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Abstract

This thesis is a review of the symplectic cohomology theories of Tseng and Yau [16, 17],

which give symplectic analogues of the Dolbeault, Bott-Chern and Aeppli cohomologies for

complex manifolds. Basic features of these cohomologies, such as their Hodge theories,

finite-dimensionality, duality properties and Poincaré lemmas are reviewed. The symplectic

cohomologies are computed explicitly in the case of cotangent bundles. While none of the

results of this thesis are new, we have given detailed proofs of a number of facts which are

stated without proof in the foundational papers of Tseng and Yau. The thesis concludes

with perspectives and open problems.

Résumé

Cette thèse reprend les théories de cohomologie symplectique de Tseng et Yau [16, 17], qui

fournissent des analogues symplectiques des cohomologies de Dolbeault, Bott-Chern et Aep-

pli pour les variétés complexes. Les propriétés de base de ces cohomologies, telles que leurs

théories de Hodge, la finitude de leurs dimensions, leurs propriétés de dualité et les lemmes

de Poincaré sont étudiés. Les cohomologies symplectiques sont calculées explicitement dans

le cas des fibrés cotangents. Bien que cette thèse ne contienne pas de résultats nouveaux,

elle contient des preuves détaillées de certains résultats qui sont énoncés sans preuve dans

les travaux de Tseng et Yau. Nous concluons thèse avec des perspectives et des questions

ouvertes.
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Introduction

Hodge theory for symplectic manifolds first was discussed by Ehresmann and Libermann

[6, 10] and then by Brylinski [4], but their approach was not entirely successful, as we shall

see below. Their approach is in parallel with the Hodge theory in Riemannian geometry,

which we will shortly review in subsection 1.1. In summary, one defines a symplectic star

operator ∗s (see subsection 2.1.2) by replacing the Riemannian metric g with the symplectic

form ω in the definition of the Hodge star operator ∗. This operator allows us to define the

symplectic adjoint of the exterior derivative by the formula

dΛ = (−1)k+1 ∗s d∗s,

acting on k-forms in analogy with the adjoint d∗ in Riemannian geometry. Defining the

symplectic harmonic forms as the differential forms that are both d- and dΛ-closed, we

are looking for the relationship between the de Rham cohomology classes and symplectic

harmonic forms. But in contrast with Riemannian geometry, it is not the case that there

exists a symplectic harmonic representative for each de Rham cohomology class of a compact

symplectic manifold. It was proved by Mathieu [11] and Yan [20] that every de Rham

cohomology class contains a symplectic harmonic form if and only if the strong Lefschetz

property holds i.e. the maps Hk
d → H2n−k

d between de Rham cohomology groups given by

[A] 7→ [ωn−k ∧ A] are surjective for all 0 ≤ k ≤ n. Even in this case, symplectic harmonic

representatives of de Rham cohomology classes are not unique in contrast with Riemannian

geometry. This suggests that this is not an optimal approach and the de Rham cohomology,

being a topological invariant, is not an appropriate choice to reflect the symplectic structure

properties.

In this thesis, we study a new approach to the Hodge theory on symplectic manifolds

recently introduced by Tseng and Yau [16, 17] which is in parallel with complex geometry.

The first key step is to define the space Lr,s = {ωr ∧ Bs : Bs ∈ Ps}, where Ps is the space

of primitive s-forms, in analogy to the space of type (p, q) forms in complex geometry. This

gives a pyramid shape decomposition of differential forms presented in (13), similar to the

diamond shape decomposition (6), which familiar from almost complex geometry. Then,

the exterior derivative d acting on Lr,s has only two components, so this allows us to define
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two first order differential operators (∂+, ∂−). The pairs (∂+, ∂−) and (d, dΛ) are symplectic

counterparts of the pairs (∂, ∂̄) and (d, dc) in complex geometry. Using these differential

operators, we can define some new symplectic cohomologies by the formulas

PHk
∂± =

ker ∂± ∩ Pk

im ∂± ∩ Pk
,

PHk
d+dΛ = PHk

∂++∂− =
ker (∂+ + ∂−) ∩ Pk

im ∂+∂− ∩ Pk
,

PHk
ddΛ = PHk

∂+∂− =
ker ∂+∂− ∩ Pk

(im ∂+ + im ∂−) ∩ Pk
.

These cohomologies are symplectic analogues of the well-known Dolbeault cohomology,

Bott-Chern cohomology [2]

Hp,q

∂+∂̄
=
ker (∂ + ∂̄) ∩ Ap,q

im ∂∂̄ ∩ Ap,q
, (1)

and Aeppli cohomology [1]

Hp,q

∂∂̄
=

ker ∂∂̄ ∩ Ap,q

(im ∂ + im ∂̄) ∩ Ap,q
. (2)

We can summarize these similarities of symplectic and complex manifolds in the following

table:

Complex manifold Symplectic manifold

Differential forms Ap,q Lr,s

Diamond (6) Pyramid (13)

d = ∂ + ∂̄ d = ∂+ + L∂−

Differential operators dc = i(∂̄ − ∂) dΛ = 1
H+R+1

∂+Λ− (H +R)∂−

(∂, ∂̄) (∂+, ∂−)

Dolbeault PHk
∂±

Cohomologies Bott-Chern PHk
d+dΛ

Aeppli PHk
ddΛ

For a compact manifold, by choosing a compatible Riemannian metric, we define the

associated Laplacians for these cohomologies and take advantage of general Hodge theory

of self-adjoint elliptic operators on compact manifolds [19] to conclude that all of above
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cohomologies are finite dimensional. This also implies that the following pairings

PHk
d+dΛ ⊗ PHk

ddΛ → R, PHk
∂+
⊗ PHk

∂− → R,

[A]⊗ [A′] 7→
∫
M

A ∧ ∗sA′,

are non-degenerate and therefore we have dualities PHk
d+dΛ

∼= PHk
ddΛ and PHk

∂+

∼= PHk
∂−

.

We then prove Poincaré lemmas for all of above cohomologies and compute them for the

general example of cotangent bundles. The results are summarized in the following table:

Star-shaped open subset of R2n Cotangent bundle

PHk
d+dΛ R k = 0 Hk

d 0 ≤ k ≤ n

0 0 < k ≤ n

PHk
ddΛ R k = 1 Hk−1

d 0 ≤ k < n

0 k = 0, 2 ≤ k ≤ n Hn−1
d ⊕Hn

d k = n

PHk
∂+

R k = 0, k = 1 Hk−1
d ⊕Hk

d 0 ≤ k < n

0 2 ≤ k < n

PHk
∂−

0 0 ≤ k < n 0 0 ≤ k < n

Note that the Euclidean space R2n with the standard symplectic structure is also the

cotangent bundle of Rn and these two results are the same in this special case.

Our thesis is organized as follows. Section 1 is a short review of classical Hodge theories

of Riemannian, complex and Kähler geometries. In section 2, some algebraic and differential

operators are introduced and their properties are studied in detail. Different symplectic

cohomologies are defined in section 3. We study Hodge theories of these cohomologies and

conclude their finite-dimensionality for compact symplectic manifolds. More results for these

cohomologies are proved in Section 4 including duality properties, Poincaré lemmas and the

fact that under the assumption of compactness and the ddΛ-lemma, these cohomologies are

isomorphic to the de Rham cohomology. The thesis concludes with a brief account of a

Mayer-Veitoris-type construction for symplectic cohomologies and a section summarizing

the conclusions and outline of open problems.
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1 Review of classical Hodge theories

This is just a short review section without details. For further details see the given references

for each subsection.

1.1 Compact orientable manifolds

The main reference for this subsection is [18]. Let M be an orientable n-manifold (without

boundary). Choose and fix an arbitrary orientation and Riemannian metric g on M . Given

a point p in M , we have an isomorphism fp : Tp(M)→ T ∗p (M) given by V 7→ iV (gp), where

i� is the interior product. For θi, ηi ∈ Ω1 for i = 1, ..., k, define

< θ1 ∧ ... ∧ θk, η1 ∧ ... ∧ ηk >g= det(gp(f
−1
p (ηip), f

−1
p (θjp))), (3)

and extend it linearly to Ωk. Moreover, we define < f, g >g= f.g for f, g ∈ C∞(M) = Ω0

and < Ak1 , Ak2 >g= 0 for Aki ∈ Ωki and k1 6= k2. The Hodge star operator ∗ : Ωk → Ω2n−k

is defined by A∧ ∗A′ =< A,A′ >g dvol for A,A′ ∈ Ωk, where dvol is the volume element. It

satisfies ∗∗ = (−1)k(n−k).

Moreover, if M is compact, then the formula < Ak, A
′
k >:=

∫
M
Ak ∧ ∗A′k is an inner

product structure on Ω(M). For a linear operator T on Ω(M), if there exists an operator T ∗

on Ω(M) satisfying < TA,A′ >=< A, T ∗A′ >, then the operator T ∗ is called the (formal)

adjoint of T . Then immediately, we have

T ∗∗ = T, (T + T ′)∗ = T ∗ + T ′∗, (cT )∗ = cT ∗, (TT ′)∗ = T ′∗T ∗,

for any linear operator T and real constant c. One can show d∗ = (−1)n(k+1)+1 ∗ d∗. Define

the Hodge Laplacian by ∆d = d∗d+ dd∗ and the space of d-harmonic k-forms by

Hk
d = ker∆d ∩ Ωk = ker d ∩ ker d∗ ∩ Ωk.

Also, write Hk
d = ker d∩Ωk

imd∩Ωk
for the k-th real de Rham cohomology class.

Proposition 1.1. For a compact oriented Riemannian manifold M , the operator ∆d is

elliptic and therefore we have

a) dimHk
d <∞
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b) The orthogonal decomposition Ωk = Hk
d ⊕ dΩk−1 ⊕ d∗Ωk+1

c) Hk
d
∼= Hk

d i.e. there is a unique d-harmonic form in each de Rham cohomology class.

d) ∗ : Hk
d → H2n−k

d is an isomorphism for 0 ≤ k ≤ 2n.

Corollary 1.2. For a compact orientable manifold M , we have dimHk
d < ∞ and the fol-

lowing non-degenerate natural pairing and therefore Hk
d
∼= H2n−k

d .

Hk
d ⊗H2n−k

d → R, [A]⊗ [A′] 7→
∫
M

A ∧ A′. (4)

1.2 Almost complex manifolds

The references of this subsection are [9] and [12]. Let M be a 2n-manifold (without bound-

ary). An almost complex structure J is a linear map Jp : Tp(M)→ Tp(M) with the property

J2
p = Id for all p ∈ M . Consider the complexified tangent space TC(M) = T (M) ⊗ C and

extend J to a C-linear operator on TC(M). Write T ′(M) and T ′′(M) for eigenspaces of J cor-

responding to the eigenvalues i and−i, respectively. Then, we have TC(M) = T ′(M)⊕T ′′(M)

and T̄ ′(M) = T ′′(M), where the conjugation is in TC(M). Define the space of complex-valued

k-forms by Ak =
∧k T ∗C(M) and the space of type (p, q) forms by the formula

Ap,q =

p∧
T ′∗(M)⊗

q∧
T ′′∗(M) 0 ≤ p, q ≤ n. (5)

We can arrange these spaces in the following diamond shape order

An,n

An,n−1 An−1,n

An,n−2 An−1,n−1 An−2,n

... . . .

An,0 ... A0,n

. . . ...

A2,0 A1,1 A0,2

A1,0 A0,1

A0,0

(6)

5



The above decomposition and the formula T̄ ′(M) = T ′′(M) give

Ak =
⊕
p+q=k

Ap,q, Āp,q = Aq,p,

An almost complex structure J and a Riemannian metric g are called compatible if we

have g(JV, JW ) = g(V,W ). Likewise, an almost complex structure J and a non-degenerate

2-form ω are called compatible if we have

ω(V, JV ) > 0 V 6= 0,

ω(JV, JW ) = ω(V,W ).

Having an almost complex structure J , there is a 1-1 correspondence between compatible

Riemannian metrics and compatible non-degenerate 2-forms related to each other by formulas

ω(V,W ) = g(JV,W ), g(V,W ) = ω(V, JW ),

such a triple (ω, J, g) is called a compatible triple. If we have an almost complex structure

J , then there exists a compatible triple (ω, J, g). Also having a non-degenerate 2-form ω,

there exists a compatible triple (ω, J, g) (see [12]).

1.3 Compact complex manifolds

The reference of this and next subsections is [7]. An almost complex structure is called

integrable if there is an open cover of M with local charts such that the transition maps

are holomorphic. A complex structure is an integrable almost complex structure and a

complex manifold is a manifold with a complex structure. Any complex manifold is naturally

oriented using the standard oreintation on R2n = Cn since holomorphic maps are orientation

preserving. On a complex manifold, we have d : Ap,q → Ap+1,q ⊕Ap,q+1 so we can define its

components ∂ : Ap,q → Ap+1,q and ∂̄ : Ap,q → Ap,q+1 such that d = ∂ + ∂̄. Also, define the

operator dc = i(∂̄ − ∂). We have

∂2 = ∂̄2 = dc2 = 0, ∂∂̄ = −∂̄∂, ddc = −dcd = 2i∂∂̄.

We can define

Hk
d (C) =

ker d ∩ Ak

im d ∩ Ak
= Hk

d ⊗ C,

6



Hp,q
∂ =

ker ∂ ∩ Ap,q

im ∂ ∩ Ap,q
, Hp,q

∂̄
=
ker ∂̄ ∩ Ap,q

im ∂̄ ∩ Ap,q
. (7)

Note that we have Hp,q

∂̄
= H̄q,p

∂ and they are called the Dolbeault cohomology groups. We

have the ∂̄-Poicaré lemma stating that Hp,q

∂̄
= 0 for q > 0 and M be a polydisk in R2n = Cn.

Let M be a complex manifold with complex structure J and (real) dimension 2n. A

Hermitian metric on M is a Hermitian inner product on T ′p(M) for all p ∈ M depending

smoothly on p. Choose and fix an arbitrary compatible triple (ω, J, g) on M . Then, there

is a Hermitian metric on M defined by g + iω. Using this Hermitian metric and completely

similar to subsection 1.1, we can define a complex Hodge star operator ∗ : Ap,q → An−p,n−q

satisfying ∗∗ = (−1)(p+q)(2n−p−q) = (−1)p+q. Acting on Ωk, it is the same as ∗ operator

induced by g.

Moreover, if M is compact, then the formula < Ak, A
′
k >:=

∫
M
Ak ∧ ∗A′k makes A(M)

into a Hermitian inner product space such that its real part is the inner product induced

by g on Ω(M). Similarly, define the (formal) adjoint T ∗ of an operator T on A(M). Then

immediately, we have

T ∗∗ = T, (T + T ′)∗ = T ∗ + T ′∗, (cT )∗ = c̄T ∗, (TT ′)∗ = T ′∗T ∗,

for any operator T and complex constant c. We have

d∗ = − ∗ d∗, ∂∗ = − ∗ ∂∗, ∂̄∗ = − ∗ ∂̄ ∗ .

Define Laplacians ∆∂ = ∂∗∂ + ∂∂∗ and ∆∂̄ = ∂̄∗∂̄ + ∂̄∂̄∗ and the space of ∂̄-harmonic

(p, q)-forms by

Hp,q

∂̄
= ker∆∂̄ ∩ Ap,q = ker ∂̄ ∩ ker ∂̄∗ ∩ Ap,q. (8)

Proposition 1.3. For a compatible triple (ω, J, g) on a compact complex manifold M , we

have

a) dimHp,q

∂̄
<∞

b) The orthogonal decomposition Ap,q = Hp,q

∂̄
⊕ ∂̄Ap,q−1 ⊕ ∂̄∗Ap,q+1

c) Hp,q

∂̄
∼= Hp,q

∂̄
i.e. there is a unique ∂̄-harmonic form in each Dolbeault cohomology

class.

d) ∗ : Hp,q

∂̄
→ Hn−p,n−q

∂̄
is an isomorphism for 0 ≤ p, q ≤ n.

7



Corollary 1.4. For a compact complex manifold M , we have dimHp,q

∂̄
<∞ and the follow-

ing natural pairing

Hp,q

∂̄
⊗Hn−p,n−q

∂̄
→ C, [A]⊗ [A′] 7→

∫
M

A ∧ A′,

is non-degenerate and therefore Hp,q

∂̄
∼= Hn−p,n−q

∂̄
.

A Kähler manifold is a smooth manifold with a compatible triple (ω, J, g) such that J

is integrable and ω is d-closed. In other words, Kähler manifolds are both symplectic and

complex manifolds in ways that are compatible with each other. Let M be a compact Kähler

2n-manifold. Consider the operators L and Λ defined in subsection 2.1.1. Then, we have

lots of identities involving different operators known as Kähler identities. Some of them are

[∂,Λ] = −i∂̄∗, [∂̄,Λ] = i∂∗, ∂∂̄∗ = −∂̄∗∂,

∆d = 2∆∂ = 2∆∂̄, [∂, L] = [∂̄, L] = [∆d, L] = [∆d,Λ] = 0.

Using these identities one can prove the following proposition.

Proposition 1.5. For a compact Kähler manifold M , we have

a) Hp,q

∂̄
∼= Hq,p

∂̄
and Hk

d (C) ∼=
⊕

p+q=kH
p,q

∂̄

b) dimH2k+1
d is even, dimHp,p

∂̄
> 0 and dimH2k

d > 0 for 0 ≤ k, p ≤ n.

c) The maps Ln−k : Hk
d → H2n−k

d and Ln−p−q : Hp,q

∂̄
→ Hn−q,n−p

∂̄
are isomorphisms for

0 ≤ k, p+ q ≤ n.

d) The following pairing is non-degenerate for 0 ≤ k ≤ n:

Hk
d ⊗Hk

d → R, [A]⊗ [A′] 7→
∫
M

Ln−k(A ∧ A′).

8



2 Operators on symplectic manifolds

In this section, we define different algebraic and differential operators on symplectic manifolds

and study their properties. Each of these operators acts linearly on forms, and thus is a linear

map Ω(M)→ Ω(M).

