monitoring a metric at an arbitrary

threshold is bad practice (see Figure 4.4). In Figure 4.5, we show why monitoring the

metric of interest, the F1-score, is more important than monitoring the loss, whose only

purpose is to act as a differential surrogate for the metric that we actually care about (F1-

score). Notice that F1-score continues to increase long after the loss has been minimized,

showing why monitoring a non-linear metric, such as the loss function, can be subopti-

mal.

Operating Point Correspondence

When presenting more than one precision-recall (or ROC curve), it is important to identify

corresponding operating points (thresholds) on each curve. We illustrate this by way of

the following example. If we examine Figure 4.6a, we see an example plotting a voxel-

level segmentation curve, as well as a set of lesion-level detection curves. First, consider

that within the medical community, it is a convention to select operating points with an

fdr of 0.20 or less [25]. Next, consider that for the purposes of this example, we decide that

a model with an all lesion detection fdr/tpr of 0.08/0.92 would be optimal. We might then

be tempted to report that overall, our model achieves lesion detection fdr/tpr of 0.08/0.92

and a voxel segmentation fdr/tpr of 0.08/0.63. However, looking at Figure 4.6, we can
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(a) Operating Points Not Identified

(Common Practice)

(b) Operating Points Identified

Figure 4.6: Example showing the need to identify corresponding operating points when plotting
more than a single curve. TPR vs. FDR curves are plotted for voxel-level segmentation, and size-
stratified lesion-level detection. The blue dot represents the operating point (a.k.a. threshold) that
results in the maximum detection F1-score on the ’lesion - all’ curve. The red dot represents the
operating point (a.k.a. threshold) that results in the maximum segmentation DICE on the ’voxel -
all’ curve.

see that this is clearly not correct, as at the all lesion detection fdr/tpr of 0.08/0.92, the

corresponding operating point on the voxel-level curve is an fdr/tpr of 0.30/0.89, which

is much different than the voxel-level fdr/tpr that we might have otherwised assumed.

4.2.2 Data and Model Analysis

Metrics can serve an important role in the method development process that goes far be-

yond hyperparameter tuning. The right metrics, paired with adequate visualizations, can

help identify cases where the method does poorly. In some cases, this information can be

used to further develop the model or method. For instance, consider Figure 4.7b, an ex-

ample of a New T2 lesion segmentation task, where the goal is to segment T2 lesions that

develop in the interval between two scans taken at two different points in time (months

or years apart). In order to identify where the new lesions have developed, the two scans

must be properly aligned *. However, the automated methods that are used to align brain

*Registered in the literature. Registration, is the process by which images are registered.
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T0 T1

(a) Not Aligned

T0 T1

(b) Aligned

Figure 4.7: New T2 segmentation/detection task. FLAIR scan at two different points in

time. Samples from the MSSEG-2 Dataset [14].

scans are not foolproof, and alignment failures do happen on occasion. In Figure 4.7a,

we provide an example of one such case we encountered in practice on the MSSEG-2 dat-

set [14]; identified after a close analysis of per-sample metrics. After analyzing the sample

in more detail, it become clear that a non-linear alignment method would be better suited

for this dataset. In Figure 4.7b, we show the result of re-aligning the two samples with

symmetric diffeomorphic image registration [5]. This shows how close model and data

analysis can influence the engineering of the overall system.

4.2.3 Computational Efficiency

Computational efficiency is particularly important when applying deep learning in a

medical image context. Medical images are generally three dimensional, requiring sig-

nificantly more GPU memory (and computation) to process compared to natural images.

Training can take days, or even weeks, on some datasets. Therefore, it is important to

make all operations as efficient as possible. Below, we describe three key techniques to

maximize computational efficiency.

Data Preprocessing

Despite being quite simple, tightly cropping around the brain region is an effective way

to save on memory and computation. In our main Multiple Sclerosis dataset (described
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in Section 4.1.1), images can be cropped to reduce overall image size by 46%. Given that

processing time is directly proportional to the size of the image, training time will be

reduced by roughly the same amount. Furthermore, roughly an equivalent drop in GPU

memory utilization can enable improvements to the model architecture (e.g. capacity) or

optimization strategy (e.g. batch size) that may have not been possible otherwise.

Model

Some underlying knowledge of the way NumPy/PyTorch allocates array memory, and

understanding the mathematical equivalence of linear operations can provide additional

GPU memory savings. The UNet architecture requires a concatenation operation that

fuses activations from the contracting and expanding paths before the convolution. Given

that PyTorch requires that tensors be contiguous, the concatenation operation must du-

plicate activations from both paths that must then be stored as a newly fused tensor (thus

utilizing additional memory). However, if we note that a single convolution on a fused

tensor can be expressed (equivalently) as the sum of two independent convolutions on

the two un-fused tensors, then there is no need to explicitly perform the concatenation

operation. This simple insight provides additional memory savings (roughly 11% in our

experiments). It is important to note that this is not equivalent to simply adding the acti-

vations of the contracting and expanding paths together. This computational ’trick’ may

also apply to architectures that make even heavier use of the concatenation operation (e.g.

DenseNets [41]).

Metrics

Computing the precision-recall curve during training and validation is important for

monitoring during training and for model selection. However, in practice, computing

metrics, such as the precision-recall curve, can be a real bottleneck, with a poorly engi-

neered metric implementation slowing down training by an order of magnitude or more.

In Table 4.2, we provide wall clock times for several different metric implementations.
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# Case Epoch Time (Seconds)
1 Metrics Within Cropped Volume 1620
2 Metrics Within Brain Region 460
3 Metrics Within Brain Region + Multiprocessing 170
4 Metrics Within Brain Region + Multiprocessing + Shared Memory 155
5 Metrics Not Computed 145

Table 4.2: Per-epoch wall clock time for several different metric implementations.

