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ABSTRACT 

 

Mining complexes are mineral value chains where extracted material from different 

mines is transformed into sellable products through a set of processing streams. This value 

chain is governed by uncertainties at different levels, from the geological attributes of the 

orebody at the mine(s), to the different operational and processing components that lead the 

sellable products to the market. Stochastic simultaneous optimization formulations for 

industrial mining complexes have proven to be effective in generating reliable strategic plans 

that maximize net present value and, at the same time, manage and reduce risk. However, 

because of the uncertainties governing a mining complex, particularly the ones related to the 

geological attributes which define the supply of the system, it has become a priority to 

integrate flexibility mechanisms that allow a mining project to change and adapt as more 

information becomes available. Within this adaptability, optimizing the investment timing of 

high-magnitude capital expenditures throughout the life-of-mine is a priority, due to their high 

impact on the annual cash-flows and on their effects over the physical mining schedule. 

Additionally, to improve a mining complex’s ability to meet production targets and overall 

performance, advanced mechanisms should be developed to ensure complex blending 

constraints are met, managing the geometallurgical variables of the deposit. 

This thesis presents a methodology to embed flexibility into mineral value chains, by 

allowing the strategic mine plan of a mining complex to dynamically consider possible 

options and alternatives for reacting and adapting to future changes. For this, first, a study on 

extraction capacity optimization is presented, followed by the development of a mechanism to 

deal with complex variables of the deposit to meet blending constraints and production 
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targets. These two components are later integrated into a dynamic optimization model, which 

optimizes the mining complex’s mine plan under geological uncertainty, integrating flexible 

investment alternatives, as well as operational modes, which allow having a better control 

over complex, nonlinear geological attributes. 

A mixed integer programming formulation to optimize a mining operation’s extraction 

capacity is first developed, which deals with the minimization of risk incurred when 

optimizing mining production rates, so that production targets are met in the presence of 

geological uncertainty.  The model is developed through the concept of a “stable solution 

domain”, which provides all feasible combinations of ore and waste extraction within the 

ultimate pit limit of a given deposit, independently of the geological risk. The proposed 

formulation provides an optimal annual extraction rate, together with the optimal equipment 

acquisition program (i.e., trucks and shovels). This solution eliminates unnecessary capital 

expenses and is feasible under all geological scenarios. The developed mathematical 

programming model is detailed and tested at a gold deposit. The results obtained are used as 

input to a production schedule design, and compared to the schedule generated using a 

constant mining rate. The comparison shows that about 40% of equipment acquisition can be 

delayed for 7 years and mill demand still be met, thus maximizing profit and minimizing risk. 

Next, the focus is shifted from a mining operation’s extraction capacity definition, to its 

processing streams, particularly on the decision of where a block is sent once it is extracted, 

i.e. its destination policy. These decisions are particularly important for complex multi-

element mining projects with tight blending and processing constraints. The proposed model 

is able to simultaneously consider a set of geometallurgical variables that affect the 

performance of the operation, improving the mineral value chain’s ability to meet targets, 

while maximizing the project’s net present value. The proposed destination policy is based on 
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coalition formation clustering, a method developed in game theory, to account for the 

combined value of groups of mining blocks being processed together (even if these combined 

values are non-linear), rather than on their individual characteristics. Results of an application 

at a copper-gold mine with six destinations show significant improvements in meeting 

processing requirements when compared to a conventional industry approach, reducing, for 

example, deviations of arsenic concentration from 58% to 7% along the life-of-mine, while 

increasing the project’s net present value by 5.6%. 

Both extraction capacity definition and destination policy optimization are integrated 

next, focusing on the complete mining complex, and expanding the formulation to optimize 

the annual production schedule, as well as a dynamic equipment investment plan of a mining 

complex. The dynamic model developed produces a unique initial extraction sequence, while 

keeping a viable flexible long-term plan for future investment decisions, as may be needed. 

The flexible long-term plan is obtained through a dynamic optimization which allows making 

transitioning plans upfront to facilitate change. This method introduces a new adapted 

multistage stochastic programming model which expands upon the two-stage framework by 

performing multiple recourse stages that are solved iteratively, allowing parallel designs to be 

generated in a scenario-tree structure. In this model, dynamic decisions over capital 

expenditures are made sequentially over time, based on new information that becomes 

available over production time. The investment decision variables activate costs and effects 

over the model, letting the optimizer choose the type of investment and timing to be done at 

the mining and/or processing levels. A case study of a mining complex with two mines is 

used to test the proposed model, with options to invest in the related truck and shovel fleet, as 

well as a secondary crusher to potentially increase mining and processing capacities 

respectively. Results show a substantial probability that the mine design should consider the 
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alternative of investing on the secondary crusher, presenting an increase in expected net 

present value of over US $170M compared to the two-stage stochastic formulation. 

The above model is subsequently extended to include alternatives over operating modes 

at different levels of the mineral value chain. More specifically, the previously developed 

dynamic decision-making method is used, and the model is extended to choose optimal 

operating modes per period, selecting blasting patterns at the mine, and processing relations 

of throughput and recovery at the plant. This mechanism generates new optimized plans that 

allow and ease the process of adapting once more information is available. The practical 

implications of the proposed method are demonstrated through an application over a copper-

gold mining complex, where the dynamic model presents a 10.5% increase in net present 

value compared to a traditional two-stage stochastic formulation. 

The dynamic mining complex formulation proposed is able to include flexibility into the 

optimization of the strategic plan of a mineral value chain. This enables possible 

developments within the feasible set of alternatives that can be taken, considering the mining 

complex’s configuration, capacities, and constraints. The proposed model is able to generate 

feasible, operational schedules, while providing a wider view of the mining complex’s 

performance, easing the transition to possible changes due to the periodic unveiling of 

uncertainty.  
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RÉSUMÉ 

 

Un complexe minier est une chaîne d’approvisionnement où le minerai est extrait de 

différentes mines et passe au travers d’un réseau de traitement pour être transformé en un 

produit commercialisable. Cette chaîne d’approvisionnement est sujette à plusieurs sources 

d’incertitude à différents niveaux, que ce soit au niveau de la mine et les attributs géologiques 

du gisement ou au niveau des instances opérationnelles et installations de traitement qui 

permettent d’amener le produit sur le marché. Les modèles stochastiques d’optimisation 

simultanée pour les complexes miniers ont démontré leur efficacité à générer des plans 

stratégiques fiables qui maximisent la valeur présente nette du projet minier tout en contrôlant 

et réduisant les risques y associés. Cependant, à cause des incertitudes qui gouvernent un 

complexe minier, en particulier les incertitudes liées aux attributs géologiques qui définissent 

les ressources du système, il est primordial d’inclure des mécanismes de flexibilité pour 

permettre au projet minier de s’adapter lorsque plus d’information devient disponible. Dans le 

cadre de cette adaptabilité, optimiser les décisions d’investissement en capital de grande 

ampleur est une priorité vu l’impact important de ces décisions sur les liquidités annuelles de 

la compagnie minière et leur effet sur la planification de l’extraction. De plus, afin de 

permettre à un complexe minier d’atteindre ses objectifs de production et de performance, des 

mécanismes avancés devraient être développés pour contrôler les variables géo-

métallurgiques du gisement et assurer que les contraintes de mélange complexes soient 

respectées. 

 Cette thèse présente une méthodologie dont l’objectif est d’inclure de la flexibilité 

dans les chaines d’approvisionnement minières en permettant à la planification stratégique de 
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considérer dynamiquement des options et alternatives réalisables pour réagir et s’adapter aux 

changements futurs. Pour cela, une étude portant sur l’optimisation de la capacité est tout 

d’abord présentée, suivie par le développement d’un mécanisme pour appréhender les 

variables complexes d’un gisement afin de respecter les contraintes de mélanges et atteindre 

les objectifs de production. Ces deux composantes sont ensuite intégrées dans un modèle 

d’optimisation dynamique. Ce modèle optimise la planification de l’extraction sous 

incertitude géologique en intégrant des alternatives d’investissement flexibles, ainsi que des 

modes opératoires qui permettent un meilleur contrôle des attributs géologiques complexes et 

non-linéaires. 

 Une formulation en un programme linéaire mixte en nombres entiers pour optimiser la 

capacité d’extraction d’une opération minière est d’abord développée. Plus spécifiquement, le 

modèle développé vise à minimiser les risques associés aux taux de production minière. Il suit 

le concept du « domaine de solution stable », qui permet d’obtenir toutes les combinaisons 

réalisables d’extraction de minerai et de rejets miniers au sein de la limite extrême de la fosse, 

et cela indépendamment du risque géologique. La formulation proposée fournit un taux 

annuel d’extraction optimal, ainsi qu’un programme d’acquisition d’équipement optimal (i.e., 

camions, pelles). Cette solution élimine les dépenses en capital superflues et de plus, elle est 

réalisable sous l’ensemble des scénarios géologiques considérés. Le modèle mathématique 

développé est détaillé et testé sur un gisement d’or. Les résultats obtenus sont utilisés comme 

données d’entrée à un design de la planification de la production et ce dernier est comparé à 

celui obtenu à partir d’un taux d’extraction fixe. La comparaison montre qu’environ 40% de 

l’acquisition de l’équipement peut être repoussée de 7 ans tout en satisfaisant la demande du 

moulin, maximisant ainsi les profits et minimisant les risques. 
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Ensuite, l’étude se focalise sur le réseau de traitement des complexes miniers, en 

particulier la décision de destination d’un bloc après qu’il ait été extrait, i.e. la politique de 

destination. Ces décisions sont particulièrement critiques pour un projet minier à 

multiéléments avec des capacités à faibles marges et des contraintes de mélange. Le modèle 

proposé permet de considérer simultanément un ensemble de variables géo-métallurgiques 

pour améliorer la capacité de la chaîne d’approvisionnement à respecter les contraintes 

opérationnelles, tout en maximisant la valeur présente nette du projet. La politique de 

destination obtenue est basée sur l’agglomération en formations de coalition (clustering). 

Cette méthode a été développée en théorie des jeux. Dans le contexte des complexes miniers, 

elle permet de considérer la valeur combinée de groupes de blocs traités ensemble (même 

lorsque ces valeurs combinées sont non-linéaires) plutôt que leurs caractéristiques 

individuelles. Les résultats obtenus avec une application sur une mine de cuivre et or, avec six 

destinations distinctes, ont montré une amélioration significative quant à l’atteinte des 

exigences de traitement en comparaison avec une approche industrielle conventionnelle. Par 

exemple, les déviations en concentration d’arsenic sont passées de 58% à 7% durant la 

période totale d’opérations, alors que la valeur présente nette du projet a augmenté de 5.6%. 

 L’optimisation conjointe des capacités d’extraction et de la politique de destinations 

est par la suite intégrée dans une optimisation globale d’un complexe minier en généralisant 

un modèle mathématique qui optimise la planification annuelle de l’extraction ainsi qu’une 

planification dynamique des investissements en équipement. Le modèle dynamique 

développé produit une séquence d’extraction initiale unique, tout en conservant une 

planification à long terme flexible et viable pour des décisions d’investissement futures, si 

elles deviennent nécessaires. La planification à long terme flexible est obtenue à l’aide d’une 

optimisation dynamique qui permet de planifier les transitions à l’avance afin de faciliter les 
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changements. Cette méthode introduit un nouveau modèle stochastique multi-étapes adapté 

qui étend l’approche à deux étapes en réalisant plusieurs étapes de recours, optimisées de 

manière itérative, et qui permet de générer des designs parallèles dans une structure d’arbre de 

scénarios. Dans ce modèle, les décisions dynamiques sur les dépenses en capital sont faites de 

manière séquentielle au cours du temps et se basent sur de l’information nouvelle qui devient 

disponible durant la production. Les variables de décision d’investissement activent des coûts 

qui agissent sur le modèle, ce qui laisse l’optimiseur choisir le type d’investissement et son 

moment d’application au niveau de la mine et/ou au niveau du traitement. Une étude de cas 

portant sur un complexe minier avec deux mines est considérée pour tester le modèle proposé. 

Les options d’investissement concernent l’achat de camions et de pelles, ainsi qu’un second 

concasseur pour potentiellement augmenter les capacités d’extraction ainsi que les capacités 

de traitement. Les résultats montrent une probabilité substantielle que le design de la mine 

devrait considérer l’alternative d’investir dans un second concasseur puisqu’ils présentent une 

augmentation de la valeur présente nette de plus de 170M $US, par rapport à un mode 

stochastique à deux étapes. 

 Le modèle précédent est finalement étendu pour inclure des alternatives sur les modes 

opératoires à différents niveaux de la chaîne d’approvisionnement minière. Plus précisément, 

la méthode de décision dynamique précédemment développée est utilisée. De plus, le modèle 

permet de choisir des modes opératoires optimaux à chaque période. Ces modes opératoires 

concernent la sélection du schéma de dynamitage au niveau de la mine et la sélection des 

modes opératoires aux installations de traitement (compromis entre cadence de production et 

taux de récupération de minerai). La méthode développée génère des plans optimisés, 

facilitant le processus d’adaptation lorsque plus d’information devient disponible. Ses 

principales implications et bénéfices sont présentées dans une application sur un complexe 
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minier de cuivre et d’or, où une augmentation de 10.5% de la valeur présente nette est 

obtenue comparativement à une méthode basée sur une formulation stochastique 

traditionnelle à deux étapes. 

 La formulation dynamique proposée dans cette thèse permet d’inclure de la flexibilité 

dans l’optimisation de la planification stratégique de la chaîne d’approvisionnement minérale. 

Cela permet de tenir compte d’éventuelles alternatives qui peuvent être considérées, étant 

donné les configurations du complexe minier, ses capacités et ses contraintes. Les modèles et 

les méthodes proposés sont capables de générer une planification réalisable et opérationnelle, 

tout en procurant une vision plus éclairée de la performance du complexe minier, ce qui 

facilite la transition à de possibles changements lorsque l’incertitude est révélée. 
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CHAPTER 1                                                                                                                       
General Introduction 

 

 

1.1 Introduction 

A mining complex is a mineral value chain which consists of a set of 

components, such as mines, stockpiles, waste dumps, and processing plants, that are 

linked by multiple transportation systems that move material from the supply to the 

final customers and spot market. Figure 1-1 presents a diagram of the continuous 

flow of material of a mining complex. The supply of these value chains consists in a 

set of mines, connected to transitional components involving the stockpiles, waste 

dumps, and processing streams, such as plants, leach pads or bioleaches, which 

transform the raw material into sub-products. These sub-products are then 

transported to their final destination, consisting of ports that deliver the material to 

customers, or waste dumps and tailings, where material of no value and waste from 

metallurgical processes is sent.  

The goal of optimizing the life-of-mine (LOM) of a mining complex is to 

maximize value given a set of environmental and operational constraints. Each mine 

is represented as a set of three-dimensional blocks, which are scheduled to be 

extracted at a certain period given the mining complex’s extraction capacity and 

operating modes. These blocks are extracted to be processed for profit, and/or to 

access underlying blocks of the orebody. Processing streams receive this extracted 
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rock, and treat the material selecting an operating mode, usually aiming at 

maximizing recovery and minimizing processing costs, ensuring that a set of 

capacity and blending constraints are met. These constraints can become especially 

complex when dealing with multi-element mines, or in the presence of deleterious 

elements that need to be controlled. Finally, the produced material is transported, 

delivered to customers or sold on the open spot market.  

 
Figure 1-1 Diagram of a mining complex (Goodfellow, 2014) 

 

As Figure 1-1 shows, that a mining complex is a network of interrelated, non-

linear components, which strongly depend on each other. As an interconnected value 

chain, a mining complex should be optimized globally and simultaneously, taking 

into account the synergies that exist between its components. However, traditional 

mine planning optimization techniques ignore the interactions between components 

in a mining complex, optimizing each one independently. New research on global or 

simultaneous optimization of a mining complex focuses on integrating all its 

components to generate one global mine plan which accounts for the whole value 
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chain and its interactions. These models aim to coordinate and simultaneously 

optimize the multi-mine production schedules, destinations policies, as well as the 

use of the various material handling methods.  

Another major limitation of traditional mine planning optimization methods is 

that they assume that the deposit is known with certainty by using a unique 

estimated orebody model to represent the characteristics of the material available on 

the ground. With this, the variability and uncertainty of material concentrations and 

material types are ignored, and so are the effects they have on the value and 

operational feasibility of the production schedule. 

Multiple optimization models based on stochastic mathematical programming 

have been developed to include uncertainty. Within the mining industry, stochastic 

optimization has been present for over a decade, using a set of orebody simulations 

to take into account the grade variability of the deposit. These methods have proven 

to produce reliable mine-plans and production schedules that maximize value and 

manage project’s risk, and in recent years, have been extended to consider the whole 

mining complex. Stochastic simultaneous optimization of a mining complex 

integrates the effect of geological uncertainty and variability into the global 

optimization model. By doing so, they produce mine plans and production schedules 

that can meet blending requirements, manage technical risk, and maximize project 

value, showing clear benefits both in value and in reliability of meeting production 

targets when compared to traditional industry practices.  

However, so far, the developed models have been limited in dealing with some 

critical aspects, such as treating complex geometallurgical variables. These variables 

are crucial in defining the processing performance of a mining complex, and dealing 
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with them becomes especially important in multi-element mines with complex 

geological structures and processing streams where metallurgical processes demand 

tighter blending constraints. Another critical aspect of current models is that they 

produce fixed, static mine plans, which assume that the setting of the mining 

complex will stay the same, and thus, that the initial solution will be optimal for the 

life-of-mine (LOM). This assumption is an optimistic simplification. Consequently, 

conventional mine plans are updated yearly; however, this is a passive solution that 

can unintentionally inhibit options and alternatives that, though not currently viable, 

could be profitable in the future. An example of these alternatives is the investment 

in critical capital expenditures which may affect the value chain’s configuration 

and/or capacity. The conventional way to deal with these alternatives is through 

sensitivity analyses. However, these analyses are static and do not consider 

uncertainty, or its effect in the mining complex’s context, usually resulting in loss of 

opportunities and delayed projects, hindering the transition to change, and ultimately 

resulting in loss of profit. Another type of alternatives is the operating mode 

alternatives, which exist at different levels of a mining complex, from the mine to 

the processing streams. Operating mode alternatives can be particularly useful in the 

optimization of a mining complex when dealing with components of the value chain 

with specific requirements, designed for certain type of input materials. These 

requirements are usually ignored by conventional optimizers, and because of the 

value chain’s inherent uncertainties, meeting them can be a hard task. By 

considering and integrating the different operational alternatives into the 

optimization, these hard constraints can be better met by tuning the processing 
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streams to the specific characteristics of the material being treated, maximizing the 

mining complex’s performance and its value.  

These extensions are crucial, as the performance of these processing streams and 

of the mining complex as a whole greatly depends on how the different requirements 

and constraints are met. For example, in a processing plant, blending constraints 

must be met to maximize metallurgical recovery, which in turn will maximize 

project value. Maximizing value and meeting these requirements can be aided by 

considering the mining complex’s flexibility alternatives. However, to take full 

advantage of opportunities, and obtain feasible and reliable mine plans, these 

alternatives must be considered in the initial evaluation processes, enabling 

decision-makers to prepare in advance for future changes. To do so, more 

sophisticated methods must be developed, and flexibilities must be translated into a 

set of identified, feasible, dynamic alternatives that can be exercised by a particular 

mining complex, specifically designed upfront to be effectively modelled. 

 

1.2 Literature Review 

This section presents a review of the literature pertinent to the topics discussed 

in this thesis. Section 1.2.1 discusses the strategic optimization of the mine plan, 

from modelling and including geological uncertainty, to simultaneously optimizing 

the mining complex under uncertainty, presenting different solving algorithms 

developed and their extensions, and concluding with limitations to the current state-

of-the-art formulations. Section 1.2.2 describes research avenues to include 
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flexibility in a value chain optimization under uncertainty, focusing on real options 

analysis and stochastic multistage programming formulations. 

1.2.1 Strategic or life-of-mine planning  

The focus of strategic mine planning is to generate designs and mine production 

schedules that meet targets and maximize discounted cash-flows over the life of a 

mining operation. This is done by firstly representing an orebody as a set of three-

dimensional blocks, where each block has values for the attributes that define the 

deposit, such as metal grades, material types, rock properties, or tonnage. According 

to their characteristics, blocks are scheduled to be extracted at a certain time period 

(year), to be processed, and/or to access underlying blocks of the orebody (Hustrulid 

et al., 2013). Traditionally, mining complexes are simplified and optimized in a step-

wise fashion, as disconnected components with individual goals (Dagdelen, 2001); 

for example, the mine may be optimized to minimize cost, while the processing 

plant may be separately optimized to maximizing recovery (Lerchs and Grossmann, 

1965; Johnson, 1968; Kim, 1979; Gershon, 1983; Tolwinski and Underwood, 1996; 

Hustrulid et al., 2013). This process ignores the synergies that exist between a 

mining complex’s components, producing independent sub-optimal plans and 

production schedules. At the same time, these conventional plans use estimated 

orebodies as only input, and ignore the uncertainties that govern the mining 

complex, such as the deposit’s geological attributes of contents, material types, or 

the market’s commodity price.  

Because of the high costs associated with exploration, the limited information 

obtained from exploratory and development drill-holes, and the geological 
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complexity of mineral deposits in general, the characteristics of interest of the 

orebody considered are highly uncertain at the scale of mining, being one of the 

main sources of risk in a mining operation (Ravenscroft, 1992; Dowd, 1994, 1997; 

Vallee, 2000; Godoy and Dimitrakopoulos, 2004). Considering the deposit as known 

by using a single estimated orebody model to represent the material available in the 

ground is a major assumption that biases the mine planning process. Traditionally 

employed geological estimation methods produce a single representation of the 

deposit, which is smoothed due to the averaging that occurs during the estimation 

(David, 1977, 1988; Journel and Huijbregts, 1978; Isaaks and Srivastava, 1989; 

Goovaerts, 1997; Rossi and Deutsch, 2014).  These estimated models misrepresent 

the proportions of material concentrations, and ignore their variability and 

uncertainty, as well as the effects this has on the value and operational feasibility of 

the production schedule (Dimitrakopoulos et al., 2002). Godoy (2003) and Godoy 

and Dimitrakopoulos (2004) state that geological uncertainty is the major 

contributor to not meeting project expectations. This, because the optimization of a 

mine design entails non-linear transfer functions, and using a deterministic model to 

optimize it can provide misleading results. In their study, the authors demonstrate 

that including this uncertainty significantly reduces the deviation from production 

targets, and at the same time, it increases the total value of the project.  

1.2.1.1 Modelling geological uncertainty 

The importance of accounting for geological uncertainty has been documented 

for decades (Journel, 1974; Dowd, 1976, 1994, 1997; Journel and Huijbregts, 1978; 

David, 1988; Ravenscroft, 1992; Goovaerts, 1997; Rossi and Deutsch, 2014). 
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Journel (1974) states that for lack of perfect knowledge of the fluctuations of 

different characteristics of the extracted material, simulations of the reality are 

needed to model the deposit’s spatial uncertainty of the characteristics of interest, 

such as the grades or the stripping ratio. Stochastic simulation can be used to 

generate equally probable representations of the orebody, which respect the spatial 

correlation and local variability of the deposit, providing a probabilistic assessment 

of a variable over a group of blocks (Journel and Huijbregts, 1978; Isaaks, 1991; 

Chiles and Delfiner, 1999; Godoy, 2003; Remy et al., 2009; Rossi and Deutsch, 

2014). 

Among the different stochastic simulation techniques, an efficient and 

straightforward method to generate multiple equally-probable representations of a 

deposit is Direct Block Simulation (DBSim), thoroughly described in Godoy (2003). 

DBSim combines the upside characteristics of LU decomposition method (Davis, 

1987), with the qualities of the well-known sequential Gaussian simulation (SGS) 

(Goovaerts, 1997), and is a step forward in a more computationally efficient method 

than the generalized sequential Gaussian simulation (GSGS) described by Luo 

(1998). LU method (Davis, 1987) is capable of simulating simultaneously and in a 

fast way a group of nodes; however, it is a computationally expensive method, as the 

decomposition of the covariance matrix into its lower and upper components (thus 

the name LU) requires the order of n3 computations for a matrix of dimensions 'n x 

n', i.e., with ‘n’ nodes to simulate. On the other hand, SGS has the upside of being 

easily implemented but can turn to be very slow as the number of nodes ‘n’ to 

simulate increase.  
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DBSim method starts by dividing the volume to be simulated into groups of 

nodes, generally accordant with the dimensions of the selective mining unit (SMU) 

defined by the operation (Godoy, 2003; Dimitrakopoulos and Luo, 2004; Boucher 

and Dimitrakopoulos, 2009). Subsequently, each of the groups is visited following a 

random path, sequentially simulating the internal nodes of each group by LU 

decomposition, which in these conditions is a fast and feasible method given the 

reduced size of the groups. The main difference between DBSim and GSGS, is that, 

once the internal nodes of a group are simulated, instead of keeping all the 

information from each simulated node, as in GSGS, DBSim averages the simulated 

values of the group, and only stores this resulting value, liberating the memory 

required to store each individual node. This mechanism aims at saving 

computational time by accounting in advance for the subsequent re-blocking of the 

deposit, which is a common first step in the mine planning process, where point-

support simulated nodes are averaged into the mine’s SMU dimensions. Because of 

this memory liberation, DBSim becomes computationally inexpensive and simple to 

implement.  

Together with this, DBSim can easily be extended to the simulation of multi-

element deposits by using methods such as the minimum/maximum autocorrelation 

factors (MAF) (Desbarats, 2001; Rondon, 2012). This method de-correlates the 

variables of interest so that they can be independently simulated (through a method 

such as DBSim) and then re-joined to generate the multivariate simulations. In this 

case, however, when using DBSim, a double storage of the data must be done: once 

the internal nodes of a block are simulated, they must all be back-transformed into 

their original coordinates, and subsequently averaged and stored outside of the 



 

10 
 

simulation space. On the other hand, the nodes in the simulation space must also be 

averaged (in their transformed coordinates) to be used to condition the remaining 

simulation. Clear examples of this process can be found in Benndorf and 

Dimitrakopoulos (2018) and Boucher and Dimitrakopoulos (2009, 2012). 

All previously mentioned methods are Gaussian based, where all conditioning 

data needs to be transformed into normal-space before being used to simulate the 

deposit. These methods use variogram models as basis to represent the deposit’s 

statistics, which is a second-order measure of the deposit’s spatial continuity. 

However, second-order statistics are unable to correctly reproduce complex 

structures of the deposit. Extensive literature can be found on new generations of 

geological simulation methods. This latest research focuses on exploring the higher-

order statistics of the geological data by doing multi-point simulations, which are 

able to capture complex structures of the deposit, obtaining more information from 

the conditioning data, and improving the reliability of the simulations generated 

(Strebelle, 2002; Arpat and Caers, 2007; Remy et al., 2009; Dimitrakopoulos et al., 

2010; Mustapha and Dimitrakopoulos, 2010b, a, 2011; Mustapha et al., 2011).  

Most high-order methods replace the variogram model by training images, 

which are a geologic analog of the deposit’s mineralized variable (Zhang et al., 

2006; Minniakhmetov and Dimitrakopoulos, 2017a). Abolhassani et al. (2017) 

implements training images in conjunction with machine learning techniques to 

develop a high-order, nonstationary sequential simulation method, showing 

promising results. However, generating these training images is an issue in itself 

(Goodfellow et al., 2012), and thus, new fully data-driven methods are being 

developed (Minniakhmetov and Dimitrakopoulos, 2017b). All these advancements 



 

11 
 

are done with the goal of producing better quality, and more reliable representations 

of the deposit to use as input to the mine planning optimization. 

1.2.1.2 Strategic mine planning under uncertainty 

Conventional mine planning approaches (Hoerger et al., 1999) ignore the non-

linear characteristics of the mine design and production scheduling processes, and 

assume that the optimization of the mine plan using an estimated orebody as input to 

a deterministic model will provide an average output solution. This is a major 

assumption due to the non-linear transfer functions that take place during the mine 

planning optimization (Ravenscroft, 1992; Dimitrakopoulos et al., 2002). Using 

estimated orebody models as input to the model produces biased mine plans that 

ignore the data’s local variability. Monkhouse and Yeates (2005) note that 

conventional LOM optimization methods ignore uncertainty and are full of 

assumptions which will surely be wrong, rendering the supposed optimal solutions 

suboptimal under the uncertain real world.  

A first approach at accounting for geological uncertainty in the mine design and 

production scheduling process was made by Godoy (2003) and Godoy and 

Dimitrakopoulos (2004), who use simulated annealing (SA) (Kirkpatrick et al., 

1983; Geman and Geman, 1984; Osman and Laporte, 1996). Here, the authors 

produce a set of schedules, each optimal to one of the geological simulations used, 

and use them as input to an optimization model which jointly considers them to 

generate a single schedule that minimizes overall deviations from ore and waste 

production targets.  
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A similar analysis is done by Leite and Dimitrakopoulos (Leite and 

Dimitrakopoulos, 2007) who apply this method to a copper mine obtaining a 15% 

increase in NPV, even though maximizing project value is not the direct objective of 

the formulation. As in Godoy (2003) and Godoy and Dimitrakopoulos (2004), the 

optimization mechanism used consists of three steps. First, the ultimate pit limit and 

mining rates is optimized. Next, independent schedules are obtained for each 

simulated orebody, and finally, these independent schedules are combines through 

an annealing schedule. The final schedule has an increased NPV compared to the 

traditional schedule, however, because of the assumption of a pre-defined optimal 

ultimate pit limit in the first step, it has a decreased life of mine compared to the 

traditional schedule.  

Similarly, Albor and Dimitrakopoulos (2009) use SA to optimize an open pit 

mine production schedule under geological uncertainty, and address the impact of 

different crucial tuning parameters of the algorithm, such as the effect that the 

number of initial schedules has on the convergence of the results, and the effect of 

different initial solutions. An application on a case study shows a 25% increase in 

NPV when compared to traditional scheduling methods. Just as in Leite and 

Dimitrakopoulos (Leite and Dimitrakopoulos, 2007), initial results present a shorter 

life of mine for the stochastic solution, however, all these studies assumed a fixed 

ultimate pit limit defined based on the Lerchs-Grossman algorithm (Lerchs and 

Grossmann, 1965) with discounting, for both deterministic and stochastic cases. In 

their study, the authors prove that by leaving the ultimate pit limit free, the 

stochastically optimal pit limit is actually larger than the one designed by 

conventional optimizers (17% larger in the case study presented, in terms of total 
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tonnage), increasing the life of the project in one year when compared to the 

traditional plan of the case study. The authors show that this effect is consistent 

throughout multiple case studies. 

Another approach is proposed by Meagher et al. (2009) who include price and 

exchange rate variability as well as geological uncertainty for pushback design 

formulating the problem as a max flow problem and using a minimum cut 

algorithm. The authors apply their method to a copper open pit mine, and their 

results show an increase in project value of 10 to 50% along the life of the mine. 

Asad and Dimitrakopoulos (2013a) present a parametric maximum flow algorithm 

to optimize the open pit mine design under uncertain supply (geology) and demand 

(commodity price). The optimization uses multiple simulations of both uncertainties 

to generate time-dependent discounted block values, and creates a graph based on 

this framework. In their paper, the authors focus on the optimization of phase 

designs and ultimate pit limit, and an application at a case study shows that the 

stochastic pit limit is 45% larger than the one obtained with conventional methods, 

presenting both higher NPV and metal production. Asad et al. (2014) extend the 

work done by Asad and Dimitrakopoulos (2013a) to consider the phase design and 

ultimate pit limit optimization of a mining complex with multiple ore processing 

streams under geological uncertainty. Results of a case study show that the 

stochastic solution produces an almost 9% larger ultimate pit limit, with a 14% 

higher NPV and a 10% higher copper production when compared to results obtained 

through current practices. More recently, Chatterjee et al. (2016) introduce an open 

pit mine design optimization approach under commodity price uncertainty and also 

focus on the design of production phases and ultimate pit limit definition. The 
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authors present a novel method for commodity price simulations, based on 

sequential Gaussian simulation with smoothing splines, and present a stochastic 

formulation which efficiently considers these simulations simultaneously. However, 

the paper does not consider geological uncertainty or the actual scheduling of the 

mining operation. 

To date, different methods have been developed to allow the integration of 

geological uncertainty into the design and evaluation of a project, most of them 

based on stochastic programming. Birge and Louveaux (1997) define stochastic 

mathematical programming as formulations where parameters of the formulation are 

assumed to be uncertain (i.e. random fields), with a known probability distribution 

assigned to them. To include this uncertainty, a set of scenarios is considered 

simultaneously throughout the optimization process to obtain the production 

schedule, and not independently as in the previous cases mentioned (Ramazan and 

Dimitrakopoulos, 2004a; Leite and Dimitrakopoulos, 2007). 

Ramazan and Dimitrakopoulos (2004b, a) aim at solving the long-term mine 

production scheduling optimization under geological uncertainty, and model it as a 

two-stage stochastic integer program with fixed recourse to minimize deviations 

from production targets. In their model, the set of orebody simulations is jointly 

used as input, and decision variables are grouped into extraction and processing 

decision variables. The first, correspond to 1st stage decision variables taken under 

uncertainty, and the second, to 2nd stage variables taken as recourse, after some or all 

of the uncertainty has been uncovered (Birge and Louveaux, 1997), defining where a 

block is sent after it is extracted. The authors also include extra constraints to 

generate smooth, operationally feasible schedules for a complex multi-element 
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deposit. Ramazan and Dimitrakopoulos (2013) extend this model and  account for 

leaching, as well as sending and retrieving material from a stockpile. The authors 

also implement a geological risk discounting rate (GRD) introduced by 

Dimitrakopoulos and Ramazan (2004), which increases the cost of deviating on the 

initial years of operation, ensuring a steady feed, and decreases it towards the end of 

the LOM, when more information is available. To reduce the computational cost of 

the formulation, the optimization is first done without considering the stochastic 

constraints related to grade blending, processing, and metal production, and this 

initial solution is later used as a starting point for the full SIP model. Together with 

this, to reduce the computational cost even further, waste blocks are considered 

continuous variables, and only ore blocks are considered integers. However, to 

ensure slope constraints are respected, a waste block must be completely extracted 

before its underlying predecessors can be mined. 

Lamghari et al. (2013) also formulate the mine extraction scheduling problem of 

an open pit mine under geological uncertainty as a two-stage stochastic 

programming model and use a Variable Neighbourhood Descent (VND) 

metaheuristic algorithm (Mladenović and Hansen, 1997; Hansen and Mladenović, 

2001) to solve it. Two different metaheuristic approaches are proposed, 

differentiated in the way the initial solution is created, and later improved by using 

VND algorithm. Both methods proposed present very favorable results when 

compared to the linear relaxation of the problem (solved using CPLEX (2011)), 

presenting a maximum gap of 2% and 5% respectively. Lamghari et al.  (2015) later 

develop a two-phase hybrid method to optimize the open pit schedule, which uses a 

series of linear programming models that are sequentially applied to develop an 
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initial solution. This initial solution is later improved by applying a VND heuristic 

to three neighbourhoods. The proposed formulation is able to solve a large-scale 

NP-hard problem in a few minutes, presenting less than a 3.2% gap with respect to 

the linear relaxation of the problem obtained using ILOG CPLEX (2011).  

Other applications of stochastic methods in comparison with the deterministic 

assessment can be found in the literature (Sabour and Poulin, 2006; Musingwini et 

al., 2007; Dimitrakopoulos and Sabour, 2007; Albor and Dimitrakopoulos, 2010). 

However, all the mentioned studies aim at optimizing the mining schedule as an 

independent component of the mining complex and don’t account for the whole 

mineral value chain and the synergies that exist between its different components. 

