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ABSTRACT

Mining complexes are mineral value chains where extracted material from different
mines is transformed into sellable products through a set of processing streams. This value
chain is governed by uncertainties at different levels, from the geological attributes of the
orebody at the mine(s), to the different operational and processing components that lead the
sellable products to the market. Stochastic simultaneous optimization formulations for
industrial mining complexes have proven to be effective in generating reliable strategic plans
that maximize net present value and, at the same time, manage and reduce risk. However,
because of the uncertainties governing a mining complex, particularly the ones related to the
geological attributes which define the supply of the system, it has become a priority to
integrate flexibility mechanisms that allow a mining project to change and adapt as more
information becomes available. Within this adaptability, optimizing the investment timing of
high-magnitude capital expenditures throughout the life-of-mine is a priority, due to their high
impact on the annual cash-flows and on their effects over the physical mining schedule.
Additionally, to improve a mining complex’s ability to meet production targets and overall
performance, advanced mechanisms should be developed to ensure complex blending
constraints are met, managing the geometallurgical variables of the deposit.

This thesis presents a methodology to embed flexibility into mineral value chains, by
allowing the strategic mine plan of a mining complex to dynamically consider possible
options and alternatives for reacting and adapting to future changes. For this, first, a study on
extraction capacity optimization is presented, followed by the development of a mechanism to

deal with complex variables of the deposit to meet blending constraints and production



targets. These two components are later integrated into a dynamic optimization model, which
optimizes the mining complex’s mine plan under geological uncertainty, integrating flexible
investment alternatives, as well as operational modes, which allow having a better control
over complex, nonlinear geological attributes.

A mixed integer programming formulation to optimize a mining operation’s extraction
capacity is first developed, which deals with the minimization of risk incurred when
optimizing mining production rates, so that production targets are met in the presence of
geological uncertainty. The model is developed through the concept of a “stable solution
domain”, which provides all feasible combinations of ore and waste extraction within the
ultimate pit limit of a given deposit, independently of the geological risk. The proposed
formulation provides an optimal annual extraction rate, together with the optimal equipment
acquisition program (i.e., trucks and shovels). This solution eliminates unnecessary capital
expenses and is feasible under all geological scenarios. The developed mathematical
programming model is detailed and tested at a gold deposit. The results obtained are used as
input to a production schedule design, and compared to the schedule generated using a
constant mining rate. The comparison shows that about 40% of equipment acquisition can be
delayed for 7 years and mill demand still be met, thus maximizing profit and minimizing risk.

Next, the focus is shifted from a mining operation’s extraction capacity definition, to its
processing streams, particularly on the decision of where a block is sent once it is extracted,
1.e. its destination policy. These decisions are particularly important for complex multi-
element mining projects with tight blending and processing constraints. The proposed model
is able to simultaneously consider a set of geometallurgical variables that affect the
performance of the operation, improving the mineral value chain’s ability to meet targets,

while maximizing the project’s net present value. The proposed destination policy is based on
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coalition formation clustering, a method developed in game theory, to account for the
combined value of groups of mining blocks being processed together (even if these combined
values are non-linear), rather than on their individual characteristics. Results of an application
at a copper-gold mine with six destinations show significant improvements in meeting
processing requirements when compared to a conventional industry approach, reducing, for
example, deviations of arsenic concentration from 58% to 7% along the life-of-mine, while
increasing the project’s net present value by 5.6%.

Both extraction capacity definition and destination policy optimization are integrated
next, focusing on the complete mining complex, and expanding the formulation to optimize
the annual production schedule, as well as a dynamic equipment investment plan of a mining
complex. The dynamic model developed produces a unique initial extraction sequence, while
keeping a viable flexible long-term plan for future investment decisions, as may be needed.
The flexible long-term plan is obtained through a dynamic optimization which allows making
transitioning plans upfront to facilitate change. This method introduces a new adapted
multistage stochastic programming model which expands upon the two-stage framework by
performing multiple recourse stages that are solved iteratively, allowing parallel designs to be
generated in a scenario-tree structure. In this model, dynamic decisions over capital
expenditures are made sequentially over time, based on new information that becomes
available over production time. The investment decision variables activate costs and effects
over the model, letting the optimizer choose the type of investment and timing to be done at
the mining and/or processing levels. A case study of a mining complex with two mines is
used to test the proposed model, with options to invest in the related truck and shovel fleet, as
well as a secondary crusher to potentially increase mining and processing capacities

respectively. Results show a substantial probability that the mine design should consider the
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alternative of investing on the secondary crusher, presenting an increase in expected net
present value of over US $170M compared to the two-stage stochastic formulation.

The above model is subsequently extended to include alternatives over operating modes
at different levels of the mineral value chain. More specifically, the previously developed
dynamic decision-making method is used, and the model is extended to choose optimal
operating modes per period, selecting blasting patterns at the mine, and processing relations
of throughput and recovery at the plant. This mechanism generates new optimized plans that
allow and ease the process of adapting once more information is available. The practical
implications of the proposed method are demonstrated through an application over a copper-
gold mining complex, where the dynamic model presents a 10.5% increase in net present
value compared to a traditional two-stage stochastic formulation.

The dynamic mining complex formulation proposed is able to include flexibility into the
optimization of the strategic plan of a mineral value chain. This enables possible
developments within the feasible set of alternatives that can be taken, considering the mining
complex’s configuration, capacities, and constraints. The proposed model is able to generate
feasible, operational schedules, while providing a wider view of the mining complex’s
performance, easing the transition to possible changes due to the periodic unveiling of

uncertainty.
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RESUME

Un complexe minier est une chaine d’approvisionnement ou le minerai est extrait de
différentes mines et passe au travers d’un réseau de traitement pour étre transformé en un
produit commercialisable. Cette chaine d’approvisionnement est sujette a plusieurs sources
d’incertitude a différents niveaux, que ce soit au niveau de la mine et les attributs géologiques
du gisement ou au niveau des instances opérationnelles et installations de traitement qui
permettent d’amener le produit sur le marché. Les modéles stochastiques d’optimisation
simultanée pour les complexes miniers ont démontré leur efficacité¢ a générer des plans
stratégiques fiables qui maximisent la valeur présente nette du projet minier tout en contrdlant
et réduisant les risques y associés. Cependant, a cause des incertitudes qui gouvernent un
complexe minier, en particulier les incertitudes liées aux attributs géologiques qui définissent
les ressources du systéme, il est primordial d’inclure des mécanismes de flexibilité pour
permettre au projet minier de s’adapter lorsque plus d’information devient disponible. Dans le
cadre de cette adaptabilité, optimiser les décisions d’investissement en capital de grande
ampleur est une priorité vu ’impact important de ces décisions sur les liquidités annuelles de
la compagnie miniére et leur effet sur la planification de I’extraction. De plus, afin de
permettre a un complexe minier d’atteindre ses objectifs de production et de performance, des
mécanismes avancés devraient étre développés pour contrdler les variables géo-
métallurgiques du gisement et assurer que les contraintes de mélange complexes soient
respectées.

Cette these présente une méthodologie dont I’objectif est d’inclure de la flexibilité

dans les chaines d’approvisionnement minieres en permettant a la planification stratégique de
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considérer dynamiquement des options et alternatives réalisables pour réagir et s’adapter aux
changements futurs. Pour cela, une étude portant sur 1’optimisation de la capacité est tout
d’abord présentée, suivie par le développement d’un mécanisme pour appréhender les
variables complexes d’un gisement afin de respecter les contraintes de mélanges et atteindre
les objectifs de production. Ces deux composantes sont ensuite intégrées dans un modele
d’optimisation dynamique. Ce modele optimise la planification de 1’extraction sous
incertitude géologique en intégrant des alternatives d’investissement flexibles, ainsi que des
modes opératoires qui permettent un meilleur contrdle des attributs géologiques complexes et
non-linéaires.

Une formulation en un programme linéaire mixte en nombres entiers pour optimiser la
capacité d’extraction d’une opération minicre est d’abord développée. Plus spécifiquement, le
modele développé vise a minimiser les risques associés aux taux de production minicre. Il suit
le concept du « domaine de solution stable », qui permet d’obtenir toutes les combinaisons
réalisables d’extraction de minerai et de rejets miniers au sein de la limite extréme de la fosse,
et cela indépendamment du risque géologique. La formulation proposée fournit un taux
annuel d’extraction optimal, ainsi qu’un programme d’acquisition d’équipement optimal (i.e.,
camions, pelles). Cette solution élimine les dépenses en capital superflues et de plus, elle est
réalisable sous 1’ensemble des scénarios géologiques considérés. Le modéle mathématique
développé est détailleé et testé sur un gisement d’or. Les résultats obtenus sont utilisés comme
données d’entrée a un design de la planification de la production et ce dernier est comparé a
celui obtenu a partir d’un taux d’extraction fixe. La comparaison montre qu’environ 40% de
I’acquisition de I’équipement peut étre repoussée de 7 ans tout en satisfaisant la demande du

moulin, maximisant ainsi les profits et minimisant les risques.



Ensuite, I’étude se focalise sur le réseau de traitement des complexes miniers, en
particulier la décision de destination d’un bloc apres qu’il ait été extrait, i.e. la politique de
destination. Ces décisions sont particulierement critiques pour un projet minier a
multi¢léments avec des capacités a faibles marges et des contraintes de mélange. Le modele
propos¢ permet de considérer simultanément un ensemble de variables géo-métallurgiques
pour améliorer la capacit¢ de la chaine d’approvisionnement a respecter les contraintes
opérationnelles, tout en maximisant la valeur présente nette du projet. La politique de
destination obtenue est basée sur I’agglomération en formations de coalition (clustering).
Cette méthode a été développée en théorie des jeux. Dans le contexte des complexes miniers,
elle permet de considérer la valeur combinée de groupes de blocs traités ensemble (méme
lorsque ces valeurs combinées sont non-linéaires) plutdot que leurs -caractéristiques
individuelles. Les résultats obtenus avec une application sur une mine de cuivre et or, avec six
destinations distinctes, ont montré une amélioration significative quant a [’atteinte des
exigences de traitement en comparaison avec une approche industrielle conventionnelle. Par
exemple, les déviations en concentration d’arsenic sont passées de 58% a 7% durant la
période totale d’opérations, alors que la valeur présente nette du projet a augmenté de 5.6%.

L’optimisation conjointe des capacités d’extraction et de la politique de destinations
est par la suite intégrée dans une optimisation globale d’un complexe minier en généralisant
un modele mathématique qui optimise la planification annuelle de I’extraction ainsi qu’une
planification dynamique des investissements en équipement. Le modéle dynamique
développé produit une séquence d’extraction initiale unique, tout en conservant une
planification a long terme flexible et viable pour des décisions d’investissement futures, si
elles deviennent nécessaires. La planification a long terme flexible est obtenue a I’aide d’une

optimisation dynamique qui permet de planifier les transitions a 1’avance afin de faciliter les
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changements. Cette méthode introduit un nouveau modele stochastique multi-étapes adapté
qui étend I’approche a deux étapes en réalisant plusieurs étapes de recours, optimisées de
manicre itérative, et qui permet de générer des designs paralleles dans une structure d’arbre de
scénarios. Dans ce modele, les décisions dynamiques sur les dépenses en capital sont faites de
manicre séquentielle au cours du temps et se basent sur de 1’information nouvelle qui devient
disponible durant la production. Les variables de décision d’investissement activent des colits
qui agissent sur le modele, ce qui laisse 1’optimiseur choisir le type d’investissement et son
moment d’application au niveau de la mine et/ou au niveau du traitement. Une étude de cas
portant sur un complexe minier avec deux mines est considérée pour tester le modéle proposé.
Les options d’investissement concernent 1’achat de camions et de pelles, ainsi qu’un second
concasseur pour potentiellement augmenter les capacités d’extraction ainsi que les capacités
de traitement. Les résultats montrent une probabilité substantielle que le design de la mine
devrait considérer I’alternative d’investir dans un second concasseur puisqu’ils présentent une
augmentation de la valeur présente nette de plus de 170M $US, par rapport & un mode
stochastique a deux étapes.

Le modele précédent est finalement étendu pour inclure des alternatives sur les modes
opératoires a différents niveaux de la chaine d’approvisionnement miniere. Plus précisément,
la méthode de décision dynamique précédemment développée est utilisée. De plus, le modéle
permet de choisir des modes opératoires optimaux a chaque période. Ces modes opératoires
concernent la sélection du schéma de dynamitage au niveau de la mine et la sélection des
modes opératoires aux installations de traitement (compromis entre cadence de production et
taux de récupération de minerai). La méthode développée génére des plans optimisés,
facilitant le processus d’adaptation lorsque plus d’information devient disponible. Ses

principales implications et bénéfices sont présentées dans une application sur un complexe
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minier de cuivre et d’or, ou une augmentation de 10.5% de la valeur présente nette est
obtenue comparativement a une méthode basée sur une formulation stochastique
traditionnelle a deux étapes.

La formulation dynamique proposée dans cette thése permet d’inclure de la flexibilité
dans I’optimisation de la planification stratégique de la chaine d’approvisionnement minérale.
Cela permet de tenir compte d’éventuelles alternatives qui peuvent étre considérées, étant
donné les configurations du complexe minier, ses capacités et ses contraintes. Les modeles et
les méthodes proposés sont capables de générer une planification réalisable et opérationnelle,
tout en procurant une vision plus éclairée de la performance du complexe minier, ce qui

facilite la transition a de possibles changements lorsque 1’incertitude est révélée.
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CHAPTER 1
General Introduction

1.1  Introduction

A mining complex is a mineral value chain which consists of a set of
components, such as mines, stockpiles, waste dumps, and processing plants, that are
linked by multiple transportation systems that move material from the supply to the
final customers and spot market. Figure 1-1 presents a diagram of the continuous
flow of material of a mining complex. The supply of these value chains consists in a
set of mines, connected to transitional components involving the stockpiles, waste
dumps, and processing streams, such as plants, leach pads or bioleaches, which
transform the raw material into sub-products. These sub-products are then
transported to their final destination, consisting of ports that deliver the material to
customers, or waste dumps and tailings, where material of no value and waste from
metallurgical processes is sent.

The goal of optimizing the life-of-mine (LOM) of a mining complex is to
maximize value given a set of environmental and operational constraints. Each mine
is represented as a set of three-dimensional blocks, which are scheduled to be
extracted at a certain period given the mining complex’s extraction capacity and
operating modes. These blocks are extracted to be processed for profit, and/or to

access underlying blocks of the orebody. Processing streams receive this extracted



rock, and treat the material selecting an operating mode, usually aiming at
maximizing recovery and minimizing processing costs, ensuring that a set of
capacity and blending constraints are met. These constraints can become especially
complex when dealing with multi-element mines, or in the presence of deleterious

elements that need to be controlled. Finally, the produced material is transported,
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As Figure 1-1 shows, that a mining complex is a network of interrelated, non-
linear components, which strongly depend on each other. As an interconnected value
chain, a mining complex should be optimized globally and simultaneously, taking
into account the synergies that exist between its components. However, traditional
mine planning optimization techniques ignore the interactions between components
in a mining complex, optimizing each one independently. New research on global or
simultaneous optimization of a mining complex focuses on integrating all its

components to generate one global mine plan which accounts for the whole value



chain and its interactions. These models aim to coordinate and simultaneously
optimize the multi-mine production schedules, destinations policies, as well as the
use of the various material handling methods.

Another major limitation of traditional mine planning optimization methods is
that they assume that the deposit is known with certainty by using a unique
estimated orebody model to represent the characteristics of the material available on
the ground. With this, the variability and uncertainty of material concentrations and
material types are ignored, and so are the effects they have on the value and
operational feasibility of the production schedule.

Multiple optimization models based on stochastic mathematical programming
have been developed to include uncertainty. Within the mining industry, stochastic
optimization has been present for over a decade, using a set of orebody simulations
to take into account the grade variability of the deposit. These methods have proven
to produce reliable mine-plans and production schedules that maximize value and
manage project’s risk, and in recent years, have been extended to consider the whole
mining complex. Stochastic simultaneous optimization of a mining complex
integrates the effect of geological uncertainty and variability into the global
optimization model. By doing so, they produce mine plans and production schedules
that can meet blending requirements, manage technical risk, and maximize project
value, showing clear benefits both in value and in reliability of meeting production
targets when compared to traditional industry practices.

However, so far, the developed models have been limited in dealing with some
critical aspects, such as treating complex geometallurgical variables. These variables

are crucial in defining the processing performance of a mining complex, and dealing



with them becomes especially important in multi-element mines with complex
geological structures and processing streams where metallurgical processes demand
tighter blending constraints. Another critical aspect of current models is that they
produce fixed, static mine plans, which assume that the setting of the mining
complex will stay the same, and thus, that the initial solution will be optimal for the
life-of-mine (LOM). This assumption is an optimistic simplification. Consequently,
conventional mine plans are updated yearly; however, this is a passive solution that
can unintentionally inhibit options and alternatives that, though not currently viable,
could be profitable in the future. An example of these alternatives is the investment
in critical capital expenditures which may affect the value chain’s configuration
and/or capacity. The conventional way to deal with these alternatives is through
sensitivity analyses. However, these analyses are static and do not consider
uncertainty, or its effect in the mining complex’s context, usually resulting in loss of
opportunities and delayed projects, hindering the transition to change, and ultimately
resulting in loss of profit. Another type of alternatives is the operating mode
alternatives, which exist at different levels of a mining complex, from the mine to
the processing streams. Operating mode alternatives can be particularly useful in the
optimization of a mining complex when dealing with components of the value chain
with specific requirements, designed for certain type of input materials. These
requirements are usually ignored by conventional optimizers, and because of the
value chain’s inherent uncertainties, meeting them can be a hard task. By
considering and integrating the different operational alternatives into the

optimization, these hard constraints can be better met by tuning the processing



streams to the specific characteristics of the material being treated, maximizing the
mining complex’s performance and its value.

These extensions are crucial, as the performance of these processing streams and
of the mining complex as a whole greatly depends on how the different requirements
and constraints are met. For example, in a processing plant, blending constraints
must be met to maximize metallurgical recovery, which in turn will maximize
project value. Maximizing value and meeting these requirements can be aided by
considering the mining complex’s flexibility alternatives. However, to take full
advantage of opportunities, and obtain feasible and reliable mine plans, these
alternatives must be considered in the initial evaluation processes, enabling
decision-makers to prepare in advance for future changes. To do so, more
sophisticated methods must be developed, and flexibilities must be translated into a
set of identified, feasible, dynamic alternatives that can be exercised by a particular

mining complex, specifically designed upfront to be effectively modelled.

1.2  Literature Review

This section presents a review of the literature pertinent to the topics discussed
in this thesis. Section 1.2.1 discusses the strategic optimization of the mine plan,
from modelling and including geological uncertainty, to simultaneously optimizing
the mining complex under uncertainty, presenting different solving algorithms
developed and their extensions, and concluding with limitations to the current state-

of-the-art formulations. Section 1.2.2 describes research avenues to include



flexibility in a value chain optimization under uncertainty, focusing on real options

analysis and stochastic multistage programming formulations.

1.2.1 Strategic or life-of-mine planning

The focus of strategic mine planning is to generate designs and mine production
schedules that meet targets and maximize discounted cash-flows over the life of a
mining operation. This is done by firstly representing an orebody as a set of three-
dimensional blocks, where each block has values for the attributes that define the
deposit, such as metal grades, material types, rock properties, or tonnage. According
to their characteristics, blocks are scheduled to be extracted at a certain time period
(year), to be processed, and/or to access underlying blocks of the orebody (Hustrulid
et al., 2013). Traditionally, mining complexes are simplified and optimized in a step-
wise fashion, as disconnected components with individual goals (Dagdelen, 2001);
for example, the mine may be optimized to minimize cost, while the processing
plant may be separately optimized to maximizing recovery (Lerchs and Grossmann,
1965; Johnson, 1968; Kim, 1979; Gershon, 1983; Tolwinski and Underwood, 1996;
Hustrulid et al., 2013). This process ignores the synergies that exist between a
mining complex’s components, producing independent sub-optimal plans and
production schedules. At the same time, these conventional plans use estimated
orebodies as only input, and ignore the uncertainties that govern the mining
complex, such as the deposit’s geological attributes of contents, material types, or
the market’s commodity price.

Because of the high costs associated with exploration, the limited information

obtained from exploratory and development drill-holes, and the geological



complexity of mineral deposits in general, the characteristics of interest of the
orebody considered are highly uncertain at the scale of mining, being one of the
main sources of risk in a mining operation (Ravenscroft, 1992; Dowd, 1994, 1997;
Vallee, 2000; Godoy and Dimitrakopoulos, 2004). Considering the deposit as known
by using a single estimated orebody model to represent the material available in the
ground is a major assumption that biases the mine planning process. Traditionally
employed geological estimation methods produce a single representation of the
deposit, which is smoothed due to the averaging that occurs during the estimation
(David, 1977, 1988; Journel and Huijbregts, 1978; Isaaks and Srivastava, 1989;
Goovaerts, 1997; Rossi and Deutsch, 2014). These estimated models misrepresent
the proportions of material concentrations, and ignore their variability and
uncertainty, as well as the effects this has on the value and operational feasibility of
the production schedule (Dimitrakopoulos et al., 2002). Godoy (2003) and Godoy
and Dimitrakopoulos (2004) state that geological uncertainty is the major
contributor to not meeting project expectations. This, because the optimization of a
mine design entails non-linear transfer functions, and using a deterministic model to
optimize it can provide misleading results. In their study, the authors demonstrate
that including this uncertainty significantly reduces the deviation from production

targets, and at the same time, it increases the total value of the project.

1.2.1.1 Modelling geological uncertainty

The importance of accounting for geological uncertainty has been documented
for decades (Journel, 1974; Dowd, 1976, 1994, 1997; Journel and Huijbregts, 1978;
David, 1988; Ravenscroft, 1992; Goovaerts, 1997; Rossi and Deutsch, 2014).



Journel (1974) states that for lack of perfect knowledge of the fluctuations of
different characteristics of the extracted material, simulations of the reality are
needed to model the deposit’s spatial uncertainty of the characteristics of interest,
such as the grades or the stripping ratio. Stochastic simulation can be used to
generate equally probable representations of the orebody, which respect the spatial
correlation and local variability of the deposit, providing a probabilistic assessment
of a variable over a group of blocks (Journel and Huijbregts, 1978; Isaaks, 1991;
Chiles and Delfiner, 1999; Godoy, 2003; Remy et al., 2009; Rossi and Deutsch,
2014).

Among the different stochastic simulation techniques, an efficient and
straightforward method to generate multiple equally-probable representations of a
deposit is Direct Block Simulation (DBSim), thoroughly described in Godoy (2003).
DBSim combines the upside characteristics of LU decomposition method (Davis,
1987), with the qualities of the well-known sequential Gaussian simulation (SGS)
(Goovaerts, 1997), and is a step forward in a more computationally efficient method
than the generalized sequential Gaussian simulation (GSGS) described by Luo
(1998). LU method (Davis, 1987) is capable of simulating simultaneously and in a
fast way a group of nodes; however, it is a computationally expensive method, as the
decomposition of the covariance matrix into its lower and upper components (thus
the name LU) requires the order of n’> computations for a matrix of dimensions 'n x
n', i.e., with ‘n’ nodes to simulate. On the other hand, SGS has the upside of being
easily implemented but can turn to be very slow as the number of nodes ‘n’ to

simulate increase.



DBSim method starts by dividing the volume to be simulated into groups of
nodes, generally accordant with the dimensions of the selective mining unit (SMU)
defined by the operation (Godoy, 2003; Dimitrakopoulos and Luo, 2004; Boucher
and Dimitrakopoulos, 2009). Subsequently, each of the groups is visited following a
random path, sequentially simulating the internal nodes of each group by LU
decomposition, which in these conditions is a fast and feasible method given the
reduced size of the groups. The main difference between DBSim and GSGS, is that,
once the internal nodes of a group are simulated, instead of keeping all the
information from each simulated node, as in GSGS, DBSim averages the simulated
values of the group, and only stores this resulting value, liberating the memory
required to store each individual node. This mechanism aims at saving
computational time by accounting in advance for the subsequent re-blocking of the
deposit, which is a common first step in the mine planning process, where point-
support simulated nodes are averaged into the mine’s SMU dimensions. Because of
this memory liberation, DBSim becomes computationally inexpensive and simple to
implement.

Together with this, DBSim can easily be extended to the simulation of multi-
element deposits by using methods such as the minimum/maximum autocorrelation
factors (MAF) (Desbarats, 2001; Rondon, 2012). This method de-correlates the
variables of interest so that they can be independently simulated (through a method
such as DBSim) and then re-joined to generate the multivariate simulations. In this
case, however, when using DBSim, a double storage of the data must be done: once
the internal nodes of a block are simulated, they must all be back-transformed into

their original coordinates, and subsequently averaged and stored outside of the



simulation space. On the other hand, the nodes in the simulation space must also be
averaged (in their transformed coordinates) to be used to condition the remaining
simulation. Clear examples of this process can be found in Benndorf and
Dimitrakopoulos (2018) and Boucher and Dimitrakopoulos (2009, 2012).

All previously mentioned methods are Gaussian based, where all conditioning
data needs to be transformed into normal-space before being used to simulate the
deposit. These methods use variogram models as basis to represent the deposit’s
statistics, which is a second-order measure of the deposit’s spatial continuity.
However, second-order statistics are unable to correctly reproduce complex
structures of the deposit. Extensive literature can be found on new generations of
geological simulation methods. This latest research focuses on exploring the higher-
order statistics of the geological data by doing multi-point simulations, which are
able to capture complex structures of the deposit, obtaining more information from
the conditioning data, and improving the reliability of the simulations generated
(Strebelle, 2002; Arpat and Caers, 2007; Remy et al., 2009; Dimitrakopoulos et al.,
2010; Mustapha and Dimitrakopoulos, 2010b, a, 2011; Mustapha et al., 2011).

