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Abstract

Demand Forecasting is an important tool in many industries including retail. Although

many approaches have been developed to accurately predict the demand of products

based on their historical sales data, demand prediction is still a complex issue especially

when there is a domain shift between training and testing data.

In this work, we study three examples of domain shifts in the context of retail: outbreak of

the COVID-19 pandemic, opening a new store, and introducing a new product. We first

show that the accuracy of demand prediction models suffers after each sudden change.

Then, we use domain adaptation methods, such as Frustratingly Easy (FE) and Kernel

Mean Matching (KMM) to help improve the demand prediction accuracy by leveraging

the available data from the period before the shift (source domain) and adapting it to the

data after the shift (target domain). Additionally, we show that using a pairing technique

further helps improve the prediction accuracy.

We use two methods as our base forecasting model: XGBoost and Transformers, and we

show that in the context of our data, it is better to use XGBoost.

Our dataset comprises of point-of-sales data from 89 locations of Alimentation Couche-

Tard convenient stores in the island of Montreal gathered between 2019-07 and 2021-02.

We use product price information in addition to sales information to predict the demand

of products in each store. In this study, we focus our attention on the two high-selling

categories of coffee and energy drinks.
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Abrégé

La prévision de la demande est un outil important dans de nombreux secteurs, y compris

le commerce de détail. Bien que de nombreuses approches aient été développées pour

prédire avec précision la demande de produits en fonction de leurs données de vente his-

toriques, la prévision de la demande reste un problème complexe, en particulier lorsqu’il

existe un changement de domaine entre les données de formation et de test.

Dans ce travail, nous étudions trois exemples de changement de domaine dans le con-

texte du commerce de détail : l’apparition de la pandémie de COVID-19, l’ouverture d’un

nouveau magasin et l’introduction d’un nouveau produit. Nous montrons d’abord que

la précision des modèles de prévision de la demande souffre après chaque changement

soudain. Ensuite, nous utilisons des méthodes d’adaptation de domaine telles que Frus-

tratingly Easy (FE) et Kernel Mean Matching (KMM) pour aider à améliorer la précision

des prévisions de la demande en utilisant les données disponibles avant le changement

(domaine source) et en les adaptant aux données après le changement (domaine cible). De

plus, nous montrons que l’utilisation d’une technique d’appariement permet d’améliorer

encore plus les précisions.

Nous utilisons deux méthodes comme modèle de prévision de base : XGBoost et Trans-

formers et nous montrons que dans le contexte de nos données, il est préférable d’utiliser

XGBoost.

Notre ensemble de données comprend les données des points de vente de 89 emplace-

ments de dépanneurs Alimentation Couche-Tard sur l’ı̂le de Montréal. Nous utilisons
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les informations sur les prix des produits en plus des informations sur les ventes pour

prévoir la demande de produits dans chaque magasin. Dans cette étude, nous concen-

trons notre attention sur les deux catégories les plus vendues : le café et les boissons

énergisantes.
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Chapter 1

Introduction

Demand Prediction or Demand Forecasting is an important tool in many industries, espe-

cially in retail. Retail is a very wasteful industry, whether it is caused by changing cloth-

ing trends or due to the nature of perishable items in grocery stores [FAO-Gustavsson

et al., 2011]. Accurate demand prediction can help reduce this waste, and yield a positive

environmental impact.

Although many approaches have been developed to accurately predict the demand of

products based on their historical sales data [Winters, 1960a] [Gardner Jr, 1985], demand

prediction is still a complex issue especially when there is a shift [Huyen, ] between train-

ing and testing data. In such situations, the data from the period before the shift may be

no longer relevant, and the amount of data in the new domain is often not sufficient to

train a predictive model.

In the context of retail, this domain shift can be due to a sudden change such as the

outbreak of the COVID-19 pandemic [Ciotti et al., 2020]. Two other common shifts in

retail is the opening of a new store or the launch of new product. In such cases, we

have to wait until sufficient data is gathered in the new domain before we can predict the

demand with an accuracy that is comparable to before the domain shift.
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This period of not having access to accurate demand prediction can be costly for retailers.

Domain Adaptation methods can be used to help close this gap in prediction accuracy by

leveraging available data from the previous domain (source domain) and adapting it to

the new domain (target domain).

In this thesis, we consider three case studies of domain shift and confirm that a domain

shift negatively affects the accuracy of demand prediction models. Then we use domain

adaptation techniques [Daumé III, 2009] [Sun et al., 2016] [Sun and Saenko, 2016] to miti-

gate this negative effect.

Chapter 2 reviews the time series forecasting literature. We divide the existing methods

into two categories: traditional [Winters, 1960a] [Gardner Jr, 1985] and modern [Chen

et al., 2015] [Vaswani et al., 2017] . We next consider state of the art in demand forecasting

as a special case of time series forecasting. In the rest of this chapter, we study domain

adaptation techniques and consider some of the most common ones.

Chapter 3 starts by describing the characteristics of our dataset. Furthermore, we describe

three case studies we consider in this work. We explain the goals of each case study and

the architectures used.

Chapter 4 discusses our criteria for baseline selection and presents the results of each

experiment. Finally, the managerial implications of the previous results are discussed.

We conclude our work by summarizing our findings and mentioning some feature steps.

I developed all of the techniques and ran all of the experiments described in the thesis.

My co-supervisors Professor J. Clark and Professor M. Cohen provided advice during the

research.
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Chapter 2

Background and Related Work

2.1 Time Series Forecasting

Time series forecasting has always been an influential part of research because of its vari-

ous applications in numerous significant fields.

In finance, it plays a critical role in determining which stocks or options should be bought

or sold at what time frame. Complex algorithms based on time series prediction are

embedded in appropriate hardware and make such decisions in a fraction of a second

[Andersen et al., 2005].

Time series prediction is an integral part of the retail industry. It helps retailers determine

how much of each product they should expect to sell at different times. This information

is critical in organizing the supply chain and ensuring that customers are not facing empty

shelves and at the same time that the stores do not carry excess inventory [Huber and

Stuckenschmidt, 2020, Ma and Fildes, 2021, Mahmoudyan and Zeqiri, 2021].

Climate change is one of today’s pressing issues. Time series prediction is also a key

element in climate studies. The algorithms are used to predict future trends in climate

change. For instance, the application of state-of-the-art statistical methods to the time

3



series of global surface temperatures conclude accelerated warming since the year 1974

[Mudelsee, 2019].

The time-series data comprise three components, which are discussed next:

1. Trend: A trend refers to a long-term increase or decrease in the data, which does

not necessarily have to be linear. A trend can also be referred to as a “changing

direction” when it might go from an increasing trend to a decreasing trend.

2. Seasonality: A seasonal pattern occurs when a time series is affected by seasonal

factors such as the time of the year or the day of the week. Seasonality is always of

a fixed and known frequency.

3. Cyclic: A cycle occurs when the data exhibit rises and falls that are not of a fixed

frequency. These fluctuations are usually due to economic conditions and are often

related to the “business cycle.” The duration of these fluctuations is usually at least

two years.

Cyclic behaviour can easily be confused with seasonal behaviour, although they are

different. If the fluctuations have a fixed frequency, they are cyclic; if the frequency

is unchanging and associated with some aspect of the calendar, then the pattern is

seasonal. The length of the cycle is usually larger than the length of the seasonality.

Many time series include trends, cycles, and seasonality. When choosing a forecast-

ing method, we first need to identify the time series patterns in the data and then

select an approach that can properly capture the patterns [Hyndman, 2018].

In Figure 2.5, we can infer that there exists an increasing trend in the sales of anti-

diabetic drugs over the years. These sales also show seasonality that might be due

to the change in the drug price at the end of the calendar year.
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Figure 2.1: Monthly sales of anti-diabetic drugs in Australia. Image credit: [Hyndman, 2018]

2.1.1 Traditional Approaches

Traditional approaches in time series prediction are parametric models such as auto-

regressive and exponential smoothing [Gardner Jr, 1985, Winters, 1960a].

1. Auto-Regressive models

Unlike linear regression [Weisberg, 2005], in auto-regressive models, the variable of inter-

est is predicted using a linear combination of only the past values of the variable. In other

words, lagged versions of the variable are used to predict its future value.

The general format of an auto-regressive model of order p can be seen below:

yt = c+ a1yt−1 + a2yt−2 + ...+ apyt−p + ϵt,

where ϵt represents the white noise. Auto-regressive models perform well in predicting a

wide range of different time series patterns [Hyndman, 2018].
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2. Moving Average

The formulation of weighted average is as below:

yt = (yt−1 + yt−2 + ...+ yt−p)/p,

where p is the size of the sliding window.

3. Weighted Moving Average

We can extend the moving average equation to a weighted form. The formula of this

method is given by:

yt = (wt−1yt−1 + wt−2yt−2 + ...+ wt−pyt−p)/(wt−1 + wt−2...+ wt−p),

where p is the size of the sliding window. We note that the sum of the weights is naturally

designed to be equal to one.

An special case of weighted moving average would be exponential weighted moving

average. [Winters, 1960b] has explored this method to forecast sales. [Holt, 2004] has done

so to predict seasonality and trends.

4. Exponential Smoothing

Exponential smoothing is used for smoothing time series data using the exponential win-

dow that is used to assign exponentially decreasing weights over time. Whereas in the

simple moving average the past observations are weighted equally.

A simple form of exponential smoothing is as follows:

s0 = x0,

st = axt + (1− a)st−1.
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The raw data is represented by x and the output of the exponential smoothing is repre-

sented by the variable s.

5. Autoregressive Integrated Moving Average (ARIMA)

ARIMA considers standard structures in time series data. However, it is still a powerful

forecasting model for time series. ARIMA stands for Autoregressive Integrated Moving

Average. It is a generalization of the simpler Autoregressive Moving Average and adds

the notion of integration.

Here we explain each characteristic of the model:

AR: Autoregression. As described in Section 1, this feature considers a relationship be-

tween a variable and some of its lagged versions.

I: Integrated. The use of differencing of raw observations (e.g., subtracting an observation

from the observation at the previous time step) to make the time series stationary, i.e., to

remove the trend and the seasonality that negatively affect the regression model.

MA: Moving Average. A model that uses the dependency between an observation and a

residual error from a moving average model is applied to lagged observations.

These components make up the parameters in the model in a standard notation of ARIMA

(p, d, q).

The parameters of the ARIMA model are defined as follows:

p: referred to as the lag variable, is the number of lagged variables included in the model.

d: The number of times the raw observations are differenced is also called the degree of

difference.

q: The order of moving average is the size of the moving average window.

SEATS models which stand for Seasonal Extraction in ARIMA Time Series were devel-

oped in Bank of Spain and now are widely used in order to decompose the time series.
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This method only works for monthly and quarterly seasonality [Dagum and Bianconcini,

2016]. X1, X12 ARIMA, and X13 ARIMA are examples of other decomposition meth-

ods [Dagum and Bianconcini, 2016].

2.1.2 Modern Approaches

Great advancements in deep learning, especially natural language processing, image clas-

sification, and reinforcement learning, have increased the interest in such models for time

series prediction.

Machine learning methods enable us to predict the time series without the extra has-

sle of feature engineering. These methods perform in a purely data-driven approach, in

contrast to traditional approaches that require some level of expert knowledge [Lim and

Zohren, 2021].

Here, we discuss some of the most prominent machine learning models used to predict

time series.

2.1.3 XGBoost

XGBoost [Chen et al., 2015], stands for Extreme Gradient Boosting. It is a scalable, dis-

tributed gradient-boosted decision tree (GBDT).

XGBoost is similar to Random Forest [Breiman, 2001] since both algorithms use a col-

lection of decision trees. Their difference is rooted in how they selected the collection.

Random Forest uses the bagging technique while XGBoost uses gradient boosting.

In Gradient Boosting, an ensemble of decision trees are trained iteratively. At each itera-

tion, the error residuals of the previous model are used to fit the next model. A weighted

sum of the tree predictions at each iteration is considered as the final model. The bagging

approach in Random forest minimizes the variance and overfitting, whereas the “boost-

ing” approach in the gradient boosting minimizes the bias and underfitting.

8



XGBoost is a highly scalable end-to-end tree boosting system that uses parallel tree learn-

ing instead of sequential [Chen et al., 2015].

Convolutional Neural Networks (CNN)

Convolutional Neural Networks or CNNs are designed to extract spatially local features

from the input data. CNNs were designed for images, so we cannot directly apply them to

time series data because time series have a natural order in them [Krizhevsky et al., 2012a,

Goodfellow et al., 2016]. To be able to use CNNs for time series data, causal convolutions

have been designed. These convolutions make sure that the future information is not

used [Borovykh et al., 2017]. A simple expression of such convolutions is given by:

hl
t
+1 = A((W ∗ h)(l, t)),

(W ∗ h)(l, t) =
k∑

τ=0

W (l, τ)hl
t−τ .