1.2.1.3 Global or simultaneous optimization 

During the last few years, mine planning research has evolved to focus on 

optimizing all stages of a mining complex simultaneously, from the mine to the final 

costumer, being referred to as global or simultaneous optimization (Hoerger et al., 

1999; Whittle, 2007, 2010a, b; Pimentel et al., 2010; Bodon et al., 2011). Pimentel 

et al. (2010) introduce a mining operation as a supply chain, served by logistic 

channels, and develop a decision-support system to address a global mining supply 

chain as an integrated system. In their paper, the authors discuss work done on 

ultimate pit selection, stochastic optimization, and the importance of blending, 

among others. In addition, different possible solution approaches to the integrated 

mining supply chain are discussed, concluding that heuristics would be the best 

alternative for optimizing the production plan of any real-world mining supply 

chain, due to its size and complexity. Whittle (2007) introduces the Prober 
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algorithm, a software designed to optimize multiple mines with complex blending 

constraints and processing destinations. The algorithm works by iteratively creating 

random feasible solutions, which are locally improved by defining optimal cut-off 

grades and downstream decisions, such as blending, stockpiling, and general 

production plan. To reduce the complexity of the model, the algorithm aggregates 

blocks by material types, which are in turn grouped into panels. In the model, 

however, it is assumed that blocks in a panel are extracted in the same proportion, 

indirectly violating slope constraints, as blocks in a lower bench may be partially 

mined before their overlying blocks are fully extracted. Whittle (2010b) introduces 

ProberC, an advanced version of the algorithm introduced in Whittle (2007), where 

more complex costing structures and different configurations of mining operations 

can be optimized. However, the optimization is still deterministic, using an 

estimated orebody model which misrepresents the proportions of material grades, 

and ignores the uncertainty and local variability of the grades and material types of 

the deposit. Similarly, Whittle (2010a) presents an “enterprise optimization”, which 

consists on ten steps to follow to simultaneously optimize a mining operation using 

Whittle Software (Whittle, 1999), stressing that decisions made at any point in the 

mineral value chain can potentially affect the decision for all other points in the 

chain. However, just as in the previous studies, uncertainty is not considered. 

Whittle (2014) notes how company policies can often hinder the simultaneous 

optimization efforts by establishing misleading targets and objectives which are not 

focused on maximizing value, and highlights the importance of creating integrated 

teams to optimize a mining complex, consisting of mining engineers, metallurgists, 

accountants, etc. In his paper the author discusses the difficulties that entail shifting 
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the paradigm of a whole mining company from its traditional optimization methods, 

but highlights that, based on different case studies, the returns for doing so can be 

considerable.  

Stone et al. (2007) present Blasor, an optimization tool formulated as a mixed 

integer linear problem, which is able to optimize the extraction sequence of multiple 

mines, stockpiles and processing streams, and is solved with ILOG CPLEX (2011). 

The computational cost of the formulation is reduced by aggregating connected 

blocks by the similarity of their properties, considerably reducing the number of 

variables in the model. The authors show how their approach improves performance 

compared to the traditional independent optimization of the value chain’s stages. 

Zuckerberg et al. (2007) present an extension of the Blasor optimizer, BlasorIPD, 

specifically designed for waste handling through in-pit-dumping. This extended 

model can flag areas of the pit which have been extracted and can be filled with 

waste material, ensuring no ore access is lost, and that slope constraints are 

respected after the waste disposal. However, in addition to the aggregation of 

blocks, none of these models account for the inherent uncertainties governing the 

model. 

These integrated formulations can simultaneously optimize a mining complex, 

taking advantage of the synergies that exist between its components. However, due 

to the size and complexity of the problem, these models have required major 

simplifications to obtain linear formulations, solvable in a reasonable amount of 

time. Such simplifications are, for example, avoiding to model stockpiles given their 

non-linear relations, aggregating blocks, which lead to infeasible schedules and 

slope violations, or using pre-calculated economic values of blocks. Despite these 
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facts, arguably the strongest assumption of the mentioned simultaneous optimization 

methods is ignoring the uncertainty related to the geology, which, as mentioned in 

section 1.2.1.1, is a key parameter of the mining complex. 

1.2.1.4 Optimising mining complexes under uncertainty 

Stochastic simultaneous optimization of a mining complex integrates the effect 

of geological uncertainty and variability into the global optimization model, 

producing mine plans and production schedules that are able to meet complex 

blending requirements, manage technical risk, and maximize project value, while 

accounting for all components of the mining complex (Montiel and 

Dimitrakopoulos, 2015, 2017; Farmer, 2016; Montiel et al., 2016; Goodfellow and 

Dimitrakopoulos, 2016, 2017).  

Montiel and Dimitrakopoulos (2013) present one of the first efforts to model the 

whole mining complex and optimize the extraction sequence under geological 

uncertainty, considering both, material type and ore grade uncertainties. The authors 

consider multiple ore types which, according to their characteristics, can be 

processed in a set of different processing streams. The proposed method is applied 

over a world-class copper open-pit mine, reducing production deviations to less than 

5%, compared to the original schedule which presented deviations as high as 20%, 

and, at the same time, increasing the expected net present value by 4%. However, 

the formulation presents limitations in its destination policy decisions, which are the 

decision of where a block is sent after it is extracted. This happens when the material 

type of a block varies between simulations, as some processes accept only certain 

material types, and misclassification errors must be avoided, making it hard to 
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define a block-based destination decision. Also, no stockpiles or external sources are 

considered in this mining complex configuration. 

To deal with these limitations, Montiel (2014) and Montiel and Dimitrakopoulos 

(2017) developed a robust destination policy, and optimize the whole mining 

complex with multiple processing streams under grade and material type 

uncertainty. In their model, the average profitability of each destination is ranked for 

each block, and the optimizer defines the final destination of a block as a knapsack 

problem. This way, the most valuable blocks are sent to their first ranked 

destination, and as processing capacities are met, remaining blocks are sent to their 

second ranked destination, and so on, until all extracted blocks have a defined 

destination. The proposed model is able to develop a mining schedule that defines 

when each block is mined, and where it is sent.  

The previously mentioned stochastic mining complex optimization methods 

penalize deviations from targets by defining capacity limits as soft constraints. This 

mechanism minimizes deviations but does not eliminate them. Thus, when 

executing the mine plan, there may still be cases of lack or excess ore in main 

processing streams. To deal with this issue, Navarra et al. (2018) present a method 

to optimize the processing of excess ore, in case processing capacities of a mining 

complex are exceeded. This mechanism considers adapting the process’ cut-off 

grade to increase ore selectivity in case the ore feed exceeds that given processing 

plant’s capacity. 

Menabde et al. (2007) discuss the stochastic Blasor, an extension of the 

optimization tool presented by Stone et al. (2007) which considers material grade 

uncertainty through a set of simulated scenarios. The authors also define a robust 
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destination policy based on cut-off grade optimization which accounts for geological 

uncertainty, and present a MIP formulation where the destination policy is defined 

to ensure that blocks with similar grades are sent to the same destination on each 

given period. The destination policy is defined by discretizing the grade distribution 

of the different orebody simulations into bins and defining a particular bin limit as 

the optimized cut-off grade for each period, according to the amount of ore and 

waste in the different scenarios. The proposed method provides a robust overall 

policy and solves the non-linearity issues of the formulation, and by doing so, it is 

able to avoid misclassification problems. Here, the authors implement an 

aggregation mechanism that groups blocks into panels, reducing the number of 

binary variables in the model considerably. However, this formulation only accounts 

for a mine with just one element and a single processing stream, defining the cut-off 

grade that decides if material is ore or waste. Thus, it is limited as it does not allow 

the classification of multiple attributes or multi-element deposits, where more than 

one element must be considered simultaneously to meet blending requirements. 

One of the main challenges when modelling the stochastic simultaneous 

optimization of a mining complex, together with the mentioned destination policy 

problems, is the non-linear transformations that appear when stockpiles and 

blending constraints are included into the formulation. Goodfellow and 

Dimitrakopoulos (2016, 2017) propose a general formulation of a mining complex 

which allows modelling different value chain relations under geological uncertainty, 

without falling into the simplifications mentioned in the previous section. The 

authors define primary and hereditary attributes to model the flow of material 

through the mining complex, where primary attributes correspond to additive 
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characteristics (metal content, tonnages, etc.), whereas hereditary attributes are 

derived from primary ones (such as grades, which can be calculated as metal 

tonnage divided by the block’s total tonnage, or processing recoveries, economic 

value, etc.). To deal with the destination policy issues, the authors extend the bin 

mechanism presented by Menabde et al. (2007), and propose a k-means++ clustering 

mechanism to pre-process the deposit and classify blocks into different clusters 

according to their value over multiple variables (such as material type and 

concentration of different elements). With this clustering mechanism, the destination 

policy is decided annually for each different cluster, and not for each individual 

block. The advantage of this method is that it allows accounting for multi-variate 

relations when defining the destination of a block, which is a necessity when 

optimizing multi-element mines or complex blending requirements. Also, through 

clustering, the authors are able to produce a destination policy guide which can 

provide the optimal destination of a block according to the value of its attributes, by 

defining its cluster membership.  

The destination policy decision can be taken based on multiple aspects, such as 

defining certain ranges of grades accepted at the different destinations, commonly 

referred to as cut-off grades (Lane, 1988; Whittle and Wharton, 1995; King, 1999; 

Rendu, 2014), or based on the general revenues expected from sending a block to 

each of the possible processing streams. However, this last policy entails a serious 

oversimplification, which is to assume that a block has a dollar value (Lerchs and 

Grossmann, 1965; Tolwinski and Underwood, 1996; Ramazan, 2007; Meagher et 

al., 2009) and not material, which must be blended, treated, processed, refined, etc. 

in order to actually receive some profit. This last point entails strong biases over the 
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process, as assuming that a block has a pre-defined value disregards, for example, 

the effect of time value of money. The project’s discount rate, not to mention the 

current market price of the commodity being mined, will ultimately define the value 

of a block, but only once it has been mined, processed and sold. Together with this, 

assuming a pre-defined dollar value of a block entails defining when and where this 

block will be processed, ignoring the effect of non-linear recovery curves and 

blending requirements at the different processing streams, which depend on the 

resulting characteristics of the group of blocks being processed together (Ramazan 

and Dimitrakopoulos, 2004b, a, 2013; Wharton, 2004; Stone et al., 2005, 2007; 

Whittle, 2010b; Lamghari and Dimitrakopoulos, 2012; Leite and Dimitrakopoulos, 

2014).  

In models that assume an economic value of the blocks, usually, the optimizer 

decides where an extracted block should be sent based on its concentration being 

higher or lower than a cut-off grade of some principal element. In reality, blocks 

have different attributes and concentration of elements which must be extracted, 

transported, blended, processed and sold, in order to obtain an actual financial gain 

from them. This process is also strongly affected by the geological uncertainty 

present in the deposit, which will ultimately define the performance of processing 

stream chosen to treat the extracted block. Thus, the actual value of a block depends 

(i) on the period when it is extracted, (ii) on the quality of the elements contained in 

it, (iii) on the current price for each of these elements, as well as iv) on the 

destination where the block is processed, which entails the blending constraints, 

processing costs, recovery curve of the metallurgical process, etc. Most of which are 

non-linear aspects which are avoided in most conventional optimizers.  
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Meagher et al. (2009) work on designing dynamic destination policies, where 

the destination decisions are updated according to new information that becomes 

available once a block is extracted. The study considers geological and market 

uncertainties, as well as the time value of money by calculating the value of a block 

according to its period of extraction. However, the proposed model only accounts 

for one mine with one element which can be processed in one processing plant, and 

the model would grow exponentially if a mining complex with multiple elements, 

deposits, and processing streams was considered. Together with this, the focus is 

still placed on assigning an individual dollar value to each block, instead of 

optimizing the complex as a whole. Meagher et al. (2014) develop a dynamic cut-off 

grade policy to define block destination, where the optimal cut-off grade is defined 

on a yearly basis in order to optimize the pushback design and maximize project 

value. However, as in Meagher et al. (2009), the model only considers one element 

with one processing facility, and the optimization is done greedily by sequentially 

maximizing the NPV of each pushback, instead of optimizing the whole deposit 

simultaneously. Together with this, their method is not extended to the optimization 

of the mine scheduling problem. 

Asad and Dimitrakopoulos (2013b) develop a cut-off grade optimization model 

for an open pit mining complex with multiple processing streams, under uncertainty 

in ore supply. The proposed model is defined as an extension of Lane’s model 

(Lane, 1988) to include geological uncertainty, aiming at maximizing NPV while 

minimizing deviations from production targets. An application at a large copper 

mine presents increases in NPV of over 13%. However, even though the 

optimization provides the optimal annual cut-off grade and extraction capacities, it 
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does not provide an actual schedule, and the method is only able to account for one 

mine with one element. 

Montiel and Dimitrakopoulos (2015) propose a global mining complex 

optimization model under grade and material type uncertainty, with multiple 

processing and transportation alternatives. The authors test their formulation over a 

copper mine with two pits, with multiple processing streams and complex blending 

constraints, and show that their proposed stochastic method not only improves the 

project’s NPV by 5% when compared to the traditional deterministic method (which 

is shown to strongly violate blending and processing constraints), but it considerably 

reduces the risk of not meeting blending constraints and processing capacities at the 

different destinations. The proposed model also includes alternatives over the 

processing plant’s grinding size, as well as two different transportation systems with 

different assigned costs and capacities, allowing the optimizer to choose the optimal 

grinding configuration and transportation system. This configuration tuning allows 

increasing the efficiency of the optimization model, and at the same time, produces 

more realistic plans which adapt to the characteristics of the material being extracted 

and treated, tackling some of the most important limitations of previous models.  

The different operating modes defined by the authors affect, on the one hand, 

processing variables, and on the other hand, transportation system alternatives. The 

first, tackle variables such as metallurgical recoveries, operating costs, blending 

constraints and throughput of the processing destination, where for example, a 

processing plant using fine grinding will have higher recovery, but also higher costs 

and lower throughput than a plant operating at coarse grinding. The second 

alternatives vary the available capacity and operational costs provided by the 
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different transportation systems. The proposed model aims at maximizing project 

value and simultaneously minimizes penalties related to deviations from production, 

transportation, processing and metal targets. Due to the size of the problem, the 

authors implement a SA algorithm that iteratively perturbs an initial solution at each 

decision level, until a stopping criterion is met. However, despite the alternatives 

available, the final solution is still static, and assumes that the setting of the mining 

complex will stay the same along the LOM. 

Considering operational mode alternatives such as the ones mentioned in 

Montiel and Dimitrakopoulos (2015) allows having a better control over 

geometallurgical variables that affect the mining complex, such as for example, 

considering throughput as an active parameter that can be tuned according to the 

material fed to the plant; or adapting the mines’ blasting pattern according to the 

hardness of the rock being blasted. Dowd et al. (2016), discuss that describing 

geological, operational and geometallurgical uncertainties and integrating them into 

the optimization process is one of the main challenges in strategic mine planning 

nowadays. 

It has been seen that, as the complexity of mining projects increase in terms of 

number of deposits, processing streams and number of elements, traditional 

optimization methods and destination policies lack in their ability to consider the 

multidimensional aspect of the mining optimization problem. Recent work on 

destination policy has extended from cut-off grade optimization to integrate 

multivariate distributions, which makes them more adept to complex mining 

projects. 
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Goodfellow (2014) models the mining complex under geological uncertainty as 

a two-stage stochastic formulation, and adds the decision variable of investing in 

capital expenditures (CAPEX). Their work extends from the model proposed by 

Godoy and Dimitrakopoulos (2004) for production capacity selection and equipment 

acquisition, and  lets the optimizer define the truck and shovel fleet size and 

purchase plan (i.e., the mine’s extraction capacity). In his model, different 

operational details such as lead times, or the life of the equipment are also included. 

Farmer (2016) also works on integrating into the model the optimization of mining 

and processing capacities. Here, the author uses a case study to compare the 

traditional deterministic plan, with the two-stage stochastic formulation one, 

showing that the stochastic model with optimized capacities increases the project 

value by 12% compared to the deterministic solution. Goodfellow (2014) also 

extends the work proposed by Menabde et al. (2007) on destination policy, and 

implements a k-means++ clustering mechanism to define the processing destination 

of blocks considering multiple attributes. K-means clustering is a well-known, fairly 

robust mechanism to group data which is easy to implement (Arthur and 

Vassilvitskii, 2007; Gan et al., 2007). This clustering method allows the 

development of a robust destination policy which accounts for multiple attributes 

and material types, as well as for geological uncertainty. This way, as in Menabde et 

al. (2007), blocks with “similar” attributes belong to the same cluster (or bin in 

Menabde et al. (2007)) and are sent to the same destination. Together with this, the 

author notes that this clustering mechanism can be implemented for predictive data 

analysis, to define a trend and classify new data. This predictive mechanism is 

particularly useful to make decisions over new information obtained during 
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extraction, as each newly extracted block can be represented as a data point 

according to its characteristics, and plotted on the clustering grid, defining its 

destination based on its cluster classification. Goodfellow and Dimtrakopoulos 

(2014) use this mechanism and develop a stochastic optimization model of a mining 

complex which accounts for geological uncertainty, and considers a 

multidimensional destination policy.  

Though highly interesting, this method does not directly take into consideration 

the blending constraints that some processing streams entail. For example, if 

particularly tight metallurgical constraints are required by a process, such as a 

specific silica-magnesium ratio, if a block has a high magnesium concentration, and 

another block has a high silica concentration, then it would be preferable to redefine 

clustering to group these two blocks to be processed together, even if their attributes 

are not similar. 

The goal of creating clusters of blocks is twofold: on the one hand, to reduce the 

computational cost inherent in mining optimization caused mainly by the very large 

number of blocks that need to be scheduled. On the other hand, to consider other 

variables within the processing streams to realistically model the material being 

processed.  

Considering geometallurgical variables in strategic mine planning 

A mining project’s performance depends on metal production, but also on the 

management of critical geometallurgical variables. These variables involve any rock 

property that has a positive or negative effect on the business’ ultimate value 

(Coward et al., 2009; Dunham et al., 2011), such as energy consumptions at the 
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different processes, deleterious elements involved, mineability of the deposit, etc. 

Dunham et al. (2011) state that geometallurgy is a cross-discipline that combines 

geology, metallurgy, and mine planning, to design a processing stream fit to the 

actual characteristics of the resource. Most of these variables are omitted from 

conventional mine planning methods, not to mention the variability and uncertainty 

related to them. However, to obtain reliable forecasts of a strategic mine plan, 

additional details on the rock properties, and specifically, on geometallurgical 

variables of the extracted material need to be incorporated into the related 

optimization process. The authors note that, in general, an evaluation of the 

deposit’s geometallurgy must be included in the earliest stages of a mining project, 

as rock quality and its characteristics affect not only the plant’s performance, but 

also the equipment selection and even the mining method chosen.  

Some work has been done in incorporating these variables into the mine design 

and planning steps. Williams and Richardson (2004) propose a geometallurgical 

mapping approach which is integrated into the 3D block model of a deposit and can 

be used to calculate the metallurgical response of certain blocks to forecast their 

recovery. However, the proposed model does not consider the effects of blending 

and mixing of material when it is processed. With this 3D model, forecasted project 

cash flows can be generated by incorporating these recoveries into the mine 

planning optimization process, but as if each block was being processed by itself. 

Here, an ore characterization procedure is used as a base for the geometallurgical 

mapping approach, which corresponds to the quantification of the physical data on 

orebody samples. However, the authors highlight the importance of correctly 
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defining the sampling and testing methods, and the effect this has on the parameters’ 

range of variability, as well as quality of information. 

An alternative approach is proposed by Coward et al. (2009) who classify as 

“primary” the geometallurgical variables that reflect an intrinsic attribute of the 

rock, such as mass, grain size, density, etc., and as “response” the ones that reflect 

the rock’s response of an attribute to processes, such as throughput, recovery, 

grindability, etc. In their model, primary variables are defined to be usually additive 

or easily managed in a linear fashion; whereas response variables present complex 

distributions which cannot be easily manipulated, for example, the non-linear quality 

of metal recovery. The authors state that, because most of the rock properties are 

non-linear, traditional estimation methods for orebody modelling, such as kriging, 

are unable to represent them (or characterize their value without serious biases in the 

results). With this respect, they propose conditional simulation to represent the 

orebody, which has the advantage of presenting the rocks actual variability and 

allows the integration of complex non-linear variables into the model. The proposed 

framework aims at selecting the most important geometallurgical variables to 

include in the model, given the commodities and deposit at hand, as well as the 

processing technologies available. However, simulations are done at point support, 

and the process of upscaling some of these variables into block support entails 

biases that so far have not been addressed in the literature.  

Coward et al. (2013) apply the previous framework to a mining operation, 

aiming to optimize a mining operation by evaluating geometallurgical recovery 

factors. Here, the authors note that the main sources of uncertainty must be 

incorporated into the model and allowed to interact at the correct spatial and 
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temporal scale, to obtain a reliable scenario-based project evaluation. Three sources 

of uncertainty are specified, and modelling methods are proposed for each (i) spatial 

uncertainty, meaning pertinent geological attributes of the mine deposit considered, 

(ii) operational uncertainty, considering the system’s flexibilities and process 

configurations, and (iii) future uncertainty, corresponding to the project’s future 

context, which cannot be predicted with any reliability. In the first case, conditional 

simulation of the deposit is proposed, to quantify the geological uncertainty by 

generating multiple representations of pertinent attributes of a deposit. To generate 

models of operational uncertainty, the authors suggest generating regression analysis 

mechanisms to simulate multiple recovery curves of a process, based on the 

available raw data. Finally, future uncertainties are considered by using scenario 

analysis over multiple forecasts of the different externalities affecting the project, 

such as prices, costs, taxes, and exchange rates. The authors state that “the 

importance of the scenarios lies in their use to test the robustness of a strategy, not in 

their prediction accuracy.” However, the proposed model assumes a fixed ultimate 

pit limit and does not provide any detail on how the production schedule is 

generated, suggesting that the uncertainty is not incorporated into this crucial part of 

the optimization process, but rather a robustness study is made over a given mine 

design. 

Macfarlane and Williams (2014) present an optimization model for a copper 

mine implementing a geometallurgical solution. The case study presented contains 

uneven presence of cobalt in the deposit, which hinders the blending constraints at 

the processing destinations. This causes consistent shortfalls on plant feed rates, 

which also compromise the stability of the mineral value chain in terms of its main 
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performance parameters, such as the throughput rates, acid consumption, and 

processing recoveries. Analyzing the behavior of these parameters and their effect 

on the mine production planning shows that mining rate should be increased, and 

stockpiles should be created to obtain steady processing rates and the required 

blending targets. It is shown that the costs that must be incurred to increase mining 

rates and material re-handling are considerably smaller than the increased revenues 

produced by steady processing rates. However, the mathematical optimization 

model used is not provided, nor is any detail over the exact changes done over the 

system; together with this, the focus is placed on obtaining a steady processing rate, 

and not on directly maximizing cash flows. 

With respect to the accurate representation of geometallurgical variables, Van 

den Boogaart et al. (2014) present a simulation method for representing discrete and 

continuous geometallurgical parameters. The authors state that “conditional 

geostatistical simulation of geometallurgical parameters enables the construction of 

a processing model for computing recovery, equipment usage, processing costs, and 

other relevant parameters, and thus the monetary value for mining and processing a 

block with certain parameters.” However, they note that traditional geostatistical 

techniques cannot be directly applied for conditional simulation of some 

geometallurgical parameters that have non-Euclidean statistical scales, such as grain 

geometry or mineral composition, which are all non-additive, producing, in some 

cases, infeasible values in the simulation. In addition, they state that, as the mineral 

processing is nonlinear, higher order statistics are needed, and not just the mean and 

variance of these variables. The authors propose a multi-point conditional simulation 

framework with a training image to jointly simulate dependent variables, ensuring 
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that the simulated points fall within the conditional distributions. They do this 

through the addition of extra influence functions, to allow including additional 

predictive variables available at the conditioning locations of the simulating pattern, 

or at the simulation location itself. In their approach, the authors simulate categorical 

variables by estimating the conditional probability distribution functions of the 

training image via multinomial logistic regression. The proposed model allows the 

use of different scales and data layers (not necessarily categorical) in conditioning 

locations, through iteratively simulating at different scales, from coarsest to finest. 

Though a very interesting approach, the proposed model is computationally very 

expensive to compute, and the authors do not tackle the problems that arise from the 

change of support of these variables from point to block scales, but propose it as 

future research. 

Geometallurgical variables are crucial in defining the performance of a mining 

complex. However, both modelling and integrating them into the optimization 

model are challenging tasks. Some simplifications can be made to obtain block-

based values of some geometallurgical variables such as hardness (Coward et al., 

2013), and proxy relations can be used to calculate recovery and throughput from 

these variables (Flores, 2005). With these representations, new methodologies and 

model extensions must be developed to correctly integrate these variables into the 

optimization process of a mineral value chain. 

1.2.1.5 Solving simultaneous optimization with metaheuristics 

With all its extensions, the formulation of the stochastic simultaneous 

optimization of a mining complex produces models that contain thousands of 
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millions of binary variables, with millions of constraints (Goodfellow, 2014; 

Lamghari and Dimitrakopoulos, 2015). Furthermore, as more realistic problems are 

modelled, non-linearities are very hard to avoid without recurring into 

oversimplifications of the model (Pimentel et al., 2010). Because of this, and due to 

the complexity of the problem, different metaheuristic methods have been developed 

to solve the stochastic simultaneous optimization of a mining complex. These 

algorithmic optimizers produce good quality solutions for non-linear large-scale 

case studies, in a reasonable amount of time, whereas conventional exact methods 

are unable to solve them, and they have successfully been used in the past for mine 

design and production scheduling such as the work described in Lamghari and 

Dimitrakopoulos (2012, 2016b, a), Lamghari et al. (2013), Goodfellow and 

Dimitrakopoulos (2017),  Montiel and Dimitrakopoulos (2017), amongst others. 

Even though metaheuristics may not necessarily provide mathematically “optimal” 

solutions, they are able to solve non-linear formulations, allowing the model to 

avoid falling into simplification.  

Heuristic algorithms are greedy procedures used to solve a mathematical 

programming model and generate a good solution (Pearl, 1984). The term 

metaheuristic corresponds to heuristic methods which have incorporated different 

iterative procedures of search mechanisms to escape from local optima and get 

closer to the globally optimal solution (Osman and Kelly, 1996; Osman and Laporte, 

1996). All these algorithms share a general stage configuration, where the algorithm 

starts by (i) a global exploration, exploring and (possibly) accepting sub-optimal 

solutions, and then gradually shift to (ii) a local improvement, where the current 

solution is improved as much as possible within the current state. This solving 
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mechanism has shown to produce very favorable results when exact methods are 

unable to provide solutions in a reasonable amount of time.  

Simulated annealing (SA) (Kirkpatrick et al., 1983; Geman and Geman, 1984) is 

a widely used metaheuristic algorithm. Based on the Metropolis algorithm 

(Metropolis et al., 1953), this method mimics the iterative heat treatment (annealing) 

of metals performed to increase their ductility. Slow cooling will allow the 

relocation of particles, increasing the ductility of the element, but taking a long time. 

On the other hand, fast cooling will cause the material to solidify fast and turn to 

glass, without time for any structure refinement. From a mathematical programming 

point of view, SA algorithm starts from an initial solution and moves by searching 

through its neighbourhood for better solutions. If none are found, inferior solutions 

can also be accepted with a certain probability (Metropolis et al., 1953), which 

depends on (i) a dynamic annealing temperature, which is updated by a cooling 

factor, and (ii) on the size of deterioration in objective function’s value. At higher 

temperatures, more unfavorable solutions are likely to be accepted, allowing the 

algorithm to diversify the search and escape from local optima. As the search 

evolves, the temperature is reduced by the predefined cooling factor, tightening the 

search and restricting the algorithm from choosing unfavorable moves, what forces 

the solution to converge. Low cooling factors allow for a broader search, usually 

resulting in better solutions, but taking a long time; on the other hand, applying a 

high cooling factor will cause the solution to converge fast, but this will likely be a 

local optimum.  

Godoy and Dimitrakopoulos (2004) were the first to use SA for the optimization 

of the mine production schedule under geological uncertainty. In their paper, the 
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authors use a set of geological simulations to account for the metal grade uncertainty 

and generate independent optimal schedules for each simulation. Subsequently, a SA 

mechanism is used to iteratively combine all these schedules into one stochastic 

solution which minimizes the deviations from ore and waste production targets over 

all simulations. This method is later implemented and extended by Leite and 

Dimitrakopoulos (2007), and Albor and Dimitrakopoulos (2009), amongst others. 

Details on their work can be found in section 1.2.1.2. 

Montiel and Dimitrakopoulos (2015, 2017) implement a SA algorithm for the 

optimization of mining complexes, and propose a solution approach that perturbs the 

mine plan at different levels of the mining complex under geological uncertainty, in 

order to generate a stochastic-based production schedule and processing policy. 

Three different decision variables are implemented in this model, defining (i) the 

extraction of a block, (ii) the operating mode at the different processing destinations, 

and (iii) the transportation system implemented. Perturbations of the SA mechanism 

occur at these three levels, aiming at improving an objective function by modifying 

the initial solution (which is generated by a traditional mining software). The 

algorithm works by first performing the scheduling perturbations, which entail 

favouring valuable blocks to be extracted earlier, and unprofitable ones to be 

extracted later on the life of the mine (given that all different operational constraints 

are satisfied); and second, executing operating mode and transportation system 

perturbations, aiming at minimizing operating and transportation costs and 

deviations. Perturbations at each different level are done iteratively, fixing solutions 

at one level to perturb and optimize solutions at the next, until a stopping criterion is 

met.  
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Goodfellow (2014) implements a particle swarm (PS) algorithm (Eberhart and 

Kennedy, 1995) that works in combination with a SA mechanism to simultaneously 

optimize the components of a mining complex with investment decisions over 

capital expenditures under geological uncertainty. The author chooses to use PS, a 

population-based metaheuristic that mimics the behavior of bird flocks or fish 

schools, because of its properties to optimize both continuous and integer variables. 

In the proposed formulation, the scheduling variables are considered integers (i.e., 

mining blocks) from the mine to the first destination (processing plant, stockpile, 

leach pad, etc.). However, after mined and transported, mining blocks become 

material, which is a continuous variable for the rest of the destinations down the 

processing stream. The optimization is divided into two steps that are repeated 

iteratively until a stopping criterion is met. The initial stage corresponds to 

scheduling or extraction decisions and destination policy, which are optimized with 

SA. Later, after a certain number of SA iterations, the solution is frozen, and a PS 

optimization process decides where the material should be sent next.  

Goodfellow (2014) notes that, as in this case not only grade and material type 

uncertainties are considered, but also investment decisions (which entail large 

available capacity changes), the value chain’s capacity constraints are greatly 

affected by the investment perturbations. Because of this, perturbations are more 

likely to converge to local optima, conflicting with the traditional implementation of 

the SA algorithm. To tackle this problem, the author combines a set of different big 

and small perturbations along the optimization at different levels of the model, 

affecting the destination policy, advancing or delaying capital expenditures, and 

changing the actual schedule. These last perturbations are done at the scheduling 
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level only, through small perturbations at block-support, and also through large 

perturbations, applying bench-wise modifications, making sure constraints are not 

violated in the process. This two-stage solution approach (SA with PS) enables 

detailed modelling of large mining complexes, which include non-linear relations 

that are typically ignored by conventional optimizers. Experimental results show 

that the proposed formulation can develop a global optimization of mine production 

schedule, destination policy and capital expenditure strategy, presenting a risk-based 

design with an increased NPV compared to the deterministic model, which does not 

consider risk. However, tuning the different parameters required for both the PS and 

the SA algorithms is a challenge in itself. 

Lamghari et al. (2013) also address the mine production scheduling problem of 

an open pit mine, and propose two variants to develop an initial solution. This 

solution is later improved by using a variable neighbourhood search (VNS) 

algorithm (Mladenović and Hansen, 1997; Hansen and Mladenović, 2001), 

introducing the concept of stochasticity of the problem into the solution method. 

Here, the authors formulate the problem as a two-stage stochastic programming 

model, and propose to solve it with two different metaheuristic approaches, 

differentiated in the way the initial solution is created. Both cases are based on 

decomposition, where smaller sub-problems are sequentially solved and later 

combined to create the initial solution. The first heuristic proposed solves each sub-

problem using exact methods (as sub-problems are of manageable size), while the 

second one uses greedy heuristics. This initial solution is later improved by applying 

a VND-based procedure. Results show that the first variation presents slightly better 

results, whereas the second requires considerably less computational time. However, 

both methods present favorable results when compared to the linear relaxation of the 
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problem (solved using CPLEX (2011)), presenting a maximum gap of barely 2% 

and 5% respectively. Lamghari et al. (2015) study the same mining scheduling 

problem, and develop a two-phase hybrid method to solve the problem which uses a 

series of linear programming models that are sequentially applied to develop an 

initial solution. This initial solution is later improved by applying a VND heuristic 

with three neighborhoods. The proposed formulation is able to solve a large-scale 

NP-hard problem in a few minutes, presenting less than a 3.2% gap with respect to 

the linear relaxation of the problem obtained using ILOG CPLEX (2011). 

Several other metaheuristic methods have been developed over the years. 

Aiming to increase the quality and efficiency of the searching mechanisms to find 

good solutions for large, complex mathematical programming models, Ropke and 

Pisinger (2004) and Pisinger and Ropke (2007) introduce an Adaptive Large 

Neighbourhood Search (ALNS) algorithm, as an evolution from the traditional 

Large Neighbourhood Search (LNS) algorithm (Shaw, 1997). In their papers, the 

authors developed this metaheuristic to solve different variants of the vehicle routing 

problem, where an initial solution is iteratively fixed and re-optimized, but where 

several large neighbourhoods compete to be used in an adaptive way to search for 

the best solution available. The way the variables are fixed and re-optimized and the 

number of variables chosen to be re-optimized (the neighbourhood) is adapted along 

the optimization, using several competing heuristic methods during the same search, 

instead of just one as in the earlier LNS. Ropke and Pisinger (2004) argue that 

alternating over several heuristics provides a more robust heuristic overall. 

Lamghari and Dimitrakopoulos (2015) implement an ALNS algorithm to solve a 

mathematical programming model of a mining complex’s mine plan under 
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geological uncertainty, contemplating almost a thousand million binary variables 

and millions of constraints. Here, the authors generate an initial feasible solution of 

the mining complex considering scheduling and destination of blocks under grade 

and material type uncertainty. ALNS is applied to improve this initial solution by 

iteratively destroying and repairing it until a stopping criterion is met. In their paper, 

the authors define fourteen destroying methods and seven repairing methods which 

alternate as the optimization evolves. These methods are interchanged according to 

their effectiveness to improve a solution, and their computational requirement, 

focusing on both intensifying, as well as diversifying the search. In this case, the 

authors use an acceptance criterion similar to Metropolis’ simulated annealing 

(Metropolis et al., 1953), where a candidate solution that improves the value of the 

optimization solution is always accepted, whereas a solution that decreases value is 

accepted with some probability (in order to escape from local maximums). 

1.2.1.6 Limitations of current formulations 

Many advancements have been made in improving the modelling and solution 

of a mining complex’s mine plan under uncertainty. However, all the 

aforementioned works have limitations that can be tackled to generate more 

informed optimization models for strategic mine planning. For example, even 

though the previously mentioned works include investments and operational 

alternatives as decision variables in the formulation (Goodfellow, 2014; Montiel, 

2014; Farmer, 2016), all current models of stochastic simultaneous optimization of a 

mining complex assume that the components and setting of the mining complex will 

stay the same. The optimal solution for a strategic mine plan does not account for 
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changes in the assumed production aspects, and thus, is assumed to be optimal over 

the LOM.  