From this section onward, (M,ω) is a symplectic manifold (without boundary) with

dimension 2n i.e. ω is a d-closed non-degenerate 2-form on M . We will use the notation Ak

or just simply A for a k-form on M i.e. Ak ∈ Ωk. Sometimes we will use other notations as

well. Also, unless otherwise specified the main references for this work are either [16] or [17].

2.1 Algebraic operators

Since all the definitions and results in the following two subsections are algebraic, they hold

for symplectic vector spaces as well as symplectic manifolds.

2.1.1 Lefschetz decomposition (L,Λ, H and R)

While most of the ideas in this subsection are given in [16] or [17], the proofs given here

have been obtained independently. The first three operators are the well-known operators

that give a representation of the sl(2) algebra on Ω(M) and consequently define a Lefschetz

decomposition of forms. Since these operators and decomposition are well-studied, we will

state some of their elementary properties without proof (properties I-III below).

Definition 2.1. The Lefschetz operator L : Ωk → Ωk+2, the dual Lefschetz operator

Λ : Ωk → Ωk−2 and the degree counting operator H : Ωk → Ωk are defined by

L(Ak) := ω ∧ Ak, (9)

Λ(Ak) :=
2n∑
i,j=1

1

2
(ω−1)iji∂xi i∂xjAk, (10)

H(Ak) := (n− k)Ak, (11)

where x is a local coordinate, ω =
∑2n

i,j=1
1
2
ωijdx

i ∧ dxj and ((ω−1)ij) is the inverse matrix

of (ωij). Also, i� stands for the interior product. These operators are extended linearly to

Ω(M). Also, we will set Ωk = {0} for k > 2n or k < 0, for example in Λ : Ω1 → Ω−1.

9



The commutators of these operators are given by

[Λ, L] = H, [H,Λ] = 2Λ, [H,L] = −2L, (12)

on Ω(M), so we have a sl(2)-representation. Consequently, we have the following three

properties:

(I) The maps Ln−k : Ωk → Ω2n−k and Λn−k : Ω2n−k → Ωk are isomorphisms for k = 0, ..., n

(considering L0 and Λ0 as the identity map). This implies that Lr : Ωk → Ωk+2r is injective

if k + r ≤ n and Λr : Ωk → Ωk−2r is injective if k − r ≥ n.

Definition 2.2. Define the space of primitive forms as P(M) := ker(Λ : Ω(M)→ Ω(M)).

We will use the notation Bk or just simply B to represent a primitive k-form i.e. a member

of Pk := P(M) ∩ Ωk.

Note that we have P0 = Ω0 = C∞(M) and P1 = Ω1. Also, property (I) implies that

Pk = {0} for k > n.

(II) The second property gives us an alternative definition of primitive forms:

Pk = ker(Ln−k+1 : Ωk → Ω2n−k+2) k = 0, ..., n.

(III) Finally, the last elementary property known as the Lefschetz decomposition gives

Ωk =
⊕

r≥0 L
rPk−2r. By equality (2.1.1), if we have r + k − 2r > n, then LrPk−2r = {0}.

Therefore, we can assume that max(0, k − n) ≤ r ≤ bk
2
c.

Definition 2.3. Define the spaces Lr,s := LrPs ⊆ Ω2r+s and the operator R : Lr,s → Lr,s by

RA := rA for A ∈ Lr,s. Extend this operator linearly to a map R : Ω(M)→ Ω(M).

Lemma 2.4. We have the following identities on Ω(M):

[Λ, Lr] = (H + r − 1)rLr−1 r ≥ 1,

[H,R] = 0,

ΛL = (H +R)(R + 1),

LΛ = (H +R + 1)R.

10



Proof. The first equality is proved by induction on r. For r = 1, it is just [Λ, L] = H in (12).

Now, assume that it is true for r − 1 and we will prove it for r:

[Λ, Lr] = ΛLLr−1 − LrΛ = LΛLr−1 +HLr−1 − LrΛ

= LLr−1Λ + L((H + r − 2)(r − 1)Lr−2) +HLr−1 − LrΛ

= (H + 2 + r − 2)(r − 1)LLr−2 +HLr−1 = (H + r − 1)rLr−1.

For the remaining equalities, it is enough by linearity to verify them only on Lr,s. Taking

any Bs ∈ Ps, we have

HR(LrBs) = (n− 2r − s)rLrBs = RH(LrBs),

ΛL(LrBs) = ΛLr+1Bs = Lr+1ΛBs + (H + r)(r + 1)LrBs = (H +R)(R + 1)(LrBs),

which prove the second and third formulas. We can prove the last one directly similar to

the third one or prove it as follows:

LΛ = ΛL−H = (H +R)(R + 1)−H = (H +R + 1)R.

By equality (2.1.1), the space Lr,s is nontrivial only if 0 ≤ r, s and r + s ≤ n. We can

arrange these spaces in the following pyramid:

L0,n

L0,n−1 L1,n−1

L0,n−2 L1,n−2 L2,n−2

...
...

. . .

L0,1 Ln−1,1

L0,0 L1,0 · · · Ln−1,0 Ln,0

(13)

The left edge corresponds to the primitive spaces (r = 0) and the right edge corresponds

to r + s = n. The direct sum of k-th vertical line (0 ≤ k ≤ 2n) gives the Lefschetz

decomposition Ωk =
⊕b k

2
c

r=max(0,k−n) Lr,k−2r. On the other hand, all the spaces on the same

horizontal line are isomorphic to each other by the following lemma.

11



Lemma 2.5. The map L : Lr,s → Lr+1,s is an isomorphism for 0 ≤ r, s and r+s < n i.e. as

long as we don’t leave the pyramid. Similarly, the map Λ : Lr,s → Lr−1,s is an isomorphism

for 0 < r, 0 ≤ s and r + s ≤ n i.e. as long as we don’t leave the pyramid.

Proof. First note that we have Λ(Lr,s) ⊆ Lr−1,s by the definition of the spaces Lr,s and the

first identity in Lemma 2.4. Also by the definition of the spaces Lr,s, the map L is clearly

surjective. According to Lemma 2.4, we know that ΛL : Lr,s → Lr,s is simply multiplication

by the constant (n− r− s)(r+ 1). But this constant is positive since we stay in the pyramid

and hence r + s < n. Consequently, the map ΛL is an isomorphism and L is also injective.

Therefore, both such maps L and Λ are isomorphisms.

For any k-form Ak ∈ Ωk, its Lefschetz decomposition gives primitive forms Bk−2r ∈ Pk−2r

such that

Ak =

b k
2
c∑

r=max(0,k−n)

1

r!
LrBk−2r. (14)

The nonzero coefficients 1
r!

added to make some future formulas simpler. By Lemma 2.5,

the map Lr : Pk−2r → Lr,k−2r is an isomorphism for these values of r and therefore these

primitive forms are unique and are called the Lefschetz components of Ak. They can be

computed using the following lemma.

Lemma 2.6. Let Ak and Bk−2r be as above. For some rational coefficients ar,t depending

on n, k, r and t, we have

Bk−2r =
∑
t≥0

ar,tL
tΛr+tAk.

Proof. We will prove this lemma inductively. Let r0 = bk
2
c. Applying Λr0 to the formula

(14) and using the first formula in Lemma 2.4 repeatedly, we will find an equation of the

form Λr0Ak = aBk−2r0 , where a is a rational number. If r0 = 0, then we have a = 1 and if

r0 > 0, then the inequality 2r0 > r0 ≥ k−n implies that k−2r0 < n, so H > 0 and therefore

a is nonzero. By dividing this equation by a, the lemma is proved for the greatest value of

r, i.e. r0.

Now, let r1 be r0 − 1 and apply Λr1 to the formula (14) to find an equation of the form

Λr1Ak = bBk−2r1 + cLBk−2r0 , where b and c are rational numbers. By the same argument

12



as above b is nonzero. Consequently, we can replace Bk−2r0 from the previous step and solve

this equation for Bk−2r1 to prove the lemma for r1, and so on.

Corollary 2.7. If we have ΛtAk = 0, then there are at most t nonzero Lefschetz components

Bk−2r for r = 0, ..., t− 1.

Lemma 2.8.

Λ(Ak) ∧ A2n−k+2 = Ak ∧ Λ(A2n−k+2),

while it is not true in general that Λ(A) ∧ A′ = A ∧ Λ(A′).

Proof. Let A′ be a nonzero primitive form and A = ω, then Λ(A)∧A′ = nA′ 6= 0 = A∧Λ(A′).

To prove the equality when the form Λ(A)∧A′ has the maximum degree 2n, it is enough to

check that (i∂xi i∂xjA) ∧ A′ = A ∧ (i∂xi i∂xjA
′) for A = dxi1 ∧ ... ∧ dxik , A′ = dxj1 ∧ ... ∧ dxjk′

and k + k′ = 2n+ 2, where x = (x1, ..., x2n) is a local coordinate.

Case 1 (Suppose that the indices i and j are not both among i1, ..., ik.): Then, we have

i∂xi i∂xjA = 0, so the left hand side vanishes. On the other hand, the 2n-form A∧ (i∂xi i∂xjA
′)

is of the form dxi
′
1 ∧ ... ∧ dxi′2n without both indices i and j appearing, which means there

exists a repeated index and the right hand side is also zero.

Case 2 (Suppose that the indices i and j are not both among j1, ..., jk′ .): Similar to the

previous case.

Case 3 (Both indices i and j are among i1, ..., ik and also among j1, ..., jk′ .): Without

loss of generality, assume that i1 = j = j1 and i2 = i = j2. Then the equality follows from

the identity

(dxi3∧...∧dxik)∧(dxj∧dxi∧dxj3∧...∧dxjk′ ) = (dxj∧dxi∧dxi3∧...∧dxik)∧(dxj3∧...∧dxjk′ ).

2.1.2 The symplectic star operator ∗s

None of the proofs in this subsection are given in [16] or [17]. While these are not new

facts and you can find their proofs in many references, the proofs given below appear to be

original.

Completely similar to oriented Riemannian manifolds, we can define a bilinear form and

star operator on the forms on a symplectic manifold as follows. Given a point p in M , we

13



have an isomorphism fp : Tp(M) → T ∗p (M) given by V 7→ iV (ωp) since the symplectic form

ω is nondegenerate. For θi, ηi ∈ T ∗p (M) (i = 1, ..., k), define

< θ1 ∧ ... ∧ θk, η1 ∧ ... ∧ ηk >ω= det(< θi, ηj >ω) = det(ωp(f
−1
p (ηi), f−1

p (θj))), (15)

and extend it linearly to
∧k(T ∗p (M)). For k = 0, we use < f, g >ω= f.g (f, g ∈ C∞(M)).

Note that we have < Ak, A
′
k >ω= (−1)k < A′k, Ak >ω. Finally, we define < Ak, A

′
k′ >ω= 0

for k 6= k′.

Proposition 2.9. In a local coordinate x, we have

< A,A′ >ω=
2n∑

i1,...,ik,j1,...jk=1

1

k!
(ω−1)i1j1 ...(ω−1)ikjkAi1...ikA

′
j1...jk

A,A′ ∈ Ωk,

where Ai1...ik = A(∂xi1 , ..., ∂xik ) or equivalently A =
∑2n

i1,...,ik=1
1
k!
Ai1...ikdx

i1 ∧ ... ∧ dxik .

Proof. Since both sides of the equality are pointwise bilinear, it is enough to check it for

A = dxi1 ∧ ... ∧ dxik =
∑
σ′

1

k!
sgn(σ′)dxiσ′(1) ∧ ... ∧ dxiσ′(k) ,

A′ = dxj1 ∧ ... ∧ dxjk =
∑
σ′′

1

k!
sgn(σ′′)dxjσ′′(1) ∧ ... ∧ dxjσ′′(k) .

Since the isomorphism f−1
p : T ∗p (M) → Tp(M) sends dxip to

∑2n
j=1(ω−1)ij∂xj |p, the left hand

side is (using formula (15))

< A,A′ >ω = det(< dxil , dxjm >ω) = det(ω(
2n∑
b=1

(ω−1)jmb∂xb ,
2n∑
a=1

(ω−1)ila∂xa))

= det(
2n∑

a,b=1

(ω−1)ila(ω−1)jmbωba) = det((ω−1)iljm).

On the other hand, the right hand side is∑
σ′,σ′′

1

k!
(ω−1)iσ′(1)jσ′′(1) ...(ω−1)iσ′(k)jσ′′(k)sgn(σ′)sgn(σ′′)

=
∑

σ′,σ=σ′′◦σ′−1

1

k!
(ω−1)i1jσ(1) ...(ω−1)ikjσ(k)sgn(σ)

=
∑
σ

(ω−1)i1jσ(1) ...(ω−1)ikjσ(k)sgn(σ) = det((ω−1)iljm).
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Definition 2.10. The symplectic star operator ∗s : Ωk → Ω2n−k is defined by

A ∧ ∗sA′ =< A,A′ >ω dvol A,A′ ∈ Ωk,

where dvol = ωn

n!
is the (symplectic) volume element.

Let (M1, ω1) and (M2, ω2) be symplectic manifolds of dimensions 2n1 and 2n2. We will

use the notation L1, Λ1 and ∗1
s for the above operators on M1 and similarly for M2. Then,

the product manifold (M := M1 ×M2, ω := ω1 + ω2) is a symplectic manifold of dimension

2n := 2(n1 + n2). To prove some facts about the operator ∗s, we can use mathematical

induction on n but to do so we first need to know what is the relationship between ∗s, ∗1
s

and ∗2
s.

Lemma 2.11. Consider a (k1 +k2)-form Ak1 ∧Ak2 on M = M1×M2 where Aki is a ki-form

on Mi for i = 1, 2. We have

∗s(Ak1 ∧ Ak2) = (−1)k1k2 ∗1
s Ak1 ∧ ∗2

sAk2 ,

L(Ak1 ∧ Ak2) = L1(Ak1) ∧ Ak2 + Ak1 ∧ L2(Ak2),

Λ(Ak1 ∧ Ak2) = Λ1(Ak1) ∧ Ak2 + Ak1 ∧ Λ2(Ak2).

Proof. Note that the second and third formulas are direct consequences of the definitions and

ω = ω1 +ω2. Consider the forms Ak1 = θ1 ∧ ...∧ θk1 , A′k1
= θ′1 ∧ ...∧ θ′k1 , Ak2 = η1 ∧ ...∧ ηk2

and A′k2
= η′1 ∧ ... ∧ η′k2 , where θi and θ′i are 1-forms on M1 and ηi and η′i are 1-forms on

M2. It is enough to prove the lemma for these particular Ak1 and Ak2 . By formula (15), we

have

< A′k1
∧ A′k2

, Ak1 ∧ Ak2 >ω = det

 < θ′i, θj >ω1 0

0 < η′i, ηj >ω2


=< A′k1

, Ak1 >ω1 . < A′k2
, Ak2 >ω2 .

So, we can write

(A′k1
∧ A′k2

) ∧ ∗s(Ak1 ∧ Ak2) =< A′k1
∧ A′k2

, Ak1 ∧ Ak2 >ω dvol

=< A′k1
, Ak1 >ω1 . < A′k2

, Ak2 >ω2 dvol1 ∧ dvol2

= (A′k1
∧ ∗1

sAk1) ∧ (A′k2
∧ ∗2

sAk2)

= (−1)k1k2(A′k1
∧ A′k2

) ∧ (∗1
sAk1 ∧ ∗2

sAk2),
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which proves the lemma.

Proposition 2.12. The operator ∗s acts like the reflection by the middle vertical line on the

pyramid (13). More precisely, we have ∗s : Lr,s → Ln−r−s,s given by

∗s
1

r!
LrBs =

(−1)
s(s+1)

2

(n− r − s)!
Ln−r−sBs, (16)

where Bs ∈ Ps and r + s ≤ n.

Proof. I obtained the idea of this proof from [9]. Proof is by induction on n. Note that all

the operators L, Λ and ∗s act pointwise, so it is enough to prove this proposition at a fixed

point p ∈M .

The basis case (n = 1): Using a Darboux coordinate (x, y) such that ω = dx∧dy and easy

computations, one can check that we have ∗s1 = ω = L1(1), ∗sL1(1) = ∗sω = 1, ∗sdx = −dx

and ∗sdy = −dy. By pointwise linearity, checking these four equalities is sufficient to prove

the basis case.

The inductive case: Using a cubical Darboux coordinate around p ∈ M , without loss of

generality, we can assume that (M1, ω1) and (M2, ω2) are respectively open submanifolds of

R2 and R2(n−1) with the standard symplectic forms (i.e. ω2 = dx2 ∧ dy2 + ... + dxn ∧ dyn

and ω1 = dx1 ∧ dy1) and (M,ω) is the product symplectic manifold. A general s-form Bs at

p = (p1, p2) ∈M1 ×M2 is of the form

Bs = As + dx1 ∧Bs−1 + dy1 ∧B′s−1 + ω1 ∧Bs−2,

where As, Bs−1, B′s−1 and Bs−2 are forms at p2 ∈M2. Now, if Bs is primitive, we must have

(using third formula in Lemma 2.11)

0 = ΛBs = Λ2As + dx1 ∧ Λ2Bs−1 + dy1 ∧ Λ2B
′
s−1 +Bs−2 + ω1 ∧ ΛBs−2,

and therefore Bs−1, B′s−1 and Bs−2 should be primitive and 0 = Λ2As+Bs−2. Then, Corollary

2.7 and Lemma 2.4 imply that As = B′s − 1
n−s+1

L2Bs−2 for some primitive form B′s at p2.