The variable A is an activation function, hl
t is an intermediate state layer at layer l and

step t, and W (l, τ) is the filter at layer l. A more intuitive understanding of this structure

is reported in Figure 2.2

Figure 2.2: Intuitive graph showing the structure of causal convolution [Oord et al., 2016]
.
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Dilated Convolutions are one type of convolutions that reduce the challenges of com-

putational complexity [Oord et al., 2016]. A dilated causal convolution would follow the

form below:

(W ∗ h)(l, t, dl) =
⌊k/dl⌋∑
τ=0

W (l, τ)hl
t−dlτ

,

where ⌊⌋ is the floor operator and dlτ is a layer-specific dilation rate. Dilated convolutions

can hence be interpreted as convolutions of a down-sampled version of the lower layer

features – reducing the resolution to incorporate information from the distant past. As

such, by increasing the dilation rate with each layer, dilated convolutions can gradually

aggregate information at different time blocks, allowing for more history to be used in an

efficient manner [Lim and Zohren, 2021]. Figure 2.3 shows the inner workings of such

structure.

Figure 2.3: Intuitive graph showing the structure of dilated causal convolution [Oord et al., 2016].

Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN) have been proven very powerful in natural language

processing tasks [Young et al., 2018]. Since time series data is in nature also a sequence,

these methods have been used to predict time series [Salinas et al., 2017, Rangapuram

et al., 2018,Lim et al., 2019,Wang et al., 2019]. RNNs have a memory state, which compacts

information from the past values of the time series. This memory is updated at each step
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with regards to the current value of time series as shown in Figure 2.4 [Lim and Zohren,

2021].

Figure 2.4: Graph showing the structure of a basic RNN, folded (left) and expanded (right) [Kim
et al., 2021].

Due to problems with vanishing and exploding gradients [Goodfellow et al., 2016], RNNs

might suffer when applying them to long time series data. To solve this problem, long

short-term memory networks or LSTMs have been introduced [Hochreiter and Schmid-

huber, 1997]. LSTMs use a cell state to improve the gradient flow through the network.

Figure 2.5: Graph showing the structure of LSTM unit [Hochreiter and Schmidhuber, 1997].

11



Transformers

[Vaswani et al., 2017] proposed the Transformer architecture, which has become the state-

of-the-art model in natural language processing. This model is solely based on the atten-

tion mechanism and removes the need for convolution and recurrence. The Transformer

allows parallelization, so it is more efficient when compared to competing models. Since

attention mechanisms have played a significant role in their superior performance, we

should first understand the concept of attention.

Attention Attention Mechanisms help the model to focus on parts of the sequence that

are important, even if they are far past. Attention can be considered as a key-value lookup

based on a query [Graves et al., 2014]. Attention mechanisms aggregate past information

using dynamically generated weights [Lim and Zohren, 2021]. In more detail, given the

key, value, and query, the output is computed as a weighted sum of the values, where the

weight assigned to each value is computed based on the compatibility of the query and

the given key [Vaswani et al., 2017]. The formulation of the output of attention mechanism

can be written as below:

Attention(V,K,Q) = softmax(
QKT

√
dk

).

An extension of the dot-product attention (formulated above) is the multi-head attention.

It would be more efficient if, instead of doing a single attention, multiple attention mech-

anisms could be performed at the same time [Vaswani et al., 2017].

Multi-head attention allows the model to jointly attend to information from different rep-

resentation sub-spaces at distinct positions by projecting the key, values, and query with

different projection matrices, performing attention on each of these projected versions in

parallel, and then concatenating the results. The structure of multi-head attention can be

seen in Figure 2.6.
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Figure 2.6: The structure of multi-head attention: (left) Scaled Dot-Product Attention. (right)
Multi-Head attention [Vaswani et al., 2017].

Formulation of such attention would be as follows:

Multihead(Q,K, V ) = Concat(head1, ..., headh)W
O

headi = Attention(QWQ
i , KWK

i , V W V
i ),

where WQ
i , WK

i , W V
i , and WO are the projections.

The Transformer architecture is comprised of an encoder and a decoder. The encoder

maps a sequence of inputs to the state value z, and the decoder generates a sequence of

elements given variable z, one value at a time. The generation process is auto-regressive,

meaning that only the past values are used to generate the new element [Vaswani et al.,

2017]. Figure 2.7 shows the architecture of the Transformer model.
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Figure 2.7: Architecture of Transformer model [Vaswani et al., 2017].

2.2 Demand Forecasting

2.2.1 Retail Demand Forecasting

Demand Forecasting is an integral part of the retail industry since many important orga-

nizational decisions, such as pricing, inventory management, distribution, and replenish-

ment are done based on product demand [Ma and Fildes, 2021]. Retail is by nature a very

wasteful industry, so that accurate demand forecasting can mitigate this issue, increase

customer satisfaction, and ultimately increase revenue and profits [Ma and Fildes, 2021].
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Retail demand forecasting mostly deals with predicting the demand of each product over

a large number of stores for a short horizon [Ma and Fildes, 2021].

According to [Ma and Fildes, 2021], retail organizations need to predict the demand for

three levels of decisions:

1. Strategic level: Retailers need long-term forecasts to set their organizational strat-

egy for the years ahead. For example, a prediction of an increase in online sales

should encourage the retailer to invest more into its online presence. This level

deals with decisions in the span of years ahead.

2. Tactical level: Tactical decisions fit under the strategy of the organization. This level

deals with more short-term decisions (e.g., a few months) and determines the com-

munication and advertising plans of the retail organization [Ma and Fildes, 2021].

3. Operational level: A retail organization should make day-to-day operational deci-

sions to satisfy its strategy and tactics. These decisions concern handling the supply

planning process, staffing schedules, and avoiding customer service issues [Ma and

Fildes, 2021].

Any demand prediction in retail is aggregated over a certain level, such as products, lo-

cations, and time brackets, based on the goal of the prediction. Market-level aggregation

refers to sales being aggregated over a certain region or country [Cohen et al., 2019]. This

type of forecast is substantial when defining the strategy of the organization. Chain-

and channel-level aggregation are needed for the organization’s financial management.

Store-level aggregation deals with predicting the demand for products in a store. Sales

in each store are significantly affected by the local demographics and economic factors.

Store-level forecasting can be divided into two groups: (1) Sales forecasting for existing

stores, and (2) New Store sale forecasting [Ma and Fildes, 2021]. Product-level forecasts

concern predicting the demand for a large number of products over a short horizon. Pre-

dicting the demand for each product in each store is an integral part of making opera-
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tional decisions in the organization, such as pricing [Cohen et al., 2020], promotions [Co-

hen et al., 2017,Cohen et al., 2021], space allocation, and inventory management [Ma and

Fildes, 2021]. Due to the smaller amount of data, product-level forecasts are more chal-

lenging and most researchers have focused on presenting a single model that works best

for all items in the store, which results in sub-optimal performance. For example, [Ma and

Fildes, 2021] proposes a meta-learning framework that first learns from an ensemble of

base-forecasting methods, and then uses this knowledge to generate an optimal ensemble

model.

2.2.2 Techniques for Demand Prediction

Traditional techniques such as simple moving averages, exponential smoothing and its

extensions, and ARIMA have been widely used to predict demand. Multiple linear re-

gressions or more complex econometric models that have an explicit set of parameters

have also been used. Studies have shown that using multivariate models often improves

the prediction performance compared to univariate models [Ma and Fildes, 2021].

According to [Cohen et al., 2022], nonlinear models that can be useful for predicting de-

mand include linear and nonlinear regressions, Regression Trees, Support Vector Ma-

chines [Ali et al., 2009], and Recurrent Neural Networks [Gasthaus et al., 2019]. Nonlinear

models perform better in general.

It is not always possible to select traditional approaches or neural networks as the supe-

rior approach. The results of the most recent M4 competition suggest that (combinations

of) statistical methods outperform pure machine learning methods, while a hybrid ap-

proach performed best at forecasting univariate time series. The M4 competition is an

extension of the previous M competitions, which focus on time series forecasting [Makri-

dakis et al., 2020].
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[Huber and Stuckenschmidt, 2020] found that machine learning methods perform better

when predicting the demand on special days and are also more suitable for the retail

industry, which deals with large-scale demand forecasting scenarios.

[Alon et al., 2001] concluded that neural networks perform better than ARIMA models

when forecasting sales with a strong trend and seasonality aggregated over a month.

[Aburto and Weber, 2007] proposed a hybrid of ARIMA and neural networks in which

the neural network is trained on the residuals of the ARIMA model.

2.3 Domain Adaptation

The presence of abundant data has led machine learning models to be very successful in

many tasks, such as self-driving cars [Wang et al., 2012], machine translation [Young et al.,

2018], automatic diagnosis [Kononenko, 2001], exo-planet discovery [Ball and Brunner,

2010], and online commerce [Lu et al., 2015]. These models have even surpassed human

abilities in object detection tasks [He et al., 2015].

Despite this success, machine learning models will fail to generalize well whenever there

is a significant difference between the distribution of the data they are trained on versus

the data they are applied to later on. By the ability to generalize, we mean performing

well on new distributions of data and the distribution that the model is trained on. In

other words, if the source data (i.e., primary data that the model is trained on) is not

a good enough reflection of the target data (i.e., the data that we are interested in for

prediction), the system is not expected to perform well [Kouw and Loog, 2018].

Domain Adaptation techniques aim to mitigate this shift between source and target dis-

tributions and create a model that generalizes well to the target domain [Kouw and Loog,

2018]. We will discuss different approaches that domain adaptation techniques use in the

following sections. The domain shift between source and target data can be caused by

numerous factors. Below we provide some examples of possible cases.
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A prominent example of the need for domain adaptation would be in bio-engineering.

MRI images are used in hospitals to detect abnormalities. However, each of the scanning

machines has specific calibration and configuration, and hence will produce different im-

ages [De Bruijne, 2016]. Another example is in the field of natural translation. The words

used to describe a book are different from what is used to describe an electronic device,

making sentiment analysis context reliant [Blitzer et al., 2007]. Similarly, self-driving cars

have to adapt to different surroundings as well as to different people [Van Kasteren et al.,

2010].

In summary, we can say that the goal of domain adaptation is to create a model that

performs well on the target data by properly leveraging the information in the source

data.

2.3.1 Domain Adaptation vs. Transfer Learning

In the context of transfer learning and domain adaptation, a domain consists of three

parts: (i) an input space X (feature vectors), (ii) an output space Y (labels), and (iii) a joint

probability distribution P (X, Y ). Machine learning models try to model P (Y |X). Given

two domains, if each of these three components differ, domains are different, so a domain

shift exists between them. In transfer learning tasks, each of these three components is

free to differ. However, domain adaptation is considered a special case of transfer learn-

ing in which only the probability distribution can change between the domains [Kouw

and Loog, 2018]. The same concept can be seen in Figure 2.8.

Note that the joint probability distribution between the input and label spaces can be

decomposed as follows: P (X, Y ) = P (Y |X)P (X), P (X, Y ) = P (X|Y )P (Y ).

Given the above, we define the three following domain shifts:

1. Covariate shift: P (X) changes, but P (Y |X) remains constant (first decomposition

above). In this context, a covariate is a variable that is not of direct interest, but its
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Figure 2.8: Graph showing the relationship between transfer learning and domain adaptation.
Image credit: [Redko et al., 2020]

change affects the variable of interest. For example, in the case of detecting breast

cancer, age is a covariate variable since it is not of direct interest but it affects the risk

of the patient having breast cancer. Covariate shifts can happen because of biases

during data collection. For example, in the case of breast cancer, one might collect

data from clinics where women have come for checkups. Since women over 40 years

old are encouraged by their doctors to do checkups, the frequency of women over 40

in the data may be higher than it should (i.e., be biased). Another common reason

behind covariate shift is oversampling. Since it is challenging for machine learn-

ing models to learn from imbalanced data, we might over-sample rare test cases to

help the model train. Another reason that covariate shifts can happen in real life

stems from the difference between the environment in which the training data and

test data are collected. For example, since training data are usually collected in lab-

oratories, many environmental factors have been controlled in them. However, if

the model is to be used by people in their homes, the test data may be noisy. An

illustration of covariate shift can be seen in Figure 2.9.

19



Figure 2.9: An example of covariate shift. (Left) The target data distribution has shifted with
respect to the source data distribution. (Middle) The posterior distributions are not changed.
(Right) The resulting joint distributions are also changed. Image credit: [Kouw and Loog, 2018]

2. Label shift: P (Y ) changes, but P (X|Y ) remains constant (second decomposition

above). Note that when the input distribution changes, the output distribution also

changes, so that both the covariate and label shifts happen simultaneously. Consider

the breast cancer example from above. Since there are more people over the age of

40 in the clinic, the ratio of positive samples increases. However, given two patients

with breast cancer, they have the same probability of being over 40. In other words,

P (X|Y ) is the same, thus making this scenario also an example of label shift. This is

not always the case, however. It is possible to have only label shift. For example, us-

ing a preventing drug will reduce the probability of having breast cancer regardless

of age, so there is no covariate shift in this scenario. Since P (X|Y ) is still constant,

we have a label shift. An illustration of label shift can be seen in Figure 2.10.

3. Concept shift: P (Y |X) changes, but P (X) remains constant (first decomposition

above). An example of such a scenario would be an airplane ticket pricing system.

