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Abstract

Two approaches to navigation and localization of a holonomic, unmanned, indoor airship
capable of 6-degree-of-freedom (DOF) motion using on-board sensors are presented. First,
obstacle avoidance and primitive navigation were attempted using a light-weight video
camera. Two optical flow algorithms were investigated. Optical flow estimates the motion
of the environment relative to the camera by computing temporal and spatial fluctuations
of image brightness. Inferences on the nature of the visible environment, such as obstacles,
would then be made based on the optical flow field. Results showed that neither algorithm
would be adequate for navigation of the airship.

Localization of the airship in a restricted state space — three translational DOF and
yaw rotation — and a known environment was achieved using an advanced Monte Carlo
Localization (MCL) algorithm and a laser range scanner. MCL is a probabilistic algorithm
that generates many random estimates, called particles, of potential airship states. During
each operational time step each particle’s location is adjusted based on airship motion
estimates and particles are assigned weights by evaluating simulated sensor measurements
for the particles’ poses against the actual measurements. A new set of particles is drawn
from the previous set with probability proportional to the weights. After several time steps
the set converges to the true position of the airship. The MCL algorithm achieves global
localization, position tracking, and recovery from the “kidnapped robot” problem. Results
from oft-line processing of airship flight data, using MCL, are presented and the possibilities

for on-line implementation are discussed.
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Abrégé

Deux approches de navigation et localisation d’un drone intérieur équipé de capteurs et
capable de six degrés de liberté seront présentées. Premierement, des vols ayant comme
simple but d’éviter des obstacles et de naviguer le drone ont ét€ exécutés a 1’aide d’une
caméra vidéo. Deux algorithmes de flux optique ont été étudiés. Le flux optique estime le
déplacement de I’environnement relatif a la caméra en calculant les variations dans la clarté
de I’'image. Les traits caractéristiques de I’environnement, comme les obstacles, sont alors
déterminés en se basant sur le champ de flux optique. Les résultats démontrent que ni I’'un
ni ’autre des algorithmes sont adéquats pour naviguer le drone.

La localisation du drone dans une représentation d’état, caractérisée par trois degrés
de liberté en translation et par la vitesse de lacet, ainsi que dans un environnement connu
a été accomplie en utilisant I’algorithme avancé de Localisation Monte Carlo (MCL) et
un télémetre laser. MCL est un algorithme probabiliste qui génere aléatoirement plusieurs
estimés, nommés particules, d’états potentiels du drone. A chaque incrément de temps,
la position de chaque particule est ajustée selon les déplacements estimés du drone et ces
particules sont pondérées en comparant les valeurs estimées du capteur avec les valeurs
actuelles. Ensuite, un nouvel ensemble de particules est créé a partir du précédent en
considérant la pondération des particules. Apres plusieurs incréments de temps, 1I’ensemble
converge vers la position réelle du drone. L’algorithme MCL accompli alors une localisation
globale, un suivi de position et une résolution du probleme du robot <kidnappé ». L’analyse
hors-ligne des résultats avec 1’algorithme MCL est présentée et les possibilités d’implémenter

cette méthode en ligne sont discutées.
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Chapter 1
Introduction

The past decade has seen increasing interest in autonomous, indoor, aerial robots. Potential
uses for these systems include commercial applications such as surveillance and security,
public service applications such as search and rescue in unsafe structures, and academic
applications in the research of advanced control and navigation techniques for aerial vehicles
without the cost of developing large-scale prototypes. Concurrently, McGill’s Aerospace
Mechatronics Laboratory (AML) has been home to an indoor airship that is unique to the
field. Though not initially designed as stand-alone, rather as a substitute for a free-floating
satellite for research into space robotics, the airship presents an opportunity for a one-of-
a-kind indoor robotic platform. For the airship to be truly useful in such a role, however,

further work to improve its capabilities must be undertaken.

1.1 Background and Motivation

Previous work at the AML has focused on the autonomous capture of free-floating objects in
space, such as satellites or space junk, using a robotic manipulator [45, 58]. Experimentally
studying such systems on Earth posed an obvious problem due to the effects of gravity.
To simulate such a free-floating object, a small, indoor airship was developed. The novel
spherical design of the airship — further details of which will be presented in the following
chapter — provided the capability for “holonomic” motion in six degrees-of-freedom (DOF).!

Once the airship had been constructed and the previous work had been completed, further
interest in the airship as a stand-alone platform arose. Initially the focus was on improving
the functionality of the airship by adding a rigid frame and developing a stable closed-loop

controller for the airship [48]. A commercial motion-tracking system was installed in the

'In the context of mobile robotics, a system is called holonomic if the number of controllable degrees-of-
freedom is equal to the total degrees-of-freedom.



2 Chapter 1. Introduction

AML to track the position and orientation of the airship. The motion-tracking system
provided fast, accurate and reliable pose information, allowing for the development of the
controller.

To further realize the airship as a stand-alone platform, such as an indoor surveillance
robot, the bonds with the motion-tracking system must be broken. Since the motion-tracking
system is physically fixed to the building, moving it is not an easy operation. Thus the
airship is effectively constricted to flight within the relatively cramped volume visible to the
motion-tracking system. Ideally, the airship would be able to navigate autonomously through
any space without any preparation of the space, such as placing landmarks throughout, or
previous knowledge of the space, such as a map. Achieving those goals would of course
require that the airship be completely self-contained, including all required sensing and
computational equipment. Though these goals are lofty for any autonomous robotic vehicle,

much less an omni-directional aerial platform, they will serve to provide direction.

1.2 Problem Specification

With the ultimate goal for the airship laid out, the primary challenge was to move all sensory
and computational equipment on-board the airship. The previous controller relied on the
motion-tracking system and the work presented here is all computationally heavy, so moving
the computer on-board was deemed infeasible for the time being. Instead, the first step to
realizing the airship as stand-alone was to only move all sensing equipment on-board the
airship. Of course, the motion-tracking system could not be mounted to the airship, so new
methods of sensing were required.

Thus, the goal of this research project was to investigate and implement navigation and

localization methods for the indoor airship solely using on-board sensors.

1.3 Review of Related Work

1.3.1 Indoor Airships

Over the past decade, many teams have developed small airships for indoor flight, the
majority of which were of the traditional, ellipsoidal shape with thrusters at the rear and
fins for stabilization. These small airships face many challenges, not the least of which is
developing stable control systems due to the complicated, non-linear dynamics of airships
and the severely restricted payload limits on small airships.

In [39], an airship with three propellers was used to investigate developing a control
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law with reinforcement learning. The initial attempt failed, but by using an “evolutionary
segmentation” algorithm to optimally segment the state space, the reinforcement learning
algorithm was able to generate a stable control law. In this case, the airship was restricted
to motion in a vertical plane, since the controller’s only feedback was through an off-board

camera tracking the position of the airship in the plane.

Reinforcement learning was again used by Ko et al. [32]. Rather than directly learn
the control law, an improved dynamics model of the airship — again of the typical airship
design — was first developed. A basic, human-derived model was improved through the
use of a regression model to more accurately model the airship’s dynamics. The improved
dynamics model was then fed to the reinforcement learning algorithm to develop the control
law. The airship in this work had 4-DOF and its position and orientation were tracked using
a commercial motion-tracking system, much like that in the AML.

Another typical airship was used in [42] with the goal of a tele-operation system to
control the airship over the internet. Due to the lag induced by tele-operation, “predictive
motion control” was proposed, where the remote operator would be presented with the
predicted state of the airship a few moments in the future, rather than the last measured state.
The localization problem was not solved in this work, since the airship was tele-operated,
though short-term navigational estimates were required. The predictive motion control
system was not experimentally tested.

To further research on small, indoor airships, Gonzélez et al. [18] proposed a low-cost
autonomous blimp. They began with a commercially available blimp of the traditional shape,
added a more powerful propeller to control height, a high-capacity battery, and two sonic
range finders — one measuring altitude and one directed forward for basic obstacle avoidance.
The 1.32 m long blimp was controlled by a ground-station PC that communicated wirelessly
with an on-board microcontroller. Finally, two controllers were investigated using this
airship: a PID controller fared poorly, but a fuzzy-logic controller was able to successfully

control the altitude and orientation of the blimp while avoiding obstacles in its path.

Moving away from the traditional airships above, Kang and colleagues [28] presented an
interesting airship that incorporated a wheeled base. In theory the base would be retractable,
though in two physical implementations the carts were fixed to the airships using light-weight
rods. The airships’ buoyancies were set slightly below neutral with the propellers providing
further lift to fly. The carts themselves were free-wheeled — all control and power were
provided by the airships — but the motion sensors were mounted to the cart. An inclinometer
measured the yaw rotation of the system, while an optical sensor like those found in optical

computer mice measured displacement.

A further departure from the traditional airship design was developed by Takaya et
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Main circuit board—»
Gas sensor
Propeller fan
(a) The cylindrical airship of [29, 49]. (b) The spherical airship of [27].

Figure 1.1 Other non-traditional airships: the only airships found in the literature that did not feature the
traditional ellipsoidal shape.

al. [49]. Their airship had a unique cylindrical design with six propellers, as shown in
Fig. 1.1(a). The airship was symmetrical about the vertical axis and could thus perform
holonomic maneuvers in four degrees-of-freedom (DOF); the arrangement of the propellers
prohibited control of roll and pitch motions. Initially a PID landing controller was developed
that used a downward facing camera to track a known pattern on the laboratory floor. Later,
the same airship was used to investigate a learning landing controller [29].

Finally, a single other spherical indoor airship was found in the literature [27]. Used
for measuring the gas distribution throughout a room, the blimp had a 1.17 m diameter
and featured four thrusters — two directed downward, two horizontally — all along a single
arm tangential to the sphere at the bottom of the airship, as depicted in Fig. 1.1(b). With
this arrangement four DOF were achievable, which were used to cover the entire space of
the room. A single wide-angle camera on the floor tracked the blimp’s horizontal position
and an on-board sonic range finder measured altitude, though the position data was only
used to know the gas distribution, not for control of the airship itself. The blimp’s lateral
navigation commands were selected randomly, while its vertical motion was set every 5

seconds according to its height, always directed toward the half-height of the room.

1.3.2 Indoor Navigation and Localization

Indoor navigation and localization present unique challenges compared to outdoor navi-

gation, where the global positioning system (GPS) is generally considered the solution to
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localization. Many methods of localization and navigation have been developed over recent
years. Methods that rely on off-board equipment are common. For example, among the
systems described in §1.3.1 were off-board vision cameras that tracked the positions of the
airships in planar environments [27, 39] and a commercial motion tracking systems that used
infra-red cameras to track markers on the airship [32]. A similar motion tracking system has
also been used to track the airship within the AML. Such methods are abundant and beyond
the scope of the present work.

Systems that do not rely on off-board sensors generally fall into two broad categories:
vision-based navigation techniques and probabilistic localization techniques. Vision-based
techniques will use images or image sequences from one or more cameras mounted to the
robot and extract information about the environment and/or the motion of the robot from
those images. Examples of common approaches are landmark detection and tracking for
localization, and optical flow for obstacle detection and avoidance. A detailed review of
vision based navigation approaches will be presented in Chapter 3.

Probabilistic localization techniques model the state of the robot as a probability density
across the state space. If data from the sensors suggest a specific state, the area surrounding
that state will be assigned a higher probability of being the true robot state. Probabilistic
techniques are sensor agnostic compared to vision based approaches, but common choices
are range scanners and cameras, so probabilistic techniques and vision-based navigation are

not mutually exclusive. Probabilistic localization will be reviewed in detail in Chapter 4.

1.4 Thesis Organization

The remainder of this thesis is structured as follows. Chapter 2 describes the laboratory
facilities and all of the major pieces of equipment used throughout the research, including the
airship and the sensors mounted to it. Chapters 3 and 4 then cover the two approaches taken
to solving the navigation and localization problems. In Chapter 3 an attempt at vision-based
navigation is presented and in Chapter 4, a probabilistic localization technique using a laser
range-scanner. Each of those chapters review related work in the field, give theoretical
descriptions of the approaches, describe the practical implementations, and discuss their
results. Finally, Chapter 5 draws conclusions on the works of Chapters 3 and 4 and presents

prospects for future work on these topics.






Chapter 2
Experimental Facilities and Equipment

All of the work presented here was performed in the Aerospace Mechatronics Laboratory
and made use of several pieces of equipment found there. The laboratory has space to fly
a small airship and is equipped with a commercial motion-capture system to track it. The
laboratory also houses a 6-DOF CRS robot mounted on a linear track, however the robot was
used only peripherally to the main focus of this research. Details of this equipment presented
in §2.1 while the description of the airship airship and its associated components follows
in §2.2. The final section of the chapter, 2.3, is dedicated to the detailed description of one
interoceptive and two exteroceptive sensors mounted to the airship: an inertial measurement
unit (IMU), and a wireless video camera and a laser range scanner (LIDAR), respectively.
For the LIDAR specifically, a detailed uncertainty model is developed as it will be employed
in Chapter 4 of this thesis.

2.1 Laboratory Equipment

Optical Motion-Capture System

A key piece of equipment for previous iterations of the airship controller was the VICON
optical motion-tracking system. It consists of six infra-red video cameras with the lens of
each surrounded by a ring of infra-red light-emitting diodes (LEDs). One of the cameras is
pictured in Fig. 2.1. The cameras are distributed along a shallow arc across the laboratory
ceiling, bolted directly to the ceiling or support beams. Under this arrangement, the operatio-
nal area in which they can track movement is approximately 7 m X 3 m X 3 m (width X depth
% height). The six cameras are all connected to a control computer that uses a proprietary
system to track the 3-dimensional motion of pre-defined objects at approximately 120 Hz.

The light from the LEDs reflects off of small markers that are placed in set patterns on

7
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Figure 2.1 One of the six motion-capture cameras of the VICON system. The infra-red LEDs — not powered
in this photograph — form a ring around the camera’s lens. The camera is mounted directly to one
of the building’s structural support beams.

the objects to be tracked. The markers are coated in a highly reflective material that the
cameras can reliably track. At least three markers are required to fully define a rigid-body.
To track the airship, six groups of four markers are placed on the frame of the airship. Each
group of four is defined as a unique rigid body with all six bodies defined such that they
provide the same position and orientation no matter which groups are visible to the cameras.
With this arrangement, the system is able to track the position and orientation of the airship
reliably in the whole operating space without concern for the orientation of the airship.
Previous versions of the airship controller relied on the motion-tracking system for
position and orientation information. During the present work the previous controllers were
used to fly the airship for test data gathering, however, the motion-tracking system was not

in any way incorporated into the localization or navigation algorithms.

Track-Mounted Robotic Arm

In the centre of the laboratory sits a track-mounted robotic arm. The CRS A465, visible in
Fig. 2.2(a), is a 6-DOF manipulator with a horizontal reach of 710 mm and a vertical reach
of 1040 mm. It is mounted on a 3 m track with a maximum velocity of 0.8 m/s.

In previous work [45, 58] the manipulator was used for autonomous capture of the
airship. In the present work it plays only a minor role. It was used to gather the image

sequence displaying uniform, constant motion for the optical flow work of Chapter 3.

2.2 A Holonomic Indoor Airship

The indoor airship is unique from all other airships encountered in the literature. With few

exceptions, the airships studied in the literature match the traditional ‘cigar’ shape common
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to airships, with a roughly ellipsoidal hull, rear-facing thrusters, several stabilizing fins at the
rear of the hull, and a gondola at the bottom of the hull, beneath the center of buoyancy. Such
a configuration is designed for motion in a distinct forward direction and has two properties
that greatly improve stability. Stabilizing fins help to maintain airships’ headings when flying
through air currents, and the arrangement of components ensures that the center of mass is
well below the center of buoyancy, preventing roll and pitch motions from de-stabilizing
the airship. On the other hand, the airships are under-actuated and display non-holonomic
motion, typically lacking lateral motion actuators and unable to significantly control for

rolling motions.

2.2.1 Physical Construction

The indoor airship of the present work is nominally spherical in shape with a 1.85 m (6 ft)
diameter. It consists of a 0.05 mm (2 mil) thick malleable plastic hull and three carbon-fiber
hoops with light-weight honey-comb cores arranged normal to each other to provide a rigid
frame. At each of the six hoop intersection points is a thruster. The six thrusters are oriented
such that thrusters diametrically opposite are vectored in the same direction, and each of the
three pairs of thrusters are vectored along different principal axes. A picture of the airship,
together with the track-mounted robot, and a diagram of the hoop structure and thruster
directions are displayed in Fig. 2.2.

