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Abstract

In this thesis, we give a geometric setting for the openWitten-Dijkgraaf-Verlinde-

Verlinde (WDVV) equations. We generalize the notion of a Frobenius manifold,

which provides a geometric setting for the original WDVV equations. In particular,

we define the notion of an extension morphism, and show that the open WDVV

equations arise as the associativity of this extension. The generalized notion of a

Frobenius manifold we give is an F-manifold with compatible flat structure, which

we call a Frob manifold. We show that Frob manifolds have many properties anal-

ogous to Frobenius manifolds. For example, there is a relation between semisimple

Frob manifolds and solutions to a generalization of the Darboux-Egoroff equations.

We also show that Frob manifolds parametrize isomonodromic deformations. We

characterize extensions in terms of both flat coordinates and canonical coordinates,

and give a theorem for specifying an extension. We show examples of extensions of

Frobenius manifolds, including the quantum cohomology of Pn, and the An singular-

ity.
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Abrégé

Dans cette thèse, nous donnons un cadre géométrique pour les équations Witten-

Dijkgraaf-Verlinde-Verlinde (WDVV) ouvertes. Nous généralisons la notion d’une

variété Frobenius, laquelle donne un cadre géométrique pour les équations WDVV

originales. En particulier, nous définissons un morphisme dextension et montrons

que les équations WDVV ouvertes se manifestent comme la condition dassociativité

de cette extension. La notion généralisée que nous donnons est une variété-F avec une

connexion plate compatible, que nous appelons une variété Frob. Nous démontrons

des propriétés des variétés Frobs qui sont analogues aux propriétés des variétés Frobe-

nius. Par example, il y a une relation entre les variétés Frobs semisimples et une

généralisation des équations Darboux-Egoroff. Nous montrons aussi que les variétés

Frobs paramètrent les déformations isomonodromiques. Nous caractérisons les ex-

tensions du point de vue des coordonnées plates aussi bien que les coordonnées

canoniques, et donnons un théorème qui spécifie une extension. Nous montrons des

exemples des extensions des variétés Frobenius, y compris la cohomolologie quantum

de P
n et la singularité An.
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CHAPTER 1
Introduction: Motivation and Summary

Frobenius manifolds, introduced by Dubrovin [3], appear in a wide variety of

mathematical contexts, including enumerative geometry, unfolding of singularities,

[5], and isomonodromic deformations [8].

A Frobenius manifold is a differential manifold having the structure of a Frobe-

nius algebra on the tangent spaces, along with a certain potential condition for the

multiplication. Recall that a Frobenius algebra is an algebra with a symmetric,

nondegenerate bilinear form g compatible with the multiplication ◦ in the sense that

g(a ◦ b, c) = g(a, b ◦ c). (1.1)

The Frobenius manifold has a metric, which we also denote by g, that restricts to

the compatible bilinear form at each tangent space. We do not impose any positivity

condition on g. We require that g be flat, and the potential condition is that locally

there exists a function Φ, unsurprisingly called the potential, such that

g(∂α ◦ ∂β, ∂γ) = g(∂α, ∂β ◦ ∂γ) := Aαβγ = ∂α∂β∂γΦ, (1.2)

where the derivatives are respect to local flat coordinates. If the multiplication is

potential, then associativity is encoded in the famous Witten-Dijkgraaf-Verlinde-

Verlinde (WDVV) equations, which are partial differential equations for Φ.
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In many situations, the potential carries some interesting information, and the

WDVV equations can be used to recover this potential. A famous example is when

Φ is the generating function for Gromov-Witten invariants of P2. In [7], Kontsevich

showed that the WDVV equations can be used to compute all of these invariants

recursively, solving a long standing problem in enumerative geometry.

In [6], Solomon introduced some equations, similar to the WDVV equations,

which he called the open WDVV (OWDVV) equations. These are equations satisfied

by the generating function of the so-called open Gromov-Witten (OGW) invariants.

The motivation for this thesis was to find a geometric setting for these OWDVV

equations and interpret them as some associativity constraint.

To find this geometric setting, we need to generalize the notion of a Frobenius

manifold. This is due to the absence of a symmetric pairing (the metric on the

Frobenius manifold) in the context of OGW invariants. Once we define the correct

generalization, we define a certain notion of extension where the OWDVV equations

arise as the associativity condition of this extension. We depart from our original

motivation of OGW to study extensions in general and to see where else they may

appear.

In Chapter 2, we introduce the generalization of a Frobenius manifold we will

use, which we call a Frob manifold. This has been previously introduced by Manin

in [9], where he called it an F -manifold with compatible flat structure. Because we

do not wish to talk about F -manifolds ([5]), we will call it simply a Frob manifold.

We note the following inclusions

Frobenius manifolds ⊂ Frob manifolds ⊂ F -manifolds.
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A Frob manifold should be thought of as a Frobenius manifold without a compatible

metric. Instead of a potential function, the potential condition we impose is the

existence of a local potential vector with components Φα such that

∂α ◦ ∂β :=
∑

γ

Aαβ
γ∂γ =

∑

γ

∂α∂βΦ
γ∂γ. (1.3)

In the absence of a compatible metric, we cannot lower the upper index γ on Φ.

The components ∂α∂βΦ
γ transform in the correct way for a multiplication tensor,

as long as we restrict to transformations which are affine. Therefore, instead of

having a metric, we only require an affine structure or equivalently, a flat, torsion-

free connection ∇.

Similar to Frobenius manifolds, the potential and associativity conditions of a

Frob manifold can be encoded in the flatness of another connection called the first

structure connection. This is shown in Theorem 1.

After defining a Frob manifold, we define the notion of a morphism which we

will use later to define extensions. We generalize the notions of the identity and

Euler field (which are essential ingredients in the study of Frobenius manifolds) to

Frob manifolds.

We also look at semisimple Frob manifolds and in Proposition 2 show how they

are related to a generalization of the Darboux-Egoroff equations. These generalized

Darboux-Egoroff equations are important in proving the flatness of another con-

nection, called the second structure connection, which is related to isomonodromic

deformations. The key to proving the flatness is exploiting a symmetry of the gen-

eralized Darboux-Egoroff equations. Although the idea of the proof is similar in the
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case of Frobenius manifolds, there are technical differences which arise in the absence

of a compatible metric.

It has been shown before that solutions to these generalized Darboux-Egoroff

equations lead to F -manifolds with compatible flat structure (Frob manifolds) [1].

Our point of view, which involves the introduction of functions called connection po-

tentials, shows that solutions to generalized Darboux-Egoroff equations and semisim-

ple Frob manifolds are in fact equivalent. The connection potentials along with

grading by an Euler field are key in defining the second structure connection.

In Chapter 3, we introduce extensions. An extension of a Frob manifold M is

an exact sequence

0 → I → N → M → 0. (1.4)

We define this more precisely, and return to our original motivation by showing how

the OWDVV equations arise as the associativity of a rank-1 extension.

We also look at different algebraic and potential aspects of rank-1 extensions.

We can divide extensions into two types. In the first type, the algebra is essentially

that of an extension by a module, and the associativity is related to Hochschild

cohomology. The second type is of more interest to us, and we call it an auxiliary

extension. We give a theorem about the potentiality of these extensions (Theorem

3), which we use in Chapter 4 to show the existence of an extension of the Frobenius

manifold associated to the space of polynomials (or the An singularity). Another

result for auxiliary extensions is that an auxiliary extension of a semisimple Frob

manifold is again semisimple (Proposition 13). We also look at the behaviour of the

second structure connection and isomonodromic deformations under an extension.
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Chapter 4 is devoted to examples. After exhaustively classifying extensions

of 1- and 2-dimensional Frobenius manifolds, we turn to extensions of quantum

cohomology and extensions of the space of polynomials (or the An singularity).

Quantum cohomology is a deformation of the classical cohomology ring of a

symplectic manifold. It is a Frobenius manifold where the potential is the generating

function for the Gromov-Witten (GW) invariants. We conjecture the existence of an

extension of the quantum cohomology ring of Pn for all n > 0 (the case n = 1 can

be checked explicitly, and n = 2 is in [6]). The coefficients of the extended potential,

which we compute by recursively solving the ODWVV equations, seem to have some

enumerative interpretation. For example, they match with the real Gromov-Witten

invariants shown in [4] up to sign, although our solutions come with other coefficients

which do not have a known interpretation as an enumerative invariant.

We also do some computations for the extension of P1 ×P
1, and the Grassman-

nian G(2, 4). Interestingly, the coefficients for the extension of G(2, 4) are sometimes

imaginary.

The other important example we look at is the An singularity. This singularity

has the ring structure

C[x]/〈xn+1〉. (1.5)

The unfolding of this singularity comes with the structure of a Frobenius manifold

[3], [5], [8]. This Frobenius manifold can also be viewed as the space of polynomials

of degree n + 1. We prove the existence of a certain extension of this Frobenius

manifold using the previously mentioned Theorem 3.
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CHAPTER 2
Frob manifolds

In this chapter, we introduce a generalization of a Frobenius manifold called a

Frob manifold. It is the same as an F-manifold with compatible flat structure, which

was introduced in [9]. It can be thought of as almost a Frobenius manifold, but it is

lacking a compatible metric. A Frob manifold with a compatible metric becomes a

Frobenius manifold.

The important thing about having no metric is to have a more general notion of

morphism, without needing to respect the metric structure. We define morphisms,

and will use this definition later in Chapter 3 to define extensions.

Similar to Frobenius manifolds, we can have an identity and Euler field on a

Frob manifold. We introduce these and give important properties. We also study

semisimple Frob manifolds and show how they are related to a generalization of the

Darboux-Egoroff equations.

In the last section, we introduce two structure connections on a Frob manifold,

which are analogous to those given to a Frobenius manifolds. The second structure

connection gives rise to isomonodromic deformations.

Although many results in this chapter are analogous to the case Frobenius man-

ifolds, there are technical differences which come from not having a metric.
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2.1 Definition

Definition 1. Let M be a manifold equipped with a flat, torsion-free connection ∇.

Let

◦ : TM ⊗ TM → TM (2.1)

be a symmetric, bi-linear multiplication.

• A triple (M,∇, ◦) as above is called a pre-Frob manifold.

• A pre-Frob manifold is called potential if locally there exists a vector Φ, called

a vector potential, such that

X ◦ Y = [X, [Y,Φ]] (2.2)

for all flat vector fields X and Y .

• A pre-Frob manifold is called associative if ◦ is associative.

• A pre-Frob manifold is called a Frob manifold if it is potential and associative.

The expression [X, [Y,Φ]] is symmetric in X, Y by Jacobi identity and the fact

that the connection is torsion free. That is,

[X, [Y,Φ]] = [[X, Y ],Φ] + [Y, [X,Φ]]

= [Y, [X,Φ]]

(2.3)

since [X, Y ] = ∇XY − ∇YX = 0 for all flat X, Y . So the potential condition is

compatible with ◦ being symmetric. If ◦ is associative, then it equips the tangent

spaces of M with the structure of a commutative algebra.

A manifold with a flat, torsion-free connection is called an affine manifold. It

can be covered by charts whose transition maps are affine linear. We denote the
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sheaf of flat vector fields (the vector fields whose covariant derivative vanishes) by

TM f . The full tangent sheaf is the tensor product of the sheaf of flat vector fields

with the structure sheaf, TM = TM f ⊗OM .

In flat coordinates tα, the potential condition says that Aαβ
γ = ∂α∂βΦ

γ, where

Aαβ
γ = dtγ(∂α ◦ ∂β) are the coefficients of the multiplication tensor ◦, and Φγ are

the components of Φ. The object ∂α∂βΦ
γ transforms like a tensor under affine

transformations. The associativity condition for a potential pre-Frob manifold is

∑

η

∂α∂βΦ
η∂η∂γΦ

δ =
∑

η

∂α∂γΦ
η∂η∂βΦ

δ, for all α, β, γ, δ. (2.4)

We will sometimes use the shorthand Φαβ
γ for ∂α∂βΦ

γ. The components Φγ are only

determined up to linear polynomials in tα, since taking two derivatives will kill these

terms. A vector field whose components in flat coordinates are linear is called affine.

So the vector potential Φ is defined up to an affine vector field.

A vector field V is affine if and only if [V, TM f ] ⊂ TM f . Since the connection is

torsion-free, we have that [TM f , TM f ] = 0, so if V is affine, then for X, Y ∈ TM f ,

[X, [Y, V ]] = 0. This shows again that Φ is defined only up to the addition of an

affine vector field.

The conditions for a pre-Frob manifold to be Frob can be conveniently rephrased

in terms of the so-called structure connection (sometimes called the first structure

connection):

Definition 2. The structure connection ∇λ is defined by

∇λ
XY = ∇XY + λX ◦ Y, (2.5)
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where λ is a complex parameter.

Theorem 1. Let M be pre-Frob manifold, and let Rλ = λR1+λ2R2 be the curvature

of ∇λ (since ∇ is flat, there is no term constant in λ). Then:

1. M is potential if and only if R1 = 0.

2. M is associative if and only if R2 = 0.

In other words, M is Frob if and only if Rλ = 0 for all λ.

Proof. We look at associativity and R2 first. If

R2(X, Y )Z = X ◦ (Y ◦ Z)− Y ◦ (X ◦ Z) = 0, (2.6)

then

X ◦ (Z ◦ Y ) = X ◦ (Y ◦ Z), by commutativity, (2.7)

= Y ◦ (X ◦ Z), by R2 = 0, (2.8)

= (X ◦ Z) ◦ Y, by commutativity. (2.9)

Conversely, if ◦ is associative, then the above expression for R2 vanishes.

Now we look at R1. Let t
α be flat coordinates for ∇, and write ∂α = ∂

∂tα
.

R1(∂α, ∂β)∂γ = ∇α(∂β ◦ ∂γ)−∇β(∂α ◦ ∂γ) + ∂α ◦ (∇β∂γ)− ∂β ◦ (∇α∂γ). (2.10)

The last two terms of R1 are zero, so all that remains is

∇α(∂β ◦ ∂γ)−∇β(∂α ◦ ∂γ) =
(
∂αAβγ

δ − ∂βAαγ
δ
)
∂δ. (2.11)
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If this vanishes, then ∂αAβγ
δ = ∂βAαγ

δ, so the 1-form defined by
∑

β Aβγ
δdtβ is

closed, and therefore locally exact by the Poincaré lemma, that is

Aβγ
δ = ∂βB

δ
γ, (2.12)

for some functions Bδ
γ. Since Aβγ

δ is symmetric in β and γ, the 1-form
∑

γ B
δ
γdt

γ is

closed, and again by Poincaré lemma

Bδ
γ = ∂γΦ

δ. (2.13)

So in conclusion, we have

Aαβ
γ = ∂α∂βΦ

γ. (2.14)

Conversely, if there exists such a Φ, then R1 vanishes.

Now we give a notion for morphisms of Frob manifolds.

Definition 3. A morphism of Frob manifolds is a map of affine manifolds φ : N →

M such that

φ∗(X ◦p Y ) = φ∗(X) ◦φ(p) φ∗(Y ), (2.15)

for all X, Y ∈ TpN .

By map of affine manifolds, we mean that φ can be written locally in affine

charts as an affine transformation.

We could also formulate (2.15) by saying we have a morphism of sheaves of

algebras on N

TN → φ∗TM. (2.16)
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Proposition 1. Let φ : N → M is a morphism of Frob manifolds with local vector

potentials Ψ and Φ, respectively. Then locally there exists an affine vector field A

such that pointwise the vector potentials are related by

φ∗ (Ψ|p) = Φ|φ(p) + A|φ(p). (2.17)

Proof. Let X, Y ∈ TN f .

φ∗(X ◦p Y ) = φ∗[X, [Y,Ψ]] (2.18)

= [φ∗X, [φ∗Y, φ∗Ψ]]. (2.19)

Since φ∗ is an algebra homomorphism, this is equal to

φ∗X ◦φ(p) φ∗Y = [φ∗X, [φ∗Y,Φ]]. (2.20)

Recalling that an affine vector field is killed by taking two Lie derivatives, comparing

the last lines of (2.19) and (2.20) completes the proof.

2.2 Semisimple Frob manifolds

Definition 4. A pre-Frob manifoldM is called semisimple if there is a basis e1, . . . , en

for TM such that ei ◦ ej = δijei.

Theorem 2. A semisimple pre-Frob manifold is a Frob manifold if and only if the

following conditions are satisfied:

1. Locally there exist coordinates yi, called canonical coordinates, such that ei =

∂
∂yi

.
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2. The connection coefficients Γi
jk with respect to these canonical coordinates yi

satisfy

Γi
jk = 0, for i, j, k all distinct, (2.21)

Γi
jj = −Γi

ij, for i 6= j. (2.22)

Proof. By Theorem 1, we need to check the vanishing of the structure connection

∇λ. This vanishes if and only if

[
∇λ

ei
,∇λ

ej

]
ek = ∇λ

[ei,ej ]
ek. (2.23)

It suffices to look at the λ-linear terms since we assume ∇ = ∇0 is flat, and ◦ is

associative by the existence of the semisimple basis. In other words, we just need to

check the potential condition.

The equation for the λ-linear terms is

ei ◦ ∇ejek +∇ei(ej ◦ ek)− ej ◦ ∇eiek −∇ej(ei ◦ ek) = [ei, ej] ◦ ek, (2.24)

which more explicitly is

Γi
jkei + δjk

(∑

r

Γr
iker

)
− Γj

ikej − δik

(∑

r

Γr
jker

)
= fk

ijek, (2.25)

where [ei, ej] =
∑

r f
r
ijer (we will indicate summation explicitly, so there is no implied

summation over repeated indices). The coefficient of ek on the left side is zero, so

fk
ij vanishes. This means the flows of the ei all commute, so there exist coordinates

yi such that ei =
∂
∂yi

.

12



Now we have that ei = ∂i :=
∂
∂yi

, and so the right-hand side of (2.25) vanishes.

We need the left side to vanish as well. If we take i, j, k distinct, we get Γi
jk∂i−Γj

ik∂j =

0 (no summation implied), then the coefficients must vanish since i 6= j.

Now using the preceding result and taking j = k 6= i, we get (no summation

implied)

Γi
jj∂i + Γi

ij∂i + Γj
ij∂j − Γj

ij∂j = 0. (2.26)

The ∂j terms cancel identically, and the ∂i terms cancel if and only if Γi
jj = −Γi

ij.

Remark 1. Pick any coordinate basis ei = ∂i, and a point p in M . Assume that

M is a manifold over, say, C. The C-algebra TpM is a module over itself, and

the vanishing of the left-hand side of (2.24) says that ∇ : TpM ⊗C TpM → TpM ,

which is given by extending ∇eiej C-bilinearily, is a cocycle is the sense of Hochschild

cohomology (see [11] for Hochschild cohomology).

That is, the element of HomC(TpM ⊗C TpM,TpM) we get by extending

(ei, ej) 7→
∑

k

Γk
ijek (2.27)

C-bilinearly represents a class in HH2(TpM,TpM).

We have supposed so far that we are given a flat connection ∇. We would now

like to make explicit the conditions on Γi
jk so that this connection is indeed flat. In

this way, we will see what data is necessary to give a Frob manifold in canonical

coordinates.
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Lemma 1. A torsion-free connection ∇, with connection coefficients satisfying (2.21)

and (2.22), is flat if and only if the following expressions vanish:

∂iΓ
a
ja − ∂jΓ

a
ia, (2.28)

∂iΓ
a
aa − ∂aΓ

a
ia, (2.29)

∂iΓ
j
aj + Γj

ijΓ
j
aj − Γj

ijΓ
i
ai − Γj

ajΓ
a
ia, (2.30)

− ∂iΓ
i
ji − ∂jΓ

i
ji − Γi

iiΓ
i
ji + Γi

jiΓ
j
jj − Γi

jiΓ
i
ji + Γi

jiΓ
j
ij −

∑

r 6=i,j

Γi
riΓ

r
jr, (2.31)

where indices with different letters are all distinct (and no summation is implied over

repeated indices unless explicitly indicated).

Proof. This is by a direct computation of the non-vanishing components Ra
bij of the

curvature tensor, with the use of (2.21) and (2.22) to simplify the expressions.

The expressions (2.28) and (2.29) vanish if and only if there is a collection of

functions fi, each defined up to a constant, such that, for all i, j,

Γi
ji = ∂jfi. (2.32)

Locally, we take fj to be of the particular form

fi =
1

2
log(φi), (2.33)

where φi is a collection of functions whose image lies in C
∗. We will call the φi the

connection potentials. Now we define the rotation coefficients:

γij :=
1

2

∂iφj√
φiφj

. (2.34)
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Note that the rotation coefficients are not necessarily symmetric in i, j.

Proposition 2. Let φi be connection potentials, and let ∇ be the connection whose

connection coefficients are specified by

Γi
ji = ∂j

[
1

2
log(φi)

]
=

1

2

∂jφi

φi

, (2.35)

along with the conditions

Γi
ji = Γi

ij, (2.36)

Γi
jk = 0, for i, j, k all distinct, (2.37)

Γi
jj = −Γi

ij, for i 6= j. (2.38)

Let

γij :=
1

2

∂iφj√
φiφj

. (2.39)

Then ∇ is flat if and only if, for all i 6= j 6= k 6= i,

ekγij = γikγkj, (2.40)

and

eγij = 0. (2.41)

When γij are the rotation coefficients of a metric, the equations (2.40), (2.41)

are a called the Darboux-Egoroff equations. So we will refer to these equations as

the generalized Darboux-Egoroff equations.

