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Abstract

Green chemistry develops processes and products that reduce the use of substances that are

harmful for humans and the environment. Computational chemistry can advance green chemistry

research by offering tools to model and predict chemical behavior and by facilitating the design

of eco-friendly processes and materials. Density functional theory (DFT) is one of the most

widely used computational tools in green chemistry that is vital for explaining and predicting

reaction pathways, designing catalysts, and assessing environmental impact, all of which advance

sustainability in chemical research.

The first part of this thesis (Chapter 2) investigates the mechanism of reversible CO2 capture – a

promising green chemistry technology – by a cyclodextrin-based metal–organic framework called

CD-MOF-2, which is synthesized from environmentally benign ingredients. By analysing results

of DFT modeling and available experimental data, this study describes the nature and structural

characteristics of diverse alcohol adsorption sites in CD-MOF-2, capable of binding CO2 in the

irreversible, reversible, and weak regimes. It explains the role of hydrogen bonding environments

in modulating CO2 binding strength at these sites. These findings provides insights into designing

solid materials for CO2 capture or detection by linking acid-base proton equilibrium and hydrogen

bonding to CO2 binding efficiency.

The second part of the thesis presents a new DFT method for describing excited electronic

states, modeling of which is essential for green chemistry research in photochemistry, photovoltaics,

and photocatalysts. Many inaccuracies of time-dependent (TD) DFT, which is most often used to

model excited states, arise from its non-variational nature. On the other hand, recently developed

variational time-independent DFT must deal with the problem of excited states collapsing onto the



ground state during their optimization. We present a computational method that solves the collapse

problem while keeping theory simple and computations efficient. This is done in two steps.

The first chapter of the development part of the thesis (Chapter 3) presents a method to avoid

collapse of molecular orbitals within a single electronic state during the self-consistent field (SCF)

optimization. This method, called variable-metric SCF, is applied to describe the electronic ground

state. The main idea of the method is to allow nonorthogonal molecular orbitals and then penalize

linearly dependent orbitals with a term that is added to the DFT energy functional. Variable-metric

SCF method allows to use molecular orbital coefficients as independent variables in a direct,

unconstrained minimization. It is shown that variable-metric SCF equations are simple and can

be solved efficiently even with a basic preconditioned conjugate gradient algorithm for various

molecular and solid-state systems, including challenging narrow gap systems and singlet diradicals.

The second chapter of the development part (Chapter 4) extends variable-metric SCF to multiple

electronic states by adding a new term that penalizes overlapping states, not just overlapping

molecular orbitals. The resulting variable-metric time-independent DFT method treats both ground

and excited states variationally and equally, improving the accuracy of modeling charge-transfer

and two-electron excited states of various molecules compared to TDDFT. The variational nature

of variable-metric time-independent DFT also allows to greatly simplify the evaluation of atomic

forces, which will lead to more efficient non-adiabatic molecular dynamics simulations of green

photochemical and photocatalytic processes.



Résumé

La chimie verte est essentielle au développement de procédés et de matériaux durables qui

réduisent l’impact environnemental. La chimie computationnelle renforce ce domaine en fournissant

des outils pour modéliser et prédire les comportements chimiques, facilitant ainsi la conception de

matériaux et de procédés respectueux de l’environnement. Des techniques telles que la théorie de la

fonctionnelle de la densité (DFT) sont cruciales pour optimiser les voies réactionnelles, concevoir

des catalyseurs et évaluer les impacts environnementaux, contribuant ainsi à l’innovation et à la

durabilité dans la recherche chimique.

La première partie de cette thèse (Chapitre 2) étudie le mécanisme de capture réversible du CO2,

une technologie prometteuse de la chimie verte, par un cadre métal organique à base de cyclodextrine

appelée CD-MOF-2, qui est synthétisée à partir d’ingrédients inoffensifs pour l’environnement.

En analysant les résultats de la modélisation DFT et les données expérimentales disponibles, cette

étude décrit la nature et les caractéristiques structurelles de divers sites d’adsorption d’alcool dans

le CD-MOF-2, capables de lier CO2 dans les régimes irréversible, réversible et faible. Elle explique

le rôle des liaisons hydrogène dans la modulation de la force de liaison de CO2 sur ces sites. Ces

résultats permettent d’envisager la conception de matériaux solides pour la capture ou la détection

de CO2 en reliant l’équilibre acide-base des protons et la liaison hydrogène à l’efficacité de la

liaison avec CO2.

La deuxième partie de la thèse présente une nouvelle méthode DFT pour décrire les états

électroniques excités, dont la modélisation est essentielle pour la recherche en chimie verte dans

les domaines de la photochimie, de la photovoltaïque et des photocatalyseurs. De nombreuses

imprécisions de la DFT dépendante du temps (TD), qui est le plus souvent utilisée pour modéliser les



états excités, proviennent de sa nature non variationnelle. D’une autre part, la DFT variationnelle en

fonction du temps, récemment développée, doit faire face au problème de l’absence de variation de

l’état excité et doit faire face au problème de l’effondrement des états excités sur l’état fondamental

au cours de leur optimisation. Nous présentons une méthode de calcul qui résout le problème de

l’effondrement tout en conservant une théorie simple et des calculs efficaces, cela se fait en deux

étapes.

Le premier chapitre de la partie développement de la thèse (Chapitre 3) présente une méthode

pour éviter l’effondrement des orbitales moléculaires dans un état électronique unique pendant

l’optimisation du champ autoconsistant (SCF). Cette méthode, appelée SCF à métrique variable,

est appliquée pour décrire l’état fondamental électronique. L’idée principale de la méthode est

d’autoriser les orbitales moléculaires non orthogonales et de pénaliser les orbitales linéairement

dépendantes à l’aide d’un terme ajouté à la fonctionnelle énergétique DFT. La méthode SCF à

métrique variable permet d’utiliser les coefficients des orbitales moléculaires comme variables

indépendantes dans une minimisation directe et sans contrainte. Il est démontré que les équations

SCF à paramètres variables sont simples et peuvent être résolues efficacement, même avec un

algorithme de gradient conjugué préconditionné de base, pour divers systèmes moléculaires et à

l’état solide, y compris des systèmes difficiles à espace étroit et des diradicals singuliers.

Le deuxième chapitre de la partie développement (Chapitre 4) étend la méthode SCF à

paramètres variables à des états électroniques multiples en ajoutant un nouveau terme qui pénalise

les états qui se chevauchent, et ce, pas seulement les orbitales moléculaires qui se chevauchent. La

méthode DFT indépendante du temps à mesure variable qui en résulte traite les états fondamentaux

et les états excités de manière variable et égale, améliorant la précision de la modélisation du

transfert de charge et des états excités à deux électrons de diverses molécules par rapport à la



TDDFT. La nature variationnelle de la méthode DFT variable et indépendante du temps permet

également de simplifier considérablement l’évaluation des forces atomiques, ce qui conduira à des

simulations de dynamique moléculaire non adiabatique plus efficaces des processus photochimiques

et photocatalytiques verts.
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Chapter 1

Introduction

1.1 Preface

Since the industrial revolution, broad concern for environmental degradation has been rising

steadily, gradually making it one of the most pressing issues of our time. Humanized activities such

as industrialization, mass production, heavy transportation, and the use of non-degradable chemicals

contribute to climate change, air-water-soil pollution, and the staggering loss of biodiversity. Those

environmental burdens are destructive not only to natural habitats but also to our ecosystems.

Consequently, the imperative to reverse these adverse impacts demands proactive action from

individuals, communities, and governments around the globe. By acknowledging the situation and

taking action to adopt sustainable practices, we could mitigate the harmful effects and protect the

well-being of our shared home.

The methodological developments and applications presented in this thesis are unified by their

emphasis on green chemistry applications in the computational modeling of electrons and atoms.

This introductory chapter begins with a review of green chemistry, highlighting its significance

and application in developing carbon capture materials with potential industrial applications, as

1
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discussed in Chapter 2. It then delves into the theoretical foundations of Kohn-Sham density

functional theory (DFT), the most widely used electronic structure theory today, covering various

self-consistent field (SCF) orbital optimization techniques. These concepts lay the groundwork

for the direct unconstrained optimization methods introduced for DFT ground-state calculations in

Chapter 3 and extended to optimizing excited states in Chapter 4.

1.2 Green Chemistry

1.2.1 Background

Modern science, with its vast potential, offers numerous pathways and promising solutions

to address the current environmental challenges. Green chemistry, in particular, plays a key role

by integrating scientific advancements to achieve both environmental and economic efficiency in

pollution reduction. By definition, green chemistry is defined as the "design of chemical products

and processes to reduce or eliminate the use and generation of hazardous substances"1,2.

The concept of green chemistry can be traced back to the early 1990s1–3. In 1990, the Pollution

Prevention Act was passed in the United States, establishing source reduction as the highest priority

in solving environmental problems and signaling a shift towards pollution prevention over traditional

"command and control" approaches. Building on this momentum, in 1991, the U.S. Environmental

Protection Agency (EPA) launched the Green Chemistry Program’s first research initiative, focusing

on alternative synthetic pathways. The following year, the National Science Foundation partnered

with the EPA on the Environmentally Benign Syntheses and Processes program, officially adopting

the name "U.S. Green Chemistry Program" in 1993.
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A significant milestone was reached in 1995 with the announcement of the U.S. Presidential

Green Chemistry Challenge Award to recognize achievements in green chemistry across several

sectors such as industry, academia, and government. The first awards were given in 1996, marking

the growing adoption of green chemistry principles. In the late 1990s, international expansion

spread to Italy, the United Kingdom, and Japan, where major green chemistry initiatives were

launched, including research and education programs. In 1999, the inaugural edition of the journal

Green Chemistry, sponsored by the Royal Society of Chemistry, was published, highlighting the

field’s increasing recognition.

Further development in green chemistry occurred in the 2000s, with significant advancements

in renewable feedstocks, catalysis, and the design of safer chemicals. The 2010s continued this

trend, with a heightened emphasis on sustainable chemistry and the circular economy, driving

international growth and collaboration. Entering the 2020s, green chemistry has solidified its role as

a crucial component of sustainable development, with ongoing research and widespread industrial

implementation, reinforcing its importance in addressing global environmental challenges.

With its inception and evolution since then, green chemistry has gained global recognition

and adoption, leading to the establishment of numerous governmental initiatives and programs

worldwide that significantly influence sustainable design practices. These efforts have promoted the

integration of principles in chemical research and industry, cementing green chemistry’s crucial

role in advancing sustainable development.
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1.2.2 12 Principles of Green Chemistry

To achieve the primary goal of benefiting human health and the environment, green chemistry is

guided by a set of 12 principles developed by Paul Anastas and John Warner in their book "Green

Chemistry: Theory and Practice" (1998)4. These principles, conveniently summarized into the

acronym PRODUCTIVELY1, serve as comprehensive guidelines for chemists to create greener

chemicals and processes by reducing or eliminating the use and generation of hazardous substances

in the design, manufacture, and application of chemicals5,6.

Figure 1.1: 12 Principles of Green Chemistry proposed by Anastas and Warner4. The figure is
reproduced from Harison et al.7

Collectively, these guidelines aim to minimize the environmental and health impacts of chemical

production and use while enhancing efficiency and reducing costs. Specifically, each principle is

detailed as shown in Fig.1.1.
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The first principle, Prevention, is the prevention of waste. The principle aims to minimize

waste by designing chemical processes that do not produce harmful substances, thereby reducing

environmental impact and associated costs.

The second principle, Atom Economy (AE), or so-called atom efficiency, was introduced by

Barry Trost in 1990 to emphasize the efficient use of raw materials to maximize the number of

atoms in the final product. AE is calculated by dividing the molecular weight (MW) of the desired

product by the total MW of all reactants used in the reaction. A high AE ratio indicates a more

efficient reaction.

The third principle, Less Hazardous Chemical Syntheses, urges scientists to develop methods

that use and produce substances with minimal toxicity to human health and the environment. The

fourth principle, Designing Safer Chemicals, emphasizes reducing the toxicity of the chemical

products themselves. Similarly, the fifth principle, Safer Solvents and Auxiliaries, focuses on

eliminating the use of hazardous auxiliary substances, such as solvents.

Next, the sixth principle, Design for Energy Efficiency, and the seventh principle, Use of

Renewable Feedstocks, both highlight the need to optimize the energy requirements of chemical

processes and to use renewable resources wherever possible.

The eighth principle, Reduce Derivatives, refers to avoiding the use of blocking groups,

protection/deprotection steps, or temporary modifications of chemical structures during synthesis.

This is due to the fact that these steps often require additional reagents and can generate waste,

which is contrary to the goals of green chemistry.

The ninth principle, Catalysis, promotes the use of catalytic processes to achieve high selectivity

and yield in chemical reactions to reduce waste and energy consumption.

Design for Degradation, the tenth principle, ensures that chemical products break down into
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harmless substances at the end of their use, preventing environmental persistence. This helps reduce

the environmental impact of chemical products and processes, making them compatible with natural

biodegradation processes.

Real-time Analysis for Pollution Prevention calls for the development of analytical methods

that enable real-time monitoring and control of processes to prevent pollution before it occurs.

Finally, Inherently Safer Chemistry for Accident Prevention focuses on selecting substances

and conditions that minimize the potential for chemical accidents, such as releases, explosions, and

fires.

Together, the twelve principles of green chemistry form the foundation of this field, integrating

sustainability into chemical design and production. To illustrate their practical application, the

following sections review selected green technologies in green chemistry. While this review

cannot cover all of the developed experiments and technologies, it highlights a few standout

examples, particularly those relevant to the carbon capture application discussed in Chapter 2 of

this thesis. Collectively, these examples demonstrate the integration of green chemistry principles

into innovative solutions that promote sustainable development and environmental protection.

1.2.3 Green Technologies

Utilizing advanced technologies and innovative practices promotes a more sustainable and

eco-friendly approach to energy and materials. Among the various green chemistry technologies,

several stand out for their significant impact and potential for future development, especially carbon

capture, photovoltaics, and photocatalysis.
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1.2.3.1 Carbon Capture

Figure 1.2: A comprehensive illustration of carbon capturing, transportation, storage and utilization
ecosystem: from source to utilization. The figure is reproduced from Goren et al.8

Carbon capture is a critical and emerging technology aimed at addressing climate change by

trapping carbon dioxide (CO2) emissions from large sources such as fossil fuel power plants and

industrial facilities before they can enter the atmosphere (Fig.1.2). The process involves capturing

CO2 from plenty of sources, including exhaust streams, atmospheric air, oceans, etc., without

interrupting the operations of existing systems that create carbon emissions8. Once captured, the

CO2 is then transported via pipelines or other methods and then either stored in underground

geological formations or utilized in various industrial applications such as synthetic fuels and

gas, concrete, ammonium bicarbonate, etc.9. The technology contains two approaches: direct

capture (pre-combustion, post-combustion, and oxy-combustion) and indirect capture (reforestation,
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enhanced weathering, bio-energy with carbon capture, and agricultural practices), each with vast

degrees of development and implementation8. Throughout these, post-combustion techniques,

which use physical and chemical methods to separate and selectively enrich CO2 from flue gases

emitted by combustion equipment, are the most widely adopted on a commercial scale. Fig.1.3

summarizes the main technologies and solvents used for CO2 separation, including absorption,

adsorption, membrane systems, gas hydrate crystallization, and cryogenic separation. While

solvents are effectively used in chemical and physical absorption, natural and synthesized porous

mediums are used in adsorption through various bed configurations10.

Figure 1.3: Main CO2 capture technologies. The figure is reproduced from Hekmatmehr et. al.10

The design of effective carbon capture materials offers numerous opportunities for capturing

and storing carbon more efficiently. Current developments in carbon capture technology focus on

enhancing efficiency, scalability, and cost-effectiveness.
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Type of Adsorbent Adsorbents Advantages Disadvantages 

Chemisorbents 

Amine-based sorbents 

 Low regeneration energy 

 High adsorption capacity in case of high 
amine and nitrogen content 

Stable materials 
Fast adsorption of carbon dioxide 

Multiuse sorbents 

Expensive synthetic material 

Metal oxides and metal 

oxides-based sorbents 

Common for pre-combustion of CO2 

Cost-effective 

Abundant materials 

Low toxic substance 

Durable after various cycles 

The operation temperature is moderate 

to 

high 

Require long reaction time 

Require high energy for 

regeneration 

Alkali-metal adsorbents 

Low regeneration energy 

Cost-effective 

Ability to operate at low temperature 

below 200 ◦C 

Slow operation adsorbents 

Durable 

Irreversible adsorbents in the 

presence of SO2 and HCl 

Physisorbents 

Zeolites 

High adsorption capacity 

Porous materials 

Large surface area 

High stability 

Low selectivity of CO2 

Large decrease in adsorption with 

slight increase in temperature 

Carbonaceous 

materials 

Excellent thermal stability 

Tolerance to moisture 

Cost-effective 

Low adsorption operating temperature 

Abundancy 

Good conductivity 

Large surface area 

Suitable pore sizes and volumes 

Low for selectivity to CO2 

 High thermal sensitivity 

Mesoporous silica 

materials 

Tuneable structure 

Good thermal and mechanical stability 

Large surface area 

Porous structures 

       Low cost 

Low adsorption capacity in the 

absence of functionalities 

MOFs 

Uniform and tuneable structures 

Large surface area 

Ultrahigh porosity 

Easy functionalization 

Chemical and thermal stability 

Low adsorption capacity at low 
pressure 

Sensitive to moisture 

Sensitive to mixture of gases 

Expensive generation procedures 

 

Figure 1.4: Pros and cons of different types of carbon dioxide adsorbents. The figure is reproduced
from Allangawi et al.11

One commonly used group of sorbents is amine-based solutions, which effectively remove CO2
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from flue gas through chemical reactions with amines. Primary amines, or monoethanolamine

(MEA), are favored for their fast reaction rates and high absorption capacity, followed by secondary,

tertiary, hindered amines, and polyamines for their enhanced properties12. However, drawbacks

such as degradation, corrosion, and high thermal regeneration costs necessitate innovations to

overcome these challenges. Blended amines, phase-separating absorbents, and water-lean solvents

have been developed to improve capture efficiency and reduce energy consumption11,12. Despite

these advancements, further research is required to fully address these difficulties.

Another promising candidate for CO2 absorption is metal oxides, such as calcium oxide (CaO),

magnesium oxide (MgO), TiO2, and their various combinations. These materials are widely used

due to their ability to react with CO2 to form metal carbonates, enabling a cyclic process where

CO2 can be thermally desorbed and the sorbent regenerated13,14. A key advanced carbon capture

technology involving metal oxides is high-temperature solid looping, which employs reversible

chemical reactions at elevated temperatures for efficient CO2 capture15,16. This includes chemical

looping combustion (CLC), where oxygen carriers facilitate CO2 capture through combustion,

reforming, or hydrogen production, and calcium looping (CaL), where CO2 reacts with CaO to

form calcium carbonate, which is then heated to release CO2 and regenerate CaO. These methods

offer flexible and efficient solutions for carbon capture, particularly in industrial applications.

Additionally, combining metal oxides with other catalytic components (e.g., Ni, Fe, Cu, etc.) creates

dual-function materials (DFMs)17–19, which can capture and convert CO2 to value-added products.

While metal oxides are cost-effective, less toxic than zeolites and MOFs, and demonstrate high

CO2 selectivity at elevated temperatures, they face challenges such as rapid saturation and high

energy consumption during regeneration14.

Lastly, porous materials, such as zeolites, MOFs, and carbon-based materials like activated
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carbon and graphene, are gaining significant attention for carbon capture applications.

Zeolites , a class of microporous aluminosilicates, are recognized as benchmark adsorbents

for CO2 capture due to their excellent adsorption kinetics, thermal stability, and molecular sieving

capabilities14,20. Their performance in pressure swing adsorption (PSA) and vacuum swing adsorp-

tion (VSA) is attributed to their efficiency in CO2 adsorption at low temperatures21,22. However, a

well-known limitation of zeolites is their reduced CO2 adsorption capacity at elevated temperatures,

which diminishes their selectivity for CO2 in the presence of other gases. Additionally, their neces-

sity for higher temperatures during regeneration restricts their practical application in large-scale

carbon capture processes. Furthermore, zeolites are highly susceptible to degradation upon exposure

to water vapor, which adversely affects their performance in humid environments. In response to

these challenges, advancements in green technologies have emerged to improve the sustainability

and performance of zeolites, aligning with the global shift towards clean energy and environmental

preservation. Sustainable zeolite synthesis from waste and renewable materials, along with advance-

ments in green synthesis techniques, has further reinforced their role in carbon capture. Recent

innovations in zeolite synthesis include ambient pressure hydrothermal processes, which reduce

costs and safety risks, and microwave and ultrasonic-assisted methods, which accelerate synthesis

while improving purity23,24. Additional methods , such as vacuum-assisted synthesis and radical

routes , increase efficiency and reduce dependence on organic templates. The incorporation of seed

crystals enhances crystallization speed and product control. Collectively, these green technologies

lower energy consumption, minimize waste, and support the sustainability of zeolite production,

aligning with environmental goals.

Carbon-based porous materials are highly valued for their extensive surface area, adjustable

pore size, and robust thermal and chemical stability, making them essential in applications such
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as energy storage, catalysis, and gas separation13,25. Several examples include activated carbon,

carbon nanotubes, carbon nanofibers, graphene, and carbon aerogels, each with unique properties26.

Their inherent porosity enables efficient adsorption, particularly advantageous for carbon capture.

Activated carbon, available in granular, powdered, fiber-based, and monolithic forms, is produced

through physical or chemical activation processes that enhance its porous structure27. This versatility

makes it an effective and adaptable choice for capturing CO2 in both environmental and industrial

settings. Activated carbon is widely used as a CO2 collection agent due to its low cost, exceptional

thermal stability, wide availability, and minimal susceptibility to moisture. Carbon nanotubes are

recognized for their exceptional mechanical strength and electrical conductivity, making them

suitable for applications in electronics and composite materials27. Graphene aerogels, on the other

hand, merge the remarkable properties of graphene with a porous architecture, offering outstanding

thermal and electrical conductivity28. Similarly, ultra-light carbon aerogels, characterized by a high

degree of porosity , are ideal for use in supercapacitors and insulation28. In the field of carbon

capture, green synthesis methods emphasize sustainable approaches that minimize environmental

impact. One significant method is the carbonization of biomass, where natural materials such as

wood, algae, or agricultural waste are transformed into porous carbon through controlled pyrolysis28.

The introduction of heteroatom doping (e.g. nitrogen, sulfur) and multi-atom co-doping significantly

enhances the wettability and alkalinity of porous carbon, increasing its CO2 trapping capacity29.

Specifically, carbon molecular sieve (CMS) can enhance CO2 capture by modifying its pores

through pyrolysis, partial gasification, and pore shrinkage, as well as surface functionalization and

metal impregnation. CMS can also be engineered to achieve a uniform distribution of pore sizes,

optimizing its performance29. Despite their advantages, carbon-based porous materials have some

limitations, such as lower toughness and strength compared to hierarchically structured ceramic and
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metal porous materials.

MOFs are advanced hybrid materials with exceptional properties for gas adsorption, including

CO2 capture. These materials feature a porous crystalline structure formed by metal nodes inter-

connected with organic ligands, resulting in frameworks with highly tunable pore sizes21. MOFs

distinguish themselves from traditional adsorbents such as zeolites and activated carbon due to their

low density, extensive surface areas, high thermal stability, and customizable chemical functionali-

ties. These attributes enhance their effectiveness for CO2 capture, offering significant advantages

over conventional materials. Their adaptability extends to CO2 separation, delivering outstanding

performance even in the presence of water vapor. MOFs can be classified into various types based

on their structural properties, such as rigid, dynamic, or surface-functionalized20. Recent advances

in green technologies for MOF synthesis have focused on enhancing both sustainability and effi-

ciency. This includes electrochemical, sonochemical, mechanical, spray drying, and continuous flow

techniques25. Electrochemical synthesis offers mild reaction conditions, high yields, and reduced

costs, while sonochemical methods enhance crystallinity and CO2 capture efficiency with simpler

processes. Mechanochemical synthesis, involving grinding or ball milling, minimizes solvent use

and generates easily removable by-products, whereas spray drying is cost-effective and scalable,

reducing energy and purification needs. Continuous flow synthesis allows for rapid, controlled pro-

duction with reduced solvent consumption and high-quality outcomes. Functionalization strategies,

such as incorporating open metal sites, Lewis basic sites, and polar functional groups, have further

refined MOFs for CO2 capture by boosting their adsorption capacities and selectivity25,30. The

development of isoreticular MOFs31 and the use of seed crystals have also contributed to improved

performance by tailoring the pore sizes and functional groups. Furthermore, the development of

MOFs that incorporate carbon-based components offers efficient CO2 adsorption while promoting
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the use of sustainable materials and energy-efficient processes13. Despite their promising attributes,

MOFs face challenges such as high production costs and their sensitivity to moisture. Ongoing

research aims to overcome these hurdles by developing more cost-effective synthesis methods and

enhancing operational stability.

Despite the challenges of high costs, significant energy consumption, and the need for extensive

CO2 transport and storage infrastructure10, as well as concerns about the long-term safety of CO2

storage and the limitations of current materials, there are promising opportunities in the field.

Integrating carbon capture with renewable energy sources can reduce both costs and the carbon

footprint of energy production. Additionally, advancements in storage methods and potential

economic incentives offer further motivation for development. By addressing these challenges and

leveraging emerging opportunities, carbon capture technology can advance significantly and play a

crucial role in climate mitigation efforts.

1.2.3.2 Photovoltaics

Among renewable energy resources such as wind energy, ocean thermal, geothermal plants,

and solar energy, solar photovoltaic (PV) stands out as the most promising system in the power

production sector for future energy technology. Indeed, they are user-friendly and offer the

design flexibility to generate power from 10W to more than 1GW, making their market highly

global32. Photovoltaics can be simply defined as the direct conversion of sunlight to electricity

using thin layers of semiconductor materials, which possess properties intermediate between metals

and insulators. When these semiconductors are irradiated with photons, they generate direct

current electrical power, measured in watts (W) or kilowatts (kW)33. Silicon, the keystone of

microelectronics and the information age, is the most widely used semiconductor.
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Figure 1.5: A diagram showing the photovoltaic effect. The figure is reproduced from Donev et
al.34

A photovoltaic cell functions as a "quantum device" by converting photons into electrons through

the photovoltaic effect33, as shown in Fig.1.5. The core component is usually a silicon wafer, which

is treated with a thin layer of another material to create a p-n (positive-negative) junction that

enables electric flow. When sunlight hits the semiconductor material, it excites electrons, forming

electron-hole pairs. An internal electric field then drives these charges to opposite sides of the cell,

where metal conductive plates collect the electrons to produce an electrical current. This process

continues as long as light is present, eliminating the need for recharging batteries. Despite being

efficient, wafer-based PV cells are material-intensive and costly. In contrast, thin-film PV cell

technology reduces the amount of semiconductor material required by depositing thin layers of PV

material onto a substrate like glass, plastic, or metal35. This option enables the use of a wider variety

of materials like cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and copper

zinc tin sulfide (CZTS) rather than single-crystal silicon , amorphous silicon, or polycrystalline
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silicon . Thin-film cells are usually lighter and more flexible compared to conventional silicon cells,

making them ideal for building-integrated photovoltaics and portable solar panels. While having

lower efficiency compared to silicon-based cells, thin-film PVs35,36 offer advantages in reduced

material usage, lower production costs, and scalable manufacturing.

Perovskite solar cells (PSCs)37–43 have attracted significant interest in the field of photovoltaic

materials because of their remarkable power conversion efficiencies, which have surged from

3.8% in 2009 to over 25% recently. This significant advancement is complemented by the ease of

accessing components and the potential for low-cost production. Named after the mineral CaTiO3,

metal halide perovskites feature a cubic crystal structure and follow the general formula ABX3,

where A is an organic cation, B is a metal cation, and X is a halide anion. They are recognized for

their strong absorption, tunable bandgaps, and cost-effective production41. Traditional perovskites

often contain lead, however, leading to environmental concerns. Recent green advancements focus

on lead-free alternatives, such as bismuth-based and tin-based perovskites, and lead-free double

PV cells43,44, while also improving material stability and durability through novel fabrication

techniques45. Various other materials like organic photovoltaics (OPVs)42, which use conjugated

polymers and small molecules, or quantum dots44,46 such as cadmium selenide (CdSe), cadmium

sulfide (CdS), and copper indium diselenide (CuInSe2), are noted for their lightweight properties and

tunable bandgaps. Additionally, 2D materials like graphene and transition metal dichalcogenides

(TMDs)47,48, along with hybrid organic-inorganic solar cells such as mixed-halide perovskites and

organic-inorganic hybrids44, represent thriving and promising fields of study focused on advancing

photovoltaic technology.