Most high-order methods replace the variogram model by training images,
which are a geologic analog of the deposit’s mineralized variable (Zhang et al.,
2006; Minniakhmetov and Dimitrakopoulos, 2017a). Abolhassani et al. (2017)
implements training images in conjunction with machine learning techniques to
develop a high-order, nonstationary sequential simulation method, showing
promising results. However, generating these training images is an issue in itself
(Goodfellow et al., 2012), and thus, new fully data-driven methods are being

developed (Minniakhmetov and Dimitrakopoulos, 2017b). All these advancements
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are done with the goal of producing better quality, and more reliable representations

of the deposit to use as input to the mine planning optimization.

1.2.1.2 Strategic mine planning under uncertainty

Conventional mine planning approaches (Hoerger et al., 1999) ignore the non-
linear characteristics of the mine design and production scheduling processes, and
assume that the optimization of the mine plan using an estimated orebody as input to
a deterministic model will provide an average output solution. This is a major
assumption due to the non-linear transfer functions that take place during the mine
planning optimization (Ravenscroft, 1992; Dimitrakopoulos et al., 2002). Using
estimated orebody models as input to the model produces biased mine plans that
ignore the data’s local variability. Monkhouse and Yeates (2005) note that
conventional LOM optimization methods ignore uncertainty and are full of
assumptions which will surely be wrong, rendering the supposed optimal solutions
suboptimal under the uncertain real world.

A first approach at accounting for geological uncertainty in the mine design and
production scheduling process was made by Godoy (2003) and Godoy and
Dimitrakopoulos (2004), who use simulated annealing (SA) (Kirkpatrick et al.,
1983; Geman and Geman, 1984; Osman and Laporte, 1996). Here, the authors
produce a set of schedules, each optimal to one of the geological simulations used,
and use them as input to an optimization model which jointly considers them to
generate a single schedule that minimizes overall deviations from ore and waste

production targets.
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A similar analysis is done by Leite and Dimitrakopoulos (Leite and
Dimitrakopoulos, 2007) who apply this method to a copper mine obtaining a 15%
increase in NPV, even though maximizing project value is not the direct objective of
the formulation. As in Godoy (2003) and Godoy and Dimitrakopoulos (2004), the
optimization mechanism used consists of three steps. First, the ultimate pit limit and
mining rates is optimized. Next, independent schedules are obtained for each
simulated orebody, and finally, these independent schedules are combines through
an annealing schedule. The final schedule has an increased NPV compared to the
traditional schedule, however, because of the assumption of a pre-defined optimal
ultimate pit limit in the first step, it has a decreased life of mine compared to the
traditional schedule.

Similarly, Albor and Dimitrakopoulos (2009) use SA to optimize an open pit
mine production schedule under geological uncertainty, and address the impact of
different crucial tuning parameters of the algorithm, such as the effect that the
number of initial schedules has on the convergence of the results, and the effect of
different initial solutions. An application on a case study shows a 25% increase in
NPV when compared to traditional scheduling methods. Just as in Leite and
Dimitrakopoulos (Leite and Dimitrakopoulos, 2007), initial results present a shorter
life of mine for the stochastic solution, however, all these studies assumed a fixed
ultimate pit limit defined based on the Lerchs-Grossman algorithm (Lerchs and
Grossmann, 1965) with discounting, for both deterministic and stochastic cases. In
their study, the authors prove that by leaving the ultimate pit limit free, the
stochastically optimal pit limit is actually larger than the one designed by

conventional optimizers (17% larger in the case study presented, in terms of total
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tonnage), increasing the life of the project in one year when compared to the
traditional plan of the case study. The authors show that this effect is consistent
throughout multiple case studies.

Another approach is proposed by Meagher et al. (2009) who include price and
exchange rate variability as well as geological uncertainty for pushback design
formulating the problem as a max flow problem and using a minimum cut
algorithm. The authors apply their method to a copper open pit mine, and their
results show an increase in project value of 10 to 50% along the life of the mine.
Asad and Dimitrakopoulos (2013a) present a parametric maximum flow algorithm
to optimize the open pit mine design under uncertain supply (geology) and demand
(commodity price). The optimization uses multiple simulations of both uncertainties
to generate time-dependent discounted block values, and creates a graph based on
this framework. In their paper, the authors focus on the optimization of phase
designs and ultimate pit limit, and an application at a case study shows that the
stochastic pit limit is 45% larger than the one obtained with conventional methods,
presenting both higher NPV and metal production. Asad et al. (2014) extend the
work done by Asad and Dimitrakopoulos (2013a) to consider the phase design and
ultimate pit limit optimization of a mining complex with multiple ore processing
streams under geological uncertainty. Results of a case study show that the
stochastic solution produces an almost 9% larger ultimate pit limit, with a 14%
higher NPV and a 10% higher copper production when compared to results obtained
through current practices. More recently, Chatterjee et al. (2016) introduce an open
pit mine design optimization approach under commodity price uncertainty and also

focus on the design of production phases and ultimate pit limit definition. The
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authors present a novel method for commodity price simulations, based on
sequential Gaussian simulation with smoothing splines, and present a stochastic
formulation which efficiently considers these simulations simultaneously. However,
the paper does not consider geological uncertainty or the actual scheduling of the
mining operation.

To date, different methods have been developed to allow the integration of
geological uncertainty into the design and evaluation of a project, most of them
based on stochastic programming. Birge and Louveaux (1997) define stochastic
mathematical programming as formulations where parameters of the formulation are
assumed to be uncertain (i.e. random fields), with a known probability distribution
assigned to them. To include this uncertainty, a set of scenarios is considered
simultaneously throughout the optimization process to obtain the production
schedule, and not independently as in the previous cases mentioned (Ramazan and
Dimitrakopoulos, 2004a; Leite and Dimitrakopoulos, 2007).

Ramazan and Dimitrakopoulos (2004b, a) aim at solving the long-term mine
production scheduling optimization under geological uncertainty, and model it as a
two-stage stochastic integer program with fixed recourse to minimize deviations
from production targets. In their model, the set of orebody simulations is jointly
used as input, and decision variables are grouped into extraction and processing
decision variables. The first, correspond to 1% stage decision variables taken under
uncertainty, and the second, to nd stage variables taken as recourse, after some or all
of the uncertainty has been uncovered (Birge and Louveaux, 1997), defining where a
block is sent after it is extracted. The authors also include extra constraints to

generate smooth, operationally feasible schedules for a complex multi-element
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deposit. Ramazan and Dimitrakopoulos (2013) extend this model and account for
leaching, as well as sending and retrieving material from a stockpile. The authors
also implement a geological risk discounting rate (GRD) introduced by
Dimitrakopoulos and Ramazan (2004), which increases the cost of deviating on the
initial years of operation, ensuring a steady feed, and decreases it towards the end of
the LOM, when more information is available. To reduce the computational cost of
the formulation, the optimization is first done without considering the stochastic
constraints related to grade blending, processing, and metal production, and this
initial solution is later used as a starting point for the full SIP model. Together with
this, to reduce the computational cost even further, waste blocks are considered
continuous variables, and only ore blocks are considered integers. However, to
ensure slope constraints are respected, a waste block must be completely extracted
before its underlying predecessors can be mined.

Lamghari et al. (2013) also formulate the mine extraction scheduling problem of
an open pit mine under geological uncertainty as a two-stage stochastic
programming model and use a Variable Neighbourhood Descent (VND)
metaheuristic algorithm (Mladenovi¢ and Hansen, 1997; Hansen and Mladenovi¢,
2001) to solve it. Two different metaheuristic approaches are proposed,
differentiated in the way the initial solution is created, and later improved by using
VND algorithm. Both methods proposed present very favorable results when
compared to the linear relaxation of the problem (solved using CPLEX (2011)),
presenting a maximum gap of 2% and 5% respectively. Lamghari et al. (2015) later
develop a two-phase hybrid method to optimize the open pit schedule, which uses a

series of linear programming models that are sequentially applied to develop an
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initial solution. This initial solution is later improved by applying a VND heuristic
to three neighbourhoods. The proposed formulation is able to solve a large-scale
NP-hard problem in a few minutes, presenting less than a 3.2% gap with respect to
the linear relaxation of the problem obtained using ILOG CPLEX (2011).

Other applications of stochastic methods in comparison with the deterministic
assessment can be found in the literature (Sabour and Poulin, 2006; Musingwini et
al., 2007; Dimitrakopoulos and Sabour, 2007; Albor and Dimitrakopoulos, 2010).
However, all the mentioned studies aim at optimizing the mining schedule as an
independent component of the mining complex and don’t account for the whole

mineral value chain and the synergies that exist between its different components.

1.2.1.3 Global or simultaneous optimization

During the last few years, mine planning research has evolved to focus on
optimizing all stages of a mining complex simultaneously, from the mine to the final
costumer, being referred to as global or simultaneous optimization (Hoerger et al.,
1999; Whittle, 2007, 2010a, b; Pimentel et al., 2010; Bodon et al., 2011). Pimentel
et al. (2010) introduce a mining operation as a supply chain, served by logistic
channels, and develop a decision-support system to address a global mining supply
chain as an integrated system. In their paper, the authors discuss work done on
ultimate pit selection, stochastic optimization, and the importance of blending,
among others. In addition, different possible solution approaches to the integrated
mining supply chain are discussed, concluding that heuristics would be the best
alternative for optimizing the production plan of any real-world mining supply

chain, due to its size and complexity. Whittle (2007) introduces the Prober
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algorithm, a software designed to optimize multiple mines with complex blending
constraints and processing destinations. The algorithm works by iteratively creating
random feasible solutions, which are locally improved by defining optimal cut-off
grades and downstream decisions, such as blending, stockpiling, and general
production plan. To reduce the complexity of the model, the algorithm aggregates
blocks by material types, which are in turn grouped into panels. In the model,
however, it is assumed that blocks in a panel are extracted in the same proportion,
indirectly violating slope constraints, as blocks in a lower bench may be partially
mined before their overlying blocks are fully extracted. Whittle (2010b) introduces
ProberC, an advanced version of the algorithm introduced in Whittle (2007), where
more complex costing structures and different configurations of mining operations
can be optimized. However, the optimization is still deterministic, using an
estimated orebody model which misrepresents the proportions of material grades,
and ignores the uncertainty and local variability of the grades and material types of
the deposit. Similarly, Whittle (2010a) presents an “enterprise optimization”, which
consists on ten steps to follow to simultaneously optimize a mining operation using
Whittle Software (Whittle, 1999), stressing that decisions made at any point in the
mineral value chain can potentially affect the decision for all other points in the
chain. However, just as in the previous studies, uncertainty is not considered.
Whittle (2014) notes how company policies can often hinder the simultaneous
optimization efforts by establishing misleading targets and objectives which are not
focused on maximizing value, and highlights the importance of creating integrated
teams to optimize a mining complex, consisting of mining engineers, metallurgists,

accountants, etc. In his paper the author discusses the difficulties that entail shifting
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the paradigm of a whole mining company from its traditional optimization methods,
but highlights that, based on different case studies, the returns for doing so can be
considerable.

Stone et al. (2007) present Blasor, an optimization tool formulated as a mixed
integer linear problem, which is able to optimize the extraction sequence of multiple
mines, stockpiles and processing streams, and is solved with ILOG CPLEX (2011).
The computational cost of the formulation is reduced by aggregating connected
blocks by the similarity of their properties, considerably reducing the number of
variables in the model. The authors show how their approach improves performance
compared to the traditional independent optimization of the value chain’s stages.
Zuckerberg et al. (2007) present an extension of the Blasor optimizer, BlasorIPD,
specifically designed for waste handling through in-pit-dumping. This extended
model can flag areas of the pit which have been extracted and can be filled with
waste material, ensuring no ore access is lost, and that slope constraints are
respected after the waste disposal. However, in addition to the aggregation of
blocks, none of these models account for the inherent uncertainties governing the
model.

These integrated formulations can simultaneously optimize a mining complex,
taking advantage of the synergies that exist between its components. However, due
to the size and complexity of the problem, these models have required major
simplifications to obtain linear formulations, solvable in a reasonable amount of
time. Such simplifications are, for example, avoiding to model stockpiles given their
non-linear relations, aggregating blocks, which lead to infeasible schedules and

slope violations, or using pre-calculated economic values of blocks. Despite these

18



facts, arguably the strongest assumption of the mentioned simultaneous optimization
methods is ignoring the uncertainty related to the geology, which, as mentioned in

section 1.2.1.1, is a key parameter of the mining complex.

1.2.1.4 Optimising mining complexes under uncertainty

Stochastic simultaneous optimization of a mining complex integrates the effect
of geological uncertainty and variability into the global optimization model,
producing mine plans and production schedules that are able to meet complex
blending requirements, manage technical risk, and maximize project value, while
accounting for all components of the mining complex (Montiel and
Dimitrakopoulos, 2015, 2017; Farmer, 2016; Montiel et al., 2016; Goodfellow and
Dimitrakopoulos, 2016, 2017).

Montiel and Dimitrakopoulos (2013) present one of the first efforts to model the
whole mining complex and optimize the extraction sequence under geological
uncertainty, considering both, material type and ore grade uncertainties. The authors
consider multiple ore types which, according to their characteristics, can be
processed in a set of different processing streams. The proposed method is applied
over a world-class copper open-pit mine, reducing production deviations to less than
5%, compared to the original schedule which presented deviations as high as 20%,
and, at the same time, increasing the expected net present value by 4%. However,
the formulation presents limitations in its destination policy decisions, which are the
decision of where a block is sent after it is extracted. This happens when the material
type of a block varies between simulations, as some processes accept only certain

material types, and misclassification errors must be avoided, making it hard to
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define a block-based destination decision. Also, no stockpiles or external sources are
considered in this mining complex configuration.

To deal with these limitations, Montiel (2014) and Montiel and Dimitrakopoulos
(2017) developed a robust destination policy, and optimize the whole mining
complex with multiple processing streams under grade and material type
uncertainty. In their model, the average profitability of each destination is ranked for
each block, and the optimizer defines the final destination of a block as a knapsack
problem. This way, the most valuable blocks are sent to their first ranked
destination, and as processing capacities are met, remaining blocks are sent to their
second ranked destination, and so on, until all extracted blocks have a defined
destination. The proposed model is able to develop a mining schedule that defines
when each block is mined, and where it is sent.

The previously mentioned stochastic mining complex optimization methods
penalize deviations from targets by defining capacity limits as soft constraints. This
mechanism minimizes deviations but does not eliminate them. Thus, when
executing the mine plan, there may still be cases of lack or excess ore in main
processing streams. To deal with this issue, Navarra et al. (2018) present a method
to optimize the processing of excess ore, in case processing capacities of a mining
complex are exceeded. This mechanism considers adapting the process’ cut-off
grade to increase ore selectivity in case the ore feed exceeds that given processing
plant’s capacity.

Menabde et al. (2007) discuss the stochastic Blasor, an extension of the
optimization tool presented by Stone et al. (2007) which considers material grade

uncertainty through a set of simulated scenarios. The authors also define a robust
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destination policy based on cut-off grade optimization which accounts for geological
uncertainty, and present a MIP formulation where the destination policy is defined
to ensure that blocks with similar grades are sent to the same destination on each
given period. The destination policy is defined by discretizing the grade distribution
of the different orebody simulations into bins and defining a particular bin limit as
the optimized cut-off grade for each period, according to the amount of ore and
waste in the different scenarios. The proposed method provides a robust overall
policy and solves the non-linearity issues of the formulation, and by doing so, it is
able to avoid misclassification problems. Here, the authors implement an
aggregation mechanism that groups blocks into panels, reducing the number of
binary variables in the model considerably. However, this formulation only accounts
for a mine with just one element and a single processing stream, defining the cut-off
grade that decides if material is ore or waste. Thus, it is limited as it does not allow
the classification of multiple attributes or multi-element deposits, where more than
one element must be considered simultaneously to meet blending requirements.

One of the main challenges when modelling the stochastic simultaneous
optimization of a mining complex, together with the mentioned destination policy
problems, is the non-linear transformations that appear when stockpiles and
blending constraints are included into the formulation. Goodfellow and
Dimitrakopoulos (2016, 2017) propose a general formulation of a mining complex
which allows modelling different value chain relations under geological uncertainty,
without falling into the simplifications mentioned in the previous section. The
authors define primary and hereditary attributes to model the flow of material

through the mining complex, where primary attributes correspond to additive
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characteristics (metal content, tonnages, etc.), whereas hereditary attributes are
derived from primary ones (such as grades, which can be calculated as metal
tonnage divided by the block’s total tonnage, or processing recoveries, economic
value, etc.). To deal with the destination policy issues, the authors extend the bin
mechanism presented by Menabde et al. (2007), and propose a k-means++ clustering
mechanism to pre-process the deposit and classify blocks into different clusters
according to their value over multiple variables (such as material type and
concentration of different elements). With this clustering mechanism, the destination
policy is decided annually for each different cluster, and not for each individual
block. The advantage of this method is that it allows accounting for multi-variate
relations when defining the destination of a block, which is a necessity when
optimizing multi-element mines or complex blending requirements. Also, through
clustering, the authors are able to produce a destination policy guide which can
provide the optimal destination of a block according to the value of its attributes, by
defining its cluster membership.

The destination policy decision can be taken based on multiple aspects, such as
defining certain ranges of grades accepted at the different destinations, commonly
referred to as cut-off grades (Lane, 1988; Whittle and Wharton, 1995; King, 1999;
Rendu, 2014), or based on the general revenues expected from sending a block to
each of the possible processing streams. However, this last policy entails a serious
oversimplification, which is to assume that a block has a dollar value (Lerchs and
Grossmann, 1965; Tolwinski and Underwood, 1996; Ramazan, 2007; Meagher et
al., 2009) and not material, which must be blended, treated, processed, refined, etc.

in order to actually receive some profit. This last point entails strong biases over the
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process, as assuming that a block has a pre-defined value disregards, for example,
the effect of time value of money. The project’s discount rate, not to mention the
current market price of the commodity being mined, will ultimately define the value
of a block, but only once it has been mined, processed and sold. Together with this,
assuming a pre-defined dollar value of a block entails defining when and where this
block will be processed, ignoring the effect of non-linear recovery curves and
blending requirements at the different processing streams, which depend on the
resulting characteristics of the group of blocks being processed together (Ramazan
and Dimitrakopoulos, 2004b, a, 2013; Wharton, 2004; Stone et al., 2005, 2007,
Whittle, 2010b; Lamghari and Dimitrakopoulos, 2012; Leite and Dimitrakopoulos,
2014).

In models that assume an economic value of the blocks, usually, the optimizer
decides where an extracted block should be sent based on its concentration being
higher or lower than a cut-off grade of some principal element. In reality, blocks
have different attributes and concentration of elements which must be extracted,
transported, blended, processed and sold, in order to obtain an actual financial gain
from them. This process is also strongly affected by the geological uncertainty
present in the deposit, which will ultimately define the performance of processing
stream chosen to treat the extracted block. Thus, the actual value of a block depends
(1) on the period when it is extracted, (i1) on the quality of the elements contained in
it, (iii) on the current price for each of these elements, as well as iv) on the
destination where the block is processed, which entails the blending constraints,
processing costs, recovery curve of the metallurgical process, etc. Most of which are

non-linear aspects which are avoided in most conventional optimizers.

23



Meagher et al. (2009) work on designing dynamic destination policies, where
the destination decisions are updated according to new information that becomes
available once a block is extracted. The study considers geological and market
uncertainties, as well as the time value of money by calculating the value of a block
according to its period of extraction. However, the proposed model only accounts
for one mine with one element which can be processed in one processing plant, and
the model would grow exponentially if a mining complex with multiple elements,
deposits, and processing streams was considered. Together with this, the focus is
still placed on assigning an individual dollar value to each block, instead of
optimizing the complex as a whole. Meagher et al. (2014) develop a dynamic cut-off
grade policy to define block destination, where the optimal cut-off grade is defined
on a yearly basis in order to optimize the pushback design and maximize project
value. However, as in Meagher et al. (2009), the model only considers one element
with one processing facility, and the optimization is done greedily by sequentially
maximizing the NPV of each pushback, instead of optimizing the whole deposit
simultaneously. Together with this, their method is not extended to the optimization
of the mine scheduling problem.

Asad and Dimitrakopoulos (2013b) develop a cut-off grade optimization model
for an open pit mining complex with multiple processing streams, under uncertainty
in ore supply. The proposed model is defined as an extension of Lane’s model
(Lane, 1988) to include geological uncertainty, aiming at maximizing NPV while
minimizing deviations from production targets. An application at a large copper
mine presents increases in NPV of over 13%. However, even though the

optimization provides the optimal annual cut-off grade and extraction capacities, it
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does not provide an actual schedule, and the method is only able to account for one
mine with one element.

Montiel and Dimitrakopoulos (2015) propose a global mining complex
optimization model under grade and material type uncertainty, with multiple
processing and transportation alternatives. The authors test their formulation over a
copper mine with two pits, with multiple processing streams and complex blending
constraints, and show that their proposed stochastic method not only improves the
project’s NPV by 5% when compared to the traditional deterministic method (which
is shown to strongly violate blending and processing constraints), but it considerably
reduces the risk of not meeting blending constraints and processing capacities at the
different destinations. The proposed model also includes alternatives over the
processing plant’s grinding size, as well as two different transportation systems with
different assigned costs and capacities, allowing the optimizer to choose the optimal
grinding configuration and transportation system. This configuration tuning allows
increasing the efficiency of the optimization model, and at the same time, produces
more realistic plans which adapt to the characteristics of the material being extracted
and treated, tackling some of the most important limitations of previous models.

The different operating modes defined by the authors affect, on the one hand,
processing variables, and on the other hand, transportation system alternatives. The
first, tackle variables such as metallurgical recoveries, operating costs, blending
constraints and throughput of the processing destination, where for example, a
processing plant using fine grinding will have higher recovery, but also higher costs
and lower throughput than a plant operating at coarse grinding. The second

alternatives vary the available capacity and operational costs provided by the
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different transportation systems. The proposed model aims at maximizing project
value and simultaneously minimizes penalties related to deviations from production,
transportation, processing and metal targets. Due to the size of the problem, the
authors implement a SA algorithm that iteratively perturbs an initial solution at each
decision level, until a stopping criterion is met. However, despite the alternatives
available, the final solution is still static, and assumes that the setting of the mining
complex will stay the same along the LOM.

Considering operational mode alternatives such as the ones mentioned in
Montiel and Dimitrakopoulos (2015) allows having a better control over
geometallurgical variables that affect the mining complex, such as for example,
considering throughput as an active parameter that can be tuned according to the
material fed to the plant; or adapting the mines’ blasting pattern according to the
hardness of the rock being blasted. Dowd et al. (2016), discuss that describing
geological, operational and geometallurgical uncertainties and integrating them into
the optimization process is one of the main challenges in strategic mine planning
nowadays.

It has been seen that, as the complexity of mining projects increase in terms of
number of deposits, processing streams and number of elements, traditional
optimization methods and destination policies lack in their ability to consider the
multidimensional aspect of the mining optimization problem. Recent work on
destination policy has extended from cut-off grade optimization to integrate
multivariate distributions, which makes them more adept to complex mining

projects.
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Goodfellow (2014) models the mining complex under geological uncertainty as
a two-stage stochastic formulation, and adds the decision variable of investing in
capital expenditures (CAPEX). Their work extends from the model proposed by
Godoy and Dimitrakopoulos (2004) for production capacity selection and equipment
acquisition, and lets the optimizer define the truck and shovel fleet size and
purchase plan (i.e., the mine’s extraction capacity). In his model, different
operational details such as lead times, or the life of the equipment are also included.
Farmer (2016) also works on integrating into the model the optimization of mining
and processing capacities. Here, the author uses a case study to compare the
traditional deterministic plan, with the two-stage stochastic formulation one,
showing that the stochastic model with optimized capacities increases the project
value by 12% compared to the deterministic solution. Goodfellow (2014) also
extends the work proposed by Menabde et al. (2007) on destination policy, and
implements a k-means++ clustering mechanism to define the processing destination
of blocks considering multiple attributes. K-means clustering is a well-known, fairly
robust mechanism to group data which is easy to implement (Arthur and
Vassilvitskii, 2007; Gan et al., 2007). This clustering method allows the
development of a robust destination policy which accounts for multiple attributes
and material types, as well as for geological uncertainty. This way, as in Menabde et
al. (2007), blocks with “similar” attributes belong to the same cluster (or bin in
Menabde et al. (2007)) and are sent to the same destination. Together with this, the
author notes that this clustering mechanism can be implemented for predictive data
analysis, to define a trend and classify new data. This predictive mechanism is

particularly useful to make decisions over new information obtained during
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extraction, as each newly extracted block can be represented as a data point
according to its characteristics, and plotted on the clustering grid, defining its
destination based on its cluster classification. Goodfellow and Dimtrakopoulos
(2014) use this mechanism and develop a stochastic optimization model of a mining
complex which accounts for geological uncertainty, and considers a
multidimensional destination policy.

Though highly interesting, this method does not directly take into consideration
the blending constraints that some processing streams entail. For example, if
particularly tight metallurgical constraints are required by a process, such as a
specific silica-magnesium ratio, if a block has a high magnesium concentration, and
another block has a high silica concentration, then it would be preferable to redefine
clustering to group these two blocks to be processed together, even if their attributes
are not similar.

The goal of creating clusters of blocks is twofold: on the one hand, to reduce the
computational cost inherent in mining optimization caused mainly by the very large
number of blocks that need to be scheduled. On the other hand, to consider other
variables within the processing streams to realistically model the material being

processed.

Considering geometallurgical variables in strategic mine planning

A mining project’s performance depends on metal production, but also on the
management of critical geometallurgical variables. These variables involve any rock
property that has a positive or negative effect on the business’ ultimate value

(Coward et al., 2009; Dunham et al., 2011), such as energy consumptions at the
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different processes, deleterious elements involved, mineability of the deposit, etc.
Dunham et al. (2011) state that geometallurgy is a cross-discipline that combines
geology, metallurgy, and mine planning, to design a processing stream fit to the
actual characteristics of the resource. Most of these variables are omitted from
conventional mine planning methods, not to mention the variability and uncertainty
related to them. However, to obtain reliable forecasts of a strategic mine plan,
additional details on the rock properties, and specifically, on geometallurgical
variables of the extracted material need to be incorporated into the related
optimization process. The authors note that, in general, an evaluation of the
deposit’s geometallurgy must be included in the earliest stages of a mining project,
as rock quality and its characteristics affect not only the plant’s performance, but
also the equipment selection and even the mining method chosen.

