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Abstract

In this thesis, we give a geometric setting for the open Witten-Dijkgraaf-Verlinde-
Verlinde (WDVV) equations. We generalize the notion of a Frobenius manifold,
which provides a geometric setting for the original WDV'V equations. In particular,
we define the notion of an extension morphism, and show that the open WDVV
equations arise as the associativity of this extension. The generalized notion of a
Frobenius manifold we give is an F-manifold with compatible flat structure, which
we call a Frob manifold. We show that Frob manifolds have many properties anal-
ogous to Frobenius manifolds. For example, there is a relation between semisimple
Frob manifolds and solutions to a generalization of the Darboux-Egoroff equations.
We also show that Frob manifolds parametrize isomonodromic deformations. We
characterize extensions in terms of both flat coordinates and canonical coordinates,
and give a theorem for specifying an extension. We show examples of extensions of

Frobenius manifolds, including the quantum cohomology of P", and the A,, singular-

ity.
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Abrégé

Dans cette these, nous donnons un cadre géométrique pour les équations Witten-
Dijkgraaf-Verlinde-Verlinde (WDVV) ouvertes. Nous généralisons la notion d’une
variété Frobenius, laquelle donne un cadre géométrique pour les équations WDVV
originales. FEn particulier, nous définissons un morphisme dextension et montrons
que les équations WDVV ouvertes se manifestent comme la condition dassociativité
de cette extension. La notion généralisée que nous donnons est une variété-F avec une
connexion plate compatible, que nous appelons une variété Frob. Nous démontrons
des propriétés des variétés Frobs qui sont analogues aux propriétés des variétés Frobe-
nius. Par example, il y a une relation entre les variétés Frobs semisimples et une
généralisation des équations Darboux-Egoroff. Nous montrons aussi que les variétés
Frobs parametrent les déformations isomonodromiques. Nous caractérisons les ex-
tensions du point de vue des coordonnées plates aussi bien que les coordonnées
canoniques, et donnons un théoreme qui spécifie une extension. Nous montrons des
exemples des extensions des variétés Frobenius, y compris la cohomolologie quantum

de P" et la singularité A,,.
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CHAPTER 1
Introduction: Motivation and Summary

Frobenius manifolds, introduced by Dubrovin [3]|, appear in a wide variety of
mathematical contexts, including enumerative geometry, unfolding of singularities,
[5], and isomonodromic deformations [8].

A Frobenius manifold is a differential manifold having the structure of a Frobe-
nius algebra on the tangent spaces, along with a certain potential condition for the
multiplication. Recall that a Frobenius algebra is an algebra with a symmetric,

nondegenerate bilinear form ¢ compatible with the multiplication o in the sense that
glaob,c)=g(a,boc). (1.1)

The Frobenius manifold has a metric, which we also denote by g, that restricts to
the compatible bilinear form at each tangent space. We do not impose any positivity
condition on g. We require that g be flat, and the potential condition is that locally

there exists a function ®, unsurprisingly called the potential, such that
9000 05.0,) = 9(Da, D5 0 0,) = Aug, = 0ads, P, (1.2)

where the derivatives are respect to local flat coordinates. If the multiplication is
potential, then associativity is encoded in the famous Witten-Dijkgraaf-Verlinde-

Verlinde (WDVV) equations, which are partial differential equations for ®.



In many situations, the potential carries some interesting information, and the
WDVYV equations can be used to recover this potential. A famous example is when
® is the generating function for Gromov-Witten invariants of P2. In [7], Kontsevich
showed that the WDVV equations can be used to compute all of these invariants
recursively, solving a long standing problem in enumerative geometry.

In [6], Solomon introduced some equations, similar to the WDVV equations,
which he called the open WDVV (OWDVYV) equations. These are equations satisfied
by the generating function of the so-called open Gromov-Witten (OGW) invariants.
The motivation for this thesis was to find a geometric setting for these OWDVV
equations and interpret them as some associativity constraint.

To find this geometric setting, we need to generalize the notion of a Frobenius
manifold. This is due to the absence of a symmetric pairing (the metric on the
Frobenius manifold) in the context of OGW invariants. Once we define the correct
generalization, we define a certain notion of extension where the OWDVV equations
arise as the associativity condition of this extension. We depart from our original
motivation of OGW to study extensions in general and to see where else they may
appear.

In Chapter 2, we introduce the generalization of a Frobenius manifold we will
use, which we call a Frob manifold. This has been previously introduced by Manin
in [9], where he called it an F-manifold with compatible flat structure. Because we
do not wish to talk about F-manifolds ([5]), we will call it simply a Frob manifold.

We note the following inclusions

Frobenius manifolds C Frob manifolds C F-manifolds.



A Frob manifold should be thought of as a Frobenius manifold without a compatible
metric. Instead of a potential function, the potential condition we impose is the

existence of a local potential vector with components ®* such that
00005 := Aug’0y = 0,050, (1.3)
gl 2!

In the absence of a compatible metric, we cannot lower the upper index v on .
The components 0,03®" transform in the correct way for a multiplication tensor,
as long as we restrict to transformations which are affine. Therefore, instead of
having a metric, we only require an affine structure or equivalently, a flat, torsion-
free connection V.

Similar to Frobenius manifolds, the potential and associativity conditions of a
Frob manifold can be encoded in the flatness of another connection called the first
structure connection. This is shown in Theorem 1.

After defining a Frob manifold, we define the notion of a morphism which we
will use later to define extensions. We generalize the notions of the identity and
Euler field (which are essential ingredients in the study of Frobenius manifolds) to
Frob manifolds.

We also look at semisimple Frob manifolds and in Proposition 2 show how they
are related to a generalization of the Darboux-Egoroff equations. These generalized
Darboux-Egoroff equations are important in proving the flatness of another con-
nection, called the second structure connection, which is related to isomonodromic
deformations. The key to proving the flatness is exploiting a symmetry of the gen-

eralized Darboux-Egoroff equations. Although the idea of the proof is similar in the



case of Frobenius manifolds, there are technical differences which arise in the absence
of a compatible metric.

It has been shown before that solutions to these generalized Darboux-Egoroff
equations lead to F-manifolds with compatible flat structure (Frob manifolds) [1].
Our point of view, which involves the introduction of functions called connection po-
tentials, shows that solutions to generalized Darboux-Egoroff equations and semisim-
ple Frob manifolds are in fact equivalent. The connection potentials along with
grading by an Fuler field are key in defining the second structure connection.

In Chapter 3, we introduce extensions. An extension of a Frob manifold M is

an exact sequence

0—=+I—-N-—=>M-—0. (1.4)

We define this more precisely, and return to our original motivation by showing how
the OWDVV equations arise as the associativity of a rank-1 extension.

We also look at different algebraic and potential aspects of rank-1 extensions.
We can divide extensions into two types. In the first type, the algebra is essentially
that of an extension by a module, and the associativity is related to Hochschild
cohomology. The second type is of more interest to us, and we call it an auxiliary
extension. We give a theorem about the potentiality of these extensions (Theorem
3), which we use in Chapter 4 to show the existence of an extension of the Frobenius
manifold associated to the space of polynomials (or the A, singularity). Another
result for auxiliary extensions is that an auxiliary extension of a semisimple Frob
manifold is again semisimple (Proposition 13). We also look at the behaviour of the

second structure connection and isomonodromic deformations under an extension.



Chapter 4 is devoted to examples. After exhaustively classifying extensions
of 1- and 2-dimensional Frobenius manifolds, we turn to extensions of quantum
cohomology and extensions of the space of polynomials (or the A, singularity).

Quantum cohomology is a deformation of the classical cohomology ring of a
symplectic manifold. It is a Frobenius manifold where the potential is the generating
function for the Gromov-Witten (GW) invariants. We conjecture the existence of an
extension of the quantum cohomology ring of P for all n > 0 (the case n = 1 can
be checked explicitly, and n = 2 is in [6]). The coefficients of the extended potential,
which we compute by recursively solving the ODWVV equations, seem to have some
enumerative interpretation. For example, they match with the real Gromov-Witten
invariants shown in [4] up to sign, although our solutions come with other coefficients
which do not have a known interpretation as an enumerative invariant.

We also do some computations for the extension of P! x P!, and the Grassman-
nian G(2,4). Interestingly, the coefficients for the extension of G(2,4) are sometimes
imaginary.

The other important example we look at is the A,, singularity. This singularity

has the ring structure

Cla] /(™). (1.5)

The unfolding of this singularity comes with the structure of a Frobenius manifold
[3], [5], [8]. This Frobenius manifold can also be viewed as the space of polynomials
of degree n + 1. We prove the existence of a certain extension of this Frobenius

manifold using the previously mentioned Theorem 3.



CHAPTER 2
Frob manifolds

In this chapter, we introduce a generalization of a Frobenius manifold called a
Frob manifold. It is the same as an F-manifold with compatible flat structure, which
was introduced in [9]. It can be thought of as almost a Frobenius manifold, but it is
lacking a compatible metric. A Frob manifold with a compatible metric becomes a
Frobenius manifold.

The important thing about having no metric is to have a more general notion of
morphism, without needing to respect the metric structure. We define morphisms,
and will use this definition later in Chapter 3 to define extensions.

Similar to Frobenius manifolds, we can have an identity and Euler field on a
Frob manifold. We introduce these and give important properties. We also study
semisimple Frob manifolds and show how they are related to a generalization of the
Darboux-Egoroft equations.

In the last section, we introduce two structure connections on a Frob manifold,
which are analogous to those given to a Frobenius manifolds. The second structure
connection gives rise to isomonodromic deformations.

Although many results in this chapter are analogous to the case Frobenius man-

ifolds, there are technical differences which come from not having a metric.



2.1 Definition
Definition 1. Let M be a manifold equipped with a flat, torsion-free connection V.
Let

o:TM®TM —TM (2.1)

be a symmetric, bi-linear multiplication.
o A triple (M,V,0) as above is called a pre-Frob manifold.
o A pre-Frob manifold is called potential if locally there exists a vector ®, called

a vector potential, such that
XoY =[X,]Y, ] (2.2)

for all flat vector fields X and Y .
e A pre-Frob manifold is called associative if o is associative.
o A pre-Frob manifold is called a Frob manifold if it is potential and associative.
The expression [ X, [V, ®]] is symmetric in X,Y by Jacobi identity and the fact

that the connection is torsion free. That is,

[X’ [Y7 (b]] = HX’ Y]v QD] + [K [X’ (I)H
(2.3)
= [V, [X, @]

since [X,Y] = VxY — Vy X = 0 for all flat X,Y. So the potential condition is
compatible with o being symmetric. If o is associative, then it equips the tangent
spaces of M with the structure of a commutative algebra.

A manifold with a flat, torsion-free connection is called an affine manifold. It

can be covered by charts whose transition maps are affine linear. We denote the



sheaf of flat vector fields (the vector fields whose covariant derivative vanishes) by
TM/. The full tangent sheaf is the tensor product of the sheaf of flat vector fields
with the structure sheaf, TM = TM/ @ O,;.

In flat coordinates t*, the potential condition says that A" = 0,03P7, where
A,g" = dt"(0, 0 0p) are the coefficients of the multiplication tensor o, and ®7 are
the components of ®. The object 0,039 transforms like a tensor under affine

transformations. The associativity condition for a potential pre-Frob manifold is
D 0605070,0,9° =Y~ 0,0,270,03%°, for all a, 3,7, 6. (2.4)
n n

We will sometimes use the shorthand ®,5” for 9,05®”. The components ¢ are only
determined up to linear polynomials in %, since taking two derivatives will kill these
terms. A vector field whose components in flat coordinates are linear is called affine.
So the vector potential ® is defined up to an affine vector field.

A vector field V is affine if and only if [V, TM’] C TM?. Since the connection is
torsion-free, we have that [TM/, TM/] = 0, so if V is affine, then for X,Y € TM/,
[X,[Y,V]] = 0. This shows again that ® is defined only up to the addition of an
affine vector field.

The conditions for a pre-Frob manifold to be Frob can be conveniently rephrased
in terms of the so-called structure connection (sometimes called the first structure
connection):

Definition 2. The structure connection V* is defined by

VY =VxY +AX oY, (2.5)



where X is a complex parameter.
Theorem 1. Let M be pre-Frob manifold, and let R* = ARy + >Ry be the curvature
of V* (since V is flat, there is no term constant in \). Then:
1. M is potential if and only if Ry = 0.
2. M is associative if and only if Ry = 0.
In other words, M is Frob if and only if R* = 0 for all .