Proof. We need to show that all the equations in Lemma 1 are satisfied. Since we

are given φi, equations (2.28), and (2.29) are already satisfied. Next we show that

15



(2.40) is equivalent to (2.30). Expand

∂kγij − γikγkj =
1

2

∂k∂iφj√
φiφj

− 1

4


∂iφj∂kφi√

φ3
iφj

+
∂iφj∂kφj√

φiφ3
j

+
∂iφk∂kφj√
φiφ2

kφj


 . (2.42)

Setting this equal to zero and multiplying by 2
√

φiφj, we obtain

∂k∂iφj −
1

2

(
∂iφj∂kφi

φi

+
∂iφj∂kφj

φj

+
∂iφk∂kφj

φk

)
= 0. (2.43)

On the other hand, we expand

∂kΓ
j
ij + Γj

kjΓ
j
ij − Γj

kjΓ
k
ik − Γj

ijΓ
i
ki =

1

2

(
∂k∂iφj

φj

− ∂iφj∂kφj

φ2
j

)
+

1

4

(
∂kφj∂iφj

φ2
j

− ∂kφj∂iφk

φjφk

− ∂iφj∂kφi

φjφi

)
=

1

2

∂k∂iφj

φj

− 1

4

(
∂kφj∂iφj

φ2
j

+
∂kφj∂iφk

φjφk

+
∂iφj∂kφi

φjφi

)
. (2.44)

Setting this equal to zero and multiplying by 2φj, we obtain (2.43).

Now we assume (2.40) and show that (2.41) is equivalent to the vanishing of

(2.31). By use of (2.40), the terms which appear in the sum in (2.31) are

Γi
riΓ

r
jr =

1

4

∂rφi∂jφr

φiφr

=

√
φj

φi

γjrγri =

√
φj

φi

erγji. (2.45)

Also, we can check that

∂iΓ
i
ji + Γi

iiΓ
i
ji − Γi

jiΓ
j
ij =

√
φj

φi

eiγji, (2.46)

and

∂jΓ
i
ji + Γi

jiΓ
i
ji − Γi

jiΓ
j
jj =

√
φj

φi

ejγji, (2.47)
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so that the vanishing of (2.31) becomes
∑

k ekγji = 0.

So we have seen that connection potentials φ satisfying the generalized Darboux-

Egoroff equations specify a semisimple Frob manifold, and conversely for any semisim-

ple Frob manifold, there exist connection potentials satisfying the generalized Darboux-

Egoroff equations.

2.3 Identity field

Definition 5. Let (M,∇, ◦) be a Frob manifold. A vector field e such that e◦X = X

for all X is called an identity.

We are interested in the case when e is a flat vector field, so without loss of

generality, we can assume it is the 0-th coordinate vector field,

e =
∂

∂t0
. (2.48)

In terms of the vector potential Φ, for all flat X, we must have

[e, [X,Φ]] = X. (2.49)

In flat coordinates coordinates, this is equivalent to

∂0∂αΦ
β = δβα. (2.50)

If our Frob manifold is semisimple with canonical coordinates yi, then e =

e1 + . . .+ en, where ei =
∂
∂yi

.

Proposition 3. For a semisimple Frob manifold, e is flat if and only if

∑

q

Γi
iq = 0, (2.51)
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which is equivalent to

e(φi) = 0, (2.52)

where φi are the connection potentials.

Proof.

∇ei(e1 + . . .+ en) =
∑

q,r

Γr
iq∂r. (2.53)

For this to vanish for all i, we must have

∑

q

Γr
iq = 0, (2.54)

for all i, r. If i 6= r, then by (2.21) and (2.22), this reduces to to Γr
ii + Γr

ir =

−Γr
ir + Γr

ir = 0. We are then left with the case when r = i, which gives

∑

q

Γi
iq = 0 =

1

2

1

φi

∑

q

∂qφi =
1

2

e(φi)

φi

. (2.55)

2.4 Euler field

Definition 6. An affine vector field E such that LE(◦) = d0(◦) is called an Euler

field.

Recall that an affine vector field is one which can be written, in flat coordinates,

with coefficients that are linear polynomials. The flows of these vector fields give

affine transformations. An affine vector field E can also be characterized by the

property that it preserves flat vector fields under the Lie bracket, [E, TM f ] ⊂ TM f .

We can therefore consider the spectrum of AdE acting on TM f . We are interested

in the case when AdE is diagonalizable. In this case, we can chose flat coordinates

18



such that

E =
∑

dα 6=0

dαt
α∂α +

∑

dα=0

rα∂α. (2.56)

The coordinates tα are called homogeneous, and dα is called the degree of tα, i.e.

E(tα) = dαt
α. We allow some of the degrees to be 0, in which case E

(
et

β
)
= rαe

tβ .

In this way, E induces a grading of all the tensorial objects on M . For example, we

have [E, ∂α] = −dα∂i.

The fact that d0 appeared before in the definition of an Euler field is no coinci-

dence: if t0 is the identity coordinate, the degree of t0 must agree with the degree of

◦. Explicitly, if we write a for the degree of ◦ temporarily, we have

LE(∂0 ◦ ∂α) = (−d0 + a− dα)∂α = LE(∂α) = −dα∂α. (2.57)

it follows that a = d0.

Proposition 4. Let E be an affine vector field on a Frob manifold (M,Φ). Then E

is an Euler field if and only if

[E,Φ] = d0Φ + an affine vector field term, (2.58)

or equivalently in flat coordinates,

E(Φk) = (d0 + dk)Φ
k + linear terms. (2.59)

Such a vector potential Φ is called quasihomogeneous.

Proof. First notice that

[E,Φ] =
∑

α

(E(Φα)∂α + Φα[E, ∂α]) =
∑

α

((E − dα)Φ
α) ∂α, (2.60)

19



so that the coordinate expression is indeed equivalent to the coordinate-free one.

Now, the condition LE◦ = d0◦ is equivalent to

[E,X ◦ Y ]− [E,X] ◦ Y −X ◦ [E, Y ] = d0(X ◦ Y ), (2.61)

for all vector fields X, Y . But if it holds for flat vector fields then it holds for all

vector fields by tensorality. So assume X, Y are flat, and use the vector potential to

write the left side as

[E, [X, [Y,Φ]]]− [[E,X], [Y,Φ]]− [X, [[E, Y ],Φ]. (2.62)

By the Jacobi identity, this equals [X, [Y, [E,Φ]]]. So the condition becomes

[X, [Y, [E,Φ]]] = d0[X, [Y,Φ]], (2.63)

which holds if and only if [E,Φ] = d0Φ, to up an affine vector field.

Now we consider when M is semisimple, and look at the Euler field in the

canonical coordinate description.

Proposition 5. Let yi be canonical coordinates, and ei =
∂
∂yi

the coordinate vector

fields. E satisfies LE◦ = d0◦ if and only if

E = d0
∑

(yi + ci)∂i. (2.64)

Proof. Recall that LE◦ = d0◦is equivalent to

[E,X ◦ Y ]− [E,X] ◦ Y −X ◦ [E, Y ] = d0(X ◦ Y ). (2.65)
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Write E =
∑

i E
iei and take X = ek and Y = el. Since [E, ek] = −∑i ek(E

i)ei. The

condition is

− δkl
∑

i

ek(E
i)ei + ek(E

l)el + el(E
k)ek = d0δklek. (2.66)

This is equivalent to ek(E
i) = d0δik, so Ei = d0(y

i + ci).

By translating the coordinates, we can set ci to zero.

Proposition 6. Let E = d0(y
1∂1 + . . . + yn∂n), then E is affine if and only if the

connection coefficients in canonical coordinates are homogeneous of degree −d0. That

is,

E(Γi
jk) = −d0Γ

i
jk. (2.67)

Proof. E is affine if and only [E,B] is flat for all flat vector fields B. In other words,

∇l[E,B] = 0. (2.68)

for all l. Since the connection is torsion free and B is flat, we need ∇l[E,B] =

−∇l∇BE = 0. By a direct computation using that ∂lB
j = −

∑
a B

aΓj
la, we find the

i-th component of ∇l∇BE = 0 to be

d0
∑

j

Bj

(
Γi
jl +

∑

k

yk
[
∂lΓ

i
jk + Γi

laΓ
a
jk − Γi

akΓ
a
lj

]
)

= 0. (2.69)

We recognize the coefficient of yk as being part of the component Ri
jlk of the vanishing

curvature tensor. The expression becomes

d0
∑

j

Bj(Γi
jl +

∑

k

yk∂kΓ
i
jl) = 0. (2.70)
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Since B is arbitrary, we see that E is affine if and only if

E(Γi
jk) = −d0Γ

i
jk. (2.71)

In terms of the connection potentials φi, where Γi
ji =

1
2
∂j log(φi), we have that

E (∂j log(φi)) = ∂j (E log(φi)) + [E, ∂j] log(φi)

= ∂j (E − d0) log(φi).

(2.72)

By Proposition 6, this must be to equal to−d0∂j log(φi), which implies that ∂j (E log(φi)) =

0. Since this holds for all j we get that E log(φi) is equal to a constant. We normalize

these constants so that Eφi = (Di − 2d0)φi, where Di is a constant. We thus obtain

the corollary:

Corollary 1. E is affine if and only if the connection potentials φi are homogeneous.

We choose constants Di so that

Eφi = (Di − 2d0)φi. (2.73)

2.5 Compatible metric and Frobenius manifolds

Definition 7. Let (M,∇, ◦) be a Frob manifold. We call a symmetric bilinear form

g on TM a metric g (we do not impose any positivity condition). A metric g is

called compatible with (M,∇, ◦) if

1. ∇ is the Levi-Civita connection for g.

2. g(X ◦ Y, Z) = g(X, Y ◦ Z) for all X, Y ∈ TM .
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The second condition says that the tangent spaces of M are Frobenius algebras.

A Frob manifold with a compatible metric g is called a Frobenius manifold.

In flat coordinates, define Φγ :=
∑

δ g(Φ
δ∂δ, ∂γ). Taking two partial derivatives,

and using the flatness of g, we find that

∂α∂βΦγ = ∂α∂β
∑

δ

g(Φδ∂δ, ∂γ) =
∑

δ

g(∂α∂βΦ
δ∂δ, ∂γ) = g(∂α ◦ ∂β, ∂γ). (2.74)

Using the Frobenius algebra property, we see that ∂α∂βΦγ is symmetric in α, β, γ.

In particular ∂αΦβ and ∂βΦα differ by a constant. By adding linear terms to Φα, we

can make this constant 0. So we see that the 1-form
∑

α Φαdt
α is closed, which gives

locally the existence of a potential function Φ so that ∂α∂β∂γΦ = g(∂α ◦ ∂β, ∂γ) =

g(∂α, ∂β ◦ ∂γ).

If there is a flat identity, ∂0, then we have

∂0∂α∂βΦ = gαβ. (2.75)

We impose that the Euler field be conformal with respect to g. A conformal

vector field E is Euler if and only if EΦ = (D + 2d0) Φ, up to quadratic terms.

Suppose (M,∇, ◦) is a semisimple pre-Frob manifold and let us examine the

conditions in Theorem 2. For M to be Frob, first we need canonical coordinates. In

canonical coordinates, the metric must be diagonal, which can be seen by using the

Frobenius algebra property:

gij = (ei, ej) = (ei ◦ ei, ej) = g(ei, ei ◦ ej) = δijgij. (2.76)
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Let us call the nonzero diagonal components of the metric ηi. The Christoffel

symbols of the Levi-Civita connection are

Γi
jk =

1

2

∑

r

1

ηi
δir (∂kηjδjr + ∂jηkδkr − ∂rηjδjk) . (2.77)

Next we need to satisfy (2.21) and (2.22). Automatically Γi
jk is 0 for i 6= j 6= k 6= i,

so equation (2.21) holds. The non vanishing components are

Γi
ii =

1

2

∂iηi
ηi

(2.78)

Γi
ji =

1

2

∂jηi
ηi

, j 6= i (2.79)

Γi
ji =

1

2

∂jηi
ηi

, j 6= i (2.80)

Γi
jj = −1

2

∂iηj
ηi

, j 6= i (2.81)

In order for (2.22) to hold (Γi
jj = −Γi

ji), we need ∂jηi = ∂iηj, which is true if and

only if the exists locally a metric potential η, such that ηi = ∂iη.

We see that ηi are in fact the connection potentials for the Levi-Civita connec-

tion. We can once again define the rotation coefficients as in (2.34):

γij :=
1

2

ηij√
ηiηj

, (2.82)

where ηij = ∂i∂jη. The rotation coefficients are now symmetric in i, j. If we specify

canonical coordinates and a metric potential η, the Levi-Civita connection is flat if

and only if η satisfies the Darboux-Egoroff equations.
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In the presence of a conformal Euler field E,

Eηi = (D − 2d0)ηi, (2.83)

which is equivalent to

Eη = (D − d0)η, up to a constant. (2.84)

2.6 Summary

We provide a summary of semisimple Frob and Frobenius manifolds in the flat

coordinate and canonical coordinate descriptions.

Flat picture

Frobenius manifold.

• Flat metric g.

• Potential function Φ (defined up to quadratic terms in flat coordinates) such

that

g(X ◦ Y, Z) = g(X, Y ◦ Z) = XY ZΦ (2.85)

for all flat vector fields X, Y, Z.

• Conformal vector field E with conformal factor D, having the additional prop-

erty that

LE◦ = d0 ◦ . (2.86)

E is called the Euler field.

• Homogeneous flat coordinates t0, . . . , tn−1, with E(tα) = dα.

• Flat identity field ∂
∂t0

.

• EΦ = (D + 2d0) Φ plus quadratic terms, so that LEg = Dg, and LE◦ = d0◦.
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Frob manifold.

• Flat, torsion-free connection ∇.

• Potential vector Φ (defined up to an affine vector) such that

X ◦ Y = [X, [Y,Φ]] (2.87)

for all flat vector fields X, Y .

• Affine vector field E with the additional property that

LE◦ = d0 ◦ . (2.88)

E is called the Euler field.

• Homogeneous flat coordinates t0, . . . , tn−1, with E(tα) = dα.

• Flat identity field ∂
∂t0

.

• [E,Φ] = d0Φ up to an affine vector so that LE◦ = d0◦.

Semisimple picture

Frobenius manifold.

• Canonical coordinates y1, . . . , yn with ei ◦ ej = δijej, where ei =
∂
∂yi

.

• Metric potential η such that g is diagonal with components ηi.

• η satisfies the Darboux-Egoroff equations.

• Euler field E = d0 (y
1e1 + . . .+ ynen).

• Eη = (D − d0)η plus a constant (or equivalently Eηi = (D − 2d0)ηi), so that

E is conformal.

• eη equal to a constant (or equivalently eηi = 0), so that e is flat.

Frob manifold.
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• Canonical coordinates y1, . . . , yn with ei ◦ ej = δijej, where ei =
∂
∂yi

.

• Connection coefficients satisfying Γi
ij = Γi

ji = −Γi
jj for i 6= j, and Γi

jk = 0 for

i, j, k distinct. Connection potentials φi so that Γi
ji = ej

[
1
2
log φi

]
.

• The φi satisfy the generalized Darboux-Egoroff equations.

• Euler field E = d0 (y
1e1 + . . .+ ynen).

• Eφi = (Di − 2d0)φi, so that E is affine.

• eφi = 0, so that e is flat.

2.7 Structure connections

In the presence of an Euler field E, we can define two new flat connections,

called the first and second structure connections. We have already seen a partial

definition of the first structure connection. Sometimes these are called extended

structure connections, but we will avoid that terminology since the word extended

will already be used often in this thesis.

Let M̂ = M ×P
1, where P1 has coordinate λ. Denote by T̂ the pullback of TM

to M̂ . We will extend the connection ∇λ on TM defined in (2.5) to a meromorphic

connection ∇̂ on T̂ with poles along {0} ×M and {∞} ×M , using the Euler field

E.

Definition 8. The first structure connection is defined by

∇̂XY = ∇XY + λX ◦ Y,

d0∇̂ ∂
∂λ
Y = E ◦ Y +

1

λ
∇YE,

(2.89)

where X, Y are λ-independent vector fields.
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Proposition 7. Let M be a pre-Frob manifold, and let E be an affine vector field

on M . The first structure connection is flat if and only if M is Frob and E is Euler

(that is, LE◦ = d0◦).

Proof. Let E = E − d0λ
∂
∂λ
. Then E along with ∇-flat X generate TM̂ . We have

already seen that the curvature in the directions tangent to M vanish if and only

if M is Frob, since ∇̂ restricted to M is just ∇λ. It remains to check the other

directions. First we compute that

∇̂EY = ∇EY + λE ◦ Y − λE ◦ Y −∇YE = [E, Y ]. (2.90)

Assuming Y is ∇-flat, then

∇̂X∇̂EY = λ (X ◦ [E, Y ]) , (2.91)

where we used that [E, Y ] is ∇-flat because E is affine. Also, we have

∇̂E∇̂XY = ∇̂E (λX ◦ Y )

= λ[E,X ◦ Y ]− λd0X ◦ Y.
(2.92)

And finally

∇̂[E,X]Y = ∇̂[E,X]Y = λ ([E,X] ◦ Y ) . (2.93)

So the curvature [∇̂E , ∇̂X ]Y − ∇̂[E,X]Y vanishes if and only if

[E,X ◦ Y ]−X ◦ [E, Y ]− [E,X] ◦ Y = d0X ◦ Y, (2.94)

which is the condition for LE◦ = d0◦.
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Now we will define a second structure connection on T̂ . To do this, we will

exploit a symmetry of the Darboux-Egoroff equations (2.40), (2.41).

Proposition 8. Suppose φi satisfy the Darboux-Egoroff equations, and Eφi = (Di−

2)φi (we have normalized d0 = 1). Let

ěi = (yi − λ)ei, (2.95)

φ̌i = (yi − λ)aiφi, (2.96)

where the ai satisfy ai−aj = −(Di−Dj). Then ěi, φ̌i also satisfy the Darboux-Egoroff

equations.

Proof. We calculate that

γ̌ij =
1

2

ěiφ̌j√
φ̌iφ̌j

= (yi − λ)1−ai/2(yj − λ)aj/2γij, for i 6= j. (2.97)

Now it follows that

ěkγ̌ij = (yk − λ)(yi − λ)1−ai/2(yj − λ)aj/2ekγij

= (yk − λ)(yi − λ)1−ai/2(yj − λ)aj/2γikγkj

= γ̌ikγ̌kj,

(2.98)
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for i 6= j 6= k 6= i. Next, we find that

ěγ̌ij =
∑

k

(yk − λ)(yi − λ)1−ai/2(yj − λ)aj/2ekγij

+ (yi − λ)1−ai/2(yj − λ)aj/2 [(1− ai/2) + aj/2] γij

= (yi − λ)1−ai/2(yj − λ)aj/2

[
−λ
∑

k

ekγij +
∑

k

ykekγij + (1 +
aj − ai

2
)γij

]

= (yi − λ)1−ai/2(yj − λ)aj/2
[
−λeγij + Eγij +

(
1 +

aj − ai
2

)
γij

]
.

(2.99)

The first term in the brackets eγij = 0 by assumption. Since Eγij =
(

Dj−Di

2
− 1
)
γij,

and aj − ai = −(Dj −Di), the other two terms cancel, and so the whole expression

on the right vanishes.

When M has a compatible metric so that it is Frobenius, all the Di are equal

to the conformal factor D. We could take all ai = 1 in (2.96), and the symmetry is

induced by the coordinate change y̌i = log(yi − λ).

These new connection potentials φ̌ define a new flat connection ∇̌ which by

definition has connection coefficients

Γ̌i
ji =

1

2
ěj log

(
φ̌i

)
=

1

2

ějφ̌i

φ̌i

. (2.100)

Let us write this connection explicitly. For i 6= j, we have

∇̌ěi ěj =
1

2

ějφ̌i

φ̌i

+
1

2

ěiφ̌j

φ̌j

= (yi − λ)(yj − λ)

(
1

2

∂iφj

φj

ej +
∂jφi

φi

ei

)
.

(2.101)
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Therefore,

∇̌eiej =
1

2

∂iφj

φj

ej +
∂jφi

φi

ei = ∇eiej. (2.102)

We also have that

∇̌ěi ěi =
1

2

ěiφ̌i

φ̌i

ěi −
1

2

∑

j 6=i

ěiφ̌j

φ̌j

ěj

=
1

2
(yi − λ)2

[
∂iφi

φi

+
ai

yi − λ

]
ei −

1

2

∑

j 6=i

(yi − λ)(yj − λ)
∂iφj

φj

ej.

(2.103)

On the other hand,

∇̌ěi ěi = (yi − λ)∇̌ei

(
(yi − λ)ei

)
= (yi − λ)2

[
∇̌eiei +

1

yi − λ
ei

]
. (2.104)

So we get that

∇̌eiei =
1

2

[
eiφi

φi

− 2− ai
yi − λ

]
ei −

1

2

∑

j 6=i

yj − λ

yi − λ

∂iφj

φj

ej. (2.105)

We can write this connection in a more invariant way as follows. Consider ∇E

as an operator on TM :

∇E(ei) = ∇eiE

= ∇ei(y
1e1 + . . .+ ynen)

= (y1Γ1
1i + yiΓ1

ii)e1 + . . .+ (1 +
∑

r

yrΓi
ir)ei + . . .+ (ynΓn

ni + yiΓn
ii)en

=
1

2

∂iφ1

φ1

(y1 − yi)e1 + . . .+
Di

2
ei + . . .+

1

2

∂iφn

φn

(yn − yi)en,

(2.106)

31



where we have the homogeneity of φ to get

1 +
∑

r

yrΓi
ir = 1 +

1

2

∑

r

yr∂rφi

φi

=
Di

2
. (2.107)

Using (2.102), (2.105), and (2.106), we can write

∇̌eiej = ∇eiej −
(
∇E − Di

2
+

2− ai
2

)
1

yi − λ
δijei. (2.108)

Notice that by the condition for the symmetry, Di + ai = Dj + aj for all i, j, so

(2− ai −Di)/2 is some constant s. Also, δijei = ei ◦ ej.

If we define

U(X) = E ◦X, (2.109)

∇̌ can be written as

∇̌XY = ∇XY − (s id+∇E) (U − λ)−1 X ◦ Y. (2.110)

We define ∇̌ in the ∂/∂λ direction by

∇̌∂/∂λY = (s id+∇E) (U − λ)−1 Y. (2.111)

Definition 9. The second structure connection for a semisimple Frob manifold is

defined by

∇̌XY = ∇XY − (s id+∇E) (U − λ)−1 X ◦ Y, (2.112)

∇̌∂/∂λY = (s id+∇E) (U − λ)−1 Y, (2.113)

where X, Y are λ-independent vector fields, and s = (2−ai−Di)/2 with ai satisfying

the symmetry in Proposition 8.
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Note that we can pick any s we like, and this determines ai.

