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Abstract

In this thesis we report the design and implementation of a new self-scheduling paral-
lel programming language, SELSYN-C. As parallel processors become more accessible
to a broad range of programmers, the development of simple to use and effective pro-
gramming languages becomes increasingly important. Our approach to the challenge
of parallel programming language design and implementation is two-fold: (1) the de-
sign of simple extensions to C that are both easy to use for the programmer, and
useful for effective compilation, and (2) the design of efficient and effective scheduling
strategies that can be automatically supported by a compiler and associated run-time

environment.

We outline our approach by presenting: (1) our motivation, (2) an overview of
the extensions to C that form the SELSYN-C programming language, and (3) the
development of a new scheduling mechanism that can be used to effectively compile
SELSYN-C programs for a real parallel processor, the BBN Butterfly GP-1000. Dif-
ferent scheduling strategies for this mechanism were studied via several experimental

tests and the results of these experiments are reported.

A source-to-source compiler supporting the SELSYN-C language has been imple-
mented. Included in this thesis is a description of both the compiler and associated

run-time environment.
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Résumé

Cette these présente la conception et la mise en ocuvre d'un nouvecan langage de pro-
gramrm:ation parallele auto-séquenceur, SELSYN-C. Les prucesseurs paralléles sont de
plus en plus accessibles & un grand nombre de programmeurs ¢t le développement de
langages de programmation efficaces et simples d’utilisation devient trés important.
Notre approche au défi que représente la conception et 'implémentation de tels lan-
gages se scinde en deux volets : (1) la conceplion de simples extensions au langage C
qui sont & la fois faciles d’utilisation et utiles pour unc compilation efficace et (2) la
conception de stratégies efficaces de séquencement qui peuvent étre automatiquement

supportées par un compilateur et son environnement d’exécution associé.

Nous résumons notre approche en présentant : (1) nos motivations, (2) unc revue
des extensions au langage C qui constituent le langage de programmation SELSYN-
C et (3) le développement d’un nouveau mécanisme de séquencement qui permet de
compiler efficacement des programmes en SELSYN-C pour le processeur parallcle GP-
1000 du BBN Butterfly. Différentes stratégies de séquencement ont é1é expérimentées

pour ce mécanisme. Nous présentons les résultats de ces tests.

Un compilateur source-a-source supportant le langage SELSYN-C a été mis en
oeuvre. Le compilateur et ’environnement d’exécution associé sont décrits dans celte

these.
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Chapter 1

Introduction

Parallel processing and related parallel applications are capturing more and more
attention. Parallel computing has proved to be essential in studying complex problems
such as those related to image processing, pattern recognition, parallel searching, and

other applications that are computation intensive.

The exploitation of parallel processing depends on three major arcas: (1) the de-
sign of architectures that support parallelism, (2) the design of application programs
that can utilize parallelisin, and (3) a mechanism for effectively and efficiently map-
ping the apnlication to parallel architectures. At the level of architecture design,
a wide variety of models have been introduced [El86, HP90, HJ88, HB84, Kat85,
Kog81, Sab88, Sto87, Tha87]. These architectures may exploit fine-grain parallelism
at the inst-uction level, medium-grain parallelism at the loop or vector level, or
coarse-grain parallelism at the process level. In addition, some architectures have
been developed for particular kinds of applications. For instance, array-processors
and vector-processors are suitable for matrix computation as required in the scientific
area. On the side of the applications, much of the research concentrates on represent-
ing or exposing parallelism so that the problem can be solved in parallel. Although
on both sides there has been remarkable progress, there is another problem which
we believe is a general key problem in parallel processing, that is, how to map the

parallel application to the architecture. The goal is to find mechanisms which can

1



be used to express and control parallelism. These mechanisms should be easy for the

programmer to use and they should lead to portable programs.

1.1 Motivation

Dealing with the problem of parallel programming is becoming more important as
rapid advances in architectures leads to the development of new and cheaper par-
allel processors. In general, programming a parallel processor demands much more
knowledge and skills than traditional programming of sequential processors. Firstly,
a programmer needs to exploit the parallelism of the application and express the par-
allelism in a particular way. Secondly, a programmer has to deal with more resource
management, in particular the management of multiple processes or processors. This
resource management is often specific to a particular parallel architecture. In addition
to these burdens on the application programmer, a particular parallel programming
system may require a supporting run-time system. This run-time system needs to
support mechanisms to exploit parallelism, control parallelism, deal with memory

contention, support synchronization and so on.

Thus, a great challenge is to provide software environments that make parallel
processors usable by a wide variety of programmers, while at the same time achieving
high efficiency of resource management and high utilization of resources. A critical
step in this development is the design of paralle! programming languages that are
simple to use. Programs written in such a language should provide straight-forward
mechanisms for expressing parallelism, and effective mechanisms for efficiently ex-
ploiting this parallelism on real parallel processors. That is, the language should
allow the programmer to express parallelism at the application level, and not force
the programmer to worry about the complicated details of resource management and
synchronization of tasks for a particular parallel architecture. In addition, a good par-

allel programming language should support the development of portable programs.



o

1.2 The SELSYN-C Approach

One approach to handle the above challenge is to develop a language and associated
parallelism exploitation and parallelism controlling mechanisms. In this thesis we
present a new parallel programming language, SELSYN-C, an extension of the tra-
ditional C programming language that we have designed and implemented. Users of
the system need only master a small sct of new constructs in order to develop parallel
C programs, or to convert their existing C programs to parallel C programs. The two
major contributions of this work are: (1) the development of simple-to-use extensions
to C, and (2) the development of a compiler and associated run-time system that

supports a new kind of self-synchronizing mechanism.

In order to facilitate parallel programming, we propose a new extension of the im-
perative language C, called SELSYN-C. We have selected the programming language
C as the basis of our work because it is familiar to a wide range of programmers,
and thus it provides a large user base for our new language. The language extensions
provide a simple notation for specifying parallel functions and is particularly suited

to recursive divide-and-conquer parallelism.

To control parallelism and support load-balancing, a new run-time mechanism
has been developed. The fundamental part of this mechanism is the processor-team
model which can reduce scheduling overhead as compared to processor acquisition
as is required for the traditional fork-join model. Different strategies for organizing
the processor-team have been studied. A new team-cooperation scheme is adopted to
further improve the processor-team model. This mechanism controls the parallelism
and rebalances the work distribution between processor-teams so that high utilization

of the processor resources can be achieved.

As demonstrated by some examples given later in this thesis, this approach pro-
vides a simple way to specify parallel programs, and an effective way to produce
efficient programs that run on a shared memory parallel processor. Currently, the

compiler and the run-time environment have been implemented on the shared memory
machine, the BBN Butterfly GP-1000.



1.3 Thesis Organization

The thesis is organized as follows. First, we introduce an extension of the imperative
language C, called SELSYN-C, and we illustrate how a programmer expresses paral-
lelism and shared data storage. In Chapter 3, we illustrate the run-time mechanisms
which can support the language extensions in an efficient manner. Several experi-
ments have been carried out so that we could determine which strategy achieves the
best performance. The experimental results are presented and compared in Chapter
4. Chapter 5 describes more implementation details about both the language exten-
sions and the run-time mechanism. The comparison with the other related work is
discussed in Chapter 6. We end with conclusions and a discussion of further work in

Chapter 7.



Chapter 2

SELSYN-C Language Definition

In this chapter, we illustrate our parallel extension of the imperative language C,
which we call SELSYN-C. As outlined in the introduction, one of our major goals was
to design a language that is simple to use and familiar to a wide range of programmers.
With this goal in mind, we decided to focus on designing simple extensions to the
programming language C. These extensions were selected to be easy to use, but at
the same time provide the necessary high-level information required for an eflective
translation to a real parallel processor. To keep these extensions portable for diflerent
target machines, our compiler performs a source-to-source transformation. Currently
we have implemented the SELSYN system on the BBN Butterfly GP-1000. With this
implementation the programmer specifies his or her parallel program using SELSYN-
C, and our compiler produces an output program in a C dialect that is specific to the
BBN Butterfly. This output program is then linked with our run-time environment
to produce a program that can be executed directly on the BBN Butterfly GP-1000.

SELSYN-C supports two major extensions to C: (1) the distinction between
processor-private and globally-shared data, and (2) the introduction of weighted par-
allel function calls. We introduce these two extensions by presenting a simple example.

Following the example, a more detailed description of the extensions is presented.



2.1 An Introductory Example

Belore we start to introduce our new language extension, we present an example
which is written in SELSYN-C. A typical recursive function is given in Figure 2.1.
The function, sum(), is a typical divide-and-conquer type problem. In this case
the problem of summing all entries afl..r] is divided into two smaller problems,
summing the entries a[l. .midpoint] and summing the entries almidpoint+1..zrl.
Since the summing of the two halves are independent of each other, the two recursive

calls to sum() are performed in parallel.

#define MAX 1000
shared int a[MAX];
main()

{ int final_sum;

sum{a, 0, MAX, &final_sum);
}
/* sum all entries a[l .. r], put in result */
sum(a,l,r,result)
int a[l,1,r,*result;

{ shared int sum_left, sum_right;

/% if only one entry left, then that is the sum %/

it (1 == 1)
xresult = a[l];
else

{ /* sum left half and right half in parallel,
result is sum of left and right */
int midpoint;
midpoint = {1 + ) / 2;
sum{a,l,midpoint, &sum_left) // sum(a,midpoint+i,r,&sum_right);
sresult = sum_left + sum_right;

Figure 2.1: An example SELSYN-C program



Two points need to be pointed out. A parallel function call has been introduced

in this example,
sum(a,l ,midpoint,&sum_left) // sum(a,midpoint+1,r,&sumright),

This parallel function call indicates that the function sum() is called in parallel on two
independent data sets. The other new concept introduced in this example is a new
storage type. A new leading keyword, shared, is adopted to distinguish the shared
data type and the ordinary data type. The definition of our language extension is
outlined in the next sections. Along with the definition, more explanation on this

example is given.

2.2 Processor-Private vs. Globally-Shared Data

As presented in the previous example, a new shared storage concepl has been intro-
duced to our parallel extension to imperative language C. In a parallel system, il is
often important to distinguish between memory local to one processor and memory
accessible to all processors. Qur target machine, the BBN Butterfly GP-1000, is a
typical parallel system of this model. As shown in Figure 2.2, it is a loosely coupled
system in which each processor is paired with its own memory module. All proces-
sor cards are identical and independent. They are connected together by a network
interconnection system, called the Butterfly Switch, which handles the data transfers

from one memory module to another.

With an architecture like that of the BBN Butterfly, a processor may access a
memory location associated with another processor, but at a penalty associated with

the time for communication through the switch. Thus, we can abstractly define two

levels of memory as follows:

Processor private memory: As the name suggests, data in processor private mem-
ory can be accessed only from the processor associated with that memory. In

general, this is more efficient than accessing globally-shared memory.

(f
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Figure 2.2: Architecture of the BBN parallel processor

Globally shared memory: Data in globally shared memory is accessible from all
processors. Accesses to globally-shared memory are usually associated with a
penalty for communication costs, and are therefore less efficient than accesses

to processor-private memory.

We can abstractly view this memory hierarchy as shown in Figure 2.3. Note that
cach processor has an address space for its own processor-private storage, while the

shared storage provides an address space accessible to all processors.

In order to model the distinction between processor-private and globally-shared
memory in our language, we haveincluded the concept of shared variables and shared
dynamically-allocated memory. We discuss these two concepts in the following sec-
tions.



Processor 1  Processor 2 Processor m Processor n

----- e———| Processor
private storage

e——]| Sharcd storage

Figure 2.3: An abstract view of Processor-Private and Shared memory

2.3 SELSYN-C Variable Declarations

One main difference between conventional C and our SELSYN-C is that SELSYN-C
distinguishes the original variables into to two classes, shared variables and private
variables. In SELSYN-C, all of the conventional variable declarations in C fall into
the private variable class. All private variables are permitted to be used as in ordinary
C programs, except for the restriction that their addresses (pointers to the variables)

should not be passed as arguments to parallel function calls.

2.3.1 Declaring Shared Variables in SELSYN-C

In SELSYN-C, shared variables are declared by adding a new leading keyword,
‘shared’, before the conventional declaration. This keyword indicates that the vari-

ables will be stored in shared storage address space as presented in the abstract model



in Pigure 2.3. These variables are accessible to any processor, and thus their addresses

may bhe accessed by any function, including parallel functions.
Some declarations of shared variables are,

shared int i;
shared float j[10];
shared int *pointer;

which define one integer i, an array of 10 floats and an integer pointer can be accessed
by any processor within the cluster! during their lifetime. The shared specifier fills in
the same syntactic class as other storage class specifier like extern. The shared spec-
ifier may be used for global and local variable declarations, but not with parameter

declarations.

Within the two memory management classes, processor-private memory and glob-
ally shared memory, several diflerent types of storage are available to SELSYN-C
programs. In conventional C, according to the storage types, the variables can be
classified into local variables, global variables and dynamic storage variables. For
each of these classes, SELSYN-C provides a processor-private type and a globally-
shared type. Thus, the storage types of SELSYN are:

Private local variables: Local private variables are processor private and are stored
on the stack. A private local variable is visible only within the scope of the func-
tion or block that declares it. There is one instance of the variable for every
function call. Hence, the variable is private to the function call, and hidden
from every other call. Since private local variables are private to one processor,
the addresses of these variables should not be used as an argument to any par-
allel function call? in SELSYN-C. In the example, Figure 2.1, int final sum
of the function main() and int midpoint of the function sum() belong to this

variable class.

A collection of processors [Sen88]. Here it means the set of processors which are assigned to
execute the program.

2We describe the parallel function call in section 2.4, The general idea behind this restriction is
that a parallel function call may lead to the function being executed on a different processor. Thus,
all addresses that are passed to parallel functions should be accessible by all processors.

10



Shared local variables: Shared local variables are accessible from all processors

1 and stored in the shared memory part. However, note that a shared local
variable is visible only within the scope of the function or block that declares it,

and it has a lifetime associated with the function or block where it is declared.

In the SELSYN system, addresses of the shared local variables can be used

as arguments in any function calls. Two shared local variables, shared int

sumleft, sumright, can be found in the example, Figure 2.1.

Private global variables: Private globals are processor private. There is one in-
stance of each variable per processor. These variables are visible to any function
called on the same processor, but are not accessible from any other processor.

