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We present theoretical and experimental results on the mechanical damping of an atomic force

microscope cantilever strongly coupled to a self-assembled InAs quantum dot. When the cantilever

oscillation amplitude is large, its motion dominates the charge dynamics of the dot which in turn leads to

nonlinear, amplitude-dependent damping of the cantilever. We observe highly asymmetric line shapes of

Coulomb blockade peaks in the damping that reflect the degeneracy of energy levels on the dot.

Furthermore, we predict that excited state spectroscopy is possible by studying the damping versus

oscillation amplitude, in analogy with varying the amplitude of an ac gate voltage.
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Coupling a mechanical object to quantum electronics is
a means to probe both the mechanics and the electronics
with extreme sensitivity. It has been predicted that the
electronics may be used to measure the quantum nature
of the mechanical object [1], and the reverse—using me-
chanics to measure quantum effects in mesoscopic elec-
tronics—was recently demonstrated with superconducting
qubits [2]. Electromechanical systems that have attracted
considerable attention recently include quantum shuttles
[3], and mechanics coupled to single electron transistors
(SETs) [4,5] or tunnel junctions [6,7]. In most systems
studied, the interaction between the electronic and me-
chanical components is weak.

In this Letter we study strong coupling effects, both
theoretically and experimentally, in an electromechanical
system consisting of a quantum dot capacitively coupled to
an atomic force microscope (AFM) cantilever. Electrons
tunneling on and off the dot effectively damp the cantile-
ver, and this damping exhibits Coulomb blockade peaks as
a function of applied voltage similar to those well known in
the dot conductance [8–10]. It has long been predicted that
level degeneracy on the dot leads to line shape asymmetry
of Coulomb blockade peaks in the conductance [11].
Recently, we observed corresponding temperature-
dependent peak shifts in the damping at weak coupling
[10], but the line shape asymmetry was far too small to be
measured. However, by driving the cantilever to large
oscillation amplitudes we enter a regime of strong cou-
pling: within one period, the cantilever motion is large
enough to swing the dot completely on or off of a charge
degeneracy point. This leads to a dramatic enhancement of
the line shape asymmetry that is much greater than ex-
pected from simply extrapolating the weak coupling the-
ory; it is a nonadiabatic effect that stems from the similar
time scales for dynamics of the cantilever and the dot.
Furthermore, we predict that by measuring the damping
versus applied voltage and oscillation amplitude, strong
coupling provides a way to perform excited state spectros-
copy on the dot. Note that very different strong coupling

effects unrelated to degeneracy were recently reported for a
driven carbon nanotube coupled to an embedded dot
[12,13].
Our results show that an AFM operated at large oscil-

lation amplitudes may be used to study degeneracy and
level spacing, so-called shell structure, in confined elec-
tronic systems. The particular systems studied here, self-
assembled quantum dots, are candidates for applications
such as quantum information processing, and measuring
their shell structure has attracted extensive research effort
[14–17]. Our technique allows the level degeneracy to be
read off from a single sweep of damping versus applied
voltage, and offers the practical advantage of being able to
address many dots one by one without the need for elec-
trical contacts.
Setup.—The mechanical oscillator is an AFM cantilever

with resonant frequency !0=2� ¼ 166 kHz, spring con-
stant k0 ¼ 48 N=m, and intrinsic quality factor of typically
Q0 � 2� 105. It is driven on resonance in self-oscillation
mode at constant amplitude and mean tip-sample gap of
19 nm [10]. The cantilever is coated with a 10 nm Ti
adhesion layer and a 20 nm Pt layer to ensure good
electrical conductivity at low temperature. All data in
this Letter were collected at 5 K. The sample is grown by
chemical beam epitaxy, with the relevant features being
uncapped InAs dots on top of a 20 nm InP tunnel barrier
and a 10 nm InGaAs two-dimensional electron gas (2DEG)

FIG. 1 (color online). (a) Schematic of the setup.
(b) Equivalent circuit diagram, where Ctip depends on x.
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which acts as a back electrode. For full sample details, see
Ref. [10]. The voltage VB is applied to the 2DEG layer,
with the cantilever electrically grounded (see Fig. 1). The
potential drop between the 2DEG and the dot is �VB,
where � ¼ Ctip=C� is extracted from the experiment and

C� ¼ Ctip þ C2DEG is the total dot capacitance. The dot-

cantilever coupling arises through Ctip, which depends on

the tip position x. Electrons tunnel between the 2DEG and
the dot when VB is sufficient to lift Coulomb blockade,
while tunneling between the dot and tip is negligible due to
the much larger tunnel barrier height of the vacuum gap.
The fluctuating charge on the dot results in both damping
and a resonance frequency shift�! of the cantilever; in the
limit of weak coupling these are well described by linear
response [18]. Here we focus on the damping, which is
provided in addition to the frequency shift by a phase-
locked loop frequency detector and automatic gain con-
troller [10].