In addition to novel materials, green advancements in solar technology encompass various

techniques and innovations. Green solvents36,40,49 such as triethyl phosphate (TEP), along with
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green antisolvents like isopropanol (IPA) and isobutanol , are increasingly used to reduce the toxicity

and environmental impact of solar cell manufacturing. While not entirely green, vacuum-assisted

solution processing and spin coating36,41,49 promote sustainability by enhancing material use and

reducing waste. Vacuum-assisted solution processing improves thin-film deposition efficiency and

reduces defects, leading to less material waste. Spin coating uses solvents efficiently, applies thin

films precisely , and reduces overall solvent consumption.

A significant challenge in photovoltaic technology is the high operational temperature of PV

cells, which can adversely affect performance and power output32. To address this, various cooling

strategies have been developed to improve efficiency across different geographical locations. These

strategies aim to mitigate the effects of high temperatures and enhance the overall performance of

solar energy systems46.

1.2.3.3 Photocatalysis

Photocatalysis is a catalytic process that utilizes light energy to initiate chemical reactions.

It involves the activation of a catalyst by light, leading to the generation of reactive species that

can drive various chemical transformations50. Photocatalysis can be categorized into two main

types: homogeneous and heterogeneous. In homogeneous photocatalysis, the catalyst and reactants

are in the same phase, typically in solution, which enables efficient light absorption and reaction

initiation. Conversely, heterogeneous photocatalysis involves a catalyst that is in a different phase

from the reactants, often as a solid material or surface, which facilitates the separation and recovery

of the catalyst for reuse. The process generally involves several key steps and mechanisms, as

displayed in Fig.1.6. First, the photocatalyst absorbs light, creating electron (e−) - hole (h+) pairs

with electrons in the conduction band (CB) and holes in the valence band (VB). Next, the charges
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separate and migrate to the catalyst’s surface, where they drive surface reactions, resulting in

chemical transformations51.

Figure 1.6: The four main steps in photocatalysis process. The figure is reproduced from Liao et
al.51

As a rapidly expanding field of research, photocatalysis offers vast potential for applications such

as water splitting, air cleaning, and pollutant degradation, thereby contributing to environmental

sustainability. This process provides an eco-friendly alternative for various industrial applications,

with the catalysts accelerating reactions without being consumed or altered, distinguishing them

from thermal catalysts that rely on heat rather than light.

Traditional photocatalysts, such as TiO2 and zinc oxide (ZnO), have been extensively used due

to their stability, low cost, and effectiveness in generating electron-hole pairs under UV light52.

Nonetheless, these metal oxides limit visible light absorption and relatively slow down the charge

carrier separation, reducing efficiency. Recent developments in photocatalysis have focused on

overcoming these limitations by exploring novel materials. Non-toxic metal-free photocatalytic

materials, such as carbon-based nanomaterials (e.g., graphene oxide, graphitic carbon nitride
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g-C3N4)53,54, COFs and MOFs55,56, as well as earth-abundant semiconductors (e.g., Fe2O3)57

aim to enhance photocatalytic performance under visible light, improve the sustainability of the

processes, and reduce the reliance on rare or toxic elements, promoting more eco-friendly and

efficient photocatalytic applications. On top of that, coordination compounds (e.g., polypyridine

complex [Ru(bpy)3]2+, multicarboxylate ligands), dyes and pigments (anthraquinones, thiazines,

natural dyes, azo dyes)50 with non-toxic metals are also used. These materials, especially with light-

sensitive properties and the photoredox characteristics of coordination compounds, are shown to

excel in photocatalytic applications such as organic pollutant degradation, CO2 reduction, and Cr(VI)

reduction. Furthermore, recent advancements in photocatalyst design include strategies like doping,

dye sensitization, heterostructure formation, and modifications to π-conjugated architectures50, all

aimed at improving performance under visible light.

Despite its potential for sustainable chemistry, photocatalysis faces several challenges. Key

issues include optimizing photocatalytic systems for improved activity and selectivity, ensuring

scalability and cost-effectiveness, and understanding the mechanistic aspects of photocatalytic reac-

tions. Addressing these challenges is essential for integrating photocatalysis into green technologies

and realizing its full potential in industrial applications.

1.3 Computational Methods for Green Chemistry Applications

1.3.1 Computational Chemistry Introduction

Computational chemistry is a multidisciplinary field that utilizes computer simulations and

theoretical models to study, predict, and solve chemical problems, providing insights into the
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properties and behaviors of chemical systems58. The methods and techniques in computational

chemistry serve as tools for exploring a wide range of chemical phenomena. Key approaches

include molecular mechanics, ab initio methods, semi-empirical approaches, and density functional

theory (DFT). This diverse array of computational methods is especially valuable in the field of

green chemistry, where the focus is on designing chemical processes that are both environmentally

friendly and efficient. These methods allow for the accurate prediction of chemical outcomes

before laboratory experiments are conducted, helping to identify the most sustainable and effective

approaches to chemical synthesis. Within the broad spectrum of computational techniques, DFT is

a powerful tool in green chemistry, balancing efficiency and accuracy. It effectively models and

optimizes environmentally friendly chemical processes, predicting reaction pathways, catalysts, and

material properties. DFT is especially impactful in carbon capture, photovoltaics, and photocatalysis,

guiding the development of efficient, and eco-friendly technologies.

Given the extensive applications of DFT across numerous fields, and its longstanding role as a

powerful computational tool, this thesis introduction highlights only a few examples to illustrate its

significance and utility, particularly in the context of green chemistry.

1.3.2 Computational Chemistry Utility

1.3.2.1 Carbon Capture

In carbon capture applications, DFT first facilitates a detailed examination of interactions

between CO2 and various porous materials, offering critical insights into the binding mechanisms.

This includes information about binding energies, bond strengths, and the electronic structures at

adsorption sites. For materials with complex or poorly understood microscopic behaviors, traditional
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experimental approaches often struggle to elucidate the precise mechanisms of CO2 adsorption. In

such cases, DFT offers a deeper understanding of the molecular and electronic processes that govern

adsorption, which are challenging to discern experimentally. The CO2 adsorption with alkyldiamine-

grafted Mg2(dobpdc) MOFs serves as an example. While experiments confirm that CO2 capture

by ethylenediamine (en)-appended Mg2(dobpdc) forms an ammonium carbamate, the underlying

mechanism remains intricate. Zhang et al.59 utilized DFT modeling to address this challenge

by calculating binding energies and CO2 adsorption energies through geometry optimization.

Additionally, they employed the climbing-image nudged elastic band (CI-NEB) method to trace the

minimum-energy path of the reaction and studied the transition states along with the proton transfer

between CO2 and en-Mg2(dobpdc), thus providing a comprehensive understanding of the binding

mechanisms and pathways for CO2 capture in these amine - grafted MOFs. Similarly, through DFT

calculations, investigations of the carbon adsorption sites in different MOF materials shed light on

how CO2 interacts with these MOFs at the molecular level60–63.

Secondly, DFT enables the evaluation of diverse functional groups and structural modifications

to enhance adsorption performance. Novel materials synthesized through green techniques, as

discussed in section 1.2.3, can be easily examined with DFT given a valid geometric electronic

structure. Ha et al.64 employed DFT to investigate the effects of alkali-metal doping in one of the

most extensively studied MOFs, MOF-5. By introducing an alkali-metal atom (Li, Na, or K) above

the central benzene ring, the study rapidly generated four test models and determined that K-doping

was the most thermodynamically favorable, resulting in the lowest adsorption energy. Similarly,

nitrogen doping in mesoporous carbon has been shown to significantly enhance CO2 adsorption and

improve selectivity between CO2 and N2, attributed to the stronger interactions between CO2 and the

nitrogen-doped framework. Furthermore, research on surface functionalization of porous carbons
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has demonstrated increased selectivity for both CO2/CH4 and CO2/N2 mixtures, underscoring the

importance of functional group modifications in optimizing separation efficiency. These examples

underscore DFT’s critical role in guiding the development of more effective materials for carbon

capture.65

Finally, the vast diversity of potential MOFs, arising from different combinations of linkers,

nodes, and topologies, has resulted in extensive databases such as CoRE MOFs and CSD MOFs,

which contain thousands of structures. DFT efficiently screens these materials for carbon capture

applications and greatly reduces reliance on time-consuming and costly experimental testing. For

example, a multi-scale modeling approach utilized DFT to screen the CoRE-MOF-2019 database

for carbon capture under wet flue gas conditions, revealing MOFs with high CO2 uptake capacity

and selectivity in the presence of water vapor.66 Similarly, DFT screening identified M-elements

as selective CO2 attractors, with elements possessing empty d orbitals demonstrating potential for

selective CO2 capture from flue gases at low pressures.67 Additionally, DFT has been applied to

investigate over 30,000 MOFs, showcasing its ability to manage extensive theoretical datasets and

advance material discovery for carbon capture.68

1.3.2.2 Photovoltaics

The application of DFT in PV encompasses several critical aspects, including exciton dynamics,

charge transfer, and interfacial interactions. These elements are interconnected and collectively

influence the efficiency and reliability of PV devices. By employing DFT to investigate these

components, researchers can optimize material properties and device architectures, ultimately

enhancing energy conversion processes.

Upon photon absorption, excitons—bound states consisting of an excited electron and a cor-
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responding hole—are generated and diffuse toward the interface between donor and acceptor

materials, initiating the charge separation process. The dissociation of excitons plays a critical role

in determining the overall efficiency of photovoltaic devices, as the dynamics of excitons, including

their formation, migration, and dissociation, directly impact energy conversion efficiency69. DFT,

often combined with time-dependent DFT (TDDFT) or molecular dynamics (MD), can investigate

exciton dynamics by computing key excitonic properties, such as electron-hole binding energies

and exciton diffusion lengths, as well as by examining the effects of material morphology on

exciton transport70–74. For instance, DFT-1/2 was employed to optimize the crystal structures of

lead-free, quasi-2D perovskites Cs2ZnX (X = Cl4, Br2Cl2, I2Cl2), followed by band gap corrections

to address the typical bandgap underestimation in standard DFT.74 Additionally, DFT provided

the basis for constructing the tight-binding Hamiltonian used in the Bethe-Salpeter Equation to

calculate exciton binding energies and optical properties. The study found that the exciton binding

energy of Cs2PbI2Cl2 matched experimental data, and DFT calculations helped identify excitonic

effects, which are crucial for improving the optoelectronic properties and photovoltaic performance

of the perovskite materials.

The separation of charges, where an exciton dissociates into a free electron and a free hole within

a solar cell constitutes charge transfer (CT). In OPVs, this typically involves the dissociation of exci-

tons at the donor-acceptor interface, while in inorganic PV, free charge carriers are generated directly

from the semiconductor’s band structure. The efficiency of CT is crucial for the overall performance

of PV devices, as it affects energy conversion efficiency, device architecture, and long-term stability.

Optimizing CT processes enhances free carrier generation and minimizes recombination losses,

thereby advancing the efficiency and reliability of solar energy technologies. DFT facilitates the

calculation of energy levels, molecular orbital distributions, and the alignment of energy levels at
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interfaces. This allows for the simulation of interactions between donor and acceptor materials,

helping to identify optimal combinations and configurations that enhance effective charge transfer.

Specifically, Majeed et al.75 apply DFT to explore the electronic, optical, and CT properties of seven

newly designed molecules based on the indacenodithiophene core (IDTV-ThIC) to enhance the

photovoltaic performance of organic solar cells (OSCs). DFT was used to calculate the energy levels

of frontier orbitals (HOMO and LUMO), assess charge transfer efficiency through reorganization

energy, and predict optical properties such as absorption spectra and exciton binding energies. These

DFT calculations helped identify molecular modifications that improve charge mobility, enhance

charge separation, and lower energy gaps, thereby optimizing the electronic and optical properties

of the new IDTV-ThIC-based molecules for better photovoltaic performance in OSCs. The designed

molecules, particularly DT1 (1-dicyanomethylene-2-methylene-3-oxo-indan-5,6-dicarbonitrile),

DT4 (2-(6-Methylene-7-oxo-6,7- dihydro-1-thia-s-indacen-5-ylidene)-malononitrile), and DT5

(2-(1-Methylsulfanyl-6-oxo-5,6- dihydro-cyclopenta[c]thiophen-4-ylidene)-malononitrile), showed

improved charge mobility, lower exciton binding energy, and enhanced open-circuit voltage com-

pared to the reference IDTV-ThIC molecule.

Interfacial interactions are crucial for processes like charge transfer and exciton dissociation in

photovoltaic devices. These interactions at the electronic and chemical interfaces directly influence

charge separation and transfer, impacting the power conversion efficiency. DFT facilitates this

analysis by modeling the electronic structure of heterojunctions and assessing interfacial interac-

tions76–78. As an example, the study conducted by Ayoub and Lagowski76 have employed DFT

with the dispersion-corrected B97D3 to investigate the interfacial properties of polymer/fullerene

heterojunctions in OSCs. DFT was used to optimize the geometries of the polymer and fullerene

pairs, calculate their binding energies, and determine the electronic properties at the interface, such
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as LUMO and HOMO offsets. The results showed that optimal interfacial interactions, characterized

by a low LUMO offset and a high binding energy, enhance charge transfer and stability, which are

crucial for improving the performance and power conversion efficiency of OSCs. These findings

demonstrate that DFT calculations are effective in studying interfacial interactions, offering insights

that can guide the design of more efficient photovoltaic materials.

Through the integrated application of DFT across these three aspects- exciton dynamics, charge

transfer, and interface analysis- researchers can develop more efficient and durable photovoltaic

devices, paving the way for advancements in solar energy conversion.

1.3.2.3 Photocatalysis

In photocatalysis, DFT plays a critical role in examining the electronic structure of materials

(band structure) and in exploring how reactions occur on the surface of photocatalysts (surface

reaction mechanisms).

Band structure analysis focuses on the conduction and valence bands, which determine their

ability to absorb light and generate charge carriers (electrons and holes) essential for photocatalytic

reactions. By analyzing the band structure and electronic density of states, DFT helps optimize

photocatalysts of interest for enhanced photocatalytic performance in reactions such as water

splitting79–82 and organic pollutant degradation83–86. As an example, DFT has been applied to

study the electronic properties of novel metal-free photocatalysts like g-C3N4
87,88. In particular, Lin

et al. applied DFT to conduct band gap analysis, density of states (DOS), partial density of states

(PDOS), charge density difference, and work function calculations to investigate the photocatalytic

performance of C and B doped g-C3N4/TiO2 heterostructures80. The band gap, DOS and PDOS

analysis of g-C3N4/TiO2 heterostructures revealed that doping with C on the TiO2 (101) surface
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and B on the g-C3N4 monolayer effectively reduced the bandgap, enhancing light absorption and

making the material more suitable for visible-light-driven photocatalysis. The charge density

difference calculation demonstrated effective charge separation across the interface, with electrons

accumulating on TiO2 and holes on g-C3N4, preventing recombination. Finally, the work function

results indicated that the difference between the two materials generated an internal electric field,

further driving charge transfer and boosting photocatalytic efficiency.

Surface reaction mechanisms, which involve the adsorption, reaction, and desorption of reactants

on a photocatalyst’s surface, are critical for optimizing catalytic efficiency. DFT is applied to

model the adsorption energies and reaction pathways of reactants, offering insights into activation

energy barriers and identifying the most favorable reaction sites.84,89,90. For instance, DFT has

been employed to explore the electronic structures of TiO2-based, g-C3N4-based, and MOF/COF-

based photocatalysts to improve the photocatalytic reduction of CO2 to valuable products, such as

methane (CH4) and carbon monoxide (CO)90. Through DFT calculations, the adsorption energies

of CO2 on these photocatalysts were analyzed, revealing stronger adsorption at specific active

sites, which facilitates the capture and activation of CO2, key to initiate the reduction process.

DFT also calculated the reaction energy barriers for key intermediates, showing that doping and

surface modifications lowered these barriers, enhancing the conversion of CO2 into CH4 and

CO. Furthermore, DFT provided crucial insights into charge transfer mechanisms, demonstrating

efficient electron movement from the photocatalyst to the adsorbed CO2. This charge transfer

is essential for reducing electron-hole recombination, which typically hampers photocatalytic

efficiency. The DOS analysis further revealed how the electronic structure influenced reaction

dynamics. Collectively, DFT results highlighted strong CO2 adsorption, efficient charge transfer,

and lower energy barriers, leading to improved photocatalytic performance.
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These findings demonstrated that DFT effectively models surface reaction mechanisms, provid-

ing crucial insights into optimizing catalyst surfaces for improved photocatalytic CO2 reduction.

1.4 Theoretical Methods for Green Chemistry Applications

1.4.1 DFT Overview

DFT is a quantum mechanical method used in physics and chemistry to investigate the electronic

structure of many-body systems, particularly atoms, molecules, and condensed phases. Instead

of directly solving the many-body Schrödinger equation, DFT simplifies the problem by focusing

on the electron density, a function of only three spatial coordinates, rather than the wavefunction

with 3N coordinates needed for N electrons. This approach makes DFT computationally efficient

while providing accurate predictions of properties such as energy, structure, and reactivity. Widely

used in chemistry, materials science, and physics, DFT has become a fundamental tool for studying

complex systems and designing new materials.

1.4.1.1 Electronic Hamiltonian Derivation

The time-dependent Schrödinger equation (TDSE) is a fundamental equation in quantum

mechanics that describes how the quantum state of a system evolves over time. It accounts for

both spatial and temporal variations in the wavefunction (WF) Φ, providing a complete picture of a

system’s dynamics:

iℏ
∂

∂ t
Φ(R,r, t) = Ĥ(R,r)Φ(R,r, t) (1.1)

where Φ depends on the spatial coordinates of the electrons r, the spatial coordinates of the nuclei

R, and time t. TDSE states that a tiny change in the state of the system with time can be obtained
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by applying Hamiltonian Ĥ, the operator that represents the total energy, to the state. Ĥ, which

includes both electronic and nuclear contributions, is given as the sum of T̂ n, T̂ e, and Û(R,r) as

the kinetic energy of nuclei and electrons, and the potential energy of their Coulomb interactions,

respectively. This Coulomb interaction term is further expressed as the electron-nuclei interaction

Ûne, the electron-electron repulsion Ûee, and the nuclei-nuclei repulsion Ûnn

Ĥ = T̂ n + T̂ e +Û(R,r)
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where N is the number of electrons, M is the number of nuclei, Za and Ma are the charge and

mass of nucleus a. The solution to TDSE is the WF Φ(R, r, t), which describes how a quantum

system evolves over time. Φ(R, r, t) is essential for understanding time-dependent processes, such

as chemical reactions and quantum interactions, and allows for the analysis of systems under

time-varying conditions.

An effective strategy for addressing the TDSE is to decouple the spatial variables corresponding

to electronic and nuclear motions. This approach is based on the observation that electrons, being

much lighter and moving at much higher velocities, operate on a different timescale than the heavier,

more slowly moving nuclei. This allows us to treat the nuclei as stationary and simplifies the TDSE

into a time-independent Schrödinger equation (TISE) for the electrons, given by:

Ĥe ≡ T̂ e +Û(R,r)

Ĥeφ(r;R) =Vn(R)φ(r;R)

(1.3)

where Ĥe is the electronic Hamiltonian that describes the behavior of electrons in the field of frozen

nuclei. The electronic Hamiltonian plays a critical role in the foundation of DFT because it defines
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the quantum mechanical interactions among electrons and nuclei. The main task of DFT is to find

the eigenstates and eigenvalues of this Hamiltonian that determine the system’s energy levels and

electronic properties. As seen from Eq.(1.3), Ĥe still depends on the position of the nuclei but not

on their momenta, and electronic eigenvalues Vn(R), also known as potential energy surfaces (PES),

are dependent on the fixed nuclear coordinates R. With these electronic eigenstates determined,

the Born-Huang expansion91 is then introduced to account for the interaction between nuclear and

electronic motions, which time-dependent WF Φ(R,r, t) can be written exactly in terms of the

time-independent electronic WF φm(r;R) as:

Φ(R,r, t) =
∞

∑
m

φm(r;R)χm(R, t) (1.4)

Here, χm(R, t) denotes the expansion coefficients representing the nuclear WF, which encapsulate

information about how the nuclear positions change over time. Replacing the Born-Huang expansion

in the initial the TDSE allows for the electronic degrees of freedom to be eliminated, resulting in

only the nuclear wave functions being considered. This gives us the exact form of the TDSE for the

nuclear wave functions:

iℏ
∂

∂ t
χm(R, t) = Ĥχm(R, t)

=
[︂
∑
a

−ℏ2

2Ma
∇

2
a +Vm(R)

]︂
χm(R)+

+∑
n

[︂
∑
a

−ℏ2

2Ma

(︂
⟨φm|∇2

a|φn⟩+2⟨φm|∇a|φn⟩∇a

)︂]︂
χn(R, t)

(1.5)

In this equation, each nuclear component χm(R, t) changes in time under the influence of all other

components on different PES. The second term is called nonadiabatic term, couples different

electronic states and reflects how nuclear dynamics can involve transitions between electronic states

during time evolution. This nonadiabatic behavior indicates that the system may not remain in a

single electronic state but could transition to other states as it evolves.
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To further simplify the TDSE, Born-Oppenheimer approximation is applied. It assumes that

electrons adjust instantaneously to the positions of the moving nuclei, allowing for the nuclei to

be treated as moving in a fixed potential. This greatly reduces the complexity of the problem by

focusing on the nuclear dynamics and neglecting nonadiabatic coupling terms that would otherwise

account for transitions between different electronic states:

iℏ
∂

∂ t
χm(R, t) =

[︂
∑
a

−ℏ2

2MI
∇

2
a +Vm(R)

]︂
χm(R, t) (1.6)

The Born-Oppenheimer approximation is valid when electronic states are well-separated energet-

ically and the electronic Hamiltonian changes only slightly with nuclear positions. If electronic

states approach each other or if the Hamiltonian varies significantly, nonadiabatic effects become

important, requiring a more complex treatment beyond the Born-Oppenheimer approximation.

1.4.1.2 Hohenberg-Kohn Theorems

Formulated by Pierre Hohenberg and Walter Kohn in 1964, Hohenberg-Kohn (HK) theorems92

are pivotal in DFT. HK theorems offers a way to simplify this problem by showing that all the

ground-state properties of a many-electron system can be determined from its electron density ρ(r)

alone, rather than from the many-body WFs. ρ(r) describes the probability of finding electrons at

a particular point in space. It is computed by integrating over the spatial coordinates of all other

electrons and considering their spin:

ρ(r) = N
∫︂
· · ·

∫︂
|φGS(r,s1,r2,s2, . . . ,rN ,sN)|2 ds1,dr2 . . .drN ,dsN (1.7)

where N is the number of electrons, which can also be calculated from the electron density via

N =
∫︁

drρ(r) and φGS(r) is the ground-state electronic WF.
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The first HK theorem states that the ground-state energy of a many-electron system is a unique

functional of the electron density. This implies that ρ(r) completely determines the ground-state

properties of the system, including the external potential υext(r), the total number of electrons N,

and the total energy. Consequently, the ground-state energy can be expressed as a functional of the

electron density:

VGS ≡ EGS = E[ρ(r)] = T [ρ]+Vee[ρ]+Vne[ρ]

= T [ρ]+Vee[ρ]+
∫︂

ρ(r)υext(r)dr

= FHK[ρ]+
∫︂

ρ(r)υext(r)dr

(1.8)

where T [ρ] represents the electronic kinetic energy functional, Vee[ρ] denotes the electron-electron

interaction energy, and Vne[ρ] is the electron-nuclear attraction term. After separating E[ρ(r)]

into the dependent system parts, i.e., the potential energy due to the nuclei-electron attraction,

and the universally system independent parts (independent from N, Ra and Za), Eq.(1.8) groups

the system independent parts into a new quantity, the Hohenberg-Kohn functional FHK[ρ]. This

universal functional FHK[ρ] is central to DFT because if it were known exactly, it would solve the

Schrödinger equation exactly93. Even though the explicit forms of T [ρ] and Vee[ρ] functionals are

not known, we can at least determine the classical Coulomb interaction J[ρ], and the non-classical

term that contains all the effects of self-interaction correction, exchange and Coulomb correlation

(Eq.(1.9). The challenge of determining these functionals is a major focus of DFT research.

FHK[ρ] = T [ρ]+Vee[ρ] = T [ρ]+ J[ρ]+non-classical term (1.9)

The second HK theorem extends the variational principle to the electron density. It states that

the ground-state energy can be obtained by minimizing the energy functional with respect to the

electron density. Specifically, there exists an energy functional E[ρ̃] such that the exact ground-state
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density corresponds to the minimum of this functional. Thus, minimizing the energy functional

with respect to the electron density provides the ground-state energy and density of the system.

Mathematically, for a trial density ρ̃(r), such that ρ̃(r) ≥ 0 and
∫︁

ρ̃(r)dr = N, EGS ≤ E[ρ̃].

These theorems lay the groundwork for the practical implementation of DFT, as they guarantee

that the problem of finding the ground-state energy and density can be framed as an optimization

problem where the density is varied to minimize the energy functional.

1.4.1.3 Kohn-Sham Density Functional Theory (KS-DFT)

While the Hohenberg-Kohn theorems establish the theoretical basis for density functional

theory (DFT), they do not provide a practical method for computing the energy functional due to

the complexity of the unknown functionals, T [ρ] and Vee[ρ], which makes accurate computation

difficult in practice. To overcome this, Walter Kohn and Lu Jeu Sham introduced the Kohn-Sham

(KS) approach in 196594.

KS-DFT simplifies the problem by replacing the many-body system with an equivalent system

of non-interacting electrons through an effective potential VKS(r). This effective potential, which

includes the external potential and the contributions from the exchange-correlation functional, is

derived from the original electronic Hamiltonian and ensures that the resulting electron density

is consistent with the true interacting system. The resulting total energy functional is referred to

as the well-known orbital functional because it is expressed directly in terms of the Kohn-Sham

orbitals, φ∗i (r). The electron density is obtained from these orbitals and used to compute the energy

components:

EKS[ρ] = 2
N/2

∑
i=1

∫︂
φ
∗
i (r)

[︁
− ℏ2

2
∇

2
i
]︁
φi(r)dr+Eext [ρ]+ J[ρ]+EXC[ρ] (1.10)
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Although the kinetic energy obtained from the KS orbitals does not exactly match the true kinetic

energy of the interacting system, the discrepancy is much smaller than in orbital-free methods. In

the KS framework, any error in the kinetic energy is compensated by the non-classical part of the

exchange-correlation function.

The Euler-Lagrange method of variations is used in KS-DFT to minimize the ground-state

energy functional under the orthonormality constraint for KS orbitals. By introducing Lagrange

multipliers to enforce this constraint, the minimization process leads to the well-known one-electron

KS equations

[︂
− ℏ2

2
∇

2
i +VKS(r)

]︂
ψ j(r) = ε jψ j(r)

VKS(r) =
∫︂

ρ(r′)
|r− r′|dr′+υext(r)+

δEXC

δρ

(1.11)

For a given approximation of the explicit density functional EXC[ρ], the XC potential υxc(r) =

δEXC
δρ

can be computed analytically. This potential is a key component in the KS equations, governing

the interaction among electrons within the system. To find the ground-state electron density, the KS

equations are solved using a self-consistent field (SCF) procedure. This iterative process involves

starting with an initial guess for the electron density, calculating the effective potential, solving the

resulting KS equations for the orbitals, and then updating the electron density. The cycle is repeated

until the electron density converges to a self-consistent solution, providing an accurate description

of the system’s ground-state properties.

1.4.2 Exchange-Correlation (XC) Functionals

The last key component in DFT is the exchange-correlation (XC) functional, υxc(r), introduced

in Eq.(1.11). Defined as the functional derivative of EXC[ρ] with respect to ρ(r), XC functionals
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include the exchange energy due to the Pauli exclusion principle and the correlation energy arising

from the dynamic, non-mean-field interactions among electrons. An accurate υxc(r) ensures that the

computed electron density closely resembles the true density of the interacting system, leading to

reliable predictions of molecular and material properties. Since the exact form of the XC functional

is unknown, various approximations, such as the local density approximation (LDA), generalized

gradient approximation (GGA), and hybrid functionals, are employed to approximate it. Generally,

the XC energy functional is the sum of the exchange energy EX [ρ] and the correlation energy EC[ρ]:

EXC[ρ] = EX [ρ]+EC[ρ] =
∫︂

ρ(r)εX(r)dr+
∫︂

ρ(r)εC(r)dr (1.12)

where ε is the energy density corresponding to the exchange and correlation energies.