Proof. We look at associativity and R, first. If

Ry(X,)Y)Z=Xo(YoZ)—Yo(XoZ)=0, (2.6)
then
Xo(ZoY)=Xo(YoZ), by commutativity, (2.7)
=Y o(XoZ), by Ry =0, (2.8)
= (X 0 Z) oY, by commutativity. (2.9)

Conversely, if o is associative, then the above expression for R, vanishes.
Now we look at R;. Let t® be flat coordinates for V, and write d, = a%.
Rl(aa, 85)87 = Va<85 o 87) — Vg(aa o &7) + 0,0 (Vga,y) — 8/3 o (Voﬁv). (2.10)

The last two terms of Ry are zero, so all that remains is

Va(ag 9] 87) - v,g(aa o &Y) = (8aA576 — (%AM‘S) 85. (2.11)



If this vanishes, then QQAM‘S = 8/3/1&75, so the 1-form defined by Zﬁ ABW‘Sdtﬁ is

closed, and therefore locally exact by the Poincaré lemma, that is
Ag,’ = 03B!, (2.12)

for some functions Bfi. Since Aﬁf is symmetric in 8 and ~, the 1-form N Bﬁidt” is

closed, and again by Poincaré lemma

B = 0,9’ (2.13)

So in conclusion, we have
Ang” = 0,057, (2.14)
Conversely, if there exists such a ®, then R; vanishes. O

Now we give a notion for morphisms of Frob manifolds.
Definition 3. A morphism of Frob manifolds is a map of affine manifolds ¢ : N —
M such that

D:(X 0p Y) = 0 (X) 0g(p) 0:(Y), (2.15)

forall X, Y € T,N.

By map of affine manifolds, we mean that ¢ can be written locally in affine
charts as an affine transformation.

We could also formulate (2.15) by saying we have a morphism of sheaves of

algebras on NV
TN — ¢"TM. (2.16)

10



Proposition 1. Let ¢ : N — M is a morphism of Frob manifolds with local vector
potentials ¥ and ®, respectively. Then locally there exists an affine vector field A

such that pointwise the vector potentials are related by

P+ (V]p) = @lo) + Aloi)- (2.17)

Proof. Let X,Y € TN/,
$(X 0p V) = ¢, [X, [V, ¥]] (2.18)
= [0.X, [¢.Y, 9. V]]. (2.19)

Since ¢, is an algebra homomorphism, this is equal to

6.X 04 0.Y = [6.X,16.Y, 9], (2.20)

Recalling that an affine vector field is killed by taking two Lie derivatives, comparing

the last lines of (2.19) and (2.20) completes the proof. O

2.2 Semisimple Frob manifolds

Definition 4. A pre-Frob manifold M is called semisimple if there is a basiseq, . .., e,
for TM such that e; o e; = d;je;.

Theorem 2. A semisimple pre-Frob manifold is a Frob manifold if and only if the
following conditions are satisfied:

1. Locally there exist coordinates y*, called canonical coordinates, such that e; =

0
oy

11



2. The connection coefficients Fék with respect to these canonical coordinates vy
satisfy

e =0, fori, j.k all distinct, (2.:21)
F;.j = —Fﬁj, for 1 #£ j. (2.22)

Proof. By Theorem 1, we need to check the vanishing of the structure connection

V*. This vanishes if and only if
V2V | e = Vi (2.23)

It suffices to look at the M-linear terms since we assume V = V is flat, and o is
associative by the existence of the semisimple basis. In other words, we just need to
check the potential condition.

The equation for the A-linear terms is
e; o Ve,er + Ve (ejoer) —ejoVeer — Ve (e 0er) = [e;e5] oex, (2.24)
which more explicitly is

F;kez + 5jk (Z F:ker> - ngej - 5119 (Z F;ker) = f;;-ek, (225)

where [e;, e5] = >, f:e, (we will indicate summation explicitly, so there is no implied

summation over repeated indices). The coefficient of e, on the left side is zero, so

Z’j vanishes. This means the flows of the e; all commute, so there exist coordinates
y® such that e; = a%i'

12



Now we have that e; = 0; := 6iyi7 and so the right-hand side of (2.25) vanishes.
We need the left side to vanish as well. If we take i, 7, k distinct, we get Fé- w0 —kaaj =
0 (no summation implied), then the coefficients must vanish since i # j.

Now using the preceding result and taking j = k # ¢, we get (no summation

implied)
%00 + 17,0, + 17,0, — T',0; = 0. (2.26)
The 0; terms cancel identically, and the J; terms cancel if and only if Fé ;= —Fﬁj. ]

Remark 1. Pick any coordinate basis e; = 0;, and a point p in M. Assume that
M is a manifold over, say, C. The C-algebra T,M is a module over itself, and
the vanishing of the left-hand side of (2.24) says that V : T,M ®¢ T,M — T,M,
which is given by extending V. e; C-bilinearily, is a cocycle is the sense of Hochschild
cohomology (see [11] for Hochschild cohomology).

That is, the element of Home(1T,M ®c T,M,T,M) we get by extending
(eie) = Y Thex (2.27)
k

C-bilinearly represents a class in HH*(T,M,T,M).

We have supposed so far that we are given a flat connection V. We would now
like to make explicit the conditions on T%; so that this connection is indeed flat. In
this way, we will see what data is necessary to give a Frob manifold in canonical

coordinates.

13



Lemma 1. A torsion-free connection V, with connection coefficients satisfying (2.21)

and (2.22), is flat if and only if the following expressions vanish:

o.re, — o,Ie,, (2.28)

Oil'g, — 0L, (2.29)

o, + LT, —TLTL —T9 T2 (2.30)

— Ol — oI, — T4, + T4, — T3 T4 4+ T3, = > " TLTY, (2.31)
r#i,j

where indices with different letters are all distinct (and no summation is implied over

repeated indices unless explicitly indicated).

Proof. This is by a direct computation of the non-vanishing components R2%; of the

curvature tensor, with the use of (2.21) and (2.22) to simplify the expressions.  [J
The expressions (2.28) and (2.29) vanish if and only if there is a collection of

functions f;, each defined up to a constant, such that, for all i, 7,
I =0, fi. (2.32)

Locally, we take f; to be of the particular form

fi = 5 log() (2.33)

where ¢; is a collection of functions whose image lies in C*. We will call the ¢; the

connection potentials. Now we define the rotation coefficients:

:1 9;0;
2\/6ij

Vij - (2.34)

14



Note that the rotation coefficients are not necessarily symmetric in i, j.
Proposition 2. Let ¢; be connection potentials, and let V be the connection whose

connection coefficients are specified by

i 1 10;¢;
sz‘ =0, {5 log(@)] = 5?7 (2.35)
along with the conditions
I =Ty, (2.36)
F;k =0, fori,j,k all distinct, (2.37)
[%, = =T, fori#j. (2.38)
Let
1 00,
Yij = 5 2 . (2.39)
2\/9id;
Then V is flat if and only if, for all i # j # k # 1,
CL%ij = VikVkj> (2.40)
and

When +;; are the rotation coefficients of a metric, the equations (2.40), (2.41)
are a called the Darboux-Egoroff equations. So we will refer to these equations as

the generalized Darboux-Egoroff equations.

Proof. We need to show that all the equations in Lemma 1 are satisfied. Since we

are given ¢;, equations (2.28), and (2.29) are already satisfied. Next we show that

15



(2.40) is equivalent to (2.30). Expand

10k0;0; 1 a¢¢jak¢z 0;0;0k; ai¢k5k¢j
OYij = VikVij = - (2.42)
’ T2 e A\ Ve «M@3 G107,
Setting this equal to zero and multiplying by 2,/¢;¢;, we obtain
29253 ak¢z z¢g ak¢j z¢kak¢3)
005 (2% 5 ” (2:49)

On the other hand, we expand

04T} + Ty T, — T, Th — T, —

kj™ g
1 <3k %id; 3i¢j3k¢j) +1 <ak¢jai¢j _ Ok;0ipr ai¢jak¢i> _
2\ ¢ ¢ 4 ¢ o O
10,0;0; 1 (0k0;0i05 | Opdi0ign | 00k
R < o v > L (2.44)

Setting this equal to zero and multiplying by 2¢;, we obtain (2.43).
Now we assume (2.40) and show that (2.41) is equivalent to the vanishing of

(2.31). By use of (2.40), the terms which appear in the sum in (2.31) are

i 7T largbiajqu ¢] Pi
bl =100, T\ e T @”% (24)

Also, we can check that

O, + ThI — T 17— 2 ey (2.46)
and
T + Tyl ~ Ty = 1/ Loy (2.47)

16



so that the vanishing of (2.31) becomes ), exy;; = 0. O

So we have seen that connection potentials ¢ satisfying the generalized Darboux-
Egoroff equations specify a semisimple Frob manifold, and conversely for any semisim-
ple Frob manifold, there exist connection potentials satisfying the generalized Darboux-
Egoroff equations.

2.3 Identity field
Definition 5. Let (M, V,0) be a Frob manifold. A vector field e such that eo X = X
for all X is called an identity.

We are interested in the case when e is a flat vector field, so without loss of

generality, we can assume it is the 0-th coordinate vector field,
e=——. (2.48)
In terms of the vector potential ®, for all flat X, we must have
[e, [ X, @]] = X. (2.49)
In flat coordinates coordinates, this is equivalent to
000, ®° = 57, (2.50)

If our Frob manifold is semisimple with canonical coordinates y, then e =

e1+ ...+ ey, Whereeiza%i.

Proposition 3. For a semisimple Frob manifold, e is flat if and only if

y T, =0, (2.51)
q

17



which s equivalent to
where ¢; are the connection potentials.

Proof.
Velert...+e)=> Tho,. (2.53)
q,r

For this to vanish for all i, we must have
> T, =0, (2.54)
q

for all 4,7. If i # =, then by (2.21) and (2.22), this reduces to to I'}, + I'], =

—I7 4+ 17, = 0. We are then left with the case when r = 7, which gives

i _g_ 11 ,_le(ﬁbz‘)
Zq:riq_o_wizq:aq@_2 o (2.55)

]

2.4 Euler field
Definition 6. An affine vector field E such that Lg(o) = dy(o) is called an Euler
field.

Recall that an affine vector field is one which can be written, in flat coordinates,
with coefficients that are linear polynomials. The flows of these vector fields give
affine transformations. An affine vector field F can also be characterized by the
property that it preserves flat vector fields under the Lie bracket, [E, TM'] C TM/.
We can therefore consider the spectrum of Ad E acting on TM/. We are interested

in the case when Ad F is diagonalizable. In this case, we can chose flat coordinates

18



such that

E=> dt"0a+ Y Tala. (2.56)

da?0 da=0

The coordinates t“ are called homogeneous, and d,, is called the degree of t*, i.e.
E(t*) = d,t™. We allow some of the degrees to be 0, in which case F (etﬁ> = rqel”.
In this way, E induces a grading of all the tensorial objects on M. For example, we
have [E, 0, = —d,0;.

The fact that dy appeared before in the definition of an Euler field is no coinci-
dence: if ¢, is the identity coordinate, the degree of t° must agree with the degree of

o. Explicitly, if we write a for the degree of o temporarily, we have
LE(Dy00y) = (—do+a—dy)0y = LE(0y) = —dp0a. (2.57)

it follows that a = d;.
Proposition 4. Let E be an affine vector field on a Frob manifold (M, ®). Then E
is an Euler field if and only if

[E, ®] = do® + an affine vector field term, (2.58)
or equivalently in flat coordinates,
E(®*) = (doy + dy,)®" + linear terms. (2.59)

Such a vector potential ® is called quasthomogeneous.

Proof. First notice that

(B, 0] =) (E(®*)0a + ®°[E,0a]) = Y _ (E = da)®”) D, (2.60)

« «
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so that the coordinate expression is indeed equivalent to the coordinate-free one.

Now, the condition Lzo = dyo is equivalent to
[E,XoY|—[E,X|oY —Xo[E,Y]|=dy(X oY), (2.61)

for all vector fields X,Y. But if it holds for flat vector fields then it holds for all
vector fields by tensorality. So assume X, Y are flat, and use the vector potential to

write the left side as
1B, (X [y, @] - [[E, X], [V, @] - [X, [[E, Y], @]. (2.62)
By the Jacobi identity, this equals [ X, [Y, [F, ®]]]. So the condition becomes
(X, [V [E, @]]] = do[ X, [Y, @], (2.63)

which holds if and only if [F, ®] = dy®, to up an affine vector field. ]

Now we consider when M is semisimple, and look at the Euler field in the
canonical coordinate description.

Proposition 5. Let y' be canonical coordinates, and e; = a%i the coordinate vector

fields. E satisfies Lgo = dyo if and only if

Proof. Recall that Lzo = dyois equivalent to

[E,XoY]—[E,X]oY — X o[E,Y] =dy(X oY). (2.65)
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Write E =Y, E'e; and take X = ¢; and Y = ¢;. Since [E,ex] = — Y, ex(E")e;. The
condition is

— 6krl Z 6k(Ei)6i + ek(El)el + el(Ek)ek = dgéklek. (266)
This is equivalent to ey (E") = dydix, so E' = do(y" + ¢*). O

By translating the coordinates, we can set ¢; to zero.
Proposition 6. Let E = do(y'0y + ... +y",), then E is affine if and only if the
connection coefficients in canonical coordinates are homogeneous of degree —dy. That
18,
E(T,) = —dol. (2.67)

Proof. Eis affine if and only [E, B] is flat for all flat vector fields B. In other words,
V,[E, B] = 0. (2.68)

for all {. Since the connection is torsion free and B is flat, we need V,[E, B] =
—V,VpE = 0. By a direct computation using that 9,B’ = =% BT we find the

la’

i-th component of V,;VgFE = 0 to be

do Y B (F;ll + ) Yt [aT, + Ti,0 - rggg}) = 0. (2.69)
j k

J
We recognize the coefficient of y/* as being part of the component R;l . of the vanishing

curvature tensor. The expression becomes

do Y BT+ y*ouIy) = 0. (2.70)
j Kk
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Since B is arbitrary, we see that E is affine if and only if
E(T)) = —dol,. (2.71)

]

In terms of the connection potentials ¢;, where F;Z = %Gj log(¢;), we have that

E (0jlog(¢:)) = 0; (Elog(¢:)) + [E, 9;] log(¢:)

= 0; (E — do) log(¢;).

