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ABSTRACT 
 

Delayed parenthood is a current trend in society, capturing abundant attention from the public. This trend 

has been correlated with genetic disorders and detrimental outcomes in the offspring of aged mothers and 

fathers. Though the consequences of maternal aging are well understood, paternal aging is only now 

being studied. As many of the disorders observed are multigene disorders, we propose that their source is 

a disruption of sperm chromatin integrity. We hypothesize that due to aging, there is multilevel genome 

disorganization. The objective of this thesis is to explore the impact of advanced paternal age on fertility, 

by examining telomere dynamics, gene expression, and DNA methylation in germ cells, using the Brown 

Norway rat model. This study is designed to capture the impact of age on germ cells earlier during the 

spermatogenic process. These objectives were accomplished by pursuing three aims: measuring germ cell 

telomere length across spermatogenesis with advanced age, examining differential gene expression, and 

determining changes in DNA methylation with aging in post-meiotic round spermatids and mature 

spermatozoa. Young (4 mos) and aged (18 mos) Brown Norway rats were compared, resembling young 

(20-30 yrs) and elderly (45+ yrs) humans. First, we measured telomere length in pachytene spermatocytes 

(diploid), round spermatids (haploid), and sperm from the caput (immature) and cauda (mature) 

epididymidis from young and aged rats. Telomere length significantly decreases (p<0.05) with aging in 

our rat model. In immature sperm, telomere length decreased from 115.6 kb (+/- 14) to 93.3kb (+/- 12). In 

mature sperm, it decreased 142.4 kb (+/- 33) to 105.3 (+/- 5). Given differential telomere lengths, we 

hypothesize that there will be a disruption of chromatin positioning and interactions that could potentially 

alter the gene expression profile in sperm from aged rodents. For aim two, we used mRNA sequencing to 

examine the mRNA transcriptome in round spermatids. Through differential expression analysis, 

Ingenuity Pathway Analysis, and Gene Ontology enrichment, we observed 220 differentially expressed 

genes due to aging in round spermatids. There are 211 upregulated genes, and 9 downregulated genes 

with a log2FC > |1|. Based on pathway analysis, these genes sort to pathways involved in: immune 

response, oxidative stress, cellular protrusions, and reproduction. Once sorted in greater detail, 157 out of 

the 220 altered transcripts are relevant in the context of spermatogeneic processes. These transcripts are 

highly involved in: sperm motility, capacitation, the interaction between germ cells and Sertoli cells, 

fertility, and epigenetics. This suggests genetic bases for many of the changes observed with advanced 

paternal age at the round spermatid level. Due to alterations in gene expression associated with aging, for 

aim three we examined DNA methylation in round spermatids, and mature spermatozoa using whole 

genome bisulfite sequencing. The results suggest a strong trend in hypermethylation in both the round 

spermatids and sperm with aging, with the majority of the differential methylation falling between |10-

20%| difference in methylation. The hypermethylation is spread throughout the genome, with the majority 
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of the hypermethylation in intergenic regions such as SINE/LINE regions. LINE-1 DMRs had differential 

methylation levels between 10-20%. Interestingly, the effect of aging can also be noted in the DNA 

methylation process from round spermatid to spermatozoa, as there are many more DMRs (hyper and 

hypomethylated) when examining the process of spermatids to spermatozoa in an aged rat. Taken 

together, these results provide new insight into the mechanisms leading to disrupted fertility and potential 

genetic alterations in the offspring of older men. 
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RÉSUMÉ 
La parentalité retardée est une tendance dans la société, captant une abondante attention de la part du 

public. Cette tendance a été corrélée avec des troubles génétiques et des effets néfastes sur la progéniture 

de mères et de pères âgés. Si les conséquences du vieillissement maternel sur la progéniture sont bien 

connues, ce n’est que récemment que les effets du vieillissement paternel commencent à être étudiés. 

Comme les troubles observés sont souvent multigéniques, nous proposons que leur source est une 

perturbation de l'intégrité de la chromatine des spermatozoïdes. Nous émettons l'hypothèse qu'en raison 

du processus de vieillissement, il existe une désorganisation du génome à plusieurs niveaux, y compris les 

télomères, la méthylation de l'ADN et l'expression des gènes. L'objectif de cette thèse est d'explorer 

l'impact de l'âge paternel avancé sur la fertilité, en examinant la dynamique des télomères, l'expression 

des gènes et la méthylation de l'ADN dans les cellules germinales, en utilisant le modèle du rat Brown 

Norway, Les objectifs de cette thèse sont: mesurer la longueur des télomères des cellules germinales au 

cours de la spermatogenèse, examiner l'expression génique différentielle et déterminer les changements 

au niveau de la méthylation de l'ADN des spermatides rondes et des spermatozoïdes matures lors du 

vieillissement. Une comparaison entre des rats Brown Norway jeunes (4 mo) et âgés (18 mo) a été fait, 

simulant des populations humaines jeunes (20-30 ans) et âgées (45 ans+). Nous avons premièrement 

mesuré la longueur des télomères dans les spermatocytes pachytènes, les spermatides rondes et les 

spermatozoïdes de la tête de l'épididyme et de la queue de l’épididyme obtenus de rats jeunes et âgés. 

Nous avons observé une diminution significative de la longueur des télomères (p<0,05) avec le 

vieillissement. La longueur des télomères a diminué de 115,6 kb (+/- 14) à 93,3 kb (+/- 12) dans les 

spermatozoïdes immatures et de 142,4 kb (+/- 32) à 105,3 (+/- 5) dans les spermatozoïdes matures. Nous 

émettons donc l'hypothèse qu’avec l’âge, il y a une perturbation de l’emplacement et des interactions de 

la chromatine qui a le potentiel de modifier le profil d'expression génique dans le sperme des rats. Pour 

interroger cette hypothèse, nous avons conçu comme deuxième objectif le séquençage de l'ARNm pour 

examiner le transcriptome dans les spermatides rondes post-méiotiques. En nous servant d’outils 

d’analyse génique différentielle, d’analyse de l'enrichissement des voies biologiques et d’ontologie 

génétique, nous avons observé l’expression différentielle de 220 gènes. L’expression de 211 gènes a 

augmentée tandis que l’expression de 9 gènes a diminué par un changement de log2 > |1| en conséquence 

du vieillissement des spermatides rondes. D’après l'analyse de l'enrichissement des voies biologiques, ces 

gènes jouent un rôle dans la réponse immunitaire, le stress oxydatif, les protrusions cellulaires et la 

reproduction. L’analyse plus approfondit et plus en détail révèle que 157 des 220 gènes altérés sont 

impliqués dans des processus importants pour la spermatogenèse, entre autres, la motilité des 

spermatozoïdes, la capacitation, l'interaction entre les cellules germinales et les cellules de Sertoli, la 

fertilité et l'épigénétique. Ainsi, un bon nombre des changements observés avec l'âge paternel avancé au 
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niveau des spermatides rondes seraient associés à des changements génétiques. En raison des altérations 

de l'expression des gènes observées associées au vieillissement, comme troisième objectif, nous avons 

examiné la méthylation de l'ADN dans les spermatides rondes et les spermatozoïdes matures en 

appliquant le séquençage génome entier au bisulfite. Les résultats suggèrent une forte tendance à 

l'hyperméthylation dans les spermatides rondes et les spermatozoïdes avec l’âge, avec la majorité des 

différences de méthylation se trouve entre |10-20%|. L’ADN hyperméthylée est répartie sur tout le 

génome et se situe, en grande partie, dans les régions intergéniques telles que les régions SINE/LINE. Les 

DMR LINE-1 avaient des niveaux de méthylation différentiels entre 10 et 20 %. De plus, le nombre 

augmenté de régions avec méthylation différentielle (hyper- et hypométhylé) entre les spermatides rondes 

et les spermatozoïdes âgés suggère que le procès de méthylation de l’ADN lors de la transformation de la 

spermatide ronde en spermatozoïde mature semble également être affecté par l’âge chez le rat. 

Ensembles, ces résultats apportent des nouveaux renseignements au sujet des mécanismes qui mènent à 

une fertilité perturbée chez les hommes plus âgés et les potentielles conséquences génétiques chez leur 

progéniture. 
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1. Male Reproduction 

 The male reproductive tract is composed of the brain and the male reproductive organs: 

the testes, epididymides, vas deferens, ejaculatory ducts, prostate gland, seminal vesicles, 

bulbourethral glands, urethra, and the penis (Fig. 1-1). Sperm are continuously produced in the 

seminiferous tubules of the testis through the process of spermatogenesis (Okafor et al., 2022). 

The seminiferous tubules have a basement membrane comprised of collagen and laminin. These 

tubules are supported by cells within the testicular interstitium, including Leydig cells and 

vascular, immune, and peritubular cells. The peritubular cells lie along the basement membrane 

of the seminiferous tubules, providing support and contractile motion. The contractile motion 

aids in spermiation and the movement of spermatozoa through the seminiferous tubule lumen 

and into the epididymis. Leydig cells are accompanied by their undifferentiated mesenchymal 

progenitor cells and are the site of testosterone biosynthesis. The vascular cells include 

endothelial, smooth muscle, and perivascular cell types. Under normal conditions, the 

interstitium is also home to testicular macrophages. Testicular macrophages have been shown to 

regulate Leydig cell function and Sertoli cell action and support spermatogenesis (Fujisawa, 

2006).  
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Figure 1-1: Overview of male reproduction. Beginning in the brain with the HPG axis. 

GnRH from the hypothalamus stimulates the secretion of LH and FSH from the pituitary gland. 

FSH acts on the Sertoli cells as a regulator of spermatogenesis. LH acts on the Leydig cells of 

the testis to produce testosterone. Testosterone goes on to produce male sex characteristics and 

regulate spermatogenesis. Spermatogenesis occurs within the testis, with all cell types shown 

herein. Created with BioRender, and modified from Encyclopedia Britannica.  
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1.1 Somatic cells of the testis 

 A limited number of somatic cells within the testis support the development of 

spermatozoa. The germ cells develop within the seminiferous tubules but are supported by 

various cells throughout this process.  

1.1.1 Leydig Cells 

 The Leydig cells are the site of testosterone biosynthesis, providing the high 

concentration of intratesticular testosterone necessary for spermatogenesis. The adult Leydig 

cells (ALCs) are located within the interstitial space and are accompanied by their 

undifferentiated progenitors. ALCs develop from stem cells in the post-natal mammal, going 

through four distinct phases of development from stem Leydig cells (SLCs), progenitor Leydig 

cells (PLCs), immature Leydig cells (ILCs), and finally to ALCs (Chen et al., 2010).  

 In rodents, the first steps of Leydig cell differentiation take place during the first weeks of 

post-natal life in XY individuals. However, the full ADCs are not differentiated and testosterone-

producing until puberty (Chen et al., 2010). Adult Leydig cells have relatively slow, or non-

existent, turnover during the lifespan (Teerds et al., 1989). There is much debate within the field 

of andrology as to whether PLCs or ILCs can differentiate into adult Leydig cells after toxicant 

insult, such as with ethane 1,2-dimethanesulphonate (EDS). Indeed, after treatment with EDS, 

there is a depletion in ALCs and, subsequently, a replacement with a new population of Leydig 

cells (Kerr et al., 1985; Molenaar et al., 1985; Jackson et al., 1986; Morris et al., 1986). The 

cellular origin of the new population of LCs is still being researched.  

1.1.2 Sertoli Cells 

 Sertoli cells were first described by Enrico Sertoli in 1865 and named after him in 1888. 

Sertoli cells are the somatic nurse cells or support cells within the seminiferous tubules. Sertoli 
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cells extend from the basement membrane of the seminiferous epithelium up toward the lumen, 

with branch-like projections that form crypts for germ cell support (França et al., 2016). Sertoli 

cells are constantly remodeling throughout spermatogenesis in order to allow for the progression 

of germ cells from the basement membrane to the lumen. As the germ cells develop, they 

become more deeply embedded within the Sertoli cell and are finally released through 

spermiation (França et al., 2016). Sertoli cells also provide signaling support to the germ cells 

through cytokines, glycoproteins, and metal transport proteins such as transferrin and 

ceruloplasmin (França et al., 2016). The metal transport proteins were among the first studied 

and showed that metal ions could be taken up at the basement membrane of the seminiferous 

epithelium by Sertoli cells and transferred to developing germ cells (Leichtmann-Bardoogo et al., 

2012).  

 Binding with one another, Sertoli cells form the blood-testis barrier (BTB) through tight 

junctions. The BTB allows for the testis-immune privilege, as a balance must be maintained 

where the body is protected from external pathogens and the germ cells are protected from the 

body's innate immune system (Washburn et al., 2022). Though tight junctions form a clear BTB, 

the immune system of the testis requires immune modulation by the Sertoli cells. They secrete 

and respond to many immunoregulatory factors and induce regulatory immune cells from the 

interstitial space (Washburn et al., 2022). They also act to phagocytize apoptotic germ cells and 

the residual bodies of developing germ cells (Nakanishi and Shiratsuchi, 2004).  

1.2 Hormonal Control of Male Reproduction 

 Hormonal control of male reproduction is through the hypothalamic-pituitary-gonadal 

axis (HPG axis) in XY individuals. The hypothalamus in the brain releases gonadotropin-

releasing hormone (GnRH) under the regulation of sex hormones, neurotransmitters, and 
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environmental cues or stressors (Genazzani et al., 2000; Bova et al., 2014; Spergel, 2019). GnRH 

then stimulates the secretion of luteinizing hormone (LH) and follicle-stimulating hormone 

(FSH) from the pituitary gland into circulation. At the level of the pituitary gland, many 

modifying molecules, such as neuropeptide Y, are able to regulate GnRH action by binding 

antagonistically to the GnRH receptor (Parker et al., 1991). FSH stimulates the Sertoli cells of 

the testis to produce many proteins including androgen-binding protein and inhibin (Kerr et al., 

1992). Inhibin can also act as a negative regulator of the HPG axis through its action on the 

pituitary gland. LH acts on the Leydig cells of the testis to stimulate testosterone production (Fig. 

1-2). Testosterone production in the testis is critical, as testosterone is the primary driver of 

spermatogenesis and must exist at high concentrations within the testis. Testosterone acts as a 

negative regulator at the hypothalamus and pituitary gland level (Okafor et al., 2022).  

 In the synthesis of testosterone, LH acts on the luteinizing hormone receptor (LHR) and 

among many functions, stimulates adenylyl cyclase to produce cyclic-AMP (cAMP) that then 

activates cAMP-dependent kinase PKA (Stojkov et al., 2013). PKA activates the conversion of 

cholesterol into its more bioactive forms; cholesterol is transported into the mitochondria the 

steroidogenic acute regulatory protein (StAR) and the translocator protein (TPSO). This 

functions as the rate-limiting step of steroidogenesis. Once inside the Leydig cell mitochondria, 

cholesterol is converted by cytochrome P-450 cholesterol side-chain cleavage enzyme 

(CYP11A1) into pregnenolone. In the endoplasmic reticulum, the remaining steps of testosterone 

biosynthesis take place, with the conversion of pregnenolone by 3-hydroxysteroid 

dehydrogenases (HSD3B) to progesterone. Then, 17-hydroxylase/C17-20-lyase (CYP17A1) 

catalyzes progesterone to androstenedione. Finally, androstenedione is converted into 
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testosterone by 17ß-Hydroxysteroid dehydrogenase (HSD17B) (Haider, 2007; Henrich and 

DeFalco, 2020). 

 Testosterone then diffuses through the Leydig cell membrane and into the blood 

circulation to have effects on a wide array of tissues in the body and into the seminiferous 

epithelium to drive spermatogenesis.   
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Figure 1-2: Steroidogenesis within the Leydig cell. Briefly, LH binds to the LHR, which 

triggers the production of cAMP and the production of StAR, and PBR. StAR and PBR bring 

cholesterol into the mitochondria to begin testosterone production. P450scc converts cholesterol 

to pregnenolone that is then converted by 3beta-HSD into progesterone. 17-alpha-OH-lase 

converts progesterone to androstenedione in two steps through a 17-alpha-OH-progresterone 

intermediate. Androstenedione is then converted to testosterone by 17-HSD-3. Testosterone then 

is released from the Leydig cell to act on the somatic cells to determine male sex characteristics 

or on the Sertoli cells to regulate spermatogenesis. Created with BioRender.   
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1.3 Spermatogenesis 

 Spermatogenesis is the process by which spermatozoa are continuously produced within 

the seminiferous tubules of the testis from the onset of puberty and during adulthood. The 

germline is established and maintained by the spermatogonia stem cells (SSCs), capable of self-

renewal and differentiation. The SSCs sit at the basement membrane of the seminiferous 

epithelium and either undergo mitosis to maintain the stem cell pool or differentiate to form 

spermatozoa (Diao et al., 2022). The differentiating SSC undergoes a further mitotic division to 

form primary spermatocytes. The primary spermatocytes undergo meiosis I to form secondary 

spermatocytes. The spermatocytes are the active meiotic cell type during spermatogenesis, and in 

this stage, abundant DNA damage is introduced and repaired. Secondary spermatocytes undergo 

meiosis II to form round spermatids (Griswold, 2016). The haploid round spermatids are the last 

transcriptionally active cell type. Round spermatids undergo a DNA reorganization process 

during spermiogenesis, where the histone-bound DNA is gradually replaced by a cysteine-rich 

protein called protamine (O’Donnell, 2014). It is during this process as well that spermatids shed 

their cytoplasm through residual bodies and develop the acrosome and a tail. The acrosome caps 

the anterior sperm nucleus and is an organelle containing many hydrolytic enzymes to aid sperm-

egg binding and penetration (Berruti and Paiardi, 2011). The germ cells are referred to as 

elongating spermatids throughout spermiogenesis, noted from their structure. Once the 

developing germ cells have gained a tail and the complete acrosome, they are poised at the edge 

of the seminiferous epithelium for spermiation. Spermiation is the release of spermatozoa into 

the seminiferous tubule lumen to transit the spermatozoa to the caput of the epididymis 

(Griswold, 2016). This transit is controlled by the contractile motion generated by the peritubular 

cells. Spermatogenesis and epididymal transit require ~74 days in humans and ~56 days in rats 

(Griswold, 2016).  
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1.4 Cycle of the seminiferous epithelium  

 The production of spermatozoa through spermatogenesis is a cyclical process and occurs 

in a wave. Yves Clermont was the first to observe and characterize the patterns he saw in the 

seminiferous epithelium. He consistently observed that the same types of germ cells could be 

found in the one histological section of a seminiferous tubule (Leblond and Clermont, 1952). He 

recognized this pattern and came up with a method whereby researchers can now sort 

spermiogenesis into stages (Fig. 1-3). The staging is done by examining nucleus size, cell shape, 

and acrosome development. In the rat, there are fourteen stages (I-XIV), each with distinct cell 

compositions (Clermont and Leblond, 1953). Interestingly, Clermont also noted that in rodents, 

when one section of a seminiferous tubule begins a new round of spermatogenesis, the segment 

next to it will begin shortly after that, and this continues across a whole seminiferous tubule. This 

process is quite complex in humans, and there are many stages within one tubule side by side. 

Instead of progressing through the tubule like a wave, it happens more like a winding corkscrew 

(Clermont, 1963).  
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Figure 1-3: Cycling of the seminiferous epithelium. The seminiferous tubule is divided 

into various stages (I-XIV) representing the wave-like nature., and the spermatogenesis stages in 

the rat shown below. Created with BioRender. Modified from Homma-Takeda et al., 2001 

(License # 5517741386597). 

1.5 Epididymal Sperm Maturation 

 The epididymis is a small tubular organ that is adjacent the testis within the scrotum. It 

consists of four main segments: the initial segment, caput, corpus, and cauda. As the names 

suggest, these components begin where the efferent ducts merge and form the initial segment. 

Spermatozoa continue to move through the caput (head) of the epididymis, transit through the 

corpus (body) of the epididymis, and are finally stored in the cauda (tail) of the epididymis. As 

spermatozoa transit the epididymis, they gain functional motility, fertilizing capabilities, and 

undergo the final steps of chromatin compaction. The process of chromatin compaction is 
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complete in the epididymis, as the environment presents oxidizing conditions that allow for thiol 

groups contained within protamine molecules to form disulfide bonds (Calvin and Bedford, 

1971; Bedford and Calvin, 1974; Saowaros and Panyim, 1979). The protamine disulfide bonds 

are additionally stabilized by zinc molecules in the epididymis (Björndahl and Kvist, 2009). 

Thiol oxidation also occurs in proteins during transit through the epididymis, leading potentially 

to stabilization especially in the flagella (Mercado et al., 1976; Gervasi and Visconti, 2017). 

Following spermiation, the cytoplasmic droplet also migrates during epididymal transit from the 

sperm neck to the annulus (Cooper, 2011). The cytoplasmic droplet may function in providing 

energy, ion balance or other molecules necessary for sperm function (as reviewed by: Gervasi 

and Visconti, 2017). The sperm membrane also undergoes remodelling, with the addition, 

removal and modification of the sugars and lipids that constitute the sperm plasma membrane 

(Gervasi and Visconti, 2017). These changes to the membrane predominantly aid in the 

rearrangements necessary for sperm-egg fusion. Finally, sperm gain the ability to be 

progressively motile during transit through the epididymis. The mechanism of this is still 

unclear, but it is presently hypothesized that this is due to various signaling cascades during 

epididymal transit, specifically protein kinase A phosphorylation, and serine/threonine 

phosphatases such as the testis specific ser/thr phosphatase PPP1CC2 (Sasaki et al., 1990; 

Vijayaraghaven et al., 1996). This process depends on other signaling molecules and pathways, 

including: glycogen synthase kinase 3 (GSK3), cyclic AMP (cAMP) activation by soluble 

adenylyl cyclase (sAC), or potentially Akt (protein kinase B) and SGK (serum glucocorticoid 

kinase) (Esposito et al., 2004; Hess et al., 2005; Somanath et al., 2004; Vadnais et al., 2013). 

More recent analyses are proposing entirely separate pathways for sperm maturation through 

pathways such as Wnt signaling (Koch et al., 2015).  
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The sperm proteome and RNA payload also change in composition during epididymal 

transit. Yanagimachi et al. (1985) first described so-called epididymosomes, small vesicles 

resting on the sperm membrane within the epididymis. It was hypothesized then that these 

vesicles provided proteins to the sperm that aided in their maturation (Sullivan and Saez, 2013; 

James et al., 2020). These proteins largely include glycosylphosphatidylinositol (GPI)-anchored 

proteins and other sperm surface binding proteins, that aid in proper formation of the sperm 

plasma membrane and fertilizing ability (Sullivan et al., 2007). Other proteins that are acquired 

during epididymal transit are those in the polyol pathway; they metabolize sugars necessary for 

metabolism and energy (Sullivan et al., 2007). Studies have shown that during transit through the 

epididymis, many surface proteins also undergo post-translational modifications that are gained 

or lost (Cooper, 1998).  Other acquired proteins function in sperm capacitation, the acrosome 

reaction, sperm-egg binding, fertilization, and sperm motility (as reviewed by Gervasi and 

Visconti, 2017).  

As a result of the varying roles of the epididymis in sperm maturation and final steps of 

chromatin compaction, research on the contribution of the epididymis to epigenetic regulation is 

being done. Specifically, Nixon et al. (2015) have studied the contribution of the epididymis to 

sperm small non-coding regulatory RNAs (sRNAs). The hypothesis is that the epididymosomes 

are the likely vesicle for transporting these molecules. Thus, ongoing studies are examining 

epididymosome content and contributions to spermatozoa (Trigg et al., 2019). 

After leaving the epididymis, sperm undergo the final process required for fertilization, i.e., 

capacitation; this normally occurs in the female reproductive tract but can also be induced 

experimentally. Capacitation was first described by Chang (1951) and Austin (1951), each 

independently drawing the same conclusions. More recently capacitation has been further 
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divided into fast and slow events, regulated by similar molecules HCO3-, sAC and cAMP 

(Salicioni et al., 2007). Flagellar movement is a fast event, and the ability to carry out the 

acrosome reaction via an agonist and tyrosine phosphorylation are the late events. Briefly, 

capacitation is characterized by removal of cholesterol from the plasma membrane; this is 

followed by an influx of calcium ions through the HCO3- stimulation and membrane ion 

channels such as CatSper (Ren and Xia, 2010); secondary messengers are then activated 

including sAC and finally cAMP is produced (Osheroff et al., 1999) (reviewed by Jin and Yang, 

2017). These changes are associated with an increase in cellular pH. Additionally, the 

extracellular signal regulated kinase (ERK) pathway is activated by extracellular ligands and 

intracellular ROS. Both ERK activation, and sAC signaling events lead to phosphorylation 

events, namely tyrosine phosphorylation (Visconti and Kopf, 1998). The process of capacitation 

is also under the regulation of other proteins and molecules, various hormones including estrogen 

and progesterone (Ded et al., 2013), and free radicals such as superoxide (Griveau et al., 1994; 

de Lamirande and Gagnon, 1993; Herrero et al., 1999).  

1.6 Controls of spermatogenesis  

 Spermatogenesis involves many levels of regulation, including endocrine, autocrine, and 

paracrine signaling. Primarily, testosterone is known to be a driver of spermatogenesis. The 

Sertoli cell is theorized to be the main target of testosterone responsible for driving 

spermatogenesis. During the spermatogenic cycle, levels of the androgen receptor (AR) in Sertoli 

cells rise and fall, suggesting that they control the cyclicity of the seminiferous epithelium 

(Bremner et al., 1994). The AR is a nuclear receptor, often facilitating the expression or 

inhibition of genes required for Sertoli cell function or spermatogenesis support. Without 

testosterone, most germ cells do not complete meiosis. However, the action of testosterone in 
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meiotic regulation is likely indirect (Walker, 2011). To determine the potential indirect action of 

testosterone, studies have examined Sertoli cell-specific AR knockouts and found that in these 

animals, there is a disruption in the BTB and an overall dysfunction of Sertoli cell signaling 

(Wang et al., 2006). Additionally, FSH signaling in Sertoli cells acts independently and together 

with testosterone support spermatogenesis. Without FSH, the ratio of Sertoli cells to germ cells 

decreases, representing their decreased ability to support numerous germ cells. There is partial 

fertility in a rodent model with constitutive FSH-receptor activity and a knockout of the LH 

receptor (minimal testosterone production). This suggests the complementariness of FSH and 

testosterone action (Oduwole et al., 2018).  

 Recently, retinoic acid (RA) has been studied as an additional regulator of 

spermatogenesis (reviewed by Tipping and Griswold, 2022; Gewiss et al., 2021; Teletin et al., 

2017; Griswold, 2016). The process of RA regulation of spermatogenesis is both germ cell 

intrinsic and extrinsic through Sertoli cell action (Lin et al., 2008). Though there are retinoic acid 

receptors (RARs) expressed in germ cells, RA mediates its effects on spermatogenic regulation 

mainly through the Sertoli cell RARs (reviewed by Tipping and Griswold, 2022). The action is 

primarily in the initiation of spermatogenesis, as Sertoli cells synthesize RA to support the entry 

of SSCs into meiosis (Raverdeau et al., 2008). Sertoli cell produced retinol acts on the SSCs to 

activate gene expression, such as Mafb, necessary for the transition into differentiating cells  

(Raverdeau et al., 2008) When the germ cells progress to spermatocytes, they are able to 

synthesize their own RA and thus maintain spermatogenic cycling and the differentiation of 

spermatogonia. Sertoli cell synthesized RA remains necessary for spermiation and release from 

the seminiferous epithelium (Raverdeau et al., 2008). These findings have been confirmed by 

studies using RAR knockout mice; specifically RAR-alpha deficient mice are sterile and do not 
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undergo normal spermatogenesis (Vernet et al., 2006; Chung et al., 2009; Teletin et al., 2019). 