Given the same flight (same route, airplane, seating), prices of tickets can change

during different seasons or throughout the week based on demand. An illustration

of concept shift can be seen in Figure 2.11.

In general, multiple types of domain shift can happen between two data distributions and

this makes domain adaptation hard [Kouw and Loog, 2018].
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Figure 2.10: An example of prior shift. (Left) The conditional distributions in each domain are
different. (Middle) The prior distribution changes from 1/2 for both classes in the source domain
to 3/4 and 1/4 in the target domain. (Right) The joint distributions are also updated. Image
credit: [Kouw and Loog, 2018]

Figure 2.11: An example of concept shift. (Left) The data distributions remain constant. (Middle)
The target posterior distributions are shifted to the left with regards to the source. (Right) The
resulting joint distributions are changed. Image credit: [Kouw and Loog, 2018]

2.3.2 Methods

[O’donovan et al., 2015] categorized domain adaptation techniques into three main sec-

tions: Feature Based, Instance Based, and Parameter Based. Here we will elaborate on

each category and discuss prominent methods for each.

Feature Based

This type of methods generally assume that the input space was shifted by uncertainties

in the data collection process and try to counteract this shift by finding a feature space

in which the source and target distributions match [de Mathelin et al., 2021]. Most of the
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algorithms in this category are used for unsupervised domain adaptation. Figure 2.12

shows an illustration of the inner workings of feature-based domain adaptation methods.

Figure 2.12: Illustration of how feature-based methods work. In these methods, the source and
target features are mapped to a new space in which their distributions match. Image credit:
[de Mathelin et al., 2021]
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We next discuss different examples of feature-based domain adaptation methods:

1. FE: Frustratingly Easy Domain Adaptation

[Daumé III, 2009] proposed FE as a supervised domain adaptation method, so it is

useful when we have a few labelled target data to help us perform better than only

using source data.

As indicated by the name, although this method performs really well, it is surpris-

ingly easy to implement. The authors have implemented FE in ten lines of Perl

code [Daumé III, 2009]. It is also easy to implement in other programming lan-

guages.

FE is considered as a preprocessing step since it is similar to data augmentation.

The method tries to map the source and target samples to a new space in which it is

clear to which domain features correspond.

To give more details, each feature in the original data space is mapped to three

versions of it: the general version, the source version, and the target version. The

augmented source data will contain only the source and the general features. The

augmented target data will contain only the general and target features. This aug-

mentation process helps identify to which domains each feature belongs [Daumé III,

2009].

Consider X ∈ RF as our input space and Y as our output space. ϕs(x) is defined as

the transformation that maps the source data to the augmented space and ϕt(x) as

the transformation that maps the target data to the augmented space. These trans-

formations are as follows:

ϕs(x) =< x, x, 0 >,

ϕt(x) =< x, 0, x > .
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In the above notation, 0 is < 0, 0, ..., 0 >∈ RF . The transformations augment the F

dimensional input space to a new 3F dimensional space.

To explain how this transformation would help, we borrow an example from [Daumé III,

2009]. Suppose that the task of part of speech tagging (POS tagging) in the two dif-

ferent domains of wall street journals and electronics reviews. In the context of wall

street journals, “monitor” would be considered as a verb, whereas in the context of

electronics reviews, it would be considered as a noun. In both, “the” should be con-

sidered as a determiner. Now, we define X ∈ R2 < x1.x2 >. x1 captures whether the

word is “the” and x2 captures whether it is “monitor.” In the new space, x̂1 and x̂2

would be the general version of the features, x̂3 and x̂4 would be the source-specific

features, and x̂5 and x̂6 would be the target specific features.

Given the above explanations, to show that a word is a determiner, the model would

give it the weight of < 1, 0, 0, 0, 0, 0 >, and to show that a word is a noun, it would

give it the weight < 1, 0, 0, 0, 0, 1 >. To assign a word to the verb category, the model

would set the weight to < 0, 0, 0, 1, 0, 0 >.

It is now clear how by augmenting the F dimensional input to a new 3F space, the

model can identify the space that each feature corresponds to.

[Daumé III, 2009] mentions that instead of augmenting from RF to R3F , the space

can be mapped to R2F . However, the above notation is more general and intuitive.

Finally, the augmentation process above can potentially be extended to a kernelized

version.

2. CORAL: CORrelation ALignment

If the covariances of the source and target data are different (although having the

same mean and variance), this presents a problem for transferring the model trained

on the source to the target.
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CORAL, proposed by [Sun et al., 2016], as an unsupervised domain adaptation

method, tries to match the source and target distributions by aligning the second-

order statistics (i.e., covariance) of the source with the target distribution. To do so, a

transformation (denoted by A in the formulation below) is applied to the source fea-

tures and tries to minimize the Frobenius norm of the distance between the source

and target covariances.

Suppose that we denote the source features by S and the target features by T . Then,

we can write the aforementioned steps as follows:

minA||Cs − Ct||2F

= minA||ATCsA− Ct||2F ,

where Ct denotes the covariance of the target data and Cs denotes the covariance of

the source data. The goal of the above optimization problem is to find a transfor-

mation matrix A such that the distance between the transformed source covariance

matrix and the target covariance matrix is minimal. In other words, this will min-

imize the domain shift (i.e., the norm of the difference of the covariances) between

the source and target distributions.

If Rank(Cs) is greater than Rank(Ct), then we can set A so that Ct = C∗
t . However,

this is usually not the case. In the general format, it can be shown that we can align

the source and target features by using the following algorithm:

I = eye(size(Ds, 2))

Cs = cov(Ds) + λI

Ct = cov(Dt) + λI
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Ds = Ds ∗ C
−1
2

s

D∗
s = Ds ∗ C

−1
2

t ,

where Ds denotes the source data and Dt denotes the target data. The intuition

behind this algorithm is to whiten the source data (i.e., removing the feature cor-

relations of the source domain) and then recolour it by using the covariance of the

target data. This process will make the covariance of the source and target data

equal and the domain shift minimal. Note that whitening both the source and tar-

get distributions will not align them since the source and target data are likely to lie

on different sub-spaces due to the domain shift. Figure 2.13 explains this idea more

clearly.
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Figure 2.13: Illustration of the Correlation Alignment (CORAL) algorithm: (a) It is clear that
the source and target data have different covariances although both being normalized (b) Source
domain data is de-correlated (c) In the next step, the source data is recoloured using the covariance
of the target data. This process will make the covariance of the source and target data equal and
the domain shift minimal. The classifier trained on the adjusted source domain is expected to
work well in the target domain. (d) Note that whitening both the source and target distributions
won’t align them since the source and target data are likely to lie on different sub-spaces due to
the domain shift (best viewed in colour) [Sun and Saenko, 2016].

3. DeepCORAL: Deep Correlation Alignment

DeepCORAL is an extension of the CORAL method. It learns a nonlinear trans-

formation to align the correlations of activation layers in a deep neural network,

whereas CORAL uses a linear transformation. So DeepCORAL is more generaliz-

able.

CORAL Loss

Before discussing DeepCORAL, we first define the CORAL loss for a single feature

layer of a deep network. Assume that S denotes the samples in the source data, T

27



denotes the samples in the target data, ns refers to the number of data points in the

source domain, and nT refers to the number of target data points. We define the

CORAL loss as the Frobenius distance between second order statistics of the source

and target data:

Lcoral =
1

4d2
||Cs − CT ||2F ,

where Cs and CT are the covariances of the source and target features, respectively

and can be calculated from the following expression:

Cs =
1

ns − 1
(DT

s Ds −
1

ns

(1TDs)(1
TDs)),

CT =
1

ns − 1
(DT

TDT − 1

nT

(1TDT )(1
TDT )).

The CORAL loss is differentiable and its gradients with respect to the input features

are given by:

∂Lcoral

∂Dij
s

=
1

d2(ns − 1)
((DT

s − 1

ns

(1TDs)
T1T )T (Cs − CT ))

ij,

∂Lcoral

∂Dij
T

=
1

d2(ns − 1)
((DT

T − 1

nT

(1TDT )
T1T )T (Cs − CT ))

ij.
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Adding CORAL Loss to Deep Networks

We now consider a deep network used to perform a classification or a regression

task. When there is a domain shift between the source and target distributions, we

expect to see some over-fitting when only optimizing the loss function of our deep

network. Consider a CORAL loss defined on the desired layers of the network.

Note that if we only optimize for this loss, then the classification/regression will

not be successful. So, intuitively, we should optimize for a weighted summation of

the network’s original loss and the CORAL loss (a summation over all the layers

over which we defined CORAL loss). We have

L = Lclass + Σt
i=0λiLcoral,

where t denotes the number of layers that the CORAL loss was defined on. In other

words, our goal is to optimize the trade-off between the network’s original loss

function and the newly defined CORAL loss, so we measure this trade-off with a

regularization parameter λ. λ0 corresponds to the case where we have no CORAL

loss, and larger indices can lead to degenerated features. Our goal is to set λ so that

at the end of the training, the original loss function of the deep network and the new

CORAL loss reach an equilibrium (i.e., are equal).

It is worth mentioning that by DeepCORAL, we mean any deep network that con-

tains a CORAL loss.

Implementation details:

In the original paper, a task of classification over images in the Office31 dataset

was considered. For this purpose, the authors used the Alexnet [Krizhevsky et al.,

2012b] architecture pre-trained on the ImageNet dataset [Deng et al., 2009] as their

base classifier. They added the CORAL loss into the last fully connected layer of

Alexnet (fc8).
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Figure 2.14: Deep CORAL architecture in the original paper based on Alexnet. For generalization
and simplicity, here we apply the CORAL loss to the fc8. Integrating it into other layers or network
architectures is also possible. Image credit: [Sun and Saenko, 2016].

Note that the CORAL loss can be added to any of the layers of Alexnet. However,

the authors decided to add it only to the last fully connected layer to have a more

general analysis, since most CNNs have a fully connected layer for classification at

the end.

The architecture used in the original paper can be seen in Figure 2.14. As we can

see, the Alexnet architecture has a classification loss on source samples originally,

and now we add a new loss, CORAL loss, to the network.

As explained before, the CORAL loss is defined between the source and target sam-

ples and ensures that their second-order statistics align. We train the network by

optimizing for a weighted summation of classification loss and CORAL loss (trade-

off). Our goal is to train the network in a way that these two losses reach an equilib-

rium at the end of the training.

In the original paper, the dimension of the last fully connected layer was set to 31

(number of categories in the dataset). This layer was initialized by the weights
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N(0, 0.005), there was no initialization set for the layer bias in the original paper,

so I set them to be constant at 0.001. The learning rate was set to 0.001 for all the

layers in Alexnet except for the last fully connected layer. The learning rate for the

last layer was set to 10 times 0.001 since it was training from scratch, whereas the

rest of the network was using the pre-trained weights.

No specific value was set for λ, and it has to be set so that at the end of the training,

the classification loss and the CORAL loss are the same, so the features are genera-

tive and discriminating enough.

In summary, DeepCORAL consists of both an encoder and a task network. The

encoder network maps input features into a new space in which the task network is

trained. The model parameters are optimized so that the summation of the original

loss and the coral loss is minimized. A regularization parameter sets the trade-

off between the two aforementioned losses. In other words, the encoder network

learns a new feature representation in which the correlation matrices of the source

and target data are aligned. Finally, the task network uses the source labelled data

to learn the task [de Mathelin et al., 2021].
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Instance Based

These methods aim to eliminate the difference between the source and target distributions

by reweighing the source samples. These methods assume that the difference between the

source and the target is due to a sample bias and P (Y |X) remains constant (i.e., covariate

shift) [de Mathelin et al., 2021].

Figure 2.15 shows an illustration of the inner workings of instance-based domain adap-

tation methods.

Figure 2.15: An illustration of how instance-based methods work. In these methods, the source
samples are reweighted so that their distribution would match the distribution of the target sam-
ples better. Image credit: [de Mathelin et al., 2021]

We next discuss different examples of instance-based domain adaptation methods:

1. KMM: Kernel Mean Matching

KMM minimizes the Maximum Mean Discrepancy (MMD) between the source and

target domains to correct the sample bias.

This algorithm aligns the source and target distributions by reweighing the source

samples so that the difference between the means of the source and target data is

minimized in a reproducing kernel Hilbert space.
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This leads to solving the following quadratic optimization problem [Huang et al.,

2006]:

minw
1

2
(wTKw −KTW ),

subject to:

wi ∈ [0, B] and |
∑

i = 1nswi − ns| < m ∗ ϵ,

Where:

Kij = k(xi, xj) with xi, xj ∈ Xs and k a kernel

ki =
ns

nT
σxj∈K(xi,xj) with xi ∈ Xs

wi are the weights assigned to source samples

Xs, XT are source and target data respectively.

B, ϵ are hyper-parameters.

After finding the optimal value of w, the reweighed source samples are used to fit

the model.

The KMM method was originally introduced for unsupervised domain adaptation

but it could be extended to supervised domain adaptation by simply adding la-

belled target data to the training set [Huang et al., 2006].