We show that by computing metrics within the region of interest, by making use of multi-

processing, and by using shared memory for inter-process communication, the precision-

recall curve can be computed without significantly slowing down training. By excluding

irrelevant voxels from consideration when computing the precision-recall curve, a signif-

icant speedup can be observed (2 vs. 1). By using multiprocessing to compute metrics in

a separate process (running on its own CPU core), metrics can be computed in parallel

while training continues in the main process (3 vs. 2). Finally, by placing each batch of

voxels into memory shared between processes, the high CPU cost incurred when piping

large arrays between processes can be avoided (4 vs. 3). For comparison, the epoch time

for a run where metrics are not computed can be found in (5). Overall, we show that a

well-engineered metric implementation can compute real-time metrics without seriously

impacting overall training time.

4.3 Establishing a Well-Optimized UNet

In this section, we discuss the surprisingly challenging task of establishing a strong seg-

mentation model in the context of focal pathology segmentation. We perform an abla-

tion study of the method we propose in Section 4.1 in which we examine several im-

portant configuration and hyperparameter decisions, through which we demonstrate the

substantial benefit that domain knowledge provides when optimizing a UNet for focal

pathology segmentation. We stress that the optimization process we discuss here, which

enables us to achieve optimal (or near optimal) performance, is only made possible by the

careful application of the engineering process we discuss in Section 4.2. We justify our fo-
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cus on the engineering process by baselining against previously published results on the

same dataset, outperforming competing methods by a large margin in both voxel-wise

segmentation and lesion-level detection performance.

4.3.1 Experiments and Results

In this section, we run a series of experiments to demonstrate the importance of several

configuration and hyperparameter choices. Given that even computationally efficient

UNet models can take up to seven days to train, using automatic methods to configure

a method (i.e. choosing an optimizer, loss function, model architecture, data preprocess-

ing strategy, etc.) or to tune hyperparameters (e.g. learning rate, dropout, capacity, etc.)

is not computationally feasible. As a result, proposed methods must be configured and

tuned by hand, requiring an intuitive understanding of how various configuration and

hyperparameters choices interact to properly optimize a particular method, to the ex-

tent possible, within a limited compute budget. Through a number of experiments, we

identify several of these important configuration and hyperparameter choices, illustrat-

ing the need for careful consideration of such choices to obtain optimal (or near optimal)

performance levels. Results for the proposed method, along with a comparison against

results published by others on the same dataset, can be found at the end of the chapter in

Section 4.4.

Overcoming Optimization Difficulties

This set of experiments aims to illustrate a common optimization difficulty faced when

optimizing deep learning models in the context of medical image segmentation. Al-

though we demonstrate this issue in the context of MS lesion segmentation, gradient noise

is a well known phenomena inherent in any training process that involves stochastic gra-

dient decent [22]. However, in contrast to natural images, practical considerations, such

as GPU memory, become a limitation in the context of 3D medical image segmentation,
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forcing the use of small batch sizes, resulting in much more noisy gradients, ultimately

making medical image segmentation models more difficult to train.

Figure 4.8 depicts validation results for several variants of the UNet architecture.

The four experiments include the following: (i) Baseline UNet w/ SGD+Momentum

(Blue), (ii) Baseline UNet w/ Dropout and SGD+Momentum (Pink), (iii) Baseline UNet

w/ Adam (Purple), (iv) Baseline UNet w/ Dropout and Adam. Results show several

key interactions between Adam (which by taking into account the variance of gradients

between steps, mitigates the effect of gradient noise [51]) and dropout (which exacer-

bates gradient noise [92]). Comparing the blue and pink curves, we can see that adding

dropout to a baseline UNet model introduces enough gradient noise to completely pre-

vent the model from converging. Without understanding / knowing about the concept

of gradient noise, one might assume that dropout decreases performance in UNet architec-

tures. However, if we compare the purple and orange curves, we see that when using the

Adam optimizer, dropout marginally increases performance. Overall, this set of experi-

ments shows why researchers must have an understanding of how various configuration

and hyperparameter choices can impact training dynamics. Indeed, with so many code-

pendent hyperparameters, automatic optimization methods are just not computationally

feasible, and without sufficient knowledge or experience, researchers may find it difficult

to properly hand-tune a model, potentially resulting in a suboptimal method or baseline.

Since an objective comparison of two competing methods requires that both methods

be well-optimized, a poorly optimized model potentially raises concerns over the repro-

ducibility of published results, and may partially explain why nnU-Net has achieved

SOTA performance on dozens of medical image segmentation tasks, despite nnU-Net be-

ing a baseline method [39].

Test results, which can be found in Table 4.3, are comparable to the validation results

presented in Figure 4.8, supporting the conclusion that our validation/test sets are of

sufficient size to serve as a proxy for generalization performance on this dataset.
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Figure 4.8: Validation voxel-level average precision
curves during training. Blue: SGD+Momentum,
Red: SGD+Momentum w/ Dropout, Purple: Adam,
Orange: Adam w/ Dropout.

Method AP DICE
SGDM 0.878 0.790
SGDM + DO 0.847 0.755
Adam 0.882 0.794
Adam + DO 0.885 0.796

Table 4.3: Test voxel-level average pre-
cision and voxel-level DICE. ’DO’ is
short for Dropout [92]

Adapting to the Problem

This set of experiments aims to show the importance of adapting any approach or tech-

nique to the problem at hand. In particular, we consider data normalization, an important

and well documented part of any deep learning approach [91]. Normalizing data such

that it has zero mean and unit variance (a.k.a. z-score normalization) ensures that there is

sufficient contrast between different tissue types and is important to insure optimal gra-

dient propagation [37, 96]. However, despite how simple the concept of normalization

may appear to be, we show that it must adapted to the problem at hand to ensure that the

region of interest, in particular, is properly normalized.