Combining these with the second formula in Lemma 2.11, we find

LrBs = rω1 ∧ Lr−1
2 B′s + Lr2B

′
s −

1

n− s+ 1
Lr+1

2 Bs−2

+ dx1 ∧ Lr2Bs−1 + dy1 ∧ Lr2B′s−1 +
n− r − s+ 1

n− s+ 1
ω1 ∧ Lr2Bs−2.
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Using this equation, the fist formula in Lemma 2.11 and the induction hypothesis, we can

compute

(−1)
s(s+1)

2 (n− r − s)! ∗s
1

r!
LrBs = Ln−r−s2 B′s + (n− r − s)ω1 ∧ Ln−r−s−1

2 B′s

+
r + 1

n− s+ 1
ω1 ∧ Ln−r−s2 Bs−2 + dx1 ∧ Ln−r−s2 Bs−1

+ dy1 ∧ Ln−r−s2 B′s−1 −
1

n− s− 1
Ln−r−s+1

2 Bs−2,

whose right hand side is the same as the right hand side of the previous equation after

replacing r by n− r − s.

Corollary 2.13. The maps ∗s : Ωk → Ω2n−k and ∗s : Lr,s → Ln−r−s,s are isomorphisms and

the operators L and Λ are symplectic adjoints of each other:

∗s ∗s = 1,

Λ = ∗sL∗s, L = ∗sΛ ∗s .

Proof. Proof of the first formula is just using the formula (16) twice and the fact that ∗s is

pointwise linear. The first and second formulas give the third one. To prove the second one,

it is enough to check that both hand sides act similarly on 1
r!
LrBs (using the formula (16)

and Lemma 2.4):

∗sL ∗s (
1

r!
LrBs) = ∗s

(−1)
s(s+1)

2

(n− r − s)!
Ln−s−r+1Bs =

n− s− r + 1

(r − 1)!
Lr−1Bs

=
H + r − 1

(r − 1)!
Lr−1Bs = Λ(

1

r!
LrBs).

Let (ω, J, g) be a compatible triple on M that always exists for any symplectic manifold

(see [12]). Define J : Ωk → Ωk by

(JAk)(V1, ..., Vk) := Ak(JV1, ..., JVk), (17)

then we have J 2 = (−1)k = J −2 on k-forms and J ω = ω. Note that any symplectic manifold

is naturally oriented using the orientation induced by ωn. Using notations in subsection 1.1,

we have:
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Proposition 2.14. For a compatible triple (ω, J, g), the following identities hold

[J , L] = [J ,Λ] = 0,

< Ak, A
′
k >g=< Ak,JA′k >ω,

∗ = ∗sJ ,

∗ 1

r!
LrBs =

(−1)
s(s+1)

2

(n− r − s)!
Ln−r−sJ (Bs),

[J , ∗] = [J , ∗s] = 0,

∗∗ = (−1)k,

Λ = (−1)k ∗ L ∗ .

Proof. From the definition, we have J (A∧A′) = J (A)∧J (A′). Together with the equality

J (ω) = ω, we can conclude that JL = LJ . In a Darboux coordinate system such that

ω =
∑n

i=1 dx
i ∧ dyi, we have J(∂xi) = ∂yi , J(∂yi) = −∂xi and Λ =

∑n
i=1 i∂yi i∂xi . These

formulas prove JΛ = ΛJ .

Using the definitions of bilinear forms <,>g and <,>ω on k-forms, the definition of J

and compatibility conditions of (ω, J, g), we can easily see that < Ak, A
′
k >g=< Ak,JA′k >ω.

Then, we can write

Ak ∧ ∗A′k =< Ak, A
′
k >g dvol =< Ak,JA′k >ω dvol = Ak ∧ ∗sJA′k,

which proves ∗ = ∗sJ .

Combining ∗ = ∗sJ , the formula (16) and commutativity of J with operators L and Λ

proves the fourth one. Note that J preserves primitivity by commutativity with Λ.

Computing J ∗s and ∗ = ∗sJ on Lr,s using the formula (16) and the previous formula,

we can see that J ∗s = ∗sJ and therefore the operators ∗ and ∗s commute with J .

For the last two equations, we have:

∗∗ = ∗sJ ∗s J = ∗s ∗s J 2 = (−1)k,

(−1)k ∗ L∗ = (−1)k ∗s JL ∗s J = (−1)k ∗s L ∗s J 2 = ∗sL∗s = Λ,
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We can extend the operator J to act on the complex-valued forms A(M) by the formula

J =
∑

p,q i
p−qΠp,q, where i =

√
−1 and Πp,q : A(M) → Ap,q is the type (p, q) projection

map. To see the relationship between these two definitions, recall that J acts on T ′(M) as

multiplication by i and on T ′′(M) as multiplication by −i = i−1. Then, the formula (17)

gives to the above formula formula.

2.2 Differential operators

2.2.1 d and dΛ

Definition 2.15. Define the operator dΛ : Ωk → Ωk−1 by dΛ := dΛ − Λd, where d is the

exterior derivative. Therefore, the operator ddΛ is a map Ωk → Ωk.

Lemma 2.16. [d, L] = 0, [d,Λ] = dΛ, [d,H] = d, ddΛ = −dΛd = −dΛd.

Proof. The second assertion is just the definition of dΛ. The proof of others are as follows:

dLAk = d(ω ∧ Ak) = d(ω) ∧ Ak + (−1)2ω ∧ dAk = LdAk,

dHAk −HdAk = (n− k)dAk − (n− (k + 1))dAk = dAk,

ddΛ = ddΛ− dΛd = −dΛd = −(dΛd− Λdd) = −dΛd.

Lemma 2.17. For any Bk ∈ Pk, there exist primitive forms B0
k+1 ∈ Pk+1 and B1

k−1 ∈ Pk−1

such that

dBk = B0
k+1 + LB1

k−1,

dΛBk = −HB1
k−1.

In particular, Bk is dΛ-closed if it is d-closed.

Proof. First, we want to show that the Lefschetz decomposition of dBk has at most two

nonzero components. If k > n, then Bk = 0 = dBk. Otherwise, since Bk is primitive and

k ≤ n, then Ln−k+1Bk = 0. Consider the Lefschetz decomposition dBk =
∑

r≥0 L
rBr

k+1−2r.

Using [d, L] = 0, we have 0 = dLn−k+1Bk =
∑

r≥0 L
n−k+1+rBr

k+1−2r. This implies that

Ln−k+1+rBr
k+1−2r = 0 for all r ≥ 0. By (I) in the subsection 2.1.1, for k′+r′ ≤ n, the operator
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Lr
′
: Ωk′ → Ωk′+2r′ is injective. If r ≥ 2, then (k + 1− 2r) + (n− k + 1 + r) = n+ 2− r ≤ n

and therefore Br
k+1−2r = 0. Consequently, we have dBk = B0

k+1 + LB1
k−1.

Next, we have

dΛBk = dΛBk − ΛdBk = 0− ΛB0
k+1 − ΛLB1

k−1 = −HB1
k−1.

Proposition 2.18. We have dΛ = (−1)k+1 ∗s d∗s on k-forms i.e. the operator dΛ is the

symplectic adjoint of d.

Proof. To prove the proposition, we will check that both operators act similarly on 1
r!
LrBs.

dΛ(
1

r!
LrBs) =

1

r!
d(H + r − 1)rLr−1Bs =

1

(r − 1)!
(H + r)Lr−1dBs

=
1

(r − 1)!
(H + r)Lr−1B0

s+1 +
1

(r − 1)!
(H + r)LrB1

s−1,

Λd(
1

r!
LrBs) =

1

r!
ΛLrB0

s+1 +
1

r!
ΛLr+1B1

s−1

=
1

(r − 1)!
(H + r − 1)Lr−1B0

s+1 +
r + 1

r!
(H + r)LrB1

s−1,

dΛ(
1

r!
LrBs) =

1

(r − 1)!
Lr−1B0

s+1 −
n− r − s+ 1

r!
LrB1

s−1,

(−1)2r+s+1 ∗s d ∗s (
1

r!
LrBs) =

(−1)
(s+1)(s+2)

2

(n− r − s)!
∗s Ln−r−sB0

s+1 −
(−1)

(s−1)s
2

(n− r − s)!
∗s Ln−r−s+1B1

s−1

=
1

(r − 1)!
Lr−1B0

s+1 −
n− r − s+ 1

r!
LrB1

s−1.

Corollary 2.19. We have the following identities:

dΛdΛ = 0, d = (−1)k+1 ∗s dΛ∗s, ddΛ = ∗sddΛ∗s,

[dΛ, L] = d, [dΛ,Λ] = 0, [dΛ, H] = −dΛ,

[ddΛ, L] = [ddΛ,Λ] = [ddΛ, H] = 0.

Proof. On k-forms, we have

dΛdΛ = (−1)k−1+1 ∗s d ∗s dΛ = − ∗s d ∗s ∗sd∗s = − ∗s dd∗s = 0,

(−1)k+1 ∗s dΛ∗s = (−1)k+1 ∗s ((−1)2n−k+1 ∗s d∗s)∗s = d,

ddΛ = (−1)k−1+1 ∗s dΛ ∗s dΛ = − ∗s dΛ ∗s ∗sd∗s = ∗sddΛ ∗s .
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To prove the equalities in the second line, we multiply the corresponding identities in Lemma

2.16 from left and right by ∗s. Finally, we use the equality [a, [b, c]] = a[b, c] + [a, c]b for

commutators to prove the identities in the third line. For example acting on k-forms, we can

write

d = (−1)k+1 ∗s (dΛ− Λd)∗s = (−1)k+3 ∗s d ∗s ∗sΛ ∗s − ∗s Λ ∗s (−1)k+1 ∗s d∗s

= dΛL− LdΛ = [dΛ, L],

[ddΛ, L] = d[dΛ, L] + [d, L]dΛ = dd+ 0 = 0.

Corollary 2.20. Let A be a differential form, then we have

a) A is d-closed (d-exact) ⇐⇒ ∗sA is dΛ-closed (dΛ-exact) and vice versa.

b) A is ddΛ-closed (ddΛ-exact) ⇐⇒ ∗sA is ddΛ-closed (ddΛ-exact).

Proof. The computation dΛ ∗s A = ± ∗s d ∗s ∗sA = ± ∗s dA proves part a). For vice versa

cases just note that ∗s∗s = 1. For part b), write ddΛ ∗s A = ∗sddΛ ∗s ∗sA = ∗sddΛA.

Definition 2.21. We say a k-form Ak is d+ dΛ-exact if there are (k− 1) and (k+ 1)-forms

Ak−1 and Ak+1 satisfying Ak = dAk−1 + dΛAk+1.

Proposition 2.22. Let Ak =
∑

r
1
r!
LrBk−2r be the Lefschetz decomposition of a k-form Ak.

We have:

a) Ak is both d- and dΛ-closed ⇐⇒ Bk−2r is d-closed for all r.

b) Ak is ddΛ-closed (ddΛ-exact) ⇐⇒ Bk−2r is ddΛ-closed (ddΛ-exact) for all r.

c) Ak is (d+ dΛ)-exact ⇐⇒ Bk−2r is (d+ dΛ)-exact for all r.

Proof. Part a) ⇐: Assume that dBk−2r = 0 for all r. Then, the following equalities

dAk =
∑
r

1

r!
LrdBk−2r,

dΛAk =
∑
r

1

r!
Lr(dΛ + rd)Bk−2r,

and the identity dΛBk−2r = 0 from Lemma 2.17 imply that dAk = dΛAk = 0.

Part a) ⇒: Assume that dAk = dΛAk = 0. By Lemma 2.6, we can compute

dBk−2r =
∑
t

ar,tL
rdΛr+tAk =

∑
t

ar,tL
rΛr+t(d+ (r + t)dΛ)Ak,
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and therefore dBk−2r = 0. The proof of the part b) is similar and trivial since the operator

ddΛ commutes with both L and Λ operators.

Part c) ⇐: Assume that we have B = dA+ dΛA′. Then, we can write

LrB = dLrA+ dΛLrA′ − rdLr−1A′ = d(LrA− rLr−1A′) + dΛ(LrA′),

even when the form B is not primitive.

Part c) ⇒: Assume that we have Ak = dA+ dΛA′. Then, we can write

Bk−2r =
∑
t

ar,tL
rΛr+tAk = d

∑
t

ar,tL
rΛr+tA− dΛ

∑
t

ar,t(r + t)LrΛr+t−1A

+ d
∑
t

ar,t(r + t)rLr−1Λr+t−1A+ dΛ
∑
t

ar,tL
rΛr+tA′ − d

∑
t

ar,trL
r−1Λr+tA′.

Corollary 2.23. Let A be a k-form for 0 ≤ k ≤ n and A′ = Ln−kA, then we have

a) A is d-closed (d-exact) =⇒ A′ is d-closed (d-exact).

b) A is ddΛ-closed (ddΛ-exact) ⇐⇒ A′ is ddΛ-closed (ddΛ-exact).

c) A is both d- and dΛ-closed ⇐⇒ A′ is both d- and dΛ-closed.

d) A is (d+ dΛ)-exact ⇐⇒ A′ is (d+ dΛ)-exact.

Proof. For part a), just note that [d, L] = 0. To prove other parts, assume that we have

the Lefschetz decompositions A =
∑

r
1
r!
LrBk−2r and A′ =

∑
r′

1
r′!
Lr
′
B′(2n−k)−2r′ . Since the

map Ln−k : Ωk → Ω2n−k is an isomorphism, we should have 1
r!
Bk−2r = 1

r′!
B′(2n−k)−2r′ for

r′ = n− k + r. Now Proposition 2.22 proves parts b, c and d.

Lemma 2.24. Let V be a symplectic vector field on M i.e. the 1-form ν := iV ω is d-closed.

The Lie derivative LV on differential forms satisfies

LVL = LL, LVB = −dΛ(ν ∧B)− ν ∧ dΛB,

for a primitive form B.

Proof. We use the Cartan formula LV = iV d+ d iV to prove the lemma. This formula shows

that LV ω = 0. We have the following commutator formulas

LVLA = LV (ω ∧ A) = (LV ω) ∧ A+ ω ∧ (LVA) = LLVA,

iV Λ = Λ iV , iVLA = iV (ω) ∧ A+ ω ∧ iVA = ν ∧ A+ LiVA.
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The last two formulas imply that

−Λ(ν ∧B) = ΛLiVB − iV ΛLB = HiVB − iVHB = iVB,

for a primitive form B. If we have dB = B′ + LB′′, then we can compute

iV dB = iVB
′ + ν ∧B′′ − LΛ(ν ∧B′′) = −Λ(ν ∧B′)− ΛL(ν ∧B′′) + (H + 1)(ν ∧B′′)

= −Λ(ν ∧ dB) + ν ∧ (HB′′) = Λd(ν ∧B)− ν ∧ (dΛB)

= −dΛ(ν ∧B)− diVB − ν ∧ (dΛB).

Corollary 2.25. Let V be a Hamiltonian vector field on M i.e. there exists h ∈ C∞(M)

satisfying iV ω = dh. The Lie derivative LV on differential forms satisfies

a) Ak is both d- and dΛ-closed =⇒ LVAk is ddΛ-exact.

b) Ak is ddΛ-closed =⇒ LVAk is (d+ dΛ)-exact.

Proof. Let Ak =
∑

r
1
r!
LrBk−2r be the Lefschetz decomposition of Ak.

Part a): Assume that Ak is both d- and dΛ-closed, then Bk−2r is d and dΛ-closed for all

r. Using the previous lemma, we have

LVBk−2r = −dΛ((dh) ∧Bk−2r)− (dh) ∧ dΛBk−2r = −dΛd(hBk−2r)− 0 = ddΛ(hBk−2r)

=⇒ LVAk =
∑
r

1

r!
LrLVBk−2r =

∑
r

1

r!
LrddΛ(hBk−2r) = ddΛ(hAk).

Part b): Assume that Ak is ddΛ-closed, then Bk−2r is ddΛ-closed for all r. Using the

previous lemma, we have

LVBk−2r = d(−h ∧ dΛBk−2r) + dΛ(−(dh) ∧Bk−2r),

hence LVBk−2r is (d + dΛ)-exact for all r and therefore LVAk =
∑

r
1
r!
LrLVBk−2r is also

(d+dΛ)-exact by the proof of Proposition 2.22 (note that LVBk−2r can be non-primitive).

Lemma 2.26. If M is compact, then we have∫
M

(dΛAk) ∧ A′ = (−1)k
∫
M

Ak ∧ (dΛA′),∫
M

(ddΛAk) ∧ A′′ = −
∫
M

Ak ∧ (ddΛA′′).
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Proof. Note that the Stokes’ theorem implies that
∫
M

(dAk) ∧ A′ = (−1)k+1
∫
M
Ak ∧ (dA′).

Using this fact and Lemma 2.8, we can write:∫
M

(dΛAk) ∧ A′ = (−1)k−2+1

∫
M

(ΛAk) ∧ (dA′) = (−1)k+1

∫
M

Ak ∧ (ΛdA′),∫
M

(ΛdAk) ∧ A′ =
∫
M

(dAk) ∧ (ΛA′) = (−1)k+1

∫
M

Ak ∧ (dΛA′).

Subtracting these two formulas gives the first identity. For the second identity, write∫
M

(ddΛAk) ∧ A′′ = (−1)k(−1)(k−1)+1

∫
M

Ak ∧ (dΛdA′′) = −
∫
M

Ak ∧ (ddΛA′′).

Note that the previous lemma serves as a version of Stokes’ theorem for operators dΛ and

ddΛ.

Definition 2.27. For a compatible triple (ω, J, g), the differential operator dc : Ωk → Ωk+1

is defined by dc := J −1dJ .

Lemma 2.28. For a compatible triple (ω, J, g), we have dΛ = − ∗ dc∗.

Proof. Acting on k-forms, we have

dΛ = (−1)k+1 ∗s d∗s = (−1)k+1 ∗ J −1d ∗ J −1 = (−1)k+1 ∗ J −1dJ ∗ J −2 = − ∗ dc ∗ .

Lemma 2.29. For a compatible triple (ω, J, g) on a compact manifold, whenever acting on

k-forms, we have

L∗ = (−1)k ∗ L∗ = Λ, H∗ = H, d∗ = − ∗ d∗,

dΛ∗ = ∗dΛ∗, (ddΛ)∗ = (−1)k+1 ∗ ddΛ∗, dc∗ = − ∗ dc∗ = dΛ.

Proof. The equality H∗ = H is obvious.