(2.72)

By Proposition 6, this must be to equal to —dy0; log(¢;), which implies that 9; (E log(¢;)) =
0. Since this holds for all j we get that E log(¢;) is equal to a constant. We normalize
these constants so that F¢; = (D; — 2dy)¢;, where D; is a constant. We thus obtain

the corollary:

Corollary 1. E is affine if and only if the connection potentials ¢; are homogeneous.

We choose constants D; so that

2.5 Compatible metric and Frobenius manifolds
Definition 7. Let (M,V,0) be a Frob manifold. We call a symmetric bilinear form
g on TM a metric g (we do not impose any positivity condition). A metric g is
called compatible with (M,V, o) if

1. V is the Levi-Civita connection for g.

2. g(XoVY,Z)=g(X,YoZ) forall X, Y € TM.
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The second condition says that the tangent spaces of M are Frobenius algebras.
A Frob manifold with a compatible metric g is called a Frobenius manifold.
In flat coordinates, define ®., := Y, g(®°9s, d,). Taking two partial derivatives,

and using the flatness of g, we find that
0a05Py = 0a03 > g(2°05,0,) = > _ g(0a03D°05,0,) = g(0o 0 05, 0,).  (2.74)
1 1)

Using the Frobenius algebra property, we see that 0,03®, is symmetric in «, 3, 7.
In particular d,®5 and 9@, differ by a constant. By adding linear terms to ®,, we
can make this constant 0. So we see that the 1-form )  ®,dt* is closed, which gives
locally the existence of a potential function ® so that 0,030,® = g(0, 0 03,0,) =
9(0a, 05 © 0,).

If there is a flat identity, dy, then we have
808085(1) = Gas- (275)

We impose that the Euler field be conformal with respect to g. A conformal
vector field £ is Euler if and only if E® = (D + 2dy) ®, up to quadratic terms.

Suppose (M, V,0) is a semisimple pre-Frob manifold and let us examine the
conditions in Theorem 2. For M to be Frob, first we need canonical coordinates. In
canonical coordinates, the metric must be diagonal, which can be seen by using the

Frobenius algebra property:

9i = (ei,ej) = (e 0 e, ¢5) = glei, € 0 €5) = 6i5Gij- (2.76)
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Let us call the nonzero diagonal components of the metric n;. The Christoffel

symbols of the Levi-Civita connection are
S Q|
Uix =3 > ;@-r (Okn;0jr + OmiOkr — OrnjOjn) - (2.77)

Next we need to satisfy (2.21) and (2.22). Automatically I', is 0 for i # j # k # i,

so equation (2.21) holds. The non vanishing components are

;1o
i = _(97] (2.78)
2 1
i 18]'771' . .
=g 71 (2.79)
i Lomi ., .
= 71 (2.80)
i 18@'77' . .
=3 m] J# (2.81)

In order for (2.22) to hold (I'}; = —TI'%;), we need d;1; = 9;n;, which is true if and
only if the exists locally a metric potential 7, such that n; = 9;n.

We see that 7; are in fact the connection potentials for the Levi-Civita connec-
tion. We can once again define the rotation coefficients as in (2.34):
Loy

2\/min;’

where n;; = 0;0;n. The rotation coefficients are now symmetric in ¢, . If we specify

Y (2.82)

canonical coordinates and a metric potential 7, the Levi-Civita connection is flat if

and only if 7 satisfies the Darboux-Egoroff equations.
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In the presence of a conformal Euler field F,
En; = (D —2do)n;, (2.83)
which is equivalent to
En = (D —dy)n, up to a constant. (2.84)

2.6 Summary
We provide a summary of semisimple Frob and Frobenius manifolds in the flat
coordinate and canonical coordinate descriptions.
Flat picture
Frobenius manifold.
e Flat metric g.
e Potential function ® (defined up to quadratic terms in flat coordinates) such
that

J(XoY,Z)=g(X,YoZ)=XYZ (2.85)

for all flat vector fields X,Y, Z.

e Conformal vector field F with conformal factor D, having the additional prop-

erty that
EEO = do O. (286)
FE is called the Euler field.
e Homogeneous flat coordinates t, ..., t, 1, with E(t,) = d,.

e Flat identity field .

o £® = (D + 2dy) P plus quadratic terms, so that Lrg = Dg, and Lgo = dyo.
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Frob manifold.

Flat, torsion-free connection V.

Potential vector ® (defined up to an affine vector) such that
XoY =[X,]Y, ] (2.87)

for all flat vector fields X, Y.

e Affine vector field F with the additional property that
Lrpo=dyo. (2.88)

E is called the Euler field.
e Homogeneous flat coordinates ty, ..., t, 1, with E(t,) = d,.

Flat identity field ;.

[E, ®] = dp® up to an affine vector so that Lgo = dyo.
Semisimple picture
Frobenius manifold.

e Canonical coordinates y', ..., y" with e; o e; = d;;¢;, where e; = 3%1-

Metric potential 1 such that g is diagonal with components ;.

n satisfies the Darboux-Egoroff equations.

Euler field £ = dy (y'e; + ...+ y"en).

En = (D — dy)n plus a constant (or equivalently En; = (D — 2dy)n;), so that
E is conformal.
e en equal to a constant (or equivalently en; = 0), so that e is flat.

Frob manifold.
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e Canonical coordinates y',...,y" with e; o e; = d,;¢;, where ¢; = 8%1-.
e Connection coefficients satisfying I';; = T}, = —T'%; for i # j, and T}, = 0 for
1, 7, k distinct. Connection potentials ¢; so that ng =e; [% log gbi].
e The ¢; satisfy the generalized Darboux-Egoroff equations.
e Euler field E = dy (y'e; + ... +y"e,).
o E¢p; = (D; — 2dy)¢;, so that E is affine.
e cp; = 0, so that e is flat.
2.7 Structure connections

In the presence of an Euler field F, we can define two new flat connections,
called the first and second structure connections. We have already seen a partial
definition of the first structure connection. Sometimes these are called extended
structure connections, but we will avoid that terminology since the word extended
will already be used often in this thesis.

Let M = M x P!, where P! has coordinate A. Denote by T the pullback of T'M
to M. We will extend the connection V* on TM defined in (2.5) to a meromorphic
connection V on T’ with poles along {0} x M and {c0} x M, using the Euler ficld
E.

Definition 8. The first structure connection is defined by

VyY =VyY +AX 0V,

R ) (2.89)

VoY =EoY + -VyE,
N A

where X, Y are A\-independent vector fields.
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Proposition 7. Let M be a pre-Frob manifold, and let E be an affine vector field
on M. The first structure connection is flat if and only if M is Frob and E is Fuler

(that is, Lo = dyo).

Proof. Let & = F — do)\%. Then &£ along with V-flat X generate TM. We have
already seen that the curvature in the directions tangent to M vanish if and only
if M is Frob, since V restricted to M is just VA, It remains to check the other

directions. First we compute that
VeY =V5Y +AEoY —AEoY — VyE = [E,Y]. (2.90)
Assuming Y is V-flat, then
ViVeY = A (X o [E,Y]), (2.91)
where we used that [E, Y] is V-flat because E is affine. Also, we have

VeVyY =Ve(AX oY)

(2.92)
= AE, X oY] - AdyX oY.
And finally
Viex)Y =ViexY =A(E, X]oY). (2.93)
So the curvature [%g, v x]Y — §[5, x]Y" vanishes if and only if
[E, XoY]—Xo[E,Y]—-[E,X]oY =dyX oY, (2.94)
which is the condition for Lo = dyo. O
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Now we will define a second structure connection on 7. To do this, we will
exploit a symmetry of the Darboux-Egoroff equations (2.40), (2.41).
Proposition 8. Suppose ¢; satisfy the Darbouz-Egoroff equations, and E¢; = (D; —

2)¢; (we have normalized dy = 1). Let

&= (y' — Ne;, (2.95)

bi = (Y — N)%¢, (2.96)

where the a; satisfy a;—a; = —(D;—D;). Then é;, &; also satisfy the Darbouz-Egoroff

equations.

Proof. We calculate that

Vij = = = (Y = Ny = N Py, for i # . (2.97)

Now it follows that

&y = (" = N = NPy = N e
= (" =N =N = )Y Py (2.98)

= Yik Yk
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for i # j # k # i. Next, we find that

i = D" = Ny = N = N ey
k

+ (Y =N = YL - aif2) + a5/2]

i —a; j a; a; — a;
= (v = Ny = N [—)\Zk:ek%j + zk:ykek%‘j +(1+- 5 )%’j]

= (Y =Ny - N |:_>‘e%'j + B + (1 + Y ; ai) %‘j] :
(2.99)

The first term in the brackets ev;; = 0 by assumption. Since Ev;; = (Dj ;Di — 1) Yij»
and a; —a; = —(D; — D;), the other two terms cancel, and so the whole expression

on the right vanishes. O

When M has a compatible metric so that it is Frobenius, all the D; are equal
to the conformal factor D. We could take all a; = 1 in (2.96), and the symmetry is
induced by the coordinate change 3* = log(y® — \).

These new connection potentials ¢ define a new flat connection V which by

definition has connection coeflicients

- o\ 1éoy
I, = =¢;log () i? (2.100)

Let us write this connection explicitly. For ¢ # j, we have

o Lég | 189
Véi i + -—
200 20 10,6 56 (2.101)
= (' =Ny — N <§ :bjjej + Zbi’ei) .
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Therefore,

= 1 az¢] 8]¢
0 € e; = Ve 2.102
Ve = ) % i+ Y V..e; (2.102)
We also have that
. 1
Véiéi €z¢z Gilig _ = Z €l¢] Vj
24 242,
) B ) 0,6 (2.103)
(i — )2 | 9% ‘ai - i i 9,
20 =2 [ - 3 S - -0
On the other hand,
. ) . ) ) . 1
Véiéi = (yZ _ )\)Vei ((yl _ )\)61) = (yl _ )\)2 |:veiei + yz — >\€Z:| . (2104)
So we get that
. 1 ei@- 2—aq yj A al¢)
0 € = = — — i — = 2.1
Gae= 3 [ - 55 e 210

We can write this connection in a more invariant way as follows. Consider VFE

as an operator on T'M:

VE(G,) = VEZE

= Ve, (y'er+... 5y en)

= (y'TL +y'Te; + ...+ (1+ Z YT )ei+ ...+ (T +y' T e,
10;¢1, 4 D; 10, i
=34, (v —yer + .. +76’+'”+§¢n (Y™ =y )en,
(2.106)
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where we have the homogeneity of ¢ to get

; 1 Y Or i D;
1 E T =14+ = E = —. 2.1
+ d y L, + 5 d % 5 ( 07)

Using (2.102), (2.105), and (2.106), we can write

Veiej = Veiej - (VE - 7 + 5 a ) yz — )\61]61 (2108)

Notice that by the condition for the symmetry, D; + a; = D; + a; for all 7,7, so
(2 —a; — D;)/2 is some constant s. Also, d;je; = e; oe;.
If we define
UX)=FolX, (2.109)

V can be written as
VxY =VxY — (sid+VE) U —\) " X oY. (2.110)
We define V in the 9/ direction by
VoY = (sid+VE) (U —\) Y. (2.111)

Definition 9. The second structure connection for a semisimple Frob manifold is
defined by
VxY =VxY — (sid+VE) (U -\ "' X oY, (2.112)

VaoaY = (sid+VE) (U — N7, (2.113)

where X, Y are M-independent vector fields, and s = (2—a; — D;)/2 with a; satisfying

the symmetry in Proposition 8.
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Note that we can pick any s we like, and this determines a;.

Proposition 9. Let M be a semisimple Frob manifold with Fuler field E. Then the

second structure connection V is flat.