The original UNet publication applied the model to a 2D (512x512) cell histology seg-

mentation problem [65, 78], with the cells to be segmented (i.e. the region of interest)

spanning the entire image. However, if we take a look at the data sample in Figure 2.2,

we can see that the region of interest, the brain region, is spans only part of the image,

with there being zero probability of a lesion outside this region. As a result, it only makes

sense to normalize within the brain region, as this region is where the model must learn

an effective representation to distinguish a lesion from health tissue. On the other hand,

if we instead normalize over the full volume, the zeros in the background are included

in the mean and standard deviation calculations, ultimately resulting in a intensity dis-
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tribution within the brain region that is not centered and has non-unit variance. Indeed,

even when the data volume is cropped to a minimum common size, the brain region, on

average, makes up only ∼ 25% of the entire 3D volume. This consideration extends to

the loss weighting function as well, since a commonly selected default positive weight is
# negative voxels
# positive voxels (e.g. PyTorch documentation [77]), an increase in negative voxels (from out-

side the brain mask), will increase the overall loss weighting (in our experiments, the loss

weighting increased from 170 to 673). If we constrain the calculation of this loss weight

to within the brain region (and compute the loss only within the brain region), a less ex-

treme loss weight is used. Indeed, based on the results obtained, we might also consider

removing the loss weight altogether, to verify if the default loss weighing is actually op-

timal in this context. Although these steps may seem elementary, narrowing the region

that we consider when designing a normalization or loss weighting strategy, and more

broadly, moving away from default configurations and hyperparameters can have a sig-

nificant performance impact. Despite this reality, in our experience these factors are often

overlooked.

To demonstrate the importance of adapting a particular method to the problem at

hand, we conduct three experiments: (i) Full-Volume Data Normalization and Full-Volume

Loss Weighting (Gray), (ii) Brain Region Data Normalization and Brain Region Loss Weight-

ing (Blue), (iii) Brain Region Data Normalization and No Loss Weighting (Green). ’Full-

Volume Data Normalization’ refers to Z-Score normalization applied over the full data

volume, and ’Full-Volume Loss Weighting’ refers to computing the loss weighing based

on the class distribution of voxels across the entire image. ’Brain Region Data Normal-

ization’ refers to only normalizing data within the brain region (setting voxels outside

the brain region to zero), and ’Brain Region Loss Weighting’ refers to computing the loss

weighing based on the class distribution of voxels within the brain region. ’No Loss Weight-

ing’ means that we ignore the suggested default weighing, using a non-weighted loss

function instead.

43



Figure 4.9 depicts validation results for several variants of the nn-UNet architecture.

We can see that by adjusting our region of interest, we can enjoy a significant performance

improvement (compare the gray and blue curves). Additionally, since decreasing the loss

weight improved performance, we may then consider ignoring the default loss weight-

ing scheme altogether, and try an unweighted loss function (green), which we can see

actually outperforms the default. On closer inspection, it is also clear that these decisions

can also effect the number of epochs required to train the model, with the best model

converging much more quickly than the worst one. Given that models for medical im-

age segmentation can take up to a week to train, a significant decrease in training time

can be an important advantage. Indeed, one of the most common learning rate schedules

involves cutting the learning rate when the loss, or metric of interest, plateaus. Thus, a

method that converges too slowly is more likely to have its learning rate cut prematurely,

leading to suboptimal results.

Test results, which can be found in Table 4.4, are comparable to the results we report

on validation in Figure 4.9. Overall, our results show the importance of carefully adapting

an approach to the problem at hand, with remarkably simple configuration and hyper-

parameter choices having significant performance impacts. Furthermore, we saw that

by carefully analyzing our results, we were able to infer that an experiment that further

decreased the positive class loss weight was warranted.
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Figure 4.9: Validation voxel-level average preci-
sion curves. Grey: Weighted Loss & Normalization
(Full Volume), Blue: Weighted Loss & Normalization
(Brain Region), Green: Unweighted Loss & Normal-
ization (Brain Region)

Method AP DICE
Full Volume (N&LW) 0.878 0.791
Brain Region (N&LW) 0.886 0.798
Brain Region (N) 0.892 0.804

Table 4.4: Test voxel-level average pre-
cision and voxel-level DICE. ’N’ is
short for ’Normalization’. ’LW’ is short
for ’Loss Weighting’.

Considering the Relationship Between Effect Size and Dataset Size

This set of experiments aims to show the relationship between the size of the dataset,

and the effect size of a particular configuration or hyperparameter choice. We demon-

strate this in the context of an important configuration decision that we touched on earlier.

Specifically, we compare several data normalization schemes, contrasting results obtained

on the full training set against those obtained on a small subset of full training set. We

show that while important configuration and hyperparameter decisions may only have

a modest impact on model performance when training on a large dataset, these same

decisions can have a large impact on performance when training on a small dataset.

Results on the full training set for z-score normalization (within the brain region),

z-score normalization (over the full volume), and 0-1 normalization (i.e. subtract the min-

imum and divide by the maximum) can be found in Figure 4.10 and Table 4.5. Based

on these results, we can see that while the normalization scheme used had a significant

impact on overall training time, the impact on performance was modest, with z-score nor-

malization (within the brain region) performing marginally better than the other two nor-

malization techniques.
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Figure 4.10: Validation average precision for a num-
ber of different normalization strategies. Blue: Z-
Score Standardization within Brain Region, Pink: Z-
Score Standardization over Entire Volume, Green:
Zero-One Normalization.

Normalization AP DICE
Brain Region 0.892 0.804
Full Volume 0.891 0.803
Zero-One 0.889 0.801

Table 4.5: Test voxel-level average
precision for a number of different
normalization methods.

Noting a relatively small difference in performance between normalization schemes

on the full dataset, we repeat the same experiment on a small subset (20 samples) of the

full dataset (600 samples). The validation and testing sets remain identical. Results can

be found in Figure 4.11 and Table 4.6. In the low data regime, the performance gap be-

tween methods in much more pronounced, demonstrating that data normalization, while

usually considered a relatively simple implementation detail, can have a significant per-

formance impact when data is scarce. This demonstrates the importance of considering

dataset size, along with other characteristics of the dataset, when attempting to extrapo-

late a conclusion drawn on one dataset to another (particularly with respect to the mag-

nitude of the effect).
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Figure 4.11: Validation average precision for a num-
ber of different normalization strategies. Blue: Z-
Score Standardization within Brain Region, Green:
Zero-One Normalization.