< LAk−2, A
′
k > =

∫
M

(LAk−2) ∧ (∗A′k) =

∫
M

Ak−2 ∧ (L ∗ A′k)

=

∫
M

(−1)2n−k+2Ak−2 ∧ (∗ ∗ L ∗ A′k) =< Ak−2, (−1)k ∗ L ∗ A′k >,

< dAk−1, A
′
k > =

∫
M

(dAk−1) ∧ (∗A′k) =

∫
M

(−1)kAk−1 ∧ (d ∗ A′k)

=

∫
M

(−1)k(−1)2n−k+1Ak−1 ∧ (∗ ∗ d ∗ A′k) =< Ak−1,− ∗ d ∗ A′k >,
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< dΛAk+1, A
′
k > =

∫
M

(dΛAk+1) ∧ (∗A′k) =

∫
M

(−1)k+1Ak+1 ∧ (dΛ ∗ A′k)

=

∫
M

(−1)k+1(−1)2n−k−1Ak−1 ∧ (∗ ∗ dΛ ∗ A′k) =< Ak−1, ∗dΛ ∗ A′k >,

(ddΛ)∗ = dΛ∗d∗ = − ∗ dΛ ∗ ∗d∗ = −(−1)2n−k+1 ∗ dΛd∗ = (−1)k+1 ∗ ddΛ∗,

< dcAk−1, A
′
k > =

∫
M

(J −1dJAk−1) ∧ (∗A′k) =

∫
M

dJAk−1 ∧ (J ∗ A′k)

=

∫
M

(−1)kJAk−1 ∧ (dJ ∗ A′k) =

∫
M

(−1)kAk−1 ∧ (J −1dJ ∗ A′k)

=

∫
M

(−1)k(−1)2n−k+1Ak−1 ∧ (∗ ∗ dc ∗ A′k) =< Ak−1,− ∗ dc ∗ A′k > .

For the last one, note that a nonzero 2n-form is of type (n, n), so it is invariant under the

action of J and J (A ∧ A′) = J (A) ∧ J (A′).

Corollary 2.30. J d = −dΛ∗J , J dΛ = d∗J , J d∗ = −dΛJ , J dΛ∗ = dJ .

Proof. The last equality is just dΛ∗ = dc = J −1dJ . For the others, we have

−dΛ∗J = −J −1dJ 2 = (−1)k+1J −2J d = J d,

J dΛ = (−1)k+1J ∗s d∗s = − ∗ d ∗s J 2 = − ∗ d ∗ J = d∗J ,

−dΛJ = −J −1d∗J 2 = (−1)k−1J −2J d∗ = J d∗.

Lemma 2.31. For a compatible triple (ω, J, g) on a compact manifold, we have

[d∗, L] = −dΛ∗, [d∗,Λ] = 0, [d∗, H] = −d∗,

[dΛ∗, L] = 0, [dΛ∗,Λ] = −d∗, [dΛ∗, H] = dΛ∗,

[(ddΛ)∗, L] = [(ddΛ)∗,Λ] = [(ddΛ)∗, H] = 0.

Proof. We obtain these by taking adjoint of previous commutation relations and the formula

[a, b]∗ = −[a∗, b∗].

Remark. For a Kähler manifold, the operator dc is given by the formula i(∂̄ − ∂). To see

this, let A be a type (p, q)-form, then we have

dcA = J −1dJA = J −1(∂ + ∂̄)JA = ip−qJ −1∂A+ ip−qJ −1∂̄A

= ip−qiq−(p+1)∂A+ ip−qi(q+1)−p∂̄A = i(∂̄ − ∂)A.
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2.2.2 ∂+ and ∂−

Using Lemmas 2.16 and 2.17, we have the map d : Lr,s → Lr,s+1 ⊕ Lr+1,s−1.

Definition 2.32. Define the differential operators ∂+ : Lr,s → Lr,s+1 and ∂− : Lr,s → Lr,s−1

by the identity d = ∂+ + L∂−.

Lemma 2.33.

[∂+, L] = L([∂−, L]) = 0,

L(∂+∂−) = −L(∂−∂+),

∂2
+ = ∂2

− = 0.

Proof. Since we have [∂+, L] : Lr,s → Lr+1,s+1 and L([∂−, L]) : Lr,s → Lr+2,s−1, the following

computation

0 = [d, L] = [∂+ + L∂−] = [∂+, L] + L([∂−, L]),

implies that both terms should be zero. Similarly, the computation

0 = d2 = ∂2
+ + (∂+L∂− + L∂−∂+) + L∂−L∂− = ∂2

+ + (L∂+∂− + L∂−∂+) + L2∂2
−,

implies L(∂+∂−) = −L(∂−∂+) and ∂2
+ = L2∂2

− = 0. Note that acting on Lr,s with s < 2, we

have ∂2
− = 0 because we leave the pyramid and outside of the pyramid we have L�,� = {0}.

On the other hand, when the operator L2∂2
− = 0 acts on Lr,s with s ≥ 2, we will never

leave the pyramid so the operator L2 is an isomorphism by Lemma 2.5 and again we have

∂2
− = 0.

Remark. We have [∂−, L] = 0 and ∂+∂− = −∂−∂+, if we don’t leave the pyramid i.e. acting

on Lr,s with r + s < n.

Proposition 2.34. We have dΛ : Lr,s → Lr−1,s+1 ⊕ Lr,s−1 and ddΛ : Lr,s → Lr,s satisfying

the following formulas

(−1)k+1 ∗s ∂+∗s =
1

H +R + 1
∂+Λ, (−1)k+1 ∗s L∂−∗s = −(H +R)∂−,

dΛ =
1

H +R + 1
∂+Λ− (H +R)∂−,

ddΛ = −(H + 2R + 1)∂+∂−,
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∂+ =
1

H + 2R + 1
((H +R + 1)d+ LdΛ),

∂− =
−1

(H + 2R + 1)(H +R)
((H +R + 1)dΛ − dΛ).

Proof. Using Lemma 2.17, we have dBs = B0
s+1 + LB1

s−1 and

(−1)k+1 ∗s ∂+ ∗s (
1

r!
LrBs) = (−1)2r+s+1(−1)

s(s+1)
2 ∗s

1

(n− r − s)!
Ln−r−sB0

s+1

=
1

(r − 1)!
Lr−1B0

s+1,

1

H +R + 1
∂+Λ(

1

r!
LrBs) =

1

H +R + 1
∂+
H + r − 1

(r − 1)!
Lr−1Bs =

1

(r − 1)!
Lr−1B0

s+1.

Similarly, we have

(−1)k+1 ∗s L∂− ∗s (
1

r!
LrBs) = (−1)2r+s+1(−1)

s(s+1)
2 ∗s

1

(n− r − s)!
Ln−r−s+1B1

s−1

= −n− r − s+ 1

r!
LrB1

s−1 = −(H +R)∂−(
1

r!
LrBs).

Adding these two, the formula for dΛ is proved. Consequently, we have

ddΛ = (∂+ + L∂−)(
1

H +R + 1
∂+Λ− (H +R)∂−) = −∂+(H +R)∂− + L∂−

1

H +R + 1
∂+Λ

= −(H +R + 1)∂+∂− −
1

H +R + 1
∂+∂−LΛ = −(H + 2R + 1)∂+∂−.

Using the previous formulas for d and dΛ and acting on Lr,s, we have

(H +R + 1)d+ LdΛ = ((n− r − s)∂+ + (n− r − s+ 1)L∂−)

+ (
1

n− r − s+ 1
∂+LΛ− (n− r − s+ 1)L∂−) = (n− s)∂+ = (H + 2R + 1)∂+,

(H +R + 1)dΛ − dΛ = (∂+Λ− (n− r − s+ 1)(n− r − s+ 2)∂−)− (∂+Λ + ∂−LΛ)

= −(n− r − s+ 1)(n− s+ 2)∂− = −(H +R)(H + 2R + 1)∂−.

Finally, note that we always have H + R + 1 > 0 and H + 2R + 1 > 0. Moreover, (H + R)

is positive after applying ∂−, dΛ or dΛ.

Corollary 2.35. The operators ∂+ : Pk → Pk+1 and ∂− : Pk → Pk−1 on primitive forms

satisfy the following formulas

∂+ = d+ LH−1dΛ = (1− LH−1Λ)d,

∂− = −H−1dΛ = H−1Λd,

∂+∂− = −(H + 1)−1ddΛ = (H + 1)−1dΛd.
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Proof. Formulas for ∂± are just formulas in Lemma 2.17. The last formula follows from

ddΛ = −(H + 2R + 1)∂+∂− in the above proposition after inserting R = 0. Note that we

always have H + 1 > 0 on primitive forms. Moreover, H is positive after applying dΛ on

primitive forms.

Lemma 2.36. For a compatible triple (ω, J, g) on a compact manifold, we have

J ∂+J −1 = ∂∗−(H +R), J ∂∗+J −1 = −(H +R)∂−.

Proof. Taking adjoint of formulas for d and dΛ, we have

d∗ = ∂∗+ + ∂∗−Λ,

dΛ∗ = L∂∗+
1

H +R + 1
− ∂∗−(H +R).

Using these and various results from previous subsections, we have

(H + 2R + 1)J ∂+J −1 = (−1)k+1J ((H +R + 1) ∗s dΛ ∗s +L ∗s d∗s)J −1

= −((H +R + 1) ∗ dΛ ∗+L ∗ d∗) = Ld∗ − (H +R + 1)dΛ∗

= L∂∗−Λ + (H +R + 1)∂∗−(H +R) = LΛ∂∗− + (H +R + 1)2∂∗−

= (H + 2R + 1)(H +R + 1)∂∗− = (H + 2R + 1)∂∗−(H +R)

Since we have H + 2R + 1 > 0, the proof is complete. Similarly, we can write

−(H + 2R + 1)J −1(H +R)∂−J = (−1)k+1J −1((H +R + 1) ∗s d ∗s − ∗s dΛ ∗s Λ)J

= −((H +R + 1) ∗ d ∗ − ∗ dΛ ∗ Λ) = (H +R + 1)d∗ + dΛ∗Λ

= (H +R + 1)∂∗+ +
1

H +R + 1
LΛ∂∗+ = (H + 2R + 1)∂∗+.
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3 Symplectic cohomologies and Hodge theories

In this section, we will define different symplectic cohomologies. All these cohomologies are

invariant under symplectomorphisms in the following sense. Let f : (M1, ω1)→ (M2, ω2) be

a symplectomorphism i.e. a diffeomorphism satisfying f ∗ω2 = ω1 or f ∗L2 = L1f
∗. Then,

the pullback map f ∗ : Ω(M2) → Ω(M1) commutes with all defined operators on differential

forms in Section 2. Consequently, it induces well-defined linear isomorphisms on the level of

cohomologies.

3.1 dΛ cohomology

Definition 3.1. Having dΛdΛ = 0, we can define the dΛ cohomology by

Hk
dΛ :=

ker dΛ ∩ Ωk

dΛΩk+1
, (18)

for 0 ≤ k ≤ 2n.

Definition 3.2. For a compatible triple (ω, J, g) on a compact manifold M , we define the

self-adjoint operator ∆dΛ : Ωk → Ωk called Laplacian associated with the dΛ cohomology by

∆dΛ := dΛ∗dΛ + dΛdΛ∗, (19)

and the space of dΛ-harmonic k-forms by Hk
dΛ := ker∆dΛ ∩ Ωk.

We use the similar notations ∆d = d∗d + dd∗ and Hk
d := ker∆d ∩ Ωk for de Rham

cohomology.

Lemma 3.3. ∗s∆d = ∆dΛ∗s, J∆d = ∆dΛJ , ∗∆d = ∆d ∗, ∗∆dΛ = ∆dΛ∗.

Proof. Corollary 2.30 implies the second equality. First and second equalities give the others

using formula ∗ = ∗sJ . For the first equality, write

∆dΛ∗s = ∗dΛ ∗ dΛ ∗s +dΛ ∗ dΛ ∗ ∗s = (−1)(k+1)+1(−1)(2n−k)+1 ∗s ∗d ∗ d

+ (−1)(2n−k+1)+1(−1)k+1 ∗s d ∗ d∗ = − ∗s ∗d ∗ d− ∗sd ∗ d∗ = ∗s∆d.

Lemma 3.4. Let (ω, J, g) denotes a compatible triple on a compact manifold M . A form A

is dΛ-harmonic if and only if dΛA = dΛ∗A = 0.
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Proof. The implication ⇐ is an immediate consequence of the above definition. For the

other implication under the assumption ∆dΛA = 0, we have

0 =< ∆dΛA,A >=< dΛ∗dΛA,A > + < dΛdΛ∗A,A >

=< dΛA, dΛA > + < dΛ∗A, dΛ∗A >= ||dΛA||2 + ||dΛ∗A||2.

Proposition 3.5. For a compatible triple (ω, J, g) on a compact manifold M , we have

a) dimHk
dΛ <∞

b) The orthogonal decomposition Ωk = Hk
dΛ ⊕ dΛΩk+1 ⊕ dΛ∗Ωk−1

c) Hk
dΛ
∼= Hk

dΛ i.e. there is a unique dΛ-harmonic form in each dΛ cohomology class.

Proof. To prove first two parts, it is enough to show that the self-adjoint operator ∆dΛ is

elliptic [19]. To show this, we will prove that the operator ∆dΛ has the same symbol as the

Hodge Laplacian ∆d = d∗d + dd∗. Choose a local unitary coframe {θ1, ..., θn, θ̄1, ..., θ̄n} of

the cotangent bundle such that the metric is g =
∑

i(θ
i⊗ θ̄i + θ̄i⊗ θi). A general (p, q)-form

Ap,q can be written in the form of Ap,q =
∑

#I=p,#I′=q AI,I′θ
I ∧ θ̄I′ and therefore we have

dAp,q =
∑

i,#I=p,#I′=q

∂iAI,I′θ
i∧θI∧θ̄I′+

∑
i′,#I=p,#I′=q

∂̄i′AI,I′ θ̄
i′∧θI∧θ̄I′+

∑
#I=p,#I′=q

AI,I′d(θI∧θ̄I′).

In the calculation of the symbol, only the highest-order derivatives of functions AI,I′ matter

and therefore the only effective terms in the above equation are the first two terms. Con-

sequently, the operator d is equivalent to the operator ∂ + ∂̄ in terms of symbols. We thus

write d ' ∂ + ∂̄. This implies that as long as we are computing the symbol, we can use all

the Kähler identities. So, we can compute

∆dΛ = dΛ∗dΛ + dΛdΛ∗ = dcdc∗ + dc∗dc ' i(∂̄ − ∂)(−i)(∂̄∗ − ∂∗) + (−i)(∂̄∗ − ∂∗)i(∂̄ − ∂)

= ∂̄∂̄∗ + ∂̄∗∂̄ + ∂∂∗ + ∂∗∂ − ∂∂̄∗ − ∂̄∂∗ − ∂∗∂̄ − ∂̄∗∂

' ∂̄∂̄∗ + ∂̄∗∂̄ + ∂∂∗ + ∂∗∂ + ∂̄∗∂ + ∂∗∂̄ + ∂̄∂∗ + ∂∂̄∗

= (∂∗ + ∂̄∗)(∂ + ∂̄) + (∂ + ∂̄)(∂∗ + ∂̄∗) = d∗d+ dd∗ = ∆d.

In the above computation, we have used dΛ = dc∗, dc ' i(∂̄ − ∂), ∂̄∗∂ ' −∂∂̄∗ and their

adjoints.
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Finally, to show part c) we should prove that ker dΛ∩Ωk = Hk
dΛ⊕dΛΩk+1 or equivalently

ker dΛ∩dΛ∗Ωk−1 = {0} by the decomposition in part b). Assume that the form A = dΛ∗Ak−1

is dΛ-closed, then we have

0 =< dΛA,Ak−1 >=< A, dΛ∗Ak−1 >= ||A||2.

Corollary 3.6. For a compact symplectic manifold, dimHk
dΛ <∞.

3.2 d+ dΛ cohomology

Definition 3.7. Define the d+ dΛ cohomology by

Hk
d+dΛ :=

ker (d+ dΛ) ∩ Ωk

im ddΛ ∩ Ωk
=
ker d ∩ ker dΛ ∩ Ωk

ddΛΩk
, (20)

for 0 ≤ k ≤ 2n.

Definition 3.8. For a compatible triple (ω, J, g) on a compact manifold M , we define the

self-adjoint operator ∆d+dΛ : Ωk → Ωk called Laplacian associated with the d+dΛ cohomology

by the formula

∆d+dΛ := ddΛ(ddΛ)∗ + λ(d∗d+ dΛ∗dΛ), (21)

where λ is a positive real number. Also, define the space of (d + dΛ)-harmonic k-forms by

Hk
d+dΛ := ker∆d+dΛ ∩ Ωk.

Lemma 3.9. [∆d+dΛ , L] = [∆d+dΛ ,Λ] = [∆d+dΛ , H] = 0.

Proof. It is trivial the the Laplacian ∆d+dΛ commutes with H since it preserves the degree.

For the other equality, write

[∆d+dΛ , L] = 0 + λ[d∗d, L] + λ[dΛ∗dΛ, L] = λ[d∗, L]d+ λdΛ∗[dΛ, L] = −λdΛ∗d+ λdΛ∗d = 0,

[∆d+dΛ ,Λ] = 0 + λ[d∗d,Λ] + λ[dΛ∗dΛ,Λ] = λd∗[d,Λ] + λ[dΛ∗,Λ]dΛ = λd∗dΛ − λd∗dΛ = 0.

Lemma 3.10. For a compatible triple (ω, J, g) on a compact manifold M , define the following

operator

Dd+dΛ = ∆d+dΛ + (ddΛ)∗ddΛ + d∗dΛdΛ∗d+ dΛ∗dd∗dΛ.

