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Abstract

This thesis is a review of the symplectic cohomology theories of Tseng and Yau [16] 17],
which give symplectic analogues of the Dolbeault, Bott-Chern and Aeppli cohomologies for
complex manifolds. Basic features of these cohomologies, such as their Hodge theories,
finite-dimensionality, duality properties and Poincaré lemmas are reviewed. The symplectic
cohomologies are computed explicitly in the case of cotangent bundles. While none of the
results of this thesis are new, we have given detailed proofs of a number of facts which are
stated without proof in the foundational papers of Tseng and Yau. The thesis concludes

with perspectives and open problems.

Résumé

Cette these reprend les théories de cohomologie symplectique de Tseng et Yau [16] [17], qui
fournissent des analogues symplectiques des cohomologies de Dolbeault, Bott-Chern et Aep-
pli pour les variétés complexes. Les propriétés de base de ces cohomologies, telles que leurs
théories de Hodge, la finitude de leurs dimensions, leurs propriétés de dualité et les lemmes
de Poincaré sont étudiés. Les cohomologies symplectiques sont calculées explicitement dans
le cas des fibrés cotangents. Bien que cette these ne contienne pas de résultats nouveaux,
elle contient des preuves détaillées de certains résultats qui sont énoncés sans preuve dans
les travaux de Tseng et Yau. Nous concluons these avec des perspectives et des questions

ouvertes.
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Introduction

Hodge theory for symplectic manifolds first was discussed by Ehresmann and Libermann
[0, 10] and then by Brylinski [4], but their approach was not entirely successful, as we shall
see below. Their approach is in parallel with the Hodge theory in Riemannian geometry,
which we will shortly review in subsection [I.1} In summary, one defines a symplectic star
operator *, (see subsection by replacing the Riemannian metric g with the symplectic
form w in the definition of the Hodge star operator x. This operator allows us to define the

symplectic adjoint of the exterior derivative by the formula
d* = (—1)’7“Jrl *g dkg,

acting on k-forms in analogy with the adjoint d* in Riemannian geometry. Defining the
symplectic harmonic forms as the differential forms that are both d- and d“-closed, we
are looking for the relationship between the de Rham cohomology classes and symplectic
harmonic forms. But in contrast with Riemannian geometry, it is not the case that there
exists a symplectic harmonic representative for each de Rham cohomology class of a compact
symplectic manifold. It was proved by Mathieu [II] and Yan [20] that every de Rham
cohomology class contains a symplectic harmonic form if and only if the strong Lefschetz
property holds i.e. the maps HY — H 3””“ between de Rham cohomology groups given by
[A] — [w™™* A A] are surjective for all 0 < k < n. Even in this case, symplectic harmonic
representatives of de Rham cohomology classes are not unique in contrast with Riemannian
geometry. This suggests that this is not an optimal approach and the de Rham cohomology,
being a topological invariant, is not an appropriate choice to reflect the symplectic structure
properties.

In this thesis, we study a new approach to the Hodge theory on symplectic manifolds
recently introduced by Tseng and Yau [16, I7] which is in parallel with complex geometry.
The first key step is to define the space L™* = {w" A By : By € P*}, where P* is the space
of primitive s-forms, in analogy to the space of type (p, ¢) forms in complex geometry. This
gives a pyramid shape decomposition of differential forms presented in , similar to the
diamond shape decomposition @, which familiar from almost complex geometry. Then,

the exterior derivative d acting on £™* has only two components, so this allows us to define



two first order differential operators (9,,9_). The pairs (9;,9_) and (d, d*) are symplectic
counterparts of the pairs (9,0) and (d,d¢) in complex geometry. Using these differential

operators, we can define some new symplectic cohomologies by the formulas

ker 0, NPk
PHj, = —————
O Z"ITL 8i N Pk ’
ker (0; + 0_) NPk
ko k _ +
PHd+dA - PH8++67 - im a+ai N Pk )
ker 0,.0_ N P*

PH*, = PHE , = .
dd 0= (im0, +imd_) NPk

These cohomologies are symplectic analogues of the well-known Dolbeault cohomology,

Bott-Chern cohomology [2]
ker (0 + 0) N AP

HP = _ 1
o+9 imdo N Ara (1)
and Aeppli cohomology [I]

v ker 00 N AP

(2)

00 " (imd + imd) N Apa’

We can summarize these similarities of symplectic and complex manifolds in the following

table:
Complex manifold | Symplectic manifold
Differential forms AP L
Diamond (ﬂ) Pyramid (15|>
i—0+0 d=0. + Lo
Differential operators | d° = (0 — ) d = ﬁ&FA — (H + R)0-
(9,0) (04,0-)
Dolbeault PHS,
Cohomologies Bott-Chern PH 5 A
Aeppli PH é“ A

For a compact manifold, by choosing a compatible Riemannian metric, we define the
associated Laplacians for these cohomologies and take advantage of general Hodge theory

of self-adjoint elliptic operators on compact manifolds [19] to conclude that all of above



cohomologies are finite dimensional. This also implies that the following pairings

PHj; . ® PHyx - R, PHj ® PH5 —R,

[A] @ [A"] — /MA A x A

are non-degenerate and therefore we have dualities PH 5 L dA = PH 5 o and PH §+ = PH §7.

We then prove Poincaré lemmas for all of above cohomologies and compute them for the

general example of cotangent bundles. The results are summarized in the following table:

Star-shaped open subset of R?" | Cotangent bundle
PHY »|R k=0 Hy 0<k<n
0 0<k<n
PH:, |R =1 Hi ' 0<k<n
0 k=0, 2<k<n HI '@ HY  k=n
PHE  |R k=0, k=1 Hy '@ HY 0<k<n
0 2<k<n
PHE |0 0<k<n 0 0<k<n

Note that the Euclidean space R?*" with the standard symplectic structure is also the
cotangent bundle of R™ and these two results are the same in this special case.

Our thesis is organized as follows. Section 1 is a short review of classical Hodge theories
of Riemannian, complex and Kéahler geometries. In section 2, some algebraic and differential
operators are introduced and their properties are studied in detail. Different symplectic
cohomologies are defined in section 3. We study Hodge theories of these cohomologies and
conclude their finite-dimensionality for compact symplectic manifolds. More results for these
cohomologies are proved in Section 4 including duality properties, Poincaré lemmas and the
fact that under the assumption of compactness and the dd*-lemma, these cohomologies are
isomorphic to the de Rham cohomology. The thesis concludes with a brief account of a
Mayer-Veitoris-type construction for symplectic cohomologies and a section summarizing

the conclusions and outline of open problems.



1 Review of classical Hodge theories

This is just a short review section without details. For further details see the given references

for each subsection.

1.1 Compact orientable manifolds

The main reference for this subsection is [I8]. Let M be an orientable n-manifold (without
boundary). Choose and fix an arbitrary orientation and Riemannian metric g on M. Given
a point p in M, we have an isomorphism f, : T,(M) — Ty(M) given by V'~ iy (g,), where

ip is the interior product. For 0%, n' € Q! for i = 1, ..., k, define

<O'AN AT LAY >, = det(gp(fp_l(n;), fp_l(%))), (3)

and extend it linearly to QF. Moreover, we define < f,g >,= f.g for f,g € C®(M) = Q°
and < Ay, Ag, >,= 0 for A;, € Q% and k; # ky. The Hodge star operator * : QF — Q2=+
is defined by AAxA' =< A, A" >, dvol for A, A’ € QF, where dvol is the volume element. It
satisfies xx = (—1)F(=F),

Moreover, if M is compact, then the formula < Ay, A >:= [ o Ak A *Aj is an inner
product structure on (M ). For a linear operator 17" on (M), if there exists an operator T*
on Q(M) satisfying < TA, A’ >=< A, T*A’ >, then the operator T* is called the (formal)

adjoint of T'. Then immediately, we have
T** — T, <T+ T/)* — T* + T/*, (CT)* — CT*, (TT/>* — T/*T*,

for any linear operator 7" and real constant ¢. One can show d* = (—1)"**D+1 x dx. Define

the Hodge Laplacian by A; = d*d + dd* and the space of d-harmonic k-forms by
’Hlj =ker AygNQF = kerdnkerd NQF.

Also, write HY = % for the k-th real de Rham cohomology class.

Proposition 1.1. For a compact oriented Riemannian manifold M, the operator A4 is
elliptic and therefore we have

a) dim HY < oo



b) The orthogonal decomposition QF = HE @ dQ*! @ d*QF+1
c) HY =1k ie. there is a unique d-harmonic form in each de Rham cohomology class.

d) * : "HS — ”Hfl”*k is an isomorphism for 0 < k < 2n.

Corollary 1.2. For a compact orientable manifold M, we have dim HY < oo and the fol-

lowing non-degenerate natural pairing and therefore H% = Hj”’k.

HE @ HPF SR, [A]®[A] = / ANA. (@)
M

1.2 Almost complex manifolds

The references of this subsection are [9] and [12]. Let M be a 2n-manifold (without bound-
ary). An almost complex structure J is a linear map J, : T,,(M) — T,,(M) with the property
J» = Id for all p € M. Consider the complexified tangent space Te(M) = T(M) ® C and
extend J to a C-linear operator on T (M ). Write 7"(M) and T" (M) for eigenspaces of .J cor-
responding to the eigenvalues ¢ and —i, respectively. Then, we have Tc(M) =T (M)&T" (M)
and T"(M) = T" (M), where the conjugation is in Tc(M). Define the space of complex-valued
k-forms by A¥ = A" Tz(M) and the space of type (p,q) forms by the formula
P

AP = \NT"(M) @ /q\T”*(M) 0<p,q<n. (5)

We can arrange these spaces in the following diamond shape order

An,n
An,nfl Anfl,n
An,n—Q An—l,n—l An—Q,n
An,O AO,n (6)
A2,0 ./41’1 AO,Q
Al,O ./40’1
A0,0



The above decomposition and the formula T"(M) = T"(M) give
Ak — @ AP AP — ATP
p+q=Fk
An almost complex structure J and a Riemannian metric g are called compatible if we
have g(JV, JW) = g(V,W). Likewise, an almost complex structure J and a non-degenerate

2-form w are called compatible if we have

wV,JV)>0  V #£0,
w(JV, JW) = w(V,W).

Having an almost complex structure .J, there is a 1-1 correspondence between compatible

Riemannian metrics and compatible non-degenerate 2-forms related to each other by formulas
w(V,W)=g(JV.W),  g(V,W)=w(V,JW),

such a triple (w, J, g) is called a compatible triple. If we have an almost complex structure
J, then there exists a compatible triple (w, J, g). Also having a non-degenerate 2-form w,

there exists a compatible triple (w, J, g) (see [12]).

1.3 Compact complex manifolds

The reference of this and next subsections is [7]. An almost complex structure is called
integrable if there is an open cover of M with local charts such that the transition maps
are holomorphic. A complex structure is an integrable almost complex structure and a
complex manifold is a manifold with a complex structure. Any complex manifold is naturally
oriented using the standard oreintation on R** = C" since holomorphic maps are orientation
preserving. On a complex manifold, we have d : AP4 — APTH4 @ AP+ 50 we can define its
components 0 : A4 — APTL4 and 0 1 AP? — AP such that d = 9 + 0. Also, define the
operator d° = i(0 — ). We have

?=0*=d?*=0, 90 = —00, dd¢ = —d°d = 2id0.

We can define



pa _ l?er on APt pa _ @e’r ? N Ap’q‘ 7)
imo N AP’ 0 im0 N AP
Note that we have H? = H}? and they are called the Dolbeault cohomology groups. We
have the 0-Poicaré lemma stating that HE? =0 for ¢ > 0 and M be a polydisk in R** = C".
Let M be a complex manifold with complex structure J and (real) dimension 2n. A
Hermitian metric on M is a Hermitian inner product on 7;(M) for all p € M depending
smoothly on p. Choose and fix an arbitrary compatible triple (w, J, g) on M. Then, there
is a Hermitian metric on M defined by ¢ + iw. Using this Hermitian metric and completely
similar to subsection , we can define a complex Hodge star operator * : AP9 — A" "P"~4
satisfying #x = (—1)P+0Crn=p=a) — (_1)P+4_ Acting on QF, it is the same as * operator
induced by g.
Moreover, if M is compact, then the formula < A, A} >:= fM Ag A %A}, makes A(M)
into a Hermitian inner product space such that its real part is the inner product induced
by g on Q(M). Similarly, define the (formal) adjoint 7™ of an operator 7" on A(M). Then

immediately, we have
T** — T, (T“— T/)* — T* ‘I’ T/*, (CT)* — ET*, (TT/)* — T,*T*7

for any operator T" and complex constant c. We have

d*=—xdx, 0"=—%x0%, O =—%0x.

Define Laplacians Ay = 90 + 00" and A; = 0*0 + 00* and the space of O-harmonic
(p, q)-forms by
HET = ker Ay N AP = ker & N ker 9" N AP (8)

Proposition 1.3. For a compatible triple (w,J,g) on a compact complex manifold M, we
have

a) dim HZ? < oo

b) The orthogonal decomposition AP? = HE? & AP~ @ 0 AP+

c) Hy' = HZ ie. there is a unique O-harmonic form in each Dolbeault cohomology
class.

d) x : HZ" — HZ """ is an isomorphism for 0 < p,q < n.

7



Corollary 1.4. For a compact complex manifold M, we have dim Hg’q < 0o and the follow-
g natural pairing
Hg’q ® Hg_p’”_q — C, [A] @ [A] — / ANA,
M

is non-degenerate and therefore Hy* = HZ™P"1,

A Kéhler manifold is a smooth manifold with a compatible triple (w, J, g) such that J
is integrable and w is d-closed. In other words, Kahler manifolds are both symplectic and
complex manifolds in ways that are compatible with each other. Let M be a compact Kahler
2n-manifold. Consider the operators L and A defined in subsection 2.1.1} Then, we have

lots of identities involving different operators known as Kéhler identities. Some of them are

0,A] = —id*,  [0,A] =i9*, 99" = -0,
Ag=20g =27y, [0,L] =[0,L] = [Ag, L] = [Ag, A] = 0.