Proof. We know that V is flat in the directions tangent to M, since we constructed it

using a symmetry of the Darboux-Egoroff equations. Since [X,0/0\| = 0, it remains

to check that

v6iv6/8)\ej = va/a)\veie]’

for al 7, j. Let us collect the formulas for V in the semisimple basis:

. 10,61, , 19,
Ve = ——1—e; + ——e
T2 ¢y 2 ¢g
- 1 [e;o; 2—a1~1 1 y] )\ezgzﬁ]
Veiei—— — — € — =<
2{@ Yy —A QZ — A ¢y

12—a] Zy —yje]gbk

Vajare; = 2y Y ¢k

We have for i # j:

. - 10;0; 10;

Va/aAvei(e ) Va/a)\ <2 Z;b R 5 ¢¢] )
i j

_ 19,0 [12—(% 1 y* =y Oigu

= . e+ = ;
20 |2y—A 0 29y A O

€k
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(2.114)

(2.115)

(2.116)

(2.117)

(2.118)



vaRv - 12—a _ J@
Veiva/m(@j)zvei< J. Zy Y’ 00k )

-\ o
_12—01]‘ 183'@251 18(}%
_Qyj—)\(2 b 2 ¢, )
1 y* — oy’ 00y
+§2;€i(yj A ¢k>
y* — v’ 0i¢n <1ak¢z '_i_lazd)k >
k;:z — A ¢ \2 ¢ 2 ¢y
ly' —y? 00 0i0; 2 —ay y" — X 0;dy
R [5(@ =) '"Z A me]' 2119

In (2.118) the coefficient of e; is
12 — a; 0;¢; lyi — v’ 0i9;0; i (2.120)
Ay =X ¢ Ay =X b
whereas in (2.119) we get

12 i i O
12—gq ]¢’+—ez 1,
4y =N ¢ 2 (TP N

02— ai) Y — 1y’ 00 y* — y? 0,010k
L1 | , 42 (2,121
4( G Y —=A) Y =N & ,; -\ Ord ( )
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We will use the following identity for the sum ), in (2.121):

lzyk—yjaj%@k@: 1 /6
LEL Y =X ddi YAV

Z ij;%z’(yk — )

ki j
-5 1_ - g ]; (v ervii — ¥ vik ki)
B yJ 1_ A % (E%‘z' - yieﬂjz‘ - yjej%‘i +y e+ ei)%i)

1 1 D; — D, 0;¢; , N [ 0:0;0;  10;0,0;0; 10;0,0;0;
[P 1] B -y (B2 - L2000 Lheden))

(2.122)

Using this identity, we look at the coefficient of ajT‘f in (2.121), which gives

Zyj—)\ 297 — A 2 2 yj—)\_é_lyi—)\ Y — A
ST D N D A D)
_ 127 1Dz D, 1274 1—yi._>‘
4y — X 4yl — A\ 4yt — A\ Y= A
1 Di—Dj—I—ai—aj 2-&1'
- A A . (2.123
4( Y= A +y’—A> (2.123)

a; = 0, the above is simply }ff_“/{ which matches the first term
Yy

Since Dz — Dj “+a; —

in (2.120). The rest of the terms in (2.120) and (2.121) can be compared directly

without the use of any identities.

The coefficients of e; in (2.118) and (2.119) are seen to be equal by directly

comparing.
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Now we compare coefficients of e;, for k # i # j # k. In (2.118), the coefficient

of e, is

1y* —y' 0;¢:0i0n | 14" — 4 9,¢;0,04 _
4yt =X ¢ty 4yl =X ¢ion

1 Y= A _ ) 9;9:0i9n | 1 (Z/k A ) 0;0;0;bn,
1 (y" — 1 —¢z¢k + 1\ = 1 b:0n . (2.124)

The coefficient of ej in (2.119) is

1 (y’“ —y 0j¢k> 1y =y 0i0u0itr  1y' — o/ y* — X\ 0j0i0in

2\ =X ok 4yl =N ¢ Ayl =Xyl —= X ¢y
1y =X ] 0:0;0x 0009y, n 1y =X 1 0 Pr 0y
2\ — A o o 4 \y =\ o
1 Z/i — A ) Z/k — X000y,
— = - -1 - . (2.125
4 (yj —A Y= Ok ( )

(2.124) and (2.125) are seen to be equal by the following identity which is equivalent

to the generalized Darboux-Egoroff equations (see (2.43)):

&&%_l(aj@&cbk 000 dx aj@aigb’f) 2.126
GiPr - O i i ' (2120

O 2
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Finally, we must consider the case i = j:

1 ai¢i_2_az> L Y — NOig;
2(¢z Y —A Z — A 9 ]

BRE NS

T T2on\y -2/
1(8&51 2—CLZ> 12 —Clz yj_y az¢] )
+ - - a 6,—}- Z €j
2\ & 2y 2 A 9
RONATENY S
2] o\ y—)\ (bJ

s (e o)

Jsﬁz

va/a,\vei €; = va/ax

Ve.Vajorei = Ve,

12—al} Zyj—y 0% ]

29t — A

12—a; |1 (0ips 2—a ZJ] A Dig;
"oy A[2<¢i ) Z X,

g

2y" — Y —
1 (yj—yzﬁi¢j>
+ - €; . A 6]
2 #z‘ A 9
Z/J Y 09, <1aj¢z‘ 1 0;9; )
- e+ — e; |. (2.128
; —A 9 \2 ¢ 2 ¢; 7 ( )

The coefficients of e; in (2.127) and (2.128) are seen to be equal by directly comparing.
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In (2.127), the coefficient of e; (where j # ) is

1 <8i¢i _ 2_ai> Y —y' D,
¢ Y —=A) Y= b
10 (y]—)\) 8@] 1yj—/\2—aj(9iq§j

C200\y A 6 Ay =AY - g
_12?; — Ay — " 0ik On;
—AYF =X g 9
L0 2—a;i\ Y —y Dy
“(«m _yi—A) v =X ¢
ﬁ(yj ) 0;0; 12— a;0;¢;

¢] 4y'_)‘ §Z5]
y* — 1y Oy, Oro;
Z -\ ok O

(2.129)
k;ﬁz]

By a calculation similar to (2.122), we get that the sum 3 3, . - in (2.129) is equal

to

D, — D, az‘j ; i azazj 0; ]811 O jaij
% IAH J —1} ¢+(zﬂ—y)< 0 _ 109,00 109 ¢)}

Yy — 2 oy ®; 2 90, 2 ¢
(2.130)
The coefficient of e; in (2.128) is
19— J _ 1 I — ' O 199 — 0 O::0:D.
a; Y A al(b] Ze. (y ' Yy al¢j> _y ' Yy az%(zz%. (2'131)
Ay -Ayi—X g 2 \y -\ ¢ 4y =X ¢

We need to show that (2.129) and (2.131) are equal. We first look at the co-

efficients of ”5] In (2.129) (replacing the sum by (2.130)) the coefficient of ”5]
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12— aiy/ — A 1 i 11
_ 12-ay A_ai(y A)__, (2.132)

Ay — Ay =X 200 \yi—\) 2y— X\
where we have used that a; — a; + D; — D; = 0. In (2.131), the coefficient of % is
12—a;9/ — X 1 Y —
- —— . —e; . . 2.133
4y1—)\y1—)\+26 <y2—)\ ( )
The previous two expressions are equal since
10 -\ 1 1 1y —\
-2 (L S R (2.134)
20X \y' — A PRTEED) 2 (y' — N)?
while also
1 Y — 1 Y — A 1y — A
56 - = 3¢ . 1) =————. 2.135
26(M—A) 2€<M—A 2(y = A)? (2139

All other terms in (2.129) and (2.131) are seen to be equal by directly comparing. [
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CHAPTER 3
Extensions of Frob Manifolds

In the previous chapter, we have seen Frob manifolds and morphisms of Frob
manifolds. In this chapter, we define a particular kind of morphism called an exten-
sion. After giving a general definition, we focus on rank-1 extensions and show that
the OWDVYV equations [6] arise as the associativity of this extension.

We examine what needs to happen algebraically for rank-1 extensions to be
associative. These associativity considerations affect the potential conditions of the
extended Frob manifold. We look at this from both the flat and canonical coordinate
picture. This interplay between the algebra and the potentiality can be seen very
strongly in Theorem 3, which gives the most succinct criteria to specify a Frob
extension.

Finally we examine isomonodromic deformations under extensions.

3.1 Definition
Definition 10. Let M be a Frob manifold. An extension of M is a Frob manifold

N that fits into an exact sequence of Frob manifolds, which we denote by
0—=I—NSM-—=0. (3.1)

All the arrows are morphisms of Frob manifolds, as in Definition 3. By an exact
sequence, we mean that:

1. I - N5 M is a fibre bundle.
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2. Forallp, 0 = T, = T,N — T, M — 0 is an exact sequence of algebras.
We will call the dimension of I the rank of the extension.
Another extension N is equivalent to N if there exists an isomorphism of Frob
manifolds ¢ : N — N such that
Top=m. (3.2)

Such an isomorphism can be viewed as an automorphism of N, or as a change of
coordinates.
3.2 Flat coordinates and associativity

Let M be an n-dimensional Frob manifold with local flat coordinates ¢, ..., "1,
and local vector potential ®. We will try to build an extension N of M. For local
flat coordinates on N, we use t°, ..., t"! along with new flat coordinates u!,. .., u"

for the fibre of . These coordinates define the flat structure on N.

Now we look at the multiplication. Since

0 0 0 0
g (% ° aT) =™ (%) On(p) T (aT) , (3:3)

only the components of ;% oy 3% in the kernel of 7, (i.e. the u components) can

depend on u. The multiplication table therefore is
n—1 k
00005 =Y g0y + > Qap"Oas
~v=0 a=1
k
aa o aa = Z Qaababa (34)
b=1

k
aa o ab = Z Qabcam
b=1
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where ® is the pullback of the vector potential on M, and Q', ..., QO are extended
potential components (which in general depend on ). The total vector potential for

N has components

(°,..., 0", Ql ... 0. (3.5)

For notational simplicity in (3.4), we have written 0, = 8%, = agaa and denoted
partial derivatives of ® and €2 by subscripts, with Greek letters indexing ¢ and Roman
letters indexing wu.

The associativity equations for the multiplication (3.4) are

1.
n—1 k n—1 k
> Pas’ Q" ) Qa0 =) 05 0" + > Q" (3.6)
6=0 b=1 5=0 b=1
2.
n—1 k k
P O O I R e e (3.7)
=0 c=1 c=1
3.
k k
D Q0 =D 200" (3.8)
d=1 d=1
4.
k k
D 0 et =D 0 Qe (3.9)
e=1 e=1

These come from checking the 0, components of (0, © dg) 0 9y = 0, 0 (05 © 0,),
(00 008)00, = 0,0(0500,), (0000,)00y = 05,0(0,005), and (0,00)00, = 0,0(000..).
The other components correspond to associativity on M, and we omit these (we

assume that M is associative).
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Automorphisms of N which commute with 7 are affine transformations of the

form

(S 8

1 0 t
= +C, (3.10)
A B U

g}

where we have written the coordinates in column vectors. The associativity equations
for the extension are invariant under these transformations.

%)

In order to have an identity field 9y = 55, as in (2.50), we must impose

0o = 0.0 (3.11)

If M has an Euler field EM | we can extend the Euler field to N (in such a way
that Ad E acts semisimply) by
k
E=EM+Y dud, (3.12)
a=1
(we can replace d,,ud, by a term s,0, whenever d,, = 0). By (2.59), E is an Euler
field for N if and only if

EQ® = (dy + di)2* + linear terms. (3.13)

3.3 Rank-1 Extensions

We will now focus on the case where [ is 1-dimensional. We specialize the
general associativity equations to rank-1 to arrive at the OWDVYV equations. Then
we study the algebra of rank-1 extensions.

We can divide the algebra of extensions into two types. In the first type, the

algebra is that of an extension by a module, and the associativity is related to
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Hochschild cohomology. The second type is of more interest to us, and we call it an
auxiliary extension.

These algebraic considerations determine how to make the extended multiplica-
tion associative. We then look at different criteria for the extended multiplication to
be potential.

3.3.1 The open WDVYV equations

n

Locally, we pick flat coordinates t°, ..., #"~! w on N such that 7 is the projection

onto the t*. From the general case, the multiplication table is

n—1
00005 =Y Doz’ 0y + Qaplh,

=1

(3.14)
82' o a* - Qz*a*a

0, 00, = O,.,0,.

We will sometimes refer to €2 as the extended potential. For notational simplicity in
(3.14), we have used x as the index for u, and we have dropped the superscript on
Q.

There are only two associativity conditions to check (compared with four in the

case of a general rank extension). They are

1.
n—1 n—1
D 0as’ Qs+ QuapQuy = Y Py’ Qs + Uy (3.15)
5=1 6=1
2.
D Pas Ve + QapQus = 2au Q. (3.16)
>
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These are called the open WDV'V equations. They come from checking (9,003)00, =
Oq 0 (05 00,) and (0, 0 0g) 0 Ox = 0y 0 (05 0 0s).

Specializing (3.10) to rank-1, the automorphisms of N which commute with 7
are of the form

t=t, = f(tu), (3.17)

where f is a linear polynomial.
In order to have an identity field 0y, we must have €);, = ;0. We can extend an

Euler field E on M to an Euler field £ on N by
E =EM + d,ud,. (3.18)
For E to be Euler, we must have
EQ = (dy + d,)2 + linear terms. (3.19)

3.3.2 Algebra
Let A be a n-dimensional commutative algebra, and ey, ..., e, a basis for A. We

denote the multiplication in A by
€€ = Z C’ijkek, (320)
k
where the Cijk are symmetric in 7, 7 and satisfy the associativity condition

Y CyrCut =) Gy C, (3.21)

for all 4, 5, k, and .
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Consider the possible rank-1 extensions of A. That is, algebras E which fit into
the short exact sequence

0+1—-E5 A0, (3.22)

where [ is a 1-dimensional ideal of E. Let e, be a generator of this ideal. We chose
a section A — E (that is, a map such that the composition A — E 5 A is the
identity), and denote the images of e; under this section by the same symbols. The

most general multiplication for £ which fits into the above exact sequence is

k
€ - € = E Cij ex + Fijex,
!