Normalization AP DICE
Brain Region 0.809 0.732
Full Volume 0.767 0.700
Zero-One 0.742 0.681

Table 4.6: Test voxel-level average pre-
cision for a number of different nor-
malization methods.

Understanding the Role of Model Capacity

This set of experiments aims to demonstrate the role of model capacity on several per-

formance measures. We also use this set of experiments to illustrate the importance of

considering operating point correspondence (see Section 4.2.1) when reporting metrics,

showing that reporting multiple precision-recall curves without identifying correspond-

ing operating points can make comparing multiple models difficult, potentially resulting

is conclusions that are erroneous.

Although the relationship between model capacity and performance is known [94], in

medical imaging, practical considerations, particularly GPU memory, typically force the

use of reduced capacity models. Deep learning practitioners must find the right balance

between model capacity, normalization layers (instance normalization, batch normaliza-

tion, etc.), patch size, and batch size, which are the primary drivers of GPU memory

consumption. However, given the compute required to train deep learning models, deep

learning researchers may fix the capacity, patch size, and batch size of their base model,

only then introducing additional mechanisms to further improve performance. This prac-

tice is a necessary consequence of the massive compute requirements imposed by pro-

cessing 3D medical data by even the most well-established baselines (e.g. UNet [78]).

However, having a sufficiently broad knowledge base, such as an understanding of the
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Figure 4.12: Validation average precision curves for
several models of different capacity (K). Yellow: K=4,
Cyan: K=8, Grey: K=16, Green: K=32, Red: K=64.

Capacity AP DICE
K=4 0.835 0.747
K=8 0.857 0.765
K=16 0.886 0.798
K=32 0.892 0.804
K=64 0.895 0.807

Table 4.7: Test average precision (AP)
and DICE (computed at the optimal
voxel-level operating point).

relationship between model capacity and Double Decent [72], can help guide the decision

as to which experiments are actually run. Indeed, the experiments we present in this sec-

tion illustrate the large magnitude of the performance differences that small changes in

model capacity can bring about, particularly near the ’interpolation threshold’ that un-

derlies the Double Descent phenomena.

Results for several models of different capacity can be found in Figure 4.12 and Ta-

ble 4.7. We can see that increasing model capacity can make a significant difference,

particularly near the ’interpolation threshold’ between the K=4 and K=8 models. After

this point, performance improves logarithmic as capacity increases from K=8 to K=64.

Given that the epoch at which the model undergoes double decent is similar between the

K=32 and K=64 models, we believe the K=32 model best optimizes the trade off between

performance and training time, and begins to fully converge by epoch 100.

Beyond the voxel-level performance improvement we just discussed, we compare the

performance characteristics of a UNet with low capacity (K=4, Figure 4.13a), and a UNet

with high capacity (K=32, Figure 4.13b), pointing out several different operating points

on the lesion-level and voxel-level precision-recall curves. As we also point out in Sec-

tion 4.2.1, we note that what might be considered a favorable operating point on the
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(a) U-Net (K=4) (b) U-Net (K=32)

Figure 4.13: Lesion-Level Detection and Voxel-Level Segmentation Results. Left: Low Capacity
(K=4). Right: High Capacity (=32). Blue Dot: Operating point with optimal detection F1, Red Dot:
Operating point with optimal segmentation DICE.

lesion-level curve will not necessarily translate to a acceptable operating point on the

voxel-level curve (and vice-versa). Indeed, for the low capacity model, we see a clear

rightward shift (over segmentation) of all operating points on the voxel-level curve com-

pared to the high capacity model, this despite the much smaller performance differences

visible on the lesion-level detection curves. We stress the importance of actually selecting

and plotting operating points (or reporting results through a table at a fixed operating

point) when comparing multiple performance curves.

Qualitative results on the test set between the K=4 and K=32 models, at each model’s

optimal lesion-level detection operating point can be found in Figure 4.14. We can see that

despite similar looking lesion-level detection curves, the operating points themselves can

shift significantly between methods. Therefore, results must be presented such that the

value of all metrics can be discerned at a fixed operating point. Incidentally, we note

that the majority of the published methods we compare our well-trained UNet to do not

report or otherwise make it possible to identify the value of all metrics at any specific

operating point. This shows that while identifying corresponding operating points on

multiple curves is a straight forward idea, it is not universally applied in practice.
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Figure 4.14: Voxel-Level Segmentation Results at the Optimal Per-Dataset Lesion-Level Detection F1
Left: Low Capacity (K=4). Right: High Capacity (K=32). TP: Green, FP: Red, FN: Blue.

4.3.2 Final Model

In Table 4.8, we present the results of the method we proposed in Section 4.1, engineered

through the use of the engineering principles we discussed in Section 4.2 & 4.3, against

several published methods that report results on the same dataset. The results we report

for third-party methods are taken from their respective publications, obtained from a

different random split of the dataset. Indeed, we can see that our model outperforms all

others by a large margin, achieving higher recall (TPR) at a precision (PPV) of 0.80 on

both lesion-level detection, and the voxel-level segmentation measures of performance. †

Although the methods we compare against do not explicitly focus on optimizing

segmentation or detection performance, they significantly under-perform the approach

we’ve outlined here. And while it may seem surprising that similar methods can dif-

fer performance-wise to this extent, our results are actually in-line with those of both

nnU-Net, which showed on a number of public datasets that a carefully configured and

optimized U-Net can achieve state-of-the-art performance [39], and with Litjens et al.,

who made the case that "the exact architecture is not the most important determinant in

getting a good solution" [60].