2. Transfer AdaBoost

This supervised domain adaptation technique is based on a reverse boosting al-

gorithm. At each iteration, the weights of the source samples that were predicted

poorly decreases. The source and target data are denoted by (Xs, Ys), (XT , YT ) with

weights of Ws and WT respectively.

The algorithm is as follows [Dai et al., 2007]:

1. Normalize weights.
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2. Fit an estimator f on the source and target data.

3. Calculate the following errors:

ϵs = L01(f(Xs), ys),

ϵs = L01(f(XT ), yT ).

4. Calculate the total error:

Etotal =
1
nT

W T
T ϵT .

5. Update the weights:

ws = wsB
ϵs
s ,

wT = wTB
ϵT
T ,

where

Bs =
1

(1+
√

2ln(ns)/N)
,

BT = Etotal

1−Etotal
.

6. Repeat the steps for N rounds.

Finally, the prediction is based on the weighted last N
2

estimators.

Parameter Based

Parameter-based models update the parameters of the model trained on the source data,

so that it performs as well on the target data. In other words, the model is fine-tuned

on the new data [de Mathelin et al., 2021]. These methods are mostly used in computer

vision tasks. Figure 2.12 shows an illustration of the inner workings of parameter-based

domain adaptation methods.
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Figure 2.16: An illustration of how parameter-based methods work. In these methods, the model
parameters are updated so that the model performs better on the target distribution. To do so, the
model is fine-tuned using the target dataset. Image credit: [de Mathelin et al., 2021]

We next discuss different examples of parameter-based domain adaptation methods:

1. Regular Transfer

In this method, the parameters of the pre-trained method are updated by using a

few labelled target data.

Our goal is to minimize both the previous loss function and the distance between

the source and target parameters. This can be formulated as follows [Chelba et al.,

2007]:

BT = argmin
BT∈Rp

(Loss) + λ||BT −BS||2,

where

BT are the target parameters.

BS are the source model parameters which are calculated as:

argminBT
||XsB − ys||2.

(Xs, ys) and (XT , yT ) are the source and target labelled data, respectively.

p is the number of target features.
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λ is a trade-off parameter

2.3.3 Domain Adaptation in Time Series

As mentioned before, an important stream of domain adaptation techniques assumes an

invariant feature space between the source and target domains [Daumé III, 2009,Sun et al.,

2016, Sun and Saenko, 2016]. Since time series domain adaptation has gained significant

interest in the past years, an easy extension of these methods to time series data would

be to use RNN, or variational RNN-based feature extractor networks [da Costa et al.,

2020, Che et al., 2018].

These methods assume that the conditional distribution of the output given the trans-

formed features from previous time steps between the source and the target are equal.

Unfortunately, time-series data may not always satisfy this assumption because the na-

ture of the data is not static. However, we can assume that the causal structure of the

source and target data is domain invariant [Cai et al., 2020]. According to [Cai et al.,

2020], considering only the domain invariant associations and excluding domain-specific

associations is key to avoid over-fitting.

[Cai et al., 2020] proposed a novel approach, Sparse Associative Structure Alignment

(SASA), that distills the sparse associative structure and filters the domain-specific infor-

mation. First, they use adaptive segment summarization. Then, they extract the sparse

associative structure via attention mechanisms. And finally, they transfer the sparse asso-

ciative structure from the source domain to the target. A summary of this method can be

seen in Figure 2.17.

[Ragab et al., 2022] proposed SeLf-supervised AutoRegressive Domain Adaptation (SLARDA)

as a new approach for time series specific domain adaptation. Their experiments con-

firm that their approach significantly improves the state-of-the-art for time series domain

adaptation. A self-supervised (SL) learning module is used to improve the transferability

of source features. Temporal dependencies of both source and target features are incorpo-
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Figure 2.17: The sparse associative structure alignment model. (a) Adaptive segment summa-
rization: Methods that use the entire time series as input may not capture when a variable affects
others, this module allocates an independent LSTM to the different length segments constructed
from each of the time series, the output of these LSTMs creates a new representation for the seg-
ments. (b) Sparse Associative structure structure discovery: Inter-variable and intra-variable at-
tention mechanisms are used to extract the associative structure. (c) Sparse Associative Structure
Alignment: In this step, the distance between the source and the target associative structure is
minimized. [Cai et al., 2020] uses Maximum Mean Discrepancy metric (MMD) for this part. Image
credit: [Cai et al., 2020]

rated in the model through a autoregressive domain adaptation technique. An ensemble

teacher model aligns class-wise distribution in the target domain.

A novel Convolutional deep Domain Adaptation model for Time Series data (CoDATS)

was proposed by [Wilson et al., 2020]. This approach, applied to real-world sensor data

benchmarks, significantly improves accuracy and training time over state-of-the art DA

strategies.

[Chang et al., 2020] presents a in-depth study of unsupervised domain adaptation (UDA)

algorithms in the context of wearing diversity. They develop and evaluate three adapta-

tion techniques on four HAR datasets. They perform an analysis to learn the downsides

of each UDA algorithms.
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As discussed in the previous section, some unsupervised domain adaptation methods try

to minimize discrepancy distance. These methods, when applied to time series data are

not robust since they contain only low-order and local statistics. [Liu and Xue, 2021] pro-

posed an Adversarial Spectral Kernel Matching (AdvSKM) method. This method is able

to precisely detect nonstationary and non-monotonic statistics in time series data result-

ing in precise discrepancy metric and better domain matching. Moreover, the adversarial

kernel learning brings creates discriminatory expression for discrepancy matching.

2.3.4 Domain Adaptation on Transformer Architectures

Since the Transformers [Vaswani et al., 2017] have been deemed very successful in nu-

merous tasks, such as natural processing and vision, they are expected to improve state-

of-the-art methods in domain adaptation. Transformers are good at aligning distributions

even from different tasks such as vision to vision, vision to text, and text to speech.

[Xu et al., 2021] proposed cross-domain transformers (CDtrans), comprising three weight

sharing transformers, to solve the challenge of noisy pseudo-labels in the context of un-

supervised domain adaptation.

CDtrans first uses a two-way centre aware labelling approach to create pseudo-labels for

the unlabelled target samples.

To elaborate, the most similar target sample is paired with each source sample to create

data pairs PS to train the cross attention module. To eliminate the bias created by only

using sections of the target data in creating the aforementioned training pair, the same

process is repeated for the target samples. In other words, the closest sample of source

data is matched with each of the target samples to create a new pairing set referred to as

PT . The union of PS and PT is used as the final training pairs to train the cross attention

module [Xu et al., 2021].
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The target samples are fed into a model pre-trained on source samples to generate the

probability that the target sample belongs to each of the categories present in the source

data. These probabilities are then used to create pseudo-labels for target samples by ap-

plying K-means clustering on the target features and their respective labels [Xu et al.,

2021].

Additionally, for every pair, if the pseudo-label of the target sample is the same as the

source sample label, this pair would be kept otherwise, it is discarded. Figure 2.18 elabo-

rates on the architecture of the CDtrans model.

Figure 2.18: CDtrans framework. This architecture consists of two attention layers followed by a
classifier layer. Each of the attention layers consists of three weight-sharing transformers: source
(green), source-target (orange) and target (blue). After the set of training pairs are created (as
explained above), each sample of the paired (source data, target data) is fed to the first attention
layer. At this layer, the source sample is fed into the source transformer (green), the target sam-
ple is fed into the target transformer (blue), and the source-target transformer (orange), which is
responsible to align the features of the source and target transformers does not have any external
input. However, it gets its query from the source transformer and its key and value from the target
transformer. The output of this layer is fed into the second attention layer. At the classifier layer,
a classification loss is defined on the output of the source and target streams and a distillation loss
is applied between the output of source-target and target stream. Image credit: [Xu et al., 2021]
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The pseudo-label generation part of this architecture can be replaced by the actual labels

in the case of supervised domain adaptation.
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Chapter 3

Methodology

In this chapter we will first study the characteristics of our Dataset. Then we will describe

each of our three case studies: outbreak of COVID-19 pandemic, opening a new store and

introduction of a new product. In each case study, we apply Machine Learning techniques

to predict product demand across domain shifts and try to mitigate the negative effect of

such shifts using domain adaptation techniques.

3.1 Dataset

We use point of sale data from Alimentation Couche Tard convenient stores gathered

between 2019-07 and 2021-02. This dataset contains data on 8,869 products sold in 89

locations in Montreal. We highlight that our data is gathered before, during, and after the

outbreak of the COVID-19 pandemic.

In addition to quantity sold, we also have access to the promotion and price information.

Although the direct information on product pricing was not directly accessible, we were

able to calculate the price based on the dollar amount and quantity of each product sold.

On days that a product had zero sales, we used the average price of that product over our

dataset. These sales values can be seen for two specific products in Figure 3.1.
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In this study, we focus our analysis on the two categories of coffee and energy drinks.

These categories are consistently high selling products because they have a high average

and a low variance in their sales values during the period of our study, so predicting their

demand is of much more importance.

Figure 3.1: Sales quantities for two products: (a) Sales quantities for one type of Coke from 2019-
07 to 2021-02. (b) Sales quantities for one product in the category of Milk from 2019-07 to 2021-02,
the red vertical line indicates the start of the COVID-19 pandemic
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Data characteristics
Category Sales-

Mean
Sales - Std Sales - Q1 Sales-

Median
Sales - Q3

Coffee 238.59 189.945 120.0 208.0 320.0
Energy drinks 604.29 403.619979 372 532 764

Table 3.1: Comparison of the different characteristics of the sales data for product category coffee
and energy drinks before the COVID-19 pandemic.

Data characteristics
Category Sales-

Mean
Sales - Std Sales - Q1 Sales-

Median
Sales - Q3

Coffee 168.46 113.53 88.0 156.00 232.0
Energy drinks 618.136378 344.142 388 564 796

Table 3.2: Comparison of the different characteristics of the sales data for product category coffee
and energy drinks after the COVID-19 pandemic.

There are 249 and 307 different products in product categories coffee and energy drinks,

respectively. There are 3136 and 4654 different products in the parent categories of hot

beverages and other beverages, respectively.

Tables below elaborate statistical characteristics of our data for categories coffee and en-

ergy drinks:

Data characteristics
Category Sales-

Mean
Sales - Std Sales - Q1 Sales-

Median
Sales - Q3

Coffee 386 223.14 193 386 579
Energy drinks 81 21.9 33 51 73

Table 3.3: Comparison of the different characteristics of the sales data for product category coffee
and energy drinks in the old stores averaged over all the products in the category.

Data characteristics
Category Sales-

Mean
Sales - Std Sales - Q1 Sales-

Median
Sales - Q3

Coffee 135 78 67.5 135 202
Energy drinks 65.4 36.7 37 56 87

Table 3.4: Comparison of the different characteristics of the sales data for product category coffee
and energy drinks in the new store (store 1208) averaged over all the products in the category.
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Data characteristics
Category Sales-

Mean
Sales - Std Sales - Q1 Sales-

Median
Sales - Q3

Energy drinks 355 310 142 200 306

Table 3.5: Comparison of the different characteristics of the sales data for product category coffee
and energy drinks in the old products averaged over all stores.

Data characteristics
Category Sales-

Mean
Sales - Std Sales - Q1 Sales-

Median
Sales - Q3

Energy drinks 245 158 50 272 358

Table 3.6: Comparison of the different characteristics of the sales data for product category coffee
and energy drinks in the new product: GURU GUAYUSA 355ML or 81843 averaged over all stores.

3.2 Defining the Analysis

As mentioned before, the presence of abundant data has led machine learning models

to be very successful in numerous tasks such as self-driving cars [Wang et al., 2012],

machine-translation [Young et al., 2018], automatic diagnosis [Kononenko, 2001], exo-

planet discovery [Ball and Brunner, 2010], and online commerce [Lu et al., 2015]. These

models have even surpassed human abilities in object detection tasks [He et al., 2015].

Despite this success, machine learning models might fail to generalize well whenever

there is a significant difference between the distribution of the data they are trained on

versus the distribution of the data they are applied to. By the ability to generalize, we

mean performing well on the new distributions of data. In other words, if the source data

(i.e., primary data that the model is trained on) is not a well enough reflection of the target

data (i.e., the data that we are interested in for prediction), then the system is not expected

to perform well [Kouw and Loog, 2018].

This change in distribution from the source to the target can be due to a sudden change

or a shift in the data domain. In the context of a convenient store, this shift can be due to

a sudden economic change, health crises or introducing a new product or opening a new

store.
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In this study, we consider three examples of domain shifts in the context of convenient

stores. These examples are either very common in retail or they are expected to have a

significant impact on demand prediction. First, we define the analyses and their chal-

lenges. In the next chapter, we strive to use domain adaptation techniques to solve the

challenges presented for each analysis.

3.2.1 Analysis-1: Outbreak of the COVID-19 Pandemic

The COVID-19 pandemic is still an ongoing (as of March 2022) global pandemic caused

by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This disease was first

detected in Wuhan, China in December 2019, then speared to the rest of the word since it

was not contained successfully [Ciotti et al., 2020].

As of March 10, 2022, the pandemic had caused more than 451 million cases and 6.02

million deaths, making it the fifth deadliest pandemic in history. The World health or-

ganization (WHO) has declared an emergency situation regarding the COVID-19 pan-

demic [Ciotti et al., 2020].