The addresses of the private global variables should not used as arguments in
parallel function calls.

Shared global variables: Shared globals are globally visible by all [unctions on all
processors and arc stored in the shared memory part. The addresses of shared
global variables can be used as arguments to any function call. The variable,

93&55 shared int a[MAX],is a typical shared global variable in the example, Figure

2.1

F/Tp Wi

We now give an example to explain private global variables. All the private
global variables will only be visible on its own processor, However, when a program
starts executing, SELSYN propagates their initial values to all of the processors. For

instance, if a integer j declared as,

int j = 3;
main()

{
¥

when the program enters the main(), every processor within the cluster will have
the same value of j. After this initial phase, changing the value of a private global

variable will not affect the value of the copies on the other processors. In the example

o .1



above, this means that changing the value of j will only be effective on the processor
where the assignment has taken place. Since the updates are only done on the local
copy of the variables, the effect of the updates will depend on how the progiam
is mapped to different processors at run-time. This can lead to non-determinism
programs and therefore we recommand that priva.te- global variables be used as read-

only variables, and that shared global variables should be used for update variables.

2.3.2 Dynamically-Allocated Shared Data

In addition to statically declared variables, one needs to make a distinction between
dynamically-allocated memory that is processor-private and dynamically-allocated
memory that is globally-shared and thus accessible to all processors. We have sup-
ported this distinction by providing two families of allocation functions. The ordinary
functions such as malloc() allocates processor-private memory, while the function
sharedmalloc() allocates globally-shared memory. Just as in the case of declared
variables, pointers to processor-private memory may not be used as arguments to

parallel function calls, while pointers to globally-shared memory may be freely used.

All variables accessed by different tasks executing in parallel must be identified
as shared variables. All private variables are only visible on their own processor,

therefore they cannot be accessed by different tasks executing in parallel.

Private dynamic storage: Storage of this type, obtained by malloc() and related
routines, is processor private. These variables can be accessed by functions
within that processor (provided the necessary pointers have been made avail-
able), but are hidden from all other processors. In particular, while you can
pass a pointer from one processor to another, if you try to use it within another
processor you will get a hardware fault or (worse) access a random chunk of

memory in that process.

Shared dynamic storage: Storage of this type is obtained by using the SELSYN
System allocator shared_malloc(}, and is globally shared. Since this storage is

12



globally shared, the address of shared dynamic storage is valid on all processors
and such address can be passed freely among them, i.c., can be used as an

argument in any function call,

2.3.3 Overview

We end this section with an overview figure that illustrates the distinction between
processor-private and globally-shared data. Fignre 2.4 presents this overview that
indicates the memory allocation of the different data types. Referring to this Figure
2.4 and Figure 2.3, we can see clearly where the variables will he located. All the
private variables are located in the individual processor private storage part. All the
shared variables are located in the shared storage part. There are two ways Lo make
shared variables visible to other processors. One is to declare a shared variable as a
global variable so that it is always visible to all processors during the whole exccution
time. The other way is passing the address of a shared variable via a parallel function
call. Passing an address of processor private storage to other processors will cause a

segmentation fault if it is used on any other processor.

2.4 Parallel Function Calls: Issuing Parallel Tasks

In the SELSYN system, we support fork/join paraliclism by introducing a parallel
operation which can be used by the programmer to specifly that two function calls
(tasks) may be executed in parallel. Each task can be associated with a weight which

is used by the SELSYN mecchanism when it assigns processors to the tasks.

A new operator, parallel-function-call is introduced. It is represented as two

slashes, ‘//’. A typical parallel function call has heen presented in the example,

Figure 2.1 in section 2.1. In the example, the
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Figure 2.4: A overview of memory allocation

sum{a,l,midpoint, &sum left) // sum(a,midpoint+l,r,&sum right)

is a parallel-function-call. The operator *//’ indicates the two function calls

sum(a,l,midpoint, &sum_ left) and sum(a,midpoint+i,x,&sum right)

can be executed in parallel.

In general, there are the following two forms for paralilel function calls:

pllarg,args,...,argn)/[p2(args,args,...,argm)

pl{arg,,args,...,arg,)Queightl//p2(arg,,args,. .., argn,)Quweight2

14




The second type of parallel function call allows the programmer to add some in-
formation about the relative weights of the two procedure calls. These weighls can be
fixed constants, or they can be other expressions that are evaluated at run-lime to csti-
mate the relative importance(weight) of the two [unction calls pl(arg.,arga, ..., arg,)
and p2(arg,,args...,argym). The programmer may supply a wide variety of such
weight estimates. For example, the weight might be a function of the size of the
input to each call, or the weight might be a heuristic that is guiding a search. In both
forms of parallel [unction call, the return type is restricted to void. We give a nore

concrete example of using weights in Chapter 3.

In term of the C syntax, a parallel function call van occur anywhere thal an
ordinary procedure call of the form pl(arg,, erg,. .., arg,) may occur as a statement.

The weight expression is any primary expression allowable in C.

We can also use the sum() example, Figure 2.1, to illustrate the various variable
classifications. Note that it is only those variables whose addresses arc used in parallel
function calls that must be declared as shared, all others are declared as in ordinary
C programs. In our example the variables sum_left and sum_right were declared
as shared variables local to the function sum. These two variables have a lifetime
associated with the lifetime of a particular call to sum, and during that lifelime they
can be accessed by any processor to which the parallel recursive sub-Lasks may be
assigned. Also note that the parameter for array a[] corresponds to an address and

therefore the corresponding argument in a function calling sum must be declared as

shared.

2.5 Summary

SELSYN-C is an extension of the conventional imperative programming language, C.
It provides users a simple way to declare the parallelism explicitly. New keywords,
constructs and idioms are minimized for this purpose. In the next chapter, the SEL-

SYN mechanism, the run-time environment is introduced. This mechanism acts as

15



the support backbone of this language extension so that the parallel tasks can be

scheduled on larget machine efficiently and transparently for the users.
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Chapter 3

SELSYN Synchronization

Mechanism

In the previous chapter we have outlined our SELSYN-C parallel programming lan-
guage. However, as we discussed in the introduction, the definition of a parallel
language is not enough - we also need a way of effectively mapping the high-level
parallel programs onto real parallel machines. In order to solve this problem we have
developed the SELSYN scheduling mechanism that is based on processor-team model
and a new idea of processor team cooperation. Qur SELSYN-C compiler automat-
ically inserts all of the necessary synchronization needed to support this scheduling

mechanism, and thus the name of our language, SEL{-SYNchronizing C.

In this chapter we outline the motivation for our solution, introduce the notion
of processor teams and a dynamic strategy for dividing teams based on programmer-
specified weights, and then we discuss our solution for supporting processor tcam

cooperation. We end this chapter with a summary.
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3.1 Motivation

One possible implementation of parallel function calls is to use the traditional fork-join
model in which a parallel function call of the form £1() // £2() is handled by forking
the call £1() to a new processor and then joining again after the parallel function call.
This traditional fork-join model, however, faces two problems on most shared memory
multiprocessors, such as the BBN Butterfly. One is that the acquisition of a processor
is a very expensive proposition [BAD87]. If a heavy cost must be paid to acquire a
processor, the granularity of the work in a fork-join block must be very large if the code
is to run efficiently. The other is that there is no performance advantage in having
more runnable tasks than available processors. Instead, this situation represents a

performance liability, since the additional tasks imply increased scheduler overhead.

In order to overcome these problems, we introduce a Processor-Team mechanism
which has the ability to control the parallelism and the assignment of processors to

runnable tasks.

3.2 Processor-Team model

Instead of incurring the large penalty of acquiring processors as the program executes,
we have designed a mechanism that reduces processor acquisition costs through the
use of processor-teams. When a program starts to execute, it is assigned a team of
processors that will be available to handle new tasks as they become available through
the execution of parallel function calls. When a parallel function call such as £1()
// £2() is encountered, the team is divided into two independent sub-teams, one
sub-team will execute £1() and the other sub-team will execute £2(). This dividing
procedure can be applied repeatedly as the problem is recursively decomposed until
there is only one processor in each team.

Here is a trivial example to illustrate how the Processor-Team model works for

our language extension.
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shared int a, b;
int x, y;
main()

{

shared int ¢, g;

func_A(&g) // func_B(&c);
a=g+c;

}

When the execution encounters the parallel function call, func A() // funcB(),
the current team, which we assume has N processors on hand, is divided into two
subteams, each with N/2 processors. The first subteam will exccute unction func B
and the second team will execute function func_A. These two subteams will join
together once both of their tasks have been done, and then the stalementa = g + ¢

will be executed.

If there are paralle]l function calls within the function func A() or func B(),
the same Processor-Team dividing procedure will be applied until there is only one

processor left in the current team.

This simple team-dividing strategy! can be illustrated as Figure 3.1. In this figure,
the numbers enclosed in the symbols “[ ]” represent the team members. At the root
node (corresponding to initiating the main program), there is only one team consist-
ing of all processors which will take part in this computation (in this case processors
0 through 7). The main program begins executing on processor 0 and when a parallel
function call is encountered, the team is divided into two equal size subteams, one
subteam for each parallel function call. This dividing procedure continues for cach
parallel function call encountered until there is only one processor per team. When
there is only one processor in a team there can be no further subdividing and subse-
quent parallel function calls are executed sequentially. In this manner, the overhead
required to start up a new parallel task execution is only incurred when there are

processors available for the task.

1Similar strategies have been suggested by others including Brooks [Bro89] and Hendren [Hen90).
We give a comparison of our techniques and others in chapter 6.
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Figure 3.1: Team dividing

Note that in the processor-team model, the parallelism is exploited by rearranging
the processors. This is different than the traditional fork-join model where processors
are acquired as they are needed. In addition, since the sub-teams are independent
and controlled by different processors, the amount of contention and synchronization
is reduced. As we discuss in subsequent sections, this team-dividing strategy is a

crucial key in achieving the goals of high utilization and efficiency.

3.3 A Weighted Team-Division Strategy

As shown in Figure 3.1, a simple team-division strategy is to divide a team into two
equal size subteams. Although this strategy can be efficiently implemented and is
applicable to some types of programs, it has an obvious drawback. That is, if the
work load of two tasks is uneven, processor resources will be wasted. Thus, as outlined

in this subsection, we have developed the dynamic weighted team-division strategy.

Let us illustrate the problem of even team-division and our weighted team-division
solution with an example. Consider the following recursive divide-and-conquer func-
tion, foo().
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foo(argn)
{ if (base_case(argn))
/* process base case */

alsae
{ /* divide input into 2 components argl and arg2 */

/* solve the two sub-problems in parallel #*/
foo(argl) // foo(arg2);
)

¥

If the procedure foo() always splits the input problem into cqual sized picces such
that the time to solve foo(argl) and foo(arg2) is approximately the same, then
the even-team dividing mechanism is a good choice. However, if the size of argl and
arg?2 may vary widely, then the even-team mechanism will result in wasted processor
resources. Now recall that our parallel function call mechanism provides the pro-
grammer with a way of specifying a weight associated with each funclion call. Let
us assume that for this particular application, we know that the size of argt and the
size of arg2 may be quite different, and we know that the time complexity for foo()

can be approximated as O(n?) where n is the size of the input to foo.

Clearly, we would like to be able to express this application-specific knowledge
in our parallel program, and we would like our team-dividing mechanism to make
use of this information. We can encode our knowledge using weights in the parallel
function call. For example, we could change the line “foo(argl) // foo(arg2)” in

our initial program to the following:

{ int si = arg_size(argl), s2 = arg.size(arg2);
int weightl = sl * 81, weight2 = 82 * 82;
foo(argl)@weightl // foo(arg2)Oweight2;
}
Using this weight information available from the programmer, our weighted team-
division mechanism calculates the sizes of the sub-teams based on: (1) the number of

processors in the original team, and (2) the ratio of weight1 to weight2.? As illustrated

2If no weights are given, then the division defaults to the simple strategy of dividing the team
equally.
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by the example above, these weights may be dynamically evaluated at run-time and
arc provided by the programmer. The weights can be used to express any sort of
application specific information. In our example we illustrate one sort of information
- the expected time complexity with respect to the size of the input data. Other sorts

of weights may be constants, or even complex heuristics.

Comparing the simple evenly-divided team strategy with the dynamic weight-
divided team strategy, we can see that the evenly-divided strategy has less overhead
(no dynamic computation of weights), while the dynamic strategy may get higher
processor utilization and efficiency. We would also like to emphasize that this is
an example of how very simple language features can encode application specific
information that is very useful to the compiler. In sequential programs there is no
processor allocation to be done, and therefore no need to encode information about
relative weights of function calls. However, in parallel programs we can make good

use of this information which is often easily expressed by the programmer.

3.4 Team-Cooperation

Although the dynamic strategy leads to improved processor utilization, we still need
to deal with the problem of unbalanced work load distribution. This situation may
occur when the programmer has given no weight information, or when the weight
information does not always accurately predict the execution time. Thus, at run-
time we may find the situation whereby one team has only one processor and has
parallel tasks to be executed, while its sibling team may have one or more processors
that are idle with nothing to work on. This situation clearly causes wasted processor
resources, and we would like an inexpensive mechanism to help rebalancing the work

load when such a situation exists.
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3.4.1 Basic Principles

In this section, we introduce a new concept of team-cooperation as a mechanism
that further improves the processor-team model. This team-cooperation is used in
the situation when one sub-team has processors idle and at the same time the other

sub-team has run out of processors and has more parallelism that can be exploited.

In order to explain our team-cooperation mechanism, we introduce the following

concepts:

Team: A collection of processors. If there is more than one processor, the team can
be divided into two sub-teams that work on independent parallel tasks. For
example, in Figure 3.1, at the beginning there is only one team, team [0 - 7],
and then this team is subdivided into two sub-teams, team [0 - 3] and team [4

1),

Sibling Team: When a team is divided into two sub-teams, each sub-tcam is the
sibling team of the other. For example, in Figure 3.1, the team [0 - 3] and the
team [4 - 7] are the sibling teams of each other.

Leading processor: The processor which has the lowest processor number in a
team. This is the only processor which can issue the parallel tasks. In Fig-
ure 3.1, the number inside the nodes represent the leading processors. If the
team has only one processor, the single processor is the leading processor. As

shown at the bottom of the Figure 3.1, such 1-processor teams will always be
at the leaves of the team-tree.