†Given that competing approaches do not report both segmentation and detection results at a fixed
operating point, we instead report the TPR corresponding to a PPV of 0.80 for each metric separately.
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# Method Type PPV TPR
1 Ours U-Net 0.80 0.69
2 Mehta [68] † U-Net - -
3 Sepahvand [87] † U-Net 0.80 0.55
4 Nair [71] † U-Net 0.80 0.48
5 Subbanna [93] MRF - -

(a) Per-Scan Voxel-Level Segmentation

# Method Type PPV TPR
1 Ours U-Net 0.80 0.96
2 Mehta [68] † U-Net 0.80 0.84
3 Sepahvand [87] † U-Net 0.80 0.84
4 Nair [71] † U-Net 0.80 0.77
5 Subbanna [93] MRF - -

(b) Per-Scan Lesion-Level Detection

# Method Type PPV TPR
1 Ours U-Net 0.80 0.80
2 Mehta [68] † U-Net - -
3 Sepahvand [87] † U-Net - -
4 Nair [71] † U-Net - -
5 Subbanna [93] MRF - -

(c) Per-Dataset Voxel-Level Segmentation

# Method Type PPV TPR
1 Ours U-Net 0.82 0.97
2 Mehta [68] † U-Net - -
3 Sepahvand [87] † U-Net - -
4 Nair [71] † U-Net - -
5 Subbanna [93] MRF 0.82 0.79

(d) Per-Dataset Lesion-Level Detection

Table 4.8: Test results of our method alongside those published by several others on the same
dataset. We report average per-scan metrics, as well as aggregate per-dataset metrics, for both
voxel-level segmentation and lesion-level detection (see Section 3.4.2 for definitions). Results are
rounded to two significant digits. To compare results across publications, we report results at an
operating point corresponding to an PPV of roughly 0.80.
†Methods not explicitly focused on optimizing segmentation/detection performance.

4.4 Summary

We discussed the process of engineering a deep learning pipeline, pointing out impor-

tant details with respect to how metrics are implemented, interpreted, and utilized. We

demonstrate the need for real-time metrics, discussing parallelization as one way to achieve

this. We consider several ways to improve GPU compute and memory efficiency, impor-

tant given the computational requirements involved in training a deep learning model on

3D medical data. Next, we considered the process of establishing a well-trained UNet,

which given compute requirements, must be configured and tuned by hand. To do this,

we discussed overcoming common optimization difficulties, using background domain

knowledge to guide configuration decisions and hyperparameter selection. We discussed

the need to adapt our model to the problem at hand, noting the need to consider the re-

gion of interest. We discussed the need to consider the relationship between effect size and

dataset size when evaluating the usefulness of a new configuration, or approach. We then
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discussed the role of model capacity, demonstrating the important role this has on model

performance.
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Chapter 5

Lesion Size Reweighting

In the previous chapter, we saw that a well-engineered deep learning pipeline, a princi-

pled optimization strategy, and a robust implementation, are several key factors required

to obtain impressive segmentation and detection performance in the context of Multiple

Sclerosis. Although we’ve established impressive results, surpassing all previously re-

ported methods, we also noted a key weakness, namely a significant operating point gap

between optimal segmentation, and optimal detection performance operating points. On

closer analysis, we identified that this gap was driven predominately by small lesions,

which showed a large discrepancy in small lesion detection performance between opti-

mal segmentation and optimal detection operating points.

To better understand why a gap between optimal operating points exists, we first

turn our attention to the characteristics of voxel-wise loss functions. Specifically, since

voxel-wise loss functions operate at the voxel-level, there is an inherent bias towards

larger lesions that contain more voxels. As a result, smaller lesions are typically missed

at operating points that are optimal for segmentation metrics. And while it is possible

to reduce the operating point (i.e. threshold) such that small lesions are detected (see

Section 4.3.1), this comes at the cost of considerable over-segmentation. Inspired by the

finding that weighting positive voxels will typically shift the optimal operating point

upward (see Section 4.4), we can consider applying such a strategy here in a more targeted
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way. Specifically, we can apply increased weight to smaller lesions such that we close the

gap between the optimal detection and segmentation operating points.

Indeed, recent research has suggested that assigning a weight to each voxel such that

the cumulative weight of each structure (i.e. the sum of all voxel weights of each struc-

ture) is the same, can be an effective way to improve small lesion performance [88]. How-

ever, this approach can be problematic in the contexts we focus on here, where lesions

span a very wide range of sizes, which can result in weights that range over several orders

of magnitude, resulting in a significant segmentation/detection imbalance and significant

training instability.

The content in this chapter is based on published work [75], of which I am first author.

5.1 Methodology

We propose a lesion weighing function, where the objective is to have the optimal de-

tection and segmentation operating points converge by assigning more weight to small

lesions than would otherwise be assigned by binary cross entropy. Although small le-

sions can be weighed more, they should still be assigned less weight than larger lesions,

which are typically much more certain. Our conjecture is that assigning too much weight

to small lesions can produce suboptimal results.

Formally, each lesion Lj is assigned a weight Wj that is a function of the number of

voxels |Lj| that comprise that lesion. In practice, weights must be assigned to individual

voxels rather than individual lesions, so we also define the voxel weight wj , related to Wj

via wj =
Wj

|Lj | .

Wj = |Lj|+ αe−
1
β
(|Lj |−1) wj = 1 +

α

|Lj|
e−

1
β
(|Lj |−1) (5.1)

where α and β are hyperparameters such that α ≤ β to ensure monotonicity in the weight

with respect to lesion size. Background (i.e. non lesions) voxels retain a weight of 1.
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5.2 Implementation Details

We use the experimental setup detailed in Section 4.1, and use the baseline established as

our base model. For all subsequent experiments, we freeze almost all hyperparameters,

modifying only the loss function and learning rate. The hyperparameters of the proposed

BCE+LSR loss function were tuned on a log2 scale, with α = 4 and β = 4 performing best

in our experiments.