Assuming the production needs and components of a mining complex will stay 

the same over the full LOM, and thus, that its corresponding strategic plan will 

continue being optimal, is a simplification, and one of the main limitations of 

existing models. Consequently, conventionally, mine plans are re-generated every 

year with the new information obtained and the updated objectives. This is a 

“passive” solution that can inhibit options and alternatives that may improve the 

strategic plan in terms of equipment, infrastructure, locations, etc. (Snowden et al., 

2002; Saleh et al., 2009; De Neufville and Scholtes, 2011; Del Castillo and 

Dimitrakopoulos, 2014). This is most significant for capital expenditures and high 

impact investments, as they require years of planning, and usually have a deep 

impact on the mining complex’s plan and performance. As a result, substantial 

improvements and benefits can be provided by quantifying possible options in a 

strategic LOM plan, such as, for example, investing on processing plant expansions, 

extra crushers, mining extraction fleet, etc. For example, building a state of the art 

processing plant may cost over four billion dollars, and may take almost five years 

to be completed (Mineria Chilena, 2015). Furthermore, considering the significant 

cost of investments related to the mining industry, optimizing the timing of these 

options within the strategic plan and evaluating their corresponding probabilities of 

occurring should be considered in the stochastic simultaneous optimization of a 

mining complex (including the considerable lead time to get the purchased 

equipment or build the infrastructure, and its limited life-span).  
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Traditionally, sensitivity analyses are the main and only studies done to evaluate 

the viability of these investments (Torries, 1998; Whittle et al., 2007). Monkhouse 

and Yeates (2005) note that these analyses provide some intuition on the operation’s 

performance through specific changes in some key uncertain parameters. However, 

they are limited in that these mechanisms do not inherently consider uncertainty, nor 

do they generate any type of optimized flexible plan to manage it. In addition, and 

due to it, implementing solely this analysis usually result in loss of opportunities, 

delayed projects and change-of-plans that impede transitions and result in loss of 

profit (De Neufville and Scholtes, 2011). Thus, a dynamic probability-based 

decision tree mechanism can be developed to ensure the value chain is able to plan 

and actively adapt to feasible, possible changes. As stated by Dowd et al. (2016), 

one of the main challenges in strategic mine planning in today’s world is, amongst 

others, to develop new ways to include and maximize flexibility in mine design. 

1.2.2 Dynamic decision-making in strategic planning 

1.2.2.1 Flexibility in value chains under uncertainty 

Dixit and Pindyck (1994) state that uncertainty has a decisive effect over a 

project, and although many times this uncertainty cannot be controlled, it is possible 

to increase the flexibility of the project in order to be prepared to react timely to it, 

and overall assess the probability of alternative outcomes. Lavington (1921) was one 

of the first to relate random changes and uncertainty with the value of flexibility. 

The term flexibility is a widely used concept; however, as noted by Sethi and Sethi 

(1990), because of its popularity, over the years, it has been seen to mean different 

things to different audiences, with over 50 definitions in the manufacturing literature 
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alone. In their research, the authors identify twelve types of flexibility which are 

grouped into (i) component or basic flexibilities, (ii) system flexibilities, and (iii) 

aggregate flexibilities. Within the second group, interesting flexibility concepts 

appear, which could be related to mineral value chains, such as process flexibility, 

routing flexibility, volume flexibility and expansion flexibility. Mark (2005) defines 

flexibility as “the ability of a system to maintain the competitive advantage despite 

environmental change.” Hart (1940) notes that “the preservation of flexibility is a 

fundamental means of meeting future uncertainty,” recognizing the value of 

postponing a decision until more information is available. Kulatilaka and Marks 

(1988) define production flexibility as the ability to change a process from one 

operational mode to another, providing the production process with the ability to 

modify itself in the face of uncertainty. As such, the authors note that flexibility in 

general only has value in the presence of uncertainty (Kulatilaka, 1988). Moreover, 

as stated by Merton (1997), there is a clear positive correlation between uncertainty 

and the value of flexibility, meaning that the higher the uncertainty, the more 

valuable it will be to have a flexible system. The strategic optimization of a LOM 

operation is full of uncertainties and assumptions (Monkhouse and Yeates, 2005), 

showing that including flexibility into a mining operation has the potential of being 

highly valuable. 

Gupta and Rosenhead (1968) state that “the flexibility of a decision must be 

measured in terms of the number of end states which remain as open options [after a 

first decision has been made].” Similarly, Mandelbaum and Buzacott (1986) 

represent flexibility as the relative size of the set of possible decisions to take today, 

conditioned by the decisions taken on a previous period. Thus, more remaining 
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choices will correspond to higher flexibility. In general, Saleh et al. (2009) note that 

flexibility can be seen as the potential to change, with the absence of irreversible or 

rigid commitments. In their paper, the authors identify, amongst others, the 

flexibility of designs or flexible systems, which go one step further from managerial 

flexibility, and focus on enabling projects to respond to change with minor time and 

cost changes. In their definition, a flexible system implies that the system has been 

designed with some particular characteristics, which may not be necessary or 

justifiable in the present conditions of the project, but that allows it to adapt if these 

conditions change, making the design flexible. However, the authors note the lack of 

literature in this area, specifically in topics such as how to embed flexibility in a 

system, and on how to evaluate it. Cardin et al. (2013) describe different procedures 

to generate and include flexibility in engineering systems, compared to traditional 

benchmarking and sensitivity analyses, stressing the importance of evaluating 

flexibility options from an early stage of the strategic planning. 

In summary, even if a system is entirely flexible and its configuration can be 

readily adapted, this freedom of action must be controlled and optimized to 

maximize the project’s performance and value. In other words, a flexible system 

(Saleh et al., 2009) must go hand in hand with an optimization model which is able 

to integrate these flexibilities in order to provide an optimal plan of action, so that 

the flexibility doesn’t translate into a loss of efficiency due to constant changes, or a 

mechanism used to constantly put out operational fires (Olsson, 2006). 
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1.2.2.2 Optimizing with flexibility 

The concept of flexibility has not been ignored in the mining industry. In this 

area, some optimization methods have been developed and adapted to account for 

both managerial and system flexibilities in a mining project. However, the literature 

has mostly focused on the evaluation of projects and the value added by flexibility, 

and not on the optimization of the project’s plan itself, or on how to adapt it to 

facilitate flexibility.  

One of the first examples in literature is presented by Singh and Skibniewski 

(1991), who base on a flexible manufacturing system and present a flexible strip 

mining operation, aiming at easing the decision making process and its ability to 

adapt to changes, especially when automation is considered. Recently, Mak and 

Clarkson (2017) differentiate between adaptability and flexibility, stating that the 

former must be designed within the system for the uncertainties in the immediate 

future, whilst the latter focuses mostly on strategy and future developments of the 

system. Different methods have been developed over the years to identify, include, 

and evaluate both adaptability and flexibility in value chains under uncertainties. 

However, to produce feasible strategic plan solutions, a set of complex design 

constraints must be accounted for, which are imposed over time, and will limit the 

number of flexibility alternatives available for each specific mining complex. These 

constraints may consist in space constraints, limited capital, fixed infrastructure, or 

specific blending constraints, amongst others. Additionally, for a realistic and 

unbiased valuation of flexibility, the corresponding mine production schedules 

generated must be clear and operational, which is the main limitation of the work 

found in the literature so far. 
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The following sections will review work done on real options analysis, followed 

by multistage stochastic programming formulations.  

Real option valuation 

Real option (RO) valuation has shown to provide successful alternative results 

to account for the value of flexibility, and the effects of uncertainty. This method, 

developed as an extension of financial options into investment projects, 

complements the NPV and addresses many of the limitations of traditional 

discounted cash-flow analysis (Trigeorgis, 1996; Lee and Strang, 2003; Samis et al., 

2006, 2011; Savolainen et al., 2017). Just as in most mathematical programs under 

uncertainty, in a standard RO model, the source of uncertainty is formulated as a 

stochastic process, enabling the examination of the behavior of the variable, and its 

effect over a project’s performance (Shibata, 2008).  With this, the model is capable 

of quantifying the value of flexibility as a response to the uncertainty (Mun, 2002; 

Kalligeros, 2006). Dixit and Pindyck (1994) define a RO as the right, but not the 

obligation, to make an investment in real assets by or at the end of a given period. 

One of the most interesting concepts that RO points out, is the understanding that 

flexibility has a value, but also an associated cost, which can be represented as a 

monetary premium, an opportunity cost, or simply by the time and efforts invested 

in the preparation and planning required to maintain options available throughout 

the years of an operation (Amram and Kulatilaka, 1999; De Neufville and Scholtes, 

2011). In any case, it highlights the fact that an effort must be made to have access 

to this flexibility in the future. 
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This valuation method has been successfully implemented in various industries, 

with many applications in mining. McCarthy and Monkhouse (2002) state that not 

considering managerial flexibility in the evaluation process of a mine plan results in 

underestimations of optimal LOM, which lead to processing plants with extra 

capacity, higher initial investments, and a loss of capital in general. The authors also 

clarify that this can be handled by using RO valuation approach. Samis et al. (2006) 

use RO valuation based on forward contracts for copper to consider the 

commodity’s market variability and obtain better information to select a project to 

invest in. Sabour and  Wood (2009) and Dimitrakopoulos and  Sabour  (2007) 

consider commodity price and exchange rate uncertainty and compare the RO 

valuation method with the traditional static NPV. Results over a case study show 

over a 15% increase in project value when evaluating through RO. The authors note 

that this increase in value shows that RO models incorporate the value of accounting 

for active management, and its ability to react to change based on new information. 

However, only the option to abandon the project early is considered, and the actual 

extraction schedule is not optimized under the uncertainty. Cardin et al. (2008) 

present a model to account for managerial flexibility at the conceptual stage of a 

mining project, and call it “intelligent management [as a] response to changing 

operating conditions and market prices.” Similarly, Sabour and  Dimitrakopoulos 

(2010) and Del Castillo and Dimitrakopoulos (2014) use RO valuation to 

incorporate managerial flexibility subject to price variability the first case, and price 

and geological uncertainty in the second, and calculate a stochastic ultimate pit limit, 

showing that traditional methods consistently underestimate the size of the ultimate 

pit. More recently, Haque et al. (2017) study the options of deferring investment, 
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and permanently or temporarily closing an iron ore mine under price and exchange 

rate uncertainty.  

However, none of the previous studies actually optimize the extraction sequence 

or the mining complex’s interactions. In other words, they all account for 

uncertainty to calculate the project’s value distribution, but not to directly optimize 

the mine plan, as the extraction sequence is assumed fixed. Together with this, as 

stated by Saleh et al. (2009), traditional RO mostly focus on the valuation of 

managerial flexibility, defined as the ability of management to adjust the course of a 

project by acting in response to the resolution of uncertainty, but they seldom tackle 

the problem of how to embed this flexibility in a project or engineering design 

(Driouchi and Bennett, 2012). That is, they focus mainly on calculating the financial 

value of flexibility, but not in including flexibility per-se. 

An interesting alternative is presented by Kazakidis and Scoble (2003), who 

present a first approach for a RO model to evaluate a flexible underground mine 

project under risk of ground related problems, and develop a model to assess and 

integrate flexibility alternatives to obtain a proactive mine plan. Mayer and 

Kazakidis (2007) extend on the previous study and show that the higher the 

volatility of the project, the higher the value of flexibility (Merton, 1997), as the 

system will be able to quickly adapt to take advantage of big opportunities, but also 

hedge from big drops. In their paper, the authors evaluate different scheduling 

options for an underground mine under commodity price and operating cost 

uncertainty. However, different extraction schedules are compared, but not directly 

optimized, and no information is provided on the actual mathematical model used. 
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Tackling the problem of embedding flexibility in a project, Wang and De 

Neufville (2005) introduce the concept of options “on” and “in” engineering 

projects. The first being managerial flexibility options taken under uncertainties that 

are global across the industry (such as exchange rates or commodity price), and the 

second, options that are inherent to the engineering system and its design (such as 

changing transportation systems, or investing on a particular expansion). Options 

“in” projects aim at directly inserting flexibility into the project, tackling the 

limitation mentioned in Saleh et al. (2009). However, as mentioned by Bowman and 

Moskowitz (2001), these options require custom tailored optimization models, and 

thus, a fuller understanding of the system’s design, which is probably the reason 

why studies of these options have been less present in the literature. 

Cardin et al. (2007) propose a general screening tool to include flexibility 

options at the engineering, operational, and management decision levels, especially 

focusing on the first two, classifying them as options “in” project, which actually 

modify the system. The authors propose using Design Structure Matrices which 

represent technical aspects of the engineering system to identify potential sources of 

flexibility “in” the project. A “Value-at-Risk-Gain” set of curves (Hassan et al., 

2005) is used to represent the value of the different options and help discriminate 

between the most interesting ones. These curves correspond to the representation of 

the cumulative probability distribution curves of the project’s NPVs obtained from 

Monte Carlo simulations, for the different options of flexibility. Similarly, Lin et al. 

(2009) develop a screening model to consider flexibility options in capital-intensive 

systems. In their paper, a case study on an off-shore petroleum project with 

uncertain reserves is presented, with options on new transportation connections, 



 

50 
 

capacity expansions, and flexibility in operational modes once new information is 

obtained. The effect of each alternative is also presented with value-at-risk-gain 

curves.  

Groeneveld and Topal (2011) focus on options “in” design (Wang and De 

Neufville, 2005), and aim to develop a flexible open pit mine design able to adapt 

under different sources of uncertainty, providing a better risk-return profile. An MIP 

model is used to determine the optimal mine design under uncertainty, incorporating 

flexibility into four stages of the system: mine, stockpiles, plant, and capacities. 

Uncertainties considered are commodity price, capital and operating costs, and plant 

utilization, which are simulated simultaneously to provide a state-of-the-world used 

as input to the model. Additionally, cost for executing an option, and for switching 

configurations are also included, which stabilize the use of alternatives. Groeneveld 

et al. (2012) extend on the previous study and present a hybrid “operational” method 

that limits the number of changes happening on the system on the initial periods, as 

a way of producing a more “operationally feasible” mechanism. However, these 

studies present several limitations. The case studies consider a deterministic deposit, 

where blocks are aggregated into parcels to reduce the number of integer variables. 

These parcels are defined as continuous variables which can be partially mined; 

however, they must be fully extracted before accessing underlying parcels. This 

block aggregation and partial extraction of parcels provides untraceable results that 

may be limiting in the mid to short-term planning. Together with this, technical 

details provided are limited, particularly in terms of the operation’s production 

targets, the focus is placed solely on maximizing NPV, and the schedule is assumed 

fixed. Additionally, by using state-of-the-world scenarios, stochastic parameters are 
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assumed to be known with certainty, what may provide overoptimistic evaluations 

that translate into higher NPVs.  

Ajak and Topal (2015) review RO applications in the mining industry and 

propose a methodology to assess technical applications of RO in mine design and 

operational decision making, however, the full mining complex is not considered. 

The authors present a mine planning RO model with the option to switch extraction 

between two areas of the mine. The proposed model focuses on a shorter-term 

optimization, affecting the mining schedule directly, and allowing the mine plan to 

defer waste and adapt its mining activities depending on commodity price scenarios. 

Their results show an increase in NPV of around 10% from the traditional base case 

without flexibility. However, price uncertainty is simplified to a binomial tree, 

providing no information if the final real price is not one of the forecasted values. 

Additionally, geological uncertainty is not considered, and the extraction sequence is 

not exactly optimized, but rather independently fixed within each area, and “paused” 

by the area-switching option. 

More recently, Cardin et al. (2017) propose an approach to assess the value of 

flexibility and determine the best design of an engineering system, and use a 

heuristic triggering mechanisms to define when is the best timing to exercise 

flexibility. In their paper, the authors note that, even though RO analysis has proven 

to be a useful tool in evaluating flexibility, its practical use has been limited, mostly 

as it does not provide any straightforward information on the optimal timing of 

exercising an option, but rather the value of having this option available. To tackle 

this problem, the authors propose a model based on decision rules and multistage 

stochastic programming, which aims at providing a guide for dynamic decision 
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making based on the available information as the different uncertainties resolve. 

Though highly interesting, the study presented is quite general, and the size of the 

energy system case study used is considerably smaller than the strategic 

optimization of a mining complex under uncertainty. Together with this, as in most 

multistage models, final solutions tend to be tailored to the set of scenarios used, 

providing overoptimistic results, and little information when reality is not exactly 

represented by the scenarios.  

The formulation and optimization of flexibility through stochastic multistage 

programming is a widely studied mechanism which will be more thoroughly 

reviewed in the following section. 

Multistage stochastic optimization to include flexibility 

It has been shown that multiple sources of uncertainty govern a mining 

complex. In practice, as a production schedule evolves, new information becomes 

available which affects the decision-making process and promotes active 

management to react accordingly. However, it is common to see optimization 

models where the plan designed is tailored exactly for each scenario (Mayer and 

Kazakidis, 2007; Groeneveld et al., 2012). Assuming that stochastic parameters are 

known with certainty generates overoptimistic NPVs with potentially unrealistic 

designs. In reality, there is no upfront information of the future states of the value 

chain, and multiple scenarios can appear similar at an initial stage and differentiate 

along the way. This fact is best described mathematically by stochastic multistage 

programming models, which make use of non-anticipative constraints to ensure that 

equal scenarios entail equal actions. In other words, these constraints are used to 
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ensure that non-differentiated scenarios (i.e., scenarios that have no apparent 

difference yet) entail equal decisions. Wang (2005) explains that in reality, the 

decision maker usually cannot distinguish between any two scenarios passing 

through the same node and proceeding to different terminal nodes because the state 

can only be distinguished by information available at that time stage. In his thesis, 

the author presents examples of multistage formulations on a satellite 

communication system and on a river basin development under uncertain electricity 

price. Similarly, Goel and Grossman (2006) note that, in a stochastic system, 

decisions cannot be based on knowledge that will be revealed in the future, as this is 

an unrealistic assumption. In their paper, the authors present a standard stochastic 

program for a linear problem, where, at each time period, the uncertainty is partially 

resolved based on the path taken. Here, the authors propose a stochastic multistage 

model to solve a production line problem under endogenous (internal) and 

exogenous (external) uncertainties, where uncertainty is resolved at each stage 

depending on a binary decision variable (equal to 1 if uncertainty is resolved and 0 if 

not), noting that some decision variables are taken at the beginning of each period, 

before uncertainty is uncovered, and others are implemented at the end of the time 

period, after the resolution of uncertainty.  

Birge and Louveaux (1997) mention a set of elements which justify considering 

a multistage model, such as the long-term evolution of equipment costs, the long-

term evolution of production, the development of new technologies, or the 

obsolescence of currently available equipment. All these elements are present in 

mining, where both equipment and mineral processing technologies are constantly 

being renewed. 
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However, even though these methods respect the chronological acquisition of 

new information, they are also limited, mostly because, as opposed to the two-stage 

stochastic optimization, multistage stochastic optimization models assume that the 

limited set of stochastic simulations used for the optimization represents all possible 

scenarios, rather than just a set of possible values obtained from a probability 

distribution. Thus, because of the way scenarios are used within the optimization, 

the obtained solution is tailored for this set of scenarios, and if the unveiled 

uncertainty takes a value that is not accounted for in the set used in the optimization 

(which is highly likely to happen in reality), then the solution provides no 

information about what to do. Nevertheless, this modelling mechanism provides 

interesting characteristics which can be useful to incorporate flexibility alternatives 

in a value chain, mostly related to the mechanism of gradually obtaining new 

information through non-anticipative constraints. 

Wang and de Neufville (2005) use non-anticipative constraints in their flexible 

option model to ensure that if two scenarios share the same node in the tree structure 

used for optimizing, then the decision taken in both cases is the same (i.e., the 

scenarios are indistinguishable). The multistage programming model proposed by 

the authors aims at maximizing benefits and minimize costs of different design 

parameters, subject to technical and economic constraints. The different options 

available are modelled into these constraints through binary variables, and the 

average value over all the scenarios is maximized. The paper presents a case study 

on a river-run hydropower station, a complex system with capacity, environmental, 

and budget constraints, as well as uncertainty in the price of electricity and seasonal 

flows (i.e., demand).  
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Boland et al. (2008) also present a multistage stochastic programming model to 

solve the open pit mine production scheduling problem under geological 

uncertainty. The formulation of their problem is an extension of the work done by 

Goel and Grossman (2006), where they consider two cases, the first, accounting 

only for processing decisions as scenario dependent (where new information is used 

to influence processing decision), and the second, considering mining and 

processing decisions as scenario dependent. Their formulation optimizes the mine 

production schedule, and aims at maximizing the expected revenue obtained from 

the metal produced, minus the processing and mining costs. The authors formally 

define non-anticipativity constraints by introducing a set to identify distinct 

scenarios, as two scenarios that have differentiated more than a given amount " " , 

thus, assigning them as “sufficiently different” for the optimizer to branch out and 

assume two distinct cases. Though an interesting approach, three main limitations 

can be seen in the authors’ approach, which are strictly related to the core aspects of 

mine production scheduling. These are (i) the aggregation of blocks to reduce 

computational cost, which can be partially mined, violating slope constraints, (ii) as 

mentioned before, the branching mechanism of multistage programming produces 

solution schedules which are over-fitted to the set of scenarios used, and thus, would 

have a poor performance when tested over a different set of simulations, and would 

be irrelevant to reality, as the reality encountered will surely not be represented 

exactly by any of the simulations. Finally, (iii) multiple possible schedules are 

provided as an output of the model, which is operationally impractical, as these 

schedules may be differentiated by a single block. Together with this, despite the 

aggregation of blocks, the formulation still becomes impracticable for real size 
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operations with millions of blocks, as the multistage formulation is modelled in such 

a way that, as scenarios differentiate, the design of the system divides into different 

possible schedules. This occurs successively for each differentiation perceived as the 

mining evolves, increasing exponentially the size of the problem along the LOM, 

possibly finishing with as many schedules as number of blocks. 

More recently, Apap and Grossmann (2017) present a multistage stochastic 

program, which simultaneously deals with both endogenous and exogenous 

uncertainties, and present ways to remove redundant non-anticipativity constraints, 

significantly reducing the dimensionality of the formulation. The authors apply the 

model to the capacity expansion of process networks, and to the development of 

oilfields. Another measure to reduce the size of the problem is presented by Boland 

et al. (2016), who present a decomposition approach that use scenario grouping to 

solve large stochastic multistage problems. Here, the related decomposition is 

performed on clusters of scenarios, and the algorithm searches for feasible, 

hopefully, good solutions. Zou et al. (2016) also tackle the size and complexity of 

multistage stochastic integer programs and propose a nested decomposition 

mechanism. The authors note the difficulty of applying traditional decomposition 

mechanisms to this type of problems, due to their non-convexity, but prove that 

when the state variables are binary, their proposed nested decomposition algorithm 

leads to significant improvement on solving large-scale multistage problems in real-

world applications. 

In summary, though multiple mechanisms have been developed to account and 

include flexibility into mining operations, the models developed for both real 

options and multistage programming have strong limitations. These limitations are 
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related to the specific demands of the stochastic simultaneous optimization of 

mining complexes, and to the need of producing realistic schedule solutions that can 

be readily applied in a mining operation. Otherwise, evaluating unrealistic designs 

will produce biased, misleading NPVs and mine plans with no real use. 

 

1.3 Goal and objectives 

The goal of this thesis is to extend the stochastic simultaneous optimization of a 

mineral value chain onto a dynamic simultaneous optimization model for multi-

element mining complexes, capable of reacting to the project’s changing 

environment, while maintaining production targets under material type and element 

concentration uncertainties. This includes considering active management 

investment decision making and flexible operational tuning of the components of the 

mineral value chain. By extending the stochastic two-stage optimization model of a 

mining complex into an adapted multistage programming model, it is possible to 

integrate some of the flexibility features of multistage optimization into the strategic 

optimization plan of a mineral value chain, without falling into the mentioned 

assumptions or limitations of multistage programming.  

To achieve this goal, the following objectives are addressed: 

(1) Review past work related to stochastic integer programming, multistage 

programming and modelling of flexibility options, and outline their 

limitations when adapting these concepts to optimize the mining complex 

under uncertainty. 



 

58 
 

(2) Study the basic mechanisms required to formulate a stochastic integer 

programming model to optimize the mine production considering capital 

expenditures, developing ways to optimize the capacities of the value chain.  

(3) Develop a destination policy mechanism that integrates complex 

geometallurgical variables into the optimization model, to assist in 

accounting for the overall value of the extracted material. This will involve 

modelling a cooperative game theoretic clustering method initially applied 

over a simplified model of a mining complex with geological uncertainty. 

(4) Develop a flexible model for the global optimization of a mining complex 

considering the method developed in (2), by extending the mathematical 

formulations of the stochastic simultaneous optimization of a mining 

complex into an adapted multistage programming model, able to 

dynamically consider capital expenditures. Test the developed model on real 

scale case studies and compare results with conventional industry methods. 

(5) Incorporate the flexibility obtained from operational mode alternatives info 

the dynamic formulation, enabling the optimization model to have a better 

control over the tuning process at different levels of the mining complex, 

from mine to port. Subsequently, test the developed methods over real-

world, large-scale mining complexes, documenting the results in comparison 

to traditional optimization methods. 

(6) Outline the contributions and limitations of the developed methods, and 

provide possible future work directions. 
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1.4 Thesis outline 

This thesis is organized into the following chapters: 

Chapter 1 presents an introduction to the topics treated in this thesis and 

includes the literature review in all related subjects considered in this thesis, 

including traditional and stochastic mine planning optimization frameworks, 

stochastic simultaneous optimization of mining complexes, operations research 

techniques to include uncertainty and flexibility, and work related to the dynamic 

stochastic optimization of a mining complex. Goals and objectives of the work are 

stated. 

Chapter 2 describes a method to optimize extraction capacity and fleet 

acquisition of a mining operation under geological uncertainty, for a given mining 

schedule. The proposed model is compared to traditional methods, and its benefits 

are shown through an application at a gold deposit. 

Chapter 3 develops a multi-variate destination policy which implements a 

coalition formation clustering mechanism to deal with complex geometallurgical 

variables and blending constraints. The proposed method can account not only for 

the material’s own characteristics but also for the value and metallurgical relation of 

material treated together. The benefits of this model are demonstrated through an 

application on a copper-gold mine with multiple destinations. 

Chapter 4 introduces the dynamic optimization model for a mining complex 

under supply uncertainty with capital expenditure alternatives. The dynamic model 

includes capital expenditures to optimize the mining complex’s capacities, and at the 

same time includes possible high-impact investment alternatives into the 
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optimization, providing full mine plans that can be implemented once more 

information is known. An application at a multi-mine mining complex demonstrates 

the benefits of this model. 

Chapter 5 expands on the method developed in Chapter 4 and includes operating 

alternatives to the dynamic model which can act at different levels of a mining 

complex. A case study over a copper-gold deposit shows the benefits of the 

proposed extended model, related to keeping alternatives open and allowing for the 

mining complex to dynamically react to changes. This is done by simultaneously 

optimizing different operating modes at the extraction and processing levels, as well 

as optimizing the truck fleet and possible secondary crusher for the mill. 

Chapter 6 outlines the contributions and conclusions and recommends future 

research avenues. 
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CHAPTER 2                                                                                                             
Optimal Mining Rates Revisited: Managing Mining Equipment 

and Geological Risk at a Given Mine Setup 

 

 

This chapter studies the optimization of mining extraction capacities through the 

addition of capital expenditure investments into the mine planning formulation. 

These capital investments are included considering various realistic parameters, 

providing an optimized acquisition plan. 

 

2.1  Overview 

Production scheduling of open pit mines is a major aspect regarding planning 

and production streamlining, asset valuation and operations. Production scheduling 

is a process leading to the determination of a sequence of extraction which involves 

the removal of at least two types of material: ore and waste. If the production 

schedule maximizes the project’s overall profit, subject to technical, economic and 

environmental constraints, then it is said to be optimal. Two major technical 

constraints involved in the determination of such schedule are: (i) the feasible 

combinations of ore and waste production (stripping ratio), and (ii) the ore 

extraction rate that meets the mill feed requirements.  

Optimization methods have long been used to improve mine design and life-of-

mine production schedules (Kim, 1979; Barbaro and Ramani, 1986; Dagdelen and 

Johnson, 1986; Whittle and Rozman, 1991; Tolwinski, 1998; Whittle, 1999; Godoy, 
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2003; Stone et al., 2005; Jewbali, 2006; Menabde et al., 2007; Meagher, 2010; 

Godoy and Dimitrakopoulos, 2011). The common industry practice is to discretize 

the pit space in a sequence of nested pits (Whittle, 1999), which is accomplished 

through the repeated use of a parametric ultimate pit algorithm, by successively 

changing the commodity price. For lower prices, smaller pits are produced 

(Hustrulid et al., 2013) and will extend toward the area of the highest grade and/or 

will have a very low stripping ratio. Since early cash flows are subject to less 

discounting and thus contribute more to the Net Present Value (NPV), it is 

advantageous to bring income forward and delay expenditure as long as possible.   

In dealing with the points rose above on stripping ratios and ore production rates 

that meet mill feed requirements, the optimization of mine production rates for ore 

and waste over the life of an open pit mine can only be done within a so-called 

physically “feasible” domain of solutions. This domain is based on early work 

(Rzhenevisky, 1968; Tan and Ramani, 1992) revisited by Godoy (2003), and it 

adopts concepts in the context of open pit scheduling based on nested pits and 

geological uncertainty. The current mine scheduling framework establishes the 

feasible domain based on two extreme cases of deferment of waste removal defined 

by Whittle (1999): the ‘worst’ and ‘best’ shown in Figure 2-1.  

According to Whittle (1999), the worst case corresponds to mining out each 

successive bench in a mine before starting the next, without any sequencing 

optimization. This schedule provides the maximum quantity of waste that can be 

removed from the pit to recover a certain amount of ore (i.e., the highest stripping 

ratio). This schedule does not perform well, given that waste is removed from early, 

and thus discounted little, whereas the income from mining ore at the bottom of the 
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pit is delayed for later periods, and thus heavily discounted.  The best case 

corresponds to the sequential mining of the nested pits, which is, mining each 

successive bench of the smallest pit possible, followed by the bench of the next pit 

and so on. This schedule removes the minimum necessary quantity of waste (lowest 

stripping ratio) that must be removed to provide both the necessary working room 

and the safety of operations. In economic terms, this schedule then provides the 

highest NPV.  Given the best and worst cases of mining, Figure 2-2(a) shows an 

example of a feasible solution domain of a gold deposit from Godoy (2003) in the 

form of a cumulative graph.  The solution domain is bounded by the curves of 

cumulative tonnages of ore and waste of the best and worst mining cases and 

accounts for all the feasible combinations of stripping ratios for the given orebody 

being considered and over its life-of-mine. This domain reflects the possible number 

and spatial arrangement of simultaneous working zones. 

 
Figure 2-1 Schematic representation from (Whittle, 1999) of the (left) worst and 

(right) best case mining schedule. 

 

The feasible domain, as presented in Figure 2-2, is a function of two factors: (i) 

the spatial distribution of ore and waste in the region contained by the ultimate pit 
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limits, and (ii) a specific set of nested pits. The definition of these two factors is 

subject to a chain of interconnected factors such as geological, economic, 

technological and environmental. As Dagdelen and Johnson (1986) state, production 

scheduling can be seen as a prescription of a mine sequence which maximizes 

cumulative project NPV while satisfying four major constraints: (a) mill feed grade, 

(b) slope constraints, (c) milling capacity, and (d) mining capacity. The definition of 

(a) and (b) is all that is required for the derivation of the solution domain in the 

cumulative graph of ore production and waste removal.  However, the specification 

of (c) and (d) account for the time aspect of the mining sequence formation and can 

thus further restrict the solution domain. This last aspect can be represented by the 

cumulative graph of the ore production concerning time, where both extreme mining 

cases are presented as two separate ore production curves. These curves form the 

feasible domain of the possible time distribution of the ore production for a given 

processing capacity.  

 
Figure 2-2 From Godoy (2003), the feasible domain of waste removal (left) and ore 

production (right) 

0

200

400

600

800

1000

1200

0 100

C
um

. Q
ua

nt
ity

 o
f W

as
te

 (M
t) 

  

Cumulative Quantity of Ore (Mt) 

Best Case

Worst Case

0
20
40
60
80

100
120
140
160
180

0 1 2 3 4 5 6 7 8 9 10 11 12

C
um

. Q
ua

nt
ity

 o
f O

re
 (M

t) 

Period (years) 

Best Case

Worst Case



 

65 
 

Figure 2-2(b) illustrates this domain, obtained by assuming a constant mining 

capacity for the extreme cases presented in Figure 2-2(a). It is important to note that 

the cumulative graphs in Figure 2-2 can account for geological uncertainty (Emery 

et al., 2014; Boucher et al., 2014) and, in fact, can generate optimal mining rates for 

a given case which can always be met. Including this uncertainty requires 

calculating the feasible domain of solution for each stochastically generated scenario 

of the orebody under consideration (Godoy, 2003). Then, the common intersection 

of all individual feasible domains provides the ‘stable’ solution domain (SSD), or 

domain, where the ore-waste combinations shown, are always available, 

independent of geological risk. The case study presented in a subsequent section 

shows this characteristic of the SSD.  

The work presented herein aims at optimizing a mine’s extraction capacity 

through the acquisition of mining equipment, constrained by the SSD’s feasible ore 

and waste extraction combinations, in order to maximize NPV and meet production 

targets. This study builds on the work by Godoy (2003) and Godoy and 

Dimitrakopoulos (2004), which is limited in that the variables related to the 

increased and decreased mining capacity are defined as linear. Because of this, the 

optimization does not produce values of mining capacity that are necessarily 

multiple of the equipment’s total capacity. Thus, the optimal solution may provide a 

fractional number of equipment, which is ultimately an infeasible solution. While 

small differences may be accepted, high levels of equipment under-utilization may 

be practically unviable. Note that, while mining production rates are optimized, a 

physical mining sequence that meets those rates is not produced, and so, it must be 

subsequently generated based on them. 
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The current paper starts by presenting a mixed integer programming (MIP) 

formulation, which is specific for a mine with one mill, a long-term stockpile, a 

waste dump, and a mine-owned fleet of mining equipment. Then, an application of 

the formulation at a gold mine, and comparisons to conventional practices is 

presented.  Discussion and conclusions follow. 

 

2.2  The optimization model 
The determination of an optimal combination of ore and waste production 

consists of selecting a curve, from all the possible curves that fall inside the SSD, 

which maximizes the corresponding NPV. The optimization model delivers a life-

of-mine schedule of ore production and waste removal, as well as a prescription for 

the formation of mining capacity and the acquisition of equipment, which 

maximizes total discounted cash flow for a set of economic and technological 

parameters. This production and acquisition plan is modelled to provide results 

specifically for a given mine configuration, which includes three material 

destinations, namely, mill, long-term stockpile (processing low-grade ore after 

mining stops) and waste.  Additionally, it is assumed that the mining fleet is owned 

by the operation and bought sequentially, equipment is replaced due to its fixed 

lifespan, while mining rates must remain stabilized for long periods of time (years). 

The mathematical model includes an objective function and constraints as follow. 
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2.2.1 Mathematical Formulation 

Objective function 

The objective function is presented in Eq.(2-1), consisting of 5 parts. The first 

corresponds to the income obtained from high-grade ore, considering mining, 

processing, operating, selling and marketing costs. The second section corresponds 

to the cost of mining low-grade ore. In this case, low-grade ore is destined to a long-

term stockpile, which is treated as a temporary waste dump. Thus, there is no 

income considered from mining it during the evaluated time span, but rather this 

destination is treated as a buffer, used to possibly extend the life of the mine once 

ore has been depleted in the pit. The third term corresponds to the cost of mining 

waste. The fourth term considers the purchase costs, i.e., the cost of adding new 

equipment of a given type and model in a certain year, to increase the production 

capacity of the system. Finally, the fifth term corresponds to the ownership costs, 

such as the cost of unused equipment of a certain type and model, given that the 

production rate of that year is lower than the maximum available capacity. Eq.(2-1) 

presents the objective function, where i=1,...,n denotes the time periods to be 

considered in the production scheduling optimization.  
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         (2.1) 

Equation (2-1) reflects the structure of the NPV of the mining project by 

discounted cash flow analysis, before taxation and without the treatment of the 
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relevant depreciation and depletion allowances. The depreciation and depletion 

allowances represent constants in the MIP formulation so as not to affect the 

optimization of the production schedule. The formulation represents an operating 

mine where the low-grade ore is stockpiled and not processed.  As a result, low-

grade ore does not provide revenue, and expression (2-1) takes this into account. 

Table 2-1 presents the parameters obtained from the SSD. Table 2-2 shows the list 

of indices and general parameters used in the model. Finally, Table 2-3 presents the 

variables participating in the objective function and the subsequent constraints. 