Knockout of retinoid x receptor (RXR) beta, either at the level of the whole organism or the 

Sertoli cell alone, result in a loss of spermiation, suggesting that Sertoli cell RA action is 

necessary for spermiation (Vernet et al., 2008).   

2. Sperm Chromatin  

2.1 Spermiogenesis and chromatin compaction 

 Somatic cells can take advantage of a beads-on-a-string configuration bound by histones 

to form nucleosomes. While this permits sufficient compaction of DNA in a normal cell nucleus, 

the spermatozoa require much tighter compaction to allow for their small size and streamlined 

shape for optimal motility. Before meiosis, germ cells benefit from nucleosome packaging and 

undergo dramatic reconfiguration only after the round spermatid stage through spermiogenesis. 

The transition of histone-bound DNA to protamine-bound DNA involves many changes to the 

histone dynamics within the cell, primarily the hyperacetylation of histone variant 4 (H4) (Pivot-

Pajot et al., 2003). The histone acetylation process is controlled by histone acetyltransferases 

(HATs) and histone deacetylases (HDACs). Hyperacetylation of H4 at lysines 5 and 8 serves as a 

signal to recruit testis-specific bromodomain-containing protein (BRDT) (Meistrich et al., 2003). 

If this initial step in chromatin reorganization is disrupted, there is resulting infertility suggesting 

that it is a critical step in the process. BRDT directs the removal of histones and the replacement 

with arginine and lysine-rich transition proteins (TPs). There are two transition proteins, and as a 

result, they likely have some functional redundancy between the pair (Yu et al., 2000; Zhao et 

al., 2001). The transition proteins are transiently present on the spermatid DNA and are replaced 

by cysteine-rich, basic protamines (Sonnack et al., 2002).  
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 Protamines were initially discovered in 1874 by Miescher and are small arginine-rich 

proteins (Olivia, 2006). There are two reported protamines, with protamine one expressed in all 

mammals and protamine two expressed in some species, including humans and mice. During 

epididymal transit, arginine residues on the cysteine groups undergo oxidization to form 

disulfide bonds. The disulfide bonds allow the DNA to form a tighter toroidal configuration (Fig. 

1-4) similar to a slinky or a stack of rings (Oliva, 2006). This protamine-bound configuration is 

much tighter than a nucleosomal configuration, not only allowing for a smaller nucleus but also 

for the protection of the DNA and a transcriptionally inactive state to be maintained (Oliva and 

Dixon, 1991).   

 Approximately 1-2% of the sperm genome in rodents and up to 8-15% of the human 

sperm genome remain bound to histones (Balhorn, 2007). There is debate about what the 

retained histone regions may confer for the early embryo. However, the histone-bound regions 

include telomeric DNA and regions read by the embryo immediately after fertilization. The 

histone-bound regions may also aid in DNA anchoring to the sperm nuclear matrix (Kramer and 

Krawetz, 1996). 
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Figure 1-4: Germ cell chromatin rearrangement during spermiogenesis. Beginning with 

nucleosome-bound DNA, gradually replaced with transition proteins and protamines. DNA-

protamine toroids, nucleosome-bound DNA, and linker regions bound to the nuclear matrix.   
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2.2 The Sperm Nuclear Matrix 

 The nuclear matrix is a group of proteins that provide a transient structure for chromatin 

anchoring within the nucleus, comparable in some ways to the cellular cytoskeleton. The nuclear 

matrix, though, has a dynamic nature to accommodate the genetic activity (Balhorn et al., 1988). 

The core nuclear matrix was initially discovered in cancer cells using electron microscopy, 

where it was observed that a small group of proteins remained bound to DNA after high salt 

extraction (Balhorn et al., 1988). In somatic cells, these core nuclear matrix proteins bind to 

linker regions between nucleosomes at specific sites to ultimately form matrix-associated regions 

(MARs). The site specificity has been studied to determine the functionality of MARs. It has 

been found that these regions are often topoisomerase II sites, AT-rich sequences involved in 

DNA replication, or origins of replication (Wilson and Coverley, 2013; Ward, 2018).  

 Sperm DNA is packaged with a combination of protamines and histones. The DNA linker 

regions bind to the nuclear matrix and form sperm MARs (Belokopytova, et al., 1993). Coffey 

and Ward extensively studied the relationship between protamine DNA packaging and the sperm 

nuclear matrix, ultimately determining that the protein-DNA configuration provided by the 

nuclear matrix in sperm is sufficient and necessary for fertilization and development (Ward and 

Coffey, 1991). The functional necessity of the sperm nuclear matrix configuration has been 

determined using intracytoplasmic sperm injection (ICSI). In these studies, researchers injected 

various combinations of DNA and nuclear matrix components (Shaman et al., 2007; Gawecka et 

al., 2013; Kramer and Krawetz, 1996). Successful fertilization and pronuclear formation were 

achieved with control sperm and the nuclear matrix with DNA fragments at MARs. When either 

isolated DNA or isolated DNA with a reconstituted matrix was injected, fertilization and 

pronuclear formation were unsuccessful. Similarly, paternal pronuclear formation is delayed 
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after fertilization if the nuclear matrix is damaged (Gawecka et al., 2013). As a result of these 

studies, it has been established that the sperm nuclear matrix is essential for fertilization.  

 The sperm MARs are maintained after fertilization, potentially priming the DNA for 

accessibility to specific genes required immediately after fertilization. This includes 

developmentally relevant genes and those the early embryo requires to reorganize the paternal 

genome (Kramer and Krawetz, 1996). An issue presents itself with primed developmentally 

relevant genes, as sperm MARs are more susceptible to DNA damage during epididymal transit 

(Ribas-Maynou et al., 2014). Accompanying these findings is the hypothesis that the matrix 

provides a template for recognition in the early embryo and guides protamine replacement by 

maternal histones while potentially priming sites for transcription by anchoring them to MARs 

(Kramer and Krawetz, 1996). 

2.3 Sperm Chromatin Organization 

 Though we begin to understand sperm chromatin organization through the lens of the 

nuclear matrix, additional studies have been done to examine how various DNA elements and 

chromosomes are spatially arranged within the nucleus. Starting in the early 1990s, studies were 

done using fluorescence in situ hybridization (FISH) to examine the location of chromosomes 

relative to one another and the positioning of centromeres and telomeres in the sperm nucleus 

(Haaf and Ward, 1995). In porcine sperm, it was determined that each chromosome has distinct 

locations, forming distinct chromosome territories that may be functionally relevant in the 

developing embryo (Foster et al., 2005; Zalensky et al., 1995). Examining specific chromosomal 

elements, Zalensky et al. found that centromeres cluster towards the center of the sperm nucleus 

form a chromocenter, while telomeres extend outwardly toward the periphery. The outward 

extension of telomeric repeats allows for telomeric dimers or tetramers, which link the 
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chromosomes together in a hairpin configuration (Zalensky et al., 1995). This fits the general 

hypothesis that the nucleus has a gene-rich center and a gene-poor periphery (Zink et al., 2001). 

The dispersal of telomeres towards the periphery also fits with somatic cell nuclear organization, 

in which the telomeres form a 'bouquet' within the nucleus (Scherthan, 2001). A newly proposed 

model suggests multiple chromocenters and interspersed telomeric dimers throughout the 

nucleus (Ioannou et al., 2017).  

 High-resolution of chromatin organization in somatic cells has allowed us to further 

define regions of the nucleus. These formerly observed chromosome territories can be broken 

downinto topologically associated domains (TADs), compartments, and chromatin loops (Fraser 

et al., 2015). A chromatin loop contains all functional elements necessary for the transcription of 

a gene, including promoters and enhancers. In male germ cells, chromatin loops have been 

studied with immunohistochemistry techniques probing for proteins identified in somatic cells. A 

highly conserved zinc finger protein, CCTC-binding factor (CTCF), has been one of the main 

protein complexes associated with the formation of chromatin loops. CTCF binds to DNA with 

cohesion as a co-factor, thus determining functional genomic units. In the testis, a specific 

paralog of CTCF is called Brother of the Regulator of Imprinted Sites or CCTC-binding factor-

like (BORIS/CTCFL) (Sleutels et al., 2012). BORIS is a likely regulator of imprinted gene DNA 

methylation in the germline and thus acts as a gene regulator. BORIS also regulates the 

expression of Stra8 in the testis, a retinoic acid signaling gene and meiotic gatekeeper (Sleutels et 

al., 2012; Ma et al., 2018).   

 The chromatin conformation capture techniques are the leading edge of determining the 

chromatin configuration within the sperm nucleus. These methods allow for the relationship 

between genomic elements to be predicted based on the interaction frequency observed in the 



22 
 

data by combining DNA cross-linking with next-generation sequencing. Recently, these 

chromatin conformation capture techniques have been applied to the sperm genome through Hi-

C. Hi-C is a chromatin conformation capture technique that allows for the assessment of all 

interactions within the genome.  Sperm chromatin shows many long-range contacts within the 

DNA sequence. This is consistent with tight packaging as areas of the genome that would 

typically be far apart in space are able to localize more frequently (Dekker et al., 2013; Dostie 

and Bickmore, 2012). These methods have also been applied across spermatogenesis; it was 

found that during the early stages of spermatogenesis, chromatin organization is highly variable, 

with no compartmental organization. The germ cells gain strong compartmentalization by the 

end of spermatogenesis in the round spermatid stage. While the chromatin is undergoing rapid 

packaging changes from histone to protamine, it is also being reorganized within the nucleus 

(Battulin et al., 2015; Jung et al., 2017; Ke et al., 2017).  

 The accessibility of sperm chromatin during spermatogenesis is also of interest, given the 

tight configuration of chromatin after spermiogenesis. As such, the assay for transposase-

accessible chromatin (ATAC) sequencing has been used to assess the chromatin accessibility of 

the developing germ cells. During the process of spermatogenesis, there appears to be a ~35% 

reduction in open chromatin (ATAC peaks) from pachytene spermatocytes to round spermatids 

(Maezawa et al., 2018). This reduction in accessible chromatin is consistent with what has been 

established regarding the repackaging of chromatin during spermiogenesis and what was 

observed with Hi-C methodologies. The use of knockout models can further elucidate potential 

regulators of these processes, such as the knockout for Scml2, which was observed as a potential 

contributor to the closing of open chromatin. Additionally, examining the sequence of open 

chromatin identified through ATAC-sequencing will allow us to understand what the open 
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regions of chromatin are and if they hold functional significance as previously hypothesized. 

Indeed, studies have shown that in the human male germline, using single-cell ATAC-

sequencing, upwards of 100,000 open regions were promoters, gene bodies, or CpG islands (Wu 

et al., 2022). 

2.4 Epigenetic changes during spermatogenesis 

 Epigenetics is the process by which the expression of genes is altered without alteration 

to the DNA sequence. There are three major mechanisms by which epigenetic information is 

passed from one cell generation to the next: DNA methylation, histone modification, and non-

coding RNAs. Presently, these are the most well-studied epigenetic mechanisms in male germ 

cells. Many studies are actively investigating the effects of the environment (toxicants, lifestyle 

factors, age) on the sperm epigenome and the implications this may have for fertility or offspring 

development (Braun, 2001; Balhorn, 1982; Kitamura et al., 2015; Wilson and Jones, 1983; Dad 

et al., 2012; DeBaun et al., 2003; Gosden et al., 2003; Maher, 2005; Lazaraviciute et al., 2014).  

2.4.1 DNA methylation 

 DNA methylation is a common epigenetic mechanism that regulates gene expression and 

imprinting through the methylation of the 5-carbon cytosine residues (5-mC) at cytosine-

phosphate-guanine (CpG) dinucleotides. DNA methylation regulates gene expression, with 

hypermethylation of promoters leading to gene silencing by blocking access to transcriptional 

machinery and hypomethylation increasing gene expression through facilitating access of 

transcriptional machinery and RNA polymerase (Lazaraviciute et al., 2014; Jones, 2012). In 

germ cells, alterations in DNA methylation can result in abnormal spermatogenesis and 

subsequently impaired fertility.  
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 DNA methylation is a process intimately linked to folate metabolism through one-carbon 

metabolism, summarized in Figure 1-5 (Smith et al., 2013). Briefly, folate is brought in through 

diet or supplementation. It is metabolized by reductase enzymes in the liver but ultimately enters 

the folate cycle as tetrahydrofolate (THF). Serine or glycine acts as a carbon donor to form 5,10-

methyl THF. Methylenetetrahydrofolate reductase (MTHFR) converts this to strictly 5-methyl 

THF. 5-methyl THF acts as a carbon donor to recycle homocysteine to methionine as part of the 

DNA methylation cycle. Methionine is then converted by methionine adenosyltransferase 

(MAT) to s-adenosyl-methionine (SAM). SAM then facilitates DNA methylation by acting as a 

methyl donor for DNA methyltransferases (Smith et al., 2013; Clare et al., 2019). Interestingly, 

MTHFR is expressed at a fivefold higher level in the testis than in other tissues. The Trasler lab 

has shown the necessity for MTHFR for sperm development and normal spermatogenesis in both 

the parent (F1) and in their offspring (F2) fed a normal diet (Chen et al., 2001; Karahan et al., 

2021). The Kimmin’s lab has also shown that folate-deficient mice have altered sperm DNA 

methylation in regions associated with cancer and chronic human illness (Lambrot et al., 2013).  

 DNA methylation is maintained and removed by a variety of catalytic enzymes such as: 

DNA methyltransferase 1,2 and 3 (DNMT1/3A/3B), and ten-eleven translocation (TET) 

dioxygenase activity by TET3 (as reviewed by Janssen and Lorincz, 2021). DNMT1 is known as 

a maintenance DNA methyltransferase, active predominantly during DNA replication to ensure 

the replacement of 5mC at methylated sites through binding partner UHRF1 (Bostick et al., 

2007). DNMT3A/B have been found to catalyze de novo DNA methylation. The access of 

DNMT3A/B to DNA for de novo methylation is heavily dependent on histone methylation (Li et 

al., 2011). Repressive histone marks (i.e; H3K9me3, H3K36me2/3) providing access and 

stabilization to DNMT3A/B and activating histone marks (H3K4me3) blocking access to the 
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DNMT3A/B complex (as reviewed by: Li et al., 2011; Saksouk et al., 2015; Nicetto and Zarat, 

2019). This interaction is due to elements of the DNMT3A/B complex, specifically the ADD 

motif, as without this motif DNMT is able to methylate regions with activating histone marks 

(Otani et al., 2009; Zhang et al., 2010). TET enzymes are one of the most well studied 

mechanisms for DNA demethylation, where they hydroxylate 5mC to 5hmC, that is recognized 

by base excision repair machinery for replacement. This process is error prone and leads to 

frequent mutations (Santos et al., 2013; Shi et al., 2017). 

 

There are two main reprogramming events that lead to the proper methylation of sperm DNA 

(Monk et al., 1987; Kafri et al., 1992; Reik et al., 2001; reviewed by Smallwood and Kelsey, 

2022). After fertilization at the 2-cell stage, both maternal and paternal chromatin are 

demethylated rapidly, likely by Tet proteins (Mayer et al., 2000; Oswald et al., 2000; Gu et al., 

2011), with imprinted genomic regions remaining. At the blastocyst stage, methylation is 

redeposited onto the DNA. The second DNA methylation erasure is during embryonic 

development when the primordial germ cell DNA is demethylated. In primordial male germ 

cells, the DNA methylation is replaced in the prospermatogonia during mitotic arrest before birth 

of the male and after birth prior to puberty for the female (Hajkova et al., 2002). During this 

phase of epigenetic reprogramming the DNA methylation at imprinted loci is also lost; however, 

it is somehow re-established (Seisenberger et al., 2012; Kremsky and Corces, 2020). There are 

additional regions coding for active or mobile insert elements that may be mutagenic that appear 

to remain silenced during this process, though this mechanism is still being actively researched 

(Hackett et al., 2013).  
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 Many groups are now investigating the significance of altered DNA methylation in 

sperm. Several studies show intergenerational (F0 to F1) and transgenerational (F0 to F1, F2, F3, 

etc.) epigenetic inheritance mediated by paternal DNA methylation (Chastain and Sarkar, 2017; 

de Castro Barbosa et al., 2016; Dunn and Bale, 2011; Illum et al., 2018; Lambrot et al., 2013; 

King and Skinner, 2020). Radford and colleagues (Radford et al., 2014)) have been one of many 

groups to explore the transmission of metabolic disorders through the sperm DNA methylome. 

When F0 dams were malnourished, the F1 males had differentially methylated regions (DMRs) 

in their sperm, and the F2 offspring displayed altered metabolic functions. This study did not 

directly prove a mechanism for this inheritance, but the results suggest a strong link between 

DNA methylation and intergenerational phenotypic inheritance.  
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Figure 1-5: Simplified One Carbon Metabolism. Folate-metabolism and DNA methylation 

cycles.  

2.4.2 Histone variants and histone post-translational modifications 

 Until spermiogenesis, the male germ cell DNA is bound by histones, similar to somatic 

cell DNA. During spermatogenesis, the regulation of histones has functional significance during 

meiosis. Histones come in five main variants, H2A, H2B, H3, and H4, with H1 being the linker 

histone between nucleosomes (Talbert and Henikoff, 2021). Histones form heterodimers, binding 

selectively to one another to package the DNA. Within each of the five main variants, there are 

numerous additional paralogs. In addition to the array of histone variants, there are numerous 

post-translational modifications (PTMs), with at least 18 PTMs having been identified. They 

include acetylation, B-N-acetyl-glucosaminylation, ADP ribosylation, butyrylation, 

citrullination/deimination, crotonylation, formylation, glutarylation, hydroxylation, 2-

hydroxyisobutyrylation, malonylation, mono-, di-, and tri-methylation, phosphorylation, proline 

isomerization, propionylation, succinylation, sumoylation, and ubiquitination (Huant et al., 2015; 
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Zhao and Garcia, 2015). These changes alter the physiochemical properties of nucleosomes, 

modify the 3D conformation of germ cell chromatin, determine heterochromatic and euchromatic 

states, and play a role in the progression through the various steps of meiosis. In pachytene 

spermatocytes, the paired chromosomes must undergo homologous recombination. Here, the 

cells must also undergo active gene transcription in the autosomal chromosomes, which have 

been highly condensed since leptonema. The opening of the autosomal chromosomes is due to 

the incorporation of different histone variants and PTMs, including the replacement of H3 by 

H3.3, TH2A, TH2B, H1T, H2A ubiquitination, and H3K9 acetylation (Page et al., 2012). This 

process is delayed in the sex chromosomes that are still inactivated, forming the XY/sex body. 

The formation of the sex body in germ cells is known as meiotic sex chromosome inactivation 

and involves numerous histone repressive marks such as H3K9me2/3 (Histone 3, Lysine 9, di / 

tri-methylation) and the macroH2A variant (Fernandez-Capetillo et al., 2003; Turner et al., 

2004).  

 Histone methylation plays a role in the regulation of gene expression of genes necessary 

for spermiogenesis. Methylation of H3K9/36 (denoted as H3K9me2/3) is necessary to allow for 

the expression of transition protein and protamine genes. Okada et al. (2007) have shown that 

H3K9me2 regulates the expression of transition protein and protamine genes via JHDM2A.   

 The process of spermiogenesis and DNA repackaging is reliant on histone variants and 

PTMs. The main histone modification during this process is the hyperacetylation of H4 (Wang et 

al., 2019). Hyperacetylation of H4K5/8/12/16 is essential for the remodeling of chromatin and 

incorporation of transition proteins, as it recruits BRDT (Wang et al., 2019; Ketchum et al., 

2018). The role of hyperacetylation is further supported by studies examining gene expression of 

the histone acetyltransferases responsible for the acetylation of H4K, Kat2b, and Kat8. The 
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expression of these genes is high at the onset of spermiogenesis but declines gradually (Li et al., 

2021). Histone ubiquitination of H2A and H2B allows for the acetylation of H4K16 through the 

recruitment of males absent on the first (MOF) acetyltransferase complex (Ketchum et al., 2018; 

Chen et al., 1998).  

 Though the germline undergoes drastic repackaging to form protamine-bound toroidal 

DNA, some histones are retained in sperm DNA packaging. Various groups report different 

findings that seem to be species specific, with human sperm retaining as much as 15% 

(Gatewood et al., 1987) of the histones or as little as 4% (Hammoud et al., 2010). Rodent sperm 

on the other hand retains less, with as little as 1-10% in the mouse (Brykczynska et al., 2010). 

Sperm histone modifications are an active area of research within the field of fertility, focusing 

on how histone modifications may lead to transgenerational epigenetic inheritance. The 

functionality of retained nucleosomes remains elusive; they are found in promoter, enhancer, and 

super-enhancer regions often associated with CTCF binding in earlier germ cell stages and in the 

embryo (Jung et al., 2017). There are a few proposed mechanistic explanations for histone 

retention, including CTCF binding, inherent histone modifications, and non-coding RNAs 

(Hoghoughi et al., 2020; Jung et al., 2019; Zhang et al., 2017). The retained histones have been 

associated with regions that are developmentally relevant in the embryo (Hammoud et al., 2009). 

Further advances have been made to examine the genic regions that retain nucleosomes in sperm. 

Yamaguchi et al., (2018) found that these regions often overlapped with regions that were 

developmentally relevant, or involved in the process of spermatogenesis.  

The retained sperm histones are a modulator of epigenetic and transgenerational inheritance 

(Torres-Flores and Hernández-Hernández, 2020). Using ChIP-Seq methodologies, it is possible 

to examine specific histones and their modifications in sperm, such as repressive or activating 
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marks. Exposure studies to the pesticides vinclozolin and dichlorodiphenyltrichloroethane have 

shown that sperm H3 methylation sites are altered with exposure, and this is maintained in the F3 

sperm (Ben Maamar et al., 2018). High-fat diet and paternal obesity also alter H3 methylation, 

specifically levels of an H3K4 methylation (Terashima et al., 2015; Pepin et al., 2022). The 

enrichment of histone marks, either activating or repressive, has been associated with regions 

implicated in spermatogenesis and embryonic development (Teraskima et al., 2015; Siklenka et 

al., 2015; Teperek et al., 2016; Pepin et al., 2022). 

 

2.4.3 Noncoding RNAs  

 As RNA sequencing methods are rapidly becoming more accessible, the number of 

studied noncoding RNAs (ncRNA) is increasing. The ncRNAs have two classifications, the 

small ncRNAs (sncRNA), and the long ncRNAs (lncRNA) (Saxe and Lin, 2011; Joshi and 

Rajender, 2020). The identification of ncRNAs, their roles, and the mechanisms by which they 

act has been a major area of research in germ cell biology. In male germ cells, ncRNAs often 

have functions in the regulation of gene expression, chromatin conformation, and genome 

stabilization. Entirely new categories of RNAs are being discovered in germ cells, including the 

Piwi interacting RNAs (piRNAs). 

 Germ cells become transcriptionally inactive after spermiogenesis and thus must 

transcribe all relevant RNAs prior to spermiogenesis. Many of these transcripts are 

translationally repressed by RNA-binding proteins and are stored in germ cell granules such as 

the chromatoid body (Lehtiniemi and Kotaja, 2017). Many of these RNAs are lost when 

spermatids shed their cytoplasm through the residual body before spermiation. After spermiation, 
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only ~50 fg of RNA remains in each spermatozoon, in contrast to ~12 pg of RNA/cell in somatic 

or earlier germ cells (Concha et al., 1993; Krawetz, 2005; Schuster et al., 2016).  

 Noncoding RNAs are among the regulators of the highly dynamic and stage-specific 

germ cell transcriptome (Ball et al., 2016; Chen et al., 2017; Jan et al., 2017; Laiho et al., 2013; 

Smorag et al., 2012). Primarily micro RNAs (miRNAs) are one class of ncRNAs that regulate 

gene expression by binding with some complementarity to mRNA and marking them for 

degradation, thereby suppressing specific gene expression (O’Brien et al., 2018). miRNAs have 

positive and negative effects, solely dependent on the mRNA they are regulating (Voorhoeve and 

Agami, 2007). Two miRNAs, miR-146 and miR-221, have been characterized to inhibit 

spermatogonial stem cell differentiation (Chen et al., 2017; Kotaja, 2014). These miRNAs target 

the c-Kit mRNA, which codes for a tyrosine kinase receptor essential for initiating 

spermatogonial differentiation, leading to c-Kit suppression (Smorag et al., 2012; Huszar and 

Payne, 2013). During the pachytene spermatocyte stage, piRNAs, ncRNAs 24-31 nucleotides 

long, which associate with the PIWI proteins, are involved in rapid mRNA decay (Gou et al., 

2014). During spermiogenesis, two clusters of microRNAs from the same family, miR-449 and 

miR-34b/c clusters play a role in the condensation of sperm chromatin and formation of the 

flagellum. The male double knockout for these microRNAs is sterile due to the production of 

abnormal, immotile, and decondensed spermatozoa (Wu et al., 2014; Yuan et al., 2015).  

 As the germ cell epigenome is going through a rapid rearrangement during germ cell 

development, there are additional protective elements germ cells must employ in order to protect 

the DNA from transposable element insertion. In germ cells, piRNA along with PIWI binding 

proteins have been observed to target transposable elements to enhance the degradation of the 

transposon mRNA and prevent genomic insertion. The most prominent of these ncRNAs are the 
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pi-RNAs (Hirakata and Siomi, 2016; Iwasaki et al., 2015; Russel et al., 2017; Sarkar et al., 

2017). The transfer RNA-derived small RNAs or tRFs have also been noted as inhibitors of 

transposable elements in a mouse stem cell line (Shorn et al., 2017).  

 Despite the removal of most RNAs through spermiation, mature spermatozoa have a vast 

array of ncRNAs, including long ncRNAs, fragmented ribosomal RNAs, tRFs, microRNAs, pi-

RNAs, and mitochondrial RNAs. In lower quantities, the following RNAs have also been 

identified: repetitive elements, quiescent RNAs, intronic retained elements, snoRNAs, and 

YRNAs (Schuster et al., 2016; Jodar et al., 2013; Krawetz et al., 2011; Nixon et al., 2019). There 

is a class of microRNAs (cluster 17-92) that are present in testicular sperm, absent in sperm from 

the caput of the epididymis, but present after epididymal transit when the sperm are in the cauda. 

This suggests that the epididymis is contributing ncRNAs to the sperm through epididymal 

transit, with convincing evidence suggesting these RNA payloads are delivered by 

epididymosomes (Sharma et al., 2018).  

 Beyond the role of ncRNAs in genetic regulation during spermatogenesis and epididymal 

transit, research is now focusing on the role of sperm ncRNAs in fertilization and post-

fertilization embryo development. Some studies suggest that ncRNAs may play a role in 

intergenerational epigenetic transmission (Chen et al., 2016; Fullston et al., 2013). In male 

runners, for example, the sperm miRNA payload was significantly different from a group of 

control men. The difference in miRNA transcriptome was correlated with offspring who had 

decreased anxiety and stress responses (Short et al., 2017). Similarly, the ncRNAs in sperm from 

infertile men were significantly different from those of fertile controls. This suggests that sperm 

ncRNAs may be a strong biomarker for male fertility parameters (Burl et al., 2018). When Sun et 

al. (2021) examined oligozoospermic men compared to normozoospermic controls, they found 
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differentially expressed ncRNAs involved in gene expression regulation, endoplasmic reticulum 

trafficking, and apoptosis.  