Some work has been done in incorporating these variables into the mine design
and planning steps. Williams and Richardson (2004) propose a geometallurgical
mapping approach which is integrated into the 3D block model of a deposit and can
be used to calculate the metallurgical response of certain blocks to forecast their
recovery. However, the proposed model does not consider the effects of blending
and mixing of material when it is processed. With this 3D model, forecasted project
cash flows can be generated by incorporating these recoveries into the mine
planning optimization process, but as if each block was being processed by itself.
Here, an ore characterization procedure is used as a base for the geometallurgical
mapping approach, which corresponds to the quantification of the physical data on

orebody samples. However, the authors highlight the importance of correctly
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defining the sampling and testing methods, and the effect this has on the parameters’
range of variability, as well as quality of information.

An alternative approach is proposed by Coward et al. (2009) who classify as
“primary” the geometallurgical variables that reflect an intrinsic attribute of the
rock, such as mass, grain size, density, etc., and as “response” the ones that reflect
the rock’s response of an attribute to processes, such as throughput, recovery,
grindability, etc. In their model, primary variables are defined to be usually additive
or easily managed in a linear fashion; whereas response variables present complex
distributions which cannot be easily manipulated, for example, the non-linear quality
of metal recovery. The authors state that, because most of the rock properties are
non-linear, traditional estimation methods for orebody modelling, such as kriging,
are unable to represent them (or characterize their value without serious biases in the
results). With this respect, they propose conditional simulation to represent the
orebody, which has the advantage of presenting the rocks actual variability and
allows the integration of complex non-linear variables into the model. The proposed
framework aims at selecting the most important geometallurgical variables to
include in the model, given the commodities and deposit at hand, as well as the
processing technologies available. However, simulations are done at point support,
and the process of upscaling some of these variables into block support entails
biases that so far have not been addressed in the literature.

Coward et al. (2013) apply the previous framework to a mining operation,
aiming to optimize a mining operation by evaluating geometallurgical recovery
factors. Here, the authors note that the main sources of uncertainty must be

incorporated into the model and allowed to interact at the correct spatial and
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temporal scale, to obtain a reliable scenario-based project evaluation. Three sources
of uncertainty are specified, and modelling methods are proposed for each (i) spatial
uncertainty, meaning pertinent geological attributes of the mine deposit considered,
(i) operational uncertainty, considering the system’s flexibilities and process
configurations, and (iii) future uncertainty, corresponding to the project’s future
context, which cannot be predicted with any reliability. In the first case, conditional
simulation of the deposit is proposed, to quantify the geological uncertainty by
generating multiple representations of pertinent attributes of a deposit. To generate
models of operational uncertainty, the authors suggest generating regression analysis
mechanisms to simulate multiple recovery curves of a process, based on the
available raw data. Finally, future uncertainties are considered by using scenario
analysis over multiple forecasts of the different externalities affecting the project,
such as prices, costs, taxes, and exchange rates. The authors state that “the
importance of the scenarios lies in their use to test the robustness of a strategy, not in
their prediction accuracy.” However, the proposed model assumes a fixed ultimate
pit limit and does not provide any detail on how the production schedule is
generated, suggesting that the uncertainty is not incorporated into this crucial part of
the optimization process, but rather a robustness study is made over a given mine
design.

Macfarlane and Williams (2014) present an optimization model for a copper
mine implementing a geometallurgical solution. The case study presented contains
uneven presence of cobalt in the deposit, which hinders the blending constraints at
the processing destinations. This causes consistent shortfalls on plant feed rates,

which also compromise the stability of the mineral value chain in terms of its main
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performance parameters, such as the throughput rates, acid consumption, and
processing recoveries. Analyzing the behavior of these parameters and their effect
on the mine production planning shows that mining rate should be increased, and
stockpiles should be created to obtain steady processing rates and the required
blending targets. It is shown that the costs that must be incurred to increase mining
rates and material re-handling are considerably smaller than the increased revenues
produced by steady processing rates. However, the mathematical optimization
model used is not provided, nor is any detail over the exact changes done over the
system; together with this, the focus is placed on obtaining a steady processing rate,
and not on directly maximizing cash flows.

With respect to the accurate representation of geometallurgical variables, Van
den Boogaart et al. (2014) present a simulation method for representing discrete and
continuous geometallurgical parameters. The authors state that ‘“conditional
geostatistical simulation of geometallurgical parameters enables the construction of
a processing model for computing recovery, equipment usage, processing costs, and
other relevant parameters, and thus the monetary value for mining and processing a
block with certain parameters.” However, they note that traditional geostatistical
techniques cannot be directly applied for conditional simulation of some
geometallurgical parameters that have non-Euclidean statistical scales, such as grain
geometry or mineral composition, which are all non-additive, producing, in some
cases, infeasible values in the simulation. In addition, they state that, as the mineral
processing is nonlinear, higher order statistics are needed, and not just the mean and
variance of these variables. The authors propose a multi-point conditional simulation

framework with a training image to jointly simulate dependent variables, ensuring
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that the simulated points fall within the conditional distributions. They do this
through the addition of extra influence functions, to allow including additional
predictive variables available at the conditioning locations of the simulating pattern,
or at the simulation location itself. In their approach, the authors simulate categorical
variables by estimating the conditional probability distribution functions of the
training image via multinomial logistic regression. The proposed model allows the
use of different scales and data layers (not necessarily categorical) in conditioning
locations, through iteratively simulating at different scales, from coarsest to finest.
Though a very interesting approach, the proposed model is computationally very
expensive to compute, and the authors do not tackle the problems that arise from the
change of support of these variables from point to block scales, but propose it as
future research.

Geometallurgical variables are crucial in defining the performance of a mining
complex. However, both modelling and integrating them into the optimization
model are challenging tasks. Some simplifications can be made to obtain block-
based values of some geometallurgical variables such as hardness (Coward et al.,
2013), and proxy relations can be used to calculate recovery and throughput from
these variables (Flores, 2005). With these representations, new methodologies and
model extensions must be developed to correctly integrate these variables into the

optimization process of a mineral value chain.

1.2.1.5 Solving simultaneous optimization with metaheuristics
With all its extensions, the formulation of the stochastic simultancous

optimization of a mining complex produces models that contain thousands of
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millions of binary variables, with millions of constraints (Goodfellow, 2014;
Lamghari and Dimitrakopoulos, 2015). Furthermore, as more realistic problems are
modelled, non-linearities are very hard to avoid without recurring into
oversimplifications of the model (Pimentel et al., 2010). Because of this, and due to
the complexity of the problem, different metaheuristic methods have been developed
to solve the stochastic simultaneous optimization of a mining complex. These
algorithmic optimizers produce good quality solutions for non-linear large-scale
case studies, in a reasonable amount of time, whereas conventional exact methods
are unable to solve them, and they have successfully been used in the past for mine
design and production scheduling such as the work described in Lamghari and
Dimitrakopoulos (2012, 2016b, a), Lamghari et al. (2013), Goodfellow and
Dimitrakopoulos (2017), Montiel and Dimitrakopoulos (2017), amongst others.
Even though metaheuristics may not necessarily provide mathematically “optimal”
solutions, they are able to solve non-linear formulations, allowing the model to
avoid falling into simplification.

Heuristic algorithms are greedy procedures used to solve a mathematical
programming model and generate a good solution (Pearl, 1984). The term
metaheuristic corresponds to heuristic methods which have incorporated different
iterative procedures of search mechanisms to escape from local optima and get
closer to the globally optimal solution (Osman and Kelly, 1996; Osman and Laporte,
1996). All these algorithms share a general stage configuration, where the algorithm
starts by (i) a global exploration, exploring and (possibly) accepting sub-optimal
solutions, and then gradually shift to (ii) a local improvement, where the current

solution is improved as much as possible within the current state. This solving
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mechanism has shown to produce very favorable results when exact methods are
unable to provide solutions in a reasonable amount of time.

Simulated annealing (SA) (Kirkpatrick et al., 1983; Geman and Geman, 1984) is
a widely used metaheuristic algorithm. Based on the Metropolis algorithm
(Metropolis et al., 1953), this method mimics the iterative heat treatment (annealing)
of metals performed to increase their ductility. Slow cooling will allow the
relocation of particles, increasing the ductility of the element, but taking a long time.
On the other hand, fast cooling will cause the material to solidify fast and turn to
glass, without time for any structure refinement. From a mathematical programming
point of view, SA algorithm starts from an initial solution and moves by searching
through its neighbourhood for better solutions. If none are found, inferior solutions
can also be accepted with a certain probability (Metropolis et al., 1953), which
depends on (i) a dynamic annealing temperature, which is updated by a cooling
factor, and (ii) on the size of deterioration in objective function’s value. At higher
temperatures, more unfavorable solutions are likely to be accepted, allowing the
algorithm to diversify the search and escape from local optima. As the search
evolves, the temperature is reduced by the predefined cooling factor, tightening the
search and restricting the algorithm from choosing unfavorable moves, what forces
the solution to converge. Low cooling factors allow for a broader search, usually
resulting in better solutions, but taking a long time; on the other hand, applying a
high cooling factor will cause the solution to converge fast, but this will likely be a
local optimum.

Godoy and Dimitrakopoulos (2004) were the first to use SA for the optimization

of the mine production schedule under geological uncertainty. In their paper, the
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authors use a set of geological simulations to account for the metal grade uncertainty
and generate independent optimal schedules for each simulation. Subsequently, a SA
mechanism is used to iteratively combine all these schedules into one stochastic
solution which minimizes the deviations from ore and waste production targets over
all simulations. This method is later implemented and extended by Leite and
Dimitrakopoulos (2007), and Albor and Dimitrakopoulos (2009), amongst others.
Details on their work can be found in section 1.2.1.2.

Montiel and Dimitrakopoulos (2015, 2017) implement a SA algorithm for the
optimization of mining complexes, and propose a solution approach that perturbs the
mine plan at different levels of the mining complex under geological uncertainty, in
order to generate a stochastic-based production schedule and processing policy.
Three different decision variables are implemented in this model, defining (i) the
extraction of a block, (ii) the operating mode at the different processing destinations,
and (ii1) the transportation system implemented. Perturbations of the SA mechanism
occur at these three levels, aiming at improving an objective function by modifying
the initial solution (which is generated by a traditional mining software). The
algorithm works by first performing the scheduling perturbations, which entail
favouring valuable blocks to be extracted earlier, and unprofitable ones to be
extracted later on the life of the mine (given that all different operational constraints
are satisfied); and second, executing operating mode and transportation system
perturbations, aiming at minimizing operating and transportation costs and
deviations. Perturbations at each different level are done iteratively, fixing solutions
at one level to perturb and optimize solutions at the next, until a stopping criterion is

met.
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Goodfellow (2014) implements a particle swarm (PS) algorithm (Eberhart and
Kennedy, 1995) that works in combination with a SA mechanism to simultaneously
optimize the components of a mining complex with investment decisions over
capital expenditures under geological uncertainty. The author chooses to use PS, a
population-based metaheuristic that mimics the behavior of bird flocks or fish
schools, because of its properties to optimize both continuous and integer variables.
In the proposed formulation, the scheduling variables are considered integers (i.e.,
mining blocks) from the mine to the first destination (processing plant, stockpile,
leach pad, etc.). However, after mined and transported, mining blocks become
material, which is a continuous variable for the rest of the destinations down the
processing stream. The optimization is divided into two steps that are repeated
iteratively until a stopping criterion is met. The initial stage corresponds to
scheduling or extraction decisions and destination policy, which are optimized with
SA. Later, after a certain number of SA iterations, the solution is frozen, and a PS
optimization process decides where the material should be sent next.

Goodfellow (2014) notes that, as in this case not only grade and material type
uncertainties are considered, but also investment decisions (which entail large
available capacity changes), the value chain’s capacity constraints are greatly
affected by the investment perturbations. Because of this, perturbations are more
likely to converge to local optima, conflicting with the traditional implementation of
the SA algorithm. To tackle this problem, the author combines a set of different big
and small perturbations along the optimization at different levels of the model,
affecting the destination policy, advancing or delaying capital expenditures, and

changing the actual schedule. These last perturbations are done at the scheduling
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level only, through small perturbations at block-support, and also through large
perturbations, applying bench-wise modifications, making sure constraints are not
violated in the process. This two-stage solution approach (SA with PS) enables
detailed modelling of large mining complexes, which include non-linear relations
that are typically ignored by conventional optimizers. Experimental results show
that the proposed formulation can develop a global optimization of mine production
schedule, destination policy and capital expenditure strategy, presenting a risk-based
design with an increased NPV compared to the deterministic model, which does not
consider risk. However, tuning the different parameters required for both the PS and

the SA algorithms is a challenge in itself.

Lamghari et al. (2013) also address the mine production scheduling problem of
an open pit mine, and propose two variants to develop an initial solution. This
solution is later improved by using a variable neighbourhood search (VNS)
algorithm (Mladenovi¢ and Hansen, 1997; Hansen and Mladenovi¢, 2001),
introducing the concept of stochasticity of the problem into the solution method.
Here, the authors formulate the problem as a two-stage stochastic programming
model, and propose to solve it with two different metaheuristic approaches,
differentiated in the way the initial solution is created. Both cases are based on
decomposition, where smaller sub-problems are sequentially solved and later
combined to create the initial solution. The first heuristic proposed solves each sub-
problem using exact methods (as sub-problems are of manageable size), while the
second one uses greedy heuristics. This initial solution is later improved by applying
a VND-based procedure. Results show that the first variation presents slightly better
results, whereas the second requires considerably less computational time. However,

both methods present favorable results when compared to the linear relaxation of the
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problem (solved using CPLEX (2011)), presenting a maximum gap of barely 2%
and 5% respectively. Lamghari et al. (2015) study the same mining scheduling
problem, and develop a two-phase hybrid method to solve the problem which uses a
series of linear programming models that are sequentially applied to develop an
initial solution. This initial solution is later improved by applying a VND heuristic
with three neighborhoods. The proposed formulation is able to solve a large-scale
NP-hard problem in a few minutes, presenting less than a 3.2% gap with respect to
the linear relaxation of the problem obtained using ILOG CPLEX (2011).

Several other metaheuristic methods have been developed over the years.
Aiming to increase the quality and efficiency of the searching mechanisms to find
good solutions for large, complex mathematical programming models, Ropke and
Pisinger (2004) and Pisinger and Ropke (2007) introduce an Adaptive Large
Neighbourhood Search (ALNS) algorithm, as an evolution from the traditional
Large Neighbourhood Search (LNS) algorithm (Shaw, 1997). In their papers, the
authors developed this metaheuristic to solve different variants of the vehicle routing
problem, where an initial solution is iteratively fixed and re-optimized, but where
several large neighbourhoods compete to be used in an adaptive way to search for
the best solution available. The way the variables are fixed and re-optimized and the
number of variables chosen to be re-optimized (the neighbourhood) is adapted along
the optimization, using several competing heuristic methods during the same search,
instead of just one as in the earlier LNS. Ropke and Pisinger (2004) argue that
alternating over several heuristics provides a more robust heuristic overall.

Lamghari and Dimitrakopoulos (2015) implement an ALNS algorithm to solve a

mathematical programming model of a mining complex’s mine plan under
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geological uncertainty, contemplating almost a thousand million binary variables
and millions of constraints. Here, the authors generate an initial feasible solution of
the mining complex considering scheduling and destination of blocks under grade
and material type uncertainty. ALNS is applied to improve this initial solution by
iteratively destroying and repairing it until a stopping criterion is met. In their paper,
the authors define fourteen destroying methods and seven repairing methods which
alternate as the optimization evolves. These methods are interchanged according to
their effectiveness to improve a solution, and their computational requirement,
focusing on both intensifying, as well as diversifying the search. In this case, the
authors use an acceptance criterion similar to Metropolis’ simulated annealing
(Metropolis et al., 1953), where a candidate solution that improves the value of the
optimization solution is always accepted, whereas a solution that decreases value is

accepted with some probability (in order to escape from local maximums).

1.2.1.6 Limitations of current formulations

Many advancements have been made in improving the modelling and solution
of a mining complex’s mine plan under uncertainty. However, all the
aforementioned works have limitations that can be tackled to generate more
informed optimization models for strategic mine planning. For example, even
though the previously mentioned works include investments and operational
alternatives as decision variables in the formulation (Goodfellow, 2014; Montiel,
2014; Farmer, 2016), all current models of stochastic simultaneous optimization of a
mining complex assume that the components and setting of the mining complex will

stay the same. The optimal solution for a strategic mine plan does not account for
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changes in the assumed production aspects, and thus, is assumed to be optimal over
the LOM.

Assuming the production needs and components of a mining complex will stay
the same over the full LOM, and thus, that its corresponding strategic plan will
continue being optimal, is a simplification, and one of the main limitations of
existing models. Consequently, conventionally, mine plans are re-generated every
year with the new information obtained and the updated objectives. This is a
“passive” solution that can inhibit options and alternatives that may improve the
strategic plan in terms of equipment, infrastructure, locations, etc. (Snowden et al.,
2002; Saleh et al.,, 2009; De Neufville and Scholtes, 2011; Del Castillo and
Dimitrakopoulos, 2014). This is most significant for capital expenditures and high
impact investments, as they require years of planning, and usually have a deep
impact on the mining complex’s plan and performance. As a result, substantial
improvements and benefits can be provided by quantifying possible options in a
strategic LOM plan, such as, for example, investing on processing plant expansions,
extra crushers, mining extraction fleet, etc. For example, building a state of the art
processing plant may cost over four billion dollars, and may take almost five years
to be completed (Mineria Chilena, 2015). Furthermore, considering the significant
cost of investments related to the mining industry, optimizing the timing of these
options within the strategic plan and evaluating their corresponding probabilities of
occurring should be considered in the stochastic simultaneous optimization of a
mining complex (including the considerable lead time to get the purchased

equipment or build the infrastructure, and its limited life-span).
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Traditionally, sensitivity analyses are the main and only studies done to evaluate
the viability of these investments (Torries, 1998; Whittle et al., 2007). Monkhouse
and Yeates (2005) note that these analyses provide some intuition on the operation’s
performance through specific changes in some key uncertain parameters. However,
they are limited in that these mechanisms do not inherently consider uncertainty, nor
do they generate any type of optimized flexible plan to manage it. In addition, and
due to it, implementing solely this analysis usually result in loss of opportunities,
delayed projects and change-of-plans that impede transitions and result in loss of
profit (De Neufville and Scholtes, 2011). Thus, a dynamic probability-based
decision tree mechanism can be developed to ensure the value chain is able to plan
and actively adapt to feasible, possible changes. As stated by Dowd et al. (2016),
one of the main challenges in strategic mine planning in today’s world is, amongst

others, to develop new ways to include and maximize flexibility in mine design.

1.2.2 Dynamic decision-making in strategic planning

1.2.2.1 Flexibility in value chains under uncertainty

Dixit and Pindyck (1994) state that uncertainty has a decisive effect over a
project, and although many times this uncertainty cannot be controlled, it is possible
to increase the flexibility of the project in order to be prepared to react timely to it,
and overall assess the probability of alternative outcomes. Lavington (1921) was one
of the first to relate random changes and uncertainty with the value of flexibility.
The term flexibility is a widely used concept; however, as noted by Sethi and Sethi
(1990), because of its popularity, over the years, it has been seen to mean different

things to different audiences, with over 50 definitions in the manufacturing literature
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alone. In their research, the authors identify twelve types of flexibility which are
grouped into (i) component or basic flexibilities, (ii) system flexibilities, and (iii)
aggregate flexibilities. Within the second group, interesting flexibility concepts
appear, which could be related to mineral value chains, such as process flexibility,
routing flexibility, volume flexibility and expansion flexibility. Mark (2005) defines
flexibility as “the ability of a system to maintain the competitive advantage despite
environmental change.” Hart (1940) notes that “the preservation of flexibility is a
fundamental means of meeting future uncertainty,” recognizing the value of
postponing a decision until more information is available. Kulatilaka and Marks
(1988) define production flexibility as the ability to change a process from one
operational mode to another, providing the production process with the ability to
modify itself in the face of uncertainty. As such, the authors note that flexibility in
general only has value in the presence of uncertainty (Kulatilaka, 1988). Moreover,
as stated by Merton (1997), there is a clear positive correlation between uncertainty
and the value of flexibility, meaning that the higher the uncertainty, the more
valuable it will be to have a flexible system. The strategic optimization of a LOM
operation is full of uncertainties and assumptions (Monkhouse and Yeates, 2005),
showing that including flexibility into a mining operation has the potential of being
highly valuable.

Gupta and Rosenhead (1968) state that “the flexibility of a decision must be
measured in terms of the number of end states which remain as open options [after a
first decision has been made].” Similarly, Mandelbaum and Buzacott (1986)
represent flexibility as the relative size of the set of possible decisions to take today,

conditioned by the decisions taken on a previous period. Thus, more remaining
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choices will correspond to higher flexibility. In general, Saleh et al. (2009) note that
flexibility can be seen as the potential to change, with the absence of irreversible or
rigid commitments. In their paper, the authors identify, amongst others, the
flexibility of designs or flexible systems, which go one step further from managerial
flexibility, and focus on enabling projects to respond to change with minor time and
cost changes. In their definition, a flexible system implies that the system has been
designed with some particular characteristics, which may not be necessary or
justifiable in the present conditions of the project, but that allows it to adapt if these
conditions change, making the design flexible. However, the authors note the lack of
literature in this area, specifically in topics such as how to embed flexibility in a
system, and on how to evaluate it. Cardin et al. (2013) describe different procedures
to generate and include flexibility in engineering systems, compared to traditional
benchmarking and sensitivity analyses, stressing the importance of evaluating
flexibility options from an early stage of the strategic planning.

In summary, even if a system is entirely flexible and its configuration can be
readily adapted, this freedom of action must be controlled and optimized to
maximize the project’s performance and value. In other words, a flexible system
(Saleh et al., 2009) must go hand in hand with an optimization model which is able
to integrate these flexibilities in order to provide an optimal plan of action, so that
the flexibility doesn’t translate into a loss of efficiency due to constant changes, or a

mechanism used to constantly put out operational fires (Olsson, 2006).
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1.2.2.2 Optimizing with flexibility

The concept of flexibility has not been ignored in the mining industry. In this
area, some optimization methods have been developed and adapted to account for
both managerial and system flexibilities in a mining project. However, the literature
has mostly focused on the evaluation of projects and the value added by flexibility,
and not on the optimization of the project’s plan itself, or on how to adapt it to
facilitate flexibility.

One of the first examples in literature is presented by Singh and Skibniewski
(1991), who base on a flexible manufacturing system and present a flexible strip
mining operation, aiming at easing the decision making process and its ability to
adapt to changes, especially when automation is considered. Recently, Mak and
Clarkson (2017) differentiate between adaptability and flexibility, stating that the
former must be designed within the system for the uncertainties in the immediate
future, whilst the latter focuses mostly on strategy and future developments of the
system. Different methods have been developed over the years to identify, include,
and evaluate both adaptability and flexibility in value chains under uncertainties.
However, to produce feasible strategic plan solutions, a set of complex design
constraints must be accounted for, which are imposed over time, and will limit the
number of flexibility alternatives available for each specific mining complex. These
constraints may consist in space constraints, limited capital, fixed infrastructure, or
specific blending constraints, amongst others. Additionally, for a realistic and
unbiased valuation of flexibility, the corresponding mine production schedules
generated must be clear and operational, which is the main limitation of the work

found in the literature so far.
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The following sections will review work done on real options analysis, followed

by multistage stochastic programming formulations.

Real option valuation

Real option (RO) valuation has shown to provide successful alternative results
to account for the value of flexibility, and the effects of uncertainty. This method,
developed as an extension of financial options into investment projects,
complements the NPV and addresses many of the limitations of traditional
discounted cash-flow analysis (Trigeorgis, 1996; Lee and Strang, 2003; Samis et al.,
2006, 2011; Savolainen et al., 2017). Just as in most mathematical programs under
uncertainty, in a standard RO model, the source of uncertainty is formulated as a
stochastic process, enabling the examination of the behavior of the variable, and its
effect over a project’s performance (Shibata, 2008). With this, the model is capable
of quantifying the value of flexibility as a response to the uncertainty (Mun, 2002;
Kalligeros, 2006). Dixit and Pindyck (1994) define a RO as the right, but not the
obligation, to make an investment in real assets by or at the end of a given period.
One of the most interesting concepts that RO points out, is the understanding that
flexibility has a value, but also an associated cost, which can be represented as a
monetary premium, an opportunity cost, or simply by the time and efforts invested
in the preparation and planning required to maintain options available throughout
the years of an operation (Amram and Kulatilaka, 1999; De Neufville and Scholtes,
2011). In any case, it highlights the fact that an effort must be made to have access

to this flexibility in the future.
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This valuation method has been successfully implemented in various industries,
with many applications in mining. McCarthy and Monkhouse (2002) state that not
considering managerial flexibility in the evaluation process of a mine plan results in
underestimations of optimal LOM, which lead to processing plants with extra
capacity, higher initial investments, and a loss of capital in general. The authors also
clarify that this can be handled by using RO valuation approach. Samis et al. (2006)
use RO valuation based on forward contracts for copper to consider the
commodity’s market variability and obtain better information to select a project to
invest in. Sabour and Wood (2009) and Dimitrakopoulos and Sabour (2007)
consider commodity price and exchange rate uncertainty and compare the RO
valuation method with the traditional static NPV. Results over a case study show
over a 15% increase in project value when evaluating through RO. The authors note
that this increase in value shows that RO models incorporate the value of accounting
for active management, and its ability to react to change based on new information.
However, only the option to abandon the project early is considered, and the actual
extraction schedule is not optimized under the uncertainty. Cardin et al. (2008)
present a model to account for managerial flexibility at the conceptual stage of a
mining project, and call it “intelligent management [as a] response to changing
operating conditions and market prices.” Similarly, Sabour and Dimitrakopoulos
(2010) and Del Castillo and Dimitrakopoulos (2014) use RO valuation to
incorporate managerial flexibility subject to price variability the first case, and price
and geological uncertainty in the second, and calculate a stochastic ultimate pit limit,
showing that traditional methods consistently underestimate the size of the ultimate

pit. More recently, Haque et al. (2017) study the options of deferring investment,
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and permanently or temporarily closing an iron ore mine under price and exchange
rate uncertainty.