For a differential form A, we have

∆d+dΛA = 0⇐⇒ dA = dΛA = (ddΛ)∗A = 0⇐⇒ Dd+dΛA = 0.
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Proof. Assuming dA = dΛA = (ddΛ)∗A = 0, we have ∆d+dΛA = 0 = Dd+dΛA directly from

the definitions of operators. Now, suppose that ∆d+dΛA = 0, we have

0 =< ∆d+dΛA,A >= ||(ddΛ)∗A||2 + λ||dA||2 + λ||dΛA||2,

and therefore dA = dΛA = (ddΛ)∗A = 0. Similarly, assuming Dd+dΛA = 0 implies that

0 =< Dd+dΛA,A >= ||(ddΛ)∗A||2 +λ||dA||2 +λ||dΛA||2 + ||ddΛA||2 + ||dΛ∗dA||2 + ||d∗dΛA||2,

and again this implies dA = dΛA = (ddΛ)∗A = 0.

Proposition 3.11. For a compatible triple (ω, J, g) on a compact manifold M , we have

a) dimHk
d+dΛ <∞

b) The orthogonal decomposition Ωk = Hk
d+dΛ ⊕ ddΛΩk ⊕ (d∗Ωk+1 + dΛ∗Ωk−1)

c) Hk
d+dΛ

∼= Hk
d+dΛ i.e. there is a unique (d+dΛ)-harmonic form in each d+dΛ cohomology

class.

Proof. The operator ∆d+dΛ is not elliptic but the self-adjoint operator Dd+dΛ in the previous

lemma is elliptic as it is proved below. Since we have ker∆d+dΛ = ker Dd+dΛ by the previous

lemma, this proves first two parts. To compute the symbol of Dd+dΛ , we can use all the

Kähler identities by the same reasoning as in the proof of Proposition 3.5. Also, note that

only fourth-order terms in Dd+dΛ matter when we are computing the symbol. So, we have

Dd+dΛ ' ddΛdΛ∗d∗ + dΛ∗d∗ddΛ + d∗dΛdΛ∗d+ dΛ∗dd∗dΛ

' −ddΛd∗dΛ∗ − d∗dΛ∗ddΛ − d∗dΛddΛ∗ − ddΛ∗d∗dΛ

' dd∗dΛdΛ∗ + d∗ddΛ∗dΛ + d∗ddΛdΛ∗ + dd∗dΛ∗dΛ = ∆d∆dΛ ' ∆2
d.

In the above computation, we have used dΛ = dc∗, ddΛ = −dΛd, ddc ' −dcd and their

adjoints. We also used ∆dΛ ' ∆d proved in Proposition 3.5.

Finally, to show c) we should prove that ker d ∩ ker dΛ ∩ Ωk = Hk
d+dΛ ⊕ ddΛΩk or

ker d ∩ ker dΛ ∩ (d∗Ωk+1 + dΛ∗Ωk−1) = {0},

by the decomposition in b). Assume that the form A = d∗Ak+1 + dΛ∗Ak−1 is both d- and

dΛ-closed, then we have

0 =< dA,Ak+1 > + < dΛA,Ak−1 >=< A, d∗Ak+1 > + < A, dΛ∗Ak−1 >= ||A||2.
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Corollary 3.12. For a compact symplectic manifold, dimHk
d+dΛ <∞.

Proposition 3.13. We have dimH2k
d+dΛ > 0 for 0 ≤ k ≤ n. In fact, we have [ωk] 6= 0.

Proof. Having dω = 0 imply that dωk = 0 and

dΛωk = dΛLk1− 0 = dLkΛ1 + d((H + k − 1)kLk−11) = 0 + (n− k + 1)kdωk−1 = 0.

Note that ωk = Lk1 and the constant function 1 is not ddΛ-exact, hence ωk is not ddΛ-exact

for 0 ≤ k ≤ n by Proposition 2.22.

Proposition 3.14. Let ft : M → M be a Hamiltonian isotopy of M i.e. a smooth family

of diffeomorphisms ft generated by a family of Hamiltonian vector fields Vt and f0 = Id.

Then, the d + dΛ cohomology class is invariant under this isotopy i.e. the isomorphism

f ∗t : Hk
d+dΛ

∼=−→ Hk
d+dΛ is actually the identity map for all t.

Proof. Let the form A be both d- and dΛ-closed i.e. [A] ∈ Hk
d+dΛ . By Corollary 2.25 part a),

we have
d

dt
f ∗t A = f ∗t LVtA = f ∗t dd

ΛA′t = ddΛ(f ∗t A
′
t),

which proves that the cohomology class [f ∗t A] is independent of time t. But we know that

f0 and f ∗0 are the identity maps.

Remark 3.15. Let B be a ∂+-exact primitive form, i.e. there exists a differential form

A satisfying B = ∂+A. Then the primitive component B′ of A also satisfies B = ∂+B
′.

Therefore for primitive forms, being ∂+-exact in terms of differential forms and primitive

forms are equivalent. The case is the same for ∂−-exactness and ∂+∂−-exactness.

Definition 3.16. Having Lemma 2.22 and Definition 3.7 in mind, define the primitive d+dΛ

cohomology by

PHk
d+dΛ :=

ker d ∩ Pk

im ddΛ ∩ Pk
=
ker d ∩ Pk

ddΛPk
=
ker ∂+ ∩ ker ∂− ∩ Pk

∂+∂−Pk
=
ker (∂+ + ∂−) ∩ Pk

∂+∂−Pk
,

(22)

for 0 ≤ k ≤ n. Because of the last term, we also use the notation PHk
∂++∂−

for these

cohomologies.
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Note that we have im ddΛ∩Pk = ddΛPk = ∂+∂−Pk because of Remark 3.15 and the fact

that ddΛ and ∂+∂− are equal upto a nonzero constant.

The Lefschetz decomposition of differential forms and Proposition 2.22 give the Lefschetz

decomposition at the level of d+ dΛ cohomology:

Hk
d+dΛ =

⊕
r

LrPHk−2r
d+dΛ . (23)

Having primitive cohomology PHk
d+dΛ , we can compute cohomology Hk

d+dΛ by this formula.

Definition 3.17. For a compatible triple (ω, J, g) on a compact manifold M , we define the

primitive Laplacian ∆p
d+dΛ : Pk → Pk by

∆p
d+dΛ := ddΛ(ddΛ)∗ + λd∗d, (24)

where λ is a positive real number. Also, define the space of primitive (d + dΛ)-harmonic

k-forms by PHk
d+dΛ := ker∆p

d+dΛ ∩ Pk = ker d ∩ ker (ddΛ)∗ ∩ Pk.

Note that we have ker∆p
d+dΛ = ker∆d+dΛ = ker Dd+dΛ on primitive forms since d-closed

primitive forms are also dΛ-closed. By ellipticity of the self-adjoint opreator Dd+dΛ defined

in Lemma 3.10, we have a primitive version of Proposition 3.11.

3.3 ddΛ cohomology

Definition 3.18. Define the ddΛ cohomology by

Hk
ddΛ :=

ker ddΛ ∩ Ωk

(im d+ im dΛ) ∩ Ωk
=

ker ddΛ ∩ Ωk

dΩk−1 + dΛΩk+1
, (25)

for 0 ≤ k ≤ 2n.

Definition 3.19. For a compatible triple (ω, J, g) on a compact manifold M , we define the

self-adjoint operator ∆ddΛ : Ωk → Ωk called Laplacian associated with the ddΛ cohomology by

∆ddΛ := (ddΛ)∗ddΛ + λ(dd∗ + dΛdΛ∗), (26)

where λ is a positive real number. Also, define the space of ddΛ-harmonic k-forms by the

formula Hk
ddΛ := ker∆ddΛ ∩ Ωk.
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Lemma 3.20. For a compatible triple (ω, J, g) on a compact manifold M , we have

∗∆d+dΛ = ∆ddΛ∗, J∆d+dΛ = ∆ddΛJ , ∗s∆d+dΛ = ∆d+dΛ∗s, ∗s∆ddΛ = ∆ddΛ∗s,

[∆ddΛ , L] = [∆ddΛ ,Λ] = [∆ddΛ , H] = 0.

Proof. The proof of the second line is exactly similar to the proof of Lemma 3.9. Corollary

2.30 implies the second equality in the first line. First and second equalities give the next

two equalities using formula ∗ = ∗sJ . For the first equality, write

∗∆d+dΛ = (−1)k+1 ∗ ddΛ ∗ ddΛ ∗+λ(−(−1)2n−kd ∗ d+ (−1)2n−kdΛ ∗ dΛ)

= (−1)k+1 ∗ ddΛ ∗ ddΛ ∗+λ(−(−1)kd ∗ d+ (−1)kdΛ ∗ dΛ) = ∆ddΛ ∗ .

Lemma 3.21. For a compatible triple (ω, J, g) on a compact manifold M , consider the

following operator

DddΛ = ∆ddΛ + ddΛ(ddΛ)∗ + ddΛ∗dΛd∗ + dΛd∗ddΛ∗.

For a differential form A, we have ∆ddΛA = 0 if and only if d∗A = dΛ∗A = ddΛA = 0 if and

only if DddΛA = 0.

Proof. Exactly similar to the proof of Lemma 3.10.

Proposition 3.22. For a compatible triple (ω, J, g) on a compact manifold M , we have

a) dimHk
ddΛ <∞

b) The orthogonal decomposition Ωk = Hk
ddΛ ⊕ (dΩk−1 + dΛΩk+1)⊕ (ddΛ)∗Ωk

c) Hk
ddΛ
∼= Hk

ddΛ i.e. there is a unique ddΛ-harmonic form in each ddΛ cohomology class.

Proof. Similar to the proof of Proposition 3.11, we can prove that the self-adjoint operator

DddΛ is elliptic.

Corollary 3.23. For a compact symplectic manifold, dimHk
ddΛ <∞.

Proposition 3.24. For a compact symplectic manifold, the dimensions of H2k
d , H2k

dΛ, H2k
d+dΛ

and H2k
ddΛ are all positive for 0 ≤ k ≤ n. In fact, the class [ωk] is nontrivial for all of these

cohomologies.
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Proof. By Proposition 3.13, ωk is d-, dΛ- and ddΛ-closed. Assume that 0 ≤ k ≤ n and

ωk = dA+ dΛA′. Then, we have

0 6= n!

∫
M

dvol =

∫
M

ωn =

∫
M

(dA) ∧ ωn−k +

∫
M

(dΛA′) ∧ ωn−k

= (−1)(2k−1)+1

∫
M

A ∧ dωn−k + (−1)2k+1

∫
M

A′ ∧ dΛωn−k = 0

This contradiction shows that ωk is not (d + dΛ)- exact and therefore it also can’t be d- or

dΛ- or ddΛ-exact.

Proposition 3.25. Let ft : M → M be a Hamiltonian isotopy of M . Then, the ddΛ

cohomology class is invariant under this isotopy i.e. the isomorphism f ∗t : Hk
ddΛ

∼=−→ Hk
ddΛ is

actually the identity map for all t.

Proof. Exactly similar to the proof of Proposition 3.14.

Definition 3.26. Having Lemma 2.22 and Definition 3.18 in mind, define the primitive ddΛ

cohomology by

PHk
ddΛ :=

ker ddΛ ∩ Pk

(im d+ im dΛ) ∩ Pk
=

ker ∂+∂− ∩ Pk

∂+Pk−1 + ∂−Pk+1
, (27)

for 0 ≤ k ≤ n. Because of the last term, we also use the notation PHk
∂+∂−

for these

cohomologies.

Let us prove the equality (im d + im dΛ) ∩ Pk = ∂+Pk−1 + ∂−Pk+1 in this definition.

Assume that the form B′′′ = dA + dΛA′ is primitive and that the primitive component of

the differential form A is B. Also, suppose that B′ + LB′′ gives the first two terms in the

Lefschetz decomposition of A′. Then by Proposition 2.34 and Lemma 2.4, the primitive

components of dA and dΛA′ are ∂+B and

1

H +R + 1
∂+ΛLB′′ − (H +R)∂−B

′ = ∂+B
′′ − ∂−(H + 1)B′,

respectively. Consequently, we have B′′′ = ∂+(B + B′′) + ∂−(−(H + 1)B′). Conversely,

assume that we have B = ∂+B
′ + ∂−B

′′. Then by Corollary 2.35, we have

B = (d+ LH−1dΛ)B′ −H−1dΛB′′ = d(
H

H + 1
B′) + dΛ(L(H + 1)−1B′ − (H + 1)−1B′′).
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The Lefschetz decomposition of differential forms and Proposition 2.22 give the Lefschetz

decomposition at the level of ddΛ cohomology:

Hk
ddΛ =

⊕
r

LrPHk−2r
ddΛ . (28)

Having primitive cohomologys PHk
ddΛ , we can compute cohomology Hk

ddΛ by this formula.

Definition 3.27. For a compatible triple (ω, J, g) on a compact manifold M , we define the

primitive Laplacian ∆p
ddΛ : Pk → Pk by

∆p
ddΛ := (ddΛ)∗ddΛ + λdΛdΛ∗, (29)

where λ is a positive real number. Also, define the space of primitive ddΛ-harmonic k-forms

by PHk
ddΛ := ker∆p

ddΛ ∩ Pk = ker dΛ∗ ∩ ker ddΛ ∩ Pk.

Note that we have ker∆p
ddΛ = ker∆ddΛ = ker DddΛ on primitive forms because dΛ∗-closed

primitive forms are also d∗-closed by the formula [dΛ∗,Λ] = −d∗. By ellipticity of the self-

adjoint opreator DddΛ defined in Lemma 3.21, we have a primitive version of Proposition

3.22.

3.4 ∂± cohomologies

Definition 3.28. Having ∂2
+ = ∂2

− = 0, we can define the ∂± and primitive ∂± cohomologies

by

Hr,s
∂+

:=
ker ∂+ ∩ Lr,s

∂+Lr,s−1
, PHk

∂+
:=

ker ∂+ ∩ Pk

∂+Pk−1
= H0,k

∂+
, (30)

Hr,s
∂−

:=
ker ∂− ∩ Lr,s

∂−Lr,s+1
, PHk

∂− :=
ker ∂− ∩ Pk

∂−Pk+1
= H0,k

∂−
, (31)

for 0 ≤ r + s < n and 0 ≤ k < n.

Note that we have Hr,s
∂±
∼= H0,s

∂±
= PHs

∂±
for 0 ≤ r + s < n by commutativity of ∂± with

L and isomorphism Lr : Ps
∼=−→ Lr,s. Therefore, we only study the primitive cohomologies

PHk
∂±

.
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Proposition 3.29. The following differential complex

0 P0 . . . Pn−1 Pn

0 P0 . . . Pn−1 Pn

∂+ ∂+ ∂+ ∂+

∂+∂−

∂− ∂− ∂− ∂−

(32)

is elliptic.

Proof. First note that this is a differential complex since ∂2
± = (∂+∂−)∂+ = ∂−(∂+∂−) = 0.

To prove that it is elliptic we should show that the associated symbol complex is exact

everywhere. Let p ∈ M , ξ ∈ T ∗pM − {0} and Bk ∈ Pkp , where by Pkp we mean the primitive

subspace of the k-th exterior power
∧k T ∗pM , in other words Bk is a primitive k-form at

point p. Let the operator T : Pk → Pk+d be one of operators ∂+, ∂− or ∂+∂−. Recall that

the symbol of T is the linear map σT (ξ) : Pkp → Pk+d
p defined by

σT (ξ)(Bk) := T (f 2B)(p),

where we have B ∈ Pk and f ∈ C∞(M) such that Bp = Bk, f(p) = 0 and df(p) = ξ.

We know that the symbol σd(ξ) of the exterior derivative operator d is simply left exterior

multiplication by ξ [18]. Using Corollary 2.35, we can easily compute the following symbols

σ∂+(ξ)(Bk) = (1− LH−1Λ)(ξ ∧Bk),

σ∂−(ξ)(Bk) = H−1Λ(ξ ∧Bk),

σ∂+∂−(ξ)(Bk) = (H + 1)−1(ξ ∧ Λ(ξ ∧Bk)).

Take a basis {e1, ..., e2n} of T ∗pM such that ωp = e1 ∧ e2 + ...+ e2n−1 ∧ e2n and ξ = e1. Using

the notation ω1 := e1 ∧ e2 and ω2 := e3 ∧ e4 + ... + e2n−1 ∧ e2n, we showed in the proof of

Proposition 2.12 that we have

Bk = e1 ∧Bk−1 + e2 ∧B′k−1 + (ω1 −
1

n− k + 1
ω2) ∧Bk−2 +B′k,

for some primitive forms Bk−1, B
′
k−1 ∈ Pk−1

p , Bk−2 ∈ Pk−2
p and B′k ∈ Pkp at point p involving

only e3, ..., e2n. In other words, we have

Pkp = span{e1 ∧Bk−1, e2 ∧B′k−1, (ω1 − (H + 1)−1ω2) ∧Bk−2, B
′
k},
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where Bk−1, B
′
k−1, Bk−2 and B′k range over all such forms. Using ξ = e1, we have

σ∂+(ξ)(e1 ∧Bk−1) = σ∂−(ξ)(e1 ∧Bk−1) = σ∂+∂−(ξ)(e1 ∧Bk−1) = 0,

σ∂+(ξ)(e2 ∧B′k−1) = (ω1 − (H + 2)−1ω) ∧B′k−1 =
H + 1

H + 2
((ω1 − (H + 1)−1ω2) ∧B′k−1),

σ∂−(ξ)(e2 ∧B′k−1) = H−1B′k−1, σ∂+∂−(ξ)(e2 ∧B′k−1) = (H + 1)−1(e1 ∧B′k−1),

ξ ∧ (ω1 − (H + 1)−1ω2) ∧Bk−2 = −(H + 2)−1(ω2 ∧ e1 ∧Bk−2) = −LH−1(e1 ∧Bk−2),

σ∂+(ξ)((ω1 − (H + 1)−1ω2) ∧Bk−2) = σ∂+∂−(ξ)((ω1 − (H + 1)−1ω2) ∧Bk−2) = 0,

σ∂−(ξ)((ω1 − (H + 1)−1ω2) ∧Bk−2) = −H−1(e1 ∧Bk−2),

σ∂−(ξ)(B′k) = σ∂+∂−(ξ)(B′k) = 0, σ∂+(ξ)(B′k) = e1 ∧B′k.