 

Table 2-1 Parameters obtained from the SSD 

Constant Definition 
P M X i  maximum cumulative quantity of metal from high-grade ore (tons) 
P M N i  minimum cumulative quantity of metal from high-grade ore (tons) 
S M X i  maximum cumulative quantity of metal from low-grade ore (tons) 
S M N i  minimum cumulative quantity of metal from low-grade ore (tons) 
W M X i  maximum cumulative quantity of waste (tons) 
W M N i  minimum cumulative quantity of waste (tons) 
P M B i  cumulative quantity of metal from high-grade ore in best case (tons) 
P M W i  cumulative quantity of metal from high-grade ore in worst case (tons) 

,S R h i  stripping ratio between metal from high-grade ore and waste at year i 
S M B i  cumulative quantity of metal from low-grade ore in best case (tons) 
S M W i  cumulative quantity of metal from low-grade ore in worst case (tons) 

,Δ S R l i  stripping ratio of metal from low-grade ore at year i 

,C E k v  total capacity of production equipment of kth type, vth model (tons) 
(k = 1 loading; k = 2 haulage; k = 3 drilling) 
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Table 2-2 Model’s general indices and parameters 

Constant Definition 
n  total number of time periods to be considered (i = 1, …, n) 
l  subscript to define low-grade ore 
h  subscript to define high-grade ore 
m  superscript to define mining parameters 
ma  superscript to define marketing parameters 

p ro c  superscript to define processing parameters 
K  number of types of mining equipment (k = 1, …, K) 
V  number of models of mining equipment per type k 
d i  discount factor d 1 / (1 ) i

i r  , where r is the interest rate 
S i  Selling price of metal 

C , Cm m
h l  unit mining cost of high and low-grade ore respectively 

C m
w  unit mining cost of waste removal  

C p ro c
h  unit processing cost of high-grade ore 

C m a  marketing cost per unit of payable metal 
R  royalty as % of the net revenue 

,α h i  basic ore grade 

 ,α l i  low-grade ore grade 
i  total recovery of the payable metal in year i 

C t
i  time cost due to operating cost of processing support services ($/year) 

,C m a x
k v  capacity limit in tons of kth type, vth model of production equipment 

, ,H k v i  total purchase cost of kth type, vth model of mine equipment in year i 

, ,U k v i  total ownership cost of kth type, vth model of mine equipment in year i 
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Table 2-3 Variables 

Variable Definition 

,M h i  metal from high-grade ore to be removed in year i (tons) 

,M l i  metal from low-grade ore to be removed in year i (tons) 

W i  
waste quantity to be removed in year i (tons) 

, ,N E k v i  new production equipment added of kth type, vth model in year i 
(Integer)  (k = 1 loading; k = 2 haulage; k = 3 drilling) 

, ,D E k v i  decreased production equipment of kth type, vth model in year i (Integer) 
(k = 1 for loading; k = 2 for haulage; k = 3 for drilling)  

, ,N C k v i  new capacity added in tons of kth type, vth model of production 
equipment in year i (k = 1 loading; k = 2 haulage; k = 3 drilling)  

, ,D C k v i  capacity decrease in tons of kth type, vth model of production equipment 
in year i (k = 1 loading; k = 2 haulage; k = 3 drilling)   

 

 

Constraints 

The next section presents the constraints for the current formulation.  

1. Bounds of metal from high grade ore production:    

 ,
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2. Bounds of metal from low grade ore production: 
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3. Bounds of waste production:  

 1
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i

j i
j

i
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               (2.4)
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4. Relationship between waste and metal from high-grade ore production: 
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where the stripping ratio of high grade ore is: ,
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5. Relationship between waste and metal from low-grade ore production: 

 

i i , , ,
1 1

, , ,
1 1

i f S M B S M W  , th e n S R M W S R S M N W M X ,

if S M B S M W  , th e n S R M W S R S M N W M X ,

i i

l i l j j l i i i
j j

i i

i i l i l j j l i i i
j j

i

i

 

 

      

      

 

 

    (2.6) 

where the stripping ratio of low grade ore is: ,
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6. Capacity limitation of equipment type k = 1: 
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7. Distribution of new added capacity among different types of equipment, 

ensuring that, for example, if hauling capacity is increased, so is the loading: 

1 , , , ,
1 1 1 1

N C N C 0 , 2 , .. . , ;
i V i V

v j k v j
j v j v

k K i
   

      
            (2.8) 

8. Distribution of capacity decrease among different types of equipment: 
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9. Capacity disposal given available equipment: 
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10. Relationship between added capacity and capacity decrease: 
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11. Stable tonnage of material extracted for material type k =1, linked by Eq. (2-8): 

1 1
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12. Definition of variables 
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 Constraints (2-2) to (2-4) present the bounds on cumulative metal from 

primary and low-grade ore and waste tonnage, which is limited by the feasible 

domain defined previously. Constraints (2-5) and (2-6) present the relationship 

between waste and metal extracted, which considers the different possible 

geometries of the working zone, dependent on the best and worst cases defined. 

These cases are the ones that bound the solution domain. Constraint (2-7) ensures 

that production capacity is no greater than the capacity limit available for loading 

equipment (type k=1). Constraints (2-8) and (2-9) ensure that the capacity available 

for one type of equipment is also available for all other equipment types (hauling 

and drilling), which relation is assumed constant over the whole LOM. Constraint 

(2-10) links the integer decision variables of new and decreased equipment with 

their corresponding capacities, which are continuous values. Constraint (2-11) 

ensures that the cumulative added capacity is higher than the total decreased 

capacity in each period, what prevents the production rate to get negative values. 

Finally, constraint (2-12) allows the total extracted rock (primary and low-grade ore, 

plus waste), to equal the available capacity used, which is provided by the added 

equipment; and constraint (2-13) identifies the variables as integers or continuous. 

2.2.2 Comments 

The objective function presented in expression (2-1) shows that the main 

variables of the model are the time related metal tonnage from high-grade ore, metal 

from low-grade ore, and waste. While the variable corresponding to the waste 

quantities allows for the definition of the waste-ore relation over time, the metal 

variables allow for the optimization of metal quantities. The metal optimization 

accounts for the ore quality at different parts of the orebody. The remaining 

variables of the optimization model are the added capacity and capacity decrease of 
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each type and model of mining equipment. The inclusion of these variables deals 

with the stabilization of the mining rate over time periods as a function of the 

capacity.  

The economic parameters involved in the stabilization of the mining rate are the 

unit purchase and ownership costs of each type and model of mine equipment. The 

value of the equipment determines the total purchase cost, and, once bought, its 

whole capacity can be used as newly added mining capacity of the system. The total 

ownership cost is the penalty for the capacity decrease that reflects the economic 

consequences of having the idle equipment. In this context, the stabilization of the 

mining rate over time periods is determined as a search for the balance between the 

purchase and ownership costs of the production capacity. This balance represents the 

direct incorporation of the related capital investments in the production scheduling 

optimization. 

It is important to stress that the definition of proper limit values for the variables 

related to production capacity is essential to guarantee that the mining rates 

produced by the optimization formulation are physically mineable. The main reason 

for that is a possible lack of working space to accommodate a large number of 

mining-equipment and the corresponding accessibility constraints. If the mining 

rates remain impractical after tightening the constraints related to maximum allowed 

capacity, an alternative is to redefine the physical pushbacks. In this case, 

production periods presenting deviations from the production targets can be flagged 

in the detailed mining sequence and be investigated further. 
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2.3 Case Study at a Gold Mine 

2.3.1 Generating optimal mining production rates 

The present case study aims to demonstrate the technical and practical 

intricacies of the proposed model in Section 2.2 in a real operation. The case study 

considers a gold mine with the setup (or mining system) that the previous 

mathematical model represents, assuming a fixed ultimate pit limit. Thus, high-

grade material is processed in a mill, and low-grade material is taken to a long-term 

stockpile treated as a temporary waste dump, to be maybe processed by the end of 

the mine’s life (thus no profit is obtained from it in the evaluated time span). The 

deposit consists of an orebody of 170,000 blocks of 15x15x10 meters. The mill cut-

off is fixed to 1.2 gr/tonne, which defines the high-grade ore material; low-grade ore 

corresponds to material with a grade higher than 0.9ppm and lower than 1.2 

gr/tonne, and the rest is defined as waste. Accordingly, there is approximately 

170Mt of ore (destined to the mill), with an average grade of 2.36 gr/tonne, and 

1,000Mt of waste material.   

The two types of equipment included in the mathematical formulation 

correspond to haulage and loaders, which are owned by the mine. The “CAT 793C” 

model is considered for the former, while the latter case considers two models, the 

“PC8000” and “FEL 994”. Table 2-4 presents the costs and parameters used in this 

mining operation. Table 2-5 shows the details of equipment’s capacity, purchase and 

ownership costs, amongst others.  

The solution obtained from the optimization model is referred to as the 

“optimal” extraction rate. This solution maximizes the NPV within the SSD, and 
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effectively integrates geological uncertainty into the optimization process by 

considering the intersection area of the extreme mining cases of 20 geological 

simulation models of the deposit. Figure 2-3 presents the mill feed demand targets 

used for the optimization model. The cause of the mill demand’s variation between 

years five and nine is due to the mill being fed by external sources, leaving the 

presented annual capacity available for the processing of material from the current 

mine.  

 

Table 2-4 Operation’s costs and technical parameters 

Parameter Value 
Mining Cost (US$/t) 3.00 
Processing Cost (US$/t) 8.77 
Capital Cost (US$/t) 3.65 
Discount Rate (%) 10 
Mill Recovery (%) 90 
Mill cut-off grade (ppm) 1.2 
Breakeven cut-off grade (ppm) 0.9 

 

Table 2-5 Equipment parameters 

Type Loaders Haulage 
Model PC8000 FEL 994 CAT 793C 
Purchase Cost (MUS$) 4.73 1.92 1.77 
Ownership Cost (MUS$/year) 0.68 0.27 0.25 
Capacity (Mt/year) 25.0 9.60 3.14 
Maximum Availability (units) 5 4 34 

 

Figure 2-4 presents the mining capacity required to meet the presented mill 

demand in the best and worst mining cases. Only high-grade ore is used to feed the 
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mill to its target, and thus, the worst case needs to remove excessively large amounts 

of material in the first periods (as mining is done bench-by-bench, to arrive at the in-

depth ore). This fact causes a high amount of waste mining in the initial stages of the 

mine (over 90% of the total material extracted), and mostly pure ore during the last 

years, which are heavily discounted. On the other hand, in the best case, the ore is 

made available in the initial periods by mining pit shell by pit shell. During the last 

years, with more heavily discounted cash flow, the total movement of rock is higher 

(especially waste, with around 90% of the total extraction in the last period, as the 

stripping ratio increases for the deepest ore).  

 
Figure 2-3 Mill’s annual available capacity. 

 

Figure 2-5(a) presents the stable solution domain for the pit limit defined for this 

deposit, created by the intersection of the areas of the cumulative quantities of ore 

and waste from the “Best Case” and “Worst Case” of 20 orebody simulations, such 

as the ones presented in Figure 2-4. In this case, the simulations were obtained by 

direct block simulation (Godoy, 2003). The interior of this domain also presents the 

solution obtained from the optimization model described in Section 2.2, referred to 
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as “Optimized Case.” As mentioned earlier, the optimized mining rate is completely 

inside of the SSD, what shows that the obtained result is a feasible extraction rate 

program. Also, the “optimal” mining rate schedule is very close to the “Best Case,” 

particularly before the first 75Mt of extracted ore. The later separation of the optimal 

case from the best-case limit is likely caused because, as the depth of the deposit 

increases, the stripping ratio rises, and more waste must be extracted to obtain one 

ton of ore.  

 
Figure 2-4  Mining capacity required to meet mill demand in best and worst case. 

 

Figure 2-5(b) shows the annual extraction rate defined by the optimizer. Here, 

the operation starts with a capacity of 63Mt per year, with minor increases in 

capacity by year 4 and 5, and a major mining rate expansion by year 8, finishing 

with 100Mt by year 13, when extraction reaches the pit limit. The optimizer aims to 

maximize profit by three mechanisms. (i) Delaying waste extraction as much as 

possible while ensuring to maintain a smooth evolution of mining rates. (ii) 
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Avoiding extreme changes in production rates in consecutive periods, and (iii) 

ensuring that there is no mining capacity missing or left unused given the existing 

equipment availability.  

 
Figure 2-5 (a) Stable solution domain with the proposed model’s mining rate 

solution, and (b) annual production rate plan. 

 

The equipment acquisition program presented in Figure 2-6 confirms this 

smooth production rate evolution, where for each type of equipment (loaders and 

haulage), and for each model of a particular type, the figure shows the equipment 

required per year for the “Optimal” production rate. Here, it shows that in year 4 

three haulage trucks are purchased, and six more trucks are added to the fleet in year 

8, almost doubling the initial fleet. The PC8000 loader fleet is kept constant along 

the life of mine and acquiring FEL 994 loaders achieves the capacity increase by 

more than doubling the initial fleet by year 8, thus delaying capital expenses to 

maximize the project’s NPV. 
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Figure 2-6 Equipment type and model acquisition schedule per period 

 

2.3.2 Using the optimal production rates for scheduling 

To further explore the benefits of the proposed optimization model to generate 

optimal mining rates, the two schedules produced by Milawa Balanced algorithm 

(Whittle, 1999) available in Whittle Software are compared. One life-of-mine 

production schedule is based on the mining rates defined by the optimizer presented 

in Section 2.2, and the other uses a constant mining rate (the traditional approach 

also practiced at the mine discussed here), equal to the average production of the 

optimized solution which is 93Mt per year. All the remaining parameters used are 

identical in both cases, as is the high-grade ore demand destined to the mill. Figure 

2-7 presents the annual mining rate for each case.  

It is interesting to note the amount of high-grade ore tonnage being extracted in 

each schedule for the obtained mining rates, as it would be expected that the 

“Traditional” operation manages to produce more ore due to its higher initial rates. 

However, the next figures show that this is not the case. Figure 2-8 presents the mill 
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feed demand target in the black dotted line. The actual mill utilization for each of the 

two generated schedule is presented in this figure by the bars, showing the amount 

high-grade ore material extracted in each period for the traditional and optimal case. 

Both obtained schedules manage to meet mill feed demand in every year, suggesting 

that the traditional schedule has an increased mining rate during the first years only 

to mine waste, which increases the operation’s costs and doesn’t generate any profit.  

 
Figure 2-7 Total extraction for schedules based on the traditional and optimal 

mining rates 

 
Figure 2-8 Mill’s annual available capacity and high-grade ore extracted per period 

for the traditional and optimized case 
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The “Traditional” case has a steady extraction rate along the whole project, but 

from Figure 2-7 and Figure 2-8, it is possible to see that this causes the operation to 

invest in the unnecessary capital during the initial years (to obtain this steady rate). 

However, these investments are not necessary to meet mill demand and only results 

in early waste mining and equipment acquisition. These purchases reduce the profit 

of the initial years, which are less discounted and thus, have a strong effect on the 

project’s NPV. In comparison, the “Optimal” production rates obtained by the 

proposed formulation show that during the first half of the mine life there is a lower 

capacity required, maximizing the profit by meeting mill demand, minimizing waste 

mining and delaying capital expenses as much as possible. 

The previous analysis proves that the optimization model proposed here looks to 

maximize the NPV of the project by delaying unnecessary expenses and investments 

and maximizing the metal production. Figure 2-9 shows this value increase, which 

presents the cumulative discounted cash flow (DCF) for the “Optimized” as well as 

for the “Traditional” cases, assuming that mill capacity, as well as the mining rates, 

are perfectly met. By periods 7 and 8, the optimal case incurs on high expenses to 

increase the equipment fleet and raise the mining rate of the operation. These costs 

cause a slight decrease in the cumulative DCF, and, as more waste rock is removed 

at this point, the cumulative cash flow curve flattens in comparison to the traditional 

case. However, this also allows meeting ore demand, obtaining a 20.7% higher NPV 

than the stable mining rate case, which decides to extract more waste at the initial 

years, punishing the cash flow from the beginning of the operation.  

The SSD presented in Figure 2-10 illustrates the differences between the 

traditional and the optimized schedules obtained from Whittle. This figure shows 



 

83 
 

that both extraction sequences are located inside the SSD, proving that they are both 

feasible mining rates independent of the encountered geology of the deposit. 

However, the “Traditional” case is consistently further apart from the “Best Case” in 

comparison with the “Optimized” case, which demonstrates that the traditional 

mining rates tend to extract higher amounts of waste earlier in the life of mine, only 

to obtain a fixed, stable mining rate.  

 
Figure 2-9 Cumulative discounted cash flow for the traditional and optimized case 

 

Even though the estimated model of the deposit was used to obtain the schedule, 

the mining rates were obtained considering the stable solution domain created from 

the intersection of the solution domains of 20 different geological simulations of the 

deposit. This intersection generated the final feasible domain of ore and waste 

combinations and not the solution domain formed by the estimated orebody model. 

Figure 2-11 presents the effect of not considering the geological uncertainty to 

define the stable solution domain and carrying the optimization process over the 

solution domain defined by the estimated model. In this case, both sequences 
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obtained for the traditional and optimized mining rates (referred to as “Trad – 

Estimated” and “Opt – Estimated” respectively in Figure 2-10) present infeasible 

combinations of ore and waste extractions (highlighted in yellow in the graph). 

These infeasibilities show once again that not considering geological uncertainty in 

the optimization process results in infeasible mine plans and the impossibility to 

meet the expected mill demand. 

 
Figure 2-10 Cumulative extraction of ore and waste for the schedules obtained from 

traditional and optimized mining rates 

 

2.4 Conclusions 
In conclusion, the research presented shows that the proposed MIP model not 

only provides a feasible mining rate which considers equipment acquisition and 

delaying of capital expenses but also that this mining rate schedule presents clear 

benefits when used as a starting point for planning a mining schedule. Results were 

obtained by using the Milawa Balanced algorithm from Whittle Software over a 

gold mine case study to produce two schedules, with and without optimized mining 
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rates, where the optimal mining rate case presented a 20% increase in NPV. 

However, the goal of this optimization is to define an optimal mining rate, not an 

actual mining schedule. The scheduling problem is considered as a separate, 

complex problem, where the output of the model proposed in this study may be used 

as an input to the design of an optimal long-term mining schedule. However, this 

would require assuming a fixed ultimate pit limit apriori, which arguably limits the 

development of an optimal mine production schedule. 

 
Figure 2-11 Comparison of traditional and optimized schedules obtained over the 

solution domain (SD), and the feasible stable solution domain (SSD) 

 

Accordingly, an important limitation of the current formulation is that the 

process is based on the solution domain, which, even though can consider geological 

uncertainty, it assumes that the ultimate pit limit is defined and fixed. This 

assumption is not accurate, as after the scheduling is done, and subject to the 

different uncertainties that govern a mining operation, it is highly possible that the 

ultimate pit limit will change. Together with this, the different ownership and 
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purchasing costs are assumed constant along the whole life of the equipment, which, 

once again, is an important simplification in the model. 

Further work may focus on extending the proposed formulation to the mining 

scheduling optimization. Together with this, efforts could be made on increasing the 

complexity of the mining system considered, i.e., include multiple mines and 

deposits containing multiple elements, as well as considering the income obtained 

from the stockpile or other processing streams. Additionally, it would be important 

to consider different types of uncertainty, including commodity price, costs and 

equipment variability.  
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CHAPTER 3                                                                                                                            
A Multivariate Destination Policy for Geometallurgical Variables in 

Mineral Value Chains using Coalition-formation Clustering 

 

 

The previous chapter studied ways to optimize capacities by investing in capital 

expenditures. Now, the focus is shifted to explore ways to improve processing 

stream performance, by developing a destination policy that is able to deal with 

complex geometallurgical variables within the mine planning optimization model. 

 

3.1 Overview 

In mining, orebodies define the design and the value of a project, based on the 

attributes of the rock and the operational characteristics of the project, the 

processing streams used along the life-of-mine (LOM), and the range of profit 

produced by the project. The over-simplification that arises in the conventional 

optimization of mining projects is the assumption that a block of materials (mining 

block) has an intrinsic dollar value, and that a given cut-off grade will define what is 

ore (to be processed for profit) or waste. However, there are various other 

parameters that affect the dollar value of a block. For example, the presence of 

deleterious elements (such as arsenic), hardness, spatial location (which will define 

when the material can be extracted), and so on, will all have an effect over block 

value. Because of this, these pertinent variables should be considered during 
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planning to optimise to which processing stream a mining block will be directed to 

and with this, to realistically evaluate the project’s performance and value. 

This issue takes precedence in the increasingly complex deposits being presently 

developed, where processing plants’ and refineries’ performance depends greatly on 

how their different requirements are met (for example, blending constraints must be 

met in order to maximize metallurgical recovery). These hard constraints force the 

project to be optimized around them, making it necessary to consider from an early 

stage not only grade uncertainty, but also all the variability of relevant 

geometallurgical characteristics (rock hardness, material types, etc.) that affect the 

configuration of the different processing streams (i.e., energy consumption, 

metallurgical recovery, etc.). However, because of the high costs associated with 

exploration, the limited information obtained from sample composites and the 

inherent flaws in sampling and testing systems, obtaining reliable geometallurgical 

information is difficult and requires cross-disciplinary efforts (Figueiredo and Piana, 

2016). In addition to this, the geology of a deposit (grades, material types, rock 

properties, other) is highly uncertain, being one of the main sources of technical risk 

in a mining operation (Godoy and Dimitrakopoulos, 2004).  Thus, many efforts have 

been directed towards developing methods that account for this uncertainty and 

manage the related rick in the design and evaluation of a project. Two aspects are 

included in these efforts, stochastic or geostatistical simulation to quantify 

geological uncertainty and stochastic optimization that uses the quantified 

uncertainty to manage the related risk while optimizing mine design and planning.  

Methods developed have been successfully implemented in various mining projects 

(Goodfellow, 2014; Montiel, 2014).  
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Geological uncertainty extends to uncertainty in the supply (materials) to 

various processing streams, giving special importance to the process of re-

distributing the extracted rock between the available destinations, so that the 

different constraints are met. This reordering and delivering process, referred to as 

destination policy, is especially important in poly-metallic mines with multiple 

processing streams, as there are increasingly complex constraints. Traditional mine 

planning models define destination policies solely based on the material’s 

concentration with respect to different cut-off grades and treat a block as waste if its 

(assumed) value is negative. Although it is traditionally used given the methods 

available to date, this assumption is misleading, as blocks have different attributes 

and concentrations of elements (other than the grade of the main commodity), which 

must be extracted, transported, blended, processed, and sold in order to yield a 

financial gain. All these activities are also strongly affected by the geological 

uncertainty present in the deposit, which will ultimately define the performance of 

the mining system. Thus, the actual value of a mining block depends not only on the 

period when it is extracted, but, in addition, (i) to the quality of the elements and 

material types contained in it, as well as (ii) on the destination where the block is 

processed, which entails the blending requirements, processing costs, recovery curve 

of the metallurgical process, and so on. In other words, the actual “block value” 

cannot be calculated individually. For example, if the available sulphur content in 

the processed material is not enough to reach blending constraints in the plant, then 

lower grade material with higher sulphur content could be sent to the processor from 

areas of the deposit with higher sulphur content, even if this material is not 

profitable on its own. Disregarding these non-linear relations would result in failing 
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to meet blending constraints, reducing expected metallurgical recovery, and 

ultimately decreasing project value. 

This paper aims to tackle this problem by developing an optimal destination 

policy mechanism for polymetallic deposits in order to increase project value and 

the reliability of project evaluation. This destination policy is based on a 

multidisciplinary implementation, combining mine planning with coalition 

formation theory using the “Shapley Value” (which is a line of study of cooperative 

game theory), and considers within the decision process the deposit’s 

geometallurgical variables, its blending requirements, and the uncertainty related to 

its geology. These considerations increase project value by improving the 

performance of the available processes, meeting the project’s planned targets, as 

well as taking maximum advantage of the limited resource. 

The next section of this paper reviews the existing literature on mining 

optimization, focusing on destination policy, as well as on the inclusion of 

geometallurgical variables. The description of the proposed method follows, with a 

brief introduction on game theory, and the concepts that will be used. The proposed 

method is then tested over a real life copper gold deposit with six possible 

destinations, showing that including complex variables of the processed material in 

the optimisation not only allows the project to meet blending constrains, but also 

increases final project value without even changing the extraction schedule. 

Conclusions and future work follow. 
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3.2 Literature Review 

3.2.1 Mining Optimization and Destination Policy 

Thus far, the decision of defining where each block is sent after extraction is 

based mainly on two aspects: defining certain ranges of grades accepted at the 

different destinations, commonly referred to as cut-off grades (Lane, 1988; Rendu, 

2014), or the general revenues expected from sending a block to each of the possible 

processing streams. However, these policies are based on a longstanding serious 

oversimplification in mine planning, which is to assume that a block has an inherent 

dollar value (Lerchs and Grossmann, 1965; Tolwinski and Underwood, 1996; 

Ramazan, 2007; Meagher et al., 2009). This results in severe deviations from 

expected project revenues and performance, as well as clear suboptimal results 

(Wharton, 2004). By assigning a “dollar value,” the formulation assumes a priori 

when a block will be extracted (i.e., the mining sequence), and what material is ore 

and what is waste (thus, where it should be sent), before any optimization has been 

done, bypassing the actual destination policy decision.  

Some work has been done in designing dynamic policies, such as in Meagher et 

al. (2009), where the destination decisions are updated on a yearly basis according to 

new information that becomes available once a block is extracted. The possibility to 

re-optimize is considered as valuable flexibility, which is added to the block’s value. 

In this paper, geological uncertainties, market uncertainties, and the time value of 

money in calculating the value of a block at its period of extraction are accounted 

for. However, the formulation proposed grows exponentially if multiple elements, 

deposits, and/or processing streams are considered, and the focus is still placed on 
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assigning an individual dollar value to each block instead of on optimizing the 

mining complex as a whole. Asad and Dimitrakopoulos (2013b) propose a heuristic 

approach to select an annual cut-off grade under geological uncertainty, which 

maximizes the net present value (NPV) of the mining operation and satisfies 

production constraints. Continuing on this line, Meagher et al. (2014) develop a 

dynamic cut-off grade policy to define block destination under geological 

uncertainty. Here, the optimal cut-off grade is defined on a yearly basis in order to 

optimize the pushback design and maximize project value. However, the model only 

considers one element with one processing facility and the optimization is done 

greedily by sequentially maximizing the NPV of each pushback, instead of 

optimizing the whole deposit simultaneously. Thompson and Barr (2014) generate a 

dynamic cut-off grade policy under stochastic prices and note the differences 

between considering uncertainty in the cut-off results when compared to traditional 

methods. However, the authors still assume an economic value of the block, and do 

not consider the geological uncertainty of the deposit. 

Few methods have been presented in the literature that dynamically account for 

the destination policy in the optimization process and, at the same time, develop a 

global mine plan. The multistage stochastic optimization method developed by 

Boland et al. (2008) presents a destination policy mechanism that optimizes each 

geological scenario independently once the scenarios have “differentiated enough” 

along the LOM. Other studies have developed robust destination policies, such as 

Montiel and Dimitrakopoulos (2015), who proposes a mathematical programming 

model where destination policies are first stage variables (thus equal over all 

scenarios). Here, the author considers the optimization of the whole mining complex 
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under geological uncertainty, with multiple material types and processing streams. 

The method presented is able to develop a mining schedule that defines when each 

block is mined and where it is sent, avoiding the need for pre-defined cut-off grades, 

and maximizing project value while meeting production constraints. However, in 

this case, the destination policy can only be optimized if the material type of a block 

is the same over all the simulations. In other words, the model might produce 

misclassification errors (i.e., where oxides are sent to processing streams that only 

accept sulfides), resulting in infeasible solutions. Menabde et al. (2007) also define a 

robust destination policy, but it is based on cut-off grade optimization. In their 

study, the authors account for geological uncertainty and present a MIP formulation 

where the destination policy is defined by classifying blocks into bins of “similar 

grades”, where each bin is sent to the same destination. By doing so, they are able to 

avoid misclassification problems, as seen in the previous case. However, their 

formulation only accounts for a single mine, with one element and a single 

processing stream, and does not consider the problems that arise with blending 

requirements that entail more than one element.  

As the complexity of mining projects increases (in terms of the number of 

deposits, processing streams, and elements), traditional destination policies, such as 

the ones presented in the previous paragraph, lack in their ability to consider the 

multidimensional aspect of the mining optimization problem. Recent work on 

destination policy has extended from cut-off grade optimization to integrate 

multivariate distributions, making them more adept for complex mining projects. 

Goodfellow and Dimtrakopoulos (2014) developed a stochastic optimization of a 

mining complex, which accounts for geological uncertainty, and considers a 
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multidimensional destination policy. To do this, the authors implement k-means++ 

clustering (Lloyd, 1982; Arthur and Vassilvitskii, 2007; Gan et al., 2007), a pre-

processing clustering mechanism where the number of groups is defined by the 

modeller, and all blocks are classified according to their proximity (i.e., similarities 

in material types, grades, etc. in a Cartesian grid). This way, the destination of a 

block is defined based on the cluster it belongs to instead of its individual properties 

for all simulations; this provides a robust destination policy defined under geological 

uncertainty, and, at the same time, reduces the computational cost of the 

optimization process.  

An example of this clustering process is presented in Figure 3-1, where four 

clusters of blocks are defined and created by calculating their proximity to each 

other (considering all scenarios) with regards to their concentration of gold and 

copper. Thereafter, the cluster’s destination decisions are taken accordingly.  

 

 
Figure 3-1 Creation of 4 clusters according to gold and copper concentration.     

From Goodfellow and Dimtrakopoulos (2014) 
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However, in Goodfellow and Dimtrakopoulos (2014), even though the 

destination policy is decided over each cluster, the decision of where a given cluster 

is sent does not directly take into consideration the relation of aggregates of material 

being processed together, which must altogether meet the complex blending 

constraints. For example, if particularly tight metallurgical constraints are required 

by a process, such as a silica-magnesium ratio, if one block has a high magnesium 

and copper concentration, but is low in silica, and another block has a high silica 

concentration, but a low copper grade, then it might be preferable to “cluster” and 

process the two blocks together (even if their attributes are not similar).  

Thus far, geometallurcial research has been increasing, with a general agreement 

from the industry of its importance in a project’s performance. However, most of 

this information is lost through the planning process, or is not used to its full extent, 

leaving a gap when it comes to actually using this information in the mine plan to 

obtain a truly optimized operation that considers the whole flow of material. The 

method proposed herein aims to integrate this information into the planning process 

by creating clusters of blocks with two objectives. On one hand, the method aims to 

reduce the computational cost inherent in mining optimization, which is mainly 

caused by the large amount of blocks encountered in real-size mining projects; and 

on the other hand, the method seeks to take into account not only metal grade and 

recovery, but also the relation of a wider range of geometallurgical variables. The 

latter variables help to obtain more reliable values of the aggregates of blocks in the 

different processing streams. This happens because the final recovery and 

metallurgical performance will depend on the total material being processed together 

and not on the individual properties of each block. Once material arrives at the plant, 
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there is no longer any perception of a “block”, but rather a blend of extracted 

material. 

3.2.2 Incorporating Geometallurgical Variables 

Geometallurgical variables involve any rock property that has a positive or 

negative effect on the business’ ultimate value (Coward et al., 2009; Dunham et al., 

2011). Some of the more critical (and known) properties are recovery, grindability, 

throughput, power consumption, mineralogy, and content of deleterious materials. 

As such, geometallurgy is a cross-disciplinary through its combination of geology, 

metallurgy, and mine planning to design a processing stream that fits the actual 

characteristics of the resource (Dunham et al., 2011). It is known that a mining 

project’s overall value and performance depends not only on the ore grade and the 

plant’s recovery, but also on variables, such as the mineral composition, energy 

consumption, additives needed, penalties involved, mineability of the deposit, etc. 

(Van den Boogaart et al., 2011). However, most of these variables are omitted from 

traditional mine planning methods, not to mention the variability and uncertainty 

related to them. Given this, in order to obtain a reliable mine plan and a better 

representation of a project’s value, more detail on the rock properties of the 

extracted material need to be considered in the optimization. 

Some work has been done to incorporate these variables into the mine design 

and planning steps, such as in Coward et al. (2009), where they are classified as 

“primary” and “response” geometallurgical variables. Primary variables are defined 

as additive or easily manipulated to be linear; response variables generally present 

complex distributions that cannot be easily combined. The authors note that because 
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most of the rock properties are non-linear, traditional estimation methods for 

orebody modeling (such as kriging), are unable to reproduce them without serious 

biases in the results. Conversely, conditional simulation methods have the advantage 

of keeping the variable’s spatial variability, avoiding estimation mechanisms. This 

allows for the integration of complex non-linear variables into the orebody model. 

Coward et al. (2013) apply this framework to a mining operation and aim to 

generate a value chain model by evaluating geometallurgical recovery factors.  

Van den Boogaart et al. (2011) focus on optimising the mineral processing stage 

by generating an “adaptive process” using a geomathematical model. This model is 

developed from conditional expectations and regression models, which adapt the 

mill’s grinding size to the material being processed (if the benefit obtained from 

doing this exceeds the investment required for having a flexible process).  However, 

the authors note that care must be taken when planning for adaptive processing, as it 

is a reoccurring mistake to develop models that assume perfect information from 

limited samples. Here, they define a simplified model to calculate the value 

generated by different types of ore, depending on their mass, grade, the liberation 

per grinding size selected, and the corresponding milling energy required. However, 

the authors neither consider the inherent uncertainty of these variables nor the 

geometallurgical effect over the whole mining complex, focusing solely on the 

processing stage, which has been proven to be suboptimal in terms of maximizing 

project value. 

Dunham et al. (2011) comment on the impact that geometallurgy can have over 

the value and viability of a mining project, transforming the extraction schedule of 

the deposit compared to traditional evaluations, which do not consider these 
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variables. Accounting for these “non-grade properties” of the rock in the 

optimization process, together with stockpiling and blending strategies can strongly 

affect the processing strategies chosen for the operation, and thus the project value. 

The authors note also that integrating geometallurgy into the mine plan provides a 

spatial context, which is especially useful to, for example, study the distribution of 

deleterious elements, which can drastically change the project’s design and improve 

its performance.  

With respect to the realistic representation of geometallurgical variables, Van 

den Boogaart et al. (2014) present a simulation method for modelling discrete and 

continuous geometallurgical parameters. The authors state that “conditional 

geostatistical simulation of geometallurgical parameters enables the construction of 

a processing model for computing recovery, equipment usage, processing costs and 

other relevant parameters and thus the monetary value for mining and processing a 

block with certain parameters.” They also note that traditional geostatistical 

techniques cannot be directly applied for conditional simulation of geometallurgical 

parameters for two main reasons. Firstly, many variables have non-Euclidean 

statistical scales (such as mineralogy), which produce, in some cases, infeasible 

values in the simulation. Secondly, processing material entails nonlinear 

transformations of the rock’s properties, and, as such, the conditional distribution of 

the variables is relevant for the simulation not only their mean and variance, as is 

done in traditional estimation methods or Gaussian simulations. Due to this, the 

simulation needs to reproduce the joint conditional distribution of all of the relevant 

geometallurgical variables being considered. Thus, they propose an adaptation to the 

traditional conditional simulation procedure by using a joint multipoint conditional 
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simulation framework. In their approach, the authors adapt the single normal 

equation simulation (SNESIM) proposed by Strebelle (2002) to simulate categorical 

variables by estimating the conditional probability distribution functions of a 

training image via multinomial logistic regression (i.e., it is assumed that un-

sampled locations follow a multinomial distribution), and extend its application to 

consider information provided by different scale layers (i.e., other type of variables, 

not necessarily categorical) in conditioning locations.  