Proposition 9. Let M be a semisimple Frob manifold with Euler field E. Then the

second structure connection ∇̌ is flat.

Proof. We know that ∇̌ is flat in the directions tangent to M , since we constructed it

using a symmetry of the Darboux-Egoroff equations. Since [X, ∂/∂λ] = 0, it remains

to check that

∇̌ei∇̌∂/∂λej = ∇̌∂/∂λ∇̌eiej (2.114)

for al i, j. Let us collect the formulas for ∇̌ in the semisimple basis:

∇̌eiej =
1

2

∂jφi

φi

ei +
1

2

∂iφj

φj

ej, (2.115)

∇̌eiei =
1

2

[
eiφi

φi

− 2− ai
yi − λ

]
ei −

1

2

∑

j 6=i

yj − λ

yi − λ

eiφj

φj

ej, (2.116)

∇̌∂/∂λej =
1

2

2− aj
yj − λ

ej +
1

2

∑

k 6=j

yk − yj

yj − λ

ejφk

φk

ek. (2.117)

We have for i 6= j:

∇̌∂/∂λ∇̌ei(ej) = ∇̌∂/∂λ

(
1

2

∂jφi

φi

ei +
1

2

∂iφj

φj

ej

)

=
1

2

∂jφi

φi

[
1

2

2− ai
yi − λ

ei +
1

2

∑

k 6=i

yk − yi

yi − λ

∂iφk

φk

ek

]
+ (i ↔ j), (2.118)
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∇̌ei∇̌∂/∂λ(ej) = ∇̌ei

(
1

2

2− aj
yj − λ

ej +
1

2

∑

k 6=j

yk − yj

yj − λ

∂jφk

φk

ek

)

=
1

2

2− aj
yj − λ

(
1

2

∂jφi

φi

ei +
1

2

∂iφj

φj

ej

)

+
1

2

∑

k 6=j

ei

(
yk − yj

yj − λ

∂jφk

φk

)
ek

+
1

2

∑

k 6=j,i

yk − yj

yj − λ

∂jφk

φk

(
1

2

∂kφi

φi

ei +
1

2

∂iφk

φk

ek

)

+
1

2

yi − yj

yj − λ

∂jφi

φi

[
1

2

(
∂iφi

φi

− 2− ai
yi − λ

)
ei −

1

2

∑

k 6=i

yk − λ

yi − λ

∂iφk

φk

ek

]
. (2.119)

In (2.118) the coefficient of ei is

1

4

2− ai
yi − λ

∂jφi

φi

+
1

4

yi − yj

yj − λ

∂iφj∂jφi

φjφi

, (2.120)

whereas in (2.119) we get

1

4

2− ai
yj − λ

∂jφi

φi

+
1

2
ei

(
yi − yj

yj − λ

∂jφi

φi

)

+
1

4

(
∂iφi

φi

− 2− ai
yi − λ

)
yi − yj

yj − λ

∂jφi

φi

+
1

4

∑

k 6=i,j

yk − yj

yj − λ

∂jφk∂kφi

φkφi

. (2.121)
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We will use the following identity for the sum
∑

k in (2.121):

1

4

∑

k 6=i,j

yk − yj

yj − λ

∂jφk∂kφi

φkφi

=
1

yj − λ

√
φj√
φi

∑

k 6=i,j

γjkγki(y
k − yj)

=
1

yj − λ

√
φj√
φi

∑

k 6=i,j

(
ykekγji − yjγjkγki

)

=
1

yj − λ

√
φj√
φi

(
Eγji − yieiγji − yjejγji + yj(ei + ej)γji

)

=
1

yj − λ

√
φj√
φi

([
Di −Dj

2
− 1

]
γji − yieiγji + yjeiγji

)

=
1

2

1

yj − λ

{[
Di −Dj

2
− 1

]
∂jφi

φi

+ (yj − yi)

(
∂i∂jφi

φi

− 1

2

∂jφi∂iφj

φjφi

− 1

2

∂jφi∂iφi

φ2
i

)}

(2.122)

Using this identity, we look at the coefficient of
∂jφi

φi
in (2.121), which gives

1

4

2− aj
yj − λ

+
1

2

1

yj − λ
+

1

2

[
Di −Dj

2
− 1

]
1

yj − λ
− 1

4

2− ai
yi − λ

(
yi − yj

yj − λ

)

=
1

4

2− aj
yj − λ

+
1

4

Di −Dj

yj − λ
+

1

4

2− ai
yi − λ

(
yj − yi

yj − λ

)

=
1

4

2− aj
yj − λ

+
1

4

Di −Dj

yj − λ
+

1

4

2− ai
yi − λ

(
1− yi − λ

yj − λ

)

=
1

4

(
Di −Dj + ai − aj

yj − λ
+

2− ai
yi − λ

)
. (2.123)

Since Di −Dj + ai − aj = 0, the above is simply 1
4
2−ai
yi−λ

which matches the first term

in (2.120). The rest of the terms in (2.120) and (2.121) can be compared directly

without the use of any identities.

The coefficients of ej in (2.118) and (2.119) are seen to be equal by directly

comparing.
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Now we compare coefficients of ek for k 6= i 6= j 6= k. In (2.118), the coefficient

of ek is

1

4

yk − yi

yi − λ

∂jφi∂iφk

φiφk

+
1

4

yk − yj

yj − λ

∂iφj∂jφk

φjφk

=

1

4

(
yk − λ

yi − λ
− 1

)
∂jφi∂iφk

φiφk

+
1

4

(
yk − λ

yj − λ
− 1

)
∂iφj∂jφk

φjφk

. (2.124)

The coefficient of ek in (2.119) is

1

2
ei

(
yk − yj

yj − λ

∂jφk

φk

)
+

1

4

yk − yj

yj − λ

∂jφk∂iφk

φ2
k

− 1

4

yi − yj

yj − λ

yk − λ

yi − λ

∂jφi∂iφk

φiφk

=

1

2

(
yk − λ

yj − λ
− 1

)(
∂i∂jφk

φk

− ∂jφk∂iφk

φ2
k

)
+

1

4

(
yk − λ

yj − λ
− 1

)
∂jφk∂iφk

φ2
k

− 1

4

(
yi − λ

yj − λ
− 1

)
yk − λ

yi − λ

∂jφi∂iφk

φiφk

. (2.125)

(2.124) and (2.125) are seen to be equal by the following identity which is equivalent

to the generalized Darboux-Egoroff equations (see (2.43)):

∂i∂jφk

φk

=
1

2

(
∂jφi∂iφk

φiφk

+
∂iφj∂jφk

φjφk

+
∂jφk∂iφk

φ2
k

)
. (2.126)
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Finally, we must consider the case i = j:

∇̌∂/∂λ∇̌eiei = ∇̌∂/∂λ

[
1

2

(
∂iφi

φi

− 2− ai
yi − λ

)
ei −

1

2

∑

j 6=i

yj − λ

yi − λ

∂iφj

φj

ej

]

= −1

2

∂

∂λ

(
2− ai
yi − λ

)
ei

+
1

2

(
∂iφi

φi

− 2− ai
yi − λ

)(
1

2

2− ai
yi − λ

ei +
1

2

∑

j 6=i

yj − yi

yi − λ

∂iφj

φj

ej

)

− 1

2

∑

j 6=i

∂

∂λ

(
yj − λ

yi − λ

)
∂iφj

φj

ej

− 1

2

∑

j 6=i

yj − λ

yi − λ

∂iφj

φj

(
1

2

2− aj
yj − λ

ej +
1

2

∑

k 6=j

yk − yj

yj − λ

ejφk

φk

ek

)
, (2.127)

∇̌ei∇̌∂/∂λei = ∇̌ei

[
1

2

2− ai
yi − λ

ei +
1

2

∑

j 6=i

yj − yi

yi − λ

∂iφj

φj

ej

]

=
1

2
ei

(
2− ai
yi − λ

)
ei

+
1

2

2− ai
yi − λ

[
1

2

(
∂iφi

φi

− 2− ai
yi − λ

)
ei −

1

2

∑

j 6=i

yj − λ

yi − λ

∂iφj

φj

ej

]

+
1

2

∑

j 6=i

ei

(
yj − yi

yi − λ

∂iφj

φj

)
ej

+
1

2

∑

j 6=i

yj − yi

yi − λ

∂iφj

φj

(
1

2

∂jφi

φi

ei +
1

2

∂iφj

φj

ej

)
. (2.128)

The coefficients of ei in (2.127) and (2.128) are seen to be equal by directly comparing.
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In (2.127), the coefficient of ej (where j 6= i) is

1

4

(
∂iφi

φi

− 2− ai
yi − λ

)
yj − yi

yi − λ

∂iφj

φj

− 1

2

∂

∂λ

(
yj − λ

yi − λ

)
∂iφj

φj

− 1

4

yj − λ

yi − λ

2− aj
yj − λ

∂iφj

φj

− 1

4

∑

k 6=i,j

yk − λ

yi − λ

yj − yk

yk − λ

∂iφk

φk

∂kφj

φj

=
1

4

(
∂iφi

φi

− 2− ai
yi − λ

)
yj − yi

yi − λ

∂iφj

φj

− 1

2

∂

∂λ

(
yj − λ

yi − λ

)
∂iφj

φj

− 1

4

2− aj
yi − λ

∂iφj

φj

+
1

4

∑

k 6=i,j

yk − yj

yi − λ

∂iφk

φk

∂kφj

φj

. (2.129)

By a calculation similar to (2.122), we get that the sum 1
4

∑
k 6=i,j in (2.129) is equal

to

1

2

1

yi − λ

{[
Dj −Di

2
− 1

]
∂iφj

φj

+ (yj − yi)

(
∂i∂iφj

φj

− 1

2

∂iφj∂iφi

φiφj

− 1

2

∂iφj∂iφj

φ2
j

)}
.

(2.130)

The coefficient of ej in (2.128) is

− 1

4

2− ai
yi − λ

yj − λ

yi − λ

∂iφj

φj

+
1

2
ei

(
yj − yi

yi − λ

∂iφj

φj

)
+

1

4

yj − yi

yi − λ

∂iφj∂iφj

φ2
j

. (2.131)

We need to show that (2.129) and (2.131) are equal. We first look at the co-

efficients of
∂iφj

φj
. In (2.129) (replacing the sum by (2.130)) the coefficient of

∂iφj

φj
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is

− 1

4

2− ai
yi − λ

(
yj − yi

yi − λ

)
− 1

2

∂

∂λ

(
yj − λ

yi − λ

)
− 1

4

2− aj
yi − λ

+
1

2

1

yi − λ

[
Dj −Di

2
− 1

]

= −1

4

2− ai
yi − λ

yj − λ

yi − λ
+

1

4

1

yi − λ
(aj − ai +Dj −Di)−

1

2

∂

∂λ

(
yj − λ

yi − λ

)
− 1

2

1

yi − λ

= −1

4

2− ai
yi − λ

yj − λ

yi − λ
− 1

2

∂

∂λ

(
yj − λ

yi − λ

)
− 1

2

1

yi − λ
, (2.132)

where we have used that aj − ai +Dj −Di = 0. In (2.131), the coefficient of
∂iφj

φj
is

− 1

4

2− ai
yi − λ

yj − λ

yi − λ
+

1

2
ei

(
yj − yi

yi − λ

)
. (2.133)

The previous two expressions are equal since

− 1

2

∂

∂λ

(
yj − λ

yi − λ

)
− 1

2

1

yi − λ
= −1

2

yj − λ

(yi − λ)2
(2.134)

while also

1

2
ei

(
yj − yi

yi − λ

)
=

1

2
ei

(
yj − λ

yi − λ
− 1

)
= −1

2

yj − λ

(yi − λ)2
. (2.135)

All other terms in (2.129) and (2.131) are seen to be equal by directly comparing.
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CHAPTER 3
Extensions of Frob Manifolds

In the previous chapter, we have seen Frob manifolds and morphisms of Frob

manifolds. In this chapter, we define a particular kind of morphism called an exten-

sion. After giving a general definition, we focus on rank-1 extensions and show that

the OWDVV equations [6] arise as the associativity of this extension.

We examine what needs to happen algebraically for rank-1 extensions to be

associative. These associativity considerations affect the potential conditions of the

extended Frob manifold. We look at this from both the flat and canonical coordinate

picture. This interplay between the algebra and the potentiality can be seen very

strongly in Theorem 3, which gives the most succinct criteria to specify a Frob

extension.

Finally we examine isomonodromic deformations under extensions.

3.1 Definition

Definition 10. Let M be a Frob manifold. An extension of M is a Frob manifold

N that fits into an exact sequence of Frob manifolds, which we denote by

0 → I → N
π−→ M → 0. (3.1)

All the arrows are morphisms of Frob manifolds, as in Definition 3. By an exact

sequence, we mean that:

1. I → N
π−→ M is a fibre bundle.
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2. For all p, 0 → TpI → TpN → Tπ(p)M → 0 is an exact sequence of algebras.

We will call the dimension of I the rank of the extension.

Another extension Ñ is equivalent to N if there exists an isomorphism of Frob

manifolds φ : N → Ñ such that

π̃ ◦ φ = π. (3.2)

Such an isomorphism can be viewed as an automorphism of N , or as a change of

coordinates.

3.2 Flat coordinates and associativity

LetM be an n-dimensional Frob manifold with local flat coordinates t0, . . . , tn−1,

and local vector potential Φ. We will try to build an extension N of M . For local

flat coordinates on N , we use t0, . . . , tn−1 along with new flat coordinates u1, . . . , uk

for the fibre of π. These coordinates define the flat structure on N .

Now we look at the multiplication. Since

π∗

(
∂

∂tα
◦p

∂

∂tα

)
= π∗

(
∂

∂tα

)
◦π(p) π∗

(
∂

∂tα

)
, (3.3)

only the components of ∂
∂tα

◦N ∂
∂tα

in the kernel of π∗ (i.e. the u components) can

depend on u. The multiplication table therefore is

∂α ◦ ∂β =
n−1∑

γ=0

Φαβ
γ∂γ +

k∑

a=1

Ωαβ
a∂a,

∂α ◦ ∂a =
k∑

b=1

Ωαa
b∂b,

∂a ◦ ∂b =
k∑

b=1

Ωab
c∂c,

(3.4)
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where Φ is the pullback of the vector potential on M , and Ω1, . . . ,Ωk are extended

potential components (which in general depend on u). The total vector potential for

N has components
(
Φ0, . . . ,Φn−1,Ω1, . . . ,Ωk

)
. (3.5)

For notational simplicity in (3.4), we have written ∂α = ∂
∂tα

, ∂a = ∂
∂ua , and denoted

partial derivatives of Φ and Ω by subscripts, with Greek letters indexing t and Roman

letters indexing u.

The associativity equations for the multiplication (3.4) are

1.
n−1∑

δ=0

Φαβ
δΩδγ

a +
k∑

b=1

Ωαβ
bΩbγ

a =
n−1∑

δ=0

Φβγ
δΩδα

a +
k∑

b=1

Ωβγ
bΩbα

a. (3.6)

2.
n−1∑

γ=0

Φαβ
γΩγa

b +
k∑

c=1

Ωαβ
cΩca

b =
k∑

c=1

Ωβa
cΩcα

b. (3.7)

3.
k∑

d=1

Ωαa
dΩdb

c =
k∑

d=1

Ωab
dΩdα

c. (3.8)

4.
k∑

e=1

Ωab
eΩec

d =
k∑

e=1

Ωbc
eΩea

d. (3.9)

These come from checking the ∂∗ components of (∂α ◦ ∂β) ◦ ∂γ = ∂α ◦ (∂β ◦ ∂γ),

(∂α◦∂β)◦∂a = ∂α◦(∂β◦∂a), (∂α◦∂a)◦∂b = ∂α◦(∂a◦∂b), and (∂a◦∂b)◦∂c = ∂a◦(∂b◦∂c).

The other components correspond to associativity on M , and we omit these (we

assume that M is associative).
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Automorphisms of N which commute with π are affine transformations of the

form 

t̃

ũ


 =



1 0

A B






t

u


+ C, (3.10)

where we have written the coordinates in column vectors. The associativity equations

for the extension are invariant under these transformations.

In order to have an identity field ∂0 =
∂
∂t0

, as in (2.50), we must impose

Ω0a
b = δa

b. (3.11)

If M has an Euler field EM , we can extend the Euler field to N (in such a way

that AdE acts semisimply) by

E = EM +
k∑

a=1

d∗iu
a∂a (3.12)

(we can replace d∗au∂a by a term sa∂a whenever d∗a = 0). By (2.59), E is an Euler

field for N if and only if

EΩa = (d0 + d∗a)Ω
a + linear terms. (3.13)

3.3 Rank-1 Extensions

We will now focus on the case where I is 1-dimensional. We specialize the

general associativity equations to rank-1 to arrive at the OWDVV equations. Then

we study the algebra of rank-1 extensions.

We can divide the algebra of extensions into two types. In the first type, the

algebra is that of an extension by a module, and the associativity is related to
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Hochschild cohomology. The second type is of more interest to us, and we call it an

auxiliary extension.

These algebraic considerations determine how to make the extended multiplica-

tion associative. We then look at different criteria for the extended multiplication to

be potential.

3.3.1 The open WDVV equations

Locally, we pick flat coordinates t0, . . . , tn−1, u on N such that π is the projection

onto the tα. From the general case, the multiplication table is

∂α ◦ ∂β =
n−1∑

γ=1

Φαβ
γ∂γ + Ωαβ∂∗,

∂i ◦ ∂∗ = Ωi∗∂∗,

∂∗ ◦ ∂∗ = Ω∗∗∂∗.

(3.14)

We will sometimes refer to Ω as the extended potential. For notational simplicity in

(3.14), we have used ∗ as the index for u, and we have dropped the superscript on

Ω.

There are only two associativity conditions to check (compared with four in the

case of a general rank extension). They are

1.
n−1∑

δ=1

Φαβ
δΩδγ + ΩαβΩ∗γ =

n−1∑

δ=1

Φβγ
δΩδα + ΩβγΩ∗α, (3.15)

2.
∑

γ

Φαβ
γΩγ∗ + ΩαβΩ∗∗ = Ωα∗Ω∗β. (3.16)
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These are called the open WDVV equations. They come from checking (∂α◦∂β)◦∂γ =

∂α ◦ (∂β ◦ ∂γ) and (∂α ◦ ∂β) ◦ ∂∗ = ∂α ◦ (∂β ◦ ∂∗).

Specializing (3.10) to rank-1, the automorphisms of N which commute with π

are of the form

t̃ = t, ũ = f(t, u), (3.17)

where f is a linear polynomial.

In order to have an identity field ∂0, we must have Ωi∗ = δi0. We can extend an

Euler field EM on M to an Euler field E on N by

E = EM + duu∂∗. (3.18)

For E to be Euler, we must have

EΩ = (d0 + du)Ω + linear terms. (3.19)

3.3.2 Algebra

Let A be a n-dimensional commutative algebra, and e1, . . . , en a basis for A. We

denote the multiplication in A by

ei · ej =
∑

k

Cij
kek, (3.20)

where the Cij
k are symmetric in i, j and satisfy the associativity condition

∑

r

Cij
rCrk

l =
∑

r

Ckj
rCri

l, (3.21)

for all i, j, k, and l.
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Consider the possible rank-1 extensions of A. That is, algebras E which fit into

the short exact sequence

0 → I → E
π−→ A → 0, (3.22)

where I is a 1-dimensional ideal of E. Let e∗ be a generator of this ideal. We chose

a section A → E (that is, a map such that the composition A → E
π−→ A is the

identity), and denote the images of ei under this section by the same symbols. The

most general multiplication for E which fits into the above exact sequence is

ei · ej =
∑

k

Cij
kek + Fije∗,

ei · e∗ = Gie∗,

e∗ · e∗ = He∗.

(3.23)

Associativity of the multiplication in E imposes constraints on Fij, Gi, and H. Ex-

plicitly, these are

∑

r

Cij
rFrk + FijGk =

∑

r

Cik
rFrj + FjkGi, (3.24)

∑

r

Cij
rGr + FijH = GiGj, (3.25)

for all i, j, k. These constraints come from looking at the e∗ component in (ei·ej)·ek =

ei · (ej · ek), and (ei · ej) · e∗ = ei · (ej · e∗). The solutions to these equations are very

different depending on whether or not the H term is 0. We will call H the auxiliary

term.

Picking a different section amounts to choosing a new basis of the form

ẽi = ei − fie∗ for i = 1 . . . n, ẽ∗ = ce∗, (3.26)
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where fi and c are constants. The structure constants F̃ij, G̃i, H̃ for this new basis

are related to the old ones by

F̃ij =
1

c

(
Fij +

∑

r

Cij
rfr − fiGj −Gifj + fifjH

)
, (3.27)

G̃i = Gi − fiH, (3.28)

H̃ = cH. (3.29)

We can consider these structure constants as defining another extension Ẽ with

basis ẽi, ẽ∗. Of course, these algebras are isomorphic via ei 7→ ẽi, e∗ 7→ ẽ∗, and this

isomorphism commutes with the projection to A. We therefore consider extensions

with structure constants related by (3.27), (3.28), (3.29) to be equivalent.

Extension by a module

Let us consider the case where the auxilary termH = 0. The second associativity

equation (3.25) says that I is an A-module. Equation (3.24) then says that Fij gives

a cocyle in the sense of Hochschild cohomology (i.e. the Fij represent an element of

HH2(A, I), see for example [11]). If we pick a new basis of the form

ẽi = ei − fie∗ for i = 1 . . . n, ẽ∗ = e∗, (3.30)

with fi some constants, the cocyle with respect to this new basis is

F̃ij = Fij +
∑

r

Cij
rfr −Gifj − fiGj. (3.31)

The difference F̃ij − Fij is trivial in Hochschild cohomology.
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Auxiliary extension

When the auxiliary term H is nonzero, we will call it an auxiliary extension.