5.3 Experiments and Results

Figure 5.1 shows the TPR vs FDR curves and compares overall segmentation performance

with detection performance for small (3-10 voxels), medium (11-50 voxels), and large (51+

voxels) lesions for the proposed BCE+LSR, as compared to BCE and BCE+IW. In the case

of BCE+LSR, the optimal operating points for segmentation and detection (red and blue

dots) overlap and the method performs well on both tasks. This is in contrast to BCE, for

which the optimal operating points are comparatively far apart, and which shows a de-

gree of over-segmentation at the optimal detection operating points (and under-detection

at the optimal segmentation operating point, particularly for small lesions). WBCE and

FL exhibited performance characteristics similar to BCE. For BCE+IW, the distance be-

tween the optimal detection and segmentation operating points is even larger, and the

method significantly underperforms all others. Given the significant decrease in perfor-

mance for BCE+IW relative to both BCE and BCE+LSR, further analysis revealed that

BCE+IW applied substantial weight to extremely small lesions. Since the lesion weights

computed by BCE+IW ranged over several orders of magnitude, training was extremely

unstable. On the other hand, using the proposed BCE+LSR, the weights remain in a rea-

sonable range, upper bounded by 1 + α
|Lj | . Since smaller lesions are considerably more

uncertain, using a weighting scheme with a reasonable upper bound prevented training

instability.
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(a) BCE+LSR (b) BCE (c) BCE+IW

Figure 5.1: TPR vs FDR curves: voxel-level segmentation and lesion-level detection. The best
detection F1 operating point (blue dot) is based on the lesion - all curve. The best segmentation
F1 operating point (red dot) is based on the voxel - all curve. The closer the operating points
the better. The operating points overlap for the proposed BCE+LSR (i.e. BCE+LSR achieves the
highest simultaneous detection and segmentation F1).

5.4 Summary

In this chapter, we discussed lesion size reweighing (LSR), a reweighting strategy based

on lesion size that closes the gap between the optimal segmentation and the optimal de-

tection operating points. By using this strategy, we enable a single model to achieve

optimal performance on both segmentation and detection simultaneously.
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Chapter 6

Cohort Bias Adaptation in Aggregated

Datasets

In the previous two chapters, we presented work that utilized deep learning for T2 lesion

segmentation in the context of Multiple Sclerosis. We evaluated our model with a rela-

tively large test set, which would ideally represent the true generalization performance

of our model. However, in the context of medical images, the concept of generalization

is much more subtle. As detailed in Section 3.4.2, there is no ’ground truth’ in medical

imaging problems, particularly in contexts where there is considerable uncertainty. When

a dataset, typically acquired from single (patient) cohort, is labeled, the exact labeling

will be highly dependent on the labeling protocol, as well as the opinion of the associated

medical expert. Additionally, even in cases where the labeling protocol and medical ex-

pert are held constant, the labeling will be influenced by the medical expert’s knowledge

about the sample and the cohort as a whole (termed observer bias). In this context, it be-

comes clear why naively pooling multiple datasets from different cohorts together may

not increase, and may even decrease, model performance due to cohort-specific biases

that ultimately manifest themselves in ’ground truth’ labels.

In this chapter, we propose a generalized conditioning framework that learns and

accounts for cohort-specific biases across multi-cohort pooled datasets. To do this, we
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make use of Conditional Instance Normalization (CIN) [24] to condition the network on

the cohort identity of each data sample. This approach, which we refer to as Source-

Conditioned Instance Normalization (SCIN)*, enables the training of a single model on a

multi-cohort dataset without significant performance loss. This is in contrast to baseline

which, unable to condition on auxiliary information, is unable to output a cohort-specific

segmentation.

The content of this chapter is based on published work [74], of which I am first author.

6.1 Methodology

We propose a framework that explicitly takes into account cohort-specific biases, en-

abling a single model to be trained on an aggregate dataset. To do this, we make use of

Conditional Instance Normalization (CIN) [24], learning source-specific instance normal-

*for the purposes of this chapter, ’source’ and ’cohort’ are used interchangeably

Cohort A

Cohort N
Model Model

Auxiliary Cohort
Information

Prediction in
 Cohort Bias A
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Cohort Bias N
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Information
(A...N)
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Training Testing
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. . .

Figure 6.1: System overview showing training on the left and testing on the right. The left shows
how we train with multiple cohorts and use auxiliary cohort information to learn the associated
bias. On the right is how we use cohort information during testing to generate multiple labels for
an image in a desired style.
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ization parameters that, by scaling and shifting normalized activations in the network,

model source-specific biases. In practice, as each sample is passed through the network,

that sample’s cohort identity is used to select the corresponding source-specific affine

scale/shift parameters which are then used to modulate the activations of the network.

During the backward pass, only the affine parameters that were used to scale/shift the

activations of the corresponding sample will have a non-zero gradient. As a result, each

set of source-specific affine parameters are learned only from the samples that make up

that source. Mathimatically, the approach can be described as follows:

CIN(z) = γs

(
z − µ(z)
σ(z)

)
+ βs (6.1)

where γs and βs are source-specific scale and shift parameters, and where µ(z) and σ(z)

are the per-sample per-channel mean and standard deviation. All other learnable param-

eters, consisting of all convolutional layers in the network, are common. This approach

allows the network to model source-specific cohort biases with a relatively small num-

ber of parameters, but to otherwise leverage the entire aggregated dataset for most of the

common parameters in the network. A full system overview can be found in Figure 6.1.

6.2 Implementation Details

6.2.1 Network Architecture and Training Parameters

We use a network architecture that is nearly identical to the network architecture we de-

fined in Figure 4.1. The only difference is that we swap out the original instance nor-

malization layers that contained just a single set of affine parameters to be used for all

samples, with a conditional instance normalization layer, where each source has its own

set of affine parameters. The full architecture can be found in Figure 6.2.
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Input MRI Sequences

3D 1x1x1 Conv
Conv Block

3D Dropout

Max Pool

Skip Connection
Trilinear Upsampling

Segm
entation

3D 3x3x3 Conv

LeakyReLU
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Cohort Code
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Figure 6.2: The model architecture in nearly identical to the architecture we develop in Chapter 4.
Left: Overview of modified nnUNet [39] architecture used to segment MS T2 lesions. Right: Detail
of a conv block. It consists of a series of 3D 3x3x3 Convolution Layer, CIN layer, and a LeakyReLU
activation layer.