(3.23)

€ Cx = Gi€*7
e, e, = He,.

Associativity of the multiplication in F imposes constraints on Fj;, G, and H. Ex-

plicitly, these are
Z CijT rk + E]Gk = Z CikrFTj + ijGi7 (324)

S CyG, + FyH = GiG,, (3.25)

for all ¢, j, k. These constraints come from looking at the e, component in (e;-e;)-ex =
e; - (ej-ex), and (e; - €;) - e, = e; - (¢; - ex). The solutions to these equations are very
different depending on whether or not the H term is 0. We will call H the auxiliary
term.

Picking a different section amounts to choosing a new basis of the form
€ =¢€; — fie, fori=1...n, é,=ce,, (3.26)
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where f; and ¢ are constants. The structure constants Fij, éi, H for this new basis

are related to the old ones by

.1 .
Fij = - <Fij + ZC@‘ fr = 1iG; = Gifj + fifjH) ) (3.27)
Gi=G;— fiH, (3.28)
H = cH. (3.29)

We can consider these structure constants as defining another extension E with
basis €;, é,. Of course, these algebras are isomorphic via e; — é;, e, — é,, and this
isomorphism commutes with the projection to A. We therefore consider extensions
with structure constants related by (3.27), (3.28), (3.29) to be equivalent.

Extension by a module

Let us consider the case where the auxilary term H = 0. The second associativity
equation (3.25) says that [ is an A-module. Equation (3.24) then says that Fj; gives
a cocyle in the sense of Hochschild cohomology (i.e. the Fj; represent an element of

HH?*(A,I), see for example [11]). If we pick a new basis of the form
ei=e;— fie, fori=1...n, ¢é,=e,, (3.30)

with f; some constants, the cocyle with respect to this new basis is

Fyj = Fj + Z Ci" fr = Gif; — 1:Gy. (3.31)

The difference Ej — Fj; is trivial in Hochschild cohomology.
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Auxiliary extension
When the auxiliary term H is nonzero, we will call it an auxiliary extension.

From the second associativity equation (3.25) we find that

(GG — >, Ciy"G,)

Fy = =

. (3.32)

If we plug this into the first associativity equation (3.24), we find that it is automat-
ically satisfied. So an extension is completely determined given any G; and H # 0.

By a choice of basis as in (3.26) with f; = G;/H and ¢ = 1/H, i.e.

G, 1

€i — grex fori=1...n, 76 (3.33)

all of these extensions are equivalent to the extension with F;; = 0,G; = 0, and
H=1.

Extension of a semisimple algebra

Now let us consider when A is semisimple. We can take the e; to be the idem-
potents of A so that

€€ = 5ijei- (334)
The associativity equations for the extension become
(5ijk + F@ij = 5ijz‘k —+ ijGi, (335)

5,‘jGj + EJH = GZGJ (336)

Extension of a semisimple algebra by a module
Let A be a semisimple algebra. As seen previously, if H = 0, then [ is an

A-module. Since e; + ...+ e, is the identity in A, we much have ), G; = 1. By the
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second associativity equation (3.36), we must have G;(G; — d;;) = 0, so that G; is
either 1 or 0, and there can only be 1 non-zero G;. Without loss of generality, take
this ¢ = 1. Using the other associativity equation (3.35), we conclude that F;; = —F};
for i # 1, and Fj; = O for all 4, such that i # j,i # 1,5 # 1. All these extensions

are equivalent to the extension with all F;; = 0 by the choice of basis
e; — Fe, fori=1...n, e,. (3.37)

Auxiliary extension of a semisimple algebra
If H is nonzero, then the associativity equations (3.35), (3.36) are solved by

Gi(Gj — 5@-)'

(3.38)

By a change of basis with f; = (Zj G — 1) /(nH) (in the notation of equation
(3.26)), we can normalize the section so that > . G; = 1.
All of these extensions are isomorphic to the semisimple algebra of dimension

n + 1 by the choice of basis

G , 1
€i — Zrex fori=1...n, e (3.39)

The normalization condition ) . G; = 1 just says that the identity in A is sent to the
identity in £ by the section.
3.3.3 Potentiality

Comparing the multiplication tables (3.23) and (3.14), we will examine what

the algebraic cases previously considered mean for the potential.
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Extension by a module
Let us consider the case when H = 0, which corresponds to 2,, = 0. This
implies
Q= A+ Bu, (3.40)
where A, B are pullbacks of functions on M (i.e. they are only functions of the ¢

variables). Collecting coefficients of powers of u, the associativity equations give the

following constraints on A and B:

N bus® Ay + AagBy = (a3 ), (3.41)
é
> @us’Boy + BagBy = (a 65 7), (3.42)
§
> ®u4°Bs = BaBs. (3.43)
6

By differentiating (3.43), we find
®,5°Bsy = BayBs + BoBgy — ®op,’ Bs. (3.44)

If we substitute this into the left hand side of (3.42), we find an expression which is
symmetric in «a, 3,7, so (3.42) follows from (3.43). Algebraically speaking, at each
tangent space, B gives a module structure, and A gives a cocycle in the sense of
Hochschild cohomology.

We can consider a change of coordinates that commutes with 7 and also preserves
the module structure:

to = ta, (3.45)

i=u+ft), (3.46)



where f(t) is a linear polynomial. The coordinate vector fields are now

aa = aoz - fa8*> (347)

d, = o, (3.48)

where the derivatives f, are constant. In the new coordinates,

Qup = 0,005 = Aap+PLyfy — foaBs — Bafs + uBag, (3.49)
SO
Aog = Aas + Z ®u5° fs — Bafs — faBs, (3.50)
)
and
Bus = Bag. (3.51)

We see that A,g — Aup is trivial in Hochschild cohomology. The extended potential
in the new coordinates is

QO=A+) ®'f +ub. (3.52)
vy

We summarize what we have just shown in a proposition.
Proposition 10. Let M be a Frob manifold with potential ®, and flat coordinates

t*. Let A and B be functions on M satisfying

> ®as’Bs = BabBy, (3.53)
6
and

D ®up’Asy + AapB, = (a5 7). (3.54)
é
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Then there exists a rank-1 extension N of M with extended flat coordinate u and
extended potential ) = A + Bu.

At each point of N, the tangent space has the structure of an extension by a
module generated by % with Anp a 2-cocycle in the sense of Hochschild cohomology.

After a change of coordinates
to = ta, (3.55)

i=u+ f(t), (3.56)

where f(t) is a linear polynomial, the cocycles flaﬂ and A.p are cohomologous.
Auxiliary extension
Now consider the case when the auxiliary term H, which corresponds to €., is
nonzero.

We want there to exist an extended potential ) such that

Qaﬁ = Faﬁv
Qe = G, (3.57)
Q... = H.

For such a potential to exist, we need

0, Q0p = 0aQys, (3.58)
0. Qas = 0alss, (3.59)
0. Qe = 0. (3.60)
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Suppose we are given 6 = Q,. The last potential condition (3.60) holds auto-

matically. From (3.32), the extended multiplication is associative if

Qog = 7= (0abp — Pap’0y) (3.61)

1
0.
where for notational simplicity, we are implying summation over repeated upper and
lower indices.

Using the associativity condition (3.61), the second potential condition (3.59) is

explicitly

0**
(Ooibp + 0085 — Dop’0.,.) —

1
Ous = 0,003 = —

(0u05 — ®ag™0,).  (3.62)

If this holds, then the first potential condition (3.58) holds as well:
0

1 X
025 = 5= (Oar¥s + Oablsy — Doy 0s — Dag’Osy) — ﬁ (a8 — ©ap’0s)
= 5 |7 (0t 00— 2000 — 25 (00, - cpméeé)}
1 9**

Oa
+7 [9— (0540 + 050, — ©5,°05.) — —=5 (050, — %595)}

(6:)°

(I)aﬁ(s 1 ¢ 0. .
- 0 0_ (05*97 + 9507* - @57 96*) - 2 (0597 - (I)M 96)
o (6.) (3.63)
(I)aﬁ 596 9*7 5 .
- 91 - ( >2 (Qagﬁ — Pup 95)
1 €
= % [(00s050 + . ..) — (P00, + ...) + Pop’ P, O]
0** ¢
- (9 )3 [26(10597 - (@a569597 + .. ) —+ (I)QB‘S(I)M 05]
. q)a,(?7586
0.
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The first equality comes from using (3.62) to replace 6,3, then we collect terms. The
dots indicate permutations of o, 3,7. From the last expression, we see that 0.,z is
symmetric in «, 3,7, hence the first potential condition holds.

We have shown the following theorem:
Theorem 3. Let M be a n-dimensional Frob manifold with flat coordinates t* and
vector potential ®. Let 6 = O(to, ..., t,—1,u) be a function satisfying 0, # 0 and

1

9045 = a* 0*

(0a05 — Bos™0,)| - (3.64)

Then there exists a unique rank-1 extension of M with flat coordinates t*,u and
extended potential Q) with €, = 6.

Extension of semisimple Frob manifolds

Let y® be canonical coordinates on M, with e; = a%, and let u be a flat coordinate

for the fibre, with e, = %. The multiplication in N is given by

e; 0 ej = 0;;e; + Fjje,,
e; 0 e, = Gy, (3.65)

e.o0e, = He,.
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Proposition 11. The pre-Frob manifold with multiplication defined by (3.65) is

potential if and only if

> BT+ 0 F =Y Fyly + 0;Fy, (3.66)
> GTY + 0.Fj = 9;Gy, (3.67)

where I' are the connection coefficients in canonical coordinates on M.

Proof. By Theorem 1, we need the A-linear terms in the curvature of the structure

connection to vanish. Computing this, we arrive at

ei 0 (Vjer) + Vilej o ex) = (i ¢ j), (3.70)
e, 0 (Vjer) + Va(ej o) = (x & j), (3.71)
eio (Vje.) + Vi(ejoe,) = (i & j), (3.72)
e, 0 (Vje,) + Ve, oe.) = (x ¢ j). (3.73)

The e; components of the first equation are equal since M is potential. There are
only e, components for the last three equations. These equations, along with the e,

component of the first equation give the lemma. O

The last two equations (3.68), (3.69) give the existence of a function 6 = 6(y*, u)

such that 0,0 = G, and 0,0 = H. The Fj; are not in general derivatives.
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If we define the 1-forms p; = > F;;dy’, then the equations (3.66), (3.67) can

be restated as

Vz‘ﬂj = Vju’h (374)

V. = V;d6. (3.75)

Extension of semisimple Frob manifolds by a module
When H =6, =0 in (3.65), we have the algebraic structure of an extension by
a module. Referring to the results in 3.3.2 on modules over semisimple algebras, we
conclude that:
e All the G; are zero except for, say, i = 1. So we have that 0 = y'.
o [; = 0 except for Fy; = F;; = —Fj;.

From equation (3.67) we find that:

F;j = E; —ul'} (3.76)

YR

where the components F;; do not depend on u. Additionally, the E;; must satisfy
the cocyle condition (3.66).

Comparing with (3.40), since y' = 6 = Q, we see that Q = A + uy'. Note that
B = y' are the solutions to (3.43). The differential dy’ is a homomorphism between
the algebra T, M and C.

Auxiliary extension of a semisimple Frob manifold

When H = 0, # 0 in (3.65), we have by (3.38) that

Fy - Gi (G}'{— 0ij) _ 0 (93'9— 0ij) (3.77)
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This ensures our extension is associative. For the extension to be potential, we
have the following proposition, which is essentially a restatement of Theorem 3 in
canonical coordinates.

Proposition 12. Let M be a semisimple Frob manifold with canonical coordinates
y'. Let N be the associative pre-Frob extension determined by a function 0(y',u).

That is,
0i (6; — 0s)

HIQ*, Gzzez, Fij: 0 )

(3.78)

with multiplication given by (3.65). Then N is potential (hence Frob) if and only if

— 0y
Vde_Za < ))dJ (3.79)
More explicitly, this condition is

L0k kP; 00k :
ij—2<93 ¢k +9 ¢]>+8(9*>, ]7&]{,

o, = L ( 20y, j¢r> (ej(eg*— 1)> |

r#j

(3.80)

where ¢; are the connection potentials for M.

Proof. The conditions (3.80) are (3.67) written more explicitly by using the proper-
ties of the connection coefficients in canonical coordinates (Proposition 2).

Since we have specified § = )., we can use Theorem (3). The condition (3.67)
is (3.59) rewritten in canonical coordinates (to see this, start with equation (3.71)
and change to flat coordinates). So by the theorem, equation (3.66), which is (3.58)

rewritten in canonical coordinates, follows. O
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Algebraically, we know that an auxiliary extension of a semisimple algebra is
semisimple. It turns out from the potential conditions that we also have canonical
coordinates on the extended Frob manifold, i.e. the idempotent fields which are
determined algebraically are actually coordinate vector fields.

Proposition 13. Let M be a semisimple Frob manifold and N an extension with

0, = Q. #0. Then N is semisimple.

