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Abstract

In this thesis we report the design and implementation of a new self-scheduling paral­

lei programming language, SELSYN-C. As parallel processors become more accessible

to a broad range of programmers, the development of simple to use and effective pro­

gramming languages becomes increasingly important. Our approach to the challenge

of parallcl programming language design and implementation is two-foId: (1) the de­

sign of simple extensions to C that are both easy to use for the programmer, and

useful for effective compilation, and (2) the design of efficient and effective scheduling

strat.egies that can be automatica!ly supported by a compiler and associated run-time

enviroument.

We outline our approach by presenting: (1) our motivation, (2) an overview of

the extensions to C that form the SELSYN-C programming language, and (3) the

development of a new scheduling mechanism that can be used to effectively compile

SELSYN-C programs for a rea! parallel processor, the BBN Butterfly GP-1000. Dif­

ferent scheduling strategies for this mechanism were studied via several experimental

tests and the results of these experiments are reported.

A source-to-source compiler supporting the SELSYN-C language has becn imple­

mented. Included in this thesis is a description of both the compiler and associated

run-time environment.
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Résumé

Cette 'thèse présente la conception et la mise cn oeuvre d'un nouveau langage de pro­

gramrr, ..tion parallèle auto-séquenceur, SELSYN-C. Les prucesseurs parallèles sout de

plus en plus accessibles à un grand nombre de programmeurs et le développement de

langages de programmation efficaces et simples d'utilisation devient très important.

Notre approche au défi que représente la conception et l'implémentation de tels lan­

gages se scinde en deux volets: (1) la conception de simples extensions au langage C

qui sont à la fois faciles d'utilisation et utiles pour une compilation efficace ct (2) la

conception de stratégies efficaces de séquencement qui peuvent être automat,iquoment

supportées par un compilateur et son environnement d'exécution associé.

Nous résumons notre approche en présentant: (1) nos motivations, (2) une revue

des extensions au langage C qui constituent le langage de programmation SELSYN­

C et (3) le développement d'un nouveau mécanisme de séquencemcnt qui permet de

compiler efficacement des programmes en SELSYN-C pour le processeur parallèle OP­

1000 du BBN Butterfly. Différentes stratégies de séquencement ont été expérimentées

pour ce mécanisme. Nous présentons les résultats de ces tests.

Un compilateur source-à-source supportant le langage SELSYN-C a été mis en

oeuvre. Le compilateur et l'environnement d'exécution associé sont décrits dans cette

thèse.
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Chapter 1

Introduction

Parallel processing and related parallel applications are capturing more and more

attention. Parallel computing has proved to be essential in studying complex pl'oblems

such as those related to image processing, pattern recognition, parallel searching, and

other applications that are computation intensive.

The exploitation of parallel processing depends on three major arcas: (l) the de·

sign of architectures that support parallelism, (2) the design of application programs

that can utilize parallelism, and (3) a mechanism for elfectively and emciently map·

ping the ap!>lication to parallel architectures. At the level of architecture design,

a wide variety of models have been introduced [E1l86, HP90, HJ88, HB84, Kat85,

Kog8l, Sab88, St087, Tha87]. These architectures may exploit fine-grain parallelism

at the inst~uction level, medium-grain parallelism at the loop or vector levcl, 01'

coarse-grain parallelism at the process level. In addition, sorne architectures have

been developed for particular kinds of applications. For instance, array-processors

and vector-processors are suitable for matrix computation as required in the scientific

area. On the side of the applications, much of the research concentrates on represent­

ing or exposing parallelism so that the problem can be solved in parallel. Although

on both sides there has been remarkable progress, there is another problem which

we believe is a general key problem in parallel processing, that is, how to map the

parallel application to the architecture. The goal is to find mechanisms which can

1
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be used to express and control parallelism. These mechanisms should be easy for the

programmer to use and they should lead to portable programs.