2.4.4 Telomeres 

 Telomeres are the repeat regions at the end of chromosomes in all cells throughout the 

body. Telomeric repeats are made up of the nucleotide sequence TTAGGG (T: thymine, A: 

adenine, G: guanine). They provide stability to the genome and act as anchoring points for DNA 

within the nucleus. During meiosis, they help to pair homologous chromosomes, form the 

synapsis, and aid in homologous recombination (Scherthan, 2007). Telomeric DNA, with 

double-stranded G rich repeats, end in a 3’ overhang, this overhang can fold back onto itself and 

invade the double-stranded telomeric DNA. This folding back creates what is known as a T-loop, 

and is thought to have protective effects in evading cellular DNA damage responses and 

chromosome fusion events (Griffith et al., 1999). Telomeres are bound by a multiprotein 

complex known as the Shelterin complex, or telosome. This complex contains proteins 

PTOP/POT1/TPP1, or the telomere binding factors TRF1, TRF2 and their interacting protein 

RAP1 and TIN2 (Chan and Blackburn, 2002; Liu et al., 2004). These proteins have functions in 

protecting and stabilizing the telomeres. Specifically, POT1 and TRF2 help protect the 

chromosome ends from DNA damage repair machinery and chromosome ligation via non-

homologous end-joining (Celli and Lange, 2005; Hockemeyer et al., 2006). This ultimately aids 

the cell in avoiding DNA damage responses such as apoptosis and cell cycle arrest (Chan and 

Blackburn, 2002). Telomeres are maintained as heterochromatic regions through histone 

methylation, specifically H3K9me and H4K20me (as reviewed by: Blasco, 2007). There are low 

levels of histone acetylation as well, at H3 and H4 (Bonetti et al., 2007). The heterochromatic 

regions, though, are not stable and often spread into the neighboring regions of DNA, silencing 
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nearby genetic information through what is called telomere position effects (Blasco, 2007; Wang 

et al., 2018). In addition to methylated histones, telomeres are packaged by a H3K9me3 binding 

protein heterochromatin protein 1 (HP1) (Koering et al., 2002; Garcia-Cao et al., 2004; Gonzalo 

et al., 2006).  

The subtelomere contains similar histone modifications, and heterochromain proteins (HP1); 

however, the subtelomere contains heterochromatic DNA methylation and does not contain the 

Shelterin complex of proteins. DNA methylation within the subtelomere may have functionality 

in regulating telomere length, as decreases in DNA methylation within the subtelomere has been 

associated with elongated telomeres (Gonzalo et al., 2006).  

Telomeres have also been proposed as an epigenetic mechanism of their own, for which there 

is some debate. Telomere length is determined in each cell of the developing embryo, and 

determine the replicative potential of each cell within the body, thereby determining the 

phenotype without changing the DNA sequence (Blasco, 2007). Thus, telomeres present an 

interesting potential epigenetic function, as they are both controlled by epigenetic mechanisms 

and may inherently contribute to epigenetics. 

 In germ cells, telomeres are actively maintained by the enzyme telomerase, which is 

absent, or expressed at very low levels in most somatic cell types. Telomerase is a 

ribonucleoprotein with a telomerase RNA component (TERC) and telomerase reverse 

transcriptase (TERT) (Ozturk, 2015). The RNA component facilitates the addition of 

complementary DNA by the reverse transcriptase, to prevent telomere degradation. The activity 

of telomerase in germ cells has been studied, with conflicting evidence to suggest that it is most 
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active in spermatogonial stem cells and early germ cells, but declines after the spermatid stage 

(Achi et al., 2000; Eisenhauer et al., 1997; Ravindranath et al., 1997)  

 Sperm telomeres have been studied in relation to the offspring, and studies have shown 

that the sperm telomere length is correlated with the offspring telomere length. Sperm length has 

also been studied in the context of fertility, suggesting that decreased telomere length leads to 

poor fertility outcomes during assisted reproductive therapies (Gentiluomo et al., 2021). In 

clinical settings, telomere length is being proposed as a marker for sperm quality. It is relatively 

easy to measure using qPCR and may provide insight into the fertility or sperm quality and DNA 

integrity. There are no set limits for optimal telomere length, though, and it is likely that 

telomeres that are either too short or too long could pose issues for sperm quality. 

2.4.5 Cooperating epigenetic mechanisms  

 Though each of these epigenetic mechanisms presents a strong case for its contribution to 

germ cell epigenetic regulation, none act in a vacuum, but rather act in concert with one another, 

this further complicates our understanding of epigenetics and the specific contributions of each 

mechanism. The current body of literature focuses on individual epigenetic mechanisms; 

however, the future of this field relies on understanding how the mechanism act together to 

regulate gene expression and phenotypic observation.  

 Lambrot et al. (2013) have made an effort to link histone modifications and DNA 

methylation. They have shown that areas with H3K4me3 in human sperm correspond to areas of 

DNA hypomethylation and are found in gene-rich CpG regions, like promoters. Another study 

demonstrated the interplay between ncRNA, DNA methylation, and histone modifications (Beck 

et al., 2021). When males were exposed to a toxicant in utero, the sperm from the F1, F2, and F3 
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progeny had ncRNAs overlapping differentially methylated regions (DMRs). The DMRs had 

significant overlap with histone retention sites and altered histone modifications. Together, these 

studies are beginning to indicate that epigenetic mechanisms work together in a cooperative 

manner. 

2.5 DNA damage and DNA damage repair during spermatogenesis  

 The highly replicative and dynamic nature of the male germline endangers the DNA to 

many types of lesions. These include single and double-strand breaks (DSB), interstrand or 

intrastrand cross-links, base mismatches, and modifications. In order to repair the array of 

damage that may occur during spermatogenesis, germ cells have evolved a wide range of DNA 

damage repair pathways, referred to as the DNA damage response (DDR) (Jackson and Bartek, 

2009). The process of DDR involves sensors of damage, mediators of sensor signaling, 

transducers, and effector classes of proteins. The major repair pathways in germ cells include 

base-excision repair (BER), nucleotide-excision repair (NER), mismatch repair (MMR), 

homologous recombination (HR), and nonhomologous end joining (NHEJ) (Bailly and Gartner, 

2013).  

 Each germ cell type uses different repair pathways. Spermatogonial stem cells primarily 

use NHEJ and HR to repair DSBs that occur during mitosis. MMR-related genes are expressed in 

spermatogonia, and the spermatocytes, suggesting that more than one repair pathway may be 

active in spermatogonia (Richardson et al., 2000). In spermatocytes, the main repair pathway is 

HR, with the necessary components Rad51 and Dmc1. There is less NER in these cells, as these 

cells can be eliminated by apoptosis rather than repaired (Xu et al., 2005). Post-meiotic 

spermatids do not typically undergo complete DNA damage repair; however, there is some 

evidence to suggest that these cells may use NHEJ (Ahmed et al., 2007), for example, that they 
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contain Ku70, a necessary factor in NHEJ (Ahmed et al., 2013). As NHEJ is a template free 

repair, it is hypothesized that this is a major source of the male DNA de novo mutation bias 

(Grégoire et al., 2018). During spermiogenesis, when the spermatids have begun to elongate, 

there is an overall downregulation of the DNA repair-associated transcripts, with some studies 

reporting that there is likely no active repair in these stages (van Loon et al., 1993; Olsen et al., 

2003). The process of spermiogenesis may require transient double-stranded DNA breaks, and 

their repair with NHEJ, to facilitate the repackaging with protamines, again allowing for de novo 

mutations at this stage (Leduc et al., 2008). Once spermiogenesis is complete, the protamine 

insertion and chromatin compaction protect the DNA. When spermatozoa are mature, it is 

unlikely that any DNA damage response elements are active as there are few proteins and RNAs 

in sperm. Additionally, the chromatin is tightly compacted; thus, the repair machinery is unlikely 

to make contact with the DNA. 

3. Advanced Paternal Age and Reproductive Aging  

 In industrialized countries, including Canada, the age at which individuals choose to start 

a family has been steadily increasing since the 1970s. For men, this has resulted in about a 3 -

year increase in the age at which they become first-time fathers regardless of ethnicity 

(Khandwala et al., 2017). The societal factors contributing to delayed parenthood are vast, 

ranging from goals of higher education, career demands, and financial stability. In addition to 

individuals waiting longer to have children, we also are faced with an aging population of men in 

Canada who are able to father children until much later in life, especially with the advent of 

assisted reproductive technologies.  

 The effects of advanced paternal age (APA) are less well-known than those of the well-

studied maternal age. As women reach a finite age at which they are no longer able to reproduce 
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and go through menopause, there are substantiated results to show their oocytes decline in 

quality (Pellestor et al., 2003). The decline in oocyte quality can primarily be attributed to 

abnormal chromosome segregation and results in reduced fertility and increased risk of poor 

pregnancy outcomes. It is increasingly common knowledge that women over 35 are at risk of 

children with trisomy 21 (Yoon et al., 1996; Crawford and Steiner, 2015)Though the effects on 

men’s fertility are less striking, they still pose a hazard to the offspring through subtle alterations 

to spermatozoa (sperm) (Crow, 1997).  

 The first noted disruption in male reproduction with aging is through the hypothalamic-

pituitary-gonadal (HPG) axis, as there is a significant decrease in testosterone production with 

age, often referred to as andropause, or more appropriately, as late onset hypogonadism (LOH) 

(Singh, 2013; Kaufman et al., 2019). The source of LOH has been studied by examining Leydig 

cell function and characterizing the remaining sex hormones (GnRH, LH, testosterone). Using 

the Brown Norway (BN) rat model of reproductive aging, we now know that with age, the 

Leydig cells have a decreased ability to respond to stimulation by LH, causing an overall 

decrease in testosterone production, consistent with what is seen in humans (Midzak et al., 

2008). The observed decrease in testosterone has potential effects on male reproductive 

endpoints. 

 Though spermatogenesis often continues with APA, several fertility parameters and 

testicular histology are perturbed (Dong et al., 2022). Testicular histology shows age-related 

disruptions, including loss of testicular cells (somatic and germ cells), reduced vasculature, 

thickening of the seminiferous tubule basement membrane, and reduced tubule epithelium. The 

abnormal testis environment is met with abnormal sperm motility and morphology. Taken 
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together, disruptions in the testis translate to a decrease in an overall semen volume equivalent to 

approximately 0.22 mL for every five years of age (Beguería et al., 2014). 

 There is correlative epidemiological evidence that show alterations to a couple’s fertility 

when the man is of advanced paternal age, even when adjusted for maternal age (Sharma et al., 

2015; Bray et al., 2006). These studies found that in men over 40 years of age, there was an 

increased time to pregnancy (TTP) and increased incidence of preterm births, stillbirths, low 

birth weight progeny, and preeclampsia. Beyond pregnancy outcomes, there have been reported 

increases in neurological disorders in the offspring of older men. These disorders include 

attention deficit hyperactivity disorder (ADHD), autism, and schizophrenia (Dong et al., 2022; 

Frans et al., 2013; Grether et al., 2009; Malaspina et al., 2015; D’Onofrio et al., 2014). There is 

an increasing number of studies that are exploring causality between these disorders and the 

effects of aging on spermatozoa.  

 Following the early studies displaying paternal age effects, the American Society for 

Reproductive Medicine set a limit of 40 years for sperm donors. The Society of Obstetrics and 

Gynecologists of Canada (SOGC) has also used these findings to set an age threshold for 

advanced paternal age at 40 (Liu and Case, 2011). Though sperm donation is prohibited over 40, 

and major societies recognize this as APA, there remains no universally accepted age threshold 

for men’s fertility. 

3.1 Theories of Aging 

 The theories of aging represent a set of hypotheses that reflect the alterations seen with 

aging throughout various systems. There are two main classes of aging theories, 1) programmed 

aging theories and 2) damage aging theories. Programmed aging theories include programmed 
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longevity, telomere theory, endocrine theory, and immunological theory. For example, Hayflick 

proposed that all cells have a limited number of times they will divide before cell senescence will 

occur (Hayflick, 1980).  Damage aging theories include wear and tear theory, rate of living 

theory, cross-linking theory, free radical theory, and DNA damage theory (Jin, 2010). Within the 

germ cells, all theories of aging may be applicable and likely interact with one another to result 

in the major alterations observed in sperm with advanced paternal age. Although it is important 

to identify what are the various theories and biologically relevant pathways that contribute to the 

overall process of germ cell aging, this renders the study of aging a particularly challenging 

endeavor.  

3.2 Effects of aging on the somatic cells of the testis  

3.2.1 Leydig Cells 

The Leydig cells are the site of testosterone biosynthesis in the testis, converting cholesterol 

to testosterone once activated by LH. Due to aging, there is a decrease in the Leydig cell's ability 

to respond to stimulation by LH, suggesting a likely disruption in the cyclic-AMP signaling 

cascade (Chen et al., 2002).  

3.2.2 Sertoli Cells  

The Sertoli cells are somatic support cells within the seminiferous tubules, providing 

physical and signaling support to developing germ cells. As previously mentioned, they are 

responsible for a host of functions ensuring the initiation and successful completion of 

spermatogenesis. Beyond supporting spermatogenesis, Sertoli cells function to establish and 

maintain the BTB; however, with aging, there is evidence that the BTB integrity is disrupted and 

becomes more permeable to toxicant insult (Levy et al., 1999). There is an apparent decrease in 
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Sertoli cell number with aging, and a decrease in cell quality, with apparent cell degeneration 

(Jiang et al., 2014). There is also a host of dysregulated genes in Sertoli cells from aged mice 

(Dong et al., 2022), including those involved in gap junction maintenance, ERα-NRF2, and 

growth factor signaling such as through Insl3 (Shiba et al., 2021; Zhao et al., 2020; Crespo et al., 

2021). From a recent study of whole testis single-cell RNA sequencing in men, it is evident that 

the transcriptome of Sertoli cells from aged men is distinct from that of young men, with major 

differences in cellular metabolism genes (Nie et al., 2022). Similar results were observed at the 

RNA level when examining specific transcripts in Sertoli cells for cell communication, where 

Syed and Hecht (2001, 2002) proposed that there was a potential disruption of signaling between 

germ and Sertoli cells. The decrease in the Sertoli cell number is accompanied by a decrease in 

the number of germ cells that one Sertoli cell can support with aging (Jiang et al., 2014). Upon 

examination of testis sections from aged rats, it became clear to Levy et al. (1999) that there 

were gaps where germ cells should be embedded within the Sertoli cells. These findings together 

suggest that there is a disruption in Sertoli cell biology due to aging.  

3.3 Effects of aging on germ cells    

One of the first observations made about the effects of advanced age in rodents was that there 

was a general disruption in the overall organization of the germ and somatic cell type in the 

seminiferous epithelium (Wang et al., 1993). This immediately suggested that there were 

additional effects due to aging worth studying. It has also been reported that within the germline, 

there is an accumulation of mutations due to aging (Walter et al., 1998). Since then, studies have 

reported that with aging, there is no change in the number of spermatogonial stem cells (SSCs) 

that comprise the stem cell pool giving rise to the germline; however, there is a decrease in their 

ability to form germ cell colonies and their longevity is reduced (Paul et al., 2013). In mice, 
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despite potentially fewer or less functional SSCs due to age, those that remain at one year of age 

are capable of generating a germ cell colony, indicative of their ability to contribute to 

spermatogenesis; when the mice reach two years of age, though, their replicative potential and 

the colony size they form decreases (Zhang et al., 2006). Thess studies suggest that as the stem 

cell pool ages, the remaining cells become less functional. Concordant with the decrease in 

SSCs, there are also fewer germ cells of the remaining cell types. The spermatocytes that remain 

tend to show more apoptosis than the spermatocytes of young mice (Barnes et al., 1998). During 

meiosis in mice, there is an observed disruption in chromosome pairing, synapsis, and 

homologous recombination, though cells with these defects appear to be removed through cycle 

checkpoints (Vrooman et al., 2014). In post-meiotic spermatids from men, abnormalities in some 

rodents appear in the: acrosome, nuclear membrane, excessive cytoplasmic droplets, irregular 

nucleus shape, and intranuclear inclusions (Paniagua et al., 1987). In humans, multinucleated 

round spermatids have also been observed, suggesting a potential disruption in membrane 

integrity or complete meiosis (Nistal et al., 1986). Similar observations have been made in 

hamster spermatids, where they, too, had abnormalities in the acrosome and nuclear membrane. 

In addition, in hamsters, the developing flagella were curved (Calvo et al., 1995). The effects 

seen at the round spermatid stage likely contribute to the effects of age on abnormal sperm 

morphology and motility. Sperm progressive motility is two-fold lower in men aged 50 or more 

relative to men aged 40-50 (Pino et al., 2020). It is reported that the overall fertilizing ability of 

human sperm decreases by 0.3% per year for paternal age, likely due to issues with motility or 

capacitation (Diao et al., 2013; Bartolacci et al., 2018). As previously mentioned, germ cell DNA 

integrity decreases with age, and this remains consistent with mature spermatozoa. With aging, 
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the DNA fragmentation index increases significantly in sperm (Belloc et al., 2014; Evenson et 

al., 2020).  

3.4 Epigenetic changes during spermatogenesis due to aging 

 Aging has been shown to affect the chromatin of germ cells through most major 

mechanisms of epigenetic regulation. This includes DNA methylation, histone modifications, 

noncoding RNAs, and telomere length. It is important to note here, that all modifications act 

together in the process of genetic regulation, epigenetic inheritance, and chromatin structure.  

3.4.1 DNA methylation  

 Aging and aging-associated diseases have been linked to alterations in DNA methylation 

in somatic cells (Issa, 2000; Wilson et al., 1987; Ono et al., 1989). It is logical that with 

overlapping factors, such as altered folate metabolism with aging, the germ cells will also be 

affected by the aging process. Pioneering studies in this area compared embryos generated from 

the germ cells of aged rats with rats treated with a demethylating agent, 5-azacytidine, and found 

that the results were similar. Suggesting a likely DNA methylation perturbation in the sperm 

from aged rats (Oakes et al., 2003). In mouse sperm, global DNA methylation and 

hydroxymethylation are not significantly altered due to age (Kobayashi et al., 2016; Milekic et 

al., 2015). Kobayashi et al. (2016) note, though, that there is differential methylation at some 

promoters within the mouse genome. The hypomethylated promoters they observed were 

enriched for gene regions involved in spermatogenesis and meiosis. When studying the mouse 

sperm DNA methylome, the CpG shores surrounding transcription start sites or splice junctions 

are hypomethylated in the sperm of older individuals (Cao et al., 2020; Milekic et al., 2015). 

Milekic et al. (2015) have reported that sperm DNA hypomethylation at CpGs near transcription 

start sites and hypermethylation of splice junctions was maintained in brain sample DNA from 
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the offspring of older fathers, however, to a lesser extent. The offspring of older fathers also 

displayed subsequent alterations in the expression of 17 transcripts in the brain and altered 

behavior (Milekic et al., 2015).   

 In many somatic cell types, there is a drive to develop an epigenetic clock – whereby one 

can predict the biological age of a person by their DNA methylation levels. In somatic cells, 

there is hypomethylation associated with aging, that allows for these predictions. In spermatozoa 

from men of different ages, data indicate that the DNA methylation and hydroxyl-methylation 

levels increase by 1.76% and 5% per year, respectively (Jenkins et al., 2013). The correlation of 

age and sperm DNA methylation alterations is so strong with aging that models can be used to 

accurately predict age based on sperm DNA methylation. When analyzing differential 

methylation of 2.65 million CpG sites from aged men, many sites are hypermethylated regions 

(62%), with a smaller proportion of hypomethylated regions (38%) (Cao et al., 2020). The nature 

of the DMRs is also of importance, with most hypermethylation found in distal gene regions and 

hypomethylation found proximal to gene transcription start sites. This suggests that though there 

may be more hypermethylation overall, areas relevant to gene transcription may be more likely 

to have increased expression due to the hypomethylation observed. Given the issues that have 

been observed with advanced age in the offspring, it is interesting that the DMRs were found to 

cluster near gene regions that were related to metabolic aging and neurodevelopment. Some have 

proposed that altered methylation in regions specific to development may be biased due to the 

more open nature of chromatin at developmentally relevant genes (Ashapkin et al., 2022).  

3.4.2. Histone modifications  

Very few studies have begun to examine the effects of aging on sperm histone methylation 

(as reviewed by: Ashapkin et al., 2022). Firstly, a mouse model for aging has shown that in the 
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spermatogonial stem cells, alterations in H3K27me3 at sites required for the expression of 

differentiation genes during SSC differentiation (Liao et al., 2021); additionally, they reported 

alterations in H3K27me3 at Wnt and TGF-B signaling genes. Two additional studies examining 

sperm histone methylation have been done in mouse models as well. Xie et al., (2018) found that 

when examining histone repressive (H3K27me3) and activating marks (H3K4me3), there were 

disruptions in genes for longevity and spermatogenesis. In addition, 90% of the altered histone 

modifications were found within one region on chromosome 5 that has been associated with 

differential DNA methylation as a result of age in hematopoietic stem cells (Taiwo et al., 2013). 

It has been observed that, with aging, repressive histone marks, H3K9me3 and H3K27me2/3, 

have a disrupted balance with decreased H3K9me3 and increase H3K27me2/3 (Tatehana et al., 

2020). It was also reported that the activating mark H3K4me2 was decreased in sperm from aged 

mice (Tatehana et al., 2020). Studies of histone modifications in sperm remain technically 

challenging to undertake, as this requires expertise in sperm ChIP-seq. Consequently, there are 

limited studies on altered histone modifications in sperm due to aging.  

3.4.3 Noncoding RNAs  

 There are few studies on the effects of aging on testicular ncRNAs. Emerging data 

suggest that advanced paternal age dysregulates ncRNAs in rat sperm (Suvorov et al., 2020). 

Mainly, the proportions of ncRNAs shift with aging. Specifically, rRNA and lncRNA decrease 

while tRFs, piRNA, and miRNA increase. The targets of the miRNA and piRNA have been 

reported to be developmental and metabolism-related genes, consistent with other epigenetic 

reports and what is known about the effects of paternal age on the offspring. miR-125a-5p has 

been reported to be significantly upregulated in sperm from aged mice and is negatively 

associated with DNA integrity and embryo development (Liang et al., 2021). The same group 
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found that another miRNA, miR-574, is upregulated in sperm from aged mice and is associated 

with inhibited ATP production through impairing mitochondrial function (Ma et al., 2020). 

Offspring exposed to tRFs from aged sperm during zygotic development had altered gene 

expression for neurodevelopment genes and related anxious behaviors (Guo et al., 2021). These 

data support the hypothesis that ncRNAs are contributing to epigenetic inheritance as a 

consequence of an altered sperm epigenome.  

3.4.4 Telomeres 

 It is likely that epigenetic regulators are contributing to the organization and maintenance 

of telomeres with aging. In somatic cells, the dynamics of telomere length during aging are well 

documented, with a consistent decrease in telomere length in most cell types. This shortening is 

due to the loss of telomeric repeats with each mitotic division (Shammas, 2012). In male germ 

cells, though, no such clear trend has been established. The developing sperm contain active 

telomerase until spermiogenesis, suggesting the potential for germ cell telomere maintenance or 

lengthening (Bekaert et al., 2004). The results thus far on telomere length have been conflicting 

and have spanned methods and species. In mice, there exists evidence to suggest that with aging, 

sperm telomere length decreases, similar to somatic cells (de Frutos et al., 2016). When similar 

studies were conducted in humans, the evidence was contrary to somatic cells and mice sperm, 

with an increase in sperm telomere length with age (Kimura et al., 2008; Laurentino et al., 2020). 

It remains possible that the effect of age on sperm telomere length is species specific. A likely 

hypothesis to explain this disparity is that the lifetime activity of telomerase is much longer in a 

man, given the drastic lifespan discrepancies between species. Essentially, this suggests that 

telomerase has more time in the germ cells of aged men to add telomeric repeats than it would in 

a rodent model.  
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 There are now studies to suggest that oxidative stress may also contribute to a loss of 

telomere integrity with aging. Telomeres and their associated proteins are more susceptible to 

DNA damage by oxidative stress (Moazamian et al., 2022).   

3.5 Germ cell gene expression with aging 

Studies linking direct germ cell gene expression changes to aging are rare and either use 

whole testis RNA or examine specific genes, such as DNA damage repair in spermatocytes (Han 

et al., 2021; Paul et al., 2011). Using microarray analysis, studies done on mice spermatogonia 

revealed that Icam1, and Selp transcripts were affected by aging (8 months); these two transcripts 

are considered as specific aging markers, as they are also affected during aging of hematopoietic 

stem cells (Kokkinaki et al., 2010). One of the first studies to examine individual germ cell types 

was done recently in humans. Nie et al. (2022) performed single-cell RNA sequencing on whole 

testis samples from young and aged men and used bioinformatics to identify cell types based on 

how closely the cell types were related. They found that in germ cells, there were few changes in 

SSC RNAs and that no significant differential gene expression was present in early germ cells, 

with changed only emerging at the elongated spermatid stage (Nie et al., 2022). In the elongated 

spermatid stage, they report upregulated genes related to protein targeting and downregulated 

genes related to peptide chain elongation and oxidative phosphorylation (Nie et al., 2022). These 

results conflict with rodent-based literature for differential gene expression with advanced aging, 

as significant differential expression had been observed in SSCs, pachytene spermatocytes, and 

round spermatids (Kokkinaki et al., 2016; Paul et al., 2011).  

3.6 DNA damage and repair with aging in male germ cells 

 In men that are over 35, DNA damage is three-fold higher in spermatozoa when 

compared to men under 35 (Singh et al., 2003). Comet assays for DNA damage reveal that with 



48 
 

advancing age, there is a higher rate of sperm with DNA fragmentation (Schmid et al., 2007). 

With age, germ cells accumulate DNA damage, such as 8-oxodG, due to the poor removal of 

DNA adducts and oxidized purines (Paul et al., 2011). There is evidence that some sperm retain 

these DNA adducts after spermatogenesis, as the developing germ cells maintain them without 

undergoing apoptosis (Ahmed et al., 2007; Zubkova et al., 2005). Studies in aging animals have 

examined the DNA damage repair pathways in various cell types. As mentioned previously, after 

meiosis, most germ cells do not undergo DNA damage repair and thus do not have abundant 

repair machinery. In aged rodent spermatocytes, that normally are capable of repair, genes 

involved in the BER pathway are downregulated (Paul et al., 2011).  

The increased DNA damage is associated with decreased conception and increased rates of 

miscarriage. Mutations can be repaired in the zygote after fertilization; sperm from aged and 

infertile men may contribute to preimplantation loss prior to the opportunity for repair (Zenzes et 

al., 1999). 

 This phenomenon has many possible sources, including the accumulation of DNA 

mutations due to continuous cell divisions of spermatogonial stem cells, accumulation of 

exposures to toxicants over the lifetime, decreased ability to check and correct chromosome 

segregation during mitosis/meiosis, increased oxidative stress, and decreased ability to repair 

DNA damage (Aitken and Baker, 2013). The increase in oxidative stress caused by reactive 

oxygen species (ROS) due to aging has been well studied in the Robaire lab, where they found 

that germ cells from aged mice and rats have a decrease in the enzymes required to neutralize 

oxidative stress and related increases in oxidative stress-related DNA damage. Mice that were 

modified to have an over-expression of catalase (Cat) had sperm that showed reduced oxidative 

damage during aging when compared to wild type mice (Selvaratnam and Robaire, 2016b). In 
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instances where the neutralizing genes were knocked out, the DNA damage and oxidative stress 

phenotypes seen with aging were exacerbated (Selvaratnam and Robaire, 2016a). 

3.7 Animal Models of Reproductive Aging  

 Though obtaining semen samples from men is of relative ease, it remains unfeasible to 

study developing germ cells at a large scale. In some instances, human testis samples can be 

obtained; however, these do not allow for genetic or pharmacological intervention, and studies 

using these tissues can be quite restricted by their availability. As a result, to study the process of 

aging during spermatogenesis, rodent models have been widely used.  