Two iterations of the airship frame were used during this research. Both versions
maintained the same overall design and materials, with the second iteration reducing the
weight of the frame from 1.75 kg down to 1.28 kg. The original frame was used for the work

presented in Chapter 3 and the new frame for the work discussed in Chapter 4.

Airship Balancing

Originally developed as a simulator of free-floating satellites, the key design aspect was the
ability to arbitrarily control the position, orientation and motion of the airship. This 6-DOF
holonomic control was achieved by the spherical shape of the airship, the symmetrical
placement of the thrusters and by meticulously preparing the airship prior to flight such
that it has neutral buoyancy and is balanced. The airship can be made neutrally buoyant by
adjusting the amount of helium in the hull, since the flexible hull material allows for slight
over-inflation if necessary.

The airship is balanced such that its center of gravity (CG), center of buoyancy (CB),
and center of volume (CV) are all coincident. This is achieved if the weight of the airship is

evenly distributed about its hull. Ideally, for control purposes, the airship’s inertia tensor
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(a) The airship mid-flight in the AML above the  (b) Diagram of airship’s physical frame and coordi-
robot track. The robotic manipulator is visible nate frame, with thruster directions indicated by
in the foreground. gray arrows

Figure 2.2 The spherical indoor airship.
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would also be diagonal so that any rotation of the airship experiences equal inertia and no
wobble would be induced by non-diagonal terms. Expressed mathematically, these two

conditions are

N
mr; =0 (2.1a)

i=1
a 00

I=10 a O (2.1b)
0 0 a

where N is the number of components of the airship of the airship, m; is the mass of
component i, r; is the position of the CG of component i relative to the CV of the airship,
and a > 0.

A script was written in MATLAB to assist with determining optimal payload arrange-
ments on the airship that would achieve the conditions of eq. (2.1) as nearly as possible.
Though the resulting arrangements remained imperfect — diagonalizing the inertia tensor was
impossible, the airship’s hull and hoops did not have perfectly uniform mass distributions,
and precisely placing components onto the hoops was challenging — they were superior to
manual placement of the components. The condition of eq. 2.1a was ultimately achieved
through the use of small balancing masses attached to the frame.

Finally, it must be noted that for the work of Chapter 4, the above conditions were
ignored to reduce the airship’s state space to 4-DOF, though maintaining holonomic motion.
Roll and pitch rotations were eliminated by moving CG as low as possible directly below
CB. This was done for two practical considerations: the LIDAR was a large, concentrated
mass that was difficult to balance and destabilized the airship’s orientation controller; and

computational concerns that will be explained in §4.3.3.

2.2.2 Airship Control

The airship is controlled from a ground-station PC that transmits commands to the airship
wirelessly over a Futaba radio. The ground-station PC performs all computations for the
controller. Previous work [48] has focused on the low-level stability and control of the
airship. The full-state feedback controller uses the VICON motion-capture system for
position and orientation data and calculates velocities by taking finite differences of the
previous 10 samples. Ongoing work to improve the orientation controller with data from the
inertial measurement unit was occurring concurrently with the present research and the test

flights of Chapter 4 benefited from the improved orientation control.
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The original controller was created in LabVIEW, but was recently ported to the Simulink
environment with the QuaRC toolbox and soft real-time target developed by Quanser. A key
function that is enabled by QuaRC is the possibility to run asynchronous threads alongside
the primary, synchronous computations performed by Simulink, which permit separate
asynchronous communications with the sensors. The importance of these will be displayed
in §2.3.4.

2.2.3 Thrusters and Power

The six ducted fans consist of DC motors driving 48 mm diameter propellers within 35 mm
long plastic cylinders. Each thruster is fixed in position and orientation and is capable of
providing thrust in both forward and reverse directions. At a nominal voltage of 8.4 VDC,
each thruster is capable of producing up to 0.45 N thrust in its primary direction or up to
0.25 N in its reverse direction.

Commands from the ground-station PC are received by the receiver of the Futaba wireless
radio in the form of pulse-width modulation (PWM) values for each motor. A custom circuit
board then drives the six DC motors according to the PWM values, since the Futaba radio is
designed to control servo motors. All six thrusters, the Futaba receiver and the circuit board
are powered by the same battery circuit. Originally, two parallel batteries of six 1.2 VDC
AAA-sized cells were used. At the same time as the frame redesign, a single 8.4 VDC, 400
mAbh lithium-polymer battery was purchased to enable longer flights. With a mass of 173 g,

the new battery was the single heaviest component mounted to the airship.

2.2.4 Airship Component Masses and Lift

Payload restrictions are an important concern for any aerial vehicle, even more-so for indoor
aerial vehicles due to their small size. Several of the component masses have been listed in
their respective sections, and they are all tabulated in Table 2.1. The total lift and available
lift are only approximations for three reasons: the lift provided by a constant volume of
helium varies according to the ambient air pressure and temperature; the amount of balancing
masses required depends on the components on the airship and their arrangement; and most

significantly, the plastic hull is slightly flexible, allowing for slight over-inflation if necessary.

2.3 Sensors On-board the Airship

The components discussed to this point — the hull, frame, propellers, battery, radio, VICON

system, and the ground-station PC — are enough to fly the airship under closed-loop control.
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Table 2.1 Airship component masses and lift for both iterations of the airship frame. See text for notes on
why the total and available lifts are approximate.

Mass/Lift [g]

Component Original frame Redesigned frame
Frame 1753 1278
Hull 640 640
Batteries 188 173
Thrusters 211 211
RF Receiver 25 25
Circuitry 53 53
Wiring 116 116
Total mass 2986 2496
Total lift (approx.) 3500 3500
Available lift (approx.) 500 1000

To attempt to control the airship without relying on the VICON system, further sensors
were mounted to the airship’s frame. These included a wireless video camera, an inertial
measurement unit, a laser range scanner, and two Bluetooth transceivers for communication
with the IMU and the LIDAR. All of these components are pictured in Fig. 2.3 and details of
each will be discussed in the following sections.

To protect the sensors from unsteady power supplies due to the constant changes in
current drawn by the motors, they were powered indepedently of the motors. The wireless
camera was powered by a standard 9 V battery, while the remaining components were
powered by a separate, 29 g, 7.2 VDC lithium-polymer battery paired with a regulator to
maintain a constant voltage of 5.0 VDC to the sensors. This was primarily required to protect
the LIDAR, since it has no power correcting circuitry built-in, unlike the other components.
Finally, all of the components, including the Futaba radio and motor circuit board, but not
the motors, were mounted to the airship using hook-and-loop fasteners for easy attachment

and removal as necessary.

2.3.1 Inertial Measurement Unit

The MicroStrain 3DM-GX1 IMU shown in Fig. 2.3(b) was mounted to the airship primarily
to provide orientation information, though it is also capable of measuring linear and angular
accelerations as well as angular rates. With dimensions of 65 mm X 90 mm X 25 mm and
a mass of 75 g, it is not the smallest IMU available, however it was already on hand from

previous research.
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(a) Laser range scanner (b) Inertial measurement unit

(c) Wireless camera (d) Bluetooth transceiver

Figure 2.3 Airship sensors and components.
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Figure 2.4 Effect of motor vibrations on IMU: the airship’s thrusters were engaged after 13 s free floating.
(@) Maximum linear thruster acceleration in any arbitrary direction (0.45 m/s2); (b) Absolute
maximum linear thruster acceleration (0.14 m/s?).

Linear Acceleration Measurement

The accelerometers within the IMU have a full-scale range of 49.05 m/s? (5G). According
to thruster characterizations, the ducted fans have a maximum thrust of 0.45 N in their
primary direction and 0.25 N in their reverse direction. Moreover, at neutral buoyancy
the airship has a total mass of approximately 3.5 kg. Thus, the absolute maximum linear
acceleration of the airship, with all thrusters operating at maximum power in their forward
direction, is 0.45 m/s*> — 0.91% of the full-scale range. The maximum acceleration in any
arbitrary direction, the case of only two thrusters operating at their maximum reverse power,
is 0.14 m/s?> — 0.29% of the full-scale range.

Compounding the small accelerations achievable by the fans are the vibrations they
induce on the frame. As shown in Fig. 2.4, the accelerations on the IMU caused by the
motors reached magnitudes of 1.5 m/s? — more than three times the maximum of the thrusters,

completely overpowering the desirable acceleration signal.

Orientation Measurement

In contrast to the acceleration measurements, the orientations measured by the IMU are
generally very accurate and do not suffer from the vibrations induced by the motors. Fig. 2.5
displays the roll, pitch and yaw rotations of the airship in flight as measured directly by
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the VICON motion tracking system and as measured by the IMU, after transforming the
coordinate frame to match that of the VICON system.

The IMU was only used for the work of Chapter 4, where the only orientation required
was the yaw orientation of the airship. Fortunately, of the three orientations, the yaw was
most accurately measured by the IMU, with a mean error of only 0.7°, assuming the VICON
system measured the ground-truth orientation. The roll and pitch orientations, while still

quite accurate, displayed larger errors, with mean errors of 4.1° and 6.9°, respectively.

2.3.2 Wireless Camera

The vision-based navigation discussed in Chapter 3 used a small wireless camera to transmit
a video stream. At only 25 mm X 22 mm X 22 mm, the camera is smaller than the standard
9 V battery required to power it. The CMOS camera, shown in Fig. 2.3(c), transmits at 30
colour frames per second with a resolution of 640 x 480 pixels, though in all of the present
work this was down-scaled to 320 x 240 grayscale pixels to reduce computational loads. The
camera was purchased second-hand and unfortunately no manufacturer information could

be found, though the model number is C1182 and one retailer was found.!

2.3.3 Laser Range Scanner

Aside from the motor battery, the largest and heaviest piece of equipment mounted to the
airship was the laser range scanner pictured in Fig. 2.3(a). At a mass of only 144 g and
dimensions of 50 mm X 50 mm X 70 mm, however, the Hokuyo URG-04LX is diminutive
compared to the units typically used on large, outdoor vehicles. It uses a laser diode, a light
sensor and a spinning mirror to measure distance. The phase difference of returned light to
the sensor from that emitted is a function of the distance the light traveled, so the distance
can be reliably calculated.

The spinning mirror allows the single diode and sensor pair to measure many distances
along a circular arc. The LIDAR measures up to 682 evenly spaced distances along a 240°
arc at a frequency of 10 Hz with a maximum range of 4095 mm and a distance resolution
of 1 mm. It is also capable of averaging several adjacent measurements together to reduce
data transmission loads — for example sending 341 distances per scan, each an average of
two actual measurements. The manufacturer’s specifications state the unit’s accuracy at

+10 mm for measurements less than 1 m and £10% of the reading beyond 1 m. Initial

'SpyVille: available online at http://www.spyville.com/mini-wireless-camera-5-8ghz.html.
Accessed January 24, 2011.
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Figure 2.5 IMU orientation accuracy compared to the orientations measured by the VICON system.
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testing confirmed these values as accurate, but a more detailed analysis was undertaken to

develop a LIDAR uncertainty model.

LIDAR Uncertainty Model

The work of Chapter 4 requires an accurate uncertainty model for the LIDAR. The uncertainty
model selected was based on that presented in [50]. Each measurement by the LIDAR is
treated as an independent beam originating at the LIDAR. The probability density function

(PDF) of the length of the beam is modeled as a combination of four types of uncertainty.

Local Measurement Noise Modern LIDARs tend to measure distances very accurately,
however they are not free from small measurement errors. These small errors about the

expected distance to hitting an object are modeled as Gaussian PDFs:

N (7s) 10275 @2

Dhie (7 | X, m) = )

otherwise
where x, is the robot state at time ¢, m is the map, r, is the measured distance, r; is the
expected distance to the nearest obstacle along the beam at time ¢, 7y, 1S the maximum range
of the LIDAR, and N (r,; ry, O'ﬁit) is the normal distribution about mean r; with standard

deviation oy

1 -4
N(rir.on) = ——=—==e = W 23)
2
2 O-hit
The value 17 in eq. (2.2) is a normalizing constant that ensures py; (7, | x;, m) integrates to one,

since the two ends of the distribution are truncated at O and 7,y:

-1

n= (f N(rt; T, O'ﬁit) a’r,) ) 2.4)
0

Note that the value of o is not necessarily constant with r. For example, the specifications
of the Hokuyo URG-04LX state o = 0.017* for r* > 1000 mm.

Unexpectedly Short Measurements The uncertainty model assumes knowledge of the
environment in which the robot is operating in the form of a map, m. Unless the map
perfectly models the environment, a chance exists that the LIDAR scan will be interrupted

by some unmodeled obstacle, such as a person moving through the environment. Since
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these obstacles are themselves unmodeled they must be accounted for within the LIDAR’s

uncertainty model. Here, an exponential distribution is used:

-1 T : *
NAshore” v if0 <1, <77}
pshort(rt | Xty m) = . (25)
0 otherwise

where Agor 18 the exponential distribution parameter and again 7 is a normalization variable:

* -1

Tt
n= (f /lshorte_/lShorlrtdrt)
0

(_e_/lsh(vrtr; + e_/lshﬂrto)_l (2'6)

(1 _ e_/lshortr[*)_]

Unmodeled obstacles are approximated with an exponential distribution since the farther
from the LIDAR the beam gets, the less likely an unmodeled obstacle is to be encounte-
red. To justify this, consider a scenario in which multiple unmodeled obstacles lie on the
beam’s path; only the closest would be detected by the LIDAR. Moreover, any unmodeled
obstacles beyond the nearest modeled obstacle would also go undetected, so the distribution

is truncated at r;.

Measurement Failures Occasionally, laser range scanners fail to detect an obstacle. The
majority of such cases are simply due to all obstacles being beyond the detection range of
the LIDAR, however there are other scenarios that result in failed measurements. Since the
measurements depend on reflected light, any material that fails to reflect the light back to
the LIDAR will go undetected. In practice, the only material observed that reliably failed
detection by the LIDAR within the operating space was the carbon-fiber of the airship’s
hoops, though glass is often cited as another material not observable by LIDARs. The LIDAR
interprets no reflected light as no obstacle and returns its maximum distance measurement,

thus these errors are modeled as a spike at the maximum range:

1 ifr, = roax
Pmax (1 | X, m) = . (2.7)
0 otherwise.
Strictly speaking, eq. (2.7) does not represent a probability distribution, but is treated as one

for the sake of simplicity, as in [50].
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Random Measurements The fourth type of measurement noise encompasses any other
random, spurious measurements returned by the LIDAR. These are modeled as a simple

uniform distribution over the whole LIDAR range:

— if 0 < 7y < Finax
Prand (17 | X, m) = ™ ) (2.8)
0 otherwise.

Finally, the four types of sensor noise described above are combined as a weighted sum:

T
it Dhic (7 | ¢, m)

Ishort pshort(rt I Xt m)

p(rilx;,m) = : ’ 2.9)
inax Pumax (1 | X, m)
rand Prand (I’, | Xts m)

where the four o values must sum to one and are determined empirically.

Noise Model Parameter Values All told, the LIDAR noise model requires six parameters
— Oy from eq. (2.2), Aghore from eq. (2.5), and the four a weights of eq. (2.9) — and each of
the parameters may be a function of the expected obstacle distance, r*. To determine the
parameters, over 600,000 distance measures spanning the LIDAR’s entire detection range
were taken with the LIDAR at known positions within a typical environment. Not all of
the obstacles in the environment were modeled to account for unmodeled obstacles in the
operating environments. The LIDAR’s scan range was discretized into 0.1 m segments of
the expected (as opposed to measured) distances. For each segment, the six parameters were
jointly calculated using an iterative solver that found the best fit for the six parameters to the
measured data.