1.1 Motivation

Dealing with the problem of parallel programming is becoming more important as

rapid advances in architectures leads to the development of new and cheaper par­

allel processors. In general, programming a parallel processor demands m'Ich more

knowledge and skills than traditional programming of sequential processors. Firstly,

a programmer needs to exploit the parallelism of the application and express the par­

allelism in a particular way. Secondly, a programmer has to deal with m"re resource

management, in particular the management of multiple processes or processors. This

resourcc management is orten specific to a particular parallel architecture. In addition

to these burdens on the application programmer, a particular parallel programming

system may require a supporting run-time system. This run-time system needs to

support mechanisms to exploit parallelism, control parallelism, deal with memory

contention, support synchronization and so on.

Thus, a great challenge is to provide software environments that make parallel

processors usable by a wide varietyof programmers, while at the same time achieving

high efficiency or resource management and high utilization of resources. A critical

step in this development is the design of parallel programming languages that are

simple to use. Programs written in such a language should provide straight-forward

mechanisms for expressing parallelism, and effective mechanisms for efficient1y ex­

ploiting this parallelism on real parallel processors. That is, the language should

allow the programmer to express parallelism at the application level, and not force

the programmer to worry abolIt the complicated details of resource management and

synchronization of tasks for a particular parallel architecture. In addition, a good par­

allel programming language should support the development of portable programs.

2
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One approach to handie the above challenge is to develop a language and associated

parallelism exploitation and parallelism controlling mechanisms. In this thesis we

present a new parallel programming language, SELSYN-C, an extension of the tra­

ditional C programming language that we ha.ve designed and implemented. Users of

the system need only master a small set of new constructs in order to devc10p parallc1

C programs, or to convert their existing C programs to parallel C programs. The two

major contributions of this work are: (1) the development of simple-to-use cxtensions

to C, and (2) the development of a compiler and associated run-time systcm that

supports a new kind of self-synchronizing mechanism.

In order to facilitate parallel programming, we propose a new cxtension of the il11­

perative language C, called SELSYN-C. We have selected the progral11ming language

C as the basis of our work because it is familial' to a wide range of programmers,

and thus it provides a large user base for our new language. The language extensions

provide a simple notation for specifying parallel functions and is particularly suited

to recursive divide-and-conquer parallelism.

To control parallelism and support load-balancing, a new run-time mechanism

has been developed. The fundamental part of this mechanism is the processor-team

model which can reduce scheduling overhead as compared to processor acquisition

as is required for the traditional fork-join model. Different strategies for organizing

the processor-team have been studied. A new team-cooperation scheme is adopted to

further improve the processor-team mode!. This mechanism controis the parallelism

and rebalances the work distribution between processor-teams so that high utilization

of the processor resources can be achieved.

As demonstrated by sorne examples given later in this thesis, this approach pro­

vides a simple way to specify parallel programs, and an effective way to produce

efficient programs that l'un on a shared memory parallel processor. Currently, the

compiler and the run-time environment have been implemented on the shared memory

machine, the BBN Butterfly GP-IOOO.

3
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The thesis is organized as follows. First, we introduce an extension of the imperative

language C, called SELSYN-C, and we illustrate how a programmer expresses paral­

lelism and shared data storage. In Chapter 3, we illustrate the run-time mechanisms

which can support the language extensions in an efficient manner. Severa! experi­

ments have been carried out so that we could determine which strategy achieves the

best performance. The experimental results are presented and compared in Chapter

4. Chapter 5 describes more implementation details about both the language exten­

sions and the run-time mechanism. The comparison with the other related work is

discussed in Chapter 6. We end \Vith conclusions and a discussion of further work in

Chapter 7.

4
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Chapter 2

SELSYN-C Language Definition

In this chapter, we illustrate our parallel extension of the imperative language C,

which we cali SELSYN-C. As outlined in the introduction, one of our majOl' goals \Vas

to design a language that is simple to use and familial' to a wide range of programmers.