3.7.1 The Brown Norway Rat 

 The primary model used to study reproductive aging since the early 1990s is the Brown 

Norway (BN) rat (Rattus norvegicus). As of 2004, the Brown Norway rat has a fully sequenced 

genome. Presently the genome version is at rn_6 (Gibbs et al., 2004). This model has been 

suggested by the National Institute on Ageing as the optimal rodent model for aging studies. 

Specifically, Brown Norway rats are an excellent model as they have age-related endocrine 

alterations similar to those seen in humans. BN rats experience a decrease in testosterone, with 

no decrease in serum LH and slight increases in FSH (Gruenewald et al., 1994). With aging, 

other rat models tend to develop primary tumors in the pituitary, testis, adrenal and/or liver 

altering serum hormones and thus making it a challenge to ascertain the origin of age-related 

effects in the testis (Taylor and Mowat, 2020). These rats also generally live comfortably into old 

age, approximately 30-36 months, without developing additional age-related pathologies such as 

obesity or cancers.   
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 Using this model, many groups have reported the effects of advanced paternal age on the 

testis and the epididymis, as well as on spermatogenesis and on spermatozoa. Wang et al. (1993) 

reported that with aging, there is an overall disruption in the testis histology and 

spermatogenesis. Wright et al. (1993) observed that there were Leydig cell alterations due to 

aging in the BN rat that were similar to the pathology noted in men. Zirkin's group has continued 

to use the BN rat to advance our understanding of the effects of aging on steroidogenesis in the 

Leydig cell. Levy et al. (1999) reported that with aging, there were segment-specific changes in 

the epididymis of the BN rat and that the blood-epididymis barrier was disrupted with aging. 

When examining the effects on sperm, the Robaire lab has shown that due to aging in the BN rat, 

there is an overall decrease in fertility and poor outcomes in the progeny (Serre and Robaire, 

1998). Other reported changes from this include: sperm structural and motility changes (Syntin 

and Robaire, 2001), fewer spermatogonial stem cells (Paul et al., 2013), altered antioxidant 

enzymes (Zubkova and Robaire, 2004; Zubkova and Robaire, 2006; Weir and Robaire, 2007), 

increased oxidative stress DNA damage (Zubkova and Robaire, 2005; Selvaratnam et al., 2015), 

and differential expression of DNA repair pathway genes in spermatocytes (Paul et al., 2011).  

4. Rationale and formulation for the project  

Correlative epidemiological studies demonstrate a link between advanced paternal age and 

potentially detrimental effects on their offspring. The effects of aging on fertility have been well 

established, with a decrease in fertility and decreased sperm quality. The purpose of the studies 

presented in this thesis is to evaluate the genetic basis for the changes observed with advanced 

paternal age through overall chromatin organization, gene expression, and epigenetic regulation.   

The objectives of this thesis are to:  
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1. Measure telomere length in male germ cell of young and aged Brown Norway rats 

2. Evaluate the effects of aging on gene expression in post-meiotic round spermatids 

3. Examine the effects of aging in post-meiotic round spermatids and mature 

spermatozoa on DNA methylation 

For these studies, adult wild-type Brown Norway rats were aged to either 4-6 months of age 

or 18-20 months, representing human populations of 20-30 or 45+ years of age, respectively. As 

previously mentioned, Brown Norway rats are the standard model used in the study of aging, 

with many age-related effects similar to those observed in humans. We then collected various 

germ cell types from the testes using the STA-PUT method to isolate germ cell types and 

spermatozoa from the epididymides. For objective 1, we aimed to observe telomere length 

changes across spermatogenesis, as this had not previously been characterized. We used all 

pachytene spermatocytes as a pre-meiotic germ cell type, round spermatids as post-meiotic germ 

cells, and sperm from the caput and cauda of the epididymis to capture the effect of epididymal 

transit. Here, we used qPCR for telomeric repeat measurements. For objective two, we focused 

on round spermatids as they are the last transcriptionally active germ cell type and would be 

transcribing RNAs required for spermiation and sperm functionality. We used Novogene 

Corporation to do paired-end mRNA sequencing. For objective three, we examined round 

spermatids as they are the last germ cell stage prior to chromatin repackaging with protamine 

during spermiogenesis, and mature spermatozoa as the marks in sperm would be potentially 

transmitted to the offspring. We were interested here not only in the direct effect of age on each 

cell type, but also on the effect of age on the transition between cell stages. We used Novogene 

Corporation again for whole genome bisulfite sequencing. The three objectives, together, 

elucidate the effect of aging on epigenetic regulation and gene expression in Brown Norway rats.  
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Abstract 

Telomeres are repeat regions of DNA that cap either end of each chromosome, thereby 

providing stability and protection from the degradation of gene-rich regions. Each cell 

replication causes the loss of telomeric repeats due to incomplete DNA replication, though it is 

well-established that progressive telomere shortening is evaded in male germ cells by the 

maintenance of active telomerase. However, germ cell telomeres are still susceptible to 

disruption or insult by oxidative stress, toxicant exposure, and aging. Our aim was to examine 

the relative telomere length (rTL) in an outbred Sprague Dawley (SD) and an inbred Brown 

Norway (BN) rat model for paternal aging. No significant differences were found when 

comparing pachytene spermatocytes (PS), round spermatids (RS), and sperm obtained from the 

caput and cauda of the epididymis of young and aged SD rats; this is likely due to the high 

variance observed among individuals. A significant age-dependent decrease in rTL was observed 

from 115.6 (±6.5) to 93.3 (±6.3) in caput sperm and from 142.4 (±14.6) to 105.3 (±2.5) in cauda 

sperm from BN rats. Additionally, an increase in rTL during epididymal maturation was 

observed in both strains, most strikingly from 115.6 (±6.5) to 142 (±14.6) in young BN rats. 

These results confirm the decrease in rTL in rodents, but only when an inbred strain is used, and 

represent the first demonstration that rTL changes as sperm transit through the epididymis.  

Introduction 

 

The male germline is biologically unique in many ways, ranging from cellular structures to 

chromatin packaging and enzymatic activity. Telomeres are no exception to this statement, with 

telomere dynamics in male germ cells being distinctly different from those of somatic cells. 
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Telomeres are 5′-TTAGGG-3′ repeat sequences that cap the ends of chromosomes to give the 

genome protection and stability from progressive shortening after DNA replication caused by the 

incomplete replication of the 5′ end by DNA polymerase [1]. The progressive shortening of 

telomeres due to the end-replication problem can be mitigated by the enzyme telomerase; it 

maintains telomeres by the addition of new repeats. Containing both a protein (TERT) and an 

RNA template (TERC), the enzyme functions as a reverse transcriptase synthesizing a single 

strand of telomeric DNA complementary to TERC onto the 3′ overhang. This newly synthesized 

telomeric DNA strand is then used for lagging strand synthesis by DNA replication machinery 

[1]. Alternative lengthening of telomeres (ALT) by homologous recombination is another 

mechanism by which telomeres and subtelomeric regions are able to retain their length in the 

absence of active telomerase [2].  

The existing literature presents data on the length and spatial arrangement of telomeres, and 

the activity of telomerase within germ cell nuclei as spermatogenesis progresses [3]. Beginning 

in spermatogonia, telomerase is most active and telomere length is hypothesized to be shorter 

relative to fully mature spermatozoa [4]. The telomeres at this stage are randomly positioned; 

however, during mitosis, they align to either pole of the cell in preparation for cytokinesis. In 

spermatocytes, telomerase levels are high and telomeres follow a similar alignment once meiotic 

events are initiated. Round spermatids have similarly high levels of telomerase at the onset of 

spermiogenesis; however, these levels decrease as the cells become transcriptionally inactive 

during chromatin compaction [4]. At this stage, fluorescence in situ hybridization (FISH) 

experiments have also shown that telomeres spread randomly throughout the cell nucleus. 

Interestingly though, FISH experiments often display a reduced number of telomeres due to their 

apparent dimerization. This has been shown as the number of telomeres present at the final 
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stages of spermiogenesis is half of the expected number, suggesting that they are co-localizing 

[5–7]. Some hypotheses have been put forth about the nature of this interaction, and through 

FISH experimental staining for p and q arms of chromosomes 3 and 6, it appears that the 

telomeres of each chromosome bind to each other in a loop-like fashion [7]. Throughout 

spermiogenesis and epididymal transit, germ cells undergo dramatic chromatin repackaging. 

There is a gradual replacement of most histone-bound nucleosomes first with transition proteins 

and then with protamines, to form a tight toroidal conformation [8]. This repackaging event does 

not completely void the cell of histones, and approximately 10–15% of histones are retained in 

human sperm [9–11], while in rodents, only 1–2% of histones are retained [11,12]. Fully mature 

sperm maintain dimeric telomeres, as shown in round spermatids, though they contrast with 

earlier germ cells as little to no telomerase activity has been observed [13]. Telomere length in 

spermatozoa is longer than in somatic cells and has been measured at approximately 6–20 kb in 

humans [14–18]. Spermatozoa also appear to have a specific organization of telomeres, with the 

telomeric regions of chromatin found toward the nuclear periphery or bound to the nuclear 

membrane. This observation has been shown for many species, including humans, rodents, 

primates, and bovine [14,19]. It has been postulated that the combination of histone-bound 

telomeres and their arrangement at the nuclear periphery serves a functional role after 

fertilization as these sites are more readily accessible by the oocyte for pronuclear formation 

[6,20].  

A central current issue in male germ cell telomere biology is whether telomere length can be 

used as a biomarker for sperm quality and fertility. The parameters set by the World Health 

Organization (WHO) used to assess male fertility do not capture information about sperm 

chromatin quality [21]. Although measuring sperm DNA integrity is considered an important 
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endpoint [22], many of the methods have been classically challenging in a clinical setting as they 

require a high level of technical expertise. As a result, there is a demand for a quick reproducible 

test that would examine a new sperm parameter. Telomere length is a desirable measure, as 

preliminary studies are beginning to suggest links between fertility outcomes and sperm telomere 

length. However, there is some controversy in this field regarding which methods measure 

telomere length in a reliable and accurate way. The methods employed include Southern blotting, 

fluorescence in situ hybridization, and the quantitative polymerase chain reaction (qPCR). Both 

Verhulst [23] and Eisenberg [24] have discussed the issues as they relate to each method’s 

reliability, pointing out the inherent cost–benefit analysis that must be done when deciding on a 

method. When assessing telomere length as a biomarker for fertility in humans, it would be most 

appropriate to use qPCR as it is relatively simple, inexpensive, and allows for a high-throughput 

analysis of many samples.  

As previously mentioned, preliminary data on the links between sperm telomere length and 

well-established fertility parameters are beginning to emerge [25]. Several studies have found an 

association between a shorter telomere length and infertility or oligozoospermia [26–30], but not 

with classical WHO semen parameters. Interestingly, Garolla et al. found a positive association 

between sperm telomere length and protamination status [31]. This finding suggests that an error 

in chromatin packaging results in telomere dysregulation in mature sperm. Additionally, more 

loosely packaged chromatin could result in an increase in exposure to reactive oxygen species.  

There are many factors known to increase male factor infertility, including smoking, alcohol, 

toxicant exposure, and being overweight [32]. These lifestyle factors, in addition to the aging 

process, greatly increase the presence of reactive oxygen species; several studies have found an 

association between these lifestyle factors and disrupted sperm telomere integrity [33,34]. 



89 
 

Telomeres are particularly susceptible to oxidative damage as they are highly rich in guanine, 

allowing for the oxidization to 8-oxo-2’-deoxyguanosine (8-oxo-dG) [35]. In vitro results 

suggest that oxidative insult results not only in disrupted telomere integrity, but also in telomere 

shortening [36]. Additionally, the retention of histones in telomeric regions makes these regions 

more sensitive to oxidative insult [20]. The DNA damage that may be incurred from these 

oxidative insults can further lead to telomeric instability and telomere–telomere interactions may 

be lost [37].  

Telomere length decreases in somatic cells with advanced age, but there are varying species- 

dependent effects on sperm telomere length. In studies examining telomere length in mice, the 

trend with advanced paternal age is a decrease in telomere length, similar to that seen in somatic 

cells [38]. However, when similar studies were done using human sperm, the telomere length 

appeared to increase with age [16,39]. There are two main hypotheses addressing the potential 

cause of telomere lengthening in species with longer life spans. The first is that because 

telomerase is active in spermatogonia and throughout spermatogenesis, it has ample time to act 

and build on telomeres as the pool of stem cells is aging. The second is that there is a selection of 

germ cells for those with the longest telomeres over the course of a man’s lifespan, resulting in 

only those with long telomeres remaining at an advanced age [40].  

Telomere homeostasis may exist, where there is a balance for the optimal telomere length. 

When the telomeres are dysregulated, meiosis can be more error-prone, with chromosome 

segregation being incomplete and higher rates of aneuploidy [41]. Supporting this hypothesis, 

Cariati et al. have shown data that there are pregnancy failures when male partners have short 

telomeres [28]. It is also interesting to note that these studies have explored the association 

between sperm telomere length and offspring leukocyte telomere length. Few studies have 
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directly studied both sperm telomere length and offspring telomere length; however, in rodents, 

birds, primates, and humans, there is a clear paternal age effect on telomere length, where older 

fathers produce offspring with longer telomeres [40,42–45]. These results are in favour of the 

hypothesis that telomeres are an epigenetic feature.  

Although we are gaining insight into several aspects of the length of telomeres in the context 

of male reproduction, no study to date has related the effects of the phase of spermatogenesis and 

epididymal sperm maturation to telomere length with advancing paternal age, or established 

whether observed differences can be accounted for by the use of inbred and outbred rodent 

strains.  

Materials and Methods 

Animals  

All studies were conducted on Brown Norway (BN) and Sprague Dawley (SD) transgenic rat 

strains bred in-house, with initial breeding pairs kindly provided by Dr. Hamra at UT 

Southwestern. The rats were transgenic for td-Tomato red (BN) and e-GFP (SD) expression in 

the germline. All animals had access to food and water ad libitum, and were kept in a 12-hour 

light, 12-hour dark, temperature- and humidity-controlled environment. BN and SD rats (n = 3–

5) were sacrificed at young and aged time points. The average ages for the inbred BN rats were 

5.6 months ± 0.2 and 19.2 ± 0.06 months for young and aged populations, respectively. For 

outbred SD rats, the average ages were 5.6 ± 0.18 and 18.7 ± 0.32 months for young and aged 

populations, respectively. Eighteen to twenty months of age in a rat is the age prior to germ cell 

loss and testicular atrophy [46]. Animal care and handling were done in accordance with the 
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guidelines put forth by the Canadian Council on Animal Care (McGill Animal Resources Centre 

protocol 4687).  

Germ Cell Separation  

Young and aged rats were euthanized by CO2 asphyxiation. Testes were removed and 

weighed to assess the regression status associated with advanced aging, and rat testes less than 

1.5 grams were considered regressed and not used in this study. When a testis was excluded, the 

attached epididymis was not used for sperm collection. Of 11 aged animals, four possessed only 

one testis that was not regressed. No animals had both testes regressed. Germ cells were obtained 

using the STA-PUT method for cell velocity sedimentation [47]. Briefly, testes were 

decapsulated prior to enzymatic digestion with 0.5 mg mL−1 collagenase (C9722-50MG; Sigma 

Aldrich, Oakville, Canada), followed by subsequent digestion with 0.5 mg mL−1 trypsin (Type 

I, T8003; Sigma-Aldrich, Oakville, Canada) and DNase I (Type I, DN-25; Sigma-Aldrich, 

Oakville, Canada). The dissociated germ cell suspension was then filtered through a 70 µM 

nylon mesh before being washed three times with 0.5% bovine serum albumin (A4612; Sigma 

Aldrich, Oakville, Canada) in RPMI 1640 (Life Technologies, Grand Island, USA) and pelleted 

at 233 g for 5 min. Cells were filtered once more with a 55 µM mesh to prevent clumping and 

5.5 × 108 mixed germ cells in 25 mL of 0.5% BSA in RPMI were loaded into the STA-PUT 

(Proscience, Toronto, Canada) and separated on a gradient of 2–4% BSA/RPMI. The gradient 

was established over 50 min, and the cells were separated through unit gravity sedimentation for 

1 h 45 min. A fraction collector was then used to collect the germ cells in individual populations 

of pachytene spermatocytes (PS), and round (RS) and elongating spermatids. Fractions that met 

at least 80% purity by phase-contrast microscopy identification were spun down, flash frozen, 

and kept at −80 ◦C for future experiments. Spermatozoa from the caput and cauda epididymidis 
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were isolated in PBS after 2 h of agitation. They were filtered through a 100 µM nylon mesh 

before being centrifuged and washed six times with 0.45% saline solution.  

Telomere Measurement  

DNA was extracted from 1.5 × 106 PS, RS, and spermatozoa from the caput and cauda 

epididymidis using the QiaAMP DNA mini kit (51304; Thermo Fisher Scientific, Mississauga, 

Canada), with the substitution of a separate sperm lysis buffer including 40 mM dithiothreitol 

(DTT). Extracted sperm DNA may have different recoverability at the telomeres, as in these 

regions, it is packaged primarily with histones, while the remainder of the DNA is bound to 

protamine. Given our protocol for sperm DNA extraction, which disrupts the bound protamines, 

we did not anticipate that this would be an issue. DNA was diluted to a working concentration of 

5 ng µL−1 for telomere measurement by qPCR [48] for telomeric repeats and 36B4 single copy 

gene amplification measured by ∆Ct. The mastermix for a final reaction volume of 20 µL per 

well was prepared using 10 µL per reaction SYBR Green MM solution (4367659; Thermo Fisher 

Scientific, Mississauga, Canada). For each 36B4 reaction, 1 µL of 2 µM forward and reverse 

primers for 36B4 and 5 µL PCR grade water were used. For each telomeric DNA reaction, 0.5 

µL 2 µM forward and reverse primers for telomeric DNA with 4.5 µL of PCR grade water were 

used (Table S1). For all reactions, 20 ng/well DNA was used. The standard curve for telomeric 

repeats follows a 1:5 dilution, beginning with 4000 picograms (pg) of telomere oligomer (Table 

S2), corresponding to 7.6 × 109 kb. The 36B4 standards begin with a concentration of 2 pg 

(Table S2), following a 1:10 dilution, corresponding to 3.6 × 109 genome copies. Standards were 

brought to a total of 20 ng of DNA by spiking with pBR322 DNA. All samples presented herein 

fall along the presented standard curves. A four-step PCR amplification protocol was used. First, 

denaturation occurred at 95 ◦C for ten minutes (one cycle), followed by 40 cycles of denaturation 



93 
 

at 95 ◦C for 15 s and annealing at 60 ◦C for 1 min. The melt curve conditions were 95 ◦C for 15 

s, and annealing at 60 ◦C for 1 min, with a temperature increase of 0.5 ◦C per cycle to 95 ◦C for 

15 s. The final step was an infinite hold at 4 ◦C. By taking the telomeric repeats, relative to the 

genome copies, the telomere length per genome was represented. DNA taken from H1301 cells 

(#01051619-DNA-5UG; Sigma-Aldrich, Oakville, Canada) with a known telomere length of 70 

kb was then used for the normalization of all samples. The calculations are as follows:  

 

Calculating telomeric repeats in log scale:  

log 𝑇𝑒𝑙 = 	
∆𝐶𝑡 − 𝐵
𝑚

 

Where telomere standard curve produces slope:  ∆𝐶𝑡 = 𝑚	 𝑙𝑜𝑔𝑇𝑒𝑙 + 𝐵 

 

Calculating genome copies (GC) represented by single copy gene 36B4 

log 𝐺𝐶 = 	
∆𝐶𝑡 − 𝐵
𝑚

 

Where 36B4 standard curve produces slope: ∆𝐶𝑡 = 𝑚	(𝑙𝑜𝑔𝐺𝐶) + B 
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Calculating telomeric repeats per genome (telomere/single copy gene): 

	log(𝑡𝑒𝑙𝑜𝑚𝑒𝑟𝑖𝑐	𝑟𝑒𝑝𝑒𝑎𝑡𝑠	𝑝𝑒𝑟	𝑔𝑒𝑛𝑜𝑚𝑒) = 	
log(𝑇𝑒𝑙)
log(𝐺𝐶)

 

𝑡𝑒𝑙𝑜𝑚𝑒𝑟𝑖𝑐	𝑟𝑒𝑝𝑒𝑎𝑡𝑠	𝑝𝑒𝑟	𝑔𝑒𝑛𝑜𝑚𝑒 = log 𝑡𝑒𝑙𝑜𝑚𝑒𝑟𝑖𝑐	𝑟𝑒𝑝𝑒𝑎𝑡𝑠	𝑝𝑒𝑟	𝑔𝑒𝑛𝑜𝑚𝑒 <= 

Calculating telomere length relative to H1301 cell DNA, with predicted telomere length 

of 70 kb:  

70	𝑘𝑏 =
𝑡𝑒𝑙𝑜𝑚𝑒𝑟𝑖𝑐	𝑟𝑒𝑝𝑒𝑎𝑡𝑠	𝑝𝑒𝑟	𝑔𝑒𝑛𝑜𝑚𝑒	𝐻1301

𝑥
 

 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑡𝑒𝑙𝑜𝑚𝑒𝑟𝑒	𝑙𝑒𝑛𝑔𝑡ℎ =
𝑡𝑒𝑙𝑜𝑚𝑒𝑟𝑖𝑐	𝑟𝑒𝑝𝑒𝑎𝑡𝑠	𝑝𝑒𝑟	𝑔𝑒𝑛𝑜𝑚𝑒	

𝑥
 

 

All experiments were done in triplicate, with intra-class correlation coefficients of 0.82 and 

0.85 for young and aged BN sperm telomere lengths, respectively. To control for inter-plate 

variation, H1301 and standard curves were run on each plate. An inherent limitation of this 

protocol is the normalization of samples to H1301, as different methods of DNA extraction and 

handling can alter the apparent measure of telomere length. Though this was controlled for with 

samples processed in house, H1301 DNA was extracted and purified by Sigma.  

Statistical Analysis  

To calculate the telomere length, telomere kb and 36B4 genome copies were extrapolated 

from the standard curves and ∆Ct values (Equations (1) and (2)). The telomere kb was divided 
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by the genome copies represented by 36B4 (Equation (3)). These values were then normalized to 

the positive control H1301 DNA (Equation (4)), with a known telomere length of 70 kb, to give 

a measurement of relative telomere length (rTL). The median and interquartile range were 

calculated in Excel. Further statistics and data analysis were conducted using Graph-Pad Prism 6. 

Where appropriate, t-tests were used for statistical comparisons between groups; however, where 

variances were significantly different, a Mann Whitney U test was used as a replacement. 

Statistical significance of p ≤ 0.05 has been indicated with an asterisk (*).  

Results and Discussion 

Telomere Dynamics Show Rat Strain Specificity Between Brown Norway and Sprague Dawley 

Rats  

Telomere length for the outbred SD rats is in the range of 200–350 across spermatogenesis, 

while that for the inbred BN rats is shorter and has a decreased range of 115–160. Comparative 

studies of germ cell telomere length across varying species and strains have not been conducted. 

Although one would anticipate less variance in the lengths of telomeres from an inbred than 

outbred strain due to decreased genetic heterogeneity, it has also been proposed that inbred 

strains may have shorter somatic telomeres due to the increased oxidative stress and reduced 

evolutionary fitness [49]. The fact that this trend is maintained in the germline reveals potential 

long-term effects in an inbred rat strain as sperm telomere length is correlated with offspring 

telomere length [40,42–45]. Both strains show no difference in PS or RS rTL, a trending 

decrease in the caput sperm, and the subsequent recovery of telomere length in sperm from the 

cauda epididymidis. The most striking difference between strains is that both the interquartile 

range (IQR) and standard errors calculated for BN sperm telomere lengths are much smaller than 

those for the SD sperm (Table 2-1). The interquartile range represents the spread of data, by 
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showing where 50% of the data points lie in a given sample set. The smaller IQR values for BN 

rats are likely due to the inbred nature of BN rats and the level of their genetic similarity. The 

homogeneity in rTL further validates them as a model for epigenetic studies in rodents. With 

both the inherent variability seen in the SD telomere length measurements and the exclusive use 

of BN rats for epigenetic studies, data for BN rats will be presented throughout the remainder of 

the text. The SD data is presented in Supplemental Figure S2-A1.  

Telomere Lengths During Spermatogenesis in Brown Norway Rats  

Examining germ cell telomere dynamics has been done extensively in the context of 

telomerase activity, with a well-defined pattern of high telomerase activity in early germ cells 

that tapers off as spermatogenesis progresses. However, the existing literature that examines 

telomere length is less complete, mainly examining fully mature sperm and operating under the 

assumption that germ cell telomere length is strongly correlated with telomerase activity. When 

measuring rTL in BN rats, we find that there is no significant difference in the telomere length 

from PS to RS, with lengths measured at 155.4 (±11.6) and 159.2 (±20.1), respectively (Figure 

2-1). This observation suggests that the length of telomeres remains relatively constant 

throughout the meiotic stages of spermatogenesis, independent of the apparent increase in 

telomerase activity [4]. An important component of understanding telomere dynamics 

throughout spermatogenesis that is missing is the measurement of telomere length in the 

spermatogonial stem cells; however, a methodology for the isolation of rat spermatogonial stem 

cells has yet to be developed.  

Interestingly, when entering the epididymis, the length of telomeres shows a decrease of 

approximately 25% from what is observed for earlier stages of spermatogenesis. The length of 

telomeres from the spermatozoa obtained from the caput epididymidis of any species has not 
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been measured previously, so it is difficult to determine if this novel observation can be 

generalized beyond the rat. This finding suggests altered telomere organization during chromatin 

condensation and crosslinking through epididymal maturation. However, what is apparent is that 

by the time sperm reach the cauda epididymidis, the sperm telomere length reaches a length of 

142 (±14.6), comparable to the germ cell telomere length prior to entering the epididymis (Figure 

2-1). The epididymis is a tissue that has received relatively little attention; understanding how 

the environment of the caput, corpus, and cauda epididymidis alters sperm chromatin is a major 

challenge that needs to be addressed by the scientific community. It is possible that telomere 

organization is impacted by micro and non-coding RNAs that are passed to the sperm through 

epididymosomes [50,51]. As more interactions are being elucidated for non-coding RNAs and 

telomeric regions, the functional role of these interactions will become clearer [52]. Telomeric 

repeat containing RNA (TERRA) is a non-coding RNA transcribed from telomeric regions that 

is able to bind telomeric DNA. The proposed function of TERRA binding is to control telomere 

structure and elongation; this has been shown in various species [53–56]. TERRA has also been 

shown to modify polycomb repressive complex binding, and modify histone marks across the 

genome and in telomeres [57]. Though there is limited literature on TERRA in male germ cells, 

Reig-Viader et al. have shown that it is present in spermatocytes and spermatids [58]. They have 

also shown that telomeres and TERRA levels were disrupted in germ cells from men with 

idiopathic infertility [59] Taken together, these observations indicate the need for further studies 

to resolve the effects of non-coding RNAs during epididymal maturation.  

Age-Dependent Decrease in Sperm Telomere Length 

There is a significant age-dependent decrease in rTL from 115.6 (±6.5) to 93.3 (±6.3) in 

caput sperm (p = 0.04), which remained consistent for cauda sperm, with a decrease observed 
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from 142.4 (±14.6) to 105.3 (±2.5) in cauda sperm (p = 0.02; Figure 2-2). This decrease is 

consistent with mouse models of paternal aging presented in the literature [38]. Interestingly, the 

trend for increased telomere length during epididymal transit is seemingly reduced with aging. A 

modest increase in rTL is observed from 93.3 (±6.3) to 105.3 (±2.5) in the caput sperm. If, 

during epididymal transit, non-coding RNAs contribute to affecting telomere length, it is 

possible that the epididymosome payload changes with advancing age, though no study to date 

exists on epididymosomes and aging. 