Using these identities one can prove the following proposition.

Proposition 1.5. For a compact Kdahler manifold M, we have

a) HY" = HY" and H;(C) =@, ., H"

b) dim H3* is even, dim HE? >0 and dim H* >0 for 0 < k,p<n.

¢) The maps L" % : HY — H2"F and L"P9 : HEY — HI™""P are isomorphisms for
0<k,p+qg<n.

d) The following pairing is non-degenerate for 0 < k < n:

HY © HE 5 R, [A]@[A’]H/ L (AN A,
M



2 Operators on symplectic manifolds

In this section, we define different algebraic and differential operators on symplectic manifolds
and study their properties. Each of these operators acts linearly on forms, and thus is a linear
map QM) — Q(M).

From this section onward, (M,w) is a symplectic manifold (without boundary) with
dimension 2n i.e. w is a d-closed non-degenerate 2-form on M. We will use the notation Ay
or just simply A for a k-form on M i.e. A, € QF. Sometimes we will use other notations as

well. Also, unless otherwise specified the main references for this work are either [16] or [17].

2.1 Algebraic operators

Since all the definitions and results in the following two subsections are algebraic, they hold

for symplectic vector spaces as well as symplectic manifolds.

2.1.1 Lefschetz decomposition (L, A, H and R)

While most of the ideas in this subsection are given in [16] or [I7], the proofs given here
have been obtained independently. The first three operators are the well-known operators
that give a representation of the si(2) algebra on (M) and consequently define a Lefschetz
decomposition of forms. Since these operators and decomposition are well-studied, we will

state some of their elementary properties without proof (properties I-I1I below).

Definition 2.1. The Lefschetz operator L : QF — QF2 the dual Lefschetz operator

A QF — QF2 and the degree counting operator H : QF — QF are defined by

L(Ag) = w A Ag, (9)
A(Ak) = Z %(w_l)ijiazi’iazj/lk, (10)
H(AL) = (n — k) Ay, (11)

2n 1

where x is a local coordinate, w = 3 7" 5

wijdz' A da? and ((w™1)"9) is the inverse matriz
of (wij). Also, in stands for the interior product. These operators are extended linearly to

Q(M). Also, we will set QF = {0} for k > 2n or k <0, for ezample in A : Q' — QL.

9



The commutators of these operators are given by
[A,L|=H, [H,A]=2A, [H L]=-2L, (12)

on Q(M), so we have a sl(2)-representation. Consequently, we have the following three
properties:

(I) The maps L" % : QF — Q=% and A" : Q2% — QF are isomorphisms for k = 0,...,n
(considering L? and A as the identity map). This implies that L" : QF — Q*?" is injective

if k+r <mnand A" : QF = QF2" is injective if k — r > n.

Definition 2.2. Define the space of primitive forms as P(M) := ker(A : Q(M) — Q(M)).
We will use the notation By or just simply B to represent a primitive k-form i.e. a member
of P* :=P(M)NQ*.

Note that we have P° = Q0 = C>(M) and P' = Q. Also, property (I) implies that
Pk = {0} for k > n.

(IT) The second property gives us an alternative definition of primitive forms:
Pr = ker(L"F1 . QF 5 QR =0,..,n.

(ITI) Finally, the last elementary property known as the Lefschetz decomposition gives
Ok = D, >0 L"P*=2r By equality 1) if we have r + k — 2r > n, then L"Pk2 = {0}.

Therefore, we can assume that maz(0,k —n) <r < |£].

Definition 2.3. Define the spaces L™ := L"P* C Q% *% and the operator R : L™ — L™ by
RA :=rA for A e L. Extend this operator linearly to a map R : Q(M) — Q(M).

Lemma 2.4. We have the following identities on (M ):

AL =(H+r—1)rL"" r>1,
[H, R] =0,
AL = (H + R)(R+1),
LA=(H+R+1)R.

10



Proof. The first equality is proved by induction on r. For r = 1, it is just [A, L] = H in .

Now, assume that it is true for » — 1 and we will prove it for r:

A L) = ALL"™' = I'A = LAL"' + HL'™' — L"A
= LL™'A+ L((H +r = 2)(r = L") + HL™' = L'A

=(H+2+r—=2)(r—1)LL ?+HL ' =(H+r—1)rL" "

For the remaining equalities, it is enough by linearity to verify them only on £™*. Taking

any B € P®, we have

HR(L"Bs) = (n—2r —s)rL"B; = RH(L"By),
AL(L"B,) = AL""'B, = L""'AB, + (H +7)(r + 1)L"B, = (H + R)(R + 1)(L"B,),

which prove the second and third formulas. We can prove the last one directly similar to

the third one or prove it as follows:
IAN=AL-H=(H+R)(R+1)—-H=(H+R+1)R. O

By equality (2.1.1), the space £"° is nontrivial only if 0 < 7, s and r + s < n. We can

arrange these spaces in the following pyramid:

£0,n
EO,n— 1 ﬁl,n— 1
EO,an )Cl,n72 /;2,7172
(13)
EO,I £n—171
EO’O £1,D . En—l,o ﬁn,o

The left edge corresponds to the primitive spaces (r = 0) and the right edge corresponds

to r + s = n. The direct sum of k-th vertical line (0 < k < 2n) gives the Lefschetz
k

decomposition QF = @Lfm a2(0 k—n) L7*=27 - On the other hand, all the spaces on the same

horizontal line are isomorphic to each other by the following lemma.

11



Lemma 2.5. The map L : L — L7755 4s an isomorphism for 0 < r,s andr+s < n i.e. as
long as we don’t leave the pyramid. Similarly, the map A : L — L7715 is an isomorphism

forO<r, 0<sandr+s<nie aslong as we don’t leave the pyramid.

Proof. First note that we have A(L"™*) C L"1* by the definition of the spaces £"* and the
first identity in Lemma [2.4] Also by the definition of the spaces £™*, the map L is clearly
surjective. According to Lemma[2.4] we know that AL : £ — L™ is simply multiplication
by the constant (n —r —s)(r+1). But this constant is positive since we stay in the pyramid
and hence r + s < n. Consequently, the map AL is an isomorphism and L is also injective.

Therefore, both such maps L and A are isomorphisms. O

For any k-form A, € QF, its Lefschetz decomposition gives primitive forms By_o, € Pph-2r

such that
15 1
Ay = Z ﬁLer,QT_ (14)
r=maxz(0,k—n)
The nonzero coefficients % added to make some future formulas simpler. By Lemma ,
the map L" : P2 — L£"*=2" i5 an isomorphism for these values of r and therefore these
primitive forms are unique and are called the Lefschetz components of A;. They can be

computed using the following lemma.

Lemma 2.6. Let Ay, and By_9 be as above. For some rational coefficients a,; depending

onn, k, r and t, we have

Bk_QT = Z antLtAr—HAk.

>0
Proof. We will prove this lemma inductively. Let 7o = |4]. Applying A™ to the formula
(14) and using the first formula in Lemma repeatedly, we will find an equation of the
form A" A, = aBy_s,,, where a is a rational number. If ry = 0, then we have a = 1 and if
ro > 0, then the inequality 2ry > ro > k —n implies that k —2rq < n, so H > 0 and therefore
a is nonzero. By dividing this equation by a, the lemma is proved for the greatest value of
T, l.e. rg.

Now, let 71 be 7o — 1 and apply A™ to the formula to find an equation of the form

A" Ay = bBj_9,, + cLBj_o,, , where b and c are rational numbers. By the same argument

12



as above b is nonzero. Consequently, we can replace By_o,, from the previous step and solve

this equation for By_s,, to prove the lemma for r1, and so on. O

Corollary 2.7. If we have A'A;, = 0, then there are at most t nonzero Lefschetz components

By_o. forr=20,...,t—1.

Lemma 2.8.

A(Ag) N Agp_jro = A AN AN(Agp—k12),

while it is not true in general that A(A) N A" = ANA(A).

Proof. Let A’ be a nonzero primitive form and A = w, then A(A)ANA" =nA" # 0= ANA(A).
To prove the equality when the form A(A) A A" has the maximum degree 2n, it is enough to
check that (ip ,is ,A) N A" = AN (ig jig ; A') for A =da"" A ANda'™, A= da' N A da?v
and k + k' = 2n + 2, where x = (z!, ..., 2*") is a local coordinate.

Case 1 (Suppose that the indices ¢ and j are not both among 41, ..., i.): Then, we have
ig ;19 ;A =0, so the left hand side vanishes. On the other hand, the 2n-form A A (ip ;o ; A’)
is of the form dz™ A ... A dz'>» without both indices ¢ and j appearing, which means there
exists a repeated index and the right hand side is also zero.

Case 2 (Suppose that the indices i and j are not both among ji, ..., ji.): Similar to the
previous case.

Case 3 (Both indices ¢ and j are among iy, ..., iy, and also among ji, ..., jx.): Without
loss of generality, assume that i1 = j = j; and i3 = i = j,. Then the equality follows from

the identity

(daz"* A Adx™ )N (da? Ndx' Ada?® A Ada?* ) = (da? Ada' Adx® A Ada™ )N (da A Ada?v). O

2.1.2 The symplectic star operator x;

None of the proofs in this subsection are given in [I6] or [I7]. While these are not new
facts and you can find their proofs in many references, the proofs given below appear to be
original.

Completely similar to oriented Riemannian manifolds, we can define a bilinear form and

star operator on the forms on a symplectic manifold as follows. Given a point p in M, we

13



have an isomorphism f, : T,,(M) — T;;(M) given by V' + iy (w,) since the symplectic form

w is nondegenerate. For 6’,n' € T*(M) (i = 1,..., k), define
<O AN A LAY = det(< 0 ) >) = det(w,(f, ('), f,H(67))), (15)

and extend it linearly to /\k(T;(M)) For k = 0, we use < f,g >,= f.g (f,g € C®(M)).
Note that we have < Ay, A}, >,= (=1)F < A}, Ay >,. Finally, we define < Ay, 4}, >,= 0

for k # K.

Proposition 2.9. In a local coordinate x, we have

2n
1
<AA>= ) G Dad (w A, G AL L AA e QF,
1 yeensieof1y k=1
where Ay, i, = A(Oyir, ..., Opir,) o equivalently A = Zi"lk:l S A dr N LA da

Proof. Since both sides of the equality are pointwise bilinear, it is enough to check it for

i i 1 i i
A=dz" N...Ndz* = nggn(a’)dxﬂl) Ao Ndx'e'®)

Al =da AN dadk = Esgn(a”)dx]f’”(ﬂ AN Ll ON

Since the isomorphism f, ' : T(M) — T,(M) sends dz}, to Zﬁl(w’l)ijaﬂ |, the left hand
side is (using formula (17))

2n 2n
< A A >, =det(< da't do’m >,) = det(w(Z(w_l)jmb&Eb, Z(w‘l)ilaaﬂ))
b=1 a=1
2n
=det( Y (w ) (w Y wy,) = det((w™")"m),
a,b=1

On the other hand, the right hand side is
1 —1\z j —1\2 j / "
> W (Wl sgn(o”)sgn(o”)

1 . iy
= > e @) sgn(o)

o' ,o=c"oc'~1

=D (W) (w0 sgn (o) = det((w ) ). =

o

14



Definition 2.10. The symplectic star operator *, : QF — Q>"F is defined by

ANx A =< A A >, dvol A A € QF,

w”

where dvol = =

is the (symplectic) volume element.

Let (Mj,w;) and (Ms,ws) be symplectic manifolds of dimensions 2n; and 2n,. We will
use the notation L;, A; and x! for the above operators on M; and similarly for M,. Then,
the product manifold (M := M; X Ms,w := w; + ws) is a symplectic manifold of dimension
2n = 2(n; + ny). To prove some facts about the operator *,, we can use mathematical
induction on n but to do so we first need to know what is the relationship between x*,, *!
and *2.

Lemma 2.11. Consider a (ki + ks )-form Ay, N Ay, on M = M; x My where Ay, is a k;-form
on M; fori=1,2. We have

5g(Ap, AN Ag,) = (DRl AL A %24,

L(Ag, N Ag,) = Li(Ag,) AN Agy + A, A La(Agy),

A(Ag, N Agy) = M (Agy) A Agy + Agy A Aa(Ag,).
Proof. Note that the second and third formulas are direct consequences of the definitions and
w = wy +wy. Consider the forms Ay, = 0' A AOF AL =0 AL ANOF Ay, =0t AL AR
and Aj, = 1" A ... An*2, where 6 and 0" are 1-forms on M; and 7’ and " are 1-forms on
M. 1t is enough to prove the lemma for these particular Ay, and Ay,. By formula (15), we

have
, . AN 0
< Ak1 VAN AkgvAkl VAN Ak2 >, = det o
0 <. >,
=< AL Ay >un - < Al Ak, >, -
So, we can write
( ;ﬂ VAN A§€2> A *s(Ak1 A Ak2) =< A;ﬂ VAN A§€2,Ak1 VAN Ak2 >, dvol
=< Ay Ak >u - < A, Ak, >, dvoly A dvoly
= (A;ﬁ /\ *iAkl) /\ (A;CQ /\ *gAkQ)

= (_1)k1k2( ;cl A A;@) A (*iA’ﬁ A *iAk2)7
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which proves the lemma. O]

Proposition 2.12. The operator x4 acts like the reflection by the middle vertical line on the

pyramaid . More precisely, we have g : L° — L7775 given by

s(s+1)
1 1)
wtpp = VT g (16)
r! (n—r—s)!

where By € P* and r + s < n.

Proof. 1 obtained the idea of this proof from [9]. Proof is by induction on n. Note that all
the operators L, A and *, act pointwise, so it is enough to prove this proposition at a fixed
point p € M.

The basis case (n = 1): Using a Darboux coordinate (z,y) such that w = dz Ady and easy
computations, one can check that we have *,1 = w = L'(1), *,L'(1) = *,w = 1, *,dr = —dx
and *,dy = —dy. By pointwise linearity, checking these four equalities is sufficient to prove
the basis case.