Proof. Let w' =y, x = 6(y',u). These are canonical coordinates since 0; = G, 0, =

H, and therefore

0 G 0 1
8wi =€ — E6*7 % = Ee*, (381)

which by (3.39) is a semisimple basis for the extended algebra 7,N at each point
p- O

Now that we know an auxiliary extension of a semisimple Frob manifold is
semisimple, we examine what the connection potentials are.
Proposition 14. Let M be a semisimple Frob manifold with canonical coordinates
y'. Let N be the semisimple Frob extension determined by a function 6 with 0, # 0,
and w' = y*, x = 0 the canonical coordinates on N. The connection potentials for N
are the pullbacks of the connection potentials for M along with the new connection

potential for the x direction given by ¢, = 02

Proof. Using that 9, = éa*, we compute

V0, — (a%) 9, = (—0, 108 0,) O, (3.82)

0 1 0
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which shows that

1
e =, {5 log 6] 2} : (3.84)
o [1
I = -T2 = _— |=logf. % . .
zi i 5 {2 og 0, } (3.85)
and additionally,
i =-It. =0 (3.86)

Next we compute

0 0 0
Vawza = = Vayi_(6;/6.)0 (8__9_]8)
- 0, [%
—Z Uak 0% o (3.87)
0:0;
—Zr”a (Zekr’f + 0. (9 )—%) Or-

For ¢ # j, we have F;; = ==, and component of 0, in the last line is 0 by the potential

condition (3.67). This is equivalent to the fact that I'7; = 0, which is automatically

true by (2.21). O
In other words, with 0; = ,&E = 8%, we have
Vi0; =T5L0; +T%L0;, i#j,
Vi = Z ko), + 120,
(3.88)

59



where I‘fj are the pullbacks of the connection coefficients in canonical coordinates on

M, and
1
=T =5 =0 | o0
X (3.89)
I = 0s [5 10g(0*_2):| .
In the presence of an Euler field E with d, the degree of u, Ef, = (dy — d,)0.,

since 0, = Q,,. Therefore, since ¢, = 62,
E¢, = (D, — 2dy) ., (3.90)

with D, = 2d,, in the notation of (2.73).
3.3.4 Summary

We summarize extensions of a semisimple Frob manifold M with flat coordinates
t®, vector potential ®, and canonical coordinates y’. We let u be the extended flat
coordinate, and we have an extended Euler field £ = EM + d,u0,.

Extension by a module

Extended potential €2 = A+uB where A, B are functions of ¢, so that €,, = 0.

B =y’ for some 4, equivalently B,Bs = ). ®us"0,.

A satisfies the cocyle condition
5 _ 5
> 0os’Asy + AapBy =Y o5’ Aso + A3 B (3.91)
5 5

® ¢ = a%’ is automatically an identity field.
o FQ = (dy+ d,)Q2 + linear terms, so that E is Euler.
Auxiliary extension

e (.. # 0 so that the auxiliary term in the multiplication is nonzero.
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Q2 satisfies open WDVV equations. Alternatively, specify 6 = €., where 6
satisfies the rank-1 potential equation in Theorem (3).
e cf =1 or €,; = d;, so that e = % is the identity field.

e 0 = dyb up to a constant, or EQ = (dy + d, ) up to linear terms, so that FE

is Fuler.
e The extended Frob manifold /N is semisimple with canonical coordinates
w' =y, x=0. (3.92)
e Connection potential for the x direction ¢, = (91)2. E¢, = (2d, — 2dy) ..

3.4 Extended Isomonodromy

Let (M, V,o0, E) be a Frob manifold with Euler field, and P} the projective line
with coordinate A. Recall from 2.7 the second structure connection on the pullback
of TM to M x Pj. Tt can be written as

d(\ —y')

ppat (3.93)

v:V—f—ZAi(yl,...,y")

where 3/° are the canonical coordinates on M. The A; are operators TM — TM
given by
A; = AP, (3.94)

where

A=—(sid+VE), (3.95)

with s = (2 — a; — D;)/2 (a; satisfies the symmetry in proposition 8), and

P, =epo (3.96)
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which satisfies ), P, = id.
Let T = C" be the vector space of flat sections of V. A; can be viewed as an
element of End 7" which depends on y’. By restricting V to P}, we get a C" vector

bundle over P} with connection

d\
ZAi(yl,...,y”))\_yi. (3.97)

This is a Fuchsian system with poles at y’. By the flatness of V, varying the position
of the poles is isomonodromic.
Taking flat homogeneous coordinate vector fields 0, as a basis for T, we can

write A, P;, and A; as matrices. In components we get

(A)s = — (s +da) 07, (3.98)
ot? Oy’
) = —— = 3.99
( Z)a ayz ata ( )
Now we consider a rank-1 auxiliary extension of M
0—1—M-—M-—0. (3.100)
From Proposition 13, M is semisimple with canonical coordinates y' = y!,..., "

y", and x = 0(y', u).

From Proposition 14, the connection potentials on M are the connection poten-
tials from M, ¢4, ..., ¢, along with a new connection potential ¢,. Then we have
a symmetry of the Darboux-Egoroff equations on M (see Proposition 8) with a; the
same as for M, and a, = 2(1 — d, — s). This produces a second structure connection

with the same s as for M.
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The second structure connection for M can be written in the form

S e e dA =) d(A—2)
= A ) —— L 4 A2 3.101
v V+Zi: @ A (3.101)
Proposition 15. The matrices for (3.101) are given by the following:
~ A 0
A= , where a = —(s + d.), (3.102)
0 a

where s is the constant (2 —a; — D;)/2 with a; satisfying the symmetry in proposition

8,
~ P, 0 ‘ 0; (Oyt oy
P, = ., with v; = “a. ((’%07 el 575"‘1) , (3.103)
v; 0
~ 0 0 . 1 /00 00
Px: s wzthvxze—*(ﬁ,...,m), (3104)
v, 1
where A and P, are the matrices associated with M.
Proof. Since VE(0,) = V.E = d.0,, this gives the last component a in A
From (3.81) we have that
0 0; 0
= — — —— 3.105
oyt Oyt 0,0u’ ( )
and
0 10
g __9 1
or 0, 0u (3.106)

The flat coordinates on M are £ = @ along with the extended flat coordinate wu.
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Using this, we compute:

2 B (RT E R
SE-(5- 1R e
gt; 8@% o, (3.109)
ggi %Z" _0 (3.110)

The vanishing of the last two equations is due to %—% = (0. Furthermore, we have:

ot? oz
ax ata ? ( )
ot? ox
——=0. 3.112
Ox Ou ( )
since %ij = 0. Lastly, we have:
ou Ox 10 00 1 06
or 0 <e_a_> ot 9,00 (3.113)
ou Ox 10 00 1
This gives us the components of é and 131 O

Remark 2. When M is Frob, we can take a; = 1 for all i in Proposition 8. Then
s=(2—1—D)/2, where D is the conformal factor for the compatible metric.
In Chapter 4, we will see an extension of quantum cohomology with D = 2 — r

and d, = (1 —r)/2, where r is the dimension of a symplectic manifold. Then we see
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that a vanishes since

—(s+d)=(D—-1)/2—d.=(1—7r)/2—(1—7r)/2=0. (3.115)
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CHAPTER 4
Examples

In this chapter, we present examples of extensions starting from Frobenius man-
ifolds.

We start by giving a case by case classification for extensions of 1- and 2- di-
mensional Frobenius manifolds, depending on the spectrum of the Euler field E.

We prove the existence of an extension of the Frobenius manifold for the A,
singularity (which can also be viewed as the space of polynomials). This proof relies
on Theorem 3 of the previous chapter.

We also give some examples for quantum cohomology. In the case of P?, and
P! x P!, these examples are covered in [6]. We conjecture the existence of extensions
in the other case, based on the fact that we’ve computed coefficients which solve the
OWDVYV equations up to a certain degree without any inconsistencies.
4.0.1 Extensions of 1-dimensional Frobenius Manifolds

Up to conformal transformation, there is one 1-dimensional Frobenius manifold

with flat identity field and Euler field. It has Euler field t,dy and potential

(ty) = %tg. (4.1)
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We want to classify Frob extensions of this Frobenius manifold having flat iden-

tity and Euler field. We consider an extended Euler field

or, when d, = 0,

E= toao + 38*. (43)

Using the identity constraint, the extended potential can be written as
Qto, u) = tou + w(u). (4.4)

Note that €2 is a component of a vector, and by rescaling u — Au + ¢, we induce the

transformation

Qto,u) = AQ (to, ?) . (4.5)

We can use this rescaling to fix the s term in the Euler field if we want.

The quasihomogeneity constraint on w is
FEw = (14 d,)w + linear polynomial in w. (4.6)

In the case that d, # 0, we can kill a linear polynomial a + bu on the right by adding
the linear term a + #u to w provided that d, # —1. When d, = —1, we cannot
kill a constant term, so we have Fw = ¢. When d, = 0, we can always kill the linear

polynomial (regardless of what s is).

The associativity equations for the extension hold trivially.
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By solving the quasihomogeneity constraint with £ = t,Jy + d,u0,, the possible

extended potentials are
14+dx
Qtg,u) =tou+u 4 , d, #0,—1, (4.7)

Qtg,u) = tou — clogu, d, = —1. (4.8)

We can fix the parameter ¢ by a transformation u — %.
When the Euler field is F = t,0y+ s0,, the quasihomogeneity constraint is solved
by
Qto,u) = tou +es, d,=0. (4.9)

We can fix the parameter s by a a transformation u +—» %u
4.0.2 Extensions of 2-dimensional Frobenius Manifolds
Now we will classify extensions of 2-dimensional Frobenius manifolds.
From [3], [8], the classification of 2-dimensional Frobenius manifolds is as follows.
For the Euler field
E =100y + (1 —r)t101, 1 #1, (4.10)

the potentials are

3—r

) T#_171737
1—r

1

D(to, 1)) = §t§t1 +th k=
1

D(ty, 1) = §t(2)t1 +tilogty, r=-1, (4.11)
1

D(ty, 1) = §t§t1 +logt;, r=3.

When r = 1, the Euler field is E = tqdy + 20, and the potential is
L, t
CI)(t07t1) = §t0t1 + e't. (412)
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The extension is determined by an extended potential (g, %1, u). We extend
the Euler field by adding either a term d,u0, when d, # 0, or s0, when d, = 0. Note
that we can rescale u to fix s so it is not really an extra parameter.

Associativity of the extension has only one constraint
Dy + Q11 = (Ql*)z- (4.13)

The identity constraint €2,; = d;0 means we can write
Qto, t1,u) = tou + w(ty, u). (4.14)

The quasihomogeneity condition is Fw = (d, + 1)w + [, where [ is a linear
polynomial. We can try to kill [ by adding a linear polynomial to w. Generically this
is possible, however for certain values of r, d,, we cannot normalize [ to 0.

After normalizing Fw, we can find a solution for w, in terms of an arbitrary
function f(z). The associativity constraint then imposes an ODE on f. We list the
cases below.

1. r# —d,, r # 1, and d, # —1,0:

The quasihomogeneity condition can be normalized to
Fw=(1+d,)w. (4.15)

The solution to the quasihomogeneity condition is

- 11td: u
w=t,""f|—1. (4.16)
o
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The ODEs for associativity are

d(1=7)(ds +7r—=1)2f' f"+ (=D (de + D)(d +7)f "

+ (1 =7 f?+20r=3)(r+1)=0, r#-1,3, (4.17)

Al =22 f" — (B =)'+ f2 =8 =0, r=—1. (4.18)
do(de +2)zf'f" — (de +3)(d + 1) ff" + f*—8=0, r=3. (4.19)
2. r=—d,, but r # 1, and d, # —1,0:
We cannot kill a t; term, so the quasihomogeneity condition can only be nor-
malized to
Ew=(1—-r)w+ ct. (4.20)
By rescaling u we can fix ¢. The solution to the quasihomogeneity condition is

W — tl IOg [tl(l — T)]C
1—r

i f (tfu) . (4.21)

The ODEs for associativity are

r(L=r)2f' f" = (L —=r)*f" + (1 —r)f?
+2(r=3)(r+1)=0, r#—-1,3, (4.22)
2f f" 4 2ef" — f24+8=0, r=—1, (4.23)
3zf f" 4+ 2cf" + f*—8=0, r=3. (4.24)

3.r=1butd# —1,0:
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The quasihomogeneity condition can be normalized to
The solution to the quasihomogeneity condition is

1+dx u
w=ez 1f[——].
ezh

The ODE for associativity is

dzzf/f”—(1+d*)2ff”+f,2—4:0-

.r=1,d, = —1:

(4.25)

(4.26)

(4.27)

We cannot kill a constant term, so we can only normalize the quasihomogeneity

condition to

Fw=c.