Task Stack: A stack which keeps the information of the team-dividing and task

status. Each team, which has more than one processor, has a task stack.
Task Pool: A pool may contain waiting tasks. It keeps the status of the tasks. Each
processor team has a task pool.
As described previously, the basic program execution model is that of team-

dividing. This can be summarized as follows. A procedure starts to run sequentially
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on the leading processor of its allocated team. When the execution of the procedure
encounters a parallel function call, the team is divided into two sub-teams with the
leading processors of these two sub-teams continuing on with the individual tasks
as specified in the parallel function call. When both tasks have completed, the two
sub-teams are joined and execution continues. In the case that a team has only
one processor, instead of team-dividing, the parallel function calls will be executed

sequentially on the current processor.

By introducing the team-cooperation, we change this basic execution model for
the case in which a team has only one processor. In the new model, team-cooperation
is carried out between the leading processors of the sibling teams. This cooperation is
done for the situation in which a team has only one processor, but has encountered a
parallel function call that provides a new parallel task. In the previous simple model,
a l-processor team running on leading processor P simply executes the two parallel
tasks sequentially. However, in the team-cooperation model, processor P takes one
task to perform itself, and puts a concise description of the other task on its own task
pool (if the pool is not full). This task is now available to processor P’s sibling team,
If the leading processor of P’s sibling team, call it P,;, finds itself idle waiting for P
to complete, then it will look in P’s task pool to see if there is a task to steal. If such
a task exists then P, steals it from P’s pool and executes the task. Note that the
stolen task may execute new parallel function calls, and if the team associated with
P,;; has more than 1 processor, then the stolen task will be further sub-divided and

executed on sub-teams associated with P,;.

When P finishes its first task, it checks to see if the other task has been “stolen”
by its sibling team’s leading processor. If the task remains (the sibling team was
always busy with its own tasks), P will take back the task and execute it. Otherwise,
P can deduce that P,;;, has stolen the task, and perhaps has generated more subtasks.
Thus, P checks the task pool of P,; to see if it can steal a sub-task back.

Thus, we can rummarize the team-cooperation mechanism as follows:

Entering a parallel function call f1()ew1 // £2()qw2:
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CASE 1 - The current team has more than one processor: Uscthe ra-
tio of the weights to sub-divide the current team into two sub-teams, 7

and T2. The leading processor for 7 executes £2() and the leading pro-
cessor for T5 executes £1().

CASE 2 - The current team has only one processor, call it P: 1f there
is no room on the task pool, execute functions £1() and £2() sequentially.
Otherwise, put a concise descriptor of the call £1() on s task pool, and
execute £2(). After £2() has completed, check Lo see if the task for £1()
has been stolen. If it has not been stolen, then execute £1(). If the task
has been stolen, then its sibling team may still be working on the task,

and P will look in Py's task pool to try and steal back a sub-task.

Exiting a parallel function call f1()ew1 // f2()ow2:

When the leading processor that was given the task for £1() f{inishes, then
it must wait for the team with £2() Lo finish before control can move to the
statement following the call £1()Qwl // £2()Qw2. llowever, rather Lthan just
waiting idly, it performs the Team-Cooperation to reduce the processor stall

time. This waiting scheme also has two diffcrent cases.

CASE 1 - Team-Waiting: For a team which has more than one processor,
when a leading processor has finished a task, it must synchronize with its
sibling team before control can be given to the statement following the
parallel function call. It checks the task pool of the leading processor of

its sibling team for a task that can be stolen. If such a task exists, it steals

and executes the task.

CASE 2 - Pool-Waiting: For a team which has only one processor, when the
leading processor has finished a task, it must synchronize with the team
which stole the task (£1() in this example) from its task pool, so that the
control can be given to the statement following the parallel function call,
It checks the task pool of the leading processor of the team that stole the
task. If such a task exists, then it must be a sub-task of the task it is

waiting for, so it steals the sub-task back and executes the task.
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We can express our divide-and-conquer strategy as illustrated in Figure 3.2. Each
triangle represents a task. The triangle 1can bedivided into two triangles, triangle
1.1 and triangle 1.2. The same division can be applied to triangle 1.1 and
triangle 1.2 and so on. A stolen task must be a sub-triangle of a larger enclosing
triangle. For example, if task 1 is running on a l-processor team P, then the task
1.1 would be put on P’s task pool. P’s sibling team may steal task 1.1 and in turn
put task 1.1.1 on its task pool. This means that P may steal back task 1.1.1 and

50 on.

Figure 3.2: Divide-and-conquer call graph

Let’s take a trivial example again,

shared int a, b;
int x, y;
main()

{

shared int c, g;

func_A(&g)0x // func_B(&c)Qy;
a=g + c;

}

func_B(j)

int *j

{

func_CQ) // func_DO);
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In this example, there is a parallel function call fune C()} // funcD() in the
func B(). Assume the program has a total of 2 processors and the execution time
of func A() is less than that of func B(), and the execution time of func C() is
less than that of funcD(). Figure 3.3 and Figure 3.4 illustrate the execution of the
example. In these two figures, d indicates that the task is finished, e indicates that

the task is being executed, and w indicates that the task is waiting on task pool.

At first Processor 0 and Processor 1 are assigned as one team, team [0 - 1], to the
program. The program runs initially on the leading processor, Processor 0, of this
team. The following description summaries the exccution of the program starting at

the first parallel function call in main().

Step(1) (Figure 3.3): When execution of the program reaches the parallel function
call,

func A(&g)0x // funcB(&c)Qy,

it put these two tasks on the task stack of tcam [0 - 1]. The tcam is divided
into two sub-teams which are led by Processor 0 and Processor 1 respectively.

These two sub-teams run func B() and func.A() independently.

Step(2) (Figure 3.3): While team {1} is running func A(), team [0] encounters
another parallel function call func.C() // func.D(). At this time, there are
no more processors to be divided into two sub-teams, and one task (func_C())

has to be put on the task pool of team [0] for waiting while the other task
func D() is left running on team [0].

Step (3) (Figure 3.3): At this point, team [1] has done its own task and is waiting

for joining with its sibling team which still has a task on hand to run.
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Figure 3.3: Execution of example (Part 1)
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Figure 3.4: Execution of example (Part 2)
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Step (4) (Figure 3.3): This figure shows the team-cooperation between these two
sibling teams. Team [1] steals the task which is waiting on the task pool of
team [0].

Step (5) (Figure 3.4): At this point, team [0] has finished its own task func D()
and is waiting for joining with team [1). There are no waiting tasks on the task

pool of team [1].

Step (6) (Figure 3.4): At this point, func_C() has been completed by team [1].

Team [1] is waiting for team [0] to join into the original team, team {0 - 1].

Step (7) (Figure 3.4): After finishing the parallel function call
func C() // funcD(),

team [0] continues on the execution remaining in func.B(). Team [1] is waiting

for joining.

Stem (8) (Figure 3.4): Finally both team {0] and team [1] have encountered the
join point. A team-join will take place. And after this team-join action, the

statement a = g + c left in main() will be executed on the leading processor
of team [0 - 1].

From this example we can see the ability of the team-cooperation to rebalance
work loads between teams so that high utilization of processors can be achieved. The
following figure, Figure 3.5, presents the situation when the original team has three
processors. We can see that the task stack is used when there is a team-dividing in a
team, and the task pool is used only for the one processor team. Similar figures can
be developed for the situation when a team has more processors. The implementation
of the task stack and task pool is discussed in chapter 5. More different cases can be
found in Appendix A. The reader can refer to them for detailed case studies on how

team-dividing and team-cooperation can work together on these cases.
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Figure 3.5: A more general example
3.5 Summary

In this chapter we have addressed our solution to the problem of scheduling tasks. In

developing our approach we considered the following desirable requirements:

1. processor allocation should be inexpensive,
2. parallelism should be controlled so that scheduling overhead is reduced,

3. processors should work relatively independently in order to reduce contention
for locks and minimize synchronization, and

4. a limited form of task redistribution should be incorporated to allow load bal-
ancing.
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To achieve the first three requirements we introduced the notion of teams of pro-
cessors and team-dividing strategies that can make use of user-supplied weights. To

achieve the fourth requirement we introduced the idea of team cooperation.

We have chosen the Processor-Team model to reduce the overhead of the acquisi-
tion of a processor. Different team-dividing strategies have been presented. A team-
cooperation has been introduced to enhance the performance of the Processor-Team
model. For our SELSYN system, the dynamic team-dividing strategy combining with
the team-cooperation was chosen. We call this mechanism the Cooperating-Team
mechanism. Accordingly, the static team-dividing is called Even-Team mechanism,
and the dynamic team-dividing is called Weighted-Team mechanism. In order to
further study these mechanisms, we have done several test experiments using these
mechanisms on the BBN Butterfly GP-1000. The test results proved again that
Cooperating-Team mechanism has the best performance among the three mecha-

nisms. In the next chapter we present the details of these test results.
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Chapter 4

Experimental Results

In this chapter, we present the performance figures for the three scheduling strategies
which have been described in the previous chapter. For the purposes of this chapter

we consider the following scheduling strategies:

Even-Team: Divide each team into two equal sized sub-teams. When there is only

1 processor in a team, execute parallel funetion calls sequentially.

Weighted-Team: Divide each team according to the ratio of weights as indicated
by the programmer. When there is only 1 processor in a team, execute parallel

function calls sequentially.

Cooperating-Team: Divide each team according to weights, assume the weights
are equal if no weights are provided. When there is only 1 processor in a team,

use the Team-Cooperation mechanism outlined in section 3.4.

Performance figures reported in this chapter were achieved on the BBN Butterfly
GP-1000 parallel processor. The test programs include small illustrative programs

and larger programs that are more similar to real applications.
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4.1 Butterfly Memory Organization

The architecture of the BBN Butterfly parallel processor is a Shared-Memory /
Omecga-Switch model. As illustrated in Chapter 2 in Figure 2.2, the BBN Butterfly
is a loosely coupled system in which each processor is paired with its own memory
module. This memory organization makes all memory local but globally accessible
through the switch at some penalty in access time. All processor cards are identical
and independent and are connected together by a network interconnection system,
called the Butterfly Switch, which handles the data transfers from one memory mod-
ule to another. The timing information for the memory access is given in Figure
4.1 [BBN89). Note that the time for a global access is considerably more than for
a local access. Also because of switch contention, this penalty access time may be
considerably worse at run {ime depending on the data traffic between the processors.

We will show this effect with some of our results presented in the next sections.

Global Local Global/
B (microseconds) | (microseconds) | Local
[ Read 8.12 122 6.7 |
Write 3.52 0.81 4.3

Figure 4.1: BBN memory access time

4.2 Experimental Approach

We have selected four different programs as our benchmarks. They vary from larger
programs to small programs that were designed to test specific characteristics of the
scheduling mechanisms. They include,

1. Parallel quick sort.

2. An illustrative program to do computation on the nodes of a binary tree.

34



3. An example that computes an approximation for the integral of a function.

4. A 4x4 puzzle search program.

We applied our three mechanisms, which are described in previous sections, to
each benchmark. Each mechanism was tested on varying numbers of processors, and
each mechanism was tested ten times on every processor configuration to get the
average performance. In order to compare the performance of the three mechanisms,
we generated the same test cases for each test benchmark. From the experimental
results, which are presented in following sections, we can see the different ability of

the three mechanisms to deal with a variety of work load distributions.

4.3 Example 1: Quicksort

The first experiment we performed was with parallel quicksort. Quicksort manipulates
a list. It first divides the input list into three parts, where the first part contains
elements less than the pivot value (called P), the second part contains the elements
equal to P, while the elements greater than P fall into the third part. Note that
the first part and the third part of this list can be quicksorted independently. Thus,
we can simply specify that these two executions may execute in parallel. The basic

sequential algorithm can be shown in pseudo-code as follows,

quick-sort(head)
{
if (length(head) > 1) {
partitionChead, &partl, &part2, &part3);
/* using first element, part3, as pivot */

quick-sort(parti);
quick-sort(part3);
combine-lists(parti, part2, part3);
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Our parallel version will be

quick-sort(head)
{
if (length(head) > 1) {
partition(head, &partl, &part2, &part3);
/* uging first element, part3, as pivot */
quick-sort(part1)@(length(parti))
// quick-sort(part3)@(length(part3));
/* sort part 1 and part 3 in parallel */

combine-lists(partl, part2, part3);

In terms of testing our scheduling mechanisms, the important characteristic of
this parallel quicksort is that the work load of these two executions may be quite

different. For example, consider the following input list:

32110023 133589103127 9 30

After partition(), it will be divided into the following three parts,

Part 1: 2 1
Part 2: 3 3
Part 3: 100 23 13 356 8 9 10 12 7 9 30
Now we can see that part 1 and part 3 have 2 elements and 11 elements that
need to be sorted respectively. This unevenness of the partitioning step tests the

ability of our mechanisms to deal with an unbalanced work load distribution which

is unpredictable at compile-time.
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In Figure 4.2, we present the result of sorting 8192 clements. The x-axis represents
the number of processors, while the y-axis represents execution time in machine ticks
(one tick equals to 62.5 microseconds[BBN89].). The dotied line represents the perfor-
mance of the Even-Team mechanism, the dashed line represents the Weighted-Team
mechanism and the stippled line represents the Cooperating-Team mechanism. As
we have described in previous sections, the Weighted-Team and Cooperating-Team
mechanisms have weights associated with each paralle] task. In this experiment, for

the Weighted-Team and Cooperating-Team mechanisius, the weight of the task is

. chosen as the number of the elements it will sort.
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-

1 2 3 4 5 6 7 8 9 10 1" 12
Processors
Figure 4.2: Quicksort: 8192 elements (10 cases)

Comparing the three performance lines, we can see that if the number of processors
is greater or equal to 2, the Cooperating-Team gets the best performance. When
there are more than 2 processors, the Weighted-Team is in the second position and
the Even-Team is the worst. Figure 4.3 summarizes the relative performance among

the three mechanisms running on six processors.
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Time Speedup
( x10%ticks) | (compared to Even-Team)

—

Even-Team 32 1.00
Weighted-Team 25 : 1.28
Cooperating-Team 23 1.39

Figure 4.3: Relative performance on six processors

Running the Even-Team on one processor is equivalent to running the sequential
program. That is, the Even-Team miechanism immediately resorts to tue sequential
computation when only one processor is available. However, the Weighted-Team and
the Cooperating-Team mechanisms have some amount of overhead, even if only one
processor is available. From the three performances for the one processor case, we
can determine the overhead of the Weighted-Team and the Cooperating-Team mech-
anisms by comparing them with the Even-Team case. Even though the overhead is
significant, we can see the benefits of the more expensive mechanism for all cases with
more than one processor. Even the worst case, on 11 processors, the Cooperating-

Team still can get a 1.3 speedup when compared to the Even-Team.