From the second associativity equation (3.25) we find that

Fij =
(GiGj −

∑
r Cij

rGr)

H
. (3.32)

If we plug this into the first associativity equation (3.24), we find that it is automat-

ically satisfied. So an extension is completely determined given any Gi and H 6= 0.

By a choice of basis as in (3.26) with fi = Gi/H and c = 1/H, i.e.

ei −
Gi

H
e∗ for i = 1 . . . n,

1

H
e∗, (3.33)

all of these extensions are equivalent to the extension with Fij = 0, Gi = 0, and

H = 1.

Extension of a semisimple algebra

Now let us consider when A is semisimple. We can take the ei to be the idem-

potents of A so that

ei · ej = δijei. (3.34)

The associativity equations for the extension become

δijFjk + FijGk = δjkFik + FjkGi, (3.35)

δijGj + FijH = GiGj. (3.36)

Extension of a semisimple algebra by a module

Let A be a semisimple algebra. As seen previously, if H = 0, then I is an

A-module. Since e1 + . . .+ en is the identity in A, we much have
∑

i Gi = 1. By the
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second associativity equation (3.36), we must have Gi(Gj − δij) = 0, so that Gi is

either 1 or 0, and there can only be 1 non-zero Gi. Without loss of generality, take

this i = 1. Using the other associativity equation (3.35), we conclude that Fii = −Fi1

for i 6= 1, and Fij = 0 for all i, j such that i 6= j, i 6= 1, j 6= 1. All these extensions

are equivalent to the extension with all Fij = 0 by the choice of basis

ei − F1ie∗ for i = 1 . . . n, e∗. (3.37)

Auxiliary extension of a semisimple algebra

If H is nonzero, then the associativity equations (3.35), (3.36) are solved by

Fij =
Gi(Gj − δij)

H
. (3.38)

By a change of basis with fi =
(∑

j Gj − 1
)
/(nH) (in the notation of equation

(3.26)), we can normalize the section so that
∑

i Gi = 1.

All of these extensions are isomorphic to the semisimple algebra of dimension

n+ 1 by the choice of basis

ei −
Gi

H
e∗ for i = 1 . . . n,

1

H
e∗. (3.39)

The normalization condition
∑

i Gi = 1 just says that the identity in A is sent to the

identity in E by the section.

3.3.3 Potentiality

Comparing the multiplication tables (3.23) and (3.14), we will examine what

the algebraic cases previously considered mean for the potential.
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Extension by a module

Let us consider the case when H = 0, which corresponds to Ω∗∗ = 0. This

implies

Ω = A+Bu, (3.40)

where A,B are pullbacks of functions on M (i.e. they are only functions of the t

variables). Collecting coefficients of powers of u, the associativity equations give the

following constraints on A and B:

∑

δ

Φαβ
δAδγ + AαβBγ = (α ↔ γ), (3.41)

∑

δ

Φαβ
δBδγ +BαβBγ = (α ↔ γ), (3.42)

∑

δ

Φαβ
δBδ = BαBβ. (3.43)

By differentiating (3.43), we find

Φαβ
δBδγ = BαγBβ +BαBβγ − Φαβγ

δBδ. (3.44)

If we substitute this into the left hand side of (3.42), we find an expression which is

symmetric in α, β, γ, so (3.42) follows from (3.43). Algebraically speaking, at each

tangent space, B gives a module structure, and A gives a cocycle in the sense of

Hochschild cohomology.

We can consider a change of coordinates that commutes with π and also preserves

the module structure:

t̃α = tα, (3.45)

ũ = u+ f(t), (3.46)
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where f(t) is a linear polynomial. The coordinate vector fields are now

∂̃α = ∂α − fα∂∗, (3.47)

∂̃∗ = ∂∗, (3.48)

where the derivatives fα are constant. In the new coordinates,

Ω̃αβ = ∂̃α ◦ ∂̃β = Aαβ + Φγ
αβfγ − fαBβ − Bαfβ + uBαβ, (3.49)

so

Ãαβ = Aαβ +
∑

δ

Φαβ
δfδ − Bαfβ − fαBβ, (3.50)

and

B̃αβ = Bαβ. (3.51)

We see that Ãαβ −Aαβ is trivial in Hochschild cohomology. The extended potential

in the new coordinates is

Ω̃ = A+
∑

γ

Φγfγ + uB. (3.52)

We summarize what we have just shown in a proposition.

Proposition 10. Let M be a Frob manifold with potential Φ, and flat coordinates

tα. Let A and B be functions on M satisfying

∑

δ

Φαβ
δBδ = BαBβ, (3.53)

and
∑

δ

Φαβ
δAδγ + AαβBγ = (α ↔ γ). (3.54)
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Then there exists a rank-1 extension N of M with extended flat coordinate u and

extended potential Ω = A+Bu.

At each point of N , the tangent space has the structure of an extension by a

module generated by ∂
∂u

with Aαβ a 2-cocycle in the sense of Hochschild cohomology.

After a change of coordinates

t̃α = tα, (3.55)

ũ = u+ f(t), (3.56)

where f(t) is a linear polynomial, the cocycles Ãαβ and Aαβ are cohomologous.

Auxiliary extension

Now consider the case when the auxiliary term H, which corresponds to Ω∗∗, is

nonzero.

We want there to exist an extended potential Ω such that

Ωαβ = Fαβ,

Ω∗α = Gα,

Ω∗∗ = H.

(3.57)

For such a potential to exist, we need

∂γΩαβ = ∂αΩγβ, (3.58)

∂∗Ωαβ = ∂αΩ∗β, (3.59)

∂∗Ω∗α = ∂αΩ∗∗. (3.60)
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Suppose we are given θ = Ω∗. The last potential condition (3.60) holds auto-

matically. From (3.32), the extended multiplication is associative if

Ωαβ =
1

θ∗
(θαθβ − Φαβ

γθγ) , (3.61)

where for notational simplicity, we are implying summation over repeated upper and

lower indices.

Using the associativity condition (3.61), the second potential condition (3.59) is

explicitly

θαβ = ∂∗Ωαβ =
1

θ∗
(θα∗θβ + θαθβ∗ − Φαβ

γθγ∗)−
θ∗∗

(θ∗)
2 (θαθβ − Φαβ

γθγ) . (3.62)

If this holds, then the first potential condition (3.58) holds as well:

∂γΩαβ =
1

θ∗

(
θαγθβ + θαθβγ − Φαβγ

δθδ − Φαβ
δθδγ

)
− θ∗γ

(θ∗)
2

(
θαθβ − Φαβ

δθδ
)

=
θβ
θ∗

[
1

θ∗

(
θα∗θγ + θαθγ∗ − Φαγ

δθδ∗
)
− θ∗∗

(θ∗)
2

(
θαθγ − Φαγ

δθδ
)]

+
θα
θ∗

[
1

θ∗

(
θβ∗θγ + θβθγ∗ − Φβγ

δθδ∗
)
− θ∗∗

(θ∗)
2

(
θβθγ − Φβγ

δθδ
)]

− Φαβ
δ

θ∗

[
1

θ∗
(θδ∗θγ + θδθγ∗ − Φδγ

εθε∗)−
θ∗∗

(θ∗)
2 (θδθγ − Φδγ

εθε)

]

− Φαβγ
δθδ

θ∗
− θ∗γ

(θ∗)
2

(
θαθβ − Φαβ

δθδ
)

=
1

(θ∗)
2

[
(θα∗θβθγ + . . .)−

(
Φαβ

δθδ∗θγ + . . .
)
+ Φαβ

δΦδγ
εθε∗
]

− θ∗∗

(θ∗)
3

[
2θαθβθγ −

(
Φαβ

δθδθγ + . . .
)
+ Φαβ

δΦδγ
εθε
]

− Φαβγ
δθδ

θ∗
.

(3.63)
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The first equality comes from using (3.62) to replace θαβ, then we collect terms. The

dots indicate permutations of α, β, γ. From the last expression, we see that ∂γΩαβ is

symmetric in α, β, γ, hence the first potential condition holds.

We have shown the following theorem:

Theorem 3. Let M be a n-dimensional Frob manifold with flat coordinates tα and

vector potential Φ. Let θ = θ(t0, . . . , tn−1, u) be a function satisfying θ∗ 6= 0 and

θαβ = ∂∗

[
1

θ∗
(θαθβ − Φαβ

γθγ)

]
. (3.64)

Then there exists a unique rank-1 extension of M with flat coordinates tα, u and

extended potential Ω with Ω∗ = θ.

Extension of semisimple Frob manifolds

Let yi be canonical coordinates onM , with ei =
∂
∂i
, and let u be a flat coordinate

for the fibre, with e∗ =
∂
∂u
. The multiplication in N is given by

ei ◦ ej = δijei + Fije∗,

ei ◦ e∗ = Gie∗,

e∗ ◦ e∗ = He∗.

(3.65)
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Proposition 11. The pre-Frob manifold with multiplication defined by (3.65) is

potential if and only if

∑

r

FirΓ
r
jk + ∂iFjk =

∑

r

FjlΓ
r
ik + ∂jFik, (3.66)

∑

r

GrΓ
r
jk + ∂∗Fjk = ∂jGk, (3.67)

∂iGj = ∂jGi, (3.68)

∂∗Gj = ∂jH, (3.69)

where Γ are the connection coefficients in canonical coordinates on M .

Proof. By Theorem 1, we need the λ-linear terms in the curvature of the structure

connection to vanish. Computing this, we arrive at

ei ◦ (∇jek) +∇i(ej ◦ ek) = (i ↔ j), (3.70)

e∗ ◦ (∇jek) +∇∗(ej ◦ ek) = (∗ ↔ j), (3.71)

ei ◦ (∇je∗) +∇i(ej ◦ e∗) = (i ↔ j), (3.72)

e∗ ◦ (∇je∗) +∇i(e∗ ◦ e∗) = (∗ ↔ j). (3.73)

The ei components of the first equation are equal since M is potential. There are

only e∗ components for the last three equations. These equations, along with the e∗

component of the first equation give the lemma.

The last two equations (3.68), (3.69) give the existence of a function θ = θ(yi, u)

such that ∂iθ = Gi, and ∂∗θ = H. The Fij are not in general derivatives.
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If we define the 1-forms µi =
∑

j Fijdy
j, then the equations (3.66), (3.67) can

be restated as

∇iµj = ∇jµi, (3.74)

∇∗µj = ∇jdθ. (3.75)

Extension of semisimple Frob manifolds by a module

When H = θ∗ = 0 in (3.65), we have the algebraic structure of an extension by

a module. Referring to the results in 3.3.2 on modules over semisimple algebras, we

conclude that:

• All the Gi are zero except for, say, i = 1. So we have that θ = y1.

• Fij = 0 except for F1i = Fi1 = −Fii.

From equation (3.67) we find that:

Fij = Eij − uΓ1
ij, (3.76)

where the components Eij do not depend on u. Additionally, the Eij must satisfy

the cocyle condition (3.66).

Comparing with (3.40), since y1 = θ = Ω∗ we see that Ω = A+ uy1. Note that

B = yi are the solutions to (3.43). The differential dyi is a homomorphism between

the algebra TpM and C.

Auxiliary extension of a semisimple Frob manifold

When H = θ∗ 6= 0 in (3.65), we have by (3.38) that

Fij =
Gi (Gj − δij)

H
=

θi (θj − δij)

θ∗
. (3.77)
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This ensures our extension is associative. For the extension to be potential, we

have the following proposition, which is essentially a restatement of Theorem 3 in

canonical coordinates.

Proposition 12. Let M be a semisimple Frob manifold with canonical coordinates

yi. Let N be the associative pre-Frob extension determined by a function θ(yi, u).

That is,

H = θ∗, Gi = θi, Fij =
θi (θj − δij)

θ∗
, (3.78)

with multiplication given by (3.65). Then N is potential (hence Frob) if and only if

∇idθ =
∑

j

∂∗

(
θi (θj − δij)

θ∗

)
dyj. (3.79)

More explicitly, this condition is

θjk =
1

2

(
θj
∂jφk

φk

+ θk
∂kφj

φj

)
+ ∂∗

(
θjθk
θ∗

)
, j 6= k,

θjj =
1

2

(
θj
∂jφj

φj

−
∑

r 6=j

θr
∂jφr

φr

)
+ ∂∗

(
θj(θj − 1)

θ∗

)
,

(3.80)

where φi are the connection potentials for M .

Proof. The conditions (3.80) are (3.67) written more explicitly by using the proper-

ties of the connection coefficients in canonical coordinates (Proposition 2).

Since we have specified θ = Ω∗, we can use Theorem (3). The condition (3.67)

is (3.59) rewritten in canonical coordinates (to see this, start with equation (3.71)

and change to flat coordinates). So by the theorem, equation (3.66), which is (3.58)

rewritten in canonical coordinates, follows.
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Algebraically, we know that an auxiliary extension of a semisimple algebra is

semisimple. It turns out from the potential conditions that we also have canonical

coordinates on the extended Frob manifold, i.e. the idempotent fields which are

determined algebraically are actually coordinate vector fields.

Proposition 13. Let M be a semisimple Frob manifold and N an extension with

θ∗ = Ω∗∗ 6= 0. Then N is semisimple.

Proof. Let wi = yi, x = θ(yi, u). These are canonical coordinates since θi = Gi, θ∗ =

H, and therefore

∂

∂wi
= ei −

Gi

H
e∗,

∂

∂x
=

1

H
e∗, (3.81)

which by (3.39) is a semisimple basis for the extended algebra TpN at each point

p.

Now that we know an auxiliary extension of a semisimple Frob manifold is

semisimple, we examine what the connection potentials are.

Proposition 14. Let M be a semisimple Frob manifold with canonical coordinates

yi. Let N be the semisimple Frob extension determined by a function θ with θ∗ 6= 0,

and wi = yi, x = θ the canonical coordinates on N . The connection potentials for N

are the pullbacks of the connection potentials for M along with the new connection

potential for the x direction given by φx = θ−2
∗ .

Proof. Using that ∂x = 1
θ∗
∂∗, we compute

∇∂x∂x =

(
∂x

1

θ∗

)
∂∗ = (−∂x log θ∗) ∂x, (3.82)

∇∂wi∂x =

(
∂

∂wi

1

θ∗

)
∂∗ =

(
− ∂

∂wi
log θ∗

)
∂x, (3.83)
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which shows that

Γx
xx = ∂x

[
1

2
log θ−2

∗

]
, (3.84)

Γx
xi = −Γx

ii =
∂

∂wi

[
1

2
log θ−2

∗

]
. (3.85)

and additionally,

Γi
xx = −Γi

xi = 0. (3.86)

Next we compute

∇∂wi

∂

∂wi
= ∇∂yi−(θi/θ∗)∂∗

(
∂

∂yj
− θj

θ∗
∂∗

)

=
∑

k

Γk
ij

∂

∂yk
+

(
θi
θ∗
∂∗

[
θj
θ∗

])
∂∗

=
∑

k

Γk
ij

∂

∂wk
+

(∑

k

θkΓ
k
ij + ∂∗

(
θiθj
θ∗

)
− θij

)
∂x.

(3.87)

For i 6= j, we have Fij =
θiθj
θ∗

, and component of ∂x in the last line is 0 by the potential

condition (3.67). This is equivalent to the fact that Γx
ij = 0, which is automatically

true by (2.21).

In other words, with ∂i =
∂

∂wi , ∂x = ∂
∂x
, we have

∇i∂j = Γi
ij∂i + Γj

ij∂j, i 6= j,

∇i∂i =
∑

k

Γk
ii∂k + Γx

ii∂x,

∇i∂x = ∇x∂i = Γx
xi∂x,

∇x∂x = Γx
xx∂x,

(3.88)
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where Γk
ij are the pullbacks of the connection coefficients in canonical coordinates on

M , and

−Γx
ii = Γx

ix = Γx
xi = ∂i

[
1

2
log(θ−2

∗ )

]
,

Γx
xx = ∂x

[
1

2
log(θ−2

∗ )

]
.

(3.89)

In the presence of an Euler field E with d∗ the degree of u, Eθ∗ = (d0 − d∗)θ∗,

since θ∗ = Ω∗∗. Therefore, since φx = θ−2
∗ ,

Eφx = (Dx − 2d0)φx, (3.90)

with Dx = 2d∗, in the notation of (2.73).

3.3.4 Summary

We summarize extensions of a semisimple Frob manifoldM with flat coordinates

tα, vector potential Φ, and canonical coordinates yi. We let u be the extended flat

coordinate, and we have an extended Euler field E = EM + d∗u∂∗.

Extension by a module

• Extended potential Ω = A+uB where A,B are functions of t, so that Ω∗∗ = 0.

• B = yi for some i, equivalently BαBβ =
∑

γ Φαβ
γ∂γ.

• A satisfies the cocyle condition

∑

δ

Φαβ
δAδγ + AαβBγ =

∑

δ

Φγβ
δAδα + AγβBα. (3.91)

• e = ∂
∂t0

is automatically an identity field.

• EΩ = (d0 + d∗)Ω + linear terms, so that E is Euler.

Auxiliary extension

• Ω∗∗ 6= 0 so that the auxiliary term in the multiplication is nonzero.
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• Ω satisfies open WDVV equations. Alternatively, specify θ = Ω∗, where θ

satisfies the rank-1 potential equation in Theorem (3).

• eθ = 1 or Ω∗i = δi0, so that e = ∂
∂t0

is the identity field.

• Eθ = d0θ up to a constant, or EΩ = (d0 + d∗)Ω up to linear terms, so that E

is Euler.

• The extended Frob manifold N is semisimple with canonical coordinates

wi = yi, x = θ. (3.92)

• Connection potential for the x direction φx = 1
(θ∗)2

. Eφx = (2d∗ − 2d0)φx.

3.4 Extended Isomonodromy

Let (M,∇, ◦, E) be a Frob manifold with Euler field, and P
1
λ the projective line

with coordinate λ. Recall from 2.7 the second structure connection on the pullback

of TM to M × P
1
λ. It can be written as

∇̌ = ∇+
∑

i

Ai(y
1, . . . , yn)

d(λ− yi)

λ− yi
, (3.93)

where yi are the canonical coordinates on M . The Ai are operators TM → TM

given by

Ai = APi, (3.94)

where

A = − (s id+∇E) , (3.95)

with s = (2− ai −Di)/2 (ai satisfies the symmetry in proposition 8), and

Pi = ei◦ , (3.96)
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which satisfies
∑

i Pi = id.

Let T ∼= C
n be the vector space of flat sections of ∇. Ai can be viewed as an

element of EndT which depends on yi. By restricting ∇̌ to P
1
λ, we get a C

n vector

bundle over P1
λ with connection

∑

i

Ai(y
1, . . . , yn)

dλ

λ− yi
. (3.97)

This is a Fuchsian system with poles at yi. By the flatness of ∇̌, varying the position

of the poles is isomonodromic.

Taking flat homogeneous coordinate vector fields ∂α as a basis for T , we can

write A, Pi, and Ai as matrices. In components we get

(A)βα = − (s+ dα) δ
β
α, (3.98)

(Pi)
β
α =

∂tβ

∂yi
∂yi

∂tα
. (3.99)

Now we consider a rank-1 auxiliary extension of M

0 → I → M̃ → M → 0. (3.100)

From Proposition 13, M̃ is semisimple with canonical coordinates ỹ1 = y1, . . . , ỹn =

yn, and x = θ(yi, u).

From Proposition 14, the connection potentials on M̃ are the connection poten-

tials from M , φ1, . . . , φn along with a new connection potential φx. Then we have

a symmetry of the Darboux-Egoroff equations on M̃ (see Proposition 8) with ai the

same as for M , and ax = 2(1− d∗ − s). This produces a second structure connection

with the same s as for M .
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The second structure connection for M̃ can be written in the form

ˇ̃∇ = ∇̃+
∑

i

Ãi(ỹ
1, . . . , ỹn)

d(λ− ỹi)

λ− ỹi
+ Ãx

d(λ− x)

λ− x
. (3.101)

Proposition 15. The matrices for (3.101) are given by the following:

Ã =



A 0

0 ã


 , where ã = −(s+ d∗), (3.102)

where s is the constant (2−ai−Di)/2 with ai satisfying the symmetry in proposition

8,

P̃i =



Pi 0

vi 0


 , with vi = − θi

θ∗

(
∂yi

∂t0
, . . . ,

∂yi

∂tn−1

)
, (3.103)

P̃x =




0 0

vx 1


 , with vx =

1

θ∗

(
∂θ

∂t0
, . . . ,

∂θ

∂tn−1

)
, (3.104)

where A and Pi are the matrices associated with M .

Proof. Since ∇E(∂∗) = ∇∗E = d∗∂∗, this gives the last component ã in Ã.

From (3.81) we have that

∂

∂ỹi
=

∂

∂yi
− θi

θ∗

∂

∂u
, (3.105)

and

∂

∂x
=

1

θ∗

∂

∂u
. (3.106)

The flat coordinates on M̃ are t̃α = tα along with the extended flat coordinate u.
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Using this, we compute:

∂t̃β

∂ỹi
∂ỹi

∂t̃α
=

([
∂

∂yi
− θi

θ∗

∂

∂u

]
tβ
)

∂yi

∂tα
=

∂tβ

∂yi
∂yi

∂tα
, (3.107)

∂u

∂ỹi
∂ỹi

∂t̃α
=

([
∂

∂yi
− θi

θ∗

∂

∂u

]
u

)
∂yi

∂tα
= − θi

θ∗

∂yi

∂tα
, (3.108)

∂t̃β

∂ỹi
∂ỹi

∂u
= 0, (3.109)

∂u

∂ỹi
∂ỹi

∂u
= 0. (3.110)

The vanishing of the last two equations is due to ∂ỹi

∂u
= 0. Furthermore, we have:

∂t̃β

∂x

∂x

∂t̃α
= 0, (3.111)

∂t̃β

∂x

∂x

∂u
= 0. (3.112)

since ∂t̃β

∂x
= 0. Lastly, we have:

∂u

∂x

∂x

∂t̃α
=

(
1

θ∗

∂

∂u
u

)
∂θ

∂tα
=

1

θ∗

∂θ

∂tα
, (3.113)

∂u

∂x

∂x

∂u
=

(
1

θ∗

∂

∂u
u

)
∂θ

∂u
=

1

θ∗
θ∗ = 1. (3.114)

This gives us the components of P̃i and P̃x.