Model.—For small cantilever motion compared to the
tip-dot separation, Ctip is linear in x and we can write the

charging Hamiltonian of the dot as [19]

HC ¼ EC½ðn�N Þ2 � ð1þ C2DEG=CtipÞN 2�
’ H C;0 þ�H osc � Anx; (1)

where n is the number of electrons on the dot, N ¼
�VBCtip=e is the dimensionless gate voltage, and EC ¼
e2=2C� is the charging energy [20].H C;0 is the oscillator-

independent part of H C, and �H osc modifies the oscil-
lator potential. The last term describes dot-cantilever cou-
pling with strength A ¼ �ð2ECVB=eÞð1� �Þ@Ctip=@x;

from this term we see that the dot charge exerts a force
An on the oscillator.

We focus on the voltage range where 0 or 1 extra
electrons reside on the dot with other charge states prohib-
ited by Coulomb blockade; it is simple to generalize this to
n or nþ 1. The tunneling rates are calculated using
Fermi’s golden rule and accounting for the degeneracy of
single particle levels on the dot. For a shell of degeneracy �
occupied by nshell electrons, there are �þ ¼ �� nshell
ways to add an electron, and once it has been added there
are �� ¼ nshell þ 1 ways to remove it. The extra energy
with 1 electron on the dot is EðxÞ ¼ 2ECð1=2�N Þ � Ax.
In the classical oscillator limit, @!0 � kBT [21,22], this
results in x-dependent rates �þ (��) to add (remove) an
electron,

��ðxÞ ¼ ���f½�EðxÞ�; (2)

where � is the tunneling rate to a single particle state and f
is the Fermi function. The asymmetry between adding and
removing electrons is the root of the asymmetry in
Coulomb blockade peaks [11].

We describe the coupled system using a master equation
for the charge on the dot combined with a Fokker-Planck
equation for the phase space distribution of the oscillator

[23,24]. The probabilities P0ðx; uÞ and P1ðx; uÞ to find the
oscillator at position x and velocity u with 0 or 1 electrons
on the dot satisfy master equations,

@tP0ðx; uÞ ¼ L0P0 þ ��ðxÞP1 � �þðxÞP0; (3)

@tP1ðx; uÞ ¼ L1P1 þ �þðxÞP0 � ��ðxÞP1; (4)

where Ln ¼ !2
0ðx� xn �F =k0Þ@u � u@x þ �0@uu de-

scribes a driven, damped harmonic oscillator and xn ¼
An=k0 is the equilibrium position with n electrons on the
dot. The damping �0 is intrinsic to the oscillator without
coupling to the dot, and F is the external driving force.
While it is straightforward to simulate the master equa-

tions directly, we gain further insight by focusing on the
simpler dynamics of system averages. Following Ref. [25],
we make the approximation that averages of products may
be factorized, justified by comparison with full simula-
tions, and use Eqs. (3) and (4) to obtain coupled equations
for the average quantities,

@thxi ¼ hui; (5)

@thui ¼ !2
0

�
F þ AhP1i

k0
� hxi

�
� �0hui; (6)

@thP1i ¼ �þðhxiÞhP0i � ��ðhxiÞhP1i: (7)

We seek a solution where the cantilever oscillates at con-
stant amplitude a, as in experiment, such that hxðtÞi ¼
a cosð!0tÞ. Ignoring the frequency shift due to tunneling
(since �! � !0) and assuming that the total damping is
small (�0 þ �1 � !0, justified self-consistently), we find
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FIG. 2 (color online). (a) First damping peak calculated from
simulation (dots) and semianalytic theory (solid lines). The
green dashed line is from linear response. N is plotted in
reverse for consistency with experiment. (b) Adiabatic approxi-
mation (dash-dotted), semianalytic theory (solid), and simulation
(dots) for oscillation amplitude a ¼ 1 nm. (c)–(e) Average dot
charge versus time (solid) for a ¼ 1 nm, at voltages marked in
(a). Cantilever position is also shown (thin dashed) as a refer-
ence. We took 2EC ¼ 31 meV, !0=� ¼ 1, and A ¼
10 meV=nm. Other parameters were taken from the experiment
(see setup).
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that the effective, amplitude-dependent damping due to
tunneling is given by [25]