The outbreak of the COVID-19 pandemic had severe effects on the retail industry, causing

stock-outs and shortages globally. Supply chain issues worsened by the cancellation of

flights and new policies regarding freight transition.

Due to the uncertain situation worldwide, people started panic buying as a copying

mechanism against the fear of uncertainty. This behaviour resulted in essentials such

as food, toilet paper, and bottled water being stocked out at grocery stores [Ciotti et al.,

2020, Adulyasak et al., 2020].

Supply shortages were initially due to disruptions in factory and logistic operations. They

continued as managers underestimated the speed of economic recovery after the initial

crash. The technology industry, in particular, has suffered from underestimating the semi-

conductor demand for vehicles and other products [Ciotti et al., 2020]. According to the
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WHO, demand for personal protective equipment (PPE), such as masks, rose one hun-

dredfold, pushing prices up twenty-fold [Ciotti et al., 2020].

In September 2021, the World Bank estimated that food prices would remain stable, but

we witnessed a sharp increase in food prices especially in poorer countries, reaching the

highest level since the pandemic began. The Agricultural Commodity Price Index stabi-

lized in the third quarter but remained 17% higher relative to January 2021 [Ciotti et al.,

2020]. At the beginning of the pandemic Petroleum was in surplus, since the demand for

gasoline and other products collapsed due to reduced commuting and other trips [Ciotti

et al., 2020].

In this study, our data spans from 2019-07 to 2021-02, so it covers the start of COVID-19

pandemic. Since the COVID-19 pandemic was a sudden change that modified many pur-

chasing behaviours and supply chain logistics, we expect to see a change in the demand

of products after the start of the pandemic. As a result, the data before the pandemic can-

not be used to predict the demand of products after the start of the pandemic. In other

words, the distribution of the sales data pre-pandemic and post-pandemic is different. We

define pre-pandemic as the period before 2019-07 and post-pandemic as the period after

2021-02. Immediately after the pandemic, since we do not have a lot of data in the new

domain of post-pandemic to train the demand prediction model, we expect the prediction

accuracy of the model to suffer in comparison to pre-pandemic.

In this task, our goal is to predict the demand of each product for two categories (coffee

and energy drinks) in each of the 89 stores in Montreal. We first calculate the accuracy of

this demand prediction task before and after the COVID-19 pandemic. We next confirm

that although the accuracy of pre-pandemic demand prediction is high, this accuracy is

not satisfactory post-pandemic. In the next chapter, we use domain adaptation techniques

to mitigate the negative effect of the COVID-19 pandemic on demand prediction.

In this analysis, we use the price and quantities sales information of each product in each

store over a period of 30 days to predict its demand on the next day. We are using the
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data from 2019-07 to 2020-03 as the pre-pandemic data. As discussed, we consider the

data gathered after 2020-03 as post-pandemic data. Different end dates are considered for

the post-pandemic period to examine the effect of increasing the amount of data in the

new domain on the prediction accuracy. These different end dates result in using a range

of 10 to 120 days of post-pandemic test data.

We define the pre-pandemic accuracy as the accuracy generated by the model trained and

tested on pre-pandemic data. By post-pandemic accuracy, we refer to both the accuracy

of the model that was trained on pre-pandemic data and tested on post-pandemic data

and the accuracy from the model that was trained and tested on post-pandemic data.

We test two methods as the base demand prediction model in this analysis: XGBoost

[Chen et al., 2015] and Transformers [Vaswani et al., 2017]. XGBoost, as described in

the previous chapter, is a gradient boosted random forest, which has been proven su-

perior in many forecasting tasks such as the M4 forecasting competition. Transformers,

as described in the previous chapter, have been proven powerful in many tasks such as

computer vision and natural language processing.

For the Transformer architecture, we used one sixteen dimensional attention head. We

have set the embedding dimension to 59 or the length of time-series sequence set in this

task (e.g., here the number of features is two referring to sales quantity and price infor-

mation).

By conducting a manual grid search, the optimal maximum tree depth and the number

of trees in XGBoost were found to be three and 100, respectively.

In this analysis, the R2 metric, calculated between the ground truth and the predicted

demand, is used to measure how accurate the models can predict the future demand. In

statistics, the coefficient of determination, denoted R2 or r2 refers to the proportion of the

variation in the dependent variable that is predictable from the independent variable(s).
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Given y1, y2, .., yn as the real values and f1, f2, ..., fn as the predicted values, R2 can be

defined as below:

R2 = 1− SSres

SStot

,

Where:

ȳ =
1

n

n∑
i=1

yi,

SSres =
∑
i

(yi − fi)
2,

SStot =
∑
i

(yi − ȳ)2.

R2 can be negative (when evaluating on the test set) and is not a symmetric function. The

best (highest) possible score is 1.0. A constant model that always predicts the expected

value of y, regardless of the input features, would get a score of 0.0 [Nagelkerke et al.,

1991].

In the next chapter, we show that as the amount of data post-pandemic grows, the accu-

racy of post-pandemic models also grows, thus decreasing the need for domain adapta-

tion techniques. However, it might take months until the post-pandemic accuracy reaches

the same level of performance as pre-pandemic models. We confirm that by using domain

adaptation, the accuracy of post-pandemic models are substantially improved.

We test three different domain adaptation methods: Frustratingly Easy Domain adapta-

tion (FE), Kernel Mean Matching (KMM), and an ensemble of the previous two methods.

Furthermore, we test the pairing method, as explained before, in addition to each of the

domain adaptation techniques so as to improve the post-pandemic accuracy.
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3.2.2 Analysis-2: Opening of a New Store

Opening new (physical) stores is an essential part of expanding retail businesses. Fash-

ion retailers frequently open new stores in different cities. Similarly, grocery stores are

constantly trying to expand their reach in new cities and new neighbourhoods.

Predicting the demand for products in a new store is a critical task because it can help

ensure the successful expansion of the business. Unfortunately, the data distribution in a

new store is likely to be different from the rest of the stores since each store has unique

features, such as its location, square footage, and average neighbourhood demographics.

So, when attempting to predict the demand for products in a new store, the data from the

other stores are not necessarily relevant. At the same time, there is not enough sales data

available in the new store. Consequently, the prediction accuracy of traditional demand

prediction models can often be very low.

In this task, we first calculate the demand prediction accuracy in the new store as well as

in the rest of the stores (in each step, one of the “old” stores is held out, and the data from

the rest of the old stores is used to predict the demand of the held-out store). Finally, these

accuracy values are averaged out and ultimately represent the old-store model accuracy.

We show that even though the accuracy of demand prediction in the old stores is high, this

accuracy is not satisfactory for a newly-opened store without sufficient data. In the next

chapter, we will use domain adaptation techniques to improve the prediction accuracy of

new-store models.

As before, we use XGBoost and Transformer methods as the base demand prediction

model. The parameters of the Transformer and XGBoost models are set in the same way

as in the previous case study.

In this analysis, we use the price and quantities sales information in a each store over a 30-

day period to predict the next-day demand aggregated at the product-category level. As
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before, we perform this analysis for the two high-selling categories of coffee and energy

drinks.

We first consider a simulated new store introduction. After we confirm the performance

of our approach, we regenerate the results for a store that has been recently opened by our

retail partner in Montreal. For the case of the simulated new store, we consider each of

the stores on the island of Montreal as a newly-opened store with a hypothetical opening

date (we substitute zeros for the sales before the hypothetical start date). The rest of the

stores in Montreal would be considered as the old stores. We then define the old-store

prediction accuracy as the accuracy generated by the model trained and tested on data

from all previously-opened stores (historical data). By new-store accuracy, we refer to the

accuracy of the following different models:

• A model trained using the data from previously-opened stores.

• A model trained using the data from the 50 most similar old stores (based on the

Euclidean distance).

• A model trained using the data from the 25 most similar old stores (based on the

Euclidean distance) and tested on the data from the new store.

• A model trained using the data from the 50 closest old stores (based on the geo-

graphical distance) and tested on the data from the new store.

• A model trained using the data from the 25 most similar old stores (based on the

geographical distance) and tested on the data from the new store.

• A model that was both trained and tested using the data from the new store.

We repeat the above calculations for each of the 89 stores being considered as the new

store. Finally, we report the average and confidence interval of these values.

For the case of an actual new store, the rest of the stores in Montreal would be naturally

considered as the old stores. We define the old-store accuracy as the accuracy generated
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by the model trained and tested using the data from all previously-opened stores (i.e.,

historical data). By new-store accuracy, we refer to both the accuracy of the model trained

using the data from previously-opened stores and tested on the data from the new store,

and the accuracy from the model trained and tested using the data from the new store. In

this case, since we are only considering a single new store, we cannot report confidence

intervals.

As before, we use the R2 metric to measure how accurate the different models predict the

future demand. We highlight that we are only using the data from 2019-07 to 2020-03 (i.e.,

before the COVID-19 pandemic) to isolate the effect of one domain shift. In other words,

if we were to use the data from both before and after the pandemic, then two domain

shifts would co-exist between the training and testing data: one shift due to the opening

of the new store and the other due to the outbreak of the pandemic.

We show that as the amount of data available for the new store grows, the accuracy

of new-store models also grows, thus reducing the need for domain adaptation tech-

niques. However, it may take several months until the point where the new-store accu-

racy reaches an acceptable performance level. In the next chapter, we show how we can

use domain adaptation techniques to enhance the accuracy of new-store models. Specif-

ically, we consider FE, KMM, and an ensemble of these two methods. We also test the

effect of using a pairing technique on top of these three domain adaptation approaches.

The amount of data available for the new store ranges from 10 to 120 days in this analysis.

3.2.3 Analysis-3: Introducing a New Product

In the retail industry, new products are routinely introduced. For example, in the clothing

industry, new designs are released every season. In fast-fashion, new items are introduced

much more often (e.g., every couple of weeks). In this context, to design the supply chain

planning, assortment planning, and stock allocation efficiently, an accurate demand fore-

cast is necessary. While time-series forecasting algorithms discussed in previous chapters
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can be used for existing products to forecast the sales, the same cannot be done for new

products because they do not have any historical time-series data [Ekambaram et al.,

2020].

Demand prediction for a new product at early stages is crucial in deciding whether or

not to continue selling the product. However, the lack of market and consumer data

during the early stages makes demand prediction incredibly difficult and unreliable, often

underestimating or overestimating the product’s demand [Afrin et al., 2018].

Due to the specific characteristics of each product, its sales distribution can often be

unique. The same is true for new products. As a result, a domain shift exists between

the data distribution of old products and the data distribution of the new product. When

a new product is introduced, the data from previous products may not be useful to pre-

dict its demand. At the same, there is not enough data available for the new product, so

it is not clear how we should predict the demand of the new product.

We calculate the demand prediction accuracy both before and after introducing a new

product and we confirm that although the demand prediction method performs well for

the old products, it would not be as well performing for the new product. In the next

chapter, we use domain adaptation techniques to mitigate the negative effect of the do-

main shift caused by introducing a new product.

As in the previous two case studies, XGBoost and Transformer methods are considered

as the base forecasting methods. In this analysis, we use the price and quantities sales

information of products aggregated at the store level for a certain product over a period

of 30 days to predict its demand for the next day. Once again, we perform the analysis

for the two high-selling categories of coffee and energy drinks. We iteratively consider

each of the products in these categories as a newly-introduced product. A hypothetical

introduction date is set for it (we substitute zeros for the sales of the product before the

hypothetical start date). The rest of the products in the same category is considered as the

old products.
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We define the old-product accuracy as the demand prediction accuracy generated by the

model trained and tested using the data from all the previously-introduced products (his-

torical data). By new-product accuracy, we refer to two scenarios. First, we consider the

accuracy of the model trained using the data from previously-introduced products or

from a subcategory of previously-introduced products (e.g., for the coffee category, we

select “Black coffee” as a sub-category and for energy drinks we select “enriched water”

as a sub-category) and tested on the data from the new product. Second, we consider

the accuracy of the model that was both trained and tested using the data from the new

product. We repeat these calculations for each of the products in the categories of coffee

and energy drinks and report the average value.

We test the same three domain adaptation techniques in addition to the pairing technique

to leverage the information from the old products. As before, we use the R2 metric to

measure the model prediction accuracy. Once again, we are only using the data gathered

from 2019-07 to 2020-03 (i.e., before the COVID-19 pandemic) to isolate the effect of a

single domain shift. In other words, if we were to use the data from before and after the

pandemic, two domain shifts would co-exist between the training and testing data: one

shift due to the change of product and the other due to the outbreak of the pandemic.

We show that as the amount of data available for the new product grows, the accuracy

of new-product models also grows, thus reducing the need for domain adaptation tech-

niques. However, it may take several months to reach the point where the new product

accuracy reaches the same performance level as the predictive models for old products.