With this goal in mind, we decidfld to focus on designing simple extensions to the

programming language C. These extensions \Vere selected to be easy to use, but at

the same time provide the necessary high-Ievel informal,ion required for an effective

translation to a real parallel processor. To keep these extensions portable for diffel'flnt

target machines, our compiler performs a source-to-source transformation. Currently

we have implemented the SELSYN system on the BBN Butterf1y GP-lOOO. With this

implementation the programmer specifies his or her parallel program using SELSYN­

C, and our compiler produces an output program in a C dialect that is specifie to the

BBN Butterfly. This output program is then linked with our run-time environment

to produce a program that can be executed directly on the BBN Butterf1y GP-lOOO.

SELSYN-C supports two major extensions to C: (1) the distinction betwecn

processor-private and globally-shared data, and (2) the introduction of weighted par­

allel function calls. We introduce these two extensions by presenting a simple example.

Following the example, a more detailed description of the extensions is presented.

5
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BcCore wc start to introducc our new language extension, we present an example

which is written in SELSYN-C. A typical recursive function is given in Figure 2.1.

The function, sumO, is a typical divide-and-conquer type problem. In this case

the problem of summing ail en tries a[l. .r] is divided into two smaller problems,

summing the entries a[l. .midpoint] and summing the entries a[midpoint+1. .r].

Since the summing of the two halves arc independent of each other, the two recursive

calls to sumO are performed in parallel.

'define MAX 1000
shared int a[MAX]:
mainO
{int final_sum;

sum(a. 0, MAX, tfinal_sum);

}

/* sum all entries a[l .. rJ. put in result */
sum(a.l.r,result)
int aD .l,r.*result:

/* if only one entry left. then that is the sum */
if (1 ca r)

*result a a[lJ:
else

{ /* sum left half and right half in parallel.
result is sum of left and right */

int midpoint:
midpoint a (1 + r) / 2:
sum(a.l.midpoint. tsum_left) // sum(a.midpoint+1.r.tsUID_right):
*result a sum_left + sum_right:

}
}

Figure 2.1: An example SELSYN-C prograrn

6
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Two points need to be pointed out. A parallcl function cali has been introciuceci

in this example,

sum(a.l,rnidpoint,tsum.left) Il sum(a.midpoint+1,r,tsum-right).

This parallel function cali indicates that the function sumO is called in parallcl on two

independent data sets. The other new concept introduced in this example is a new

storage type. A new leading keyword, shared. is adopted to distinguish the shared

data type and the ordinary data type. The definition of our language extension is

outlined in the next sections. Along with the definition, more explanation on this

example is given.

2.2 Processor-Private vs. Globally-Shared Data

As presented in the previous example, a new shared storage concept has been intl'o,

duced to our parallel extension to imperative language C. In a parallel system, it is

often important to distinguish between memory local to one processor and memory

accessible to ail processors. Our target machine, the BBN Buttel'fly GP-IOOO, is a

typical parallel system of this model. As shown in Figure 2.2, it is a looscly coupied

system in which each processor is paired with its own memory module. Ali proces­

sor cards are identical and independent. They are connected together by a network

interconnection system, called the Butterfty Switch, which handles the data transfers

from one memory module to another.

With an architecture like that of the BBN Butterfly, a processor may access a

memory location associated with another processor, but at a penalty associated with

the time for communication thl'ough the switch. Thus, we can abstractly define two

levels of memory as follows:

Processor private memory: As the name suggests, data in processor private mem·

ory cau be accessed only from the processor associated wi th that memory. In

general, this is more efficient than acces5ing globally-shared memory.

7
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Figure 2.2: Architecture of the BBN parallel processor

Globally shared memory: Data in globally shared memory is accessible from aU

processors. Accesses to globally-shared memory are usually associated with a

penal ty for communication costs, and are therefore less efficient than accesses

to processor-private memory.