1.4.2.1 Local Density Approximation (LDA)

The LDA originates from early studies by Thomas, Fermi, and Dirac on the homogeneous

electron gas in the 1920s95. In LDA, the XC energy at each point in space is assumed to depend

solely on the local electron density. Hence, in an inhomogeneous system, the functional could be

approximated as an integral over a local function of the charge density, with the exchange energy

being:

EX [ρ]
LDA =−CX

∫︂
ρ

4/3(r) (1.13)

where CX = 3
4

(︂
3
π

)︂1/3
. The correlation energy, EC[ρ]

LDA, is generally derived from quantum Monte

Carlo simulations96–99 of the homogeneous electron gas and is parameterized as a function of the

local density. The simplicity and computational efficiency of LDA make it effective for systems

with slowly varying densities, like bulk metals. Yet, its assumption of a uniform electron gas can
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lead to inaccuracies for systems with significant density inhomogeneities, such as molecules or

surfaces, leading to an overestimation of binding energies and bond strengths.

1.4.2.2 Generalized Gradient Approximation (GGA)

Beyond LDA, GGA functionals enhance accuracy by including the gradient of the electron

density, ∇ρ(r) which allows for a more precise treatment of systems with spatially varying densities.

The exchange component of a GGA functional is generally expressed as a refinement to the LDA

XC energy:

EGGA
X [ρ] =

∫︂
ρ(r)εLDA

X (r)FGGA
X (ρ,∇ρ)dr (1.14)

where FGGA
X (ρ,∇ρ) is generalized function that depends on both the local density and its gradient.

Two widely used GGA functionals are the PBE (Perdew-Burke-Ernzerhof)100,101 and BLYP

(Becke-Lee-Yang-Parr)102,103, both of which are applied in this thesis. PBE is a non-empirical

functional, derived from first principles, and is known for delivering reliable results across a wide

range of systems, including bulk materials, surfaces, and molecular complexes. It addresses the

overbinding issues characteristic of LDA, making it particularly effective for predicting bond

lengths, vibrational frequencies, and reaction energies. PBE refines the XC energy by incorporating

both the electron density and its gradient, which is typically expressed as:

EPBE
X [ρ] =

∫︂
ρ(r)εLDA

X (r)FPBE
X (s)dr (1.15)

with the enhancement factor FPBE
X (s) depends on the dimensionless reduced density gradient

s = |∇ρ(r)|
2(3π2)1/3ρ4/3(r) . The PBE correlation energy includes a gradient correction accounts for the

density gradient contributions to the correlation energy.
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On the other hand, the BLYP functional combines Becke’s exchange functional with the Lee-

Yang-Parr correlation functional. The Becke exchange introduces a gradient correction, while the

LYP correlation improves electron correlation treatment. Unlike PBE, BLYP is semi-empirical,

with parameters adjusted to fit experimental data. The BLYP XC energy is expressed as:

EBLY P
XC [ρ] = EBecke

X [ρ]+ELY P
C [ρ] (1.16)

This functional is particularly effective for molecular systems, offering enhancements in the calcu-

lation of molecular geometries, dipole moments, and energy barriers. However, it may encounter

limitations in capturing significant dispersion interactions, which are not fully addressed by the

GGA approach. While GGAs generally offer enhanced precision over LDA for molecular systems

and chemical reactions, they can still face challenges with certain properties, particularly long-range

van der Waals interactions.

To enhance the accuracy of the GGA approach, one can incorporate additional elements such as

the second derivative of the density, as seen in meta-GGA functionals104. Another improvement

comes from hybrid-GGA functionals105,106, which include exact exchange terms from Hartree-Fock

(HF) theory. Additionally, Generalized RPA methods107–109 use data from both occupied and

virtual orbitals to achieve greater precision.

1.4.2.3 Hybrid Functionals

To improve the description of electronic interactions, hybrid functionals, also called adiabatic

connection method (ACM) functionals, blend a portion of exact HF exchange energy EHF
XC with the

XC energy derived from a GGA or meta-GGA functional, EDFT
XC [ρ]. This approach often yields

improved accuracy for a wide range of systems, including molecules and solids. The general form
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of a hybrid functional can be expressed as:

Ehybrid
XC [ρ] = (1−α)EDFT

XC [ρ]+αEHF
XC

= (1−α)EDFT
XC [ρ]−α

N/2

∑
i=1

N/2

∑
j=1

∫︂ ∫︂
ψ∗i (r)ψ j(r)ψ∗j (r′)ψi(r′)

|r− r′| drdr′
(1.17)

where α represents the fraction of exact exchange included.

Among the hybrid functionals, the Heyd-Scuseria-Ernzerhof (HSE) family105,106, used in this

thesis, stands out for its ability to balance accuracy with computational efficiency. HSE functionals

improve upon conventional GGAs by incorporating a range-separated Coulomb potential that

divides the exchange interaction into short-range and long-range components. Exact exchange

(25%) is applied only to the short-range part, while the long-range interactions are managed by a

GGA exchange functional. This separation enhances the accuracy of long-range electron-electron

interactions while controlling computational costs. Particularly, the HSE06 functional is a variant

of the original HSE functional, with specific adjustments to improve its performance. The HSE06

functional offers improved results for electronic properties, including band gaps and transition

energies, compared to both the original HSE and standard GGAs. It is particularly noted for its

enhanced ability to accurately predict the electronic structure of systems with moderate to large

band gaps. HSE06 is widely used in the study of semiconductors, insulators, and complex materials

where precise electronic properties are crucial.

1.4.3 SCF Methods

The core of KS DFT is the self-consistent field (SCF) procedure, which aims to find the

electronic density by minimizing the total energy functional E[ρ] with respect to variations in the

one-electron orbitals ψi. Traditionally, this optimization enforces the orthogonality of one-electron
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orbitals, which is essential for maintaining the Pauli exclusion principle.

1.4.3.1 Diagonalization of the Hermitian Matrix

The most common approach to maintaining orthogonality during SCF optimization involves the

diagonalization of the KS matrix, known as the Roothaan-Hall equation. This method solves the

generalized eigenvalue problem:

HKSC = SCε (1.18)

where S is the overlap matrix, C is the matrix of molecular orbital (MO) coefficients (eigenvectors),

and ε is the diagonal matrix of orbital energies (eigenvalues). This approach ensures orthogonality

of the orbitals by construction, as the eigenvectors of the Hermitian Kohn-Sham (KS) matrix

are inherently orthogonal. However, diagonalizing the KS matrix is computationally intensive,

particularly for systems with a large number of basis functions, due to its cubic scaling with the size

of the basis set (O(N3)). For very large systems, iterative diagonalization techniques, such as the

Davidson110 or Lanczos methods111,112, density matrix methods113, sparse matrix techniques114,

and linear scaling methods115 are often employed to mitigate the computational burden by focusing

on the calculation of only the lowest eigenstates. Convergence issues can still arise with this

approach, but the rate of convergence may be enhanced by limiting the number of previous Fock

matrices used to calculate the DIIS coefficients in the DIIS schemes116–118. For systems with nearly

degenerate frontier orbitals119,120, the use of relaxed constraint algorithms121,122 in conjunction

with energy-based DIIS methods123–125 can alleviate the strict idempotency constraint within DIIS,

thereby improving SCF convergence.
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1.4.3.2 Unitary Transformation

Alternatively, unitary transformations are employed to vary orbitals while maintaining or-

thogonality. The procedure begins by orthogonalizing the initial orbitals using methods such as

Loewdin126 or Gram-Schmidt orthogonalization127. After this, the orbitals are updated in each

iteration using unitary transformations that inherently preserve orthogonality during the energy

minimization process. A unitary matrix U , satisfying U†U = I, ensuring that the transformation

preserves the inner products between vectors, thereby maintaining orthogonality and normalization.

While this approach allows for diagonalization-free Roothaan–Hall SCF optimization and direct

energy minimization with metric preservation, it is crucial to carefully parameterize the unitary

transformation matrix U . The success and stability of the SCF process are largely determined by the

specific parameterization method employed. Several methods for parameterizing unitary transfor-

mations in the SCF procedure include exponential parameterization, trigonometric parameterization,

and Cayley Parameterization.

In the exponential parameterization, Helgaker method128 is a well-known representative. Devel-

oped by Thomas Helgaker and his colleagues, the technique expresses the rotation of the MOs in

terms of an anti-Hermitian matrix X . The exponential of this anti-Hermitian matrix, is then used to

transform the orbitals, ensuring that they remain orthogonal by construction. Since the exponential

of an anti-Hermitian matrix is unitary, U = exp(−X), the transformation preserves the orthogonality

of the orbitals. This is a key advantage, as it eliminates the need for explicit orthogonalization steps

that are typically required in other methods. Similarly, geometric direct minimization (GDM)129

also employs the exponential parameterization of a unitary matrix U = exp(−X), where the anti-

Hermitian matrix X can be optimized independently to minimize the energy functional directly with
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respect to X . This approach facilitates smooth, differentiable optimization, making it suitable for

refining orbital configurations while maintaining orthogonality.

Trigonometric Parameterization is utilized in methods like orbital transformation (OT), where

the unitary matrix U is implicitly parameterized using sine and cosine functions of an update matrix

130. Specifically, U is defined as:

U = (xT Sx)1/2 (1.19)

and the orbital coefficients C(x) are given by C(x) = C0cos(U) + xU−1sin(U). Here, S is the

overlap matrix, x is a vector of coefficients related to the orbital coefficients C, and c0 is the

constant initial vector fulfilling. The transformation ensures that CT
0 SC0 = I for all choices of x,

confirming that the unitary transformation maintains the orthogonality of the orbitals. By using this

parameterization and transformation, OT facilitates the optimization of orbitals while preserving

orthogonality through the proper handling of the overlap matrix S and the introduction of new

variables x and U.

The Cayley parameterization reformulates the unitary matrix as U =(I−X)(I+X)−1 where X is

a skew-Hermitian matrix.This formulation simplifies the diagonalization of the KH Hamiltonian131

and is noted for its numerical stability and straightforward implementation. These attributes make it

particularly useful for iterative methods that require reliable convergence.

Despite these advancements, unitary transformation methods can introduce complexities in

gradient computations and additional constraints that complicate the minimization process129,130.

The parameterization can also make the minimization algorithm excessively complicated by intro-

ducing additional constraints130 or by limiting the method to the energy minimization with a fixed

KS Hamiltonian131. Moreover, methods that relax orthogonality constraints to optimize localized
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orbitals have been explored. While promising, these methods face challenges such as slower SCF

convergence and practical implementation issues132,133. These difficulties underscore the need for

continued development of SCF optimization techniques to effectively balance orthogonality and

locality constraints.

1.4.4 DFT for Excited States

Excited states are crucial in green chemistry, particularly for optimizing processes like pho-

tocatalysis and light-driven reactions, where electronic transitions are vital. These states are key

to designing efficient photocatalysts and improving light absorption in technologies related to

spectroscopy, chemical reactions, and material properties such as conductivity and luminescence

134. Since traditional DFT focuses on ground-state calculations, various extensions have been

developed to handle excited-state processes. This section reviews a selection of these methods.

1.4.4.1 TDDFT

One of the most widely used extensions of DFT for describing excited states is linear-response

time-dependent (TD) DFT. TDDFT builds on the foundation of KS-DFT to describe time-dependent

electronic excitations, offering a computationally efficient alternative to wave function-based

methods, particularly for larger systems with hundreds of atoms135.

TDDFT extends traditional DFT to dynamic systems by focusing on the time-dependent electron

density, which uniquely determines the external time-dependent potential and the governing Hamil-

tonian, as established by the Runge-Gross theorem136. Using KS formalism with a time-dependent

XC potential, TDDFT computes electron density and predicts dynamic properties such as excitation

energies and responses to external fields. It further employs time-dependent perturbation and
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linear response theories137 to model interactions and transitions between electronic states, offering

insights into dynamic behaviors and experimental observables like absorption and emission spectra.

TDDFT calculates excited state properties by analyzing the response of a ground-state den-

sity functional to time-dependent perturbations, such as an external electric field138. While the

method has been successful in predicting electronic excitation energies and properties, it does

have limitations. A major challenge in TDDFT lies in selecting appropriate XC functionals, as the

accuracy of TDDFT results heavily depends on this choice. Although TDDFT is, in principle, an

exact method136, it tends to neglect double and higher excitations when used with approximate

functionals. This limitation arises from its reliance on the adiabatic LDA approximation, which

assumes that nuclear positions remain fixed during the excitation process. Consequently, adiabatic

LDA is restricted to modeling single excitations and struggles with systems involving significant

changes in electron density distribution, such as long-range charge transfer, Rydberg states, and

core excitations135,138.

For long-range charge transfer excitations, where an electron is excited from a donor to a spatially

distant acceptor, TDDFT frequently underperforms due to the incorrect asymptotic behavior of

widely used XC functionals. Although hybrid functionals, which incorporate a fraction of exact

HF exchange, offer some improvement, they still struggle to fully capture the long-range nature of

these excitations.

A similar issue arises with Rydberg states, which involve excitations to highly diffuse orbitals

far from the nucleus. Standard XC functionals often underestimate the excitation energies of these

states because they fail to accurately describe the necessary long-range potential for diffuse electron

density.

Core excitations, which involve promoting electrons from tightly bound core orbitals to higher-
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energy virtual states, present additional challenges. Standard functionals are generally not suited to

model the localized, short-range nature of core orbitals, resulting in significant inaccuracies when

predicting core excitation energies. While approaches such as range-separated hybrid functionals

and the Tamm-Dancoff approximation (TDA)139 have been developed to mitigate these issues, they

often come with increased computational complexity, limiting their practicality in large systems.

1.4.4.2 ∆SCF

The ∆SCF method140–144 is a widely used approach to address some of the limitations associated

with TDDFT. It is an orbital-optimized (OO) DFT method that extends the ground-state formalism

to excited states by variationally optimizing orbitals, not only for the ground state but also for

excited states.

∆SCF treats the excited state as a single Slater determinant by solving KS equations for the

excited configuration. Excited states are constructed by promoting one or more electrons from

occupied orbitals to unoccupied (virtual) orbitals, thereby generating a new electron configuration.

The method then performs the SCF calculation on this new configuration to optimize the orbitals for

the excited state. Excitation energies are determined by computing the energy difference between

the ground and excited states, both obtained through separate SCF calculations. To ensure that the

system reaches self-consistency in the excited state, the occupations of higher-lying KS orbitals

are fixed during the optimization process. This variational treatment of both ground and excited

states allows ∆SCF to provide better description of various electronic excitations, particularly for

long-range charge transfer processes, compared to TDDFT.

However, ∆SCF is not without challenges. One major issue is the problem of variational

collapse, where the optimization process may converge to the ground state instead of the desired
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excited state. This problem is particularly pronounced in systems with multiple close-lying excited

states, where the method struggles to maintain the desired excitation. This occurs because ∆SCF is

an unconstrained optimization that lacks safeguards against collapsing back to the lowest energy

solution. Additionally, spin contamination can occur in excited states arising from closed-shell

ground states, resulting in mixtures of singlet, triplet, and higher-order spin states. Correcting for

this contamination is often necessary to obtain accurate excitation energies.

1.4.4.3 Orthogonality Constrained DFT (OCDFT)

Orthogonality constrained (OC) DFT is an alternative method developed to address the problem

of variational collapse in excited-state calculations145. This method prevents variational collapse

by enforcing orthogonality between the ground and excited state WF during optimization. The

process begins by generating an initial excited state guess, where electrons are promoted from an

occupied orbital (the "hole") to an virtual orbital. The orthogonality constraint is then introduced

by applying a projection operator that removes any overlap between the excited state and the

ground state occupied orbitals. After this orthogonality is established, the excited state orbitals

are allowed to relax and minimize their energy while maintaining this constraint. This approach

ensures the excited state remains accurate and does not collapse into the ground state during the

optimization. Additionally, spin-adaptation procedures are employed to correct errors in excitation

energies, enhancing the method’s accuracy for excited state calculations. Nevertheless, a notable

limitation of OCDFT is that the iterative solution of the modified eigenvector equations does not

always guarantee convergence, which can affect the reliability of the method. Furthermore, the

projector-based formalism, while effective for single excited states, becomes cumbersome when

extended to multiple excited states, limiting its scalability and practicality for larger systems with
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many excited states.

1.4.4.4 Maximum Overlap Method (MOM)

Another popular approaches designed to prevent variational collapse in ∆SCF calculations

are The Maximum Overlap Method (MOM)146 and its modified version, the Initial Maximum

Overlap Method (IMOM)147,148. These methods are commonly used in conjunction with Fock

matrix diagonalization techniques like DIIS to maintain convergence toward excited states rather

than defaulting to the ground state.

Instead of following the aufbau principle, where orbitals are filled in order of increasing energy,

MOM selects occupied orbitals at each SCF iteration by maximizing their overlap with those from

the previous cycle. This keeps the calculation focused on higher-energy excited states, avoiding a

collapse to the ground state. While the SCF algorithm remains mostly unchanged, MOM prioritizes

stationary points over energy minima to find excited-state solutions. Drawback of MOM, however,

is that it can sometimes converges to unintended solutions, particularly in systems with near-

degenerate orbitals. Besides, MOM does not always succeed in preventing the collapse to the

ground state, particularly in challenging systems. Two notable examples where MOM fails are the

2p→ 3p excitation in the boron atom and a Rydberg-like excitation in formaldehyde, where an

electron is promoted from the highest-energy oxygen lone-pair to a carbon 4py orbital149. In such

cases, MOM collapses back to the ground state, making it necessary to explore alternative solvers

for more robust performance.

On the other hand, IMOM improves upon MOM by preventing orbital drifting over successive

SCF iterations. Rather than maximizing overlap with the previous SCF cycle, IMOM maximizes

the overlap with the initial excited-state guess, ensuring the SCF process remains focused on the
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target state. This modification makes IMOM more reliable in complex systems, especially those

with near-degenerate orbitals where MOM may fail. Despite this enhancement, IMOM can exhibit

oscillatory behavior and fail to converge, particularly when small changes in orbital overlap cause

discontinuous ranking shifts. An example is the π to π∗ excitation in nitrobenzene, where IMOM

failed to converge even after 500 iterations149, likely due to its sensitivity to fluctuations in orbital

overlaps.

1.4.4.5 Square Gradient Minimization (SGM)

The square gradient minimization (SGM)149 method is a direct orbital optimization technique

designed to address the challenge of variational collapse, ensuring that the optimized excited

state is a true minimum rather than saddle points. SGM reformulates the problem by minimizing

the square of the energy gradient, ∆ = |∇
θ⃗

E|2, with respect to the orbital degree of freedom

θ⃗ (a mixture of occupied and virtual orbitals). This approach requires only the calculation of

energy gradients, making it more computationally feasible than methods that rely on higher-order

derivatives. By transforming the saddle-point search into a minimization problem, SGM achieves

stable convergence for challenging excited states, such as doubly excited or charge-transfer states,

which are often difficult to capture using conventional methods like TDDFT. SGM can be applied

to various quantum chemistry methods, including DFT, Møller-Plesset perturbation theory (MP2),

or coupled cluster doubles (CCD), making it a versatile approach.

Yet, the main disadvantage of SGM is that it is less well-conditioned than energy minimiza-

tion, requiring more iterations even with a preconditioner compared to ground-state optimiza-

tions—typically costing three times as much—due to its reliance on finite difference approxima-

tions149,150. Another shortcoming is that it may get “stuck” in local minima of ∆ that are not
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stationary points in E (∆ ̸= 0). Although practical solutions involve converging to the correct

state with a different functional and using the resulting orbitals as an improved initial guess for

∆ minimization, these challenges have not hindered the successful optimization of desired states.

They are unlikely to cause significant issues in practical applications.

Overall, the review underscores the need for a method that addresses key challenges in excited

state calculations. It is crucial to develop a method that not only prevents the collapse of excited

states to the ground state but also imposes minimal constraints to streamline the algorithm and

enhance its accuracy compared to TDDFT. In response to these needs, we present the method

introduced in Chapter 4, which aims to achieve these goals by offering a more robust and accurate

approach for excited state optimization.

As mentioned earlier, the methodological developments in this thesis are unified by their focus

on green chemistry, particularly in the computational modeling of electrons and atoms. In pursuit of

these objectives, this thesis adopts a multidisciplinary approach, integrating theoretical foundations

with computational innovations. The studies are presented across the next three distinct chapters.

Chapter 2 focuses on the development of carbon capture materials, specifically exploring the

CO2 adsorption mechanisms in cyclodextrin-derived MOF through DFT modeling and analysis of

experimental data. Chapter 3 introduces a simple approach to direct unconstrained optimization

of molecular orbital coefficients in DFT ground-state calculations, emphasizing the removal of

orbital orthogonality constraints. Chapter 4 extends this method to optimize excited states directly

using a self-consistent field approach in DFT. Together, these chapters illustrate how innovative

computational strategies can address several challenges in electronic structure modeling of excited

states, which of paramount importance in green photocatalytic and photochemitry processes. Finally,

the concluding chapter discusses the broader implications, challenges, and future directions derived
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from this work.
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Chapter 2

Unraveling the origins of strong and

reversible chemisorption of carbon dioxide

in a green metal-organic framework

2.1 Preface

The integration of green chemistry and computational chemistry is vital for advancing carbon

capture technologies. This chapter combines density functional theory modeling and experimental

data analysis to explore the diverse CO2 adsorption sites in CD-MOF-2, linking acid-base proton

equilibrium and hydrogen bonding to the strength of CO2 binding. These insights aim to guide the

design of advanced materials for efficient CO2 capture.

This chapter is reproduced from a published peer-reviewed article: Pham, H. D. M., Khaliullin,

R. Z. Unraveling the origins of strong and reversible chemisorption of carbon dioxide in a green

metal-organic framework. J. Phys. Chem. C 2021, 125 (44), 24719-24727.
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Strong reversible
-8 kJ/mol

Mildly impeding

-26.8

Strong irreversible

Assisting

Weak

Impeding

-56 kJ/mol
+27 kJ/mol

Strength of CO2 chemisorption

Hydrogen bonding assistance

2.2 Abstract

Cyclodextrin-derived metal-organic frameworks (MOFs) are remarkable not only because of

their ability to absorb carbon dioxide strongly and reversibly but also because they can be readily

obtained from inexpensive, renewable, and environmentally benign components. Despite the wealth

of data on the carbon dioxide intake by CD-MOF-2, a representative of these MOFs, the nature and

structural characteristics of its diverse adsorption sites, capable of binding CO2 in the irreversible,

reversible, and weak regimes, remains unclear. A comprehensive analysis of the results of the

density functional theory modeling performed in this work in conjunction with experimental data

shows that the hydroxyl counterions in CD-MOF-2 pull the protons away from the cyclodextrin

alcohol groups, increasing their nucleophilic strength and turning them into strongly binding

alkoxide chemisorption sites. At the same time, the diverse hydrogen bonding environments of the

alkoxide sites reduce their nucleophilic character to a different extent, tuning their CO2 binding to

become irreversible, reversible or weak. By linking the acid-base proton equilibrium and hydrogen
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bonding – two chemical concepts widely used for liquids – to the strength of the CO2 binding in

CD-MOF-2, this work suggests new strategies for advancing design of tunable solid materials for

CO2 capture or detection.

2.3 Introduction

Rising anthropogenic emission of carbon dioxide and the concomitant increase of the average

global temperature1 has created an urgent need to reduce the atmospheric levels of CO2 or at least

halt their rise2. Until long-term solutions to this challenge such as sunlight driven conversion

of CO2 into fuels reach maturity, carbon dioxide capture and storage (CCS) is envisioned as an

important short-term strategy to lower atmospheric CO2 concentration. During the capture step

of CCS, carbon dioxide from flue gas must be separated from other gases to create a high purity

CO2 stream that is sequestered in the subsequent storage step. The adsorption of carbon dioxide

followed by its release is proposed as one of the most reliable ways to capture CO2 selectively.

Therefore, low-cost environmentally benign materials capable of adsorbing large quantities of CO2

fast, selectively and reversibly are being actively sought3.

Physisorption of carbon dioxide – that is, CO2 binding through weak electrostatic, hydrophobic

or Van der Waals forces – has been extensively studied experimentally and computationally as a

promising carbon capture procedure4–8. Significant research effort has also been devoted to CO2

chemisorption – binding of carbon dioxide through stronger chemical bonds such as covalent, ionic

or metallic5,9–11. Because of the strong CO2 binding, chemisorption is viewed as an important

strategy to increase adsorption capacity of materials. However, carbon dioxide is often bound too

strongly in the process of chemisorption making its release difficult and thus energetically costly.
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High activation barriers of chemisorption reactions often make the absorption and release slow.

Fortunately, there is a variety of chemisorption reactions, the thermodynamics and kinetics of which

can be tuned to the desired range12–17.

Metal-organic frameworks (MOFs), long known for their ability to absorb large amount of gas

efficiently5,18,19, have recently been gaining attention as promising carbon capture materials20–24.

While most studies of carbon capture in MOFs have focused on CO2 physisorption, it has been

found that MOFs can bind carbon dioxide chemically. In this respect, a family of MOFs based on γ-

cyclodextrin25 are of particular interest not only because of their remarkable ability to absorb carbon

dioxide strongly and reversibly26 but also because they can be synthesized from green components27.

It has been reported that MOFs with body-centered cubic structure can be crystallized at ambient

temperature and pressure from the solution of γ-cyclodextrin (CD) and alkali halides in the mixture

of water and ethanol25 – substances that are inexpensive, renewable, environmentally benign

and even edible. X-ray diffraction has shown25 that the cubic unit cell of CD-MOF-2 – the γ-

cyclodextrin MOF obtained using Rb(OH) instead of halides – contains six CD units linked by

rubidium ions (Figure 2.1).

Initial gas-uptake experiments have indicated29,30 that the activated dry form of CD-MOF-2

– with empirical formula of the unit cell25,29,30 given by [(C6H10O5)8(RbOH)2]6 – absorbs CO2

with very high selectivity over CH4
26 and C2H2

29. Because of the steep rise of the CO2 adsorption

isotherm it has been suggested that CO2 forms strong covalent bonds with the adsorption sites

in this MOF. At the same time, the color of methyl red pH indicator diffused into the pores of

CD-MOF-2 has been found to change reversibly with the application and release of CO2 pressure,

indicating that the CO2 binding is also reversible26,31.

Subsequent calorimetry experiments have been used to measure the enthalpy of the CO2 adsorp-
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a) b) c)

Figure 2.1: (a) Cyclic arrangement of γ-cyclodextrin (CD) showing eight α-1,4-linked D-
glucopyranosyl residues with the primary alcohol groups colored red. (b) Repeating maltosyl
unit of CD with attached rubidium ions. (c) Cubic unit cell of CD-MOF-2 with carbon, oxygen, and
rubidium atoms shown with cyan, red, and pink colors, respectively. The primary faces of the six
CD tori point inward, whereas the secondary faces are oriented outward. The CD tori are connected
via rubidium cations, forming an extended crystal structure25,26,28.

tion directly28. They have revealed that, at near-zero coverage, CO2 is chemisorbed irreversibly

with the enthalpy of -113.5 kJ/mol, whereas at higher coverage, the binding becomes reversible and

the chemisorption enthalpy increases to -65.4 kJ/mol. At yet higher coverage, the weaker binding

with the enthalpy of -40.1 kJ/mol has been observed and attributed to physisorbed CO2.

With the accumulation of experimental data, it has been hypothesized26 that CO2 is chemisorbed

by reacting with weakly nucleophilic alcohol groups on the CD units and forming the alkylcarbonic

adduct. This hypothesis has been supported by 13C-NMR spectra of CD-MOF-2 that exhibit a new

158 ppm peak when exposed to CO2
26,32. The possibility of CO2 reacting with hydroxyl counterions

of CD-MOF-2 have been eliminated in control studies that use weakly basic fluoride counterions

in CD-MOF-2 but still exhibit the 158 ppm peak upon exposure to CO2. The reversibility of CO2

uptake has been suggested as further evidence that CO2 does not react with hydroxyl counterions
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since the latter process is known to be irreversible. It has also been speculated that more reactive

primary alcohol groups chemisorb CO2 stronger than the secondary groups26,33.

Despite the wealth of experimental data, there are multiple unanswered questions about the

microscopic mechanism of the CO2 binding in CD-MOF-2. One of the key questions is why alcohol

groups, which are known to be inert to CO2 in simple alcohols32, react with carbon dioxide in

CD-MOF-2. It is also unclear what is the atomistic structure of adsorption sites and, if CO2 is binds

exclusively to alcohol groups, why the adsorption enthalpy differs drastically for different sites.