Deutsch et al. (2016) adapt different geostatistical and numerical techniques to 

generate high-resolution simulations of mixed, continuous, and categorical 

geometallurgical variables, accounting for their non-linearity and for the correlation 

existing between different jointly- simulated variables. In their study, the authors 

focus on the grinding index and on the mill’s Bond Work index (BWi) to maximize 

the throughput and metallurgical recovery of an operation. However, the problem 

with simultaneously simulating geometallurgical variables sampled in different 

scales (which is often the case with regionalized variables) is yet to be addressed, 

eliminating the possibility of accounting for the existing correlation between these 

variables.  

It is known that geometallurgical variables directly affect the performance of the 

downstream processes of a mining complex. Because of this effect, the approach 

presented herein includes these variables directly into the destination policy 

mechanism by implementing a multivariate selection method that defines which 

blocks are processed together at a given place, given their combined multivariable 

attributes. This is done by implementing coalition formation algorithms (which are 

an extension of cooperative game theory), which are defined as grouping 
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mechanisms that are able to account for multiple non-linear attributes. This way, the 

proposed method considers not merely the main elements’ grade in a block, but 

rather a set of properties of the rock, which have an effect on the downstream 

processes, and groups them according to their processing preferences. This new 

clustering algorithm will better maximize project value, and will achieve production 

targets while taking into account the complex blending requirements.  

A global overview of game theory and, in particular, the concept of coalition 

formations is presented next, together with its relation to the destination policy of a 

mining project. 

 

3.3 Proposed Coalition-based Destination Policy Method 

Game theory is the study of strategic interactions between decision makers 

(Schelling, 1980). Formally, Myerson (1991) defines game theory as the study of 

mathematical models of conflict and cooperation between rational decision makers, 

or “players.” In order to maximize its utility, a player must make decisions while 

strategically predicting what the other players will do, as his payoff depends on his 

own actions, as well as on the other players’ actions. This way, game theory 

provides the techniques for analyzing situations in which two or more agents make 

decisions that will influence one another’s welfare (Aumann, 1976). In particular, 

cooperative game theory focuses on studying games where players have the 

opportunity to communicate with each other and form coalitions in order to increase 

their utility (Osborne and Rubinstein, 1994). This increase of value is obtained given 

the non-linearity of their utility function.  For example, if two agents decide to team 
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up, then their compound value must be higher than or equal to the sum of their 

individual initial values. The individual contribution of each player to the coalition 

is usually different and a “solution concept” for a coalitional game is a revenue 

and/or information sharing mechanism (Brandenburger and Nalebuff, 2002; Von 

Neumann and Morgenstern, 2007). 

3.3.1 Coalition Formation and the Shapley Value 

There are multiple ways to divide revenues, but the most recurrent form studied 

is such that the value allocation is “fair” (Leyton-Brown and Shoham, 2008), 

making sure that the coalition remains “stable.” “Stable” means that none of the 

players wish to leave the group to form another group as their value is maximized in 

their current state (Aumann and Dreze, 1974). To solve the problem of “fair value 

allocation,” the most studied revenue sharing mechanism is based on the Shapley 

Value (Shapley, 1953), which is the mathematical evaluation of a player’s gain in a 

game. The Shapley Value is defined by using “characteristic functions”, which is the 

mathematical representation of the value generated by a subset (or coalition) of 

players in the game (Brandenburger, 2007; Von Neumann and Morgenstern, 2007). 

By definition, this characteristic function must satisfy three axioms in an N-player 

game. Given  ( )iV S , defined as the characteristic function of subset Si of the N 

players ( iS N ): 

 ( ) 0V      

 Given coalitions 
1 2 an d  S S , where 

1 2 1 2 1 2;  , ,  th en  ( ) ( )S S S S N V S V S      

 Given disjoint coalitions 
1 2 an d  S S where 

1 2 1 2 1 2, ;  ( ) ( ) ( )S S N V S V S V S S     
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It can be noted that the third axiom highlights the non-linear nature of the 

characteristic function (and thus, of the coalition formation process), enabling the 

representation of complex relations between the players. It can also be noted that, if 

a parameter in the definition of the characteristic function is negative (i.e. the cost 

“c” of processing higher tonnage will be higher when processing more tonnage, 

reducing the utility function), then this cost can be normalized and added as a 

negative (i.e. “1 – c”). Translating these three axioms into mathematical form yields 

the Shapley Value formula, which is a unique payoff allocation that divides the full 

profit of the grand coalition among the players (Osborne and Rubinstein, 1994) and 

is calculated in function of their marginal contributions to all possible coalitions 

(Roth, 1988; Gul, 1989; Brandenburger, 2007; Branzei et al., 2008). This allocation 

system defines the revenue (or satisfaction degree) obtained by player i, 1 .. .i N  in 

a game of N players, for all possible coalitions C, where  C N . The mathematical 

formulation is presented in Eq. (3.1). 

 

P a rt  2
P a r t  1

( 1) !( ) !
( , ) ( ) ( )

!
V

C

C n C
S H N i V C V C i

n

 
                (3.1) 

Equation (3.1) is referred to as “the Shapley Value of player ‘i’ ”; here, the 

value is calculated over all possible coalitions ( C ), where ( )  an d  ( { } )V C V C i  

represent the characteristic function of a coalition with and without player {i}, 

respectively. This way, “Part 1” corresponds to the summation of all possible 

permutations of coalitions that can be formed in an N-player game, and “Part 2” 

corresponds to the marginal contribution of player i to each of this coalitions. Also 



 

103 
 

note that ( , ) ( )Vi
S H N i V N


 , i.e., all the value generated in a game is divided 

among its players. 

3.3.2 Defining Priority Groups and Pre-Processing Mechanisms 

The main drawback of the Shapley Value is that it cannot be calculated in 

polynomial time, as the calculation of all permutations of players in a game is 

computationally very expensive and becomes unmanageable as the number of 

players increase. Because of this, Liu et al. (2011) present a cooperative game theory 

approach for multi-objective categorization where the Shappley Value is 

approximated by “priority groups”, which are computed in O(n3) time, where n 

corresponds to the number of players in the game. In their paper, the authors present 

a simple example of three families who must decide where to go on vacation and the 

value of the different families (players) is represented in a characteristic function. In 

this case, the function depends on the number of families joining (as economies of 

scale allow the cost of the trip to be lower for more players), on their holiday 

destination preference, and on the relative preference of each family to go with each 

other. Here, the satisfaction of each family is then measured by their Shapley Values 

and the vacation groups are defined.  

The basic idea behind these priority groups is that players that present favorable 

coalitions will still remain together as the coalition gets bigger. This means that the 

ultimate optimal priority groups can be obtained by recursively combining the latest 

larger Shapley Values. The authors present the following example: suppose that 

there are three players (A, B and C), and two available destinations (L and P). All 

the options are stated and, as a first step, a pairwise combination of the players is 
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done. However, only the combinations that actually create value are kept (as 

coalitions are formed only if  ( ) ( ) ( ))V A V B V A B  . These combinations are 

created recursively, level by level, eliminating unfavorable groups to reduce the 

computational cost. Algorithm 3.1 presents the pseudo-code to find priority groups  

presented in Liu et al. (2011).  

 

Algorithm 3.1 Finding priority groups (From Liu et al. (2011)) 

Input: 
 N = {P1, ..., Pn}, the set of players 
 T = {T1, ..., Tm}, the set of targets 
 F, the set of characteristic function 
Output: Priority groups 
Local variables: 
 l, a level number 
 gl(TS), gl is a group in l-level and TS the target set that gl belongs to 
 Sl, the set of pairwise combinations of members in (l − 1) level 
 Cl, the candidate in l-level 
 εl, the l-level threshold of priority 
 PGi, the set of priority groups 
 SHF−t(gl,i, gl−1,k), a Shapley value for the group gl−1,k in target t 
 w.r.t. the game (gl,i, F) 
Steps: 
Step 1. Initialization 
 • l ← 1 
 • For the l-level, players Pj(j = i, ..., n) form n groups separately. 
 g1j(j = 1,...,n): g11 ← P1, g12 ← P2,...,g1n ← Pn 
 • Cl ← {g11(T), ..., g1n(T)} 
Step 2. Generate candidate set Cl level after level 
 Repeat 
 (1) l ← l + 1 

(2) Form candidate items (gl−1,j, gl−1,k) from pairwise combinations of the 
members in Cl−1 such that  
 SHF−t(gl,i = (gl−1,j, gl−1,k), gl−1,j) > F(gl−1,j),  
 SHF−t(gl,i = (gl−1,j, gl−1,k), gl−1,k) > F(gl−1,k), and  
 [SHF−t(gl,i = (gl−1,j, gl−1,k), gl−1,j)] ∗ [SHF−t(gl,i = (gl−1,j, gl−1,k), gl−1,k)] > εl 
The set of pairwise combinations is denoted by Se. 

 (3) Ce ← Cl − glj(T’) 
 (4) If there are gli(T), glj(T’) in Cl such that T ⊇ T’ 

then Cl ← Cl − glj(T’) 
 Until (l = n or Cl = Cl−1) 
Step 3. Generate priority groups 
 Select priority groups GPi from Cl such that ⋃ gli  =  Ngli ∈ Cl  

Step 4. Return PGi 
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This procedure is diagramed in Figure 3-2, where two example priority groups 

are created (PG1 and PG2). 

 

Figure 3-2 Priority group creation process. Adapted from Liu et al. (2011)  

 

In the case of mining, the goal is to define the destinations of blocks being 

mined on a given year. Therefore, parallel with Liu et al.’s (2011) paper, each family 

may be represented by each block being extracted on the same period and each 

holiday destination can be seen as a block’s possible processing destination, such as 

a stockpile, waste dam, mill, leach pad, etc. This leads to a major problem given that 

a block is considered as a player in the game and mining projects usually entail 

millions of blocks coming from multiple mines, while the applications presented by 

Liu et al. (2011) included only up to 60 families (i.e. players). In light of the number 

of “players” in the mining case, to successfully calculate the Shapley Value of the 

players in different coalitions, it is crucial to apply a short-cut mechanism (such as 

the priority groups), that enables a faster and more feasible calculation time. If a 

mine has one million blocks, which is typical of a medium-sized mine, then 

calculating all the permutations of thousands of possibilities of coalitions (Eq. 3.1) 

would make the algorithm impossible to apply in the mining industry. 

To reduce the computational cost of the formulation even further, it is proposed 

to pre-process the deposit by clustering similar blocks together. In this case this is 
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done by using k-means++, where blocks being extracted in the same period which 

belong to the same initial cluster can be treated as families of blocks and optimized 

together, as presented in Figure 3-3.  

        
Figure 3-3 Definition of families to pre-process data as input to priority group 

generation. 

 

Clustering algorithms are usually based on grouping data according to their 

density and “proximity” in a standardized grid. These algorithms can be classified as 

centroid-based (such as k-means or affinity propagation clustering), hierarchical 

(such as spectral clustering), or neighbourhood growers (such as DBSCAN and 

Agglomerative clustering), where each one has its advantages depending on the type 

and amount of data being analyzed. K-means++ clustering is implemented here as it 

allows clustering of qualitative, as well as quantitative, data. Moreover, it is simple 

to implement considering the large amount of data being represented, and, as shown 

in Goodfellow and Dimitrakopoulos (2014), it has been successfully applied in the 

mining optimization process to develop robust destination policies that account for 
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multiple attributes and material types, as well as geological uncertainty. The basic 

algorithm to perform k-means++ clustering is presented in Algorithm 3.2. 

 

Algorithm 3.2 K-means++ clustering pseudo code 

Input: 
 k, number of clusters, 
 D, multi-dimensional data set 
Output: set of k clusters 
Steps: 
Step 1: Initialization 

Arbitrarily choose an object of D as a centroid 
 Repeat: 

(1) For each data point x ϵ D, compute d(x) as the distance between x and 
the nearest centroid. 

(2) Using a weighted probability distribution, choose a data point x’ as a 
new centroid, where data point x is chosen with probability D(x)

2
 

Until k centroids have been chosen 
Step 2: Clustering 

Repeat: 
(1) Assign each data point x to the cluster whose centroid’s mean has the 

least squared Euclidean distance (i.e. it’s nearest mean). 
(2) Calculate the new means of each cluster to be their updated centroids. 
Until there is no change in data assignment; 

Return set of data points per cluster 

 

Another pre-processing mechanism that could be considered is to remove from 

the destination policy optimization blocks, which are clearly waste (defined by low 

concentrations of any or all of the valuable elements encountered), and can be sent 

directly to the waste dump. However, there are two points that might hinder this 

removal. Firstly, due to geological uncertainty, a block may appear as waste in some 

simulations, but not in others, adding ambiguity to the robust definition of a block as 

“waste”. Secondly, even though a block may appear to be waste, as different 

geometallurgical characteristics are considered, the block can still contain other 

valuable elements needed for meeting blending constraints. 
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Together with the clustering mechanism, as a measure to reduce the complexity 

of the initial formulation, in the following case study the mine production schedule 

will be assumed fixed. In other words, it will be known which blocks are to be 

extracted in each period. This way, the focus of the optimization process will be to 

determine the different coalitions involved on a period, where a coalition represents 

the blocks that are sent to each destination (as all blocks scheduled to be extracted in 

one period must be sent somewhere). This will be done over multiple simulations of 

the orebody model in order to account for the geological uncertainty of the deposit.  

3.3.3 Definition of Characteristic Functions in the Mining Context 

When applying the coalition formation process to a mining complex, the 

different possible targets of the cooperative game will correspond to the possible 

processing destinations of the mining system. In a mining system, the characteristic 

function of a coalition can be considered as the “willingness” of a given destination 

to pay for the set of blocks contained in the coalition. This means that each 

destination may have a different characteristic function that is specified to meet the 

individual processing constraints, and the players forming the coalition will define 

the value of the characteristic function , such that  , where N is the 

number of players and d the destination to which the characteristic function is 

defined for. 

In general, the characteristic function is a linear combination of a set of j 

different parameters (j=1,…, J such as preference, cost, targets, etc.), for each 

available destination d D  
,( )j dp . A destination depends on each block ( )ib  

dV : 2 N
dV 
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and/or on the coalition ( )C  being analyzed, weighted by ( ( )j iw b ) according to their 

level of importance in the overall value definition. These parameters (j=1,…, J ) can 

be a function of the whole coalition C (such as processing costs and recovery), or 

defined for each specific player bi’s characteristics (such as metal content). As 

presented in Eq. (3.2). 

 0 1 ,( , , . . . , ) ( ) ( , ) , : 2
i

N
d D k j i j d i d

b C j J

V C b b b w b p b C V


 

 
   

 
            (3.2) 

Given this definition, a simple definition of the characteristic function could be 

to calculate the discounted revenue of the cluster in a given destination as an 

addition of the parameters that define mining revenue. The following equation 

presents this formulation: 

0( , . . . , ) [ ( ) ( ) ( ( ) ) ( ( ) ( ) ) ]
td N d t dV C b b m C r C p r ic e R C C M C C P C C            (3.3) 

Where m(C) is the tonnage of cluster C, r(C) is the recovery, pricet is the 

commodity price at time t, RC corresponds to refinery costs, and MC(C) and PC(C) 

correspond to the mining and processing costs respectively. However, the 

transformation of all variables into dollar value through the previous equation causes 

a loss of information and tractability of the geometallurgical variables that need to 

be controlled. Given that costs, price, recovery, etc. are not constant, the use of the 

previous characteristic function should be avoided.  
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A possible alternative is to generate independent characteristic functions for 

each set of comparable attributes of a block, obtaining a characteristic function 

vector for each coalition, referred to as targets (T) in Algorithm 3.1. An example of 

these independent factors is presented in Eq. (3.4). This independent formulation 

will improve the tractability of variables of interest, having more flexibility to 

manage their effect over the coalition formation process. Particularly the relational 

attributes that are heavily affected by the global material processed together, such as 

processing costs, blending constraints and recovery. It must be noted, however, that 

having independent characteristic functions for each destination is equivalent to 

having one global characteristic function where the weights ( ( )j iw b in Eq. (3.2)) 

take different values according to different destinations, thus eliminating the effect 

of some of the parameters. 

1

2

3

T  =  p ro c e s s in g  c o s t , e le c tr ic i ty  c o n s u m p tio n

T  =  re c o v e ry , th ro u g h p u t

( ) T  =  re v e n u e

T  =  d is ta n c e  to  m e e t o re  p ro d u c tio n  ta rg e t , p e rc e n ta g e  o f  ta rg e t  m e t

d

n

V C

 

 

 

 

 

 

 
 

 (3-4) 

 

3.4 Case Study 

3.4.1 Overview of the mining complex 

The following case study corresponds to a copper-gold deposit, extracted as an 

open pit with a mining capacity of 25Mtpa and six different processing streams. The 
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deposit, together with gold and copper, contains arsenic and sulphur sulphide 

concentrations, which must be measured for mill performance. Together with the 

deleterious elements, the lithology of the deposit presents six different material 

types, which correspond to high and low grade of oxides, sulphides and transition 

material with different hardness. These material types affect where a given block 

can be processed. 

Fifteen different geological simulations where generated using direct block 

simulation (DBSim) (Godoy, 2003) to assess the geological uncertainty of the 

project.  Geological uncertainty is present as different grades, as well as different 

material types, with variable tonnages per block. Table 3.1 presents the main mining 

and economical parameters, which are scaled by the mining cost for confidentiality 

purposes.  

 

Table 3.1 Mining and economic parameters of the copper/gold mine 

Processing Costs Mining Parameters 
Sulphide Mill $11.30 ∙ x Mining Cost $1.00 ∙ x 
Sulphide Heap Leach $2.98 ∙ x Mining Capacity 25 Mt  
Sulphide Dump Leach $1.87 ∙ x  Economic Parameters 
Transition Heap Leach $2.15 ∙ x Copper Price $2.9/lb 
Oxide Heap Leach $2.06 ∙ x Gold Price $1050/oz 

  Discount rate 10% 
 

A diagram of the mining complex is also provided (Figure 3-4), showing the six 

different destinations available and what they produce (in brackets), as well as the 

different material types accepted in each case (shown by numbers 1 to 6 in Figure 

3-4). The sulphide mill (SM) is the only processing stream that produces both 
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copper and gold, and it has a stockpile available of 1Mt. The sulphide heap leach 

(SHL) and dump leach (SDL) both produce copper; the transition heap leach (THL) 

and the oxide heap leach (OHL) produce only gold.  

 
Figure 3-4 Diagram of processing streams available and the material types accepted 

 

Each of these processing streams have a variable recovery curve dependent on 

the head grade fed to the destination. These curves are presented in Figure 3-5, 

scaled by the maximum recovery of the SM in this case. Together with this, the two 

main processing streams (being the SM and the SHL) present a set of processing 

constraints and blending requirements.  

For the Sulphide Mill: 

 This destination accepts material types 1 and 2. 

 Processing capacity of 3Mtpa, plus a stockpile of 1Mt capacity. 

 Sulphur sulphide concentration must be between 6.5 and 8.2%.  
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 Arsenic content must be below 0.2 to maximize recovery.  

 Processing cost of material type 2 is 10% more expensive to process than 

material type 1 due to rock hardness.  

On the other hand, the Sulphide Heap Leach: 

 This destination accepts material types 2 and 4. 

 There is a processing capacity of 8Mtpa. 

 Copper concentration must be over 0.2% at all times. 

 
Figure 3-5 Recovery curves of (a) copper and (b) gold per processing destinations 

 

It must be recalled that these requirements must be met simultaneously, where 

the value generated will proportionally correspond to the quality of material being 

sent to be processes together in the different destinations. To track the different 

requirements, a set of characteristic functions will be defined according to the 

requirements of each main destination, which will help define the most valuable 

coalitions to process together. 
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3.4.2 Set of Characteristic Functions  

Based on the previous mining complex and the different requirements to 

maximize processing performance, the following characteristic functions have been 

defined. In this case, these functions are divided between: 

 (i) Global functions applied to all destinations, which correspond to: 

 Maximize revenue (function of recovery and metal content of material 

processed together) 

 Minimize deviation from production targets 

 (ii) Sulphide mill functions: 

 Minimize deviation from sulphur sulphide concentration limits (6.5%-8.2%) 

 Minimize deviations from arsenic maximum concentration (< 0.2%) 

 Minimize processing costs (function of material types of rock processed) 

(iii) Sulphide heap leach 

 Minimize deviations from copper’s minimum concentration (> 0.2%) 

3.4.3 Pre-Processing Priority Groups and Coalition Generation 

Each of these characteristic functions is applied over all the pairwise 

combinations of players. However, due to the computational intensity of performing 

all of these combinations, two pre-processing steps are applied over the data to 

reduce the computing time of the algorithm.  Firstly, all scenarios of the whole 

deposit are clustered together using k-means++ to group blocks into families, 

making the material type the same for all blocks within a family. In this case, 300 

clusters were generated for the 15 simulations of the deposit using Algorithm 3.2, 



 

115 
 

meaning that there are at most 300 players per period, which is less tan the 

approximately 2000 blocks being extracted per period, but considerably more than 

the 60 families considered in the formulation presented in Liu et al. (2011). Then, 

together with k-means++, material-type/destination connections between families 

and infeasible processing destinations are cut , in order to avoid performing 

calculations with blocks that are not allowed to be processed in a particular 

destination due to their material type.  This relationship is depicted in Figure 3-6.   

 
Figure 3-6 Rock/destination linkage pre-processing 

 

In the initial application of the method, the deposit is assumed to have a fixed 

schedule. Then, the extracted material of each period is optimized into coalitions to 

be sent to the best available destination given the system constraints and the 

maximization of revenue. 

3.4.4 Numerical Results 

To compare the algorithm proposed with current practices, a base case is 

developed using the traditional method, where blocks are sent to a certain 

destination given their particular attributes (copper and gold grades in this case). 
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Figure 3-7 presents (a) the mill tonnage feed per period, and (b) the SHL feed.  The 

orange line shows the expected tonnage feed given the estimated orebody model 

(base case). The grey lines beneath show the risk analysis of this base case (BC), 

representing the performance of the proposed schedule and destination policy for the 

fifteen different geological scenarios. 

 
Figure 3-7 Sulphide mill feed (left) and sulphide heap leach (right), for the 

deterministic case (orange) and the 15 geological scenarios (gray) 

 

It can be seen that, in the case of the mill, there is a 20% shortfall in tonnage 

along the LOM, showing that the base case is not really realistic when faced with 

geological uncertainty. In the case of the SHL, the shortfall is less, but there is still 

difficulty to meet production targets. The other destinations are not presented, as 

their capacities were unlimited and no geometallurgical constraints where applied 

over them. 

The main constraints considered in this case study were:  

i. the sulphur sulphide blending limits in the mill,  

ii. arsenic’s maximum concentration in the mill,  

iii. copper’s minimum grade in the SHL.  
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The comparison between the base case and the proposed method for these three 

constraints are presented next, where (a) presents the base case’s performance (left 

side figure) and (b) presents the results obtained by optimizing the destination policy 

with the proposed coalition formation algorithm (right side figure). Figure 3-8(a) 

presents sulphur sulphide (SS) grade for the deterministic case in orange, where the 

blending constraints are barely met until Year 8 when the fed SS grade passes the 

maximum concentration. However, when geological uncertainty is considered (gray 

lines), the SS exceeds the maximum limit in almost every year. On the other hand, 

Figure 3-8(b) shows that the priority group coalition method proposed (PG Risk 

Analysis) manages to considerably reduce SS grade up to the acceptable limits. 

There are still major deviations in Period 5 and between Periods 7 and 9. However, 

this is mostly due to the fact that the schedule is assumed fixed for this case study, 

so the material extracted in that period has a considerably high SS grade. If the 

algorithm was able to adapt to the schedule, then it would be possible to manage the 

processed material in order to meet blending constraints by delaying low SS grade 

material from the initial periods to reduce de feed grade of later periods. This is 

proposed as future research. .  

In the case of arsenic (As), the mill requires a concentration lower than 0.2% in 

order to maximize metal recovery and obtain optimum processing performance. The 

base case presented in Figure 3-9(a) shows that the material fed to the mill exceeds 

the maximum concentration in almost every case, up until Period 7, and again at 

Period 10. On the other hand, the proposed method improves considerably this 

processing requirement and is able to keep arsenic concentration below the limit in 

almost every case, except in Period 3 for some of the geological scenarios. 
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Figure 3-8 Risk profiles for the SS grade fed to the SM in the base case (left), for the 

deterministic case (orange) and 15 scenarios (gray) and the optimized destination 
policy (right)  

 

 
Figure 3-9 Risk profiles for the As grade fed to the SM in the base case (left), for the 

deterministic case (orange) and 15 scenarios (gray) and the optimized destination 
policy (right) 

 

Finally, Figure 3-10 shows that the copper (Cu) concentration of the material 

fed to the SHL is above the required minimum in every scenario for both the base 

case and the proposed method.  
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Figure 3-10 Risk profile of Cu grade fed to the SHL in the base case (left), for the 
deterministic case (orange) and 15 scenarios (gray) and the optimized destination 

policy (right) 

 

Considering a discount rate of 10% over the 10 year LOM, Figure 3-11 presents 

the cumulative discounted cash flow for the deterministic base case (in red), which, 

for confidentiality reasons, is presented as the 100% reference value; for the 

different geological scenarios over the base case (in gray), which show a 4.8% lower 

NPV than  expected by the deterministic model, and the optimized priority group 

coalition scenarios (in dotted black), increasing the NPV in an average of 5.6% over 

the deterministic base case. 

3.4.5 Discussion of Results 

The case study presented shows a novel contribution to the mining optimization 

process by developing a formulation that uses cooperative Game Theory techniques 

to include non-linear relations between the wide ranges of variables that are 

involved in the optimization of a poly-metallic mining complex.  
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Figure 3-11 Cumulative discounted cash flow (CDF) of the BC (red), and the risk 

analysis over the BC (gray) and the PG (dotted) 

 

From the previous results, one can see that, by optimizing the distribution of the 

material being extracted in a multi-variate non-linear manner, it is possible to 

improve project value and ensure that the processing streams work at their planned 

targets (i.e. blending constraints, metallurgical recovery, etc.). The distribution 

mechanism was done by a coalition formation algorithm that considers not only the 

attributes of each extracted block, but also the characteristics of the cumulative 

material being processed together (i.e. the interrelation of the blocks’ attributes). By 

doing this, it was shown that all blending constraint requirements are improved 

without compromising the grade of valuable metals (as shown in Figure 3-8 through 

Figure 3-11). 

In addition, this case study shows that priority grouping can be successfully 

implemented to reduce the computational cost of calculating the Shapley Value (as 

in Liu et. al, 2011), making it applicable at the mining scale. It was also shown that 
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coalition formation through the maximization of the Shapley Value is able to 

generate value by considering multiple categorical and qualitative variables within 

the grouping process. This finding can be widely applied over different areas, even 

though computational advances are making it possible to work with increasingly 

complex models, due to the high amount of data available and being produced, it is 

crucial to have effective grouping and classifying systems that account for complex 

non-linear relations of the data at hand. 

 

3.5 Limitations and Future Research 

The previous study shows promising results, however, a clear extension of this 

work would be to consider the scheduling problem within the optimization process. 

Future research will focus on this by extending the current formulation to consider 

the selection of material that is extracted in every period and, at the same time, 

ensuring that blending constraints are met while maximizing project value.  

Together with this, the presented destination policy distributes the extracted 

material as if all of the blocks extracted in a given period where processed together, 

which is an oversimplification, as a period corresponds to a year and extracted 

material is treated on the daily. Because of this, future research will seek to apply 

this method in a shorter-term, making the “cumulative processed material” a more 

realistic amount.  

Another limitation of the presented study is that geological and geometallurgical 

uncertainties are not directly integrated into the coalition formation, only in the 

optimization process. To extend this approach, we propose as future research to 
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implement a stochastic Shapley Value (Kargin, 2008) that would represent a set of 

scenarios. As shown in Table 3.2, the individual contribution of each block in the 

coalition is calculated over all scenarios (s = 1… S). 

This will provide a distribution of the Shapley Value of a block  belonging to a 

coalition C, and the coalition formation process can aim at maximising the expected 

Shapley Value (E(SH(C,b))) of a block over the set, and minimize its standard 

deviation (i.e. the risk of not obtaining that satisfaction level). However, this would 

greatly increases the complexity and computational cost of the formulation. 

 

Table 3.2 Calculation of the Expected Shapley Value from a set of S scenarios. 

𝑪 = 𝒃𝟎…𝒃𝒌  s1 s2 … sS 
𝑏0  𝑉𝑑,𝑠1(𝑏0) 𝑉𝑑,𝑠2(𝑏0)  𝑉𝑑,𝑠𝑆(𝑏0) 
𝑏0𝑏𝑖  𝑉(𝑏0𝑏𝑖) − 𝑉(𝑏𝑖)    

…  …    

𝑏0𝑏1…𝑏𝑘  𝑉(𝑏0. . . 𝑏𝑘)
− 𝑉(𝑏1…𝑏𝑘) 

   

      
𝐸(𝑆𝐻𝑑(𝐶, 𝑏0))  𝑆𝐻𝑑,𝑠1(𝐶, 𝑏0) 𝑆𝐻𝑑,𝑠2(𝐶, 𝑏0) … 𝑆𝐻𝑑,𝑠𝑆(𝐶, 𝑏0) 

 

Applying this stochastic coalition formation method to mining optimization 

would provide a scenario-independent destination policy, which would facilitate the 

operational applicability of the method (as geological scenarios do not aim at locally 

forecasting reality, but rather at representing a set of possible scenarios and 

particularly, the spatial variability present in the simulated variable). The actual 

material encountered at the moment of extraction will probably deviate from its 
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simulations, making it necessary to have a fast classification mechanism to define 

material when it is extracted, and decide its destination based on this classification. 

A crucial problem with this approach is that must be studied further is the 

misclassification errors, as the simulated material type of a block can vary from one 

scenario to another, making a block infeasible to process in a given location in one 

scenario, but not in others. 

 

3.6 Conclusions 

This study presents a multi-objective destination policy for extracted material, 

which is developed through grouping blocks according to their associative attributes 

by using a coalition formation mechanism. This mechanism presents a novel 

implementation of Game Theory techniques into the mine planning optimization 

process to account for the value generated by groups of blocks being processed 

together and, at the same time, consider complex geometallurgical constraints that 

are often ignored. The presented procedure develops characteristic functions that 

describe the value of coalitions of blocks being processed together, and defines the 

optimal destinations by maximizing the Shapley Value (which defines the utility) of 

each block or cluster of blocks (i.e. the players of this cooperative game). 

A case study of a copper-gold deposit with six material types and six possible 

destinations showed that the proposed PG method is able to account for the value 

generated from extracted material with multiple categorical and continuous 

attributes, and optimize its processing destination so that not only all processing and 

blending constraints are met, but also project value is maximized. This promotes a 
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more realistic representation of the project value. Results from the case study 

showed that the proposed algorithm was able to reduce As concentrations and 

improve SS ranges in the mill feed material without reducing Cu grades nor final 

revenue, as the PG destination policy delivered a project with an NPV 5.6% higher 

than the base case, which was (developed by traditional methods that violate 

blending constraints. These results were obtained by redistributing the extracted 

material, as the schedule was assumed constant for both BC and PG cases.   
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CHAPTER 4                                                                                                                    
Dynamically Optimizing the Strategic Plan of a 

Mining Complex under Supply Uncertainty 

 

 

The previous chapters study ways to optimize capacities by investing in capital 

expenditures (Chapter 2), and ways to deal with complex geometallurgical variables 

(Chapter 3) withing the mine planning optimization model. However, both models 

are limited, as they assume a fixed schedule. Here, the learnings from the previous 

chapters are extended into a dynamic model that optimizes the mine production 

schedule of a mineral value chain, and considers alternatives that allow the model to 

adapt due to the uncertainty. 

 

4.1 Overview 

Mining complexes are mineral value chains consisting of a continuous flow of 

material with several components: multiple mines, represented by orebody models 

discretized into mining blocks, mineral processing streams, and transportation 

systems to deliver products to customers. The performance of each component 

strongly depends on the other; as a result, these components must be modeled jointly 

and simultaneously optimized, accounting for profits from the final product(s) sold. 

The value generated by the synergies that exists between the components of a 

mining complex, and the need to simultaneously account for them within the 
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strategic plan have been discussed in the technical literature (Hoerger et al., 1999; 

Whittle, 2007, 2010b; Pimentel et al., 2010; Bodon et al., 2011), being referred to as 

global or simultaneous optimization. However, these studies are limited, as they 

require major simplifications, and do not consider the optimization of the mining 

schedule, nor do they propose a single formulation for the simultaneous mining 

complex optimization. Additionally, they ignore uncertainty, and provide static 

plans that are unable to adapt to future information. Within these uncertainties, a 

major source is the one related to the geological attributes of interest of the mineral 

deposits, such as grades and material types, which characterize the supply of 

material from the mines. This uncertainty must be accounted for in the optimization 

process to generate reliable solutions that manage risk and maximize value 

(Ravenscroft, 1992; Dowd, 1994, 1997). 

Extensions of these optimization models referred to as two-stage stochastic 

simultaneous optimization of mining complexes are single formulations that use a 

set of geological scenarios of the mineral deposit mined to quantify the related 

uncertainties. These models are able to simultaneously generate a life-of-mine 

(LOM) extraction sequence and destination policy for the mines involved, managing 

technical risk and maximizing net present value (NPV) (Goodfellow, 2014; Montiel, 

2014; Montiel and Dimitrakopoulos, 2015, 2017, Goodfellow and Dimitrakopoulos, 

2016, 2017). Montiel et al. (2016) present a heuristic method to solve the LOM 

production scheduling optimization of a mining complex considering geological 

uncertainty, including operating alternatives for the processing plants and 

transportation systems. On the same line of research, Lamghari and Dimitrakopoulos 

(2016b) propose a network-flow based heuristic algorithm to optimize the mine 
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production schedule under metal uncertainty, also considering the complete mining 

complex. Other studies have focused on other sources of uncertainty; Kizilkale and 

Dimitrakopoulos (2014) optimize mining rates under market uncertainty in a mining 

complex using dynamic programming mechanism, while Zhang and 

Dimitrakopoulos (2017) account for market uncertainty and develop a 

decomposition method to optimize both the mining schedule and the downstream 

material flow plan. Zhang and Dimitrakopoulos (2018) consider both geological and 

market uncertainty, and propose a model to optimize a mining complex’s long-term 

contract design strategy. 

Existing two-stage stochastic optimization models provide a strategic mine plan 

that allows meaningful assessments and risk quantification, but these plans are 

static, thus unable to adapt to new information that may be obtained in the future, 

leading to undervalued strategic plans (Wang, 2005; Eckart et al., 2010). Multistage 

stochastic programming models (Ahmed et al., 2003; Boland et al., 2008) aim at 

including operational flexibility into the LOM plan by producing different possible 

solutions to follow once uncertainty is unveiled. However, these methods generate 

impractical results, tailored for each scenario, rendering their LOM plans and related 

financial assessments meaningless. In practice, a unique strategic plan is required to 

provide a reliable evaluation and facilitate decision making. In this study, a new 

method is proposed aiming to increase the flexibility of a mining complex by 

improving the strategic plan’s capacity to react and adapt to new information by 

dynamically deciding on investing in strategic, feasible capital expenditure 

(CAPEX) options. Flexibility is accounted for in the way of a set of feasible 
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alternatives that can be taken, depending on the configuration and characteristics of 

the mining complex at hand.  

De Neufville et al. (2004) define “flexible designs” as able to pro-actively adapt 

and reconfigure if needed (De Neufville and Scholtes, 2011). The concept of design 

flexibility is well known (Siegel et al., 1987), where, by considering a dynamic 

value chain that accounts for different alternatives, it is possible to assess the overall 

probability of different outcomes that can lead to higher profits (Dixit and Pindyck, 

1994). However, in mining operations, reliable financial assessment can only be 

obtained if feasible plans are produced, following physical geotechnical restrictions 

and operational requirements. Developing feasible, operational strategic mine plan is 

one of the main challenges when considering flexibility in the stochastic 

optimization of an industrial mining complex, since, as mentioned earlier, a single 

LOM plan is required to follow and evaluate, such as the one provided by the static 

two-stage stochastic integer programming (SIP) model. At the same time, 

accounting for feasible flexibility options can prove to be very beneficial for a 

strategic plan. It can be assumed that knowing in advance what the possible 

developments of the mining operation may be allows management to take advantage 

of opportunities and prepare better for possible changes. Thus, flexible alternatives 

can be integrated into the existing plan and transitions optimized, maximizing 

performance without compromising the operational requirements of the strategic 

plan.  