In the previous quicksort experiment, we used the number of elements to be sorted
to predict the work load. In order to test the effectiveness of the Cooperating-Team
mechanism for the cases where the workload cannot be predicted, we experimented
with setting the weights of the two parallel calls to be equal. This experiment is shown
as bold line in Figure 4.4. Let us first compare the Cooperating-Team mechanism
with predicted workloads, the stippled line, and the Cooperating-Team mechanism
with workloads artificially set to be equal, the bold line. As expected, the stippled
line shows better performance than the bold line. However, we can see that the
Cooperating-Team mechanism adapts to wrongly predicted workloads and outper-
forms the Even-Team mechanism in all cases by comparing the bold line with the
dotted line. For the two to six processors cases it even outperforms the Weighted-

Team mechanism that has correctly predicted workloads.
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Figure 4.4: Quicksort: 4096 elements (10 cases)

In order to get more precise test results for these mechanisms, in some cases we
repeated the experiment more than 10 times. I'igure 4.5 presents the average results
which are obtained by testing 100 random lists, where each list has 4096 elements. In
this figure, the curve Cooperating-Team(1), the bold line, represents the test when we
forced the weights to be equal for the Cooperating-Team mechanism. Comparing this
Figure 4.4 to Figure 4.5, we can see the similar shape of these performance curves.

This demonstrates the stability of these mechanisms.

The results of these experiments show that the Cooperating-Team has its best
relative performance when the number of processors is around four. It also shows
that the Cooperating-Team mechanism does have the ability to balance the work
load a,moﬁg processors so that the total execution time can be reduced. Figure 4.6

shows the relative performance on four processors derived from Figure 4.5.
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Figure 4.5: Quicksort: 4096 elements (100 cases)

Time Speedup
( x10%ticks) | (compared to Even-Team) }
e Team T
Weighted-Team 19 1.11
Cooperating-Team 14 1.50
Cooperating-Team(1) 16 1.31

Figure 4.6: Relative performance on four processors

4.4 Example 2: Binary Tree Evaluation

The test results presented in this section are achieved by evaluating random binary
expression trees, as shown in Figure 4.7. The leaf nodes contain random numbers
and the internal nodes contain the operation codes and space to store intermediate
results. In addition each node contains the size of its subtree.
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ppcodd value

ppcode | value ppcode | value

/ N\ / \
leaf | value leaf | value leaf | value leaf | value
null | null null | null null | null null  {null

Figure 4.7 A sample binary expression trec

The program recursively evaluates through this tree and returns the value calcu-

lated to the root. The parallel psecudo-code is as follows,

eval(root)
{
if (root != leaf) {
eval {root->leftchild)@root~>leftchild.size
// eval(root->rightchild)Q@root->rightchild.size;

/* according to the root->opcode, perform the operation
on root->left->value and root->right->value
and store in root->value */

}

return;

)

Figure 4.8 shows the result on a randomly generated tree with 20000 nodes. In
this experiment, the weight chosen for the Weighted-Team and Cooperating-Team
mechanisms is according to the number of nodes in the sub-tree being evaluated.

Clearly, the Cooperating-Team and Weighted-Team take the advantage of this weight
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information. In cvery case for two or more processors, the Weighted-Team mechanism
outperforms the Even-Team mechanism. By examing the results for the one processor
case, we can obscrve the overhead for the Cooperating-Team mechanism. Although
this overhead is large, the Cooperating-Team outperforms both the Even-Team and
the Weighted-Team once it gets more than one processor and it shows very strong
rebalancing potential on the four processor case. For this case, the Cooperating-Team

shows a 1.93 speedup over the Even-Team and a 1.50 speedup over the Weighted-

Time (x1000 ticks)

Team.
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A VO e = = Welghted-Team
. . =+ =/ Cooperating-Team
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Processors
Figure 4.8: Random binary tree evaluation: 20000 nodes

The tree the program evaluates in the previous experiment is a random tree and

~ therefore not balanced. What will the performance be if it is a balanced tree? In
the other words, how do our mechanisms face a balanced work load? To answer this
question, we tested our mechanism on a balanced binary tree which also has 20000
nodes. The performance results for this balanced tree test are presented in Figure 4.9.

For this experiment, every mechanism gets the precise information for team dividing,
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Since it is a balanced tree, the Weighted-Team mechanism loses its advantage. I'he
performance of the Even-Team and the Weighted-Team mechanism are almost the
same. We can hardly distinguish them in the Figure 4.9, The Cooperating-Team
also lost its advantage of rebalancing ability. The performance shape of Cooperating-
Team is very similar to the other two mechanisms’ performance shapes and the small

gap between them represents the overhead of the Cooperating-Team mechanisin,

Foered + Even-Team
e o= =y Welghted-Team
A =+ =/ Cooperaling-Team

1 2 3 4 § 6 7 8 9 10 11 12 13 14 15 16

Processors
Figure 4.9: Balanced binary tree evaluation: 20000 nodes

Although in the previous experiments the tree sizes are fairly large, the compu-
tation load of each task is rather small. In the next experiment, we put a delay loop
at each evaluation step so that we can examine the performance for a heavier com-
putation load. The result of this test is given in Figure 4.10. For this experiment,
we can see the shape of the figure is still as we would expect. However, some advan-
tages of the Cooperating-Team mechanism becomes more obvious. In the previous
binary experiments, we gave the times only for 1, 2, 4, 8 and 16 processors. In this

experiment, we have data points for all processor numbers from 1 processor to 28
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processors. As we can see, the stippled line, which represents the Cooperating-Team
performance, declines smoothly as the number of processors is increased. However the
Even-Team has a step-like curve which changes radically when we double the number
of processors. Thus in many cases, the Even-Team can not get any performance im-
provement from adding more processors. This is because the Even-Team mechanism
always divides the team into equal sub-teams. But if the size of a team is not an aven
number, onc sub-team will be smaller and since there is no rebalancing ability, the
speed is limited by the speed of the speed of the smaller tcam. Thus because of the
unbalanced work load, the Even-Team can not rebalance the distribution even though
it does get more {ree processors on hand. However, because of the rebalancing abil-
ity, the Cooperating-Team mechanism always gets performance improvement when
it gets more processors. The Weighted-Team, on the other hand, can get improved
performance in most cases because of the accurate work load prediction. But it gets
slightly worse performance once there are more than 14 processors take part in the
computation. That is because that the memory contention becomes the major fac-
tor affecting the performance when the number of processors is increased to certain
extent. By contrast, the Cooperating-Team has the rebalancing ability to distribute

the work when memory contention causes unbalanced work load.

We have presented the memory accessing information in Figure 4.1 in the pre-
vious section. To reduce the effect of memory access contention, in previous test
experiments, we allocated the data on all processors of the system, even though the
experimental program may not use all of these processors. In next two binary tree
evaluation experiments, we restrict the data allocation to the processors which the
tests will use. For example, when testing the program on 2 processors, half the tree
nodes will be allocated on processor 1 and half on processor 2. In Figure 4.11, a very
obvious phenomenon that can be noticed is that the Weighted-Team and the Even-
Team mechanism get worse performance on two processors than on one processor.
This degradation in performance occurs because the 2-processor case has non-local
memory accesses while the 1-processor case makes only local memory access. The

other factor that causes this degradation is the processor resource waste. Because
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Figure 4.10: Random binary tree evaluation with delay loop: 20000 nodcs

of the uneven work load distribution, the Even-Team and Weighted-Team mecha-
nisms can waste processor resources on the 2-processor case. Thus, tne paraliclism
on 2-processors is not enough to offset memory access contention between processors
and the access penalty of the remote memory access. By contrast, because of the
rebalancing ability of the Cooperating-Team mechanism, it still can get better per-
formance on 2 processors compared to its performance on 1 processor. Comparing
to Figure 4.8, we can find that in the one processor case, the performances in the
Figure 4.8 are worse than that in the Figure 4.11. This is because in the former ex-
periment, the data is scattered on all of the processors of the system so that there are
more remote memory accesses. On the other hand, as we add more processors, the
memory contention becomes the major faclor affecting the performance. We can see
once there are more than four processors, the performances in the Figure 4.8 become
better than that in the Figure 4.11. A similar situation also happens for the balanced

binary tree evaluation. We can conclude this by comparing Figure 4.9 and Figure
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Figure 4.11: Random binary tree evaluation: 20000 nodes

Comparing Figure 4.11 and Figure 4.12, several observations can be made. The
first one is for the 2-processor case. In both figures, the Even-Team mechanism
and the Weighted-Team mechanism get worse performances on 2-processor than that
on l-processor. However in Figure 4.11, the performances difference is much more
pronounced. This is because the experiment performed in Figure 4.12 was on balanced
trees and therefore the workload is well predicted, the Even-Team and the Weighted-
Team mechanisms are only affected by remote memory access and memory contention
and not affected by wasted processor resources. Secondly, because of the balanced
trees, we can find in Figure 4.12 that the performances of all the mechanisms are
quite close, and the Cooperating-Team mechanism keeps almost the same shape in

both figures.
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Figure 4.12: Balanced binary tree evaluation: 20000 nodes

To study this situation further, we performed scveral other experiments Lo com-
pare performances under different test environments, In order to get the performance
of dealing with small work load as well, we chose a small tree size, 1023 nodes in
total, to do our experiments. First let’s see the performances on a random tree. The
performances shown in Figure 4.13 was measured without a delay loop, while Figure

4.14 was measured with a delay loop added in each task.

In Figure 4.13, we can see that because the tree is unbalanced, the Weighted-
Team mechanism is better than the Even-Team mechanism. But because of increasing
memory contention for cooperation and the small size of the tasks, the performance of
the Cooperating-Team mechanism becomes worse than that of the Weighted-Team,
if more than 6 processors take part in the execution. In Figure 4.14, we added

a delay loop to each task. With this increased workload in each task, we sce an
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Figure 4.13: Random binary tree evaluation: 1023 nodes

even larger difference between the performances of the Even-Team and the Weighted-
Team mechanisms. The Weighted-Team shows a larger advantage now because the
overhead for synchronization and contention is relatively small when the work load is
large. Also note that with larger work load, the Cooperating-Team provides the best
performance. Figure 4.15 presents the relative speedup results for the experiment

with delay loop.

Figure 4.16 presents the result of evaluation a balanced tree with a delay loop. As
expected, the Weighted-Team loses its advantage. The Cooperating-Team still keeps
the best performance, but its advantage is minor becausc the work load is balanced

and the is not much need for Team-Cooperation.
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Time Speedup
( x10%ticks) | (compared to Even-Team)
Even-Team 12 1.00
Weighted-Team 59 2.03
Cooperating-Team 4.8 2.50

Figure 4.15: Relative performance on six processors

4.5 Example 3: Quadrature

In the Quicksort and Binary tree evaluation examples, the computation load was not
too heavy, but the problem size was quite large. In this section, we present a smaller
application, the computation of an approximation for the integral of a function. The

program attempts to produce an approximation that falls within an error tolerance
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Figure 4.16: Balanced binary tree evaluation: 1023 nodes

specified by the user.

The technique, which we used to compute an approximation of an integral over

an area, is called Simpson’s rule [CC80] and amounts to computing the value of

flz) + 4f(zm) + f(zr)
6

where z; is the left boundary, z, is the right boundary, and z,, is the midpoint.

To get the approximation within the desired tolerance, we divide the interval at the
midpoint, use Simposn’s rule again to compute approximations for each half, add the
two results together, and check the sum to see how close the cruder approximation
is to the more refined computation. If the two values are “close enough”, that is,
the difference is less than the allowable difference specified by user, we take the sum,
which is the more accurate value we hope, and call it our approximation. On the other

hand, if the difference exceeds the specified tolerance, we recursively integrate each
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half of the interval, add the two results, and called the sum the desired approximation.

The parallel program can be easily written as follows,

evaluate(integral, start, end)
float *integral, start, end;
{
compute approximations;
if ( not close enough ) {
evaluate(&left_integral, start, (start+end)/2)
// evaluate(&vight_integral, (start+end)/2, end);
*integral = left->integral + right->integral;
} else {
*integral = sum of approximations;
}
)

The function that was integrated in our experiments follows,
f(z) = sin(4 * arctan(1) * 2)¥/ factor(y)

Jactor(y) = factor(ly/2]) * (1 — (05/y/2)))
where factor(0) =1,y = 30.

The performance curves are shown in Figure 4.17. Since in this example, the work
load is almost balanced, we can see the Weighted-Team mechanism lost its advantage
compared to the Even-Team mechanism, while the Cooperating-Team still keeps a

little bit better performance than original one.

The other point we can get from this figure is that the performance of the three
mechanisms is fairly close. One reason we have mentioned above is that the work

load is balanced. The other reason is that the computation is a small part of each
parallel task.
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Figure 4.17: Quadrature

4.6 Example 4: Parallel Search

Search is one of the most important techniques in artificial intelligence area. Since it
involves the creation and manipulation of trees, it can frequently take advantage of

multiple processors.

For our test, we chose a 4 by 4 puzzle search application. By giving an initial
pattern and a goal pattern, the program attempts to find the solution paths which
can transform initial pattern into goal pattern. There are a number of ways to do
a search. The method we used is the bound-first search method. The programs
searches the nodes which can be generated within the cost bound. If within the
current cost bound, no solution can be found, the cost bound is increased and the
search is restarted. This process is iterated until a goal is found. This parallel search
manipulates a search tree, where each node has at most three children. We now come

to the issue of how exactly such a tree should be represented during execution of the

52



¢ 3

bt

program. We have chosen an approach (“symmetric list”) that gencralizes casily to
trees in which each node can have any number of children. In the data for cach node

we include a pointer to

its parent node
its first child
its sibling

Thus, we can represent the search tree shown in Figure 4.18 with the binary scarch

tree shown in Figure 4.19.