It was found that Ag,o¢ and the four a parameters were all independent of measurement

distance, while the value of o,;; was a function of r*:

Ohie = 0.017" + 5 mm Ashort = 0.0005 Umax = 0.005

Qhit = 0.98 short = 0.01 (lrand = 0.005

2.3.4 LIDAR and IMU Wireless Communication

Both the LIDAR and the IMU are designed to communicate using the RS-232 serial commu-
nication protocol. Of course, when mounted to the airship, a direct serial cable connection

to the ground-station PC is impossible. To achieve wireless communication with the sen-



2.3. Sensors On-board the Airship 21

sors, two pairs of Roving Networks FireFly Bluetooth serial adapters were used. One such
transceiver is shown in Fig. 2.3(d). These gumstick-sized adapters allow transparent serial

communication over a Bluetooth connection.

Wireless Communication Transmission Rates

The Bluetooth transceivers do incur a reduction in transmission rates that must be taken into
consideration. When transmitting all available data, the LIDAR saturates a serial connection
operating at a baud rate of 115.2 kbps (the maximum rate common to the LIDAR and the
host PC) such that new data is only available at a frequency of 8 Hz. If the amount of data is
reduced, for example by specifying that the LIDAR send averages of pairs of distances as
described above, then the nominal LIDAR frequency of 10 Hz can be reached. Transmitting
this reduced data set over the Bluetooth connection using a naive approach — only asking for
new data once all previous data has arrived — reduces the frequency to 5 Hz. Even reducing
the amount of data by half again shows no improvement.

This performance reduction is caused by a combination of the Bluetooth transceivers
and the LIDAR itself. Once started, the spinning mirror in the LIDAR operates at a constant
rate of 10 rotations per second. The LIDAR computes distances for every revolution and
transmits the distances if data has been requested by the host PC. If the LIDAR receives
a request for data during a revolution, it waits until the start of the next revolution before
sending measurements. For their part, the Bluetooth transceivers introduce a delay into
the system since they must first establish that the transmission channel is clear prior to
transmitting data. Thus, after transmitting all of the LIDAR data to the host PC and only
then sending the next request for data to the LIDAR, the next revolution of the mirror has
already begun and the LIDAR must wait until the following data set can be gathered. As a
result, the LIDAR effectively operates at half of its rated frequency.

To compound the problem, if the LIDAR receives a request for data prior to calculating
all of the distances of the previous request, it returns an error, so it is not possible to send
multiple requests for data in quick succession. There is only a small window, approximately
1/30 s, in which a new request for data can be sent to be able to receive sequential data sets.

Performance was improved with a more efficient communication sequence. By sending
a request for new data as soon as the initial LIDAR response begins arriving at the host
PC, the request usually arrives in the allowable window to catch the following data set,
though not every time. This is where the asynchronous threads possible with the QuaRC
toolbox become indispensable. Without them, the uncertainty introduced by the Bluetooth
transceivers would force the system to run at 5 Hz.

To evaluate the new communication sequence, a series of tests were run, the results of
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Table 2.2 LIDAR sampling periods: Minimum periodic sample times that ensure new data at several levels
of certainty when communicating over a serial cable and using two communication sequences over
the Bluetooth transceivers.

Minimum periodic sample time [s]

Cluster size Reliability [%] Serial cable Bluetooth, naive Bluetooth, efficient

100 0.14 0.34 0.21

1 99 0.14 0.31 0.18
95 0.13 0.29 0.16

100 0.10 0.23 0.20

2 99 0.10 0.21 0.12
95 0.10 0.19 0.10

100 0.10 0.24 0.21

3 99 0.10 0.21 0.13
95 0.10 0.19 0.12

100 0.10 0.23 0.19

4 99 0.10 0.21 0.13
95 0.10 0.20 0.11

which are summarized in Table 2.2. Each test consisted of constantly communicating with
the LIDAR for 30 minutes and recording the exact times at which full LIDAR data sets
became available to the host PC. A total of twelve trials were run, four each for the serial
cable connection, naive Bluetooth communication, and efficient Bluetooth communication.
The four trials run for each communication sequence were for commanding the LIDAR to
send different amounts of data: every individual data point and averages of two, three, and
four data points. The minimum periods were then calculated for scenarios in which new
LIDAR data would be available for the controller with 100%, 99% and 95% reliability.

Clearly, the Bluetooth transceivers do introduce delays, however they can be largely
overcome by using the efficient data transmission sequence and programming the controller
such that it is able to cope with occasionally not having new data available. Commanding the
LIDAR to send averages of more than two data points shows no improvement in transmission
rates and reduces the precision of the measurements, so averages of two distances are
optimal. Allowing for only 99% reliability, the controller could be run with a period of
0.12 s (frequency of 8.3 Hz) when communicating wirelessly.

Finally, it should be noted that the amount of data sent by the IMU was small enough
that the Bluetooth transceivers did not significantly affect performance. As well, operating
both the LIDAR and the IMU simultaneously using separate pairs of Bluetooth transceivers

resulted in no further reductions in performance.
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Optical Flow for Navigation

Vision-based robot navigation is a natural progression of technology, since we as humans
rely tremendously on our vision for navigation and have manufactured our environment
around this. Any robot that is expected to operate in our environment would thus be greatly
served by the ability to navigate by sight. Relation to our own navigation systems is not the
only attractive aspect of vision-based navigation, however. Modern digital cameras are able
to provide immense amounts of data from very small, light-weight, and relatively low-power
packages. Another advantage of vision, particularly for military applications, is that cameras
are typically passive, self-contained sensors, unlike most other exteroceptive sensor systems.
That is, cameras can sense their environment without broadcasting their presence. It was for
these reasons, particularly the size and weight aspects, that a vision-based navigation system
was sought for the airship.

3.1 Review of Vision-Based Robot Navigation

3.1.1 Mobile Robot Vision-Based Navigation

Any review of vision-based robot navigation techniques would be well served to begin with
the excellent survey of the field by DeSouza and Kak [13]. They split the field into two
broad categories — indoor and outdoor navigation — and then further subdivide each of those
into various approaches. The focus here will be on indoor navigation, which the authors split
into three sub-categories: map-based, map-building, and mapless navigation.

One approach to map-based vision navigation is absolute localization, where the vision
system attempts to locate known, static landmarks and determine the robot’s position within
the map based on the relative positions of the landmarks. The greatest drawback here,

of course, is that if not enough landmarks are visible, the robot cannot fully specify its

23
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location. A similar approach is to match features in the observed images to features in a
stored database of mapped images. Probabilistic localization is the typical approach here, as
the feature matching may not be unique (e.g., there may be many doors in a building that
all look identical). The third map-based localization approach expands on this probabilistic
localization. Rather than relying on a database of mapped images, the robot is given a map
(typically topological) of its environment and localizes itself within the map by determining
the positions of physical features of the environment, such as corners at adjoining walls, that

can be matched to the map.

In all three of the above techniques, it was generally assumed that the camera could
not take on any arbitrary pose. For example, in feature matching, the features were often
assumed to be at a known distance and orientation from the camera, such as a line marked
on the floor over which the robot drives, or that the camera is facing normal to the robot’s
motion so that it can view landmarks on a wall which is at a constant distance from the robot.
In the third approach, the cameras’ orientations relative to the ground were fixed so that

vertical environment features could be reliably located.

At the time of writing their paper [13], vision-based map-building navigation was still
an immature field. One approach was to use vision in coordination with other sensors to
build a 2-dimensional occupancy grid of the environment that dictates where the robot may
and may not travel. These fare poorly in large, complex environments due to inaccuracies in
odometry and sensor uncertainties. The other approach discussed was building topological
representations of space with identifiable nodes. Node definitions varied by implementation,

but the common difficulty was reliably identifying previously visited nodes.

In the intervening years since the publication of [13], vision-based simultaneous locali-
zation and mapping (SLAM) has been a popular research area. The most promising recent
work has been in the area of real-time single camera SLAM. Davison et al. [11] showed that
it was possible to build a stochastic map of a cluttered environment by extracting salient
features from the video stream. Their system was dubbed MonoSLAM. Unlike other SLAM
systems (e.g. [31, 47]) MonoSLAM required no learning step prior to autonomous operation.
The major drawback of this system was that the complexity of the computations greatly
increased as the size of the environment was increased — at the rate of O (N 2). The robot
was effectively restricted to operation within a single room. To overcome this challenge,
Eade and Drummond [14] combined MonoSLAM with the FastSLAM algorithm of [38] to
enable the system to scale to larger environments while still working in real-time.

Other vision-based SLAM systems have been implemented as localization algorithms in
mobile robots as well. Cuperlier, Quoy and Gaussier [10] used a SLAM approach to build

and navigate a cognitive map — a map of locations of interest joined by paths, as opposed
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to a metric map that contains absolute positions of objects and locations. The robot was
ground-based and equipped with a 360° camera. A neural-network based algorithm was
used to extract landmarks and develop the map, which was built in a learning step prior to
autonomous navigation.

Returning to the survey by DeSouza and Kak [13], their third indoor vision-based
navigation category was mapless navigation. One such technique is similar to the map-based
technique of matching image features to known images, however in this case the known
features are not located within a map. Rather, they are generic features of an environment,
such as doorways, that give clues to the robot on how to proceed, or not, in the case of walls.
On their own, such systems are typically relegated to just roaming the environment, however
the idea can be expanded to include more general object recognition systems that are able to
interpret commands, such as “go to the door,” where the robot would then navigate itself to

the door based on what it sees.

The final method of indoor vision-based navigation discussed in [13], optical flow,
operates at a lower level than those described above. Rather than attempting to correlate
image features to known objects or environmental features, optical flow based controllers
attempt to navigate purely on the apparent motion seen in a sequence of images, without
regard to what is actually seen in the images. Optical flow techniques will be discussed in

much greater detail in §3.2.

3.1.2 Aerial Robot Vision-Based Navigation

In all of the work described in the preceding section, there was not a single mention of aerial
robots. Making the jump from ground-based to aerial robotics increases the complexity of
the task tremendously: the degrees-of-freedom of the system double, from three to six; direct
physical odometry, while unreliable for ground-based robots, becomes entirely impossible;
weight restrictions often severely limit the types and amounts of sensing and computation
equipment that may be used, for both weight and power reasons; and failure of the robot can
be potentially catastrophic, e.g., if a fixed-wing aerial robot loses control, it will likely crash
destructively. With these extra challenges, it is not surprising that early research on robotic
vision systems focused on ground vehicles. That is not to say that there has been no research
on aerial robotics with vision-based navigation.

Work on vision-based navigation for autonomous airships began in the late 1990s.
In [7], an autonomous indoor blimp was developed that visually tracked a target with
known geometrical and visual properties. By applying basic image processing and tracking

techniques, it was possible to fully determine the position and orientation of the airship
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relative to the target. While effective, tracking a known target is not an ideal solution, since
the airship is only able to operate within visual range of the target, severely restricting its
possible motions. A slightly different approach with similar results was undertaken in [62].
In that case, visual servoing was performed to control an indoor blimp. A floating ball
was tracked, but rather than determine the position of the ball in Cartesian coordinates and
from that derive the pose of the airship, all operations were performed in the image plane.
Further, the dynamics of the airship were also calculated in the image plane. Of course, this
method suffers from the same drawbacks as any method that only tracks a known object.
These concepts were generalized somewhat by the work of van der Zwaan, Bernardino and
Santos-Victor [57]. Station keeping and docking of an indoor blimp was achieved by visually
tracking an image feature, however that feature was not known a priori but was specified by

the operator at runtime.

Several more advances in vision-based navigation of airships soon followed. Using
insect-inspired optical flow algorithms, an indoor blimp was able to autonomously navigate
to a goal, avoid obstacles and stabilize its course [25]. This was all achieved using a single
360° camera. This work was later expanded on to achieve odometry from the same data [26].
Another team [66] followed similar ideas of biologically-inspired computer vision for the
control of an indoor blimp using genetic algorithms to evolve the controller. Their airship’s
goal was to maximize speed and no explicit goal of wall avoidance was given, yet the airship
learned to avoid walls to maximize speed. More recently, Kawamura et al. [29] used a
learning controller for the vision-based control of an indoor airship — the cylindrical airship
mentioned in §1.3.1. Their controller learned what outputs to give based on the current and
desired state variables. The downward-facing vision system tracked a known pattern on
the floor of the environment to determine the airship’s position and orientation. The same,
airship had previously been used to develop vision-based landing using a PID controller,

also estimating pose using the pattern on the floor [49].

Vision-based navigation on aerial vehicles other than airships has also been researched.
Oh, Green and Barrows [41] demonstrated obstacle avoidance and landing maneuvers for
a fixed-wing micro-air-vehicle. They achieved this using two specialized 1-dimensional
optical flow sensors, one facing the direction of motion and the other facing the ground.
Further, they used a neural-network trained to deal with various lighting conditions. Beyeler
et al. [4] simulated a similar platform along with basic inertial and airspeed sensors to

determine the altitude and pitch of the vehicle in a simulated environment.

More recently, rotor-craft have become popular research platforms, quadrotor aircraft
in particular. An interesting approach to vision-based control of a quadrotor was presented

in [52]. The controller tracked a known target on the floor for relative position, as many others
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have done, however the creative use of Moiré patterns allowed finer-grained measurements
of translation and yaw rotation. In [6], a quadrotor was again controlled by tracking known
target on the ground. In this case the target was much simpler, but multiple control algorithms
were investigated that were all based on visual servoing. The authors concluded that several
of the investigated algorithms were all acceptable for this type of control, suggesting that
there is no one “right way” of performing vision-based control of aerial robots.

Others have used methods similar to those discussed in §3.1.1 for rotor-craft navigation.
Courbon et al. [9] pre-recorded a set of key images along a path for a quadrotor to refer to
and be able to navigate the same path. Celik et al. [8] used a standard monocular vision
system for a FastSLAM-like algorithm for navigation of a small helicopter down a corridor.
The landmarks they tracked were architectural features of the corridor, much like the third
map-based localization approach described in [13].

Finally, optical flow based techniques have not been ignored either. Ahrens et al. [1] used
a pyramidal Lucas-Kanade optical flow algorithm for feature tracking along with ego-motion
estimation from an IMU to perform SLAM and obstacle avoidance with a quadrotor. Optical
flow was also used for corridor navigation in [64]. A wide-angle camera recorded images
of the corridor walls on both sides and the relative flow fields were used to maintain the
quadrotor at the center-line of the corridor. Kendoul, Fantoni and Nonami [30] proposed
a control algorithm for a quadrotor based on optical flow, an IMU and a nested extended
Kalman filter. In indoor and outdoor flight tests, autonomous take-off, hovering and landing
of the quadrotor was achieved with a few meters of drift.

As a final note, in none of the above listed works was a true holonomic 6-degree-of-
freedom robotic motion achieved with an aerial platform using a vision-based system. A
vehicle capable of such motion would provide a unique test-bed for developing robust

navigation and control algorithms.

3.2 Optical Flow

Since none of the vision-based navigation techniques discussed in §3.1 have yet been
implemented on a holonomic 6-DOF aerial platform, there was no clear selection that
could be made for implementation on such a platform. Optical flow was selected for its
relative simplicity and since basic navigational tasks have been performed using optical flow
without knowledge of absolute position or orientation of the robots. For example, station
keeping [30], obstacle avoidance [1, 41, 65], corridor navigation [64], terrain following [23],
altitude and pitch estimation [4, 65], visual odometry [26], and even aircraft landing [41, 56]

have all been proposed using optical flow techniques as their basis.



28 Chapter 3. Optical Flow for Navigation
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Figure 3.1 An example of optical flow: Two sequential images of a simple scene and a subset of the flow
vectors between the two images. The shaded rectangle undergoes pure translational motion, while
the circle could be interpreted as either shrinking or moving away from the camera.

3.2.1 The Visual Motion Field and Optical Flow

The basis of optical flow is the visual motion field, which is defined as “the 2-dimensional
vector field of velocities of the image points, induced by the relative motion between
the viewing camera and the observed scene” [54]. The motion field is effectively the
3-dimensional vectors of the relative motion between the scene and the camera projected
onto the camera’s image plane. Optical flow is an approximation of the motion field, or the

apparent motion of the image brightness over time.

Figure 3.1 shows two sample images and a subset of the flow vectors between them.
Though the vectors shown could be drawn from either the visual motion field or the optical
flow field, it is important to note that the two fields would not be identical, even for such a
simple case as this. The rectangle has a uniform gray shade and a portion of the rectangle in
the second image overlaps the rectangle in the first image. The change in brightness between
the two images in the overlapping region remains constant, so the apparent motion of the
image brightness (the optical flow) would be zero for this region. The visual motion field,

however, would be dense with equal vectors within the rectangle.