6.2.2 Data Set

We make use of three different datasets, each of which consists of patient samples col-

lected over the course of a different clinical trial. In each clinical trial, each patient sam-

ple consists of five MRI sequences (T1-weighted, T1-weighted with gadolinium contrast

agent, T2-weighted, Fluid Attenuated Inverse Recovery, and Proton Density) at a 1mm x

1mm x 3mm resolution. Patient samples were labeled at the end of each trial, where ex-

pert neuroradiologists manually corrected a proprietary automated segmentation method.

We use a 60/20/20 split for training, validation, and testing respectively. More details

about each dataset can be found in Table 6.1.

Identity # Patients Acquisition Period Disease Subtype Disease Stage
Trial-A 1000 2011-2015 Secondary Progressive MS (SPMS) Late Stage
Trial-B 1000 2008-2011 Relapsing Remitting MS (RRMS) -
Trial-C 500 2004-2009 Secondary Progressive MS (SPMS) Early Stage

Table 6.1: Details of the clinical trial datasets used in this chapter.
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6.3 Experiments and Results

We perform three different sets of experiments to demonstrate the usefulness of the pro-

posed SCIN approach. In the first experiment, we show that SCIN is able to strategically

pool diverse datasets with differing cohort biases. The second experiment demonstrates

the clinical utility of SCIN to adapt to new cohort biases with limited available labeled

data. Finally, we show that SCIN is able to model complex cohort biases by simulating a

type of cohort bias where small lesions (10 voxels or less) were not labeled.

6.3.1 Trial Conditioning

Experiments in this section aim to show how the proposed SCIN approach allows for

pooling of data from multiple cohorts while taking into account cohort specific biases.

We use two different clinical trial datasets (Trial-A and Trial-B) for these experiments.

These two trials were collected several years apart with patients of different disease sub-

types. Given that each trial is processed independently and at different points in time,

minor differences in site/scanner distribution and annotation style will exist. Together,

the patient population, site/scanner distribution, and annotation style create a distinct

cohort bias, which we aim to account for with the proposed method.

We train four different models on these datasets: (i) a model trained on only Trial-A,

with Instance Norm (IN) [96], (ii) a model trained on only Trial-B (with IN), (iii) a model

trained on a naively pooled dataset consisting of Trial-A and Trial-B (with IN), and (iv)

a model trained on both Trial-A and Trial-B using the SCIN approach. All four models

were tested on the same held-out test set from both trials.

Table 6.2 depicts the performance of the aforementioned models on the hold-out test

sets. Results indicate that models trained on only one trial (Row-1 and Row-2) generalize

poorly when tested on the other trial. A model trained on the naively pooled dataset,

consisting of data from both trials (Row-3), shows better generalization across trials, but

still falls short of the performance achieved by each trial-specific model, especially in
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Model Train Set Conditioned On Test Performance
Trial-A Trial-B Trial-A Trial-B Trial-A Trial-B

1 Single-Trial 3 - 0.793 0.689
2 Single-Trial 3 - 0.715 0.803
3 Naive-Pooling 3 3 - 0.789 0.748
4 SCIN-Pooling 3 3

3 0.794 0.700
5 3 0.725 0.797

Table 6.2: Dice scores shown on Trial-A and Trial-B test sets for models trained with different
combinations of Trial-A and Trial-B training sets. Trial-A and Trial-B training sets each contain 600
patients.

Figure 6.3: Qualitative lesion segmentation labels (red is false positives, blue is false negatives,
green is true positives) superimposed onto a FLAIR test image from Trial B. The results are based
on the models from Rows 1-5 (left to right) of Table 1. Figure originally part of a manuscript
accepted for publication [74].

the case of the Trial-B dataset. At first glance, this might appear surprising given the

expectation that a model trained on a larger, pooled dataset should generally perform

better relative to a model that has access to less data. However, given the knowledge that

biases can exist between cohorts, it is no mystery why the naively pooled model would

be unable to generate a labeling consistent with the cohort of the sample, given that the

cohort / labeling bias cannot be identified from the image alone. On the other hand,

a single SCIN-pooling model conditioned on each trial (Row-4 and Row-5), is able to

learn trial-specific parameters to model the bias specific to the trial in question, improving

performance relative to the naively-pooled model (Row-3). Note that using the incorrect

set of trial-specific parameters with the SCIN-Pooling model (Row-4 and Row-5) results

in a performance decline similar to that observed when testing the Single-Trial models
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Model Fine-Tuned on
Trial-C

Conditioned on Test PerformanceTrial-A Trial-B Trial-C
1 Naive-Pooling - 0.774
2 3 - 0.819
3

SCIN-Pooling
3 0.763

4 3 0.806
5 3 3 0.834

Table 6.3: Dice scores shown on the Trial-C test set from the Naive-pooling and SCIN-pooling
models trained on Trial A and B. Dice scores are also shown for fine-tuned versions of those mod-
els, where the IN parameters were tuned using 10 Trial-C samples. Figure originally part of a
manuscript accepted for publication [74].

(Row-1 and Row-2) on the corresponding unseen trial. This simply serves as a sanity

check, and confirms that the proposed method effectively models the cohort bias of each

dataset.

Qualitative results for labels produced by different models on a single Trial-B test case

are shown in Figure 6.3. From this, we can see that generating labels on a Trial-B test

case using a Single-Trial model trained on the Trial-A dataset (Image-1) leads to an in-

creased number of false positive and false negative voxels. This is also true when testing

a naively pooled model (Image-3). On the other hand, the proposed SCIN-pooled model

conditioned on Trial-B (Image 5) does not suffer from a significant degradation in segmen-

tation quality, showing that the SCIN approach enables leveraging multiple datasets with

different cohort biases without significant performance decrements. Visually, note that

the labeling style of the the SCIN-pooled model is similar to that of the corresponding

Single-Trial model, showing that SCIN-pooled method is able to learn a cohort-specific

bias for each trial.