In the next chapter, we show how we can use domain adaptation techniques to enhance

the accuracy of new-product models. The amount of data available for the new product

ranges from 10 to 120 days in this analysis.
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Chapter 4

Experiments

4.1 Baseline Methods

We test different methods as the base forecasting model to select the best performing

method based on the prediction accuracy on the test set. Table 4.1 shows the accuracy

comparison of the different baseline methods using distinct subsets of features from the

dataset. The Sales, Price, Promotion, ID, Day, Month, and All columns refer to using

only the sales quantity data, the sales quantity data plus the price information, the sales

quantity data plus the promotion information, the sales quantity data plus the ID of the

data collection day (from 1 to the number of data collection days), the sales quantity data

plus the day of the month, the sales quantity data plus the month of the year, and all the

previous features respectively.

As elaborated in Table 4.1, using both the quantity sales and the price information re-

sults in the best prediction accuracy, so we use sales data and price features in all the

subsequent analyses. In addition, it is showed that the Transformers and XGBoost [Chen

et al., 2015] outperform several commonly-used models including Linear Regression [Tib-

shirani, 1996], DecisionTreeRegressor [Steinberg and Colla, 2009], RandomForestRegres-
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Baseline Accuracy - R2 metric
Baseline method Sales +Price +Promotion +ID +Day +Month All
LinearRegression 0.87 0.87 0.87 0.87 0.87 0.87 0.72
DecisionTree 0.84 0.85 0.85 0.83 0.84 0.83 0.84
RandomForest 0.85 0.86 0.87 0.84 0.87 0.85 0.85
XGBRegressor 0.84 0.89 0.89 0.86 0.88 0.86 0.84
s lstm 0.7 0.83 0.67 0.86 0.15 0.5 0
Transformer 0.85 0.874 0.87 0.83 0.75 0.85 0.82

Table 4.1: A comparison of the different baseline methods with different subsets of features.
Sales, Price, Promotion, ID, Day, and Month columns refer to using sales data solely, sales data
plus price information, sales data plus promotion information, sales data plus ID of the day the
data was collected on (from 1 to number of data collection days), and sales data plus day of the
month and sales data plus month of the year, respectively.

sor [Breiman, 2001], and lstm [Hochreiter and Schmidhuber, 1997]. Hence, the Transform-

ers [Vaswani et al., 2017] and XGBoost are considered as the baseline forecasting methods.

The parameters of each method were tuned to ensure the best possible performance.

It is shown in the above table that the LSTM method performs very poorly when the

date and month information are added. This may be because LSTMs do not use atten-

tion mechanisms to focus on the more important parts of data so when adding the new

information they become misguided.

4.2 Analysis-1: Outbreak of the COVID-19 Pandemic

In this analysis, we first present the results of using XGBoost as the base forecasting

method. We confirm that using domain adaptation and the pairing technique discussed

in Section 2.3.4 improves the accuracy of the post-pandemic demand prediction model.

We then repeat the same analysis with Transformers as the base forecasting method and

draw the same conclusion. These analyses were performed for both the coffee and energy

drinks categories.
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4.2.1 XGBoost

In this section, we compare the accuracy of different demand prediction scenarios with

XGBoost as the base forecasting method. The pre-COVID-19 model (blue line in the

graphs below) represents the accuracy of a XGBoost model trained and tested using the

data prior to the pandemic. In other words, this line corresponds to the baseline accuracy

before the pandemic. As shown in the graphs below, it is expected that the accuracy of

the post-pandemic models (orange and green lines in graphs below) are lower than this

baseline. Post-pandemic models refer to both the model trained and tested using the data

post pandemic (green line in graphs below) and the model trained using the data prior to

the pandemic and tested on the data post pandemic (orange line in graphs below).

Right after the start of the pandemic, the accuracy of the post-pandemic model (green line)

is much lower than the pre-pandemic baseline (blue line). However, this trend increases

over time as more data become available in the new domain. Our goal is to decrease the

time needed to wait before the accuracy of the post-pandemic model (green line) reaches

an acceptable performance level. In other words, we want to improve upon the post-

pandemic models (green and orange lines) and increase their prediction accuracy to be as

close as possible to the pre-pandemic accuracy (blue line). To achieve this, we test three

domain adaptation approaches approaches: FE, KMM, and an ensemble of the previous

two. Furthermore, we test the pairing method, as explained before, in addition to each of

these approaches to improve the post-pandemic accuracy.

In each graph, we display three levels of granularity as sub-graphs to make the observa-

tions clearer. The first granularity level, shown in subplots (a), corresponds to the origi-

nal scale. The second, shown in subplots (b), is the original graph while imposing limits

on the axes. The third granularity level, shown in subplots (c), corresponds to the best

performing domain adaptation technique. The graph’s axes are also limited in these sub-

plots.
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Figure 6.1 and Figure 6.2 exhibit a comparison of the different scenarios for the coffee cat-

egory. Figure 6.2 corresponds to the case when the pairing technique is used in addition

to the domain adaptation approaches. As elaborated in Figure 6.1b and Figure 6.2b, the

accuracy of the post pandemic model improves as more data become available in the new

domain (i.e., the post-pandemic period). As shown in Figure 6.2b, the ensemble method

that uses the pairing technique allows us to improve the accuracy of the post-pandemic

models most effectively. In Figure 6.1b, the ensemble method slightly supersedes the

accuracy of the post-pandemic models. However, in Figure 6.2b, all three domain adap-

tation methods perform better than the post-pandemic models (and by a larger margin).

Specifically, we observe a 6% improvement for the 180-day mark.

We next repeat the same experiments for the energy drinks category.

Figure 6.3 and Figure 6.4 show the comparison of the different scenarios for the energy

drinks category. As elaborated in Figure 6.3b and Figure 6.4b, the accuracy of the post-

pandemic model, improves as more data become available in the new domain (i.e., post-

pandemic).

Figure 6.3 and Figure 6.4 confirm that the accuracy of the post-pandemic models do not

reach the pre-pandemic baseline. Fortunately, by using the ensemble method, we can im-

prove the accuracy of the post-pandemic models, hence reducing the gap between this

accuracy and the accuracy of the pre-pandemic baseline, especially after 90 days. We

speculate that the drop in accuracy, seen in Figure 6.3 and Figure 6.4, can be due to con-

tinuing domain shifts as the days go on after the outbreak of COVID-19 pandemic. In the

months following the outbreak, different and new domain shifts occurred.

In Figure 6.4b, the ensemble method reaches the same level of pre-pandemic accuracy.

As elaborated in Figure 6.4b, the ensemble method that uses the pairing technique im-

proves the performance of the post-pandemic models most effectively. In Figure 6.3b, the

ensemble method supersedes the accuracy of the post-pandemic models. However, in
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10 20 30 60 90 120 150 180

Coffee pre-covid / post-covid 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
pre-covid / post-covid 0.84 0.83 0.85 0.8 0.85 0.855 0.795 0.8
post-covid / post-covid 0.425 0.5 0.755 0.76 0.81 0.83 0.74 0.8
FE 0.65 0.73 0.82 0.8 0.85 0.85 0.85 0.83
KMM 0.87 0.85 0.84 0.84 0.84 0.89 0.85 0.86
Ensemble 0.42 0.5 0.75 0.75 0.81 0.84 0.74 0.8
FE w Pairing 0.65 0.72 0.82 0.8 0.84 0.87 0.85 0.83
KMM w Pairing 0.87 0.85 0.845 0.85 0.845 0.865 0.85 0.85
Ensemble w Pairing 0.85 0.81 0.845 0.845 0.85 0.89 0.85 0.86

Energy Drinks pre-covid / post-covid 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83
pre-covid / post-covid 0.765 0.77 0.76 0.755 0.77 0.73 0.71 0.7
post-covid / post-covid 0.35 0.68 0.735 0.725 0.74 0.725 0.71 0.71
FE 0.47 0.73 0.74 0.76 0.75 0.74 0.735 0.73
KMM 0.74 0.75 0.74 0.755 0.75 0.74 0.735 0.73
Ensemble 0.68 0.765 0.77 0.74 0.73 0.76 0.75 0.73
FE w Pairing 0.7 0.76 0.77 0.75 0.8 0.76 0.65 0.755
KMM w Pairing 0.79 0.775 0.745 0.755 0.8 0.76 0.7 0.75
Ensemble w Pairing 0.79 0.78 0.79 0.75 0.8 0.77 0.75 0.77

Table 4.2: Comparison of results for product Coffee Energy Drinks over period of time when
using XGboost as the forecasting method, e.g. pre-covid / post-covid refers to train on pre-covid
and test on post-covid. Method in the bold represents the best performing domain adaptation
technique.

Figure 6.4b, all three domain adaptation methods perform better than the post-pandemic

models and by a larger margin (7% when considering 180 days).

These results are summarized in Table 4.2.
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4.2.2 Transformers

In this section, we compare the accuracy of different scenarios when using Transformers

as the base forecasting method.

Figure 6.5 and Figure 6.6 show the same trends for the pre-pandemic and post-pandemic

prediction accuracy as the results from the previous section. In each graph, we display

two levels of granularity as sub-graphs to make the observations clearer. The first granu-

larity level, shown in subplots (a), corresponds to the original scale. The second, shown

in subplots (b), is the original graph while imposing a limit on the axes.

Figure 6.5 and Figure 6.6 elaborate on the comparison of the different scenarios for the

coffee category. As shown in Figure 6.6b, the ensemble method that uses the pairing tech-

nique improves the results of the post-pandemic models most effectively. In Figure 6.5b,

the ensemble and the FE methods supersede the post-pandemic models. However, in Fig-

ure 6.6b, all three domain adaptation techniques perform better than the post-pandemic

models (and by a larger margin).

Although domain adaptation still helps improve the accuracy of post-pandemic models,

the absolute value of demand prediction is lower than when we use XGBoost as the base-

line forecasting method. We speculate that this decrease in performance is due to the

nature of our dataset. Transformers are very complicated models, and they need abun-

dant data to learn from. However, the amount and complexity of our data are small in

comparison.

Figure 6.5 and Figure 6.6 show that as time elapses after the start of the pandemic and

more data become available post pandemic, the accuracy of the (green) post-pandemic

model improves; and around 120 days, it reaches the pre-pandemic accuracy. As elab-

orated in Figure 6.5b and Figure 6.6b, by using domain adaptation, we can reach the

pre-pandemic accuracy after 30 days. This improvement is significant in reducing the

time needed to wait before the point where the post-pandemic models reach an accept-
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able accuracy. This reduction can help decrease the cost incurred to the retailer by not

having an accurate demand prediction model after the domain shift.

We next repeat the same experiments for the energy drinks category.

Figure 6.7 and Figure 6.8 show the comparison of the different scenarios for the energy

drinks category. As shown in Figure 6.8b, the ensemble method that uses the pairing

technique yields the most effective improvement. As shown in the graphs, the predic-

tion accuracy of the post-pandemic models does not reach the pre-pandemic baseline.

However, by using domain adaptation techniques, the prediction accuracy improves, es-

pecially as time elapses after the outbreak of the COVID-19 pandemic.

Using Transformers as the base forecasting method yields a lower prediction accuracy

relative to using XGBoost as the base forecasting method (as in the previous section). Al-

though the ensemble method combined with the pairing technique allows us to improve

the accuracy of the post-pandemic models, the absolute value of the accuracy remains

lower, compared to using XGBoost (compare Figure 6.2b and Figure 6.6b ). Thus, in this

case study based on our data, we conclude that it is better to use XGBoost as the base

forecasting method.

These results are summarized in Table 4.3.

4.3 Analysis-2: Opening a New Store

In this subsection, our goal is to predict the demand of products in a newly opened store.

We first calculate the demand prediction accuracy in the new store and in the rest of the

stores (referred to as “old” stores). Specifically, we iterate over all stores, so that in each

iteration, one of the old stores is held out, and the data from the rest of the old stores

are used to predict the demand of the held-out store. The resulting accuracy values are

averaged out and represent the old-store accuracy. We confirm that although the accuracy

of the demand prediction in the old stores is high, the accuracy for a newly opened store
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10 20 30 60 90 120 150

Coffee pre-covid / post-covid 0.75 0.75 0.75 0.75 0.75 0.75 0.75
pre-covid / post-covid 0.22 0.52 0.45 0.54 0.55 0.63 0.5
post-covid / post-covid 0.425 0.5 0.755 0.76 0.81 0.83 0.74
FE 0.71 0.6 0.76 0.74 0.8 0.69 0.73
KMM 0.66 0.7 0.64 0.65 0.64 0.67 0.66
Ensemble 0.74 0.7 0.75 0.74 0.75 0.7 0.73
FE w Pairing 0.76 0.7 0.53 0.805 0.81 0.84 0.75
KMM w Pairing 0.65 0.7 0.6 0.81 0.82 0.84 0.75
Ensemble w Pairing 0.45 0.65 0.65 0.81 0.82 0.84 0.75

Energy Drinks pre-covid / post-covid 0.75 0.75 0.75 0.75 0.75 0.75 0.75
pre-covid / post-covid 0.72 0.61 0.6 0.64 0.52 0.47 0.46
post-covid / post-covid 0.18 0.25 0.3 0.22 0.05 0.35 0.44
FE 0.63 0.42 0.41 0.5 0.54 0.33 0.39
KMM −0.2 0.33 0.47 0 0.07 0.55 0.45
Ensemble 0.45 0.47 0.52 0.36 0.48 0.55 0.56
FE w Pairing 0.65 −1 0.45 0.6 0.65 0.65 0.6
KMM w Pairing 0.75 0 0.6 0.6 0.65 0.75 0.6
Ensemble w Pairing 0.7 0.75 0.65 0.54 0.52 0.5 0.6

Table 4.3: Comparison of results for product Coffee Energy Drinks over period of time, when
Transformer as the forecasting method, e.g. pre-covid / post-covid refers to train on pre-covid
and test on post-covid. Method in the bold represents the best performing domain adaptation
technique.

without sufficient data is not satisfactory. Domain adaptation techniques can thus be used

to improve the demand prediction accuracy in the new store.