With the enormous practical importance of strong and reversible CO2 binding, answering these

fundamental questions can help modify the chemistry of MOFs and help design better materials for

CCS and multiple other applications such as gas separation29,34, CO2 detection in gas mixtures31,

electrochemical sensing of CO2
35, and MOF-based memristors36,37.

In this work, atomistic modeling of CO2 binding in CD-MOF-2 was performed in order to

answer these questions and advance the fundamental understanding of CO2 chemisorption. While

computational methods has been widely used to design materials that utilize the physisorption

process in MOFs for CCS applications38–44, computational studies of chemisorption have been

limited16,17,45.

This is partially because the bond formation in chemisorption processes cannot be described with

traditional force field methods and typically requires more computationally demanding electronic

structure methods such as density functional theory (DFT).



64 CHAPTER 2. CO2 CHEMISORPTION IN CD-MOF-2

2.4 Computational models and methods

All calculations were performed using the DFT module of the CP2K software package46. The

dispersion corrected47 generalized gradient approximation of Becke and Lee-Yang-Parr (BLYP)48,49

was used as the exchange-correlation functional. In the dual Gaussian and plane-wave scheme

implemented in CP2K50, double-ζ valence basis set with one set of polarization functions (DZVP)51

and triple-ζ valence (TZV2P) with two set of polarization functions were used to represent atomic

orbitals of Rb atoms and all other atoms, respectively. A plane-wave cutoff of 300 Ry was used to

describe the electron density. Separable norm-conserving Goedecker-Teter-Hutter pseudopotentials

were used to describe the interactions between the valence electrons and ionic cores52,53. The

self-consistent field procedure was carried out using the direct minimization orbital transformation

approach54 with the kinetic preconditioner. For negatively charged unit cells, the calculations

were done with the positive neutralizing uniform background. Atomic positions of all atoms

were optimized using the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm until the

maximum force on atoms decreased below 0.00045 a.u.

A model of the unit cell of CD-MOF-2 was constructed using crystallographic data55 obtained

from the Cambridge Crystallographic Data Centre56. In order to reproduce partial site occupation,

rubidium cations were placed randomly in a half of the available crystallographic sites. Hydroxyl

counterions, the precise positions of which cannot be obtained in the X-ray diffraction experiments,

were coordinated on rubidium ions. Water molecules were removed in order to obtain a unit cell

with the stoichiometric formula [(C6H10O5)8(RbOH)2]6 that is in agreement with the composition

of the degassed CD-MOF-2 used in the CO2 adsorption experiments25,28 Atomic positions were

optimized with the lattice parameters fixed at their experimental values.
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In addition to performing simple geometry relaxation of the experimentally determined crystal

structure of CD-MOF-2, 2 ps constant volume constant temperature ab initio molecular dynamics

(AIMD) simulations were carried out at T = 400 K followed by the geometry optimization of the

last AIMD snapshot. This was done to allow the thermal motion in AIMD simulations to re-arrange

hydrogen bonds between the CD units of CD-MOF-2 and to produce more diverse adsorption

environments.

Adsorption of carbon dioxide in CD-MOF-2 was modeled by attaching a single CO2 molecule

to the oxygen atom of a pre-selected alcohol group in the unit cell. The initial position of the

CO2 group was generated in the internal coordinates (i.e. Z-matrix) relative to the adsorption

site. The oxygen binding site (O*) and its two preceding carbons (C*) from the oligosaccharide

were used as the three reference atoms to specify the CO2 internal coordinates. The initial bond

length between the carbon atom of CO2 and O* was set to 1.32 Å, whereas the C*O*C bond

angle and C*C*O*C dihedral angle were drawn randomly from the 125− 145◦ and 120− 360◦

ranges, respectively. In addition, the O*CO angle was set to 125◦, while the OCO angle of the

CO2 molecule was set to 110◦. These values were based on the structural experimental data for

carbonic acid, which is expected to be similar to the alkylcarbonic adduct. Initial configurations

with substantial interatomic overlap were rejected and the random structure generation was repeated

until a chemically reasonable adduct structure without bad interatomic contacts was obtained.

Based on the arguments outlined in Supporting Information, the enthalpy of adsorption was

approximated with the energy of adsorption.
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2.5 Results and discussion

Since the precise location of the hydrogen atoms at the adsorption sites is not known from

experiments25, different models for the location of the protons before and after CO2 adsorption

were examined. The results obtained for each model are discussed below.

2.5.1 Chemisorption on neutral alcohol groups

In the first model, CO2 molecule reacts with a neutral alcohol group. Upon adsorption, the proton

of the alcohol group is transferred to protonate the newly formed alkylcarbonic acid (Figure 2.2a).

The adsorption energies for several primary and secondary neutral alcohol groups are sum-

marized in Figure 2.3. All adsorption energies were found to be positive, lying between 28 and

115 kJ/mol. Since the entropy decreases in the adsorption process, it is clear that the formation of

alkycarbonic acid via the neutral model reaction has positive free energy and, therefore, cannot

proceed spontaneously contradicting experimental observations. The calculated values of the ad-

sorption energies are also in dramatic disagreement with the experimentally measured enthalpies of

adsorption lying between -114 and -40 kJ/mol.

Several attempts were made to search for alternative orientations of the alkylcarbonic group

that could be stabilized by nearby functional groups and produce more favorable CO2 binding.

In one approach, the alkylcarbonic groups were manually rotated to bring them closer to either

nearby alcohol groups or nearby counterions at rubidium atoms, with the expectation that newly

formed hydrogen bonds can stabilize the system. In another approach, constant volume constant

temperature AIMD simulations of the combined length of 2.5 ps were performed at T = 400 K in

order to allow thermal fluctuation to overcome low-lying energy barriers between local minima
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Figure 2.2: Model reactions for CO2 adsorption: (a) neutral alcohol groups, (b) alkoxide groups,
(c) counterion-bonded groups. Only a single maltosyl unit of γ-cyclodextrin is shown for clarity.
The proximity of the CO2 binding sites to the Rb ion in this simplified scheme might not correctly
reflect the distance between them in the MOF crystal structure.

and to generate new stable configurations in an unbiased way. In both cases, the geometry of

the newly generated structures was re-optimized and the adsorption energies were recomputed.

Several structures of the alkylcarbonic adducts with lower energy were found but the reduction in

the CO2 adsorption energy was 20.3 kJ/mol on average, bringing the lowest CO2 adsorption energy

from 28.2 to 13.3 kJ/mol. This additional stabilization is not sufficient to explain the range of the

experimentally measured adsorption enthalpies.

The positive adsorption energies calculated for neutral alcohol groups in CD-MOF-2 are not

unexpected. They are in agreement with a body of previous studies of the interaction between
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Figure 2.3: CO2 adsorption energy calculated for different model reactions at primary (red) and
secondary (black) binding sites. Filled shapes represent geometries generated using AIMD, whereas
empty shapes represent geometries obtained from the straightforward geometry optimization. The
corresponding numerical data is listed in Table 1.1 in Supporting Information.

CO2 and simple alcohols32,57. For example, 1H and 13C NMR studies of pressurized CO2 in pure

anhydrous liquid methanol did not produce any evidence of the insertion of CO2 into the O–H

bond of methanol32. The accompanying gas-phase DFT calculations32 showed that the standard

free energy of the methylcarbonic acid formation from CO2 and methanol is positive (41 kJ/mol)

even if solvation effects are taken into account with explicitly included methanol molecules and

a polarizable continuum model. Furthermore, the standard free energy of the methylcarbonic

acid formation from CO2 and methanol in the gas phase was measured to be 11 kJ/mol57. These

measurements and calculations indicate the methylcarbonic acid is thermodynamically less stable

than CO2 and methanol. In addition to the thermodynamics considerations, high free energy barriers

have been calculated for several pathways of the methylcarbonic acid formation from CO2 and

methanol32, suggesting that the process is expected to be very slow.

Despite a careful account of interactions between the chemisorbed CO2 and its environment,

the failure of neutral model to stabilize carbon dioxide in CD-MOF-2 implies that binding sites of
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different nature must be considered.

2.5.2 Chemisorption on alkoxide sites

To explain the strong binding of CO2, the nucleophilic strength of a binding site was increased

by removal of the proton of a selected alcohol group, producing an alkoxide site. Although it

is unclear whether these negatively charged groups exist in the real CD-MOF-2 framework, the

alkoxide adsorption model depicted in Figure 2.2b allows to estimate the maximum CO2 binding

ability of alcohol groups in CD-MOF-2. Furthermore, this simple model obviates the need of

addressing a question of the proton location and thus enables quick exploratory calculations.

Figure 2.3 shows that adsorption energies for multiple randomly selected primary and secondary

alkoxide sites are broadly distributed and negative. The strongest calculated binding energy

(-153 kJ/mol) is stronger than the experimentally measured enthalpy for irreversible chemisorption

(-114 kJ/mol), partially because of the known tendency of the employed exchange-correlation

functional to overestimate binding strength (Table 1.2)58,59. There are also multiple model sites

with the adsorption energy matching experimentally determined ranges for reversible chemisorption

(-65 kJ/mol) and physisorption (-40 kJ/mol)28. It appears that simple alkoxide sites are capable of

reproducing the range of the observed adsorption enthalpies and, therefore, can be considered as a

more realistic model of CO2 binding in CD-MOF-2 than neutral alcohol sites.

In addition to covering the range of experimentally measured interaction energies, the calcula-

tions imply that the weak CO2 binding previously classified as physisorption can be attributed to

weak chemisorption as well. Analysis of data in Figure 2.3 indicates that primary alkoxide sites bind

CO2 stronger (-67±38 kJ/mol) than secondary sites (-47±28 kJ/mol). However, the wide spread
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of energies indicates that both primary and secondary sites can be occupied by CO2 molecules,

contrary to the previous suggestion that it is mostly primary alcohol groups that interact with carbon

dioxide. It should be noted that the AIMD-generated structures of CD-MOF-2 exhibit the same

ability to bind CO2 as the structure obtained from the straightforward geometry optimization of the

experimentally determined CD-MOF-2 crystal structure.

2.5.3 Effect of the environment on CO2 adsorption

To understand the wide spread of the binding energies calculated using the alkoxide model,

we examined the effect of environment on the CO2 adsorption. It can be hypothesized that the

nearby alcohol groups is the primary factor affecting CO2 binding to the negatively charged sites.

In order to verify this hypothesis, the alcohol groups located less than 3 Å from the alkoxide site

were replaced by hydrogen atoms. The cutoff distance was chosen to eliminate moderate and strong

hydrogen bonding interaction between the alcohol groups and the alkylcabornic adduct. As shown

in Figure 2.4, the replacement of the alcohol groups with hydrogen atoms results in the substantial

increase in the CO2 binding strength for most of the adsorption sites. The average adsorption energy

drops from -58.2 kJ/mol for sites with alcohol neighbors to -108.5 kJ/mol for sites with hydrogen

neighbors. Moreover, the spread of adsorption energies decreased from 34.6 kJ/mol to 26.3 kJ/mol.

It was verified in a control calculation that replacing a distant alcohol group 8 Å from an alkoxide

site has a only small effect (5 kJ/mol) on the adsorption energy, as expected.

Further insight into the effect of alcohol groups on the CO2 binding strength was obtained by

replacing a single nearby alcohol group with a hydrogen atom. To quantify the effect of a nearby
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.

alcohol group (i) on the CO2 adsorption energy at a given adsorption site, quantity ∆∆E(i)
ads is defined

∆∆E(i)
ads = ∆Eads(C(i)–OH)−∆Eads(C(i)–H) (2.1)

as the difference between the initial adsorption energy ∆Eads(C(i)–OH) and the adsorption energy

after the substitution ∆Eads(C(i)–H). Positive values of ∆∆E(i)
ads indicate that neighbor (i) weakens

the CO2 binding because CO2 is bound more strongly after the replacement. In this case, the

typically negative adsorption energy decreases upon the replacement. Conversely, negative value of

∆∆E(i)
ads indicate that neighbor (i) strengthens the CO2 binding.

∆∆E(i)
ads values shown in Figure 2.5 for representative chemisorption sites indicate that nearby

alcohol groups have dramatically different effect on the CO2 binding. The differences can be

explained by analyzing hydrogen bonding patterns between the neighbors and the alkylcarbonic

adduct (Figure 2.5, left panels) and also between the neighbors and the pre-adsorption site (Fig-

ure 2.5, right panels). According to the hydrogen bonds formed by the neighbors, they can be
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Figure 2.5: Effect of replacing neighbor alcohol groups with hydrogen atoms on the CO2 binding
strength. The adsorption site and nearby alcohol groups are shown as spheres in the wireframe
MOF background. The CO2 carbon atom is green and the hydrogen atoms are yellow. Oxygen
atoms of the adsorption site and alkylcarbonic group are shown in purple, whereas oxygen atoms
of nearby alcohol groups are shown in red. Blue dash lines represent hydrogen bonds. Values of
∆∆E(i)

ads, defined in Eq. (2.1), are shown as red numbers. The CO2 adsorption energies before the
neighbor replacement are shown in grey fields.

logically divided into the following three categories.

In the first category, there are alcohol groups that form hydrogen bonds with the oxygen atom of

the adsorption site before and after the CO2 adsorption. Examples of these groups include neighbor

(3) of site 8 and and neighbor (4) of site 19 (Figure 2.5). Such neighbors tend to weaken the CO2

binding because the hydrogen bond in the pre-adsorption site is stronger than that in the post-

adsorption structure. The change in the strength of the hydrogen bond is due to the delocalization

of the negative charge over the oxygen atoms in the alkylcarbonic adduct. In other words, these
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neighbors decrease the nucleophilic strength of the adsorption site, making its interaction with CO2

weaker.

The second category includes alcohol groups that form hydrogen bonds with the oxygen

atom of the adsorption site before the CO2 adsorption and with the oxygen atom of CO2 in the

post-adsorption structure. Neighbor (2) of site 8 and neighbor (5) of site 19 in Figure 2.5 are

representatives of this category. The positive values of ∆∆E(i)
ads for these neighbors indicate that

the CO2 insertion disrupts a stronger hydrogen bond than the hydrogen bond being formed. As a

results, the neighbors in this category weaken the CO2 binding.

Alcohol groups in the third category form a hydrogen bond with the oxygen atom of CO2

exclusively in the post-adsorption alkylcarbonic structure. They make CO2 binding stronger. The

amount of the stabilization depends on the geometry of the hydrogen bond that is influenced by the

relative position of the bonded atoms (e.g. compare neighbors (1) and (4) of site 8 in Figure 2.5)

and the local configuration of the hydrogen bond network that extends to the next nearest neighbors.

It is interesting to note that the sum of individual neighbor effects (Figure 2.5) is not equal to

the combined effect of all neighbors (Figure 2.4). For example, the sum of effects of individual

neighbors on site 8 is 1.6 kJ/mol, while their combined effect is -29.5 kJ/mol. This non-additivity

emphasizes that the insertion CO2 disrupts a complex network of interacting hydrogen bonds in

CD-MOF-2 and the CO2 binding is determined to some extent by the cooperativity effects in this

network.

The influence of single nearby alcohol groups can also be illustrated on the example of three sites

that represent adsorption sites with strong (site 1), medium (site 7) and weak (site 26) CO2 binding

energies, each lying within the three ranges described in the calorimetric studies28 (Figure 2.6). As

expected, the strong CO2 chemisorption at site 1 is accompanied by the strong stabilizing effect
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Figure 2.6: Effect of replacing neighbor alcohol groups with hydrogen atoms on the CO2 binding
strength for sites that bind CO2 strongly (green), moderately (yellow) and weakly (red). Color
coding and labels are explained in the caption of Figure 2.5.

of the neighbor from the third category. Meanwhile, the sole neighbor of the moderately binding

site 7 belongs to the second category and exhibits only a minor destabilizing effect on the CO2

adsorption. Finally, the neighbor at site 26 belongs to the first category and weakens the CO2

adsorption dramatically. This case is a rather extreme example since the proton in the pre-adsorption

site is completely transferred to the alkoxide site, significantly reducing its nucleophilic properties

and CO2 binding ability.

Data in Figure 2.6 shows that the spread in the adsorption energies at the three sites is signifi-

cantly reduced upon the replacement of the neighbors – an example of the general “spread-reducing”

effect of the neighbor substitution seen in Figure 2.4. This indicates that unique hydrogen bonding

environments of adsorption sites are largely responsible for their ability to bind CO2 and for the

large spread in the experimentally measured binding enthalpies. Additionally, the quantitative

analysis of the hydrogen bonding suggests that the influence of nearby alcohol groups can only
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partially explain the spread in the binding strength. This is because the neighbor replacement does

not produce equally strong adsorption sites. Besides immediate neighbors, there are apparently

other factors that affect CO2 adsorption. One example of such factors might include the electrostatic

fields created by the MOF framework at the adsorption site.

The neighbor replacement experiment indicates that the CD-MOF-2 environment has the overall

weakening effect on the CO2 binding. The same effect can also be seen by comparing the strength

of the CO2 binding in CD-MOF-2 (Figure 2.3) and on the reference model sites with a minimal

interaction between the alkoxide group and its environment (i.e. “environment-free” reference

models): gas-phase methoxide (-169 kJ/mol), primary alkoxide sites on an amylose unit and a

γ-cyclodextrin torus (-113 kJ/mol and -84 kJ/mol, respectively).

2.5.4 Formation of active chemisorption sites

The success of the alkoxide model in reproducing the range of CO2 binding energies requires

an investigation of the mechanism of the formation of negatively charged alcohol groups.

One of many plausible pathways to form a negatively charged active site is to transfer the proton

of an alcohol group to a hydroxyl counterion – a site with strong basic properties. A series of

exploratory calculations reveals that proton transfer energies from an alcohol group to a counterion

range from -103 to 232 kJ/mol (see Table 1.3). This wide spread indicates that the proton transfer is

affected by the immediate surroundings of both the donor and acceptor sites, which is not surprising

in light of the discussion of environment effects on the CO2 adsorption energy. The presence of

very low negative energies demonstrates that the formation of negatively charged alcohol groups is

thermodynamically plausible if a proton is transferred to a hydroxyl counterion. At the same time,
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the range of calculated energies suggests that a quantitative description of the thermodynamics of

this long-range proton transfer and, therefore, the formation of adsorption sites requires extensive

studies employing AIMD, which are beyond the scope of this work and perhaps at the limit of

feasibility of modern high-cost AIMD methods.

An alternative to the long-range transfer of a proton is the local stabilization of the chemisorption

site by a freely floating hydroxyl counterion, that is, a counterion not directly bonded to a rubidium

cation (Figure 2.2c). Our calculations showed that some hydroxyl ions indeed detach from their

rubidium sites during geometry optimization and AIMD simulations. Therefore, freely floating

hydroxyls are expected to exist in CD-MOF-2 in noticeable concentrations. It was found that,

in 13 out of 17 considered counterion-bonded absorption sites (Figure 2.2c), the proton transfers

spontaneously from the alcohol group to the counterion with the formation of the alkoxide site

hydrogen-bonded to the water molecule. Because of the strong nucleophilic character of the alkoxide

group (see previous section), it is not surprising that the CO2 adsorption energies calculated for these

proton-transferred sites are negative and also cover the range of the experimental values (Figure 2.3).

It is remarkable that 3 out of the 17 counterion-bonded sites (i.e. sites 3, 5, and 22 in Figure 2.3),

which do not undergo any proton transfer, are still capable of binding CO2 although weakly. This

indicates that a mere presence of a hydrogen bond between the counterion and adsorption site

can create a CO2 binding site with sufficiently strong nucleophilic character. Another mechanism,

through which a nearby counterion can stabilize the chemisorbed CO2 molecule, is the proton

transfer from the alkylcarbonic acid to a nearby counterion. This transfer was indeed observed in

all 17 sites considered here.

Yet another possible mechanism of the formation of negatively charged adsorption sites is the

self-ionization of the network of hydrogen-bonded alcohol groups, in which one neutral alcohol
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group transfers its proton to another neutral alcohol group, creating an alkoxide site. The two-

picosecond 400 K AIMD simulation and multiple geometry optimizations performed in this work

did not produce such spontaneous self-ionization events. The only observed proton transfer occurred

to hydroxyl counterions. While these limited calculations do not eliminate the possibility of self-

ionization in the real CD-MOF-2 network, they imply that self-ionization is a less likely origin of

the adsorption sites than the proton transfer to hydroxyl counterions with strong basic properties.

2.5.5 Analysis of computational and experimental data

The collected DFT data implies that hydroxyl counterions play an important role in the formation

of alkoxide CO2 adsorption sites as shown in the counterion-bonded model in Figure 2.2c. While

the indirect participation of hydroxyl counterions has not been considered before, this hypothesis is

in agreement with all experimental studies of CO2 binding in CD-MOF-2.

First, calorimetry measurements28 suggest that less than 4.63 CO2 molecules are adsorbed

per unit cell of CD-MOF-2 at the pressure when all sites binding CO2 strongly and reversibly

are occupied. (see Supporting Information for details). First, experimental measurements of the

adsorbed CO2 volume26 and calorimetry measurements28 suggest that between RZK and 1.4 of CO2

molecules are adsorbed per unit cell of CD-MOF-2 at pressure under 1 torr and room temperature

(see Supporting Information for details). Since the number of adsorbed CO2 molecules is lower

than the number of hydroxyl anions in the unit cell (12 hydroxyl ions), experimental data suggests

that a sufficient number of hydroxyl anions is available to facilitate the adsorption of each CO2

molecule. Hence, the indirect participation of hydroxyl anions is consistent with this experimental

data.
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Second, the indirect participation of hydroxyl counterions in the CO2 binding is in agreement

with the 13C-NMR 158 ppm peak attributed to alkylcarbonic products26. It should also be mentioned

here that the DFT calculations alone cannot eliminate the possibility of the direct CO2 adsorption

on hydroxyl counterions because the calculated adsorption energy for these sites is found to be

around -94 kJ/mol, which is similar to the adsorption energies on alkoxide sites. The NMR data,

however, favors the model of indirect hydroxyl participation over the direct chemisorption on

hydroxyl anions.

Third, replacing hydroxyl counterions with weakly basic fluoride anions in computer models

still produces weak CO2 binding and therefore agrees with control experimental studies, in which

the fluoride-substituted CD-MOF-2 exhibits the same 158 ppm peak upon its exposure to CO2
25. It

is important to note that only 3 out of 8 fluoride-bonded adsorption sites (5, 12 and 18) have the

negative CO2 adsorption energy, ranging from -24 to -8 kJ/mol. The weak binding energy is not

surprising because the nucleophilic strength of fluoride-bonded adsorption sites is expected to be

much much lower than that of hydroxyl-bonded sites. However, even a few sites with chemisorbed

CO2 are sufficient to produce the NMR signature of alkylcarbonic structures.

2.6 Conclusions

DFT modeling was used to examine the nature of the CO2 adsorption sites in CD-MOF-2 – a

green MOF with a remarkable ability to chemisorb carbon dioxide strongly and reversibly. It was

found that the interaction of CO2 with neutral alcohol groups on γ-cyclodextrin units of CD-MOF-2

is thermodynamically prohibitive. In contrast, the CO2 adsorption on negatively charged alkoxide

groups was shown to occur spontaneously with the range of computed interaction energies matching
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those measured experimentally.

A comprehensive analysis of environment effects revealed that the strength of the CO2 binding is

largely determined by the hydrogen bonds formed by both the adsorption sites and the alkylcarbonic

adducts with the surrounding alcohol groups. It was demonstrated that the network of hydrogen

bonds between alcohol groups in CD-MOF-2 tends to reduce the nucleophilic character of alkoxide

adsorption sites, weakening the CO2 binding and making it reversible. The diversity of the hydrogen

bonding environments is also at the origins of the wide range of the adsorption energies measured

for this unique MOF.

The calculations suggest that a negative alkoxide site can form readily through the proton

transfer from an alcohol group to a freely-floating hydroxyl counterion. The formation of a strong

hydrogen bond between an alcohol group and a nearby hydroxyl counterion appears to be sufficient

to chemisorb CO2 weakly. Such indirect participation of hydroxyl counterions in the chemisorption

of CO2 was shown to be consistent with the available experimental data.

Remarkably, the calculations suggests both primary and secondary sites bind CO2 molecules,

contrary to the previous suggestion that it is mostly primary alcohol groups that interact with

carbon dioxide. The DFT data also suggests that the weak CO2 binding previously classified as

physisorption can also be attributed to weak chemisorption.

It should be noted that future computational studies aimed at a quantitative statistical description

of the CO2 binding in CD-MOF-2 should employ accelerated AIMD simulations in order to

determine the most favorable locations of protons within the complex network of hydrogen bonds

in this MOF. The utilization of hybrid density functionals can also improve the description of the

energetics of the CO2 binding. Unfortunately, such resource-demanding simulations are beyond the

capabilities of most computing platforms today.
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Several findings presented in this work have implications for advancing design of materials for

carbon capture and storage. By quantifying the influence of hydrogen bonds on the energetics of

the CO2 binding, this work allows to estimate to which extent the carbon intake can be manipulated

through hydrogen bonding. The importance of counterions for the CO2 binding in CD-MOF-2

suggests a new strategy to tune the strength of the CO2 chemisorption in similar “dual-agent”

binding systems containing an adsorption site and activating counterion. In addition to modifying

adsorption sites, changing the nature of activating agents can help to tune the CO2 binding strength

to the desired range.
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2.9 Supporting Information

2.9.1 Enthalpy of Adsorption

The adsorption of gas-phase CO2 molecules in the solid-state MOF is described by the following

reaction:

MOF(solid) + CO2(gas) ⇄ MOF-CO2(solid)

By definition, the enthalpy is equal to the sum of the internal energy and the pV term. In turn,

the internal energy is a sum of the electronic, rotational, translational, and vibrational terms. For

gas-phase molecules, the enthalpy is

H(gas) = E(electronic) +E(rot) +E(tran) +E(vib) + kBT

For solid-state systems, the rotational and translational degrees of freedom can be omitted:

H(solid) = E(electronic) +E(vib) + pV

Subtracting the enthalpy of the reagents from that of the product, the adsorption enthalpy is

∆H(ads) = ∆E(electronic) +∆E(rot) +∆E(tran) +∆E(vib)− kBT

where the pV terms for the two solid-state systems can be assumed to be equal due to only minor

differences in their bulk moduli. It can be further assumed that the change in the average vibrational

energy is small, ∆E(vib) = 0. Using the ideal-gas expressions for the enthalpy of CO2:

∆E(rot) =−E(rot)(CO2) =−3
2kBT

∆E(tran) =−E(tran)(CO2) =−3
2kBT

The final expression for the enthalpy of adsorption is
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∆H(ads) = ∆E(electronic)−4kBT

Since the adsorption experiments were performed at T = 298 K1,2, the 4kBT term is equal to

9.9 kJ/mol. This term is small compared to the adsorption energies reported in the experiments and

simulations. Furthermore, this term is of the same order of magnitude with error in the employed

exchange-correlation functional used to estimate adsorption energies. It is, therefore, neglected and

the enthalpy is approximated with the electronic energy of adsorption.

Adsorption site Adsorption energy for different adsorption models (∆E, kJ/mol)
Neutral Alkoxide Counterion-bonded Alkoxide: neighbors replaced

1 -153.4 -121.4
2 79.0 -116.6 -22.3 -117.0
3 -102.9 -22.5 -106.6
4 44.8 -100.3
5 64.7 -89.2 -45.3 -93.2
6 -85.1
7 -79.3 -90.8
8 -78.9 -108.4
9 115.3 -70.9 -92.9 -84.6

10 78.9 -64.4 4.9 -116.7
11 58.7 -55.8 -42.5 -91.4
12 50.7 -54.6 -116.6 -104.6
13 98.5 -48.8
14 -46.2 -24.4 -90.3
15 28.2 -45.9 -92.1 -114.4
16 -44.7
17 79.1 -41.4 -41.3 -87.9
18 79.9 -41.0 -101.0 -108.5
19 50.1 -39.3 -13.9 -187.4
20 -38.1 24.5 -93.4
21 80.1 -33.2 -32.9 -134.8
22 -30.0 -40.9 -147.6
23 -22.4
24 -15.9 -8.50 -98.4
25 -12.3 -74.3 -122.3
26 -7.0 -59.6

Table 2.1: CO2 adsorption energy calculated for different model reactions (Figure 1.2)
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2.9.2 Comparison of the CO2 Binding Strength Obtained with BLYP and

HSE06 Functionals

It is known that GGA exchange-correlation (XC) functionals, such as BLYP employed in our

work, underestimate the electronic band gap. This, in turn, leads to artificially stronger donor-

acceptor binding between two systems. Although hybrid functionals can improve the binding

energies, they are too costly to apply to the large unit cell of CD-MOF-2 that contains more

than 1,000 atoms. To demonstrate the extent of the overestimation, we performed hybrid DFT

calculations (HSE06 XC functional) on several simplified models utilized in our work, namely, gas-

phase methoxide, primary alkoxide sites on an amylose unit and a γ-cyclodextrin torus (Table 2.2).