There are currently no hypotheses to address the decrease in telomere length observed in 

rodent models of paternal aging. However, it seems probable that hypotheses proposed to explain 

germ cell telomere lengthening in humans may not apply to the much shorter lifespan of a 

rodent. 

Conclusion 

Understanding telomere length in the varying contexts that influence male reproductive 

function and spermatogenesis is critical to understanding their epigenetic implications. As 

telomeres are associated with the nuclear envelope, it remains plausible that they are sites 

initially recognized by the egg after fertilization to aid in chromatin anchoring; telomere length 

may also influence offspring health in this way [20]. Altered telomere length, either increased or 

decreased, may lead to a disruption in chromatin reorganization events following fertilization 

[28]. Studies by our group have shown several effects of aging on male reproductive outcomes, 

including increased time to pregnancy, higher resorption rates, and an increased instance of 

infertility [46]. It is difficult to conclude if the negative outcomes are associated with one 

specific pathology of aging, such as telomere length, as these cells are also exposed to increased 

oxidative stress and decreased DNA damage repair, and thus show increased DNA damage. The 
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presence of increased DNA damage with aging has not been examined within telomeric regions; 

however, it may provide additional insight into sperm telomere dynamics during aging. Here, we 

have shown that sperm telomere length decreases with age in inbred Brown Norway rats. This 

poses an interesting question, and by examining telomere dynamics in embryos fertilized with 

young and aged sperm, we may begin to understand this relationship more clearly. Additionally, 

using RNA sequencing and chromatin conformation capture methods will elucidate how 

telomere dynamics are altered across spermatogenesis with aging. 
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Figures  

 

Figure 2-1: Telomere length in the young Brown Norway male germline. Relative telomere 

length (rTL) shown on the y-axis measured by quantitative polymerase chain reaction (qPCR) 

relative to H1301 cell DNA of a known telomere length, for pachytene spermatocytes (PS), 

round spermatids (RS), caput sperm (CP), and cauda sperm (CD). Each bar represents the mean 

± SEM, n = 5. Sprague Dawley data shown in Figure A1. 

Figure	2	 
Telomere	length	for	Brown	Norway	sperm	during	aging.	Relative	telomere	length	(rTL)	shown	
on	the	y-axis	measured	by	quantitative	polymerase	chain	reaction	(qPCR)	relative	to	H1301	cell	
DNA	of	a	known	telomere	length,	for	young	caput	sperm	(Y-CP;	n	=	5),	aged	caput	sperm	(A-CP;	
n	=	4),	young	cauda	sperm	(Y-CD;	n	=	5),	and	aged	cauda	sperm	(A-CD;	n	=	4).	Each	bar	
represents	the	mean	±	SEM.	p	≤	0.05	is	indicated	by	an	asterisk.	Sprague	Dawley	data	shown	in	
Figure	A1.	
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Figure 2-2: Telomere length for Brown Norway sperm during aging. Relative telomere 

length (rTL) shown on the y-axis measured by quantitative polymerase chain reaction (qPCR) 

relative to H1301 cell DNA of a known telomere length, for young caput sperm (Y-CP; n = 5), 

aged caput sperm (A-CP; n = 4), young cauda sperm (Y-CD; n = 5), and aged cauda sperm (A-

CD; n = 4). Each bar represents the mean ± SEM. p ≤ 0.05 is indicated by an asterisk. Sprague 

Dawley data shown in Figure S2-A1.  



110 
 

Table 

Table 2- 1: Species variation for telomere length measurement in sperm 

Rat Strain Cell Type N Median IQR SEM 

SD – Young 
CP 

6 230.47 
79.17 

25.54 

CD 
10 396.81 

253.57 
54.94 

SD - Aged 

 
CP 

3 116.93 

205.51 133.00 

CD 
12 302.82 

132.82 
28.49 

BN - Young 

 
CP 

5 116.61 

17.56 6.49 

CD 
5 129.67 

17.42 
14.61 

BN - Aged 

 
CP 

4 97.47 

13.40 6.35 

CD 
4 106.54 

4.64 
2.52 

Species differences in telomere length variability shown between Sprague Dawley (SD) and Brown Norway (BN) rats 
for caput (CP) and cauda (CD) sperm for both young and aged samples. N: Sample Size. IQR: Interquartile Range. 
SEM: Standard Error of the Mean 
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Supplemental Materials  

Appendix A 

Table S2- A1. Telomere Length qPCR Oligomer Standard Sequences 

Standard Oligomer Sequence 

Telomere (TTAGGG)14 

36B4 

CGACCTGGAAGTCCAACTACTTCCTT

AAGATCATCCAACTTTTGGATGACTACC

CAAAATGCTTCATTGTGGGAGCAGACA

ATGTGGGCTCCAAGCAGATGCAGCAGA 

 

Table S2-A2. Telomere Length qPCR Primers 

Repeat 

Region 
Forward Primer Reverse Primer 

Telo 

CGGTTTGTTTGGGTTTG

GGTTTGGGTTTGGGTTTGG

GTT 

GGCTTGCCTTACCCTTACCCTTA

CCCTTACCCTTACCCT  

36B4 
CGACCTGGAAGTCCAA

CTAC 

ATCTGCTGCATCTGCTTG 

 

 



112 
 

Y
-P

S

Y
-R

S

Y
-C

P

Y
-C

D
A

-P
S

A
-R

S

A
-C

P

A
-C

D

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

R
el

a
ti

v
e 

T
el

o
m

er
e 

L
en

g
th

 

Figure S2-A1. Relative telomere length (rTL) for the Sprague Dawley germline during 

aging. rTL for: Pachytene Spermatocyte, RS: Round Spermatid, CP: Caput Sperm, CD: Cauda 

Sperm. Young samples presented as Y- (cell type), aging samples presented as A- (cell type).  
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Connecting Text 

The research presented in Chapter 2 of this thesis examined telomere length during 

spermatogenesis and within the context of aging in a rat model. We measured telomere length in 

two strains of rats, the outbred Sprague-Dawley and inbred Brown Norway. Using quantitative 

PCR, we measured the telomere length in pachytene spermatocytes, round spermatids, and 

spermatozoa from the caput and cauda of the epididymis. We found that in the Sprague-Dawley 

rat, there was a great deal of variation in the telomere length regardless of germ cell stage. In the 

Brown Norway rat, this variation was greatly reduced, allowing us to observe trends in telomere 

length across spermatogenesis and sperm maturation, as well as with aging. Across 

spermatogenesis we saw that telomere length remains relatively consistent, with a decrease in 

telomere length upon sperm entry into the epididymis. The apparent decrease upon entry into the 

epididymis though, is recovered to previous length by the time sperm maturation is complete in 

the cauda of the epididymis. With aging, we saw a decrease in both caput and cauda sperm 

telomere length. Interestingly, we also noted that the increase in sperm telomere length during 

epididymal sperm maturation was lost with aging. This is the first study to report telomere length 

in early germ cells, and the first in rat to measure telomere length with aging. Given the apparent 

shift in telomere length with age, and our knowledge that telomeres aid in genome stabilization 

and help to regulate gene expression within the sperm nucleus by anchoring the DNA, we 

hypothesized that this may alter gene expression in germ cells with aging. We were also wanted 

to determine whether any gene related to telomere maintenance or chromatin packaging were 

altered with aging. In Chapter 3, we examine round spermatids from Brown Norway rats as they 

have a fully sequenced genome. The round spermatid stage is the final germ cell stage with 

transcriptional activity, and thus the last stage at which they may obtain necessary genes for 

telomere maintenance  
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Abstract 

The effects of aging on the reproductive health of men and the consequences for their 

offspring are becoming more widely recognized. Correlative epidemiological studies examining 

paternal age and offspring health suggest there are more frequent occurrences of genetic 

disorders in the children of older fathers. Given the genetic basis for paternal age-related 

disorders, we aim to characterize gene expression in developing germ cells. Round spermatids 

(RS) were collected from young (mean=5.3 months) and aged (mean=19.5 months) Brown 

Norway rats, representative of humans aged 20-30 years and 55+ years, respectively. Gene 

expression data were obtained by mRNA sequencing (n=5), and were analysed for differential 

expression. Sequencing data display 211 upregulated and 9 downregulated transcripts in RS of 

aged rats, compared to young (log2FC >1, p <0.05). Transcripts with increased expression are 

involved in several processes including sperm motility/morphology, sperm-egg binding, 

capacitation, and epigenetic inheritance. In addition, there are numerous dysregulated transcripts 

that regulate germ cell epigenetic marks and Sertoli-germ cell binding and communication. 

These results show an overall increase in RS gene expression with age, with spermatogenic 

functions being perturbed. Taken together, these findings help identify the genetic origin of the 

fertility, germ cell niche, and epigenetic effects observed with advanced paternal aging. 
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Abbreviations 

BP: base pairs 
BN: Brown-Norway 
BTB: Blood-Testis Barrier 
DEG: differentially expressed gene 
FPKM: Fragments Per Kilobase of transcript per Million reads mapped 
GO: Gene ontology 
IPA: Ingenuity Pathway Analysis 
NIA: National Institute on Ageing 
PCA: Principle component analysis 
PS: Pachytene spermatocyte 
ROS: Reactive oxygen species 
RNA-Seq: RNA-Sequencing 
RS: Round spermatid 
SC: Sertoli cell 
SSC: Spermatogonial stem cell 
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3-1. Introduction 

  

The age at which individuals are choosing to have children has been steadily increasing since 

the 1970’s. This trend remains true across geographic location, ethnicity, and education 

(Khandwala et al., 2017). The decline in oocyte quality with increasing maternal age is well 

established with the consequent implications on the offspring, such as trisomy 21 (Yoon et al., 

1996; Crawford and Steiner, 2015). However, only recently have we begun to explore the impact 

of delayed paternity on sperm quality and progeny outcome. Initial studies have shown that with 

advanced paternal age there are decreases in sperm count, motility and morphology, with adverse 

effects on a couple’s fecundity and the time to pregnancy (Dong et al., 2022; Eskenazi et al., 

2003; Ng et al., 2004). Clinical fertility data have also shown that there is a decrease in the 

fertilizing ability of sperm from older men (Bartolacci et al., 2018). When pregnancy is achieved 

in instances of advanced paternal age, these pregnancies are at risk of higher incidences of 

stillbirth and preterm births, and low birth weight (Alio et al., 2012). The offspring born to older 

fathers also have higher incidences of disorders, such as achondroplasia, schizophrenia, and 

autism and increased risk of some cancers (Kovac et al., 2013; Paul and Robaire, 2013).  

 A well-established rodent model for studying reproductive aging is the Brown Norway 

(BN) rat (Wang et al., 1993; Zirkin et al., 1993). This is an inbred rat strain, with a fully-

sequenced genome (Gibbs et al., 2004). BN rats are unique as they do not develop many of the 

pathologies associated with aging, such as obesity and cancers. However, similar to humans, BN 

rats experience a decrease in serum testosterone despite no change in luteinizing hormone with 

advancing age (Zirkin et al., 1993). Using this model, various groups have studied the effects of 

advanced age on spermatogenesis and fertility end-points. Serre et al., (Serre and Robaire, 1998) 
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established that there was an increase in preimplantation loss and neonatal death, along with an 

overall decrease in fetal weight. There are also substantiated age related disruptions in 

spermatogenesis in the BN rat (Wang et al., 1993; Wright et al., 1993).  

 Spermatogenesis is the continuous process by which spermatozoa are produced in the 

testes. The spermatogonial stem cells (SSC’s) remain throughout the lifespan providing a major 

source of potential error with advanced age, as they may accumulate de novo mutations (Risch et 

al., 1987). Round spermatids are the post-meiotic germ cells; they contain half of the genetic 

material and are the final transcriptionally active germ cell type during spermatogenesis. These 

cells differentiate as they begin to form the acrosome and undergo chromatin compaction 

through the process of spermiogenesis. Spermiogenesis is characterized by the gradual 

replacement of DNA-binding histones with protamines, allowing for a tight toroidal chromatin 

conformation (O'Donnell, 2014). After spermiogenesis, the spermatozoa transit to the epididymis 

where they gain functional motility and undergo the final steps of chromatin compaction. The 

epididymis has been studied in the context of paternal age, with a marked disruption in 

epididymal gene expression (Jervis and Robaire, 2002). Mature spermatozoa are transcriptionally 

inert, with a small RNA payload delivered after fertilization.  

 During spermatogenesis, germ cells are supported by Sertoli cells (SCs) that function as 

the nurse cells of spermatogenesis. Sertoli cells are situated between the germ cells, connected to 

one another by tight junctions. The tight junctions function to form the major component of the 

blood-testis-barrier (BTB) and help create the immune environment of the testis. Sertoli cells 

provide support by forming crypts to ‘hold’ the developing germ cells, binding directly to them 

through adherens junctions. Through these junctions, the Sertoli cells provide important 

signaling information to the germ cells, predominantly through glycoproteins and cytokines 
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(Hedger and Meinhardt, 2003; Griswold, 1995). Similarly, the germ cells are able to signal back 

to the Sertoli cells. As the germ cells develop, Sertoli cells are constantly remodeled to allow for 

the progressive movement of the cells from the basal compartment of the seminiferous tubules to 

its adluminal compartment. The remodeling of Sertoli cells is cyclical and signaling information 

for this cycle is provided to the Sertoli cells by the germ cells (Jegou, 1991; Wright et al., 1989). 

Sertoli cells have been studied in the context of aging, with overall disruptions in Sertoli-germ 

cell communication, and metabolic dysfunction observed in aged Sertoli cells (Wright et al., 

1993; Nie et al., 2022; Serre et al., 1999; Syed and Hecht, 2001; Syed and Hecht, 2002).  

 Taking together the expression of numerous genes required to create functional, high-

quality sperm, and the genetic bases for offspring disease, understanding gene expression in 

germ cells is of critical importance. Previously, several studies have attempted to elucidate the 

genetic bases of age-related reproductive pathologies in testicular germ cells (Paul et al., 2011; 

Paul et al., 2013; Selvaratnam et al., 2015). Recently, this has been done at the whole testis level 

where overall transcriptomics show altered gene expression with aging (Han et al., 2021). In the 

rodent model, there have been few analyses done to understand and assess transcriptomic 

differences in specific cell types during spermatogenesis. This makes it difficult to determine if 

effects are in the germ cells or the somatic cells of the testis. As the last transcriptionally active 

germ cell type, we examined the impact of paternal age on the mRNA transcriptome of round 

spermatids of BN rats.  

3-2. Materials and methods 

3-2.1 Animals 
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Animal care and handling were done in accordance with the guidelines put forth by the 

Canadian Council on Animal Care (McGill Animal Resources Centre: Protocol 4687). All 

studies were done using wild-type Brown Norway rats from Charles River laboratories or bred 

in-house. Animals had access to food and water ad libitum and were kept on a 12-hour light, 12-

hour dark cycle, and an environment controlled for temperature (21±3° C) and humidity (30-

70%).  

Animals were euthanized at 4-6 months for young (average=5.3 months) and aged at 18-20 

months (average=19.2 months) with a sample size of n=5. Eighteen to twenty months of age in a 

rat is the age prior to germ cell loss and testicular atrophy (Paul and Robaire, 2013). These 

populations represent human populations of approximately 20-30 years of age (young), and 45-

60 years (aged). The relative age approximations are based on the timing of testicular failure 

observed in rats relative to adult males, and the timing of life events such as sexual maturity and 

general reproductive senescence (Gruenewald et al., 1994; Agoston, 2017). Euthanasia was done 

by carbon dioxide asphyxiation, followed by collection of the testes. Testes were weighed upon 

sacrifice to assess testis regression defined as less than 1.5 g per testis. Animals with two 

regressed testes were not included in this study. Regressed testes were not used, two animals had 

one regressed testis and only the healthy testis was used for sample collection. The average 

weight of the testes were 1.76 g and 1.67 g for young and aged, respectively.  

3-2.2 Germ Cell Separation  

 Germ cells were obtained using the STA-PUT method for cell velocity sedimentation 

(Bryant et al., 2013). Briefly, testes were decapsulated and mechanically separated prior to 

enzymatic digestion with 0.5 mg mL−1 collagenase (C9722-50MG; Sigma Aldrich, Oakville, 

Canada), to digest the collagen between seminiferous tubules. Initial digestion was followed by 
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subsequent digestion with 0.5 mg mL−1 trypsin (Type I, T8003; Sigma-Aldrich) and DNase I 

(Type I, DN-25; Sigma-Aldrich). Trypsin begins to digest the seminiferous tubules themselves, 

breaking them into small pieces and releasing the germ cells. DNase is used to aid in the 

breakdown of any free DNA to prevent cell clumping. Both enzymatic digestions were done at 

34◦C for 16 minutes with physical stirring. The dissociated germ cell suspension was then 

filtered through a 70 µm nylon mesh before being washed three times with 0.5% bovine serum 

albumin (A4612; Sigma-Aldrich) in RPMI 1640 (Life Technologies, Grand Island, USA) and 

pelleted at 233 g for 5 min. Cells were filtered once more with a 55 µm mesh to prevent 

clumping, and 5.5 × 108 mixed germ cells in 25 mL of 0.5% BSA in RPMI were loaded into the 

STA-PUT (Proscience, Toronto, Canada) and separated on a gradient of 2–4% BSA/RPMI. The 

gradient was established over 50 min, and the cells were separated by unit gravity sedimentation 

for 1 h 45 min. Fractions were collected, and the relative purity of germ cell populations was 

assessed. Round spermatid (RS) fractions with a purity of at least 88% by phase-contrast 

microscopy identification were pelleted at 73 g for 5 mins, flash frozen, and kept at −80◦ C for 

RNA-extraction. No larger cells, such as Sertoli cells or spermatogonia, were ever identified in 

this cell fraction.   

3-2.3 RNA-Sequencing 

 Total RNA was extracted from 1.5 x 107- 3.0 x 107 round spermatids from each of the 10 

independent samples collected. RNA extraction was done using the Qiagen RNeasy Mini kit 

following manufacturer guidelines (74104; Qiagen, Mississauga, Canada). RNA library 

preparation and sequencing were done by Novogene Corporation Inc. using a minimum of 50 µL 

of 40-45 ng/µL total RNA (Sacramento, California, USA). Sequencing was done using their 
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NovaSeq 6000 platform (Illumina, San Diego, California) for paired-end sequencing at a read 

depth of 150 base pairs (bp).  

3-2.4 Data Analysis 

 Preliminary data analysis was done by Novogene Corporation Inc. Beginning with 

quality control, raw data are processed to remove low quality reads, and those which contained 

adaptors, poly-N. The clean reads were next mapped to the BN rat reference genome Rnor_6.0 

(HISAT2 v 2.0.5). Clean reads were counted for each mapped gene, and the Fragments Per 

Kilobase of transcript per Million reads mapped (FPKM) was calculated (featureCounts v 1.5.0-

p3). The FPKM provides an estimate of gene expression level. 

 Differential gene expression (calculated using DESeq2  1.20. 0; Love et al. 2014); was 

taken as a log2 fold change in gene expression that is equal to or greater than 1.0, with an 

adjusted p-value equal to or less than 0.05 when corrected for multiple comparisons using the 

Benjamini and Hochberg approach. To determine gene family patterns, we conducted Gene 

Ontology (GO) enrichment analysis of differentially expressed genes (DEG’s) (clusterProfiler). 

Ingenuity Pathway Analysis (IPA) software (Qiagen, Valencia, California, USA) was used to 

examine pathways, and transcription factor families observed with differentially expressed 

genes. GeneSpring (Agilent, Santa Clara, CA, USA) software was used to generate 3D  

Principle Component Analysis (PCA) plot. These data have been uploaded to Gene Expression 

Omnibus; the GEO identification number is: GSE219040. 

3-3. Results  

3-3.1 Age dependent differential gene expression in Round Spermatids  
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 We found abundant gene expression dysregulation in round spermatids. RS from young 

and aged clustered independently when principle component analysis (PCA) was applied, mainly 

separating on PC1 accounting for 27.4% of the variability (Fig. 3-1A). When examining 

differential gene expression, of the differentially expressed (log2FC > 1) and non-significant 

genes (Fig. 3-1B), there were 344 transcripts expressed exclusively in the young, 592 expressed 

exclusively in the aged, and 12,493 that were expressed in both age groups. After applying the 

Benjamini-Hochberg p-value adjustment for multiple comparisons (padj < 0.05), we assessed the 

transcripts that met both the log2FC cut off of 1, and met significance. Overall, there were 220 

transcripts that were differentially expressed with aging; 211 upregulated transcripts, and 9 

downregulated transcripts (Fig. 3-2A). There were 3 transcripts expressed only in the young, 82 

to the aged, and 136 that were expressed in both (Fig. 3-1C, Supp. Table 3-1).  

 

Figure 3-1: Round spermatid RNA-sequencing sample clustering and differential expression. 
A) Principle component analysis of all samples. Young RS: purple squares, Aged RS: blue 
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circles. X-axis:PC1=23%, Y-axis:PC2=17%, Z-axis:PC3=13%. B) Genes expressed in young or 
aged RS. C) Differentially expressed genes in young or aged RS.  

 

 When examining transcripts with a log2FC > 3.5, 18 transcripts met this cut-off. Of 

these, nine have specific relevance to male reproductive aging (Fig. 3-2B), with seven increasing 

in expression and two decreasing. ‘LOC100363064’ and Clec4a3 are mannose-binding genes, 

potentially implicated in sperm-egg fusion during fertilization. Lrrn4 encodes for a gene that aids 

in development in the early embryo. Folr2 and Folr1, coding for folate receptors 1 and 2, are 

both implicated in DNA methylation, as part of the folate metabolism pathway. Gnrhr has been 

shown to have function in spermatogenesis progression, germ cell apoptosis, sperm release and 

potentially fertilization. There was a down-regulation of both ‘LOC100911154’ and 

AC117925.6. These are genes that have been associated with motile sperm or ciliated cell 

movement respectively, lending to a potential alteration in sperm motility. 

 

Figure 3-2: Differentially expressed genes in round spermatids. A) Volcano plot showing 

differential expression with a log2FC >|1|, and padj <0.05. Orange: up-regulated transcripts, 

Purple: down-regulated transcripts. B) Transcripts with log2FC >|3.5|. 
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3.3.2 Age dependent alterations in IGF-1 and senescence signalling pathways 

 Pathway analysis with IPA revealed significantly altered pathways, transcript families 

with shared molecular functions, and potential upstream regulators. There were 66 canonical 

pathways (Supp. Fig. 3-1), with significant alteration due to aging in RS. The canonical 

pathways with significant alterations (p < 0.01) but no predicted directionality (Z = 0) were: 

insulin-like growth factor 1 (IGF-1) signaling (p=2.54x10-4) and calcium signaling (p=4.82x10-

3). The pathways with significant alterations but no predicted directionality had too few 

molecules to predict activation or inhibition of the pathway, this is likely a product of the 

relatively small number of altered transcripts observed in our study.The pathways with predicted 

activation were hypercytokinemia and hyperchemokinemia in pathogenesis (Z=2.24), NAD 

signaling (Z=1.89), cellular senescence (Z=1.15), and the coagulation system (Z= 1) (Fig. 3-3A). 

The cellular senescence pathway included the significantly altered transcripts Araf, Capn1, 

Cebpb, Gadd45g (Supp. Table 3-2). Seven non-significant DEGs also contribute to the overall 

alteration in the senescence pathway. In our data, pathways for which IPA could not predict 

pathway activation (Z=NA) include: caveolar-mediated endocytosis signaling, and agranulocyte 

adhesion and diapedesis. 

 The pathways with predicted activation with a Z-score > 2 (p <0.05) were: toll-like 

receptor signaling, hypercytokinemia/hyperchemokinemia in pathogenesis, acute phase response 

signaling, SNARE signaling, white adipose tissue browning, neuroinflammation signaling, 

pulmonary healing signaling, cardiac hypertrophy signaling, adrenomedullin signaling, ID1 

signaling, and hepatic fibrosis signaling (Fig. 3-3B).   
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Figure 3-3: Ingenuity pathway analysis of DEGs in round spermatids. A) Pathways with 

predicted alteration (Z-score), with -log10(padj) > 2.3. Red: Z=0, Orange: Predicted pathway 

activation, Grey: Z-score cannot be calculated, Purple: Predicted inhibition. B) Pathways with 

predicted alteration with a Z-score > |2|. C) Transcripts which appear in these pathways more 

than 4 times. D) Transcription factors with predicted activation (orange) or inhibition (purple). 

E) Gene expression of transcription factors in log2FC, increased expression (orange) and 

decreased expression (purple).   

 

 When examining canonical pathways for their contributing transcripts there is overlap, 

with some transcripts contributing to various separate pathways. The following transcripts were 
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present in four or more of the presented canonical pathways: Adcy5, Araf, Camk4, Cebpb, Il33, 

Irak, Nfkbia, Rala, Tlr7, Fgfr1 (Fig. 3-3C). These genes represent pathways with overlapping 

function in the immune system, through immune response and inflammation. 

 When examining upstream transcription regulators with a Z-score > 2 (Fig. 3-3D), p-

value of overlap < 0.05, and differential expression log2FC > 0.8 (Fig. 3-3E), there are 12 

transcripts that have downstream effects. Myc, with a log2FC of 3.178 and a predicted 

transcriptional activation of downstream targets, has been implicated in spermatogenesis and 

germ cell development. IRF1, BHLHE40, CEBPB, IRF7, MYC, and IKZF3 are transcription 

factors for many cytokines, and inflammation/immune response genes. Many of these 

transcription factors also have direct roles in Sertoli cell signaling and Sertoli gene activation.  

 When we examined the differentially expressed transcripts with GO analysis, two 

pathways with abundant representation were the oxidoreductase activity and process pathways, 

fitting with what is well-established with male reproductive aging (Fig. 3-4). There were many 

transcripts that sorted to immune, cytokine, and chemokine signaling, further supporting the 

findings of IPA. Interestingly, these pathways represent potential disruptions in communication 

between cells within the testes, specifically Sertoli and germ cells. Further supporting the notion 

that there are disruptions in the germ cell niche, there were also transcripts involved in the 

cytoskeleton, membrane organization, and extracellular regions. These pathways are necessary to 

allow for both the binding of germ cells through various junctions, and the remodelling of cell 

types as they progress through spermatogenesis.  



130 
 

 

  

Figure 3-4: Gene ontology analysis of DEG’s in round spermatids. Size of dot: number of genes 

contributing to the pathway. Significant pathways shown in red/orange, insignificant pathways 

shown in green-blue. Gene ratio: ratio of genes in pathway to total DEGs.  

 

 Taken together, these results suggest age dependent disruptions in cellular inflammation 

and immune responses. The canonical pathways with a p-value < 0.01 (Fig. 3-3A), and Z-score > 

2 (Fig. 3-3B), represent a dysregulation in immune and inflammation pathways, and the 

upstream regulatory elements identified through IPA represent those which control downstream 

elements of the inflammation and immune systems. Given the biases of GO, and IPA towards 
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pathways that have been most studied, we independently examined the functions of affected 

transcript within the reproductive system. Specifically, we examined the action and function of 

dysregulated transcripts in round spermatid and spermatozoa development and function.  