1.3

1.3.1 1.3.2 133

Figure 4.18: Search tree

12 |

-r

1.1.1 =t 1.12 F*t 1.1.3 1.2.1 =122 1.2.3 1.3.1 =132 o 133

Figure 4.19: Binary search tree
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Using this binary tree representation, the parallel scarch program can be described

as follows,

search(root)
{
if ( goal has been already found ) {
return;
} else {
if (root->state == goal ) {
output the solution path;
return;
} else {
if ( satisfy the search bound ) {

generate children nodes;

}
if ( there is child node to be searched ) {
search(root->firstchild)//search(root->sibling);

1

Figure 4.20 shows the test result by applying the Even-Team mechanism and
the Cooperating-Team mechanism to this program. We can see a very impressive
performance achieved by the Cooperating-Team mechanism. The Cooperating-Team
mechanism gets 1.56 speedup over the Even-Team mechanism on 4 processors. On

more than 4 processors, it keeps a 1.3 speedup.

We note very little speedup for cases when there are more than 5 processors.
This is because that we are looking for only one of many possible solutions. Thus,
by searching for solutions in parallel one generates extra tasks that have performed
extra or speculative work over what would be required for a sequential search. As

the number of processors is increased this amount of wasted work also increases. To
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Figure 4.20: Searching: find one possible solution

compare the performance more precisely, we modified the program so that it searches
for all possible solutions within the cost bound. This result is shown in Figure 4.21.
For this case, both performances improve as the number of processors increases. In

addition, the Cooperating-Team gets a 2.48 speedup over the Even-Tcam mechanism

for the 16 processors case.

In our previous parallel search experiments, all the weights were chosen equally.
However, in order to take more advantage of our Cooperating-Team mechanism, the
user could adjust the weight which is associated with each task, so that the most
hopeful search branch can be assigned more processors. Although there are many

strategies for searching, our mechanism can balance the work load so that the per-

formance may be improved further.
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Figure 4.21: Searching: find all possible solutions

4.7 Summary

In the previous sections, we reported our experimental results. The first experiment
we performed was parallel quicksort. Different cases have been tested, including the
cases of different problem sizes, different item lists, and including the cases in which
we artificially gave the wrong weight information to predict the work load. The results

show the strong rebalancing ability of the Cooperating-Team mechanism.

The experiment of evaluating binary trees focuses on studying the factors which
affect parallel performance. These factors include memory locality, memory con-
tention, task size, processor resources and so on. The Cooperating-Team mechanism

achieves the best performance in most situations.

A fairly small experiment we performed was to compute an approximation for the

integral of a function. The last experiment is the parallel search. Both of them show
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some advantages of the Cooperating-Team mechanism.

From these expermental results on the BBN Butterfly GI-1000, we can summarize

the factors that affect the self-scheduling mechanism. They are,

Parallelism: This factor is the base factor of a parallel program. Without paral-
lelism, the program cannot take any wdvantage of parallel processor’s capabil-
ities, and all of the three mechanisms achieve poor performance when there is

not enough available parallelism.

Memory locality: In many parallel architectures, memory access time is a heavy
overhead compared to computation. This is true for a machine like the BBN
Butterfly GP-1000, it’s better to access local memory rather than non-local
memory. The locality effect can be noticed by comparing the performances
between the tests which allocate data on only Lhe processors il uses and the
tests which allocate data on all of the processors of the system. This factor

affects the performance of every scheduling mechanism.

4
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Memory contention: When a computation performs many non-local memory ac-

cess we see a performance degradation due to switch contention and memory
contention. In sorme cases we see that memory locality and memory conteution
interact. That is, sometimes we can reduce the effect of memory contention by
spreading out the data on more processors. In addition, memory contention
may also cause some unexpected changes in load halancing. Our experimental
results indicate that in these cases the Cooperating-Tcam mechanism is able to
rebalance the workload and therefore avoids some of the performance degrada-

tion due to memory contention.

Granularity control: Due to the overhead of the imechanism itself, a program neceds

to control the granularity of parallelism to get better performance. Comparing
the performances of the test cases of different problem sizes, we can observe
that this is significant. Due to the increased overhiead of the Cooperaling-
Tearn mechanism, larger scale tasks are more suitable for the Cooperating-Team

mechanism.
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Parallelism control: The importance of parallelism control has been shown by the
superior performance of the Cooperating-Team mechanism. The Cooperating-
"Team mechanism controls parallelism and takes more advantage of the parallel
processor. [ach of the three mechanisms has adopted a parallelism control
scheme. The Jiven-Team mechanism and the Weighted-Team mechanism con-
trol the parallelism by executing the parallel tasks sequentially, when there is
only one processor in a team. However, in the same situation, the Cooperating-
Team mechanism would put one task on its pool for waiting, executing the
other task first. If within this execution period, some processor becomes [ree, it
steals Lhis lask, otherwise, the current team take it back to execute. Thus, the
Cooperating-Team mechanism gives more opportunity to make use of the {ree

Processors.

Other overhead: This overhead may be due to the system itself, such as process
crealion overhead, memory allocation overhead, ete. This overhead can be no-
ticed by comparing the performances which were achieved on one processor with
those on more than one processor. The results showed that the Cooperating-

Tean mechanism has more overhead than the others.

The experimental results which were presented in previous sections, demonstrate
that our Cooperating-Team self-scheduling mechanism has a better performance in
general, especially in adjusting to unbalanced work load. It gives users a general
balanced execution eavironment to develop applications based upon the divide-and-

conquer concept.
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Chapter 5

Implementation

In this chapter, we present an overview of the SELSYN implementation. 'T'his chapter
is organized as follows, we first give a structural overview of the compiler. Following
that, two parts of our compiler, the parser and the code generator are presented. The

code generation part also includes a description of the implementation details of the

run-time environment.

5.1 Overview of the Compiler

The implementation of SELSYN-C has two integrated parts: a source-to-source com-
piler, and a run-time environment. The source-to-source compiler functions as a
front-end in the system. The back-end is the high-level compiler of the targel ma-
chine. Linked with the run-time environment implemented on the target machine,

the output object code can run directly on that machine. Figure 5.1 illustrates the

structural overview of the implementation.

The source-to-source compiler performs two functions, The first [unction is parsing
the SELSYN-C source code and constructing the internal representation. The other
function is high-level source code generation for the targel machine. Theses two

{functions are independent of each other. The interface between them is the internal
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Source Code In SELSYN-C

|
Creation of AST Source
To
AST Source
Compiler
Source Code Generation

‘I
Source Code FoITargct Machine

Target Machine Compiler

Objcct*vlodulc M

Executable Program

Figure 5.1: Structure overview

representation of the source program. We now introduce the construction of the

internal representation.

5.2 Constructing the Internal Representation

We chose the GNC C compiler, GNU CC?, as our work base. Therc are two reasons
for this choice. Oue reason is that GUN CC is free to modify. The other reason
is that the GNU CC adopts the AST ( Abstract Syntax Tree) as an intermediate
representation, which can retain the structure of the program, as its intermediate

representation for carrying out high-level compiler optimizations.

!Copyright {C) 1988 Free Software Foundation, Inc.
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We have used a modified version of the parser from GNU CC as the front-end of
our compiler. Rather than only using AS'T' to retain the structure of the program
only up to statement level as original GNU CC does, we need to keep the structure of
the entire program, by creating a complete AS'T for the program. This work has been
done by Sridharan [Sri91]. Based on this compiete AST, many transformation can be
carried out on it, such as code transformation?. In addition to keep Lthe support for
original C language, we make use of this complete AST to contain the information

which is supported by our language extensions,

The first modification we performed was Lo supporl. the shared storage declaration.
A new key word, SHARED is adopted in our langnage extension. In order to suppori,
it, the reserved keywords hash table has been modified. The GNU C cotnpiler, like
many other compilers, uses a hash table to handle keywords. llowever, the order of
keywords in its hash table has been chosen for perfect hashing. "This is achieved by
using a program called “gperf”, which is a separate part of the GNU C compiler.
According to our language extensions, we modified the data file which contains all of

the keywords of C language, then generated a new hash table and searching inction.

The source-to-source compiler not only nceds to parse the new keyword, but also it
needs to retain this new information of the shared storage. Thus we had to modify the
internal represenlation. Rather than creating a symbol table, the GNU C compiler
represents the variables and their types as “Tree Nodes” in the AST?. The modi-
fication to support the shared storage type has been performed on these tree node
definitions. An attribution bit has been added in the Declaration Node definition

structure to indicate the shared storage attribution of the variable.

In addition to the SHARED declaration, several new node types have been added
in order to represent the new opcrators. The parallel function call is represented by

a new PARALLEL EXPR node, which contains the weight information of the parallel

function call.

The target dependent part of the source-to-source compiler is the high level code

2For a discussion of the AST transformation, the reader may refer to [Sri9i].
3For the details of the GNU C compiler description, the reader may refer to [Sri91].
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generation function. According to the specifics of different target machines, different
high level codes need to be generated. We describe this implementation along with

the description of the run-time environment implementation in the next few sections.

5.3 Generating Code

As we have introduced, the output of our source-to-source compiler is high level source
code which is specific to the target machine. Now we present how to generate such
output source code. The two main featurcs of our language extension is the shared
data storage and the parallel function call. In the following sections, we outline how

these features have been implemented.

5.3.1 Implementing Shared Data Storage

The architecture of our target machine, BBN Butterfly GP-1000, has been illustrated
in Chapter 2 in Figure 2.2, The GP-1000 operating system Mach 1000, is an extension
of the Carncgie Mellon University (CMU) Mach operating system, which itself is an
cxtension of the Berkeley 4.3 BSD Unix operating system?. Mach 1000 takes the
basic premise of CMU Mach and extends it to include Butterfly-specific concepts
such as clusters and virtual processor management library subroutines. To facilitate
parallel programming, Mach 1000 provides an application library with routines for
processor and memory management and allocation. This application library, known
as the Uniform System (US) library, provides subroutines that can be called from C

language prozeams [Moy8§).

The Unilorm System uses the Mach 1000 virtual memory system to implement
globally shared memory. The globally shared memory and processor private memory
can be viewed as shown in Figure 2.3 in chapter 2. In order to support our shared

storage, we need to allocate the shared variables in the globally shared memory part.

The difference between Mach 1000 and Berkeley 4.3 BSD can be found in [Moy88).
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As discussed in chapter 4, memory contention affects performance. We allocate one
heap in the shared memory of cach individual processor so that the memory contention
is reduced. Based on the same idea, cach processor has a task stack and parameter
heap allocated in the shared memory space so that the Cooperating-Team model
could be carried out. Recall the memory allocation figure, Figure 2.4, presented in
Chapter 2. We can draw a similar ligure, Figure 5.2, illustrating the memory status
after we allocate such heaps and stacks for processor m. ‘T'he pointers to manipulate
these shared spaces are kept in the processor-private memory on cach processor. The

shared variables are allocated casily in these heaps by the manipulating these pointers,

Processor m
Text (Program)
; Pointers manipulated
Processor-private
P Heap - Shared Heap, Task Stack
Zhaiaiinelieidi et and Parameter Heap
F Stack
Globally
Shared Shared Heap
M ‘&— Task Stack
: CITIO .
: v : Paramcter Heap
E Arci :

assasaanan

Figure 5.2: Shared storage

Let us consider the sum example again given in Figure 5.3. In this exainple, there
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#define MAX 1000
shared int a[MAX];
main()

{ int final_sum;

sum{a, 0, MAX, &final_sum);
}

/* sum all entries afll .. r], put in result */
sum{a,l,r,result)
int al],l,r,*result;

{ shared int sum_left, sum_right;

/* if only one entry left, then that is the sum */
if (1 == r}
sresult = a[l];
alse
{ /* sum left half and right half in parallel,
result is sum of left and right */
int midpoint;
midpoint = (1 + r) / 2;
sum(a,l,midpoint, &sum_left) // sum(a,midpoint+l,r,&sum_right);
*result = sum_left + sum_right;

Figure 5.3: An example SELSYN-C program

is a parallel function call,
sum(a,l,midpoint ,&sumleft) // sum(a,midpoint+i,r,&sum_right).

In order to dispatch the function onto different processors, the function arguments
have to be made available to the other processors via the shared memory. We have
allocated a parameters heap for this purpose. For each function a parallel version
is created which contains one parameter. This parameter is the address of a shared
memory space which contains the arguments needed for the function. The example

function exainple sum() would have a parallel version as,
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int PP_sum (PARA)
int *PARA;
/* Modified function name, so that it can
accept shared variables passing. */
{int *fpoint = my_local_heap;
/* Obtain parameters via shared space */
int * a = *((int * %) PARA)++;
int 1 +((int *) PARA)++;
int r *({int *) PARA)++;
int * result = *({int * %) PARA)++;

Within the function sum(), there are two shared variables, sum_left and sum_right.
Since the shared variables have to be allocated in our pre-allocated heap, the code to
declare these two shared variables is,

int #*sum_left ; int *sum_right ;

sum_left = {((int * ) my_local_heap)++;

sum_right = ((int * ) my_local_heap)++;
/* Allocate the memory space for shared variables */

Note the Lype shared int is translated into type int *. This is because that the
space for shared variables are assigned from the shared variable heap. One more level

of address reference is created. Some more examples are,
shared int * j is translated into int * * j,

and shared int * * j is translated into int * * * j,

5.3.2 Implementation of the Cooperating-Team Model

Belore we introduce how to implement parallel function call feature, we first present
the implementation of the processor management. Studying the experimental results
presented in Chapter 4, we have seen that our dynamic team-dividing strategy com-
bining with team-cooperation, called the Cooperating-"I'eam mechanism, has strong
advantages over the static team-dividing strategy. We now explore the implemen-
tation issues to determine whether the overhead of Cooperating-Team tmechanism
can be acceptably minimized. Currently, the Cooperating-Team mechanisin has been
implemented on BBN Butterfly GP-1000.
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Task Description

"The core data structure of the system is the concise task descriptor. All of the actions
which need to be performed for team division and team cooperation are accomplished
via the task descriptor. The concise task descriptor is designed to keep the information

of a ready to run task. It is defined as follows,

/* task descriptor */
typedef struct taskInfo{

int teamNo; /% */
int (*func)(); /* the runnable task */
int weight; /* the asscciated weight */
int teamSize; /* number of team members */
int startProc; /* leading processor */
int endProc; /* last processor in team */
int +PARA; /* parameters chain »/
int sibLeader; /* leading processor of

s8ibling team */
int stat; /* WAIT, EXEC, DONE, EXIT */
int ack; /* acknowledgement */

struct taskInfo *next;
} task;

This descriptor is used to for both team-dividing and team-cooperation. The
meaning of the ficld sibLeader is slightly different when used for team-dividing or
for team-cooperation. In team-dividing, it’s obvious that it indicates the leading
processor of the sibling team. While in the team-cooperation, this field indicates

which leading processor stole the current task.