Different efforts at including flexibility in mining operations can be found in the 

literature, considering uncertainties in commodity price, geology, or operating cost 

(Singh and Skibniewski, 1991; Kazakidis and Scoble, 2003; Groeneveld and Topal, 
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2011). Ajak and Topal (2015) focus on flexible decision making at an operational 

level, considering price uncertainty to decide switching extraction zones. 

Groeneveld et al. (2012) stress the concept of an “operational schedule”, focusing on 

the development of a strategic plan which can be applied in practice to provide a 

reliable financial assessment. The authors propose a method which adapts to 

possible price fluctuations, however, their approach is limited by not considering 

geological uncertainty, and assuming that all future information is known through 

the scenarios analyzed. Del Castillo and Dimitrakopoulos (2014) study the effect of 

commodity price and geological uncertainty in LOM plans, and show the 

importance of including these uncertainties in strategic decision making. More 

recently, Montiel and Dimitrakopoulos (2015, 2017) present a stochastic 

simultaneous optimization of a mining complex model which allows the optimizer 

to choose between different processing and transportation alternatives, managing 

throughput versus recovery in the first case, and cost versus capacity in the second. 

Goodfellow and Dimitrakopoulos (2016) include CAPEX investment decisions to 

define extraction capacity, letting the optimizer choose when and how many trucks 

and shovels to purchase. Farmer (2016) also optimizes a mining complex’s 

extraction capacity as part of the optimization process. However, in all these studies, 

the final solution is still a static design that provides no options, and is fixed for the 

whole LOM after optimization. Dowd et al. (2016) state that studying ways to 

integrate flexibility in the design is one of the main challenges in mine planning at 

present.  

In the present study, an operational dynamic simultaneous optimization is 

developed for the strategic planning of a mining complex under supply uncertainty, 
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where CAPEX alternatives are explicitly included in the formulation. These 

decisions are taken dynamically along the LOM optimization process, as new 

information is obtained from the supply’s uncertainty, and the strategic mine 

planning schedule is adapted accordingly. Supply uncertainty is considered by using 

a set of geological scenarios of the deposit, which represent its spatial variability of 

grades and material types, and are used as input to the optimization. The proposed 

method proactively optimizes CAPEX decisions’ timing by allowing uncertainty 

scenarios to differ in these decisions, if doing so adds value to the strategic plan. 

Thus, if on a given year a representative number of scenarios decide to invest on a 

CAPEX option, then the optimization will allow the design to “branch” into two 

parallel feasible plans, divided in annual stages. The model developed herein 

extends the formulation proposed by Goodfellow and Dimitrakopoulos (2016) to 

include dynamic decision making, and solved by a metaheuristic method. This 

mechanism ultimately provides information about the probability of applying 

different CAPEX alternatives and outlines the optimal period to consider them.  

The next section describes the proposed method, mathematical model, and 

solving procedure implemented. Then, an application to a copper mining complex is 

presented, and compared to the traditional two-stage stochastic formulation. 

Conclusions follow. 
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4.2 Proposed Dynamic Stochastic Optimization of a Mining Complex 

4.2.1 Methodology 

The proposed method is explained next through the example presented in Figure 

4-1. The mine planning schedule is optimized given a set of simulated realizations of 

pertinent orebody attributes and a unique schedule is produced for years 1 and 2. 

However, Figure 4-1 shows that in period 3 a major proportion of the simulation 

scenarios decide to invest on a given CAPEX option. Consequently, the 

optimization allows the solution process to branch into two feasible designs, one for 

each subset of orebody simulations, and a unique strategic plan schedule is 

developed for each of them.  

 
Figure 4-1 Example of including investment alternatives in the optimization process 

 

The previous example shows the importance of clearly defining when to branch 

during a solution process. This is done by setting a threshold that defines the 

representative proportion of scenarios which must differ in investment decisions for 

a solution to be divided into feasible branches, and it is a pre-defined parameter set 

by the operation's management. This threshold is used to filter irrelevant investment 

decisions and only consider potentially significant ones, avoiding designing 
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complete mine plans for scenarios that have a relatively low probability of 

occurring. This parameter is defined in the following relation, where, given a 

predefined threshold (R), the decision for branching the design is defined as: 

{
  
 

  
 𝑑𝑜 𝑛𝑜𝑡 𝑖𝑛𝑣𝑒𝑠𝑡,         𝑖𝑓 

∑ 𝜔𝑘∗,𝑡,𝑠𝑠∈𝑆

|𝑆|
< 𝑅                 

𝑏𝑟𝑎𝑛𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛,   𝑖𝑓 
∑ 𝜔𝑘∗,𝑡,𝑠𝑠∈𝑆

|𝑆|
∈ [𝑅, 1 − 𝑅]  

𝑖𝑛𝑣𝑒𝑠𝑡,                       𝑖𝑓 
∑ 𝜔𝑘∗,𝑡,𝑠𝑠∈𝑆

|𝑆|
> 1 − 𝑅         

 ,           𝑅 ≤ 0.5, ∀𝑘∗, ∀𝑡 

Where * , ,k t s  represents the binary decision variable that shows if branching 

investment option 𝑘∗ is taken at time t, on scenario s S or not (  * , , 0 ,1k t s  ). From 

the previous relation, it is clear the importance of defining parameter R, where, for 

example if R = 50%, then the design would branch only if exactly half of the 

scenarios choose to invest in a branching alternative during a specific time window. 

On the other hand, if R = 0%, the design will branch as soon as any scenario decides 

to invest in a branching decision. In other words, the lower the value of this 

threshold, the more willing the operation is to consider low probability futures. 

However, choosing a value that is too low might result in over-fitted plans that 

perform poorly when tested over new scenarios, falling into the multistage 

optimization problems mentioned in the previous section. In the previous example 

presented in Figure 4-1, it is assumed that for the design to branch, 𝑅 must be 

≤ 40% (as 12 out of 30 simulations, i.e.  40% of scenarios branch), so both options 

(with and without investment) are considered "representative" and the solution 

process branches (as 60% of scenarios opt on investing, and 40% do not, both ∈
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[𝑅, 1 − 𝑅]). If instead 𝑅 > 40%, the mine plan would not branch as shown in the 

figure, and only the design with the investment on CAPEX at year 3 would be kept. 

It is suggested that a threshold of between 30-35% be used, as these ranges are 

representative enough to produce robust solutions that are stable under a different set 

of scenarios, while still detecting possible investment alternatives that might be 

profitable in the future. 

In the proposed approach, it is defined that only a selected sub-set of CAPEX 

alternatives can cause the mine plan to branch, thus, CAPEX decisions are divided 

into branching and non-branching alternatives ( K  and K   respectively). The first 

correspond to major investment decisions that are usually taken only once, or once 

every more than ten years (such as opening a new plant or buying an extra crusher). 

These options have a significant impact on the mine plan and specifically, over the 

mining schedule. The decisions of the second group have a relatively reduced 

impact and/or are multiple small decisions (such as truck purchases). Allowing these 

minor periodic decisions to branch, the design would make the methodology 

impractical, as the scenario tree would grow exponentially, increasing the 

complexity of the model, without important differences between each branch. For 

example, decisions such as considering buying an extra truck in a fleet of 50 trucks 

might not be representative or significant enough to generate a separate mine plan. 

On the other hand, a considerable investment such as an additional crusher would 

have a high impact on the processing capacity of the mining complex, and thus, on 

the schedule. However, the final classification of which CAPEX decision falls in 

each category will depend on the mining complex at hand. 
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The solving process proposed can be divided into steps that are repeated 

iteratively. Given that each production year is represented by t, where t ϵ {1,…, T}, 

and T is the final production period. 

Stage 1: Initialize 

Optimize the whole mine plan as a two-stage SIP as in Goodfellow and 

Dimitrakopoulos (2016), from t = 1, …, T, where block extraction sequence 

variables correspond to first stage decisions, unique decisions over all 

geological scenarios, and the processing stream variables to second stage 

decisions, scenario-dependent decisions that work as correcting agents of first 

stage decisions that are made under uncertainty. Set current year ti = 1. 

Stage 2: Solve while ti  < T, do 

1. Freeze decisions from t = 1, …, ti , and consider all future extraction 

and processing decisions 2nd stage (t = ti.+1,…, T ). Compare solutions in 

terms of the investment decisions taken. If a representative number of 

scenarios (R) perform the same investment in a given year t* ∈ [𝑡𝑖 +

1,… , 𝑇], the optimizer groups those scenarios and branches on that year into 

two mine plan designs (with and without the investment) with their 

corresponding subgroup of scenarios. If not, t* = 0. 

2. Optimize each active branch from ti+1 to T as a two-stage SIP (as in 

Stage 1), fixing the initial year ti+1 in both, and their corresponding 

investment decisions. 

3. Set ti equal to the maximum between t* and ti +1.  
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This process is repeated until all periods of the LOM of the mining complex 

have a unique design assigned to them. The mathematical programming formulation 

is presented next, and the implementation algorithm is available in Appendix 4.A. 

4.2.2 Stochastic Integer Programming Formulation 

The proposed model uses the formulation developed in Goodfellow and 

Dimitrakopoulos (2016), were the authors aim at simultaneously optimizing multi-

mine production schedules, destination policies and processing streams under 

uncertainty, including capital expenditure options. Here, the orebody blocks of all 

simulations are clustered using k-means++ algorithm, and the destination policy is 

annually defined per cluster. The main difference in the presented model is that in 

this case, CAPEX decisions are taken dynamically along the LOM, and the mine 

plan is adapted accordingly. To do this, the formulation models major strategic 

investment decisions within the operation as a scenario tree. For the purpose of 

clarity, this tree is divided by period and events (invest/don’t invest), and each node 

is identified by a root, and its event or leaf (as presented in Figure 4-2). The root 

works as an identifier that contains information of the whole decision path of the 

branch which led to the leaves and is summarized as ρ in Figure 4-2. The leaves 

correspond to parallel designs with the same “ancestor” or root (for example, in 

Figure 4-2 a branch corresponds to nodes {n1, n12, n121}, where the root of node n12 

is ρ=1, and the root of node n121 is ρ=12). Note that if two branching alternatives are 

considered jointly in the optimization, then 4 leaves should be considered per branch 

(instead of 2), one for each possible investment combinations per year. However, as 
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most of the branching decisions are limited to be taken only “once in the LOM”, the 

tree is simplified considerably.  

Three main adaptations are made from the model presented in (Goodfellow and 

Dimitrakopoulos, 2016). (i) CAPEX decisions have a scenario component (as shown 

in the following formulation). (ii) As stated in the methodology, after the first 

period, extraction decisions are also temporarily considered 2nd stage decisions, and 

(iii) additional dynamic constraints are included in the model (presented next) which 

control the branching mechanism and act similar to non-anticipative variables 

(Wang and De Neufville, 2005; Boland et al., 2008). Non-anticipative variables are 

used to ensure that non-differentiable scenarios entail equal actions (i.e. decisions) 

over them, and define a tree structure that branches out as scenarios differentiate 

and, in response, different decisions are taken. The list of sets used is given next, 

followed by the definition of the decision variables. Finally, the objective function 

and some main constraints are presented.  

 

 
Figure 4-2 Tree structure used to define the branching mechanism of the model 

presented herein 

 

n1 

n11 
n111≈ρ1 

n112≈ρ2 

n12 
n121≈ρ'1 

n122≈ρ'2 

- n  = node of the tree 

- ρ  = root “address” of a node 

- ρ1/ ρ2 = leaves of a branch  
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Table 4.1 Sets and Parameters 

P  
Primary attributes that are tracked in the supply chain (e.g., metal 
content, tonnages). 

H  
Hereditary attributes (derived from primary attributes) that are 
tracked in the supply chain (e.g., grades, recoveries, value). 

T Time periods in the life of mine, indexed by t = 1…T 

S 
Set of scenarios, indexed by s = 1, …, Smax, where Sρl ⊆ S Sub-set 
of scenarios in node ρ,l (root ρ, leaf l). Note that S1 = S ,  Sρ1⋂Sρ2 =
∅, and Sρ = Sρ1 ∪ Sρ2 

  Minimum number of scenarios in a branch to allow further branching 

K 
Set of flexibilities and system options, indexed by k, where 
K< ⊂ K set of options that require branching over the design 
K= ⊂ K set of options that don’t require branching 

D Set of locations in the mining complex 
Θ(j) Set of destinations which can receive material from location j ∈ D. 

, 0+ / -
h ,i t ,sd   

Deviations from targets on hereditary attribute h, at location i, period 
t, scenario s 

0+ / -
h ,tc   Unitary cost of deviation of attribute h, at period t 

, , , ,/h i t h i tU L

 
Upper and lower limits for attribute h, at location i, period t 

,k h  
Unitary extra capacity over attribute h obtained by the purchase of 
investment k 

k  Life of capital option k K in years 

k  Lead time before an option k K  is available, in years (since the 
moment of decision) 
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Table 4.2 Decision Variables 

xb,t,s ∈ {0,1} Defines if block b is extracted at period t, scenario s 
yi,j,t,s ∈ [0,1] Proportion of material sent from i to j in period t, scenario s 
zc,j,t,s ∈ {0,1} Defines if cluster c is sent to j ∈ Θ(c) in period t, scenario s 
ωk,s,t ∈ {0,1} Defines if investment k ∈ K is executed in period t, scenario s 

q
k<,t

ρl
∈ {0,1} Defines if to branch design over investment option k< ∈ K< in 

node ρl, period t 

, , ,h i t sv  Value of hereditary attribute h, at location i, period t, scenario s 

 

Mathematical Formulation 

Objective function 

/ /
, , , , , , , , ,
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 Mining complex constraints 
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 Dynamic non-anticipativity constraints - Decisions can be different 

between sets of scenarios (branches), where given 
* , 1

*

*

k t

k K

q

A
K









 

 

 

 
 


 

Extraction:   
, , , , 'b t s b t sx x M A              

Cluster destination  
, , , , , , 'c j t s c j t sz z M A                  (4.4) 

Investment   
, , , ',k s t k s t M A     
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Set of scenarios per branch 

 1 , , 2 11, ,  a n d  \k s tS s S S S S
    

    
             (4.6) 

The objective function presented in Eq. (4.2) contains three parts. Each part 

corresponds to: 

1. The first section focuses on maximizing the profits obtained from selling at a 

discounted price (or cost) of ,h tp a quantity , ,h t sv  of the hereditary attribute h in 

period t, scenario s. Profit includes material sold from all processing streams. 

2. The second term aims at minimizing capital expenditure costs, directly 

accounting for the cost of flexibility obtained from new investments along the 
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life of the mine. Here , ,k s t  is the decision variable that defines if CAPEX 

alternative k is exercised on period t (within the minimum and maximum 

purchase limits , ,,k t k tL U ), and ,k tp represents the cost of that investment option.  

3. The third term presents the penalties for deviating from production target, where 

/ /
, , , , ,h t s h i t s

i D

d d   

 

  , and the costs of deviation /
,h tc    are discounted by a geological 

risk discounting factor (Ramazan and Dimitrakopoulos, 2013), which aims at 

deferring risk to later periods.  

 

Constraint (4.2) shows that the hereditary values are a transformation function 

(which may be linear or non-linear) of primary attributes (such as metal content, and 

tonnages). Equations (4.3) define the bound constraints for each of the hereditary 

attributes, setting that the value of the attribute ( , ,h t sv ) plus or minus deviations

/
, t , s( 0 )hd  

 must be within the upper and lower ranges, and if option k K  is taken 

(i.e. , , ' 1k s t  ), then this margin is augmented by the amount related to option k

,( ) .k h  Thus, for example, if the option of buying a truck is taken, k = truck, ,k h = 

annual capacity of one extra truck, and the limits (L and U) controlling the extracted 

tonnage ( , ,h t sv ) get augmented by the capacity obtained from that extra truck. Here, 

also the time required to put the investment in place is considered (lead time 
k ), as 

well as the life of the investment ( )k , Thus, to have an increment capacity by 

period t, an investment decision must have been taken between periods ( )k kt   

and 
kt  . Constraints (4.4) present the dynamic constraints that show that 
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extraction, destination and investment decisions can only be different if the solution 

has branched (as these constraints disappear if * , 1

*

1k t

k K

q 







 ). Constraint (4.5) 

corresponds to the same branching condition presented in Eq. (4.1), and finally, 

constraint (4.6) shows how the branching mechanism evolves and scenarios are 

partitioned accordingly. 

4.2.3 Solution Algorithm Process 

To develop a solving mechanism, the size of a global mining complex with 

multiple mines and multiple processing streams under geological uncertainty must 

be considered, which entails more than a million binary variables, with over a 

million constraints (Lamghari et al., 2015). Adding investment decisions to the 

formulation increases the complexity even further, as scenario dependent extraction 

variables are defined. Because of this, it is infeasible to consider any exact solving 

mechanism, and instead, a metaheuristic is used to develop a good quality solution 

in a manageable amount of time. In this case, an adaptive neighborhood search 

simulated annealing mechanism is implemented (Grogan, 2016), where each 

decision variable defines a neighborhood, and the solution space is perturbed 

iteratively, first choosing a neighborhood to perturb, and after, a possible 

perturbation from that neighborhood (for example adding and/or removing one or 

multiple trucks if the fleet purchase neighborhood is selected). Here, the probability 

of selection of a perturbation from its set is constantly being adapted depending on 

its historical performance in improving the objective function’s value.  
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4.3 Case Study: Cu-Au Mine 

4.3.1 Overview 

The following case study corresponds to a copper mining complex presented in 

Figure 4-3, comprised of two mines, two processing destinations (one for sulfides 

and another for oxides), a waste dump and a sulfide stockpile. As shown in the 

figure, both mines can feed all destinations. Due to the mine’s dimension, it is 

considered that a maximum of 10 trucks can be operational per period at mine 1, and 

a maximum of 8 trucks at mine 2. Additionally, each shovel can haul up to 5 trucks, 

meaning that, for example, if there are six trucks available, but only one shovel, then 

the actual extraction capacity will correspond to five trucks, as an extra shovel must 

be purchased to fill that extra truck. The same way, if two shovels are available but 

only 6 trucks, then the final capacity would also correspond to 6 trucks. It s assumed 

that this truck/shovel relation remains constant throughout the whole LOM. 

 

Figure 4-3 Diagram of the mining complex configuration 
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Mine 1 contains 136,000 blocks, and Mine 2 contains 109,000. The orebody 

models of both mines are modeled with blocks of 20x20x15m, and have one 

geotechnical zone, with slope angles of 45° and 40° respectively. Three different 

material types are considered: waste, oxides and sulfides, and 10 geological 

simulations of each deposit are used to represent the uncertainty related to copper 

grade and material type, resulting in 100 scenarios for the mining complex. The 

main source of profit of this mining complex comes from the Sulfide Processor, 

which recovers copper, and receives material from both mines and an 8Mt stockpile. 

This mill has a production capacity of between 30Mt and 32Mt per year, and there is 

an alternative to invest on a secondary crusher to increase this capacity by 2Mt per 

year. The operation has an initial truck fleet of 10 trucks assigned to Mine 1, and 8 

trucks assigned to Mine 2, with two shovels per mine. Both trucks and shovels are 

available for the first 2 years of operation, and all further extraction capacity is 

defined directly by truck and shovel purchase, setting the mining extraction rate. The 

Oxide Leach is assumed to have unlimited capacity, as does the Waste Dump.  

The copper recovery at the Oxide Leach follows a non-linear recovery curve 

presented in Figure 4-4, and at the Sulfide Processor copper recovery follows a non-

linear function defined in Eq. (4.8), both of which depend on the copper head grade 

of the block being fed. Table 4.3 shows the basic mining and economic parameters 

of the operation. In this case, a fixed price was assumed for copper, with a discount 

rate of 10%.  

0 .0 7 3 7 1

0 .6 %                    % 0 .0 1          

C u  R e c o v e ry 0 .8 7 3 9 2 (% )    0 .0 1 % 1 .4 5

0 .8 9 %                  % 1 .4 5            

C u if C u

C u if C u

C u if C u

 


   


 

                (4.8) 
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Figure 4-4 Copper recovery curve for the Oxide Leach process 

 

Table 4.3 Mining and economical parameters of the copper/gold mine 

Mining Complex Parameters Mine 1 Mine 2 
Base Mining Cost ($/t) 1.52 1.85 
Incremental Mining cost ($/bench) 0.025 0.020 
Initial Mining Capacity 35 Mt 28 Mt 
Sulfide Processor capacity (initial) (Mt) 30 – 32 
Sulfide Stockpile capacity (Mt) 8 
Sulfide Processor cost ($/t) 10.8 
Sulfide Stockpile reclaim cost ($/t) 0.08 
Oxide Leach cost ($/t) 4 
Copper Price $3800/ton 
Discount rate 10% 
 

4.3.2 Investment Alternatives Considered 

Three CAPEX alternatives (set K in notation) are considered in this case study:  

i. Invest in truck fleet (∈ 𝐾=, non-branching alternative) (and thus, increasing 

extraction capacity). Starting from an initial base fleet of 10 and 8 trucks for 

mine 1 and 2 respectively, available for the first 2 years. 
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ii. Invest in shovels (∈ 𝐾=, non-branching alternative) (and thus, increasing 

extraction capacity if linked to available trucks). Starting from an initial base 

fleet of two shovels per mine for the first 2 years. 

iii. Invest on a secondary crusher (∈ 𝐾<, branching alternative) that allows 

increasing the processing capacity at the Sulfide Processor.  

To test the equipment acquisition mechanism and obtain the optimal extraction 

capacities at both mines, the initial equipment is available only for the first two 

periods, enabling the mining operation to extract material during the first periods, 

but allowing the optimizer to quickly define the optimal capacities for the rest of the 

LOM. Details of each of these CAPEX alternatives are provided in Table 4.4, 

including the mining complex’s initial configuration capacities, and the changes 

involved in new investments. For each option, there is a set of operational 

parameters that must be defined, such as the cost of the option, the periodicity of the 

decision (that is, how often a decision can be re-taken after an investment is done), 

the lead time (time between an investment is purchased and it becomes available for 

the operation), the maximum purchases allowed at once, and the actual increment in 

capacity constraint obtained per unit if the optimizer decides to invest.  

4.3.3 Results 

4.3.3.1  Base Case 

The base case corresponds to the standard two-stage simultaneous stochastic 

optimization of the mining complex, were the scenarios are used to define a unique 

production sequence and destination policy. The truck, shovel, and secondary 

crusher purchase options are also included in the model, but all as 1st stage non-
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branching options, assuming that the mines have an initial capacity of ten and eight 

existing trucks respectively, which are available for the first two years of operation.  

Here, all scenarios are used to define one global mining and purchase schedule. This 

way, the solution includes when each block is extracted, where it is sent according to 

its characteristics (grade, material type, etc.), if a crusher is added, and how many 

trucks and shovels are purchased per mine and per year (and thus the annual 

extraction capacity), respecting the parameters mentioned in Table 4.4.  

 

Table 4.4 Information and purchase parameters of each investment option 

 
Truck (𝑲=) Shovel (𝑲=) 2ry Crusher (𝑲<) 

Undiscounted cost US$ 4,800,000 US$ 32,000,000 US$45,000,000 

Life of equipment 8 years 10 years 25 years 

Periodicity of decision 2 years 3 years once per LOM 

Lead time (years) 1 year 1 years 2 years 

Maximum purchase 10 units 2 units 1 unit 

Initial Cap. (mine 1&2) 10 & 8 units 2 units per mine 30-32Mt 

Tonnage increment 3.5 Mt/unit Feed for 5 trucks 2.0 Mt/unit 
 

The resulting purchase plan and corresponding total tonnage of extraction 

capacities is presented in Figure 4-5, where it shows on the left axis the number of 

trucks and shovels purchased per year for mine 1 (black bars) and mine 2 (grey 

bars), and on the right axis, the total tonnage available and actual annual extraction 

for mine 1 (black line), and for mine 2 (grey line), as well as the actual extraction 

per year in dashed lines. The extraction capacity is consistently respected and at its 
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limit, except at the final years of extraction of mine 2, where extraction decreases. 

This deviation is acceptable, as it only occurs in the final year of the mine.  

 
Figure 4-5 Truck purchase plan (left axis) and total mining capacity available (right 

axis) in the Base Case. 

 

Figure 4-6 shows the risk analysis over the Sulphide Mill feed, where P10 

represents the value at which there is a 10% probability of obtaining a value lower 

than that, P50 represents a 50% probability, and P90 a 90% probability. In this case, 

the secondary crusher was purchased on year 8, showing an increased processing 

capacity from year 10 to 20, and a consistent mill feed within the upper and lower 

bounds, with some deviations on the final 4 periods of the LOM.  

The corresponding cumulative discounted cash flow is presented in the left side 

of Figure 4-7, ranging between US$4.76 and US$5.97 billion, with a P50 value over 

US$5.41 billion, a P10 of US$5.03 billion, and a P90 of US$5.76 billion. The right 
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side of the figure shows the annual discounted cash flow, which includes all 

investments presented in Figure 4-5, as well as the crusher in period 8. It can be seen 

that, despite the large investments incurred, the discounted cash-flow is positive in 

every period, showing minor differences between the different scenarios. 

 
Figure 4-6 Sulphide Mill’s lower (LB) and upper (UB) bound capacity and feed per 

period for P10, P50, and P90 probabilities 

 

  
Figure 4-7 Cumulative NPV (left) and Discounted Cash Flow (right) for P10, P50, 

and P90 probabilities 
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The previous results are obtained from the schedule presented in Figure 4-8, 

which shows cross-sections of the schedules obtained for Mine 1 and Mine 2 

respectively, where each colour represents the extraction period of each block, from 

period 1 in dark blue, to period 20 in bright red. From the figure, it might seem that 

some periods extract considerably more material than others (for example period 

10), but this is just due to the cross-section chosen. The purpose of this figure is to 

show that the schedules produced by the optimizer are smooth and easily adapted to 

be operational. 

   

Figure 4-8 Cross-section of the base case schedules for Mine 1 (left) and Mine 2 

(right) 

 

4.3.3.2 Proposed Dynamic Case 

Following, the dynamic optimization is performed, where, as explained in the 

method section, first an initial robust optimization is performed using the base case 

as starting point, and second, an independent 2-stage stochastic optimization of the 

branches is performed. 
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Step 1 – Initial 2-stage optimization 

In this case, Rt is set to 30% over all periods, meaning that, as explained in Eq. 

4.1, if there is between 30% and 70% chance of investing in a secondary crusher, 

then the solution process branches into two possible mine designs. Additionally, to 

avoid over-fitted mine plans, the minimum number of scenarios per branch (N) is set 

to 10 scenarios, thus, every branch must have at least 10 scenarios at all periods. 

With this, the mine plan is optimized as described in Section 4.2.1.  

In this case, by re-optimizing the mine plan considering dynamic investments, 

the optimizer shows a 42% chance to invest in a secondary crusher in year 3. As this 

42% is within the representative branching margin (30%-70%), the mine plan is 

divided at this point, and the two first periods are frozen from the two-stage initial 

model (i.e. the base case), as presented in Figure 4-9. Here, the two first years’ 

CAPEX purchase plan taken from the two-stage optimization are shown, and the 

resulting available equipment in each mine.  

 
Figure 4-9 Fixed section of purchase plan from initial optimization 
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As stated in Table 4.4, the trucks and shovels are available one year after they 

are purchased and are active for 8 and 10 years respectively. Thus, the equipment 

purchased before the branching period at year 3 are still available for future periods 

(years 3 through 12 in Figure 4-9), even if the mine plan, as well as the capital 

investment plan, of these final periods is re-optimized for each branch in the 

following step. 

 

Step 2 – Branching over the Design  

Once the initial stage of the optimization is done, the design options investing 

and not investing in the secondary crusher are explored. First, the blocks that were 

already scheduled in Step 1 are removed from the orebody model, and their 

decisions are fixed (Figure 4-5, for periods 1 to 3). Next, the model is re-solved 

within the remaining deposit, fixing the corresponding investment decisions for the 

respective scenarios. Also, note that, as there where truck and shovel purchases 

during the last period of stage 1 (i.e. period 2), truck purchases are not allowed for 

the first period of the second stage (i.e. period 3), and shovel purchases are 

forbidden for the first two periods. 

a) Branch 1: No investment in secondary crusher 

In this case, the secondary crusher option is removed from the SIP model for 

period 3, and the model is re-optimized over the final periods of the mine plan 

(periods 3 to 20). The results obtained with the scenarios that decided not to invest 

in the secondary crusher in period 3 are shown in the left side of Figure 4-10, where 

the mill feed is presented, showing that in this case the probability of investing in a 
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secondary crusher is not representative throughout the whole rest of LOM. Thus, 

Figure 4-10 presents a stable mill feed of around 30-32Mt, with slight deviations 

occurring in periods 3 and 6; however, there is consistently less than 10% chance of 

deviating (as the P90 curve is mostly within the upper and lower bounds). Figure 

4-11 presents the truck and shovel purchase plan of this branch. Mine 1’s purchase 

plan remains unchanged, but the optimizer decides to reduce the truck fleet of Mine 

2 by purchasing one less truck on periods 7, 15 and 18, compared to the base case 

solution. 

  
Figure 4-10 Mill feed per period for branch 1(left) and branch 2 (right).  

 

b) Branch 2: Invest in secondary crusher 

Next, the option considering the purchase of a secondary crusher is studied. In 

this case, the cost of the purchase is included in period 3, but the extra capacity is 

only available at period 5, as the secondary crusher option has a 2-year lead time 

(Table 4.4). This can be seen on the red lines at the right side of Figure 4-10, which 
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shows the upper and lower bounds of the mill feed target. The equipment purchase 

plan is presented in Figure 4-12, where, compared to the base case, the optimized 

decides to get a full fleet of 10 trucks in Mine 1 one period earlier, and keep it stable 

towards the end of the LOM. The truck fleet in Mine 2 is also increased from period 

7 forward, by purchasing a shovel one period earlier, and adding extra trucks in 

years 6, 14, and 18. As in the first branch, the mill feed in the right side of the figure 

also presents a tight risk analysis.  

 
Figure 4-11 Truck and shovel purchase plan and mining capacity for branch 1 

 

The schedules obtained for each branch are presented in Figure 4-13 for branch 

1, and Figure 4-14 for branch 2, where it can be seen that the first two periods from 

the original schedule (Figure 4-8) have been removed, and the remaining blocks 

have been re-scheduled. The figure show that the generated schedules are physically 

different, however, they are both smooth and operational. 
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Figure 4-12 Truck and shovel purchase plan and mining capacity for branch 2  

 

   
Figure 4-13 Cross-section of the schedules for Mine 1 (left) and Mine 2 (right) for 

the branch 1 (without the secondary crusher investment) 

 

   
Figure 4-14 Cross-section of the schedules for Mine 1 (left) and Mine 2 (right) for 

the branch 2 (with the secondary crusher investment) 
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The biggest scheduling differences can be seen in Mine 1, where the schedule 

decides to go deeper earlier on the LOM when the secondary crusher is available 

(left side of Figure 4-14), and leave the stripping of the left wall to the final years of 

operation. Note that in this case, period 1 is actually period 3 in the original 

schedule, and period 18 is year 20, the last year of the LOM.  

As the scenario partitions of each branch are independent of each other, once the 

initial periods before the branching are fixed, each branch can be optimized 

separately, reducing the size of the problem considerably. This way, the final 

dynamic solution is obtained by joining the results of all branches. This joint model 

presents a cumulative NPV which ranges between BUS$5.13 and MUS$6.10, as 

presented in Figure 4-15, with a P50 of BUS$5.58 (3% over the base case NPV), 

which corresponds to an increase in project value of almost MUS$170 over the 

initial base case (considering the cost of the investments), and entails a design that 

provides valuable information by allowing the operation to be prepared to future 

changes and maximise the project's potential. This is better shown by comparing the 

P90 values, where the dynamic model presents an 8% higher NPV compared to that 

of the base case (BUS$5.7 vs. BUS$6.1), meaning that not only on average more 

value is generated, but the operation is able to considerably increase the value 

generated by taking advantage of the opportunity to increase production.  

This is clearly seen in Figure 4-16, where a Value-at-Risk-Gain graph is 

presented, showing the cumulative probability distribution of NPVs per simulation 

for each case studied. For the sake of comparison, this graph also includes the 

solution for a traditional two-stage optimization without alternatives, where 

extraction as well as processing capacities are assumed constant (with 10 trucks in 
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Mine 1 and 8 in Mine 2, and a mill capacity of between 30-32Mt). The 

corresponding investment costs to obtain these fixed capacities are included in the 

cash flow of this case.  

 
Figure 4-15 Cumulative discounted cash flow for the option of dynamically 

investing in a secondary crusher (black lines), and for the base case with alternatives 
(red lines) 

 

Results in Figure 4-16 show that the proposed dynamic case is able to take 

advantage of favourable scenarios and increase the performance of the project, 

without any risk of reducing NPV. Additionally, by comparing the obtained results 

with the ones of the base case without alternatives, it is clear that there is 

considerable value added by actively including investments within the optimization, 

defining the optimal capacities at the different levels of the operation while 

accounting for uncertainty, and for the synergies that exist between the components 

of the mining complex. 
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Figure 4-16 Cumulative probability distribution of NPV of (i) 2-stage optimization 

without alternatives (dashed line), (ii) with alternatives (dotted line), and (iii) 
proposed dynamic case with alternatives (continuous line). 

 

An interesting fact that can in part explain the overall increase in NPV of the 

base case with and without alternatives is the equipment acquisition. Figure 4-17 

shows the annual extraction in Mine 2 for both cases, compared to the actual 

capacity available.  

The left side shows the case without alternatives, where a fixed fleet of 8 trucks 

and 2 shovels, or 28Mt capacity is assumed over all periods. However, this capacity 

is not fully met in most periods after year 5. On the other hand, by including the 

investment alternatives in the optimization process, the solution produced manages 

to define the actual capacities needed to maximize value. This can be seen in the 

right side of Figure 4-17, where the actual extraction in Mine 2 is almost exactly the 

capacity available, without keeping any equipment unused. Here, the reduced fleet 

during periods 3 and 7 is caused because the optimizer chooses to delay the purchase 
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of a second shovel to later periods, and thus, only 5 trucks (17.5Mt capacity) are 

available for one shovel. 

 
Figure 4-17 Tonnage extraction in Mine 2 relative to the available capacity for the 

base case without alternatives (left) and the base case with alternatives (right) 

 

4.4 Conclusions  

A dynamic SIP model is developed to include flexibility into the strategic mine 

planning optimization. This is done by a decision-tree structure solving mechanism 

which allows developing different solution designs, given that a significant 

percentage of scenarios decide differently over a “branching option”. A case study is 

presented on a copper mining complex comprised of two pits with two possible 

processing destinations and one stockpile, which includes two investment options to 

purchase trucks and shovels for each pit, defining their extraction capacity, and a 

flexible investment option to add a secondary crusher to the main mill to increase its 

processing capacity. The first alternatives are considered “non-branching” options, 

and thus are optimized as 1st stage decisions within a branch, and the second is 
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considered a “branching” option, meaning that scenarios could decide differently 

over investing in it or not, and thus, the solution design of the mine plan is allowed 

to branch into two parallel design options. Here, even though scenarios are free to 

decide differently over branching alternatives if the solution did branch, two-stage 

optimizations are performed over each branch. This procedure ensures that unique, 

operational schedules are produced for each of the controlled branches, which can 

be clearly followed by the operation. Results show that for the case study, there is a 

42% chance of investing in the secondary crusher in year 3, representing an overall 

increase in NPV of over MUS$170 compared to the initial two-stage SIP solution. 

In conclusion, by applying this dynamic formulation, it is possible to identify 

and actively include interesting options that might not be profitable initially but 

could be valuable in the future. Identifying possibly profitable options on time 

allows keeping open the flexibility to execute them in the future and, by optimizing 

their application, the transition to change the mine plan is eased, allowing the project 

to be better prepared for it. This, to have the flexibility to dynamically alter the 

initial mine plan as more information is obtained, and implement optimized changes 

in an efficient manner. The presented mechanism allows the operation to be better 

prepared for uncertainty, and take full advantage of opportunities while hedging 

from risk.  