However, none of the previous studies actually optimize the extraction sequence
or the mining complex’s interactions. In other words, they all account for
uncertainty to calculate the project’s value distribution, but not to directly optimize
the mine plan, as the extraction sequence is assumed fixed. Together with this, as
stated by Saleh et al. (2009), traditional RO mostly focus on the valuation of
managerial flexibility, defined as the ability of management to adjust the course of a
project by acting in response to the resolution of uncertainty, but they seldom tackle
the problem of how to embed this flexibility in a project or engineering design
(Driouchi and Bennett, 2012). That is, they focus mainly on calculating the financial
value of flexibility, but not in including flexibility per-se.

An interesting alternative is presented by Kazakidis and Scoble (2003), who
present a first approach for a RO model to evaluate a flexible underground mine
project under risk of ground related problems, and develop a model to assess and
integrate flexibility alternatives to obtain a proactive mine plan. Mayer and
Kazakidis (2007) extend on the previous study and show that the higher the
volatility of the project, the higher the value of flexibility (Merton, 1997), as the
system will be able to quickly adapt to take advantage of big opportunities, but also
hedge from big drops. In their paper, the authors evaluate different scheduling
options for an underground mine under commodity price and operating cost
uncertainty. However, different extraction schedules are compared, but not directly

optimized, and no information is provided on the actual mathematical model used.
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Tackling the problem of embedding flexibility in a project, Wang and De
Neufville (2005) introduce the concept of options “on” and “in” engineering
projects. The first being managerial flexibility options taken under uncertainties that
are global across the industry (such as exchange rates or commodity price), and the
second, options that are inherent to the engineering system and its design (such as
changing transportation systems, or investing on a particular expansion). Options
“in” projects aim at directly inserting flexibility into the project, tackling the
limitation mentioned in Saleh et al. (2009). However, as mentioned by Bowman and
Moskowitz (2001), these options require custom tailored optimization models, and
thus, a fuller understanding of the system’s design, which is probably the reason
why studies of these options have been less present in the literature.

Cardin et al. (2007) propose a general screening tool to include flexibility
options at the engineering, operational, and management decision levels, especially
focusing on the first two, classifying them as options “in” project, which actually
modify the system. The authors propose using Design Structure Matrices which
represent technical aspects of the engineering system to identify potential sources of
flexibility “in” the project. A “Value-at-Risk-Gain” set of curves (Hassan et al.,
2005) is used to represent the value of the different options and help discriminate
between the most interesting ones. These curves correspond to the representation of
the cumulative probability distribution curves of the project’s NPVs obtained from
Monte Carlo simulations, for the different options of flexibility. Similarly, Lin et al.
(2009) develop a screening model to consider flexibility options in capital-intensive
systems. In their paper, a case study on an off-shore petroleum project with

uncertain reserves is presented, with options on new transportation connections,
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capacity expansions, and flexibility in operational modes once new information is
obtained. The effect of each alternative is also presented with value-at-risk-gain
curves.

Groeneveld and Topal (2011) focus on options “in” design (Wang and De
Neufville, 2005), and aim to develop a flexible open pit mine design able to adapt
under different sources of uncertainty, providing a better risk-return profile. An MIP
model is used to determine the optimal mine design under uncertainty, incorporating
flexibility into four stages of the system: mine, stockpiles, plant, and capacities.
Uncertainties considered are commodity price, capital and operating costs, and plant
utilization, which are simulated simultaneously to provide a state-of-the-world used
as input to the model. Additionally, cost for executing an option, and for switching
configurations are also included, which stabilize the use of alternatives. Groeneveld
et al. (2012) extend on the previous study and present a hybrid “operational” method
that limits the number of changes happening on the system on the initial periods, as
a way of producing a more “operationally feasible” mechanism. However, these
studies present several limitations. The case studies consider a deterministic deposit,
where blocks are aggregated into parcels to reduce the number of integer variables.
These parcels are defined as continuous variables which can be partially mined;
however, they must be fully extracted before accessing underlying parcels. This
block aggregation and partial extraction of parcels provides untraceable results that
may be limiting in the mid to short-term planning. Together with this, technical
details provided are limited, particularly in terms of the operation’s production
targets, the focus is placed solely on maximizing NPV, and the schedule is assumed

fixed. Additionally, by using state-of-the-world scenarios, stochastic parameters are

50



assumed to be known with certainty, what may provide overoptimistic evaluations
that translate into higher NPVs.

Ajak and Topal (2015) review RO applications in the mining industry and
propose a methodology to assess technical applications of RO in mine design and
operational decision making, however, the full mining complex is not considered.
The authors present a mine planning RO model with the option to switch extraction
between two areas of the mine. The proposed model focuses on a shorter-term
optimization, affecting the mining schedule directly, and allowing the mine plan to
defer waste and adapt its mining activities depending on commodity price scenarios.
Their results show an increase in NPV of around 10% from the traditional base case
without flexibility. However, price uncertainty is simplified to a binomial tree,
providing no information if the final real price is not one of the forecasted values.
Additionally, geological uncertainty is not considered, and the extraction sequence is
not exactly optimized, but rather independently fixed within each area, and “paused”
by the area-switching option.

More recently, Cardin et al. (2017) propose an approach to assess the value of
flexibility and determine the best design of an engineering system, and use a
heuristic triggering mechanisms to define when is the best timing to exercise
flexibility. In their paper, the authors note that, even though RO analysis has proven
to be a useful tool in evaluating flexibility, its practical use has been limited, mostly
as it does not provide any straightforward information on the optimal timing of
exercising an option, but rather the value of having this option available. To tackle
this problem, the authors propose a model based on decision rules and multistage

stochastic programming, which aims at providing a guide for dynamic decision
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making based on the available information as the different uncertainties resolve.
Though highly interesting, the study presented is quite general, and the size of the
energy system case study used is considerably smaller than the strategic
optimization of a mining complex under uncertainty. Together with this, as in most
multistage models, final solutions tend to be tailored to the set of scenarios used,
providing overoptimistic results, and little information when reality is not exactly
represented by the scenarios.

The formulation and optimization of flexibility through stochastic multistage
programming is a widely studied mechanism which will be more thoroughly

reviewed in the following section.

Multistage stochastic optimization to include flexibility

It has been shown that multiple sources of uncertainty govern a mining
complex. In practice, as a production schedule evolves, new information becomes
available which affects the decision-making process and promotes active
management to react accordingly. However, it is common to see optimization
models where the plan designed is tailored exactly for each scenario (Mayer and
Kazakidis, 2007; Groeneveld et al., 2012). Assuming that stochastic parameters are
known with certainty generates overoptimistic NPVs with potentially unrealistic
designs. In reality, there is no upfront information of the future states of the value
chain, and multiple scenarios can appear similar at an initial stage and differentiate
along the way. This fact is best described mathematically by stochastic multistage
programming models, which make use of non-anticipative constraints to ensure that

equal scenarios entail equal actions. In other words, these constraints are used to
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ensure that non-differentiated scenarios (i.e., scenarios that have no apparent
difference yet) entail equal decisions. Wang (2005) explains that in reality, the
decision maker usually cannot distinguish between any two scenarios passing
through the same node and proceeding to different terminal nodes because the state
can only be distinguished by information available at that time stage. In his thesis,
the author presents examples of multistage formulations on a satellite
communication system and on a river basin development under uncertain electricity
price. Similarly, Goel and Grossman (2006) note that, in a stochastic system,
decisions cannot be based on knowledge that will be revealed in the future, as this is
an unrealistic assumption. In their paper, the authors present a standard stochastic
program for a linear problem, where, at each time period, the uncertainty is partially
resolved based on the path taken. Here, the authors propose a stochastic multistage
model to solve a production line problem under endogenous (internal) and
exogenous (external) uncertainties, where uncertainty is resolved at each stage
depending on a binary decision variable (equal to 1 if uncertainty is resolved and 0 if
not), noting that some decision variables are taken at the beginning of each period,
before uncertainty is uncovered, and others are implemented at the end of the time
period, after the resolution of uncertainty.

Birge and Louveaux (1997) mention a set of elements which justify considering
a multistage model, such as the long-term evolution of equipment costs, the long-
term evolution of production, the development of new technologies, or the
obsolescence of currently available equipment. All these elements are present in
mining, where both equipment and mineral processing technologies are constantly

being renewed.
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However, even though these methods respect the chronological acquisition of
new information, they are also limited, mostly because, as opposed to the two-stage
stochastic optimization, multistage stochastic optimization models assume that the
limited set of stochastic simulations used for the optimization represents all possible
scenarios, rather than just a set of possible values obtained from a probability
distribution. Thus, because of the way scenarios are used within the optimization,
the obtained solution is tailored for this set of scenarios, and if the unveiled
uncertainty takes a value that is not accounted for in the set used in the optimization
(which is highly likely to happen in reality), then the solution provides no
information about what to do. Nevertheless, this modelling mechanism provides
interesting characteristics which can be useful to incorporate flexibility alternatives
in a value chain, mostly related to the mechanism of gradually obtaining new
information through non-anticipative constraints.

Wang and de Neufville (2005) use non-anticipative constraints in their flexible
option model to ensure that if two scenarios share the same node in the tree structure
used for optimizing, then the decision taken in both cases is the same (i.e., the
scenarios are indistinguishable). The multistage programming model proposed by
the authors aims at maximizing benefits and minimize costs of different design
parameters, subject to technical and economic constraints. The different options
available are modelled into these constraints through binary variables, and the
average value over all the scenarios is maximized. The paper presents a case study
on a river-run hydropower station, a complex system with capacity, environmental,
and budget constraints, as well as uncertainty in the price of electricity and seasonal

flows (i.e., demand).
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Boland et al. (2008) also present a multistage stochastic programming model to
solve the open pit mine production scheduling problem under geological
uncertainty. The formulation of their problem is an extension of the work done by
Goel and Grossman (2006), where they consider two cases, the first, accounting
only for processing decisions as scenario dependent (where new information is used
to influence processing decision), and the second, considering mining and
processing decisions as scenario dependent. Their formulation optimizes the mine
production schedule, and aims at maximizing the expected revenue obtained from
the metal produced, minus the processing and mining costs. The authors formally
define non-anticipativity constraints by introducing a set to identify distinct
scenarios, as two scenarios that have differentiated more than a given amount "« ",
thus, assigning them as “sufficiently different” for the optimizer to branch out and
assume two distinct cases. Though an interesting approach, three main limitations
can be seen in the authors’ approach, which are strictly related to the core aspects of
mine production scheduling. These are (i) the aggregation of blocks to reduce
computational cost, which can be partially mined, violating slope constraints, (ii) as
mentioned before, the branching mechanism of multistage programming produces
solution schedules which are over-fitted to the set of scenarios used, and thus, would
have a poor performance when tested over a different set of simulations, and would
be irrelevant to reality, as the reality encountered will surely not be represented
exactly by any of the simulations. Finally, (iii) multiple possible schedules are
provided as an output of the model, which is operationally impractical, as these
schedules may be differentiated by a single block. Together with this, despite the

aggregation of blocks, the formulation still becomes impracticable for real size
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operations with millions of blocks, as the multistage formulation is modelled in such
a way that, as scenarios differentiate, the design of the system divides into different
possible schedules. This occurs successively for each differentiation perceived as the
mining evolves, increasing exponentially the size of the problem along the LOM,
possibly finishing with as many schedules as number of blocks.

More recently, Apap and Grossmann (2017) present a multistage stochastic
program, which simultaneously deals with both endogenous and exogenous
uncertainties, and present ways to remove redundant non-anticipativity constraints,
significantly reducing the dimensionality of the formulation. The authors apply the
model to the capacity expansion of process networks, and to the development of
oilfields. Another measure to reduce the size of the problem is presented by Boland
et al. (2016), who present a decomposition approach that use scenario grouping to
solve large stochastic multistage problems. Here, the related decomposition is
performed on clusters of scenarios, and the algorithm searches for feasible,
hopefully, good solutions. Zou et al. (2016) also tackle the size and complexity of
multistage stochastic integer programs and propose a nested decomposition
mechanism. The authors note the difficulty of applying traditional decomposition
mechanisms to this type of problems, due to their non-convexity, but prove that
when the state variables are binary, their proposed nested decomposition algorithm
leads to significant improvement on solving large-scale multistage problems in real-
world applications.

In summary, though multiple mechanisms have been developed to account and
include flexibility into mining operations, the models developed for both real

options and multistage programming have strong limitations. These limitations are
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related to the specific demands of the stochastic simultaneous optimization of
mining complexes, and to the need of producing realistic schedule solutions that can
be readily applied in a mining operation. Otherwise, evaluating unrealistic designs

will produce biased, misleading NPVs and mine plans with no real use.

1.3  Goal and objectives

The goal of this thesis is to extend the stochastic simultaneous optimization of a
mineral value chain onto a dynamic simultaneous optimization model for multi-
element mining complexes, capable of reacting to the project’s changing
environment, while maintaining production targets under material type and element
concentration uncertainties. This includes considering active management
investment decision making and flexible operational tuning of the components of the
mineral value chain. By extending the stochastic two-stage optimization model of a
mining complex into an adapted multistage programming model, it is possible to
integrate some of the flexibility features of multistage optimization into the strategic
optimization plan of a mineral value chain, without falling into the mentioned
assumptions or limitations of multistage programming.

To achieve this goal, the following objectives are addressed:

(1) Review past work related to stochastic integer programming, multistage

programming and modelling of flexibility options, and outline their

limitations when adapting these concepts to optimize the mining complex

under uncertainty.

57



(2) Study the basic mechanisms required to formulate a stochastic integer
programming model to optimize the mine production considering capital
expenditures, developing ways to optimize the capacities of the value chain.

(3) Develop a destination policy mechanism that integrates complex
geometallurgical variables into the optimization model, to assist in
accounting for the overall value of the extracted material. This will involve
modelling a cooperative game theoretic clustering method initially applied
over a simplified model of a mining complex with geological uncertainty.

(4) Develop a flexible model for the global optimization of a mining complex
considering the method developed in (2), by extending the mathematical
formulations of the stochastic simultaneous optimization of a mining
complex into an adapted multistage programming model, able to
dynamically consider capital expenditures. Test the developed model on real
scale case studies and compare results with conventional industry methods.

(5) Incorporate the flexibility obtained from operational mode alternatives info
the dynamic formulation, enabling the optimization model to have a better
control over the tuning process at different levels of the mining complex,
from mine to port. Subsequently, test the developed methods over real-
world, large-scale mining complexes, documenting the results in comparison
to traditional optimization methods.

(6) Outline the contributions and limitations of the developed methods, and

provide possible future work directions.
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1.4  Thesis outline

This thesis is organized into the following chapters:

Chapter 1 presents an introduction to the topics treated in this thesis and
includes the literature review in all related subjects considered in this thesis,
including traditional and stochastic mine planning optimization frameworks,
stochastic simultaneous optimization of mining complexes, operations research
techniques to include uncertainty and flexibility, and work related to the dynamic
stochastic optimization of a mining complex. Goals and objectives of the work are
stated.

Chapter 2 describes a method to optimize extraction capacity and fleet
acquisition of a mining operation under geological uncertainty, for a given mining
schedule. The proposed model is compared to traditional methods, and its benefits
are shown through an application at a gold deposit.

Chapter 3 develops a multi-variate destination policy which implements a
coalition formation clustering mechanism to deal with complex geometallurgical
variables and blending constraints. The proposed method can account not only for
the material’s own characteristics but also for the value and metallurgical relation of
material treated together. The benefits of this model are demonstrated through an
application on a copper-gold mine with multiple destinations.

Chapter 4 introduces the dynamic optimization model for a mining complex
under supply uncertainty with capital expenditure alternatives. The dynamic model
includes capital expenditures to optimize the mining complex’s capacities, and at the

same time includes possible high-impact investment alternatives into the
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optimization, providing full mine plans that can be implemented once more
information is known. An application at a multi-mine mining complex demonstrates
the benefits of this model.

Chapter 5 expands on the method developed in Chapter 4 and includes operating
alternatives to the dynamic model which can act at different levels of a mining
complex. A case study over a copper-gold deposit shows the benefits of the
proposed extended model, related to keeping alternatives open and allowing for the
mining complex to dynamically react to changes. This is done by simultaneously
optimizing different operating modes at the extraction and processing levels, as well
as optimizing the truck fleet and possible secondary crusher for the mill.

Chapter 6 outlines the contributions and conclusions and recommends future

research avenues.
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CHAPTER 2
Optimal Mining Rates Revisited: Managing Mining Equipment
and Geological Risk at a Given Mine Setup

This chapter studies the optimization of mining extraction capacities through the
addition of capital expenditure investments into the mine planning formulation.
These capital investments are included considering various realistic parameters,

providing an optimized acquisition plan.

2.1 Overview

Production scheduling of open pit mines is a major aspect regarding planning
and production streamlining, asset valuation and operations. Production scheduling
is a process leading to the determination of a sequence of extraction which involves
the removal of at least two types of material: ore and waste. If the production
schedule maximizes the project’s overall profit, subject to technical, economic and
environmental constraints, then it is said to be optimal. Two major technical
constraints involved in the determination of such schedule are: (i) the feasible
combinations of ore and waste production (stripping ratio), and (ii) the ore
extraction rate that meets the mill feed requirements.

Optimization methods have long been used to improve mine design and life-of-
mine production schedules (Kim, 1979; Barbaro and Ramani, 1986; Dagdelen and

Johnson, 1986; Whittle and Rozman, 1991; Tolwinski, 1998; Whittle, 1999; Godoy,
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2003; Stone et al., 2005; Jewbali, 2006; Menabde et al., 2007; Meagher, 2010;
Godoy and Dimitrakopoulos, 2011). The common industry practice is to discretize
the pit space in a sequence of nested pits (Whittle, 1999), which is accomplished
through the repeated use of a parametric ultimate pit algorithm, by successively
changing the commodity price. For lower prices, smaller pits are produced
(Hustrulid et al., 2013) and will extend toward the area of the highest grade and/or
will have a very low stripping ratio. Since early cash flows are subject to less
discounting and thus contribute more to the Net Present Value (NPV), it is
advantageous to bring income forward and delay expenditure as long as possible.

In dealing with the points rose above on stripping ratios and ore production rates
that meet mill feed requirements, the optimization of mine production rates for ore
and waste over the life of an open pit mine can only be done within a so-called
physically “feasible” domain of solutions. This domain is based on early work
(Rzhenevisky, 1968; Tan and Ramani, 1992) revisited by Godoy (2003), and it
adopts concepts in the context of open pit scheduling based on nested pits and
geological uncertainty. The current mine scheduling framework establishes the
feasible domain based on two extreme cases of deferment of waste removal defined
by Whittle (1999): the ‘worst’ and ‘best’ shown in Figure 2-1.

According to Whittle (1999), the worst case corresponds to mining out each
successive bench in a mine before starting the next, without any sequencing
optimization. This schedule provides the maximum quantity of waste that can be
removed from the pit to recover a certain amount of ore (i.e., the highest stripping
ratio). This schedule does not perform well, given that waste is removed from early,

and thus discounted little, whereas the income from mining ore at the bottom of the
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pit is delayed for later periods, and thus heavily discounted. The best case
corresponds to the sequential mining of the nested pits, which is, mining each
successive bench of the smallest pit possible, followed by the bench of the next pit
and so on. This schedule removes the minimum necessary quantity of waste (lowest
stripping ratio) that must be removed to provide both the necessary working room
and the safety of operations. In economic terms, this schedule then provides the
highest NPV. Given the best and worst cases of mining, Figure 2-2(a) shows an
example of a feasible solution domain of a gold deposit from Godoy (2003) in the
form of a cumulative graph. The solution domain is bounded by the curves of
cumulative tonnages of ore and waste of the best and worst mining cases and
accounts for all the feasible combinations of stripping ratios for the given orebody
being considered and over its life-of-mine. This domain reflects the possible number

and spatial arrangement of simultaneous working zones.

\ Adsance of the
working zone
\ \ "

WASTE

WASTE

Figure 2-1 Schematic representation from (Whittle, 1999) of the (left) worst and
(right) best case mining schedule.

The feasible domain, as presented in Figure 2-2, is a function of two factors: (i)

the spatial distribution of ore and waste in the region contained by the ultimate pit
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limits, and (ii) a specific set of nested pits. The definition of these two factors is
subject to a chain of interconnected factors such as geological, economic,
technological and environmental. As Dagdelen and Johnson (1986) state, production
scheduling can be seen as a prescription of a mine sequence which maximizes
cumulative project NPV while satisfying four major constraints: (a) mill feed grade,
(b) slope constraints, (c) milling capacity, and (d) mining capacity. The definition of
(a) and (b) is all that is required for the derivation of the solution domain in the
cumulative graph of ore production and waste removal. However, the specification
of (c¢) and (d) account for the time aspect of the mining sequence formation and can
thus further restrict the solution domain. This last aspect can be represented by the
cumulative graph of the ore production concerning time, where both extreme mining
cases are presented as two separate ore production curves. These curves form the
feasible domain of the possible time distribution of the ore production for a given

processing capacity.
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Figure 2-2 From Godoy (2003), the feasible domain of waste removal (left) and ore
production (right)
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Figure 2-2(b) illustrates this domain, obtained by assuming a constant mining
capacity for the extreme cases presented in Figure 2-2(a). It is important to note that
the cumulative graphs in Figure 2-2 can account for geological uncertainty (Emery
et al., 2014; Boucher et al., 2014) and, in fact, can generate optimal mining rates for
a given case which can always be met. Including this uncertainty requires
calculating the feasible domain of solution for each stochastically generated scenario
of the orebody under consideration (Godoy, 2003). Then, the common intersection
of all individual feasible domains provides the ‘stable’ solution domain (SSD), or
domain, where the ore-waste combinations shown, are always available,
independent of geological risk. The case study presented in a subsequent section
shows this characteristic of the SSD.

The work presented herein aims at optimizing a mine’s extraction capacity
through the acquisition of mining equipment, constrained by the SSD’s feasible ore
and waste extraction combinations, in order to maximize NPV and meet production
targets. This study builds on the work by Godoy (2003) and Godoy and
Dimitrakopoulos (2004), which is limited in that the variables related to the
increased and decreased mining capacity are defined as linear. Because of this, the
optimization does not produce values of mining capacity that are necessarily
multiple of the equipment’s total capacity. Thus, the optimal solution may provide a
fractional number of equipment, which is ultimately an infeasible solution. While
small differences may be accepted, high levels of equipment under-utilization may
be practically unviable. Note that, while mining production rates are optimized, a
physical mining sequence that meets those rates is not produced, and so, it must be

subsequently generated based on them.
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The current paper starts by presenting a mixed integer programming (MIP)
formulation, which is specific for a mine with one mill, a long-term stockpile, a
waste dump, and a mine-owned fleet of mining equipment. Then, an application of
the formulation at a gold mine, and comparisons to conventional practices is

presented. Discussion and conclusions follow.

2.2 The optimization model

The determination of an optimal combination of ore and waste production
consists of selecting a curve, from all the possible curves that fall inside the SSD,
which maximizes the corresponding NPV. The optimization model delivers a life-
of-mine schedule of ore production and waste removal, as well as a prescription for
the formation of mining capacity and the acquisition of equipment, which
maximizes total discounted cash flow for a set of economic and technological
parameters. This production and acquisition plan is modelled to provide results
specifically for a given mine configuration, which includes three material
destinations, namely, mill, long-term stockpile (processing low-grade ore after
mining stops) and waste. Additionally, it is assumed that the mining fleet is owned
by the operation and bought sequentially, equipment is replaced due to its fixed
lifespan, while mining rates must remain stabilized for long periods of time (years).

The mathematical model includes an objective function and constraints as follow.
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2.2.1 Mathematical Formulation

Objective function

The objective function is presented in Eq.(2-1), consisting of 5 parts. The first
corresponds to the income obtained from high-grade ore, considering mining,
processing, operating, selling and marketing costs. The second section corresponds
to the cost of mining low-grade ore. In this case, low-grade ore is destined to a long-
term stockpile, which is treated as a temporary waste dump. Thus, there is no
income considered from mining it during the evaluated time span, but rather this
destination is treated as a buffer, used to possibly extend the life of the mine once
ore has been depleted in the pit. The third term corresponds to the cost of mining
waste. The fourth term considers the purchase costs, i.e., the cost of adding new
equipment of a given type and model in a certain year, to increase the production
capacity of the system. Finally, the fifth term corresponds to the ownership costs,
such as the cost of unused equipment of a certain type and model, given that the
production rate of that year is lower than the maximum available capacity. Eq.(2-1)
presents the objective function, where i=l,...,n denotes the time periods to be

considered in the production scheduling optimization.

1

max ZdL [(s -C")7, —(c;”’l_+(:,ff;"‘+c’,)(othq,.)_11 M, -

K v K v
. . ]
_Cl,i(al,i) IM i Cw,iW - Z Z Hk,v,iNEk,v,i N Z Z Uk,v,iDEk,v,iJ (2-1)

k=1 v=1 k=1 v=1

Equation (2-1) reflects the structure of the NPV of the mining project by

discounted cash flow analysis, before taxation and without the treatment of the
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relevant depreciation and depletion allowances. The depreciation and depletion
allowances represent constants in the MIP formulation so as not to affect the
optimization of the production schedule. The formulation represents an operating
mine where the low-grade ore is stockpiled and not processed. As a result, low-
grade ore does not provide revenue, and expression (2-1) takes this into account.
Table 2-1 presents the parameters obtained from the SSD. Table 2-2 shows the list
of indices and general parameters used in the model. Finally, Table 2-3 presents the

variables participating in the objective function and the subsequent constraints.