Consequently, we have computed the kernels and images of symbols of different operators

appearing in the differential complex:

ker σ∂+(ξ) = span{e1 ∧Bk−1, (ω1 − (H + 1)−1ω2) ∧Bk−2},

ker σ∂−(ξ) = span{e1 ∧Bk−1, B
′
k},

ker σ∂+∂−(ξ) = span{e1 ∧Bk−1, (ω1 − (H + 1)−1ω2) ∧Bk−2, B
′
k},

imσ∂+(ξ) = span{(ω1 − (H + 1)−1ω2) ∧B′k−1, e1 ∧B′k},

imσ∂−(ξ) = span{B′k−1, e1 ∧Bk−2}, imσ∂+∂−(ξ) = span{e1 ∧B′k−1},

which show the exactness of the symbol complex (note that we have B′n = 0 because if

there exists a nonzero primitive k-form at p not involving e1 and e2, then we should have

0 ≤ k ≤ n− 2).

Remark. Note that two cohomologies at position Pn in the above differential complex are

previously defined primitive cohomologies PHn
ddΛ and PHn

d+dΛ.

Definition 3.30. For a compatible triple (ω, J, g) on a compact manifold M , we define the

self-adjoint operator ∆∂± : Pk → Pk called Laplacian associated with the cohomologies PH∂±

by the formula

∆∂± := ∂±(∂±)∗ + (∂±)∗∂±. (33)
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Also, define the space of primitive ∂±-harmonic k-forms by the formula

PHk
∂± := ker∆∂± ∩ Pk = ker ∂± ∩ ker ∂∗± ∩ Pk, (34)

for 0 ≤ k < n.

Let p be a given point in M and ξ ∈ T ∗pM be nonzero. Using Proposition 3.29 and the

following lemma, the symbol σ∆∂±
(ξ) : Pkp → Pkp is an isomorphism for 0 ≤ k < n, so the

self-adjoint operators ∆∂± are elliptic and we have Proposition 3.32.

Lemma 3.31. Let U , V and W be finite dimensional inner product spaces. Assume that

we have the exact sequence U
S−→ V

T−→ W of linear maps. Let T ∗ : W → V be the adjoint of

T i.e < Tv,w >=< v, T ∗w > for all v ∈ V and w ∈ W and similarly S∗ : V → U be the

adjoint of S. Then, the linear map (T ∗T + SS∗) : V → V is an isomorphism [18].

Proof. Since the space V is finite dimensional, it is sufficient to prove that the above map

is injective. Let v ∈ V be nonzero. If we have Tv = 0, then exactness of the above sequence

implies that there exists u ∈ U such that v = Su. So, we have

< u, S∗v >=< Su, v >=< v, v >6= 0,

which shows that S∗v 6= 0. Consequently, at least one of Tv and S∗v are nonzero and

therefore

< (T ∗T + SS∗)v, v >=< Tv, Tv > + < S∗v, S∗v >6= 0,

which completes the proof.

Proposition 3.32. For a compatible triple (ω, J, g) on a compact manifold M , we have

a) dimPHk
∂±
<∞

b) The orthogonal decomposition Pk = PHk
∂±
⊕ ∂±Pk∓1 ⊕ ∂∗±Pk±1

c) PHk
∂±
∼= PHk

∂±
i.e. there is a unique primitive ∂±-harmonic form in each primitive

∂± cohomology class.

Corollary 3.33. For a compact symplectic manifold, dimPHk
∂±
<∞ for 0 ≤ k < n.
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4 Further properties of symplectic cohomologies

4.1 Dualities

Proposition 4.1. For any symplectic manifold M , we have the following isomorphisms:

∗s : Hk
d → H2n−k

dΛ , ∗s : Hk
d+dΛ → H2n−k

d+dΛ , ∗s : Hk
ddΛ → H2n−k

ddΛ 0 ≤ k ≤ 2n,

Ln−k : Hk
d+dΛ → H2n−k

d+dΛ , Ln−k : Hk
ddΛ → H2n−k

ddΛ 0 ≤ k ≤ n.

Proof. Since these maps at the level of differential forms are isomorphisms, Corollaries 2.20

and 2.23 prove this proposition.

Proposition 4.2. For a compatible triple (ω, J, g) on a compact manifold M , we have the

following isomorphisms:

∗s : Hk
d → H2n−k

dΛ , ∗s : Hk
d+dΛ → H2n−k

d+dΛ , ∗s : Hk
ddΛ → H2n−k

ddΛ 0 ≤ k ≤ 2n,

Ln−k : Hk
d+dΛ → H2n−k

d+dΛ , Ln−k : Hk
ddΛ → H2n−k

ddΛ 0 ≤ k ≤ n,

∗ : Hk
d → H2n−k

d , ∗ : Hk
dΛ → H2n−k

dΛ , ∗ : Hk
d+dΛ → H2n−k

ddΛ 0 ≤ k ≤ 2n,

J : Hk
d → Hk

dΛ , J : Hk
d+dΛ → Hk

ddΛ 0 ≤ k ≤ 2n,

J : PHk
d+dΛ → PHk

ddΛ 0 ≤ k ≤ n,

J : PHk
∂+
→ PHk

∂− 0 ≤ k < n.

Proof. Since these maps at the level of differential forms are isomorphisms, Lemmas 3.3, 3.20,

3.9 and the equality J∆p
d+dΛ = ∆p

ddΛJ prove first five lines of isomorphisms. For the last

line, note that the commutation relation JΛ = ΛJ implies the isomorphism J : Ωk → Ωk

reduces to the isomorphism J : Pk → Pk. It remains to check that for a primitive k-form

B, we have B ∈ PHk
∂±

if and only if JB ∈ PHk
∂∓

. But using Lemma 2.36, we can write

∂+(JB) = (−1)k(n− k)J −1∂∗−B, ∂∗+(JB) = −(−1)k(n− k + 1)J −1∂−B,

∂−(JB) =
−1

n− k + 1
J ∂∗+B, ∂∗−(JB) =

1

n− k
J ∂+B.

Proposition 4.3. For a compact symplectic manifold M , we have the following non-degenerate
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natural pairings

Hk
d ⊗H2n−k

d → R, Hk
dΛ ⊗H2n−k

dΛ → R, Hk
d+dΛ ⊗H2n−k

ddΛ → R,

[A]⊗ [A′] 7→
∫
M

A ∧ A′,

for 0 ≤ k ≤ 2n. Consequently, we have Hk
d+dΛ

∼= H2n−k
ddΛ .

Proof. Proof of first two pairings are easier and similar to the last one which is proved below.

To prove well-definedness, assume that we have

C = A+ ddΛD, C ′ = A′ + dD′ + dΛD′′, dA = dΛA = ddΛA′ = 0.

Then using the Stokes’ theorem and Lemma 2.26, we have∫
M

C ∧ C ′ =
∫
M

A ∧ A′ +
∫
M

A ∧ dD′ +
∫
M

A ∧ dΛD′′ +

∫
M

(ddΛD) ∧ A′

+

∫
M

(ddΛD) ∧ dD′ +
∫
M

(ddΛD) ∧ dΛD′′ =

∫
M

A ∧ A′ + (−1)k+1

∫
M

(dA) ∧D′

+ (−1)k
∫
M

(dΛA) ∧D′′ −
∫
M

D ∧ ddΛA′ +

∫
M

D ∧ dΛddD′ −
∫
M

D ∧ ddΛdΛD′′

=

∫
M

A ∧ A′.

To prove non-degeneracy, choose any compatible triple (ω, J, g) and assume that we have

A ∈ Hk
d+dΛ and A 6= 0. Then, it is the case that ∗A ∈ H2n−k

ddΛ , [∗A] ∈ H2n−k
ddΛ and

[A]⊗ [∗A] 7→
∫
M

A ∧ ∗A =< A,A > 6= 0.

Proposition 4.4. For a compact symplectic manifold M , we have the following non-degenerate

natural pairings

Hk
d ⊗Hk

dΛ → R, Hk
d+dΛ ⊗Hk

ddΛ → R, PHk
d+dΛ ⊗ PHk

ddΛ → R, PHk
∂+
⊗ PHk

∂− → R,

[A]⊗ [A′] 7→
∫
M

A ∧ ∗sA′,

for 0 ≤ k ≤ 2n, 0 ≤ k ≤ n and 0 ≤ k < n, respectively. Consequently, we have isomorphisms

Hk
d+dΛ

∼= Hk
ddΛ, PHk

d+dΛ
∼= PHk

ddΛ and PHk
∂+

∼= PHk
∂−

.
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Proof. Well-definedness of first three pairings is implied by Corollary 2.20, Stokes’ theorem

and Lemma 2.26 similar to the previous proposition. To prove well-definedness of the last

isomorphism, note that for primitive forms B and B′ we have∫
M

B ∧ ∗sB′ =
(−1)

k(k+1)
2

(n− k)!

∫
M

Ln−k(B ∧B′),

by Proposition (2.12). For 0 ≤ k < n and primitive forms Bk and Bk+1, we have

dLn−k−1(Bk ∧Bk+1) = Ln−k−1((dBk) ∧Bk+1) + (−1)kLn−k−1(Bk ∧ dBk+1)

= Ln−k−1((∂+Bk) ∧Bk+1) + (∂−Bk) ∧ (Ln−kBk+1)

+ (−1)kBk ∧ Ln−k−1(∂+Bk+1) + (−1)kLn−k(Bk ∧ ∂−Bk+1)

= Ln−k−1((∂+Bk) ∧Bk+1) + (−1)kLn−k(Bk ∧ ∂−Bk+1).

Then, the Stokes’ theorem implies that∫
M

Ln−k−1((∂+Bk) ∧Bk+1) = (−1)k+1

∫
M

Ln−k(Bk ∧ ∂−Bk+1).

We can use this formula to prove well-definedness: Assume that we have

C = B + ∂+D, C ′ = B′ + ∂−D
′, ∂+B = ∂−B

′ = 0,

where all differential forms are primitive. We can write∫
M

Ln−k(C ∧ C ′) =

∫
M

Ln−k(B ∧B′) +

∫
M

Ln−k(B ∧ ∂−D′) +

∫
M

Ln−k((∂+D) ∧B′)

+

∫
M

Ln−k((∂+D) ∧ ∂−D′) =

∫
M

Ln−k(B ∧B′) + (−1)k+1

∫
M

Ln−k−1((∂+B) ∧D′)

+ (−1)k
∫
M

Ln−k+1(D ∧ ∂−B′) + (−1)k
∫
M

Ln−k+1(D ∧ ∂2
−D

′) =

∫
M

Ln−k(B ∧B′).

Proof of non-degeneracy is completely similar for all parings and we do it only for the last

pairing. Choose any compatible triple (ω, J, g) and assume that we have B ∈ PHk
∂+

and

B 6= 0. Then, it is the case that JB ∈ PHk
∂−

, [JB] ∈ PHk
∂−

and

[B]⊗ [JB] 7→
∫
M

B ∧ ∗sJB =

∫
M

B ∧ ∗B =< B,B > 6= 0.
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4.2 Poincaré lemmas

All over this subsection, we assume that M is a star-shaped open subset of R2n with the

standard symplectic form ω =
∑n

i=0 dx
i∧dxi+n. Hence, M is connected and d-closed 0-forms

are constant functions. For the 1-form α =
∑n

i=0 x
idxi+n, we have dα = ω. Then, the form

α is primitive and ∂+α = 0 and ∂−α = 1. Our goal is to compute different symplectic

cohomologies for this special case. Note that M is not compact and some of dualities don’t

hold for M .

Proposition 4.5. We have Hk
dΛ = {0} for 0 ≤ k < 2n and dimH2n

dΛ = 1 with the generator

[ωn].

Proof. This is just applying Proposition 4.1 to the standard Poincaré lemma.

Lemma 4.6. If B is a d-closed primitive k-form for 0 < k ≤ n, then there exists a primitive

k − 1-form B′ satisfying B = dB′. Moreover, we should have ∂−B
′ = dΛB′ = 0 and

B = ∂+B
′.

Proof. First note that any primitive form B′ such that dB′ is also primitive should be both

∂−-closed and dΛ-closed. By the Poincaré lemma for the de Rham cohomology, we know

that there exists a k − 1-form A with the property B = dA. For k = 1, since any 0-form

is primitive, there is nothing to prove. For 2 ≤ k ≤ n to see that A can be chosen to be

primitive, we should do the proof of the Poincaré lemma given in [14], again.

Consider the vector field V =
∑n

i=1 x
i∂xi on M . We have

LV (fdxI) = (V f)dxI + f(d(iV dx
I)) = (V f + kf)dxI ,

where #I = k. Without loss of generality, assume that M is star-shaped around the origin.

Define the linear map T : Ωk → Ωk for 0 < k ≤ n by

T (fdxI) := (

∫ 1

0

tk−1f(tx)dt)dxI ,

where #I = k. We have TLV = Id and Td = dT by the following computations:

TLV (fdxI) = (

∫ 1

0

tk−1(V f + kf)(tx)dt)dxI = (

∫ 1

0

(
d

dt
tkf(tx))dt)dxI = fdxI ,

Td(fdxI) =
n∑
i=1

(

∫ 1

0

tk∂xif(tx)dt)dxi ∧ dxI = (d(

∫ 1

0

tk−1f(tx)dt)) ∧ dxI = dT (fdxI).
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For 2 ≤ k ≤ n, take B′ := T (iVB). Then, we have

dB′ = dT (iVB) = Td(iVB) = TLV (B) = B.

Since we have Λ iV = iV Λ, the form iVB is primitive. It remains to prove that T maps

primitive forms to primitive forms. Note that a differential form is primitive if and only if it

can be written in the form of
∑

I,I′ fI,I′(dx
I + dxI

′
) such that for any I and I ′ with fI,I′ 6= 0,

the form dxI + dxI
′

is primitive. This is an easy consequence of the definition of primitivity

and we will illustrate this by an example. Let M = R6 and the form

f0dx
1 ∧ dx2 + f1dx

1 ∧ dx4 + f2dx
2 ∧ dx5 + f3dx

3 ∧ dx6,

be primitive. Then, we must have f1 + f2 + f3 = 0 and therefore this form can be written as

f0

2
(dx1 ∧ dx2 + dx1 ∧ dx2) + f1(dx1 ∧ dx4 + dx6 ∧ dx3) + f2(dx2 ∧ dx5 ∧+dx6 ∧ dx3),

where all three parentheses are primitive. Now, since we have

T (
∑
I,I′

fI,I′(dx
I + dxI

′
)) =

∑
I,I′

(

∫ 1

0

tk−1fI,I′(tx)dt)(dxI + dxI
′
),

T maps primitive forms to primitive forms.

Proposition 4.7. We have PHk
d+dΛ = {0} for 0 < k ≤ n and dimPH0

d+dΛ = 1 with the

generator [1].

Proof. (k = 0): Any constant function is primitive, d-closed and not ddΛ-exact. On the

other hand, any d-closed 1-form is a constant function.

(0 < k ≤ n): Let B be a d-closed primitive k-form for 0 < k ≤ n. By Lemma 4.6, there

is a primitive (k − 1)-form B′ satisfying B = dB′. Since B′ is dΛ-closed by Proposition 4.5,

there is a k-form A with the property B′ = dΛA and hence B = ddΛA.

Corollary 4.8. We have H2k+1
d+dΛ = {0} for 0 ≤ k < n and dimH2k

d+dΛ = 1 for 0 ≤ k ≤ n

with the generator [ωk].

Proof. This is just applying Proposition 4.7 to the formula (23). Note that this result is

consistent with Proposition 3.13.
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Proposition 4.9. We have PHk
ddΛ = {0} for k = 0 or 2 ≤ k ≤ n and dimPH1

ddΛ = 1 with

the generator [α].

Proof. (k = 0): By Proposition 4.5, any 0-form is dΛ- and hence (d+ dΛ)-exact.

(k = 1): Define a linear map T : PH1
ddΛ → R by T ([B]) = dΛB. We will show that T is

well-defined, injective and nonzero, so that it is an isomorphism. First note that ddΛB = 0

implies that dΛB is a constant function. To prove well-definedness, write

dΛ(B + dA0 + dΛA2) = dΛB − ddΛA0 + 0 = dΛB.

The equality T ([B]) = dΛB = 0 and Proposition 4.5 (1 < 2n) implies that B is dΛ-exact or

[B] = 0 and T is injective. Finally, note that ddΛα = −dΛω = 0 and

T ([α]) = dΛα = dΛα− Λdα = −Λω = −n 6= 0.

(2 ≤ k ≤ n): Let B be a ddΛ-closed primitive k-form. Since dΛB is primitive and d-closed,

Proposition 4.7 (0 < k − 1) implies that there is a (k − 1)-form A satisfying dΛB = ddΛA.

Hence, we have dΛ(B+dA) = 0. Using Proposition 4.5 (k < 2n), the form B+dA is dΛ-exact

or B is (d+ dΛ)-exact.

Corollary 4.10. We have H2k
ddΛ = {0} for 0 ≤ k ≤ n and dimH2k+1

ddΛ = 1 for 0 ≤ k < n

with the generator [ωk ∧ α].

Proof. This is just applying Proposition 4.9 to the formula (28).

Proposition 4.11. We have PHk
∂+

= {0} for 2 ≤ k < n and dimPH0
∂+

= dimPH1
∂+

= 1

with generators [1] and [α], respectively.

Proof. (k = 0): Since for 0-forms the equality d = ∂+ holds, we have PH0
∂+

= H0
d for any

symplectic manifold.

(k = 1): Define a linear map T : PH1
∂+
→ R by T ([B]) = ∂−B. We will show that T

is well-define, injective and nonzero, hence it is an isomorphism. First note that ∂+B = 0

implies that 0 = d2B = L∂+∂−B or 0 = ∂+∂−B = d∂−B and therefore ∂−B is a constant

function. To prove well-definedness, write

∂−(B + ∂+B0) = ∂−B − ∂+∂−B0 = ∂−B.
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The equality T ([B]) = ∂−B = 0 implies that dB = 0. Then by the standard Poincaré

lemma, there is a 0-form B0 with the property B = dB0 = ∂+B0 or [B] = 0 and T is

injective. Finally, we have ∂+α = 0 and T ([α]) = ∂−α = 1 6= 0.