The key assumption that must be made for calculation of optical flow is that the apparent
brightness of objects in the scene remains constant through motion and time, which can be

expressed mathematically as

I

dr
oldx 0ldy 01
axdr Taydr "ot 0

0

Vil . v+1,=0 (3.1)
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where I = I(x,y, t) is the image brightness, v is the motion field, and the subscript ¢ denotes
partial differentiation with respect to time. This equation has been dubbed the image
brightness constancy equation [54]. The ultimate goal of all optical flow algorithms is to
calculate v from a series of images.

Many algorithms have been developed, using several different techniques, to estimate
optical flow. Barron, Fleet and Beauchemin [3] performed a survey and evaluation of various
techniques, including: differential techniques, which use spatio-temporal derivatives of
image intensity; region-based matching techniques, which track corresponding regions in
consecutive images; energy-based methods, which operate in the Fourier domain using
velocity-tuned filters; and phase-based techniques, which use the phase behaviour of band-
pass filter outputs. They implemented a total of nine algorithms, testing them with real and
synthetic image sequences. They found the first-order differential techniques most reliable
overall. Other optical flow algorithms have also been proposed more recently, such as the
SIFT algorithm [34]. However, they are computationally expensive and the goal was for
real-time control on standard computer hardware, thus were not implemented.

Two first-order differential optical flow algorithms were selected for implementation.
The first was one of the original optical flow algorithms developed — the Lucas and Kanade
algorithm [35] as described in [54]. The second algorithm, developed by Fleet and Lan-
gley [16], is unique for its use of recursive temporal filtering. It was selected specifically
because of its performance in [3]. Both of these algorithms calculate optical flow based on
spatio-temporal derivatives of the image intensity about small image areas. The details of

each will be discussed in later sections.

The Aperture Problem

As per eq. (3.1), the 2-dimensional motion field is estimated using a single equation. Thus,
only a single component of the motion field — that in the direction of the spatial gradient, v, —
can be determined [54]. This is known as the aperture problem, since it can be visualized by
imagining looking at an image sequence through a narrow aperture, as depicted in Fig. 3.2.
Since no uniquely identifiable points (i.e., corners) are visible within the small aperture,
Fig 3.2(a), the true motion can not be recovered. Only the motion normal to the line of
constant intensity can be calculated. Note that there are an infinite number of motions that
would result in the same apparent velocity v,,.

Notice that eq. (3.1) calculates the motion field at a single point based on the image
gradient at the same point, rather than a small area as depicted in Fig. 3.2. As a result, the
act of calculating flow based on a small region around the pixel, as is done in both of the

selected algorithms, reduces the aperture problem by introducing multiple equations for
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7

(a) When seen through a small aperture, the (b) The actual motion was horizontal.
motion appears normal to the line.

q
A\

Figure 3.2 The aperture problem: The gray and black lines show the positions of the same object at two
different times.

a single point’s motion vector. The problem can still occur if a straight edge of uniform

intensity crosses the whole region, as is the case in Fig. 3.2.

3.2.2 Lucas and Kanade: A Basic Optical Flow Algorithm

The Lucas and Kanade optical flow algorithm starts from the assumptions [54] that:

1. the apparent brightness of objects in the image remains constant through motion and
time; and
2. within any small patch of the image, the motion field can be approximated by a

constant vector field.

The first assumption is just the image brightness constancy equation (3.1). If the above
conditions are applied point-wise to all pixels p; in an N X N region Q of the image, where
the spatio-temporal derivatives are calculated at each of the pixels, then the optical flow can

be computed as the minimization of

S W [V o) v+ L] (3.2)

peQ

where W (p) is a weighting function to give pixels near the center of the region greater

influence [3]. The solution to eq. (3.2) is then found by solving the linear system:

ATWAv = ATWb (3.3)
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where
T
A=[VIpLo, VIEuD, ..., VI
W = diag [w (p1), w(p2), ..., w(Pnxn, f)]
T
b:_[lt(pl’t)’ It(pl’t), ey It(pNXNat)] .

Finally, so long as ATWA is nonsingular, solving the system of equations in eq. (3.3)
yields [3, 54]
v=(ATwaA) " ATWb. (3.4)

The matrix AT WA is a 2 x 2 matrix and A” Wb is a 2-element vector:

S w2 WII,

ATWA = LWL 2 ;] (3.5a)
S WL, YW
S WILI

ATWb = 2 ! (3.5b)
> WL,

where the subscripts x and y denote partial differentiation of the image intensity in the

respective directions, and all of the sums are taken over the N? points in the region Q [3].

3.2.3 Fleet and Langley: Recursive Temporal Filtering

The recursive temporal filtering algorithm by Fleet and Langley [16] builds on the Lucas and
Kanade algorithm. Typically, images used for optical flow calculations are spatio-temporally
filtered to reduce noise. If these filters are assumed to be separable in space-time, then the

resulting filtered image at time ¢ is
R(p.t) = E(0) = [B(p) =1 (p,1)] (3.6)

where E () is the temporal filter and B (p) is the spatial filter. Fleet and Langley took the

temporal filter to be a low-pass causal filter
E@)=71e™, t>0 (3.7)

where 77! is the time constant that determines the length of time each image frame affects
the temporal filter, known as its temporal support duration.

To alleviate noise and temporal aliasing problems (see [16] for details), the temporal



32 Chapter 3. Optical Flow for Navigation

filter can be convolved repeatedly to form a simple cascading filter with useful properties:

(tr)" Y

E,0=[E®"= T

E(1). (3.8)

where the «n superscript denotes n convolutions. Using eq. (3.8) with eq. (3.6) and taking

the temporal derivative gives

OR,(x,t) dE,()
ot dt

«[B(p) = I (p,1)]. (3.9)

It can be shown [16] that for n > 2 the temporal derivative of the temporal filter is a weighted
difference of E,_; () and E,, (1):

dE, (1) _

11 T [Ei(®)-E, (0], n>2, (3.10)

allowing the same filter to easily be used for both temporal filtering and temporal differentia-

tion, reducing computational costs.

Discretization of the Temporal Filter

The recursive temporal filter in eq. (3.10) is still in the continuous time form. The details of
the discretization will be omitted here, see [16], but the resulting discretized, low-pass filter
with n = 3 and 7 now a discrete variable is broken up into multiple steps. First, for clarity,

O and r = 022

take ¢ = 7135 @)

Then, the first stage of the cascade is

w@) =10 =-2rw(it—-1)=r*w(-2)

RO =gw@®+2¢w(t -1 +g@w(t—-2) (3.11)
and the second stage is

y(O =R () —ry—1)

Ry () =gy +qy(t—1) (3.12)

and finally, the temporal derivative is given by

dR; (1)

R, (1) = dt

=71 [Ry (1) =Rz (1)]. (3.13)
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Application to Optical Flow

To use eqgs. (3.12) and (3.13) to calculate the flow field, first generate a set of intermediate

images:

R:(p.0). R (p.0), R.(p.HR,(p.1),

Rx (p’ t) Rl (p’ t) ’ Ry (p’ t) Rl (pv t) .

(3.14)

where R = R; from eq. (3.12) and subscripts again denote partial differentiation. These

intermediate images are then convolved with a weighting matrix W to form

_ [ S WR? WR.R

Ap,t) = LWR, 2 Y (3.15a)
> WRR, Y WR?

_ [ WR.R

b(p,1) = . ' (3.15b)
> WR,R,

where, as before, the sums are taken over all of the pixels in the local region € [16]. Note the
similarity to egs. (3.5). The above values are then augmented with the temporal accumulation
of constraints by the following

AP,D=aA(,t—-D+(1-a)A(p,t) (3.16a)

b(p,t)=ab(p,t—1)+(1—-a)b(p,?) (3.16b)

where @ = exp(-7,) and 7, is the time constant for the temporal support window [16].
Finally, when A (p, #) is nonsingular, the optical flow is calculated as the solution to the

resultant set of normal equations

A(,Hv=D>b

v=[A@.D] " b(@.0. (3.17)

3.3 Optical Flow Implementation and Testing Setup

The algorithms described in the previous section were discussed purely on a theoretical basis.

Several considerations must be taken into account for implementation and testing.
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3.3.1 Algorithm Implementation

Both optical flow algorithms were implemented in MATLAB. The implementations were
fairly straight-forward from the algorithm descriptions with only one special note to make.
The temporal filter of the Fleet and Langley algorithm assumes a set of previous values
for every iteration, but there is no such set for the first image, and the paper outlining the
algorithm does not specify what the authors used. For simplicity, the filter was initialized

with all “previous” values set to zero.

The other concern for implementation of these algorithms is the selection of spatio-
temporal filters. As mentioned briefly in §3.2.3, separable spatial and temporal filters are
applied to the images to reduce the effects of image noise. The recursive temporal filter is
of course the primary aspect of the Fleet and Langley algorithm, but the temporal filter for
Lucas and Kanade and the spatial filters for both algorithms must also be specified. Based
on the recommendations given in [16] and [54], all of these filters were implemented as

Gaussian filters. The sizes and specifications of each will be listed in the following section.

Algorithm Parameters

The algorithms each require several parameters be set. Those parameters common to both
algorithms were set equal for the sake of comparison. Further, the values of the parameters
were selected based on the recommendations given in [16] and [54], which conveniently
gave the same suggestions for the common parameters. The common parameters were: the
size of the region Q in eq. (3.2), which was set to be a 5 X 5 window; the weighting matrix
W (p) of eq. (3.2), set as a Gaussian distribution with a standard deviation of oy = 1.2; the
spatial filter — also a 5 X 5 Gaussian, but with a standard deviation of oy = 1.5; and the
spatial derivative kernel, where a second derivative central difference approximation was
selected, g, =[-1 8 0 -8 1]/12,

The only other parameters required for the Lucas and Kanade algorithm related to the
temporal filter. Based on the recommended values in [54], the Gaussian temporal filter had a
size of 5 images and a standard deviation of o, = 1.5. The temporal derivative was calculated

using the same second derivative central difference approximation as the spatial derivatives.

The recursive temporal filter of the Fleet and Langley algorithm requires two further
parameters. The first time constant from eq. (3.10) was set as 7;' = 1.25, while the second
time constant from eqs. (3.16) was set indirectly such that @ = exp (—7;) = 0.3. As with the

other parameters, these values were selected based on the results presented in [16].
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Identification of Unreliable Flow Values

The optical flow algorithms themselves do not evaluate the estimates for reliability in any
way. As a result, highly erratic flow vectors can be calculated in regions of low spatial
contrast. An approach to evaluate the optical flow estimates was discussed in [3]. The
matrices AT WA in eq. (3.3) (for Lucas & Kanade) and A (p,?) in eq. (3.17) (for Fleet &
Langley) can be treated as covariance matrices for the optical flow estimates. To identify
unreliable estimates, the two eigenvalues of the matrices are calculated and ordered 4; > A,
and their values inspected. The eigenvalues depend on the magnitudes of the optical flow
estimates and their range of orientations. If the value of A, for a particular flow vector is too
small, then there is a high likelihood of that vector being unreliable. As in [3], a threshold of

1.0 was used. If A4, < 1.0, then the corresponding flow vector was omitted from the results.

3.3.2 Image Sequences for Testing

The optical flow algorithms were tested on three synthetic image sequences and two real
image sequences. The first and final images of the synthetic image sequences are shown
in Fig. 3.3. The first two synthetic sequences were the similar 40-image “Translating Tree”
and “Diverging Tree” sequences' and the third was the 15-image “Yosemite Fly-through”
sequence.? The translating tree sequence is a single image of a scene moved to the right two
pixels per image. The diverging tree sequence is the same tree image with the camera moving
closer to the scene at a constant rate along a path normal to the image plane. The Yosemite
fly-through sequence was generated by projecting aerial images of Yosemite National Park
in the United States onto a computer-generated model of the terrain. The camera “flies”
through the simulated 3D space at a constant rate along a slightly curved path.

The three synthetic image sequences were all provided with the corresponding ground
truth visual motion fields, which are shown in Fig. 3.4. All three show clean, regular motion
fields that would be expected of synthetic image sequences.

The ground truth fields, as well as all of the calculated flow fields in subsequent sections,
have been displayed in such a manner as to maximize visual clarity. To that end only a
subset of the full flow fields are shown. The full flow fields are dense with one flow vector
per image pixel while those depicted are each restricted to 30 evenly-spaced columns of flow
vectors and with the number of rows as large as possible to match the same pixel spacing.

All of the flow fields for a given image sequence show the same subset of flow vectors,

IBoth tree sequences by David J. Fleet and available at http://www.fz-juelich.de/icg/icg-3/
Mitarbeiter/Scharr/Testdata.

2The original Yosemite fly-through sequence was by Lynn Quam. The version used here was altered by
Michael J. Black and is available at http://www.cs.brown.edu/people/black/images.html.


http://www.fz-juelich.de/icg/icg-3/Mitarbeiter/Scharr/Testdata
http://www.fz-juelich.de/icg/icg-3/Mitarbeiter/Scharr/Testdata
http://www.cs.brown.edu/people/black/images.html

36 Chapter 3. Optical Flow for Navigation

(b) The diverging tree sequence. Camera motion is toward the scene normal to the image plane.

R LI . BN E D S

(c) The Yosemite fly-through sequence. Camera motion is toward the scene on a slightly curved path
veering right.

Figure 3.3 Synthetic image sequence samples: The first images of the three synthetic image sequences are
on the left and the final images of the sequences are on the right.
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Figure 3.4 Synthetic image sequence ground truth visual motion fields. See the text for notes.
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but the subsets vary between image sequences. Further, the flow vectors in the flow fields
have been scaled from their true values. This was again done for clarity. For the synthetic
image sequences the vectors were scaled such that the largest vector in the ground-truth flow
fields was the length of the spacing between the flow vectors. In the case of the real image
sequences where no such known ground-truth exists, an estimate was made so that as many
of the flow vectors as possible showed reasonable sizes. All flow vectors in all flow fields
of a given sequence were scaled by the same amount, but the scaling factors vary between
image sequences. The majority of the flow fields also show dots in some locations where
flow vectors should be. These dots represent several things: points where the actual optical
flow value is zero; points where the flow vector would be smaller than the dot itself and thus
too small to be clearly visualized; and points where the unreliable flow values were identified
and removed, as discussed above. Finally, the flow fields are all restricted to being within the
borders of the original images. In several cases the flow vectors erroneously exceed these

borders, so the vectors have been cut off at the image borders.

In addition to the synthetic image sequences, two real image sequences were recorded
in the laboratory. The first and final images of these sequences are shown in Fig. 3.5. The
first sequence was recorded by the wireless camera mounted to the robotic arm which was
run along its track at constant speed. The camera’s motion was smooth and along a straight
line approximately normal to the image plane, toward a wall parallel to the image plane.
The wall at which the camera was pointed was artificially cluttered to provide areas of high
contrast for the image sequence. This sequence was relatively noise free. It will be referred

to as the “track-mounted image sequence”.

The second image sequence was created with the wireless camera mounted to the airship,
and thus will be referred to as the “airship-mounted image sequence”. The airship was flown
from a steady position toward a wall. The goal was to get an image sequence similar to
that of the track-mounted sequence, however the airship is a much less steady platform. As
a result, there are rotational motions apparent in the sequence, the motion was not along
a straight line, and the image plane is not parallel to the target wall. The wall was again
artificially cluttered to provide areas of high contrast. Further, this sequence is not noise
free like the others, with approximately 10% of the images displaying appreciable noise.’
An example of the image noise is shown in Fig. 3.6. The resulting sequence is a closer

approximation to the type of images that would be obtained during a true airship flight.

3The term “noise” in this context refers to variations in the image brightness values from the expected
values, as opposed to the typical usage of the term in signal processing. Image noise can spike from one image
frame to the next, while signal noise typically refers to variations from the true signal over time.
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(a) Camera mounted on the track robot. Camera motion was along a straight line toward the observed
wall, nearly normal to the image plane. This sequence had 80 images.

(b) Camera mounted on the airship. Camera motion was generally toward the wall but underwent
significant oscillations and rotations. This sequence had 250 images.