Wc can abstractly view this memory hierarchy as shown in Figure 2.3. Note that
,

each processor has an address space for its own processor-private storage, while the

shared storage provides an address space accessible to aU processors.

In order to model the distinction between processor-private and globaUy-shared

memory in our language, we haveincluded the concept of shared variables and shared

dYllamicaUy-ailocated memory. We discuss thene two concepts in the foUowing sec­

tions.

8
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Figure 2.3: An abstract view of Proccssor-Privale and Sharcd IllCIllOI'Y

SELSYN-C Variable Declarations

One main difference between convenlional C and our SELSYN-C is that SELSYN-C

distinguishes the original variables into to two classes, shared variables and privatc

variables. In SELSYN-C, all of the conventional variable dcclarations in C fall into

the private variable class. Ali private variables are permitted to be used as in ordinary

C programs, except for the restriction that their addresses (pointers to the variables)

should not be passed as arguments to parallel funetion calls.

2.3.1 Declaring Shared Variables in SELSYN-C

In SELSYN-C, shared variables are declared by adding a new leading keyword,

'shal'ed', beCore the conventional declaration. This keyword indicates that the vari­

ables will be stored in shared storage address space as presented in the abstraet model

9
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in Figure 2.:3. These variables are accessible to any processor, and thus their addresses

may be accessed by any function, including parallel functions.

Sorne declaratiolls of shared variables arc,

shared int i;
shared float j[10];
shared int *pointer;

which dcfine one integer i, an array of 10 fioats and an integer pointer can be accessed

by any processor within the cluster) during their lifetime. The shared specifier fills in

the same syntactic class as othcr storage class specifier like extern. The shared spec­

ifier may be uscd for global and local variable declarations, but not \Vith parameter

declarations.

Within the two memory management classes, processor-private memory and glob­

ally shared memory, several different types of storage are available to SELSYN-C

programs. III conventional C, according to the storage types, the variables can be

classified into lochl variables, global variables and dynamic storage variables. For

each of these classes, SELSYN-C provides a processor-private type and a globally­

shared type. Thus, the storage types of SELSYN are:

Private local variables: Local private variables are processor private and are stored

on the stack. A private local variable is visible only within the scope of the func­

tion or block that declares it. There is one instance of the variable for every

function cali. flence, the variable is private to the function calI, and hidden

from every other cali. Since private local variables are private to one processor,

the addresses of these variables should not be used as an argument to any par­

allel function ca1l2 in SELSYN-C. In the example, F~3Ure 2.1, int final_sum

of the function mainO and int midpoint of the function sumO belong to this

variable class.

1A collection of processors [Sen88]. Here it means the set of processors which are assigned to
execute the program.

2We describe the parallel function cali in secUon 2.4. The general idea behind this restricUon is
Umt a parallel fUllction cali may lead to the funcUon being executed on a different processor. Thus,
ail addresses that arc passed to parallel funcUons should be accessible by ail processors.

10
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Shared local variables: Shared local variables are accessible from ail proccssors

and stored in the shared memory part. However, note that a shared local

variable is visible only within the scope of the function or block that dec1arcs it,

and it has a lifetime associated with the function or black where it is declared.

In the SELSYN system, addresses of the shared local variables can be IIscd

as arguments in any funelion calls. Two shared local variables, shared int

sum-1eft, sum..right, can be found in the example, Fignre 2.1.

Private global variables: Private globals are processor private. There is one in­

stance of each variable pel' processor. These variables are visible to any flillelion

called on the same processor, but are not accessible from any other processor.

The addresses of the private global variables should not used as argulllents in

parallel function calls.

Shared global variables: Shared globals are globally visi bic by all fllnelions on all

processors and are stored in the shared memory part. The addresses of shared

global variables can be used as arguments to any fllnelion calI. The variahle,

shared int a [MAX] ,is a typical shared global variable in the example, Figllre

2.1.