 

3-3.3 Differential gene expression with aging in reproduction specific pathways  

 The 220 differentially expressed genes were researched and sorted for their reproductive 

function based on the existing literature in July 2022 (Supp. Table 3-1). There were 169 

transcripts that were studied in the context of reproduction, with a known function related to: 

reactive oxygen species regulation, DNA damage response, sperm motility, sperm-egg 

binding/fertilization, the cytoskeleton, epigenetics, Sertoli-germ cell interactions, sperm 

capacitation, metabolism, lipid regulation, transcription, apoptosis, steroidogenesis, cell cycle, 

ion binding or miscellaneous (Fig. 3-5A). Approximately 21% of these transcripts showed 

overlap, having more than one function within the reproductive system, the overlap is often seen 

with groups that involve motility and morphology. Concordant with what is known about 

reproductive aging, there were many transcripts involved in ROS, DNA damage, and sperm-egg 

binding/fertilization. Given that both the cytoskeleton, and immune signaling pathways observed 

with pathway analysis, it was interesting that the two largest reproductive groups were the 

Sertoli-germ cell interaction, and Sertoli-immune signalling, with 25, and 29 and transcripts 

contributing to these groups, respectively.  
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Figure 3-5: Age-related differential gene expression in reproductive specific pathways.  

 

3-3.4 Age dependent increases in gene expression  

 We observed an increase in gene expression in 96% (211 of 220) of the age dependent 

dysregulated transcripts in RS (log2FC > 1, padj < 0.05).  

 

3-3.4.1 Sperm function related transcripts  

 

 The most prominent reproductive pathways were those contributing to overall sperm 

structure and function. These pathways are: sperm motility, sperm-egg binding/fertilization, and 

sperm capacitation (calcium regulation). Seventeen transcripts were associated with sperm 

motility, including: Aqp1, Vim, and Septin (Fig. 3-6A). Twenty-two transcripts have been studied 

for their effects in sperm-egg binding or overall fertilization, including: Serpinb9, Gas6, and 
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LOC10036306. Of the nine transcripts that were formerly shown to contribute to capacitation or 

the acrosome reaction, Rhob and Timd4 were best characterized. There are additional important 

functions in sperm for transcripts belonging to the pathways ROS (11 transcripts), cytoskeletal 

(15 transcripts), ion binding (12 transcripts), metabolism (11 transcripts), and lipids (12 

transcripts). 

 

Figure 3-6: Differential gene expression of round spermatids in reproductive pathways. X-axis: 
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Gene name, Y-axis: log2FC. All transcripts are significant at padj<0.05. A) Sperm motility, 

morphology and fertilizing ability. B) Sertoli-Germ Cell Interaction. C) Epigenetics.  

3-3.4.2 Sertoli-Germ cell interaction related transcripts  

 

 Transcripts for the interaction between Sertoli and germ-cells represent a total of 54 of 

the 220 dysregulated transcripts, and can be divided into genes that directly facilitate the binding 

of the two cell types (25 transcripts), or genes that are likely involved in the signaling and 

immune response (29 transcripts). Dysregulated genes responsible for the binding of Sertoli cells 

and round spermatids includes genes that bind actin, cadherin, and help form adherens junctions, 

such as: Ifit2, Pcdh1, Cdh5, Sfrp1, Cgn11, Klf6, Anxa7, and Ctgf (Fig 3-6B). The transcripts 

involved in the pathway regulating the Sertoli cell immune response, were mainly cytokines and 

elements that interact with SC signaling: Cxcl10, Cxcl12, Cxcl9, Pf4, Tlr7, and Cav1. The 

dysregulated interferons (Irf7, Ifit2, Slfn2, Ifi47, Ifitm2) in RS due to aging also point to 

alterations in SC-RS signaling.  

3-3.4.3 Epigenetic related transcripts  

 

 Due to the overall disruptions in gene expression observed with aging, we examined 

whether there were effects of epigenetic related transcripts as a function of aging of round 

spermatids. We found eight such transcripts, including: Folr1, Folr2, Alkbh6, Comtd1, Hist1h1c, 

and Tbx2 (Fig. 3-6C). These transcripts represent multiple epigenetic mechanisms through 

histone modifications, telomere maintenance, and DNA methylation. Hist1h1c, is a linker 

histone which may regulate chromatin compaction as it interacts with linker DNA between 

nucleosomes. Hist1h1c also has known function in binding with telomeric repeat elements and 
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elongation factors, a newly proposed epigenetic regulator. Folr1 and Folr2 are two folate 

receptors that regulate intracellular folate, a rate-limiting step in the folate and DNA methylation 

cycles. Comtd1, is a catechol-O-methyltransferase, with predicted functionality in S-

adenosylmethionine-dependent methyltransferase activity. Alkbh6 has protective effects on 

DNA methylation. Alkbh6 is an enzyme with dioxygenase activity, and is able to recognize and 

reverse DNA methylation damage. 

 

3.5 Age dependent decreases in gene expression  

 Interestingly, only 9 measured DEGs had a decrease in gene expression with four of these 

down-regulated transcripts having no known function. Two of these transcripts represent non-

coding RNAs, a microRNA (Mir3074) potentially involved in DNA damage response, and a 

long intergenic non-coding RNA (AABR07028258.1) with no predicted function. Two transcripts 

have predicted or known zinc regulatory function: RGD1566138, and Zfp14. The remaining five 

transcripts showed no pattern in pathway activity including: Atp13a3, Fam181a, AC117925.6, 

LOC100910370, and AABR07002741.1. Though together these transcripts do not represent a 

major reproductive or canonical pathway, as they have predicted functions in DNA damage 

response, zinc binding, transcription, and ciliated cell movement, it is not unreasonable to predict 

they may also have specific functions in RS with aging.  

4. Discussion 

 By examining genomics at the round spermatid level, we observed overall changes in 

gene expression due to aging in round spermatids of the Brown Norway rat. There is an overall 

increase in gene expression, suggesting that many genes are turned on as a result of aging in RS. 
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There exist no known age-related gene expression programmes that have been conserved across 

evolution or across tissues within an organism. However, hallmarks of aging give us insight into 

trends for the behaviour of certain classes of genes. The hallmarks of aging include: 

downregulation of mitochondrial proteins, dysregulation of the immune system genes, response 

to DNA damage and stress, reduction in growth factors, and dysregulation of overall gene 

expression and mRNA processing (Frenk and Houseley, 2018). Our data fit within these 

hallmarks of aging, showing a disruption in genes related to: the immune system, DNA damage 

and stress response, and overall gene expression or mRNA processing. As previously noted, one 

of the theories of aging is that there is general genome instability which could be characterized 

by aberrant gene expression observed in RS. Given the tissue specificity of age related 

disruptions in gene expression, it remains difficult to predict transcripts that would be targeted by 

the aging process in RS outside of our own data.  

 We are able to appreciate the dysregulation of spermatogenesis and fertility related genes 

within the context of reproductive aging pathologies. There are decreases in sperm motility, 

capacitation, and normal morphology with aging that are concordant with disruptions in 

transcripts necessary to make functional sperm (Dong et al., 2022; Eskenazi et al., 2003; Ng et 

al., 2004). Of note, vimentin (Vim) has been shown to be present on the sperm head in an 

asymmetric manner with higher levels of vimentin being present in abnormal spermatozoa 

(Markova et al., 2002). It is unclear if the asymmetry is a result of structural abnormalities, or if 

it causes them, but here we do see an increase in vimentin expression. Vimentin has also been 

shown to be highly detectable in the developing spermatid flagella (Mali et al., 1987). Septin8, is 

a transcript with potential involvement in sperm motility through interaction with septin family 
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bundles (Lin et al., 2011); high expression of this transcript has been observed in 

normozoospermic patients who did not achieve pregnancy (Azpiazu et al., 2014).  

 We found dysregulation of expression of transcripts that are required for successful 

sperm-egg interactions leading to fertilization, another pathology noted with advanced paternal 

age (Bartolacci et al., 2018). Particularly, transcripts within our dataset were involved in 

mannose binding and interactions. Mannose binding sites on the sperm membrane initiate the 

acrosome reaction and allow for sperm fertilizing ability (Rosano et al., 2007). Mannose binding 

has been also studied with binding partners such as cholesterol (Benoff et al., 1993), which is of 

particular interest given that we saw a disruption in lipid synthesis or homeostasis within our 

data. Additional genes with differential expression potentially contribute to capacitation and the 

acrosome reaction, including Rhob, Timd4, and many calcium ion channels. Gas6 has been 

studied in the context of fertilization, and it has been reported that in oocytes lacking Gas6 the 

sperm pronucleus is unable to form (Kim et al., 2019). It remains to be determined whether 

sperm functionally contribute Gas6 to the oocyte at the time of fertilization.   

 Beyond the role Sertoli cells play in providing support to the developing germ cells, they 

also establish and maintain the unique immune system within the testis. The testis is immune 

privileged, and must maintain a balance between protecting the body from infection through the 

reproductive tract while simultaneously protecting the germ cells from the systemic immune 

system (Zhao et al., 2014). The immune privilege is maintained by the blood-testis barrier, 

formed by Sertoli cells. The Sertoli cells form tight-junctions, and with cyclical remodelling 

allow for the transit of developing germ cells from within the protection of the systemic immune 

environment, into the external compartment of the testis. This requires many physical 

transformations of both the Sertoli cells and germ cells to allow the progression through the 
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epithelium (Vogl et al., 2013). Thus, transcripts involved in the direct binding of germ cells to 

Sertoli cells through junctions as well as the immune interaction are of importance. Transcripts 

directly involved in remodelling of the germ cell cytoskeleton or progression through the 

epithelium, such as cadherins (Pcdh1, Cdh5), Sfrp1 and Ctgf were disrupted within our data. 

Additionally, we saw disruptions in transcripts which help form the junctions between germ cells 

and Sertoli-cells, such as Cgn11 and Klf6 (Mazaud-Guittot et al., 2010; Wang et al., 2019).  

 We observe disruptions in many transcripts that either signal to Sertoli cells, or are 

otherwise involved in germ cell-Sertoli cell interaction. Given the necessary and extensive 

supporting roles provided by Sertoli cells, it is of particular interest to note that the relationship 

between these cell types begins to deteriorate with aging. Studies have reported the suspected 

loss of Sertoli cell support to developing germ cells (Levy et al., 1999; Syed and Hecht, 2001; 

Syed and Hecht, 2002). Levy et al., (1999) reported that there were empty crypts, classically 

occupied by round spermatids, while Syed and Hecht (2001;2002) reported that there were age 

related decreases in mRNAs that signal between Sertoli and germ cells, with a focus on the 

proteins coming from Sertoli cells. However, there is much less evidence that developing germ 

cells are able to provide signals to the Sertoli cells. Haugen et al., (1994) showed the presence of 

IL-1 alpha in rat germ cells, and De et al., (1993) showed the presence of TNF-alpha in mouse 

germ cells. These are known signalling proteins that direct Sertoli cell action. Our data show that 

there are increases in many factors that participate in the signalling cascade between germ and 

Sertoli cells, including; Cxcl10, Cxcl12, Cxcl9, Pf4, Tlr7, and Cav1 Irf7, Ifit2, Slfn2, Ifi47, Ifitm2. 

Additional transcripts in our dataset suggest altered signalling to Sertoli cells, including Notch3. 

Notch3 expression has been observed in germ cells, with the main effectors being in Sertoli cells 
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through activating expression of Hes1 and Hes5 (Murta et al., 2013). We can hypothesize from 

these data that the developing spermatids are signalling to the Sertoli cells.  

  As we mentioned, there are additional transcripts of note that appear to be 

multifunctional within round spermatids. Vimentin, mentioned earlier in the context of 

morphology and motility, is also a protein involved in junctions between Sertoli and germ cells, 

with a prediction that the vimentin expression in germ cells may have a role in embedding them 

within the deep pockets of Sertoli cells (Mali et al., 1987). A disruption in vimentin then, would 

alter not only the morphology of sperm but the potential for spermatids to sit in Sertoli-cell 

crypts as seen by Levy et al. (1999). Additionally, Gas6, noted for its necessity in sperm 

pronuclear formation in the oocyte, may also have function in regulating phagocytosis of germ 

cells by Sertoli cells through their binding (Xiong et al., 2008).  Though beyond the scope of the 

present study, exploring the interaction between Sertoli cells and germ cells during aging is 

evidently important. A next step will be confirming if these transcripts specifically direct action 

in Sertoli cells within the context of aging. 

 Age related alterations in DNA methylation and the epigenome are vast, with species 

dependent effects. In humans, there is an overall increase in global DNA methylation observed 

with age (Cao et al., 2020). Cao et al., showed a clear correlation between age and increased 

DNA methylation; indeed, this correlation is so strong that it can be used to predict the age of the 

individual within 2 years. In rodents, thousands of differentially methylated regions due to aging 

have also been identified (Pilsner et al., 2021). We observed increases in transcripts: Folr1, 

Folr2, and Comtd1, all key transcripts in the folate and DNA methylation cycle. If there are 

disruptions in folate metabolism, the availability of methyl groups may alter overall DNA 

methylation. Altered folate metabolism has been noted with age in other contexts (Amenyah et 
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al., 2020). It will be interesting in the future to explore if these changes in gene expression are 

correlated with altered DNA methylation.  

 Our results show that with aging there is dysregulated expression of genes involved in 

making functional sperm. This is the first study showing alterations in germ cell transcripts 

involved in binding and signaling to Sertoli cells, providing an additional avenue for age related 

defects in sperm production and function.  
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Supplemental Material 

 
 

 
Figure S3-1: Ingenuity Canonical Pathways. Dot color represents the z-score and predicted 

action of the pathway. Blue: negative value and predicted inhibition. Orange: positive value and 

predicted activation. White: no value, not able to predict action. Grey: no activity pattern given 

the nature of the pathway. Dot size represents the number of contributing genes in the dataset to 

that canonical pathway.  
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Table S3-2: Ingenuity Canonical Pathways and Contributing Genes.  
 
Ingenuity Canonical 
Pathways 

 -log(p-
value) 

Ratio z-score Molecules(Genes)  

RHOGDI Signaling 1.35 0.0279 -1 CDH5,GNA13,MYH11,MYL9,PIKFYVE,
RHOB 

Autophagy 1.35 0.0279 -0.816 ATM,ATR,CAMK4,IGF1,RALA,SLC7A5 
Epithelial Adherens 
Junction Signaling 

1.39 0.0318 -0.447 ECT2,FGFR1,RALA,TNS1,YWHAG 

Gα12/13 Signaling 2.27 0.0451 0.447 CDH5,F2R,GNA13,MYL9,NFKBIA,RAL
A 

RHOA Signaling 1.78 0.0403 0.447 GNA13,IGF1,MYL9,PIKFYVE,SEPTIN8 
Leukocyte Extravasation 
Signaling 

1.54 0.0311 0.447 ACTN1,CDH5,CXCL12,CYBA,JAM2,TI
MP3 

Thrombin Signaling 2.24 0.0356 0.816 ADCY5,ARHGEF25,CAMK4,F2R,GNA1
3,MYL9,RALA,RHOB 

CXCR4 Signaling 1.79 0.0355 0.816 ADCY5,CXCL12,GNA13,MYL9,RALA,
RHOB 

Coagulation System 3.11 0.114 1 F13A1,F2R,PLAT,VWF 
Glioma Invasiveness 
Signaling 

1.94 0.0548 1 F2R,RALA,RHOB,TIMP3 

Role of MAPK Signaling 
in Inhibiting the 
Pathogenesis of Influenza 

1.87 0.0519 1 ARAF,CXCL10,NFKBIA,PLAAT3 

Role of MAPK Signaling 
in Promoting the 
Pathogenesis of Influenza 

1.33 0.0354 1 ARAF,NFKBIA,PLAAT3,RALA 

Senescence Pathway 3.59 0.0404 1.155 ARAF,ATM,ATR,CAMK4,CAPN1,CEBP
B,GADD45G,NF1,RALA,RING1,YPEL3,
ZFP36L1 

ILK Signaling 1.48 0.03 1.342 ACTN1,FLNA,MYH11,MYL9,RHOB,VI
M 

Ferroptosis Signaling 
Pathway 

2.29 0.0455 1.633 ANGPTL4,ARAF,CTSB,RALA,SLC39A
8,SLC7A11 

MSP-RON Signaling In 
Cancer Cells Pathway 

2.17 0.0429 1.633 ARAF,FLNA,NFKBIA,RALA,VIM,YWH
AG 

IL-8 Signaling 1.87 0.0333 1.633 ARAF,GNA13,IRAK1,MYL9,NFKBIA,R
ALA,RHOB 

Actin Cytoskeleton 
Signaling 

1.55 0.0286 1.633 ACTN1,F2R,FLNA,GNA13,MYH11,MY
L9,RALA 

Pulmonary Fibrosis 
Idiopathic Signaling 
Pathway 

1.77 0.0276 1.667 ARAF,CAV1,CCN2,CXCL12,F2R,FGFR
1,GNA13,RALA,VIM 

NAD Signaling Pathway 2.64 0.0464 1.89 CEBPB,HMGCS2,IDH2,IGF1,LDHB,SL
C7A5,TNKS2 

HIF1α Signaling 1.9 0.0337 1.89 ARAF,CAMK4,IGF1,LDHB,RACK1,RA
LA,VIM 

Integrin Signaling 1.84 0.0329 1.89 ACTN1,CAPN1,CAV1,MYL9,PIKFYVE,
RALA,RHOB 

Signaling by Rho Family 
GTPases 

1.81 0.0299 1.89 CDH5,DES,GNA13,MYL9,PIKFYVE,RH
OB,SEPTIN8,VIM 

Toll-like Receptor 
Signaling 

1.85 0.0513 2 IL33,IRAK1,NFKBIA,TLR7 
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Role of 
Hypercytokinemia/hyperc
hemokinemia in the 
Pathogenesis of Influenza 

2.43 0.0581 2.236 CXCL10,IFIT2,IL33,IRF7,TLR7 

Acute Phase Response 
Signaling 

2.16 0.0378 2.236 C1QB,CEBPB,IL33,IRAK1,NFKBIA,RA
LA,VWF 

SNARE Signaling 
Pathway 

1.62 0.0368 2.236 ADCY5,CAMK4,MYH11,MYL9,SNCG 

White Adipose Tissue 
Browning Pathway 

1.6 0.0362 2.236 ADCY5,CEBPB,FCER1G,FGFR1,LDHB 

Neuroinflammation 
Signaling Pathway 

1.84 0.0284 2.333 B2M,CD200,CXCL10,CXCL12,HLA-
A,IRAK1,IRF7,S100B,TLR7 

Pulmonary Healing 
Signaling Pathway 

1.49 0.0302 2.449 ARAF,CXCL12,FGFR1,IDH2,NFKBIA,R
ALA 

Cardiac Hypertrophy 
Signaling 

1.43 0.0269 2.449 ADCY5,CAMK4,GNA13,IGF1,MYL9,R
ALA,RHOB 

Adrenomedullin signaling 
pathway 

1.99 0.0352 2.646 ADCY5,ARAF,CALCRL,CAMK4,CEBP
B,IL33,RALA 

ID1 Signaling Pathway 1.98 0.035 2.646 ARAF,CAV1,CCN2,FGFR1,MCAM,RAL
A,VIM 

Hepatic Fibrosis Signaling 
Pathway 

1.89 0.0261 2.714 ARAF,CAMK4,CCN2,CEBPB,FGFR1,IL
33,IRAK1,MYL9,NFKBIA,RALA,RHOB 

IGF-1 Signaling 3.6 0.0673 0 CCN1,CCN2,IGF1,IGFBP2,IGFBP7,RAL
A,YWHAG 

LPS/IL-1 Mediated 
Inhibition of RXR 
Function 

3.59 0.0433 0 APOE,FABP3,FABP4,FMO2,GSTA2,GS
TP1,HMGCS2,IL33,IRAK1,MAOB,PLTP 

Calcium Signaling 2.32 0.0367 0 ATP2B3,CAMK4,MYH11,MYL9,Tpm1,T
pm2,Tpm4,TRPM8 

Calcium Transport I 2.22 0.2 0 ANXA5,ATP2B3 
ATM Signaling 2.17 0.0505 0 ATM,ATR,GADD45G,NFKBIA,SMC2 
Ketogenesis 2.14 0.182 0 ACAA2,HMGCS2 
α-Adrenergic Signaling 2.02 0.0463 0 ADCY5,CAMK4,GNA13,PYGM,RALA 
Oleate Biosynthesis II 
(Animals) 

1.99 0.154 0 FADS1,FADS6 

Mevalonate Pathway I 1.93 0.143 0 ACAA2,HMGCS2 
Glucocorticoid 
Biosynthesis 

1.87 0.133 0 CYP17A1,HSD3B2 

D-myo-inositol (1,3,4)-
trisphosphate Biosynthesis 

1.76 0.118 0 OCRL,SYNJ1 

iNOS Signaling 1.73 0.0638 0 CAMK4,IRAK1,NFKBIA 
Bile Acid Biosynthesis, 
Neutral Pathway 

1.72 0.111 0 Akr1c14,Akr1c19 

UVC-Induced MAPK 
Signaling 

1.64 0.0588 0 ARAF,ATR,RALA 

Adipogenesis pathway 1.64 0.037 0 CEBPB,CEBPD,FABP4,FGFR1,LPL 
Androgen Biosynthesis 1.59 0.0952 0 CYP17A1,HSD3B2 
Superpathway of D-myo-
inositol (1,4,5)-
trisphosphate Metabolism 

1.55 0.0909 0 OCRL,SYNJ1 

IL-1 Signaling 1.55 0.0417 0 ADCY5,GNA13,IRAK1,NFKBIA 
p53 Signaling 1.52 0.0408 0 ATM,ATR,GADD45G,STAG1 
GADD45 Signaling 1.46 0.05 0 ATM,ATR,GADD45G 
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SPINK1 Pancreatic 
Cancer Pathway 

1.46 0.05 0 CPD,CPE,CTSB 

Aryl Hydrocarbon 
Receptor Signaling 

1.37 0.0314 0 ATM,ATR,CYP1B1,GSTA2,GSTP1 

Phagosome Maturation 1.37 0.0314 NA B2M,CTSB,DYNC2H1,HLA-
A,PIKFYVE 

Activation of IRF by 
Cytosolic Pattern 
Recognition Receptors 

1.37 0.0462 0 IFIT2,IRF7,NFKBIA 

Glutathione Redox 
Reactions I 

1.36 0.0714 0 GPX1,GSTP1 

Methylglyoxal 
Degradation III 

1.33 0.069 0 Akr1c14,Akr1c19 

Superpathway of 
Cholesterol Biosynthesis 

1.33 0.069 0 ACAA2,HMGCS2 

Role of Tissue Factor in 
Cancer 

1.3 0.0345 0 CCN1,CCN2,GNA13,RALA 

Dilated Cardiomyopathy 
Signaling Pathway 

2.05 0.0405 0 ADCY5,CAMK4,CNN1,DES,MYH11,M
YL9 

PDGF Signaling 1.71 0.0465 0 CAV1,OCRL,RALA,SYNJ1 
Osteoarthritis Pathway 1.63 0.0297 0 ALPL,ANXA5,CEBPB,FGFR1,OCRL,SL

C39A8,TIMP3 
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Connecting Text 

The research presented in Chapter 3 of the thesis examined mRNA expression in round 

spermatids from young and aged Brown Norway rats using RNA-sequencing. This study 

suggests that with aging there is major upregulation of transcripts (211/220) involved in several 

processes associated with aging and with reproduction. Specifically, we observed an 

upregulation in transcripts associated with the immune system and inflammation, sperm motility 

morphology and functionality, and the interaction of germ cells with the supporting Sertoli cells 

of the testis. We observed very few transcripts with decreased expression due to aging, (9/220). 

This was the first study in Brown Norway rats to examine gene expression with aging using 

RNA-sequencing, and the first to report an alteration in the signalling molecules, with known 

involvement in germ cells-Sertoli cell signalling as a consequence of age. We also noticed an 

increase in transcripts known to alter DNA methylation, including folate receptors, transcripts 

with predicted DNA methylase activity, and transcripts with protective roles in DNA 

methylation. As we noticed a general decrease in expression of mRNA, and altered transcripts 

associated with DNA methylation, we hypothesized that altered gene expression may be the 

result of altered DNA methylation. Altered DNA methylation also has consequences for 

telomere dynamics, and telomere length changes may alter DNA methylation. In Chapter 4, we 

examine DNA methylation in round spermatids and mature spermatozoa from Brown Norway 

rats using whole-genome bisulfite sequencing.  
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Abstract 

The trend of delayed parenthood, and the aging population in North America are leading to 

more fathers of advanced paternal age. Epidemiological data suggests that the children of older 

fathers are susceptible to genetic disorders and diseases, suggesting that delaying parenthood is 

not without risk. There are limited studies to suggest epigenetic alterations in the sperm of aged 

fathers, and few studies that link what we know about reproductive aging from rodent models 

with epigenetic mechanisms. We hypothesize that due the aging process in Brown Norway rats 

causes alterations in the germ cell epigenome through DNA methylation. We have used whole-

genome bisulfite sequencing to assess germ cell DNA methylation in post-meiotic round 

spermatids and mature spermatozoa from young (4-6 months) and aged (18-20 months) Brown 

Norway rats (n=3). We found that there are major disruptions in DNA methylation, with 5486 

differentially methylated regions (DMRs) in spermatids, and 1888 DMRs in spermatozoa. The 

majority of these DMRs are hypermethylated and found in intergenic regions within the genome. 

We examined the transition from spermatid to spermatozoa and found that with aging the 

inherent process of DNA methylation was perturbed. These findings suggest that DNA 

methylation is altered with aging in germ cells, and may have consequences for the offspring.  

 

Introduction   

 Delayed parenthood is a trend observed across ethnicities since the 1970s in North 

America and westernized countries (Khandwala et al., 2017). This trend can be attributed to 

individuals increased career or personal aspirations, and increased costs of living. The delay in 

parenthood is observed in both biological sexes though potentially more striking in maternal 

aging with more frequent pathologies such as trisomy (Pellestor et al., 2003). However, the 

effects of paternal aging are worth note as epidemiological findings suggest genetic 

consequences for the offspring of older fathers. Primarily, genetic disorders of 

neurodevelopment arise in the children of older fathers; these include attention deficit 

hyperactivity disorder (ADHD), autism, and schizophrenia (Bray et al., 2006; D’Onofrio et al., 

2014; Malaspina et al., 2015; Frans et al., 2013). Additionally, with advanced paternal age there 

are alterations to overall male fertility, with reported decreases in sperm quality accompanied by 
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decreased fecundity and poor pregnancy outcomes (Dong et al., 2022; Bartolacci et al., 2018; 

Beguería et al., 2014; Pino et al., 2020). 

 Spermatogenesis, the process by which spermatozoa (sperm) are continuously produced 

in the seminiferous tubules of the testis, occurs from puberty until death. The sperm arise from a 

spermatogonial stem cell pool, which may be vulnerable to the effects of aging. The stem cells 

differentiate to derive a germ cell lineage, in which cells undergo meiosis to eventually produce 

haploid sperm (Griswold, 2016). Each germ cell stage has distinct characteristics, for example 

the pre-meiotic spermatocytes undergo gene crossovers and have active DNA damage repair 

machinery. The post-meiotic spermatids (haploid) undergo the repackaging of DNA, 

spermiogenesis (Paul et al., 2011). Spermiogenesis is characterized by the gradual replacement 

of histones, to protamines, allowing for the tight DNA packaging required for sperm to develop 

their: transcriptional inactivity, small size, and streamlined motility (O’Donnell, 2015). During 

spermatogenesis, and DNA reorganization, the germ cell epigenome is dynamic.  

 The ‘epigenome’ includes all mechanisms that regulate the genome without altering the 

primary DNA sequence. This includes noncoding RNAs, histone modifications, and DNA 

methylation. DNA methyltransferases (DNMTs) catalyze this reaction through the addition of a 

methyl group to 5-carbon position of cytosine nucleotides, forming 5-methyl cytosine (5-mC) 

(Trasler, 2009). Methylation mainly occurs on cytosines paired with guanine (CpG), but can 

occur on cytosines separated from guanine by one nucleotide (CHG), or entirely on their own 

(CHH). DNA methylation regulates gene expression, with hypermethylated regions conferring 

transcriptional inactivity and hypomethylation conferring transcription activity (Trasler, 2009). 