Figure 3.5 Real image sequence samples: The first images of the two real image sequences are on the left
and the final images of the sequences are on the right.

Figure 3.6 An example of the image noise from the airship-mounted image sequence.
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3.4 Optical Flow Results

Qualitative analysis of the results of the two algorithms was performed for all five image
sequences along with quantitative analysis of the flow fields calculated for the synthetic
image sequences against their ground truths. The primary parameters of evaluation were
the number of flow vectors that passed the thresholding test along with the magnitudes and

directions of the flow vectors.

3.4.1 Performance with Synthetic Image Sequences

First, the results of the basic optical flow algorithm by Lucas and Kanade against the
synthetic image sequences, which are displayed in Fig. 3.7. On the left are the full flow fields
without any evaluation of the reliability of the results, while the fields on the right apply the
reliability check described in §3.3.1. Based on visual inspection of the flow fields, it appears
that the Lucas and Kanade algorithm is able to capture the flow reasonably well. Even
before thresholding, the majority of the flow vectors are correctly oriented and sized, though
the lower-left region of the Yosemite fly-through sequences shows more incorrect flow
vectors. The thresholding applied to the right-hand images is far too strict for this algorithm,
particularly in the case of the Yosemite fly-through sequence, but it was maintained for
the sake of comparison with the Fleet and Langley algorithm. This does indicate that the
algorithm may not be robust to more complex image sequences.

The recursive flow algorithm of Fleet and Langley also performed remarkably well on
both tree sequences, as shown in Fig. 3.8. Even without applying thresholding to the values,
almost perfect flow fields were returned. The thresholded flow fields match nearly perfectly
the corresponding fields in [16]. Thresholding does show its worth with the Yosemite
fly-through sequence, finally. Before applying thresholding, the lower-left region of the flow
field showed enormous errors. This region of the images has very sparse points of high
contrast, which the algorithms depend on. Most of the poor results were removed by the
thresholding, leaving a very sparse region in the flow field. Even after thresholding, though,
many of the remaining flow vectors were incorrect, both in magnitude and direction and the
overall results are clearly not as good as for the two tree sequences.

Since the synthetic image sequences were all provided with ground truth visual motion
fields, quantitative comparisons could also be performed. Table 3.1 lists the magnitude and
angle errors, along with the density of the thresholded optical flow fields calculated by both
algorithms for all three synthetic image sequences. The errors were calculated for every
flow vector that passed the thresholding test (not just those displayed in Figs. 3.7 and 3.8).

Analysis of the un-thresholded results were omitted, though they were worse in nearly every
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Figure 3.7 Lucas and Kanade applied to the synthetic image sequences: The fields on the left have not had
reliability thresholding applied; those on the right excluded points with 14, < 1.
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(¢) The Yosemite fly-through sequence.

Figure 3.8 Fleet and Langley applied to the synthetic image sequences: The fields on the left have not had
reliability thresholding applied; those on the right excluded points with 1, < 1.
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Table 3.1 Synthetic image sequence flow errors. These values correspond to the thresholded flow fields in
Figs. 3.7 and 3.8.

Abs. Magnitude Error [%] Angle Error [°]

Dens. Percentile Percentile
Sequence  Alg. [%] 10t 50t oot 100 10t 50t oot

L&K 575 020 142 67.67 9938 0.04 036 86.85

Trans.Tree  poy 4434 159 434 807 9191 007 044  1.64

Div Tree &K 1178 049 289 2426 2543 027 158 4324

' F&L 5051 135 514 1143 2197 030 168 553

. L&K 361 070 506 4082 18143 056 292 26.16
Yosemite

F&L 3858 14.72 69.65 364.36 47861 4.54 36.88 143.96

respect except, naturally, the density of calculated flow vectors. The magnitude errors were
calculated as absolute percentages of the ground truth flow vectors for the same image pixels,
while the angle errors are the angles between the calculated flow vectors and the ground
truth flow vectors, in the range [0°, 180°]. The densities are simply the percentage of image
pixels at which optical flow was calculated compared to the number of image pixels at which

the visual motion field is non-zero.

Numerical results for the Fleet and Langley algorithm against the two tree sequences
were also presented in [16], however only flow densities and angle errors were shown.
Further, the angle errors were presented as Gaussian distributions about non-zero means,
while in reality, neither the angle errors nor the magnitude errors displayed this sort of
distribution. Indeed none of the results corresponded to any standard statistical distributions,

so only percentiles of the errors are provided.

Focusing first on the density of the flow fields, they reflect what is clear from the
visual depictions: the Lucas and Kanade algorithm has far fewer vectors that survive the
thresholding operation than the Fleet and Langley algorithm. The densities for the tree
sequences calculated by the Fleet and Langley algorithm match those presented in [16].
Both algorithms fared poorest with the Yosemite fly-through sequence. The large area of
poor spatial contrast in the lower-left region of the images is the primary culprit for this,

once again showing that optical flow algorithms depend heavily on high spatial contrast.

Moving to the magnitude errors, it is clear that the performance of both algorithms varies
immensely between image sequences and that the quantitative results tend to match the
qualitative assessments described above. Both algorithms provide good results for the two
tree sequences. The Fleet and Langley algorithm in particular showed exceptional results.

For the translating tree sequence, with the vast majority of flow vectors having errors less
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than 10% of the true values. Results are similar for the diverging tree sequence, except that
a small subset of the flow vectors for both algorithms displayed much larger errors with
magnitudes three times the true values.

This trend is taken further with the Yosemite fly-through sequence. The majority of the
flow vectors calculated by the Lucas and Kanade algorithm, as few as they were, still had
reasonably small errors, but some had enormous errors with magnitudes over 180 times those
expected. The Fleet and Langley algorithm was even worse. Nearly half of the vectors had
errors of 70% or more with some reaching as high as 47000%. Recall that these results only
include the vectors remaining after unreliable vectors had been removed. The algorithms are
already showing weaknesses with only a slightly more complex image sequence.

The angle errors tell a similar tale. Both algorithms give excellent results with the two
tree sequences, with the majority of flow vectors being less than half a degree from the
true values for the translating tree sequence and less than two degrees for the diverging
tree sequence. In light of these results, the 90™ percentile values for the Lucas and Kanade
algorithm on these two sequences seem unusually high, but are easily explained by the flow
vectors along the borders of the images being calculated parallel to the image edges, as is
clearly visible in Figs. 3.7(a) and 3.7(b). In practice, these sorts of erroneous vectors could
be easily removed from the results, so are not a major concern. The results for the Yosemite
fly-through sequence also follow the same pattern as the magnitude errors. Notably, the
Fleet and Langley algorithm was far worse, with angle errors of half of the vectors greater

than 36°. Signs of weakness are again showing with the more complex image sequence.

Time Dependence of the Fleet and Langley Algorithm

All of the above discussion of the Yosemite fly-through sequence has been based on the flow
fields calculated after eight image frames, while those of the tree sequences were calculated
after 20 frames. In all cases these corresponded with the mid-points of the image sequences.
Since the Yosemite fly-through sequence showed poorer results than either of the others, it
was worth inspecting the results for later images in the sequence. Fig. 3.9 shows the flow
fields calculated by the Fleet and Langley algorithm after 10 and 15 frames of the sequence.
The sequence is undergoing constant motion, so the ground-truth visual motion fields are
the same as that shown in Fig. 3.4(c). It is immediately clear that with increased time the
algorithm shows improved results. The directions of the flow vectors become much more
uniform and the magnitudes settle down and become much less erratic.

These observations are reinforced by the quantitative error analysis listed in Table 3.2.
While the number of vectors passing the thresholding test does not improve significantly

with time, those that do pass improve immensely. After 10 frames the majority of the vectors



45

3.4. Optical Flow Results

..... v - e ey s
..... - ‘v -
- .-
. T ..
T I e
PR [N
B . - [ SRR
. N R 5 N N [P
N «r - S N [
NN “ = O NN -
N < s S50 s a
« I NN m v ISR
vy - ' - & PR
vy . o v
. v N
. = N
v “« m Vol
“ o v
'y 80 v
. < vy
N £ Cey
B= v
» = v
* o
—
Q
=
..... v . | ¥ R R A
ilellil B Treeiias
. IR SN 4 ﬁ vy LA AR
. vr e re & r v v e
- R e B c s v e e
caa s e e | O ey e
-
BN - v v - - e vvvvv v v - -
. P s ey E .-
. il o
. T I - T TP SR
o T
v SRR = N
v P L T S PPN N
oy Sa > mma & | LA A s e e
. . ~ TS
A4 44 e - e
...... LR N NN NN S
AR Y SR S SR NE PP NP NN
A T L T U U U U N N
B A R N RN N NE RN N
AR AR VAL UL UL VL WL NN % NN
A A R R SR LR Y LN
R R SR LR N
AR N N NI S WA ¥ 1Y
AR EEERERSERYYYXR X Y
AR EEESEREREEREEY LY
AR LN E LR R LN SN
YT E Y2 Rttt

(b) The flow fields after the 15™ image in the sequence.

Figure 3.9 Time dependence of Fleet and Langley: The flow fields for later images in the Yosemite fly-

through sequence show improved performance. The fields on the left have not had reliability

thresholding applied; those on the right excluded points with 1, < 1.
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Table 3.2 Improved performance of Fleet and Langley with time. These values correspond to the thresholded
flow fields in Figs. 3.7(c) and 3.9.

Abs. Magnitude Error [%] Angle Error [°]

Dens. Percentile Percentile
Frame [%] 10t 50t oot 100t 10t 50t oot

8 38.58 14.72 69.65 364.36 47861 4.54 36.88 143.96
10 39.15 648 29.52 10245 7218 1.77 13.03 57.24
15 3976 0.87 495 1930 3527 044 232 8.44

were within 30% of the true magnitude. After 15 frames the results are comporable to those
of the other synthetic image sequences, with 90% of the vectors within 20% of the true
magnitude and 8.5° of the true angle. Again, the performance of the algorithm is clearly
improving with time.

Such an improvement should be expected for the Fleet and Langley algorithm, due to its
recursive temporal filtering. The Lucas and Kanade algorithm operates on a specific range
of images based on the temporal filtering and differentiation, and as the image sequence
progresses frames outside of that range have no effect. The Fleet and Langley algorithm, on
the other hand, estimates the temporal gradient on a moving window. Each image frame has
an ever-decreasing effect on all subsequent optical flow calculations. Since the motion field
in the Yosemite fly-through sequence is constant, each subsequent frame should reinforce
the same optical flow values, gradually settling to a constant flow field. That the algorithm
requires 15 images with constant flow to show these results, however, does not bode well for

its performance under real-world conditions in which the motion field is not constant.

3.4.2 Performance with Real Image Sequences

As was noted above with the Yosemite fly-through sequence, flow field thresholding becomes
important in areas with poor spatial contrast. The real image sequences were recorded after
making this observation. The space in which the airship was to be flown and the real flow
fields recorded contained primarily bare walls with little spatial contrast. To help alleviate
this problem, the areas where the real image sequences were recorded were artificially
cluttered to increase contrast. This technique to improve the performance of the optical flow
algorithms is not without precedent. It is frequently used in the literature on optical flow for
mobile robot navigation, for example [23-25, 56, 65].

Even with this increased contrast, thresholding remained an important step, as illustrated
by the flow fields in Fig. 3.10. In it, a sample flow field from the airship-mounted image

sequence (after the 20" frame) is shown before and after thresholding for both optical
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(a) The flow fields prior to applying thresholding.

s A=

(b) The flow fields after removing elements with 1, < 1.

Figure 3.10 The importance of thresholding optical flow fields: The flow fields from a sample image in the
airship-mounted image sequence. The flow fields on the left were calculated with the Lucas and
Kanade algorithm; those on the right with the Fleet and Langley algorithm.

flow algorithms. It is immediately obvious that the flow fields prior to thresholding are
completely useless because of the noise. Thresholding at least reduces the fields to values
that at first glance appear manageable. In the remaining discussion on the performance of
the algorithms, it will be assumed that thresholding of the flow fields has been performed,
and un-thresholded flow fields will be ignored.

In the track-mounted image sequence, the camera underwent nearly constant motion
normal to the image plane, very similar to the motion in the Yosemite fly-through sequence.
As such it should be expected that the optical flow fields be similar. Indeed they are, as
shown in Fig. 3.11. The flow fields calculated by the Lucas and Kanade algorithm were very
sparse after applying thresholding, but the few remaining flow vectors appear to be correct,
all roughly pointing away from a common point and scaled according to their distance from
that point. Further, the results are consistent between the 5™ and 50 images in the sequence.
Likewise, the results of the Fleet and Langley algorithm, Fig. 3.11(b), also matched those
from the Yosemite fly-through sequence. Early in the sequence the flow fields had not yet

settled and showed erratic behaviour, but eventually the flow fields settled to a very good
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(a) The flow fields calculated by the Lucas and Kanade algorithm.

W .

(b) The flow fields calculated by the Fleet and Langley algorithm.

Figure 3.11 Optical flow of the track-mounted image sequence: The flow fields on the left are those after the
5™ image in the sequence; those on the right after the 50™ image.

representation of the expected optical flow.

More apparent in the results of the Fleet and Langley algorithm is that all of the flow
vectors are diverging from a common point, called the instantaneous epipole. These charac-
teristics are displayed more clearly in Fig. 3.12. So long as the camera motion is linear and
at least partially normal to the image plane, there should exist such an epipole in the flow
field [54]. Knowledge of the epipole is useful for higher-level vision algorithms, such as
structure-from-motion and time-to-contact [59], the latter particularly useful for obstacle
avoidance. However, these are not explored in this thesis because of the difficulties in
determining the epipole location under general motion conditions of the airship. In this case,
the purely translational motion and clean optical flow field mean that determining the epipole
is relatively trivial — it is simply the intersection point of the lines on which the optical flow

vectors sit — but under general motion the calculations are not as straight-forward [54].

The flow fields calculated for the airship-mounted sequence, Fig. 3.13, show the types
of results that could be expected when attempting to use optical flow for airship navigation.
Again, the flow fields of the Lucas and Kanade algorithm barely survived thresholding,
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Figure 3.12 The track-mounted sequence epipole: The point marked by an X, is the instantaneous epipole of
the flow field. The concentric dashed lines represent lines of constant magnitude flow. Note that
since the camera motion is not perfectly normal to the image plane — in which case the epipole
would be in the center of the image — these are only approximate. The flow field is the same as
that shown on the right in Fig. 3.13(b).

with only sparse vectors remaining. As was shown in Fig. 3.10, the thresholding is most
certainly required, but even with the artificially cluttered environment the flow fields contain

essentially no useful information.

The flow field calculated by the Fleet and Langley algorithm again follows the same
pattern of being extremely erratic at first and eventually settling to a cleaner flow field. In this
case, however, the cleaner flow field still contains many poor approximations of the motion
field. Even after 50 frames in the sequence, there are regions of flow vectors that should
have similar characteristics, but which have significant differences in their magnitudes or
directions, some being nearly opposite one another. This poses a problem for even basic
tasks such as determining the location of the epipole. Under general motion, the location
of the epipole is unknown and could be anywhere. With clean and reliable flow fields,
its location can be calculated with as few as six flow vectors [59]. If the flow vectors are
unreliable, though, then the calculation of the epipole would fail to return its true position,
so even basic calculations such as time-to-contact become impossible. Thus, despite the
flow field after 50 frames appearing to be reasonably good at first glance, there is very little

truly useful information contained in it.

The other major concern with the flow fields calculated by both methods is the paucity
of the vectors that passed the thresholding test. Fewer than 20% of the vectors were kept in
each of the flow fields shown in Fig. 3.13. Of those kept, the vast majority were in the areas
of artificially increased spatial contrast. Attempting to operate based on optical flow in this
space without artificially increasing the visual contrast of the surfaces would be impossible,

simply due to the lack of texture.
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Figure 3.13 Optical flow of the airship-mounted image sequence: The flow fields on the left are those after
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(b) The flow fields calculated by the Fleet and Langley algorithm.
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Robustness to Image Noise

When dealing with real image sequences recorded from an inexpensive wireless camera,
noise is an inevitability. Thus, any algorithm making use of such a camera must be robust
against noise. The spatial and temporal filtering techniques performed by the algorithms are

meant to alleviate the impact of noise, but they cannot remove its impact entirely.