Remark 2. When M is Frob, we can take ai = 1 for all i in Proposition 8. Then

s = (2− 1−D)/2, where D is the conformal factor for the compatible metric.

In Chapter 4, we will see an extension of quantum cohomology with D = 2 − r

and d∗ = (1− r)/2, where r is the dimension of a symplectic manifold. Then we see
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that ã vanishes since

− (s+ d∗) = (D − 1)/2− d∗ = (1− r)/2− (1− r)/2 = 0. (3.115)
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CHAPTER 4
Examples

In this chapter, we present examples of extensions starting from Frobenius man-

ifolds.

We start by giving a case by case classification for extensions of 1- and 2- di-

mensional Frobenius manifolds, depending on the spectrum of the Euler field E.

We prove the existence of an extension of the Frobenius manifold for the An

singularity (which can also be viewed as the space of polynomials). This proof relies

on Theorem 3 of the previous chapter.

We also give some examples for quantum cohomology. In the case of P2, and

P
1×P

1, these examples are covered in [6]. We conjecture the existence of extensions

in the other case, based on the fact that we’ve computed coefficients which solve the

OWDVV equations up to a certain degree without any inconsistencies.

4.0.1 Extensions of 1-dimensional Frobenius Manifolds

Up to conformal transformation, there is one 1-dimensional Frobenius manifold

with flat identity field and Euler field. It has Euler field t0∂0 and potential

Φ(t0) =
1

3
t30. (4.1)
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We want to classify Frob extensions of this Frobenius manifold having flat iden-

tity and Euler field. We consider an extended Euler field

E = t0∂0 + d∗u∂∗, d∗ 6= 0, (4.2)

or, when d∗ = 0,

E = t0∂0 + s∂∗. (4.3)

Using the identity constraint, the extended potential can be written as

Ω(t0, u) = t0u+ ω(u). (4.4)

Note that Ω is a component of a vector, and by rescaling u 7→ λu+ c, we induce the

transformation

Ω(t0, u) 7→ λΩ

(
t0,

u− c

λ

)
. (4.5)

We can use this rescaling to fix the s term in the Euler field if we want.

The quasihomogeneity constraint on ω is

Eω = (1 + d∗)ω + linear polynomial in u. (4.6)

In the case that d∗ 6= 0, we can kill a linear polynomial a+ bu on the right by adding

the linear term a + b
d∗+1

u to ω provided that d∗ 6= −1. When d∗ = −1, we cannot

kill a constant term, so we have Eω = c. When d∗ = 0, we can always kill the linear

polynomial (regardless of what s is).

The associativity equations for the extension hold trivially.
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By solving the quasihomogeneity constraint with E = t0∂0+ d∗u∂∗, the possible

extended potentials are

Ω(t0, u) = t0u+ u
1+d∗
d∗ , d∗ 6= 0,−1, (4.7)

Ω(t0, u) = t0u− c log u, d∗ = −1. (4.8)

We can fix the parameter c by a transformation u 7→ u
c
.

When the Euler field is E = t0∂0+s∂∗, the quasihomogeneity constraint is solved

by

Ω(t0, u) = t0u+ e
u
s , d∗ = 0. (4.9)

We can fix the parameter s by a a transformation u 7→ 1
s
u.

4.0.2 Extensions of 2-dimensional Frobenius Manifolds

Now we will classify extensions of 2-dimensional Frobenius manifolds.

From [3], [8], the classification of 2-dimensional Frobenius manifolds is as follows.

For the Euler field

E = t0∂0 + (1− r)t1∂1, r 6= 1, (4.10)

the potentials are

Φ(t0, t1) =
1

2
t20t1 + tk1, k =

3− r

1− r
, r 6= −1, 1, 3,

Φ(t0, t1) =
1

2
t20t1 + t21 log t1, r = −1,

Φ(t0, t1) =
1

2
t20t1 + log t1, r = 3.

(4.11)

When r = 1, the Euler field is E = t0∂0 + 2∂1, and the potential is

Φ(t0, t1) =
1

2
t20t1 + et1 . (4.12)
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The extension is determined by an extended potential Ω(t0, t1, u). We extend

the Euler field by adding either a term d∗u∂∗ when d∗ 6= 0, or s∂∗ when d∗ = 0. Note

that we can rescale u to fix s so it is not really an extra parameter.

Associativity of the extension has only one constraint

Φ111 + Ω11Ω∗∗ = (Ω1∗)
2 . (4.13)

The identity constraint Ω∗i = δi0 means we can write

Ω(t0, t1, u) = t0u+ ω(t1, u). (4.14)

The quasihomogeneity condition is Eω = (d∗ + 1)ω + l, where l is a linear

polynomial. We can try to kill l by adding a linear polynomial to ω. Generically this

is possible, however for certain values of r, d∗, we cannot normalize l to 0.

After normalizing Eω, we can find a solution for ω, in terms of an arbitrary

function f(z). The associativity constraint then imposes an ODE on f . We list the

cases below.

1. r 6= −d∗, r 6= 1, and d∗ 6= −1, 0:

The quasihomogeneity condition can be normalized to

Eω = (1 + d∗)ω. (4.15)

The solution to the quasihomogeneity condition is

ω = t
1+d∗
1−r

1 f


 u

t
d∗
1−r

1


 . (4.16)
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The ODEs for associativity are

d∗(1− r)(d∗ + r − 1)zf ′f ′′ + (r − 1)(d∗ + 1)(d∗ + r)ff ′′

+ (1− r)f ′2 + 2(r − 3)(r + 1) = 0, r 6= −1, 3, (4.17)

d∗(d∗ − 2)zf ′f ′′ − (d2∗ − 1)ff ′′ + f ′2 − 8 = 0, r = −1, (4.18)

d∗(d∗ + 2)zf ′f ′′ − (d∗ + 3)(d∗ + 1)ff ′′ + f ′2 − 8 = 0, r = 3. (4.19)

2. r = −d∗, but r 6= 1, and d∗ 6= −1, 0:

We cannot kill a t1 term, so the quasihomogeneity condition can only be nor-

malized to

Eω = (1− r)ω + ct1. (4.20)

By rescaling u we can fix c. The solution to the quasihomogeneity condition is

ω =
t1 log [t1(1− r)] c

1− r
+ t1f

(
t

r
1−r

1 u
)
. (4.21)

The ODEs for associativity are

r(1− r)zf ′f ′′ − c(1− r)2f ′′ + (1− r)f ′2

+ 2(r − 3)(r + 1) = 0, r 6= −1, 3, (4.22)

zf ′f ′′ + 2cf ′′ − f ′2 + 8 = 0, r = −1, (4.23)

3zf ′f ′′ + 2cf ′′ + f ′2 − 8 = 0, r = 3. (4.24)

3. r = 1, but d 6= −1, 0:
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The quasihomogeneity condition can be normalized to

Eω = (1 + d∗)ω. (4.25)

The solution to the quasihomogeneity condition is

ω = e
1+d∗

2
t1f

(
u

e
d∗
2
t1

)
. (4.26)

The ODE for associativity is

d2∗zf
′f ′′ − (1 + d∗)

2ff ′′ + f ′2 − 4 = 0. (4.27)

4. r = 1, d∗ = −1:

We cannot kill a constant term, so we can only normalize the quasihomogeneity

condition to

Eω = c. (4.28)

By rescaling u we can fix c. The solution to the homogeneity condition is

ω =
c

2
t1 + f

(
e

t1
2 u
)
. (4.29)

The ODE for associativity is

zf ′f ′′ + f ′2 − 4 = 0. (4.30)

5. r = 1, d∗ = 0:

The quasihomogeneity condition can be normalized to

Eω = ω. (4.31)
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The solution to the homogeneity condition is

ω = e
t1
2 f
(
u− s

2
t1

)
. (4.32)

The ODE for associativity is

ff ′′ − f ′2 + 4 = 0. (4.33)

6. d∗ = −1, but r 6= 1:

The quasihomogeneity condition can be normalized to

Eω = c. (4.34)

By rescaling u, we can fix c. The solution to the quasihomogeneity condition

is

ω =
log [t1(1− r)] c

1− r
+ f

(
t

1

1−r

1 u

)
. (4.35)

The ODEs for associativity are

(r − 2)(r − 1)zf ′f ′′ + (1− r)f ′2 + c(1− r)2f ′′

+ 2(r − 3)(r + 1) = 0, r 6= −1, 3, (4.36)

3zf ′f ′′ + 2cf ′′ + f ′2 − 8 = 0, r = −1, (4.37)

zf ′f ′′ + 2cf ′′ − f ′2 + 8 = 0, r = 3. (4.38)

Remark 3. There is a duality here with the case r = −d∗. Namely, the

ODE corresponding to (d∗, r) = (−1,−1) is the same as the ODE for (d∗, r) =

(−3, 3), and likewise for (d∗, r) = (−1, 3) and (1,−1).
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7. d∗ = 0, but r 6= 0, 1:

The quasihomogeneity condition can be normalized to

Eω = ω. (4.39)

The solution to the quasihomogeneity condition is

ω = t
1

1−r

1 f

(
u− s

log t1
1− r

)
. (4.40)

The ODEs for associativity are

s(1− r)2f ′f ′′ + r(1− r)ff ′′ − (1− r)f ′2

− 2(r − 3)(r + 1) = 0, r 6= −1, 3, (4.41)

2sf ′f ′′ − ff ′′ − f ′2 + 8 = 0, r = −1, (4.42)

2sf ′f ′′ − 3ff ′′ + f ′2 − 8 = 0, r = 3. (4.43)

8. d∗ = 0, r = 0:

We cannot kill a t1 term, so the quasihomogeneity condition can only be nor-

malized to

Eω = ω + ct1. (4.44)

By rescaling u, we can fix c, but in general it would not be possible to fix both

c and s.

The solution to the quasihomogeneity condition is

ω = c (t1 log t1) + t1f (u− s log t1) . (4.45)
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The ODE for associativity is

sf ′f ′′ + cf ′′ − f ′2 + 6 = 0. (4.46)

4.0.3 Extensions of the space of polynomials (An singularity)

Consider the space of polynomials of the form

W (x; a) = xn+1 + an−1x
n−1 + . . .+ a0. (4.47)

This is an n-dimensional space M with coordinates a0, . . . , an−1. It can also be

thought of as the unfolding of the An singularity C[x]/xn+1.

M has the structure of a Frobenius manifold, [8], which we will describe next.

We identify the tangent space with the Milnor ring

TaM ∼= C[x]/W ′(x; a),
∂

∂ai
7→ ∂

∂ai
W (x; a), (4.48)

where the prime indicates the derivative with respect to x. This induces an algebra

structure on the tangent space. It has an inner product given by the residue pairing

g

(
∂

∂ai
,
∂

∂aj

)
= −(n+ 1) resx=∞

[
∂W

∂ai
∂W

∂aj
/W ′

]
. (4.49)

The factor n + 1 is for normalization reasons. This metric turns out to be flat (see

[8]), and has flat coordinates ti, which to leading order are

ai = ti + . . . . (4.50)

There is also an Euler field which gives degrees di = n+1− i. From now on, we will

work in flat coordinates, so subscripts will indicated derivatives with respect to ti.
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There is an Extension of this Frobenius manifold which arises in a very natural

way. By the Euclidean division of polynomials, there exists unique polynomials bij, rij

in x, such that

WiWj = bijW
′ + rij, (4.51)

where the degree of rij is less than n. In fact, rij is the product in the Milnor ring.

For the extended multiplication, we identify ∂∗ with W ′. We have the multipli-

cation table

WiWj = bijW
′ + rij,

WiW
′ = WiW

′,

W ′W ′ = W ′W ′.

(4.52)

This multiplication table looks like an extension if we let x play the role of the

extended variable u. The question becomes, does there exist an Ω(x, t) such that

Ωij = bij, Ω∗i = Wi and Ω∗∗ = W ′. From the last two conditions, we see that

Ω∗ = W . Since we are specifying Ω∗, by Theorem 3, we need to check

Wij =
d

dx

[
1

W ′
(WiWj − rij)

]
=

d

dx
bij (4.53)

Proposition 16.

d

dx
bij(x; t) = Wij(x; t). (4.54)

By Theorem 3, this implies the existence of a rank-1 extension of the Frobenius

manifold which is the space of polynomials, with Ω∗ = W .
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Proof. The proof is by a direct calculation using the explicity formulas given in [2].

We have that

W0 = 1, (4.55)

W1 = x, (4.56)

and for i > 1,

Wi =
∑ k!

k2! · · · kn!

(
t2

n+ 1

)k2

· · ·
(

tn−1

n+ 1

)kn−1

xkn , (4.57)

where k = k2 + . . . kn, and the sum is over ki such that

n∑

j=2

djkj = i, (4.58)

with dj = n + 1 − j being the degree of tj for j < n and dn = 1 is the degree of x.

Note that for degree reasons, only tj with j ≥ n + 1 − i will appear with nonzero

exponent. Similarly,

W ′ = (n+ 1)
∑ k!

k2! · · · kn!

(
t2

n+ 1

)k2

· · ·
(

tn−1

n+ 1

)kn−1

xkn , (4.59)

where the sum is over ki such that
∑n

j=2 djkj = n.

Now by multiplying Wi and Wj, and looking at the terms of degree greater or

equal to n in x, we can deduce that when i+ j < n, bij = 0, and when i+ j ≥ n,

bij =
1

n+ 1

∑ k!

k2! · · · kn!

(
t2

n+ 1

)k2

· · ·
(

tn−1

n+ 1

)kn−1

xkn , (4.60)

where the sum is over ki such that
∑n

j=2 djkn = i + j − n. Note in particular that

when i+ j = n, bij is the constant 1
n+1

.
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On the other hand, when i+ j ≤ n, then Wij = 0 since the degree of W is n+1,

and di + dj = 2n+ 2− i− j > n+ 1. When i+ j > n, we take the derivative of Wi

with respect to tj, and compare with the derivative of the formula for bij, and see

that they are equal.

Now we explicitly list some extended potentials. We also list the polynomial

and Frobenius potential for reference.

n = 2.

W (x) = t0 + t1x+ x3,

Ω(t, u) = t0u+ t1
u2

2
+

u4

4
+

t21
6
,

Φ(t) =
1

2
t20t1 −

t41
72

.

(4.61)

n = 3.

W (x) =

(
t0 +

t22
8

)
+ t1x+ t2x

2 + x4,

Ω(t, u) =

(
t0 +

t22
8

)
u+ t1

u2

2
+ t2

u3

3
+

u5

5
+

t1t2
4

,

Φ(t) =
1

2

(
t20t2 + t0t

2
1

)
− t21t

2
2

16
+

t52
960

.

(4.62)

n = 4.

W (x) =

(
t0 +

t2t3
5

)
+

(
t1 +

t23
5

)
x+ t2x

2 + t3x
3 + x5,

Ω(t, u) =

(
t0 +

t2t3
5

)
u+

(
t1 +

t23
5

)
u2

2
+ t2

u3

3
+ t3

u4

4
+

u6

6

+
t1t3
5

+
t22
10

+
t33
150

,

Φ(t) =
t20t3
2

+ t0t1t2 +
t31
6
− t21t

2
3

20
− t1t

2
2t3
10

− t42
60

+
t22t

3
3

150
− t63

15000
.

(4.63)
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n = 5.

W (x) =

(
t0 +

t2t4
6

+
t23
12

+
t34
108

)
+

(
t1 +

t3t4
3

)
x+

(
t2 +

t24
4

)
x2

+ t3x
3 + t4x

4 + x6,

Ω(t, u) =

(
t0 +

t2t4
6

+
t23
12

+
t34
108

)
u+

(
t1 +

t3t4
3

)
u2

2
+

(
t2 +

t24
4

)
u3

3

+ t3
u4

4
+ t4

u5

5
+

u7

7
+

t1t4
6

+
t2t3
6

+
t3t

2
4

72
,

Φ(t) =
1

2

(
t20t4 + t0t

2
2

)
+ t0t1t3 +

t21t2
2

− t21t
2
4

24
− t1t2t3t4

6
− t1t

3
3

36

− t32t4
36

− t22t
2
3

12
+

t22t
3
4

216
+

t2t
2
3t

2
4

72
+

t43t4
216

− t23t
4
4

1728
+

t74
272160

.

(4.64)

n = 6.

W (x) =

(
t0 +

t2t5
7

+
t3t4
7

+
t4t

2
5

49

)
+

(
t1 +

2

7
t3t5 +

t24
7
+

t35
49

)
x

+

(
t2 +

3

7
t4t5

)
x2 +

(
t3 +

2

7
t25

)
x3 + t4x

4 + t5x
5 + x7,

Ω(t, u) =

(
t0 +

t2t5
7

+
t3t4
7

+
t4t

2
5

49

)
u+

(
t1 +

2

7
t3t5 +

t24
7
+

t35
49

)
u2

2

+

(
t2 +

3

7
t4t5

)
u3

3
+

(
t3 +

2

7
t25

)
u4

4
+ t4

u5

5
+ t5

u6

6
+

u8

8

+
t1t5
7

+
t2t4
7

+
t23
14

+
t3t

2
5

98
+

t24t5
98

+
t45

4116
,

Φ(t) =
t20t5
2

+ t0t1t4 + t0t2t3

+
t21t3
2

+
t1t

2
2

2
− t21t

2
5

28
− t1t2t4t5

7
− t1t

2
3t5
14

− t1t3t
2
4

14

− t22t3t5
14

− t22t
2
4

14
+

t22t
3
5

294
+

t2t3t4t
2
5

49
− t2t

2
3t4
7

+
t2t

3
4t5

147

− t43
56

+
t33t

2
5

294
+

t23t
2
4t5
49

− t23t
4
5

2744
+

t3t
4
4

196
− t3t

2
4t

3
5

686

− t44t
2
5

1372
+

t24t
5
5

24010
− t85

5647152
.

(4.65)
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4.1 Extensions of Quantum Cohomology

4.1.1 Gromov-Witten invariants

The quantum cohomology of a closed symplectic manifold X is a deformation

of the ordinary cohomology ring H∗(X) (with say coefficients in C) [7], [8]. This

deformation has the structure of a Frobenius manifold.

Let n + 1 be the dimension of H2∗(X), and let ti be coordinates for H2∗(X).

That is,

(t0, . . . , tn) = t0∆0 + . . . tn∆n, (4.66)

where ∆i ∈ H2pi(X). The inner product is given by

g(∂i, ∂j) =

∫

X

∆i ∧∆j, (4.67)

where integration is done by selecting representative forms in the cohomology class.

These integrals are constant, so ti are flat coordinates. We pick t0 to be the coordinate

for the identity.

The Frobenius potential is given by

Φ = classical terms +

∑

d,a

[(
r∏

α=1

edαta

)(
n∏

β=r+1

t
aβ
β

aβ!

)
N(d1, . . . , dr; ar+1, . . . , an)

]
. (4.68)

The classical terms arise from the ordinary cohomology ring. We refer to the other

terms in the potential as quantum terms.

The coefficients N(d1, . . . , dr; ar+1, . . . , an) are the Gromov-Witten invariants of

X. Morally, they count the number of holomorphic curves of genus 0 passing through
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ai constraints given by the Poincaré duals of ∆i, for each i. The image of the curve

is d = (d1, . . . , dr) ∈ H2(X,Z)/torsion where di = ∆i[d] for ∆i ∈ H2(X).

The Gromov-Witten invariants are defined by integration over M0,m(X, d), the

Moduli space of stablem-marked maps of genus 0 intoX of class d ∈ H2(X,Z)/torsion,

where m is the total number of constraints, m =
∑n

i=r+1 ai.

These Gromov-Witten invariants are zero unless the codimension given by the

constraints is equal to the dimension of this moduli space. That is, unless

n∑

i=r+1

aipi = dimC M0,m(X, d) = c1(TX)[d] + dimC X +m− 3. (4.69)

From this dimension constraint, there is an Euler field given by

E =
∑

i:pi 6=1

(1− pi)ti∂i +
∑

i:pi=1

ri∂i, (4.70)

where c1(TX) =
∑

i ri∆i, which makes the potential Φ quasihomogeneous of degree

3− dimC X. (4.71)

The associativiy of this Frobenius manifold is a non-trivial result which follows

from pulling back a relation in the moduli space M0,4 of genus 0 curves with 4

marked points. See [7], [12].

We seek an extended potential of the form

Ω = t0u+

2
∑

d,a,k



(

r∏

α=1

e
1

2
dαta

)


n∏

β=r+1

(
tβ
2

)aβ

aβ!


 uk

k!
M(d1, . . . , dr; ar+1, . . . , an; k)


 . (4.72)
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In certain situations, the coefficients M(d1, . . . , dr; ar+1, . . . , an; k) will be the open

Gromov-Witten invariants (up to some factors). Morally, they count maps of open

discs with boundary on a Lagrangian L, with ai interior constrains given by the

Poincaré duals of ∆i and k point-constraints on the boundary.

Although there are technical difficulties, one would like to define these open

Gromov-Witten invariants by integration over the moduli space M0,m,k(X,L, d) of

stable open discs into X with boundary on L with m interior marked points and k

boundary marked points and image d ∈ H2(X,L) [10].

The coefficients are zero unless the codimension given by the constraints is equal

to the dimension of this moduli space. That is

2
n∑

i=r+1

aipi+k dimC X = dimR M0,m,k(X,L, d) = µ(d)+dimC X+2n+k−3. (4.73)

Here, dimC X is the codimension in L of a point, µ(d) is the Maslov class. If the

Lagrangian is real, we can use complex conjugation to double the disk to get a genus-0

curve d̂ ∈ H2(X), then µ(d) = c1(TX)[d̂].