Table 2-1 Parameters obtained from the SSD

Constant | Definition

PM X, | maximum cumulative quantity of metal from high-grade ore (tons)

PMN , | minimum cumulative quantity of metal from high-grade ore (tons)

SMX, | maximum cumulative quantity of metal from low-grade ore (tons)

SMN, | minimum cumulative quantity of metal from low-grade ore (tons)

WMX, | maximum cumulative quantity of waste (tons)

WMN , | minimum cumulative quantity of waste (tons)

PMB, | cumulative quantity of metal from high-grade ore in best case (tons)

PM W . | cumulative quantity of metal from high-grade ore in worst case (tons)

ASR , . | stripping ratio between metal from high-grade ore and waste at year i

SMB, | cumulative quantity of metal from low-grade ore in best case (tons)

SMW, | cumulative quantity of metal from low-grade ore in worst case (tons)

ASR | stripping ratio of metal from low-grade ore at year i

total capacity of production equipment of k" type, v model (tons)

CEi (k=1 loading; k = 2 haulage; k& = 3 drilling)
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Table 2-2 Model’s general indices and parameters

Constant | Definition

n total number of time periods to be considered (i =1, ..., n)
l subscript to define low-grade ore

h subscript to define high-grade ore

m superscript to define mining parameters

ma superscript to define marketing parameters

proc superscript to define processing parameters

K number of types of mining equipment (k=1, ..., K)

14 number of models of mining equipment per type k

d, discount factor d, =1/(1+r)", where r is the interest rate
S, Selling price of metal

C”,C" | unit mining cost of high and low-grade ore respectively

c’ unit mining cost of waste removal
c unit processing cost of high-grade ore

cm marketing cost per unit of payable metal

R royalty as % of the net revenue

o, basic ore grade

o, low-grade ore grade

Y, total recovery of the payable metal in year i

C| time cost due to operating cost of processing support services ($/year)
c.w capacity limit in tons of £” type, v model of production equipment
H, . total purchase cost of k" type, v"" model of mine equipment in year i
U, .. total ownership cost of £” type, v model of mine equipment in year i
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Table 2-3 Variables

Variable | Definition
M, metal from high-grade ore to be removed in year i (tons)
M, metal from low-grade ore to be removed in year 7 (tons)
v waste quantity to be removed in year i (tons)
NE new production equipment added of " type, v"" model in year i
" | (Integer) (k=1 loading; k = 2 haulage; k = 3 drilling)
DE decreased production equipment of £” type, v model in year i (Integer)
“** | (k=1 for loading; k = 2 for haulage; k = 3 for drilling)
NC new capacity added in tons of " type, v model of production
“"" | equipment in year i (k= 1 loading; k = 2 haulage; k = 3 drilling)
DC capacity decrease in tons of " type, v"" model of production equipment
“"* | 'in year i (k=1 loading; k = 2 haulage; k = 3 drilling)
Constraints

The next section presents the constraints for the current formulation.

. Bounds of metal from high grade ore production:

>M,, < PMX, Vi (2.2)
j=1
M, = PMN, Vi
j=1

Bounds of metal from low grade ore production:
M, < SMX,, Vi (2.3)
j=1

S M,, = SMN_, Vi
j=1
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3. Bounds of waste production:

YW, < WMX,, Vi
(2.4)

YW, > WMN,, Vi
j=1

4. Relationship between waste and metal from high-grade ore production:

if PMB, > PMW , then ASR, > M, +> W < ASR, PMN +WMX , Vi
j=1 j=1

. , (2.5)
if PMB, <PMW_, then ASR, > M, -3 W < ASR, PMN -WMX , Vi
j=1 Jj=1

WMX, - WMN,

where the stripping ratio of high grade ore is: ASR , , =
pping gn g . PMX —PMN,

5. Relationship between waste and metal from low-grade ore production:

IA

ifSMB, > SMW, ,then ASR, Y M, +3 W < ASR,SMN +WMX , Vi
j=1

a (2.6)

if SMB, <SMW, ,then ASR, S M, -3 W <ASR,SMN, -WMX,, Vi
i i N i J N i i
j=1

Jj=1

A

WMX, - WMN,

where the stripping ratio of low grade ore is: ASR =
SMX,~SMN

6. Capacity limitation of equipment type k = 1:

kz

ZNCkz,i_ZDCkUg c.” k=1, Vz
e 2.7)
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7. Distribution of new added capacity among different types of equipment,

ensuring that, for example, if hauling capacity is increased, so is the loading:

i i
NC, - NC, = = 0, k=2,.,K; Vi
22 N2 2 N @8)

8. Distribution of capacity decrease among different types of equipment:

i

z i z
DC, - DC,, = 0, k=2,.,K; Vi
220 R 2 0 29

9. Capacity disposal given available equipment:

NC,., < NE, -CE_., Vk; Vz; Vi

DCMS DEm-CEh, Vk;, Vz; Vi (2.10)
10. Relationship between added capacity and capacity decrease:

ZNCkz,'_ZDCkZ,» > 0, Vk; Vz; Vi
AT R 2.11)

11. Stable tonnage of material extracted for material type k£ =1, linked by Eq. (2-8):

i z i z
M, (a,) +M, (¢,) +W -3 Y NC, +Y Y DC, =0; k=1Vi

j=1 z=1 j=1 z=1 (212)
12. Definition of variables
M, 20, MUZO, W. 20, Vi
NC, 20, DC, .20, NE .20, DE .20, Vk,v,i (2.13)
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Constraints (2-2) to (2-4) present the bounds on cumulative metal from
primary and low-grade ore and waste tonnage, which is limited by the feasible
domain defined previously. Constraints (2-5) and (2-6) present the relationship
between waste and metal extracted, which considers the different possible
geometries of the working zone, dependent on the best and worst cases defined.
These cases are the ones that bound the solution domain. Constraint (2-7) ensures
that production capacity is no greater than the capacity limit available for loading
equipment (type £=1). Constraints (2-8) and (2-9) ensure that the capacity available
for one type of equipment is also available for all other equipment types (hauling
and drilling), which relation is assumed constant over the whole LOM. Constraint
(2-10) links the integer decision variables of new and decreased equipment with
their corresponding capacities, which are continuous values. Constraint (2-11)
ensures that the cumulative added capacity is higher than the total decreased
capacity in each period, what prevents the production rate to get negative values.
Finally, constraint (2-12) allows the total extracted rock (primary and low-grade ore,
plus waste), to equal the available capacity used, which is provided by the added

equipment; and constraint (2-13) identifies the variables as integers or continuous.
2.2.2 Comments

The objective function presented in expression (2-1) shows that the main
variables of the model are the time related metal tonnage from high-grade ore, metal
from low-grade ore, and waste. While the variable corresponding to the waste
quantities allows for the definition of the waste-ore relation over time, the metal
variables allow for the optimization of metal quantities. The metal optimization
accounts for the ore quality at different parts of the orebody. The remaining

variables of the optimization model are the added capacity and capacity decrease of
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each type and model of mining equipment. The inclusion of these variables deals
with the stabilization of the mining rate over time periods as a function of the
capacity.

The economic parameters involved in the stabilization of the mining rate are the
unit purchase and ownership costs of each type and model of mine equipment. The
value of the equipment determines the total purchase cost, and, once bought, its
whole capacity can be used as newly added mining capacity of the system. The total
ownership cost is the penalty for the capacity decrease that reflects the economic
consequences of having the idle equipment. In this context, the stabilization of the
mining rate over time periods is determined as a search for the balance between the
purchase and ownership costs of the production capacity. This balance represents the
direct incorporation of the related capital investments in the production scheduling
optimization.

It is important to stress that the definition of proper limit values for the variables
related to production capacity is essential to guarantee that the mining rates
produced by the optimization formulation are physically mineable. The main reason
for that is a possible lack of working space to accommodate a large number of
mining-equipment and the corresponding accessibility constraints. If the mining
rates remain impractical after tightening the constraints related to maximum allowed
capacity, an alternative is to redefine the physical pushbacks. In this case,
production periods presenting deviations from the production targets can be flagged

in the detailed mining sequence and be investigated further.
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2.3  Case Study at a Gold Mine

2.3.1 Generating optimal mining production rates

The present case study aims to demonstrate the technical and practical
intricacies of the proposed model in Section 2.2 in a real operation. The case study
considers a gold mine with the setup (or mining system) that the previous
mathematical model represents, assuming a fixed ultimate pit limit. Thus, high-
grade material is processed in a mill, and low-grade material is taken to a long-term
stockpile treated as a temporary waste dump, to be maybe processed by the end of
the mine’s life (thus no profit is obtained from it in the evaluated time span). The
deposit consists of an orebody of 170,000 blocks of 15x15x10 meters. The mill cut-
off is fixed to 1.2 gr/tonne, which defines the high-grade ore material; low-grade ore
corresponds to material with a grade higher than 0.9ppm and lower than 1.2
gr/tonne, and the rest is defined as waste. Accordingly, there is approximately
170Mt of ore (destined to the mill), with an average grade of 2.36 gr/tonne, and
1,000Mt of waste material.

The two types of equipment included in the mathematical formulation
correspond to haulage and loaders, which are owned by the mine. The “CAT 793C”
model is considered for the former, while the latter case considers two models, the
“PC8000” and “FEL 994”. Table 2-4 presents the costs and parameters used in this
mining operation. Table 2-5 shows the details of equipment’s capacity, purchase and
ownership costs, amongst others.

The solution obtained from the optimization model is referred to as the

“optimal” extraction rate. This solution maximizes the NPV within the SSD, and
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effectively integrates geological uncertainty into the optimization process by

considering the intersection area of the extreme mining cases of 20 geological

simulation models of the deposit. Figure 2-3 presents the mill feed demand targets

used for the optimization model. The cause of the mill demand’s variation between

years five and nine is due to the mill being fed by external sources, leaving the

presented annual capacity available for the processing of material from the current

mine.

Table 2-4 Operation’s costs and technical parameters
Parameter Value
Mining Cost (US$/t) 3.00
Processing Cost (US$/t) 8.77
Capital Cost (US$/t) 3.65
Discount Rate (%) 10
Mill Recovery (%) 90
Mill cut-off grade (ppm) 1.2
Breakeven cut-off grade (ppm) 0.9

Table 2-5 Equipment parameters
Type Loaders Haulage
Model PC8000 FEL 994 | CAT 793C
Purchase Cost (MUSS) 4.73 1.92 1.77
Ownership Cost (MUSS$/year) 0.68 0.27 0.25
Capacity (Mt/year) 25.0 9.60 3.14
Maximum Availability (units) 5 4 34

Figure 2-4 presents the mining capacity required to meet the presented mill

demand in the best and worst mining cases. Only high-grade ore is used to feed the
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mill to its target, and thus, the worst case needs to remove excessively large amounts
of material in the first periods (as mining is done bench-by-bench, to arrive at the in-
depth ore). This fact causes a high amount of waste mining in the initial stages of the
mine (over 90% of the total material extracted), and mostly pure ore during the last
years, which are heavily discounted. On the other hand, in the best case, the ore is
made available in the initial periods by mining pit shell by pit shell. During the last
years, with more heavily discounted cash flow, the total movement of rock is higher
(especially waste, with around 90% of the total extraction in the last period, as the

stripping ratio increases for the deepest ore).
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Figure 2-3 Mill’s annual available capacity.

Figure 2-5(a) presents the stable solution domain for the pit limit defined for this
deposit, created by the intersection of the areas of the cumulative quantities of ore
and waste from the “Best Case” and “Worst Case” of 20 orebody simulations, such
as the ones presented in Figure 2-4. In this case, the simulations were obtained by
direct block simulation (Godoy, 2003). The interior of this domain also presents the

solution obtained from the optimization model described in Section 2.2, referred to
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as “Optimized Case.” As mentioned earlier, the optimized mining rate is completely
inside of the SSD, what shows that the obtained result is a feasible extraction rate
program. Also, the “optimal” mining rate schedule is very close to the “Best Case,”
particularly before the first 75Mt of extracted ore. The later separation of the optimal
case from the best-case limit is likely caused because, as the depth of the deposit

increases, the stripping ratio rises, and more waste must be extracted to obtain one

ton of ore.
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Figure 2-4 Mining capacity required to meet mill demand in best and worst case.

Figure 2-5(b) shows the annual extraction rate defined by the optimizer. Here,
the operation starts with a capacity of 63Mt per year, with minor increases in
capacity by year 4 and 5, and a major mining rate expansion by year 8, finishing
with 100Mt by year 13, when extraction reaches the pit limit. The optimizer aims to
maximize profit by three mechanisms. (i) Delaying waste extraction as much as

possible while ensuring to maintain a smooth evolution of mining rates. (i1)
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Avoiding extreme changes in production rates in consecutive periods, and (iii)
ensuring that there is no mining capacity missing or left unused given the existing

equipment availability.
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Figure 2-5 (a) Stable solution domain with the proposed model’s mining rate
solution, and (b) annual production rate plan.

The equipment acquisition program presented in Figure 2-6 confirms this
smooth production rate evolution, where for each type of equipment (loaders and
haulage), and for each model of a particular type, the figure shows the equipment
required per year for the “Optimal” production rate. Here, it shows that in year 4
three haulage trucks are purchased, and six more trucks are added to the fleet in year
8, almost doubling the initial fleet. The PC8000 loader fleet is kept constant along
the life of mine and acquiring FEL 994 loaders achieves the capacity increase by
more than doubling the initial fleet by year 8, thus delaying capital expenses to

maximize the project’s NPV.
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Figure 2-6 Equipment type and model acquisition schedule per period

2.3.2 Using the optimal production rates for scheduling

To further explore the benefits of the proposed optimization model to generate
optimal mining rates, the two schedules produced by Milawa Balanced algorithm
(Whittle, 1999) available in Whittle Software are compared. One life-of-mine
production schedule is based on the mining rates defined by the optimizer presented
in Section 2.2, and the other uses a constant mining rate (the traditional approach
also practiced at the mine discussed here), equal to the average production of the
optimized solution which is 93Mt per year. All the remaining parameters used are
identical in both cases, as is the high-grade ore demand destined to the mill. Figure
2-7 presents the annual mining rate for each case.

It is interesting to note the amount of high-grade ore tonnage being extracted in
each schedule for the obtained mining rates, as it would be expected that the
“Traditional” operation manages to produce more ore due to its higher initial rates.

However, the next figures show that this is not the case. Figure 2-8 presents the mill
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feed demand target in the black dotted line. The actual mill utilization for each of the
two generated schedule is presented in this figure by the bars, showing the amount
high-grade ore material extracted in each period for the traditional and optimal case.
Both obtained schedules manage to meet mill feed demand in every year, suggesting
that the traditional schedule has an increased mining rate during the first years only

to mine waste, which increases the operation’s costs and doesn’t generate any profit.
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Figure 2-7 Total extraction for schedules based on the traditional and optimal
mining rates
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Figure 2-8 Mill’s annual available capacity and high-grade ore extracted per period
for the traditional and optimized case
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The “Traditional” case has a steady extraction rate along the whole project, but
from Figure 2-7 and Figure 2-8, it is possible to see that this causes the operation to
invest in the unnecessary capital during the initial years (to obtain this steady rate).
However, these investments are not necessary to meet mill demand and only results
in early waste mining and equipment acquisition. These purchases reduce the profit
of the initial years, which are less discounted and thus, have a strong effect on the
project’s NPV. In comparison, the “Optimal” production rates obtained by the
proposed formulation show that during the first half of the mine life there is a lower
capacity required, maximizing the profit by meeting mill demand, minimizing waste
mining and delaying capital expenses as much as possible.

The previous analysis proves that the optimization model proposed here looks to
maximize the NPV of the project by delaying unnecessary expenses and investments
and maximizing the metal production. Figure 2-9 shows this value increase, which
presents the cumulative discounted cash flow (DCF) for the “Optimized” as well as
for the “Traditional” cases, assuming that mill capacity, as well as the mining rates,
are perfectly met. By periods 7 and 8, the optimal case incurs on high expenses to
increase the equipment fleet and raise the mining rate of the operation. These costs
cause a slight decrease in the cumulative DCF, and, as more waste rock is removed
at this point, the cumulative cash flow curve flattens in comparison to the traditional
case. However, this also allows meeting ore demand, obtaining a 20.7% higher NPV
than the stable mining rate case, which decides to extract more waste at the initial
years, punishing the cash flow from the beginning of the operation.

The SSD presented in Figure 2-10 illustrates the differences between the

traditional and the optimized schedules obtained from Whittle. This figure shows
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that both extraction sequences are located inside the SSD, proving that they are both
feasible mining rates independent of the encountered geology of the deposit.
However, the “Traditional” case is consistently further apart from the “Best Case” in
comparison with the “Optimized” case, which demonstrates that the traditional
mining rates tend to extract higher amounts of waste earlier in the life of mine, only

to obtain a fixed, stable mining rate.
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Figure 2-9 Cumulative discounted cash flow for the traditional and optimized case

Even though the estimated model of the deposit was used to obtain the schedule,
the mining rates were obtained considering the stable solution domain created from
the intersection of the solution domains of 20 different geological simulations of the
deposit. This intersection generated the final feasible domain of ore and waste
combinations and not the solution domain formed by the estimated orebody model.
Figure 2-11 presents the effect of not considering the geological uncertainty to
define the stable solution domain and carrying the optimization process over the

solution domain defined by the estimated model. In this case, both sequences

&3



obtained for the traditional and optimized mining rates (referred to as “Trad —
Estimated” and “Opt — Estimated” respectively in Figure 2-10) present infeasible
combinations of ore and waste extractions (highlighted in yellow in the graph).
These infeasibilities show once again that not considering geological uncertainty in
the optimization process results in infeasible mine plans and the impossibility to

meet the expected mill demand.
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Figure 2-10 Cumulative extraction of ore and waste for the schedules obtained from
traditional and optimized mining rates

2.4  Conclusions

In conclusion, the research presented shows that the proposed MIP model not
only provides a feasible mining rate which considers equipment acquisition and
delaying of capital expenses but also that this mining rate schedule presents clear
benefits when used as a starting point for planning a mining schedule. Results were
obtained by using the Milawa Balanced algorithm from Whittle Software over a

gold mine case study to produce two schedules, with and without optimized mining
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rates, where the optimal mining rate case presented a 20% increase in NPV.
However, the goal of this optimization is to define an optimal mining rate, not an
actual mining schedule. The scheduling problem is considered as a separate,
complex problem, where the output of the model proposed in this study may be used
as an input to the design of an optimal long-term mining schedule. However, this
would require assuming a fixed ultimate pit limit apriori, which arguably limits the

development of an optimal mine production schedule.
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Figure 2-11 Comparison of traditional and optimized schedules obtained over the
solution domain (SD), and the feasible stable solution domain (SSD)

Accordingly, an important limitation of the current formulation is that the
process is based on the solution domain, which, even though can consider geological
uncertainty, it assumes that the ultimate pit limit is defined and fixed. This
assumption is not accurate, as after the scheduling is done, and subject to the
different uncertainties that govern a mining operation, it is highly possible that the

ultimate pit limit will change. Together with this, the different ownership and
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purchasing costs are assumed constant along the whole life of the equipment, which,
once again, is an important simplification in the model.

Further work may focus on extending the proposed formulation to the mining
scheduling optimization. Together with this, efforts could be made on increasing the
complexity of the mining system considered, i.e., include multiple mines and
deposits containing multiple elements, as well as considering the income obtained
from the stockpile or other processing streams. Additionally, it would be important
to consider different types of uncertainty, including commodity price, costs and

equipment variability.
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CHAPTER 3
A Multivariate Destination Policy for Geometallurgical Variables in
Mineral Value Chains using Coalition-formation Clustering

The previous chapter studied ways to optimize capacities by investing in capital
expenditures. Now, the focus is shifted to explore ways to improve processing
stream performance, by developing a destination policy that is able to deal with

complex geometallurgical variables within the mine planning optimization model.

3.1 Overview

In mining, orebodies define the design and the value of a project, based on the
attributes of the rock and the operational characteristics of the project, the
processing streams used along the life-of-mine (LOM), and the range of profit
produced by the project. The over-simplification that arises in the conventional
optimization of mining projects is the assumption that a block of materials (mining
block) has an intrinsic dollar value, and that a given cut-off grade will define what is
ore (to be processed for profit) or waste. However, there are various other
parameters that affect the dollar value of a block. For example, the presence of
deleterious elements (such as arsenic), hardness, spatial location (which will define
when the material can be extracted), and so on, will all have an effect over block

value. Because of this, these pertinent variables should be considered during
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planning to optimise to which processing stream a mining block will be directed to
and with this, to realistically evaluate the project’s performance and value.

This issue takes precedence in the increasingly complex deposits being presently
developed, where processing plants’ and refineries’ performance depends greatly on
how their different requirements are met (for example, blending constraints must be
met in order to maximize metallurgical recovery). These hard constraints force the
project to be optimized around them, making it necessary to consider from an early
stage not only grade uncertainty, but also all the wvariability of relevant
geometallurgical characteristics (rock hardness, material types, etc.) that affect the
configuration of the different processing streams (i.e., energy consumption,
metallurgical recovery, etc.). However, because of the high costs associated with
exploration, the limited information obtained from sample composites and the
inherent flaws in sampling and testing systems, obtaining reliable geometallurgical
information is difficult and requires cross-disciplinary efforts (Figueiredo and Piana,
2016). In addition to this, the geology of a deposit (grades, material types, rock
properties, other) is highly uncertain, being one of the main sources of technical risk
in a mining operation (Godoy and Dimitrakopoulos, 2004). Thus, many efforts have
been directed towards developing methods that account for this uncertainty and
manage the related rick in the design and evaluation of a project. Two aspects are
included in these efforts, stochastic or geostatistical simulation to quantify
geological uncertainty and stochastic optimization that uses the quantified
uncertainty to manage the related risk while optimizing mine design and planning.
Methods developed have been successfully implemented in various mining projects

(Goodfellow, 2014; Montiel, 2014).
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Geological uncertainty extends to uncertainty in the supply (materials) to
various processing streams, giving special importance to the process of re-
distributing the extracted rock between the available destinations, so that the
different constraints are met. This reordering and delivering process, referred to as
destination policy, is especially important in poly-metallic mines with multiple
processing streams, as there are increasingly complex constraints. Traditional mine
planning models define destination policies solely based on the material’s
concentration with respect to different cut-off grades and treat a block as waste if its
(assumed) value is negative. Although it is traditionally used given the methods
available to date, this assumption is misleading, as blocks have different attributes
and concentrations of elements (other than the grade of the main commodity), which
must be extracted, transported, blended, processed, and sold in order to yield a
financial gain. All these activities are also strongly affected by the geological
uncertainty present in the deposit, which will ultimately define the performance of
the mining system. Thus, the actual value of a mining block depends not only on the
period when it is extracted, but, in addition, (i) to the quality of the elements and
material types contained in it, as well as (ii) on the destination where the block is
processed, which entails the blending requirements, processing costs, recovery curve
of the metallurgical process, and so on. In other words, the actual “block value”
cannot be calculated individually. For example, if the available sulphur content in
the processed material is not enough to reach blending constraints in the plant, then
lower grade material with higher sulphur content could be sent to the processor from
areas of the deposit with higher sulphur content, even if this material is not

profitable on its own. Disregarding these non-linear relations would result in failing
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to meet blending constraints, reducing expected metallurgical recovery, and
ultimately decreasing project value.

This paper aims to tackle this problem by developing an optimal destination
policy mechanism for polymetallic deposits in order to increase project value and
the reliability of project evaluation. This destination policy is based on a
multidisciplinary implementation, combining mine planning with coalition
formation theory using the “Shapley Value” (which is a line of study of cooperative
game theory), and considers within the decision process the deposit’s
geometallurgical variables, its blending requirements, and the uncertainty related to
its geology. These considerations increase project value by improving the
performance of the available processes, meeting the project’s planned targets, as
well as taking maximum advantage of the limited resource.

The next section of this paper reviews the existing literature on mining
optimization, focusing on destination policy, as well as on the inclusion of
geometallurgical variables. The description of the proposed method follows, with a
brief introduction on game theory, and the concepts that will be used. The proposed
method is then tested over a real life copper gold deposit with six possible
destinations, showing that including complex variables of the processed material in
the optimisation not only allows the project to meet blending constrains, but also
increases final project value without even changing the extraction schedule.

Conclusions and future work follow.
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3.2 Literature Review

3.2.1 Mining Optimization and Destination Policy

Thus far, the decision of defining where each block is sent after extraction is
based mainly on two aspects: defining certain ranges of grades accepted at the
different destinations, commonly referred to as cut-off grades (Lane, 1988; Rendu,
2014), or the general revenues expected from sending a block to each of the possible
processing streams. However, these policies are based on a longstanding serious
oversimplification in mine planning, which is to assume that a block has an inherent
dollar value (Lerchs and Grossmann, 1965; Tolwinski and Underwood, 1996;
Ramazan, 2007; Meagher et al., 2009). This results in severe deviations from
expected project revenues and performance, as well as clear suboptimal results
(Wharton, 2004). By assigning a “dollar value,” the formulation assumes a priori
when a block will be extracted (i.e., the mining sequence), and what material is ore
and what is waste (thus, where it should be sent), before any optimization has been
done, bypassing the actual destination policy decision.