�1 ¼ !2
0A

�k0a

Z 2�=!0

0
dt sinð!0tÞhP1ðtÞi; (8)

and obtain constant amplitude oscillations for F ¼
�ak0=!0ð�0 þ �1Þ sinð!0tÞ. Equation (8) connects the
damping to the out-of-phase part of the average dot charge,
hnðtÞi ¼ hP1ðtÞi, with respect to hxðtÞi. Note that the fluc-
tuating dot charge causes damping even at weak coupling,
and this is measurable using a sufficiently high quality
oscillator [10], but Eq. (8) remains valid at strong coupling.
It also reduces our calculation of �1 to solving Eq. (7) for
hP1ðtÞi numerically, a much easier task than directly simu-
lating Eqs. (3) and (4).

Coulomb blockade peaks occur in the damping versus
applied voltage at charge degeneracy points, where the dot
energy is equal with either 0 or 1 electrons and charge
fluctuations are maximal [10]. Figure 2(a) shows the first
damping peak for several oscillation amplitudes, calcu-
lated from Eq. (8) and from direct simulation of Eqs. (3)
and (4) following Ref. [24]. We assume the level structure
of a cylindrical dot, with a twofold degenerate s shell and a
fourfold degenerate p shell. The simulated damping is well
described by linear response (green dashed) at weak cou-
pling; note that even this peak is slightly asymmetric as
expected. As the oscillation amplitude is increased, the
peak becomes broadened and highly asymmetric. Note
that the line shape at strong coupling is completely
missed by an adiabatic approximation, where one assumes
that the oscillator motion is much slower than tunneling
[see Fig. 2(b)]. On the other hand, our semianalytic theory
[i.e., Eq. (8)] agrees very well with the full simulation, so
we use it to understand why the line shape is so highly
asymmetric at strong coupling.

Asymmetric line shape.—The asymmetric line shape of
Coulomb blockade peaks is a result of the asymmetry
between adding or removing electrons to or from a degen-
erate shell on the dot [see Eq. (2)]. Consider the voltage
points c and e on either side of the peak in Fig. 2(a), equal
distances from its center such that the largest amplitude
motion (broadest peak) swings N onto the charge degen-
eracy point. A tunneling event near N ¼ 1=2 is twice as
likely to occur when starting from point e, where the dot is
initially empty. This is because the rate to tunnel onto the
dot whenN ¼ 1=2 is �þ � 2�fð0Þ ¼ � (for the first peak
in the twofold degenerate s shell), while the rate to tunnel
off is only �� � �½1� fð0Þ� ¼ �=2. This asymmetry is
apparent in the time dependence of hnðtÞi at three voltage
points, shown in Figs. 2(c)–2(e). Tunneling is more likely
starting from point e, and this leads to increased damping.
The situation is reversed in the second peak where there is
only one way to add an electron to the half full s shell, but
two ways to remove one once it is full. Thus the line shape
asymmetry is a way to read off the shell degeneracy from a

single VB sweep: each peak is skewed away from the center
of its shell.
While a similar argument leads to a very slightly asym-

metric line shape at weak coupling, the asymmetry at
strong coupling is much greater than one obtains by ex-
tending the weak coupling result to large oscillation am-
plitudes [see Fig. 2(b)]. For sufficiently strong coupling A,
the change in gate voltage due to the oscillator motion
dominates over the thermal broadening from the Fermi
distribution of electrons in the back electrode, i.e., Aa �
kBT. Thus the harmonic distribution of the oscillator posi-
tion PðxÞ, peaked at the turning points of its motion, causes
the most asymmetric tunneling rates, ��ð�aÞ at the oscil-
lator extrema, to become especially important and dramati-
cally increases the line shape asymmetry.
Here we point out the importance of relative time scales.