(2 ≤ k < n): By the same argument as in the previous case, we should have d∂−B = 0

and therefore ∂−B = dA for some k−2-form A by the standard Poincaré lemma (0 < k−1).

This implies that d(B − LA) = 0 and consequently B − LA = dA′ for some k − 1-form A′.

If the primitive component of A′ is B′, then we have B = ∂+B
′.

Proposition 4.12. We have PHk
∂−

= {0} for 0 ≤ k < n.

Proof. (k = 0): Since all 0- and 1-forms are primitive and acting on primitive forms, opera-

tors ∂− and dΛ are equivalent, we have PH0
∂−

= H0
dΛ for any symplectic manifold.

(0 < k < n): Let B be a ∂−-closed primitive k-form or dB = ∂+B. Then, the primitive

form dB is d-closed and using Proposition 4.7 (0 < k + 1 ≤ n), there exists a primitive

k + 1-form B′ satisfying dB = ddΛB′. Applying the same proposition again, there exists a

primitive k-form B′′ satisfying B − dΛB′ = ddΛB′′ or

B = −H∂−B′ − (H + 1)∂+∂−B
′′ = ∂−(−(n− k)B′ + (n− k + 1)∂+B

′′).

4.3 ddΛ-lemma and comparison with Hk
d

Definition 4.13. Using Corollary 2.23 part a), the induced maps Ln−k : Hk
d → H2n−k

d on

the level of de Rham cohomology are well-defined for 0 ≤ k ≤ n. The symplectic manifold

M satisfies the strong or hard Lefschetz property if these maps are surjective for all

0 ≤ k ≤ n. Note that if M is compact, then being a surjection is the same as being an

isomorphism for the above maps by Poincaré duality, i.e. dimHk
d = dimH2n−k

d .

Proposition 4.14. The strong Lefschetz property holds if and only if every de Rham coho-

mology class contains a form that is both d- and dΛ-closed.

Proof. This theorem is proved by Mathieu [11] and Yan [20] but the following proof is

obtained from [5].

(⇐): Given [A] ∈ H2n−k
d for some 0 ≤ k ≤ n, we should find [A′] ∈ Hk

d such that

Ln−k[A′] = [A]. By our assumption, we can assume that A ∈ Ω2n−k is d- and dΛ-closed.
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Since the map Ln−k : Ωk → Ω2n−k is an isomorphism, we can take A′ ∈ Ωk such that

Ln−kA′ = A. By Corollary 2.23 part c), the form A′ is d-closed and hence a representative

for a de Rham cohomology class which is mapped to [A] by Ln−k.

(⇒): Note that it is enough to prove the result only for cohomology classes in Hk
d for

0 ≤ k ≤ n by the following reasoning. Given [A] ∈ H2n−k
d for 0 ≤ k ≤ n, by having the

strong Lefschetz property, there is [A′] ∈ Hk
d mapped to [A] by Ln−k. If we know that we can

take A′ being both d- and dΛ-closed, then Ln−kA′ is also both d- and dΛ-closed representative

of [A] by Corollary 2.23 part c). The proof for Hk
d , where 0 ≤ k ≤ n, is by induction on k.

Basis step (k = 0, 1): All 0-forms are dΛ-closed. Also, all d-closed 1-forms are dΛ-closed

because of the formula dΛ = dΛ − Λd. Therefore, any member of any cohomology class in

H0
d and H1

d is both d- and dΛ-closed.

Inductive step ((k−2)⇒ k, 2 ≤ k ≤ n): Given [A] ∈ Hk
d , we have [Ln−k+1A] ∈ H2n−k+2

d .

Having the strong Lefschetz property, there there is [A′] ∈ Hk−2
d mapped to [Ln−k+1A] by

Ln−k+2. In other words, there is C ∈ Ω2n−k+1 such that Ln−k+1A = Ln−k+2A′+dC. Since the

map Ln−k+1 : Ωk−1 → Ω2n−k+1 is an isomorphism, there exists C ′ ∈ Ωk−1 mapped to C by

Ln−k+1. Define the k-form B := A−LA′−dC ′ with the properties Ln−k+1B = dC−dC = 0

and dB = 0. Consequently, the form B is primitive and being d-closed it is also dΛ-closed.

Using induction hypothesis for [A′] ∈ Hk−2
d , we have A′ = A′′+ dD, where A′′ is both d- and

dΛ-closed. This implies that dLA′′ = dΛLA′′ = 0 using [dΛ, L] = d. Finally combining all

these together, we can write A = (LA′′ +B) + d(LD+C ′), where (LA′′ +B) is both d- and

dΛ-closed. This completes the proof.

Note that the previous theorem only talks about the existence of such representatives

and not uniqueness. In fact as you can see in the above proof (see the basis step), such

representatives are not unique in general.

Proposition 4.15. The induced map Ln−k : Hk
d+dΛ → H2n−k

d is surjective for 0 ≤ k ≤ n if

and only if the strong Lefschetz property holds.

Proof. First note that this map is well-defined by Corollary 2.23. The implication ⇒ is

obvious. For the other implication, take [A] ∈ H2n−k
d for 0 ≤ k ≤ n. By Proposition 4.14,

we can assume that A is both d- and dΛ-closed. Since the map Ln−k : Ωk → Ω2n−k is an
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isomorphism, there exists a k-form A′ mapped to A by Ln−k. By Corollary 2.23, the form

A′ is a representative for a Hk
d+dΛ cohomology class.

Definition 4.16. The symplectic manifold M satisfies the ddΛ-lemma if we have

im d ∩ ker dΛ = im dΛ ∩ ker d = im ddΛ.

In other words, for a d- and dΛ-closed form, being d-exact or dΛ-exact or ddΛ-exact are

equivalent to each other.

Proposition 4.17. The induced map Ln−k : Hk
d+dΛ → H2n−k

d is injective for 0 ≤ k ≤ n if

and only if the ddΛ-lemma holds.

Proof. (⇒): Let A be a d- and dΛ-closed form. First note that ddΛ-exactness implies both

d- and dΛ-exactness. By Corollary 2.20, it is enough to prove that d-exactness implies ddΛ-

exactness. Assume that A ∈ Ωk is d-exact and 0 ≤ k ≤ n. By Corollary 2.23, the form Ln−kA

is also d-exact. Injectivity of Ln−k : Hk
d+dΛ → H2n−k

d implies that A should be ddΛ-exact.

Now, assume that A ∈ Ω2n−k is d-exact and 0 ≤ k ≤ n. Since the map Ln−k : Ωk → Ω2n−k

is an isomorphism, there exists a k-form A′ mapped to A by Ln−k. By Corollary 2.23, the

form A′ should be both d- and dΛ-closed. Injectivity of Ln−k : Hk
d+dΛ → H2n−k

d implies that

A′ should be ddΛ-exact. Finally Corollary 2.23, gives ddΛ-exactness of A.

(⇐): Assume that A be a d- and dΛ-closed k-form (0 ≤ k ≤ n) such that Ln−kA is

d-exact. Corollary 2.23 implies that Ln−kA is both d- and dΛ-closed and ddΛ-lemma gives

ddΛ-exactness of Ln−kA. Finally by Corollary 2.23, A is ddΛ-exact.

Proposition 4.18. For a compact symplectic manifold, the ddΛ-lemma is equivalent to the

strong Lefschetz property.

Proof. This theorem is proved by Merkulov [13] and Guillemin [8]. The proof is more involved

than the previous theorem, so we will not give the proof here. The interested reader can find

the proof in the above references or in [5].

Corollary 4.19. For a compact symplectic manifold satisfying ddΛ-lemma, the induced map

Ln−k : Hk
d+dΛ → H2n−k

d is an isomorphism for 0 ≤ k ≤ n.
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Note that compact Kähler manifolds satisfy both the strong Lefschetz property and ddΛ-

lemma, but that is not true for all Kähler manifolds. For example, consider the standard

Euclidean Kähler manifold R2n. The map Ln−k : Hk
d+dΛ → H2n−k

d is surjective but not

injective by Corollary 4.8. Hence, the Euclidean space satisfies the strong Lefschetz property

but not ddΛ-lemma.

Proposition 4.20. We have PH0
∂+

= H0
d and PH0

∂−
= H0

dΛ. Moreover, if M is compact,

then we have also PH1
∂+

= H1
d and PH1

∂−
= H1

dΛ.

Proof. Equalities for 0 are trivial and justified in proofs of Propositions 4.11 and 4.12. Sup-

pose that M is compact and B1 is a 1-form. Since M is compact, it has finitely many

connected components that are compact. It is enough to prove equalities for each compo-

nent and hence without loss of generality assume that M is connected.

(PH1
∂+

= H1
d): The only non-obvious fact that should be checked is that if B1 is ∂+-

closed, then it is also d-closed. By the proof of Proposition 4.11, ∂−B1 is a constant function

c. If c 6= 0, then we have d(B1

c
) = ω but [ω] ∈ H2

d is nonzero by compactness. Consequently,

we have c = 0 and dB1 = 0.

(PH1
∂−

= H1
dΛ): The only non-obvious fact that should be checked is that if B1 is dΛ-exact,

then it is also ∂−-exact. Suppose that there is a 2-form A2 = B2 + LB0 such that

B2 = dΛA2 = dΛB2 + LdΛB0 + dB0 = −∂−((n− 1)B2) + dB0

It remains to prove that dB0 is ∂−-exact. Without loss of generality, we can assume that∫
M
B0 = 0 by adding a constant function and without changing dB0. Because for any

d-closed 0-form i.e. a constant function c we have∫
M

c ∧ ∗sB0 = c

∫
M

B0 = 0,

Proposition 4.4 implies that B0 is dΛ-exact i.e. B0 = dΛB′1. Then, the 1-form dB0 should be

∂−-exact:

dB0 = ddΛB′1 = −(H + 1)∂+∂−B
′
1 = ∂−(n∂+B

′
1).

Lemma 4.21. Let M be a symplectic manifold satisfying the ddΛ-lemma and Bk ∈ Pk be

d-closed and ∂+-exact. Then, Bk is ∂+∂−-exactness.
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Proof. First, note that Bk is both d- and dΛ-closed. Assume that we have Bk = ∂+Bk−1. We

will show that Bk is d-exact. Then using the ddΛ-lemma, it should be ddΛ-exact and hence

∂+∂−-exact. We can write dBk−1 = Bk + LBk−2, where we have

Bk−2 = ∂−Bk−1 = −H−1dΛBk−1 = dΛ(
−1

n− k + 2
Bk−1),

LdBk−2 = dBk + dLBk−2 = d2Bk−1 = 0⇒ dBk−2 = 0.

Applying the ddΛ-lemma to Bk−2, there is a form Ak−3 satisfying Bk−2 = dAk−3 and therefore

Bk = d(Bk−1 − LAk−3).

Definition 4.22. Define

Hr,s
d :=

ker d ∩ Lr,s

im d ∩ Lr,s
, PHk

d := H0,k
d .

Note that we have dimHr,s
d ≤ dimH2r+s

d .

Proposition 4.23. For a compact symplectic manifold satisfying ddΛ-lemma, we have

PHk
d+dΛ

∼= PHk
ddΛ
∼= PHk

d 0 ≤ k ≤ n,

PHk
∂+
∼= PHk

∂−
∼= PHk

d 0 ≤ k < n.

Proof. We already know that PHk
d+dΛ

∼= PHk
ddΛ and PHk

∂+

∼= PHk
∂−

. By Proposition 4.18

and Corollary 4.19, the maps Ln−k : PHk
d → Hn−k,k

d and Ln−k : PHk
d+dΛ → Hn−k,k

d are

isomorphisms for 0 ≤ k ≤ n. Now suppose that 0 ≤ k < n and we show that PHk
∂−
∼= Hn−k,k

d

to complete the proof. Acting on Ln−k,k, we have ∂+ = 0 and d = L∂−. Therefore, the

following commutative diagram

0 P0 . . . Pn−1 Pn

0 Ln,0 . . . L1,n−1 L0,n

Id

∂−

Ln
∂− ∂−

L

∂−

L0=Id

d d d d

gives PHk
∂−
∼= ker d∩Ln−k,k

dLn−k−1,k+1 for any symplectic manifold. It remains to prove that under the

assumption of ddΛ-lemma we have im d ∩ Ln−k,k ⊆ dLn−k−1,k+1. Let dA ∈ Ln−k,k and

A =
∑j

i=0 L
n−k−1+iBk+1−2i be the Lefschetz decomposition of A. We use induction on j.

For j = 0, we have A ∈ Ln−k−1,k+1 and we are done. For j > 0, we will find another form A′
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such that dA′ = dA and A′ =
∑j−1

i=0 L
n−k−1+iB′k+1−2i is the Lefschetz decomposition of A′.

Because we have dA ∈ Ln−k,k and j > 0, we should have ∂−Bk+1−2j = 0. Applying Lemma

4.21 to ∂+Bk+1−2j, we have ∂+Bk+1−2j = ∂+∂−B
′ and therefore

d(Ln−k−1+jBk+1−2j) = Ln−k−1+j∂+∂−B
′ = −Ln−k−1+j−1L∂−∂+B

′ = d(−Ln−k−1+j−1∂+B
′).

It is enough to take

A′ = A−Ln−k−1+jBk+1−2j−Ln−k−1+j−1∂+B
′ =

j−1∑
i=0

Ln−k−1+iBk+1−2i−Ln−k−1+j−1∂+B
′.

Corollary 4.24. For the complex projective space CPn, we have

PH0
d+dΛ

∼= PH0
ddΛ
∼= PH0

∂+
∼= PH0

∂−
∼= PH0

d
∼= R,

and the higher degree primitive cohomologies are trivial.

Proof. Being a compact Kähler manifold, the previous proposition is applicable. We know

that H2k
d
∼= R for 0 ≤ k ≤ n with the generator [ωk] and other de Rham cohomology groups

are trivial. Using dimPHk
d ≤ dimHk

d , the only possible nontrivial PHk
d are even degrees. All

0-forms are primitive so we have PH0
d = H0

d
∼= R. To prove PH2k

d = {0} for k > 0, we must

show that if the form B = c ωk + dA is primitive, then it is d-exact. Let A =
∑

r L
rB2k−1−2r

be the Lefschetz decomposition of A. We have

0 = ΛB = (n+ k − 1)kLk−1c+
∑
r

(n− 2k + 3r − 1)rLr−1(∂+B2k−1−2r + ∂−B2k+1−2r),

and therefore ∂−B1 = −c and ∂−B2k+1−2r = −∂+B2k−1−2r for 0 < r < k. Replacing these

formulas in the equation B = c ωk + dA, we see that B = ∂+B2k−1. Using Lemma 4.21, B is

∂+∂−-exact and consequently d-exact.

4.4 Cotangent bundles

All over this subsection, assume that N is a smooth manifold with dimension n and the

2n-manifold M := T ∗(N) is the cotangent bundle of N considered as a symplectic manifold

with the canonical symplectic form described below. For more details about this symplectic

structure see [12]. The reference for this subsection is [15].
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Let (x1, ..., xn) be a local coordinate system for N and (x1, ..., xn, y1, ..., yn) be the associ-

ated local coordinates for M . There is a canonical 1-form on M defined by α :=
∑n

i=1 y
idxi.

The canonical symplectic structure on M is defined by ω := −dα =
∑n

i=1 dx
i ∧ dyi. Note

that we have ∂+α = 0 and ∂−α = −1. Let π : M → N be the projection map and βk

be a k-form on N . Then, the forms π∗βk and α ∧ π∗βk are both obviously primitive on M

since they don’t involve dyis. We simply write βk instead of π∗βk and stick to our previous

notation of writing Bk and Ak for a general primitive k-form and differential k-form on M .

Lemma 4.25. For any k-form β on N , we have

dΛ(α ∧ β) = Hβ, ∂+(α ∧ β) = −α ∧ dβ 0 ≤ k ≤ n.

∂−(α ∧ β) = −β 0 ≤ k < n.

Proof.

∂+(α ∧ β) + L∂−(α ∧ β) = d(α ∧ β) = (dα) ∧ β − α ∧ dβ = −α ∧ dβ − Lβ,

dΛ(α ∧ β) = −Λd(α ∧ β) = Λ(α ∧ dβ) + ΛLβ = ΛLβ = Hβ.

Our goal is to compute different symplectic cohomologies of M . Note that M is not

compact and some of previous results like dualities don’t hold for M . Formulas (23) and

(28) give cohomologies Hk
d+dΛ(M) and Hk

ddΛ(M).

Proposition 4.26. We have the following isomorphisms:

a) Hk
d (M) ∼= Hk

d (N) and Hk
dΛ(M) ∼= H2n−k

d (N) for 0 ≤ k ≤ 2n.

b) PHk
d+dΛ(M) ∼= Hk

d (N) for 0 ≤ k ≤ n.

c) PHk
ddΛ(M) ∼= Hk−1

d (N) for 0 ≤ k < n and PHn
ddΛ(M) ∼= Hn−1

d (N)⊕Hn
d (N).

d) PHk
∂+

(M) ∼= Hk−1
d (N)⊕Hk

d (N) for 0 ≤ k < n.

e) PHk
∂−

(M) = {0} for 0 ≤ k < n.

Proof. (Part a): Since M is a deformation retract of N and the de Rham cohomology is a

topological invariant, we have first isomorphism (π∗ : Hk
d (N)

∼=−→ Hk
d (M) for 0 ≤ k ≤ 2n).

Proposition 4.1 gives the other isomorphism (∗sπ∗ : H2n−k
d (N)

∼=−→ Hk
dΛ(M) for 0 ≤ k ≤ 2n).

(Part e): We will prove it by strong induction on k. Proposition 4.20 and part a) give the

result for k = 0. Assume that we have 0 < k < n and PHk′

∂−
(M) = {0} for all k′ < k. Now,
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we can repeat the proof of PHk
∂−
∼= Hn−k,k

d in Proposition 4.23 but instead of using ddΛ-

lemma, we use induction hypothesis to find a primitive form B′ satisfying Bk+1−2j = ∂−B
′.