Some work has been done in designing dynamic policies, such as in Meagher et
al. (2009), where the destination decisions are updated on a yearly basis according to
new information that becomes available once a block is extracted. The possibility to
re-optimize is considered as valuable flexibility, which is added to the block’s value.
In this paper, geological uncertainties, market uncertainties, and the time value of
money in calculating the value of a block at its period of extraction are accounted
for. However, the formulation proposed grows exponentially if multiple elements,

deposits, and/or processing streams are considered, and the focus is still placed on
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assigning an individual dollar value to each block instead of on optimizing the
mining complex as a whole. Asad and Dimitrakopoulos (2013b) propose a heuristic
approach to select an annual cut-off grade under geological uncertainty, which
maximizes the net present value (NPV) of the mining operation and satisfies
production constraints. Continuing on this line, Meagher et al. (2014) develop a
dynamic cut-off grade policy to define block destination under geological
uncertainty. Here, the optimal cut-off grade is defined on a yearly basis in order to
optimize the pushback design and maximize project value. However, the model only
considers one element with one processing facility and the optimization is done
greedily by sequentially maximizing the NPV of each pushback, instead of
optimizing the whole deposit simultaneously. Thompson and Barr (2014) generate a
dynamic cut-off grade policy under stochastic prices and note the differences
between considering uncertainty in the cut-off results when compared to traditional
methods. However, the authors still assume an economic value of the block, and do
not consider the geological uncertainty of the deposit.

Few methods have been presented in the literature that dynamically account for
the destination policy in the optimization process and, at the same time, develop a
global mine plan. The multistage stochastic optimization method developed by
Boland et al. (2008) presents a destination policy mechanism that optimizes each
geological scenario independently once the scenarios have “differentiated enough”
along the LOM. Other studies have developed robust destination policies, such as
Montiel and Dimitrakopoulos (2015), who proposes a mathematical programming
model where destination policies are first stage variables (thus equal over all

scenarios). Here, the author considers the optimization of the whole mining complex

92



under geological uncertainty, with multiple material types and processing streams.
The method presented is able to develop a mining schedule that defines when each
block is mined and where it is sent, avoiding the need for pre-defined cut-off grades,
and maximizing project value while meeting production constraints. However, in
this case, the destination policy can only be optimized if the material type of a block
is the same over all the simulations. In other words, the model might produce
misclassification errors (i.e., where oxides are sent to processing streams that only
accept sulfides), resulting in infeasible solutions. Menabde et al. (2007) also define a
robust destination policy, but it is based on cut-off grade optimization. In their
study, the authors account for geological uncertainty and present a MIP formulation
where the destination policy is defined by classifying blocks into bins of “similar
grades”, where each bin is sent to the same destination. By doing so, they are able to
avoid misclassification problems, as seen in the previous case. However, their
formulation only accounts for a single mine, with one element and a single
processing stream, and does not consider the problems that arise with blending
requirements that entail more than one element.

As the complexity of mining projects increases (in terms of the number of
deposits, processing streams, and elements), traditional destination policies, such as
the ones presented in the previous paragraph, lack in their ability to consider the
multidimensional aspect of the mining optimization problem. Recent work on
destination policy has extended from cut-off grade optimization to integrate
multivariate distributions, making them more adept for complex mining projects.
Goodfellow and Dimtrakopoulos (2014) developed a stochastic optimization of a

mining complex, which accounts for geological uncertainty, and considers a
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multidimensional destination policy. To do this, the authors implement k-means++
clustering (Lloyd, 1982; Arthur and Vassilvitskii, 2007; Gan et al., 2007), a pre-
processing clustering mechanism where the number of groups is defined by the
modeller, and all blocks are classified according to their proximity (i.e., similarities
in material types, grades, etc. in a Cartesian grid). This way, the destination of a
block is defined based on the cluster it belongs to instead of its individual properties
for all simulations; this provides a robust destination policy defined under geological
uncertainty, and, at the same time, reduces the computational cost of the
optimization process.

An example of this clustering process is presented in Figure 3-1, where four
clusters of blocks are defined and created by calculating their proximity to each
other (considering all scenarios) with regards to their concentration of gold and

copper. Thereafter, the cluster’s destination decisions are taken accordingly.
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Figure 3-1 Creation of 4 clusters according to gold and copper concentration.
From Goodfellow and Dimtrakopoulos (2014)
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However, in Goodfellow and Dimtrakopoulos (2014), even though the
destination policy is decided over each cluster, the decision of where a given cluster
is sent does not directly take into consideration the relation of aggregates of material
being processed together, which must altogether meet the complex blending
constraints. For example, if particularly tight metallurgical constraints are required
by a process, such as a silica-magnesium ratio, if one block has a high magnesium
and copper concentration, but is low in silica, and another block has a high silica
concentration, but a low copper grade, then it might be preferable to “cluster” and
process the two blocks together (even if their attributes are not similar).

Thus far, geometallurcial research has been increasing, with a general agreement
from the industry of its importance in a project’s performance. However, most of
this information is lost through the planning process, or is not used to its full extent,
leaving a gap when it comes to actually using this information in the mine plan to
obtain a truly optimized operation that considers the whole flow of material. The
method proposed herein aims to integrate this information into the planning process
by creating clusters of blocks with two objectives. On one hand, the method aims to
reduce the computational cost inherent in mining optimization, which is mainly
caused by the large amount of blocks encountered in real-size mining projects; and
on the other hand, the method seeks to take into account not only metal grade and
recovery, but also the relation of a wider range of geometallurgical variables. The
latter variables help to obtain more reliable values of the aggregates of blocks in the
different processing streams. This happens because the final recovery and
metallurgical performance will depend on the total material being processed together

and not on the individual properties of each block. Once material arrives at the plant,
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there is no longer any perception of a “block”, but rather a blend of extracted

material.

3.2.2 Incorporating Geometallurgical Variables

Geometallurgical variables involve any rock property that has a positive or
negative effect on the business’ ultimate value (Coward et al., 2009; Dunham et al.,
2011). Some of the more critical (and known) properties are recovery, grindability,
throughput, power consumption, mineralogy, and content of deleterious materials.
As such, geometallurgy is a cross-disciplinary through its combination of geology,
metallurgy, and mine planning to design a processing stream that fits the actual
characteristics of the resource (Dunham et al., 2011). It is known that a mining
project’s overall value and performance depends not only on the ore grade and the
plant’s recovery, but also on variables, such as the mineral composition, energy
consumption, additives needed, penalties involved, mineability of the deposit, etc.
(Van den Boogaart et al., 2011). However, most of these variables are omitted from
traditional mine planning methods, not to mention the variability and uncertainty
related to them. Given this, in order to obtain a reliable mine plan and a better
representation of a project’s value, more detail on the rock properties of the
extracted material need to be considered in the optimization.

Some work has been done to incorporate these variables into the mine design
and planning steps, such as in Coward et al. (2009), where they are classified as
“primary” and “response” geometallurgical variables. Primary variables are defined
as additive or easily manipulated to be linear; response variables generally present

complex distributions that cannot be easily combined. The authors note that because
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most of the rock properties are non-linear, traditional estimation methods for
orebody modeling (such as kriging), are unable to reproduce them without serious
biases in the results. Conversely, conditional simulation methods have the advantage
of keeping the variable’s spatial variability, avoiding estimation mechanisms. This
allows for the integration of complex non-linear variables into the orebody model.
Coward et al. (2013) apply this framework to a mining operation and aim to
generate a value chain model by evaluating geometallurgical recovery factors.

Van den Boogaart et al. (2011) focus on optimising the mineral processing stage
by generating an “adaptive process” using a geomathematical model. This model is
developed from conditional expectations and regression models, which adapt the
mill’s grinding size to the material being processed (if the benefit obtained from
doing this exceeds the investment required for having a flexible process). However,
the authors note that care must be taken when planning for adaptive processing, as it
is a reoccurring mistake to develop models that assume perfect information from
limited samples. Here, they define a simplified model to calculate the value
generated by different types of ore, depending on their mass, grade, the liberation
per grinding size selected, and the corresponding milling energy required. However,
the authors neither consider the inherent uncertainty of these variables nor the
geometallurgical effect over the whole mining complex, focusing solely on the
processing stage, which has been proven to be suboptimal in terms of maximizing
project value.

Dunham et al. (2011) comment on the impact that geometallurgy can have over
the value and viability of a mining project, transforming the extraction schedule of

the deposit compared to traditional evaluations, which do not consider these
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variables. Accounting for these “non-grade properties” of the rock in the
optimization process, together with stockpiling and blending strategies can strongly
affect the processing strategies chosen for the operation, and thus the project value.
The authors note also that integrating geometallurgy into the mine plan provides a
spatial context, which is especially useful to, for example, study the distribution of
deleterious elements, which can drastically change the project’s design and improve
its performance.

With respect to the realistic representation of geometallurgical variables, Van
den Boogaart et al. (2014) present a simulation method for modelling discrete and
continuous geometallurgical parameters. The authors state that ‘“conditional
geostatistical simulation of geometallurgical parameters enables the construction of
a processing model for computing recovery, equipment usage, processing costs and
other relevant parameters and thus the monetary value for mining and processing a

2

block with certain parameters.” They also note that traditional geostatistical
techniques cannot be directly applied for conditional simulation of geometallurgical
parameters for two main reasons. Firstly, many variables have non-Euclidean
statistical scales (such as mineralogy), which produce, in some cases, infeasible
values in the simulation. Secondly, processing material entails nonlinear
transformations of the rock’s properties, and, as such, the conditional distribution of
the variables is relevant for the simulation not only their mean and variance, as is
done in traditional estimation methods or Gaussian simulations. Due to this, the
simulation needs to reproduce the joint conditional distribution of all of the relevant

geometallurgical variables being considered. Thus, they propose an adaptation to the

traditional conditional simulation procedure by using a joint multipoint conditional
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simulation framework. In their approach, the authors adapt the single normal
equation simulation (SNESIM) proposed by Strebelle (2002) to simulate categorical
variables by estimating the conditional probability distribution functions of a
training image via multinomial logistic regression (i.e., it is assumed that un-
sampled locations follow a multinomial distribution), and extend its application to
consider information provided by different scale layers (i.e., other type of variables,
not necessarily categorical) in conditioning locations.

Deutsch et al. (2016) adapt different geostatistical and numerical techniques to
generate high-resolution simulations of mixed, continuous, and categorical
geometallurgical variables, accounting for their non-linearity and for the correlation
existing between different jointly- simulated variables. In their study, the authors
focus on the grinding index and on the mill’s Bond Work index (BWi) to maximize
the throughput and metallurgical recovery of an operation. However, the problem
with simultaneously simulating geometallurgical variables sampled in different
scales (which is often the case with regionalized variables) is yet to be addressed,
eliminating the possibility of accounting for the existing correlation between these
variables.

It is known that geometallurgical variables directly affect the performance of the
downstream processes of a mining complex. Because of this effect, the approach
presented herein includes these variables directly into the destination policy
mechanism by implementing a multivariate selection method that defines which
blocks are processed together at a given place, given their combined multivariable
attributes. This is done by implementing coalition formation algorithms (which are

an extension of cooperative game theory), which are defined as grouping
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mechanisms that are able to account for multiple non-linear attributes. This way, the
proposed method considers not merely the main elements’ grade in a block, but
rather a set of properties of the rock, which have an effect on the downstream
processes, and groups them according to their processing preferences. This new
clustering algorithm will better maximize project value, and will achieve production
targets while taking into account the complex blending requirements.

A global overview of game theory and, in particular, the concept of coalition
formations is presented next, together with its relation to the destination policy of a

mining project.

3.3 Proposed Coalition-based Destination Policy Method

Game theory is the study of strategic interactions between decision makers
(Schelling, 1980). Formally, Myerson (1991) defines game theory as the study of
mathematical models of conflict and cooperation between rational decision makers,
or “players.” In order to maximize its utility, a player must make decisions while
strategically predicting what the other players will do, as his payoff depends on his
own actions, as well as on the other players’ actions. This way, game theory
provides the techniques for analyzing situations in which two or more agents make
decisions that will influence one another’s welfare (Aumann, 1976). In particular,
cooperative game theory focuses on studying games where players have the
opportunity to communicate with each other and form coalitions in order to increase
their utility (Osborne and Rubinstein, 1994). This increase of value is obtained given

the non-linearity of their utility function. For example, if two agents decide to team
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up, then their compound value must be higher than or equal to the sum of their
individual initial values. The individual contribution of each player to the coalition
is usually different and a “solution concept” for a coalitional game is a revenue
and/or information sharing mechanism (Brandenburger and Nalebuff, 2002; Von

Neumann and Morgenstern, 2007).

3.3.1 Coalition Formation and the Shapley Value

There are multiple ways to divide revenues, but the most recurrent form studied
is such that the value allocation is “fair” (Leyton-Brown and Shoham, 2008),
making sure that the coalition remains “stable.” “Stable” means that none of the
players wish to leave the group to form another group as their value is maximized in
their current state (Aumann and Dreze, 1974). To solve the problem of “fair value
allocation,” the most studied revenue sharing mechanism is based on the Shapley
Value (Shapley, 1953), which is the mathematical evaluation of a player’s gain in a
game. The Shapley Value is defined by using “characteristic functions”, which is the
mathematical representation of the value generated by a subset (or coalition) of
players in the game (Brandenburger, 2007; Von Neumann and Morgenstern, 2007).

By definition, this characteristic function must satisfy three axioms in an N-player

game. Given ¥ (S,), defined as the characteristic function of subset S; of the N
players (S, = N ):

® V(T)=0

e Given coalitions s and s,,Where s, = s_; §,,5, = N, then ¥ (S,) <V (S,)

e Given disjoint coalitions s, and 5, Where s,,s, < N; 7(S)+V(S,)<V (S, +S,)
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It can be noted that the third axiom highlights the non-linear nature of the
characteristic function (and thus, of the coalition formation process), enabling the
representation of complex relations between the players. It can also be noted that, if
a parameter in the definition of the characteristic function is negative (i.e. the cost
“c” of processing higher tonnage will be higher when processing more tonnage,
reducing the utility function), then this cost can be normalized and added as a
negative (i.e. “/ —¢”). Translating these three axioms into mathematical form yields
the Shapley Value formula, which is a unique payoff allocation that divides the full
profit of the grand coalition among the players (Osborne and Rubinstein, 1994) and
is calculated in function of their marginal contributions to all possible coalitions
(Roth, 1988; Gul, 1989; Brandenburger, 2007; Branzei et al., 2008). This allocation
system defines the revenue (or satisfaction degree) obtained by player i, i =1..~ in
a game of NV players, for all possible coalitions C, where ¢ < ~ . The mathematical

formulation is presented in Eq. (3.1).

5 (c|-Drn - |chr

SH , (N ,i) = B/LC’)fV(gl{i}) (3.1

Part 2

Ve ———

Equation (3.1) is referred to as “the Shapley Value of player i’ ”; here, the
value is calculated over all possible coalitions (v ¢ ), where ¥ (C) and ¥ (C - {i})
represent the characteristic function of a coalition with and without player {i},
respectively. This way, “Part 1” corresponds to the summation of all possible
permutations of coalitions that can be formed in an N-player game, and “Part 2”

corresponds to the marginal contribution of player i to each of this coalitions. Also

102



note that LSH, (N, )=V (N), i.e., all the value generated in a game is divided
among its players.

3.3.2 Defining Priority Groups and Pre-Processing Mechanisms

The main drawback of the Shapley Value is that it cannot be calculated in
polynomial time, as the calculation of all permutations of players in a game is
computationally very expensive and becomes unmanageable as the number of
players increase. Because of this, Liu et al. (2011) present a cooperative game theory
approach for multi-objective categorization where the Shappley Value is
approximated by “priority groups”, which are computed in O(n’) time, where n
corresponds to the number of players in the game. In their paper, the authors present
a simple example of three families who must decide where to go on vacation and the
value of the different families (players) is represented in a characteristic function. In
this case, the function depends on the number of families joining (as economies of
scale allow the cost of the trip to be lower for more players), on their holiday
destination preference, and on the relative preference of each family to go with each
other. Here, the satisfaction of each family is then measured by their Shapley Values
and the vacation groups are defined.

The basic idea behind these priority groups is that players that present favorable
coalitions will still remain together as the coalition gets bigger. This means that the
ultimate optimal priority groups can be obtained by recursively combining the latest
larger Shapley Values. The authors present the following example: suppose that
there are three players (A, B and C), and two available destinations (L and P). All

the options are stated and, as a first step, a pairwise combination of the players is
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done. However, only the combinations that actually create value are kept (as
coalitions are formed only if v (4)+V (B)<V (4B)). These combinations are
created recursively, level by level, eliminating unfavorable groups to reduce the
computational cost. Algorithm 3.1 presents the pseudo-code to find priority groups

presented in Liu et al. (2011).

Algorithm 3.1 Finding priority groups (From Liu et al. (2011))

Input:
N = {Py, ..., P,}, the set of players
T={Ty, ..., Tu}, the set of targets
F, the set of characteristic function
Output: Priority groups
Local variables:
1, a level number
g1(TS), g1 is a group in 1-level and TS the target set that g; belongs to
Sy, the set of pairwise combinations of members in (1 - 1) level
C,, the candidate in 1-level
€1, the 1-level threshold of priority
PG;, the set of priority groups
SHr-+(81,i» 81-1,k), a Shapley value for the group g;; in target t
w.r.t. the game (gi,i, F)

Steps:
Step 1. Initialization
el <1
e For the 1-level, players Pj(j = i, ..., n) form n groups separately.

g15( = 1,...,n): gu € Py, 812 € Pyyevvs8in ¢ Py
o C <« {8u(T), ..., 81a(T)}
Step 2. Generate candidate set C; level after level
Repeat
(1) 1«1 +1
(2) Form candidate items (gi-1,j, &i-1,<) from pairwise combinations of the
members in C;_; such that
SHe_¢(81,1 = (81-1,5> 81-1,k)> 81-1,5) > F(81-1,5)>
SHe_¢(81,1 = (81-1,i5 B1-1,k)» 81-1,k) > F(81-1,k), and
[SHrt(81,1 = (81-1,j5 81-1,k)> 81-1,5)] * [SHet(81,1 = (811,55, B1-1,4)s Bi1,K)] > &
The set of pairwise combinations is denoted by S..
(3) Ce « G - g15(T”)
(4) If there are g;;(T), g5(T’) in C; such that T 2 T’
then C, « (G - glj(T,)
Until (1 = n or C; = Cy4)
Step 3. Generate priority groups
Select priority groups GP; from C; such that Ug,ecgi = N
Step 4. Return PG;
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This procedure is diagramed in Figure 3-2, where two example priority groups

are created (PG1 and PG2).

BC{L} > B{L} + C{L}

ALLAPY AR} ARER) AP} > ALY PG1 =
={BC{L},A{P}}
gt L AR S

Figure 3-2 Priority group creation process. Adapted from Liu et al. (2011)

In the case of mining, the goal is to define the destinations of blocks being
mined on a given year. Therefore, parallel with Liu et al.’s (2011) paper, each family
may be represented by each block being extracted on the same period and each
holiday destination can be seen as a block’s possible processing destination, such as
a stockpile, waste dam, mill, leach pad, etc. This leads to a major problem given that
a block is considered as a player in the game and mining projects usually entail
millions of blocks coming from multiple mines, while the applications presented by
Liu et al. (2011) included only up to 60 families (i.e. players). In light of the number
of “players” in the mining case, to successfully calculate the Shapley Value of the
players in different coalitions, it is crucial to apply a short-cut mechanism (such as
the priority groups), that enables a faster and more feasible calculation time. If a
mine has one million blocks, which is typical of a medium-sized mine, then
calculating all the permutations of thousands of possibilities of coalitions (Eq. 3.1)
would make the algorithm impossible to apply in the mining industry.

To reduce the computational cost of the formulation even further, it is proposed

to pre-process the deposit by clustering similar blocks together. In this case this is
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done by using k-means++, where blocks being extracted in the same period which
belong to the same initial cluster can be treated as families of blocks and optimized

together, as presented in Figure 3-3.

Simulation #1 & 2 Simulation #1 & 2
A 4 Players at (t, s):
A Family “i”

Il .
A - Family i

£ m) AR )
& g Family j
= - - amily j

38 3
- Familyn
> >
Copper (%) Copper (%)

Figure 3-3 Definition of families to pre-process data as input to priority group
generation.

Clustering algorithms are usually based on grouping data according to their
density and “proximity” in a standardized grid. These algorithms can be classified as
centroid-based (such as k-means or affinity propagation clustering), hierarchical
(such as spectral clustering), or neighbourhood growers (such as DBSCAN and
Agglomerative clustering), where each one has its advantages depending on the type
and amount of data being analyzed. K-means++ clustering is implemented here as it
allows clustering of qualitative, as well as quantitative, data. Moreover, it is simple
to implement considering the large amount of data being represented, and, as shown
in Goodfellow and Dimitrakopoulos (2014), it has been successfully applied in the

mining optimization process to develop robust destination policies that account for
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multiple attributes and material types, as well as geological uncertainty. The basic

algorithm to perform k-means++ clustering is presented in Algorithm 3.2.

Algorithm 3.2 K-means++ clustering pseudo code

Input:
k, number of clusters,
D, multi-dimensional data set
Output: set of k clusters
Steps:
Step 1: Initialization
Arbitrarily choose an object of D as a centroid
Repeat:
(1) For each data point x € D, compute d(x) as the distance between x and
the nearest centroid.
(2) Using a weighted probability distribution, choose a data point x’ as a
new centroid, where data point x is chosen with probability D(x)2
Until k centroids have been chosen
Step 2: Clustering
Repeat:
(1) Assign each data point x to the cluster whose centroid’s mean has the
least squared Euclidean distance (i.e. it’s nearest mean).
(2) Calculate the new means of each cluster to be their updated centroids.
Until there is no change in data assignment;
Return set of data points per cluster

Another pre-processing mechanism that could be considered is to remove from
the destination policy optimization blocks, which are clearly waste (defined by low
concentrations of any or all of the valuable elements encountered), and can be sent
directly to the waste dump. However, there are two points that might hinder this
removal. Firstly, due to geological uncertainty, a block may appear as waste in some
simulations, but not in others, adding ambiguity to the robust definition of a block as
“waste”. Secondly, even though a block may appear to be waste, as different
geometallurgical characteristics are considered, the block can still contain other

valuable elements needed for meeting blending constraints.
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Together with the clustering mechanism, as a measure to reduce the complexity
of the initial formulation, in the following case study the mine production schedule
will be assumed fixed. In other words, it will be known which blocks are to be
extracted in each period. This way, the focus of the optimization process will be to
determine the different coalitions involved on a period, where a coalition represents
the blocks that are sent to each destination (as all blocks scheduled to be extracted in
one period must be sent somewhere). This will be done over multiple simulations of

the orebody model in order to account for the geological uncertainty of the deposit.

3.3.3 Definition of Characteristic Functions in the Mining Context

When applying the coalition formation process to a mining complex, the
different possible targets of the cooperative game will correspond to the possible
processing destinations of the mining system. In a mining system, the characteristic
function of a coalition can be considered as the “willingness” of a given destination
to pay for the set of blocks contained in the coalition. This means that each
destination may have a different characteristic function that is specified to meet the

individual processing constraints, and the players forming the coalition will define

2V

the value of the characteristic function " , such that Va: , where N is the

number of players and d the destination to which the characteristic function is
defined for.
In general, the characteristic function is a linear combination of a set of j

different parameters (j=1,..., J such as preference, cost, targets, etc.), for each

available destination ¢ € b (p,,). A destination depends on each block (b))
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and/or on the coalition (C) being analyzed, weighted by (w (5, ) according to their

level of importance in the overall value definition. These parameters (j=1,..., J ) can
be a function of the whole coalition C (such as processing costs and recovery), or
defined for each specific player b;’s characteristics (such as metal content). As

presented in Eq. (3.2).

| |
Vo (C=by,b..sb)=3 | w (b)p,,(b,.C), V,:2" > R (3.2)

beC |_je.]

Given this definition, a simple definition of the characteristic function could be
to calculate the discounted revenue of the cluster in a given destination as an
addition of the parameters that define mining revenue. The following equation

presents this formulation:
Vd[(C =b,,...b,)=[m(C)-r,(C)-(price, ~RC(C))-(MC ,(C)+ PC(C))] (3_3)

Where m(C) is the tonnage of cluster C, r(C) is the recovery, price; is the
commodity price at time ¢, RC corresponds to refinery costs, and MC(C) and PC(C)
correspond to the mining and processing costs respectively. However, the
transformation of all variables into dollar value through the previous equation causes
a loss of information and tractability of the geometallurgical variables that need to
be controlled. Given that costs, price, recovery, etc. are not constant, the use of the

previous characteristic function should be avoided.
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A possible alternative is to generate independent characteristic functions for
each set of comparable attributes of a block, obtaining a characteristic function
vector for each coalition, referred to as targets (T) in Algorithm 3.1. An example of
these independent factors is presented in Eq. (3.4). This independent formulation
will improve the tractability of variables of interest, having more flexibility to
manage their effect over the coalition formation process. Particularly the relational
attributes that are heavily affected by the global material processed together, such as
processing costs, blending constraints and recovery. It must be noted, however, that
having independent characteristic functions for each destination is equivalent to

having one global characteristic function where the weights (w (»,)in Eq. (3.2))

take different values according to different destinations, thus eliminating the effect
of some of the parameters.

le = processing cost, electricity consumption

= recovery, throughput

V,(C)= | T, = revenue

3.4 Case Study

3.4.1 Overview of the mining complex
The following case study corresponds to a copper-gold deposit, extracted as an

open pit with a mining capacity of 25Mtpa and six different processing streams. The
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deposit, together with gold and copper, contains arsenic and sulphur sulphide
concentrations, which must be measured for mill performance. Together with the
deleterious elements, the lithology of the deposit presents six different material
types, which correspond to high and low grade of oxides, sulphides and transition
material with different hardness. These material types affect where a given block
can be processed.

Fifteen different geological simulations where generated using direct block
simulation (DBSim) (Godoy, 2003) to assess the geological uncertainty of the
project. Geological uncertainty is present as different grades, as well as different
material types, with variable tonnages per block. Table 3.1 presents the main mining
and economical parameters, which are scaled by the mining cost for confidentiality

purposes.