The inductive case: Using a cubical Darboux coordinate around p € M, without loss of
generality, we can assume that (M;,w;) and (Mz, ws) are respectively open submanifolds of
R? and R2™~Y with the standard symplectic forms (i.e. wy = daz® A dy? + ... + da™ A dy”
and wy = dx! Ady') and (M, w) is the product symplectic manifold. A general s-form B, at
p = (p1,p2) € My x My is of the form

BS = AS + d.Tl AN BS,1 + dyl VAN B;il +wi A BS,Q,

where A, Bs_1, B._, and B,_ are forms at p, € My. Now, if By is primitive, we must have

(using third formula in Lemma [2.11))
0= ABS = AQAS + d$1 VAN A2Bs—1 + dyl A AQB;_l + BS—Q + w1 A ABS_Q,

and therefore B;_1, B, | and B_ should be primitive and 0 = Ay A;+ Bs_5. Then, Corollary
and Lemma imply that A, = B, — —L—1,B, 5 for some primitive form B at p,.

n—s+1

Combining these with the second formula in Lemma we find

L'By =rwi A Ly "B + LyBy — — " 1L§+1BS_2
. , n—r—s+1 .
+dat AN LyBe_y +dy' A LYB. |+ e A L5B, .

16



Using this equation, the fist formula in Lemma [2.11] and the induction hypothesis, we can

compute

1
(=1) 2 (n—r—s)x* —'LTBS =Ly "B 4+ (n—1r—sw ALY TIB!
7!

r+1 n—r—s n—r—s
n_—mwl VAN L2 BS—2 + dl’l A L2 Bs—l
1
+d 1 A LnfrfsB/ . Lnfrfs+1387 7
Y 2 =17 12 2

whose right hand side is the same as the right hand side of the previous equation after

replacing r by n —r — s. O

Corollary 2.13. The maps *, : QF — Q2" % and x, : L — L7775 are isomorphisms and

the operators L and A are symplectic adjoints of each other:

*g kg = 1,

A = % Lx,, L = % A %, .

Proof. Proof of the first formula is just using the formula twice and the fact that x; is
pointwise linear. The first and second formulas give the third one. To prove the second one,

it is enough to check that both hand sides act similarly on %L’"Bs (using the formula
and Lemma :

s(s+1)

*sL *g (lLTBS> = *S—(_ ) ’ Ln_s_r+1BS — _n —s—r+ 1L7‘—1BS
7! (n—r—s)! (r—1)!
H —1 1
fd +—TLT—1BS — A(_LTBS> D
(7" — 1)' r!

Let (w, J, g) be a compatible triple on M that always exists for any symplectic manifold
(see [12]). Define J : QF — QF by

(TADNVi, o Vi) o= Ap(JVA, oo, TVR), (17)

then we have J2 = (—1)* = 72 on k-forms and Jw = w. Note that any symplectic manifold
is naturally oriented using the orientation induced by w™. Using notations in subsection [I.1]

we have:

17



Proposition 2.14. For a compatible triple (w, J, g), the following identities hold
[j’L] = [jaA] =0,

< Ap, Ay, > =< A, TA}, >,

* = *sja
1 (—1)*%"
*FL Bs = —(n — S)‘L j(BS)J
[j7*] = [\77*8] =0,
*ok = (_1)k7
A= (-1F%Lx.

Proof. From the definition, we have J(AANA") = J(A) AT (A’). Together with the equality
J(w) = w, we can conclude that JL = LJ. In a Darboux coordinate system such that
w =y dx" Ndy', we have J(0,i) = Oy, J(9yi) = —0p and A = 37, ig,to,,- These
formulas prove JA = AJ.

Using the definitions of bilinear forms <, >, and <, >, on k-forms, the definition of J
and compatibility conditions of (w, J, g), we can easily see that < Ay, A} >,=< A, TA|, >..

Then, we can write
Ap N x Al =< Ay, A}, >, dvol =< Ay, T A}, >, dvol = Ay A % T A,

which proves * = %,7.
Combining * = .7, the formula and commutativity of J with operators L and A
proves the fourth one. Note that J preserves primitivity by commutativity with A.
Computing Jx*, and * = %, on L£"° using the formula and the previous formula,
we can see that J*, = %,J and therefore the operators x and *, commute with 7.

For the last two equations, we have:

ok = x5 J x J = ks I8 = (1),
(=1)F % Lk = (=1)" s, TL %, T = (—=1)" %y L J* = #,L#, = A, O

18



We can extend the operator J to act on the complex-valued forms A(M) by the formula
J =3, P4, where i = V=1 and 11?7 : A(M) — AP is the type (p,q) projection
map. To see the relationship between these two definitions, recall that J acts on T"(M) as
multiplication by i and on T”(M) as multiplication by —i = i~1. Then, the formula ([17)

gives to the above formula formula.

2.2 Differential operators
2.2.1 dand d*

Definition 2.15. Define the operator d* : Q¥ — QF1 by d* .= dA — Ad, where d is the

exterior derivative. Therefore, the operator dd™ is a map QF — QF.
Lemma 2.16. [d,L] =0, [d,A] = d*, [d, H) =d, dd* = —dAd = —dd.
Proof. The second assertion is just the definition of d*. The proof of others are as follows:
dLAy, = d(w A Ay) = d(w) A A + (—1)°w A dA, = Ld A,
dHA, — HdAy = (n — k)dAy — (n — (k + 1))dAy = dAy,
dd* = ddA — dAd = —dAd = —(dAd — Add) = —d"d. ]

Lemma 2.17. For any By, € P*, there exist primitive forms By, € P*** and B;_, € P**

such that

AB, = Bl,y + LBL,,

d*B, = -HB}_,.
In particular, By, is d®-closed if it is d-closed.

Proof. First, we want to show that the Lefschetz decomposition of dBj has at most two
nonzero components. If k& > n, then By = 0 = dB;. Otherwise, since By, is primitive and
k < n, then L"**1B; = 0. Consider the Lefschetz decomposition dB; = > 50 L' Biyi o
Using [d, L] = 0, we have 0 = dL" "By = > _(L"** By, , . This implies that

Lr=kttrpr |, =0forallr > 0. By (I) in the subsection for &'+r" < n, the operator
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L7 Q¥ — QF+2 is injective. If r > 2, then (k+1—2r)+ (n—k+1+7r)=n+2—-r<n
and therefore Bj_,_,. = 0. Consequently, we have dBj, = B}, + LB;_,.

Next, we have
d*By = dAB), — AdBy =0 — AB} , —ALB;_, = —HB}_,. O
Proposition 2.18. We have d* = (—1)**! x, dx, on k-forms i.e. the operator d* is the
symplectic adjoint of d.

Proof. To prove the proposition, we will check that both operators act similarly on %L’"BS.

1 1 1
AN—=L"By) = —d(H — 1)L 'B, =
d (r! o) r!d( +r—1r S (r—1)!

(H + r)L"'dB,

_ 1 r—1 R0 1 rnl
= (r—l)!(H—i_T)L BS_H—Fm(H—FT)L B 4,
Ad(lL’”B ) = LALrBY + Lar+ip
r! Y St gl sl
1 - r+1 ,
e (H+r—1)L""'BY | + T(H +7)L"B}_,,
1 1 n—r—s+1
A r _ r=1p0 r Rl
d (FL By) = = 1)!L Bo B E— L"B, 4,
(s+1)(s+2) (s—1)s
1 (=1 = - (1) =" L
_1)\2r+s+1 ~7r _ n—-r—snp0 n—r—s+1 pl
(—1) *sd*s(r!L By) = R g L B, =) g L B, ,
_ 1 r—17130 n—r—s+1l.,.,
= (r—l)!L BsH—TL B; ;. O

Corollary 2.19. We have the following identities:
dAdd =0,  d= (1) db,,  dd* = x,dd s,
[d* L] =d, [d, A] =0, [d* H) = —d",
[dd*, L] = [dd", A] = [dd*, H] = 0.
Proof. On k-forms, we have

dhdd = (=) w doxg dY = — xg d kg kgdrg = —  ddxg = 0,
(—1)FF g dhg = (“1)M s (1P g divg ), = d,

dd® = (=1)F 1 s dh s, dD = — 5, dY 5, xpdxg = dd x, .
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To prove the equalities in the second line, we multiply the corresponding identities in Lemma
from left and right by 4. Finally, we use the equality [a,[b,c]] = a[b,c] + [a,c]b for

commutators to prove the identities in the third line. For example acting on k-forms, we can

write
d= (—1)k+1 kg (AN — Ad)xg = (—1)k+3 ko d xg %o\ xg — x5 A %, (_1)k:+1 *g kg
=d"L — Ld" = [d*, L],
[dd™, L] = d[d*, L] + [d, L]d* = dd + 0 = 0. O

Corollary 2.20. Let A be a differential form, then we have
a) A is d-closed (d-exact) <= *,A is d*-closed (d*-exact) and vice versa.

b) A is dd®-closed (dd*-exact) <= x,A is dd*-closed (dd-ezact).

Proof. The computation d* *, A = 4 %, d %, *,A = + x, dA proves part a). For vice versa

cases just note that x,+; = 1. For part b), write dd™ s A = x,dd® x4 %, A = %, dd™ A. O

Definition 2.21. We say a k-form Ay is d + d*-ezact if there are (k—1) and (k +1)-forms
Ap_1 and Ay satisfying Ay, = dAy_1 +d Appq.

Proposition 2.22. Let Ay, =) %LTB;C,QT be the Lefschetz decomposition of a k-form Aj.
We have:

a) Ay is both d- and d*-closed <= By_o, is d-closed for all r.

b) Ay, is dd*-closed (dd™-exact) <= By_o, is dd*-closed (dd"-exzact) for all r.

¢) Ay is (d+ d™)-evact <= By_a, is (d+ d™)-exact for all .

Proof. Part a) <=: Assume that dBj_o, = 0 for all 7. Then, the following equalities

1
dA, = Z ;'erBk—%»

T

1 r
dAAk = Z ’rT'L (dA + Td)Bk_QT,

and the identity d*Bj_s, = 0 from Lemma imply that dA;, = d*A;, = 0.
Part a) =: Assume that dA;, = d*A;, = 0. By Lemma , we can compute
ABi_gr = Y ap L"dAN A =Y an L' (d + (r + t)d") Ay,
t

t
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and therefore dBjy_o, = 0. The proof of the part b) is similar and trivial since the operator
dd® commutes with both L and A operators.

Part c¢) <: Assume that we have B = dA + d®A’. Then, we can write
L'B=dLl"A+d*L" A —rdL" ' A" = d(L"A — rL" ' A) + d*(L" A)),

even when the form B is not primitive.

Part ¢) =: Assume that we have A, = dA + d*A’. Then, we can write
Biogr = Y apL'AN Ay =d Y ap LA A= dN Y ap(r+ ) LA A
t t t
+d Y ap(r+OrL AT A+ dN Y T a DAMA —dY ap e LTIATAL O
t t t

Corollary 2.23. Let A be a k-form for 0 <k <n and A’ = L" %A, then we have
a) A is d-closed (d-exact) = A’ is d-closed (d-exact).
b) A is dd*-closed (dd*-eract) <= A’ is dd*-closed (dd*-ezact).
c¢) A is both d- and d*-closed <= A’ is both d- and d"-closed.
d) Ais (d+ d*)-eract <= A’ is (d + d*)-ezact.

Proof. For part a), just note that [d, L] = 0. To prove other parts, assume that we have

the Lefschetz decompositions A = )" %Ler_Qr and A" = )", %LT/BEQn—k)—%”" Since the

map L"F : QF — Q2% is an isomorphism, we should have %Bk_gr = ﬁBEank)er/ for
" =n —k+r. Now Proposition proves parts b, ¢ and d. H

Lemma 2.24. Let V' be a symplectic vector field on M i.e. the 1-form v := iyw is d-closed.

The Lie deriwative Ly on differential forms satisfies
LyL=LCL, LyB=—d*(vAB)—vAd'B,
for a primitive form B.

Proof. We use the Cartan formula Ly = iy d+ d iy to prove the lemma. This formula shows

that Lyw = 0. We have the following commutator formulas

EvLA = Ev(w A A) = (va) ANA +wA (EvA) = LﬁvA,

ivA:A’iv, ZvLA:’L\/(CU)/\A+L«}/\lvA:V/\A+leA
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The last two formulas imply that
—A(l/ AN B) = ALZvB - ZvALB = HZ\/B — ZvHB = ’ivB,
for a primitive form B. If we have dB = B’ + LB”, then we can compute

ivdB=1iyB +vANB"— LAvANB")=—-AvAB)—ALwvAB")+ (H+1)(vAB")
= —AvAdB)+vA(HB")=Ad(vAB) —v A (d"B)

= —d*(vAB) —diyB —v A (d*B). O

Corollary 2.25. Let V' be a Hamiltonian vector field on M i.e. there exists h € C*°(M)
satisfying iyvw = dh. The Lie derivative Ly on differential forms satisfies

a) Ay is both d- and dM-closed = Ly Ay, is dd*-ezact.

b) Ay is dd®-closed = Ly Ay, is (d+ d*)-exact.

Proof. Let Ay =), %LTB;C_QT be the Lefschetz decomposition of Ay.
Part a): Assume that Ay is both d- and d*-closed, then By_o, is d and d*-closed for all

r. Using the previous lemma, we have

Ly By_or = —d*((dh) A By_9,) — (dh) A d*By_o, = —d“d(hBy,_s,) — 0 = dd"(hBy_a,)

1 1
= LyAp =) L Ly By = > FL’”ddA(th_Qr) = dd™(hA}).

s s

Part b): Assume that Ay is dd*-closed, then Bj_o, is dd"-closed for all r. Using the

previous lemma, we have
LyBy_gy = d(—h AN d*By_y,) + d*(—(dh) A By_a,),

hence Ly By_o, is (d + d*)-exact for all r and therefore Ly A, = Y. LL"Ly Bj_s, is also

ror!

(d+d™)-exact by the proof of Proposition (note that Ly By_s, can be non-primitive). [

Lemma 2.26. If M is compact, then we have

/M(dAAk)/\A’:(—l)k/ A A (A,

M

/ (dd™Ap) A A" = — / Ap A (dd A",
M M
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Proof. Note that the Stokes’ theorem implies that [, (dAx) A A" = (=1)" [, Ay A (dA).