We designed a stack which functions as both a task stack and a task pool. It
acts as a task stack for team-dividing, however it acts as a task pool for task waiting
and task stealing. We can summarize these Lwo actions, when encountering a parallel

function call,

Casel: When there is more than one member in a team, team-dividing will occur.
Two concise task descriptors are pushed onto the stack. Thus, the stack func-

tions as task stack for tcam-dividing periods.
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Case2: When there is only one member in a team, the task stack will function as a
task pool which can store waiting tasks. The top of the stack will operate like a
pool of tasks. Each waiting task descriptor is put in the pool. Tasks are taken

out in FIFQ order.

To manipulate Lthis stack, we used four pointers which point to task stack hottom,
task stack top, task pool bottom and task pool Lop respectively. We demonstrate the

details of this manipulation in Appendix A,

Each processor is assigned one such task stack. The stack is used once a processcr
becomes the leading processor of a team and encounters a parallel function call. All

of the processor assignments are accomplished via this two-function stack.

Task Issuing and Hoping

As we described, tlie execution always starts on the leading processor. The leading
processor is the only processor that can issue parallel tasks. The algorithm for leading

processor to issue tasks as follows (assume it encounters a parallel function call,
funcA(a) // funcB(b)),

if ( only one processor on current team) {
put func_A(a) on task pool waiting;
axecute func_B(b);
if (func_A(a) still waiting on pool) {
take func_A(a) back from pool;
exacute func_A(a);
} else {
POOL_WAITING ;
)
} else {
TASKISSUE ;
TEAM_WAITING ;

Figure 5.4: Task issuing algorithm for leading processor
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(- The step TASKISSUE calculates the ratio between the two weights associated with
- the two tasks (functions) and according to this ratio the current team is divided into

two subteams, which execute func_A(a) and func B(b).

The leading processor of the current team will become the leading processor of
one subteamn which executes func B(b). One child processor of current team will be
signaled to become the leading processor to execute func_A{a). We say that this
child processor has been hoping to get a task to execute. The task hoping algorithm

ol the child-processor is presented in Figure 5.5.

child_processor()

{
Initialization;
while ( Not Terminated )
{
wait to get a task to execute
switch (TASK_CODE)
{
case WAIT:
Become leading processor
c and execute the task;
TEAM_WAITING; /* join its sibling team #*/
break;
caze EXIT:
Terminate the processor;
break;
¥
}
}

Figure 5.5: Task hoping algorithm for child processor

Note that both the leading processor and child processor have the TEAM WAITING
step. The TEAMWAITING and POOL_WAITING accomplish the synchronization between
teams. Teain-Cooperation may happen in these steps. In the next subsection we

present the algorithms for these two functions.
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Synchronization and Cooperation

Under two cases, synchronization is needed. One case is al the beam-dividing point.
When both subtecams finish their tasks, they need to merge together into one team,
The two subtcams wait for cach other to finish their tasks. The other synchronization
happens when a task has been stolen by the other team. The processor which lost
the task should wait for the task to be finished. During the waiting period of the

synchronization, Team-Cooperation may happen.

The team waiting scheme and the pool waiting scheme arve presented in Figire 5.6

and Figure 5.7,

TEAM_WAITING()

{
While { sibling team hasn’t finished task ) {
it ( task waiting on sibling team’s task pool ) {
steal one to axecute.
}
}
}
Figure 5.6: Team-waiting algorithim
POOL_WAITING()
{
While { Stolen task hasn’t finished ) {
if ( task waiting on the processor that stole the task ) {
steal a sub-task back to execute
}
}
}

Figure 5.7: Pool-waiting algorithm

The idea behind these two algorithms is to use the waiting period to check whether

the idle processor may offer help to a busy processor.

As we said previously, the goal of the Team-Cooperation is to rebalance the work

load between the processors. To achieve this purpose, the remaining runnable tasks
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are stored in the pool waiting for an idle processor to steal them. However, a team
may have several sibling teams which can steal from its pool. According to the
maximum number of sibling teams, we can decide the number of waiting tasks that
may be allowed in the individual leading processor’s pool. Since the processor team is
organized during run-time, this number varies at run-time for each individual leading
processor depending on how many times the team it leads has been divided. By
considering this factor, the task issue algorithm for leading processors can be slightly

modified as shown in Figure 5.8.

if ( only one processor in current team) {
if ( task-pool not full ) {
put func_A(a) on task pool waiting;
execute func_B(b);
if (func_A(a) still waiting on pool) {
take func_A(a) back from pool;
execute func_A(a);
} else {
POOL_WAITING ;
}
} olse {
exacute func_B{(b);
axecute func_A{a);
}
T else {
increase task-pool size;
TASKISSUE ;
TEAM_WAITING ;

Figure 5.8: Revised task issuing algorithm

5.3.3 Link To the Run-Time Environment

Each parallel function call is implemented by generating code for the case when there
is more than one processor in the current team (team division) and the case when

there is only one processor in the current current team (adding a task descriptor
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to the leading processor’s pool). The generated code makes use of calls to the run-
time system to handle synchronization. Note that procedures calls, POOL_CHECK() ,
POOL WAITING(), factor(), issueTask(), UsLock(), and UsUnlock()}, refer to
calls to the run-time environment. The implementation of those primates for the
BBN Butterfly GP-1000 is given in Appendix C.

/»»%x Here goes the transformation for parallel function call #x¥#/
/* sum(a,l,midpoint, &sum_left) // sum(a,midpoint+l,r,&sum_right) */
if ( my.index == my_endpoint ) {
/* Only one member in team. */
int ®arglist; int *para, *paral;
paral = arglist = arg_list_ptrs[my_index];
*((int * *) arglist)++ = a ;
*((int *) arglist)++ =1 ;
»((int %) arglist)++ = midpoint ;
*((int * *) arglist)++ = (& *sum_left) ;
para = arglist ;
/* Setup for sum(a,l,midpoint, &sum_left) =/
*((int = %) arglist)++ = a ;
*((int *) arglist)++ = (midpoint + 1) ;
*((int *) arglist)++ =1 ;
*((int »* *) arglist)++ = (& *sum_right) ;
arg_list_ptrsImy_index] = arglist;
/* Setup for sum(a,midpoint+l,r,&sum_right) »/
if ( my_task < my_task_top )} {
UsLock (taskStack_lock[my.index], 0);
if (((poolStack_top[my_index] - poolStack_base[my.index])
< my_pending_no)
}| (poolStack.base[my_index]
== teamStack_top[my.index])) {
/* Enough Task Pool space */
*my_current_pending++;
my_task->func = PP_sum ;
my_task->stat = WAIT;
my_task->startProc = my_index;
my_task->PARA = paral;
my_task~>next = NULL;
/* Create the waiting task description */
it (poolStack_base[my_index] == teamStack_top[my_index]){
poolStack_base[my.index] = poolStack_top[my_index]
= my_task++;
}else { poolStack_top[my_index] = my_task++;
}
UsUnlock(taskStack_lock[my_index]);
/* Setup one task waiting on the pool #*/
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PP_sum(para) ;
/* Execute the other task on current processor */
if ( POOL_CHECK() == 1 ) { /* Check task pool */
PP_sum(paral); arg_list_ptrsimy_index] = parai;
/* Take the task back to current processor #*/
} else {
POOL_WAITING() ;
/* Wait for joining.
Team-Cooperation may take place */
}
} else {
/* Task-Pool is full. Execute both tasks
on current processor */
UsUnlock(taskStack_lock{my_index]);
PP_sum(para);

arg_list_ptrs[my_.index] = para;
PP_sum(paral};
arg.list_ptrs[my_.index] = paral;

} else { fprintf(&_iob[2], "stack overflow \n");
exit(3);
}

} else { /* More than one member in a team */
taskPtr taskPointer, taskPointerT;
int *arglist; int *temp;
taskPointerT = taskPointer = my_task++;
taskPointer->func = PP_sum ;
taskPointer->weight = 1 ;
arglist = taskPointer->PARA = arg_list_ptrs[my_indez];
taskPointer->stat = WAIT;
taskPointer->next = my_task;
temp = arglist;
*((int * *) arglist)++ = a ;
*((int *) arglist)++ =1 ;
*((int *) arglist)++ = midpoint ;
*((int * *) arglist)++ = (& *sum_loft) ;
arg_list_ptrs{my_index] = arglist;
/* Setup for sum(a,l,midpoint, &sum_left) */
taskPointer = my_task++;
taskPointer~>func = PP_sum ;
taskPointer->weight = 1 ;
arglist = taskPointer->PARA = arg_list_ptrs[my_index];
taskPointer->stat = WAIT;
taskPointer->next = NULL;
*((int * #) arglist)++ = a ;
*((int #) arglist)++ = (midpoint + 1) ;
*((int *) arglist)++ =r ;
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*((int * x) arglist)++ = (& *sum_right) ;
arg_list_ptrs{my_index] = arglist;

/* Setup for sum(a,midpoint+1,r,&sum_right) */

poolStack_base[my_index] = teamStack_top[my_index]
= poolStack_top[my_index] = taskPointer;

/* Create task description */

factor(taskPointerT); /* Setup for team-dividing */

my_pending_no++;

issueTagk(taskPointerT);

/* Issue tasks and join. Team-Cooperation may take place */
my.-pending_no-~;

We give some further explanation on this generated code here. The manipulation of
arglist is to prepare the function’s parameters for transferring to another processor.
All of the parameters that need to be translerred are put in the pre-allocated shared
space. [or the case of more than one processor in a team, alter two task descriptors
have been prepared, the team-dividing setup function factor() and team-dividing
function issueTask() are invoked. In the case of one processor team, if the Lask
pool has enough space, one task descriptor will be put on it for waiting, the other
task is carried out on the local processor. The function POOL_CHECK() is called to
check whether the waiting task has been stolen by other processors since the local
processor finished its own task on hand. POOL_WAITING() is called to synchronize
the processors if task stealing has happened. For the situation, where there is one
processor in a team and not enough pending space on task pool, the two tasks are

carried out sequentially on the local processor.

5.3.4 Initialization

As we illustrated in the structural overview, the object module has Lo be linked with
the run-time environment. It includes the link with the initialization part, which is
the main entry to invoke the application. Our mechanism is based on Cooperating-
Team model, and in order to carry out this mechanism, in the initial phase of an
execution, the Cooperation-Team system has to get control of all of the available

processors. The first step of this initialization phase is achieved via Uniform System’s
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routine InitializeUs(). This routine creates and starts a Uniform System process
on every available processor in the cluster, sels up the memory that is globally shared
among all Uniform System processes in the cluster, and initializes the Uniform System
storage allocator®, After this first step, the processors are under the control of the
Cooperating-Team system. The next step in initialization is to prepare the memory
space for the mechanism usage. This includes the task stacks and the parameter
stacks and shared memory storage. After this initialization phase, all of the available
processors to the execution have been constructed as one tcam. Every processor has
the same copy of the execution code. The leading processor starts the execution, and
the rest of the processors start to wait for the tasks that may assigned to them and
hope to become a leading processor. The algorithms for both leading processor and

these wailing processors have been presented in the previous scctions.

5.4 Summary

Our implementation is currently on the BBN Butterfly GP-1000. The implementation

includes

¢ A language parser for the SELSYN-C.

¢ Codc generation for the BBN Butterfly C.

¢ Support for shared storage.

o A run-time library, which provides the following functions,

Main: a niain entry to initialize the system and invoke the application.
child(): performs the task hoping for waiting processor.
factor(): setup for team-dividing.

issueTask(): performs team-dividing and team-joining.

The detailed description of the Uniform System can be found in [Sen8§].
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TEAM_WAITING(): performs synchronization between teams,
POOL_CHECK(): performs the task-taken back from local task waiting pool.
POOL_WAITING(): performs the synchronization between teams whick have

team-cooperation.

The language parser is machine independent. While the rest of the components are
machine dependent parts of the implementation. Since the language parser contains
all the information of program structure, attaching different machine dependent. parts
to it can generate object codes for different target machines. Current the object code
is gencrated for BBN Butterfly GP-1000.
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Chapter 6

Related Work

Many researchers ave rising to the challenge of exploiting parallel processing. Efforts
on developing parallel programming languages include inventing new languages and
adding new features to various existing sequential languages. Further work has been

done for developing various scheduling strategies.

In this chapter, we outline other related work in the areas of both parallel program-
ming languages and scheduling mechanisms. We compare these to our SELSYN-C

language and Cooperating-Team mechanism which has been presented in this thesis.

6.1 Paralle]l Programming Languages

The development of parallel programming languages is an attractive field o1 rescarch.
Some researchers have worked on developing entirely new languages for parallel pro-
gramns, such as Strand [[FT89], PCN [CT90}, SISAL [MSA*85) and BLAZE [MvR8T7).
Although these are interesting and often elegant languages, they do not satisfy our

goal of being familiar to programmers.

There are also many activities which involve developing extensions to existing lan-

guages. In this area, one of the major thrusts has been the development of extensions
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to the language FORTRAN. This is due to the fact that traditionally, many paral-
lel applications have come from the scientific commuuity and have therefore focused
on techniques for dealing with arrays. In addition, many programs and parallel ap-
proaches have been developed in FORTRAN. There are several proposed extensions to
this language, which include EPEX/Fortran [DGNP88], Cedar FORTRAN [GPH LSS
and Force [Jor87, JBAJ89]. Some of them were invented for carlier developed vector
processors and they contain specific constructs that allow the programmer to exploit
vector machines. For instance, Cedar FORTRAN was developed for the Cedar Vee-
tor Processor. [orce was developed for MIMD multiprocessors with a shared memory
programming model. This language was implemented as an extension supported by a
preprocessor. Several other rescarchers have focused on developing extensions Lo lan-
guage C. Efforts in this direction include Concurrent C [CGR8Y), parallel-C [IK§85],
PCP [Bro89}, and Jade [LR91]. Concurrent C is targeted lor the Concurrent Se-
quential Process model. Parallel-C is an attempt for the SIMD and MIMD modes of
parallelism. It includes the definition of parallel variables, lunctions and expressions.
PCP offers some constructs to specify the parallelism of a program. Similar to Force
it was targeted to the shared memory programming model. Jade is a data-oriented
language for parallelizing programs. It is targeted towards cxploiting parallelism at
a coarse-grain level. In the domain of symbolic languages like Lisp there has been
effort in designing Mul-T {KHMS89] and Multilisp [Hal85]. By using a new construct,

future, programmer can express the parailelism explicitly in the Lisp.