We now give an example to explain private global variables. All the private

global variables will only be visible on its own processor. However, when a program

starts executing, SELSYN propagates their initial values to ail of the processors. )/01'

instance, if a integer j declared as,

int j = 3;
mainO
{

}

when the program enters the mainO, every processor within the c1uster will have

the same value of j. ACter this initial phase, changing the value of a private global

variable will not affect the value of the copies on the other processors. In the example

11
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above, this means that changing the value of j will only be effective on the processor

where the assignment has taken place. Since the updates are only done on the local

copy of the variables, the effect of the updates will depend on how the proglam

is mapped to different processors at run·time. This can lead to non-determinism

programs and therefore we recommand that private global variables be used as read·

only variables, and that shared global variables should be used for update variablps.

2.3.2 Dynamically-Allocated Shared Data

In addition to statically declared variables, one needs to make a distinction between

dynamically-allocated memory that is processor·private and dynamically·allocated

memory that is globally-shared and thus accessible to all processors. We have sup·

ported this distinction by providing two families of allocation functions. The ordinary

functions such as mallocO allocates processor·private memory, while the function

shared.malloc 0 allocates globally-shared memory. Just as in the case of declared

variables, pointers to processor-private memory may not be used as arguments to

parallel function calls, while pointers to globally·shared memory may be freely used.

Ail variables accessed by different tasks executing in parallel must be identified

as shared variables. Ail private variables are only visible on their own processor,

therefore they cannot be accessed by different tasks executing in parallel.

Privatc dynamic storagc: Storage of this type, obtained by malloc() and related

routines, is processor private, These variables can be accessed by functions

within that processor (provided the necessary pointers have been made avail·

able), but a.re hidden from all other processors. In particular, while you can

pass a pointer from one processor to another, if you try to use it within another

processor you will get a hardware fault or (worse) access a random chunk of

memory in that process.

Sharcd dynamic storage: Storage of this type is obtained by using the SELSYN

System allocator shared.malloc(), and is globally shared. Since this storage is

12
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globally shared, the address of shared dynamic storage is valid on ail proccssors

and such address can be passed frcely among thelll, i.e., can Ill' used as an

argument in any function calI.

2.3.3 Overview

We end this section with an overview figure that illustrates t.he distinction bclwœn

processor-private and globally-shared data. Figure 2.4 presents this overview thal.

indicates the memory allocation of the different data types. Rderring 1.0 I.his l''igure

2.4 and Figure 2.3, we can see clearly where the variables will be locat.ed. Ali the

private variables arc located in the individual processor private storage part. Ali t.he

shared variables arc 10cated in the shared storage part. There arc two ways to make

shared variables visible to otller processors. One is to dedare a sharecl variable as a

global variable 50 that it is always visible to ail processors dUl'ing the whole ('xecution

time. The other way is passing the addl'ess of a shared variable via a parallcl function

cal1. Passing an address of pl'ocessor private storage to other processors will (',ause a

segmentation fault if it is used on any other processor,

2.4 Parallel Function Calls: Issuing Parallel Tasks

In the SELSYN system, wc support fork/join parallelism by introducing a parallc1

operation which can be used by the programmer to specify that two fnnctioll calls

(tasks) may be executed in paral1el. Each task can be associated with a weight which

is used by the SELSYN mechanism when it assigns processors to the t11..ks.

A new operator, parallel-function-call is introduced. lt is represented as two

slashes, '//'. A typical paral1el function cali has been presented in the example,

Figure 2.1 in section 2.1. In the example, the

13
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Figure 2.4: A overview of memory allocation

sum(a,l,midpoint, ksum-left) Il sum(a,midpoint+l,r,ksurn-right)

is a parallel-function-call. The operator 'f/' indicates the two function calls

sum(a,l,midpoint, ksum-left) and sum(a,midpoint+l,r ,ksurn-right)

can be executed in parallel.