Using this fact and Lemma [2.8] we can write:
/ (dAA) NA = (=1)F 2“/ (AAR) A (dA") = (—1)’““/ A N (AdA"),
M M M
/ (AdA ) NA = / (dAx) N (AA") = (— )Hl/ Ap N (dAA").
M M M
Subtracting these two formulas gives the first identity. For the second identity, write
/ (dd™Ap) N A" = (=1)F(—1)-DH / A A (dAdA") = — / A A (dd*A"). O
M M M

Note that the previous lemma serves as a version of Stokes’ theorem for operators d* and

dd™.

Definition 2.27. For a compatible triple (w,J,g), the differential operator d° : QF — QF+1
is defined by d¢ == J1dJ .

Lemma 2.28. For a compatible triple (w, J,g), we have d* = — x d°*.
Proof. Acting on k-forms, we have
dd = (—1)";Jrl *g kg = (—1)’”rl x T YddxJ ' = (—1)’7“Jrl x T T« T 2=—xd°*. [

Lemma 2.29. For a compatible triple (w,J,g) on a compact manifold, whenever acting on

k-forms, we have
L* = (—1) % Lx = A, H* = H, d* = — % dx,
dM = xd™, (dd™)* = (=1)* % ddx, de* = — s« d° = d>.
Proof. The equality H* = H is obvious.
< LAy 9, Al > = / (LAp o) A (xA}) = /MAkg A (L * A})

/ )2n— k424, A (k% LxA)) =< Ap_s, (_1)k « Lx Aj >
M

< dA 1, A (dAx1) A (+AL) = /(—1)kAk_1A(d*A;)
M

e
:/ VR AL A (xxdx A)) =< Ay, — xd x A} >
M
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< d A, Al > = /

(@A) A A = [ (1P A A (@ )
M

M
= / (=DM (1) R AL A (x5 dd % AL) =< Ay, xd® x A, >,
M

(dd®)* = d™d* = — s d" s sdse = —(=1)" M s @i = (1) x dd

< d°Aj_1, Al > = /

M

(T T Ap_1) A (x4) = / dT A1 N (T * A)
M
= / (—1)*T A1 A (dT % A)) = / (=) Ay A (T 1T * AY)
M M

= / (—DF(=1)? A A (x5 dx A)) =< Ap_y, — xd° % A} > .
M

For the last one, note that a nonzero 2n-form is of type (n,n), so it is invariant under the

action of J and J(AANA") = T(A) AT (A). O
Corollary 2.30. Jd = —d™J, Jd*=d*'J, Jd*=-d*J, Jd*=dJ.
Proof. The last equality is just d** = d° = J~'dJ. For the others, we have
—dMT =-J NT? = (-1 T PTd = Jd,
Jd* = ()" T xdvg = —xdx, J* = —xdxJ =d"J,
~d\T =g T = ()T gd = Jd. O
Lemma 2.31. For a compatible triple (w, J, g) on a compact manifold, we have
[d*, L] = —d™, [d*,A] =0, [d*, H] = —d~,
@™, L] =0, @, A] = —d", AN H] = d,
[(ddy*, L) = [(dd*)*, A] = [(dd")", H] = 0.

Proof. We obtain these by taking adjoint of previous commutation relations and the formula

la, b]* = —[a*, b*]. O

Remark. For a Kihler manifold, the operator d° is given by the formula i(0 — 3). To see
this, let A be a type (p, q)-form, then we have

dPA=THIA=TJ 0+ 0)TA=P 1T 0A+ P 1T 10A
= P72 PTDYA 1 P @FDPHA = (0 — D) A.
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2.2.2 0, and 0_
Using Lemmas and we have the map d : L™ — L7t @ Lrbs—1,

Definition 2.32. Define the differential operators O, : L — L™ and O_ : L™ — L7571
by the identity d = 04 + LO_.

Lemma 2.33.

[8+> L] = L([(?,, L]) = 07
L(0,0-) = —=L(9-04),
0 =0 =0.
Proof. Since we have [0, L] : L — LTt and L([0_, L]) : L™ — L7251 the following

computation

0=[d, L] = [0y + LO_] = [0, L] + L([0-, L]),

implies that both terms should be zero. Similarly, the computation
0=d*=0%+ (0, LO_ + LO_0,) + LO_LI_ = &> + (L3O + LO_y) + L*D?,

implies L(0;0_) = —L(0-0;) and 97 = L?9? = 0. Note that acting on £"* with s < 2, we
have 9> = 0 because we leave the pyramid and outside of the pyramid we have £L2F = {0}.
On the other hand, when the operator L?0? = 0 acts on £"* with s > 2, we will never

leave the pyramid so the operator L? is an isomorphism by Lemma and again we have
9* =0. O

Remark. We have [0_, L] =0 and 0,,0_ = —0_04, if we don’t leave the pyramid i.e. acting

on L7 withr + s < n.

Proposition 2.34. We have d® : £™* — L5t @ L7571 and dd™ : L7 — L7 satisfying

the following formulas

1
(=) %, 0, %, TT R 18+A, (=) %, Lo_x, = —(H + R)0_,
1
Sy L

dd* = —(H + 2R+ 1)0,0_,
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1
. — s 1)d + Ld*
Ot H+2R+1(( + R4 1)d+ Ld),

—1 A
o_ = (H+2R+1>(H+R>((H+R+1)d — dA).

Proof. Using Lemma [2.17, we have dB, = BY, | + LB;_, and

1 s(s+1) 1
k+1 —qr _ (_1\2rts+ly 4\ —5— n—r—s R0
(1M 00 s (L7 BL) = (S1P ) e s B,
1
— erlBO
(T . 1)| s+1»
1 1 1 H+r-1
——0:A(=L"B;) = L' 'B, = L1B? ..
T R0 MG B) = % (r—1)! (r—1)! s+l
Similarly, we have
(_1>k+1 x. LO_ % (lLrB ) _ (_1)2r+s+1<_1)% * 1 LnfrferlBl
s - Ts rl s S(n—r—s)! s—1
n—r—s+1 1

U'Bl .y = ~(H + R)J_(L'B.).

7!
Adding these two, the formula for d* is proved. Consequently, we have

1

A -
dd* = (8, + LO_)( TR

04N — (H+ R)0_) = —0,(H + R)o_ + LO_ 0. A

H+R+1

=—(H+R+1)0,0- — 0;0_LA = —(H+2R+1)0,0-.

H+R+1

Using the previous formulas for d and d* and acting on £, we have

(H+R+1)d+ Ld* =((n—r—8)0y + (n—7 — s+ 1)LI_)
v
n—r—s+1
(H+R+1)d* —dA = (OsA—(n—r—s+1)(n—7—5+2)0_) — (0. A+ 0_LA)

+( Oy LN —(n—r—s+1)LJ_) = (n—s)0; = (H+2R+1)dy,
=—(n—-r—s+1)(n—s+2)0_=—(H+R)(H+2R+1)0_.

Finally, note that we always have H + R+ 1> 0 and H + 2R + 1 > 0. Moreover, (H + R)
is positive after applying d_, d* or dA. O]
Corollary 2.35. The operators 0, : P¥ — P! and 0_ : P* — P*L on primitive forms
satisfy the following formulas

0, =d+LH'd" = (1 - LH'A)d,

0. =—H 4" = H'Ad,

0,0 = —(H +1)"*dd* = (H + 1)"*dAd.
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Proof. Formulas for 0, are just formulas in Lemma [2.17] The last formula follows from
dd* = —(H + 2R + 1)9,0_ in the above proposition after inserting R = 0. Note that we
always have H 4+ 1 > 0 on primitive forms. Moreover, H is positive after applying d* on

primitive forms. O

Lemma 2.36. For a compatible triple (w, J, g) on a compact manifold, we have
Jo.J ' =0"(H+R), Jo,J'=—-(H+R)o-.

Proof. Taking adjoint of formulas for d and d*, we have

d* = 0% + 0 A,
1

A*:L* . *H ]

d 8+H+R+1 O-(H +F)

Using these and various results from previous subsections, we have

(H+2R+1)J0,T ' = (—D)FT((H + R+ 1) %g d" %5 +L #s dg) T
= —((H+R+1)*d** +Lxd+) = Ld* — (H + R+ 1)d™
=LO*A+ (H+ R+1)0*(H+ R) = LA9* + (H + R+ 1)%0*
=(H+2R+1)(H+R+1)0* =(H+2R+1)0"(H + R)

Since we have H + 2R + 1 > 0, the proof is complete. Similarly, we can write
—~(H+2R+1)T N H+RO-T = (1T HH+R+1)*,d*s —*,d* 5, )T

= —((H+R+1)sdx—xd*«A)=(H+ R+ 1)d* +d“A

— (H+ R+ 1) + LAJ. = (H + 2R + )97, O

1
H+R+1
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3 Symplectic cohomologies and Hodge theories

In this section, we will define different symplectic cohomologies. All these cohomologies are
invariant under symplectomorphisms in the following sense. Let f : (M, w;) — (Ma,ws) be
a symplectomorphism i.e. a diffeomorphism satisfying f*ws = wy or f*Lo = Ly f*. Then,
the pullback map f*: Q(Ms) — Q(M;) commutes with all defined operators on differential
forms in Section [2 Consequently, it induces well-defined linear isomorphisms on the level of

cohomologies.

3.1 d* cohomology

Definition 3.1. Having d*d* = 0, we can define the d* cohomology by

ker d* N QF
k.
Har == gngpn

for 0 < k <2n.

Definition 3.2. For a compatible triple (w,J,g) on a compact manifold M, we define the

self-adjoint operator Ay : QF — QF called Laplacian associated with the d® cohomology by
Agr = dMd* + abdM, (19)
and the space of d*-harmonic k-forms by ’H’;A = ker Aga NQF.

We use the similar notations Ay = d*d + dd* and HY = ker Ay N QF for de Rham

cohomology.
Lemma 3.3. x,Ay = Apnx,, JTAg=AnT, *0g=~2Az%, *Qz; = Agax.

Proof. Corollary implies the second equality. First and second equalities give the others

using formula x = %, 7. For the first equality, write

Agrrg = xd™ s d sy +d™ 5 dD 5 5, = (=1)FDHL =Ry wd v d

4+ (=1) @ hEDFL YRR s dse = — sy wd w d — wod % dx = %Ay O

Lemma 3.4. Let (w, J,g) denotes a compatible triple on a compact manifold M. A form A
is d*-harmonic if and only if d*A = d™A = 0.
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Proof. The implication < is an immediate consequence of the above definition. For the

other implication under the assumption Az A = 0, we have

0=<ApA A>=<d"d*A,A>+ < d*dA4, A >
=< d*A,d*A > + < d™A dM"A >=||dMA| P+ ||dM A2 O

Proposition 3.5. For a compatible triple (w, J, g) on a compact manifold M, we have
a) dimHE, < oo
b) The orthogonal decomposition QF = Hk, & dAQF @ dMQF1

c) Hj,\ = HZA i.e. there is a unique d™-harmonic form in each d* cohomology class.

Proof. To prove first two parts, it is enough to show that the self-adjoint operator Aga is
elliptic [19]. To show this, we will prove that the operator Az has the same symbol as the
Hodge Laplacian Ay = d*d + dd*. Choose a local unitary coframe {6, ..., 8 ... 0"} of
the cotangent bundle such that the metric is g = Y,(0' ® 6° + §° ® 6). A general (p, q)-form
Ap,q can be written in the form of A, => ", .p_, Ar 0" AG" and therefore we have

dApg = Y QA pONANG" YT Gy AT AOTAG > Ay pd(6TAGT).

i, #I=p,#1'=q i\ #I=pF#I'=q #I1=p,#1'=q

In the calculation of the symbol, only the highest-order derivatives of functions A; » matter
and therefore the only effective terms in the above equation are the first two terms. Con-
sequently, the operator d is equivalent to the operator 0 4+ 0 in terms of symbols. We thus
write d ~ 0 + 0. This implies that as long as we are computing the symbol, we can use all

the Kahler identities. So, we can compute
Agr = dMd™ + dha™ = d°d® + d*d° ~ i(0 — 9)(—i) (0" — 0*) + (—i)(9* — 9%)i(d — )
= 00" + 00 + 00" + 0*0 — 00* — 90* — 9 0 — 9*0
~ 00" + 00 + 00" + 0% 0 + 0*0 + 0*0 + 90" + 00"
= (0" +0)(0+0)+ (0+0)(0"+0) = d*d + dd* = A,.

In the above computation, we have used d* = d*, d® ~ i(0 — 9), 0*0 ~ —90* and their

adjoints.
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Finally, to show part ¢) we should prove that ker d*NQF = HZA @ dMOF! or equivalently
ker d*Nd**QF=1 = {0} by the decomposition in part b). Assume that the form A = d**A;_,

is d*-closed, then we have
0=<d*A, A1 >=< A, d™ A, >= ||A|>. O

Corollary 3.6. For a compact symplectic manifold, dim Hg,\ < 00.

3.2 d+ d* cohomology

Definition 3.7. Define the d + d* cohomology by

w o ker(d+d*)NnQF  kerdnkerd* nQF
Hason = = v nar ddAQF ’

(20)
for 0 <k < 2n.

Definition 3.8. For a compatible triple (w,J,g) on a compact manifold M, we define the
self-adjoint operator Ay qn : QF — QF called Laplacian associated with the d+d* cohomology
by the formula

Agigr = dd*(dd™)* + Nd*d + d*db), (21)

where X is a positive real number. Also, define the space of (d + d™)-harmonic k-forms by

H§+dA = ker Ad+dA N Qk
Lemma 3.9. [Ad+dA7 L] = [Ad+dA7A] = {Ad+dA7 H} =0.

Proof. 1t is trivial the the Laplacian A, 4 commutes with H since it preserves the degree.