In addition, DNA methylation is critical for the development of X-inactivation and genomic 

imprinting of paternally or maternally inherited genes. To confer totipotency in the embryo, 

DNA methylation must be erased and reestablished except in select imprinted regions (Hirasawa 

et al., 2008; Cirio et al., 2008a; Cirio et al., 2008b). The erasure of DNA methylation occurs after 

fertilization, increasing only after the blastocyst stage. During embryonic development in males, 

the primordial germ cells undergo a wave of demethylation, and male germ cell de novo DNA 

methylation is partly established in the prospermatogonia before birth (Smallwood and Kelsey, 

2011). DNA methylation is further modified, gained and lost, in the mitotic and meiotic germ 

cells, and is complete by the secondary spermatocyte stage after meiosis I (Oakes et al., 2007). 
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The methylation of some testis-specific genes become demethylated to facilitate their expression 

during spermatogenesis (Geyer et al., 2004).  

 Due to the dynamic nature of genomic methylation during germline development and 

spermatogenesis, we may examine germ cell DNA methylation as a mode of epigenetic 

inheritance. Toxicant exposure, nutritional status, lifestyle and aging have all been demonstrated 

to have effects on the sperm DNA methylome (Chan et al., 2012; Lambrot et al., 2013; Salas-

Huetos et al., 2020; Jenkins et al., 2014; Cao et al., 2020). The effect of age on sperm DNA 

methylation was initially investigated by Jenkins et al., (2014) who reported that there were 140 

consistent differential methylated regions (DMRs) when comparing sperm DNA from young and 

aged men, with predominantly hypermethylation. Cao et al., report that aging causes abundant 

differential DNA methylation, with slightly more hypermethylation than hypomethylation. 

Oluwayoise et al., (2021) also found an increase in DNA methylation in sperm from aged men in 

91% of the CpG DMRs. These groups report that there is an association of the DMRs with genes 

that are necessary for fertility or neurodevelopment (Jenkins et al., 2014; Cao et al., 2020; 

Oluwayoise et al., 2021). The reliable alterations in DNA methylation have been used repeatedly 

to predict a man’s age from his sperm epigenome, more recently getting accuracy within 2 years 

(Horvath, 2013; Jenkins et al., 2018; Cao et al., 2020).  

 In Brown Norway rats, a commonly used model for the study of reproductive aging 

(Wang et al., 1993), few studies have been done to suggest similar effects of aging. Oakes et al., 

(2003) found that there were alterations in ribosomal DNA methylation of rat sperm. The Pilsner 

group have reported that there are numerous sperm DMRs in aged rats treated with flame 

retardants, and that some were involved in embryonic development (Pilsner et al., 2021). The 

goal of this study is to examine whether there were alterations in post-meiotic spermatids prior to 

chromatin compaction, and in mature spermatozoa from the cauda of the epididymis through 

whole genome bisulfite sequencing (WGBS). We examined wild-type Brown Norway rats, at 4-6 

months of age and 18-20 months of age, representing human populations of approximately 20-

30, or 45+ years of age respectively.  
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Results  

Differential DNA methylation in germ cells with aging  

 WGBS was used to assess the effects of aging on DNA methylation at CpG sites within 

the genome. We first examined differential methylation in round spermatids, and mature sperm. 

In round spermatids, the process of aging resulted in 5486 DMRs, with 70% hypermethylation 

and 30% hypomethylation at these regions (Fig 4-1). Mature sperm had fewer DMRs as a 

consequence of aging, with only 1888 DMRs. The proportions of DMR hyper and 

hypomethylation were similar to that of round spermatids, with 74% hypermethylation:26% 

hypomethylation. We mapped the DMRs to their chromosomal locations using Idiographica, and 

found that in either spermatids or sperm, the differential methylation was spread throughout the 

genome (Supp. Fig S4-1 and Supp. Fig S4-2). The majority of DMRs in both round spermatids 

and sperm were between 50-200 kb in length (Fig. 4-2B/D). However, sperm had 5 very long (> 

1500 kb) DMRs that were not seen in the round spermatids.  

 Given that regions of low or intermediate methylation (20-80%) might be more 

susceptible to paternal exposures or lifestyle factors (diet, toxicants etc), we examined the 

percent change of methylation at DMRs (Fig 4-2). In round spermatids (Fig. 4-2A), just over half 

(60%) of DMRs had low methylation changes. The remaining DMRs had an intermediate change 

in methylation, ranging from 20-50% methylation. In spermatozoa (Fig. 4-2C), this was reversed 

as the majority of the DMRs were intermediate. Here, 35% of the DMRs had low DNA 

methylation changes, and 65% had intermediate DNA methylation changes.    

Differential DNA methylation of genomic regions  

 

 Using HOMER annotation, we examined the genomic region of DMRs in round 

spermatids (Fig. 4-3A), and sperm (Fig. 4-3B). When examining all functional units of a gene, 

including: 3’ UTR, 5’ UTR, exon, intron, promoter-TSS and TTS there was more equal 

representation of hyper and hypomethylation types in round spermatids than in spermatozoa. 

There was also proportionally more DMRs in functional gene unit areas in round spermatids than 

there were in spermatozoa. This is to be expected as spermatids are transcriptionally active and 

require transcriptional control in gene regions, while sperm are transcriptionally inert. In sperm, 
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the DMRs in gene regions were more often hypermethylated with ~60% hypermethylation in 

gene regions. Specifically, in exons and promoters, there was 2/3 hypermethylation. This 

suggests that DNA methylation may play a role in transcription inactivation in sperm, as has 

been theorized previously. When examining the gene ontology (GO) of the DMRs in either 

promoters or gene regions, we see that there is little commonality amongt the pathways 

presented (Supp. Fig S4-3.). None of the promoter DMRs were significant in our analysis; 

however, in the spermatids, the promoters were hypermethylated at sites related to reproductive 

processes, while the sperm promoter DMRs were related to sexual reproduction and regulation of 

cellular processes. There were significant hypermethylated DMRs in GO pathways in spermatids 

for cell communication and signal transduction, and hypermethylated DMRs in GO pathways for 

membrane regulation, developmental processes, cell adhesion and calcium ion binding. In sperm, 

there was only one significant gene region DMR for cell morphogenesis.  

 Though there were DMRs affected by aging in all genomic regions, intergenic regions 

represented the majority of the genomic regions, 61% of DMRs in spermatids, and 71% of 

DMRS in sperm. This was overwhelmingly DNA hypermethylation, as approximately 3/4 of 

intergenic DMRs were hypermethylated. Introns were also areas with a high proportion of 

DMRs, with 18% of DMRs in spermatids, and 12% of DMRS in sperm. 

Intergenic and LINE-1 differential DNA methylation   

 

Though many of the intergenic DMRs in spermatids (Fig. 4-4A) and sperm (Fig. 4-4B) were 

in true intergenic regions, a fraction also mapped to simple repeat regions, satellite regions, SINE 

and LINE-1 elements, LTRs, rRNA, scRNA, and CpG islands. In sperm, there was also a tRNA 

region with differential methylation.  

 When examining the percent change of methylation in the DMRs, most of these again fell 

within the dynamic regions between 20-50% methylation difference. In round spermatids, there 

were 177 dynamic regions with intermediate methylation differences, and 103 regions with low 

DNA methylation changes. In sperm, there were 129 areas with intermediate methylation 

change, and 50 with low methylation change. Strikingly, approximately 80% of LINE-1elements 

in both spermatids and sperm were hypermethylated (% change greater than 0).  
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Differential methylation during spermatogenesis and sperm maturation  

 

 Recently advances have been made in understanding how DNA methylation changes 

during spermatogenesis and sperm maturation. Consequently, we designed this study such that 

we would be able to examine the effect of aging on these processes as well as in individual cell 

types. We examined the DNA methylation alterations due to aging in each individual cell type, 

round spermatids, or sperm, from aged rats compared to young rats. However, we also examined 

how the transition from round spermatid to sperm was impacted by aging at the DNA 

methylation level.   

 We found that when comparing sperm to round spermatids in a young BN rat, there were 

very few sites of differential methylation, there were 711 hypermethylated DMRS and 525 

hypomethylated DMRS. When the same comparison was made in the aged rat though, there were 

almost seven times as many DMRs. When comparing the progression of spermatids to 

spermatozoa in aging, we observed 5387 hypermethylated DMRs and 3144 hypomethylated 

DMRs. This suggests that during the development of mature sperm from spermatids in BN rats, 

there is a major disruption in DNA methylation processes.  

Discussion  

 The presented study demonstrates differential methylation in round spermatids and 

spermatozoa as a consequence of aging in Brown Norway rats through WGBS analysis. We 

found numerous sites of differential methylation across the genome, as a result of the aging 

process in these germ cells. These sites were predominantly hypermethylated DMRs. DMRs 

were found across genomic regions, some within functional gene regions. 

 The results presented here are consistent with other studies of paternal aging and sperm 

DNA methylation, in which hypermethylation was reported as an effect of aging in sperm. Most 

of the hypermethylation was found in distal or intergenic regions within the genome, which is 

consistent with research on DNA methylation in sperm with altered fertility status, aging, folate 

metabolism or lifestyle factors (Štiavnická et al., 2022;	Cao et al., 2020; Chan et al., 2019; 

Youngson et al., 2016). Regions of particular interest include the satellite repeats, as Youngson 

et al. (2016) showed that obesity in rats altered DNA methylation at satellite repeats, but this 
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transmission was not conferred to the offspring. Additionally, we saw a number of DMRs within 

LINE-1 intergenic regions. Sperm LINE-1 hypermethylation has been observed in studies of 

exposure to alcohol or nicotine, and has been associated with overall chromatin inaccessibility 

and altered development in the early embryo (Zhang et al., 2019; Jachowicz et al., 2017). These 

results suggest that DNA methylation in intergenic regions may have consequences for the 

offspring.  

 In spermatids, these gene regions had potential involvement in cell communication, Ras 

protein signal transduction, membrane related genes, cell adhesion, calcium ion binding, and 

reproductive processes. Given that the round spermatids are still transcriptionally active, altered 

DMRs at this stage will alter the ability of the cells to develop functional spermatozoa. 

Interestingly, the methylation of the genes in similar pathways were altered in 

asthenozoospermic men (Du et al., 2016). In this way, genes involved in cell communication, 

cell adhesion, and reproductive processes may negatively impact the developing germ cells. 

Calcium ion binding gene regions having differential methylation may also impact the ability of 

the sperm to correctly undergo capacitation, a process required for fertilization (Hong et al., 

1984).  

 It is striking how much of the differential methylation falls within intermediate levels of 

methylation within the context of aging in BN rats. Though, this dynamic methylation with 20-

80% alteration, has been reported in other contexts for its susceptibility to the environment or 

lifestyle factors (Chan et al., 2019). However, this is the first study to examine DNA methylation 

during the transition of round spermatids to spermatozoa within the context of aging. Some 

studies (Chan et al., 2012; Ben et al., 2022) have examined the germ cells independently at each 

of these stages; however, the comparison has not often been made between the two cell types. 

Ben et al., (2022) examined germ cell DNA methylation during spermatogenesis in rats, but this 

group compared round spermatids to immature spermatozoa prior to transit of sperm through the 

epididymis. They reported that there were 710 significant DMRs during this transition, and that 

there were an additional 4 DMRs between caput and cauda sperm. These findings support the 

observation in our data that from round spermatid to cauda spermatozoa there are 1236 DMRs in 

a young Brown Norway rat. In our data though, we report that there are many more DMRs 

during this transition in the aged rat, thus suggesting that there are alterations in DNA 
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methylation processes as a consequence of aging in rat germ cells. Further studies are required to 

understand how these processes, and their machinery, are affected by aging. We can hypothesize 

based on the gross changes to sperm quality with aging, that there may be altered access to the 

chromatin due to the aging process that results in altered DNA methylation. There may also be 

disrupted DNA methylation/demethylation, or one-carbon metabolism that cause the altered 

methylation with aging. Chen et al., (2022) recently reported that in the mouse model the 

epididymis may actually confer a functional role in DNA methylation, as they saw DNA 

methylation patterns change during spermatozoa transit from testis to cauda epididymis.  

 In addition to further study on the process of DNA methylation during spermatogenesis 

and sperm maturation, there are additional avenues to be explored within our data. The stories 

present here are a brief analysis of the DNA methylation data. It will be advantageous to 

examine more closely the DMRs in gene rich regions, and to examine the DMRs that fall in CpG 

islands or shores. It will also be interesting to examine the proximity of DMRs. We also aim to 

explore the remaining methylated cytosines (CHH/CHG) and their locations or contexts within 

the genome, though it is presently predicted that they represent very little DNA methylation.  

 This is the first study to examine DNA methylation at the depth of WGBS in Brown 

Norway rats. It is also the first study to examine the transition of round spermatid to spermatozoa 

within the framework of aging, and provides insight into not only the cellular DNA methylation 

changes due to aging but how the inherent DNA methylation process may be altered during this 

crucial window.   

Methods  

Animal Care 

 Animal care and handling were done in accordance with the guidelines put forth by the 

Canadian Council on Animal Care (McGill Animal Resources Centre: Protocol 4687). Source of 

rats. All samples were collected from wild-type Brown Norway rats following euthanasia by 

carbon dioxide asphyxiation. Animals belonged to the young control group, 4-6 months of age, 

or the aged treatment group, 18-20 months of age. Testes were weighed upon sacrifice to assess 
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testis regression (weight < 1.5g), and regressed testes with accompanying epididymides were not 

used.  

Sperm Collection 

 Epididymides were extracted from young and aged male rats. The epididymides were 

separated into the caput and cauda segments, and left in 1x phosphate buffered saline (PBS) to 

agitate on ice for 3 hours.. The sperm suspension was filtered on a 70 µM mesh. The sperm were 

then washed 10 times with 0.45% by volume saline solution (NaCl) to burst any remaining blood 

cells. The sperm were pelleted between washes at 2000 g for 10 minutes. After all washes were 

complete, the sperm were pelleted again at 2000 g for 10 minutes, and stored at -80◦C for DNA 

extraction. 

 

Germ Cell Separation  

 Germ cells were separated using the STA-PUT method for cell velocity sedimentation 

(Bryant et al., 2013). Briefly, testes were decapsulated and mechanically separated prior to two 

16-minute enzymatic digestion steps at 34 ◦C with agitation. The first digestion is done with 0.5 

mg mL−1 collagenase (C9722-50MG; Sigma Aldrich, Oakville, Canada), the second with 0.5 mg 

mL−1 trypsin (Type I, T8003; Sigma-Aldrich) and DNase I (Type I, DN-25; Sigma-Aldrich). The 

first enzymatic digestion removes collagen between the seminiferous tubules, while the second 

breaks the seminiferous tubules into small pieces and releases the germ cells. DNase is used to 

aid in the breakdown of any free DNA to prevent cell clumping. The dissociated germ cell 

suspension was then filtered through a 70 µM nylon mesh before being washed three times with 

0.5% bovine serum albumin (A4612; Sigma-Aldrich) in RPMI 1640 (Life Technologies, Grand 

Island, USA) and pelleted at 233 g for 5 min. Cells were filtered once more with a 55 µM mesh 

to prevent clumping, and 5.5 × 108 mixed germ cells in 25 mL of 0.5% BSA in RPMI were 

loaded into the STA-PUT over 50 minutes (Proscience, Toronto, Canada). The germ cells were 

then separated on a gradient of 2–4% BSA/RPMI, over 1.5 hrs. Using a fraction collector, the 

relative purity of germ cell fractions was assessed. Round spermatid (RS) fractions with a purity 

of at least 88% by phase-contrast microscopy identification were pelleted at 73 g for 5 mins, 

flash frozen, and kept at −80 ◦C for DNA extraction.  
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DNA Extraction  

 Total DNA was extracted using the QIAamp DNA mini kit (51304; Qiagen, Mississauga, 

Canada). DNA from spermatozoa was first treated with a sperm specific lysis buffer with final 

concentrations of: 0.15 M EDTA, 0.1 M Tris, and 40 mM dithiothreitol in sterile water. DNA 

from round spermatid was extracted as per user manual instructions.  

 

Whole Genome Bisulfite Sequencing 

 Whole genome bisulfite sequencing was done by Novogene Corporation (Sacramento, 

California, USA). Briefly, the DNA is fragmented and undergoes a bisulfite conversion. The 

bisulfite conversion allows for the replacement of unmethylated cytosine with uracil, while 5-

methyl-cytosine remains protected from conversion. The genomic DNA was then sequenced on 

the Novogene Illumina6000 platform and paired ended reads were generated. The samples are 

then processed and compared between treatment groups, any variation in uracil/cytosine allows 

for the detection of methylated or unmethylated cytosine.  

 

Data Analyses 

 Initial data analyses were performed by Novogene Corporation (USA). Briefly, basic 

statistical analysis was done using FastQC (fastqc-v0.11.5), and clean reads were generated 

using the Trimmomatic (Trimmomatic-0.36) software using the parameters 

(SLIDINGWINDOW: 4:15; LEADING:3, TRAILING:3; ILLUMINACLIP: adapter.fa: 2: 30: 

10; MINLEN:36). The clean bisulfite treated reads were then mapped to the bisulfite converted 

Brown Norway reference genome (rn_6.0) using Bismark software (version 0.16.3; Krueger F 

2011). The methylation level was calculated by dividing the sequencing into bins, with bin size 

of 10kb. The sum of methylated and unmethylated read counts in each window was calculated, 

and corrected for the bisulfite non-conversion rate. Differentially methylated regions (DMRs) 

were identified using the DSS software (Hao Feng Hao Wu, 2014; Hao Wu 2015; Yongseok 

Park Hao Wu, 2016). DMRs were defined as related to genes, when the gene body region (TSS 

to TES) or promoter region (upstream 2kb from TSS) has an overlap with the DMR.  
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DMRs in the CpG context were annotated using HOMER annotation through R studio. 

DMRs were mapped to chromosomal regions using Idiographica (R-based). Graphs and 

frequency distributions were generated using GraphPad Prism (v. 9). 

Data Availability 

All data will be made accessible upon publication through GEO.   
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Figure 4-1. The number and proportion of DMRs in round spermatids from young (YRS) 

and aged (ARS), and sperm from young (YS) and aged (AS) of BN rats. Hypermethylation 

shown in orange. Hypomethylation shown in purple.  

 

Figure 4-2. A) The percent differential methylation of the DMRs in round spermatids (blue), 

binned for 10% intervals (ex 10-20%). B) The size of DMRs in round spermatids, measured in 

kilobases (kb). C) The percent differential methylation of the DMRs in spermatozoa (purple), 

binned for 10% intervals (10-20% differential methylation). D) The size of DMRs in 

spermatozoa, measured in kilobases (kb).  

 

Figure 4-3. A) Genomic locations of differential methylation in round spermatids, B) in 

sperm. 

Hypermethylation shown in orange. Hypomethylation shown in purple. 

 

Figure 4-4. Intergenic DMRs due to aging, broken down into proportion of type of intergenic 

region A) in round spermatids and B) in spermatozoa. LINE-1 percent differential methylation 

binned for 10% intervals in C) round spermatids (blue) and D) spermatozoa (purple).  

 

Figure 4-5. The number and proportion of DMRs in independent germ cell types with age as 

a factor (left of dotted separation line), or with spermiogenesis and sperm maturation as a factor 
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(right of dotted separation line). Hypermethylation shown in orange. Hypomethylation shown in 

purple. ARS: round spermatid from aged, YRS: round spermatid from young, AS: sperm from 

aged, YS: sperm from young.  
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Figures 

 

Figure 4-1. Differential methylation due to aging in round spermatids and spermatozoa. 
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Figure 4-2. Characterization of differentially methylation regions due to aging. 
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Figure 4-3. Location of differential methylation due to aging. 
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Figure 4-4. Differential methylation within intergenic regions of the genome.  
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Figure 4-5. Differential methylation due to aging in germ cells, and due to the process 

spermiogenesis and sperm maturation.   
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Supplementary Figure Captions 

 

Supplementary Figure 4-1: Differential DNA methylation in Brown Norway round 

spermatids mapped to each chromosome using Idiographica.  

 

Supplementary Figure 4-2: Differential DNA methylation in Brown Norway spermatozoa 

mapped to each chromosome using Idiographica. 

 

Supplementary Figure 4-3: Gene Ontology Analysis of differential DNA methylation sites 

in A) round spermatid promoters and B) gene regions, and in C) sperm promoters and D) gene 

regions.  
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Supplementary Figures  

 

Figure S4-1. Genomic Location of Differential Methylation in round spermatids. 
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Figure S4-2. Genomic Location of Differential Methylation in sperm.  
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Figure S4-3. Gene Ontology of differential methylation in genes and promoters.  
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CHAPTER 5 

DISCUSSION 
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5.1 Summary 

 

The objective of this thesis is to examine how aging affects male germ cell DNA at various 

levels including telomere length, gene expression, and DNA methylation. The introduction to the 

thesis provides necessary background information on male reproduction, spermatogenesis, 

spermiogenesis, DNA organization and epigenetic mechanisms in male germ cells. Further, the 

introduction provides a review of the current knowledge of the effects of advanced paternal age 

on sperm quality, fertility, pregnancy outcomes, and effects on the offspring.  

 This work began by examining germ cell telomere length, both across spermatogenesis 

and in epididymal spermatozoa. We used two rat models, an outbred Sprague-Dawley rat and the 

inbred Brown Norway (BN) rat. In isolated pachytene spermatocytes and round spermatids, we 

capture the process of spermatogenesis from pre-meiotic and post-meiotic stages respectively. 

Through sperm from the caput of the epididymis we were able to examine sperm prior to DNA 

cross-linking and epididymal maturation, and in sperm from the cauda of the epididymis we 

examined mature sperm. To our knowledge, this is the first report of germ cell telomere length 

during spermatogenesis or epididymal transit. This is also the first study to examine sperm 

telomere length in a rat model of reproductive aging. Importantly, we noted that telomere length 

was consistent during spermatogenesis with a transient decrease upon entry to the epididymis 

that was recovered after maturation. With aging, we showed that 1) sperm telomere length in 

caput or cauda sperm was shorter with aging and 2) that the increase in telomere length during 

epididymal transit was lost.  

 In the 3rd chapter, gene expression analysis was done to compare isolated round 

spermatids from young and aged BN rat. We found that with aging there was a general up-

regulation of gene expression for 211 of the 220 significant differentially expressed genes 

(DEGs). Many of these transcripts belonged to pathways involved in the immune response and 

inflammation, cytoskeletal processes, and various forms of cell signalling. After acknowledging 

the biases of pathway analyses, we sorted the transcripts based on their known reproductive 

function based on the literature as of July 2022. We found that 169/220 transcripts had predicted 

or known function in male reproduction. These functions included sperm motility and 
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morphology, sperm-egg binding, capacitation reaction and calcium homeostasis, Sertoli-germ 

cell interactions, and epigenetics. Importantly, we are the first to report a potential disruption of 

round spermatid signalling to the Sertoli cells with aging.    

 The 4th chapter presents the beginning of our analysis of the DNA methylome in round 

spermatids and spermatozoa from the BN rat with age. Here, we report the number of 

differentially methylated regions (DMRs) in round spermatids and sperm due to age. We 

highlight that with age there are many hyper-DMRs in both spermatids and sperm. We also 

suggest that these hyper-DMRs mainly fall in intergenic regions of the genome, such as in LINE-

1 regions, though there are some DMRs within functional gene units. As of now, no such study 

has been done to examine DNA methylation in rat round spermatids or spermatozoa using 

whole-genome bisulfite sequencing.  

 This final chapter addresses the key findings of this thesis, the significance and clinical 

implications of the findings. Limitations of the studies presented will be discussed. This chapter 

will also highlight future research that can be done based off of the findings presented within the 

thesis.  

 

5.2 Telomere dynamics with aging – a role for the epididymis?  

 

Increasingly, associations are being drawn between sperm telomere length and classical 

semen parameters, such as sperm count. The overarching conclusion is that altered telomere 

length is associated with poor fertility, and this may have an effect in the potential offspring 

(Gentiluomo et al., 2021). Many studies examining telomere length and fertility have shown that 

infertile men typically have shorter sperm telomeres, and poor pregnancy outcomes (Ferlin et al., 

2013; Thilagavathi et al., 2013; Rocca et al., 2016; Biron-Shental et al., 2018; Lafuente et al., 

2018). With aging, other groups have reported that sperm telomere length increases with a man’s 

age (Kimura et al., 2008; Laurentino et al., 2020). The hypothesis is that there must exist a 

telomere homeostasis that determines fertility (Reig-Viader et al., 2014). Once the boundaries 

around optimal telomere length are set, it is not unreasonable to predict that telomere length may 
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be an easy biomarker for fertility (Cariati et al., 2016). The majority of these studies have been 

done in human sperm samples, given the ease of access to sperm samples from men. Very few 

studies have been done examining sperm telomere length in rodents, with one study done in 

mature sperm from mouse (de Frutos et al., 2016). They reported that sperm telomere length 

decreased as a result of aging in the mouse, in contradiction with what had been observed in the 

human. We aimed to address this discrepancy in the most commonly used rodent model for the 

study of reproductive aging, the Brown Norway rat. The Brown Norway rat, has served as the 

model for many of the key findings that have shaped our knowledge of reproductive aging in 

man. It is thus important to understand how a robust rodent model compares to the human data. 

We found that with age in a rat model, sperm telomere length decreases as was seen in the 

mouse. This is in direct contradiction with what is seen in the human.  

 There exist two hypotheses about what is causing the discrepancy in telomere length 

patterns with aging, generated in Drosophila melanogaster (Wallenfang et al., 2006). The first is 

that the spermatogonial stem cells (SSCs) undergo a sort of natural selection, where over time 

only the strongest and best cells remain and these may have longer telomeres. The second 

hypothesis hinges on the fact that germ cells contain active telomerase. Here, the SSCs not only 

maintain telomeres from degradation, but with time actually increase their length. Each 

hypothesis is able to explain the discrepancy we see between rodent and man, due to the 

drastically different lifespan of each species. In humans, the stem cells would simply have more 

time (40+ years) to undergo selection or telomere lengthening, whereas rats have no more than 

20 months.  

 In the future, it will be beneficial to examine the telomere length of SSCs from young and 

aged animals. With the development of novel methods to isolate SSCs, this will become more 

feasible. Presently the only method by which successful isolate of SSCs is accomplished, is with 

flow-cytometry analysis (FACs). Our concern in using this method was the potential for 

introducing DNA damage to the cells after subjecting them to lasers for sorting. We began to 

characterize telomere length during the remaining stages of spermatogenesis though, by 

examining the pachytene spermatocytes and round spermatids. Telomere length measurements 

had not been done before in these cells, though the presence of telomerase had been shown 

(Ozturk, 2015). We found that telomere length remained relatively consistent when comparing 
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pachytene spermatocytes and round spermatids, despite the previously reported presence of the 

enzyme. This suggests that despite the presence of telomerase in these cell types, it may not be 

actively elongating telomeres in these stages. The conflicting results support a need for further 

research examining telomerase activity in all germ cell types including the SSCs.   

 Though telomere length appeared stable during spermatogenesis, we noticed an 

interesting trend in control rats where there is an apparent decrease in telomere length when the 

sperm enter the caput of the epididymis before undergoing maturation. The apparent decrease in 

telomere length is transient, and when the sperm have undergone maturation and are being stored 

in the cauda, their telomere length is not significantly different from the testicular germ cells. 

With age however, there is no increase in telomere length during epididymal maturation. This 

posed an interesting question regarding what the epididymis may contribute to telomere 

organization or stabilization, and how that may change with age. 