6.3.2 Fine-tuning to New Cohort Bias

The second set of experiments aims to mimic a clinical situation where large datasets

(Trial-A and Trial-B) have a known cohort bias. A new small dataset (Trial-C) is provided

with an unidentified cohort bias. We take two pre-trained models (Naively-Pooled and

SCIN-pooled) from the previous set of experiments (see Sec 6.3.1), and fine-tune the affine
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parameters of the IN/CIN layers with only 10 labeled samples from the Trial-C dataset.

Segmentations are performed on a hold-out test set from Trial-C. Similar to Experiment

1, time of collection and disease subtype were the primary differences between the three

trials (along with minor differences in scanner/site distribution and labeling protocol).

Table 6.3 depicts the results for this set of experiments. We can see that the perfor-

mance of the naively-pooled model improves when the IN parameters of the model are

fine-tuned (Row-2) compared to no fine-tuning (Row-1). Furthermore, a SCIN-pooled

model shows good Trial-C performance when conditioned on Trial-B (Row-4), indicating

that Trial-C has similar cohort biases. By fine-tuning the trial-specific CIN layer param-

eters of this model on 10 samples of Trial-C, we are able to then condition the model on

Trial-C during test time. This leads to the highest performance improvement (Row-5)

over all models, including fine-tuning the naively pooled model (Compare Row-2 and

Row-5). This shows that with SCIN, we can more effectively learn features common to

both Trail-A and Trial-B, resulting in better performance after fine-tuning on a hold-out

trial.

6.3.3 Accounting for Complex Cohort Biases - Missing Small Lesions

The final set of experiments examine whether the SCIN approach is able to learn complex

non-linear cohort biases. Accordingly, we isolate biases that arise solely from different la-

belling protocols while keep all other factors, such as disease stage and time of collection,

constant. To that end, we utilize a held-out clinical trial dataset (Trial-C) and artificially

modify half of the dataset by removing small lesions (10 voxels or less) from the provided

labels. This can be thought of as being equivalent to a labeling protocol that misses or

ignores small lesions (Trial-MSL). The labels of the remaining half of the dataset are not

modified in any way (Trial-Orig).

Table 6.4 shows the results for this set of experiments on a non-modified Trial-C test

set (Trial-Orig). We report detailed results specific to the detection of small lesions in

order to examine whether the proposed strategy learns to account for a labeling style
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Model Train Set Conditioned On Test Performance
Trial-Orig Trial-MSL Trial-Orig Trial-MSL Sm Lesion F1 Voxel Dice

1 Single-Trial 3 - 0.795 0.844
2 Single-Trial 3 - 0.419 0.837
3 Naive-Pooling 3 3 - 0.790 0.797
4 SCIN-Pooling 3 3

3 0.784 0.854
5 3 0.496 0.850

Table 6.4: Voxel based Dice scores and small lesion detection F1 scores shown on Trial-C (Trial-
Orig) held-out test set using models trained on different combinations of the original dataset (Trial-
Orig, 150 training patients) and the dataset with missing small lesions (Trial-MSL, 150 training
patients). Figure originally part of a manuscript accepted for publication [74].

that ignores small lesions. The results in Row-1 show that when both train set and test

set have the same labeling protocol (Trial-Orig), the Single-Trial model performs well ac-

cording to both lesion-level detection and voxel-level segmentation metrics. On the other

hand, when there is a significant shift in the labeling protocol between the train and test

set, the Single-Trial model trained on the Trial-MSL dataset (Row-2) exhibits poor small

lesion detection performance. The degradation in small lesion detection performance is

expected as Trial-MSL has small lesions labeled as background, while the test set (Trial-

Orig) has small lesions marked as lesions. The Naively-Pooled model (Row-3), which

is trained on both Trial-Orig and Trial-MSL, learns to completely ignore the bias of the

Trial-MSL dataset as measured by lesion-level detection performance. However, voxel-

level segmentation performance suffers significantly. On the other hand, a model trained

using the SCIN approach is able to adapt to the difference in labeling styles and exhibit

good lesion-level detection and voxel-level segmentation performance when conditioned

on the appropriate cohort (Row-4). Looking at SCIN-Pooling conditioned on Trial-MSL

(Row-5), we see that SCIN is able to learn the Trial-MSL label bias quite effectively, and

is able to ignore small lesions while maintaining voxel-level segmentation performance.

This shows that SCIN is able to model complex non-linear labeling biases – its not just a

matter of over or under segmentation.
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6.4 Summary

In this chapter, we proposed SCIN, an approach that learns source-specific instance nor-

malization parameters, effectively modeling the bias of each cohort present in an aggre-

gated dataset. We show that the instance normalization parameters of a pre-trained SCIN

model can be fine-tuned, allowing the model to learn the bias of an independent cohort

with very little data. We demonstrate that the biases learned can be non-linear, resulting

in complex differences in the segmentation outputs corresponding to each cohort. Most

importantly, we show that proposed method makes it possible to train a high performance

model on an aggregate dataset, avoiding the performance penalty observed with naive

pooling. Overall, SCIN is simple to implement, and can potentially benefit any applica-

tion that wishes to leverage a large aggregated dataset in the context of segmentation.
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Chapter 7

Conclusion

This thesis presented an in-depth look at the process of engineering a deep learning sys-

tem for the task of focal pathology segmentation and detection. We first illustrated the

importance of building a well-engineered pipeline, pointing out a number of design de-

cisions that can impact model evaluation and development. These decisions reinforce

the need for a meticulous engineering process, involving an in-depth understanding of

the problem at hand, including an understanding of the metrics by which success will be

measured. Next, we turn our attention to the model development/configuration process,

discussing a number of factors that, properly considered, enable the development of high

performance models within common computational constraints. Through this process,

we established a robust, well-trained UNet, outperforming other approaches on the same

dataset. Having established a well-trained UNet, we propose Lesion Size Reweighting,

a method to close the segmentation-detection performance gap, enabling a single model

to achieve optimal performance on both tasks simultaneously. Finally, we turn our atten-

tion to the problem of aggregating datasets, proposing a new approach to model cohort-

specific biases, enabling a single model to leverage a multi-cohort aggregated dataset.
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