In general, there are the following two forms for parallel function calls:

1'1 (a7'gll a7·g2,· .. , a7·gn )@weightlffp2(al·gl,al'g2",.,argm )@weight2

14
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The second type of parallel function call allows the programmer 1.0 add somc in­

formation about the relative weights of the two procedure calls. 'l'hese wcights cali be

fixed constants, or they can be other expressions that are evaluated al. run-tilll() 1.0 esti­

mate the relative importance(weight) of the two funetion l'ails l'l (m'gl, m'g2, . , . ,m'g,,)

and p2(argl, arg2, ' , , ,argm ), The programmer maY sllpply a wide variety of slIch

weight estimates, For example, the weight might be a funetion of thc si~e of t.he

input 1.0 each call, or the weight might be a heuristic that is glliding a scat·ch. In both

forms of parallel funetion cali, the return type is restrieted 1.0 void. Wc give a more

concrete example of using weights in Chapter 3.

In term of the C syntax, a parallel funetion call '~an OCCIII' anywhere that, an

ordinary procedure call of the form pl(argl, "7'g2,. . , ,m'g,,) may occur liS a statcment..

The weight expression is any primary expression allowable in C.

We can also use the sumO example, Figure 2,1, 1.0 illllst.mte the varÎolls variable

classifications. Note that il. is only those variables whosc addresscs arc used in parallc1

function calls that must be declared as sharcd, ail others arc declarcd lC' in ordinary

C programs, In our example the variables sum_left and sum_right wcrc dcchU'cd

as shared variables local 1.0 the funetion sumo These two variablcs havc a lifct.ime

associated with the lifetime of a particular call 1.0 sum, and during that lifcl.ime they

can be accessed by any processor 1.0 which the parallel recllrsive sub-I.asks may be

assigned, Aiso note that the parameter for array a[] corresponds 1.0 an address and

therefore the corresponding argument in a function calling sum must bc declared as

shared,

2.5 Summary

SELSYN-C is an extension of the conventional imperative programming language, C.

II. provides users a simple way 1.0 dec1are the parallclism explicitly, New keywords,

constructs and idioms are minimized for this purpose, In the next chapter, the SEL­

SYN mechanism, the run-time environment is introduced, This mechanism aets as

15
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the support backbone of this language extension so that the parallel tasks can he

scheduled on t.arget machine efficiently and transparently for the users.
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Chapter 3

SELSYN Synchronization

Mechanism

In the previous chapter we have outlined our SELSYN-C parallcl programming lan­

guage. However, as we discussed in the introduction, the dcfinition of a parallcl

language is not enough - we also need a way of elfective1y mapping the high-Ievcl

paral1e! programs onto real ~aral1el machines. In order to solve this problem we have

developed the SELSYN scheduling mechanism that is based on processor-team modcl

and a new idea of processor team cooperation. Our SELSYN-C compiler automat­

ical1y inserts ail of the necessary synchronization needed to support this scheduling

mechanism, and thus the name of our language, SELf-SYNchronizing C.

In this chapter we outline the motivation for our solution, introducc the notion

of processor teams and a dynamic strategy for di viding teams based on programmer­

specified weights, and then we discuss our solution for supporting processor team

cooperation. We end this chapter with a summary.

17
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One possible implementation oC parallel Cunction calls is to use the traditional Cork-join

model in which a parallel Cunction cali oC the Corm fi 0 Il f20 is handled by Corking

the cali fi 0 to a new processor and then joining again aCter the parallel Cunction cali.

This traditional Cork-join model, however, Caces two problems on most shared memory

multiprocessors, such as the BBN Butterfly. One is that the acquisition oC a processor

is a very expensive proposition [BAD87]. If a heavy cost must be paid to acquire a

processor, the granularity oC the work in a Cork-join block mus.t be very large if the code

is to run efficient1y. The other is that there is no perCormance advantage in having

more runnable tasks than available processors. Instead, this situation represents a

performance liability, since the additional tasks imply increased scheduler overhead.