(4.28)

By rescaling u we can fix ¢. The solution to the homogeneity condition is

w = Etl +f (e%u> )
2
The ODE for associativity is

Zf/f//+f/2_4:0~

.r=1,d,=0:

The quasihomogeneity condition can be normalized to

Ew=w.
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The solution to the homogeneity condition is

w= e%f (u — §t1> . (4.32)

The ODE for associativity is
ff'—f*+4=0. (4.33)

. d,=—1, but r # 1:

The quasihomogeneity condition can be normalized to
Ew = c. (4.34)

By rescaling u, we can fix ¢. The solution to the quasihomogeneity condition

1S

w— 8 [tll(i; nle (t; u) . (4.35)

The ODEs for associativity are

(r=2)(r = Dzf'f" + X =r)f* +c(l=r)f"

+2(r=3)(r+1)=0, r#-1,3, (4.36)

3zf' f" +2cf"+ f?-8=0, r=-1, (4.37)
2f "4 2ef" — f2+8=0, r=3. (4.38)
Remark 3. There is a duality here with the case r = —d,. Namely, the

ODE corresponding to (ds,r) = (=1, —1) is the same as the ODE for (d.,r) =
(—3,3), and likewise for (d.,r) = (—1,3) and (1,—1).
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7. dy =0, but r #£0,1:

The quasihomogeneity condition can be normalized to
Ew = w. (4.39)

The solution to the quasihomogeneity condition is

L 1
w=t;"f (u _ 528 tl) . (4.40)

1—7r

The ODEs for associativity are

s(L=r)?f' f" +r(L=r)ff" =1 —r)f?
—2(r=3)(r+1)=0, r#—1,3, (4.41)
2sf' f" — ff' — fA+8=0, r=—1, (4.42)
2sf " —3ff"+ f2—-8=0, r=3. (4.43)

8. d,=0,r=0:
We cannot kill a ¢; term, so the quasihomogeneity condition can only be nor-
malized to

Ew =w + ct;. (4.44)

By rescaling u, we can fix ¢, but in general it would not be possible to fix both
c and s.

The solution to the quasihomogeneity condition is

w=c(tilogty) +t1f (u—slogty). (4.45)
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The ODE for associativity is
st " +cf' — f2+6=0. (4.46)

4.0.3 Extensions of the space of polynomials (A, singularity)

Consider the space of polynomials of the form
W(z;a) = 2" +ap_12™ "+ ...+ ap. (4.47)

This is an n-dimensional space M with coordinates ag,...,a,_1. It can also be
thought of as the unfolding of the A, singularity C[z]/z"".
M has the structure of a Frobenius manifold, [8], which we will describe next.

We identify the tangent space with the Milnor ring

0 0

T.M = Cll/W(wi0), > o

W(z;a), (4.48)

where the prime indicates the derivative with respect to x. This induces an algebra

structure on the tangent space. It has an inner product given by the residue pairing

o d oW ow

The factor n + 1 is for normalization reasons. This metric turns out to be flat (see

[8]), and has flat coordinates ', which to leading order are

There is also an Euler field which gives degrees d; = n+ 1 — 4. From now on, we will

work in flat coordinates, so subscripts will indicated derivatives with respect to t'.
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There is an Extension of this Frobenius manifold which arises in a very natural
way. By the Euclidean division of polynomials, there exists unique polynomials b;;, 7;;
in x, such that

WZI/VJ = bijW/ + T’Z'j, (451)

where the degree of r;; is less than n. In fact, r;; is the product in the Milnor ring.
For the extended multiplication, we identify 0, with W’. We have the multipli-
cation table
WiW; = bi; W' + ryj,
WW' = W,W’, (4.52)
W'wW'=w'w'.
This multiplication table looks like an extension if we let x play the role of the
extended variable u. The question becomes, does there exist an 2(x,t) such that
Qi = by, Qi = W; and Q.. = W’. From the last two conditions, we see that

Q. = W. Since we are specifying (2., by Theorem 3, we need to check

d |1 d
= [W (WiW; — rij)] = = bij (4.53)
Proposition 16.
d

dx

By Theorem 3, this implies the existence of a rank-1 extension of the Frobenius

manifold which is the space of polynomaals, with 0, = W.
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Proof. The proof is by a direct calculation using the explicity formulas given in [2].
We have that
Wy=1, (4.55)

W1 =, (456)

and for ¢ > 1,

W k! tr \™ [t \" (4.57)
o kol k! \n+1 n+1 T '
where k = ky + ... k,, and the sum is over k; such that
> dik; =1, (4.58)
j=2

with d; = n + 1 — j being the degree of ¢; for 7 < n and d,, = 1 is the degree of x.
Note that for degree reasons, only ¢; with j > n + 1 — ¢ will appear with nonzero

exponent. Similarly,

k2 kn—l
W'=(n+1) Z i L (L zhn (4.59)
kol k! \n+1 n+1 ’

where the sum is over £; such that Z}LQ d;jk; = n.

Now by multiplying W; and W;, and looking at the terms of degree greater or

equal to n in x, we can deduce that when i 4 j < n, b;; = 0, and when 7 + j > n,

1 k! ta \ tar N

where the sum is over k; such that 2?22 d;jk, = 1+ j —n. Note in particular that

when ¢ + j = n, b;; is the constant n+r1
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On the other hand, when i +j < n, then W;; = 0 since the degree of W is n+1,

and d; +d; =2n+2 —1i—j >n+ 1. When 7 + j > n, we take the derivative of W;

with respect to ¢;, and compare with the derivative of the formula for b;;, and see

that they are equal.

]

Now we explicitly list some extended potentials. We also list the polynomial

and Frobenius potential for reference.

n=2.
W(z) =ty + tix + 2°,
2 u4 t2
Qtu) =t tH— + — + =L 4.61
( u) ol + t1 5 —+ 1 + 6’ ( )
1 t]
O(t) = ~t3t
(t) = 9 0"l 7o
n=3. )
t
W(z) = (to + §2> + tx + tex? + 2?,
t2 u? wooud ity
Qt,u) = [t t— +tgp— + — + —= 4.62
(t,u) (0+8>u+12—+23+-5+ T (4.62)
1 22 1
d(t 2ty + tot?) — 2
(t) = 2(°2+'0) 16_me
n =4.

tot t2
W(z) = (m4—%§) < -g)x+¢ﬂ:+tﬂ:+x

t +2 4 6
Q@U%:Go+%§)u+<u+5)75+m%v+m%~k%

(4.63)
tty 213
5 10 150’
12t 3 3t: st a2 18
@(t):0_3+t0t1t2+____1_3_ 2 28 3
2 6 20 10 60 150 15000
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toty 213 tsty AR
w to + — —= t+ —— ty+—
(z) = (0+ G +12+108 + |t + v+ (tat |

3 4
+ tga® + taat + 20,
toty 12 13 taty 2\ ud
Qt,u) = [tg+ — + = h+—)—+(ta+ 2 ) —
(t) <°+ 6 T12T0s) T T 2+ 273 )3 (164)
+tu4+tu5+u7+t1t4+t2t3 tst?
4 T s T T 6 6 ' 72’
1 2ty 122 titotsty  tqtd
B(t) = = (t3ty + tot2) + totqt 1= 14 3
(1) = 5 (tota - tot3) + totats + == = o 6 36
t3t, 132 133 totitd

tsta 13t t]
36 12 216 T2 216

1728 272160

tots 3ty  tali 2 22
t t tst
<0+ + +49>+(1+735+7+49

+(t2+ Ztyts x2+<t3+ tQ)x + tgxt + tyx® + 27,

t2t5 tsty  tqt? 2 2 13\ u?
to t tat —
+ +49>u+<1+735+7+49 5

u6 8

u? o\ u u® u
+ (2 + t4t5 St t Tt s+
1t

5 6 8
%+t§ tst? t4t5 ta

7 7 14 98 98 4116’

(4.65)
t2ts
d(t) = 5 T totats + tolats
N t2t5 N tty R tibalats  Gilfts  titst]
2 2 28 7 14 14
tatsts 1312 133 tolgtgt?  lotity  totits
14 14 204 9 7 147
ta o tstE o 33t t3th tsth  tatitd
C 56 204 49 2744 196 686

tity | tits 1
1372 24010 5647152
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4.1 Extensions of Quantum Cohomology
4.1.1 Gromov-Witten invariants

The quantum cohomology of a closed symplectic manifold X is a deformation
of the ordinary cohomology ring H*(X) (with say coefficients in C) [7], [8]. This
deformation has the structure of a Frobenius manifold.

Let n 4+ 1 be the dimension of H**(X), and let #; be coordinates for H**(X).
That is,

(to, ce. 7tn) == tOAO + ... tnArm (466)

where A; € H?i(X). The inner product is given by

4(0:,9;) — / AiAA,, (4.67)
X

where integration is done by selecting representative forms in the cohomology class.
These integrals are constant, so t; are flat coordinates. We pick ¢y to be the coordinate
for the identity.

The Frobenius potential is given by

® = classical terms +
T n ta,ﬁ
> [(H edata> ( 11 %) N(dy, ... dyapsr, - an)| . (4.68)
_ _ ag:
d,a a=1 B=r+1
The classical terms arise from the ordinary cohomology ring. We refer to the other
terms in the potential as quantum terms.
The coefficients N(dy,...,d,;a,41,...,a,) are the Gromov-Witten invariants of

X. Morally, they count the number of holomorphic curves of genus 0 passing through

79



a; constraints given by the Poincaré duals of A;, for each . The image of the curve
is d=(dy,...,d,) € Hy(X,Z)/torsion where d; = A;[d] for A; € H*(X).
The Gromov-Witten invariants are defined by integration over My, (X, d), the

Moduli space of stable m-marked maps of genus 0 into X of class d € Hy(X,Z)/torsion,

n

where m is the total number of constraints, m =)

a;.
These Gromov-Witten invariants are zero unless the codimension given by the

constraints is equal to the dimension of this moduli space. That is, unless

> ap; = dime Mo, (X, d) = ¢ (TX)[d] + dime X +m — 3. (4.69)

i=r+1
From this dimension constraint, there is an Euler field given by
b= Z (1 —pi)ti0; + Z 7i0;, (4.70)
iipi#£1 i:pi=1

where ¢ (TX) = >, r;A;, which makes the potential ® quasihomogeneous of degree
3 — dime X. (4.71)

The associativiy of this Frobenius manifold is a non-trivial result which follows
from pulling back a relation in the moduli space Mg, of genus 0 curves with 4
marked points. See [7], [12].

We seek an extended potential of the form

Q= tou+
r n <t_s>“ﬁ i
1 2 u
QZ (H e2d“t“> H = EM(dl,...,dr;a]r_i'_l,...,an;k) . (4.72)
dak | \a=1 B=r41 P '
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In certain situations, the coefficients M (dy, ..., d;a,11,...,a,; k) will be the open
Gromov-Witten invariants (up to some factors). Morally, they count maps of open
discs with boundary on a Lagrangian L, with a; interior constrains given by the
Poincaré duals of A; and k point-constraints on the boundary.

Although there are technical difficulties, one would like to define these open
Gromov-Witten invariants by integration over the moduli space Mo,m,k’(X ,L,d) of
stable open discs into X with boundary on L with m interior marked points and k
boundary marked points and image d € Hy(X, L) [10].

The coefficients are zero unless the codimension given by the constraints is equal
to the dimension of this moduli space. That is

2 Z a;pi+k dime X = dimg Mg x(X, L,d) = p(d) +dime X +2n+k—3. (4.73)
i=r+1
Here, dim¢ X is the codimension in L of a point, u(d) is the Maslov class. If the
Lagrangian is real, we can use complex conjugation to double the disk to get a genus-0
curve d € Hy(X), then p(d) = ¢y(TX)]d].
Using this dimensions constraint, and giving u degree %( 1 —dimcX), this makes

() quasi-homogeneous of degree

(3 — dlm(c X)

5 . (4.74)

The potential ® is sometimes referred to as the closed potential, the extended
potential {2 as the open potential, and the corresponding invariants as closed or open

Gromov-Witten invariants, respectively.
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4.1.2 Small quantum cohomology

There is a variation of the quantum cohomology, called the small quantum
cohomology, where we let tg = t,41,...,t, =0, and ¢ = €e",..., ¢ = e’ (where r
is the rank of H?(X)). This ring only depends on terms that are most cubic in the
non-divisor variables. These are sometimes called the 3-point invariants.

We can also consider a small extended quantum cohomology by additionally
setting u = 0. This ring will have also have terms like qi1 2,

4.1.3 Partial reconstruction of the extension

In the quantum cohomology, the first reconstruction theorem by Kontsevich
and Manin [7] says that the Gromov-Witten invariants can be computed recursively
using the WDV'V equations starting from the 3-point invariants whenever H*(X) is
generated by H*(X).

It appears as though the open WDVV equations can be used to compute the
coefficients of Q when H*(X) is generated by H?(X), although in some cases it not
enough to only specify the terms in the small extended ring, and it is not always
obvious how to recursively solve for certain coefficients in general. We do however,
have a partial reconstruction proposition.

We will use the following terminology. The coefficients M (dy, ..., d,; ary1, ..., an; k)
in 2 will be called open coefficients. The sum a,1+...+a, will be called the number
of interior marks. The number £ will be called the number of boundary marks. We
will say that d < d’, or that the degree d is less than d' if d; < d for all 4, and at for

at least one j, d; < d.
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Proposition 17. Suppose H*(X) is generated by H*(X), and suppose Q of the form
(4.72) satisfies the open WDV V equations. An open coefficient with at least 2 interior
marks, or at least 1 interior and 1 boundary mark can be computed recursively from
the open WDV'V equations in terms of coefficients with lower degree, coefficients with

fewer marked points, and the coefficients of the closed potential ®.