Future applications will focus initially on improving the perturbation 

mechanism used in the adaptive neighbourhood search simulated annealing for 

investment decisions, as these variables have a major effect on the objective 

function (for example, the cost of buying a secondary crusher is very large compared 

to the cost of changing a mining block’s extraction period). This makes the CAPEX 



 

160 
 

neighbourhood highly volatile and thus, requires a considerable amount of 

corrective perturbations to make them attractive moves. Because of this, the 

periodicity of choosing this neighbourhood should be adapted to give the optimizer 

enough time to improve a large change. For this, a mechanism such as a Tabu list 

can be explored. Also, an in-depth study should be performed over the number of 

scenarios required to ensure convergence of the solution. Finally, coming work will 

also concentrate on extending the formulation to include other alternatives within 

the mining complex, such as operational modes to better control relevant variables 

affecting the system, particularly geometallurgical attributes.  
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Appendix 4.A – Algorithm Pseudo Code 
 

 
= DYMANIC FORMULATION OF THE STRATEGIC OPTIMIZATION OF A MINING COMPLEX = 
 
// Sets and variable definition 
BM   block model of the mine operation 
S   set of simulations of BM {1,...,Smax } 
minS   minimum number of scenarios required to allow branching 
T   set of periods in the LOM {1,...,TLOM } 
K   set of different investment branching options 
R* = [R, 1-R]  defined ratio margin required for branching, R ≤ 0.5 
invest(k,t,s)  true if investment k is done on period t, scenario s. 
branchPb(k) = {0}  vector of branching periods per investment k = 1..K 
branchPeriod(b) = 0 branching period over branch b, initially = 0 
InvW(k,t); InvP(k,t) Investments k done over window t+/-1, and over time t 
FinalSol[b][t]  final mine plan solutions per branch b, for period t 
 
 
// = FUNCTIONS COMPRISED IN THE ALGORITHM = 
 
SLVE_2STG(t_from, T, S*, k, t_inv) 
// Solves two-stage SIP over branch b from period t_from to period T, over 
scenarios S, with investment k done at t_inv 
 
SOLVE_DYNAMIC (t_from, t_to, S*) 
// Defines if and when branching happens, from period t_from to period t_to, over 
investment option k, and scenarios S* 
 
SOLVING_PROCESS (S, T) 
// Main function, which iteratively solves each of the T periods over the S 
simulations and stores the branching  
 
 
// = ALGORITHM = 
 
SLVE_2STG(t_from, T, S*, k, t_inv) 
{ 
 
 If t_from > 1, 
  For t* from 1 to t_from-1, sol1(t*)  FinalSol[b][t*]  
 Else sol1   empty 
 
 BM’   BM without blocks extracted in sol1 
 sol2  2-stage SIP opt. from t_from to T, over BM’ with set S*, investment  
  k on period t_inv, and option to invest in any K 
 
 return sol1 + sol2 
 
}  
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// Function SOLVE_DYNAMIC defines if and when branching happens, from period 
t_from to period t_to, over investment option k, and scenarios S* 
 
SOLVE_DYNAMIC (t_from, t_to, S*) 
{ 
 
 //Solve each scenario independently 
 For each si in S*, do 
  sol_s(i)  SLVE_2ST (t_from, t_to, si, NULL, 0) 
  For each t from t_from to t_to in sol_s(i) 
   If investment k is done in period t, invest(k, t, si)  true 
 
 // Analyse if design should branch over an investment 
 For each t from t_from to t_to, do 
  For each si in S*, and for each k in K; do 
   // Store investments done each period 
   If invest(k, t', si) is true then InvP(k, t') ++; 
  
   // Check investments done during time window t+/-1 
   For each t' from t-1 to t+1;  
    If invest(k, t', si) is true then 
     InvW(k,t) ++; // store investments of window 
     SimSet(k,t)  si // store investing scenarios 
 
 // Choose window with highest probability of investing 
 bestT(k) = argmaxt{ InvW(k,t)/|S*| } 
 maxR(k) = max{ InvW(k, maxT(k))/|S*| } 
 k* = argmink( branchPb(k) )  
 
 return { k*, bestT(k*), SimSet(k*) } 
 
} 
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//Function SOLVING_PROCESS is the main function, which iteratively solves each of 
the T periods over the S simulations and stores the branching  
 
SOLVING_PROCESS (S, T) 
{  
 
 b  = 1;  initial branch 
 t_frmb = 1;  initial year to start optimization for every branch b 
 t_tob  = 2;  year until 2-stage SIP is considered for branch b 
 S*(b)  = S;  initial set of geological simulations in branch b 
 kb#  = NULL;  investment chosen to perform over branch b  
 tb#  = 0;  period chosen to branch at over branch b 
 Sb#  = {∅};  set of scenarios that choose to branch over branch b 
 activeBranch[b]; defines if branch b is still being optimized (= true) 

or if it reached the LOM (= false) 
 
 For every active branch b in activeBranch // If activeBranch[b] = true 
  While t_frmb < T 
   //Only consider branching if it has min. number of scenarios 
   If |S*(b)|< minS, for every t from t_frmb to T  
    tempS(b) SLVE_2ST(b, t_frmb, T, S*(b), NULL, 0) 
    activeBranch[b]  false; 
 
   // If there is no branching, keep solving as one design  
   Else if tb# is 0 then  
    tmp(b) SLVE_2ST(b, t_frmb, t_tob, S*(b), NULL, 0) 
 
   // If there is branching, add a new branch to the FinalSol 
   Else  
    FinalSol  FinalSol[b]  // add branch, cloned from b  
    activeBranch[b+1]  true // initialize new branch 
    S*  S*(b+1) = Sb# 
    S*(b)  S*(b) - Sb# 
    t_tob = t_tob+1 = tb# 
    tmp(b)SLVE_2ST(b, t_frmb, t_tob, S*(b), NULL, 0) 
          tmp(b+1)SLVE_2ST(b+1,t_frmb,t_tob,S*(b+1),kb#,t_tob)  
 
   FinalSol[b]  tempS(b) 
 
   t_frmb  t_tob + 1 
   t_tob   t_frmb + 1 
 
   If t_frmb < T  
    {kb#, tb#, Sb#}  SOLVE_DYNAMIC(t_frmb, T, S*(b));  
   Else  
    activeBranches[b]  false; 
    break; 
 
  return FinalSol 
 
}  
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CHAPTER 5                                                                                                              
Stochastic Optimization of Mining Complexes Integrating 

Capital Investments and Operational Alternatives 

 

 

Chapter 4 introduces a model which integrates dynamic investment alternatives 

into the stochastic simultaneous optimization of a mineral value chain. This chapter 

extends the previous formulation to consider operational alternatives that allow 

optimizing the operational configuration of different components of the mineral 

value chain. 

 

5.1 Overview 

Mining complexes are mineral value chains where material flows from mines to 

customers through a set of interconnected components. Mines are the source of 

material, and the components include stockpiles, waste dumps, multiple processing 

streams (which blend and transform the materials mined into sellable products), and 

transportation systems, which deliver the products to the market. These 

interconnected components operate at a cost, with a set of operating mode 

configuration alternatives, to meet targets and requirements and, thus, they can be 

optimized simultaneously to capitalize from the synergies that exist between them.  

The capacity of a mining complex is determined by capital investments, which are 

known to be irreversible, of high magnitude and with a limited life-span, thus 
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requiring extensive lead times to get the purchased equipment or build required 

infrastructure. For example, the project to build a new processing plant at the 

Escondida Mining Complex in Chile had a budget of US$4.3 billion and took over 

four years to be completed (Mineria Chilena, 2015). Due to their effect and 

magnitude, investment decisions should be included in the strategic optimization of 

the mining complex. The focus of strategic mine planning is to generate optimized 

mine production schedules that meet targets contribute to maximizing the discounted 

cash-flows. This optimization is based on firstly, representing an orebody by three-

dimensional blocks with information on the deposit’s pertinent attributes, such as 

metal grades, material types, geometallurgical variables, and tonnage. Then, these 

blocks are scheduled to be extracted at a certain time period, to be processed and/or 

to access underlying blocks within the orebody. Traditionally, mining complexes are 

simplified, and each component is optimized independently (Hustrulid et al., 2013), 

with disconnected goals. This procedure ignores the synergies that exist between 

components, producing independent overall sub-optimal production schedules.  

During the last years, mine planning research has evolved from conventional 

fractured plans to focus on optimizing all components of a mining complex 

simultaneously, from the mine to the final costumer, being referred to as global or 

simultaneous optimization (Hoerger et al., 1999; Whittle, 2007, 2010b; Pimentel et 

al., 2010; Bodon et al., 2011). Pimentel et al. (2010) introduce the concept where a 

mining operation is approached as a supply chain, served by logistic transportation 

channels, and develop a decision-support system to address a global mining supply 

chain as an integrated system. However, no methodology is provided. The paper 

also discusses different possible (solution) approaches to consider, concluding that 
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heuristics would be the best alternative for optimizing any real-world mining supply 

chain, due to its complexity. Stone et al. (2007) formulate a model to optimize 

mines, stockpiles and processing plants, showing improved performance compared 

to the traditional optimization, but fail to include other elements of the mining 

complex. Together with this, and to reduce the complexity of this model, blocks are 

aggregated and grouped into panels. Whittle (2007) introduces the optimizer Prober, 

which also performs global optimization, but this optimizer is comprised of multiple 

formulations. Also, as in Stone et al. (2007), blocks are also aggregated into panels. 

While the above approaches aim to capitalize from the synergies that exist 

between the components of a mining complex, due to the size and complexity of the 

problem, they require major simplifications; for example, avoiding to model 

stockpiles given their non-linear relations or aggregating mining blocks to larger 

volumes. A major assumption all previously mentioned studies have is considering 

the deposit as known and using an estimated orebody model as input to the 

optimization. With this, they ignore the variability and uncertainty of metal contents, 

material concentrations, and material types (Goovaerts, 1997), which have been 

documented in the technical literature to be the main sources of risk affecting 

mining operations. Not accounting or managing this geological uncertainty has a 

strong effect over the operational feasibility of the mining schedule, preventing 

projects from meeting production targets and maximizing their value (Dowd, 1976; 

Ravenscroft, 1992; Dimitrakopoulos et al., 2002; Ramazan and Dimitrakopoulos, 

2013). Dowd et al. (2016), discuss that describing geological, operational and 

geometallurgical uncertainties and integrating them into the optimization process is 

one of the main challenges in strategic mine planning, as well as developing new 
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approaches to include and maximize flexibility in mine design. Stochastic 

optimization has been applied for mine planning obtaining reliable plans and 

production schedules, showing clear benefits when compared to traditional industry 

practices (Dimitrakopoulos and Sabour, 2007; Ramazan and Dimitrakopoulos, 2013; 

Asad et al., 2014; Dowd et al., 2016; Montiel et al., 2016). All these works integrate 

supply uncertainty into the optimization formulation by using a set of stochastically 

simulated equally-probable representations of the deposit (Journel and Huijbregts, 

1978; Boucher and Dimitrakopoulos, 2009; Remy et al., 2009).  

The formulation of the stochastic simultaneous optimization of a mining 

complex produces models that contain thousands of millions of binary variables, 

with millions of constraints (Goodfellow, 2014; Lamghari and Dimitrakopoulos, 

2015). Because of this, and due to the complexity of the problem, different 

metaheuristic methods have been developed to solve this problem. Compared to 

traditional exact methods, which are unable to solve non-linear large-scale case 

studies, these algorithmic optimizers produce good quality solutions, and they have 

been successfully used in the past for mine design and production scheduling 

problems (Lamghari et al., 2015; Lamghari and Dimitrakopoulos, 2016a, 2016b; 

Montiel and Dimitrakopoulos, 2017; Goodfellow and Dimitrakopoulos, 2017). 

Thus, they can solve non-linear formulations, allowing the model to avoid falling 

into simplification.  

Stochastic simultaneous optimization of a mining complex integrates the effect 

of geological uncertainty and variability into the optimization model. By doing so, it 

produces mine plans and production schedules that are able to meet complex 

blending requirements, manage technical risk, and maximize project value ( Montiel 



 

168 
 

and Dimitrakopoulos, 2015, 2017; Montiel et al., 2016; Goodfellow and 

Dimitrakopoulos, 2016, 2017). A challenge when modelling the stochastic 

simultaneous optimization of a mining complex is the non-linear transformations 

that appear when integrating the different components, such as including blending 

constraints and stockpiles into the formulation. Goodfellow and Dimitrakopoulos 

(2016, 2017) can deal with the non-linearities of the model by treating variables as 

attributes and classifying them as primary or hereditary to model the flow of 

material through the mining complex. Primary attributes correspond to additive 

characteristics, such as metal content, and tonnages, whereas hereditary attributes 

are derived from primary ones, such as recoveries, economic value, among others. 

The authors also propose a destination policy of the extracted material, which is the 

decision of where a block is sent after extraction, based on k-means++ clustering 

mechanism. Blocks are classified into clusters according to their value over multiple 

variables, such as material type and grade, and the destination policy is decided per 

cluster, and not for each individual block. This method allows accounting for multi-

variate relations when defining the destination of a block, which is essential when 

optimizing multi-element mines or complex blending constraints. However, the 

previously mentioned models are limited in the sense that they produce one static 

model for the whole life of mine. Some extensions to include alternatives to this 

formulation have been developed. Goodfellow (2014) models the mining complex 

under geological uncertainty and adds the decision of investing in capital 

expenditures (CAPEX) to let the optimizer define the fleet size and purchase plan. In 

the presented model, different operational details such as the life of the equipment 

are also included, but the plan obtained is fixed. Similarly, Farmer (2016) works on 
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integrating the optimization of mining and processing capacities of the mining 

complex under geological uncertainty. Montiel and Dimitrakopoulos (2015) include 

into the optimization operating alternatives for the processing plant and 

transportation systems. Considering operational mode alternatives also allows 

having better control over geometallurgical variables that affect the mining complex 

(Coward et al., 2009, 2013; Boisvert et al., 2013; Sepulveda et al., 2017). 

All studies above on stochastic simultaneous optimization of the mining 

complex optimize the production schedule of a mineral value chain under 

uncertainty, but they produce one static solution that is assumed optimal for the 

whole life of mine (LOM). With this, they are limited in accounting that the future is 

unknown, and strategic plans may change and adapt to new information obtained. 

Assuming that the initial plan’s conditions will stay the same over the full LOM is 

an over-optimistic simplification. Conventionally, sensitivity analyses are done to 

evaluate the viability of new investments and processing stream configurations. 

These are a passive solution that usually results in delayed projects, and loss of 

opportunities by inhibiting options that, though not currently viable, could be 

profitable in the future such as locating expensive infrastructure in strategic 

locations. Also, as several of these high-impact investments require years of 

planning, a great deal can be gained by preparing in advance for possible changes.  

Integrating flexibility into strategic planning has long been a topic of interest in 

operations research literature (Brennan and Schwartz, 1985; Kazakidis and Scoble, 

2003; Deng et al., 2013; Cardin et al., 2015). Multistage stochastic optimization 

aims at including dynamic decision making into the optimization process, where 

uncertainty is also represented through a set of scenarios. Multistage optimization 
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uses non-anticipativity constraints to ensure that non-differentiated scenarios entail 

equal decisions, and thus, the solution is allowed to branch (i.e., divide into parallel 

possible solutions, as in a scenario tree) if scenarios appear to be sufficiently 

different. Birge and Louveaux (1997) mention a general set of different aspects 

which justify considering a multistage model when optimizing a system, such as the 

long-term evolution of production, the development of new technologies, or the 

obsolescence of available industrial equipment. All these are present in mining. 

Boland et al. (2008) present a multistage stochastic optimization model under 

geological uncertainty for mine production scheduling, where the schedule is 

branched into parallel solutions as soon as blocks are found to be “differentiable.” 

Though an interesting concept, the formulation becomes impracticable for real size 

operations with millions of blocks, and the branching mechanism produces schedule 

solutions which are over-fitted to the set of scenarios used, and thus, would have 

poor performance when tested over a different set of simulations. Similar efforts 

have been made to include flexibility in the context of real-options, such as the work 

of Wang and De Neufville (2005); Lin et al. (2009); Ajak and Topal (2015); Melese 

et al. (2017), amongst others. 

The model proposed in this paper extends the formulation of the stochastic 

simultaneous optimization of a mining complex, into a dynamic optimization which 

provides information about the probability of a set of feasible alternatives of being 

profitable, and thus, that should be considered within the strategic plan. The 

dynamic model provides an optimized, flexible plan by generating parallel solutions 

that provide guidance and ease the transition to change the current plan once more 

information is available. This formulation aims at producing a dynamic evaluation 
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of a set of high-impact CAPEX alternatives, providing a probabilistic analysis of the 

likelihood of investing in them, as well as the optimized mine production plans to 

follow in each case. These alternatives are included as a way of increasing a mining 

complex’s flexibility, transforming the strategic plan into a dynamic mechanism that 

adapts to change.  

Three main considerations are included in the formulation: (i) a dynamic 

investment schedule is developed, which optimizes a set of CAPEX alternatives as a 

probability-based decision tree. (ii) Operating mode alternatives are included in the 

mining complex to manage the effect of geometallurgical variables, specifically, 

rock hardness, throughput, and recovery, at the mine and the processing levels. (iii) 

Finally, as in previous work, geological uncertainty is considered in the optimization 

through a set of equally probable simulations of the deposit. 

In the following section, the method is outlined, and the mathematical 

formulation is presented. Next, the formulation is applied over a copper-gold mining 

complex, and results are compared to the two-stage stochastic method. Finally, 

conclusions follow. 

 

5.2 Proposed Method 

5.2.1 Problem Description 

In the proposed mathematical model, decision variables are grouped as (i) 

extraction, defining when a mining block is extracted; (ii) destination policy, setting 

where a block is sent once it is extracted; (iii) processing stream decisions, defining 

what percentage of material passes from one component of the mining complex to 
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the next; (iv) operational mode, describing under which operational mode will the 

mine or processing stream operate; and finally (v) capital expenditures, defining 

which investments are acquired at a cost along the life of mine (LOM). The 

probabilistic analysis will be performed over a subset of these CAPEX decisions, 

which will be defined as branching decisions. These branching decisions correspond 

to big irreversible investments that have a decisive effect on the schedule (such as 

the investment in a new plant). 

5.2.1.1 Generating the Probability-Based Decision Tree Solution 

The dynamic mine plan produced corresponds to a probability-based decision 

tree which branches according to investment decisions over high-impact CAPEX 

alternatives. These branching decisions have two available options, to invest in or 

not. Thus, the solution is represented as a scenario tree (Safavian and Landgrebe, 

1991; Høyland and Wallace, 2001). Traditional decision tree notation is used to keep 

track of the branching solutions.   Here, each node corresponds to the decisions 

taken during that given period; each possible solution is identified by a branch, and 

each node can have at most a number of leaves equal to two to-the-power-of 

branching decision alternatives left to exercise. This shows that branching 

alternatives increase exponentially with the number of branching decisions. For 

example, if two investments A and B are available, the partitions would be to invest 

in A but not in B, in B but not in A, in both, or in none. However, once both A and 

B are purchased, then there are zero branching alternatives left, and thus, only one 

possible branch for the rest of the LOM. 
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This study proposes an adapted multistage formulation to model this problem. 

Some main differences of the proposed model compared to traditional stochastic 

multistage formulations (as per in Birge and Louveaux (1997)) correspond to the 

definition of a “stage,” and the reason for branching onto parallel solutions. In 

conventional stochastic multistage formulations, stages are defined by specific time 

intervals, and, at each stage, decision variables can differ between scenarios (i.e., 

branch) if certain differences are encountered within the set of scenarios. This 

traditional formulation produces a set of parallel solutions over partitions of 

scenarios (Boland et al., 2008). In the proposed model, parallel solutions, or 

production plans, are generated depending on the value of a subset of decision 

variables, and not over differences between the actual individual scenarios. Thus, a 

stage is defined by the timing of investment decisions, rather than by specific time 

intervals. Together with this, as mentioned in the previous section, traditional 

multistage stochastic formulations have some strong limitations. These are mostly 

related to over-fitting the solutions obtained to the set of stochastic simulations used 

in the optimization, as the solutions branch exponentially towards later periods 

(where, by the end of the optimization, there might be as many solutions as 

scenarios used). This over-fit prevents the solution of being applicable if a different 

reality is encountered from the ones represented through the set of simulations. The 

problem occurs because simulations are used as possible realities, and not as a set 

which, as a whole, represent the probability distribution of the deposit’s spatial 

variability. To overcome these limitations, and to reduce the computational 

complexity of solving the model, the proposed method uses an iterative mechanism 

that quantifies the probability of executing these branching decisions, and controls 
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the generation of branching solutions, ensuring that parallel plans are only generated 

if they have a representative probability of occurring.  

This representativity is measured by setting a threshold R, where branching only 

occurs whenever the probability of investing in a CAPEX alternative during a given 

time window falls within this threshold. If the probability of investing is lower than 

the threshold, the solution does not branch, and no investment is made. On the other 

hand, if the probability is higher than the threshold, there is also no branching, but 

the full model invests in the CAPEX alternative. The time window is defined here to 

provide some stabilizing lag within scenarios for the branching investment decision 

to be taken (i.e., considering all investments during periods tω = {t–ω,…,t,…,t+ω} 

instead of just t). Accordingly, if there is a representative chance of investing on a 

branching alternative during time window tω, then the final branching period t*ϵ tω 

is defined as the expected value of the period of investment of the scenarios that 

invest during that window.  

To obtain the probability of investing, which is used to compare against the 

threshold R defined previously, a look-forward mechanism is used, where a set of 

sub-problems is iteratively solved. At each iteration, a set of dynamic non-

anticipative constraints is used to define the solution’s branches, ensuring that 1st 

stage decisions are equal along all scenarios within a branch. This set of non-

anticipative constraints is enforced over an increasing time frame (thus the term 

dynamic), starting from only being applied during the first period at the first 

iteration, up to the whole LOM in the last. Thus, when these constraints are not 

active, decision variables are left free during the last periods of the LOM, allowing 

the algorithm to quantify the probability of investing in branching alternatives at 
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different periods, and branching if this probability is significant. This mechanism, 

presented in Section 5.2.2, is able to create mine designs that adapt to possible 

futures, and through this iterative process, a decision tree is created, where each 

branch corresponds to a unique production plan, with its corresponding investment 

schedule, which maximizes project value. Accordingly, the final solution provides a 

controlled set of possible mine design alternatives that have been probabilistically 

quantified as being worth considering.  

An example of this branching mechanism for one branching decision is 

presented in Figure 5-1, where, if the branching decision is exercised over a 

representative number of scenarios, the solution branches, and a unique mine plan is 

generated for each partition (referred to as branch). Each square (i.e., node) 

represents the decisions made on a given year (not necessarily at equal time 

intervals), where the optimizer decides to branch on period t*, generating two 

parallel future solutions at that period, with and without investment. In turn, by 

period t**, the top branch decides to do so, producing two parallel designs. Thus, 

the final solution of the optimization corresponds to three possible production 

schedules, with their corresponding probabilities of occurring. It must be noted that, 

even if the scenario tree presents variating time intervals, showing the decisions 

taken for the branching decisions, the global optimization is still performed at 

annual time intervals.  

5.2.2 Mathematical Formulation 

The mathematical formulation presented is based on the two-stage stochastic 

model for mining complexes proposed by Goodfellow and Dimitrakopoulos (2017), 
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with main adaptations to include operational and investment alternatives, as well as 

the dynamic branching mechanism described in Section 5.2.1. Similarly to 

Goodfellow and Dimitrakopoulos (2017), primary and hereditary attributes are used 

to model the mining complex, where there exists a function that transforms a 

primary attribute in a given component of the mining complex into a hereditary 

attribute. For example, the recovery in a plant, a hereditary non-linear attribute of a 

processing stream, is obtained by the grade of each mining block being fed to it at 

that period, calculated using metal tonnage and total tonnage, both simulated 

primary attributes. Also, as in Goodfellow and Dimitrakopoulos (2017), blocks from 

each orebody are clustered by the similarity of their simulated characteristics using a 

k-means++ algorithm and the destination policy decisions (defined as 
, , ,c j t sz  in 

Table 5.2) are set annually over each of these clusters, rather than at a block-level.  

 

 
 

Figure 5-1 Branching mechanism of dynamic stochastic optimization 

 

The different sets used in the mathematical formulation are defined in Table 5.1, 

followed by the list of decision and state-dependent variables in Table 5.2. Finally, 

Table 5.3 presents the general parameters, and the parameters used specifically for 

the flexibility alternatives considered. The full mathematical formulation follows. 

 

0          t*-1        t*               t**        T 
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Do not invest 
 

 

 

 branch 1 

 branch 2 

 branch 3 
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Table 5.1 Definition of sets used in the dynamic formulation 

Sets and Indices 
P  Primary attributes that are tracked in the supply chain (e.g., metal content, 

tonnages) 
H  Hereditary attributes (derived from primary attributes) that are tracked in 

the supply chain (e.g., grades, recoveries, economic values) 
T  Time periods in the life of mine, indexed by t = 1…T 
  Set of scenarios, indexed by s = 1, …, S. Where 


    is the set of 

scenarios in branch ρ, and 
1 2,  

 
  are partitions of 


 , where 

1 2 1 2,    
    

          

M  Set of mines, indexed by m M  
mB  Set of blocks in mine m M , indexed by 

mb B  
N(b) Set of neighbouring blocks of block b located in coordinates , ,i j k , where  

 , , ', ', '( ) ' : ' [ , ] , ' [ , ] , 'i j k i j k mN b b B i i n i n j j n j n k k          

( )O b  Set of blocks that overlie block (b) 
C Clusters of blocks with similar attributes, indexed by c C  
Sp Stockpile destinations that can forward part or all their material to 

subsequent destinations, indexed by sp S p  
Pp Processing stream destinations in the mining complex, indexed by 

p p P p  
D  Set of locations in the mining complex: clusters, stockpiles, processing 

streams ( )C S p P p , where 
o pD D  is the set of locations containing 

operational mode alternatives 
K  Set of flexibilities and system alternatives, indexed by k. Where,  

*K K is the set of alternatives that allow branching over the design 
jQ  Set of operational alternatives in location

o pj D , indexed by 
jq Q  

( )j  Set of locations which can receive material from location j S p P p  
( )J j  Set of locations which can send material to destination j D  
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Table 5.2 Variables used in the model 

Decision Variables 
, ,b t sx  = 1 if block b is extracted at period t  T , scenario s   , and 0 

otherwise 
, , ,c j t sz  = 1 if cluster c is sent to destination ( )j c   in period t  T , 

scenario s   , and 0 otherwise 
, , ,q j t s  = 1 if operational mode 

jq Q  is active in location j D , 
period t  T , scenario s   , and 0 otherwise 

* ,
l

k tu   = 1 if design branches over option * *k K  in node l , period 
t  T , and 0 otherwise 

, , ,i j t sy   0 ,1 . Proportion of material sent from location i S p P p  to 
j S p P p  in period t  T , scenario s    

, ,k t sw  = 1 if there is a purchase of investment option k K  executed in 
period t  T , scenario s   , and 0 otherwise 

, ,k t s  
   , ,0 ,k t k tL U . Number of investments on option k K  

executed in period t  T , scenario .s    
State Variables 

, , ,j t sv


  Value of primary attribute   P , at location j D M , period 
t  T , scenario s   . Ex: 

1   tonnage; then: 
, , ,m t sv


 tonnage 

extracted from mine m, at ,t  T  scenario s    

, , ,h j t sv 
H  Value of hereditary attribute h  H , at location j D M , 

period t  T , scenario .s    Note that  P H  
, ,h t sv   Final value of attribute h  H , at period t  T , scenario s   , 

where , , , , ,h t s h j t s
j D

v v


 
H  

*t 
  Final branching period within time window (in Table 5.3), 

dependent on the investment decisions of branching alternatives 
* , ,k t sw  

 , , , 0 ,1j t sr


  Recovery of attribute   P  at location j P p , period t  T , 
scenario s    

, , , ,,  0h t s h t sd d 
  Surplus or shortage variables (respectively), from deviations over 

targets of attribute h  H , period t  T , scenario s    
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Table 5.3 Set of parameters used in formulation 

General Material Flow Parameters 
, ,b s

  Simulated value of primary attribute   P , for block 
mb B  and 

scenario s   .  Ex.: 
, ,b s

 = metal content   P of block b, in 
scenario s 

 , , 0 ,1b c s   Pre-defined cluster classification, = 1 if block 
mb B  belongs to 

cluster c C , in scenario s   , and 0 otherwise 
, ( )h jf   Function that transforms primary attributes   P  into hereditary 

attribute h  H  in location j D M  (defined by the modeler) 
, ,,  h i h iU L  Basic upper and lower limit of attribute h  H , in location 

i M D . Ex.: 
,W iU  = Upper extraction capacity limit W  H , at 

location i M  
, ,,  0h t h tc c 

  Unit cost of positive and negative deviation over targets of attribute 
h  H , at period t  T  

,h tp H  Unitary price (or cost) of attribute h  H , at time t  T  

Option-related parameters 


Ν  Min number of scenarios in a branch required to allow further 
branching in 1t   T  

R   0 , 0 .5 , minimum proportion of scenarios (i.e. threshold) needed 
to branch design (threshold = [R, 1 - R]). 

,
K
k tp  Discounted purchase cost of option k K , period t  T  

k  Life of capital option k K  

k  Lead time before an option k K  is available (since the moment of 
decision) 

,k h  Per unit increment for constraints that investment option k K has 
on attribute h  H  

k  Allowed periodicity to decide on option k K  
,h j

q   1,1  . Effect/Adjustment factor over attribute h  H , at location

o pj D  if option q Q  is taken, where , 0  if   h j
k o pj D    




  Time lag to consider branching alternatives at time window t’ ϵ [t + 
ω, t - ω] 
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State variables in Table 5.2 correspond mostly value of the different primary 

and hereditary attributes along the different components of the mining complex. As 

mentioned earlier, primary attributes correspond to additive simulated attributes of 

the rock (i.e., tonnage, metal content, etc.), and hereditary attributes depend on these 

simulated primary-attribute values, and on the transformation function that defines 

them (presented in Table 5.3). Together with this, surplus and shortage variables

, , , ,( ,  )h t s h t sd d   are defined to quantify and manage deviations from targets.  

With these variables and parameters, the branching threshold described in 

Section 5.2.1 is defined in relation (5.1), where, for time window tω =

[t − ω, t + ω], the probability of branching must be within threshold ∈ [R, 1 − R].  

 

d o  n o t in v e s t  in  *  d u rin g             *

b ra n c h  d u rin g                                 * ,1

in v e s t  in  * d u rin g                     

k p r o b a b il i ty o f in v e s tin g in k R

p r o b a b il i ty o f in v e s tin g in k R R

k p r o b a b i









 

t if

t if

t if     * 1       l i ty o f in v e s tin g in k R







 

       (5.1) 

If the probability of branching is within this threshold, then the final branching 

period t*∈ tω is defined as the expected value of time of investment occurring 

within the time window, as defined in Eq. (5.2). Note that t* is independent of k*, 

as, even if there are multiple branching alternatives acting simultaneously, the final 

solution will branch at most only once per iteration, at time t* (see Algorithm 5.1 for 

further details). 

 * , ',* ( ') , ' , ,  { 2 , .. . , } ,  * * ,  k t st E w t t t t t T k K s


                 (5.2) 
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5.2.2.1 Dynamic Mining Complex Model 

The dynamic mining complex model aims at maximizing the discounted profit 

obtained from processing the extracted material at the different processing streams 

and minimizing the cost of different investments overtaken along the life of mine, as 

well as the deviations from production targets, which act to manage risk and defer it 

to later periods.  

 

Objective function: 

 

, , , , , , ,

c o s t  o f  in v e s tm e n tsn e t  p ro f i t  f ro m  h e re d ita ry  v a r ia b le s

, , , ,, ,

p e n a lty  fo r  d e v ia t io

, ,

n s

1
m a x K

h t h j t s k t k t s
s S t T

h i t s h

i D M h k K

h t h t
i D M h

i t sd d

p v p
S

c c



    

 

 

 





  





   

    

 

H H

H

H











(5.3) 

 

Subject to: 

 

a) Mining Constraints 

Next, mining constraints are presented, which ensure that the extraction is 

geotechnically and operationally feasible (Eq. (5.4) - (5.7)).  

 Slope constraints – ensure that a block b is only extracted once its 

predecessors O(b) (i.e., its overlying blocks) have been extracted.     

, , , ',
' 1

    (,  ,  ,)   ,
t

b t s o t s m
t

x b B m M o O b t Tx s




           (5.4) 
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 Mine reserve – a block b can be mined only once in the LOM 

, , 1,   ,  ,  b t s m
t T

x sb B m M




    
     (5.5) 

 All extracted rock must be sent to a single destination – this constraint 

ensures all clusters C have an assigned destination at each period, which 

consequently defines the destination of each extracted block of that period. 

Note that, as the clustering is a pre-processing stage which is independent of 

the blocks’ location, no link is required between the extraction decision 

variable and the cluster destination, as later the attributes of a block will only 

be accounted for if this block is extracted (Eq. 5.8). 

,
(

,
)

, 1 ,  ,  ,  c j t s
j c

z c C t T s


    
     (5.6) 

 Mineability /Mining width – these constraints ensure that the extraction 

sequence is smooth and continuous, penalizing the objective function (OF) 

through state variable , , ,h m t sd   if, for a given block, its neighbouring blocks n b

are not extracted at or before that period. Here, i,j,k correspond to the 

coordinates of block b , and n is the number of surrounding blocks that must 

also be extracted on each direction to ensure mining equipment width 

requirements. 

, , ', , , , ,
' 1

( ) ,  ,  ,
t

b t s b s h m t s
b n b

N b x x d h m M t T s
 





 

          H   (5.7)  
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b) Mining complex constraints 

 Stockpile material balance between incoming and outgoing quantities – these 

constraints ensure that there is a balance between incoming and outgoing 

material in the stockpiles of the mining complex. This balance is defined by 

the existing material, plus what is being fed to it, minus what is being taken 

from that whole amount to forwarding stages of the mining complex.  

, , ( 1 ) , , , , , , , , , , , , ,

In c o m in g  fo rm  o th e r lo c a tio n sL e ft-o v e r fro m  p re v io u s  p e rio d

, , , , , ( 1 ) ,
(

( ) ( ) \

)

1

m

i C
i t s i t s i j t s j i t s j t s

j i j J

b s b c s b t s
c J i C m M b B

v v y y v

x

  


 



 



  

 
      

 

 
    

 

 

   , , ( 1 ) ,

C o m in g  in  fro m  th e  m in e s  to  

,

,  ,  ,    

c i t s

i

z

i S p t T s



     P

 (5.8) 

 Processing material balance between incoming and outgoing quantities – 

these constraints ensure that there is a balance between incoming and 

outgoing material in the different processing locations of the mining 

complex. Processors have no left-over material. Thus, current material is 

defined only by the period’s feed from mines and stockpiles.  

, , ( 1 ) ,

, , , , , , , , , , , , , , ( 1 ) , , , ( 1 ) ,
( )

C o m in g  in  fro m  o th e r d e s tin a tio n s  to  j C o m in g  in  fro m  th e  m in e s  to

( ) \

 j

m

j t s

i t s i t s i j t s b s b c s b t s c j t s
i J j C c J j C m M b B

v

r v y x z



  
 



 

   



 
      

 

   

  ,  ,  ,  j P p t T s     P

    (5.9) 
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, , ,

, ,

( )

( )
,

w ith

1 ,  ,  

1 ,  ,  

i j t s
j i

i j t s
j i

y i S p t T s

y i P p t T s





    

    




 

 Capacity constraints for Mining/ Equipment – these constraints are global for 

all components of the mining complex and are affected by both operational 

and investment alternatives decisions.  