Rather than developing a new higli-level language, we have selected the program-
ming language C as the basis of our work because it is familiar to a wide range of
programmers, and thus it provides a large user base for our new language. SELSYN-C
is an extension set to C. It provides a very simple way to express parallclism explicitly
in imperative language C. This extension includes the dcfinilion of shared variables
and parallel function calls. Close to some related work, our programming model is
targeted to MIMD multiprocessors with the shared memory model and the parallelism
expression is at a coarse-grain level. Compared to the other development on the C
extensions, our language has the advantage of being casy to use and understand.

We have concentrated on minimizing the number of new keywords and operators.
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Further, we have introduced application specific extensions that are useful for the
compiler (weights). This information is used to organize a dynamic self-scheduling
parallel program rather than a statically- scheduled parallel program. Our language’s

backbone, the dynamic scheduling mechanism is discussed in the next scction.

6.2 Scheduling Mechanism

Backing up our language extensions, we developed a self-scheduling mecharism that
can achieve high efliciency and good utilization of nrocessors. One benefit of this
mechanism is that it reduces synchronization overhead so that processor stall time

can be decreased.

Several related methods Lo solve the synchronization overhead have been pro-
posed. A synchronization method by fuzzy barriers was suggested by Gupta and
Epstein [GEID]. The main idea of this method is to divide an instruction stream into
two kinds of regions, non-barrier regions and barrier regions. Streams with no barrier
regions require no barrier synchronizations. While for the steams with barrier region
areas, synchronization should finish within a barrier region. The goal of this method
is to reduce the processor stall time. The processor can wait for synchronization
while it is execuling the instructions within the barrier region. The tolerance of the
mechanism to the variation in the rate at which each stream progresses is limited
by the number of instructions in the barrier regions. Thus, the larger the barrier
regions, the less likely it is that the processor will stall. Figure 6.1 (2) presents the
traditional barrier synchronization. The synchronization must occur exactly at two
barricr points of the two processes. While Figure 6.1 (b) illustrates fuzzy barriers. In
this case, synchronization only needs to finished somewhere within the two barrier re-
gions. Therefore, this method gives more tolerar:ce time for synchronization. However
one potential weak point is that the compiler may not be able to find a big enough
synchronization region, so that it may rot substantially improve the performance.
The method is suitable for synchronization among small scale tasks, such as synchro-

nization ol loop iterations and may not function well for synchronization among tasks
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Figure 6.1: Principle of {uzzy barrier

such as synchronization between Lwo procedures. Qur Team-Cooperation idea is pro-
posed for this purpose. Instead of finding the small picces of barrier region statically
at compile-time, our Team-Cooperation scheme dynamically finds executable tasks

to recduce the processor stall time at run-time.

Qur work on scheduling is mainly influenced by the work of WorkCrew [VRSS]
and PCP [Bro89]. The WorkCrew approach [VRSS8] introduces a mechanisin thal
handles task division properly. Under this model, a centralized scheduler controls
the processor acquisition and task dispatching. Whenever a processor meels a task
that can be divided into two subtasks, it issues a processor request to the central
scheduler and continues on execuling one of the subtlasks on its own. The WorkCrew
approach won't actually dispatch the other subtask unless a processor becomes idle.
This means that the processor, which issued the processor request, will also excente
the other subtask on its own if no other processor has taken this queued sublask. The
WorkCrew mechanism is based on a fork mechanism and therefore il faces the cost

of processor acquisition.

Eugene Brooks introduced a split-join model rather than a fork-join model [[3ro89}.

In the split-join model the job starts out with all of the processors it will ever have,
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and this team of processors is disassociated into independent subteams as nested con-
currency is encountered. The weak point of this system is its inability to balance the
work load between independent processors. In addition, their approach emphasizes
loop iterations, while our Processor-Team approach is targeted towards coarse-grain

procedure level parallelism and divide-and-conquer parallelism.

Our mechanism has the advantage of both these two mechanisms. We reduce the
cost by adopting the split-join model (which we call team-division), while at the same
Lime we introduced team-cooperation to rebalance the work distribution. Rather than
having a centralized task-pool, we create individual controller for each team so that

the cost is reduced further,

Otlier related research on task scheduling has been introduced for Strand [FT89)
and for Mul-T {KHM89}. Mul-T uses lazy task creation to control the parallelism and
to try to balance the work distribution. Both approaches adopted central schedulers
for which high expense can be expected. Our mechanism uses some similar ideas, but

is implemented in the domain of the popular language C.

6.3 Compiler Generated Self-Scheduling Programs

Self-scheduling programs can be manually generated. For instance, in the WorkCrew
model [VR8S], it is the programmer’s responsibility to write necessary procedure
calls to ensure correct synchronization and value retrieval. However, it is cleaily
more preferable if the programmer can invoke a compiler to automatically generate
a self-scheduling version of a source program. This idea has been accepted by many
rescarchers and some of them developed language preprocessors to support this idea.
For example, such a preprocessor has been adopted in PCP [Bro89} and Force [Jor87,
JBAJ89]. Foster designed an source-to-source transformation which transforms a
high-level concurrent language into imperative language C and Fortran [FT89, FO90!.
Our source-lo-source transformation is from the parallel C extension, SELSYN-C, to

BBN Butterfly C, which is specific to the target machine. The extensions become part
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of the extended C grammar. Qur source-to-source transformation emphasizes more on
the internal representation for the parallelism so that different transformations can be
performed. For instance, variables storage type conversion, function type and name
transformation and so on. In addition, the internal representation can be utilized for

generating code for different machine parallel programming tools.

6.4 Summary

In this chapter, we presented and compared the main related developing trends for
both parallel programming languages and scheduling mechanisms. On the portability
issue, we also compared the preprocessor approach and source-to-source transforma-
tion approach lor language implementation. From onr discussion, we can see that
the techniques for parallel programming languages and scelf-scheduling programs have
been widely studied and developed, and it is still one of the most challenging ar-
eas in providing software environments for parallel programming. SELSYN-C and

Cooperating-Team mechanism is our endeavor to meet Lhis challenge.
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Chapter 7

Conclusions and Further Work

"This thesis has reported on the SELSYN-C compiler and the associated Cooperating-
T'eam scheduling mechanism. The SELSYN-C compiler has been implemented and is

currently producing parallel code for the BBN Butterfly GP-1000 parallel processor.

As discussed in this thesis, the design our the SELSYN-C language was driven
by the need for an “easy-to-use” language that was accessible to a wide variety of
progratnmers. Our SELSYN-C language consists of simple extensions to C that free
the programmer from dealing with architectural details like processor management.
Rather, the programmer can concentrate on the application and leave the details of
scheduling and resource management to be handled completely by the the SELSYN-C
compiler and associated run-time library. SELSYN-C supports two major extensions
to C: (1) the distinction between processor-private and globally-shared data, and
(2) the introduction of weighted parallel function calls. It provides users with a
simple way to declare parallelism explicitly. New keywords, constructs and idioms
arc minimized flor this purpose. By using these simple but useful extensions, the
programmer can express shared data, explore parallelism at the coarse-grain level,

and take advantage of the parallel architectures.

In order to provide an cffective and efficient scheduling strategy, we have incor-

porated the notion of weights into the SELSYN-C language, and we have developed
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a new Cooperating-Team scheduling mechanism that can make use of these weights,
In addition, our approach provides a mechanisin lor balancing the workload in the
cases where the weights are not known or not completely accurate. The scheduling
mechanism was implemented based on a Processor-Team model, which can reduce
the overhead of processor acquisition. In addition, a dynamic team-dividing strategy
was chosen as an effective method Lo organize Lhe processor-teams. Combining this
strategy with the team-cooperation scheme, the Cooperating-Team mechanism was

established to achieve the goal of both high cfliciency and high utilization,

Finally, we have demonstrated the eflectiveness of our approach on several divide-
and-conquer applications. Throughout our experimental resulls, our Cooperating-
Team mechanisim demonstrates its strong ability of rebalancing the work load belween
the processor-teams. It gives users a general balanced execution environment to

develop applications based upon the divide-and-conquer concepl.

Our development of SELSYN-C concentrated on the goal of simplicity, cfficiency
and good processor utilization. As we discussed in chapter 6, our language has the
advantage of being easy to use. llowever, several useful features could be added to
improve the SELSYN-C language. One such extension would be Lo allow multiple
parallel function calls to enhance the exploitation of the parallelism. In addition, var-
ious high-level loop constructs could make SELSYN-C more general in its expression

of parallelism.

By analyzing the experimental results, we can notice thal onc of most significant
factors affecting performance was the locality of data. Because of the data locality on
the system, memory access delays and contention can significantly affect performance.
Further improvement would be achieved by studying and adopting differeni, data

mapping strategies that could be supported at the language level.

Combining the compiler techniques to automatically exploit parallelism is another
possible improvement or extension to our system. Hendren introduced an analysis
method to automatically figure out tasks that can be exccuted in parallel {Hen90].

While the approach of Jade is compiler analyzing aids by the notions which can he
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utilized by the programmer to express the data dependency [LR91]. Both approaches

can be adoptled using our SELSYN-C to explore parallelisin at 2 more fine-grain level.

In conclusion, we have reported our endeavor on developing an “easy-to-use” lan-
guage and an cflicient scheduling mechanism. In addition to the advantages 've have
alrcady demonstrated, the further success of these approaches will depend on fur-
ther performance improvement which would make it possible for the programmer to

cxpress parallelism at all levels of granularity rather than only at a coarse-grain level.
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Appendix A

A Case Study of the SELSYN

Mecharism

In this appendix, we illustrate different cases that our system may face. We study in

detail how team-dividing and team-cooperation work together on these cases,

The following figures in this appendix illustrate team-dividing, task stack infor-
mation, and task pool information. The team-cooperation is illustrated by showing
a sequence of "snoopshots” of viie task stack and task pool. Iirst of all, we describe
some notations that are used in our figures.

o T_T is the task stack top pointer.

¢ P_B is the pool bottom pointer.

o P_T is the pool top pointer.

o D represents that the task has be done.

¢ E represents that the task is being exccuted.

o W represents that the task is waiting.

o Busy, Idle represent the status of the team.
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Figure A.1: Case example 1

Busy

The first case is presented in Figure A.l. In this figure, the processor team has
been divided into team [0 - N-1], team [N], and team [N+1]. The task stack and Lask
pool are shown for team [N] and team [N+1]. The detailed situation for team [0 -

N-1] is not shown in this case. The figure is divided into two parts,

Part (1): This shows the situation when team [N] is busy and it has three other

tasks, which are represented by W in the figure, on the waiting pool. While
its sibling team [N+1], led by processor N+1, is idle waiting for the team-join
with team [N] into team [N - N+1].This is indicated by D at the bottom of

processor N’s task stack. Note that processor N is the leading processor of team

[N - N+1]. That's why it can issue a parallel task and keep two concise task

descriptions on its task stack.
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Part (2): Under our mechanism, the team-cooperation will happen between these
two teams. Processor N+1, the leading processor of team [N+1], checks the
task pool of processor N, which is the leading processor of team [N], and steals
a waiting task to execute on team [N+1). The task status at the bottom of the
task pool of team [N] is changed to . The status of team [N+1] is changed
from idle to busy.

Busy Busy Idle Busy Busy Busy

Figure A.2: Case example 2

Case 2, which is presented in Figure A.2, could happen following case 1. That is,

Part (1): After team [N+1] finishes the task which was stolen from team [N], team
[N] is still busy with its own tasks and there are still two tasks left on its leading
processor’s task pool. This situation means that the team-join for team [N] and

team [N+1) can not yet take place.
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Part (2): Similar to the case 1, processor N+1 will steal a task from processor N.

<«
e This should help to balance the load between the two teams.
Note that in both case 1 and case 2, task-coopcration always steals the waiting
task at the bottom of the waiting pool. That’s because in a recursjve decomposition,
the earlier a task is generated, the heavier work load it may represent.

Busy Idle Busy Busy Busy Busy
n 2)

Figure A.3: Case example 3

Case 3, Figure A.3, is a similar situation to case 1, but the statuses of team [N]

and team [N+1] are reversed, that is, team [N] is idle while team [N+1] is busy. In

this figure,

Part (1): This time, team [N] finished its tasks first and is waiting for its sibling
team, team [N-+1], to join into team [N - N41].
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Part (2): Under this situation, leading processor N of team [N] takes a waiting task

G- from the botlom of processor N+1’s task pool to balance the progress of the

two teams.

Busy Idle Busy Busy Busy Busy
(1) 2

Figure A 4: Case example 4

Figure A.4 shows a situation when the processor N finishes its own task on hand.
There are still tasks on its task pool waiting for execution and haven't been stolen
by any processor, while the processor N+1 is busy with its own task. Under this
situation, processor N takes one task back from the top of its own task pool. This
action is indicated by the different positions of P_T in this figure.

The similar situation can happen as in Case 5, Figure A.5. Neither team [0 - M-1]

nor team [M - N-1] is ready for a team-join. At this moment, there is no other team
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Busy Busy Idle Busy Busy Busy
(1 (2)

Figure A.5: Case example 5

to give a hand to team [N] to carry out the tasks which are waiting on the task pool

of processor N. Team [N] takes one waiting task on its own.

Case 6, Figure A.6, shows the situation when team [N] has finished its tasks on
hand, and all of the tasks which were put on the task pool when they were issued
by processor N were stolen and have been executed by its sibling teams. Team |{N] is
waiting for its sibling team, team {N+1], to join into team [N - N+1]. Under these
circumstances, team [N] gives a hand to its busy sibling team, team [N+1]. Processor

N takes a task from the bottom of the processor N+1’s task pool in order to halance

the two teams’ progress.

In section 3.4 of Chapter 3, we described the rules for task stealing. Because of

these rules, a team may have opportunities of Team-Cooperation with several leading
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Figure A.6: Case example 6

processors depending on how many times its parent team has been divided. Here is
a example to show a situation in which a team have Team-Cooperation with more

than one leading processor.