In order to overcome these problems, we introduce a Processor-Team mechanism

which has the ability to control the parallelism and the assignment of processors to

runnable tasks.

3.2 Processor-Team model

Instead oC incurring the large penalty oC acquiring processors as the program executes,

we have designed a mechanism that reduces processor acquisition costs through the

use oC processor-teams. When a program starts to execute, it is assigned a team of

processors that will be available to handle new tasks as they become available through

the execution oC parallel function calls. When a parallel function calI such as fi 0

Il f20 is encountered, the team is divided into two independent sub-teams, one

sub-team will execute fi 0 and the other sub-team will execute f2 O. This dividing

procedure can be applied repeatedly as the problem is recursively decomposed until

there is only one processor in each team.

Here is a trivial example to illustrate how the Processor-Team model works for

our language extension.
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shared int a, b;
int x, y;
rnainO
{

shared int c, g;

func_A(tg) Il func_BCtc);
a =g + c;

}

When the execution encounters the parallel fundion cali, func..A 0 Il func..B 0,

the current team, which we assume has N processors on hancl, is divided intu two

subteams, each with NJ2 processors. The first subteam will execute undion func..B

and the second team will execute fundion func..A. These two subteams will join

together once both of their tasks have been donc, and then the statement a = g + c

will be executed.

If there are parallel function calls within the fundion func..A 0 01' func..B 0,

the same Processor-Team dividing procedure will be applied until there is only olle

processor left in the current team.

This simple team-dividing strategyl can be iIlustrated as Figure 3.1. 1n this figlll'e,

the numbers enclosed in the symbols U[ l" represent the team members. At the J'Oot.

node (corresponding to initiating the main program), there is only one team consist­

ing of ail processors which will take part in this computation (in this case processors

othrough 7). The main program begins executing on processor 0 and when a parallel

function cali is encountered, the team is divided into two equal size subteams, one

subteam for each parallel function cali. This dividing procedure continues for each

parallel fundion calI encountered until there is only one processor per team. When

there is only one processor in a team there can be no further subdividing and subse­

quent parallel fundion calls are executed sequentially. In this manner, the overhead

required to start up a new parallel task execution is only incurred when therc are

processors available for the task.

ISimilar strategies have been suggested by others including Brooks [Br089] and IIcndren [lIcnOO].
We give a comparison of our techniques and others in chapter 6.
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Figure 3.1: Team dividing

Note that in the processor-team model, the parallelism is exploited by rearranging

the processors. This is different than the traditional fork-join model where processors

are acquired as they are needed. In addition, since the sub-teams are independent

and controlled by different processors, the amount of contention and synchronization

is reduced. As we discuss in subsequent sections, this team-dividing strategy is a

crucial key in achieving the goals of high utilization and efficiency.

3.3 A Weighted Team-Division Strategy

As shown in Figure 3.1, a simple team-division strategy is to divide a team into two

equal size subteams. Although this strategy can be efficiently implemented and is

applicable to sorne types of programs, it has an obvious drawback. That is, if the

work load of two tasks is uneven, processor resources will be wasted. Thus, as outlined

in this subsection, we have developed the dynamic weighted team-division strategy.

Let us illustrate the problem of even team-division and our weighted team-division

solution with an example. Consider the following recursive divide-and-conquer func­

tion, fooO.
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foo(argn)
{ if (base_case(argn»

/* process base case */

else
{ /* divide input into 2 components argl and arg2 */

/* solve the tvo sub-problems in parallel */
foo(argl) // foo(arg2);

}

}

If the procedure foo 0 always splits the input problem int,o equal sized pieces such

that the time to solve foo (argl) and foo (arg2) is approximatcly the same, then

the even-team dividing mechanism is a good choice. However, if the size of argl aud

arg2 may vary widely, then the even-team mechanism will result in wastcd processor

resources. Now recall that our parallel function cali mechauism providcs the pro­

grammer with a way of specifying a weight associated with each function calI. Let

us assume that for this particular application, wc know that the size of argl and the

size of arg2 may be quite different, and we know that the time complcxity for fooO

can be approximated as O(n2 ) where n is the size of the input to foo.