To evaluate the algorithms’ robustness to noise, three consecutive optical flow fields from
the airship-mounted image sequence that were calculated by each algorithm are presented in
Fig. 3.14. The first flow fields are those for the frame immediately prior to the noisy frame
shown in Fig. 3.6. Leading up to this frame were 60 essentially noise-free image frames.
The second set of flow fields are those of the noisy image frame and the third set are for the

following frame, again noise-free.

First, all of the flow fields exhibited similar behaviour to those presented earlier. Those
calculated by the Lucas and Kanade algorithm are sparse and poorly represent the flow while
those calculated by the Fleet and Langley algorithm have more surviving flow vectors and
generally show better results. Focusing for a moment on the flow fields calculated by the
Lucas and Kanade algorithm, they all display effects of the noisy image frame. The Gaussian
temporal filtering and temporal derivative used by this algorithm cause each image frame to
impact 9 flow fields. As a result, the three flow fields pictured are all relatively poor, though
the noise-free flow fields depicted in Fig. 3.13(a) are quite poor to begin with. The image

noise causes the directions of the flow vectors to be even more non-uniform than otherwise.

Turning to the Fleet and Langley flow fields, here the effects of the image noise are
much more clearly visible. Unlike with the Lucas and Kanade algorithm, each frame has no
effect on the flow fields calculated prior to it, only those after it. Thus, the first flow field is
completely free of the effects of the noisy frame and displays results very similar to those in
Fig. 3.13(b). Beginning with the second flow field the effects of the noise are immediately
visible. Several of the flow vectors are nearly normal to the corresponding vectors in the
first flow field and the magnitudes of many of the vectors are considerably different, though
the temporal filter for this flow field still exerted a stabilizing effect. Once the effects of the
previous noise-free frames are reduced even further after the noisy frame, the resulting flow
field resembles those from early in the sequences more than those immediately preceding
the noisy frame. Many of the vectors display erratic directions and several show highly
anomalous magnitudes. The image noise has effectively set the algorithm back as if it were

at the beginning of the image sequence and had not yet had time to settle into the true flow.
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(c¢) The flow fields after a noise free frame following the noisy frame.

Figure 3.14 Effects of image noise: The optical flow fields before, immediately after and further after a noisy
image frame. The fields were calculated by the Lucase and Kanade algorithm; those on the right

by the Fleet and Langley algorithm.
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3.5 Conclusions on Optical Flow

Two optical flow algorithms were investigated with the intention of ultimately navigating the
airship using their results. Both algorithms were evaluated against synthetic and real image
sequences. The basic Lucas and Kanade algorithm performed reasonably well against the
synthetic image sequences, but very poorly against the real image sequences. The resulting
flow fields were very sparse and did not represent the true motion field. The problems were
exasperated by image noise, which is common under the intended usage scenario.

The more advanced Fleet and Langley algorithm which uses recursive temporal filtering
to improve performance gave excellent results for the synthetic image sequences so long
as enough images of constant flow were provided. It fared poorly against the real image
sequences if such constant motion was not observed. While the results were better than those
of the Lucas and Kanade algorithm, under real-world conditions they were still extremely
sparse and not uniform enough to provide confident measures of the true motion field under
general camera motion. Again, image noise only compounded the problems, resulting in
completely useless flow fields.

Based on the poor results displayed by both algorithms, further work on integrating them
with the control and navigation of the airship was not even attempted. The constraints for
small, light-weight, low-power, wireless cameras along with the requirement to be able to
cope with fully general three-dimensional camera motion in visually bland environments

were simply too much to ask of the algorithms.
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Chapter 4

Probabilistic Localization With a Laser

Range Scanner

While digital video cameras are capable of providing vast quantities of data, performing
navigation based on that data proved a challenge due to the difficulty of extracting useful
information from the video streams. In contrast, laser range scanners do not provide nearly
as much raw data, but the range measurements they do provide are much more conducive to
drawing useful information. Though early units were large and heavy, laser range scanners
have successfully been used for localization and navigation of ground vehicles for many
years. Several modern LIDAR units, the Hokuyo URG-04LX among them, fit within the
airship’s payload size and weight restrictions. Using one for localization of the airship was

chosen as the next direction of investigation.

4.1 Review of LIDAR Based Localization and Navigation

Initially, LIDAR data was used with feature- and scan-matching techniques for localization
of ground-based robots operating in planar environments. Einsele and Férber [15] developed
a simultaneous localization and mapping algorithm that tracked distinctive features such
as corners and planes measured by the robot to generate a map. Further localization was
achieved by performing a least-squares scan-matching comparison of new LIDAR scan to
the previous reference scans. A similar geometric scan-matching algorithm was used in [21]
for a soccer playing robot. The laser scans were matched against the distinctive border of
the playing field, however the environment was not static and obstructions caused by other
robots on the field had to be accounted for.

Soon, probabilistic localization algorithms became popular in the field. Particle filters

allowed for global localization with so-called Monte Carlo localization algorithms in particu-
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lar being commonly used. These will be discussed in detail in the following section. Other,
similar particle filters were also used, such as in [44]. Here, two planar, ground-based robots
worked cooperatively to improve their performance. One robot was equipped with a LIDAR
and the other with a distinctive shape attached to it that was easy to identify from the LIDAR
data. The two robots were jointly localized using a particle filter that improved on odometry

data from each robot by adjusting for their relative positions measured by the LIDAR.

The other major algorithm of probabilistic methods, Kalman filtering, was also commonly
used for state tracking. Borges and Aldon [5] combined an extended Kalman filter (EFK)
with feature-matching algorithms for robot localization. The planar robot began with a basic
map of its environment that it then updated as new information from the LIDAR became
available. The problem was simplified somewhat since the extended Kalman filter was only
required to track the robot’s position; a gyrometer combined with dead-reckoning estimates
were able to accurately track the orientation of the planar robot. Several variations of the EKF
were investigated in two experimental environments — one simple and one complex. In the
simple environment, all of the algorithms successfully tracked the robot’s position, however
in the complex environment only algorithms that incorporated a weighted least-squares

feature correspondence between the LIDAR scans and the map were successful.

An EKF was again used in [53] for planar state tracking, this time including orientation.
An un-motorized cart was manually pushed down a corridor while recording data from
on-board LIDAR and IMU sensors — no direct odometry data was taken. Using these data
the location and orientation of the robot were tracked through the corridor. The ultimate
goal was to implement such a system on an outdoor vehicle for the 2005 DARPA Grand

Challenge, where the corridor would be replaced by a roadway.

Recent technological advances have enabled smaller and lighter LIDAR units to be
produced. Though not as performant as the larger and heavier units, typically exhibiting
reduced detection range and scanning frequency, they have become small enough to be
mounted to indoor aerial vehicles. He, Prentice and Roy [22] added a LIDAR to a com-
mercially available quadrotor helicopter. The vehicle came equipped with an IMU and a
low-level stability controller, so the primary concern of the research was localization and
path planning such that the selected paths would avoid areas where the robot would likely
get lost. An unscented Kalman filter used the IMU and LIDAR data for 4-DOF state tracking
— 3-dimensional position and yaw rotation. Though the LIDAR was mounted such that it
produced a horizontal scan, a mirror was cleverly used to direct some of the LIDAR beams

downward to measure altitude.

The above work was expanded on in [2], where a similar quadrotor with an attached

LIDAR was used. In this case the environment was mapped simultaneously as the robot was
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flying. The on-board computer tracked the robot’s position using an EKF while an off-board
computer performed the map-building computations using the LIDAR data. Updated maps
and position corrections were then periodically sent to the robot. This robot won the 19
AUVSI International Aerial Robotics Competition, which featured navigation through a

confined, indoor space as the primary challenge.

4.2 Monte Carlo Localization

Monte Carlo Localization (MCL), first introduced by Dellaert et al. [12], is a form of
probabilistic localization. Probabilistic robot localization relies on statistical techniques for
representing a robot’s pose and motion. It makes use of, and in fact relies on, uncertainty in
all aspects of robot operation — sensor measurements, motion models, environments, etc. —

to determine and track the robot’s pose in space as a probabilistic expression.

4.2.1 Bayes Filtering for Recursive Estimation

MCL is an application of recursive Bayes filtering. Bayes filtering is a general algorithm
that updates probability distributions from received data. It stems from an equation known

as Bayes rule [50]
p(d|x) p(x)
p(d)

where x is the value for which the probability is desired, the state variable; d is the available

p(x|d) = (4.1)

data; p(x|d) is the probability of x conditioned on the knowledge of d and is known as the
posterior; and p(x) is the probability prior to incorporating the information d, so is known
as the prior. Note also that p(d) > 0 is required for this equation to hold, however it is

independent of x so is often excluded in favour of a normalization variable 7 such that

p(x|d) =np(d]x) p(x) (4.2)

Notice the “inverse” conditional probability, p(d | x), on the right-hand sides of the above
equations. It allows inference of the value of x based on the probability of data d assuming
that x was indeed the case. Further, it encompasses the fact that any data d is caused by

some state x, as opposed to the state being conditional on the data.

The Markov Assumption

Bayesian filtering assumes that the state at the previous time, x,_; contains sufficient infor-

mation from all previous data up until time 7 — 1 and that earlier data, d,.,_;, are not explicitly
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required to fully define the current state. Further, it is assumed that the state x, contains
all of the information on the current state of the environment, as opposed to just a robot’s
pose, for example. Together, these are known as the Markov assumption, or the complete
state assumption. Many factors violate this assumption, such as inaccurate or unmodeled
environment dynamics (e.g., moving people), approximation errors (e.g., approximating
a probability by a Gaussian distribution), etc.. Despite these violations, Bayes filters are
relatively robust in practice, so long as care is taken that the state variable is defined such

that the effects of unmodeled variables are near random [50].

Bayes Filters for Mobile Robot Localization

In mobile robot localization, two distinct types of data are used in place of a general d:
perceptual data from the sensors at time ¢ are contained in an observation variable o,, while
the robot’s odometry data during the time interval (r — 1 : ¢] are stored in an action variable

a,. Further, posterior probabilities are typically called beliefs and are denoted
bel (x;) = p(x;] 00+, a0.) 4.3)
while beliefs prior to incorporating measurement o, are denoted
bel (x;) = p(x;| 0041, o) (4.4)

Taking the above, Bayes rule of eq. (4.1) becomes (ignoring the Markov assumption for

a moment)
p (o | x;, ag.s, 00:4-1) p (x| ao, 00:1-1)

bel =
el (x) p (0] ao;, 00.-1)

4.5)

where again the denominator is independent of x and can be replaced by the normalization

value 1. Applying the Markov assumption further simplifies eq. (4.5) to
bel (x;) = np(o;| x;) bel (x). (4.6)
Integrating over the state at time 7 — 1 provides [50]
bel (x;) = f POt X1, @) p (Xt | 04-15 00:-1) Ay 4.7)
and incorporating eq. (4.7) into eq. (4.6) gives

bel (x;) = np (0| x) f p (x| X1, a) p(Ximy | @o:-15 00:-1) dXi-y (4.8)
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which is the key recursive update equation of all Bayes filters. It allows for recursive
estimation of a robot’s state based on knowledge of previous states, control action data, and

observed sensor data.

Bayes filtering has been used to derive several robot localization and tracking algorithms.
Kalman filtering, information filtering, and their derivatives approximate the posterior as
a unimodal Gaussian probability density function (PDF). This approximation allows for
efficient computation and can be quite accurate so long as the system is not too far from
linear, but the approximation also restricts the algorithms to only performing local pose
tracking, as opposed to global localization.

The other major branch of Bayes filters are particle filters, MCL being one example.
Rather than applying a preselected mathematical function, particle filters approximate the
state probability distribution as a weighted sum of many individual “particles” that are each
an estimate of what the true state of the robot may be. This property allows particle filters
to inherently be capable of global localization, while Kalman and information filters are
generally restricted to state tracking. On the other hand, particle filters require some method
of evaluating the accuracy of each particle. It was primarily for the prospect of global
localization that a particle filter approach was chosen, and MCL in particular because of the

promising results others have shown in the literature.

4.2.2 The Monte Carlo Localization Algorithm

Being a particle filter, MCL works with a set y of M estimates of the state vector, x. During
each time-step of robot operation, y is adjusted through a three-step process. First, each
state estimate of the set y,_; is adjusted according to a; using a motion model that attempts
to apply the same relative motion as the robot underwent. Next, each particle is evaluated
against o, using a measurement model that provides a weight, or importance factor, for each
particle. After all of the weights are calculated the set of particles plus weights is denoted y;,
and the next set of particles, y; is drawn from ), with probability proportional to the weights.
This resampling is done with replacement, so there are likely to be multiple copies of the
strongest particles in the resulting set. Of at least equal importance are the particles that are
not drawn; those are the particles that were likely incorrect estimates of x. Thus, over time
the set of particles should converge on the true state of the robot [50]. The MCL algorithm
is depicted in flowchart form in Fig. 4.1.

A simulated example of MCL is shown in Fig. 4.2. In it, a planar robot with 3-DOF
of motion translates with constant speed along a straight line through a corridor-like envi-

ronment. The robot is equipped with a range scanner and odometer, both simulated with
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INITIAL PARTICLE i_l\_/[ particles are distributed over
DISTRIBUTION [ ---- 4 the state space according to some
X0 ! known distribution (e.g., uniformly).
Ty
CONTROL i_a_, -contains estimates of the
—> ACTIONS  f----- ! relative motion of the robot
a; I over the time period (r — 1 : 7].
OB SSE%\\I%%II{ONS o _:F(;t_contains the sensor
0, :_r_nf,asurements retreived at time 7.
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:rE_valutate each particle of y;,
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Figure 4.1 MCL algorithm flowchart. The specifics of the motion and measurement model functions vary
according to the robot and sensors.
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(a) Initial distribution (b) After 100 timesteps (¢) After 200 timestesps

Figure 4.2 An example of planar Monte Carlo Localization: A robot, position indicated by the large black
dot, undergoing pure translation at a constant speed along a straight line in a simulated planar
environment performs MCL. Particle positions are shown as small gray dots.

sensor noise. To begin, 10° particles are uniformly distributed over the 3-dimensional state
space (orientations are not represented in Fig. 4.2). After 100 time steps the particles have
clustered into a few distinct groups near the true robot state and after 200 time steps the
robot has been successfully localized with all of the particles forming a tight cluster near the
true state.

The first two steps of the MCL algorithm described above relied on models of the system.
The exact nature of these models depends on the type of robot being operated (e.g., ground-
based or aerial), the types of sensors on-board the robot (e.g., cameras or range scanners),

and the type of environment in which the robot is operating (e.g., static or dynamic).

The Motion Model

The motion model adjusts the state estimate of each particle during each time step. Assuming
that the environment is static and known — that is, the robot is operating with a perfect map
of the environment — the motion model only estimates the motion of the robot and applies
the same relative motion to each particle. The method of determining the relative motion of
the robot depends on the type of robot and the available sensors.

Most ground-based robots use wheel encoders for odometry measurements, for example
[12, 36, 43, 51, 61, 63]. Though simple, odometry from wheel encoders suffers from drift
due to wheel slippage or slight unevenness of the ground. These sorts of errors should be
estimated by the motion model. Non-wheel-based ground robots rely on other means of

motion estimation, typically gait dynamics [46, 55, 60].
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Aerial robots do not have the luxury of direct contact with their environment, and hence
can not rely on anything like wheel encoders. Instead, aerial robots typically use one of two
approaches: flight dynamics or dead-reckoning from inertial measurement unit data. In [19],
a quadrotor aircraft with 4-DOF motion used an IMU for incremental motion estimation.
The altitude of the aircraft was directly measured using a LIDAR and the IMU itself provided
direct orientation measurements, so only two dimensions of motion estimation were required.

Recently, an interesting approach to motion estimation from flight dynamics was pre-
sented by Miiller, Gonsior and Burgard [40]. They applied MCL to a small, indoor, under-
actuated airship that had only four wide-angle sonic range finders as sensors. Lacking an
IMU, the motion model relied on the airship’s flight dynamics based on the known control
inputs. Accurately modeling airship dynamics is a complex task to begin with [33], but the
challenge was even greater in this case because the dynamics were subject to change during
operation due to things like changing buoyancy or draining batteries reducing the available
thrust. To overcome this, the parameters of the motion model were adjusted in real-time

based on the sensor data.