Using this dimensions constraint, and giving u degree 1
2
(1−dimCX), this makes

Ω quasi-homogeneous of degree

(3− dimC X)

2
. (4.74)

The potential Φ is sometimes referred to as the closed potential, the extended

potential Ω as the open potential, and the corresponding invariants as closed or open

Gromov-Witten invariants, respectively.
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4.1.2 Small quantum cohomology

There is a variation of the quantum cohomology, called the small quantum

cohomology, where we let t0 = tr+1, . . . , tn = 0, and q1 = et1 , . . . , qr = etr (where r

is the rank of H2(X)). This ring only depends on terms that are most cubic in the

non-divisor variables. These are sometimes called the 3-point invariants.

We can also consider a small extended quantum cohomology by additionally

setting u = 0. This ring will have also have terms like q
1/2
i .

4.1.3 Partial reconstruction of the extension

In the quantum cohomology, the first reconstruction theorem by Kontsevich

and Manin [7] says that the Gromov-Witten invariants can be computed recursively

using the WDVV equations starting from the 3-point invariants whenever H∗(X) is

generated by H2(X).

It appears as though the open WDVV equations can be used to compute the

coefficients of Ω when H∗(X) is generated by H2(X), although in some cases it not

enough to only specify the terms in the small extended ring, and it is not always

obvious how to recursively solve for certain coefficients in general. We do however,

have a partial reconstruction proposition.

We will use the following terminology. The coefficientsM(d1, . . . , dr; ar+1, . . . , an; k)

in Ω will be called open coefficients. The sum ar+1+. . .+an will be called the number

of interior marks. The number k will be called the number of boundary marks. We

will say that d < d′, or that the degree d is less than d′ if di ≤ d′i for all i, and at for

at least one j, dj < d′j.
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Proposition 17. Suppose H∗(X) is generated by H2(X), and suppose Ω of the form

(4.72) satisfies the open WDVV equations. An open coefficient with at least 2 interior

marks, or at least 1 interior and 1 boundary mark can be computed recursively from

the open WDVV equations in terms of coefficients with lower degree, coefficients with

fewer marked points, and the coefficients of the closed potential Φ.

Proof. First, let us consider an open coefficient with at least 2 interior marks:

M(d1, . . . , dr; . . . , ab + 1, . . . , ac + 1, . . . ; k). (4.75)

We will call this M for short. Since H∗(X) is generated by divisors, we can write

∆b = ∆i ∧∆j with ∆j ∈ H2(X). Now, consider the following associativity equation:

∑

α

Φij
αΩαc + ΩijΩ∗c =

∑

α

Φic
αΩαj + ΩicΩ∗j. (4.76)

Notice that

Φij
b = 1 + quantum terms, (4.77)

since ∆i ∧∆j = ∆b. But for α 6= b, Φij
α contains only quantum terms.

Now in equation (4.76) we look at the coefficient of

(
r∏

α=1

e
1

2
dαta

)(
n∏

β=r+1

tabβ
aβ!

)
uk

k!
. (4.78)

We get

M + . . . =
dj
2
M ′ + . . . , (4.79)

where

M ′ = M(d; . . . , ab′ + 1, . . . ; k), (4.80)
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with ∆b′ = ∆i ∧∆k. The factor of
dj
2
come from taking a tj derivative of e

1

2
djtj . The

coefficient M ′ has one less interior mark. All the other terms have degrees less than

d. To see this, notice that all other terms are quadratic in the coefficients (either

a product of a closed and open coefficient, or a product of two open coefficients.

The sum of the degrees of these quadratic terms must be d (the degree from the

closed coefficient will be summed with weight by 2). Since all these coefficients are

quantum, they have nonzero degree, thus they must be strictly less than d.

Next, let us consider an open coefficient with at least 1 interior mark and 1

boundary mark:

M(d1, . . . , dr; . . . , ab + 1, . . . ; k + 1). (4.81)

Again we will call this M for short. We can write ∆b = ∆i ∧∆j with ∆j ∈ H2(X).

Consider the following associativity equation:

∑

α

Φij
αΩα∗ + ΩijΩ∗∗ = Ωi∗Ωj∗. (4.82)

Once again, we look at the coefficient of (4.78). We get

M + . . . = . . . , (4.83)

where all the other terms have degrees less than d.

Missing in this partial reconstruction proposition is how to compute open coef-

ficients which are only assumed to have at least 2 boundary marks.

We will now show some specific examples.
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4.1.4 P
n

The closed potential is

Φ =
t20tn
2

+
1

2
t0

n∑

i=1

titn−i +
∑

d>0,a

edt1
ta22
a2!

· · · t
an
n

an!
N(d; a1, . . . , an). (4.84)

The open potential is

Ω = t0u+ 2
∑

d>0

e
1

2
dt1

(
t2
2

)a2
a2!

· · ·
(
tn
2

)an
an!

uk

k!
M(d; a2, . . . , an; k). (4.85)

The Euler field is

E = t0∂0 + (n+ 1)∂1 + (−1)t2∂2 + . . .+ (1− n)tn∂n +
1− n

2
u∂∗, (4.86)

which makes Φ and Ω quasihomogeneous of degrees 3−n, and (3−n)/2, respectively.

Small quantum cohomology

The small quantum cohomology ring is the Frobenius manifold at the point

t2 = · · · = tn = 0, and q = et1 is arbitrary.

The small quantum cohomology ring of Pn has the relations

∂i ◦ ∂j = ∂i+j, i+ j < n+ 1,

∂1 ◦ ∂n = q∂0

(4.87)

This is a graded algebra, where the degree of ∂i is 1 − i, the degree of q is n + 1,

and the multiplication has degree 1. The implicit factor of 1 in front of q is the

Gromov-Witten invariant which counts the number of lines through 2 points.

This ring is isomorphic to

Q = C[x, q]/〈xn+1 = q〉. (4.88)
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The extended small ring has the relations

∂i ◦ ∂j = ∂i+j, i+ j < n+ 1,

∂1 ◦ ∂n = q∂0 + Aq1/2∂∗,

∂i ◦ ∂∗ = 0,

∂∗ ◦ ∂∗ = Bq1/2∂∗.

(4.89)

Here, A = 1
2
M(1; 0, . . . , 1; 0), B = 2M(1; 0, . . . , 0; 2). Associativity (∂1 ◦ ∂n) ◦ ∂∗ =

∂1 ◦ (∂n ◦ ∂∗) imposes the constraint 1+AB = 0 which, up to rescaling of ∂∗, has the

solution

M(1; 0, . . . , 0; 2) = 1, M(1; 0, . . . , 1; 0) = −1. (4.90)

Reconstruction

In addition to the partial reconstruction shown in Proposition 17, we can com-

pute a coefficient M with at least two boundary marks

M = M(d; a2, . . . , an; k + 2) (4.91)

using the OWDVV equations.

Consider the equation

∑

α

Φ1n
αΩα∗ + Ω1nΩ∗∗ = Ωn∗Ω1∗. (4.92)

Let us look at the coefficient of edt1/2ta22 . . . tann uk. From the product

Ω1nΩ∗∗ = (. . .+M(1; 0, . . . , 1; 0) + . . .)
(
. . .+ edt1/2ta22 . . . tann ukM + . . .

)
, (4.93)
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we get a term M(1; 0, . . . , 1; 0)M(d; a2, . . . , an; k + 2). The term M(1; 0, . . . , 1; 0) is

known from the small ring.

So M = M(d; a2, . . . , an; k + 2) can be determined from open coefficients of less

degree, or coefficients with possibly same degree, but fewer boundary marks. In the

special case where a2 = · · · = an = 0, k = 0, we get the relation from the small ring

1 +M(1; 0, . . . , 1; 0)M(d; 0, . . . , 0, . . . ; 2) = 0. (4.94)

4.1.5 P
1 × P

1

The closed potential is

Φ =
1

2
t20t3 + t0t1t2 +

∑
ed1t1+d2t2

ta33
a3!

N(d1, d2; a3). (4.95)

The open potential is

Ω = t0u+
∑

e
1

2
d1t1+

1

2
d2t2

(
t3
2

)a3
a3!

uk

k!
M(d1, d2; a3; k). (4.96)

The Euler field is

E = t0∂0 + 2∂1 + 2∂2 − t3∂3 −
1

2
u∂∗, (4.97)

which makes Φ and Ω quasihomogeneous of degrees 1, and 1/2, respectively.
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Small quantum cohomology

The small quantum cohomology ring is the Frobenius manifold at the point

t3 = 0 and where et1 = q1, e
t2 = q2 are arbitrary.

∂1 ◦ ∂2 = ∂3,

∂3 ◦ ∂1 = q2∂2, ∂3 ◦ ∂2 = q1∂1,

∂1 ◦ ∂1 = q2∂0, ∂2 ◦ ∂2 = q1∂0,

∂3 ◦ ∂3 = q1q2∂0.

(4.98)

The extended small ring has the relations

∂1 ◦ ∂∗ = Aq
1

2

2 ∂∗, ∂2 ◦ ∂∗ = Bq
1

2

1 ∂∗,

∂3 ◦ ∂∗ = (Cqa +Dq
1

2

1 q
1

2

2 + Eq2)∂∗,

∂∗ ◦ ∂∗ = 0,

(4.99)

where A,B,C,D,E are to be determined.

The associativity condition

(∂1 ◦ ∂1) ◦ ∂∗ = q2∂∗ = ∂1 ◦ (∂1 ◦ ∂∗) = A2q2∂∗ (4.100)

gives A2 = 1. Similarly, B2 = 1. The other associativity condition (∂1 ◦ ∂2) ◦ ∂∗ =

∂3 ◦ ∂∗ = ∂1 ◦ (∂2 ◦ ∂∗) gives

AB = D, C = 0, E = 0. (4.101)
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The term M(1, 1; 0; 3), which has the fewest boundary marks out of the coeffi-

cients with only boundary marks, is not constrained by the OWDVV equations and

does not appear here in the small ring.

4.1.6 G(2, 4)

The closed potential is

Φ =
1

2
t0t

2
2 +

1

2
t0t

2
3 + t0t1t4 +

1

2
t20t5 +

1

2
t21t2 +

1

2
t21t3+

+
∑

d>0,a

edt1
ta22
a2!

· · · t
a5
5

a5!
N(d; a1, . . . , a5). (4.102)

The open potential is

Ω = t0u+ 2
∑

d>0

e
1

2
dt1

(
t2
2

)a2
a2!

· · ·
(
tn
2

)a5
a5!

uk

k!
M(d; a2, . . . , an; k). (4.103)

Small quantum cohomology

The small quantum cohomology ring is the Frobenius manifold at the point

t2 = · · · = t5 = 0, and q = et1 is arbitrary.

∂1 ◦ ∂1 = ∂2 + ∂3,

∂1 ◦ ∂2 = ∂4 = ∂1 ◦ ∂3,

∂2 ◦ ∂2 = ∂5 = ∂3 ◦ ∂3,

∂2 ◦ ∂3 = q∂0,

∂4 ◦ ∂4 = q∂2 + q∂3,

∂4 ◦ ∂5 = q∂4,

∂5 ◦ ∂5 = q2∂0.

(4.104)
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The extended small ring has the relations

∂∗ ◦ ∂1 = 0,

∂∗ ◦ ∂2 = q1/2A∂∗,

∂∗ ◦ ∂3 = q1/2B∂∗,

∂∗ ◦ ∂4 = 0,

∂∗ ◦ ∂5 = qC∂∗,

∂∗ ◦ ∂∗ = 0,

(4.105)

where A,B,C are to be determined.

The associativity conditions we need to check are the following. First of all,

∂∗ ◦ (∂2 ◦ ∂2) = qC∂∗ = (∂∗ ◦ ∂2) ◦ ∂2 = qA2∂∗ (4.106)

gives A2 = C. Similarly, replacing 2 with 3, we also get B2 = C. Furthermore

(∂1 ◦ ∂1) ◦ ∂∗ = q1/2(A+B)∂∗ = ∂1 ◦ (∂1 ◦ ∂∗) = 0. (4.107)

so A+B = 0. Finally

(∂2 ◦ ∂3) ◦ ∂∗ = q∂∗ = ∂2 ◦ (∂3 ◦ ∂∗) = qAB∂∗, (4.108)

so AB = 1. The solutions are A = i, B = −i, C = −1, or the complex conjugate.

4.2 Tables

We now present tables of open (extended) coefficients we computed using the

open WDVV equations.
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In the case of P
n, for odd n, the numbers with no boundary marks can be

compared with those in the tables given in [4], and they are the same up to sign.

However, there are nonzero numbers in our table which according to [4], should be

zero.

We also compute for G(2, 4), where interestingly the coefficients can be not only

negative, but also imaginary.

Except for the case of P2 and P
1 × P

1, the existence of an extension is only

conjectural, based on the fact that we can find a consistent solution the OWDVV

equations up to the degree which we were able to calculate. The cases P2 and P
1×P

1

are blowups of P2, so they are proved to be solutions of the OWDVV equations by

references given in [6].
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4.2.1 Extended coefficients for P
2

M(1; 0; 2) 1
M(1; 1; 0) −1
M(2; 0; 5) −1
M(2; 1; 3) 1
M(2; 2; 1) −1
M(3; 0; 8) 8
M(3; 1; 6) −6
M(3; 2; 4) 4
M(3; 3; 2) −2
M(3; 4; 0) 0
M(4; 0; 11) −240
M(4; 1; 9) 144
M(4; 2; 7) −80
M(4; 3; 5) 40
M(4; 4; 3) −16
M(4; 5; 1) 0
M(5; 0; 14) 18264
M(5; 1; 12) −9096
M(5; 2; 10) 4272
M(5; 3; 8) −1872
M(5; 4; 6) 744
M(5; 5; 4) −248
M(5; 6; 2) 64
M(5; 7; 0) −64
M(6; 0; 17) −2845440
M(6; 1; 15) 1209600
M(6; 2; 13) −490368
M(6; 3; 11) 188544
M(6; 4; 9) −67968
M(6; 5; 7) 22400
M(6; 6; 5) −6400
M(6; 7; 3) 1536
M(6; 8; 1) −1024
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4.2.2 Extended coefficients for P
3

M(1; 0, 0; 2) 1
M(1; 0, 1; 0) −1
M(1; 1, 0; 1) 0
M(1; 2, 0; 0) −1
M(2; 0, 0; 4) 0
M(2; 0, 1; 2) 0
M(2; 0, 2; 0) 0
M(2; 1, 0; 3) 1
M(2; 1, 1; 1) −1
M(2; 2, 0; 2) 0
M(2; 2, 1; 0) 0
M(2; 3, 0; 1) −3
M(2; 4, 0; 0) 0
M(3; 0, 0; 6) −1
M(3; 0, 1; 4) 1
M(3; 0, 2; 2) −1
M(3; 0, 3; 0) 1
M(3; 1, 0; 5) 0
M(3; 1, 1; 3) 0
M(3; 1, 2; 1) 0
M(3; 2, 0; 4) 5
M(3; 2, 1; 2) −3
M(3; 2, 2; 0) 1
M(3; 3, 0; 3) 0
M(3; 3, 1; 1) 0
M(3; 4, 0; 2) −13
M(3; 4, 1; 0) 1
M(3; 5, 0; 1) 0
M(3; 6, 0; 0) −7
M(4; 0, 0; 8) 0
M(4; 0, 1; 6) 0
M(4; 0, 2; 4) 0
M(4; 0, 3; 2) 0
M(4; 0, 4; 0) 0
M(4; 1, 0; 7) −12
M(4; 1, 1; 5) 8
M(4; 1, 2; 3) −4
M(4; 1, 3; 1) 0
M(4; 2, 0; 6) 0

M(4; 2, 1; 4) 0
M(4; 2, 2; 2) 0
M(4; 2, 3; 0) 0
M(4; 3, 0; 5) 60
M(4; 3, 1; 3) −24
M(4; 3, 2; 1) −4
M(4; 4, 0; 4) 0
M(4; 4, 1; 2) 0
M(4; 4, 2; 0) 0
M(4; 5, 0; 3) −156
M(4; 5, 1; 1) −56
M(4; 6, 0; 2) 0
M(4; 6, 1; 0) 0
M(4; 7, 0; 1) −660
M(4; 8, 0; 0) 0
M(5; 0, 0; 10) 45
M(5; 0, 1; 8) −29
M(5; 0, 2; 6) 17
M(5; 0, 3; 4) −9
M(5; 0, 4; 2) 5
M(5; 0, 5; 0) −5
M(5; 1, 0; 9) 0
M(5; 1, 1; 7) 0
M(5; 1, 2; 5) 0
M(5; 1, 3; 3) 0
M(5; 1, 4; 1) 0
M(5; 2, 0; 8) −277
M(5; 2, 1; 6) 139
M(5; 2, 2; 4) −53
M(5; 2, 3; 2) 11
M(5; 2, 4; 0) −5
M(5; 3, 0; 7) 0
M(5; 3, 1; 5) 0
M(5; 3, 2; 3) 0
M(5; 3, 3; 1) 0
M(5; 4, 0; 6) 1353
M(5; 4, 1; 4) −429
M(5; 4, 2; 2) 61
M(5; 4, 3; 0) −73

M(5; 5, 0; 5) 0
M(5; 5, 1; 3) 0
M(5; 5, 2; 1) 0
M(5; 6, 0; 4) −3705
M(5; 6, 1; 2) 379
M(5; 6, 2; 0) −1033
M(5; 7, 0; 3) 0
M(5; 7, 1; 1) 0
M(5; 8, 0; 2) 2661
M(5; 8, 1; 0) −14397
M(5; 9, 0; 1) 0
M(5; 10, 0; 0) −207325
M(6; 0, 1; 10) 0
M(6; 0, 2; 8) 0
M(6; 0, 3; 6) 0
M(6; 0, 4; 4) 0
M(6; 0, 5; 2) 0
M(6; 0, 6; 0) 0
M(6; 1, 0; 11) 1728
M(6; 1, 1; 9) −864
M(6; 1, 2; 7) 384
M(6; 1, 3; 5) −144
M(6; 1, 4; 3) 48
M(6; 1, 5; 1) −48
M(6; 2, 0; 10) 0
M(6; 2, 1; 8) 0
M(6; 2, 2; 6) 0
M(6; 2, 3; 4) 0
M(6; 2, 4; 2) 0
M(6; 2, 5; 0) 0
M(6; 3, 0; 9) −10368
M(6; 3, 1; 7) 4128
M(6; 3, 2; 5) −1280
M(6; 3, 3; 3) 304
M(6; 3, 4; 1) −400
M(6; 4, 0; 8) 0
M(6; 4, 1; 6) 0
M(6; 4, 2; 4) 0
M(6; 4, 3; 2) 0
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M(6; 4, 4; 0) 0
M(6; 5, 0; 7) 49344
M(6; 5, 1; 5) −13152
M(6; 5, 2; 3) 2560
M(6; 5, 3; 1) −4496
M(6; 6, 0; 6) 0
M(6; 6, 1; 4) 0
M(6; 6, 2; 2) 0
M(6; 6, 3; 0) 0
M(6; 7, 0; 5) −142464
M(6; 7, 1; 3) 24096
M(6; 7, 2; 1) −58240
M(6; 8, 0; 4) 0
M(6; 8, 1; 2) 0
M(6; 8, 2; 0) 0
M(6; 9, 0; 3) 256192
M(6; 9, 1; 1) −837472
M(6; 10, 0; 2) 0
M(6; 10, 1; 0) 0
M(6; 11, 0; 1) −13119104
M(6; 12, 0; 0) 0
M(6; 0, 0; 12) 0
M(7; 0, 0; 14) −14589
M(7; 0, 1; 12) 6957
M(7; 0, 2; 10) −3093
M(7; 0, 3; 8) 1269
M(7; 0, 4; 6) −477
M(7; 0, 5; 4) 173
M(7; 0, 6; 2) −85
M(7; 0, 7; 0) 85
M(7; 1, 0; 13) 0
M(7; 1, 1; 11) 0
M(7; 1, 2; 9) 0
M(7; 1, 3; 7) 0
M(7; 1, 4; 5) 0
M(7; 1, 5; 3) 0
M(7; 1, 6; 1) 0
M(7; 2, 0; 12) 98073
M(7; 2, 1; 10) −39855

M(7; 2, 2; 8) 14333
M(7; 2, 3; 6) −4323
M(7; 2, 4; 4) 1105
M(7; 2, 5; 2) −423
M(7; 2, 6; 0) 85
M(7; 3, 0; 11) 0
M(7; 3, 1; 9) 0
M(7; 3, 2; 7) 0
M(7; 3, 3; 5) 0
M(7; 3, 4; 3) 0
M(7; 3, 5; 1) 0
M(7; 4, 0; 10) −571833
M(7; 4, 1; 8) 187693
M(7; 4, 2; 6) −49201
M(7; 4, 3; 4) 10437
M(7; 4, 4; 2) −4089
M(7; 4, 5; 0) −1747
M(7; 5, 0; 9) 0
M(7; 5, 1; 7) 0
M(7; 5, 2; 5) 0
M(7; 5, 3; 3) 0
M(7; 5, 4; 1) 0
M(7; 6, 0; 8) 2657949
M(7; 6, 1; 6) −614271
M(7; 6, 2; 4) 114145
M(7; 6, 3; 2) −47699
M(7; 6, 4; 0) −53707
M(7; 7, 0; 7) 0
M(7; 7, 1; 5) 0
M(7; 7, 2; 3) 0
M(7; 7, 3; 1) 0
M(7; 8, 0; 6) −8026197
M(7; 8, 1; 4) 1354637
M(7; 8, 2; 2) −628685
M(7; 8, 3; 0) −1153003
M(7; 9, 0; 5) 0
M(7; 9, 1; 3) 0
M(7; 9, 2; 1) 0
M(7; 10, 0; 4) 17617281