The Case 7, shown in Figure A.7, may be changed into two situations because of
the task stealing contention among the leading processors. In this case, the waiting
task of team [0] can be stolen by processor 1, the leading processor of idle sibling
team [1], or by processor 2 which is the leading processor of idle team [2 - 3]. During
the period that they are wailing for a team-join, both of them are checking ii there
is any lask waiting on the task pool of team [0]. Thus, either team [1] or team [2 - 3]
may get the task from team [0]. Which team gets it varies upon factors at run-time.

It can be affected by the physical location of the processors, bus or network switch ?

VThe link between processors on the BBN is called Butterfly Switch. Refer to Figure 2.2
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Figure A.T: Case example 7

contention and other factors.

A more general case of Case 7 is presented in Figure A.8. In this ligure, part
(1) shows a situation when team [0 - N-1] has waiting tasks. Al of tcam [0 - N-1]
members are busy. While team [0 - N-1]'s sibling team team [N - N1, is waiting for
team-join.

Although Team [N - N+1] maybe far away from team [0 - N-1), it will take a task
from team [0 - N-1} to execute because it is the sibling team of team [0 - N-1J, as

shown as part (2) in Figure A.8.

Once team [N - N+1] gets its task from team [0 - N-1], it exccutes it independently
from team [0 - N-1]. The team-dividing and team-cooperation may happen within
the team, depending on the situation this team encounters. If team [N - N+1] meets
a parallel function call, the team-dividing will take place. T'he team will be divided

into two sub-teams, team {N] and team [N+1], since there are two processors in team
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Figure A.8: Case example 8
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[N - N+1]. This action is shown as pari(3) in Figure A.8. Perhaps there will be
team-cooperation happening between these two sibling subteams, team([N] and team
[N41], or between processor 0, which the leading processor of team [0], and processor

N, which is the leading processor of team [N].

From the above cases, we can sce how the team-cooperation works for the different
situations. Each case shows that team-coopceration can rebalance the work load among

the teams.
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Appendix B

SELSYN-C Code For Binary Tree

Evaluation

#include <stdio>
/* Tree node definition *»/
typedef struct Node {
int op.code;
int size;
double pin;
struct Node *left:
struct Node #right;
} node;
typedef node * nodePtr;
#define OPCODE 4
#define FALSE O
#define TRUE 1
nodePtr treeGen();
int usproc;
int totalproc;
/* Generate a balanced random binary tree */
nodePtr treeGen(size)
int size;
{
nodePtr pointer;
int leftSize;
int flag = FALSE;
long int big = Ox7FFFFFFF;
long rand();
if ( usproc == totalproc )
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uspros = 0,
x pointer = (nodePtr) shared_malloc(usproc, sizeof(node));
usproc++;
/* Allocate tree nodes on all of the processors */
if ( pointer == NULL ) {
perror(" malloc");
exit(3);
}
pointer->gize = size;
if ( size == 1) {
pointer->op_code = ~1;
pointer->pin = (double) rand() / big:
return(pointer);
}
pointer->op_code = (int) (OPCODE * (double)((doubla)rand() / big));
/* Generate random node value and operation code */
siza--;
if ( size > 2 ) {
leftSize = size / 2;

if ( leftSize % 2 == 0 ) leftSizet++;
} else {
leftSize = 1;
}
pointer->left = troeGen(leftSize);
pointer->right = treeGen(size - leftSize);
ini return{pointer);
}
/* Recursively evaluate a binary tree */
func(root)
nodePtr root;
{

if ( root->size > 2 ) {

int 1l_weight, r_weight;

1_weight = root-> eft->size;

r_weight = root->right->size;

func{root->left)root->left->8ize

// func(root=->right)Qroot->right->size;
/* Evaluate left and right sub-tree in parallel »/

switch { root->op_code )

{

casa 0:
root=->pin = root->left->pin + root->right->pin;
break;

case 1:
root->pin = root->left->pin - root->right->pin;
break;

case 2:
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root->left->pin * root->right->pin;

root~>pin =
break;
case 3:
root->pin = root->right=->pin - root->left->pin;
brezk;
}
/* Perform operation on return values */
Froa(root->left);
Free(root->right);
}
return;
}
void
[rvxennnnn/
main(treeSize)
Jwnsnksnkf
int treeSize;
{
int flag;
nodePtr root;
float val;
int #PARA, *PARAO;
int i;
if ( (treeSize % 2) == 0 ) {
fprintf (stderr, " Tree size must be odd\n");
oxit(2);
}
srand{(1);
usproc = 0;
totalproc = TotalProcsAvailable ();

/* Get total number of processors */
root = treeGen(treeSize);

/* Generate a binary tree */
func(root);

/* Evaluate a binary tree »/
fprintf(stderr, " Evaluation result is %f \n", root->pin);
Free(root):

Teturn;
}
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Appendix C

Source Code of The Run-Time
Library

#include <us.h> /* Uniform System */
#include <stdio.h> /% Standard I1/0 #/
extern current.proc;
#include "include/util.h" /% Utility macros */
#include "include/task.h" /# Task descriptor */
/* Synchronize with sibling team */
TEAM_WAITING(teamPointer)
taskPtr teamPointer;
{
while ( teamPointer->stat != DONE ) {
/* Wait sibling team finish its task »/
taskPtr assistant;
int *fpoint = my_local_heap;
agsistant = poolStack_base[teamPointer->startProc);
/* Get the handle of sibling team’s task pool */
if (((assistant != teamStack.top[teamPointer-»startProc])
|1 (assistant == poolStack_top[teamPointer->startProc]))
&t (assistant->stat == WAIT)){ /* extra */

/* If there is any waiting task on pool #*/
UsLock(taskStack_lock[teamPointer->startProc], 10);
assistant = poolStack_base[teamPointer->startProc];
if ((assistant != teamStack_top[teamPointer->startProc])

Il (assistant == poolStack_top[teamPointer->startProc])){
it ( assistant->stat == WAIT ) {
/+ Steal a task s/
assistant->stat = EXEC;
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poolStack_base[teamPointer->startProc]
= teamStack.top[teamPointer->startProc];
} else {
poolStack_base[teamPointer->startProc]++;
}
*current_pending [teamPointer->startProc]--;
UsUnlock(taskStack_lock[teamPointer->startProcl);

/* Adjust sibling team’s pool manipulate pointers */
(*assistant->func) (assistant=->PARA) ;

/* Execute the stolen task */
UsLock(taskStack_lock[assistant->startProc], 0);
assistant->stat = DONE;
UsUnlock(taskStack_lock[assistant->startProc]);

/* set state to DONE x*/

} else {
UsUnlock(taskStack_lock[teamPointer->startProc]);
}
} else {
UsUnlock(taskStack_lock[teamPointer->startProcl);
}
} /* extra query to reduce the lock contention */
my_local_heap = fpoint;
}
return;
}
/* Check if task has been stolen */
POOL_CHECK ()
{
UsLock(taskStack_lock[my_index], 10);
if (poolStack.top[my_index]}->stat == WAIT ) {
/* Task is still waiting on pool */
poolStack _top[my_index]->stat = DONE;
my._task--;
if (poolStack_top[my.index] <= poolStack._base[my.index]) {
poolStack_base[my_index] = teamStack_top[my.index];
}

poolStack_top[my_index]--;
*my_current_pending-~;
UsUnlock(taskStack_lock[my_index]);
/* Release task from task pool */
return (1);

} else {
UsUnlock(taskStack_lock[my_index]);
/* Task has been stolen */
return (0);

}

}
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/* Synchronize with team which stole the task */
POUL_WAXITING()
{
while (poolStack_toplmy_index]->stat != DONE ) {
/* Stolen task hasn’t be finished */
taskPtr assistant;
int *fpoint = my.local_heap;
assistant = poolStack_base[poolStack_top[my.index]->sibLeader];
/* Get the handle of the task pool of which team stole the task */
if ((assistant != teamStack.top[poolStack_top[my.index]->sibLeader]
|| assistant == poolStack_top[poolStack.top[my_index]->sibLeader] )
&& assistant->stat == WAIT ) { /* extra */

/* If there is any task waiting on that team */
UsLock(taskStack_lock[poolStack._top[my.index]->sibLeader],10};
assistant = poolStack_base[poolStack_toplmy_index]->sibLeader];
if ((assistant != teamStack_top[poolStack.top[my_index]->sibLeader]

|| assistant == poolStack_top[poolStack_top[my_index]->sibLeader] )

&k assistant-dstat == WAIT ) {

/* Steal back a task */

assistant->stat = EXEC;

assistant->sibLeader = my_index;

if ( poolStack_base[poolStack_top[my.index]->sibLeader]

== poolStack_top [poolStack.toplmy_index]->sibLeader]) {
poolStack_base[poolStack_top[my_index]->sibLeader]
= teamStack_top[poolStack._toplmy.index]->sibLeader];

} else {

poolStack.base[poolStack_top(my_index]->sibLeader]++;

}

*current_pending [poolStack.top[my.index]->sibLeader]--;

UsUnlock(taskStack_lock[poolStack._top[my_index]->sibLeader]);
/* Adjust the manipulate pointers */

(*assistant->func) (assistant->PARA};

/* Execute the stolen task */
UsLock(taskStack_lock[assistant->startProc]l,0);
assistant-~>stat = DONE;
UsUnlock(taskStack_lock[assistant->startProcl);

/* Set the task status to be finished */

} else {

UsUnlock(taskStack_lock([poolStack_top[my_index]->sibLeader]);
}

} /% extra query to reduce the lock contention */
my._local_heap = fpoint;
}
UsLock(taskStack_lock[my_index], 0);
arg._list_ptrs[my_index] = poolStack_top[my_index]->PARA;
poolStack_top[my_index]~-;
my._task--;
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if (poolStack.toplmy_index] < poolStack_base[my_index]) {
poolStack_u.se[my_index] = teamStack_top[my_.index];
}
UsUnlock(taskStack. lock[my_index]);
/* Release task description, adjust manipulate pointers */
return;
)
/*
Assign the processors to sub-teams
*/
void factor(taskPointer)
taskPtr taskPointer;
{
int i, j;
int sum = 0;
int p, p.endpoint;
int interval;
int 1l_team, r.teanm;
int input_point;
taskPtr Pointer;
input_point = my_endpoint;
Pointer = taskPointer;
taskPointer->weight = abs(taskPointer->weight);
sum = taskPointer->weight;
while ( taskPointer->next != NULL ) {
taskPointer = taskPointer->next;
taskPointer~>weight = abs(taskPointer->weight);
sum += taskPointer->weight;
}
/* Accumulate weights */
p-endpoint = my_endpoint;
interval = (my_.endpoint - my_index + 1);
if (Pointer->weight == Pointer->next->weight || interval<s 2) {
l_team = interval >> 1;
} else {
1_team = (Pointer->weight * interval) / sum;
if (1_team == 0 &% Pointer-d>weight != 0) {

1_team++;

}

if ((my_endpoint - 1_team) < my_index && Pointer->next->weight != 0) {
1_team--;

}

}

my.endpoint -= 1_team;
Pointer->teamSize = 1l_team;
Pointer->startProc = my_endpoint + 1;
Pointer->endProc = p_endpoint;
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Pointer->sibLeader = my_index;
Pointer->next->siblLeader = Pointer->»startProc;
Pointer = Pointer->next;
Pointer-»>startProc = my_index;
Pointer->endProc = my_endpoint;
Pointer->teamSize = interval - 1_team;
my.endpoint = input_point;
/* Assign sub-teams to two tasks */
return;
}
I/
Issue sub-tasks
*/
issueTask(taskPointer)
taskPtr taskPointer;
{
short *p_pending;
int *p_arglist;
int input_endpoint = my_.endpoint;
int *fpoint = my_local_heap;
if (taskPointer-»teamSize !'= 0) {
if (taskPointer->startProc != my_index) o
my.endpoint -= taskPointer->teamSize;
START(taskPointer->startProc,taskPointer); /* let processor p start */
taskPointer->next->stat = EXEC;
(*taskPointer->next->func) (taskPointer->next->PARA);
/* Execite one task on local team */
UsLock(taskStack_lock[my_index],0);
taskPointer~>next->stat = DONE;
UsUnlock(taskStack_lock[my_index]);
TEAM_WAITING(taskPointer);
/* Synchronize with sibling team */
taskPointer->ack = 20;
while (taskPointer=->next->ack 1= 20 ) {};
/* release pending lock */
} else {
my_endpoint = input_endpoint;
taskPointer->next->stat = DONE;
tagkPointer->stat = EXEC;
(*taskPointer->func) (taskPointer->PARA);
taskPointer->stat = DONE;
}
Jelse {
taskPointer->stat = DONE;
taskPointer->next->stat = EXEC;
(*taskPointer->next->func) (taskPointer->next=->PARA);
taskPointer->next->stat = DONE;

102



}
UsLock(taskStack.lock[my_index], 0);
arg_list_ptrs[my_index] = taskPointer->PARA;
taskPointer~>stat = =1}
taskPointer->next->stat = ~1;
taskPointer->ack = 0;
taskPointer->next->ack = 0;

(taskPtr) my.task--;

(taskPtr) my_task--;
poolStack_base[my_index] = poolStack_top[my_.index]
= teamStack.top[my_.index] = my_task;
UsUnlock(taskStack_lock[my_index]);
my_local_heap = fpoint;

/* Release task descriptor from task stack,
adjust manipulate pointers */

return;

/%
Task hoping for child processors
*/
void
child()
{ taskPtr pending;
int my_exit, procedure_num;
long oldval;
my_exit = 0;
Atomic_add(start_counter,-1); /* signal this processor started */
while (my_exit == 0) { /* while this processor not killed */
int »fpoint = my_local_heap;
WAIT_NONNULL(*my_task_pointer); /* wait for work to do */
pending = *my_task_pointer;
UsLock (my_busy_lock,0);
*my_task_pointer = NULL;
UsUnlock(my_busy_lock);
procedure_num = pending->stat;
my_endpoint = pending->endProc;
switch (procedure_num)

{
case WAIT:
oldval = Atomic_add_long((long)&pending->stat, -7);
my_pending_no++;

(* pending->func)(pending->PARA);

/* Execute assigned task */
oldval = Atomic_add_long((long)&pending->stat, 1);
TEAM_WAITING(pending->next);

/* Synchronize with sibling team */
my_pending_no--;
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pending->next->ack = 20;
break;
case EXIT:

/* Entire program is finished */
atomadd32(&pending->ack, =1);
my.exit = 1;
break;

€4

)
my.local _heap = fpoint;
X
}
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