 A study by Sharma et al., (2018) looked at small RNAs that are trafficked to sperm in the 

caput of the epididymis. They found that the proportions of small non-coding RNAs (sncRNA) 

in the sperm were drastically different in the testis, and the epididymis. In the testis, the majority 

of sncRNAs were piRNAs, while in the epididymis the majority were tRFs. The enrichment of 

tRFs was also stronger in sperm from the cauda, than from the caput of the epididymis. Caput 

sperm contained more microRNAs (Sharma et al., 2018). A particularly useful element of this 

study, was the use of co-culture of the isolated epididymosomes from the caput of the epididymis 

with testicular sperm. This would be particularly useful for future experiments to ascertain the 

role the epididymosomes may have in sperm telomere maintenance. Here, epididymosomes 

could be isolated from the caput, corpus, and cauda of the epididymis and co-cultured with 

testicular spermatozoa. The average telomere length could then be measured in sperm to see if 

epididymosomes are contributing something, and at which stage of maturation.  

 Additionally, non-coding RNAs from the epididymosomes could be sequenced. There are 

few known regulators of telomere length, mainly including TERRA and TERC. TERC is the 

lncRNA component of the telomerase enzyme complex. TERRA is another lncRNA, transcribed 

from telomeric regions and suppresses telomere elongation, while potentially protecting them 

from degradation (Grammatikakis et al., 2014). TERRA in particular has been recently 
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associated with infertility in men (Rocca et al., 2021). Additional ncRNAs can be found in the 

microRNA family, GUARDIN a lncRNA, the Shelterin complex, and tRFs (Rossi and Gorospe, 

2021). Each of these RNAs should be examined within the context of sperm telomere 

maintenance, especially with age.  

 It is also possible that the reactive oxygen species (ROS) levels within the epididymis 

transiently alters telomere length. A study presented by Mishra et al. (2016) suggested that mild 

ROS is beneficial in the maintenance of telomeres. The epididymis itself contributes varying 

antioxidant enzymes during sperm maturation, in an attempt to protect the sperm from DNA 

damage (O’Flaherty, 2019). It is possible that the balance between necessary or beneficial ROS, 

and abundant ROS due to aging is altered in the epididymis as has been seen with other models, 

and may also have effects on telomere maintenance (Noblanc et al., 2020).  

 Another avenue to explore is the possibility that the DNA packaging is transiently 

modified upon entry into the epididymis, as proposed by Chen et al. (2022). This group found 

that sperm from the caput epididymidis displayed distinct DNA methylation marks, that render it 

at risk to DNA damage and able to bind extracellular DNA. It is feasible then, that the transient 

change in chromatin packaging may also alter the conformation of telomeric regions. To address 

this, differential DNA methylation could be examined between sperm from the caput and cauda 

of the epididymis – specifically examining the subtelomeric regions. The telomeric regions 

themselves have histone markers, but do not contain CpG islands or DNA methylation (Gadalla 

et al., 2012). However, subtelomeric regions are known to have increased DNA methylation and 

are enriched in CpG islands (Blasco, 2007). Mouse models have shown that DNA methylation in 

the subtelomere may have telomere length regulatory roles (Schoeftner and Blasco, 2009). 

 

 

 

5.3 Gene expression with aging – a role for the Sertoli cell?  

 



207 
 

When considering the effects of advanced paternal age on the quality of the sperm, the 

viability of any potential embryos formed, and the genetic disorders observed in the offspring, 

understanding how the genetic contributions of the sperm may be altered with age is of critical 

importance. However, the limited studies of age-related alterations in germ cell gene expression 

have focused predominantly on specific sets of transcripts, such as those involved in the 

regulation of DNA damage repair (Paul et al., 2011). The other classic approach when studying 

germ cell gene expression is looking at the whole testis (Han et al., 2021). This approach makes 

it difficult to detect small scale changes in transcript levels, and to determine the origin of 

potential alterations. Recently, a study was done by Nie et al. (2022) examining single-cell RNA-

sequencing of all testicular cells from human. They found that most testicular germ cells did not 

have major gene expression changes due to aging until the elongating spermatid stage (Nie et al., 

2022). To our knowledge, our study examining gene expression in round spermatids with aging 

is the only study that examined the transcriptome of a single rodent cell type. It is likely that, 

though significant, the gene expression changes that we observed in round spermatids would be 

undiscernible in a whole testis experiment. Additionally, understanding the potential outcomes of 

these age dependent alterations would be completely lost.  

 As the majority of the alterations were classified to immune regulatory, and cell 

signalling pathways these would very likely have been attributed to the somatic cells of the testis. 

While it is logical that these pathways would be altered due to aging in the somatic cells, such as 

the Sertoli cells, it is entirely plausible that round spermatid signalling is also disrupted. Previous 

studies, examining either histology or a select few mRNAs, have suggested that there was an 

age-related impediment in communication between Sertoli and germ cells, resulting in failure of 

Sertoli cells to provide support to developing germ cells (Levy et al., 1999; Syed and Hecht, 

2001; Syed and Hecht, 2002). Our study provides potential support for this hypothesis, by 

showing both an alteration in cell communication transcripts and transcripts required for the 

direct interaction or physical support between germ and Sertoli cells. Critical to these findings is 

an understanding of the method for germ cell isolation, STA-PUT gravity sedimentation, as there 

is less than 12% contamination of the round spermatid fractions. This contamination is entirely 

comprised of residual bodies or spermatids that have begun the elongation process and show 

early stages of acrosome development.  
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 There are two major experiments that could be done to confirm the hypothesis of 

disrupted germ cell-Sertoli cell communication and interaction as a product of age. The first 

would be to directly examine the junctions between round spermatids and Sertoli cells in young 

and aged rats, potentially using immunohistochemistry. With aging, studies have been done 

examining tight junction component proteins and transcripts from spermatocytes (Paul and 

Robaire, 2013). However, it has been shown that round spermatids interact with Sertoli cells 

using adherens junctions, intermediate filament attachments (desomosomes and 

hemidesmosomes), and communication junctions (gap junctions) (Cheng and Mruk, 2002). It 

would thus be interesting to examine the following testis-confirmed junctional molecules: N and 

E-cadherin, catenins, alpha and F-actin, integrin, paxillin, vinculin, and connexins. It is also 

important to consider the cytoskeleton and extracellular matrix proteins within the germ cell, as 

these may contribute to the function and anchoring of junctional molecules (Cheng and Mruk, 

2002).  

 The second major experiment that could be done is to address communication between 

round spermatids and Sertoli cells. The communication between cells may be assessed by a few 

approaches. One approach would be to perform RNA-sequencing in the Sertoli cell, and examine 

if there are transcriptional changes in the downstream effectors of altered transcripts observed in 

the round spermatid. This could be done using a pathway analysis software, or manually. If the 

RNA sequencing were done using single-cell RNA-seq (scRNA-seq), there exists a novel 

software tool through R, called CellChat (Jin et al., 2021). This tool is an integrated web-based 

program that allows examination of the interaction between two cell types either with ligand-

receptor activity, or with their Cell-Cell communication atlas.  

 An area that has not been considered in the context of aging is the regulation of Sertoli-

germ cell interactions via lipid and protein kinases. Siu et al. (2005) reported that there was an 

activation in many protein kinases when Sertoli and germ cells were co-cultured, suggesting that 

molecules such as phosphatidylinositol 3-kinase (PI3K), phosphorylated protein kinase B 

(PKB/Akt), p21-activated kinase-2 (PAK-2), their downstream effector (ERK) are all involved in 

regulating communication between these cells. They also reported that the ERK signalling 

pathway may be involved in regulating laminin-integrin in the adherens junctions between germ 

and Sertoli cells. When they perturbed members of these pathways, there was a resulting germ 
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cell loss. It remains possible that this pathway is an additional contributor to the deterioration of 

Sertoli cell support, and should be considered in future analyses.  

 A final area of exploration regarding round spermatid-Sertoli interactions, would be 

doing co-culture experiments. This could be designed to examine if the signalling breakdown 

may be originating with round spermatids, or with the Sertoli cells. There would be two controls, 

1) young RS and young Sertoli cells 2) aged RS and aged Sertoli cells. The experimental groups 

would be 1) young RS and aged Sertoli cells and 2) aged RS and young Sertoli cells. Then using 

either transcriptomics or metabolomics, one could assess which cell groupings are similar to the 

communication alterations we observe with aging. 

 In addition, we observed increased expression of many genes related to sperm-egg 

binding and fertilization. Given that we saw altered transcripts with calcium regulatory functions, 

one major area to study is capacitation. Capacitation is a process which includes, among many 

other processes, an influx of calcium into the sperm, which allows for the hyperactivation and 

the acrosome reaction of the sperm. This cascade of events is necessary for proper fertilization 

(Ickowicz et al., 2012). This has not been studied in depth within the context of aging, however 

recent reports are suggesting that there is a reduction in sperm capacitation with aging. 

Specifically, in hamsters there was an age-dependent reduction in capacitation and 

hyperactivation (Miyashita and Fujinoki, 2022). Additionally, Sharara et al. (2022) reported that 

men seeking fertility assistance had equal reductions in capacitation ability regardless of age; 

however they did not compare with a fertile population. It is possible that the capacitation 

reaction is compromised in the sperm of aged males. Previous studies examining sperm 

capacitation from aged mammals have pointed to the epididymis as the problem, suggesting that 

inherent differences in the epididymis may alter the sperm’s ability to undergo capacitation 

(Cuasnicu and Bedford, 1989). Our research suggests that the issue may be inherent to the sperm 

and a product of aberrant gene expression.  

 We also saw alterations in genes encoding mannose-binding proteins. This is of particular 

interest as loss of mannose or mannose-binding molecules have been shown to be associated 

with infertility, and the balance is crucial first for capacitation, and second for sperm-egg binding 

(Hershlag et al., 1998; Gamzu et al., 2009; Olejnik et al., 2015). Early work suggested that the 
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level of mannose receptor sites on the sperm head was dependent on the acrosome reaction, and 

the presence of cholesterol in the sperm plasma membrane. The proposed model suggests that 

mannose receptor ligands are initially protected by cholesterol in the membrane (Benoff et al., 

1993 a,b,c). The removal of cholesterol from the membrane is a characteristic step of the late 

stages of capacitation, allowing for membrane permeability and the acrosome reaction to take 

place (Jin and Yang, 2017). Mannose receptor availability may contribute by allowing for 

acrosomal exocytosis and zona pellucida and sperm binding (Benoff et al., 1993 a,b,c).Mannose-

binding molecules on the sperm recognize mannosyl residues on the zona pellucida and facilitate 

the binding of sperm and egg, by acting like a receptor-ligand interaction (Yoshida-Komiya et 

al., 1999). When examining our data, this requires further exploration as both lipid regulation 

transcripts and mannose-binding transcripts were disrupted, suggesting more than one disruption 

in these regulatory processes. This has not yet been studied in the context of aging, but it might 

help to explain decreased sperm fertilizing abilities with aging.  

 The final major class of dysregulated transcripts was those involved in epigenetics. 

Specifically, there was an increase in the expression of Folr1 and Folr2, which are both 

interesting in the context of one-carbon metabolism and DNA methylation. Folate status has 

been studied extensively in the context of reproduction and epigenetics; the predominant find 

was that dietary folate supplementation does not alter sperm DNA methylation (Chan et al., 

2017; Schisterman et al., 2020; Jenkins et al., 2022). It has been proposed that sperm Folr1 may 

have a role in maintaining cellular folate, and thus be implicated in DNA replication and 

establishment of methylation patterns in the embryo (Holm and Hansen, 2020).  

 

5.4 DNA methylation with aging  

 

Germline DNA methylation presents one mechanism of epigenetic inheritance. 

Hypermethylation results in very tightly condensed chromatin that is largely inaccessible to 

transcription machinery thereby blocking transcription. Hypomethylation results in more open 

chromatin and potentially increased gene expression in these regions (Trasler, 2009). Based on 

the global increase in gene expression observed in Chapter 3, we hypothesized that there may be 
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an accompanying hypomethylation at these gene regions. Overwhelmingly though, we observed 

hypermethylation across the genome. Correlating the gene expression changes observed with 

direct analysis of methylated cytosines within the gene regions would explain this story in 

greater depth. In an attempt to address this, we used the Idiographica software used in Chapter 4, 

to map the differentially expressed genes (DEGs) from Chapter 3, with the differentially 

methylated regions (DMRs) in Chapter 4 (Fig. 5-1). Specifically examining round spermatids, 

we do see an overlap in the hypomethylated DMRs and DEGs with increased expression. This 

suggests that though the majority of the DNA methylation observed is hypermethylation, the 

hypomethylation may have functional significance in gene regulation. To continue this analysis, 

we will examine specific DEGs and proximal and distal methylation sites.  

 

 

Figure 5-1. Round Spermatid Chromosome Mapping of Differential Gene Expression and Differential 

DNA Methylation with aging. DMRs shown in blue, DEGs shown in red.  
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It may be the case as well, that DNA methylation of individual genes is not altered with 

aging but there is altered DNA methylation of regulatory elements. Within the RNA-sequencing 

dataset we observed that there were common upstream regulators of many transcripts with 

increased expression. Though these regulators were not found to be significant within the RNA-

seq analysis, it may be possible that a modest shift in DNA methylation of regulatory regions 

may significantly alter expression of the downstream targets. Thus, examining the cis-regulatory 

elements, transcription factor binding sites, and higher order chromatin organization through 

WGBS is also a goal of this objective. Two proteins of particular interest are CCCTC-binding 

factor (CTCF) and its testis specific paralog BORIS. CTCF/BORIS are DNA binding proteins, 

that govern both the formation of DNA loops/3D genome organization, and transcription at many 

sites throughout the genome (Hernández-Hernández et al., 2016; Sleutels et al., 2012; Ma et al., 

2018). If CTCF binding sites are differentially methylated as a consequence of age, this may 

have an impact on the 3D organization of the genome, the varying interactions of chromosomes, 

and potentially gene transcription.   

 Sperm DNA methylation defects have been reported as a product of age in both rodents 

and men. The DNA methylation pattern observed is so strongly correlated that it can be used to 

predict the age of a man, with very little error (Horvath, 2013; Jenkins et al., 2018; Cao et al., 

2020). The trend observed is for hypermethylation in intergenic or distal gene regions, and 

hypomethylation found proximal to gene regions (Cao et al., 2020). Our results fit within this 

context, as the majority of DNA methylation is hypermethylation in the intergenic regions of the 

rat genome in both round spermatids and spermatozoa. What remains to be elucidated from these 

data, is the functional significance of the intergenic or non-gene region DMRs. It has been 

proposed that some intergenic sites have roles in fertility and embryo development. Specifically, 

the expression of LINE-1 elements is implicated in fertilization and chromatin reorganization in 

the embryo. One study suggesting that LINE-1 hypermethylation, and the subsequent decrease in 

expression impedes chromatin accessibility in the early embryo (Jachowicz et al., 2017). In both 

round spermatids and sperm, we saw that LINE-1 elements developed hypermethylation with 

aging, suggesting this may be one potential cause of pathologies such as increased spontaneous 

abortion rate.  



213 
 

 DNA methylation may in part control telomere length or telomere dynamics. Given the 

evidence that DNA methylation of the subtelomere may have regulatory roles in telomere length 

maintenance, it would be interesting to examine DNA methylation within the telomeric and 

subtelomeric regions of spermatids and sperm (Schoeftner and Blasco, 2009). Additional 

experiments to examine sperm from the caput of the epididymis for the telomeric/subtelomeric 

regions may be interesting in the future as well. This may help to explain the observation of 

sperm telomeric length increase between the caput and cauda of the epididymis.  

 There is evidence that hypomethylation of transposable elements, found in repeat regions 

of the genome, may lead to reproductive decline and transgenerational effects (Rey et al., 2016; 

Karahan et al., 2021). Transposable elements in the germline are of particular interest as they are 

classically highly methylated, thereby preventing their transcription and potential insertion into 

the genome (Molaro et al., 2011). If these regions have altered methylation as a result of aging, it 

may result in the insertion of jumping genes that have otherwise been repressed. These regions 

also represent as much as half of the mammalian genome, potentially providing a major source 

of genetic perturbation with age (Lander et al., 2001).  

 The major story that remains to be explored is differential DNA methylation inherent to 

the process of spermiogenesis and sperm maturation. Preliminary analysis of DNA methylation 

when comparing sperm and round spermatids suggests that with aging, there is aberrant DNA 

methylation. We observed less than 2000 DMRs between spermatids and sperm in the young rat, 

however in the aged saw over 8000 DMRs. In the aged rat, we also observed that a large 

proportion of these were hypomethylated DMRs. This needs further exploration, to understand 

the genomic location of DMRs, their size, and potential role or function. The analyses completed 

when comparing spermatids and sperm from young or aged rats will be replicated in the context 

of spermatogenesis.  

5.5 Future Directions of Study 

 

The common theme throughout this thesis is the effect of age on germ cell DNA, its 

modifications and expression, the next logical step in the pursuit of understanding how aging 

may affect germ cell DNA, is putting all of these pieces together and examining chromatin 
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organization within the nucleus. We know that sperm DNA is packaged differently within the 

nucleus which allows for small cell size, streamlined motility, and added DNA protection. This 

packaging is through protamines toroids, with histone-containing regions, and linker regions 

(Oliva, 2006). These linking regions anchor the DNA to the nuclear matrix, and provide 

functionality in the embryo when the paternal genome is repackaged and activated. Based on the 

nuclear matrix model of DNA packaging in sperm, it has also been shown that if protamines are 

experimentally removed what remains are DNA ‘loops’ tethered to the matrix (Kramer and 

Krawetz, 1996; Gawecka et al., 2013). Within the field of andrology though, what remains to be 

determined is whether the DNA ‘loops’ associated with the nuclear matrix confer broad genomic 

significance.  

 In recent years, cancer cell lines have been studied to examine the levels of organization 

of DNA. Chromosome territories, can first be broken down into compartments, followed by 

topologically associated domains (TADs), and finally chromatin loops (Fraser et al., 2015). 

Limited studies have been done using chromatin conformation capture (3C) methods in male 

germ cells, often due to the difficulty in performing these experiments. Initial studies were done 

comparing mouse fibroblasts or embryonic stem cells and sperm, and suggested that these cell 

types had similar spatial DNA organization (Jung et al., 2017; Battulin et al., 2015). Studies on 

sperm also report that there are increases in interaction frequency across the genome after 

spermiogenesis, which fits with our understanding of DNA compaction during this process 

(Alavattam et al., 2019; Ke et al., 2017). Interestingly, these studies also suggested that within 

the A compartment, typically transcriptionally active DNA, there were more unmethylated CpGs 

(Ke et al., 2017). Wang et al. (2019) reported that the during spermatogenesis DNA organization 

is fluid, and does not follow the classic somatic cell genome organization. There are defined 

TADs in spermatogonia that are lost during the early stages of spermatogenesis and seemingly 

re-established in the mature sperm. This suggests that during spermatogenesis the replicating, 

dividing, and transcriptionally active DNA is much more fluid around the nucleus. They support 

this claim with data to suggest that the transcriptionally active genes do not fall into the classical 

A compartment, and suggest that a new model is necessary when describing genome 

organization during spermatogenesis. This is an interesting finding, as Gaysinskaya et al. (2018) 

reported a transient decrease in methylation during the spermatocyte stage in mice.  
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 What is necessary moving forward is a synthesis of what is known, and a collation of the 

data within each species. In this thesis, we report all gene expression in round spermatids in 

control and aged Brown Norway rats, and the WGBS methylation profile for round spermatids 

and mature spermatozoa. The next logical step in this progression would be using a Hi-C based 

method to examine genome organization in the BN rat, and to assess the interplay of gene 

expression, DNA methylation, and organization. Understanding sperm genome organization, and 

the interplay with epigenetics and genetics, would help us to understand better the events after 

fertilization. It then follows that this could be applied to any system, including infertility, drug 

treatment, toxicant exposure, and aging. It would be fascinating to understand how this elegant 

process may be perturbed, and the outcomes it would have on other critical elements of 

spermatogenesis and sperm quality. In a mouse model, the Corces group (Jung et al., 2022) 

recently combined methods for chromatin accessibility, DNA methylation, transcription factor 

binding, RNA-sequencing, and the transgenerational inheritance of Bisphenol A (BPA) induced 

obesity. Similarly, a study could be designed to combine the analysis of gene expression, DNA 

methylation, chromatin accessibility (ATAC-seq), and chromatin interaction frequencies within 

the framework of aging.  

 A major consideration when planning these studies however, is the inherently compact 

nature of sperm DNA. While it may sound trivial to use these methods in a sperm model, that is 

not the reality. Hi-C sequencing requires the use of restriction-enzymes, which have poor access 

to sperm DNA given the protamine packaging. Moritz and Hammoud (2022) are also quick to 

identify the numerous challenges with Hi-C based methodology in sperm. A critique of many 

studies using Hi-C, has been the reliability of these data and if the interactions are instead just 

artifacts of opening the DNA. Advancement and novel methods, both at the bench and with 

bioinformatics, are required before these methods are robust in studies using sperm.  

 

5.6 Clinical Implications  

 

The study of advanced paternal age is not new, and its effects on reproduction, fertility and 

offspring health are increasingly well characterized within the literature. At the level of the germ 
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cells in men, we know that with aging there are disruptions in sperm quality, motility, and 

morphology (Beguería et al., 2014). Paternal age then has implications for a couple’s overall 

fecundity, with negative effects on spontaneous abortion rate and time to pregnancy (Sharma et 

al., 2015; Bray et al., 2006). When successful pregnancy is achieved, there are reported 

pregnancy complications such as an increase in the frequency of preterm births and preeclampsia 

with advanced paternal age. Finally, at the level of the children born to older fathers there are 

increased incidences of numerous genetic and neurodevelopmental disorders (Toriello and Meck, 

2008). The risk of children from fathers over 40 developing achondroplasia increases by 

approximately 8x (Tiemann-Boege et al., 2002), and the risk of developing autism increases by 

5.75x (Reichenberg et al., 2006). In fathers over 50, the risk of developing schizophrenia is 3 

times as high for their children (Malaspina et al., 2001).  

 These epidemiological studies have been shared with clinicians and have been used to 

inform clinician databases, such as UpToDate, and guidelines from various societies including 

the American College of Medical Genetics (Harris, 2021; Anderson et al., 2002). These 

information sources share the risks associated with paternity in those greater than 40 years old, 

which is the generally accepted threshold for advanced paternal age, including by The Society of 

Obstetrics and Gynecology of Canada (Liu and Case, 2011). The American Society for 

Reproductive Medicine suggests that sperm donors be no older than 40 to prevent age related 

fertility issues (Toriello and Meck, 2008). Though the risks of advanced paternity are recognized, 

there exist no firmly set restrictions on assisted reproduction for men over 40 (Jennings et al., 

2017).  

 Recently, these population-based studies have been followed by various studies 

examining the mechanisms underpinning advanced paternal age alterations, such as those 

presented in this thesis. We have begun to characterize the genomic and epigenomic alterations 

that may lead to these consequences in the offspring. These studies support the need for set 

restrictions, as we better understand the effects of advanced paternal age.  

 As men are able to produce sperm until very late in life, the focus for clinical 

implications should be through patient education. There should be equal preconception health 

care for mothers and fathers, as this would benefit men, their partners, and their offspring 



217 
 

(O’Brien et al., 2018). Many men are unaware of how their fertility may be impacted by age, 

lifestyle, environment, diet, exercise, even the type of underwear they prefer. According to 

Garfield (2018), the father’s preconception health plan should include a general reproductive 

health plan, health assessment, health promotion and psychosocial interventions. Men’s fertility 

and sperm quality with advancing age could be discussed with men when they are young 

allowing them to bank their sperm if necessary. Indeed, Frey et al., (2008, 2012) have examined 

the content of preconception healthcare for men, and identified that while presently lacking, if 

these opportunities were made available, men would take fertility advice from primary care 

providers.  

   

5.7 Final Conclusions 

 

Concerns over the effects of advanced paternal age and the effects on fertility and offspring 

health have provided the justification for the studies presented in this thesis. We used a genomic 

and epigenomic approach to understand what may be happening to germ cell DNA, its 

expression, and modifications, in a Brown Norway rat model for reproductive aging. We found 

that telomere length shortens in the sperm of BN rats with age, in contrast to the effects seen in 

man, and that the epididymis may have a functional role in regulating telomere length that is 

affected by aging. We also found that there are many dysregulated genes with aging in 

spermatids, attributed to pathways including inflammation, general fertility, germ-Sertoli cell 

interactions, and epigenetics. The dysregulated transcription observed, can be correlated with the 

final study of DNA methylation with aging in spermatids and spermatozoa. In this final 

objective, we show that DNA methylation in germ cells is perturbed with aging. There is 

abundant hypermethylation in intergenic regions; however, there may be a regulatory role of 

hypomethylation in transcription of genes altered due to aging.  

 Together, the objectives of this thesis provide novel insight into the genetic and 

epigenetic landscape of germ cells from aged mammals. They present the first of their kind in 

many respects, primarily by examining the well-established rodent model for reproductive aging, 

and examining post-meiotic round spermatids. These studies provide the building blocks by 
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which we may examine the interaction of epigenetic and genetic sources of paternal age effects 

in fertility and offspring health. The studies presented in this thesis also provide additional 

evidence towards the clinical regulation of paternity with advancing age. 
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5.9 Original Contributions  

1. Measured telomere length across spermatogenesis in the Sprague-Dawley and Brown 
Norway rat. Other studies have examined telomere length only in mixed testicular germ 
cells, or mature sperm from the cauda of the epididymis, and used a mouse model.  
 

2. Measured telomere length changes after transit through the epididymis, observing an 
apparent increase in telomere length between the caput and cauda segments. No study has 
reported this. 
 

3. Reported a decrease in sperm telomere length due to aging in the Brown Norway rat. 
Other studies have examined only mice and men.  
 

4. Reported an age dependent loss of telomere lengthening after transit through the 
epididymis. No study has examined this in any context.  
 

5. Profiled mRNA expression from round spermatids of Brown Norway rats in young and 
aged contexts using RNA-sequencing. Other studies have used microarray analysis, 
qPCR methods for individual mRNAs, or have examined alternate cell types such as 
pachytene spermatocytes.  
 

6. Reported an increase in overall gene expression due to aging in round spermatids. This 
had never been examined with RNA-sequencing.  
 

7. Classified the reproductive function of differential mRNA expression due to aging, based 
on the existing literature for various reproductive functions. Other studies solely use 
Gene Ontology Analysis, Ingenuity Pathway Analysis, and Kyoto Encyclopedia of Genes 
and Genomes Pathway based analyses.  
  

8. Reported for the first time, a potential alteration in numerous signalling molecules from 
round spermatids to Sertoli cells as a consequence of aging. Other studies have examined 
independent molecules, and primarily focus on Sertoli cell aging.  
 

9. Reported for the first time an increase in folate receptor transcripts within round 
spermatids due to aging.  
 

10. Conducted whole genome bisulfite sequencing (WGBS) of round spermatids and sperm 
from young and aged Brown Norway rats. To date, no other study has used WGBS to 
examine aging in the rat germline. Further, no study has examined the DNA methylome 
using WGBS of round spermatids as a consequence of age in rodents.  
 

11. Reported global hypermethylation as a consequence of age in round spermatids and 
sperm from BN rats.  
 

12. Correlated the hypomethylation due to aging in round spermatids with the observed 
differential gene expression. 
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13. Examined dynamic DNA methylation as a result of aging in germ cells. No other study 
has examined the methylation level specifically. 
 

14. Reported LINE-1 hypermethylation in round spermatids and spermatozoa as a 
consequence of age in the BN rat.   
 

15. Examined the effect of aging on processes of spermiogenesis and sperm maturation 
through WGBS DNA methylation. No other study in rat has examined the transition 
between cell types in this manner. 
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