M(7; 10, 1; 2) −9201647
M(7; 10, 2; 0) −23217851
M(7; 11, 0; 3) 0
M(7; 11, 1; 1) 0
M(7; 12, 0; 2) −147354705
M(7; 12, 1; 0) −469085619
M(7; 13, 0; 1) 0
M(7; 14, 0; 0) −9730160571
M(8; 0, 0; 16) 0
M(8; 0, 1; 14) 0
M(8; 0, 2; 12) 0
M(8; 0, 3; 10) 0
M(8; 0, 4; 8) 0
M(8; 0, 5; 6) 0
M(8; 0, 6; 4) 0
M(8; 0, 7; 2) 0
M(8; 0, 8; 0) 0
M(8; 1, 0; 15) −1177344
M(8; 1, 1; 13) 465408
M(8; 1, 2; 11) −170496
M(8; 1, 3; 9) 56832
M(8; 1, 4; 7) −16896
M(8; 1, 5; 5) 4608
M(8; 1, 6; 3) −1280
M(8; 1, 7; 1) −1024
M(8; 2, 0; 14) 0
M(8; 2, 1; 12) 0
M(8; 2, 2; 10) 0
M(8; 2, 3; 8) 0
M(8; 2, 4; 6) 0
M(8; 2, 5; 4) 0
M(8; 2, 6; 2) 0
M(8; 2, 7; 0) 0
M(8; 3, 0; 13) 7693056
M(8; 3, 1; 11) −2619648
M(8; 3, 2; 9) 790272
M(8; 3, 3; 7) −201984
M(8; 3, 4; 5) 44288
M(8; 3, 5; 3) −9728
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M(8; 3, 6; 1) −19200
M(8; 4, 0; 12) 0
M(8; 4, 1; 10) 0
M(8; 4, 2; 8) 0
M(8; 4, 3; 6) 0
M(8; 4, 4; 4) 0
M(8; 4, 5; 2) 0
M(8; 4, 6; 0) 0
M(8; 5, 0; 11) −43621632
M(8; 5, 1; 9) 12146688
M(8; 5, 2; 7) −2769408
M(8; 5, 3; 5) 529408
M(8; 5, 4; 3) −108544
M(8; 5, 5; 1) −316928
M(8; 6, 0; 10) 0
M(8; 6, 1; 8) 0
M(8; 6, 2; 6) 0
M(8; 6, 3; 4) 0
M(8; 6, 4; 2) 0
M(8; 6, 5; 0) 0
M(8; 7, 0; 9) 198745344
M(8; 7, 1; 7) −40704768
M(8; 7, 2; 5) 7008000
M(8; 7, 3; 3) −1421056
M(8; 7, 4; 1) −5509376
M(8; 8, 0; 8) 0
M(8; 8, 1; 6) 0
M(8; 8, 2; 4) 0
M(8; 8, 3; 2) 0
M(8; 8, 4; 0) 0
M(8; 9, 0; 7) −623352576
M(8; 9, 1; 5) 99223040
M(8; 9, 2; 3) −20619776
M(8; 9, 3; 1) −102065664
M(8; 10, 0; 6) 0
M(8; 10, 1; 4) 0
M(8; 10, 2; 2) 0
M(8; 10, 3; 0) 0
M(8; 11, 0; 5) 1511345920

M(8; 11, 1; 3) −327773440
M(8; 11, 2; 1) −2010495232
M(8; 12, 0; 4) 0
M(8; 12, 1; 2) 0
M(8; 12, 2; 0) 0
M(8; 13, 0; 3) −5660168448
M(8; 13, 1; 1) −41941736448
M(8; 14, 0; 2) 0
M(8; 14, 1; 0) 0
M(8; 15, 0; 1) −923081893632
M(8; 16, 0; 0) 0
M(9; 0, 0; 18) 17756793
M(9; 0, 1; 16) −6717465
M(9; 0, 2; 14) 2407365
M(9; 0, 3; 12) −812157
M(9; 0, 4; 10) 256065
M(9; 0, 5; 8) −75281
M(9; 0, 6; 6) 21165
M(9; 0, 7; 4) −6165
M(9; 0, 8; 2) 1993
M(9; 0, 9; 0) −1993
M(9; 1, 0; 17) 0
M(9; 1, 1; 15) 0
M(9; 1, 2; 13) 0
M(9; 1, 3; 11) 0
M(9; 1, 4; 9) 0
M(9; 1, 5; 7) 0
M(9; 1, 6; 5) 0
M(9; 1, 7; 3) 0
M(9; 1, 8; 1) 0
M(9; 2, 0; 16) −125236233
M(9; 2, 1; 14) 42113079
M(9; 2, 2; 12) −13095777
M(9; 2, 3; 10) 3690831
M(9; 2, 4; 8) −922313
M(9; 2, 5; 6) 207511
M(9; 2, 6; 4) −45633
M(9; 2, 7; 2) 1039
M(9; 2, 8; 0) −1993

M(9; 3, 0; 15) 0
M(9; 3, 1; 13) 0
M(9; 3, 2; 11) 0
M(9; 3, 3; 9) 0
M(9; 3, 4; 7) 0
M(9; 3, 5; 5) 0
M(9; 3, 6; 3) 0
M(9; 3, 7; 1) 0
M(9; 4, 0; 14) 796186053
M(9; 4, 1; 12) −232380585
M(9; 4, 2; 10) 60291393
M(9; 4, 3; 8) −13422525
M(9; 4, 4; 6) 2600205
M(9; 4, 5; 4) −483041
M(9; 4, 6; 2) −84119
M(9; 4, 7; 0) −190933
M(9; 5, 0; 13) 0
M(9; 5, 1; 11) 0
M(9; 5, 2; 9) 0
M(9; 5, 3; 7) 0
M(9; 5, 4; 5) 0
M(9; 5, 5; 3) 0
M(9; 5, 6; 1) 0
M(9; 6, 0; 12) −4398941565
M(9; 6, 1; 10) 1062186183
M(9; 6, 2; 8) −214704421
M(9; 6, 3; 6) 37303455
M(9; 6, 4; 4) −6311805
M(9; 6, 5; 2) −2029881
M(9; 6, 6; 0) −6502789
M(9; 7, 0; 11) 0
M(9; 7, 1; 9) 0
M(9; 7, 2; 7) 0
M(9; 7, 3; 5) 0
M(9; 7, 4; 3) 0
M(9; 7, 5; 1) 0
M(9; 8, 0; 10) 19716043473
M(9; 8, 1; 8) −3632745977
M(9; 8, 2; 6) 578103069
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M(9; 8, 3; 4) −92799453
M(9; 8, 4; 2) −42233127
M(9; 8, 5; 0) −173709233
M(9; 9, 0; 9) 0
M(9; 9, 1; 7) 0
M(9; 9, 2; 5) 0
M(9; 9, 3; 3) 0
M(9; 9, 4; 1) 0
M(9; 10, 0; 8) −63823996593
M(9; 10, 1; 6) 9485525655
M(9; 10, 2; 4) −1485706953
M(9; 10, 3; 2) −882676209
M(9; 10, 4; 0) −4337580849
M(9; 11, 0; 7) 0
M(9; 11, 1; 5) 0
M(9; 11, 2; 3) 0
M(9; 11, 3; 1) 0
M(9; 12, 0; 6) 165343940253
M(9; 12, 1; 4) −25709693961
M(9; 12, 2; 2) −19089752359
M(9; 12, 3; 0) −107385726685
M(9; 13, 0; 5) 0
M(9; 13, 1; 3) 0
M(9; 13, 2; 1) 0
M(9; 14, 0; 4) −478871106213
M(9; 14, 1; 2) −430183080537
M(9; 14, 2; 0) −2699609946829
M(9; 15, 0; 3) 0
M(9; 15, 1; 1) 0
M(9; 16, 0; 2) −10110796935639
M(9; 16, 1; 0) −69647276547801
M(9; 17, 0; 1) 0
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4.2.3 Extended coefficients for P
4

M(1; 0, 0, 0; 2) 1
M(1; 0, 0, 1; 0) −1
M(1; 1, 1, 0; 0) −1
M(1; 3, 0, 0; 0) −1
M(2; 0, 2, 0; 1) −1
M(2; 1, 0, 0; 3) 1
M(2; 1, 0, 1; 1) −1
M(2; 2, 1, 0; 1) −3
M(2; 4, 0, 0; 1) −7
M(3; 0, 1, 0; 4) 1
M(3; 0, 1, 1; 2) −1
M(3; 0, 1, 2; 0) 1
M(3; 0, 4, 0; 0) 0
M(3; 1, 2, 0; 2) −4
M(3; 1, 2, 1; 0) 2
M(3; 2, 0, 0; 4) 5
M(3; 2, 0, 1; 2) −3
M(3; 2, 0, 2; 0) 1
M(3; 2, 3, 0; 0) 2
M(3; 3, 1, 0; 2) −14
M(3; 3, 1, 1; 0) 2
M(3; 4, 2, 0; 0) −12
M(3; 5, 0, 0; 2) −44
M(3; 5, 0, 1; 0) −6
M(3; 6, 1, 0; 0) −138
M(3; 8, 0, 0; 0) −984
M(4; 0, 0, 0; 7) −1
M(4; 0, 0, 1; 5) 1
M(4; 0, 0, 2; 3) −1
M(4; 0, 0, 3; 1) 1
M(4; 0, 3, 0; 3) −4
M(4; 0, 3, 1; 1) −2
M(4; 1, 1, 0; 5) 9
M(4; 1, 1, 1; 3) −5
M(4; 1, 1, 2; 1) 1
M(4; 1, 4, 0; 1) −24
M(4; 2, 2, 0; 3) −30
M(4; 2, 2, 1; 1) −8
M(4; 3, 0, 0; 5) 61

M(4; 3, 0, 1; 3) −25
M(4; 3, 0, 2; 1) −3
M(4; 3, 3, 0; 1) −162
M(4; 4, 1, 0; 3) −156
M(4; 4, 1, 1; 1) −78
M(4; 5, 2, 0; 1) −1236
M(4; 6, 0, 0; 3) −678
M(4; 6, 0, 1; 1) −596
M(4; 7, 1, 0; 1) −9166
M(4; 9, 0, 0; 1) −67504
M(5; 0, 2, 0; 6) 18
M(5; 0, 2, 1; 4) −8
M(5; 0, 2, 2; 2) 2
M(5; 0, 2, 3; 0) 0
M(5; 0, 5, 0; 2) −24
M(5; 0, 5, 1; 0) 0
M(5; 1, 0, 0; 8) −19
M(5; 1, 0, 1; 6) 13
M(5; 1, 0, 2; 4) −7
M(5; 1, 0, 3; 2) 1
M(5; 1, 0, 4; 0) 5
M(5; 1, 3, 0; 4) −64
M(5; 1, 3, 1; 2) 0
M(5; 1, 3, 2; 0) 4
M(5; 1, 6, 0; 0) −320
M(5; 2, 1, 0; 6) 160
M(5; 2, 1, 1; 4) −60
M(5; 2, 1, 2; 2) 4
M(5; 2, 1, 3; 0) 16
M(5; 2, 4, 0; 2) −112
M(5; 2, 4, 1; 0) −80
M(5; 3, 2, 0; 4) −502
M(5; 3, 2, 1; 2) −26
M(5; 3, 2, 2; 0) 22
M(5; 3, 5, 0; 0) −3200
M(5; 4, 0, 0; 6) 1378
M(5; 4, 0, 1; 4) −424
M(5; 4, 0, 2; 2) 26
M(5; 4, 0, 3; 0) −8

M(5; 4, 3, 0; 2) −960
M(5; 4, 3, 1; 0) −1112
M(5; 5, 1, 0; 4) −3420
M(5; 5, 1, 1; 2) −260
M(5; 5, 1, 2; 0) −576
M(5; 5, 4, 0; 0) −33864
M(5; 6, 2, 0; 2) −8056
M(5; 6, 2, 1; 0) −15552
M(5; 7, 0, 0; 4) −19410
M(5; 7, 0, 1; 2) −3150
M(5; 7, 0, 2; 0) −7822
M(5; 7, 3, 0; 0) −368144
M(5; 8, 1, 0; 2) −71048
M(5; 8, 1, 1; 0) −170224
M(5; 9, 2, 0; 0) −3850704
M(5; 10, 0, 0; 2) −616288
M(5; 10, 0, 1; 0) −1720400
M(5; 11, 1, 0; 0) −39665920
M(5; 13, 0, 0; 0) −410460760
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4.2.4 Extended coefficients for P
5

M(1; 0, 0, 0, 0; 2) 1
M(1; 0, 0, 0, 1; 0) −1
M(1; 0, 1, 0, 0; 1) 0
M(1; 0, 2, 0, 0; 0) −1
M(1; 1, 0, 1, 0; 0) −1
M(1; 2, 0, 0, 0; 1) 0
M(1; 2, 1, 0, 0; 0) −1
M(1; 4, 0, 0, 0; 0) −1
M(2; 0, 0, 1, 0; 2) 0
M(2; 0, 0, 1, 1; 0) 0
M(2; 0, 1, 1, 0; 1) −1
M(2; 0, 2, 1, 0; 0) 0
M(2; 1, 0, 0, 0; 3) 1
M(2; 1, 0, 0, 1; 1) −1
M(2; 1, 0, 2, 0; 0) 0
M(2; 1, 1, 0, 0; 2) 0
M(2; 1, 1, 0, 1; 0) 0
M(2; 1, 2, 0, 0; 1) −3
M(2; 1, 3, 0, 0; 0) 0
M(2; 2, 0, 1, 0; 1) −3
M(2; 2, 1, 1, 0; 0) 0
M(2; 3, 0, 0, 0; 2) 0
M(2; 3, 0, 0, 1; 0) 0
M(2; 3, 1, 0, 0; 1) −7
M(2; 3, 2, 0, 0; 0) 0
M(2; 4, 0, 1, 0; 0) 0
M(2; 5, 0, 0, 0; 1) −15
M(2; 5, 1, 0, 0; 0) 0
M(2; 7, 0, 0, 0; 0) 0
M(3; 0, 0, 0, 0; 5) 0
M(3; 0, 0, 0, 1; 3) 0
M(3; 0, 0, 0, 2; 1) 0
M(3; 0, 0, 2, 0; 2) −1
M(3; 0, 0, 2, 1; 0) 1
M(3; 0, 1, 0, 0; 4) 1
M(3; 0, 1, 0, 1; 2) −1
M(3; 0, 1, 0, 2; 0) 1
M(3; 0, 1, 2, 0; 1) 0
M(3; 0, 2, 0, 0; 3) 0

M(3; 0, 2, 0, 1; 1) 0
M(3; 0, 2, 2, 0; 0) 1
M(3; 0, 3, 0, 0; 2) −5
M(3; 0, 3, 0, 1; 0) 3
M(3; 0, 4, 0, 0; 1) 0
M(3; 0, 5, 0, 0; 0) 5
M(3; 1, 0, 1, 0; 3) 0
M(3; 1, 0, 1, 1; 1) 0
M(3; 1, 0, 3, 0; 0) 3
M(3; 1, 1, 1, 0; 2) −4
M(3; 1, 1, 1, 1; 0) 2
M(3; 1, 2, 1, 0; 1) 0
M(3; 1, 3, 1, 0; 0) 0
M(3; 2, 0, 0, 0; 4) 5
M(3; 2, 0, 0, 1; 2) −3
M(3; 2, 0, 0, 2; 0) 1
M(3; 2, 0, 2, 0; 1) 0
M(3; 2, 1, 0, 0; 3) 0
M(3; 2, 1, 0, 1; 1) 0
M(3; 2, 1, 2, 0; 0) 3
M(3; 2, 2, 0, 0; 2) −15
M(3; 2, 2, 0, 1; 0) 3
M(3; 2, 3, 0, 0; 1) 0
M(3; 2, 4, 0, 0; 0) −35
M(3; 3, 0, 1, 0; 2) −14
M(3; 3, 0, 1, 1; 0) 2
M(3; 3, 1, 1, 0; 1) 0
M(3; 3, 2, 1, 0; 0) −20
M(3; 4, 0, 0, 0; 3) 0
M(3; 4, 0, 0, 1; 1) 0
M(3; 4, 0, 2, 0; 0) −11
M(3; 4, 1, 0, 0; 2) −45
M(3; 4, 1, 0, 1; 0) −5
M(3; 4, 2, 0, 0; 1) 0
M(3; 4, 3, 0, 0; 0) −267
M(3; 5, 0, 1, 0; 1) 0
M(3; 5, 1, 1, 0; 0) −172
M(3; 6, 0, 0, 0; 2) −123
M(3; 6, 0, 0, 1; 0) −57

M(3; 6, 1, 0, 0; 1) 0
M(3; 6, 2, 0, 0; 0) −1575
M(3; 7, 0, 1, 0; 0) −1020
M(3; 8, 0, 0, 0; 1) 0
M(3; 8, 1, 0, 0; 0) −8443
M(3; 10, 0, 0, 0; 0) −43515
M(4; 0, 0, 1, 0; 5) 1
M(4; 0, 0, 1, 1; 3) −1
M(4; 0, 0, 1, 2; 1) 1
M(4; 0, 0, 3, 0; 2) 0
M(4; 0, 1, 1, 0; 4) 0
M(4; 0, 1, 1, 1; 2) 0
M(4; 0, 1, 3, 0; 1) −4
M(4; 0, 2, 1, 0; 3) −5
M(4; 0, 2, 1, 1; 1) −1
M(4; 0, 3, 1, 0; 2) 0
M(4; 0, 4, 1, 0; 1) −43
M(4; 1, 0, 0, 0; 6) 0
M(4; 1, 0, 0, 1; 4) 0
M(4; 1, 0, 0, 2; 2) 0
M(4; 1, 0, 2, 0; 3) −6
M(4; 1, 0, 2, 1; 1) 2
M(4; 1, 1, 0, 0; 5) 9
M(4; 1, 1, 0, 1; 3) −5
M(4; 1, 1, 0, 2; 1) 1
M(4; 1, 1, 2, 0; 2) 0
M(4; 1, 2, 0, 0; 4) 0
M(4; 1, 2, 0, 1; 2) 0
M(4; 1, 2, 2, 0; 1) −30
M(4; 1, 3, 0, 0; 3) −31
M(4; 1, 3, 0, 1; 1) −15
M(4; 1, 4, 0, 0; 2) 0
M(4; 1, 5, 0, 0; 1) −415
M(4; 2, 0, 1, 0; 4) 0
M(4; 2, 0, 1, 1; 2) 0
M(4; 2, 0, 3, 0; 1) −10
M(4; 2, 1, 1, 0; 3) −31
M(4; 2, 1, 1, 1; 1) −7
M(4; 2, 2, 1, 0; 2) 0
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M(4; 2, 3, 1, 0; 1) −281
M(4; 3, 0, 0, 0; 5) 61
M(4; 3, 0, 0, 1; 3) −25
M(4; 3, 0, 0, 2; 1) −3
M(4; 3, 0, 2, 0; 2) 0
M(4; 3, 1, 0, 0; 4) 0
M(4; 3, 1, 0, 1; 2) 0
M(4; 3, 1, 2, 0; 1) −184
M(4; 3, 2, 0, 0; 3) −151
M(4; 3, 2, 0, 1; 1) −103
M(4; 3, 3, 0, 0; 2) 0
M(4; 3, 4, 0, 0; 1) −2643
M(4; 4, 0, 1, 0; 3) −157
M(4; 4, 0, 1, 1; 1) −77
M(4; 4, 1, 1, 0; 2) 0
M(4; 4, 2, 1, 0; 1) −1799
M(4; 5, 0, 0, 0; 4) 0
M(4; 5, 0, 0, 1; 2) 0
M(4; 5, 0, 2, 0; 1) −1314
M(4; 5, 1, 0, 0; 3) −635
M(4; 5, 1, 0, 1; 1) −679
M(4; 5, 2, 0, 0; 2) 0
M(4; 5, 3, 0, 0; 1) −16687
M(4; 6, 0, 1, 0; 2) 0
M(4; 6, 1, 1, 0; 1) −11461
M(4; 7, 0, 0, 0; 3) −2283
M(4; 7, 0, 0, 1; 1) −3935
M(4; 7, 1, 0, 0; 2) 0
M(4; 7, 2, 0, 0; 1) −104179
M(4; 8, 0, 1, 0; 1) −69459
M(4; 9, 0, 0, 0; 2) 0
M(4; 9, 1, 0, 0; 1) −640943
M(4; 11, 0, 0, 0; 1) −3934115
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4.2.5 Extended coefficients for P
6

M(1; 0, 0, 0, 0, 0; 2) 1
M(1; 0, 0, 0, 0, 1; 0) −1
M(1; 0, 1, 1, 0, 0; 0) −1
M(1; 1, 0, 0, 1, 0; 0) −1
M(1; 1, 2, 0, 0, 0; 0) −1
M(1; 2, 0, 1, 0, 0; 0) −1
M(1; 3, 1, 0, 0, 0; 0) −1
M(1; 5, 0, 0, 0, 0; 0) −1
M(2; 0, 0, 2, 0, 0; 1) −1
M(2; 0, 1, 0, 1, 0; 1) −1
M(2; 0, 3, 0, 0, 0; 1) −3
M(2; 1, 0, 0, 0, 0; 3) 1
M(2; 1, 0, 0, 0, 1; 1) −1
M(2; 1, 1, 1, 0, 0; 1) −3
M(2; 2, 0, 0, 1, 0; 1) −3
M(2; 2, 2, 0, 0, 0; 1) −7
M(2; 3, 0, 1, 0, 0; 1) −7
M(2; 4, 1, 0, 0, 0; 1) −15
M(2; 6, 0, 0, 0, 0; 1) −31
M(3; 0, 0, 0, 3, 0; 0) 1
M(3; 0, 0, 1, 1, 0; 2) −1
M(3; 0, 0, 1, 1, 1; 0) 1
M(3; 0, 0, 4, 0, 0; 0) 0
M(3; 0, 1, 0, 0, 0; 4) 1
M(3; 0, 1, 0, 0, 1; 2) −1
M(3; 0, 1, 0, 0, 2; 0) 1
M(3; 0, 1, 2, 1, 0; 0) 2
M(3; 0, 2, 0, 2, 0; 0) 1
M(3; 0, 2, 1, 0, 0; 2) −5
M(3; 0, 2, 1, 0, 1; 0) 3
M(3; 0, 3, 2, 0, 0; 0) 0
M(3; 0, 4, 0, 1, 0; 0) −5
M(3; 0, 6, 0, 0, 0; 0) −113
M(3; 1, 0, 1, 2, 0; 0) 3
M(3; 1, 0, 2, 0, 0; 2) −4
M(3; 1, 0, 2, 0, 1; 0) 2
M(3; 1, 1, 0, 1, 0; 2) −4
M(3; 1, 1, 0, 1, 1; 0) 2
M(3; 1, 1, 3, 0, 0; 0) −2
M(3; 1, 2, 1, 1, 0; 0) 1
M(3; 1, 3, 0, 0, 0; 2) −16
M(3; 1, 3, 0, 0, 1; 0) 4
M(3; 1, 4, 1, 0, 0; 0) −63
M(3; 2, 0, 0, 0, 0; 4) 5
M(3; 2, 0, 0, 0, 1; 2) −3
M(3; 2, 0, 0, 0, 2; 0) 1
M(3; 2, 0, 2, 1, 0; 0) 4
M(3; 2, 1, 0, 2, 0; 0) 3
M(3; 2, 1, 1, 0, 0; 2) −15