Proof. First, let us consider an open coefficient with at least 2 interior marks:
M(dy,...;dv; . ;ap+ 1,00 ac+ 1,005 k). (4.75)

We will call this M for short. Since H*(X) is generated by divisors, we can write

Ay = A;ANAj with Aj € H*(X). Now, consider the following associativity equation:
ST e + Qe = D Pic Dy + e (4.76)

Notice that

®;;* = 1 + quantum terms, (4.77)

since A; A Aj; = Ay, But for a # b, ®;;“ contains only quantum terms.

Now in equation (4.76) we look at the coefficient of

- Lot oty | W
(H e? ) ( I1 a%) . (4.78)

a=1 B=r+1
We get
d.
M—i—...zEM'—i—..., (4.79)
where
M =M(d;...,ap +1,...;k), (4.80)
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with Ay = A; AAy. The factor of % come from taking a t; derivative of e3%ti The
coefficient M’ has one less interior mark. All the other terms have degrees less than
d. To see this, notice that all other terms are quadratic in the coefficients (either
a product of a closed and open coefficient, or a product of two open coefficients.
The sum of the degrees of these quadratic terms must be d (the degree from the
closed coefficient will be summed with weight by 2). Since all these coefficients are
quantum, they have nonzero degree, thus they must be strictly less than d.

Next, let us consider an open coefficient with at least 1 interior mark and 1

boundary mark:

M(dy,...,dp;...;ap+1,.. 5k +1). (4.81)

Again we will call this M for short. We can write A, = A; A A; with A; € H*(X).

Consider the following associativity equation:
D By Qs+ Qs = Qi (4.82)
Once again, we look at the coefficient of (4.78). We get
M+...=..., (4.83)

where all the other terms have degrees less than d. ]

Missing in this partial reconstruction proposition is how to compute open coef-
ficients which are only assumed to have at least 2 boundary marks.

We will now show some specific examples.

84



4.1.4 P

The closed potential is

2t, 1 — ez on
=L Sty it i+ Y ¢ 2 ToN(dsay, . ap). (4.84)
2 2o i>0q Y20 o
The open potential is
ta a2 tn an k
S (3)" (B)"w
O =tou+ 2 e2dh 22‘ Zn| FM(d, CL2,...,CLn§k). (485)

d>0

The Euler field is

E=1%9+ (n+1)0, + (=1)t?0y + ... + (1 — n)t"0, + L—n

w0y, (4.86)

which makes ® and €2 quasihomogeneous of degrees 3—n, and (3—n)/2, respectively.
Small quantum cohomology
The small quantum cohomology ring is the Frobenius manifold at the point
ty=---=1t, =0, and ¢ = €' is arbitrary.

The small quantum cohomology ring of P has the relations

@oﬁjzaiﬂ, 1+ <n+1, (487)

a1 Oan = an

This is a graded algebra, where the degree of 9; is 1 — 4, the degree of ¢ is n + 1,
and the multiplication has degree 1. The implicit factor of 1 in front of ¢ is the
Gromov-Witten invariant which counts the number of lines through 2 points.

This ring is isomorphic to
Q = Clz,q)/(z""" = q). (4.88)
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The extended small ring has the relations

0i00; =05, 1+j<n+l,
al o an = an + Aql/Qa*a
(4.89)
@ o} 8* = O,
9, 0 8, = Bq'/?9,.
Here, A = %M(l; 0,...,1;0), B =2M(1;0,...,0;2). Associativity (0; 0 0,) 0 0, =
01 0 (0, 00,) imposes the constraint 1+ AB = 0 which, up to rescaling of J,, has the

solution

M(1;0,...,0;2) =1, M(1;0,...,1;0) = —1. (4.90)

Reconstruction
In addition to the partial reconstruction shown in Proposition 17, we can com-

pute a coefficient M with at least two boundary marks
M = M(d;az, ... ,a,; k+2) (4.91)

using the OWDVV equations.

Consider the equation
Z (I)lnaQa* + anQ** = Qn*Ql* (492)
Let us look at the coefficient of e#1/2¢3> .. % y*. From the product

Qe = (o M(1;0,...,1;0) +..0) (oo + e M 4+, (4.93)
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we get a term M(1;0,...,1;0)M(d;as,...,a,;k 4+ 2). The term M(1;0,...,1;0) is
known from the small ring.

So M = M(d;as,...,ay; k+2) can be determined from open coefficients of less
degree, or coefficients with possibly same degree, but fewer boundary marks. In the

special case where ay = -+ =a, = 0,k = 0, we get the relation from the small ring
1+ M(1;0,...,1;0)M(d;0,...,0,...;2) =0. (4.94)

4.1.5 P! x P!

The closed potential is

- 1 2 dit1+data t§3 .
b = §t0t3 + totth -+ Z € a—glN(dl, dg, 613>. (495)
The open potential is
Lyt +Ldat (%3)&3 u
Q=tou+y et 22a—3!H]\/[(d1,d2;a3;k). (4.96)
The Euler field is
1
E = t000 + 201 + 282 — t383 — Euﬁ*, (497)

which makes ® and 2 quasihomogeneous of degrees 1, and 1/2, respectively.
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Small quantum cohomology

The small quantum cohomology ring is the Frobenius manifold at the point

ts = 0 and where et = ¢, e’ = ¢, are arbitrary.
01 00y = 05,
03001 = @202, 0300, = q10,
01001 = q20p, 0a00y = q10h,
03 003 = q1G200.
The extended small ring has the relations
0100, = Agid., Oy0d. = Bq:d,,
0300, = (Cgqq + Dq%qé + Eq2)0,,
0,00, =0,

where A, B,C, D, E are to be determined.

The associativity condition

(81 o al) 00, = 20, =0, 0 (31 o 8*) = AZC]Q@

(4.98)

(4.99)

(4.100)

gives A? = 1. Similarly, B> = 1. The other associativity condition (9, o ) 0 9, =

63 @) 3* = 81 e} (82 @) 8*) giveS

AB=D, C=0, E=0.
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The term M (1, 1;0;3), which has the fewest boundary marks out of the coeffi-
cients with only boundary marks, is not constrained by the OWDVV equations and
does not appear here in the small ring.

4.1.6 G(2,4)

The closed potential is

1 1 1 1 1
P = §t0t§ + §t0t§ + totity + §t3t5 + §t§t2 + §t§t3+
12

dnt2 s :

+> e p~ aS!N(d, ar,...,as). (4.102)
d>0,a
The open potential is
to a2 tn as k

_ an (3)7 ()Wt .

Q=tou+2) e ~ . M (d5 s, ans k). (4.103)

d>0

Small quantum cohomology

The small quantum cohomology ring is the Frobenius manifold at the point

to - =15 =0, and ¢ = e’ is arbitrary.

0100, =0y + 05,
0100y =0y = 0y 0 0s,
Oy 0 0y = 05 = 03 0 O3,
Oy 0 O3 = q0y, (4.104)
0400y = q0s + q0s,
Oy 0 05 = q0y,

85 o) 85 = qzao.
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The extended small ring has the relations
8* o 81 = 0,
D, 0 0y = ¢'/2 A0,

0, 0 83 = ¢**Ba,,

(4.105)
8* o 84 = O,
0y 0 05 = qC0,,
0y 005 =0,

where A, B, C are to be determined.

The associativity conditions we need to check are the following. First of all,
O, 0 (0y 00y) = qCO, = (0, 0 Da) 0 Dy = qA0, (4.106)
gives A% = C. Similarly, replacing 2 with 3, we also get B? = C. Furthermore
(D 0d) 00, =q"*(A+ B)d, =0y 0(d 00,) =0. (4.107)
so A+ B = 0. Finally
(Oy 0 03) 00y = q0, = Dy 0 (030 0,) = qABO,, (4.108)

so AB = 1. The solutions are A =i, B = —i,C' = —1, or the complex conjugate.
4.2 Tables
We now present tables of open (extended) coefficients we computed using the

open WDVV equations.
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In the case of P", for odd n, the numbers with no boundary marks can be
compared with those in the tables given in [4], and they are the same up to sign.
However, there are nonzero numbers in our table which according to [4], should be
zZero.

We also compute for G(2,4), where interestingly the coefficients can be not only
negative, but also imaginary.

Except for the case of P? and P! x P!, the existence of an extension is only
conjectural, based on the fact that we can find a consistent solution the OWDVV
equations up to the degree which we were able to calculate. The cases P? and P! x P!
are blowups of P2, so they are proved to be solutions of the OWDVV equations by

references given in [6].
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4.2.1 Extended coefficients for P?
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4.2.2 Extended coefficients for P?
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4.2.3 Extended coefficients for P*
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4.2.4 Extended coefficients for P°
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4.2.5 Extended coefficients for P°
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4.2.6 Extended coefficients for P' x P!
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4.2.7 Extended coefficients for G(2,4)
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CHAPTER 5
Summary and Conclusion

In this thesis, we showed that the open WDVV equations arise as the associa-
tivity conditions for a rank-1 extension of Frob manifolds. This gives a geometric
description of the open WDVV equations in a similar way to how a Frobenius man-
ifold describes the original WDVV equations. The introduction and use of a Frob
manifold instead of a Frobenius manifold was necessary due to the lack of natural
metric in the motivating examples.

We studied Frob manifolds in detail and showed that, even though they lack a
metric, they have many of the same properties as Frobenius manifolds. For example,
we gave the notion of semisimple Frob manifolds. We constructed two so-called struc-
ture connections for Frob manifolds. We defined extensions in general and showed
that there are two kinds of rank-1 extensions, namely an extension by a module
and an auxiliary extension. We showed that auxiliary extensions of semisimple Frob
manifolds are again semisimple.

We found interesting examples of extensions for two classes of Frobenius mani-
folds: Quantum Cohomology of P™ and the universal unfolding of the A, singularity.
The first example example is somewhat conjectural, although we observed a con-

nection to other work done with real enumerative geometry. In addition, we also
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conjectured the existence of an extension for G(2,4) and we ask whether the coeffi-
cients of that extended potential represent enumerative invariants. These coefficients
interestingly were complex integers.

We proved the existence of an extension of A,, and we computed the extended
potentials explicitly for some values of n.

Overall, this framework of Frob manifold and extensions has proven useful to
describe some interesting phenomenon in different areas of math, which made this
a worthwhile object to study. We expect that more examples will be found in the

future, and this framework will give some insight into their nature.

106



1]

8]

[9]

[10]

[11]

[12]

References

A. Arsie and P. Lorenzoni. From the Darboux-Egorov system to bi-flat -
manifolds. Journal of Geometry and Physics, 70:98 — 116, 2013.

R. Dijkgraaf, E. Verlinde, and H. Verlinde. Topological strings in d < 1. 1990.

B. Dubrovin. Geometry of 2D topological field theories, pages 120-348. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1996.

P. Georgieva and A. Zinger. Enumeration of real curves in CP**~! and a WDVV
relation for real Gromov-Witten invariants. arXiv:1309.4079, 2013.

C. Hertling. Frobenius manifolds and moduli spaces for singularities, volume
151. Cambridge University Press, 2002.

A. Horev and J. P. Solomon. The open Gromov-Witten-Welschinger theory of
blowups of the projective plane. arXiv:1210.4034, 2012.

M. Kontsevich and Yu. Manin. Gromov-Witten classes, quantum cohomology,
and enumerative geometry. Comm. Math. Phys., 164(3):525-562, 1994.

Yu. Manin. Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces.
Number v. 47 in American Mathematical Society. Colloquium publications.
American Mathematical Soc., 1996.

Yu. Manin. F-manifolds with flat structure and dubrovin’s duality. Advances in
Mathematics, 198(1):5 — 26, 2005.

J. P. Solomon. Intersection theory on the moduli space of holomorphic curves
with Lagrangian boundary conditions. arXiv:math/0606429, 2006.

C. A. Weibel. An introduction to homological algebra. Number 38. Cambridge
university press, 1995.

E. Witten. Two-dimensional gravity and intersection theory on moduli space.
Surveys in Diff. Geom, 1(243):74, 1991.

107



	Acknowledgements
	Abstract
	Abrégé
	Introduction: Motivation and Summary
	Frob manifolds
	Definition
	Semisimple Frob manifolds
	Identity field
	Euler field
	Compatible metric and Frobenius manifolds
	Summary
	Structure connections

	Extensions of Frob Manifolds
	Definition
	Flat coordinates and associativity
	Rank-1 Extensions
	The open WDVV equations
	Algebra
	Potentiality
	Summary

	Extended Isomonodromy

	Examples
	Extensions of 1-dimensional Frobenius Manifolds
	Extensions of 2-dimensional Frobenius Manifolds
	Extensions of the space of polynomials (An singularity)

	Extensions of Quantum Cohomology
	Gromov-Witten invariants
	Small quantum cohomology
	Partial reconstruction of the extension
	Pn
	P1 P1
	G(2,4)

	Tables
	Extended coefficients for P2
	Extended coefficients for P3
	Extended coefficients for P4
	Extended coefficients for P5
	Extended coefficients for P6
	Extended coefficients for P1 P1
	Extended coefficients for G(2,4)


	Summary and Conclusion
	References