In this analysis, we use the price and sale quantity of the products aggregated at the

category level in a store over 30 days to predict its demand on the next day. Again, we

test both XGBoost [Chen et al., 2015] and Transformers [Vaswani et al., 2017] as our base

forecasting methods.

First, we consider simulated new store introduction. After our heuristics are validated,

we regenerate the results for an actual new store that was recently opened in Montreal.
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4.3.1 Domain Adaptation for Simulated New Stores

For simulated new stores, we consider each of the stores in our dataset as a potential

newly opened store with a hypothetical introduction date (we substitute zeros for the

sales before the hypothetical start date in that store). The rest of the stores in our dataset

would be considered the old stores.

XGBoost

We expect that as we accumulate more days pass from the new store opening (i.e., the

data in the new domain becomes more prevalent), the prediction accuracy of the new-

store model improves. For the coffee category, this intuition is readily confirmed in Fig-

ure 4.1. As shows in Figure 4.1, the prediction accuracy of the new-store model (brown

line) increases as a function of the number of days pass after the new store opening.

The blue, orange, green, and red lines correspond to the models that have been trained

using the data from all the old stores, the 50 most similar old stores (based on the Eu-

clidean distance between retail time series data), the 25 most similar old stores (based on

the Euclidean distance), the 50 closest old stores (based on the geographical distance), the

25 closest old stores (based on the geographical distance), and tested using the data from

the new store, respectively. The pink line shows the model accuracy using domain adap-

tation (out of the six domain adaptation methods, only the one with the highest accuracy

is reported, which in this case is the ensemble method).

As shows in Figure 4.1, domain adaptation improves the prediction accuracy of the new-

store models (the blue, orange, green, red, purple, and brown lines in the graph). We note

that the accuracy of the best performing domain adaptation method even supersedes the

old-store baseline.

62



Figure 4.1: Comparison between the accuracy of different models for the coffee category as a
function of the number of days from the opening of a new store (when the base forecasting method
is XGBoost).

Figure 4.2 shows the accuracy levels of the different models for the coffee category. The

bottom-most bar (shown in the lightest shade of blue) represents the accuracy of the

model trained and tested using the data from the old stores. The middle bars show the

accuracy of the models trained using the data from all the old stores, the 50 most similar

old stores, the 25 most similar old stores, the 50 closest old stores, the 25 closest old stores,

the data from the new store and tested using the new store from bottom to top.

The bars in the darkest shade of blue represent the domain adaptation methods. They

correspond to FE, KMM, the ensemble of FE and KMM, the FE with the pairing method,

the KMM with the pairing method, and the ensemble method with the pairing method

from bottom to top. The bars having negative or a zero R2, are not reported in the figures.

As more time elapses after the opening of the (simulated) new store, the p-value of the

increase in prediction accuracy between the domain adaptation and the new-store model

decreases. In other words, as more days pass from the new-store introduction, the im-

provement in prediction accuracy becomes more statistically significant.
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Figure 4.2: The accuracy levels of different models for the coffee category (XGBoost is considered
as the base forecasting method), a) 10 days after opening, b) 20 days after opening, c) 30 days after
opening, d) 60 days after opening, e) 90 days after opening, f) 120 days after opening, g) 150 days
after opening, h) 180 days after opening.

Table 4.4 shows the p-value of the difference between the best performing domain adap-

tation accuracies and the new-store accuracies, as the days go by after opening the new

store. These p-values are calculated using paired t-test.
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p-value

Category 10 20 30 60 90 120 150

Coffee 0.004995 0.004995 0.01298 0.07462 0.0924 0.0005494 0.00025

Table 4.4: Comparison of p-values between the best performing domain adaptation technique
and the new-store model.

The same analysis is repeated for the energy drinks category and the results show the

same patterns (refer to Figure 4.3). As before, the prediction accuracy of the best per-

forming domain adaptation method supersedes the old-store baseline.

Figure 4.3: Comparison between the accuracy of different models for the energy drinks category
as a function of the number of days from the opening of the new (simulated) store (XGBoost is
considered as the base forecasting method).

Figure 4.4 shows the accuracy levels of the different models for the energy drinks cate-

gory. As in the coffee category, when the number of days from the opening of the new

store increases, the demand prediction accuracy’s improvement due to domain adapta-

tion becomes more statistically significant.
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Figure 4.4: The accuracy levels of different models when opening a new simulated store for the
energy drinks category (XGBoost is considered as the base forecasting method) a) 10 days after
opening, b) 20 days after opening, c) 30 days after opening, d) 60 days after opening, e) 90 days
after opening, f) 120 days after opening, g) 150 days after opening, h) 180 days after opening.
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Table 4.5 shows the p-value of the difference between the best performing domain adap-

tation accuracies and the new-store accuracies, as the days go by after opening the new

store. These p-values are calculated using paired t-test.

p-value

Category 10 20 30 60 90 120 150

Energy drinks 0.001897 0.00104 0.03435 0.01764 0.02058 0.09312 0.005347

Table 4.5: Comparison of p-values between the best performing domain adaptation technique
and the new-store model.

Transformers

We next extend the analysis to the case where the base forecasting method is Transform-

ers. Figure 4.5 shows the comparison between the accuracy of different models for the

coffee category when using Transformers as the base forecasting method versus when

using XGBoost.

Figure 4.5: Comparison between the accuracy levels when using XGBoost and Transformers as
the base forecasting method
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As shown in Figure 4.5, using domain adaptation allows us to improve the prediction

accuracy of the new-store models. However, the absolute value of the prediction accuracy

when using Transformers is lower relative to XGBoost. Thus, we conclude that our study

based on our dataset, it is better to use XGBoost as the base forecasting method. The same

analysis was repeated for the energy drinks category and led to the same conclusion. The

rest of the graphs are omitted for conciseness.

4.3.2 Domain Adaptation on an Actual New Store

In this section, we consider an actual store that was recently opened to confirm that the

results from the previous section can be applied to a real-world setting. To identify a

new store in our dataset, we asked for managerial information from our industry partner

regarding a store that was recently opened. We asked for a store that was opened after

pandemic- March 2020. The selected new store(store 1208) was opened June 22 2021 in

Montreal. We repeat the same analysis as the previous section for both the categories of

energy drinks and coffee and reproduce the results displayed in in Figure 4.6.

Figure 4.6: Comparison of the prediction accuracy of different models as a function of the number
of days after the new store opening (XGBoost is considered as the base forecasting method).
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We expect that, as the number of days from the store opening increases and the data in the

new store (new domain) becomes available, the accuracy of new-store models increases.

For the coffee category, this intuition is readily confirmed in Figure 4.6. As shown in the

figure, the prediction accuracy of the new-store model (brown line) increases with the

number of days after the new store opening.

As shown in Figure 4.6, domain adaptation improves the prediction accuracy of the new-

store models (the blue, orange, green, red, purple, and brown lines in the graph). Specif-

ically, the prediction accuracy of the domain adaptation methods (grey and pink lines)

outperform the blue line (i.e., the best performing new-store model) after 60 days.

Figure 4.7 reports the accuracy levels of different models for the coffee category. As

shown in the graphs, after 60 days, the domain adaptation methods supersede the ac-

curacy of new store models. We note that neither the new store models nor the domain

adaptation methods can attain the same level as the old-store baseline.
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Figure 4.7: Comparison of the accuracy of different models for the coffee category (XGBoost is
considered as the base forecasting method), a) 10 days after opening, b) 20 days after opening, c)
30 days after opening, d) 60 days after opening, e) 90 days after opening, f) 120 days after opening,
g) 150 days after opening, h) 180 days after opening.

The same analysis is repeated for the energy drinks category and the results confirm the

same trends (refer to Figure 4.8).
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Figure 4.8: Comparison of the accuracy of different models for the energy drinks category as a
function of the number of days from the opening of the new store (XGBoost is considered as the
base forecasting method).

We expect that, as the number of days after the store opening increases and the data in the

new store (new domain) becomes more prevalent, the accuracy of the new-store models

improves. For the coffee category, this intuition is readily confirmed in Figure 4.8. As

shown in the figure, the prediction accuracy of the new-store model (brown line) increases

with the number days after the new store opening. The blue, orange, green, and red lines

correspond to the models that were trained using the data from the old stores, the 50 most

similar old stores, the 25 most similar old stores, the 50 closest old stores, the 25 closest

old stores, and tested using the data form the new store respectively.

The grey line shows the prediction accuracy of the model using domain adaptation (out

of the six domain adaptation models, only the two best performing ones are reported:

KMM and KMM with the pairing technique).

As shown in the figure, domain adaptation allows us to improve the prediction accuracy

of the new-store models (the blue, orange, green, red, purple, and brown lines in the

graph). After 30 days, the accuracy of domain adaptation supersedes the green line (i.e.,
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the best performing new store model). This decrease in the time window needed before

the accuracy of the new store demand prediction is reliable is substantial in reducing the

unnecessary costs incurred by the retailer.

Figure 4.9 shows the accuracy levels of different models for the energy drinks category.

We find that the accuracy of domain adaptation (KMM with pairs) is lower than the new-

store accuracy levels, albeit, they become more prominent after 30 days.

Another point that is worth mentioning is the fact that the new store model never attains

the old-store baseline (the lightest shade of blue). However, the result based on using

KMM with pairs is at the same level as the old-store baseline after 120 days.

Comparing Figure 4.1, Figure 4.3,Figure 4.8, and Figure 4.6, we conclude that in the ac-

tual new store the accuracy of domain adaptation ramps up as the days pass after the

new store opening. However, for the case of simulated new store, the accuracy of domain

adaptation is more steady. This different behaviour can be due to the fact that in the sim-

ulated store case study, the domain shift between the data in the simulated new store and

old stores is smaller. The simulated new store is in fact an old store with a hypothetical

start date. So, the shifts that can be expected when we actually open a new store are not

present in this case study.
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Figure 4.9: Accuracy levels of different models for the energy drinks category (XGBoost is con-
sidered as the base forecasting method), a) 10 days after opening, b) 20 days after opening, c) 30
days after opening, d) 60 days after opening, e) 90 days after opening, f) 120 days after opening,
g) 150 days after opening, h) 180 days after opening.
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4.4 Analysis-3: Introduction of a New Product

In this analysis, our goal is to predict the demand for a new product in each of the 89

stores in our dataset. We first calculate the accuracy of this demand prediction task before

and after the new product introduction and show that although the accuracy of demand

prediction for old products is high, this accuracy is not satisfactory for the new products.

We use domain adaptation techniques to mitigate the negative effect of the domain shift

caused by product introduction.

Like in the previous two sections, we test two methods as the base demand prediction

models in this analysis: XGBoost and Transformers.

In this analysis, we use the price and quantities sales information, and we conduct our

analysis for the same two high-selling categories as before (coffee and energy drinks). We

use simulated new products to validate our intuitions.

4.4.1 Domain Adaptation on Simulated New Products

XGboost

We consider each product in the category of coffee or energy drinks as a newly introduced

product with a hypothetical introduction date. We substitute zeros for its sales before the

hypothetical start date. The rest of the products in the same category are considered the

“old” products. We repeat the calculations for each product in the category of coffee or

energy drink, and report the average value.
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Figure 4.10: Comparison of the accuracy of different models when introducing a simulated new
product in the coffee category (XGBoost is considered as the base forecasting method).

We expect that, as the number of days from the introduction of the new product increases

and the data corresponding to the new product (new domain) becomes more prevalent,

the accuracy of new-store models improves. For the coffee category, this intuition is read-

ily confirmed in Figure 4.10. As shown in the figure, the prediction accuracy of the new-

product model (brown line) increases with the number of days after the introduction of

the new product. Similar to the new store analysis, we consider using the data from a

subset of old products (i.e., the same way we previously used the data from the 25 closest

stores, 50 closest stores, 25 most similar stores, and 50 most similar stores to predict the

demand of the new store). In this analysis, we use the data from products in the beverage

category and products in the coffee category to predict the demand for the new product.

The blue, orange, green, and red lines correspond to the models trained using the data

from beverages (the parent category) and coffee (a sub-category of beverages) and tested

using the data from the new store, respectively.

The red line shows the accuracy of the model using domain adaptation (out of the three

domain adaptation models, only the model with the highest accuracy is reported, which
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in this case is the ensemble method). As shown in the figure, domain adaptation allows

us to improve the prediction accuracy of the new-product models (the blue, orange, and

green lines in the graph).