Table 3.1 Mining and economic parameters of the copper/gold mine

Processing Costs Mining Parameters
Sulphide Mill $11.30 - x Mining Cost $1.00 - x
Sulphide Heap Leach $2.98 - x Mining Capacity 25 Mt
Sulphide Dump Leach $1.87 - x Economic Parameters
Transition Heap Leach $2.15-x Copper Price $2.9/1b
Oxide Heap Leach $2.06 - x Gold Price $1050/0z
Discount rate 10%

A diagram of the mining complex is also provided (Figure 3-4), showing the six
different destinations available and what they produce (in brackets), as well as the
different material types accepted in each case (shown by numbers 1 to 6 in Figure

3-4). The sulphide mill (SM) is the only processing stream that produces both
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copper and gold, and it has a stockpile available of 1Mt. The sulphide heap leach
(SHL) and dump leach (SDL) both produce copper; the transition heap leach (THL)

and the oxide heap leach (OHL) produce only gold.

Stockpile 4?:

> Sulphide Mill (Cu, Au)

L J

A 4

Sulphide Heap Leach (Cu)

Cu/Au Mine /

k.

Sulphide Dump Leach (Cu)

k.

Transition Heap Leach (Au)

v

Oxide Heap Leach (Au)

Figure 3-4 Diagram of processing streams available and the material types accepted

“HEEE
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Each of these processing streams have a variable recovery curve dependent on
the head grade fed to the destination. These curves are presented in Figure 3-5,
scaled by the maximum recovery of the SM in this case. Together with this, the two
main processing streams (being the SM and the SHL) present a set of processing
constraints and blending requirements.

For the Sulphide Mill:
¢ This destination accepts material types 1 and 2.
¢ Processing capacity of 3Mtpa, plus a stockpile of 1Mt capacity.

e Sulphur sulphide concentration must be between 6.5 and 8.2%.
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e Arsenic content must be below 0.2 to maximize recovery.

e Processing cost of material type 2 is 10% more expensive to process than

material type 1 due to rock hardness.
On the other hand, the Sulphide Heap Leach:
¢ This destination accepts material types 2 and 4.
e There is a processing capacity of 8Mtpa.

e Copper concentration must be over 0.2% at all times.
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& 20% i = = = Sulfide Heap Leach & 20% = = = Oxide Heap Leach
=}
3 ! Sulphide Mill < Sulphide Mill
0% l T T T T 1 O% T T T T T T 1
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Copper Head Grade (%Cu) Gold Head Grade (gpt)

Figure 3-5 Recovery curves of (a) copper and (b) gold per processing destinations

It must be recalled that these requirements must be met simultaneously, where
the value generated will proportionally correspond to the quality of material being
sent to be processes together in the different destinations. To track the different
requirements, a set of characteristic functions will be defined according to the
requirements of each main destination, which will help define the most valuable

coalitions to process together.
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3.4.2 Set of Characteristic Functions
Based on the previous mining complex and the different requirements to
maximize processing performance, the following characteristic functions have been
defined. In this case, these functions are divided between:
(1) Global functions applied to all destinations, which correspond to:
e Maximize revenue (function of recovery and metal content of material
processed together)
¢ Minimize deviation from production targets
(i1) Sulphide mill functions:
¢ Minimize deviation from sulphur sulphide concentration limits (6.5%-8.2%)

e Minimize deviations from arsenic maximum concentration (< 0.2%)

¢ Minimize processing costs (function of material types of rock processed)
(iii) Sulphide heap leach

e Minimize deviations from copper’s minimum concentration (> 0.2%)

3.4.3 Pre-Processing Priority Groups and Coalition Generation

Each of these characteristic functions is applied over all the pairwise
combinations of players. However, due to the computational intensity of performing
all of these combinations, two pre-processing steps are applied over the data to
reduce the computing time of the algorithm. Firstly, all scenarios of the whole
deposit are clustered together using k-means++ to group blocks into families,
making the material type the same for all blocks within a family. In this case, 300

clusters were generated for the 15 simulations of the deposit using Algorithm 3.2,
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meaning that there are at most 300 players per period, which is less tan the
approximately 2000 blocks being extracted per period, but considerably more than
the 60 families considered in the formulation presented in Liu et al. (2011). Then,
together with k-means++, material-type/destination connections between families
and infeasible processing destinations are cut , in order to avoid performing
calculations with blocks that are not allowed to be processed in a particular

destination due to their material type. This relationship is depicted in Figure 3-6.

/&Iﬂ

g S. Heap Leach

Copper

Equal Material Type

Figure 3-6 Rock/destination linkage pre-processing

In the initial application of the method, the deposit is assumed to have a fixed
schedule. Then, the extracted material of each period is optimized into coalitions to
be sent to the best available destination given the system constraints and the

maximization of revenue.

3.4.4 Numerical Results
To compare the algorithm proposed with current practices, a base case is
developed using the traditional method, where blocks are sent to a certain

destination given their particular attributes (copper and gold grades in this case).

115



Figure 3-7 presents (a) the mill tonnage feed per period, and (b) the SHL feed. The
orange line shows the expected tonnage feed given the estimated orebody model
(base case). The grey lines beneath show the risk analysis of this base case (BC),
representing the performance of the proposed schedule and destination policy for the

fifteen different geological scenarios.
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Figure 3-7 Sulphide mill feed (left) and sulphide heap leach (right), for the
deterministic case (orange) and the 15 geological scenarios (gray)

It can be seen that, in the case of the mill, there is a 20% shortfall in tonnage
along the LOM, showing that the base case is not really realistic when faced with
geological uncertainty. In the case of the SHL, the shortfall is less, but there is still
difficulty to meet production targets. The other destinations are not presented, as
their capacities were unlimited and no geometallurgical constraints where applied
over them.

The main constraints considered in this case study were:

1. the sulphur sulphide blending limits in the mill,

ii.  arsenic’s maximum concentration in the mill,

iii.  copper’s minimum grade in the SHL.
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The comparison between the base case and the proposed method for these three
constraints are presented next, where (a) presents the base case’s performance (left
side figure) and (b) presents the results obtained by optimizing the destination policy
with the proposed coalition formation algorithm (right side figure). Figure 3-8(a)
presents sulphur sulphide (SS) grade for the deterministic case in orange, where the
blending constraints are barely met until Year 8 when the fed SS grade passes the
maximum concentration. However, when geological uncertainty is considered (gray
lines), the SS exceeds the maximum limit in almost every year. On the other hand,
Figure 3-8(b) shows that the priority group coalition method proposed (PG Risk
Analysis) manages to considerably reduce SS grade up to the acceptable limits.
There are still major deviations in Period 5 and between Periods 7 and 9. However,
this is mostly due to the fact that the schedule is assumed fixed for this case study,
so the material extracted in that period has a considerably high SS grade. If the
algorithm was able to adapt to the schedule, then it would be possible to manage the
processed material in order to meet blending constraints by delaying low SS grade
material from the initial periods to reduce de feed grade of later periods. This is
proposed as future research. .

In the case of arsenic (As), the mill requires a concentration lower than 0.2% in
order to maximize metal recovery and obtain optimum processing performance. The
base case presented in Figure 3-9(a) shows that the material fed to the mill exceeds
the maximum concentration in almost every case, up until Period 7, and again at
Period 10. On the other hand, the proposed method improves considerably this
processing requirement and is able to keep arsenic concentration below the limit in

almost every case, except in Period 3 for some of the geological scenarios.
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Figure 3-8 Risk profiles for the SS grade fed to the SM in the base case (left), for the
deterministic case (orange) and 15 scenarios (gray) and the optimized destination

policy (right)
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Figure 3-9 Risk profiles for the As grade fed to the SM in the base case (left), for the
deterministic case (orange) and 15 scenarios (gray) and the optimized destination

policy (right)

Finally, Figure 3-10 shows that the copper (Cu) concentration of the material
fed to the SHL is above the required minimum in every scenario for both the base

case and the proposed method.

118



0.8 0.8

|
£0.7 To.7
w
£06 - 06 NN
5 ®oc -
© 0.5 - nLDO 5
< 0.4 204
9 QL
<03 50.3
[J] Q.
802 - L LS 20.2 2
Q O
U 0.1 T T T T T 0-1 T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
Period (years) Period (years)

Figure 3-10 Risk profile of Cu grade fed to the SHL in the base case (left), for the
deterministic case (orange) and 15 scenarios (gray) and the optimized destination
policy (right)

Considering a discount rate of 10% over the 10 year LOM, Figure 3-11 presents
the cumulative discounted cash flow for the deterministic base case (in red), which,
for confidentiality reasons, is presented as the 100% reference value; for the
different geological scenarios over the base case (in gray), which show a 4.8% lower
NPV than expected by the deterministic model, and the optimized priority group
coalition scenarios (in dotted black), increasing the NPV in an average of 5.6% over

the deterministic base case.

3.4.5 Discussion of Results

The case study presented shows a novel contribution to the mining optimization
process by developing a formulation that uses cooperative Game Theory techniques
to include non-linear relations between the wide ranges of variables that are

involved in the optimization of a poly-metallic mining complex.
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Figure 3-11 Cumulative discounted cash flow (CDF) of the BC (red), and the risk
analysis over the BC (gray) and the PG (dotted)

From the previous results, one can see that, by optimizing the distribution of the
material being extracted in a multi-variate non-linear manner, it is possible to
improve project value and ensure that the processing streams work at their planned
targets (i.e. blending constraints, metallurgical recovery, etc.). The distribution
mechanism was done by a coalition formation algorithm that considers not only the
attributes of each extracted block, but also the characteristics of the cumulative
material being processed together (i.e. the interrelation of the blocks’ attributes). By
doing this, it was shown that all blending constraint requirements are improved
without compromising the grade of valuable metals (as shown in Figure 3-8 through
Figure 3-11).

In addition, this case study shows that priority grouping can be successfully
implemented to reduce the computational cost of calculating the Shapley Value (as

in Liu et. al, 2011), making it applicable at the mining scale. It was also shown that
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coalition formation through the maximization of the Shapley Value is able to
generate value by considering multiple categorical and qualitative variables within
the grouping process. This finding can be widely applied over different areas, even
though computational advances are making it possible to work with increasingly
complex models, due to the high amount of data available and being produced, it is
crucial to have effective grouping and classifying systems that account for complex

non-linear relations of the data at hand.

3.5 Limitations and Future Research

The previous study shows promising results, however, a clear extension of this
work would be to consider the scheduling problem within the optimization process.
Future research will focus on this by extending the current formulation to consider
the selection of material that is extracted in every period and, at the same time,
ensuring that blending constraints are met while maximizing project value.

Together with this, the presented destination policy distributes the extracted
material as if all of the blocks extracted in a given period where processed together,
which is an oversimplification, as a period corresponds to a year and extracted
material is treated on the daily. Because of this, future research will seek to apply
this method in a shorter-term, making the “cumulative processed material” a more
realistic amount.

Another limitation of the presented study is that geological and geometallurgical
uncertainties are not directly integrated into the coalition formation, only in the

optimization process. To extend this approach, we propose as future research to
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implement a stochastic Shapley Value (Kargin, 2008) that would represent a set of
scenarios. As shown in Table 3.2, the individual contribution of each block in the
coalition is calculated over all scenarios (s = 1... S).

This will provide a distribution of the Shapley Value of a block belonging to a
coalition C, and the coalition formation process can aim at maximising the expected
Shapley Value (E(SH(C,b))) of a block over the set, and minimize its standard
deviation (i.e. the risk of not obtaining that satisfaction level). However, this would

greatly increases the complexity and computational cost of the formulation.

Table 3.2 Calculation of the Expected Shapley Value from a set of S scenarios.

C=by..b, sl s2 sS
bo Vas1(bo) Vas2(bo) Vass(bo)
byb; V(bob;) =V (by)
bob; ... by K({;(E'b'l' ?{(l)ak)
: 3
E(SHy(C,bo)) | SHus1(C.bo)  |SHuea(Cbo) | . | SHuss(C,bo)

Applying this stochastic coalition formation method to mining optimization
would provide a scenario-independent destination policy, which would facilitate the
operational applicability of the method (as geological scenarios do not aim at locally
forecasting reality, but rather at representing a set of possible scenarios and
particularly, the spatial variability present in the simulated variable). The actual

material encountered at the moment of extraction will probably deviate from its
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simulations, making it necessary to have a fast classification mechanism to define
material when it is extracted, and decide its destination based on this classification.
A crucial problem with this approach is that must be studied further is the
misclassification errors, as the simulated material type of a block can vary from one
scenario to another, making a block infeasible to process in a given location in one

scenario, but not in others.

3.6 Conclusions

This study presents a multi-objective destination policy for extracted material,
which is developed through grouping blocks according to their associative attributes
by using a coalition formation mechanism. This mechanism presents a novel
implementation of Game Theory techniques into the mine planning optimization
process to account for the value generated by groups of blocks being processed
together and, at the same time, consider complex geometallurgical constraints that
are often ignored. The presented procedure develops characteristic functions that
describe the value of coalitions of blocks being processed together, and defines the
optimal destinations by maximizing the Shapley Value (which defines the utility) of
each block or cluster of blocks (i.e. the players of this cooperative game).

A case study of a copper-gold deposit with six material types and six possible
destinations showed that the proposed PG method is able to account for the value
generated from extracted material with multiple categorical and continuous
attributes, and optimize its processing destination so that not only all processing and

blending constraints are met, but also project value is maximized. This promotes a
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more realistic representation of the project value. Results from the case study
showed that the proposed algorithm was able to reduce As concentrations and
improve SS ranges in the mill feed material without reducing Cu grades nor final
revenue, as the PG destination policy delivered a project with an NPV 5.6% higher
than the base case, which was (developed by traditional methods that violate
blending constraints. These results were obtained by redistributing the extracted

material, as the schedule was assumed constant for both BC and PG cases.
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CHAPTER 4
Dynamically Optimizing the Strategic Plan of a
Mining Complex under Supply Uncertainty

The previous chapters study ways to optimize capacities by investing in capital
expenditures (Chapter 2), and ways to deal with complex geometallurgical variables
(Chapter 3) withing the mine planning optimization model. However, both models
are limited, as they assume a fixed schedule. Here, the learnings from the previous
chapters are extended into a dynamic model that optimizes the mine production
schedule of a mineral value chain, and considers alternatives that allow the model to

adapt due to the uncertainty.

4.1 Overview

Mining complexes are mineral value chains consisting of a continuous flow of
material with several components: multiple mines, represented by orebody models
discretized into mining blocks, mineral processing streams, and transportation
systems to deliver products to customers. The performance of each component
strongly depends on the other; as a result, these components must be modeled jointly
and simultaneously optimized, accounting for profits from the final product(s) sold.
The value generated by the synergies that exists between the components of a

mining complex, and the need to simultaneously account for them within the
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strategic plan have been discussed in the technical literature (Hoerger et al., 1999;
Whittle, 2007, 2010b; Pimentel et al., 2010; Bodon et al., 2011), being referred to as
global or simultaneous optimization. However, these studies are limited, as they
require major simplifications, and do not consider the optimization of the mining
schedule, nor do they propose a single formulation for the simultaneous mining
complex optimization. Additionally, they ignore uncertainty, and provide static
plans that are unable to adapt to future information. Within these uncertainties, a
major source is the one related to the geological attributes of interest of the mineral
deposits, such as grades and material types, which characterize the supply of
material from the mines. This uncertainty must be accounted for in the optimization
process to generate reliable solutions that manage risk and maximize value
(Ravenscroft, 1992; Dowd, 1994, 1997).

Extensions of these optimization models referred to as two-stage stochastic
simultaneous optimization of mining complexes are single formulations that use a
set of geological scenarios of the mineral deposit mined to quantify the related
uncertainties. These models are able to simultaneously generate a life-of-mine
(LOM) extraction sequence and destination policy for the mines involved, managing
technical risk and maximizing net present value (NPV) (Goodfellow, 2014; Montiel,
2014; Montiel and Dimitrakopoulos, 2015, 2017, Goodfellow and Dimitrakopoulos,
2016, 2017). Montiel et al. (2016) present a heuristic method to solve the LOM
production scheduling optimization of a mining complex considering geological
uncertainty, including operating alternatives for the processing plants and
transportation systems. On the same line of research, Lamghari and Dimitrakopoulos

(2016b) propose a network-flow based heuristic algorithm to optimize the mine
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production schedule under metal uncertainty, also considering the complete mining
complex. Other studies have focused on other sources of uncertainty; Kizilkale and
Dimitrakopoulos (2014) optimize mining rates under market uncertainty in a mining
complex wusing dynamic programming mechanism, while Zhang and
Dimitrakopoulos (2017) account for market uncertainty and develop a
decomposition method to optimize both the mining schedule and the downstream
material flow plan. Zhang and Dimitrakopoulos (2018) consider both geological and
market uncertainty, and propose a model to optimize a mining complex’s long-term
contract design strategy.

Existing two-stage stochastic optimization models provide a strategic mine plan
that allows meaningful assessments and risk quantification, but these plans are
static, thus unable to adapt to new information that may be obtained in the future,
leading to undervalued strategic plans (Wang, 2005; Eckart et al., 2010). Multistage
stochastic programming models (Ahmed et al., 2003; Boland et al., 2008) aim at
including operational flexibility into the LOM plan by producing different possible
solutions to follow once uncertainty is unveiled. However, these methods generate
impractical results, tailored for each scenario, rendering their LOM plans and related
financial assessments meaningless. In practice, a unique strategic plan is required to
provide a reliable evaluation and facilitate decision making. In this study, a new
method is proposed aiming to increase the flexibility of a mining complex by
improving the strategic plan’s capacity to react and adapt to new information by
dynamically deciding on investing in strategic, feasible capital expenditure

(CAPEX) options. Flexibility is accounted for in the way of a set of feasible
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alternatives that can be taken, depending on the configuration and characteristics of
the mining complex at hand.

De Neufville et al. (2004) define “flexible designs” as able to pro-actively adapt
and reconfigure if needed (De Neufville and Scholtes, 2011). The concept of design
flexibility is well known (Siegel et al., 1987), where, by considering a dynamic
value chain that accounts for different alternatives, it is possible to assess the overall
probability of different outcomes that can lead to higher profits (Dixit and Pindyck,
1994). However, in mining operations, reliable financial assessment can only be
obtained if feasible plans are produced, following physical geotechnical restrictions
and operational requirements. Developing feasible, operational strategic mine plan is
one of the main challenges when considering flexibility in the stochastic
optimization of an industrial mining complex, since, as mentioned earlier, a single
LOM plan is required to follow and evaluate, such as the one provided by the static
two-stage stochastic integer programming (SIP) model. At the same time,
accounting for feasible flexibility options can prove to be very beneficial for a
strategic plan. It can be assumed that knowing in advance what the possible
developments of the mining operation may be allows management to take advantage
of opportunities and prepare better for possible changes. Thus, flexible alternatives
can be integrated into the existing plan and transitions optimized, maximizing
performance without compromising the operational requirements of the strategic
plan.

Different efforts at including flexibility in mining operations can be found in the
literature, considering uncertainties in commodity price, geology, or operating cost

(Singh and Skibniewski, 1991; Kazakidis and Scoble, 2003; Groeneveld and Topal,
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2011). Ajak and Topal (2015) focus on flexible decision making at an operational
level, considering price uncertainty to decide switching extraction zones.
Groeneveld et al. (2012) stress the concept of an “operational schedule”, focusing on
the development of a strategic plan which can be applied in practice to provide a
reliable financial assessment. The authors propose a method which adapts to
possible price fluctuations, however, their approach is limited by not considering
geological uncertainty, and assuming that all future information is known through
the scenarios analyzed. Del Castillo and Dimitrakopoulos (2014) study the effect of
commodity price and geological uncertainty in LOM plans, and show the
importance of including these uncertainties in strategic decision making. More
recently, Montiel and Dimitrakopoulos (2015, 2017) present a stochastic
simultaneous optimization of a mining complex model which allows the optimizer
to choose between different processing and transportation alternatives, managing
throughput versus recovery in the first case, and cost versus capacity in the second.
Goodfellow and Dimitrakopoulos (2016) include CAPEX investment decisions to
define extraction capacity, letting the optimizer choose when and how many trucks
and shovels to purchase. Farmer (2016) also optimizes a mining complex’s
extraction capacity as part of the optimization process. However, in all these studies,
the final solution is still a static design that provides no options, and is fixed for the
whole LOM after optimization. Dowd et al. (2016) state that studying ways to
integrate flexibility in the design is one of the main challenges in mine planning at
present.

In the present study, an operational dynamic simultaneous optimization is

developed for the strategic planning of a mining complex under supply uncertainty,
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where CAPEX alternatives are explicitly included in the formulation. These
decisions are taken dynamically along the LOM optimization process, as new
information is obtained from the supply’s uncertainty, and the strategic mine
planning schedule is adapted accordingly. Supply uncertainty is considered by using
a set of geological scenarios of the deposit, which represent its spatial variability of
grades and material types, and are used as input to the optimization. The proposed
method proactively optimizes CAPEX decisions’ timing by allowing uncertainty
scenarios to differ in these decisions, if doing so adds value to the strategic plan.
Thus, if on a given year a representative number of scenarios decide to invest on a
CAPEX option, then the optimization will allow the design to “branch” into two
parallel feasible plans, divided in annual stages. The model developed herein
extends the formulation proposed by Goodfellow and Dimitrakopoulos (2016) to
include dynamic decision making, and solved by a metaheuristic method. This
mechanism ultimately provides information about the probability of applying
different CAPEX alternatives and outlines the optimal period to consider them.

The next section describes the proposed method, mathematical model, and
solving procedure implemented. Then, an application to a copper mining complex is
presented, and compared to the traditional two-stage stochastic formulation.

Conclusions follow.
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4.2  Proposed Dynamic Stochastic Optimization of a Mining Complex

4.2.1 Methodology

The proposed method is explained next through the example presented in Figure
4-1. The mine planning schedule is optimized given a set of simulated realizations of
pertinent orebody attributes and a unique schedule is produced for years 1 and 2.
However, Figure 4-1 shows that in period 3 a major proportion of the simulation
scenarios decide to invest on a given CAPEX option. Consequently, the
optimization allows the solution process to branch into two feasible designs, one for
each subset of orebody simulations, and a unique strategic plan schedule is

developed for each of them.

Year 1 Year 2 Year 3
(30 simulations) {30 simulations) {sched.1; 18 simulations)

Extraction (Invest on
Schedule(s) CAPEX option)

(sched.2: 12 simulations)

:l (Don't invest on
CAPEX option)

Figure 4-1 Example of including investment alternatives in the optimization process

The previous example shows the importance of clearly defining when to branch
during a solution process. This is done by setting a threshold that defines the
representative proportion of scenarios which must differ in investment decisions for
a solution to be divided into feasible branches, and it is a pre-defined parameter set
by the operation's management. This threshold is used to filter irrelevant investment

decisions and only consider potentially significant ones, avoiding designing
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complete mine plans for scenarios that have a relatively low probability of
occurring. This parameter is defined in the following relation, where, given a

predefined threshold (R), the decision for branching the design is defined as:

Wi«
(do not invest, if M <R
S|
. . ZSES wk*,t,s *
{ branch solution, if T € [R,1—-R] , R < 0.5,Vk*, VvVt
ZSES Wixt,s
invest, if —————=>1-—R
& f s
Where o,., represents the binary decision variable that shows if branching

investment option k™ is taken at time ¢, on scenarios € 5 or not (o,., < {0,1} ). From

the previous relation, it is clear the importance of defining parameter R, where, for
example if R = 50%, then the design would branch only if exactly half of the
scenarios choose to invest in a branching alternative during a specific time window.
On the other hand, if R = 0%, the design will branch as soon as any scenario decides
to invest in a branching decision. In other words, the lower the value of this
threshold, the more willing the operation is to consider low probability futures.
However, choosing a value that is too low might result in over-fitted plans that
perform poorly when tested over new scenarios, falling into the multistage
optimization problems mentioned in the previous section. In the previous example
presented in Figure 4-1, it is assumed that for the design to branch, R must be
< 40% (as 12 out of 30 simulations, i.e. 40% of scenarios branch), so both options
(with and without investment) are considered "representative" and the solution

process branches (as 60% of scenarios opt on investing, and 40% do not, both €

132



[R,1 — R]). If instead R > 40%, the mine plan would not branch as shown in the
figure, and only the design with the investment on CAPEX at year 3 would be kept.
It is suggested that a threshold of between 30-35% be used, as these ranges are
representative enough to produce robust solutions that are stable under a different set
of scenarios, while still detecting possible investment alternatives that might be
profitable in the future.

In the proposed approach, it is defined that only a selected sub-set of CAPEX

alternatives can cause the mine plan to branch, thus, CAPEX decisions are divided

into branching and non-branching alternatives ( k ~and x -~ respectively). The first
correspond to major investment decisions that are usually taken only once, or once
every more than ten years (such as opening a new plant or buying an extra crusher).
These options have a significant impact on the mine plan and specifically, over the
mining schedule. The decisions of the second group have a relatively reduced
impact and/or are multiple small decisions (such as truck purchases). Allowing these
minor periodic decisions to branch, the design would make the methodology
impractical, as the scenario tree would grow exponentially, increasing the
complexity of the model, without important differences between each branch. For
example, decisions such as considering buying an extra truck in a fleet of 50 trucks
might not be representative or significant enough to generate a separate mine plan.
On the other hand, a considerable investment such as an additional crusher would
have a high impact on the processing capacity of the mining complex, and thus, on
the schedule. However, the final classification of which CAPEX decision falls in

each category will depend on the mining complex at hand.
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The solving process proposed can be divided into steps that are repeated
iteratively. Given that each production year is represented by ¢, where ¢ € {1, ..., T},

and T is the final production period.
Stage 1: Initialize

Optimize the whole mine plan as a two-stage SIP as in Goodfellow and
Dimitrakopoulos (2016), from ¢ = 1, ..., T, where block extraction sequence
variables correspond to first stage decisions, unique decisions over all
geological scenarios, and the processing stream variables to second stage
decisions, scenario-dependent decisions that work as correcting agents of first

stage decisions that are made under uncertainty. Set current year ¢; = 1.
Stage 2: Solve while t; < T, do

1. Freeze decisions from ¢t =1, ..., ¢; , and consider all future extraction
and processing decisions 2nd stage (¢ = t.+1,..., T ). Compare solutions in
terms of the investment decisions taken. If a representative number of
scenarios (R) perform the same investment in a given year t* € [t; +
1,...,T], the optimizer groups those scenarios and branches on that year into
two mine plan designs (with and without the investment) with their
corresponding subgroup of scenarios. If not, #* = 0.