For the other equality, write
[Agian, L] = 04+ N[d*d, L] + A[d™d™, L] = A[d*, L]d + \d™*[d*, L] = —\d™*d + \d™*d = 0,
[Agian, Al = 04+ Nd*d, A] + A[d**d™, A] = Md*[d, A] + A[d*, A]d* = Ad*d® — \d*ad* =0. O

Lemma 3.10. For a compatible triple (w, J, g) on a compact manifold M, define the following
operator

Dyiar = DNgign + (dd*)*dd™ + d*d*d*d + d**dd*d™.
For a differential form A, we have

Appar A =0 <= dA =d*"A = (dd*)*A =0 <= Dy g2 A =0.
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Proof. Assuming dA = d*A = (dd*)*A = 0, we have Ay, A = 0 = Dy g A directly from

the definitions of operators. Now, suppose that Ay, 2 A = 0, we have
0 =< Agpar A, A >= |[(dd™)* Al[2 + N|dAJ 2 + A|d A,
and therefore dA = d*A = (dd")*A = 0. Similarly, assuming Dy, 4 A = 0 implies that
0 =< DgianA, A >=|(dd®)"A|[* + N[|dA|* + Al|@* AJ* + [|dd* A[|* + [|d*dA|[* + [|d"d" A|P?,
and again this implies dA = d*A = (dd*)*A = 0. O

Proposition 3.11. For a compatible triple (w, J,g) on a compact manifold M, we have
a) dimH§+dA < 00

b) The orthogonal decomposition Q% = HE_ .\ & dd*QF & (d*QM + d™MQF )

c) H§+d,\ = HZerA i.e. there is a unique (d+d™ )-harmonic form in each d+d* cohomology

class.

Proof. The operator Ay, 4 is not elliptic but the self-adjoint operator Dy, 4a in the previous
lemma is elliptic as it is proved below. Since we have ker Ay a = ker Dy, qa by the previous
lemma, this proves first two parts. To compute the symbol of D, 44, we can use all the
Kéhler identities by the same reasoning as in the proof of Proposition Also, note that

only fourth-order terms in Dy, 42 matter when we are computing the symbol. So, we have
Dyigr ~ dd*a™d* + d™d*dd* + d*d*d™*d + ddd*d®
~ —dd*d*d™ — d*d™dd® — d*d“dd™ — dd™*d*d*
~ dd*d*d™ + d*dd™d* + d*dd*d™ + dd*dMdd = AgAg ~ A2,
In the above computation, we have used d* = d**, dd* = —d*d, dd° ~ —d°d and their

adjoints. We also used A ~ A, proved in Proposition [3.5
Finally, to show c) we should prove that kerd N ker d* N QF = H§+dA @ dd QF or

ker d N ker d* N (d* QM 4+ dMQF 1) = {0},

by the decomposition in b). Assume that the form A = d*Ay1 + d™ Ay is both d- and

d*-closed, then we have

0=<dA Api1 >+ <d*A Ay >=< A, d" A1 > + < A, d™ Ay >= ||A|2. O
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Corollary 3.12. For a compact symplectic manifold, dim H5+dA < 00.

Proposition 3.13. We have dim H?"

>0 for 0 <k <n. In fact, we have [w*] # 0.

Proof. Having dw = 0 imply that dw* = 0 and

d*f = dALF1 — 0 = dLFAL + d((H + k — D)ELF¥ 1) = 04+ (n — k + 1)kdw™" = 0.

k

Note that w* = L*1 and the constant function 1 is not dd"-exact, hence w* is not dd*-exact

for 0 < k < n by Proposition [2.22 O

Proposition 3.14. Let f; : M — M be a Hamiltonian isotopy of M 1i.e. a smooth family
of diffeomorphisms f; generated by a family of Hamiltonian vector fields V; and fo = Id.
Then, the d + d* cohomology class is invariant under this isotopy i.e. the isomorphism

i H§+dA =N H§+d/\ is actually the identity map for all t.

Proof. Let the form A be both d- and d*-closed i.e. [A] € H} .. By Corollary part a),

we have

CHA= fiLuA= frdd A, = dd(f; A),
which proves that the cohomology class [f;A] is independent of time ¢. But we know that
fo and f; are the identity maps. O

Remark 3.15. Let B be a O,-exact primitive form, i.e. there exists a differential form
A satisfying B = 0, A. Then the primitive component B' of A also satisfies B = 0, B'.
Therefore for primitive forms, being 0, -exact in terms of differential forms and primitive

forms are equivalent. The case is the same for O_-exactness and 0, 0_-exactness.

Definition 3.16. Having Lemma and Deﬁm’tion in mind, define the primitive d+d*
cohomology by

ppt . kerdO P kerdNP" _ kerdi Nkerd_ NP _ ker (0, +9-)NP"
At imddh PR T ddAPE O,0_Pk - D,0_Pk ’

(22)

for 0 < k < n. Because of the last term, we also use the notation PH§++8_ for these

cohomologies.
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Note that we have im dd* N P* = dd*P* = 0,.0_P* because of Remark and the fact
that dd® and 0,0_ are equal upto a nonzero constant.
The Lefschetz decomposition of differential forms and Proposition [2.22] give the Lefschetz

decomposition at the level of d + d* cohomology:

HY, =@ L' PH . (23)

Having primitive cohomology PH¥

d+qr» We can compute cohomology H 5 . gr by this formula.

Definition 3.17. For a compatible triple (w,J, g) on a compact manifold M, we define the

primitive Laplacian AL\ PF — PF by

Ap

P = dd™(dd™)* + \d*d, (24)

where \ is a positive real number. Also, define the space of primitive (d + d)-harmonic

k-forms by P’HSMA = ker AZMN‘ NP* = ker d N ker (dd*)* N P*.

Note that we have ker AP

drqr = ker Agigr = ker Dy, 41 on primitive forms since d-closed

primitive forms are also d*-closed. By ellipticity of the self-adjoint opreator Dy, 4 defined

in Lemma [3.10, we have a primitive version of Proposition [3.11]

3.3 dd* cohomology

Definition 3.18. Define the dd® cohomology by

k ker dd* N QF ker dd* N QF
HddA = - - — — , (25)
(tmd+imdM) N QF  dQF-1 4 @AQk+T

for 0 < k <2n.
Definition 3.19. For a compatible triple (w, J, g) on a compact manifold M, we define the

self-adjoint operator Ay : QF — QF called Laplacian associated with the dd™ cohomology by

Aggr = (dd™)*dd™ + \(dd* + d*d™), (26)

where X\ is a positive real number. Also, define the space of dd™-harmonic k-forms by the

formula HSdA = ker Agga NQF.
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Lemma 3.20. For a compatible triple (w, J, g) on a compact manifold M, we have

*Ad+dA = AddA*a jAd+dA = AddAj, *sAd—l-dA = Ad—}—dA*& *SAddA = Add"*sa

[AddA7 L] - [AddA7A] - [AddA7H] =0.

Proof. The proof of the second line is exactly similar to the proof of Lemma [3.9] Corollary
[2.30] implies the second equality in the first line. First and second equalities give the next

two equalities using formula * = %,7. For the first equality, write

$Agiar = (1) 5 dd® % dd™ AN (—(=1)>""Fd % d + (—1)*Fd* x a*)
= (=1)" s dd® x dd* x +N(—(=1)Fd x d + (=1)*d™ % d*) = Agaa * . O

Lemma 3.21. For a compatible triple (w,J,g) on a compact manifold M, consider the

following operator
Dyar = Aggn + dd™(dd™)* 4 dd™*d*d* + d*d*dd™.

For a differential form A, we have Agg A = 0 if and only if d*A = d™ A = dd A = 0 if and
only if Dgga A = 0.

Proof. Exactly similar to the proof of Lemma [3.10} O]

Proposition 3.22. For a compatible triple (w, J,g) on a compact manifold M, we have
a) dim Mk, < oo
b) The orthogonal decomposition QF = HE @ (dQ*1 4+ d*QF1) @ (dd™)*Q*

c) H(’;dA = HSdA i.e. there is a unique dd™-harmonic form in each dd® cohomology class.

Proof. Similar to the proof of Proposition |3.11, we can prove that the self-adjoint operator

D41 is elliptic. O
Corollary 3.23. For a compact symplectic manifold, dim HfdA < 00.

Proposition 3.24. For a compact symplectic manifold, the dimensions of H3*, H3Y, H3* ,\
and HC%C’;A are all positive for 0 < k < n. In fact, the class [w¥] is nontrivial for all of these

cohomologies.
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Proof. By Proposition [3.13] w* is d-, d*- and dd”-closed. Assume that 0 < k < n and
w¥ = dA + d*A’. Then, we have

07An'/dvoz / /dA W R 4 /(dAA’)/\w

— ( 1)(2k 1 +1/ A/\dwn k 1)2k+1/ A//\dAwn_k — O
M M

This contradiction shows that w* is not (d + d*)- exact and therefore it also can’t be d- or

dM- or dd*-exact. OJ

Proposition 3.25. Let f, : M — M be a Hamiltonian isotopy of M. Then, the dd*
cohomology class is invariant under this isotopy i.e. the isomorphism f; : dd/\ = HE T 18

actually the identity map for all t.
Proof. Exactly similar to the proof of Proposition |3.14 m

Definition 3.26. Having Lemma and Deﬁmtion in mind, define the primitive dd®
cohomology by

ker dd™ N P* ker 0,0_ N P*
PHE, = — 97
dd? (imd+imdd) NPk 9 Pkl 4 9 Prtl’ (27)

for 0 < k < n. Because of the last term, we also use the notation PH§+87 for these

cohomologies.

Let us prove the equality (imd + imd*) N P* = 0, P*~1 + 9_P* ! in this definition.
Assume that the form B” = dA + d*A’ is primitive and that the primitive component of
the differential form A is B. Also, suppose that B’ + LB" gives the first two terms in the
Lefschetz decomposition of A’. Then by Proposition and Lemma [2.4] the primitive
components of dA and d*A’ are 0, B and

1

respectively. Consequently, we have B” = 0.(B + B") + 0_(—(H + 1)B’). Conversely,
assume that we have B = 0, B’ + 0_B". Then by Corollary [2.35, we have

B=(d+ LH '"d"B' -~ H'd"B" = d(HiHB’) +d"L(H+1)"'B' — (H+1)7'B").
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The Lefschetz decomposition of differential forms and Proposition give the Lefschetz

decomposition at the level of dd* cohomology:

Hin =@ L PHS. (28)

Having primitive cohomologys PH C’l“ A, We can compute cohomology H (’j 4 by this formula.

Definition 3.27. For a compatible triple (w,J, g) on a compact manifold M, we define the

primitive Laplacian A, - P* — P* by

AP

dd?

= (dd™)*dd" 4+ \d*a™, (29)
where \ is a positive real number. Also, define the space of primitive dd™-harmonic k-forms

by PHSdA = ker AZdA NPk = ker d™ N ker dd* N P*.

Note that we have ker Af \ = ker Aggn = ker Dgqn on primitive forms because d™*-closed
primitive forms are also d*-closed by the formula [d**, A] = —d*. By ellipticity of the self-
adjoint opreator Dy defined in Lemma [3.21] we have a primitive version of Proposition

3.221

3.4 0.+ cohomologies

Definition 3.28. Having 97 = 0> = 0, we can define the 0y and primitive 0y cohomologies

by
rs  kerdgnLre k kero, NP 0k
Hy' = W’ PHp, = 5, o (30)
rs  kero_nLre & ker O_ N P* 0.k
HB_ 2:W, PHy ::W:Ha_’ (31)

forO<r+s<nand0<k<n.

Note that we have Hj; = Hgf = PHj, for 0 <7+ s < n by commutativity of . with
L and isomorphism L" : P? =N Therefore, we only study the primitive cohomologies

PH,.
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Proposition 3.29. The following differential complex

0Ly po 2y % prt % pn
lam_ (32)

y 0, 2 n—1 ¢ n

0 N 87 P N 87 DY N 87 P 87 P

18 elliptic.

Proof. First note that this is a differential complex since 92 = (9,0_)d,y = 0_(9,0_) = 0.
To prove that it is elliptic we should show that the associated symbol complex is exact
everywhere. Let p € M, { € T7M — {0} and By, € 735 , where by 735 we mean the primitive
subspace of the k-th exterior power /\k Ty M, in other words By is a primitive k-form at
point p. Let the operator T : P* — P**d be one of operators 0, d_ or 0, 0_. Recall that
the symbol of T is the linear map or(§) : Py — Py+¢ defined by

or(€)(Br) == T(f*B)(p),

where we have B € P* and f € C*(M) such that B, = By, f(p) = 0 and df(p) = &.
We know that the symbol o4(§) of the exterior derivative operator d is simply left exterior

multiplication by £ [I§]. Using Corollary [2.35 we can easily compute the following symbols

00,(§)(Bx) = (1 — LHA)(§ A By),
0o_(&)(Br) = H'A(§ A By),

0o,0_(E)(By) = (H+1)""(E ANAE A By)).

Take a basis {e1, ..., €2, } of T M such that w, = e; Aea + ... + €21 A €2, and € = e;. Using
the notation wy := e; A ey and wy := e3 A eg + ... + €2,_1 A €2, we showed in the proof of

Proposition that we have

Bk =e1 A Bk—l +eg A B];_l + (w1 — CUQ) A Bk;—2 + B,;,

n—k+1
for some primitive forms By_1, Bj_; € P¥~', By, € P}~? and B, € P} at point p involving

only es, ..., es,. In other words, we have
Py = span{e; A Bi_1, ea A Bj_y, (w1 — (H +1)'wa) A By_a, By},
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where By_1, B;_,, By_2 and Bj, range over all such forms. Using £ = e;, we have

0o, (§)(e1 A By_1) = 05_(§)(e1 A Br—1) = 0a,6_(§)(e1 A Br—1) = 0,
H+1
H+2

oo (§)(e2 A By_y) = H'B_,, 0o,0.(§)(e2 ABj_y) = (H+1)"e1 ABy_y),

00, (§)(e2 A Bjy) = (w1 = (H +2)w) A B}y = (w1 = (H+1)"'w2) A By y),

f/\ (wl - (H + 1)_1LU2) VAN Bk_g = —(H + 2)_1<WQ VAN €1 AN Bk_2> = —LH_1(€1 N Bk_g),

o, () (w1 — (H +1)"w2) A Bya) = 09,0 (§) (w1 — (H +1)" ws) A Bz) =0,
g9_ (5)((&]1 — (H —+ 1)71(,02) A\ Bk_2> = —Hil(el N Bk_g),

0o_(§)(By) = 00,0_(§)(Br) =0, 04,(§)(By) = e1 A By,

Consequently, we have computed the kernels and images of symbols of different operators

appearing in the differential complex:

ker os, (§) = span{er A By_1, (w1 — (H + 1) twy) A Br_s},

3
3
(
(

ker og = span{e; A Bx_1, B},

kerog,a_ span{e; A By_1, (w1 — (H +1)"'wy) A By_s, By},

span{(w; — (H +1)"wn) A Bj_y, e1 A By},

imog, (§

)
)
)
)
imog_(§) = span{B},_;, e1 N\ Bx_a}, imog, o (&) = span{er A B;_4},

which show the exactness of the symbol complex (note that we have B], = 0 because if

there exists a nonzero primitive k-form at p not involving e; and e,, then we should have

0<k<n-—2). m

Remark. Note that two cohomologies at position P™ in the above differential complex are

previously defined primitive cohomologies PH,x and PHJ .