Methoxide Primary alkoxide site γ-cyclodextrin torus
BLYP (GGA) -169 -113 -84

HSE06 (Hybrid) -140 -73 -46
∆ 29 40 37

Table 2.2: Comparison of the CO2 binding strength (kJ/mol) obtained with BLYP and HSE06
functionals.

Adsorption site Proton transfer energy, kJ/mol
2 -21.9
5 152
9 18.1

10 -20.9
11 62.5
12 8.0
15 232
17 32.0
18 -25.0
19 -102.6
21 217

Table 2.3: Energy of the proton transfer from the specified adsorption site to a randomly selected
hydroxyl counterion.



88 CHAPTER 2. CO2 CHEMISORPTION IN CD-MOF-2

2.9.3 Number of CO2 Molecules Adsorbed Per Unit Cell of CD-MOF-2

The number CO2 adsorbed CD-MOF-2 per unit cell of CD-MOF-2 was calculated using data

from gas-uptake measurements1,3 and direct calorimetry measurements2. The [(C6H10O5)8(RbOH)2]6
4,5

cubic unit cell of CD-MOF-2 has mass 9011.2 g/mol and size 31.079 Å.

Direct calorimetry measurements. The enthalpy of the CO2 uptake as a function of surface

coverage was directly measured in Ref.2. The CO2 surface coverage for the strong chemisorption

was reported to be approximately under 0.1 CO2/nm2. The surface area of CD-MOF-2 has been

measured to be 1030 m2/g2. Using this data, the number of CO2 molecules chemisorbed strongly

per gram of CD-MOF-2 is under 1.03×1020 CO2/g. Taking the mass of the unit cell into account,

the number of unit cells in 1 g of CD-MOF-2 is 6.68×1019 uc/g. The number of CO2 molecules

adsorbed irreversibly per one unit cell of CD-MOF-2 is under 1.54. The number of CO2 molecules

adsorbed strongly and reversibly per one unit cell of CD-MOF-2 is 3.09 (the corresponding coverage

interval is from 0.1 to 0.4 CO2/nm2).

Gas-uptake measurements. The CO2 adsorption isotherms measured at temperature of 298 K

show that 60 cm3 of CO2 are adsorbed per 1 g of CD-MOF-2 at the saturation pressure of 800 Torr3.

Assuming that CO2 can be described by the ideal gas law, the number of CO2 molecules per 1 g of

CD-MOF-2 is 1.55×1021 CO2/g. This yields 23.27 as the final number of CO2 molecules adsorbed

per unit cell of CD-MOF-2.
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Chapter 3

Direct unconstrained optimization of

molecular orbital coefficients in density

functional theory

3.1 Preface

Kohn–Sham density functional theory (KS DFT) is popular for its balance of accuracy and

computational efficiency. However, conventional SCF optimization is complicated by the need

to enforce orbital orthogonality. This chapter presents a variable-metric (VM) SCF approach that

removes this constraint, streamlining optimization and enabling more efficient, flexible solutions in

electronic structure calculations.

This chapter is reproduced from a published peer-reviewed article: Pham, H. D. M., Khaliullin,

R. Z. Direct Unconstrained Optimization of Molecular Orbital Coefficients in Density Functional

Theory. J. Chem. Theory Comput. 2024, 20, 18, 7936–7947.

90
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Variational optimization

+ maximize
determinant of overlap

3.2 Abstract

One-electron orbitals in Kohn-Sham density functional theory (DFT) are typically constrained

to be orthogonal during their variational optimization, leading to elaborate parameterization of the

orbitals and complicated optimization algorithms. This work shows that orbital optimization can

be performed with nonorthogonal orbitals if the DFT energy functional is augmented with a term

that penalizes linearly dependent states. This approach, called variable metric self-consistent field

(SCF) optimization, allows to use molecular orbital coefficients – natural descriptors of one-electron

orbitals – as independent variables in a direct unconstrained minimization, leading to very simple

closed-form expressions for the electronic gradient and Hessian. It is demonstrated that efficient

convergence of the variable metric SCF procedure can be achieved with a basic preconditioned

conjugate gradient algorithm for a variety of systems including challenging narrow gap systems and

spin-pure two-determinant states of singlet diradicals. This simple reformulation of the variational

procedure can be readily extended to electron correlation methods with multi-configuration states
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and to the optimization of excited-state orbitals.

3.3 Introduction

Kohn–Sham density functional theory (KS DFT) is the most popular electronic structure method

today because of its reasonably accurate description of electrons in molecules and materials at

moderate computational cost1,2. In KS DFT, the electron distribution is calculated by minimizing

the total energy functional with respect to variations of occupied one-electron orbitals.

Traditionally, the variational optimization of Kohn-Sham orbitals, known as the self-consistent

field (SCF) procedure, is formulated to keep one-electron orbitals orthogonal during the optimization.

The most common approach way to impose the orthogonality constraint is to recast the optimization

problem as the diagonalization of the Hermitian KS matrix, whose eigenvectors – the desired one-

electron orbitals – are then orthogonal by construction. Unfortunately, the iterative diagonalization-

based SCF can be slow and is not guaranteed to converge especially for systems with nearly

degenerate frontier orbitals3,4 even with sophisticated extrapolations schemes such as DIIS5–7. For

difficult cases, relaxed constrained algorithms8,9 and energy DIIS10–12 can be utilized to alleviate

the idempotency constraint within DIIS, thereby improving the SCF convergence.

Another widely utilized approach is to start with orthogonal orbitals and vary them iteration-by-

iteration using unitary transformations that preserve orbital orthogonality in the energy minimization

procedure. Although the convergence is guaranteed in such a direct metric-preserving energy

minimization, a special care must be taken to parameterize unitary transformations. For example,

geometric direct minimization method employs the exponential parameterization of a unitary

matrix U = exp(−X), where X is an anti-Hermitian matrix of parameters that can be optimized



3.3. INTRODUCTION 93

independently13. In the orbital transformation (OT) method the unitary matrix is expressed implicitly

as a sine and cosine function of an update matrix14. The diagonalization of the KS Hamiltonian

has also been reformulated via the Cayley paramerterization of a unitary matrix15. Unfortunately,

the complicated parameterizations of unitary transformations make it difficult to write simple

analytical expressions for the gradient of the KS energy with respect to variational parameters,

especially in a closed form13,14. The parameterization can also make the minimization algorithm

excessively complicated by introducing additional constraints14 or by limiting the method to the

energy minimization with a fixed KS Hamiltonian15.

Interestingly, the orbital orthogonality constraints have been relaxed altogether in a special class

of KS DFT methods designed to variationally optimize localized orbitals16–25. In such methods,

the orthogonality constraints are simply incompatible with the locality constraints16. Unfortunately,

problems of sluggish SCF optimization of localized nonorthogonal orbitals prevent widespread

adoption of these promising methods17,25–32. At the same time, the unconstrained optimization

of general (that is, nonlocalized) nonorthogonal orbitals has not been considered because of a

legitimate concern that the absence of locality constraints can result in linear dependencies between

the occupied orbitals in the SCF optimization. Such a “collapse” of the occupied subspace would

produce unphysical electronic states that violate the Pauli exclusion principle.

In this work, we introduce a simple SCF approach called variable-metric (VM) optimization

that replaces the orthogonality constraint with a weaker linear independence constraint. The latter

constraint is imposed on nonorthogonal orbitals via a single easy-to-compute penalty term added to

the energy functional. This approach allows us to use orbital coefficients as independent variational

parameters, to write simple mathematical expressions for the electronic energy gradient and second

derivative in a closed form, to reformulate the SCF procedure as a direct unconstrained optimization
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problem and, thus, to greatly expand the scope of algorithms that can be applied to the variational

optimization.

3.4 Methodology

For the sake of clarity, the main text of the article describes the variable-metric SCF method

for spin-restricted optimization of doubly-occupied orbitals of closed-shell systems. A generalized

approach for spin-unrestricted optimization (UKS), restricted open-shell optimization (ROSO), as

well as the ROKS optimization33,34 for the singlet diradical states is described in detail in Supporting

Information. The formalism presented here is currently limited to the Γ-point description of the

electronic states of periodic systems, since our intent is to apply it to large simulation cells.

3.4.1 Theory

To perform an unconstrained SCF optimization of occupied Kohn-Sham orbitals, we minimize

the loss functional Ω that contains the DFT energy term E generalized for nonorthogonal orbitals

and term Ωp that penalizes linearly dependent occupied orbitals

Ω≡ E +Ωp

Ωp ≡−2Cp lndet(σσ
−1
d )

(3.1)

where Cp > 0 is the positive penalty strength, σ is the overlap matrix for the occupied orbitals,

σd is the diagonal part of σ , and the factor of 2 accounts for the double occupation of orbitals in

closed-shell systems (equations for open-shell systems can be found in Supporting Information).

The determinant of σ in the penalty term is equal to the square of the volume of the multidimen-

sional parallelepiped spanned by the occupied orbitals. For non-zero orbitals, the determinant value
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is equal to zero only when orbitals are linearly dependent. σd is the orbital normalization factor

that ensures the determinant in the penalty functional does not exceed 1. With det(σσ
−1
d ) always

in the (0,1] interval, the logarithm function Ωp lies in (+∞,0], making the states with linearly

dependent orbitals (and with orbitals of zero length) inaccessible in the SCF procedure, if Cp > 0. A

similar penalty term was used to prevent orbital “collapse” during the localization of nonorthogonal

occupied and virtual orbitals35,36.

When written in terms of a finite number of basis set functions χµ(r), the trial nonorthogonal

Kohn-Sham orbitals φi(r) When written in terms of a finite number of basis set functions χµ(r), the

trial nonorthogonal Kohn-Sham orbitals φi(r)

φi(r) =
B

∑
µ

χµ(r)Tµi (3.2)

are completely specified by their expansion coefficients T , where B is the number of basis set

functions. The overlap matrix of occupied orbitals is a simple function of the expansion coefficients

σi j =
B

∑
µν

TµiSµνTν j (3.3)

where S is the overlap matrix of basis set functions Sµν =
∫︁

χµ(r)χν(r)dr.

The VM approach allows, first, to formulate the SCF procedure using expansion coefficients as

main independent variables and, second, to write the derivatives of the energy and penalty terms as

simple analytical closed-form functions of these variables.

The energy term can be computed from the density matrix 2Pµν using conventional DFT

algorithms, as long as the density matrix is evaluated taking into account the nonorthogonality of

the occupied orbitals

Pµν =
N

∑
i j

Tµi(σ
−1)i jTν j (3.4)
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where N is the number of doubly-occupied orbitals, Pµν is the projector onto the occupied subspace.

The KS DFT energy of a closed-shell system described within the Γ-point only approximation

is

E = 2
N

∑
µν

FµνPνµ −
1
2

∫︂ ∫︂
ρ(r)ρ(r′)
|r− r′| drdr′+Exc−

∫︂
υXC(r)ρ(r)dr (3.5)

where F is the Kohn-Sham Hamiltonian, Exc is the exchange-correlation energy functional of the

electron density

ρ(r) = 2
N

∑
i j=1

φ
∗
i (r)(σ

−1)i jφ j(r) =

= 2
B

∑
µν=1

χ
∗
µ(r)Pµν χν(r)

(3.6)

Eq. (4.16) shows that the Kohn-Sham energy is completely determined by the projector onto the

occupied subspace P, which is invariant to any non-singular transformation of nonorthogonal orbitals

within the occupied subspace. Therefore, the energy is also invariant to such transformations. This

energy invariance is a generalization of the better known invariance to the unitary transformation of

orthogonormalized occupied orbitals.

The energy gradient with respect to Tµi can be evaluated using the chain rule (see Supporting

Information):

GE
µi ≡

∂E
∂Tµi

=
B

∑
λν

∂E
∂Pλν

∂Pλν

∂Tµi
=

= 4[(I−SP)FT σ
−1]µi

(3.7)

It is easy to see that the derived energy gradient is simply the virtual-occupied block of the KS

Hamiltonian, post-multiplied by the inverse of the orbital overlap matrix that keeps the equations

tensorially consistent37.



3.4. METHODOLOGY 97

The second derivative of the energy – the electronic Hessian – can also be evaluated analytically

∂ 2E
∂Tν j∂Tµi

=
∂GE

µi

∂Tν j

= 4
{︂
[(I−SP)F(I−PS)]

µν
(σ−1) ji− (S−SPS)µν(σ

−1T †FT σ
−1) ji

}︂
−

−
[︂
(ST σ

−1)µ jGE
ν i−GE

µ j(ST σ
−1)ν i

]︂
+4

N

∑
λγ

(I−SP)µλ

∂Fλγ

∂Tν j
(T σ

−1)γi

(3.8)

In this proof of concept work, we do not employ the exact Hessian and show instead that an efficient

SCF algorithm can be designed based on an approximate Hessian that is much easier to invert (see

below).

The first and second derivatives of the penalty term Ωp can also be evaluated analytically (see

Supporting Information) and computed readily

GP
µi ≡

∂Ωp

∂Tµi
=−4Cp[ST (σ−1−σ

−1
d )]µi (3.9)

∂ 2Ωp

∂Tν j∂Tµi
=

∂GP
µi

∂Tν j
=−4Cp[(S−SPS)µν(σ

−1) ji−

− (ST σ
−1)µ j(ST σ

−1)ν i−δi jSµν(σ
−1
d )ii+

+2δi j(ST σ
−1
d )µi(ST σ

−1
d )ν i]

(3.10)

where δi j is the Kronecker delta.

3.4.2 Optimization Algorithm

The absence of the orthogonality constraints (and any other constraints) allows MO coefficients

to be used as the main variable in a direct unconstrained optimization. Reformulating SCF as an

unconstrained optimization problem is an advantage because there exist multiple general, simple and

efficient algorithms to solve such problems38. Here, we demonstrate that the newly introduced VM
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SCF approach is efficient even when the basic preconditioned conjugate gradient (PCG) algorithm

for nonlinear problems39 is employed.

The rate of convergence of a PCG algorithm can be significantly improved by utilizing a

properly designed preconditioner that provides the information beyond the first order derivative.

The preconditioners considered in this work are obtained from the first two terms of the electronic

Hessian in Eq. (3.8), which remain dominant throughout SCF

∂ 2E
∂Tν j∂Tµi

≈ 4
[︂
(Q†FQ)µν(σ

−1) ji− − (Q†SQ)µν(σ
−1T †FT σ

−1) ji

]︂
(3.11)

where Q ≡ (I − PS) is the contravariant-covariant matrix of the projection operator onto the

unoccupied (virtual) subspace. The two µν terms contain the virtual-virtual block of the Kohn-

Sham Hamiltonian Q†FQ and the overlap of the basis set functions projected on the virtual

subspace Q†SQ = S−SPS. The two i j terms contain the occupied-occupied block of the Kohn-

Sham Hamiltonian σ−1T †FT σ−1 and the overlap occupied orbitals σ−1, both in the contravariant

form, satisfying the tensor consistency rules37.

To obtain a simple easy-to-invert preconditioner, the occupied blocks of the approximate Hessian

in Eq. (3.11) are replaced with diagonal matrices. The contravariant metric in the occupied space

is replaced with the identity matrix σ−1 ≈ I, which would be exact in case of orthogonal orbitals.

The contravariant occupied-occupied block of the Hamiltonian would be equal to the diagonal

N×N matrix of occupied orbital energies in case of canonical orbitals, but it is simplified even

further to σ−1T †FT σ−1 ≈ −|εHOMO|I, where εHOMO can be interpreted as the average energy

of the occupied frontier orbitals or simply as the HOMO energy. The use of these two identity

matrices for the occupied blocks allows to compute a common preconditioner for all occupied
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orbitals, greatly reducing the computational cost of the procedure.

Hµν = 4
[︃(︂

Q†FQ
)︂

µν
+ |εHOMO|

(︂
Q†SQ

)︂
µν

]︃
(3.12)

We further explored the possibility of replacing the virtual projector Q with identity matrices.

This approximation will produce positive definite preconditioners that can be inverted using the

Cholesky decomposition that is more efficient than the more general diagonalization-based pseudo-

inversion of positive semidefinite matrices. Finally, a regularization parameter 0 < κ < 1 is

introduced into the preconditioner, so one is able to increase the weight of the overlap term and

thus deal with ill-conditioned electronic structure problems. Taking into account all approximations

and modifications of the Hessian, the family of preconditioners employed with the PCG algorithm

in this work can be written as

Hµν = 4
[︃
(1−κ)

(︂
A†FA

)︂
µν

+κ|εHOMO|
(︂

D†SD
)︂

µν

]︃
=

= 4
[︃(︃

1− ε

|εHOMO|

)︃(︂
A†FA

)︂
µν

+ ε

(︂
D†SD

)︂
µν

]︃ (3.13)

where matrices A and D can be set to Q, I or zero and where ε ≡ κ|εHOMO| is used as a combined

regularization parameter expressed in the units of energy.

The preconditioner expression can be further simplified to gain additional insight into its physical

meaning. If it is assumed that both occupied and virtual subspaces are spanned by canonical orbitals,

which are orthogonal by definition, the approximate Hessian in Eq. (3.12) reduces to

∂ 2E
∂Tν j∂Tµi

≈ 4
[︁
εµδµνδ ji−δµνδ jiεi

]︁
(3.14)

where εi and εµ are orbital energies of occupied and projected virtual orbitals (with N virtual

energies being zero), respectively. The inverted Hessian for an occupied-virtual pair µi is then

proportional to the inverted energy gap between the orbitals 4−1(εµ − εi)
−1. Since the rate of SCF
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convergence is determined by the energies of the frontier orbitals, the occupied and virtual energies

can be replaced by the HOMO and LUMO energies, with the preconditioner reduced to the estimate

of the HOMO-LUMO gap

Hµν ≈ 4δµν [εLUMO− εHOMO] = 4δµνεGAP (3.15)

The representation of the virtual µν blocks in Eqs. (3.14) and (3.15) is oversimplified and they

are not used in VM SCF. These equations are shown only to make the physical meaning of the

preconditioner clearer.

For large systems, the computational cost of the variable-metric PCG algorithm is dominated

by the inversion of the preconditioner H that has O(B3) computational complexity, where B is

the number of basis set functions. Thus, the cost of the optimization is expected to be similar to

the other orbital-based SCF algorithms such as orbital transformation14. In orbital-based direct

optimization, the preconditioner inversion is performed only a few times (Figure 3.1). Only a single

inversion is typically required in simple cases of closed-shell systems that do not contain elements

beyond the third row of the periodic table. This makes orbital-based approaches more efficient

for large systems compared to the methods based on the diagonalization or density matrices, in

which the O(B3) operations are required on each SCF iteration. It should be noted in passing that

O(B3) operations in all methods are performed with sparse matrices and, therefore, their cost can

be reduced to O(B) if appropriate sparse-matrix libraries are employed. We have not attempted to

do so in this work.

Apart from the O(B3) inversion of the sparse preconditioner, the routine operations of the VM

PCG algorithm have O(B2N) complexity, where N is the number of electrons (orbitals) that is

typically an order of magnitude lower than B. The added cost of handling nonorthogonal MOs is
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minor: O(B2N) to compute the orbital overlap σ in Eq. (3.3) and O(N3) to invert it.

The determinant of the overlap matrix σ can be computed via its LU decomposition at O(N3)

cost. Alternatively, a linear scaling algorithm (with a higher prefactor) can be used if molecular

orbitals are localized. In such a linear scaling algorithm, the logarithm of the determinant of the

symmetric positive definite overlap matrix σ is computed using the trace of the matrix logarithm

via Mercator series

lndet(σ) = ln [det(s)det(I +X)det(s)] ,

lndet(I +X) = Trln [I +X ] ,

ln [I +X ] = X− 1
2

X2 +
1
3

X3− 1
4

X4 + . . .

(3.16)

where s = [diag(σ)]1/2. The series converges only if ∥X∥F < 1. If it is not the case, the square

root of I +X is computed recursively until the norm requirement is satisfied. The advantage of this

algorithm is that relies exclusively on matrix-matrix multiplication and can be readily implemented

using any matrix library. Its computational cost grows linearly with N for sparse overlap matrices

of localized orbitals and cubically for dense matrices.

3.4.3 Penalty Strength

Since the projector onto the occupied subspace and, consequently, the Kohn-Sham energy are

invariant to the choice of the occupied orbitals that span the subspace, there exist many sets of

occupied orbitals that correspond to the variationally optimal projector. The main goal of the SCF

procedure is to determine this variationally optimal projector, whereas any set of occupied orbitals

that span this optimal subspace are considered a proper solution to the SCF problem. The definition

of the penalty term shows that, for the optimal projector, different sets of orbitals will have different
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– not necessarily optimal – values of the penalty term. This means that the penalty term does not

have to be fully minimized in the SCF procedure as long the energy is minimized and the occupied

orbitals are linearly independent (Ωp < ∞). Thus, the main goal of adding the penalty term to the

energy functional is to steer the optimization away from the unphysical linearly dependent orbitals.

This goal can be achieved with any finite penalty strength Cp > 0. In other words, Cp does not have

to be determined precisely because it does not affect the final energy.

From the practical perspective, it is reasonable to impose the following conditions on Cp.

First, its value has to be sufficiently large to keep the orbitals linearly independent and ensure the

numerical stability of the algorithm, such as the σ inversion. Second, Cp should be sufficiently

small so to not make the penalty term dominate the energy term. In a case of extremely large Cp,

the optimization procedure will simply orthogonalize the orbitals without minimizing the energy

functional. Multiple numerical tests described below confirm that there is a wide range of Cp values

spanning many orders of magnitude in which the SCF optimization is both efficient and stable.

We implemented the following simple procedure to keep Cp in the practically acceptable range.

We start with a very small Cp value and update it by adding the gradient of the loss functional with

respect to Cp, in the spirit of a general method for finding stationary points of the Lagrangian40.

∂Ω

∂Cp
=−2lndet(σσ

−1
d )> 0

Cp←Cp +
∂Ω

∂Cp

(3.17)

Unlike the general method in Ref.40, we do not update Cp in order to find the minimum of the loss

functional with respect to Cp. Instead, we simply ensure that Cp is sufficiently large to ensure linear

independence of the orbitals. Since the gradient in Eq. (3.17) is larger than or equal to zero, the

value of Cp can only increase in this procedure. The increase will be very moderate if the orbitals
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are already nearly orthogonal with the normalized determinant of their overlap – det(σσ
−1
d ) in

Eq. (3.17) – only slightly smaller than 1. In contrast, the Cp increase will be significant if the

deviation from the orthogonality is large. To avoid too large of an increase in Cp the update is

limited to a trust-radius of 0.1 a.u.

We chose to implement the Cp adjustment as an outer loop to the PCG optimization of the

orbital coefficients T , as shown in the pseudo-code in Figure 3.1. That is, the Cp value is kept fixed

while the loss functional is minimized iteratively with respect to T . After the T optimization is

converged, the Cp value is adjusted if necessary.

3.4.4 Variable-metric Optimization for Open-shell Systems

In the unrestricted Kohn-Sham (UKS) method, molecular orbital coefficients for different

spins are optimized independently and the generalization of the VM SCF is straightforward (see

Supporting Information). In the (rarely-used) restricted open-shell formulation of DFT, some of

molecular orbitals are doubly-occupied and some molecular orbitals are singly occupied. In our

formulation, the singly occupied molecular orbitals can be occupied with spin-up and spin-down

electrons, in contrast to the conventional formulation where only spin-up electrons are unpaired.

This generalization is introduced to allow for the description of singlet diradicals (below) and to

make this formulation suitable for excited state calculations that will be described in the upcoming

work. We call this formulation restricted open-shell optimization (ROSO) to distinguish it from

restricted open-shell Kohn-Sham DFT (ROKS).

Restricted open-shell KS DFT (ROKS) is a method designed to describe singlet diradicals33,34,

that is, electronic states with a single unpaired spin-up electron, a single unpaired spin-down
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1: Input T ▷ Initial guess for MO coefficients
2: Input Cp← 10−5 a.u. ▷ Initial penalty strength
3: Input N > 0 ▷ Number of steps in the Cp loop
4: Input ε1 ▷ SCF convergence threshold
5: Input ε0 > ε1 ▷ Initial loose SCF threshold
6: for k = 1, . . . ,N do ▷ Loop to change Cp
7: if N > 1 then

8: εSCF← ε0

(︂
ε1
ε0

)︂ k−1
N−1

▷ Current SCF threshold
9: else

10: εSCF← ε1
11: end if
12: StopSCF← False ▷ Flag to exit the SCF loop
13: iSCF← 0 ▷ SCF iteration counter
14: repeat ▷ Fixed-penalty SCF loop
15: iSCF← iSCF +1
16: Ωp←−2Cp lndet(σσ

−1
d ) ▷ Penalty: Eq. (3.1)

17: Ω← E +Ωp ▷ Loss functional: Eq. (3.1)
18: G←GE +GP ▷ Gradient: Eqs. (3.7) and (3.9)
19: if ||GE ||RMS < εSCF then
20: StopSCF← True
21: end if
22: if not StopSCF then
23: if iSCF = 1 then
24: K←H−1 ▷ Preconditioner: Eq. (3.13)
25: else
26: ←G ▷ Save old gradient
27: O← D ▷ Save old direction
28: end if
29: D←−KG ▷ Precond. steepest descent
30: if iSCF > 1 then
31: β ← Tr(G†D)/Tr( †O) ▷ Fletcher
32: D← D+βO ▷ Search direction
33: end if
34: α ← argminαΩ(T+αD) ▷ Line search
35: T← T+αD ▷ Update MO coefficients
36: end if
37: until StopSCF
38: CP←CP +min(Ωp

Cp
,0.1 a.u.) ▷ Update Cp

39: end for ▷ End of the Cp loop
40: return T ▷ Return optimized coefficients

Figure 3.1: Variable-metric SCF based on the PCG algorithm.
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electron, and with all other electrons paired (Figure 3.2). The major problem with applying KS

DFT to such singlet diradicals is that a single electronic determinant in KS DFT cannot describe

them. The best description offered by a single Slater determinant is the state representing a 50/50

mixture of the pure singlet and pure triplet states (Figure 3.2) – the so-called mixed state.

mixed triplet

mixed

triplet

E

singlet

Emixed - Etriplet

Figure 3.2: An illustrative example of the two Slater determinants that are used to describe a
spin-pure singlet diradical state. The relation between the energies of the singlet, mixed, and triplet
states is also shown.

ROKS has been proposed as a workaround solution to this problem. In ROKS, the energy

functional for the singlet state is written as the energy of the mixed single-determinant state plus the

energy difference between the mixed state and the triplet state

Esinglet = Emixed +(Emixed−Etriplet) =

= 2Emixed−Etriplet

(3.18)

where (Emixed−Etriplet) accounts for the fact that the energy of the mixed state lies exactly half-way

between those of the singlet and triplet states (Figure 3.2). Thus, a singlet diradical energy is

described by mixed and triplet Slater determinants. To ensure the spin purity of the singlet state, the
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electrons of the mixed and triplet Slater determinants should occupy the same orbitals. Therefore,

the triplet state is not optimized independently; its orbitals are obtained by flipping the spin-down

electron in the singly-occupied orbital to make it a spin-up electron (Figure 3.2).

The ROKS optimization can be easily performed using the variable-metric approach. In the VM

ROKS, the penalty term is added only for the orbitals of the triplet state.

Ω = Esinglet−Cp

β

∑
τ=α

lndet
[︃

σ
τ
triplet

(︂
σ

τ
d,triplet

)︂−1
]︃

(3.19)

Since the orbitals of the mixed state are directly determined from the orbitals of the triplet state,

they also remain linearly independent (see Supporting Information for caveats and implementation

details).

3.4.5 Computational Details

Parameter Notation Default value Described in
Initial penalty strength Cp 10−5 a.u. Figure 3.1
Number of steps in the Cp loop N 4 Figure 3.1
SCF convergence threshold ε1 10−8 a.u. Figure 3.1
Initial loose SCF threshold ε0 10−2 a.u. Figure 3.1
Hamiltonian projector in the preconditioner A Q Eq. (3.13)
Overlap projector in the preconditioner D I Eq. (3.13)
Preconditioner regularization parameter ε 0.5 a.u. Eq. (3.13)

Table 3.1: Key input parameters that control the PCG optimization of MO coefficients.