2. Optimize each active branch from #+1 to 7 as a two-stage SIP (as in
Stage 1), fixing the initial year #+1 in both, and their corresponding
investment decisions.

3. Set ¢; equal to the maximum between ¢* and ¢; +1.
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This process is repeated until all periods of the LOM of the mining complex
have a unique design assigned to them. The mathematical programming formulation

is presented next, and the implementation algorithm is available in Appendix 4.A.

4.2.2 Stochastic Integer Programming Formulation

The proposed model uses the formulation developed in Goodfellow and
Dimitrakopoulos (2016), were the authors aim at simultaneously optimizing multi-
mine production schedules, destination policies and processing streams under
uncertainty, including capital expenditure options. Here, the orebody blocks of all
simulations are clustered using k-means++ algorithm, and the destination policy is
annually defined per cluster. The main difference in the presented model is that in
this case, CAPEX decisions are taken dynamically along the LOM, and the mine
plan is adapted accordingly. To do this, the formulation models major strategic
investment decisions within the operation as a scenario tree. For the purpose of
clarity, this tree is divided by period and events (invest/don’t invest), and each node
is identified by a root, and its event or leaf (as presented in Figure 4-2). The root
works as an identifier that contains information of the whole decision path of the
branch which led to the leaves and is summarized as p in Figure 4-2. The leaves
correspond to parallel designs with the same “ancestor” or root (for example, in
Figure 4-2 a branch corresponds to nodes {n;, n;2, n;2;}, where the root of node n;,
is p=1, and the root of node n;,; is p=12). Note that if two branching alternatives are
considered jointly in the optimization, then 4 leaves should be considered per branch

(instead of 2), one for each possible investment combinations per year. However, as
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most of the branching decisions are limited to be taken only “once in the LOM”, the
tree is simplified considerably.

Three main adaptations are made from the model presented in (Goodfellow and
Dimitrakopoulos, 2016). (i) CAPEX decisions have a scenario component (as shown
in the following formulation). (ii) As stated in the methodology, after the first
period, extraction decisions are also temporarily considered ond stage decisions, and
(ii1) additional dynamic constraints are included in the model (presented next) which
control the branching mechanism and act similar to non-anticipative variables
(Wang and De Neufville, 2005; Boland et al., 2008). Non-anticipative variables are
used to ensure that non-differentiable scenarios entail equal actions (i.e. decisions)
over them, and define a tree structure that branches out as scenarios differentiate
and, in response, different decisions are taken. The list of sets used is given next,
followed by the definition of the decision variables. Finally, the objective function

and some main constraints are presented.

N

n { 111=p1 - n =node of the tree

11
N412~p2 - p =root “address” of a node
ny - pl/p2  =leaves of a branch

N121=p"1

7)
N422xp7

Figure 4-2 Tree structure used to define the branching mechanism of the model
presented herein
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Table 4.1 Sets and Parameters

Primary attributes that are tracked in the supply chain (e.g., metal
content, tonnages).

Hereditary attributes (derived from primary attributes) that are
tracked in the supply chain (e.g., grades, recoveries, value).

Time periods in the life of mine, indexed by t=1...T

Set of scenarios, indexed by s = 1, ..., Smax, where S,; < S Sub-set
of scenarios in node p,l (root p, leaf 1). Note that S; = S, S,,NS,; =
®, and Sp = Spl U sz

Minimum number of scenarios in a branch to allow further branching

Set of flexibilities and system options, indexed by k, where
K< c K set of options that require branching over the design
K= c K set of options that don’t require branching

Set of locations in the mining complex

o)

Set of destinations which can receive material from location j € D.

Deviations from targets on hereditary attribute h, at location i, period
t, scenario s

Unitary cost of deviation of attribute h, at period t

hit Lh,i,f

Upper and lower limits for attribute h, at location i, period t

Unitary extra capacity over attribute h obtained by the purchase of
investment k

Life of capital option # € K in years

Lead time before an option « € k is available, in years (since the
moment of decision)
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Table 4.2 Decision Variables

Xpts € {0,1} | Defines if block b is extracted at period t, scenario s

Vijts € [0,1] | Proportion of material sent from i to j in period t, scenario s

Zcjts € 10,1} | Defines if cluster ¢ is sent to j € ©(c) in period t, scenario s

wgst € {0,1} | Defines if investment k € K is executed in period t, scenario s

qiit € {0,1} | Defines if to branch design over investment option k= € K= in
' node pl, period t

L Value of hereditary attribute h, at location 1, period t, scenario s

Mathematical Formulation

Objective function

Discounted revenues and costs Capital expenditures Risk discounted deviation penalties

(
|
max |_z Z | Z ph.t .vh,l,s - z pk,t .a)k,s,t - Z cl‘:,/t 'd;,ifs
: TL

)
| |
S seS te hed kekK heH J(4'1)

Subject to

e Mining complex constraints

Viins = S, (p,i k) peP, heH,ieD,telT,seS, kekK

(4.2)
e Capacity constraints considering investments
t
Viiads ~ d/z,[,/,.v < Uhj.t + Z Ko Py
t'=t—2, +7,
t
Viias T dhﬂi,t,‘y 2 L, + Z Kiew Prsn (43)
t'=t—A, +7,
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e Dynamic non-anticipativity constraints - Decisions can be different

Extraction: X, —x,, . =M-4
Cluster destination - -z . =M -4 4.4)
Investment o, -, . =M -4

VseS ; Vs'eS

p1’

s Ns _—3.5s
p2 P

p2’ T opl

USP =S, < S; M =big number

1 2

Branching in node p for t+1 (only if ratio is within the thresholde [?,,1- R,])

1
_Z I (I-R)+0.5-(1- qf*,,)

[

\ s

J s [2N: krek s, c5  (45)
P

| ses, Doy 2 R, by,

[ IS,

Set of scenarios per branch

S, ={Vse Sp‘a)w =Lf,and S,=5,\5, 4.6)

The objective function presented in Eq. (4.2) contains three parts. Each part
corresponds to:

1. The first section focuses on maximizing the profits obtained from selling at a

discounted price (or cost) of p, a quantityv, = of the hereditary attribute % in

h,t,s
period ¢, scenario s. Profit includes material sold from all processing streams.
2. The second term aims at minimizing capital expenditure costs, directly

accounting for the cost of flexibility obtained from new investments along the
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life of the mine. Herew, , is the decision variable that defines if CAPEX

alternative k is exercised on period t (within the minimum and maximum

purchase limitsZ, ,U, ), and p,  represents the cost of that investment option.
3. The third term presents the penalties for deviating from production target, where

d," =Y d,  ,and the costs of deviation ¢, are discounted by a geological

h,t,s
VieD

risk discounting factor (Ramazan and Dimitrakopoulos, 2013), which aims at

deferring risk to later periods.

Constraint (4.2) shows that the hereditary values are a transformation function
(which may be linear or non-linear) of primary attributes (such as metal content, and

tonnages). Equations (4.3) define the bound constraints for each of the hereditary

attributes, setting that the value of the attribute (v, ) plus or minus deviations

(d+/—

h,t,s

> 0) must be within the upper and lower ranges, and if option k € K is taken

(ie. o, . =1), then this margin is augmented by the amount related to option k

(x, ). Thus, for example, if the option of buying a truck is taken, k& = truck, «, , =
annual capacity of one extra truck, and the limits (L and U) controlling the extracted

tonnage (v, , ) get augmented by the capacity obtained from that extra truck. Here,

ht,s
also the time required to put the investment in place is considered (lead time -, ), as
well as the life of the investment (1, ), Thus, to have an increment capacity by

period t, an investment decision must have been taken between periods : — (1, + )

and ;- - . Constraints (4.4) present the dynamic constraints that show that
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extraction, destination and investment decisions can only be different if the solution

has branched (as these constraints disappear if > ¢/.,, =1). Constraint (4.5)

k*eK®
corresponds to the same branching condition presented in Eq. (4.1), and finally,
constraint (4.6) shows how the branching mechanism evolves and scenarios are

partitioned accordingly.

4.2.3 Solution Algorithm Process

To develop a solving mechanism, the size of a global mining complex with
multiple mines and multiple processing streams under geological uncertainty must
be considered, which entails more than a million binary variables, with over a
million constraints (Lamghari et al., 2015). Adding investment decisions to the
formulation increases the complexity even further, as scenario dependent extraction
variables are defined. Because of this, it is infeasible to consider any exact solving
mechanism, and instead, a metaheuristic is used to develop a good quality solution
in a manageable amount of time. In this case, an adaptive neighborhood search
simulated annealing mechanism is implemented (Grogan, 2016), where each
decision variable defines a neighborhood, and the solution space is perturbed
iteratively, first choosing a neighborhood to perturb, and after, a possible
perturbation from that neighborhood (for example adding and/or removing one or
multiple trucks if the fleet purchase neighborhood is selected). Here, the probability
of selection of a perturbation from its set is constantly being adapted depending on

its historical performance in improving the objective function’s value.
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4.3 Case Study: Cu-Au Mine

4.3.1 Overview

The following case study corresponds to a copper mining complex presented in
Figure 4-3, comprised of two mines, two processing destinations (one for sulfides
and another for oxides), a waste dump and a sulfide stockpile. As shown in the
figure, both mines can feed all destinations. Due to the mine’s dimension, it is
considered that a maximum of 10 trucks can be operational per period at mine 1, and
a maximum of 8 trucks at mine 2. Additionally, each shovel can haul up to 5 trucks,
meaning that, for example, if there are six trucks available, but only one shovel, then
the actual extraction capacity will correspond to five trucks, as an extra shovel must
be purchased to fill that extra truck. The same way, if two shovels are available but
only 6 trucks, then the final capacity would also correspond to 6 trucks. It s assumed

that this truck/shovel relation remains constant throughout the whole LOM.

Cu Mine 1

R =, R

Waste Dump

Oxide Leach

Cu Mine 2

Figure 4-3 Diagram of the mining complex configuration
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Mine 1 contains 136,000 blocks, and Mine 2 contains 109,000. The orebody
models of both mines are modeled with blocks of 20x20x15m, and have one
geotechnical zone, with slope angles of 45° and 40° respectively. Three different
material types are considered: waste, oxides and sulfides, and 10 geological
simulations of each deposit are used to represent the uncertainty related to copper
grade and material type, resulting in 100 scenarios for the mining complex. The
main source of profit of this mining complex comes from the Sulfide Processor,
which recovers copper, and receives material from both mines and an 8Mt stockpile.
This mill has a production capacity of between 30Mt and 32Mt per year, and there is
an alternative to invest on a secondary crusher to increase this capacity by 2Mt per
year. The operation has an initial truck fleet of 10 trucks assigned to Mine 1, and 8
trucks assigned to Mine 2, with two shovels per mine. Both trucks and shovels are
available for the first 2 years of operation, and all further extraction capacity is
defined directly by truck and shovel purchase, setting the mining extraction rate. The
Oxide Leach is assumed to have unlimited capacity, as does the Waste Dump.

The copper recovery at the Oxide Leach follows a non-linear recovery curve
presented in Figure 4-4, and at the Sulfide Processor copper recovery follows a non-
linear function defined in Eq. (4.8), both of which depend on the copper head grade
of the block being fed. Table 4.3 shows the basic mining and economic parameters

of the operation. In this case, a fixed price was assumed for copper, with a discount

rate of 10%.
(0.6 -% Cu if %Cu<0.01
Cu Recovery = J 0.87392 (% Cu)"*""" if 0.01<%Cu <1.45 (4.8)
{0.89-%cu if %Cu>1.45
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Figure 4-4 Copper recovery curve for the Oxide Leach process

Table 4.3 Mining and economical parameters of the copper/gold mine

Mining Complex Parameters Mine 1 Mine 2
Base Mining Cost ($/t) 1.52 1.85
Incremental Mining cost ($/bench) 0.025 0.020
Initial Mining Capacity 35 Mt 28 Mt
Sulfide Processor capacity (initial) (Mt) 30-32
Sulfide Stockpile capacity (Mt) 8
Sulfide Processor cost ($/t) 10.8
Sulfide Stockpile reclaim cost ($/t) 0.08
Oxide Leach cost ($/t) 4
Copper Price $3800/ton
Discount rate 10%

4.3.2 Investment Alternatives Considered
Three CAPEX alternatives (set K in notation) are considered in this case study:
i. Invest in truck fleet (€ K=, non-branching alternative) (and thus, increasing
extraction capacity). Starting from an initial base fleet of 10 and 8 trucks for

mine 1 and 2 respectively, available for the first 2 years.
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ii. Invest in shovels (€ K=, non-branching alternative) (and thus, increasing
extraction capacity if linked to available trucks). Starting from an initial base
fleet of two shovels per mine for the first 2 years.

iii. Invest on a secondary crusher (€ K<, branching alternative) that allows
increasing the processing capacity at the Sulfide Processor.

To test the equipment acquisition mechanism and obtain the optimal extraction
capacities at both mines, the initial equipment is available only for the first two
periods, enabling the mining operation to extract material during the first periods,
but allowing the optimizer to quickly define the optimal capacities for the rest of the
LOM. Details of each of these CAPEX alternatives are provided in Table 4.4,
including the mining complex’s initial configuration capacities, and the changes
involved in new investments. For each option, there is a set of operational
parameters that must be defined, such as the cost of the option, the periodicity of the
decision (that is, how often a decision can be re-taken after an investment is done),
the lead time (time between an investment is purchased and it becomes available for
the operation), the maximum purchases allowed at once, and the actual increment in

capacity constraint obtained per unit if the optimizer decides to invest.
4.3.3 Results

4.3.3.1 Base Case

The base case corresponds to the standard two-stage simultaneous stochastic
optimization of the mining complex, were the scenarios are used to define a unique
production sequence and destination policy. The truck, shovel, and secondary

crusher purchase options are also included in the model, but all as 1% stage non-
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branching options, assuming that the mines have an initial capacity of ten and eight
existing trucks respectively, which are available for the first two years of operation.
Here, all scenarios are used to define one global mining and purchase schedule. This
way, the solution includes when each block is extracted, where it is sent according to
its characteristics (grade, material type, etc.), if a crusher is added, and how many
trucks and shovels are purchased per mine and per year (and thus the annual

extraction capacity), respecting the parameters mentioned in Table 4.4.

Table 4.4 Information and purchase parameters of each investment option

Truck (K7) Shovel (K7) 2ry Crusher (K<)
Undiscounted cost USS$ 4,800,000 USS$ 32,000,000 US$45,000,000
Life of equipment 8 years 10 years 25 years
Periodicity of decision 2 years 3 years once per LOM
Lead time (years) 1 year 1 years 2 years
Maximum purchase 10 units 2 units 1 unit
Initial Cap. (mine 1&2) 10 & 8 units 2 units per mine 30-32Mt
Tonnage increment 3.5 Mt/unit Feed for 5 trucks 2.0 Mt/unit

The resulting purchase plan and corresponding total tonnage of extraction
capacities is presented in Figure 4-5, where it shows on the left axis the number of
trucks and shovels purchased per year for mine 1 (black bars) and mine 2 (grey
bars), and on the right axis, the total tonnage available and actual annual extraction
for mine 1 (black line), and for mine 2 (grey line), as well as the actual extraction

per year in dashed lines. The extraction capacity is consistently respected and at its
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limit, except at the final years of extraction of mine 2, where extraction decreases.

This deviation is acceptable, as it only occurs in the final year of the mine.
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Figure 4-5 Truck purchase plan (left axis) and total mining capacity available (right
axis) in the Base Case.

Figure 4-6 shows the risk analysis over the Sulphide Mill feed, where P10
represents the value at which there is a 10% probability of obtaining a value lower
than that, P50 represents a 50% probability, and P90 a 90% probability. In this case,
the secondary crusher was purchased on year 8, showing an increased processing
capacity from year 10 to 20, and a consistent mill feed within the upper and lower
bounds, with some deviations on the final 4 periods of the LOM.

The corresponding cumulative discounted cash flow is presented in the left side
of Figure 4-7, ranging between US$4.76 and US$5.97 billion, with a P50 value over
US$5.41 billion, a P10 of US$5.03 billion, and a P90 of US$5.76 billion. The right
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side of the figure shows the annual discounted cash flow, which includes all
investments presented in Figure 4-5, as well as the crusher in period 8. It can be seen
that, despite the large investments incurred, the discounted cash-flow is positive in

every period, showing minor differences between the different scenarios.
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Figure 4-6 Sulphide Mill’s lower (LB) and upper (UB) bound capacity and feed per
period for P10, P50, and P90 probabilities
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Figure 4-7 Cumulative NPV (left) and Discounted Cash Flow (right) for P10, P50,
and P90 probabilities
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The previous results are obtained from the schedule presented in Figure 4-8,
which shows cross-sections of the schedules obtained for Mine 1 and Mine 2
respectively, where each colour represents the extraction period of each block, from
period 1 in dark blue, to period 20 in bright red. From the figure, it might seem that
some periods extract considerably more material than others (for example period
10), but this is just due to the cross-section chosen. The purpose of this figure is to
show that the schedules produced by the optimizer are smooth and easily adapted to

be operational.

.....

Figure 4-8 Cross-section of the base case schedules for Mine 1 (left) and Mine 2

(right)

4.3.3.2 Proposed Dynamic Case

Following, the dynamic optimization is performed, where, as explained in the
method section, first an initial robust optimization is performed using the base case
as starting point, and second, an independent 2-stage stochastic optimization of the

branches is performed.
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Step 1 — Initial 2-stage optimization

In this case, R, is set to 30% over all periods, meaning that, as explained in Eq.
4.1, if there is between 30% and 70% chance of investing in a secondary crusher,
then the solution process branches into two possible mine designs. Additionally, to
avoid over-fitted mine plans, the minimum number of scenarios per branch (N) is set
to 10 scenarios, thus, every branch must have at least 10 scenarios at all periods.
With this, the mine plan is optimized as described in Section 4.2.1.

In this case, by re-optimizing the mine plan considering dynamic investments,
the optimizer shows a 42% chance to invest in a secondary crusher in year 3. As this
42% is within the representative branching margin (30%-70%), the mine plan is
divided at this point, and the two first periods are frozen from the two-stage initial
model (i.e. the base case), as presented in Figure 4-9. Here, the two first years’
CAPEX purchase plan taken from the two-stage optimization are shown, and the

resulting available equipment in each mine.

10 | = = mm Truck purchase in Mine 1
- \\ Truck purchase in Mine 2
'::f-; 8 T T T T 1T saassl Shovel purchase in Mine 1
£ 6 Shovel purchase in Mine 2
g 4 = = =Trucks available in Minel
ug; Trucks available in Mine 2

D [ I R e e s L Shove|s ava”ab|e in Minel
0 IS (S (N N (N N A — — Shovels available in Mine2

1 2 3 4 5 6 7 8 9 10 11 12
Period (years)

Figure 4-9 Fixed section of purchase plan from initial optimization
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As stated in Table 4.4, the trucks and shovels are available one year after they
are purchased and are active for 8 and 10 years respectively. Thus, the equipment
purchased before the branching period at year 3 are still available for future periods
(years 3 through 12 in Figure 4-9), even if the mine plan, as well as the capital
investment plan, of these final periods is re-optimized for each branch in the

following step.

Step 2 — Branching over the Design

Once the initial stage of the optimization is done, the design options investing
and not investing in the secondary crusher are explored. First, the blocks that were
already scheduled in Step 1 are removed from the orebody model, and their
decisions are fixed (Figure 4-5, for periods 1 to 3). Next, the model is re-solved
within the remaining deposit, fixing the corresponding investment decisions for the
respective scenarios. Also, note that, as there where truck and shovel purchases
during the last period of stage 1 (i.e. period 2), truck purchases are not allowed for
the first period of the second stage (i.e. period 3), and shovel purchases are

forbidden for the first two periods.

a) Branch 1: No investment in secondary crusher

In this case, the secondary crusher option is removed from the SIP model for
period 3, and the model is re-optimized over the final periods of the mine plan
(periods 3 to 20). The results obtained with the scenarios that decided not to invest
in the secondary crusher in period 3 are shown in the left side of Figure 4-10, where

the mill feed is presented, showing that in this case the probability of investing in a
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secondary crusher is not representative throughout the whole rest of LOM. Thus,
Figure 4-10 presents a stable mill feed of around 30-32Mt, with slight deviations
occurring in periods 3 and 6; however, there is consistently less than 10% chance of
deviating (as the P90 curve is mostly within the upper and lower bounds). Figure
4-11 presents the truck and shovel purchase plan of this branch. Mine 1’s purchase
plan remains unchanged, but the optimizer decides to reduce the truck fleet of Mine

2 by purchasing one less truck on periods 7, 15 and 18, compared to the base case

solution.
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Figure 4-10 Mill feed per period for branch 1(left) and branch 2 (right).

b) Branch 2: Invest in secondary crusher

Next, the option considering the purchase of a secondary crusher is studied. In
this case, the cost of the purchase is included in period 3, but the extra capacity is
only available at period 5, as the secondary crusher option has a 2-year lead time

(Table 4.4). This can be seen on the red lines at the right side of Figure 4-10, which
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shows the upper and lower bounds of the mill feed target. The equipment purchase
plan is presented in Figure 4-12, where, compared to the base case, the optimized
decides to get a full fleet of 10 trucks in Mine 1 one period earlier, and keep it stable
towards the end of the LOM. The truck fleet in Mine 2 is also increased from period
7 forward, by purchasing a shovel one period earlier, and adding extra trucks in
years 6, 14, and 18. As in the first branch, the mill feed in the right side of the figure

also presents a tight risk analysis.
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Figure 4-11 Truck and shovel purchase plan and mining capacity for branch 1

The schedules obtained for each branch are presented in Figure 4-13 for branch
1, and Figure 4-14 for branch 2, where it can be seen that the first two periods from
the original schedule (Figure 4-8) have been removed, and the remaining blocks
have been re-scheduled. The figure show that the generated schedules are physically

different, however, they are both smooth and operational.
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Figure 4-12 Truck and shovel purchase plan and mining capacity for branch 2

T

Figure 4-13 Cross-section of the schedules for Mine 1 (left) and Mine 2 (right) for
the branch 1 (without the secondary crusher investment)
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Figure 4-14 Cross-section of the schedules for Mine 1 (left) and Mine 2 (right) for
the branch 2 (with the secondary crusher investment)
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The biggest scheduling differences can be seen in Mine 1, where the schedule
decides to go deeper earlier on the LOM when the secondary crusher is available
(left side of Figure 4-14), and leave the stripping of the left wall to the final years of
operation. Note that in this case, period 1 is actually period 3 in the original
schedule, and period 18 is year 20, the last year of the LOM.

As the scenario partitions of each branch are independent of each other, once the
initial periods before the branching are fixed, each branch can be optimized
separately, reducing the size of the problem considerably. This way, the final
dynamic solution is obtained by joining the results of all branches. This joint model
presents a cumulative NPV which ranges between BUS$5.13 and MUS$6.10, as
presented in Figure 4-15, with a P50 of BUS$5.58 (3% over the base case NPV),
which corresponds to an increase in project value of almost MUS$170 over the
initial base case (considering the cost of the investments), and entails a design that
provides valuable information by allowing the operation to be prepared to future
changes and maximise the project's potential. This is better shown by comparing the
P90 values, where the dynamic model presents an 8% higher NPV compared to that
of the base case (BUS$5.7 vs. BUS$6.1), meaning that not only on average more
value is generated, but the operation is able to considerably increase the value
generated by taking advantage of the opportunity to increase production.

This is clearly seen in Figure 4-16, where a Value-at-Risk-Gain graph is
presented, showing the cumulative probability distribution of NPVs per simulation
for each case studied. For the sake of comparison, this graph also includes the
solution for a traditional two-stage optimization without alternatives, where

extraction as well as processing capacities are assumed constant (with 10 trucks in
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Mine 1 and 8 in Mine 2, and a mill capacity of between 30-32Mt). The

corresponding investment costs to obtain these fixed capacities are included in the

cash flow of this case.
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Figure 4-15 Cumulative discounted cash flow for the option of dynamically
investing in a secondary crusher (black lines), and for the base case with alternatives
(red lines)

Results in Figure 4-16 show that the proposed dynamic case is able to take
advantage of favourable scenarios and increase the performance of the project,
without any risk of reducing NPV. Additionally, by comparing the obtained results
with the ones of the base case without alternatives, it is clear that there is
considerable value added by actively including investments within the optimization,
defining the optimal capacities at the different levels of the operation while

accounting for uncertainty, and for the synergies that exist between the components

of the mining complex.
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Figure 4-16 Cumulative probability distribution of NPV of (i) 2-stage optimization
without alternatives (dashed line), (ii) with alternatives (dotted line), and (iii)
proposed dynamic case with alternatives (continuous line).

An interesting fact that can in part explain the overall increase in NPV of the
base case with and without alternatives is the equipment acquisition. Figure 4-17
shows the annual extraction in Mine 2 for both cases, compared to the actual
capacity available.

The left side shows the case without alternatives, where a fixed fleet of 8 trucks
and 2 shovels, or 28Mt capacity is assumed over all periods. However, this capacity
is not fully met in most periods after year 5. On the other hand, by including the
investment alternatives in the optimization process, the solution produced manages
to define the actual capacities needed to maximize value. This can be seen in the
right side of Figure 4-17, where the actual extraction in Mine 2 is almost exactly the
capacity available, without keeping any equipment unused. Here, the reduced fleet

during periods 3 and 7 is caused because the optimizer chooses to delay the purchase

157



of a second shovel to later periods, and thus, only 5 trucks (17.5Mt capacity) are

available for one shovel.
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