Definition 3.30. For a compatible triple (w,J, g) on a compact manifold M, we define the
self-adjoint operator Ay, : P* — P* called Laplacian associated with the cohomologies PHp,

by the formula
Aai = (’h(@i)* + (0i)*8i (33)
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Also, define the space of primitive O+-harmonic k-forms by the formula
PH}, = ker Mg, NP* = ker 9y N ker 95 NP, (34)
for 0 <k <n.

Let p be a given point in M and & € T7M be nonzero. Using Proposition and the
following lemma, the symbol oa,, (€) : 7;5 — 735 is an isomorphism for 0 < k < n, so the

self-adjoint operators Ay, are elliptic and we have Proposition [3.32}

Lemma 3.31. Let U, V and W be finite dimensional inner product spaces. Assume that
we have the exact sequence U SvSw of linear maps. Let T* : W — V' be the adjoint of
T ive<Tv,w>=<v,T*w > for allv € V and w € W and similarly S* : V — U be the
adjoint of S. Then, the linear map (T*T + SS*) : V — V is an isomorphism [1§].

Proof. Since the space V' is finite dimensional, it is sufficient to prove that the above map
is injective. Let v € V be nonzero. If we have Tv = 0, then exactness of the above sequence

implies that there exists u € U such that v = Su. So, we have
<u,S"v >=< Su,v >=< v,v ># 0,

which shows that S*v # 0. Consequently, at least one of Tv and S*v are nonzero and
therefore

< (T*T + SS" v, v >=<Tv,Tv >+ < S*v,S"v ># 0,

which completes the proof. O]

Proposition 3.32. For a compatible triple (w, J,g) on a compact manifold M, we have
a) dim PHj, < oo
b) The orthogonal decomposition P* = PHY, & 0. P*F' @ op P!
c) PHgi = P?—[gi i.e. there is a unique primitive O+-harmonic form in each primitive

O+ cohomology class.

Corollary 3.33. For a compact symplectic manifold, dim PHé“i < o0 for 0 <k <n.
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4 Further properties of symplectic cohomologies

4.1 Dualities

Proposition 4.1. For any symplectic manifold M, we have the following isomorphisms:

.17k 2n—k . k In—k 17k om—k
ko0 Hy — HT, *S’Hd+dA_>Hd_7.dA7 s 1 Hypn — HJIS 0<k<2n,
n—=k . k 2n—k n—=k . k 2n—k

Proof. Since these maps at the level of differential forms are isomorphisms, Corollaries [2.20!

and prove this proposition. O

Proposition 4.2. For a compatible triple (w,J,g) on a compact manifold M, we have the

following isomorphisms:

k 2n—k k 2n—k k 2n—k
*st%%d:\L 3 *S:Hd+dA—>HdZ—dA’ *S:Hdd/\_)HdZA O§k§2n,
-k . qqk 2n—k =k . gk 2n—k
. k 2n—k . k 2n—k . k 2n—k
s HE S TR s AT R s HETE 0 <k < 2n,

j:HI(;_)HZAa j:H§+dA_>HZdA O<k<2n,
T PHiqn — PHipn  0<k<n,

J:PHS — PHS  0<k<n.

Proof. Since these maps at the level of differential forms are isomorphisms, Lemmas|[3.3] [3.20]
and the equality JA” ar = AP AT prove first five lines of isomorphisms. For the last
line, note that the commutation relation JA = AJ implies the isomorphism J : Q¥ — QF
reduces to the isomorphism J : P¥ — P*. It remains to check that for a primitive k-form

B, we have B € P?—[Si if and only if 7B € PngF. But using Lemma , we can write

0.(IB) = (-f(n—-k)g'orB, 0(IB)=—(-1)f(n—k+1)J'0_B,
—1

0-UB) =

1

Proposition 4.3. For a compact symplectic manifold M, we have the following non-degenerate
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natural pairings

Hy@H" - R, Ha@H* =R, Hi . 0HI* >R,

A ® [A] H/MA/\A’,

for 0 < k < 2n. Consequently, we have H§+dA & ng[k.

Proof. Proof of first two pairings are easier and similar to the last one which is proved below.
To prove well-definedness, assume that we have

C=A+dd"D, C'=A"+dD' +d*D", dA = d*A = dd*A' = 0.

Then using the Stokes’” theorem and Lemma [2.26] we have

/CAC’:/ A/\A’+/ A/\dD’—I—/ A/\dAD”+/(ddAD)/\A’
M M M M M

+/ (ddAD)/\dD’+/ (ddAD)/\dAD”:/ AAA'+(—1)k+1/ (dA) A D'
M M M M

+(—1)k/ (dAA)/\D”—/ DAddAA’+/ D/\dAddD’—/ D A dd*a*D"
M M M M

:/ ANA.
M

To prove non-degeneracy, choose any compatible triple (w,J, g) and assume that we have

Ae H§+d/‘ and A # 0. Then, it is the case that *A € HZZ;]“, [xA] € HdZCTlLA”I€ and

[A]@[*A]H/MA/\*A:<A,A>7£O. m

Proposition 4.4. For a compact symplectic manifold M , we have the following non-degenerate

natural pairings
Hf® Hfy >R, HY a®Hiy - R, PHY . ®PHy —R, PHS ®PHS —R,

4] @ [A] — /M AN A,

for0 <k <2n,0<k<nand0 <k <n, respectively. Consequently, we have isomorphisms

HY, 0 = HE, PHY, = PHY, and PHY =~ PH .
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Proof. Well-definedness of first three pairings is implied by Corollary [2.20] Stokes’ theorem
and Lemma [2.26[ similar to the previous proposition. To prove well-definedness of the last
isomorphism, note that for primitive forms B and B’ we have

( 1)k(k+1)

— 2

/B/\*SB’——/ L ®BAB,
M (n—FK)! Ju

by Proposition (2.12)). For 0 < k < n and primitive forms By and By, we have

dLn—k—l(Bk A Bk-‘rl) — Ln_k_l((dBk) A Bk+1) + (—1)kLn_k_1(Bk A dBk+1)
= L"ik*l((a_i_Bk) AN Bk—i—l) + (a—Bk) A (LnikBk-H)
+ (=1 By A L" ¥ Y04 Byyr) + (=1)FL"%(By. A 0_Bj11)
= L" " (84 Bk) A Biya) + (=1)* L *(Bi A 0-Byya).
Then, the Stokes’ theorem implies that
[ 2008 A Bn) = (UM [ 1B A B
M M

We can use this formula to prove well-definedness: Assume that we have
C=B+0.D, C'=B+0_D, 0,B=0_B =0,
where all differential forms are primitive. We can write

/M L *ConC) = /M L *(BAB)+ /M L *(BAO_D) + / L *(0.D) A B')

M

+/ML”"“((8+D)A8_D’):/A4L”_k(B/\B’)+(—1)’“+1/ L1 (0,B) A D)

+ (—1)’“/ML"’““(D/\83’) + (—1)’“/ML”’““(D NO2D) :/ L"*(BAB).

M
Proof of non-degeneracy is completely similar for all parings and we do it only for the last
pairing. Choose any compatible triple (w, J, g) and assume that we have B € P”Hg+ and
B # 0. Then, it is the case that 7B € PH , [JB] € PH} and

[B]@[jB]H/B/\*SJB:/B/\*B:<B,B>7£O. m
M M
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4.2 Poincaré lemmas

All over this subsection, we assume that M is a star-shaped open subset of R?" with the
standard symplectic form w = >, da’ Adz"*". Hence, M is connected and d-closed 0-forms
are constant functions. For the 1-form o = "7  a'dz""", we have dow = w. Then, the form
« is primitive and 0, = 0 and d_a = 1. Our goal is to compute different symplectic
cohomologies for this special case. Note that M is not compact and some of dualities don’t

hold for M.

Proposition 4.5. We have Hf;A = {0} for 0 <k < 2n and dim Hg}f = 1 with the generator

[w™].
Proof. This is just applying Proposition to the standard Poincaré lemma. ]

Lemma 4.6. If B is a d-closed primitive k-form for 0 < k < n, then there exists a primitive
k — 1-form B’ satisfying B = dB'. Moreover, we should have O_B' = d*B' = 0 and
B — a+B/.

Proof. First note that any primitive form B’ such that dB’ is also primitive should be both
O_-closed and d*-closed. By the Poincaré lemma for the de Rham cohomology, we know
that there exists a k — 1-form A with the property B = dA. For k = 1, since any 0-form
is primitive, there is nothing to prove. For 2 < k < n to see that A can be chosen to be

primitive, we should do the proof of the Poincaré lemma given in [14], again.

Consider the vector field V =37  2'0,: on M. We have
Ly(fdz") = (Vf)dz" + f(d(ivdz")) = (Vf + kf)da',

where #1 = k. Without loss of generality, assume that M is star-shaped around the origin.

Define the linear map 7 : Q¥ — QF for 0 < k < n by
1
T(fdal) = ( / =1 F ()t da,
0
where #I = k. We have TLy = Id and T'd = dT by the following computations:

TLy(fdx") = ( /0 NV 4+ kf)(to)dt)do' = ( /0 (%t’“ f(tx))dt)da" = fda,

n

Td(fda') = 3 /O k0, f(t)dt)det A det = (d / L f (k) dt) A de! = dT(fdi).

=1 0
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For 2 < k < n, take B’ := T'(iy B). Then, we have
dB' = dT(iyB) = Td(iyB) = TLy(B) = B.

Since we have Aiy = iy A, the form iy B is primitive. It remains to prove that 7" maps
primitive forms to primitive forms. Note that a differential form is primitive if and only if it
can be written in the form of ZI,I/ fr.r(dz! + dxf/) such that for any I and I” with f;  # 0,
the form dx’ + dz” is primitive. This is an easy consequence of the definition of primitivity

and we will illustrate this by an example. Let M = R® and the form
fodz A da? + frdat A da* + fodx? A da® + fadx® A da®,

be primitive. Then, we must have f; + f> + f3 = 0 and therefore this form can be written as

%(d:pl Adz® 4 dz' A dz?) + fi(det A da* 4 da® A da?) + folda? A da® A +da® A da?),

where all three parentheses are primitive. Now, since we have
1
T fro(da’ +da’)) =37 / 57 fr.p (t)de) (da! + da”),
r r 0

T maps primitive forms to primitive forms. O

Proposition 4.7. We have PH(’;MA = {0} for 0 < k < n and dim PH3+dA = 1 with the

generator [1].

Proof. (k = 0): Any constant function is primitive, d-closed and not dd*-exact. On the
other hand, any d-closed 1-form is a constant function.

(0 < k <n): Let B be a d-closed primitive k-form for 0 < k < n. By Lemma , there
is a primitive (k — 1)-form B’ satisfying B = dB’. Since B’ is d*-closed by Proposition ,
there is a k-form A with the property B’ = d*A and hence B = dd" A. ]

Corollary 4.8. We have Hsﬁi = {0} for 0 <k <n and dimH}¥ ,, =1 for0 <k <n

with the generator [W*].

Proof. This is just applying Proposition to the formula . Note that this result is

consistent with Proposition [3.13 O]
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Proposition 4.9. We have PH(’;dA ={0} fork=0 or2 <k <n and dim PHédA = 1 with

the generator [a].

Proof. (k= 0): By Proposition [4.5, any 0-form is d*- and hence (d + d*)-exact.
(k =1): Define a linear map 7' : PH},, — R by T([B]) = d*B. We will show that T is
well-defined, injective and nonzero, so that it is an isomorphism. First note that dd*B = 0

implies that d*B is a constant function. To prove well-definedness, write
dM(B + dAy + d*Ay) = d*B — dd* Ay + 0 = d*B.

The equality T([B]) = d*B = 0 and Proposition (1 < 2n) implies that B is d*-exact or
[B] = 0 and T is injective. Finally, note that dd*a = —d*w = 0 and

T([a]) = d*a = dAa — Ada = —Aw = —n # 0.

(2<k<n): Let Bbea dd”-closed primitive k-form. Since d*B is primitive and d-closed,
Proposition (0 < k — 1) implies that there is a (k — 1)-form A satisfying d*B = dd*A.
Hence, we have d*(B+dA) = 0. Using Proposition 4.5 (k < 2n), the form B+dA is d*-exact
or Bis (d + d*)-exact. O

Corollary 4.10. We have H?:

2k = {0} for0 <k <nand dimH2y' =1 for0 <k <n

dd?

with the generator [W* A .
Proof. This is just applying Proposition to the formula ([28)). m

Proposition 4.11. We have PH; = {0} for 2 < k < n and dim PHY = dim PHj =1

with generators [1] and [a], respectively.

Proof. (k = 0): Since for 0-forms the equality d = 0, holds, we have PHg+ = HY for any
symplectic manifold.