The variable-metric SCF algorithm was implemented in the electronic structure module of the

CP2K software package41. In the current implementation, matrix operations were performed using

the DBCSR42 and ScaLAPACK43 libraries.

A variety of atomistic systems were used to test accuracy, numerical stability and convergence

rate of VM SCF. Fully optimized structures of supercells of hexagonal graphite (8× 8× 1, 256

atoms), cubic diamond (4×4×4, 512 atoms), and graphene (18×18×1, 648 atoms) were used.
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Figure 3.3: Organic radicals considered in this work: a) 3,5-ditert-butyl-3′-(N-tert-butyl-N-
aminoxy)-4-oxybiphenyl (oxybiphenyl), b) αH−undecachlorodiphenylmethyl (PTM), c) biphenyl-
3,5-diyl-bis(N-t-butyl nitroxide) (biphenyl), and d) bis-nitronyl nitroxide (BNN).

Unit cells of zigzag (6,0) and armchair (5,5) single-walled carbon nanotubes (SWCNT) were

multiplied in the axial direction 13 times and contained 312 atoms and 260 atoms, respectively.

Such large supercells allowed us to test the efficiency of the optimization for wide- and narrow-gap

systems. Large supercells were used to compensate for the absence of the k-point integration.

Other test systems, such as radical organic polymers, transition metal complexes, and singlet

diradicals, were specifically chosen for their electronic and spin states44–46 (Figure 3.3). Specifi-

cally, radical organic polymers (oxybiphenyl, PTM, biphenyl, BNN) contain unpaired electrons

localized on specific sites within the polymer chain47,48. Transition metal complexes ([Cr(CN)6]4−,

[Cr(I)6]4−) involve metal atoms with partially filled d-orbitals. They often exhibit intricate elec-

tronic structures and magnetic properties due to the interplay of ligand-field effects and electron

correlation. Singlet diradicals, characterized by the presence of two unpaired electrons of the oppo-

site spins46, are of particular interest due to the difficulties of describing them with conventional
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KS DFT. Several small diradicals, namely CH2, OH+ and NH+
2 , were selected from the Slipchenko-

Krylov test set49, whereas oxybiphenyl50 and BNN51 diradicals were chosen to represent larger

diradical molecules.

Test calculations were carried out using the dispersion corrected52 generalized gradient exchange-

correlation functional of Perdew, Burke and Ernzerhof (PBE)53–55. In the dual Gaussian and

plane-wave scheme implemented in CP2K56, double-ζ valence basis set with one set of polariza-

tion functions (DZVP)57 were used to represent atomic orbitals. For singlet diradicals, triple-ζ

valence basis sets with two set of polarization functions and one set of diffuse functions was used

(aug-TZV2P). A plane-wave cutoff of 300 Ry was used to describe the electron density. Separable

norm-conserving Goedecker-Teter-Hutter pseudopotentials were used to describe the interactions

between the valence electrons and ionic cores58,59. The initial orbitals were obtained by super-

imposing atomic density matrices and then projecting randomly generated orbitals onto the total

block-diagonal density matrix. The default values of the input parameters that control convergence

of the PCG variable-metric optimization are shown in Table 3.1 and used unless specified otherwise.

3.5 Data Availability

Optimized atomic coordinates for all structures and and lattice vectors for periodic structures

are deposited in a Figshare database60.
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Figure 3.4: Influence of the preconditioner on the rate of convergence of the VM SCF optimization.
The list of preconditioners includes: overlap (A = 0, D = I), F +S (A = D = I), QFQ+S (A = Q,
D = I), QFQ+QSQ (A = D = Q). The dashed line refers to the level of the SCF accuracy typically
required in ab initio molecular dynamics (AIMD) simulation. In all three tests, ε was set to 0.85 a.u.
for F +S preconditioner.

3.6 Numerical Results and Discussion

3.6.1 Preconditioner

The convergence rate of the PCG algorithm is strongly influenced by the choice of preconditioner

(Figure 3.4). In the iterative SCF process, the preconditioner is constructed and inverted only at

the start of each inner SCF cycle. Convergence of VM SCF for ozone molecule, triplet low-spin

[Cr(CN)6]4− complex, and (6,0) SWCNT shows that QFQ+QSQ preconditioner is the least

efficient of all (Figure 3.4). This is because QHQ+QSQ preconditioner limits the update of the

MO coefficients (see the algorithm in Figure 3.1) to the fixed virtual subspace Q of the Kohn-Sham
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Hamiltonian evaluated once in the beginning of the inner SCF loop. MO updates limited to fixed Q

would be accurate if the Hamiltonian were fixed in the inner loop. But the Hamiltonian depends

on the orbitals and is updated on every SCF iteration. This leads to a stalled optimization that is

manifested in plateaus in the gradient norm in Figure 3.4. QHQ+S preconditioner performs better

because adding the S term outside the fixed virtual subspace leads to important (although imperfect)

orbital updates outside Q.

Further comparison of preconditioners shows that incorporating information from both the

overlap matrix and the Kohn-Sham Hamiltonian significantly improves convergence rates and

enhances stability during optimization (Figure 3.4). Using the overlap preconditioner S alone is

not efficient. Another advantage of using positive definite S instead of positive semidefinite QSQ

allows to utilize fast Cholesky inversion, enhancing the efficiency of the preconditioner update.

Finally, it can be beneficial to change the default value of ε in Eq. (3.13). High values of ε

reduce the contribution of the Hamiltonian term to the preconditioner and slow down convergence.

For example, the overlap preconditioner performs worse than QFQ+S preconditioner (Figure 3.4).

On the other hand, low values of ε might can produce preconditioners with negative eigenvalues

introduced by the Hamiltonian term, leading to the failure of the Cholesky inversion. For QFQ+S

preconditioner, this is more likely to happen for systems with low lying unoccupied orbitals with

negative energies. For F +S preconditioner, this happens more often even for wide-gap systems

because the unprojected F contains negative orbital energies of the occupied space (see caption of

Figure 3.4).

The default value of ε = 0.5 a.u. (Table 3.1) works well for most systems and, in our tests,

we increased ε only when the Cholesky factorization fails. For well-behaved systems with large

band gaps, such as cubic diamond, tuning the value of ε does not have significant impact on the



3.6. NUMERICAL RESULTS AND DISCUSSION 111

rate of convergence (Figure 3.5). For zero-gap graphene, increasing the weight of the Hamiltonian

improves convergence noticeably until the preconditioner acquires negative eigenvalues and the

Cholesky inversion fails (Figure 3.5).
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Figure 3.5: Influence of the value of ε on the number of VM SCF steps required to reach convergence
of 10−8 a.u. Missing data points indicate the Cholesky inversion of the preconditioner failed. Default
settings were used in all three tests.

3.6.2 Penalty Strength

A broad range of initial Cp values from 10−9 to 102 a.u. was examined to evaluate the versatility

of the variable-metric optimization algorithm. The initial Cp value was updated using Eq. (3.17)

as described in Figure 3.1. It was found that the final Cp values did not differ significantly from

their original values. For all systems, the difference between the initial and final values of Cp was

within 10%. This confirms that the precise value of Cp is not crucial for maintaining the linear

independence of the orbitals, at least with the currently implemented PCG algorithm.
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Figure 3.6: Convergence rate of VM approach corresponding to different scaling of penalty strength.

It should also be noted that the initial value of Cp does not have noticeable effect on the number

of SCF iterations required to reach convergence (Figure 3.6). Only for very large Cp values the SCF

procedure is negatively impacted, taking more iterations to converge (Figure 3.6). In such cases, the

penalty term dominates over the energy term, causing the optimization procedure to focus primarily

on orthogonalizing the orbitals instead of on minimizing the energy functional. The recommended

default initial value for Cp for most systems is 10−5 a.u. Figure 3.7 shows that the penalty term

plays an important role restoring orthogonality of the orbitals in the SCF procedure.

3.6.3 SCF Convergence

The rate of convergence of the VM optimization was compared to that of the orbital transfor-

mation (OT) approach14 – an efficient go-to SCF method implemented in CP2K. While OT uses

the same PCG algorithm as VM, there are still substantial differences in their preconditioners, line

search subroutines, and the structure of the inner and outer SCF loops, precluding exact compar-
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Figure 3.7: Deviation from the orthogonality for occupied MOs in the SCF optimization for armchair
carbon nanotube for different initial values of the penalty strength Cp. Orbitals re-orthogonalized in
the outer loop.

isons of the two theoretical approaches. For OT, we used the preconditioner based on the Cholesky

inversion of the F +λS matirx, where λ is the spectral shift applied to the Kohn-Sham matrix. This

preconditioner resembles the QFQ+S preconditioner used for VM SCF, but is not the same.

The test systems included closed-shell electronic configurations described by restricted KS

DFT (cubic diamond, hexagonal graphite, graphene, SWCNT), low-spin and high-spin open-

shell configurations described by UKS ([Cr(I)6]
4−, [Cr(CN)6]

4−, PTM61), and open-shell singlet

diradicals described by ROSO (biphenyl62, oxybiphenyl50) and ROKS (BNN51, oxybiphenyl50,

OH+, CH2, and NH+
2 radicals). Default settings were applied to all test systems with a few

exceptions (Table 1.3).

Figures 3.8 and 3.9 show that the VM approach exhibits the same rate of convergence as the OT

method for all systems, including gas-phase molecules and periodic materials, systems with wide

(diamond63), narrow (graphite64, armchair SWCNT65), and zero (zigzag SWCNT65, graphene66)
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Figure 3.8: Comparison of the convergence rate for the VM and OT SCF procedures. Line search
steps, one per PCG step, are not included in the iteration count. The dashed line refers to the level
of accuracy typically required in ab initio molecular dynamics simulations.

band gaps. The latter two are particularly challenging tests for the SCF optimization.

It was verified that the final energies produced by OT and VM methods are the same within the

allowed numerical threshold set at 10−12 a.u.

3.6.4 Variable-metric ROKS SCF for Singlet Diradicals

The singlet-triplet energy gaps for typical singlet diradicals are severely underestimated in UKS

calculations (Table 3.2)67 because the UKS state lies approximately half way between the true

triplet and singlet states in energy (Figure 3.9). That is why it is customary to double the UKS

singlet-triplet energy gaps after the SCF procedure68. The ROKS approach is formulated to correct
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Figure 3.9: Comparison of the convergence rate of the VM and OT SCF procedures for singlet
diradicals. Line search steps, one per PCG step, are not included in the iteration count. The dashed
line refers to the level of accuracy typically required in ab initio molecular dynamics simulations.
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this deficiency during, not after, the SCF procedure. Table 3.2 shows that the ROKS singlet-triplet

gaps computed with the VM method are significantly better than the UKS gaps. At the same

time, they are only slightly better than the doubled UKS gaps, suggesting that orbital relaxation

effects play only minor role in correcting the diradical electronic states, at least for the systems

considered here. The only example when the self-consistent ROKS treatment is better than the

post-SCF correction is the case of bis-nitronyl nitroxide diradical. It is also worth mentioning that

hybrid functionals are expected to improve ROKS prediction of the singlet-triplet gaps, whereas

the opposite trend is expected for UKS calculations. This is because the spin contamination in

UKS, known to be worse for hybrid than GGA functionals67,69,70, is eliminated in ROKS. Indeed,

when HSE0671–73 is used for BNN diradical, the singlet-triplet gap predicted with ROKS becomes

slightly closer to the experimental value whereas UKS prediction becomes much worse (Table 3.2).

Molecules
∆EST , kcal/mol

UKS UKS×2 ROKS Exptl.
OH+ 18.0 36.1 36.9 50.567

CH2 10.2 20.4 23.8 32.967

NH+
2 15.9 31.7 32.2 44.667

biphenyl 0.3 0.6 0.4 3.462

oxybiphenyl 1.0 2.1 1.2 3.150

BNN -1.7 -3.3 0.007 0.8951

BNN∗ -5.7 -11.4 0.013 0.8951

∗ HSE06/aug-TZV2P singlet-triplet energy gaps.

Table 3.2: PBE/aug-TZV2P singlet-triplet energy gaps for singlet diradicals computed with the
single-determinant UKS and two-determinant ROKS methods.

Figure 3.9 shows that ROKS optimization requires more iterations to converge than the single-

determinant methods, such as UKS and ROSO, due to the complexities of the simultaneous

optimization of two electronic states. As in the RKS and UKS cases, OT ROKS and VM ROKS

converge with similar rates.
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3.7 Conclusions

This work shows that the SCF optimization of molecular orbitals in KS DFT can be performed

without imposing conventional orthonormality constraints on them. The optimization can instead

be carried out with nonorthogonal orbitals if the DFT energy functional is augmented with a term

that penalizes linearly dependent states. This generalization of the SCF procedure, called variable

metric SCF, allows to use molecular orbital coefficients – arguably the most natural descriptors

of one-electron wavefunctions – as independent variables in a direct unconstrained optimization

procedure. In this ansatz, the expressions for the electronic energy gradient and Hessian can be

written in a simple closed form. It is shown that a basic PCG algorithm can be used to converge the

SCF procedure for a variety of systems including challenging narrow-gap systems and spin-pure

two-determinant states for singlet diradicals.

Due to the simplicity of the unconstrained variable metric SCF, this approach can be easily

implemented using other minimization techniques38, such as Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm and trust region methods. Furthermore, variable metric optimization can be

readily extended to the cases where linear dependencies present a problem, such as the optimiza-

tion of strictly localized orbitals25, orbital-optimized excited states74, and multi-configurational

wavefunctions.
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3.10 Supporting Information

3.10.1 Methodology

3.10.1.1 Description of Unrestricted Kohn Sham (UKS)

In the unrestricted Kohn-Sham (UKS) method, molecular orbital coefficients for different spins

are optimized independently. The equations below describe the UKS methods. Here, spin-up

molecular orbitals are denoted with Greek letter α and spin-down electron are denoted with Greek

letter β . Greek letter τ is used to denote a general spin index. Equation numbers for the UKS

method below correspond to the analogous equations for the restricted closed-shell Kohn-Sham

DFT described in the main text. No definitions are given here since all quantities are already defined

in the main text.

Ω≡ E +Ωp

Ωp ≡−Cp

β

∑
τ=α

lndet[σ τ(σ τ
d )
−1]

(3.20)

φ
τ
i (r) =

B

∑
µ

χµ(r)T τ
µi (3.21)

σ
τ
i j =

B

∑
µν

T τ
µiSµνT τ

ν j (3.22)

Pτ
µν =

Nτ

∑
i j

T τ
µi[(σ

τ)−1]i jT τ
ν j (3.23)

E =
β

∑
τ=α

N

∑
µν

Fτ
µνPτ

νµ −
1
2

∫︂ ∫︂
ρ(r)ρ(r′)
|r− r′| drdr′+Exc−

∫︂
υXC(r)ρ(r)dr (3.24)

ρ(r) = ρ
α(r)+ρ

β (r)

ρ
τ(r) =

N

∑
i j=1
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τ∗
i (r)[(σ τ)−1]i jφ

τ
j (r) =
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∑
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χ
∗
µ(r)P

τ
µν χν(r)

(3.25)
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GτE
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∂T τ
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Aτ†FτAτ
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µν

+ ε
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Dτ†SDτ
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(3.32)

3.10.1.2 Description of Restricted Open-Shell Optimization (ROSO)

To implement ROSO, the main variational parameters are organized as matrices ΘD, Θα , and

Θβ that represent expansion coefficients of doubly-occupied molecular orbitals, α singly-occupied
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orbitals, and β singly-occupied orbitals, respectively. Molecular orbital coefficients matrices are

then obtained as a straightforward union of the parameter matrices:

T α = Θ
D∪Θ

α

T β = Θ
D∪Θ

β

(3.33)

The optimization of the variational parameters ΘD proceeds using the restricted closed-shell

expressions for the gradient and preconditioner (see main text) for the doubly-occupied orbitals. For

the independent variables that describe singly-occupied orbitals (Θα and Θβ ), the UKS expressions

shown in the preceding section are used for the gradient and preconditioner:

∂Ω

∂ΘD
µi

=
∂Ω

∂Tµi

∂Ω

∂Θτ
µi

=
∂Ω

∂T τ
µi

(3.34)

3.10.1.3 Description of Restricted Open-Shell Kohn Sham (ROKS)

Independent electronic variables ΘD, Θα and Θβ introduced above can also be used in the

variable-metric ROKS optimization. However, there is an additional step is necessary in the ROKS

optimization, when the independent variables are converted to molecular orbital coefficients. In

the VM ROKS optimization, the energy of the triplet state is invariant to the mixing of the two

singly occupied orbitals (Figure 3.10). This is not true for the energy of the mixed state because

the two singly-occupied orbitals belong to two different subspaces: α and β . Because of this

broken invariance, the singly-occupied orbitals will tend to pair up in the mixed state if the pairing

process lowers Emix, which is true for most systems. The accompanying energy lowering can be

counterbalanced by the penalty term, but only for sufficiently large values of the penalty strength

Cp. However, we prefer to preserve the convenient (but not strictly necessary) property of the
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mixed triplet

θβ

θα

θD

Figure 3.10: An illustrative example of the two Slater determinants that are used to describe a
singlet diradical state.

independence between the energy and penalty minimization and, therefore, chose to solve the

undesirable pairing of electrons by enforcing strict orthogonality between the two singly-occupied

orbitals in the ROKS optimization. To this end, the Θα orbital is projected out from the Θβ orbital

to obtain the projected Θ̄
β orbital

Θ̄
β
= Θ

β −PαSΘ
β (3.35)

where Pα is the projector to the (one-dimensional) subspace of the singly-occupied α orbital

Pα = Θ
α(Θα†SΘ

α)−1
Θ

α† (3.36)

It is the projected orbital Θ̄
β that is then used to construct the matrices of molecular orbital

coefficients for the mixed Slater determinant (Figure 3.10)

T α
mix = Θ

D∪Θ
α

T β

mix = Θ
D∪ Θ̄

β

(3.37)

The coefficient matrices T for the triplet state can be constructed by flipping the spin of the electron

in the Θβ orbital. Since Etriplet is invariant to the mixing of singly-occupied orbitals, we chose to
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use unprojected Θβ to represent molecular orbitals of the triplet state:

T α
triplet = Θ

D∪Θ
α ∪Θ

β

T β

triplet = Θ
D

(3.38)

The gradient expression for Emix with respect to variational parameters Θα and Θβ must be

modified to take into account the dependence of Θ̄
β on both of these parameters. This can be

achieved applying the chain rule during the differentiation:

∂Emix

∂Θα
µi

= ∑
λ j

∂Emix

∂ (T α
mix)λ j

∂ (T α
mix)λ j

∂Θα
µi

+∑
λ j

∂Emix

∂ (T β

mix)λ j

∂ (T β

mix)λ j

∂Θα
µi

=

= ∑
λ j

∂Emix

∂ (T α
mix)λ j

δλ µδi j +∑
λ j

∂Emix

∂ (T β

mix)λ j

∂ (T β

mix)λ j

∂Θα
µi

=

=
[︁
GαEmix

]︁
µi +

[︂
(I−SPα)

(︂
GβEmixΘ

β†S+SΘ
β GβEmix†

)︂
Θ

α(σα)−1
]︂

µi

(3.39)

∂Emix

∂Θ
β

µi

== ∑
λ j

∂Emix

∂ (T α
mix)λ j

∂ (T α
mix)λ j

∂Θ
β

µi

+∑
λ j

∂Emix

∂ (T β

mix)λ j

∂ (T β

mix)λ j

∂Θ
β

µi

=
[︂
(I−SPα)GβEmix

]︂
µi

(3.40)

where
[︁
GτEmix

]︁
µi =

∂Emix

∂T τ
µi

is the energy gradient expression derived for unprojected orbitals in

Eq. (3.26).

Test systems Default value Non-default value
Graphite QFQ+S F +S
Armchair SWCNT QFQ+S F +S
Zigzag SWCNT ε = 0.5 a.u. ε = 0.65 a.u.
Graphene N = 4 N = 1

Table 3.3: Non-default settings used for several test systems. Notation is defined in Table 1.
Preconditioner QFQ+S is a shorthand for A = Q and D = I. Preconditioner F +S is a shorthand
for A = D = I.
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3.10.2 Derivation of the Equations for the Closed-Shell Case

3.10.2.1 Energy derivatives

The energy gradient equation for the closed-shell system was derived by differentiating the DFT

energy functional with respect to orbital coefficients Tµi using the chain rule. The chain rule allows

to re-write the derivative respect to orbital coefficients as the derivative with respect to the projector

onto the occupied space and use the fact that the latter is equal to the Kohn-Sham Hamiltonian.

Note that, in the summation limits, N denotes the number of doubly occupied molecular orbitals,

whereas B indicates the number of the basis set functions.
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GE
µi ≡

∂E
∂Tµi

=
B

∑
λν

∂E
∂Pλν

∂Pλν

∂Tµi
=

B

∑
λν

2Fνλ

∂Pλν

∂Tµi
= 2

B

∑
λν

Fνλ

∂ [∑N
k j Tλ j(σ

−1) jkTνk]

∂Tµi
=

= 2
B

∑
λν

Fνλ{
N

∑
k j

∂Tλ j

∂Tµi
(σ−1) jkTνk +

N

∑
k j

Tλ j
∂ (σ−1) jk

∂Tµi
Tνk +

N

∑
k j

Tλ j(σ
−1) jk

∂Tνk

∂Tµi
}=

= 2
B

∑
λν

Fνλ{
N

∑
k j

δλ µδ ji(σ
−1) jkTνk−

N

∑
k jlm

Tλ j[(σ
−1) jl

∂σlm

∂Tµi
(σ−1)mk]Tνk +

N

∑
k j

Tλ j(σ
−1) jkδνµδki}=

= 2{
B

∑
ν

N

∑
k

Fνµ(σ
−1)ikTνk−

B

∑
λν

N

∑
k jlm

Fνλ Tλ j(σ
−1) jl

B

∑
αβ

∂ (TαlSαβ Tβm)

∂Tµi
(σ−1)mkTνk +

B

∑
λ

N

∑
j

Fµλ Tλ j(σ
−1) ji}=

= 2{(FT σ
−1)µi−

B

∑
ναβ

N

∑
klm

(FT σ
−1)ν l[δαµδliSαβ Tβm +TαlSαβ δβ µδmi](σ

−1)mkTνk +(FT σ
−1)µi}=

= 2{(FT σ
−1)µi−

B

∑
νβ

N

∑
km
(FT σ

−1)ν iSµβ Tβm(σ
−1)mkTνk +

B

∑
να

N

∑
k
(FT σ

−1)ν iTαiSαµ(σ
−1)ikTνk +(FT σ

−1)µi}=

= 4(FT σ
−1)µi−2{

B

∑
ν

(FT σ
−1)ν i[

B

∑
β

Sµβ Pβν +
B

∑
α

SµαPαν ]}=

= 4(FT σ
−1)µi−2

B

∑
ν

2(SP)µν(FT σ
−1)ν i =

= 4(FT σ
−1)µi−4[SP(FT σ

−1)]µi =

= 4[(I−SP)FT σ
−1]µi

(3.41)

3.10.2.2 Penalty derivatives

The first derivative of the penalty term is evaluated as:

GP
µi =

∂Ωp

∂Tµi
=−2Cp

∂ ln[det(σσ
−1
d )]

∂Tµi
=

=−2Cp
1

det(σσ
−1
d )

∂
[︁
det(σ)det(σ−1

d )
]︁

∂Tµi
=

=−2Cp
1

det(σσ
−1
d )

[︄
∂ det(σ)

∂Tµi
det(σ−1

d )+det(σ)
∂ [det(σd)]

−1

∂ det(σd)

∂ det(σd)

∂Tµi

]︄
=

=−2Cp

[︃
1

det(σ)

∂ det(σ)

∂Tµi
− 1

det(σd)

∂ det(σd)

∂Tµi

]︃
(3.42)
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Find the derivative of the determinant of the orbital overlap

∂ det(σ)

∂Tµi
= det(σ)∑

jk
(σ−1) jk

∂σ jk

∂Tµi
=

= det(σ)∑
jk
(σ−1) jk

∂ (∑αλ Tλ jSλαTαk)

∂Tµi
=

= det(σ)∑
jk
(σ−1) jk(∑

αλ

∂Tλ j

Tµi
SλαTαk +∑

αλ

Tλ jSλα

∂Tαk

Tµi
) =

= det(σ)∑
jk
(σ−1) jk(∑

αλ

δλ µδ jiSλαTαk +∑
αλ

Tλ jSλαδαµδki) =

= det(σ)[∑
k
(σ−1)ik(ST )µk +∑

j
(σ−1)i j(T †S) jµ ] =

= det(σ)[(ST σ
−1)µi +(σ−1T †S)iµ ] =

= 2det(σ)(ST σ
−1)µi

(3.43)

The last equality uses the fact that (ST σ−1)µi = (σ−1T †S)iµ . The second term can be obtained

using the result for the first term:

∂ det(σd)

∂Tµi
= 2det(σd)(ST σ

−1
d )µi (3.44)

Using these results the first derivative of the penalty term is

GP
µi =−4Cp[ST (σ−1−σ

−1
d )]µi (3.45)

The second derivative of the penalty term can be obtained by the straightforward differentiation of

the gradient

∂ 2Ωp

∂Tν j∂Tµi
=

∂GP
µi

∂Tν j
=−4Cp

∂ [ST (σ−1−σ
−1
d )]µi

∂Tν j
=

=−4Cp

[︄
∂ (ST σ−1)µi

∂Tν j
− ∂ (ST σ

−1
d )µi

∂Tν j

]︄ (3.46)

Derivative the first term inside the bracket
∂ (ST σ−1)µi

∂Tν j
is:
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∂ (ST σ−1)µi

∂Tν j
=

∂ ∑
B
λ ∑

N
k Sµλ Tλk(σ

−1)ki

∂Tν j
=

=
B

∑
λ

N

∑
k

Sµλ δλνδk j(σ
−1)ki +

B

∑
λ

N

∑
k

Sµλ Tλk
∂ (σ−1)ki

∂Tν j
=

= Sµν(σ
−1) ji−

B

∑
λ

N

∑
klm

Sµλ Tλk(σ
−1)kl

∂σlm

∂Tν j
(σ−1)mi =

= Sµν(σ
−1) ji−

B

∑
εω

N

∑
lm
(ST σ

−1)µl
∂TεlSεωTωm

∂Tν j
(σ−1)mi =

= Sµν(σ
−1) ji−

B

∑
εω

N

∑
lm
(ST σ

−1)µl[δενδl jSεωTωm +TεlSεωδωνδm j](σ
−1)mi =

= Sµν(σ
−1) ji− (ST σ

−1)µ j(ST σ
−1)ν i− (ST σ

−1T †S)µν(σ
−1) ji =

= Sµν(σ
−1) ji− (ST σ

−1)µ j(ST σ
−1)ν i− (SPS)µν(σ

−1) ji =

= (S−SPS)µν(σ
−1) ji− (ST σ

−1)µ j(ST σ
−1)ν i

(3.47)

The second term can be obtained in the same manner:

∂ (ST σ
−1
d )µi

∂Tν j
=

∂ ∑λ Sµλ Tλ i(σ
−1
d )ii

∂Tν j
=

= ∑
λ

Sµλ δλνδi j(σ
−1
d )ii +(ST )µi

∂ (σ−1
d )ii

∂Tν j
=

= δi jSµν(σ
−1
d )ii− (ST )µi(σ

−2
d )ii

∂ (σd)ii

∂Tν j
=

= δi jSµν(σ
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d )ii− (ST )µi(σ

−2
d )ii

∂ ∑εγ TεiSεγTγi
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−2
d )ii ∑

εγ

[δενδi jSεγTγi +TεiSεγδγνδi j] =

= δi jSµν(σ
−1
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−2
d )ii[δi j(ST )ν i +(T †S)iνδi j] =

= δi jSµν(σ
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−2
d )ii2δi j(ST )ν i =

= δi jSµν(σ
−1
d )ii−2δi j(ST σ

−1
d )µi(ST σ

−1
d )ν i

(3.48)



3.10. SUPPORTING INFORMATION 131

Combining the results for both terms, the final expression for the second derivative is obtained:

∂ 2Ωp

∂Tν j∂Tµi
=−4Cp[(S−SPS)µν(σ

−1) ji−

− (ST σ
−1)µ j(ST σ

−1)ν i−

−δi jSµν(σ
−1
d )ii +2δi j(ST σ

−1
d )µi(ST σ

−1
d )ν i]

(3.49)
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states in density functional theory

4.1 Preface
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Accurately understanding and describing excited electronic states is crucial for predicting the
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properties of materials and molecular systems. Building on the direct unconstrained optimization

approach for ground states discussed in Chapter 3, Chapter 4 introduces a variable-metric time-

independent DFT (VM TIDFT) method to address the challenge of variational collapse in excited-

state optimization.