For a slow oscillator,!0 � �, the adiabatic approximation
is valid since the dot charge quickly equilibrates in re-
sponse to the slow cantilever motion. In this case the
damping is simply given by a weighted average of the
linear response result taken over the oscillating gate volt-
age, and the line shape asymmetry remains immeasurably
small [see Fig. 2(b)]. In the opposite limit,!0 � �, the dot
charge cannot respond to the rapid oscillator motion and
damping is suppressed. This is seen from Eq. (8): hP1ðtÞi is
roughly constant over one period of a fast oscillator and the
dot-induced damping becomes vanishingly small. We
study the regime !0 � �, where the interplay between
the two time scales leads to maximal and highly asymmet-
ric damping.
Measured damping.—The experimentally measured

cantilever damping is compared with theory in Fig. 3. In
(a) and (b) we fit the first two Coulomb blockade peaks for
three oscillation amplitudes using Eq. (8). For each peak,
we used a single fit parameter A to fit the damping at all
three amplitudes, obtaining the values given in the caption,
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FIG. 3 (color online). (a) Experiment (solid) and theory
(dashed) for the first damping peak. We converted eVB to E
using � ¼ 0:04 extracted at weak coupling. One fit value A ¼
7:8 meV=nm produced the theory curves for all three ampli-
tudes. (b) Second peak with A ¼ 9:2 meV=nm. (c) Measured
damping over the p shell; theory shown in (d) with A ¼
11 meV=nm. Other parameters were taken from experiment as
described in the text.
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in good agreement with those obtained at weak coupling on
the same dot. We took 2EC ¼ 31 meV, � ¼ 0:04, and � ¼
70, 90 kHz for peaks 1, 2; these values were extracted at
weak coupling, with the rates � obtained from the on-peak
ratio �!=�1 [10]. Note that in our system, the damping is
dominated by tunneling for voltages near a charge degen-
eracy point, where we find up to �1=�0 � 20 for small
oscillations. This compares well with �1=�0 � 50 for
SETs [5], 35 for nanotubes [12], and 1 for previous AFM
experiments [8,9].

In Figs. 3(c) and 3(d) we show the measured and theo-
retical damping versus applied voltage over the entire p
shell. This is calculated by extending our derivation of
Eq. (8) to allow up to four electrons to occupy the fourfold
degenerate p shell. We find qualitative agreement even in
the crude approximation of constant EC, and using single
values of A and � over the entire shell [26]. We took 2EC ¼
20 meV for the p shell (estimated from the peak spacing),
and roughly aligned the peaks by adjusting the p shell level
splitting phenomenologically. Once this was done, a single
set of parameters was used to produce the damping spectra
at all three amplitudes. Most importantly, in both theory
and experiment the four peaks in the p shell become five at
large amplitudes, with peaks emerging between the charge
degeneracy points. This is consistent with our theory
above: at large amplitudes, the oscillator distribution
PðxÞ overwhelms temperature and makes the tunneling
rates at its extrema most important. Thus, at very large
amplitudes where Aa ¼ EC, tunneling is maximal when
the applied voltage is at the midpoint between two degen-
eracy points.

Excited state spectroscopy.—Theoretically, our setup
can be used to do excited state spectroscopy on the dot,
since the oscillator is directly analogous to an ac gate
voltage [27]. When the oscillator motion is large enough
to allow tunneling to excited states, the damping increases.

This occurs when the change in energy due to the oscillator
is equal to the energy spacing, or Aa � �sp. At large

amplitudes we expect a jump in �1 at the applied voltage
where E ¼ Aa� �sp, and a peak in @�1=@E. This defines

a line versus E and a, shown in Fig. 4. Measuring the slope
and intercept of this line in experiment would directly
provide A and �sp.

Conclusions.—We have demonstrated that oscillation
amplitude is a useful new axis to exploit in using AFMs
to probe quantum electronic systems. The implications
extend beyond quantum dots to other confined electronic
systems that can be placed on an insulating surface with a
back electrode. In particular, we envision using an AFM to
measure the level structure of single molecules.
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FIG. 4 (color online). Differential damping versus applied
voltage (converted to E), and oscillation amplitude a. For large
amplitudes, a peak appears on the line E ¼ Aa��sp (white

dashed line). Inset: cut along black dashed line. Parameters are
the same as in Fig. 2.

PRL 104, 017203 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

8 JANUARY 2010

017203-4