 
,

, , ,, , , , , , , , , ',
'

1 ,   
k

k k

h i
q q i t

t

h i t s h i t s h i k h k t s
k K t t

sv d U w


 

 





   

       
          (5.10) 

 
,

, , ,, , , , , , , , , ',
'

1 ,
k

k k

t

h i
h i

q q i t st s h i t s h i k h k t s
k K t t

v d L w


 

 





   

                      (5.11)

,  ,  ,  ,  l ih H i D M t T qs Q


       
 

For example, if the plant changes its operational mode to increase throughput 

(i.e. 
, , , 1q i t s  ), the upper and lower capacity limits will increase by a factor of ,h i

q . 

The same way, if the optimizer decides to invest in an extra crusher at the plant (i.e. 

, ', 1k t sw  ), then (after the corresponding lead time has passed), the limits also 

increase by a quantity of 
,k h . Note that investment alternatives increase the capacity 

only after the lead time has passed (
k ), and only for the time defined by the life of 

the equipment purchased (
k ). 
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c) Attribute calculation and state variable definition 

The definition of the different primary and hereditary attributes is presented 

next. These definitions are general to allow the model to adapt to the specific 

characteristics of different mining complexes, such as the number of elements 

produced, the set of possible processing streams, geometallurgical variables of 

interest, to name a phew.  

 Value of primary attributes – (defined per scenario) these constraints ensure 

that the value of any primary attribute is only accounted for if the block is 

extracted on that period. 

, , , , , , ,    ,  ,  ,,  
m

m t s b s b t s
b B

v x m M t T s
 

 



       P            (5.12) 

 Final hereditary attribute value – depends on the transformation function

,( ( ))h jf  , which is affected by the selection of operational alternative ( ,h j
q ), 

activated by the binary decision variable 
, , ,q j t s .  

 
,

, , , , , , ,, , , 1 ,   

;  ;  ;  ;  ;  

( ) h j
h j t s h j q q j ts sj t

i

v f

h

v

q Q t T sj D M






 

  



 

 

 P H
      (5.13) 

For example, if operating alternative 
jq Q  affects the recovery of element 

  P  at location j P p , then the final recovery ( r

 H ) is defined by 

 , , , , , ,

,

, , , ,) 1 .(
r j

h j qr j t s j t q j t ssv f v 




     
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d) Dynamic / option constraints 

These sets of constraints enable the branching mechanism and ensure that equal 

decisions are taken over all scenarios if no branching has been defined.  

 Non-anticipative constraints  

These constraints are enforced over a variable time frame T  , which is 

iteratively augmented (as defined in the algorithm in section 5.2.1). Within this time 

frame, these constraints are always enforced, except if branching is “activated” (i.e.

* , 1k tu 
 ). Here, non-anticipative constraints are defined over extraction (5.14), 

destination (5.15), investment (5.16), and operational mode (5.17) decisions. 

As there can be more than one branching decision in the model, branching can 

occur over any of them, and thus the value of * ,k tu   is considered over all possible 

branching decisions available (set K*). Note that if all
* , 0k tu 

 , then all decisions 

must be the same within all scenarios (even branching investment decisions). Which 

means the solution will remain unique, with or without investment. For ease of 

notation, 
* ,

* * {0 ,1}
*

k t
k K

u

A
K





 

 
 
 

  


 in Eq. (5.14) – (5.17).  

Given the scenario partition   1 * , * , 2 1 ;  1, ,   \k t ss w s
    

          , 

the following set of constraints is defined  

   , ( 1 ), , ( 1 ), '1 0 , ;  b t s b t sA x x t T b M

 
                  (5.14) 

   , , ( 1 ), , , ( 1 ), '1 0 , ;  ;  c j t s c j t sA z z t T c C j D

 
      

           (5.15) 
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   , ( 1 ), , ( 1 ), '1 0 , ;  k t s k t sA w w t T k K

 
     

            (5.16) 

   , , ( 1 ), , , ( 1 ), '1 0 , ;  ;  q j t s q j t s j o pA t T q Q j D
 

 
                 (5.17) 

1 2, ' ;  ;  's s s s
  

         

 Branching threshold constraint  

These set of constraints define the activation of branching in node ρ, which only 

occurs if the probability of branching during time window tω is within the threshold 

limits  ,1R R  . The following constraints are used to verify if the branching 

proportion is within the upper and lower limits of the threshold. 
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 Stochastic solution stability - there must be enough scenarios in each possible 

partition (Eq. 5.19). 
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 Definition of branching period (t*)  

Equations (5.18) and (5.19) define if the system branches during time window 

 𝑡𝜔. If it does, constraint (5.20) defines the actual branching period t*, within time 

window  𝑡𝜔 = [𝑡 − 𝜔, 𝑡 + 𝜔], as the nearest integer value of the expected value of 

period of investment within this time window 𝑡𝜔.  

Note that t* is only activated (i.e. t* > 0), if * , * 1 .k tu 
  
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e) Operational constraints over investment alternatives 

These constraints ensure that operational and purchase requirements over the set 

of investments available are respected. 

 Periodicity of investments – decision to invest in CAPEX alternative k is 

only allowed 
k periods after it was previously taken. 
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 Limits on purchases – These constraints link the activation of the investment 

decision with the actual number of investments, which must be within the 

allowed upper and lower limits. 
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 Limit on branching decisions – as these decisions are defined as high-impact, 

high-cost decisions, they are allowed “only once in the LOM.” This 

constraint can be replaced by setting the allowed periodicity ( )k  in 

constraint (5.21) big enough to forbid repeating that investment. 

* , , 1,  * * ,  ,  k t s
t T

w k K t T s


 

                      (5.23) 

5.2.2.2  Solution method 

The previous problem is iteratively solved as described in Algorithm 5.1. The 

proposed mechanism is done to obtain the probability value of executing branching 

decisions, which is found by using a look-forward procedure. The algorithm works 

by enforcing dynamic non-anticipativity constraints over an iteratively increasing 

time window {1, ..., }T 
 .  

Starting from the first period, non-anticipativity constraints are set to work until 

an auxiliary time period (T  ), which increases as a moving time window (i.e., 

equals the first period in the first iteration, and equals the whole LOM in the last). 

With this, at each iteration, the model is solved, and the partitions are updated. 
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Algorithm 5.1   Iterative solution mechanism 
Initialization 
T   total the number of periods  
Ω  total number of simulations 
Ω ρ partition of scenarios in branch ρ, initially equal to Ω  
FS  final solution containing dynamic production schedule 
SPi,  sub-problem defined in Section 5.2.2, solved for the i-th iteration  
i =0 sub index to define sub-problems 

T    auxiliary time defining final period of enforcement of non-anticipativity constraints 
t*  period of branching, defined from Eq. 5.2 and 5.20 (setting 

* , * 1k tu 
 ) 

 
t   1, initial period of LOM to optimize 

T    t +1 
 
Stage 1 
Solve subproblem SPi over Ω, as described in section 5.2.2 for T = [t, T], and T 

  . 
 
Stage 2 

while T T
  do  

 t  T 

 
if t* > 0 then 

T 

  t* 
Solve sub-problem SPi for T = [t, T ], setting * , * 1k tu 

  with corresponding 

partitions Ω ρ calculated from SPi-1 

else do 
T 

  T 

+1  
Solve sub-problem SPi for T = [t, T] 

end else 
 update t* 
 FS  SPi 

i++ 
end while 
 
return FS  
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5.2.2.3 Solving Mechanism 

The solution on the previous model can be represented as solution vector 

, , , , , , , , * , , , , , , , ,[ ] , [ ] , [ ] , [ ] , [ ] , [ ] , [ ]l
b t s c j t s q j t s k t i j t s k t s k t sx z u y w

  
 

Φ , where most decision 

variables are binary. Solving a real-size case study would entail almost a billion 

binary variables (Ex.: a case study with 20 simulations of a mining complex with 

two mines of 150k blocks each over a 10-year LOM has 20x20x300,000x10 = 1.2B 

binary variables). However, because of the iterative mechanism described in 

Algorithm 5.1, this formulation can be decomposed into smaller sub-problems 

where the extraction sequence variables can be considered scenario independent 

within each branch, reducing the number of variables to the range of millions to tens 

of millions. As solving a formulation with millions of binary variables is still a 

challenge, and due to the non-linearities present in the formulation, a simulated 

annealing (SA) based metaheuristic algorithm is used to solve it. This algorithm is 

based on the metaheuristic described in Goodfellow and Dimitrakopoulos (2016), 

but, instead of integrating two different heuristic mechanisms (simulated annealing 

and particle swarm), an adaptive multi-neighbourhood simulated annealing is used. 

A neighbourhood refers to a class of perturbations in the solution vector (i.e. the 

vector containing decision variables defining the extraction, destination, operating 

modes, processing stream and investments 
, , , , , , , , , , , , ,[ ] , [ ] , [ ] , [ ] , [ ]b t s c j t s q j t s i j t s k t sx z y  ), 

and perturbations correspond to changes in a particular decision variable, such as 

changing the extraction period of a block, the proportion of material sent from a 

stockpile to the processing stream, the destination of a cluster on a given period, the 

operating mode at a plant, or deciding to purchase one extra equipment. To perturb 
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continuous variables, a uniform distribution is plotted along all its possible values, 

and the cumulative distribution is randomly sampled, defining the new value of the 

decision variable. Simulated annealing algorithm (Kirkpatrick et al., 1983; Geman 

and Geman, 1984) works by, starting from an initial solution 0Φ , perturbing the 

current, and accepting or rejecting the new solution depending on the annealing 

probabilities. Adaptive multi-neighbourhood simulated annealing starts from the 

same basis, but each neighbourhood is selected, first randomly, and next according 

to an adaptive probability, which is updated according to the performance of that 

given perturbation in improving the solution.  

Perturbations affecting the investment and operating mode decisions correspond 

to (i) the addition or removal of one or multiple investments at a given year, (ii) the 

swap of two different investments in two different periods, and (iii) the activation or 

deactivation of operational modes in different components of the mining complex in 

a given period. The impact of these perturbations over the objective function value 

may be drastically different, particularly for the case of branching investment 

decisions, where a crusher may cost hundreds of millions of dollars and have 

considerable effect over the schedule and processing capacity of the system. 

Because of this, to allow the optimizer to stabilize and adapt to these big changes, 

once a neighbourhood perturbing 
* , ,[ ] ,  * *k t s k K   is chosen, this neighbourhood is 

forbidden to be selected again for a certain number of iterations (2000 iterations in 

the following case study). 

It must be noted that if a perturbation is chosen to modify the current solution, 

this modification must respect all the constraints of the model, for example, a block 
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cannot be set to be extracted on a period where its predecessors have not been 

extracted yet. For the case study presented in the next section, the initial solution 

was obtained by setting all blocks as unmined, and an annealing schedule is set, 

where the annealing temperature is repeatedly changed after a certain number of 

iterations, and the solving process stops once a total number of iterations is reached.  

 

5.3 Case Study 

The proposed model is applied at an operating mining complex composed of 

one mine, and six possible processing streams (Figure 5-2). These processing 

streams are a sulphide mill with a stockpile, three heap leaches for sulphides, oxides, 

and transition (SHL, OHL, and THL respectively), a sulphide dump leach (SDL) for 

sulphide low grade and waste, and an oxide dump, for oxide waste. The mining 

complex produces copper and gold, and the different processing streams have 

constraints over the type of material received, and the product produced. All this is 

represented in Figure 5-2 by the squares with numbers beside each destination, 

which represent the type of material that is allowed in each (defined at the left side 

of the figure).  

The sulphide mill is the only processing stream which produces both gold and 

copper and is the main source of profit of the mining complex. It has a production 

capacity of 2.4Mt per year, and the adjoin stockpile can store up to 1Mt. The 

sulphide heap leach also has a limited capacity of 6Mt, and it is assumed that all 

other destinations have no capacity restriction. Mining and economic parameters 

used are presented in Table 5.4. Values have been normalized by the mining cost for 
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confidentiality reasons. In this case, fixed operating costs and commodity prices 

have been used. Table 5.4 also shows the branching parameters, which define an 

investment window (ω) of +/- 1 year, and a threshold parameter Rt. Thus, according 

to the values presented, if between 40% and 60% of scenarios decide to invest 

within a time window of [t - 1, t+1], then the design branches into parallel solutions. 

 
Figure 5-2 Mining complex layout with material allowed and metal produced per 

destination 

 

Table 5.4 Mining and economic parameters of the copper/gold mine 

Mining Complex Param. Processing Costs 
Mining Cost $1.0 * x Sulphide mill cost $11.3*x   
Mining Cap. 6 Mt Sulphide heap leach cost $3.9*x 
SHL Capacity  Sulphide dump leach cost $1.9*x 
SM Capacity 3.4 Mt Transition heap leach cost $3.2*x 
Mining width 100m Oxide heap leach cost $3.1*x  
Economic Parameters Other Parameters 
Copper Price $3.9/lb ω 1 year 
Gold Price $1450/oz Rt 35% 
Discount rate 10%   
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5.3.1 Alternatives Considered 

Alternatives added to this case study are divided into “investment” and 

“operational.” Investment alternatives are included (i) in the sulphide mill, with the 

possibility of increasing the capacity by adding a secondary crusher to increase the 

production capacity, and (ii) at the mine, where the optimizer defines the truck fleet, 

and thus, the annual extraction capacity. Both alternatives are highlighted in Figure 

5-2 by dotted lines. Two operational alternatives are included in this case study; (a) 

one that acts over the mine by adapting the blasting pattern to reduce mining cost, 

punishing grindability, and (b) an alternative over the sulphide mill’s processing 

configuration, which increases throughput by reducing the recovery. Operational 

details on each alternative are presented next. 

5.3.1.1 Investment Alternatives 

An initial fleet of 2 trucks is available and active for the first six years. This 

reduced fleet allows testing the optimizer and allowing it to choose the optimal fleet 

size for later periods, as the optimization process can increase this extraction 

capacity by purchasing additional trucks. However, it can be assumed that in a real 

mine this initial fleet may be considerably bigger. Each additional truck has a life of 

equipment of six years, and once a truck is purchased, it is only available one year 

later. The decision to purchase a truck can be taken every 2 years, and the maximum 

purchase quantity is defined to be 5 trucks at a time. These and other operational 

details are presented in the first column of Table 5.5. 

The second CAPEX alternative is the purchase of a secondary crusher at the 

sulphide mill, which increases the production capacity by 300kt per year. This 
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investment decision is set to be a “branching alternative,” which means that the 

optimizer can branch and develop parallel mine design schedules if a representative 

number of scenarios differ in this decision variable. These and other operational 

details are presented in the second column of Table 5.5. 

 

Table 5.5 Purchasing details for the investment alternatives 

 Truck 
(non-branching option) 

Secondary Crusher 
(branching option) 

Undiscounted cost ($US) 3,800,000 25,000,000 
Life of equipment 6 years 25 years 
Periodicity of decision  2 years - 
Lead time 1 year 2 years 
Maximum purchases 5 units/year 1 unit/year 
Tonnage increment per unit 3,500,000 tpa 300,000 tpa 
Initial Capacity available 7,000,000 tpa 2,400,000 tpa 

 

5.3.1.2 Operational Alternatives 

Mining Mode:    

The mining operational mode alternative works by reducing the number of 

blast-holes in the blasting pattern. By doing so, the overall mining cost is reduced 

due to less drilling and a reduced amount of explosives but, at the same time, a 

coarser blasted material is produced, which requires additional work and energy 

from the system’s crusher, reducing the throughput (Figure 5-3). In this case, it is 

assumed that an 18 blast-hole net is reduced to a 16 blast-hole one (as shown in the 

left side of Figure 5-3), which reduces the mining costs by 8%, and in turn, reduces 
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the crushing capacity by 3% ( ,h j
q  in the formulation in Section 5.2.2). These values 

were taken from the mine’s historical data. 

 
Figure 5-3 Blasting net alternative at the mine level 

 

These operational alternatives allow having better control over the pertinent 

geometallurgical variables, as, for example, the optimizer may choose to concentrate 

blasting in areas with harder rock or where the grade is higher, ensuring that that 

material reaches the processing stream faster. 

Processing Mode:  

The processing operational alternative at the sulphide mill is defined as the 

selection between a higher throughput with a lower recovery, or a lower throughput 

and an increased recovery (Figure 5-4). This metallurgical relation is well known, 

where the processing time can be reduced by shortening the feed’s time at the 

crusher. Doing so produces a coarser grinding. Processing time can also be reduced 

by reducing the concentrate’s residence time in the different processing stages; 

however, this will have a negative effect on the metal recovered from processing the 

material at the sulphide mill.  

In this case study, the “activated” operational mode increases the throughput by 

a 4.4% but reduces the plant’s recovery by 0.56% ( ,h j
q  in the formulation in 

 

-  
blast 
holes 
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Section 5.2). These values were also taken from historical data of the mine; the 

plant’s recovery curves presented in Figure 5-4 (values are not shown for 

confidentiality reasons). 

 
Figure 5-4 Relation of recovery/throughput alternatives (A and B) at the SM 

 

5.3.2 Results 

The following section presents the results obtained for the dynamic stochastic 

optimization method proposed. Subsequently, these results are compared with the 

traditional two-stage stochastic formulation without alternatives. These results were 

obtained with a computer with processor Intel® Core™ i7-2600S CPU, with an 

installed memory of 8.0 GB. Both first and second stages (Algorithm 5.1) were 

computed with an annealing schedule of 5 million iterations, which took about 40 to 

48 hours of solving time in each case. As any metaheuristic algorithm, more 

iterations represent higher possibilities of an improved solution, but it was found 

that after 4 to  million iterations the solution converges. 
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5.3.2.1 Proposed dynamic two-stage stochastic formulation with alternatives 

The solution of the formulation proposed in Section 5.2.2 shows that there is a 

43% probability of investing on a secondary crusher in period 4. As 43% is within 

the threshold of R = 40% defined in Table 5.4 (43% ϵ [40%, 60%]), the design 

branches at that time. All results obtained from the branch without secondary 

crusher are presented on the left side of the figures, and the case with secondary 

crusher is presented on the right side.  

The crusher and truck investment plans are presented in Figure 5-5. The right 

side shows that, when a secondary crusher is purchased, the operation chooses to 

buy one extra truck by year 5, compared to the branch without secondary crusher. 

This extra purchase is available in year 6 (also when the crusher is available), which 

allows balancing the extra mill feed required by the system. Together with this, in 

both branches trucks are purchased every two years, maintaining an average 

extraction capacity of 17.5Mt, with a five-year ramp-up. This capacity increases 

further for the case with secondary crusher, reaching 20-25Mt capacity during years 

6 to 13.  

Operational alternatives for both branches are presented in Figure 5-6, which 

shows that when the plan invests in a secondary crusher, the optimizer generally 

decides against increased throughput (mill mode alternative) and grindability (miner 

mode alternative). This is clear particularly in the last three periods, where, as there 

is 300kt extra of processing capacity, the optimizer chooses to maximize recovery 

and minimize mining costs by keeping both operational alternatives not active.  
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Figure 5-5 Trucks and secondary crusher purchase plan for each branch of the 
production plan solution, without secondary crusher (left) and with secondary 

crusher (right) 

 

 
Figure 5-6 Operational mode decisions for the mine (grey) and the mill (black) for 

each branch of the production plan, without secondary crusher (left) and with 
secondary crusher (right) 

 

Particularly in the case of operational mode alternatives, the time frame to 

change them can be considered shorter than a whole year. Because of this, and due 

to the flexibility of the proposed model, a mid-term analysis is performed by 

discretizing the first two years in three terms each and defining the corresponding 

operational mode decision variables (blasting pattern mode and sulphide mill 

recovery mode) in that schedule’s time frame. This analysis provides a more 
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realistic target to guide the short-term plan, considering the actual configuration 

flexibility that the processing streams have. Figure 5-7 shows the risk analysis over 

the mid-term feed plan for the sulphide mill, with the initial target in dotted red, and 

the target adapted by the sulphide mill’s operational alternatives in continuous blue. 

The percentiles 10, 50 and 90 are presented (P10, P50, and P90, respectively), which 

show there is a 10%, 50% and 90% probability of being under the values presented. 

It can be seen in the figure that the optimizer decides to apply the mill operational 

mode to increase the mill’s throughput in the last two terms of the first year and on 

the last term of the second one.  

 
Figure 5-7 Risk analysis over SM feed for the mid-term discretization of the first 

two years with operational alternatives  

 

This mechanism allows the mining complex to increase the mill feed in those 

periods and minimize deviations from targets. It must be noted that as the branching 

occurs on period 4, and the mid-term analysis is done only over the first two periods, 

this mid-term plan is common for both branches of the production plan (as are all 

other decisions for the first three years of production).  
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These operational and investment alternative decisions result in the sulphide 

mill feed shown in Figure 5-8, where, as in Figure 5-7, the initial target is presented 

in dotted red line, and the target adapted by the operational mode is presented in 

continuous blue line. The risk analysis (P10, P50, and P90 values) of the mill feed is 

also shown, which show that the optimizer does a good job at following the dynamic 

target in both cases, presenting a tight risk profile with minor deviations mostly on 

the last five years of the life of mine.  

 
 Figure 5-8 Annual SM feed for each branch of the production plan solution 

(without secondary crusher (left) and with secondary crusher (right)) 

 

The left side of Figure 5-8 shows that, even though this branch did not invest in 

a secondary crusher, the production schedule is using the mill’s operational mode 

flexibility to increase its throughput in most periods, without any cost on 

investments. On the other hand, the branch with a secondary crusher (right of Figure 

5-8) also decides to increase the mill’s processing capacity by using the operational 

modes in some periods, producing relatively tight risk profiles except on the final 

3.4 years of production. 
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The solution obtained from the proposed formulation presents a net present 

value (NPV) with a P50 of MUS$1460, a P10 of MUS$1320 and a P90 of 

MUS$1580. The full cumulative discounted cash flow distribution for the dynamic 

formulation is presented in Figure 5-9, together with the base case (presented next). 

5.3.2.2 Comparison to the two-stage stochastic formulation 

Results for the two-stage stochastic formulation of the mining complex are 

presented in this section, where extraction decisions are first-stage decisions, and 

processing stream decisions are considered second-stage. This case not only ignores 

the dynamic algorithm presented in the previous section, but also removes all 

investment and operational mode alternatives from the model; in particular, this 

corresponds to the second term of the objective function (Eq. 4.2), as well as all 

investment and operating mode effects and decisions from the set of constraints.  

 
Figure 5-9 Cumulative net present value for the base case (black) and the proposed 

dynamic formulation (red) 

 

As there are no CAPEX alternatives considered, it is assumed that the mine has 

a constant extraction capacity of 14Mt per year (i.e., a constant fleet of 4 trucks). 
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The same way, the mill is assumed to have a constant processing capacity of 2.4Mt 

per year. Results from this optimization are presented in Figure 5-10, which shows 

the risk analysis of the annual sulphide mill feed (left), the extracted material 

(middle), and the cumulative discounted cash flow (right), with P10, P50, and P90 

values presented for each case.  

 
 Figure 5-10 (a) Sulphide mill feed (top-left), (b) extraction tonnage (top-right), and 

(c) NPV (bottom) for the base case two-stage optimization without alternatives 

 

The mine production and extraction plans (top left and right graphs respectively) 

present very controlled risk, with minimal deviation from production and extraction 

targets (present mostly at the last three years). The obtained results show that two-

stage stochastic optimization can provide production plans that control and manage 
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risk. The cumulative discounted cash flow (bottom graph) presents a NPV 

distribution with a P50 of MUS$1320, a P10 of MUS$ 1,246, and a P90 of 

MUS$1,374. Figure 5-10 compares these results, with the ones obtained on the 

proposed dynamic formulation. 

5.3.2.3 Discussion 

The two-stage approach presented in the previous section can manage and 

control risk. However, it assumes that the future is fixed, and does not capitalize 

regarding value, or takes advantage of changing environments and new information. 

This value is accounted for in the dynamic formulation by allowing the optimization 

process to adapt to change by introducing flexibilities in the form of operational 

modes and dynamic investment alternatives. This can be seen by comparing the 

different NPV percentiles of both cases in Figure 5-10, where the dynamic model 

presents a 10.5% higher NPV regarding P50, but almost a 15% higher P90. The 

obtained results show that the dynamic formulation maximizes value, but, 

furthermore, provides a production plan that can take advantage of opportunities and 

capitalizes on the project’s possibilities of adapting. 

 

5.4 Conclusions 

This paper presents a dynamic two-stage stochastic mixed integer nonlinear 

programming formulation for modelling and optimizing a mining complex. Mining 

complexes are value chains where extracted rock from different sources is 

transformed into sellable products through a set of processing streams. This value 

chain is governed by uncertainties at different levels, from the geology of the 
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orebody at the mine to the different operational and processing components that lead 

the sellable products to the market. The presented model aims at considering 

possible flexibilities in the mine production schedule by including alternatives over 

capital expenditure investments and operational modes, at different levels of the 

value chain. More specifically, a dynamic decision-making mechanism is included, 

where the mine production plan is allowed to branch, and parallel solutions are 

designed if a representative proportion of geological stochastic simulations agree it 

is profitable. This model extends from a multistage formulation and prevents the 

model from producing over-fitted solutions to the set of stochastic simulations used. 

The proposed method setts a representativity threshold that controls the branching 

mechanism, and thus, the final solution provides a controlled set of possible mine-

plan alternatives that have been probabilistically quantified to be worth considering. 

This process generates new optimized plans that allow and ease the process of 

adapting once more information is available. 

Due to the size and complexity of the proposed formulation, exact solvers such 

as CPLEX are unable to provide any solution. Thus, an adaptive multi-

neighbourhood simulated annealing metaheuristic is used, which can solve complex, 

non-linear problems, producing good quality solutions in a relatively short amount 

of time. 

The practical implications of the proposed method are demonstrated through an 

application over a copper-gold mining complex comprised of one mine and six 

processing streams. Here, the dynamic model is compared to a traditional two-stage 

stochastic formulation, presenting a 10.5% increase in net present value in terms of 

P50, and a 15% higher NPV on a P90 level. 
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Two main lines of research are proposed as future work; first, in testing new, 

more sophisticated solving mechanisms such as hyper-heuristics, which can adapt 

better to solve different mining complex configurations, without the need of setting 

up the necessary parameters required in the metaheuristic used here. Second, focus 

on testing the proposed method in a bigger case study with multiple mines, and more 

than one branching alternative acting simultaneously. 
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CHAPTER 6                                                                                                              
General Conclusions and Future Work 

 

 

6.1 Conclusions 

A mining complex is a mineral value chain formed by interconnected 

components consisting of a set of mines, stockpiles, waste dumps, processing 

streams and transportation to final customers. All these components strongly depend 

on each other and, thus, they must be simultaneously optimized to account for the 

synergies that exist between them. Simultaneously optimizing the different 

components of a mining complex under grade and material type uncertainty has 

been a topic of research of the past years. However, because of these uncertainties, 

assuming that the setting and production needs of a mining complex will remain 

unchanged for the life-of-mine, and thus, that the initial optimized solution will 

remain optimal is a strong limitation of current stochastic simultaneous optimization 

models. Existing mechanisms to evaluate flexibility have been argued to be useful in 

their ability to calculate a more realistic range of values of a strategic mining 

complex plan; however, they fail in focusing on the actual viable feasibility of the 

designs produced. Thus, if the mine designs and production infrastructure are not 

feasible, the production forecast and economic valuations will be unreliable.  

This thesis presents a methodology to embed flexibility into mineral value 

chains, by allowing the strategic mine plan of a mining complex to dynamically 

consider possible options and alternatives for reacting and adapting to future 

changes. The proposed dynamic optimization mechanism is able to consider a set of 
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feasible flexibility alternatives that will ease the ability of a mining complex to react 

and adapt to a changing environment, while meeting production targets, and 

producing production schedules that are feasible at an operational level. This is a 

challenge for strategic planning, due to the different operational requirements that 

must be considered to produce feasible mine plans. In addition, these extensions 

substantially increase the size of the optimization model, requiring the development 

of more sophisticated metaheuristic mechanisms to obtain good quality solutions in 

a reasonable amount of time. 

Chapter 2 presents a study to actively consider investments and capacity 

optimization of a mining operation in the stochastic integer programming model, 

accounting for the different variables that affect equipment acquisition, such as 

costs, lead time and life of equipment. The method developed is able to optimize the 

equipment purchase plan under geological uncertainty to minimize costs while 

meeting production targets. Results from an application at a gold mine presented an 

increase of 20% in net present value, caused from optimizing ore and waste 

extraction through equipment acquisition plan across the life of mine, delaying 

waste extraction towards later periods. This chapter contributes a new mathematical 

model that realistically includes capital expenditures in the optimization of a 

strategic mine plan, effectively optimizing the extraction capacity of a mining 

operation. The actual extraction sequence is not optimized in this case, and the 

ultimate pit limit is assumed fixed. Together with this, the case study is limited to 

the basic case of a mining complex with a single mine and one processing plant. 

 In Chapter 3, the destination policy of a multi-element mining complex is 

studied, aiming at ensuring that complex blending constraints are met by 

considering the uncertainty related to the grade and material type of the extracted 

rock, in addition to other rock properties and processing parameters, such as 
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hardness, throughput, and recovery (also referred to as geometallurgical variables). 

Here, a fixed schedule is defined, and multi-variate destination policy is generated, 

which simultaneously accounts for all the variables of interest, and aims at meeting 

complex blending constraints, while maximizing project value. The method 

proposed uses coalition formation clustering, a method developed in game theory, to 

create families of mining blocks which should be processed together due to their 

interrelated characteristics. Thus, the aim is to meet blending constraints not only by 

a mining block’s own properties, but rather by the joint properties of the group of 

blocks being processed together, such as their resulting grades of blending elements 

and sellable metals, simultaneously. At the same time, the coalition clustering is able 

to deal with both quantitative and qualitative variables, enabling the extension of the 

method to consider other more complex rock properties. An application at a copper-

gold mining complex shows that, for a fixed schedule, deviations from blending 

constraints and arsenic limits are significantly reduced by up to 30%, while 

maintaining the level of metal production, and ultimately increasing the net present 

value by about 6%. The method developed is shown to be highly effective, but for a 

fixed defined schedule. Reformulation efforts should be placed to expand the model 

to include the optimization of the full mining complex scheduling problem. These 

efforts should focus on reducing the computational complexity of the model, as its 

high computational cost makes it prohibitive to integrate into the simultaneous 

stochastic optimization of a mining complex. 

Chapter 4 extends the model presented in Chapter 2 to optimize the mine plan 

and extraction schedule of a mining complex, together with the capital expenditure 

plan, implementing a dynamic mechanism to account for the flexibility of investing 

on high-impact capital expenditures into the optimization model. The new dynamic 

formulation proposed is based in multistage stochastic programming, and is solved 
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with an iterative mechanism which resembles the attainment of new information 

throughout time. This model aims to maximize the net present value of a mining 

complex and increasing its potential to take advantage of new opportunities, while 

hedging from risk. Along with the extraction sequence and processing stream, all the 

components of the mining complex are optimized simultaneously, considering 

geological uncertainty, as well as a fleet purchase plan, consisting of trucks and 

shovels that define the operation’s extraction capacity, and the option to invest in a 

secondary crusher to increase processing capacity at the mill. At the same time, the 

model limits the number of parallel possible schedules developed by ensuring that 

only investment alternatives that have a representative probability of being 

profitable are considered, easing the application of the obtained solution plan into a 

real-life operation. The model is applied at a copper mining complex consisting of 

two open pits, an oxide leach pad, a sulphide mill with a related stockpile, and a 

waste dump. Investments over trucks, shovels, and a secondary crusher are included 

in the optimization model, showing substantial improvements when compared with 

the standard two-stage stochastic simultaneous optimization of the mining complex, 

increasing the expected NPV by 4%, corresponding to over MUS$170, with a P90 

increase of 11%. 

Finally, Chapter 5 extends dynamic formulation presented in Chapter 4 to 

include operational alternatives, which are introduced to increase the capacity of the 

optimization to manage the effect of different geometallurgical variables over the 

mining complex’s performance, increasing project value while meeting complex 

blending and processing constraints, oriented at large-scale deposits. These 

operational modes are considered at different levels of the mining complex, adapting 

the blasting pattern at the mine level to increase crushability at higher mining costs, 

dealing with rock hardness and throughput, as well as at the processing plant level, 
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increasing throughput by punishing metallurgical recovery. These operational 

alternatives are combined with the investment alternatives in the dynamic model 

described in Chapter 4, to fine-tune the mining operation for the different possible 

futures contained in the strategic plan. A solving algorithm is developed, which is 

iteratively applied, mimicking the sequential acquisition of information obtained 

with time, as well as the decisions that have already been taken and fixed. The 

proposed model is applied at a copper-gold mining complex, with alternatives to 

purchase trucks to define the extraction capacity, as well as a high-impact 

investment of a secondary crusher to increase the processing capacity at the sulphide 

mill. Together with this, both operating alternatives mentioned before are included 

at the mine and plant level. Results show that the option of investing on a secondary 

crusher has over a 40% probability of being profitable, providing a strategic plan 

that presented over 10% higher net present value. 

 

6.2 Future Work 

There are multiple avenues for future research from the work presented in this 

thesis. The alternatives considered in the developed model relate mainly to the 

optimization of capacities of a mining complex, at both the mine and processing 

level, however, other type of alternatives could be studied, such as investing in 

integrating different transportation systems within the mining complex, enabling, for 

example, the connection of all sources of material (mines) to all the different 

processing streams, in case they are not already in place. In addition, extending the 

study to decide between competing alternatives which cannot be active 

simultaneously, such as expansions of different capacity, different transportation 

systems in a limited space, or investments at different levels of the mining complex 

under a limited capital context, evaluating the relative impact of each, to choose the 
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optimal one in terms of timing and available capital. The proposed dynamic model 

can aid the mineral value chain to timely and efficiently shift towards a more 

efficient operation, evaluating which alternatives would be more profitable and 

effective to consider, easing the transition and maintaining productivity. This 

extension is readily obtainable with relatively minor adaptations to the current 

formulation, but the options considered must be studied within the set of feasible 

possibilities that can be implemented, according to the configuration, characteristics, 

and context of the given mining complex.  

The solving mechanism employed in this thesis can be further improved. The 

results obtained are promising, but the adaptive multi-neighbourhood simulated 

annealing metaheuristic used is time consuming, and the selection and tuning of 

parameters required by the algorithm is a tedious task based mostly in a trial an error 

procedure. New hyper-heuristic algorithms have shown to be effective and efficient, 

especially in solving complex models, such as the global optimization of a mining 

complex. These algorithms consist of two layers of metaheuristics, where the first is 

an internal layer, which is iteratively used to select an efficient metaheuristic from 

the second layer to actually perturb the model; this second layer includes of a set of 

different simple metaheuristics. This procedure is referred to as a “smart solving 

mechanism”, as the initial layer adapts its probability of choosing a given 

metaheuristic from the second layer according to its historical performance, and to 

the type of neighbourhood being perturbed, and because of this adaptability, the 

parameters required are minimal. A smarter solving mechanism could prove to be 

highly beneficial in obtaining a faster convergence of the solution, reducing 

computational times as well as limiting the subjective procedure of parameter 

selection. 
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Finally, extending the formulation to optimize and include operational 

alternatives at a short-term production scheduling could also result in interesting 

results, affecting the dispatch plans, expanding ore control testing in areas of mixed 

material, or affecting the blasting pattern on a zone-based definition, and not 

globally per period, as done in Chapter 5. Especially in the face of new on-line 

systems receiving real time data, being able to plan for changes is crucial to take full 

advantage of new information and adapt to it. Machine learning techniques have 

proven to be highly effective in dealing with real time decision-making; however, a 

dynamic multistage model could prove beneficial to work as a link between the 

adaptive short-term and related long-term plan. It must be noted that short and mid-

term mine planning entail multiple operational and logistic constraints that are not 

included in the current strategic long-term model, and thus, an in-depth 

reformulation of the mathematical model would be needed.  Additionally, there are 

multiple uncertainties governing short-term operation, such as the availability and 

utilization of the equipment, which should be accounted for. However, these 

extensions considerably increase the computational cost of the formulation, and 

thus, more efficient solving mechanisms must be developed. 
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