The Measurement Model

The measurement model evaluates the importance factor of each particle during each time
step. To do this, it compares what measurement data at the particle’s state would be to the
actual measurement data obtained by the robot. If the data closely match, then there is a
high probability that the particle’s state is near the true state, and a high importance factor is
assigned accordingly. The challenge, of course, is determining what data would be returned
by the sensors at the particle’s state.

The nature of the measurement model is entirely sensor-specific. The two most com-
monly encountered types of sensors used with MCL are image cameras and range sensors.
Measurement models for camera-based data either simulate the characteristic traits of known
landmarks in the environment and compare them to the same traits extracted from the
images [46, 55], or draw images from a pre-recorded data set of the environment and
compare them directly to the images from the camera [36, 51].

Range sensors, the focus here being on laser range scanners though sonic range finders are
similar, take a very different approach to the measurement model. The typical approach is to
simulate a range scan within a known map for each particle using a beam model [19, 43, 51].
The beams could be calculated on-line, but beam calculations are computationally expensive
and calculating several beams for each of several thousand particles, multiple times per
second, in even a moderately complex map quickly hits the limits of modern CPUs. To

improve efficiency, beams could instead be pre-calculated off-line for a subset of points
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in the state-space. During operation, the pre-calculated beams for the point closest to the
particle are taken as those for the particle. Finally, the simulated beams for each particle are
compared to the real measurements through aggregate values such as the mean distance of
all of the beams, or the position of the beam centroid relative to the sensor [50, 51].

In [63] this idea is taken one step further. A grid of precalculated measurements is
created, but another grid of the measurement “energy” is also created. The “energy” was a
simple combination of all of the sensor measurements for that grid point. Since the robot was
assumed round with uniform sensor distributions around its perimeter, the energy of a point
was constant regardless of orientation and the second grid’s dimensionality was lower than
that of a standard beam grid, allowing easy segregation of particles based on this “energy”
value. Of course, this is just another aggregate value of the beam distances. To get the added
utility described, the sensors must be uniformly arranged around the entire perimeter, so its

general applicability is minimal.

Either of the above measurement model approaches — known images/landmarks or
a known map — are a regression from the ultimate goals for the airship laid out in the
introductory chapter; specifically, the ability to operate in a completely unknown environment
without previous preparation of the environment. Using a known map in this instance
was deemed an acceptable compromise, while preparing the operating space with known
landmarks for the work of Chapter 3 was not, with the following reasoning. The airship is
restricted to indoor operation, thus would be operating in a human-constructed and generally
known environment. A preliminary map could be quickly generated using building plans, for
example. Populating the space with known landmarks, however, could not be done without

much greater operator intervention.

4.2.3 Advanced Monte Carlo Localization Algorithms

The basic MCL algorithm as described above has several shortcomings. Primarily one
known as the particle deprivation problem, in which incorrect localization occurs due to
insufficient particles near the true robot state. It would theoretically affect any particle filter
using a finite number of particles and allowed to run an arbitrarily long time, simply due
to the variance in random sampling [50]. In practice, particle deprivation primarily occurs
if the number of particles is too small. To test against particle deprivation the “kidnapped
robot” challenge has been developed, where the robot is moved instantaneously from one
location to which it has correctly localized to another, unknown location. The challenge is to

re-localize to the new location. Basic MCL would fail.

A simple method of combating the particle deprivation problem is to introduce randomly
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selected particles into the set y,. A naive approach would be to add a fixed number of
random particles in each time step, but how many should be added? Further, if the robot was
operating well, arbitrarily adding random particles would reduce the performance. A slightly
better approach would be to add random particles based on a heuristic, such as the mean
particle weight. There are, however, some scenarios where even if the weights are low, new
particles should not be added: if a single measurement is unusually noisy, or if the particles

are still spread out during global localization.

An even better approach was suggested by Gutmann and Fox [20]. Known as the
Augmented MCL algorithm, it tracks two running averages of the particle weights, short-
term (W) and long-term (wqow). These two averages determine if a new sample should be
added. Since the particles should be converging on the true position, the mean of the particle
weights should constantly be increasing, so during typical operation we,g > Wyow. If that
relationship does not hold, the particle set has become a worse approximation of the robot
state. In this case new, random particles should be added to the set to attempt to re-localize
the robot. Moreover, by keeping the long-term average as an exponential smoothing term,
momentary sensor noise spikes that temporarily reduce the mean particle weight are not

mistaken as poor localization.

Related to the particle deprivation problem is the question of how many particles to use.
If too few are used the particle deprivation problem is encountered. Conversely, if correct
localization has been achieved and the algorithm is simply performing state tracking, far
fewer particles are required since they are all focused near the correct state. Computing too
many particles would waste resources that could be put toward other tasks. Optimally, the
number of particles would vary based on the requirements at the time, which is precisely
what the KLD-Sampling (short for Kullback-Leibler distance sampling) variant of MCL
attempts to do [17]. In essence, KLD-Sampling monitors the distribution of particles. If they
are being widely distributed, then many particles are required to sufficiently cover the space

of possible robot states, but if they are highly concentrated then fewer particles are required.

One of the advantages of MCL over other probabilistic localization algorithms is the
ability to track multiple hypotheses of the robot’s state in the form of multiple clusters of
particles through the state space. The basic MCL algorithm makes no explicit point of
keeping separate hypotheses and as a result the particles tend to converge on a single state
before any data to support that state over others has been obtained. Milstein, Sdnchez and
Williamson [37] proposed taking advantage of the MCL’s clustering abilities by explicitly
keeping multiple independent clusters of data. Each cluster was used to maintain a separate
state hypotheses and the clusters were evaluated against one-another to determine the best

overall state hypothesis. Periodically, weak clusters were removed from the set and new
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clusters generated that performed global localization, which helped overcome the kidnapped
robot problem. The obvious problem with Cluster-MCL, as it was dubbed, is the number of
particles required. Since each cluster of particles is expected to perform global localization,
each set requires enough particles to adequately cover the state space. Using a single set of
particles and dynamically drawing clusters from that set could potentially improve efficiency.

Finally, and most bizarrely, if the robot’s sensors are too accurate or, in the extreme, able
to perfectly localize the robot, basic MCL would fail. Within the measurement model that
simulates sensor measurements is a sensor noise model. Nominally, the sensor model would
perfectly capture the distribution of sensor measurements. This distribution provides each
particle an area of influence (AOI) within the state space. If the sensor is noise-free, then
each particle’s area of influence reduces to a single point, so the probability of a particle’s
AOI containing the true robot state is exactly zero and the particle set would never converge
to the correct state [43, 51]. One obvious method to avoid this problem is to artificially
increase the sensor noise in the measurement model such that the cumulative AOI of all of
the particles has a high probability of containing the true robot state. An intelligent approach
to this was presented in [43], where the noise model was adjusted such that the AOI of each
particle was expanded until it encountered its nearest neighbouring particle.

Another, more rigorous solution to this problem was proposed by Thrun et al. [51] with
the Mixture MCL algorithm. The basic MCL algorithm predicts states based on the belief
during the prior time step and assigns weights based on sensor measurements. The authors
proposed a “dual” of the MCL algorithm that does the opposite — predicts states based on
sensor measurements and assigns weights according to the prior belief. The dual of MCL
would localize perfectly with a perfect measurement sensor, but would conversely fail with a
perfect motion model. Thus, to increase robustness, Mixture MCL generates predictions
with probability ¢ using standard MCL, and with probability 1 — ¢ using the dual of MCL,
where ¢ is pre-determined. While conceptually simple, implementing the dual of MCL is not
necessarily straight-forward. For example, predicting the robot’s state directly from range
scanner measurements in a complex environment is far from trivial. There is one type of
sensor for which predicting states directly from measurements may be feasible: cameras

tracking known landmarks in the environment, which is precisely what was done in [51].

4.3 Implementation of Monte Carlo Localization

Due to difficulties stabilizing the airship with the LIDAR mounted, it was decided that
airship’s motion would be restricted to 4-DOF — three translational and rotation about its

vertical axis. The motion was restricted by arranging the components on the airship such that
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the center of mass was directly below the center of buoyancy and instructing the controller
to actively maintain zero roll and pitch rotations. Then, based on the above descriptions of
the various MCL algorithms, Augmented MCL was selected for implementation. It solves
the particle deprivation problem and is straight-forward to implement. Mixture MCL is not
well suited for use with laser range scanners, so was ruled out of possible implementation.
KLD-Sampling has very attractive properties from a computational perspective, but it was
not selected for implementation due to limitations in Simulink. Though it may be possible
to implement a KLD-sampling-like algorithm, Simulink requires that arrays and loop sizes
be specified prior to running the code, so dealing with an indeterminate number of particles
would not be a straight-forward exercise. The details of the implementation, including
the sample flight data, the motion and measurement models for Augmented MCL, and the

selection of the airship’s state from the particle set are presented in the following sections.

4.3.1 Flight Data

Evaluation of the Augmented MCL algorithm was performed off-line using data recorded
from airship flight. The only data available for testing was a single, 75 s test flight within the
AML with the LIDAR mounted to the airship. Further flights could not be performed due to
building renovations forcing the shutdown of the laboratory. The test flight was restricted to
4-DOF motion, though roll and pitch motions could not be completely eliminated they were
minimized to a few degrees and will be assumed as zero.

The flight was tracked using the VICON system, whose data was be treated as ground-
truth. The LIDAR and the IMU were also both mounted to the airship and their data streams
recorded — LIDAR scans at a period of 0.12 s and the IMU data at 0.01 s. The commands

sent to the airship’s thrusters were also recorded at 0.01 s intervals.

4.3.2 Dynamics Based Motion Model

The greatest challenge for implementing a probabilistic localization algorithm for the airship
was developing a motion model. Obviously, tools like wheel encoders that directly measure
odometry are impossible to use. Other aerial vehicles commonly use IMUs to measure
accelerations and estimate motion based on those, for example [1, 2, 19]. As was shown
in §2.3.1, the weak thrusters and large inertia of the airship restrict its accelerations to very
small values, while the vibrations induced by the thrusters completely drown out the signal
to be measured by the IMU. Thus, this approach was deemed infeasible.

Since the most commonly tools used for measuring robot motion could not be used, a

basic dynamics model of the airship was used instead. The dynamics of traditionally shaped
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airships have been studied in the past, for example [33], but they cannot be directly applied to
the spherical airship and due to the unique nature of the spherical airship, dynamics models of
such systems do not exist in the literature. Investigating and developing a detailed dynamics
model of the airship was beyond the scope of the present research. Further, probabilistic
localization algorithms ostensibly require only approximate motion models and the IMU
was capable of providing accurate orientation information, so it was decided to use a basic,
constant acceleration model.

The airship’s controller was specified to run at a frequency of 100 Hz, since that was the
rate at which IMU data was obtainable. At each controller time step, desired motor forces
were calculated by the controller. These forces were based on thruster characterizations
carried out in the laboratory. The net force of the thrusters in the fixed global frame was

calculated by using the airship orientation data provided by the IMU:
6
F=R > (4.9)

where f” is the vectored thrust generated by thruster p relative to the airship’s coordinate
frame, and R” is the 33 rotation matrix expressing the orientation of the airship’s coordinate
frame relative to the global coordinate frame, as measured by the IMU. Note that the
orientation was measured in 3-dimensions, despite the roll and pitch rotations of the airship
being constricted. Also, uncertainty was added to the thruster forces in the form of a zero-
mean Gaussian distribution with standard deviation of 0.05 N, so the net thruster force for
the motion model was calculated independently for every particle.

The force generated by the thrusters was assumed to be the net force acting on the airship
— the neutral buoyancy of the airship counteracted gravity, and accurate drag estimates
were not attainable. Thus, the acceleration of the airship during each time step was simply
calculated as

a=— 4.10)
nma

where my is the mass of the airship. This acceleration was assumed constant for the duration
of the time step, so the velocity and position of the airship were updated using the equations

of motion for constant acceleration:

vihD=v(@—-1)+a(r) At “4.11)

2
PO=pt-D+v(i—1Ar+ a, (A1)

(4.12)

where Ar was the time step length, 0.01 s. The relative change in position was then applied
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to each particle. Finally, the orientation of the particles was taken as the final yaw rotation
measured by the IMU plus zero-mean Gaussian uncertainty with a standard deviation of
0.008 rad.

4.3.3 LIDAR Measurement Model

A beam model was used to calculate the simulated LIDAR distances for each particle
within the environment. Each measurement was calculated as the intersection point of the
line along which the beam travels and the nearest obstacle face within a predefined map.
The uncertainty model described in §2.3.3 was applied to the simulated scans. Since the
uncertainty model assumes independence of each LIDAR beam, not all of the beams were
used. The uncertainty of adjacent beams is not independent, for example an unmodeled
obstacle in the environment would affect several LIDAR beams similarly. To ensure beam

independence, only 11 uniformly spaced beams were used.!

Map Definition

Constructing environment maps using mobile robots is an active field of research, but beyond
the scope of this work. For the MCL implementation, a known, detailed map of the operating
environment was assumed. As mentioned previously, the basis of such a map could be taken
from building plans. In this case, the operating environment was relatively confined and
easily measurable, thus the map was created manually.

The map was defined in a simple, custom format that explicitly defined points and faces
within the environment. Points were defined by their location relative to an origin while
faces were defined as triangular areas with vertices at the above-defined points. Further,
faces were given directions — a LIDAR beam could only intersect with one side of the face.
If, during beam calculations, the beam struck the back side of a the nearest face, then the
associated particle state was known to be invalid. For example, the LIDAR could not be
located in the space within a wall, so if a beam struck the back side of a face on a wall, then
the particle was located within the wall and was invalid.

The map of the flight space contained a volume slightly larger than that visible by the
motion tracking system — 7.0 m X 5.0 m X 3.6 m. A total of 107 points and 108 faces
made up the map, which included all permanent fixtures of the volume such as walls as
well as semi-permanent objects, such as large pieces of furniture. Not included in the

map were easily movable objects such as chairs or cardboard boxes that happened to be

'Beam counts from 8 to 60 have been suggested in the literature [43, 50, 51]. After selecting 15 beams for
use here, it was discovered that two at each end of the arc were obstructed by the airship’s hull, so only the 11
middle beams were ultimately used.
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located in the operating space. These objects were omitted since their positions could easily
change between flights, which would require re-measuring the locations of the objects and
re-defining the map if they were included. Such obstacles were to be accounted for by the

LIDAR uncertainty model discussed earlier in §2.3.3.

Beam Computation

Two approaches to beam computation were investigated: on-line scans and pre-computed
scans. Ideally, each distance for each particle would be calculated on-line for the exact
particle position for each time step. In complex 3-dimensional environments with thousands
of particles, however, this very quickly becomes computationally impossible to do in real-
time on a standard CPU. Alternatively, distances for a subset of points in the state space
could be pre-calculated off-line. During operation the distances for each particle would
be approximated as those of the nearest point for which distances were calculated. This
approach has been used in the literature, for example in [12, 50, 51].

Though pre-computing values is less computationally expensive, it has several drawbacks.
The most obvious of course being that the simulated LIDAR measurements are no longer
perfectly accurate. If the environment does not contain many small components, then
these inaccuracies would be minimal. The other major disadvantage of pre-computing the
LIDAR scans is that the scans must be recalculated for any change in the environment or
reconfiguration of the LIDAR mounting on the airship.

Pre-computing a grid of scans is not free of the restrictions of computing resources, either.
Taking the operating environment as the map described in the previous section, descretizing
the space with a 0.1 m spatial resolution and 5° angular resolution with 11 LIDAR beams
calculated for every point, the 4-DOF state space of the airship would require 9.4 x 107
distance values. Storing each value as a 16-bit integer would require 179 MB of computer
memory — not unreasonable by modern standards and this discretization was implemented
for testing. However, increasing the state space to 6-DOF within the same environment
would require 2.4 x 10'! distance values, or 463 GB of memory — not even remotely feasible

by current computing standards if attempting to store the full set in memory.