This chapter is reproduced from a manuscript prepared for publication: Pham, H. D. M.,

Khaliullin, R. Z. Direct unconstrained optimization of excited states in density functional theory.

4.2 Abstract

Orbital-optimized density functional theory (DFT) has emerged as an alternative to time-

dependent (TD) DFT capable of describing difficult excited states with significant electron density

redistribution, such as charge-transfer, Rydberg, and double-electron excitations. Here, a simple

method is developed to solve the main problem of the excited-state optimization – the variational

collapse of the excited states onto the ground state. In this method, called variable-metric time-

independent DFT (VM TIDFT), the electronic states are allowed to be nonorthogonal during the

optimization but their orthogonality is gradually enforced with a continuous penalty function. With

nonorthogonal electronic states, VM TIDFT can use molecular orbital coefficients as independent

variables, which results in a closed-form analytical expression for the gradient and allows to employ

any of the multiple unconstrained optimization algorithms that guarantees convergence of the

excited-state optimization. Numerical tests on multiple molecular systems show that the variable-

metric optimization of excited states performed with a preconditioned conjugate gradient algorithm

is robust and produces accurate energies for well-behaved excitations and, unlike TDDFT, for more

challenging charge-transfer and double-electron excitations.
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4.3 Introduction

Excited electronic states play a crucial role in photophysics and photochemistry1–3. Theoretical

and computational characterization of excited states is essential, not only from a fundamental science

perspective but also for designing better photovoltaic, photocatalytic, and lighting materials. One

of the most popular methods to describe excited states is time-dependent (TD) density functional

theory (TDDFT), which is an extension of the ground-state Kohn-Sham (KS) density functional

theory (DFT). TDDFT calculates excited state properties by analyzing the response of the ground-

state density to time-dependent perturbations, such as an external electric field4. Although TDDFT

is, in principle, exact5, it has multiple limitations that arise from its reliance on time-independent

ground state XC functionals4. Consequently, TDDFT cannot describe double- and higher-electron

excitations and struggles with excitations producing significant changes of the electron density

distribution, such as long-range charge transfer states, Rydberg states, and core excitations6,7.

To address the limitations of TDDFT, a variety of orbital optimized (OO) DFT methods have

been developed. In these methods, the ground-state DFT formalism is applied to optimize orbitals

variationally not only for the ground state but also for the excited states. To contrast this approach to

TDDFT, it has been referred to as time-independent DFT (TIDFT)8–11. ∆SCF is another commonly

used name for this approach12–17 which emphasizes that the excitation energies are computed as the

energy difference between self-consistent-field (SCF) calculations. The variational treatment of the

excited states yields excellent results, comparable to those obtained with TDDFT for well-behaved

excited states and superior for charge-transfer (CT) and multi-electron excitations18–24. Another

advantage of using the ground-state formalism for excited states is that numerous techniques

developed over several decades for KS DFT can be applied to excited states. For example, the
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implicit solvation models employed in ground states calculations can be readily used for excited

states25,26.

While the effort to establish a solid theoretical foundation for the excited-state OODFT methods

is underway8–11,17, the most significant practical challenge in designing efficient OODFT methods

is ensuring that the variational optimization converges to the correct excited state rather than

collapsing back to the ground state24. There has been a number of methods proposed to avoid

variational collapse of high-energy excited states to the states with lower energies27–44.

These methods have been recently reviewed6,30,45,46 and only a brief description of some of

them is presented here.

In the maximum overlap method (MOM)28 and initial maximum overlap method (IMOM)47,48,

the electrons are first promoted from the fully optimized ground-state occupied MOs to virtual

MOs to generate the initial guess for an excited state. The newly selected occupied MOs are then

optimized in the SCF procedure, in each step of which the list of occupied orbitals is updated using

a non-aufbau population principle. In IMOM, the occupied orbitals are updated to maximize their

overlap with the initial guess, whereas, in MOM, the orbitals are updated to produce maximum

overlap with the orbitals in the previous SCF step. By maximizing the overlap with high-lying

orbitals, MOM and IMOM prevent variational collapse to the ground state, guiding the SCF

process toward the nearest excited state solution. Although both methods work well for multiple

systems, MOM cannot always prevent variational collapse, as orbitals can drift to the ground

state over multiple steps47–49. While this issue is addressed in IMOM, the latter exhibits its own

convergence problems when multiple orbital selections have similar overlaps, which produces

oscillatory non-convergent behavior37,38.

An alternative approach to prevent variational collapse is to constrain the KS determinant of
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an excited state to be orthogonal to that of the ground state. In practice, orthogonality-constrained

DFT (OCDFT)44 recasts the optimization problem as a solution to modified eigenvector equations

and imposes this constraint by projecting out a single “hole” orbital from the KS Hamiltonian.

Unfortunately, the iterative solution of eigenvector problems is not guaranteed to convergence.

Furthermore, the projector-based formalism of OCDFT makes its extension to multiple excited

states cumbersome.

To improve the rate of convergence, several direct minimization algorithms have been developed.

For example, the ground-state geometric direct minimization (GDM) approach50 has been extended

to optimize excited states with the IMOM orbital-selection criterion applied on each GDM iteration

to prevent the collapse34,35,40,43. While the combination of GDM and IMOM resolves some of the

convergence issues of the original eigensolver-based MOM, the combined method still does not

guarantee convergence because the application of the IMOM criterion is introduced as an ad hoc

update, which can interfere with the GDM optimizer.

Another direct optimization approach is square gradient minimization (SGM)38. SGM mini-

mizes the square of the Frobenius norm of the energy gradient instead of minimizing the energy

and thereby converts the saddle-point excited-state optimization into the minimization problem,

obviating the need in any collapse prevention measures. Despite being superior to MOM-based

methods in terms of convergence for difficult problems, SGM has its own shortcomings, as the

norm of the gradient is less well conditioned than the energy, typically requiring more iterations to

converge for simple cases38,51. Furthermore, SGM can become trapped in local minima that are not

stationary points of the energy functional38.

This work presents a new approach to the variational optimization of excited electronic states,

called variable-metric (VM) TIDFT. Like OCDFT, VM TIDFT prevents the variational collapse by
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imposing orthogonality constraints between electronic states. Unlike OCDFT, VM TIDFT allows

nonorthogonal electronic states in the optimization process but pushes them towards orthogonality

with a single continuous penalty function. The key advantage of VM TIDFT is the simplicity

of its formalism that allows to relax multiple excited states using molecular orbital coefficients

as independent variables in a direct unconstrained minimization that guarantees convergence of

the SCF procedure. VM optimization has been designed specifically to prevent collapse of non-

orthogonal wavefunctions and has been previously applied to improve localization of occupied and

virtual orbitals52,53 and to simplify the ground-state SCF procedure54.

4.4 Methodology

4.4.1 Theory

In our notation, capital Latin letters (I,J,K, . . .) denote electronic states, lowercase Latin letters

(i, j,k, . . .) denote occupied molecular orbitals, and lowercase Greek letters (µ,ν ,γ,λ , . . .) represent

basis set functions. Additionally, Greek letters α and β are reserved for spin-up and spin-down

electrons, respectively, whereas the symbol τ denotes a general spin state.

The unrestricted VM TIDFT formalism presented here optimizes α and β orbitals independently

to take into account the open-shell nature of excited states. However, restricted closed-shell (RKS),

restricted-open shell (ROSO), and spin-purified restricted open-shell Kohn-Sham (ROKS)55,56

optimization of excited states can also be performed as described previously for the ground state54.

The optimization of multiple excited states is performed state-by-state. The loss functional

minimized in the VM TIDFT procedure for electronic state I is a sum of the intrastate term EI and
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the interstate penalty term ΩP

Ω = EI +ΩP (4.1)

The intrastate term includes EI the energy of state I and the intrastate penalty that ensures linear

independence of MOs of state I

EI = EI− cI
p ∑

τ=α,β

lndet
(︁
σIIτσ

−1
IIτd

)︁
(4.2)

where σIIτ is the overlap matrix for the occupied orbitals of spin τ , and σIIτd is its diagonal part.

The intrastate term was described in our previous treatment of the simple ground-state orbital

optimization method54.

The interstate term is designed to keep different electronic states orthogonal to each other

ΩP =−CP ∑
τ=α,β

lndet(ΦτΦ
−1
τd ) (4.3)

In the state-by-state optimization, the orthogonality penalty is imposed between the currently

optimized state and all previously optimized states. The key element of the penalty is Φτ – the

overlap matrix between electronic states. Φτd is a diagonal matrix containing the elements of Φτ .

Element (Φτ)IJ of the state overlap matrix can be calculated as the determinant of the overlap of

MOs that describe states I and J

(Φτ)IJ = det(σIJτ) (4.4)

where the MO overlap matrix of occupied orbitals

(σIJτ)i j =
B

∑
µν

T Iτ
µi SµνT Jτ

ν j (4.5)
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is written using coefficients T Iτ
µi that represent occupied MOs φ Iτ

i (r) in terms of B basis set functions

χµ(r)

φ
Iτ
i (r) =

B

∑
µ

χµ(r)T Iτ
µi (4.6)

Here, Sµν is the overlap between basis set functions µ and ν

Sµν =
∫︂

χµ(r)χν(r)dr (4.7)

For non-zero orbitals, the positive determinant in the penalty term in Eq. (4.3) is equal to zero

when there is linear dependency between electronic states. Φτd is the normalization factor that

ensures the determinant in the penalty functional does not exceed 1. The determinant achieves its

highest value of 1 only when all electronic states are orthogonal. With det(ΦτΦ
−1
τd ) always kept

in the (0,1] interval, the logarithm function ΩP lies in the (+∞,0] interval, making the linearly

dependent states and states with orbitals of zero norm inaccessible in the variational procedure, for

any CP > 0. A similar penalty term has proven effective to prevent orbital collapse during the SCF

optimization of ground-state MOs54 and during the localization of nonorthogonal occupied and

virtual orbitals52,53.

The key benefit of introducing the interstate penalty term is that it allows to use molecular

orbital coefficients – arguably the most natural descriptors of the electronic degrees of freedom –

as independent variables in the optimization procedure. As shown below, the expressions for the

analytical gradient of the loss functional wrt these variables are very simple and can be written

in a closed form, making it easy to use a multitude of well-developed unconstrained optimization

algorithms, including conjugate gradient algorithms, quasi-Newton algorithms, or trust-region

algorithms57.
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The gradient of the intrastate term with respect to orbital coefficients is described in our previous

work:

GIτE
µi ≡

∂EI

∂T Iτ
µi

= 2[(I−SPIτ)F IτT Iτ(σ−1
IIτ

)]µi−2cI
p[ST Iτ(σ−1

IIτ
−σ

−1
IIτd)]µi (4.8)

where F Iτ and PIτ are the Kohn-Sham Hamiltonian and density matrices, respectively, for state

I and spin τ . The density matrix is evaluated taking into account nonorthogonality of occupied

orbitals:

PIτ
µν =

Nτ

∑
i j

T Iτ
µi (σ

−1
IIτ

)i jT Iτ
ν j (4.9)

The first derivatives of the interstate penalty term ΩP can also be evaluated analytically and

computed readily

GIτP
µi ≡

∂ΩP

∂T Iτ
µi

=−2CP

[︄
∑
J
(Φτ)

−1
IJ

[︁
ST Jτadj(σIJτ)

]︁
µi− (ST Iτ

σ
−1
IIτ

)µi

]︄
(4.10)

where adj(σIJτ) is the adjugate of the singular or nearly-singular (i.e. ill-conditioned) overlap

matrix between orbitals of states I and J. This adjugate matrix emerges from differentiating the

determinant of the overlap matrix.

4.4.2 Optimization Algorithm

In this work, VM TIDFT methods is implemented using the basic preconditioned conjugate

gradient (PCG) algorithm for nonlinear problems58. To minimize a function, PCG needs only

its first derivative (i.e. gradient). Computation of the exact second derivative is not required, but

approximate second derivative has been found useful for the construction of accurate preconditioners,

which increase the rate of convergence of the PCG algorithm and making it practical.
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The analytical gradient of the intrastate term in Eq. (4.8) can be computed efficiently as done in

our previous work. However, the analytical gradient of the interstate term requires the evaluation

of the lesser known adjugate matrix of σIJτ – the overlap between MOs of two electronic states.

Fortunately, the adjugate of a matrix is well-conditioned even if the matrix itself is ill-conditioned59.

This property is very important in our case because nearly orthogonal electronic states, which are

often encountered during the optimization, produce ill-conditioned σIJτ .

Our algorithm for computing the adjugate is designed to avoid ill-conditioned intermediates59.

It relies on computing the singular value decomposition of the overlap

adj(σ) = adj(UdV †) = adj(V †)adj(d)adj(U) =

= det(V )det(U)V adj(d)U†

(4.11)

and then evaluating the adjugate of the diagonal matrix d using the relation between the co-factor

of a matrix and its adjugate

[adj(d)]ii = [C†]ii = [∏
j ̸=i

d j j]ii (4.12)

where C is the diagonal cofactor matrix of d. Note that the inversion of singular values is not

required in this algorithm, making the algorithm stable for the often encountered ill conditioned

matrices.

The preconditioner is constructed by simplifying the second derivative of the loss functional:

the interstate term is neglected and the remaining intrastate term is approximated as described in

the VM SCF optimization of a single electronic state54.

HIτ
µν = 4

[︃
(1−κ)

(︂
AIτ†F IτAIτ

)︂
µν

+ κ|εHOMO|
(︂

DIτ†SDIτ

)︂
µν

]︃
(4.13)

where κ is a dimensionless regularization parameter that allows a user to increase the weight of the

overlap in case of poor convergence54. Matrices AIτ and DIτ can be set to the projector onto the
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unoccupied subspace QIτ ≡ (I−PIτS), identity matrix I or zero. This preconditioner is the same

for all MOs of an electronic state and can be inverted independently for each state. The numerical

tests described in the next section show that this preconditioner allows to optimize excited state

MOs efficiently.

The computational cost of the PCG algorithm presented here is determined by both the number

of the electronic states S and by the size of the system, that is, by the number electrons N, which

is prportional to the number of basis set functions B. The cost of treating all S intrastate terms is

dominated by the cost of inverting S preconditioners, which has O(SB3) computational complex-

ity54,60. It should be noted that the preconditioners are inverted only in the beginning of the PCG

procedure, making the direct optimization more efficient compared to the diagonalization-based

methods, in which such costly operations are required on each iteration. It should also be noted

that the intrastate cost of handling nonorthogonal MOs is lower – O(SB2N) to compute orbital

overlaps σII and O(SN3) to invert them – because the number of electrons N is typically an order of

magnitude lower than B. The determinants of the intrastate overlap matrices can also be computed

relatively fast via their LU decomposition at O(SN3) cost.

Handling the interstate term and its derivative requires O(S2B2N) time to build the S(S−1)/2

overlap matrices for all pairs of electronic states, O(S2N3) time to evaluate their adjugates and

determinants (the latter being the elements of matrix Φ), and O(S3) time to compute the determinant

of Φ. Since the number of electronic states of interest is small compared to B2N ≫ S for most

systems, building the overlap matrices will dominate the interstate computations.

To summarize, the intrastate and interstate terms are dominated by the O(SB3) and O(S2B2N),

respectively. Therefore, the interstate term will represent the computational bottleneck for a large

number of excited state, but does not consume significant computational time for most practical
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problems with S < 100.

Initial excited state orbitals are generated using fully optimized canonical ground-state orbitals.

The guess is obtained by systematically generating all possible excitations involving a fixed number

electrons, typically two, and then retaining only the lowest (unoptimized) energy excitations for

further optimization.

4.4.3 Penalty Strength Adjustment

The interstate penalty term plays a critical role in preventing the collapse of high-energy states

onto lower-energy states. Increasing the strength of this term by increasing CP pushes the electronic

states to become closer to being orthogonal. If electronic states are not completely orthogonal,

the optimized excited states can contain noticeable undesirable admixtures of the lower-lying

states of the same symmetry. To produce orthogonal electronic states without strictly enforcing

the orthogonality constraint, the interstate penalty strength is gradually increased using a fixed

multiplicative update factor fupd > 1

C(n+1)
P =C(n)

P × fupd (4.14)

until the electronic states become orthogonal, that is, until the deviation from the orthogonality

(DFO) measured by the max norm of the off-diagonal elements of the interstate overlap matrix

drops below a user-specified threshold E0:

DFO≡ ||Φ−1/2
τd ΦτΦ

−1/2
τd − I||max < E0 (4.15)

CP is adjusted in the outer loop, each iteration of which runs the PCG optimizer with a fixed penalty

strength. This procedure guarantees that the optimization does not only produces accurate fully

optimized MOs for each state, but also enforces orthogonality between the electronic states.
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4.4.4 Computational Details

The VM TIDFT procedure was implemented in the electronic structure module of the CP2K

software package61. In the current implementation, matrix operations were performed using the

DBCSR62 library for sparse matrices and ScaLAPACK63 library for dense matrices. The default

values for the input parameters that control convergence of the PCG VM optimization are shown in

Table 4.1 and used unless specified otherwise.

Parameter Notation Default value Described in
Initial interstate penalty strength C(0)

P 10 Ha Eq. (4.14)
SCF convergence threshold || ∂Ω

∂T ||RMS 10−6 Ha
Final allowed DFO E0 10−3 Eq. (4.15)
Interstate update factor fupd 2 Eq. (4.14)
Hamiltonian term in the preconditioner A 0 Eq. (4.13) and Ref. 54

Overlap term in the preconditioner D I Eq. (4.13) and Ref.54

Table 4.1: Input parameters that control the PCG optimization of MO coefficients.

The efficiency and accuracy of the VM TIDFT method was tested on systems including gas-

phase atoms (He, Be, B, Li) and small molecules (azulene, benzene, butadiene, ethene, formalde-

hyde, hydrogen chloride, hydrogen fluoride, nitrobenzene, N-phenylpyrrole, pyrrole, pyrazine, and

naphthalene). We also calculated excitations in molecular complexes C2H4. . . C2F4, NH3-BF3,

NH3. . . F2, and π-stacked dimer of pyrrole and pyrazine molecules. The organic molecules, particu-

larly azulene, benzene, butadiene, nitrobenzene, and N-phenylpyrrole, are of special interest due

to their distinct excited-state behavior driven by CT and bonding-antibonding interactions. These

conjugated systems, with near-degenerate core and delocalized π-orbitals, are prone to root-flipping

issues64,65 during excited-state calculations, complicating the identification of states and making

them excellent benchmarks. Moreover, the availability of extensive experimental and computational

data for these systems enables meaningful comparisons, ensuring the reliability and accuracy of the

tested method.
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Unrestricted Kohn-Sham formalism (UKS) was used to describe spin-orbitals in this study unless

indicated otherwise. Test calculations were carried out using the generalized gradient exchange-

correlation functional of Perdew, Burke and Ernzerhof (PBE)66–68. In the dual Gaussian and

plane-wave scheme implemented in CP2K69, double-ζ valence basis set with one set of polarization

functions (DZVP)70 were used to represent atomic orbitals. A plane-wave cutoff of 300 Ry was

established to adequately describe the electron density, whereas a higher cutoff of 1500 Ry was used

to produce smooth dissociation curves for the hydrogen H2 and the HeH+ molecules. Separable

norm-conserving Goedecker-Teter-Hutter pseudopotentials were used to describe the interactions

between the valence electrons and ionic cores71,72. All calculations were performed using a cubic

simulation cell with dimensions of 15×15×15 for H2 and 30×30×30 for the rest of the systems.

Electrostatic interactions between the periodic cell was eliminated using wavelet approach73,74.

4.5 Results and Discussion

4.5.1 Penalty Strength Effect

Fig. 4.1 shows the impact of the residual nonorthogonality between electronic states on the

excitation energies. With higher penalty strength CP, the electronic states are pushed to become

orthogonal decreasing DFO and recovering the true excitation energies. When the allowed DFO is

too large, only a fraction of the true excitation energies is recovered, signalling the admixture of

lower-lying states due to insufficient orthogonality enforcement. This data highlights the importance

of the interstate penalty term and suggests that E0 = 10−4 is an acceptable DFO that recovers a large

fraction of excitation energies. For HF, the bonding interaction arises from the overlap between the
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hydrogen 1s orbital and the fluorine 2pz orbital, while the 1π orbitals are non-bonding as they have

wrong symmetry to interact with the H 1s orbital and are localized primarily on the fluorine atom.
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Figure 4.1: Excitation energy for the first two excitations of He atom (PBE/TZVP) and HF molecule
(PBE/DZVP) computed with VM TIDFT optimization procedure for the DFO values measured after
convergence is reached. The recovered excitation energy is a fraction of the converged excitation
energy Econv obtained with very tight requirement for the orthogonality criterion (E0 = 10−5).

4.5.2 Accuracy

Table 4.3 compares experimentally measured first singlet excitation energies with those com-

puted using VM TIDFT, TDDFT in Tamm-Dancoff approximation, OCDFT, and wavefunction-

based correlation methods (MP2 or CCSD).

Despite different optimization paradigms, VM TIDFT utilizes the same orthogonality constraint

as OCDFT. Therefore, the fully optimized states in VM TIDFT and OCDFT are expected to

be the same if computed using the same model chemistry (i.e. the same exchange-correlation

functional and basis set). Table 4.3 shows that VM TIDFT excitation energies are indeed close to
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those computed with OCDFT but not the same. This is due to the OCDFT results being partially

spin-purified in the post-SCF procedure44, whereas spin-purification was not used in VM TIDFT

optimization. The results are also different due to the different basis sets employed to represent

occupied states: def2-TZVP in OCDFT is a larger more flexible basis set than DZVP in VM TIDFT.

For the six systems with complete experimental and computational data (first six rows in Ta-

ble 4.3), VM TIDFT results are in reasonable agreement with experimental data (MAD = 1.02 eV).

For comparison, the partially spin-purified OCDFT results are in slightly better agreement with

experimental data than VM TIDFT (MAD = 0.89 eV), whereas TDDFT agreement is significantly

worse (MAD = 1.71 eV).

When all test systems with available experimental excitation energies, are compared (not just the

first six of them), the accuracy of VM TIDFT (MAD = 0.88 eV) remains noticeably better than that

of TDDFT (MAD = 1.36 eV). Comparison between VM TIDFT and TDDFT shows that TDDFT

tends to slightly underestimate excitation energies for the test systems (Fig. 4.2). On the other hand,

VM TIDFT energies are underestimated compared to OCDFT, MP2, and CCSD energies (Fig. 4.2).

OCDFT data suggests that using spin-purified VM TIDFT wavefunctions, described with larger

basis set can substantially improve the excitation energies. Spin-purified VM TIDFT calculations

will be performed using the ROKS optimizer in the future.

It is worth noting the magnitude of the residual norm of the energy gradient for the fully

optimized excited states (Table 4.3). For most excited states, this norm is below the convergence

threshold of 10−6 Ha imposed on the loss (not the energy) functional, indicating that these excited

states are true minima of the DFT functional. Once optimized, these states will not collapse to the

lower-lying ground state even without the orthogonality constraint. There are, however, several

excited systems with the energy gradient higher than the 10−6 Ha threshold. These are He atom,
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N-phenylpyrrole, NH3 . . .BF3, and pyrrole-pyrazine dimer. In these systems, the first excited states

are not electronic minima and the non-zero energy gradient is fully compensated by the opposite

non-zero gradient of the interstate penalty functional, producing the zero-gradient true minima

of the loss functional. It is also important to note that such stationary points still correspond to

physically meaningful excited states. For instance, VM TIDFT results for the He atom match

closely with TDDFT results and experimental data for low-lying excitations while not being true

electronic minima (Table 4.2). This confirms the validity of using orthogonality constraints in

orbital-optimized excited-state DFT.

RMS norm of the
Excitation TDDFT VM TIDFT energy gradient Experiment

(eV) (eV) (Ha) (eV)
1s2→ 1s2s 20.24 20.91 9.7×10−2 20.6275

1s2→ 1s2p 40.64 36.95 3.2×10−5 21.2275

1s2→ 1s3s 37.47 39.10 5.3×10−2 22.9375

1s2→ 2s2 - 57.68 3.5×10−1 57.8476

1s2→ 2s2p - 67.63 1.5×10−1 60.1577

Table 4.2: PBE/QZV3P excitation energies calculated using TDDFT and VM TIDFT.

4.5.3 Double-electron Excitations

Unlike TDDFT, VM TIDFT can trivially describe double-electron excitations. As an example,

the energies calculated for the 1s2 → 2s2 and 1s2 → 2s12p1 excitations in the helium atom are

57.68 eV and 67.63 eV, respectively, at the PBE/QZV3P level of theory. These values are close to

the experimental values for these transitions, which are 57.84 eV76 and 60.15 eV77, respectively.

It should be noted that OCDFT with a single electron hole-particle pair cannot describe double-

electron excitations44.
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7

RMS norm of the

Excitation TDDFT VM TIDFT energy gradient Experiment

(eV) (eV) (Ha) (eV)

1s2 → 1s2s 20.24 20.91 9.7×10−2 20.6275

1s2 → 1s2p 40.64 36.95 3.2×10−5 21.2275

1s2 → 1s3s 37.47 39.10 5.3×10−2 22.9375

1s2 → 2s2 - 57.68 3.5×10−1 57.8476

1s2 → 2s2p - 67.63 1.5×10−1 60.1577

TABLE 2. PBE/QZV3P excitation energies calculated using TDDFT and VM TIDFT.

Molecules
RMS norm of CP2K Psi4 Gaussian

Experimentthe energy PBE/DZVP PBE/def2-TZVP MP2/6-31G*

gradient CCSD/aug-cc-pVTZ

TDDFT VM TIDFT OCDFT32 Best estimate78

(Ha) (eV) (eV) (eV) (eV) (eV)

pyrazine 6.0×10−7 2.86 3.13 3.30 3.95a 3.8379

formadehyde 8.4×10−7 3.12 3.42 3.33 3.88a 4.2880

benzene 9.9×10−7 4.11 5.13 5.11 5.08a 4.7981

pyrrole 7.8×10−7 4.31 5.21 5.97 6.37a 5.2282

butadiene 7.3×10−7 2.86 3.76 4.51 6.18a 5.9283

ethene 4.9×10−7 4.51 5.95 6.64 7.80a 8.0083

azulene 8.9×10−7 1.94 2.12 - 3.85b 1.7784

B atom 5.9×10−7 0.31 1.47 - - 1.8685

Be atom 5.5×10−7 3.08 3.98 - - 2.7386

Li atom 7.2×10−7 2.39 1.95 - - 3.3787

naphthalene 9.1×10−7 2.74 3.30 - - 3.9788

N-phenylpyrrole 4.2×10−3 3.36 3.96 - 5.32b 4.3589

nitrobenzene 8.9×10−7 2.81 3.12 - 5.41b 4.3890

HCl 8.8×10−7 8.10 8.83 - - 9.5691

HF 6.2×10−7 8.50 9.75 - - 10.3392

He atom 1.9×10−1 24.15 26.03 - - 20.6275

NH3 . . .F2 9.1×10−7 1.90 2.50 - - -

pyrrole. . .pyrazine 1.8×10−6 2.52 3.10 - - -

C2H4 . . .C2F4 5.8×10−7 4.39 5.46 - - -

NH3-BF3 1.8×10−4 7.29 8.81 - - -

MAE vs Experimentc 1.71 1.02 0.89 0.52 0.00

MAE vs Experimentd 1.36 0.88 - - 0.00

a MP2/6-31G(d) results78
b CCSD/aug-cc-pVTZ results78
c Computed for the first six systems
d Computed for the systems with listed experimental values

TABLE 3. First singlet excitation energies calculated using TDDFT, VM TIDFT, OCDFT and high-level quantum mechanics
calculations and shown alongside experimental data.

depend on the interatomic distance because the Coulomb
interaction between the neutral and positive fragments is
zero. VM TIDFT correctly reproduces the flat excitation
energy in the large separation limit, in agreement with

the spin-purified OCDFT excitation energy (Fig. 4). In
contrast, TDDFT underestimates the excitation energy
and fails to capture its asymptotic behavior (Fig. 4) be-
cause of the incomplete cancellation of the Coulomb and

Table 4.3: First singlet excitation energies calculated using TDDFT, VM TIDFT, OCDFT and
high-level quantum mechanics calculations and shown alongside experimental data.
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Figure 4.2: Comparison of VM TIDFT excitation energies with those calculated with TDDFT,
OCDFT, and wavefunction correlation methods. TDDFT and VM TIDFT results were obtained in
this work using CP2K, OCDFT energies were computed using Psi4 in Ref.44, and MP2/6-31G*
and CCSD/aug-cc-pVTZ results were computed using Gaussian in Ref.78.