Since dimHn−k,k
d ≤ dimH2n−k

d = 0, the induction is complete.

(Part b): We will prove that the map π∗ : Hk
d (N) → PHk

d+dΛ(M) is a well-defined

isomorphism for 0 ≤ k ≤ n. (Well-definedness): Given a d-closed k-form βk on N , it is

both primitive and d-closed on M . If we have βk = dβk−1, then ∂−βk−1 = 0 and part e)

(k − 1 < n) implies that βk−1 = ∂−Bk and therefore

βk = dβk−1 = ∂+∂−Bk.

(Injectivity): Let βk be d-closed on N and ddΛ-exact on M , then it is trivially d-exact

on M . Then by part a), the form βk should be d-exact also on N .

(Surjectivity): Let B be a d-closed primitive k-form on M . We have B − βk = dA for

some d-closed k-form βk on N and k−1-form on M by part a). Let A =
∑j

r=0 L
rBk−1−2r be

the Lefschetz decomposition of A. Because we have dA ∈ Pk, we should have ∂−Bk−1−2j = 0.

By part e)(k − 1 − 2j < n), there exists B′ ∈ Pk−2j such that Bk−1−2j = ∂−B
′. We use

induction on j to prove that dA is ∂+∂−-exact which completes the proof of surjectivity. For

j = 0, we have dA = ∂+∂−B
′. For j > 0, take

A′ = A− LjBk−1−2j − Lj−1∂+B
′ =

j−1∑
i=0

LrBk−1−2r − Lj−1∂+B
′,

similar to the proof of part e). Induction hypothesis implies that dA′ = dA is ∂+∂−-exact.

(Part c) for 0 ≤ k < n): Proposition 4.20 and part a) give the result for k = 0. We will

prove that the map T1 : Hk−1
d (N) → PHk

ddΛ(M) given by [β] 7→ [α ∧ β] is a well-defined

isomorphism for 0 < k < n. (Well-definedness of T1 for 0 < k ≤ n): The form α ∧ β is

primitive and satisfies

ddΛ(α ∧ β) = dHβ = (n− k + 1)dβ = 0.

If we have β = dβ′, then the form α ∧ β = ∂+(−α ∧ β′) is d+ dΛ-exact.

(Injectivitiy of T1 for 0 < k ≤ n): Assume that α ∧ β = ∂+B + ∂−B
′. Then, we have

β = −∂−(α ∧ β) = −∂−∂+B = ∂+∂−B,
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and part b) implies that β is d-exact on N .

(Surjectivity of T1 for 0 < k < n): Let B be a ∂+∂−-closed primitive k-form on M . Then,

the primitive form ∂−B is d-closed. Using part b), there exist a d-closed k − 1-form β on N

and a primitive k − 1-form B′ on M satisfying

∂+∂−B
′ = ∂−B − β = ∂−B + ∂−(α ∧ β).

Then, the primitive form B + α ∧ β + ∂+B
′ is ∂−-closed. Using part e) and k < n, it is

∂−-exact and T1([−β]) = [B].

(Part c) for k = n): We will prove that the map T2 : Hn−1
d (N) ⊕Hn

d (N) → PHn
ddΛ(M)

given by ([β], [β′]) 7→ [α ∧ β + β′] is a well-defined isomorphism. Combining proofs of Well-

definedness for part b) and T1 proves that T2 is well-defined.

(Injectivitiy of T2): Assume that α ∧ β + β′ = ∂+B. We must show that both β and β′

are d-exact on N . Using

∂+∂−B = −∂−∂+B = −∂−(α ∧ β) = β,

part a) implies that β = dβ′′ and therefore ∂+(α ∧ β′′) = −α ∧ β. Taking B′ := B + α ∧ β′′,

we have β′ = ∂+B
′ and

0 = dβ′ = −L∂+∂−B
′ =⇒ ∂+∂−B

′ = 0.

Part c) for k = n− 1 implies that B′ = α ∧ β′′′ + ∂+B
′′ + ∂−B

′′′ and therefore

β′ = ∂+B
′ = −α ∧ dβ′′′ + ∂2

+B
′′ + ∂+∂−B

′′′ = ∂+∂−B
′′′.

Finally, the form β′ is d-exact on N by part a).

(Surjectivity of T2): Let B be a ∂+∂−-closed primitive n-form on M . The argument in

the proof of surjectivity of T1 is valid until we obtain the ∂−-closed form B + α ∧ β + ∂+B
′.

This form is ∂+- and d-closed since primitive n-forms are always ∂+-closed. Using part b),

we have

B + α ∧ β + ∂+B
′ = β′ + ∂+∂−B

′′ =⇒ T2([−β], [β′]) = [B].

(Part d): Proposition 4.20 and part a) give the result for k = 0. We will prove that the

map T3 : Hk−1
d (N)⊕Hk

d (N)→ PHk
∂+

(M) given by ([β], [β′]) 7→ [α∧ β + β′] is a well-defined
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isomorphism for 0 < k < n. Combining proofs of Well-definedness for part b) and T1 proves

that T3 is well-defined. Proof of injectivity is the same as injectivity of T2.

(Surjectivity of T3): Let B be a ∂+-closed primitive k-form on M for 0 < k < n. Using

k < n, we have ∂+∂−B = −∂−∂+B = 0. The argument in the proof of surjectivity of T1 is

valid until we obtain the ∂−-closed form B + α ∧ β + ∂+B
′. This form is ∂+- and d-closed

because ∂+B = 0. The remain of proof is the same as surjectivity of T2.

Note that if U is a star-shaped open subset of Rn, then M = U × Rn as a symplectic

manifold can be considered both as the cotangent bundle of U and a star-shaped open subset

of R2n. Then, we can compute its symplectic cohomologies both by Poincaré lemmas and

the previous proposition and the results are the same.

4.5 Mayer-Vietoris sequence

In this subsection, we justify that there exists a Mayer-Vietoris sequence corresponding to

the differential complex (32) and by an example we show its effectiveness for computation

of symplectic cohomologies. This is an original work and it is in parallel with [3].

Proposition 4.27. Let {U, V } be an open cover of the symplectic manifold M . Then, the

following Mayer-Vietoris sequence

0 −→ Pk(M)
r−→ Pk(U)⊕ Pk(V )

δ−→Pk(U ∩ V ) −→ 0

B 7→ (B|U , B|V ) (B,B′) 7→B′|U∩V −B|U∩V

is exact for 0 ≤ k ≤ n.

Proof. First note that an open subset U of a symplectic manifold (M,ω) is also symplectic

manifold by restricting ω to U . Being primitive is a pointwise condition so it is preserved

under restrictions and the above maps are well-defined.

(Exactness at Pk(M)): If B is a primitive form on M satisfying r(B) = 0, then it is 0

on both U and V and therefore B = 0 by M = U ∪ V .

(Exactness at Pk(U)⊕ Pk(V )): For a primitive form B on M , we have

δr(B) = B|U∩V −B|U∩V = 0.
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Let B and B′ be primitive forms on U and V , respectively such that δ(B,B′) = 0. Then,

the differential form

B′′ =

 B on U

B′ on V

is well-defined. It is primitive by the same reason mentioned above and r(B′′) = (B,B′).

(Exactness at Pk(U∩V )): Let B be a primitive form on U∩V and {ρU , ρV } be a partition

of unity subordinate to {U, V }. Then, the following differential forms

B′ =

 −ρVB on U ∩ V

0 on U − supp(ρV )
B′′ =

 ρUB on U ∩ V

0 on V − supp(ρU)

are well-defined on U and V , respectively. They are primitive because 0 is primitive and

multiplication by a function doesn’t change primitivity. Finally, we have

δ(B′, B′′) = ρUB − (−ρVB) = B.

Using this short exact sequence, the differential complex (32) and the snake lemma, we

find a long exact sequence of primitive symplectic cohomologies. As a nontrivial example,

we use this result to compute primitive symplectic cohomologies of the cotangent bundle

of the 2-torus T 2 and compare the results with Proposition 4.26. Let U ′ and V ′ be some

ε-neighborhoods of the upper and lower half torus. Note that U ′ are V ′ are diffeomorphic

to the cylinder S1 × R and U ′ ∩ V ′ is diffeomorphic to the disjoint union of two cylinders.

Taking U = T ∗(U ′) and V = T ∗(V ′), We have {U, V } is an open cover of M = T ∗(T 2).

Using a separate Mayer-Vietoris sequence or Proposition 4.26, we have

PH0
∂+
∼= PH2

ddΛ
∼= R, PH1

∂+
∼= R2, PH2

d+dΛ
∼= PH1

∂−
∼= PH0

∂−
∼= 0,

for the cotangent bundle of the cylinder. Then, we have the long exact sequence in the next

page, where the difference maps δ1 and δ3 are given by (c1, c2) 7→ (c2 − c1, c2 − c1) and have

rank 1 and the difference maps δ2 is given by (c1, c2, c3, c4) 7→ (c2− c1, c2− c1, c4− c3, c4− c3)

and have rank 2. We can compute the symplectic cohomologies of M as follows

PH0
∂+
∼= im r1

∼= ker δ1
∼= R, PH2

d+dΛ
∼= im f3

∼= R, PH1
∂−
∼= PH0

∂−
∼= 0,

PH1
∂+
∼= im f1 ⊕ ker δ2

∼= R⊕ R2 ∼= R3, PH2
ddΛ
∼= im f2 ⊕ ker δ3

∼= R2 ⊕ R ∼= R3,
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which are the same as the results from Proposition 4.26.

M = T ∗(T 2) U t V U ∩ V

PH0
∂+

0 ? R⊕ R R⊕ R

PH1
∂+

? R2 ⊕ R2 R2 ⊕ R2

PH2
ddΛ ? R⊕ R R⊕ R

PH2
d+dΛ ? 0 0

PH1
∂−

? 0 0

PH0
∂−

? 0 0 0

r1 δ1

f1

r1 δ2

f2

r3 δ3

f3

The final remark is that if a symplectic manifold M has finite open cover {U1, ..., Um}

such that the symplectic cohomologies of any intersection Ui1∩ ...∩Uij are finite-dimensional,

then we can conclude that PHk
∂±

for 0 ≤ k < n, PHn
d+dΛ and PHn

ddΛ of the manifold M are

also finite-dimensional using the Mayer-Vietoris sequence and induction on m. For example

for PHn
d+dΛ , we have

...→ PHn−1
∂+

(U ∩ V )
f−→ PHn

d+dΛ(U ∪ V )
r−→ PHn

d+dΛ(U)⊕ PHn
d+dΛ(V )→ ... ,

and therefore

PHn
d+dΛ(U ∪ V ) ∼= ker r ⊕ im r ∼= im f ⊕ im r.

This implies that if PHn−1
∂+

(U ∩V ), PHn
d+dΛ(U) and PHn

d+dΛ(V ) are finite-dimensional, then

PHn
d+dΛ(U ∪ V ) is also finite-dimensional.
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Conclusion

As a conclusion, I will give the general picture behind all the results given in this thesis.

First, let us summarize the purely algebraic aspects in this theory. Having a compatible triple

(ω, J, g) on a manifold M (or a vector space), we have the two different decompositions (6)

and (13) of forms and the following isomorphisms. For the diamond, the conjugation and

the operators ∗ and Ln−p−q give isomorphisms around the middle vertical line, centre point

and the middle horizontal line, respectively. Note that the map J : Ap,q → Ap,q is just

multiplication by a constant, so it is a trivial isomorphism which is not interesting. As

a result, the operators ∗ and ∗s = ∗J −1 are equivalent on Ap,q. So, the only different

nontrivial isomorphisms on the diamond are the above three types of isomorphisms. On

the other hand for the pyramid, the operators ∗, ∗s and Ln−2r−s give different isomorphisms

around the middle vertical line. We also have nontrivial isomorphisms J : Lr,s → Lr,s and

isomorphisms of spaces in each horizontal line given by Lr (Lemma 2.5).

Moving on to the case of complex manifolds, for a general almost complex structure J ,

there is no obvious relation between d and the diamond decomposition. Under the geometric

assumption of integrability, the operator d has only two components acting on Ap,q. This

gives first order differential operators (∂, ∂̄) and complex cohomologies of Dolbeault, Bott-

Chern and Aeppli. On a complex manifold, conjugation is the only natural isomorphism

among the above isomorphisms for the diamond, in the sense that it doesn’t depend on

a choice of a compatible triple, so it gives the dualities Hp,q

∂̄
= H̄q,p

∂ , Hp,q

∂+∂̄
= H̄q,p

∂+∂̄
and

Hp,q

∂∂̄
= H̄q,p

∂∂̄
even for non-compact complex manifolds. To obtain the finite dimensionality

of complex cohomologies and transfer more dualities to the level of cohomologies, we need

to add the assumption of compactness to be able to use the general Hodge theory of elliptic

operators on a compact manifold (see Corollary 1.4). The new duality for compact complex

manifold comes from the isomorphism ∗ on the diamond and we still don’t have any duality

coming from Ln−p−q because there is no obvious relation between the the algebraic operator

L and differential operators in general. Adding one more assumption that ω is d-closed or

[d, L] = 0, i.e. the manifold is Kähler, implies this missing duality and many more dualities

(see Proposition 1.5).
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Next, for symplectic manifolds, we see that given a general non-degenerate 2-form ω,

there is no obvious relation between d and the pyramid decomposition. Under the geometric

assumption of d-closedness, the operator d has only two components acting on Lr,s. This

gives first order differential operators (∂+, ∂−) and new symplectic cohomologies. On a

symplectic manifold, the isomorphisms among the above isomorphisms which are natural for

the pyramid, in the sense that they don’t depend on a choice of a compatible triple, are ∗s
and Lr. Therefore, we have the isomorphism Hr,s

∂±
∼= PHs

∂±
, Proposition 4.1 and formulas

(23) and (28) even in the case of non-compact symplectic manifolds. As a result, we can

compute all symplectic cohomologies only knowing the de Rham and primitive cohomologies.

To conclude the finite dimensionality of symplectic cohomologies and transfer more dualities

to the level of cohomologies, we need to add the assumption of compactness to use the

elliptic theory on a compact manifold (see Propositions 4.3 and 4.4). Assuming furthermore

that the ddΛ-lemma holds, we find even more isomorphisms like Ln−k : Hk
d → H2n−k

d and

Ln−k : Hk
d+dΛ → H2n−k

d and all primitive symplectic cohomologies become isomorphic to the

primitive de Rham cohomology (see Propositions 4.23).

We finish this thesis with an outline of open problems. Since the symplectic cohomologies

have only been introduced recently, there are many questions to be answered about them.

Among these open problems, maybe the most important and natural questions are the

following ones:

- What is the relationship between the Lie algebra cohomology of a Lie group and the

symplectic cohomologies of the orbits of the co-adjoint action? Answering this problem, one

could compute the symplectic cohomologies for a homogeneous symplectic manifold.

- What is the behavior of the symplectic cohomologies under symplectic reductions?

- Is there a Mayer-Vietoris construction for mixed symplectic cohomologies Hd+dΛ and

HddΛ that are not coming from a differential complex?
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extérieures quadratiques. Comptes Rendus Hebdomadaires des Sances de l’Acadmie des

Sciences, 229(15):697–698, 1949.

[7] P. Griffiths and J. Harris. Principles of algebraic geometry. John Wiley & Sons, 2014.

[8] V. Guillemin. Symplectic Hodge theory and the dδ-lemma. preprint, Massachusetts

Institute of Technology, 2001.

[9] D. Huybrechts. Complex geometry: an introduction. Springer Science & Business Media,

2006.

[10] P. Libermann. Sur les automorphismes infinitésimaux des structures symplectiques et

des structures de contact. In Colloque Géom. Diff. Globale, pages 37–59. Centre Belge

Rech. Math. Louvain, 1959.

[11] O. Mathieu. Harmonic cohomology classes of symplectic manifolds. Commentarii Math-

ematici Helvetici, 70(1):1–9, 1995.

[12] D. McDuff and D. Salamon. Introduction to symplectic topology. Oxford University

Press, 1998.

61



[13] S. A. Merkulov. Formality of canonical symplectic complexes and frobenius manifolds.

arXiv preprint math/9805072, 1998.

[14] P. Petersen. Riemannian geometry, volume 171. Springer, 2006.

[15] C.-J. Tsai, L.-S. Tseng, and S.-T. Yau. Symplectic cohomologies on phase space. Journal

of Mathematical Physics, 53(9):095217, 2012.

[16] L.-S. Tseng, S.-T. Yau, et al. Cohomology and Hodge theory on symplectic manifolds:

I. Journal of Differential Geometry, 91(3):383–416, 2012.

[17] L.-S. Tseng, S.-T. Yau, et al. Cohomology and Hodge theory on symplectic manifolds:

II. Journal of Differential Geometry, 91(3):417–443, 2012.

[18] F. W. Warner. Foundations of differentiable manifolds and Lie groups, volume 94.

Springer Science & Business Media, 2013.

[19] R. O. Wells. Differential analysis on complex manifolds, volume 65. Springer Science &

Business Media, 2007.

[20] D. Yan. Hodge structure on symplectic manifolds. Advances in Mathematics,

120(1):143–154, 1996.

62


	Abstract
	Résumé
	Acknowledgments
	Introduction
	Review of classical Hodge theories
	Compact orientable manifolds
	Almost complex manifolds
	Compact complex manifolds

	Operators on symplectic manifolds
	Algebraic operators
	Lefschetz decomposition (L, , H and R)
	The symplectic star operator *s

	Differential operators
	d and d
	+ and -


	Symplectic cohomologies and Hodge theories
	d cohomology
	d + d cohomology
	dd cohomology
	 cohomologies

	Further properties of symplectic cohomologies
	Dualities
	Poincaré lemmas
	d d-lemma and comparison with Hkd
	Cotangent bundles
	Mayer-Vietoris sequence

	Conclusion
	References