(k = 1): Define a linear map 7' : PHj — R by T([B]) = 0-B. We will show that T
is well-define, injective and nonzero, hence it is an isomorphism. First note that 0, B = 0
implies that 0 = d?B = LJ,0_B or 0 = 0,0_B = dO_B and therefore 0_B is a constant

function. To prove well-definedness, write
8_(B + a+Bo) — 8_B - 8+8_BO - 8_B
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The equality T([B]) = 0-B = 0 implies that dB = 0. Then by the standard Poincaré
lemma, there is a O-form By with the property B = dBy = 0, By or [B] = 0 and T is
injective. Finally, we have 0y =0 and T'([a]) = 0_a =1 # 0.

(2 < k < n): By the same argument as in the previous case, we should have d0_B = 0
and therefore 0_B = dA for some k —2-form A by the standard Poincaré lemma (0 < k—1).
This implies that d(B — LA) = 0 and consequently B — LA = dA’ for some k — 1-form A’.
If the primitive component of A’ is B’, then we have B = 0, B'. m

Proposition 4.12. We have PHE = {0} for 0 <k <n.

Proof. (k= 0): Since all 0- and 1-forms are primitive and acting on primitive forms, opera-
tors O_ and d* are equivalent, we have PH)) = HY, for any symplectic manifold.

(0 < k <n): Let B be a 0_-closed primitive k-form or dB = 0, B. Then, the primitive
form dB is d-closed and using Proposition (0 < k+ 1 < n), there exists a primitive
k 4 1-form B’ satisfying dB = dd*B’. Applying the same proposition again, there exists a
primitive k-form B” satisfying B — d*B’ = dd*B" or

B=-HO.B —(H+1)0,0_B" =0_(—(n—k)B' + (n—k+1)3,B"). O

4.3 dd*-lemma and comparison with H%

Definition 4.13. Using Corollary part a), the induced maps L™ % : HY — H;”_k on
the level of de Rham cohomology are well-defined for 0 < k < n. The symplectic manifold
M satisfies the strong or hard Lefschetz property if these maps are surjective for all
0 < k < n. Note that if M is compact, then being a surjection is the same as being an

isomorphism for the above maps by Poincaré duality, i.e. dim HY = dim Hfl"_k.

Proposition 4.14. The strong Lefschetz property holds if and only if every de Rham coho-

mology class contains a form that is both d- and d*-closed.

Proof. This theorem is proved by Mathieu [11] and Yan [20] but the following proof is
obtained from [5].
(«): Given [A] € H3"* for some 0 < k < n, we should find [A’] € H¥ such that

L"7*[A'] = [A]. By our assumption, we can assume that A € Q"% is d- and d*-closed.
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Since the map L" % : QF — O?"% is an isomorphism, we can take A’ € QF such that
L" kA" = A. By Corollary part ¢), the form A’ is d-closed and hence a representative
for a de Rham cohomology class which is mapped to [A] by L"*.

(=): Note that it is enough to prove the result only for cohomology classes in HY for
0 < k < n by the following reasoning. Given [A] € H2""* for 0 < k < n, by having the
strong Lefschetz property, there is [A'] € HY mapped to [A] by L"*. If we know that we can
take A’ being both d- and d*-closed, then L™ %A’ is also both d- and d”-closed representative
of [A] by Corollary part ¢). The proof for HY where 0 < k < n, is by induction on k.

Basis step (k= 0,1): All O-forms are d*-closed. Also, all d-closed 1-forms are d*-closed
because of the formula d* = dA — Ad. Therefore, any member of any cohomology class in
HY and H} is both d- and d*-closed.

Inductive step ((k—2) = k, 2 < k < n): Given [A] € HY, we have [L"*1A] € H2"F+2,
Having the strong Lefschetz property, there there is [A’] € H5 2 mapped to [L"**1A] by
L™ *+2_Tn other words, there is C' € Q2" *+1 such that L"*+1A = L" "2 A’ 1+ dC'. Since the
map LR QF1 5 O27=k+1 s an isomorphism, there exists C’ € Q*~! mapped to C by
L"=k+1 Define the k-form B := A — LA’ — dC" with the properties L" **1B = dC —dC = 0
and dB = 0. Consequently, the form B is primitive and being d-closed it is also d”*-closed.
Using induction hypothesis for [A’] € H¥™2  we have A’ = A” +dD, where A” is both d- and
d™-closed. This implies that dLA"” = d*LA"” = 0 using [d*, L] = d. Finally combining all
these together, we can write A = (LA”" + B) + d(LD + C"), where (LA"” + B) is both d- and
d*-closed. This completes the proof. O

Note that the previous theorem only talks about the existence of such representatives
and not uniqueness. In fact as you can see in the above proof (see the basis step), such

representatives are not unique in general.

Proposition 4.15. The induced map L"* : H§+dA — Hg"*k is surjective for 0 < k < n if

and only if the strong Lefschetz property holds.

Proof. First note that this map is well-defined by Corollary [2.23] The implication = is
obvious. For the other implication, take [A] € Hj”_k for 0 < k < n. By Proposition [4.14]

we can assume that A is both d- and d*-closed. Since the map L™ % : QF — Q% is an
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isomorphism, there exists a k-form A’ mapped to A by L™ *. By Corollary the form

A’ is a representative for a H%_,, cohomology class. O

d+d

Definition 4.16. The symplectic manifold M satisfies the dd*-lemma if we have
imd N kerd® =imd® N kerd=imdd.

In other words, for a d- and d™-closed form, being d-exact or d-exact or dd™-exact are

equivalent to each other.

Proposition 4.17. The induced map L™ : HZ; A Hg”_k is injective for 0 < k < n if

+
and only if the dd*-lemma holds.

Proof. (=): Let A be a d- and d*-closed form. First note that dd*-exactness implies both
d- and d*-exactness. By Corollary , it is enough to prove that d-exactness implies dd"-
exactness. Assume that A € Q% is d-exact and 0 < k < n. By Corollary , the form L" %A
is also d-exact. Injectivity of L" % : H 5 o HS”_’“ implies that A should be dd*-exact.
Now, assume that A € Q?"* is d-exact and 0 < k < n. Since the map L" % : QF — Q2
is an isomorphism, there exists a k-form A’ mapped to A by L™ *. By Corollary , the
form A’ should be both d- and d*-closed. Injectivity of L"~* : HY . — H2"7% implies that
A’ should be dd*-exact. Finally Corollary , gives dd*-exactness of A.

(«<): Assume that A be a d- and d*-closed k-form (0 < k < n) such that L"FA is
d-exact. Corollary implies that L"*A is both d- and d*-closed and dd*-lemma gives

dd*-exactness of L"*A. Finally by Corollary A is dd™-exact. n

Proposition 4.18. For a compact symplectic manifold, the dd™-lemma is equivalent to the

strong Lefschetz property.

Proof. This theorem is proved by Merkulov [13] and Guillemin [8]. The proof is more involved
than the previous theorem, so we will not give the proof here. The interested reader can find

the proof in the above references or in [5]. O

Corollary 4.19. For a compact symplectic manifold satisfying dd®-lemma, the induced map

Lk H§+dA — Hjn_k 15 an isomorphism for 0 < k < n.
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Note that compact Kahler manifolds satisfy both the strong Lefschetz property and dd”*-
lemma, but that is not true for all Kédhler manifolds. For example, consider the standard
Euclidean Kihler manifold R?®. The map L" % : H 5 an Hﬁ”’k is surjective but not
injective by Corollary [£.8] Hence, the Euclidean space satisfies the strong Lefschetz property

but not dd*-lemma.

Proposition 4.20. We have PH& = HY and PH) = Hg,\. Moreover, if M is compact,
then we have also PH<%+ = H; and PH)_ = H},.

Proof. Equalities for 0 are trivial and justified in proofs of Propositions and [£.12] Sup-
pose that M is compact and By is a 1-form. Since M is compact, it has finitely many
connected components that are compact. It is enough to prove equalities for each compo-
nent and hence without loss of generality assume that M is connected.

(PHj, = Hj): The only non-obvious fact that should be checked is that if By is 0,-
closed, then it is also d-closed. By the proof of Proposition [£.11 0_B; is a constant function
c. If ¢ # 0, then we have d(2L) = w but [w] € H? is nonzero by compactness. Consequently,
we have ¢ = 0 and dB; = 0.

(PHj = Hj,): The only non-obvious fact that should be checked is that if By is d™-exact,
then it is also 0_-exact. Suppose that there is a 2-form A, = By + LB, such that

By = d*Ay = d By + Ld“By + dBy = —8_((n — 1) By) + dBy

It remains to prove that dBj is 0_-exact. Without loss of generality, we can assume that
) 1 Bo = 0 by adding a constant function and without changing dB,. Because for any

d-closed 0O-form i.e. a constant function ¢ we have

/c/\*sBozc/ By =0,
M M

Proposition implies that By is d*-exact i.e. By = d*B/. Then, the 1-form dB, should be
0_-exact:

dBy = dd"B} = —(H +1)0,0_B; = 0_(no, B;). O

Lemma 4.21. Let M be a symplectic manifold satisfying the dd™-lemma and B, € P* be

d-closed and O, -exact. Then, By is 0,0_-exactness.
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Proof. First, note that By, is both d- and d*-closed. Assume that we have By, = 9, Bj,_;. We
will show that By, is d-exact. Then using the dd®-lemma, it should be dd*-exact and hence

0, 0_-exact. We can write dBy_1 = By + LBj_o, where we have

—1
— By
n—k+t+2 " 1)

LdB)_5 = dBy, +dLB)_5 = d*B),_1 =0 = dBj_- = 0.

By o=0_By,=—H'd"B,_, = d*(

Applying the dd®-lemma to Bj_o, there is a form Aj_g satisfying By_» = dA;_3 and therefore
By = d(Bx_1 — LAj_3). O
Definition 4.22. Define

kerdn L™®
HS == PHY .= HO*.
imdn Lrs’ d d

Note that we have dim Hy® < dim H3™*.

Proposition 4.23. For a compact symplectic manifold satisfying dd™-lemma, we have

PHY = PH;,~PH; 0<k<n,

PH; = PHj =PH;} 0<k<n.

Proof. We already know that PH}, ,» = PH}, and PHj = PH} . By Proposition m
and Corollary [4.19, the maps L"* : PHY — H" ™" and L7 . PHY, .\ — HI M are

isomorphisms for 0 < k < n. Now suppose that 0 < k < n and we show that PHgﬁ & Hgik’k

to complete the proof. Acting on £" %% we have 0, = 0 and d = LJ_. Therefore, the

following commutative diagram

0 y y n—1 n
0 < 73 s P N P
l[d lL lLO:Id
n,0 ¢ s 1I,n—1 0,n
0 <T £ 4 R L <T L

gives PHY = % for any symplectic manifold. It remains to prove that under the

assumption of dd*-lemma we have imd N L "k C dLPFLE+H1 Let dA € L7 FF and
A= Z?ZO Lr=k=1%ip, o be the Lefschetz decomposition of A. We use induction on j.

For j = 0, we have A € £ *~1#+1 and we are done. For j > 0, we will find another form A’

51



such that dA’ = dA and A’ = Y7} Lr=+=1+ip |, is the Lefschetz decomposition of A'.
Because we have dA € L"7%* and j > 0, we should have §_Bj,;_»; = 0. Applying Lemma
to 04 Byy1-2;, we have 0, By11_9; = 040_B' and therefore

d(LnfkflJerkJrlin) — Ln7k71+ja+aiB/ — —Lnik71+‘j71La,a+B/ — d(_Ln7k71+jfla+B/>.

It is enough to take

j—1
A = A— LnfkflJerkJrliZj _ Lnfk71+jfla+B/ _ Z LnfkflJrinJrliQi - LnfkflJrjflaJrB/. O
=0

Corollary 4.24. For the complex projective space CP", we have

PHY, » = PHY, = PH) =~ PHj) =~ PH)~R,

and the higher degree primitive cohomologies are trivial.

Proof. Being a compact Kéahler manifold, the previous proposition is applicable. We know
that H2* 2 R for 0 < k < n with the generator [w*] and other de Rham cohomology groups
are trivial. Using dim PH% < dim HY. the only possible nontrivial PH?% are even degrees. All
0-forms are primitive so we have PH? = HJ = R. To prove PH2* = {0} for k > 0, we must
show that if the form B = cw® + dA is primitive, then it is d-exact. Let A = > L' Bojp_1_9r
be the Lefschetz decomposition of A. We have

0=AB = (TL + k— 1)kLk_1C + Z(TL — 2k + 3r — 1)TLT_1(8+BQk_1_2r + 8_B2k+1_27,),

and therefore 0_By = —c and 0_Bagy1_9, = —04 Boj_1_9, for 0 < r < k. Replacing these
formulas in the equation B = cw® + dA, we see that B = 0, By;,_;. Using Lemma m, B is

0, 0_-exact and consequently d-exact. m

4.4 Cotangent bundles

All over this subsection, assume that N is a smooth manifold with dimension n and the
2n-manifold M := T*(N) is the cotangent bundle of N considered as a symplectic manifold
with the canonical symplectic form described below. For more details about this symplectic

structure see [12]. The reference for this subsection is [15].
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Let (z',...,2™) be a local coordinate system for N and (z',..., 2™, 4!, ..., 4™) be the associ-
ated local coordinates for M. There is a canonical 1-form on M defined by a := > | y'da’.
The canonical symplectic structure on M is defined by w := —da = Y. da’ A dy'. Note
that we have 0, = 0 and 0_a = —1. Let 7 : M — N be the projection map and [y
be a k-form on N. Then, the forms 7*3; and a A 73}, are both obviously primitive on M
since they don’t involve dy’s. We simply write 35, instead of 7*3;, and stick to our previous

notation of writing By and Ay for a general primitive k-form and differential k-form on M.

Lemma 4.25. For any k-form 8 on N, we have

dMa A B) = Hp, O (aNB)=—-andp 0<k<n.
O (aNB)=-p 0<k<n.

Proof.

O (anNp)+Lo_(anB)=daANB)=(da)ANB—aNndi=—aNdS— Lp,
dMa A B)=—Ad(aAB)=AaAdB)+AL3=AL3 = Hp. O

Our goal is to compute different symplectic cohomologies of M. Note that M is not
compact and some of previous results like dualities don’t hold for M. Formulas and

give cohomologies Hj .« (M) and H}\ (M).