4.5.4 Charge-transfer Excitations

One of the most important advantages of OODFT methods over TDDFT is their ability to predict

the energy of CT excitations accurately. Here, VM TIDFT is used to describe the CT excitation

in a minimal-basis H2 molecule – a simple four-level test system previously employed to explain

the success of OCDFT and failures of TDDFT44. Fig. 4.3 shows that VM TIDFT indeed correctly

reproduces the long-range behavior of the CT excitation energy, matching the Coulomb potential of

the interacting H+ and H− ions perfectly. This behavior can be contrasted with the TDDFT CT

energy of the excited states, which shows the attenuation of the Coulomb tail44, the degree of which
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is determined by the fraction of the exact exchange in the employed exchange functional.
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Figure 4.3: PBE/SZV ground-state and excited-state dissociation curves for H2 computed with VM
TIDFT. The energy of the Coulomb interactions is down-shifted by 0.36 Ha to account for sum of
the ionization potential (IP) and electron affinity (EA) of the isolated hydrogen atoms.

It is also instructive to demonstrate the correct behavior of the CT excitation energies in the

[He···H]+ ion. For large interatomic distances, the two electrons in the [He···H]+ system are

localized on the helium atom in the ground state. Upon excitation, one of the electrons transfers

from helium to hydrogen, resulting in a He+ . . .H configuration. The energy of this excitation is the

sum of the ionization potential (IP) of helium and the electron affinity (EA) of hydrogen. Crucially,

this energy does not depend on the interatomic distance because the Coulomb interaction between

the neutral and positive fragments is zero. VM TIDFT correctly reproduces the flat excitation energy

in the large separation limit, in agreement with the spin-purified OCDFT excitation energy (Fig. 4.4).

In contrast, TDDFT underestimates the excitation energy and fails to capture its asymptotic behavior

(Fig. 4.4) because of the incomplete cancellation of the Coulomb and exchange interactions between

electrons in the PBE and other exchange-correlation functionals.
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Figure 4.4: Excitation energy for the charge transfer state of HeH+ as a function of the He–
H distance, computed using VM TIDFT and TDDFT at the PBE/DZVP level of theory. For
comparison, OCDFT PBE/STO-3G results are also shown44.

4.5.5 SCF Convergence

Fig. 4.5 shows how the norm of the gradient of the loss functional changes during the PCG

optimization of the ground and excited states. The default VM SCF optimization algorithm achieves

stable convergence for the ground state54. The algorithm also works well for the optimization of

excited-state orbitals, sometimes converging faster than the optimization of the ground state. This

is because an excited-state optimization already starts with the well-converged canonical orbitals

of the ground state. For some systems, however, the optimization of the excited states takes many

more iterations to converge as the optimizer needs to find the right balance between maintaining

orthogonality to the previously optimized states and minimizing the energy. Converging excited-

state optimization also takes longer when the penalty strength update is necessary to enforce stricter

orthogonality between the electronic states. These updates, performed in an outer loop of the main
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PCG optimization, can be seen as sharp increases of the gradient norm from the convergence line in

Fig. 4.5.

It should be noted that a large number of iterations is required to achieve convergence even for

the ground state of simple systems. This suggests that the rate of convergence can be improved by

replacing PCG – one of the simplest algorithm for unconstrained optimization – with quasi-Newton

or trust-region optimizers that are known to work well for the ground-state KS DFT50. Additionally,

faster optimization can be achieved by updating the penalty strength on each iteration, instead of

updating it in the outer loop.

Finally, it is worth mentioning that VM TIDFT method does not guarantee to find the lowest-

energy excitations. As with all other orbital-optimized DFT methods6, the result of the optimization

will be a stationary point lying in the basin of the initial guess.

4.6 Conclusions

VM TIDFT is a simple DFT method designed to prevent collapse of excited states during

their variational optimization. The main idea of VM TIDFT is to allow nonorthogonal electronic

states in the optimization process but gradually push them towards orthogonality with a simple

continuous penalty function. With nonorthogonal orbitals and electronic states, VM TIDFT can use

molecular orbital coefficients as independent variables in the optimization procedure. This in turn

leads to simple closed-form analytical expressions for the gradient and allows to employ any of the

ubiquitous unconstrained optimization algorithms that guarantees convergence of the excited-state

optimization. Numerical tests on multiple molecular systems show that VM TIDFT optimization

performed with the PCG algorithm is robust and the method computes accurate energies for well-
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Figure 4.5: Convergence rate for the VM TIDFT procedure for the ground states (GS) and selected
excited states (ES). Line search steps, one per PCG step, are not included in the iteration count. The
dashed lines show the SCF convergence threshold.
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behaved excitations and, unlike TDDFT, for more challenging CT and double-electron excitations.

Due to the simplicity of VM TIDFT, this approach can be implemented using other unconstrained

minimization techniques, such as quasi-Newton or trust-region methods. This can improve the

computational efficiency of VM DFT. VM TIDFT is also ideally suited to implement the full

variational ROKS optimization of spin-purified open-shell singlet states54–56, which are necessary

for more accurate description of many excited states. Additionally, unconstrained VM TIDFT

optimization makes the computation of atomic forces in excited states straightforward, facilitating

computation of emission spectra and dynamical photophysical and photochemical processes in

excited states.

From a broader perspective, variable-metric optimization can be readily extended to electronic

structure methods where the use of nonorthogonal wavefunctions is unavoidable (e.g. optimization

of strictly localized orbitals79–82), or where linear dependencies present a serious problem during

variational optimization (e.g. multi-configurational wavefunctions).
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4.9 Supporting Information

4.9.1 Unrestricted Kohn-Sham Equations for Variable Metric Time-Independent

Optimization

In the unrestricted Kohn-Sham method (UKS), the molecular orbital coefficients for different

spins are optimized independently. The notation and definitions are described in the main text. The

Kohn-Sham energy functional and the electron density are given by

EI =
β

∑
τ=α

B

∑
µν

F Iτ
µνPIτ

νµ −
1
2

∫︂ ∫︂
ρ I(r)ρ I(r′)
|r− r′| drdr′+EI

xc−
∫︂

υ
I
XC(r)ρ

I(r)dr (4.16)
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4.9.2 First Derivative of the Intrastate Term

The derivation of the intrastate term is presented in the Supporting Information of our previous

work? .
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4.9.3 First Derivative of the Interstate Term

The first derivative of the interstate penalty term is
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The derivative in the first term is evaluated using the fact that Φ is an invertible matrix, but matrices

σIJτ are not necessarily invertible
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(Φ−1

τ )IJ adj(σJIτ)i j(T Jτ†S) jµ ] =

= det(Φτ)[∑
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τ )KI[ST Kτadj(σIKτ)]µi +∑
J
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τ )IJ[adj(σJIτ)T Jτ†S]iµ ] =

= 2det(Φτ)∑
K
(Φ−1

τ )KI[ST Kτadj(σIKτ)]µi

(4.20)

The derivative in the second term can be obtained using the result for the first term, the fact that Φτd

is a diagonal matrix, and that σIIτ is invertible with adj(σIIτ) = det(σIIτ)(σ
−1
IIτ

) for an invertible
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matrix:

∂ det(Φτd)

∂T Iτ
µi

= 2det(Φτd)∑
K
(Φ−1

τd )KI[ST Kτadj(σIKτd)]µi =

= 2det(Φτd)(Φ
−1
τd )II[ST Iτadj(σIIτ)]µi =

= 2det(Φτd)[det(σIIτ)]
−1[ST Iτ det(σIIτ)(σ

−1
IIτ

)]µi =

= 2det(Φτd)[ST Iτ(σ−1
IIτ

)]µi

(4.21)

Using these results, the first derivative of the interstate penalty term is

GIτP
µi =−2CP

[︄
∑
K
(Φτ)

−1
IK

[︁
ST Kτadj(σIKτ)

]︁
µi− (ST Iτ

σ
−1
IIτ

)µi

]︄
(4.22)



Chapter 5

Comprehensive Overview

The comprehensive overview section describes the areas that were not fully explored in Chapters

2, 3, and 4. It highlights potential future work that can further refine and enhance the presented

research, offering a roadmap for continued improvement.

5.1 Facilitate CO2 Binding in CD-MOF-2

As discussed in Chapter 2, the reversible chemisorption of CO2 in CD-MOF-2 requires the

formation of the alkoxide binding sites from alcohol groups, while the absorption strength is greatly

influenced by the neighboring alcohol groups. Greater control of the proton removal from the

alcohol groups and structural arrangements of neighbors open new opportunities for improving the

material performance and boosting the adsorption capacity of this environmentally benign material.

164
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5.1.1 Determine Precise Proton Transfer Mechanism

Understanding the formation of alkoxide sites requires detailed insight into proton transfer

processes. One way to precisely determine the location and dynamics of the proton transfer is to

employ ab initio molecular dynamics (AIMD) simulations. AIMD can provide a detailed and quan-

titative description of the thermodynamics and kinetics involved in this long-range proton transfer.

By operating on time scales of picoseconds or femtoseconds, AIMD enables precise observation of

rapid atomic vibrations and rotational movements within the MOF structure. To enable accurate

computations for the extremely light protons, AIMD must include nuclear quantum effects (NQEs)

explicitly. Several widely used techniques that account for NQEs in AIMD simulations are path

integral molecular dynamics (PIMD)1,2, ab initio PIMD (AI-PIMD)3–6, ring polymer molecular

dynamics (RPMD)7,8, centroid molecular dynamics (CMD)9,10, quantum thermal bath (QTB)11,12,

and adaptive QTB (adQTB)13.

Once the proton transfer sites are identified and the alkoxide sites are formed, AIMD is also

instrumental in analyzing the dynamics of the interaction between CO2 and CD-MOF-2. By

allowing atoms to relax and move, AIMD offers a more accurate representation of CO2 binding,

surpassing the limitations of the simplified description based on the straightforward geometry

optimization. This insight is valuable for designing and optimizing the material by strategically

incorporating strong bases besides alcohol groups, which can deprotonate them, leading to the

formation of the alkoxide CO2 binding sites. The increased basicity enhances the material’s

capability to facilitate proton transfer, which is essential for optimizing binding sites for CO2

adsorption.
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5.1.2 Analyze the H-bond Network Environment of CO2 Binding Sites

It has been demonstrated that the network of hydrogen bonds between alcohol groups in CD-

MOF-2 significantly influences the stability and reactivity of alkoxide sites. To precisely control the

adsorption strength for either reversible or irreversible CO2 chemisorption, a deeper exploration

of these interactions within the MOF is essential. ALMO-EDA calculations are well-suited for

analyzing hydrogen-bonding interactions in complex systems, including periodic materials like

MOFs14. ALMO-EDA analysis can elucidate the contribution of individual bonds and interactions

to the overall stabilization of the alkoxide sites. By systematically scanning coordinates of the

binding site with its neighbor alcohol groups, floating counterions, and rubidium ions, followed by

applying ALMO EDA, it is possible to identify specific contributions of these components to the

interaction with the alkoxide site and with CO2. This method will help enhance the stabilization of

carbonic acid adduct via its interactions with the surrounding environment.

Further insights into the stabilization of the hydrogen-bond network around each alkoxide site

can be obtained through radial distribution function (RDF) analysis, which offers a detailed view

of how the hydrogen bonds are spatially distributed relative to the alkoxide groups. The RDF

will quantify the frequency of finding a particular atom type at a given distance from the alkoxide

site, thereby revealing the local structural arrangement and interaction patterns. This method can

be efficiently implemented using TRAVIS, a tool that only requires coordinate files as input. By

computing the RDF, we can evaluate the effectiveness of the hydrogen-bond network in stabilizing

the alkoxide site and gaining a deeper understanding of how different components of the MOF

contribute to the overall CO2 stabilization mechanism.

The results obtained from these calculation can be helpful to create more “good-neighbor”
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alcohol groups that will produce the alkoxide sites that are “perfectly stablized” for CO2 binding.

5.1.3 Design Water-Stable Engineering Strategies

The presence of water in MOFs poses several challenges for practical applications. It can

degrade structural integrity, compete with target gases for adsorption sites, block pores, and alter

properties such as porosity and surface area. Additionally, water can induce phase changes that

affect functionality and stability. To overcome these issues, designing water-stable MOFs or

modifying existing ones to manage water-related problems is essential.

Since it is the OH– counterions that facilitate the proton removal from the alcohol groups, the

formation of CO2 binding sites will be accompanied by the formation of water. If the MOF is

unstable in water, it is necessary to explore other bases that are both environmentally friendly and

effective at capturing H+ without producing water. Potential alternatives include ammonia (NH3),

amine groups (e.g., pyridine, triethylamine), or ionic liquids with basic anions such as imidazolium-

based ionic liquids. Another strategy to consider is incorporating hydrophobic elements such as

hydrophobic ligands, hydrophobic groups, and hybrid composites15.

This approach can be extended to other MOFs with similar binding mechanisms by synthesizing

and characterizing CD-MOF-2 variants with tailored adsorption sites and functional groups to

optimize CO2 adsorption while ensuring reversibility. Future research should also consider the use

of green, sustainable synthetic methods to enhance environmental and economic viability.
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5.1.4 Utilize Hybrid Functionals for More Accurate Binding Energies

Comparison of CO2 adsorption energies obtained using BLYP and HSE06 functionals suggests

that using hybrid density functionals can enhance the accuracy of the CO2 binding energy predic-

tionn in CD-MOF-2. To improve the quality of these calculations, further exploration and analysis

of the computational cost associated with applying hybrid exchange-correlation functionals to large

periodic systems should be conducted.

5.2 Improve Convergence Rate of VM SCF

5.2.1 Implement BFGS Algorithm

Given the inherent simplicity of the unconstrained VM SCF approach described in Chapter 3, it

is well-suited for implementation with any unconstrained minimization technique that guarantees

convergence16. An area worth exploring in the future is using the Broyden-Fletcher-Goldfarb-

Shanno (BFGS)17–20 algorithm in the VM SCF orbital optimization. As the most widely used

quasi-Newton method, BFGS significantly enhances convergence by building better and better

approximations of the Hessian matrix. Hessian approximations, denoted Bk here, is iteratively

updated to reflect new information gained from the changes in the gradients Gk along the search

directions dk.

By applying Bk, BFGS is expected to achieve faster convergence compared to conjugate gradient

(CG) methods, without the need to compute the exact Hessian. The updated search direction and
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inverse of the updated approximate Hessian matrix at the next iterate xk+1 are defined by

dk+1 =−B−1
k+1Gk+1

B−1
k+1 = (I−ρkskyT

k )B
−1
k (I−ρkyksT

k )+ρksksT
k

ρk =
1

Tr
(︁
yT

k sk
)︁

(5.1)

where yk = Gk+1 – Gk and sk = xk+1 – xk. Here, the inverse of Bk is useful because it allows for the

efficient computation of the search direction via simple matrix-vector multiplication. This approach

reduces the need of storing the full Hessian, which is computationally advantageous, especially in

large scale applications like VM SCF. In the quasi-Newton framework, rather than recalculating

B– 1 from scratch at each iteration, BFGS updates the matrix by incorporating the most recent

information about the objective function with the existing knowledge embedded in the current

Hessian approximation. The choice of the initial Hessian approximation, B0, is flexible and can be

set as the identity matrix or scaled to reflect the variable magnitudes, providing a practical starting

point for the optimization process.

For large-scale optimization problems, a limited-memory variant of BFGS (L-BFGS) can also

be employed. This method utilizes curvature information from only the most recent iterations

to construct an approximation of the Hessian. By discarding information from earlier iterations,

which are less relevant to the current behavior of the Hessian, L-BFGS significantly reduces storage

requirements. Unlike the full BFGS method, L-BFGS does not explicitly compute the Hessian

or its inverse. Instead, it estimates the inverse Hessian indirectly by recursively contracting it

with the gradient. This approach is useful for solving large problems where computing or storing

the full Hessian is computationally prohibitive or when the Hessian is not sparse. However, L-

BFGS tends to converge more slowly on ill-conditioned problems, where the Hessian matrix
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exhibits a wide distribution of eigenvalues. Furthermore, by integrating the search directions

of the quasi-Newton BFGS and CG methods, the hybrid BFGS-CG21 presents an interesting

alternative to conventional BFGS, building upon the advantages of both algorithms. This approach,

alongside other hybridizations of quasi-Newton and CG methods, might offer some improvements

in computational efficiency and convergence behavior.

5.2.2 Implement Trust Region (TR) Algorithm

The trust region method is another robust iterative optimization approach to employ beside

BFGS in forthcoming research on VM SCF convergence. The method approximates the loss

function, denoted mk, within a localized region around the current iterate, known as the "trust

region". Within this region, the algorithm solves a so-called subproblem of determining both the

optimal step direction and size. The subproblem is formulated as:

min
p

mk(p) = Ω(xk)+Tr
(︁
GT

k p
)︁
+

1
2

Tr
(︁
pT Bkp

)︁
s.t ∥p∥2 ≤ ∆

2
k (5.2)

where ∆k > 0 is the trust radius. After pk is computed, the current set of variables xk are updated

using the optimal step pk:

xk+1 = xk +pk. (5.3)

and the exact, not approximate, loss function is evaluated. If the predictions made using the

approximate and exact loss functions are sufficiently close, the trust radius is deemed acceptable

and can even be increased. If not, xk+1 is discarded, the optimizer returns to xk, the trust radius ∆k

is reduced, and the updated subproblem is solved anew in the next iteration.

There are several methods to solve the subproblem. The simplest will be to use the Cauchy point

pC
k as the solution. The Cauchy point is the point along the gradient that lies within the trust-region
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Figure 5.1: The Cauchy point. The figure is reproduced from Nocedal and Wright16

bounds τk and guarantees to provide a sufficient reduction in mk for the convergence of the TR

procedure.

pC
k =−τk

∆k

∥Gk∥
Gk (5.4)

where

τk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if Tr

(︁
GT

k BkGk
)︁
≤ 0

min(1, ∥Gk∥3

∆k Tr(GT
k BkGk)

), otherwise.

(5.5)

The last equation means that if the gradient is in a direction of negative curvature, the algorithm

steps to the border of the trust region (Fig. 5.1). The Cauchy step pC
k is computationally efficient

to calculate, as it avoids matrix factorizations, and plays a critical role in determining whether an

approximate solution to the trust-region subproblem is acceptable. In TR, while finding the exact

minimizer of the subproblem is ideal, achieving an approximate solution that is within the TR and

provides a substantial reduction is often needed for global convergence. In this framework, the

Cauchy point is pivotal in guiding the optimization process and enhancing overall efficiency.

Another approach to solve the subproblem would be to use the so-called “dogleg” method,

schematically illustrated in Fig. 5.2. One of the advantages of the TR method over PCG is that
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Figure 4.4 Exact trajectory and dogleg approximation.

by simply omitting the quadratic term from (4.5) and writing

p∗(&) ≈ −&
g
‖g‖

, when & is small. (4.14)

For intermediate values of &, the solution p∗(&) typically follows a curved trajectory like
the one in Figure 4.4.

The dogleg method finds an approximate solution by replacing the curved trajectory
for p∗(&) with a path consisting of two line segments. The first line segment runs from the
origin to the minimizer of m along the steepest descent direction, which is

pU # − gT g
gT Bg

g, (4.15)

while the second line segment runs from pU to pB (see Figure 4.4). Formally, we denote this
trajectory by p̃(τ ) for τ ∈ [0, 2], where

p̃(τ ) #
{

τ pU, 0 ≤ τ ≤ 1,

pU + (τ − 1)(pB − pU), 1 ≤ τ ≤ 2.
(4.16)

The dogleg method chooses p to minimize the model m along this path, subject to
the trust-region bound. The following lemma shows that the minimum along the dogleg
path can be found easily.

Figure 5.2: The dogleg method. The figure is reproduced from Nocedal and Wright16 16

it can handle ill-conditioned problems that could be encountered during orbital optimization by

allowing adaptive adjustments to the trust region size. However, if the local model is not a good

fit for the objective function, reducing the trust region can improve model accuracy and prevent

excessively large steps that could lead to divergence or poor performance.

5.2.3 Reduce the Cost of the Preconditioner Inversion

In the current implementation, the inversion of the preconditioner is performed using Cholesky

decomposition as implemented in ScaLAPACK library22, an operation of O(B3) computational

complexity, where B is the number of basis set functions. While this approach is effective for small

to moderately sized systems, it poses computational challenges for large molecular systems. For

large systems, this step becomes the computational bottleneck and the cost of matrix inversion

dominates the overall execution time of the algorithm.

Fortunately, the efficient preconditioner employed in the VM SCF PCG algorithm is a sparse

matrix written in the basis set of localized atomic orbitals. One strategy to reduce the cost of

inverting sparse matrices is to use sparse matrix libraries, designed specifically to take the sparsity
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into account by focusing only on significant matrix elements and neglecting those close to zero.

Utilizing sparse matrices can transform the O(B3) scaling of the preconditioner inversion to O(B),

significantly improving the performance of the VM SCF algorithm for large systems. One of the

sparse matrix libraries, DBCSR, is already used in our work (Chapters 3 and 4) for some of the

computational steps and can be modified to handle Cholesky inversion. PETSc23,24 and Trilinos25

also offer advanced tools for sparse iterative solvers and preconditioning, including PCG and

GMRES methods, and are designed for efficient parallel computing. Libkrylov26 supports sparse

matrix operations, complementing the capabilities of the other libraries. Together, these tools can

enhance computational efficiency and scalability by leveraging matrix sparsity and distributing

operations across multiple processors.

5.3 Improve Excited-State VM TIDFT Optimization

5.3.1 Design Better Loss Function

One of the key advantages of our VM TIDFT method (Chapter 4) is the ease of adding any

necessary terms to the loss functional or redesigning it for specific optimization goals. For example,

this flexibility will allow us to incorporate additional terms that ensure the optimizer remains close

to any desired initial set of orbitals, as done in the MOM method27. By maximizing the overlap

between the current occupied orbitals and those from the initial iteration, this term might help

ensure that the optimized orbitals remain closely aligned with the initial excited-state configuration,

offering better interpretation of the nature of VM TIDFT results.

Another strategy for redesigningg the loss functional, inspired by the square gradient minimiza-
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tion (SGM) approach28, will be to minimize the square of the energy gradient rather than the energy

itself. The resulting loss functional for electronic state I will be

Ω = | ∂EI

∂T Iτ
µi
|2 +ΩP (5.6)

and the gradient of the loss function will be calculated as:

GIτ ′E
ν j ≡

∂

∂T Iτ ′
ν j
| ∂EI

∂T Iτ
µi
|2 = ∂

∂T Jτ ′
ν j

∑
µi

∂EI

∂T Iτ
µi
· ∂EI

∂T Iτ
µi

= 2∑
µi

∂ 2EI

∂T Jτ ′
ν j ∂T Iτ

µi
· ∂EI

∂T Iτ
µi

(5.7)

Minimizing the square of the energy gradient, as expressed in Eq. 5.7, prioritizes reducing fluc-

tuations in energy, resulting in a more stable and accurate optimization. However, this approach

introduces several computational challenges as it requires the calculation of not only the first but

also the exact second derivatives of the energy. Moreover, the derivative of the adjugate matrix

function in the penalty term is also needed, but it is presently unclear how it can be efficiently

evaluated. One way to obviate the need for the adjugate derivative would be to utilize the BFGS

method discussed in Section 5.2.1, which automatically constructs an approximate second derivative

without the need for its analytical expression.

5.3.2 Implement ROKS Method for Spin-Pure States in VM TIDFT

In our work, we successfully used the ROKS method29,30 to optimize spin-pure diradical

ground states, as detailed in Chapter 3 and its Supporting Information. However, it would also be

interesting to apply the same ROKS methodology in our VM TIDFT method for excited states,

since most excited states of closed-shell systems are diradical in nature. Using ROKS in VM TIDFT

is expected to improve the accuracy of describing such excited states by effectively managing

spin contamination. This improvement is particularly important for a better direct comparison
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with OCDFT, as OCDFT employs partial spin-purification in the post-SCF procedure31. Future

work should prioritize the incorporation of ROKS into the VM TIDFT framework, enabling more

accurate excited-state optimizations. This development would improve the general applicability of

the method.

5.3.3 Perform Orbital Optimization with the Frozen Hamiltonian

We can approximate the excitation energy by performing our VM TIDFT optimization with

a frozen Hamiltonian, which would significantly speed up the calculations. This is because

constructing the Hamiltonian matrix is computationally expensive, particularly for practically

important medium-sized systems containing hundreds of atoms. In CP2K, the Hamiltonian is built

from scratch in each SCF step. By freezing the Hamiltonian after its initial construction, we can

bypass this expensive process, making the method much more computationally efficient. This

approach can provide a more affordable way to describe excitations while retaining a reasonable level

of accuracy. The accuracy of this frozen Hamiltonian approach can be evaluated by comparing its

results with those from the standard VM TIDFT optimization, where the Hamiltonian is recalculated

at each step. Furthermore, benchmarking against other widely used methods, such as TDDFT and

its Tamm-Dancoff linear response approximation32, will help evaluate the trade-offs between speed

and accuracy.
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Chapter 6

Conclusion

6.1 Summary

In Chapter 2, we explored the intricate nature of CO2 adsorption sites in CD-MOF-2, derived

from cyclodextrins and notable for its strong and reversible carbon dioxide chemisorption. DFT

modeling and comprehensive analysis of experimental data reveal how the structural characteristics

of adsorption sites are governed by complex interactions involving hydroxyl counterions and

hydrogen bonding networks. The findings show that the nucleophilic character of alkoxide sites,

generated via proton transfer from alcohol groups, plays a pivotal role in determining the strength

and reversibility of CO2 binding. Moreover, the diversity of hydrogen bonding environments within

CD-MOF-2 is shown to modulate these binding sites, resulting in a range of CO2 binding strengths

from irreversible to weak chemisorption. The results of this research addressed our initial objectives,

enhancing the fundamental understanding of CO2 adsorption mechanisms in CD-MOF-2. By

bridging traditional concepts of acid-base equilibrium and hydrogen bonding with solid-state CO2

capture, we offer strategies for designing tunable materials for carbon capture and storage. The

findings also open avenues for refining these materials using advanced computational methods,
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such as AIMD simulations and hybrid exchange-correlation functionals, which could improve the

accuracy of binding site characterization. These approaches provide a promising pathway toward

developing more efficient and customizable CO2 capture technologies.

Chapter 3 introduced a simple approach to orbital optimization in KS DFT by removing the

conventional requirement of orbital orthogonality. By augmenting the DFT energy functional

with a penalty term for linearly dependent states, the study demonstrates that orbital optimization

can be effectively performed with nonorthogonal orbitals. This method, called variable-metric

(VM) SCF optimization, allows MOs coefficients to serve as independent variables in a direct,

unconstrained minimization process. The result is a significant simplification of the variational

procedure, yielding closed-form expressions for both the electronic gradient and Hessian. The

research further validates the efficacy of this approach through the implementation of a basic PCG

algorithm, which achieves efficient convergence for a range of systems, including challenging

narrow-gap systems and spin-pure two-determinant states of singlet diradicals. Due to its simplicity,

VM SCF can be readily implemented using alternative unconstrained minimization techniques. The

ability to optimize orbitals without the burden of orthogonality constraints represents a notable

advancement in one of the most fundamental procedures in computational chemistry. Interestingly,

the same variable-metric principles can be applied to optimize wavefunctions in more advanced

quantum chemistry methods.

Chapter 4 builds on the developments of Chapter 3 by extending the VM SCF method to excited

states. This extension offers a unified framework for describing ground and excited states with

the same level of precision, significantly expanding the applicability of DFT to a broader range

of electronic structure problems. Chapter 3 highlights the versatility of the approach, and the

Comprehensive Overview describes potential future improvements.



180 CHAPTER 6. CONCLUSION

The work presented across these chapters exemplifies the critical role of DFT in exploring and

solving green chemistry challenges. In the context of carbon capture, DFT provides a detailed

understanding of molecular interactions that can inform the design of more efficient and sustainable

materials. Moreover, the simple SCF optimization methods presented here address some of the

fundamental limitations of traditional DFT, enabling its application to more complex electronic

structures and excited states. The ability to accurately model excited states will enhance our

understanding of the photochemical and photophysical processes behind the energy transformation

in materials, leading to more effective solutions for pressing environmental challenges. The

continued development of computational techniques, such as variable metric SCF, will expand the

boundaries of what can be achieved with DFT, driving further advancements in green chemistry

and beyond.
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