Figure 4.16 reports the accuracy levels of different models for the coffee category. The

bottom-most bar (shown in the lightest shade of blue) represents the accuracy of the

model trained and tested on data from the old products. The middle bars show the accu-

racy of the models trained on data from all the old products, the old products in the hot

beverages category, the old products in the coffee category, the new products, and tested

on the new product from bottom to top. The bars in the darkest shade of blue represent

the domain adaptation methods. They correspond to FE, KMM, the ensemble of FE and

KMM, the FE with the pairing method, KMM with the pairing method, and the ensemble

method with the pairing method from bottom to top. We note that the prediction accu-

racy of domain adaptation is higher than the accuracy of the old-product model after 30

days.
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Figure 4.11: Accuraciy levels of different models when introducing a simulated new product
in the coffee category (XGBoost is considered as the base forecasting method), a) 10 days after
opening, b) 20 days after opening, c) 30 days after opening, d) 60 days after opening, e) 90 days
after opening, f) 120 days after opening, g) 150 days after opening, h) 180 days after opening.

Table 4.6 shows the p-value of the difference between the best performing domain adap-

tation accuracies and the new-product accuracies, as the days go by after introducing the

new product. These p-values are calculated using paired t-test.

p-value

Category 10 20 30 60 90 120 150

Coffee 0.01942 0.0247 0.001725 0.003908 0.002745 0.002163 0.01472

Table 4.6: Comparison of p-values between the best performing domain adaptation technique
and the new-product model.

The same analysis is repeated for the energy drinks category and the results show the

same patterns (refer to Figure 4.12).
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Figure 4.12:

Comparison of accuracy of different models as a function of the number of days after the simu-

lated new product introduction in the energy drinks category (XGBoost is considered as the base

forecasting method).

We expect that, as the number of days from the new product introduction increases and

the data corresponding to the new product (new domain) becomes more prevalent, the

accuracy of new-store models improves. For the energy drinks category, this intuition

is readily confirmed in Figure 4.10. As shown in the figure, the accuracy of the new-

product model (brown line) increases with the number of days after the new product

introduction. The blue, orange, green, and red lines correspond to the models trained on

data from old energy drinks (the parent category), old enriched water (a sub-category of

beverages), and tested on the data from the new store, respectively. The red line shows

the accuracy of the model using domain adaptation (out of the three domain adaptation

models, only the model with the highest accuracy is reported, which in this case is the

ensemble method). As shown in the figure, domain adaptation allows us to improve the

accuracy of new-product models (the blue, orange, and green lines in the graph).
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Figure 4.16 reports the accuracy levels of different models for the energy drinks category.

The bottom-most bar (shown in the lightest shade of blue) represents the accuracy of the

model trained and tested using the data from old products. The middle bars show the

accuracy of the models trained on data from all the old products, the old products in

the hot beverages category, the old products in the energy drinks category, and the new

products and tested on the new product from bottom to top. The bars in the darkest shade

of blue represent the domain adaptation methods. They correspond to FE, KMM, the

ensemble of FE and KMM, FE with the pairing method, KMM with the pairing method,

and the ensemble method with the pairing method from bottom to top.
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Figure 4.13: Accuracy levels of different models when introducing a new product for the energy
drinks category (XGBoost is considered as the base forecasting method), a) 10 days after opening,
b) 20 days after opening, c) 30 days after opening, d) 60 days after opening, e) 90 days after open-
ing, f) 120 days after opening, g) 150 days after opening, h) 180 days after opening.

Table 4.7 shows the p-value of the difference between the best performing domain adap-

tation accuracies and the new-product accuracies, as the days go by after introducing the

new product. These p-values are calculated using paired t-test.

p-value

Category 10 20 30 60 90 120 150

Energy drinks 0.02703 0.007601 0.005 0 0 0 0

Table 4.7: Comparison of p-values between the best performing domain adaptation technique
and the new-product model.

Transformers

We next extend the analysis to the case where the base forecasting method is Transformers

for the coffee category. Figure 4.14 summarizes the comparison between the accuracy of

different models when using Transformers as the base forecasting method versus when

using XGBoost.

93



Figure 4.14: Comparison between the accuracy of models when using XGBoost vs. Transformers
as the base demand forecasting method

As shown in Figure 4.14, using domain adaptation allows us to improve the prediction

accuracy of new-product models. However, the absolute value of the accuracy obtained

with Transformers is lower relative to XGBoost. Thus, we conclude that for our case

study based on our dataset, it is better, once again, to use XGBoost as the base forecasting

method. The same analysis was repeated for the energy drinks category and led to the

same conclusion. The rest of the graphs are omitted for conciseness.

4.4.2 Domain Adaptation on an Actual New Product

In this subsection, we study a product that was recently introduced to confirm that the

results from the previous section can be applied to a real-world setting. To identify a

new product, we asked for managerial information from our industry partner regarding

a product that was introduced recently in the energy drinks category. We asked for a

product that was introduced after the COVID-19 pandemic. The selected new product,

GURU GUAYUSA 355ML, 81843, is introduced on 2021-07-04 in all the 89 stores in Mon-

treal. We repeat the same analysis as in the previous section and reproduce the results in

Figure 4.15.
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Figure 4.15: Comparison of the accuracy of different models as a function of the number of days
after the new product introduction

We expect that, as the number of days from the introduction of the new product increases

and the data for the new product (new domain) becomes abundant, the accuracy of new-

product models increases. Figure 4.15 confirms this intuition. As shown in the figure, the

prediction accuracy of the new-product model (brown line) increases with the number of

days after the new product is introduced. As shown in Figure 4.15, domain adaptation

allows us to improve the prediction accuracy of new-product models (the blue and orange

lines in the graph). The accuracy levels of KMM and KMM with pairs (green and purple

lines) are higher than the new product models from the beginning to 120 days. Figure 4.16

reports the accuracy levels of the different models in greater detail.
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Figure 4.16: Comparison of the accuracy of different models when introducing a new product
in the energy drinks category (XGBoost is considered as the base forecasting method), a) 10 days
after opening, b) 20 days after opening, c) 30 days after opening, d) 60 days after opening, e) 90
days after opening, f) 120 days after opening, g) 150 days after opening, h) 180 days after opening.

Comparing Figure 4.10, Figure 4.12, and Figure 4.15, we conclude that in the actual new

store the accuracy of domain adaptation ramps up as the days pass after the new store

opening. However, for the case of simulated new store, the accuracy of domain adapta-
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tion is more steady. This different behaviour can be due to the fact that in the simulated

store case study, the domain shift between the data in the simulated new store and old

stores is smaller. The simulated new store is in fact an old store with a hypothetical start

date. So, the shifts that can be expected when we actually open a new store are not present

in this case study.

4.5 Managerial Implications and Discussion

In this thesis, we analyzed three examples of potential domain shifts in retail: the out-

break of the COVID-19 pandemic, opening a new store, and the introduction of a new

product. We conducted each analysis for both the coffee category and the energy drinks

category, while considering XGBoost and Transformers as the base forecasting method

(the results based on Transformers as the base forecasting method were omitted in the

last two case studies for conciseness). For the case studies of opening a new store and

the introduction of a new product, we first performed the analysis using a simulated new

store and a simulated new product. After confirming our intuition, we repeated these

two analyses with an actual new store and an actual new product in our dataset. Our

industry partner has helped us identify a recent new store opening and a new product

introduction.

In all three case studies, domain adaptation methods along with the pairing technique

have allowed us to significantly improve the prediction accuracy of the models in the

new domain. The pairing technique helps improve the prediction accuracy by up to 20%

for the COVID-19 case study using Transformers.

As expected, as the time window in the new domain expands, the accuracy of new-

domain models increases and can ultimately reach a satisfactory value. However, we

showed that this value of the time window may often be equal to a couple of months. In

fact, in some cases, even after 120 days, the new domain accuracy still remains lower than

the previous-domain accuracy.
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We have shown that since domain adaptation techniques can improve new-domain accu-

racy levels, they eliminate the need to wait for a long time before reaching a satisfactory

demand prediction accuracy. In other words, by using domain-adaptation techniques,

the prediction accuracy in the new domain improves. This accuracy can sometimes be

even higher than the old-domain accuracy, albeit this is not guaranteed.
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Chapter 5

Conclusion

In this thesis, we showed that when a domain shift occurs in our data domain, the ac-

curacy of the demand prediction model in the new domain can suffer. In this context,

we studied three examples of domain shifts in the field of retail: the outbreak of the

COVID-19 pandemic, opening a new store, and introducing a new product. We tested

three domain adaptation techniques to help mitigate the adverse effects of such domain

shifts: Frustratingly Easy domain adaptation (FE), Kernel Mean Matching (KMM), and

an ensemble of the previous two methods.

In all three case studies, domain adaptation methods allowed us to improve the predic-

tion accuracy of models in the new domain. As expected, as the time window in the new

domain expands, the accuracy of the new-domain models increases and can ultimately

reach an acceptable accuracy level (often close to the model accuracy in the old domain).

However, we found that this process can sometimes take several months. We have shown

that since domain adaptation techniques improve the new-domain prediction accuracy,

they also eliminate the need to wait for a long time before reaching a satisfactory predic-

tion accuracy. In addition, using the pairing technique resulted in further improvements

in the prediction accuracy of models in the new domain.
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One limitation of this work is that although coffee is a very high-selling and stable prod-

uct in our dataset, a new coffee product was not introduced. So, we did not have the

chance to extend our analysis to a new product introduction in the coffee category, and

we kept our analyses and experiments at the simulation stage. One possible use-case

would be to extend this approach to data from a coffee shop that frequently introduces

new coffee products. Another limitation of our approach is that although we expected

Transformers to outperform XGBoost as the base forecasting method due to their suc-

cess in the field of computer vision and natural language processing, it was not the case.

Our data may not be a good representation of all possible sales data in the field of retail,

and Transformers might perform better than XGBoost on a different demand prediction

task. So, one possible direction for future improvement could be to test our approach on

alternative datasets. An additional direction for future research could be to predict the

demand of the source domain and use this additional data to enhance the results.

We should mention that in this study we focus on products individually due to simplicity.

However, extending our study to multivariate time-series prediction would be a next

step.

Overall, further research is needed to improve upon our results by testing alternative

domain adaptation techniques and validating our results in the context of different retail

business settings.
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(a)

(b)

Figure 6.1: Comparison between different scenarios for the coffee category when using XGBoost
as the base forecasting method. (a) original scale, (b) showing only the best performing domain
adaptation model with axes being limited. As shown in part (b), the accuracy of the (green) post-
pandemic model improves as more data become available in the new post-pandemic domain.
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(a)
s

(b)

Figure 6.2: Comparison between different scenarios for the coffee category when using XGBoost
as the base forecasting method and adding the pairing technique to the domain adaptation ap-
proaches. (a) original scale, (b) showing only the best performing domain adaptation model with
axes being limited. As shown in part (b), the accuracy of the (green) post-pandemic model im-
proves as more data become available in the new post-pandemic domain. When compared to
Figure 6.1b, is is clear that using the pairing method allows to obtain a higher accuracy.
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(a)

(b)

Figure 6.3: Comparison between different scenarios for the energy drinks category when using
XGBoost as the base forecasting model. (a) original scale, (b) showing only the best performing
domain adaptation model with axes being limited. As shown in part (b), the accuracy of the
(green) post-pandemic model improves as more data become available in the new post-pandemic
domain (the accuracy increases from 10 days to 30 days). By using domain adaptation (i.e., the
red line), the accuracy of post-pandemic models improve mostly before 30 days and after 90 days.
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(a)

(b)

Figure 6.4: Comparison between different scenarios for the energy drinks category when using
XGBoost as the base forecasting method and adding the pairing technique to the domain adap-
tation approaches. (a) original scale, (b) showing only the best performing domain adaptation
model with axes being limited. As shown in part (b), the accuracy of the (green) post-pandemic
model improves as more data become available in the post-pandemic domain (the accuracy in-
creases from 10 days to 30 days). By using domain adaptation with the pairing technique (i.e., the
red line), the accuracy of post-pandemic models improves more (especially before 30 days). When
compared to Figure 6.4b, it is clear that using the pairing method allows us to obtain a higher
accuracy.
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(a)

(b)

Figure 6.5: Comparison between different scenarios for the coffee category when using Trans-
formers as the base forecasting method. (a) original scale, (b) showing only the best performing
domain adaptation model with limited axes.
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(a)

(b)

Figure 6.6: Comparison between different scenarios for the coffee category when using Trans-
formers as the base forecasting method and adding the pairing technique to the domain adap-
tation approaches. (a) original scale, (b) showing only the best performing domain adaptation
model with limited axes.
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(a)

(b)

Figure 6.7: Comparison between different scenarios for the energy drinks category when using
Transformers as the base forecasting method. (a) original scale, (b) showing only the best perform-
ing domain adaptation model with limited axes.
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(a)

(b)

Figure 6.8: Comparison between different scenarios for the energy drinks category when using
Transformers as the base forecasting method and adding the pairing technique to the domain
adaptation approaches. (a) original scale, (b) showing only the best performing domain adapta-
tion model with limited axes.
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