Particle Evaluation

Ultimately, the measurement model must provide an evaluation of each particle such that
good particles may be identified and poor particles dropped. Two approaches were briefly
mentioned in §4.2.2 — comparing the average and the centroid of each particle’s measure-

ments against the actual measurements — and these two were also selected for implementation.
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Mathematically, the difference in means is very straight forward:

. ZK= rk,a _ rk,p
& - |f<1T .13)

where K is the number of distances returned by the LIDAR per scan, 7* is the actual distance
measured by the LIDAR along beam k, and rf, is the simulated distance along beam k of
particle p.

The centroids are calculated as

YK Fcosl Y, rFsing,
= (cney) = (B costh Br

(4.14)

where 6, is the angle the kK beam makes with the x-axis of the LIDAR’s local coordinate

frame. The distance between the centroids is simply

d, = \/(cx,a - cx,p)2 + (cy,a - cy,p)z. (4.15)

The two measures need to be combined in some manner to form a single evaluation. Since
neither the difference between the means nor the distance between the centroids naturally
present themselves as superior measures of particle fitness and both are measures of distance,

they are simply summed to provide an overall distance measure,
d,=d, +d, (4.16)

The value of d, is inversely related to the desired weights — a smaller value should receive a
larger weight. Moreover, taking the weight to be the direct inverse of d” would result in the
weights sharply increasing toward infinty as d,, goes to zero. As a result, poor particles that
happen to have good distance matches could be assigned such high importance factors as
to completely wipe out all other particles during the re-drawing step, leading to incorrect
localization. To keep the magnitudes of the weights from reaching these levels, the weight

assignment was conditional:

L ifd, > 1
wy, =% ! (4.17)
Winax (1 - dp) otherwise

where wp,,x was the maximum possible weight. After some brief preliminary evaluation, a

value of wp,x = 2 was settled on.
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4.3.4 Robot State Selection

One practical concern of MCL that has not been thoroughly expanded on in the literature is
the actual selection of the robot’s state from the set of particles. The matter is either ignored
outright, merely observing the clustering of the particles in graphical representations as
proof of localization, or the state is simply calculated as the mean of all of the particles,
as in [12], for example. This approach assumes that all of the particles converge around a
single state, however one of the advantages of MCL over other probabilistic localization
methods is the intrinsic ability to track multiple hypotheses through distinct particle clusters.
Taking the mean state of particles forming multiple clusters would of course lead to very
incorrect localization by selecting a state near none of the clusters.

Dealing with multiple particle clusters, and in fact taking advantage of them, was the
goal in [37]. In that research, a set number of completely distinct particle clusters were each
tracked with their own MCL computations. The mean states of the clusters were then used
as the set of particles to another MCL instance that evaluated the states and selected the best
as the true robot state. The problem with this approach is that it effectively requires running
multiple MCL instances in parallel, each individually capable of localizing the robot.

For evaluation of the algorithm using off-line computations, it was decided to perform
dynamic clustering of the particles and take the mean state of the most populous cluster
as the predicted robot state. At each time step, the particles are segregated into clusters as

follows:

1. Calculate the infinity norm distance from the particle, p, to the mean position of each
cluster. The set of distances is denoted {dp}.

2. If the shortest distance, min {dp}, is less than a threshold, d,,.x, add particle p to the
corresponding cluster, C. Proceed to the next particle.

3. If min {d,,} > dnax and the number of clusters already formed, n., is less than the
maximum number of allowable clusters, n"**, create a new cluster whose only particle

is p. Proceed to the next particle

4. Finally, if n. = n*®*, add p to cluster c, regardless that min {dp} > dpax.-

Using this approach, as opposed to other standard clustering algorithms such as k-means
clustering, has the advantage of not requiring a specified number of clusters; key aspects
worth investigating with MCL and Augmented MCL in particular are the clustering trends
over time, including the number of clusters. The algorithm is not particularly efficient and is
only suitable for off-line evaluations, not for on-line robot localization.

Two values are required for the above clustering algorithm: d,,,x and n**. Since the test

environment displayed only slight symmetry — primarily where walls and the floor met — it
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Table 4.1 The times required to compute one time step of the Monte Carlo localization algorithm using
on-line and pre-computed LIDAR beam simulation.

Computation time [s]

Number of particles On-line simulation Pre-computed simulation

2500 0.118 0.036
10000 0.275 0.084

was not expected to get many genuine clusters that could each be equally likely candidates
of the robot state, so the maximum number of clusters to track was set as nf™* = 50. That
would provide enough resolution to view clustering over time during global localization. If
the particles are forming more than 50 clusters, they are effectively still spread out across the
state space. The value of the maximum distance between a particle and a cluster’s mean for
that particle to be considered part of the cluster was set to dy,.x = S00 mm. This value was
rather arbitrarily chosen as coarse enough to group genuinely clustered particles together but

fine enough to allow for multiple distinct clusters relatively near one-another.

4.4 Augmented MCL Results

To evaluate the Augmented MCL algorithm, several aspects must be considered: computation
time, localization accuracy and the ability to recover from incorrect localization. Discussions

of all three will be presented in order.

4.4.1 Computation Time

The time required for computing the motion and measurement models for the full set
of particles is the primary deciding factor when selecting the number of particles to use.
The calculation times for on-line versus pre-computed simulated LIDAR scans for the
measurement model were calculated for two particle set sizes. Unfortunately, the Simulink
model could not be compiled for real-time calculation with particle sets larger than 10000
particles, due to an “unknown error”, so only sizes of 2500 and 10000 particles were used.
The calculation times are presented in Table 4.1.

Clearly pre-computing the LIDAR simulations greatly reduces computation time, by
approximately 70%. Since the LIDAR is able to communicate data wirelessly at 0.12 s
periods, the goal would be to operate at this rate. Using on-line computation, then, would
require that only 2500 particles be used. Pre-computing the scans, on the other, hand could

use more than 10000 particles if the program could be successfully compiled. Extrapolating
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from the times in Table 4.1, potentially 15000 particles could be used.

4.4.2 Localization Accuracy

Naturally, localization accuracy is the most important aspect to be evaluated. Though the
localization program could only be compiled for real-time operation with particle counts
up to 10000, it could be run under Simulink’s “Normal”? mode with larger particle counts.
Despite being unable to operate in real-time, which would be required for in-flight operation,
for the of sake evaluation the algorithm was run with 50000 particles for both on-line and
pre-computed scenarios, as well as with the 2500 and 10000 particle scenarios above. The
position of the airship as calculated by MCL was selected as the mean position of the
particles comprising the largest particle cluster. The errors from the position determined by
the VICON system, which was treated as ground-truth, for all six scenarios are plotted in
Fig. 4.3.

Several features are immediately apparent from the plots. First, there are sharp disconti-
nuities in the errors for all scenarios. These are times at which the cluster sizes changed such
that a different cluster became the largest, and thus the error from the true position suddenly

changed. These cluster changes will be expanded on in the following section.

The second observation to make is that no clear superior option between on-line simula-
tion of the LIDAR beams and the pre-computed value scenario presents itself. Though this
may indicate that simulated LIDAR beams need not be very accurate, it may more likely be
related to the third observation, that the localization in all scenarios effectively failed, barely
achieving errors of less than 1 m. With such large localization errors, it is impossible to say
whether the pre-computed LIDAR simulations really do perform as well as on-line LIDAR

simulations.

The final observation to make is that the localization does show improvements with
greater particle numbers. With 50000 particles, the localization errors reach lows of approxi-
mately 0.5 m, temporarily at least, for both on-line and off-line calculations. That the results
did show improvement with increased particle counts suggests that the particle deprivation
problem played a role in the poor results. This is largely attributable to the increased state
space dimensionality of the airship compared to the planar vehicles used in most applications
of MCL. The increased dimensionality requires an exponentially larger number of particles

to achieve a comparable particle density.

2For real-time computations, Simulink’s “External” mode was used along with a real-time kernel.
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Figure 4.3 Monte Carlo localization errors for on-line LIDAR simulation and pre-computed scans. Errors

were calculated as the distance from the mean position of the largest particle cluster to the position
measured by the VICON system.
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4.4.3 Particle Clustering and Error Recovery

The error plots in Fig. 4.3 showed sharp discontinuities in the error values. To investigate
these further, Fig. 4.4 overlays the cluster counts onto the error measures for the on-line
simulation case. The pre-computed value scenario showed the same patterns, so the plots
have been omitted for the sake of brevity.

As is clearly visible, nearly all of the discontinuities in the localization error occur
together with large cluster counts. The large cluster count spikes are caused by the Augmen-
ted MCL algorithm determining that the localization is becoming worse and new random
particles should be added. These incorrect localizations are effectively unintentional occur-
rences of the kidnapped robot problem, from which Augmented MCL should be able to
recover, based on the results.

What’s more, after almost every cluster spike the localization improved, suggesting that
MCL is selecting the best available particles. The problem lies in the fact that the localization
offered by the cluster does not improve with time — the errors either stay constant or become
worse. The weak motion model is likely to blame here; with an accurate motion model the
localization should gradually improve with time. The poor motion model does not track the
airship’s motion accurately, so particles that were relatively near the airship at the time of
the cluster spike gradually travel away from the airship, leading to ever-worse localization

and eventually to Augmented MCL instigating another cluster spike.

4.5 Conclusions on Monte Carlo Localization

The Augmented MCL algorithm was implemented to perform off-line global localization
of the airship. Orientation was tracked by an inertial measurement unit while a laser range
scanner was the sole exteroceptive sensor used. Two approaches to LIDAR simulation for
the particles were investigated: on-line calculation based on the exact pose of the particle
and pre-calculating the LIDAR beams for a discretized subset of the state space.

The localization was not successful, for several reasons. The particle deprivation problem
played a major role, since the number of particles to use was restricted by the real-time
calculation requirements to 2500 with on-line calculation and potentially 15000 if using
pre-calculated values, though the algorithm failed to compile for real-time calculation with
more than 10000 particles. If efficiency could be improved, or more powerful computing
hardware available, localization accuracy could be improved, as shown by the improved
accuracy with 50000 particles.

The other major reason for localization failure was the motion model. Rather than
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Figure 4.4 Monte Carlo particle clustering for on-line LIDAR simulation. Errors are the same as those
shown in Fig. 4.3. Cluster counts were determined as described in §4.3.4.
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tracking the true motion of the airship well enough for localization to improve over successive
iterations of estimating the motion and then evaluating the particles states, the motion model
was at best good enough for the localization errors to stagnate, but generally the errors
increased with time.

Though the localization failed, the algorithm itself showed signs that it would be capable
of localizing the airship with improved implementation. The Augmented MCL algorithm
reliably added new particles to the system if the localization accuracy degraded, as shown by
the clustering of the particles. This suggests the ability to recover from incorrect localization
and the kidnapped robot problem. Moreover, after adding new random particles to the
system the localization generally improved, suggesting that with an improved motion model

and greater particle density MCL would be able to localize the airship.
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Chapter 5
Conclusions and Future Work

Two approaches to localization and navigation of the spherical holonomic indoor airship of
the Aerospace Mechatronics Laboratory have been investigated. Vision-based navigation
using a wireless camera mounted to the airship and optical flow algorithms, and probabilistic
Monte Carlo localization using a laser range scanner mounted to the airship. Though
neither approach ultimately proved truly successful, several valuable insights were gained

for furthering work in this area.

5.1 Conclusions

5.1.1 Optical Flow and Vision-Based Navigation

Both optical flow algorithms implemented and investigated in Chapter 3 proved to be
incapable of independently capturing the motion of the airship. The relatively poor image
quality provided by the wireless camera and the large amount of very noisy images it
produced could not be overcome with simple image filtering methods. The unsteady motion
of the airship, including considerable rotational motion proved too much for the basic optical
flow algorithms.

Ultimately, the only conclusions that can be drawn from the research are that the al-
gorithms investigated failed and achieving vision-based navigation for the airship is a

challenging problem that will require a significantly more advanced approach.

5.1.2 Probabilistic Localization

The airship localization research of Chapter 4 showed more promising results, however

it was not yet suitable for real-time integration with airship’s controller. The algorithm
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produced results that suggest it was operating as intended, but the limitations of the compu-
tational power and the poor motion model could not be overcome to achieve truly accurate
localization.

One major challenge for the Monte Carlo localization algorithm was computational.
Using standard computer hardware for real-time MCL in three-dimensional environments
requires too many compromises to be truly feasible. As implemented, the localization clearly
suffered from the particle deprivation problem. The other major failing was the motion
model, which was unable to accurately track the airship’s motion, so the ideal scenario of
the motion and measurement models complementing each-other to achieve localization was
never achieved. Even as MCL selected the best available particles, their states relative to the

true airship state did not improve over time because of the poor motion model.

5.2 Recommendations for Future Work

Vision certainly presents enticing possibilities for the navigation of an aerial platform.
Beyond the relationship to human navigation, the amount of information potentially available
in the small and lightweight package of a small wireless camera cannot be matched by other
sensors. Extracting that information from the video data, however, is the primary challenge.
To simplify the problem, placing known landmarks in the environment and navigating based
on their appearance in the video data may be a more immediately feasible goal. Though
this would be a regression from the ability to fly in any environment as is our final goal,
the algorithm could potentially be generalized to identifying, locating and tracking the
locations of previously unknown objects in the environment. More general still, performing
simultaneous localization and mapping using the camera is another option. To achieve such
a task, though, the airship’s in-flight stability must first be improved.

Another alternative approach would be to use a pair of cameras for stereo vision. Im-
portantly, distances to obstacles could be calculated — a key piece of data missing from
monocular vision without known landmarks. As an example of the utility of distance mea-
sures beyond simply knowing distances to obstacles, an improved optical flow algorithm
together with a distance metric could be used to measure the airship’s velocity.

Monte Carlo localization of the airship using a laser range scanner needed improvements
in two key areas to be useful: the motion model and the computational efficiency of the
measurement model. An improved and verified dynamics model of the airship would likely
lead to significant improvements immediately. Incorporating adjustable parameters to the
dynamics model as in [40] could lead to even greater improvements. Other approaches to

estimating the airship’s motion should also be investigated, such as using the LIDAR’s data
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to measure incremental position changes [19].

To tackle the computational efficiency of the measurement model, the most promising
way forward would be on-line calculation of simulated LIDAR scans using highly-parallel
processing. Calculating hundreds-of-thousands of beam distances per time step naturally
presents itself as a problem for graphics processing units (GPUs), which are architecturally
designed for highly-parallel vector calculations. Implementation on such hardware would
not necessarily be straight-forward, however. Currently the Simulink environment has only

limited support for using GPUs, and no support for real-time functions incorporating GPUs.

The alternative of pre-computing LIDAR scans and storing them in memory is simply
impossible for 6-DOF operation in even modestly sized environments. In theory the data
could be stored on a hard drive and only loaded into memory as necessary, but during global
localization the whole data set would be required, while not loading any data into memory
and instead reading values directly from a hard drive would introduce too much latency to

be performed hundreds-of-thousands of times per second.

Finally, an exciting area worth investigating is so-called sensor fusion: intelligently
combining data from multiple different sensors to complement each other. Examples of such
work have already been presented, such as using data from an IMU to de-rotate images for
optical flow [30], or combining IMU data with LIDAR data to form an improved motion
model [19]. Other possible combinations would be combining the LIDAR with the wireless
camera to again assign distance values to image, or going even further and combining all
three sensors, the camera, the LIDAR and the IMU, to all complement each other. Of course,
the challenge with all of these sensor fusion approaches is efficiently combining the data

such that they do complement each other.

On a methodological note, due to time constraints, the work of Chapter 4 proceeded
from performing planar localization on purely simulated data directly to attempting 4-DOF
localization using real flight data. Further investigation should be performed to evaluate each
step of the process, such as performing 4-DOF localization using purely simulated data. To
evaluate the effects of the motion model, the algorithm should also be run using real flight
data, but with the airship’s true relative motion as measured by the VICON system used
in place of the dynamics-based motion model. Performing such tests would help identify

potential weaknesses and verify the feasibility of the approach.

The localization and navigation of the holonomic indoor airship proved to be a challen-
ging problem. The unique design of the airship presents very interesting possibilities for
research, but also poses unique challenges when implementing navigation and localization
techniques developed primarily for ground-based robots operating in a plane. Unsteady

motion with large rotational components and severe drift of the airship, all within three-
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dimensional space, are examples of such challenges. Overcoming those challenges would
require significant work, but is required to achieve the full potential of indoor airship as a

stand-alone robot.
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