M(3; 2, 1, 1, 0, 1; 0) 3
M(3; 2, 2, 2, 0, 0; 0) −46
M(3; 2, 3, 0, 1, 0; 0) −31
M(3; 2, 5, 0, 0, 0; 0) −567
M(3; 3, 0, 0, 1, 0; 2) −14
M(3; 3, 0, 0, 1, 1; 0) 2
M(3; 3, 0, 3, 0, 0; 0) −28
M(3; 3, 1, 1, 1, 0; 0) −19
M(3; 3, 2, 0, 0, 0; 2) −46
M(3; 3, 2, 0, 0, 1; 0) −4
M(3; 3, 3, 1, 0, 0; 0) −411
M(3; 4, 0, 0, 2, 0; 0) −11
M(3; 4, 0, 1, 0, 0; 2) −45
M(3; 4, 0, 1, 0, 1; 0) −5
M(3; 4, 1, 2, 0, 0; 0) −304
M(3; 4, 2, 0, 1, 0; 0) −209
M(3; 4, 4, 0, 0, 0; 0) −2941
M(3; 5, 0, 1, 1, 0; 0) −171
M(3; 5, 1, 0, 0, 0; 2) −124
M(3; 5, 1, 0, 0, 1; 0) −56
M(3; 5, 2, 1, 0, 0; 0) −2179
M(3; 6, 0, 2, 0, 0; 0) −1686
M(3; 6, 1, 0, 1, 0; 0) −1131
M(3; 6, 3, 0, 0, 0; 0) −14363
M(3; 7, 0, 0, 0, 0; 2) −314
M(3; 7, 0, 0, 0, 1; 0) −288
M(3; 7, 1, 1, 0, 0; 0) −10671
M(3; 8, 0, 0, 1, 0; 0) −5309
M(3; 8, 2, 0, 0, 0; 0) −67657
M(3; 9, 0, 1, 0, 0; 0) −49527
M(3; 10, 1, 0, 0, 0; 0) −311919
M(3; 12, 0, 0, 0, 0; 0) −1425141
M(4; 0, 0, 0, 2, 0; 3) −1
M(4; 0, 0, 0, 2, 1; 1) 1
M(4; 0, 0, 1, 0, 0; 5) 1
M(4; 0, 0, 1, 0, 1; 3) −1
M(4; 0, 0, 1, 0, 2; 1) 1
M(4; 0, 0, 3, 1, 0; 1) −6
M(4; 0, 1, 1, 2, 0; 1) −3
M(4; 0, 1, 2, 0, 0; 3) −6
M(4; 0, 1, 2, 0, 1; 1) 0
M(4; 0, 2, 0, 1, 0; 3) −5
M(4; 0, 2, 0, 1, 1; 1) −1
M(4; 0, 2, 3, 0, 0; 1) −64
M(4; 0, 3, 1, 1, 0; 1) −53
M(4; 0, 4, 0, 0, 0; 3) −27
M(4; 0, 4, 0, 0, 1; 1) −25
M(4; 0, 5, 1, 0, 0; 1) −729
M(4; 1, 0, 0, 3, 0; 1) 3

M(4; 1, 0, 1, 1, 0; 3) −6
M(4; 1, 0, 1, 1, 1; 1) 2
M(4; 1, 0, 4, 0, 0; 1) −56
M(4; 1, 1, 0, 0, 0; 5) 9
M(4; 1, 1, 0, 0, 1; 3) −5
M(4; 1, 1, 0, 0, 2; 1) 1
M(4; 1, 1, 2, 1, 0; 1) −36
M(4; 1, 2, 0, 2, 0; 1) −29
M(4; 1, 2, 1, 0, 0; 3) −32
M(4; 1, 2, 1, 0, 1; 1) −14
M(4; 1, 3, 2, 0, 0; 1) −534
M(4; 1, 4, 0, 1, 0; 1) −403
M(4; 1, 6, 0, 0, 0; 1) −5463
M(4; 2, 0, 1, 2, 0; 1) −9
M(4; 2, 0, 2, 0, 0; 3) −32
M(4; 2, 0, 2, 0, 1; 1) −6
M(4; 2, 1, 0, 1, 0; 3) −31
M(4; 2, 1, 0, 1, 1; 1) −7
M(4; 2, 1, 3, 0, 0; 1) −402
M(4; 2, 2, 1, 1, 0; 1) −307
M(4; 2, 3, 0, 0, 0; 3) −141
M(4; 2, 3, 0, 0, 1; 1) −131
M(4; 2, 4, 1, 0, 0; 1) −4151
M(4; 3, 0, 0, 0, 0; 5) 61
M(4; 3, 0, 0, 0, 1; 3) −25
M(4; 3, 0, 0, 0, 2; 1) −3
M(4; 3, 0, 2, 1, 0; 1) −206
M(4; 3, 1, 0, 2, 0; 1) −183
M(4; 3, 1, 1, 0, 0; 3) −152
M(4; 3, 1, 1, 0, 1; 1) −102
M(4; 3, 2, 2, 0, 0; 1) −3184
M(4; 3, 3, 0, 1, 0; 1) −2345
M(4; 3, 5, 0, 0, 0; 1) −31457
M(4; 4, 0, 0, 1, 0; 3) −157
M(4; 4, 0, 0, 1, 1; 1) −77
M(4; 4, 0, 3, 0, 0; 1) −2360
M(4; 4, 1, 1, 1, 0; 1) −1881
M(4; 4, 2, 0, 0, 0; 3) −587
M(4; 4, 2, 0, 0, 1; 1) −765
M(4; 4, 3, 1, 0, 0; 1) −24133
M(4; 5, 0, 0, 2, 0; 1) −1313
M(4; 5, 0, 1, 0, 0; 3) −636
M(4; 5, 0, 1, 0, 1; 1) −678
M(4; 5, 1, 2, 0, 0; 1) −18838
M(4; 5, 2, 0, 1, 0; 1) −13623
M(4; 5, 4, 0, 0, 0; 1) −180635
M(4; 6, 0, 1, 1, 0; 1) −11695
M(4; 6, 1, 0, 0, 0; 3) −2117
M(4; 6, 1, 0, 0, 1; 1) −4175
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M(4; 6, 2, 1, 0, 0; 1) −138947
M(4; 7, 0, 2, 0, 0; 1) −111656
M(4; 7, 1, 0, 1, 0; 1) −76957
M(4; 7, 3, 0, 0, 0; 1) −1028189
M(4; 8, 0, 0, 0, 0; 3) −6795
M(4; 8, 0, 0, 0, 1; 1) −20929
M(4; 8, 1, 1, 0, 0; 1) −789265
M(4; 9, 0, 0, 1, 0; 1) −413659
M(4; 9, 2, 0, 0, 0; 1) −5801599
M(4; 10, 0, 1, 0, 0; 1) −4382335
M(4; 11, 1, 0, 0, 0; 1) −32479177
M(4; 13, 0, 0, 0, 0; 1) −181335139
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4.2.6 Extended coefficients for P
1 × P

1

M(0, 1; 0; 1) 1
M(0, 2; 0; 3) 0
M(0, 2; 1; 1) 0
M(0, 3; 0; 5) 0
M(0, 3; 1; 3) 0
M(0, 3; 2; 1) 0
M(0, 4; 0; 7) 0
M(0, 4; 1; 5) 0
M(0, 4; 2; 3) 0
M(0, 4; 3; 1) 0
M(1, 0; 0; 1) 1
M(1, 1; 0; 3) 1
M(1, 1; 1; 1) 1
M(1, 2; 0; 5) 1
M(1, 2; 1; 3) 1
M(1, 2; 2; 1) 1
M(1, 3; 0; 7) 1
M(1, 3; 1; 5) 1
M(1, 3; 2; 3) 1
M(1, 3; 3; 1) 1
M(1, 4; 0; 9) 1
M(1, 4; 1; 7) 1
M(1, 4; 2; 5) 1
M(1, 4; 3; 3) 1
M(1, 4; 4; 1) 1
M(2, 0; 0; 3) 0
M(2, 0; 1; 1) 0
M(2, 1; 0; 5) 1
M(2, 1; 1; 3) 1
M(2, 1; 2; 1) 1
M(2, 2; 0; 7) 8
M(2, 2; 1; 5) 6
M(2, 2; 2; 3) 4
M(2, 2; 3; 1) 2
M(2, 3; 0; 9) 48
M(2, 3; 1; 7) 32
M(2, 3; 2; 5) 20
M(2, 3; 3; 3) 12
M(2, 3; 4; 1) 8

M(2, 4; 0; 11) 256
M(2, 4; 1; 9) 160
M(2, 4; 2; 7) 96
M(2, 4; 3; 5) 56
M(2, 4; 4; 3) 32
M(2, 4; 5; 1) 16
M(3, 0; 0; 5) 0
M(3, 0; 1; 3) 0
M(3, 0; 2; 1) 0
M(3, 1; 0; 7) 1
M(3, 1; 1; 5) 1
M(3, 1; 2; 3) 1
M(3, 1; 3; 1) 1
M(3, 2; 0; 9) 48
M(3, 2; 1; 7) 32
M(3, 2; 2; 5) 20
M(3, 2; 3; 3) 12
M(3, 2; 4; 1) 8
M(3, 3; 0; 11) 1086
M(3, 3; 1; 9) 606
M(3, 3; 2; 7) 318
M(3, 3; 3; 5) 158
M(3, 3; 4; 3) 78
M(3, 3; 5; 1) 46
M(3, 4; 0; 13) 18424
M(3, 4; 1; 11) 9256
M(3, 4; 2; 9) 4432
M(3, 4; 3; 7) 2032
M(3, 4; 4; 5) 904
M(3, 4; 5; 3) 408
M(3, 4; 6; 1) 224
M(4, 0; 0; 7) 0
M(4, 0; 1; 5) 0
M(4, 0; 2; 3) 0
M(4, 0; 3; 1) 0
M(4, 1; 0; 9) 1
M(4, 1; 1; 7) 1
M(4, 1; 2; 5) 1
M(4, 1; 3; 3) 1

M(4, 1; 4; 1) 1
M(4, 2; 0; 11) 256
M(4, 2; 1; 9) 160
M(4, 2; 2; 7) 96
M(4, 2; 3; 5) 56
M(4, 2; 4; 3) 32
M(4, 2; 5; 1) 16
M(4, 3; 0; 13) 18424
M(4, 3; 1; 11) 9256
M(4, 3; 2; 9) 4432
M(4, 3; 3; 7) 2032
M(4, 3; 4; 5) 904
M(4, 3; 5; 3) 408
M(4, 3; 6; 1) 224
M(4, 4; 1; 13) 360896
M(4, 4; 2; 11) 152192
M(4, 4; 3; 9) 61568
M(4, 4; 4; 7) 24064
M(4, 4; 5; 5) 9280
M(4, 4; 6; 3) 3712
M(4, 4; 7; 1) 1536
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4.2.7 Extended coefficients for G(2, 4)

M(1; 0, 1, 0, 0; 1) i

M(1; 1, 0, 0, 0; 1) −i

M(2; 0, 0, 0, 0; 3) 1
M(2; 0, 0, 0, 1; 1) −1
M(2; 0, 1, 1, 0; 1) −1
M(2; 0, 3, 0, 0; 1) −1
M(2; 1, 0, 1, 0; 1) −1
M(2; 1, 2, 0, 0; 1) −1
M(2; 2, 1, 0, 0; 1) −1
M(2; 3, 0, 0, 0; 1) −1
M(3; 0, 0, 1, 0; 3) 0
M(3; 0, 0, 1, 1; 1) 0
M(3; 0, 1, 2, 0; 1) −i

M(3; 0, 2, 0, 0; 3) 2i
M(3; 0, 2, 0, 1; 1) −2i
M(3; 0, 3, 1, 0; 1) −5i
M(3; 0, 5, 0, 0; 1) −7i
M(3; 1, 0, 2, 0; 1) i

M(3; 1, 1, 0, 0; 3) 0
M(3; 1, 1, 0, 1; 1) 0
M(3; 1, 2, 1, 0; 1) −3i
M(3; 1, 4, 0, 0; 1) −9i
M(3; 2, 0, 0, 0; 3) −2i
M(3; 2, 0, 0, 1; 1) 2i
M(3; 2, 1, 1, 0; 1) 3i
M(3; 2, 3, 0, 0; 1) −7i
M(3; 3, 0, 1, 0; 1) 5i
M(3; 3, 2, 0, 0; 1) 7i
M(3; 4, 1, 0, 0; 1) 9i
M(3; 5, 0, 0, 0; 1) 7i
M(4; 0, 0, 2, 0; 3) −2
M(4; 0, 0, 2, 1; 1) 0
M(4; 0, 1, 0, 0; 5) 4
M(4; 0, 1, 0, 1; 3) −2
M(4; 0, 1, 0, 2; 1) 0
M(4; 0, 1, 3, 0; 1) −4
M(4; 0, 2, 1, 0; 3) −4
M(4; 0, 2, 1, 1; 1) −2
M(4; 0, 3, 2, 0; 1) −10

M(4; 0, 4, 0, 0; 3) −18
M(4; 0, 4, 0, 1; 1) 4
M(4; 0, 5, 1, 0; 1) 12
M(4; 0, 7, 0, 0; 1) 74
M(4; 1, 0, 0, 0; 5) 4
M(4; 1, 0, 0, 1; 3) −2
M(4; 1, 0, 0, 2; 1) 0
M(4; 1, 0, 3, 0; 1) −4
M(4; 1, 1, 1, 0; 3) −4
M(4; 1, 1, 1, 1; 1) −2
M(4; 1, 2, 2, 0; 1) −18
M(4; 1, 3, 0, 0; 3) −6
M(4; 1, 3, 0, 1; 1) −8
M(4; 1, 4, 1, 0; 1) −36
M(4; 1, 6, 0, 0; 1) 2
M(4; 2, 0, 1, 0; 3) −4
M(4; 2, 0, 1, 1; 1) −2
M(4; 2, 1, 2, 0; 1) −18
M(4; 2, 2, 0, 0; 3) −2
M(4; 2, 2, 0, 1; 1) −12
M(4; 2, 3, 1, 0; 1) −76
M(4; 2, 5, 0, 0; 1) −142
M(4; 3, 0, 2, 0; 1) −10
M(4; 3, 1, 0, 0; 3) −6
M(4; 3, 1, 0, 1; 1) −8
M(4; 3, 2, 1, 0; 1) −76
M(4; 3, 4, 0, 0; 1) −294
M(4; 4, 0, 0, 0; 3) −18
M(4; 4, 0, 0, 1; 1) 4
M(4; 4, 1, 1, 0; 1) −36
M(4; 4, 3, 0, 0; 1) −294
M(4; 5, 0, 1, 0; 1) 12
M(4; 5, 2, 0, 0; 1) −142
M(4; 6, 1, 0, 0; 1) 2
M(4; 7, 0, 0, 0; 1) 74
M(5; 0, 0, 0, 0; 7) 0
M(5; 0, 0, 0, 1; 5) 0
M(5; 0, 0, 0, 2; 3) 0
M(5; 0, 0, 0, 3; 1) 0

M(5; 0, 0, 3, 0; 3) 0
M(5; 0, 0, 3, 1; 1) 0
M(5; 0, 1, 1, 0; 5) 4i
M(5; 0, 1, 1, 1; 3) −2i
M(5; 0, 1, 1, 2; 1) 0
M(5; 0, 1, 4, 0; 1) −3i
M(5; 0, 2, 2, 0; 3) −14i
M(5; 0, 2, 2, 1; 1) −2i
M(5; 0, 3, 0, 0; 5) 52i
M(5; 0, 3, 0, 1; 3) −22i
M(5; 0, 3, 0, 2; 1) 4i
M(5; 0, 3, 3, 0; 1) −41i
M(5; 0, 4, 1, 0; 3) −84i
M(5; 0, 4, 1, 1; 1) −12i
M(5; 0, 5, 2, 0; 1) −161i
M(5; 0, 6, 0, 0; 3) −374i
M(5; 0, 6, 0, 1; 1) 38i
M(5; 0, 7, 1, 0; 1) 81i
M(5; 0, 9, 0, 0; 1) 1893i
M(5; 1, 0, 1, 0; 5) −4i
M(5; 1, 0, 1, 1; 3) 2i
M(5; 1, 0, 1, 2; 1) 0
M(5; 1, 0, 4, 0; 1) 3i
M(5; 1, 1, 2, 0; 3) 0
M(5; 1, 1, 2, 1; 1) 0
M(5; 1, 2, 0, 0; 5) 20i
M(5; 1, 2, 0, 1; 3) −10i
M(5; 1, 2, 0, 2; 1) 4i
M(5; 1, 2, 3, 0; 1) −15i
M(5; 1, 3, 1, 0; 3) −54i
M(5; 1, 3, 1, 1; 1) −2i
M(5; 1, 4, 2, 0; 1) −175i
M(5; 1, 5, 0, 0; 3) −204i
M(5; 1, 5, 0, 1; 1) −100i
M(5; 1, 6, 1, 0; 1) −825i
M(5; 1, 8, 0, 0; 1) −645i
M(5; 2, 0, 2, 0; 3) 14i
M(5; 2, 0, 2, 1; 1) 2i
M(5; 2, 1, 0, 0; 5) −20i
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M(5; 2, 1, 0, 1; 3) 10i
M(5; 2, 1, 0, 2; 1) −4i
M(5; 2, 1, 3, 0; 1) 15i
M(5; 2, 2, 1, 0; 3) 0
M(5; 2, 2, 1, 1; 1) 0
M(5; 2, 3, 2, 0; 1) −65i
M(5; 2, 4, 0, 0; 3) −114i
M(5; 2, 4, 0, 1; 1) −62i
M(5; 2, 5, 1, 0; 1) −967i
M(5; 2, 7, 0, 0; 1) −4155i
M(5; 3, 0, 0, 0; 5) −52i
M(5; 3, 0, 0, 1; 3) 22i
M(5; 3, 0, 0, 2; 1) −4i
M(5; 3, 0, 3, 0; 1) 41i
M(5; 3, 1, 1, 0; 3) 54i
M(5; 3, 1, 1, 1; 1) 2i
M(5; 3, 2, 2, 0; 1) 65i
M(5; 3, 3, 0, 0; 3) 0
M(5; 3, 3, 0, 1; 1) 0
M(5; 3, 4, 1, 0; 1) −369i
M(5; 3, 6, 0, 0; 1) −4885i
M(5; 4, 0, 1, 0; 3) 84i
M(5; 4, 0, 1, 1; 1) 12i
M(5; 4, 1, 2, 0; 1) 175i
M(5; 4, 2, 0, 0; 3) 114i
M(5; 4, 2, 0, 1; 1) 62i
M(5; 4, 3, 1, 0; 1) 369i
M(5; 4, 5, 0, 0; 1) −1899i
M(5; 5, 0, 2, 0; 1) 161i
M(5; 5, 1, 0, 0; 3) 204i
M(5; 5, 1, 0, 1; 1) 100i
M(5; 5, 2, 1, 0; 1) 967i
M(5; 5, 4, 0, 0; 1) 1899i
M(5; 6, 0, 0, 0; 3) 374i
M(5; 6, 0, 0, 1; 1) −38i
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CHAPTER 5
Summary and Conclusion

In this thesis, we showed that the open WDVV equations arise as the associa-

tivity conditions for a rank-1 extension of Frob manifolds. This gives a geometric

description of the open WDVV equations in a similar way to how a Frobenius man-

ifold describes the original WDVV equations. The introduction and use of a Frob

manifold instead of a Frobenius manifold was necessary due to the lack of natural

metric in the motivating examples.

We studied Frob manifolds in detail and showed that, even though they lack a

metric, they have many of the same properties as Frobenius manifolds. For example,

we gave the notion of semisimple Frob manifolds. We constructed two so-called struc-

ture connections for Frob manifolds. We defined extensions in general and showed

that there are two kinds of rank-1 extensions, namely an extension by a module

and an auxiliary extension. We showed that auxiliary extensions of semisimple Frob

manifolds are again semisimple.

We found interesting examples of extensions for two classes of Frobenius mani-

folds: Quantum Cohomology of Pn and the universal unfolding of the An singularity.

The first example example is somewhat conjectural, although we observed a con-

nection to other work done with real enumerative geometry. In addition, we also
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conjectured the existence of an extension for G(2, 4) and we ask whether the coeffi-

cients of that extended potential represent enumerative invariants. These coefficients

interestingly were complex integers.

We proved the existence of an extension of An, and we computed the extended

potentials explicitly for some values of n.

Overall, this framework of Frob manifold and extensions has proven useful to

describe some interesting phenomenon in different areas of math, which made this

a worthwhile object to study. We expect that more examples will be found in the

future, and this framework will give some insight into their nature.
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