Proposition 4.26. We have the following isomorphisms:
a) H5(M) = HE(N) and HY (M) = H3"*(N) for 0 < k < 2n.
b) PH} (M) = H;(N) for 0 <k <n.
¢) PH* (M) = H; ' (N) for 0 <k <n and PH?,,(M) = H} ' (N) & H}(N).
d) PHS (M) = Hy ' (N)® Hj(N) for 0 <k <n.
e) PHE (M) = {0} for 0 <k <n.

Proof. (Part a): Since M is a deformation retract of N and the de Rham cohomology is a
topological invariant, we have first isomorphism (7* : H¥(N) = H¥(M) for 0 < k < 2n).
Proposition {4.1| gives the other isomorphism (x,7* : H3" *(N) =Y Hb (M) for 0 < k < 2n).

(Part e): We will prove it by strong induction on k. Proposition and part a) give the
result for k = 0. Assume that we have 0 < k < n and PHE (M) = {0} for all ¥’ < k. Now,
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we can repeat the proof of PHE = Hg_k’k in Proposition [4.23| but instead of using dd"-

lemma, we use induction hypothesis to find a primitive form B’ satisfying By1_o; = 0_B'.

Since dim Hgik’k < dim Hﬁ"’k = 0, the induction is complete.
(Part b): We will prove that the map 7* : H;(N) — PH} .

isomorphism for 0 < k£ < n. (Well-definedness): Given a d-closed k-form 5 on N, it is

(M) is a well-defined

both primitive and d-closed on M. If we have f; = dfx_1, then _fr_1 = 0 and part e)
(k — 1 < n) implies that §;_1 = 0_By, and therefore

Br = dBr—1 = 04+0_B.

(Injectivity): Let S be d-closed on N and dd*-exact on M, then it is trivially d-exact
on M. Then by part a), the form [, should be d-exact also on N.

(Surjectivity): Let B be a d-closed primitive k-form on M. We have B — §; = dA for
some d-closed k-form S, on N and k — 1-form on M by part a). Let A = Zizo L"B_1_9, be
the Lefschetz decomposition of A. Because we have dA € P*, we should have 9_ Bj_1-9; = 0.
By part e)(k — 1 — 2j < n), there exists B’ € P*% such that By_; o; = 0_B’. We use
induction on j to prove that dA is d,0_-exact which completes the proof of surjectivity. For
j =0, we have dA = 0,0_B’. For j > 0, take

j—1
A =A—L'By 10— L0.B =) L'Biy_5 — L7018,

i=0
similar to the proof of part e). Induction hypothesis implies that dA” = dA is 0, 0_-exact.
(Part ¢) for 0 < k < n): Proposition and part a) give the result for £ = 0. We will
prove that the map Ty : H; '(N) — PHE (M) given by [8] — [a A 8] is a well-defined
isomorphism for 0 < k& < n. (Well-definedness of 77 for 0 < k < n): The form a A § is

primitive and satisfies
dd*(aNB) =dHB = (n—k+1)dB = 0.

If we have 8 = df', then the form a A B = 0, (—a A B') is d + d*-exact.
(Injectivitiy of T} for 0 < k < mn): Assume that a A § = 0, B + 0_B’. Then, we have

B=—0_(aNB)=—0_0.B=0,0_B,
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and part b) implies that [ is d-exact on N.
(Surjectivity of T} for 0 < k < n): Let B be a 0,0_-closed primitive k-form on M. Then,
the primitive form 0_B is d-closed. Using part b), there exist a d-closed k — 1-form 5 on N

and a primitive k — 1-form B’ on M satisfying
0,0.B'=0_B—=0_B+0d_(aNp).

Then, the primitive form B + a A § + 0, B is 0_-closed. Using part e) and k& < n, it is
0_-exact and T1([—/5]) = [B].

(Part c) for k = n): We will prove that the map Ty : H;"'(N) & H}(N) — PH" (M)
given by ([],[8']) — [a A B + ['] is a well-defined isomorphism. Combining proofs of Well-
definedness for part b) and T proves that T5 is well-defined.

(Injectivitiy of Ty): Assume that a A f+ ' = J, B. We must show that both § and '

are d-exact on N. Using
a+a_B = —8_a+B = —3_(04 A B) = /B,

part a) implies that 8 = df” and therefore 0, (a A ") = —a A . Taking B := B+ a A f”,
we have ' = 0, B’ and

O - dﬁl - —L8+a_B, — 3+8_B/ - O
Part ¢) for k =n — 1 implies that B’ = a A " + 04 B” + 0_B"" and therefore
B =0,B =—-aANdB"+0:B"+0,0-B" =0,0_B".

Finally, the form (' is d-exact on N by part a).

(Surjectivity of T3): Let B be a 0,0_-closed primitive n-form on M. The argument in
the proof of surjectivity of 77 is valid until we obtain the d_-closed form B +a A B+ 0. B’.
This form is d,- and d-closed since primitive n-forms are always d,-closed. Using part b),

we have

B+aAB+0,B =B +0,0_B" = Ty(-B],[8]) = [B].

(Part d): Proposition and part a) give the result for & = 0. We will prove that the
map Ty : Hj~'(N) @ HY(N) — PH}_(M) given by ([8],[8']) = [ A S+ 3] is a well-defined
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isomorphism for 0 < k£ < n. Combining proofs of Well-definedness for part b) and 7} proves
that T3 is well-defined. Proof of injectivity is the same as injectivity of T5.

(Surjectivity of T3): Let B be a d,-closed primitive k-form on M for 0 < k < n. Using
k < n, we have 0,0_B = —0_0, B = 0. The argument in the proof of surjectivity of T} is
valid until we obtain the d_-closed form B + a A § + 0, B’. This form is d,- and d-closed

because 0, B = 0. The remain of proof is the same as surjectivity of T5. m

Note that if U is a star-shaped open subset of R", then M = U x R™ as a symplectic
manifold can be considered both as the cotangent bundle of U and a star-shaped open subset
of R?". Then, we can compute its symplectic cohomologies both by Poincaré lemmas and

the previous proposition and the results are the same.

4.5 Mayer-Vietoris sequence

In this subsection, we justify that there exists a Mayer-Vietoris sequence corresponding to
the differential complex and by an example we show its effectiveness for computation

of symplectic cohomologies. This is an original work and it is in parallel with [3].

Proposition 4.27. Let {U,V'} be an open cover of the symplectic manifold M. Then, the

following Mayer-Vietoris sequence

0 —s PH(M) L PHU) @ PHV) SPHUNV) — 0

B — (Bly,Blv) (B,B')—=B'|unv — Bluav
1s exact for 0 < k < n.

Proof. First note that an open subset U of a symplectic manifold (M, w) is also symplectic
manifold by restricting w to U. Being primitive is a pointwise condition so it is preserved
under restrictions and the above maps are well-defined.

(Exactness at P*(M)): If B is a primitive form on M satisfying r(B) = 0, then it is 0
on both U and V' and therefore B=0by M =U UV.

(Exactness at P*(U) @ P*(V)): For a primitive form B on M, we have

5T(B) = B|UﬂV — B|UOV =0.
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Let B and B’ be primitive forms on U and V, respectively such that §(B, B’) = 0. Then,

the differential form
B onU

B onV

B// —

is well-defined. It is primitive by the same reason mentioned above and r(B”) = (B, B’).
(Exactness at P*(UNV)): Let B be a primitive form on UNV and {py, py } be a partition

of unity subordinate to {U, V'}. Then, the following differential forms

—pvB onUNV puB onUNV

Bl/ —
0 on U — supp(py) 0  onV —supp(py)

B =

are well-defined on U and V, respectively. They are primitive because 0 is primitive and

multiplication by a function doesn’t change primitivity. Finally, we have
8(B',B")=pyB — (—pvB)=B. O

Using this short exact sequence, the differential complex and the snake lemma, we
find a long exact sequence of primitive symplectic cohomologies. As a nontrivial example,
we use this result to compute primitive symplectic cohomologies of the cotangent bundle
of the 2-torus T2 and compare the results with Proposition . Let U" and V' be some
e-neighborhoods of the upper and lower half torus. Note that U’ are V' are diffeomorphic
to the cylinder S* x R and U’ N V" is diffeomorphic to the disjoint union of two cylinders.
Taking U = T*(U’) and V = T*(V’), We have {U,V} is an open cover of M = T*(T?).

Using a separate Mayer-Vietoris sequence or Proposition 4.26 we have
PHj =~ PHj\ =R, PHj =~R? PH} s = PHj = PHj) =0,

for the cotangent bundle of the cylinder. Then, we have the long exact sequence in the next
page, where the difference maps d; and d3 are given by (c1, o) — (ca — ¢1, ¢ — ¢1) and have
rank 1 and the difference maps 0, is given by (¢, ¢a, ¢3,¢4) = (ca — 1,00 — €1, €4 — 3,4 — C3)

and have rank 2. We can compute the symplectic cohomologies of M as follows

PH&%imrl%ker(Sl%R, PHj+dA%@‘mfggR, PH} =~ PHY =0,

PHj =im fi @ kerd, 2R ®R* =R’ PH? > imfy Dkerds 2 R* @R = R?,
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which are the same as the results from Proposition 4.26]

M =T*(T?) vuv unv
PHS, 0 > ? n >R@R——‘”—+R@Ri
f1
PH}, L7 — 1 S R2eRZ 25 R2@R?
f2
PH2, 9?——JL—+R@R—lL+R@Ri
f3
PH3 . — 7 > 0 >Oj
PH} — 7 > 0 >Oj
PH) = 7 > 0 > 0 > 0

The final remark is that if a symplectic manifold M has finite open cover {Uy, ..., U,,}
such that the symplectic cohomologies of any intersection U;, N...NU;; are finite-dimensional,

then we can conclude that PH(’;?t for 0 < k <n, PHngdA and PH},, of the manifold M are

also finite-dimensional using the Mayer-Vietoris sequence and induction on m. For example

for PH"

drahs e have

e PHINUNV) L PHR, (U UV) 5 PHE, 0 (U) @ PHE, 0 (V) = ..

and therefore

L (UUV) Zkerr @imr Zim f @ imr.

This implies that if PH; '(UNV), PH},

(U) and PH?

7rar (V) are finite-dimensional, then

PHY A (UUV) is also finite-dimensional.
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Conclusion

As a conclusion, I will give the general picture behind all the results given in this thesis.
First, let us summarize the purely algebraic aspects in this theory. Having a compatible triple
(w, J,g) on a manifold M (or a vector space), we have the two different decompositions ()
and of forms and the following isomorphisms. For the diamond, the conjugation and
the operators * and L™ P~? give isomorphisms around the middle vertical line, centre point
and the middle horizontal line, respectively. Note that the map J : APY — APY is just
multiplication by a constant, so it is a trivial isomorphism which is not interesting. As
a result, the operators * and *, = *J ! are equivalent on AP9. So, the only different
nontrivial isomorphisms on the diamond are the above three types of isomorphisms. On
the other hand for the pyramid, the operators *, *, and L™ 2 ~* give different isomorphisms
around the middle vertical line. We also have nontrivial isomorphisms J : £™* — L£"* and
isomorphisms of spaces in each horizontal line given by L" (Lemma .

Moving on to the case of complex manifolds, for a general almost complex structure J,
there is no obvious relation between d and the diamond decomposition. Under the geometric
assumption of integrability, the operator d has only two components acting on AP?. This
gives first order differential operators (9, ) and complex cohomologies of Dolbeault, Bott-
Chern and Aeppli. On a complex manifold, conjugation is the only natural isomorphism
among the above isomorphisms for the diamond, in the sense that it doesn’t depend on
a choice of a compatible triple, so it gives the dualities HE = HEP Hgfg = I:Igfg and
HYY = Hgg even for non-compact complex manifolds. To obtain the finite dimensionality
of complex cohomologies and transfer more dualities to the level of cohomologies, we need
to add the assumption of compactness to be able to use the general Hodge theory of elliptic
operators on a compact manifold (see Corollary . The new duality for compact complex
manifold comes from the isomorphism * on the diamond and we still don’t have any duality
coming from L"7P~? because there is no obvious relation between the the algebraic operator
L and differential operators in general. Adding one more assumption that w is d-closed or

[d, L] = 0, i.e. the manifold is Kéahler, implies this missing duality and many more dualities

(see Proposition [L.F)).
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Next, for symplectic manifolds, we see that given a general non-degenerate 2-form w,
there is no obvious relation between d and the pyramid decomposition. Under the geometric
assumption of d-closedness, the operator d has only two components acting on £™*. This
gives first order differential operators (9d;,0_) and new symplectic cohomologies. On a
symplectic manifold, the isomorphisms among the above isomorphisms which are natural for
the pyramid, in the sense that they don’t depend on a choice of a compatible triple, are *,
and L”. Therefore, we have the isomorphism Hj;’ = PHj_, Proposition and formulas
(23) and even in the case of non-compact symplectic manifolds. As a result, we can
compute all symplectic cohomologies only knowing the de Rham and primitive cohomologies.
To conclude the finite dimensionality of symplectic cohomologies and transfer more dualities
to the level of cohomologies, we need to add the assumption of compactness to use the
elliptic theory on a compact manifold (see Propositions and . Assuming furthermore
that the dd*-lemma holds, we find even more isomorphisms like L% : H¥ — H3"™* and
L% H C’l“ an Hg"’k and all primitive symplectic cohomologies become isomorphic to the
primitive de Rham cohomology (see Propositions .

We finish this thesis with an outline of open problems. Since the symplectic cohomologies
have only been introduced recently, there are many questions to be answered about them.
Among these open problems, maybe the most important and natural questions are the
following ones:

- What is the relationship between the Lie algebra cohomology of a Lie group and the
symplectic cohomologies of the orbits of the co-adjoint action? Answering this problem, one
could compute the symplectic cohomologies for a homogeneous symplectic manifold.

- What is the behavior of the symplectic cohomologies under symplectic reductions?

- Is there a Mayer-Vietoris construction for mixed symplectic cohomologies H,, 42 and

Hggn that are not coming from a differential complex?
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