Clearly, we would like to be able to express this application-specifie Imowledge

in our paraUel program, and we would like our team-dividing mechanism to malle

use of this information. We can encode our knowledge using weights in the parallcl

function cali. For example, we could change the line "foo(argl) Il foo(arg2)" in

our initial program to the following:

{ int sl = arg_size(argl). s2 = arg_sizo(arg2);
int veightl =sl * sl, veight2 =s2 * s2;
foo(argl)Oveightl /1 foo(arg2)Oveight2;

}

Using this weight information available from the programmer, our weighted team­

division mechanism calculates the sizes of the sub-teams based on: (1) the number of

processors in the original team, and (2) the ratio of weightl to weight2.2 As iIlustrated

2If no weights are given, then the division defaults to the simple strategy of dividing the team
equally.
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c by the example above, these weights may be dynamically evaluated at run-time and

arc provided by the programmer. The weights can be used to express any sort of

application specific information. In our example we illustrate one sort of information

- the expedcd time complexity with respect to the size of the input data. Other sorts

of weights may be constants, or even complex heuristics.

Comparing the simple evenly-divided team strategy with the dynamic weight­

dividcd team strategy, we can see that the evenly-divided strategy has less overhead

(no dynamic computation of weights), while the dynamic strategy may get higher

processor utilization and efficiency. We would also like to emphasize that' this is

an example of how very simple language features can encode application specific

information that is very useful to the compiler. In sequential programs there is no

processor allocation to be done, and therefore no need to encode information about

relative weights of function calls. However, in parallel programs we can make good

use of this information which is often easily expressed by the programmer.

c 3.4 Team-Cooperation

Although the dynamic strategy leads to improved processor utilization, we still need

to deal with the problem of unbalanced work load distribution. This situation may

occur when the programmer has given no weight information, or when the weight

information does not always accurately predict the execution time. Thus, at run­

time we may find the situation whereby one team has only one processor and has

parallel tasks to be executed, while its sibling team may have one or more processors

that are idle with nothing to work on. This situation clearly causes wasted processor

resources, and we would like an inexpensive mechanism to help rebalancing the work

load when such a situation exists.
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3.4.1 Basic Principles

ln this section, we introduce a new concept of team-cooperation as a lIIechanislII

that further improves the processor-team mode!. This team-cooperation is IIsed in

the situation when one sub-team has processors idle and al. the same time the other

sub-team has l'un out of processors and has more parallelislll that can be exploited.

ln order to explain our team-cooperation mechanisl11, we introdnce t.he following

concepts:

Team: A collection of processors. If there is more than one processor, t.he t.c;Ull clin

be divided into two sub-teams that work on independent parallcl t.asks. 1101'

example, in Figure 3.1, al. the beginning there is only one tealll, tealll [0 - 71,
and then this team is subdivided into two sub-teams, teal11 [0 - 3] and tealll ['1

- 7].

Sibling Team: When a team is divided into two sub-teams, each sub-teal11 is the

sibling team of the other. For example, in Figure 3.1, the team [0 - 3] and the

team [4 - 7] are the sibling teams of each other.

Leading processor: The processor which has the lowest processor number in 11

team. This is the only processor which can issue the parallel tasks. 1JI Fig­

ure 3.1, the number inside the nodes represent the leading processors. If the

team has only one processor, the single processor is the leading processor. As

shown at the bottom of the Figure 3.1, such 1-processor teams will always be

at the leaves of the team-tree.

Task Stack: A stack which keeps the information of the team-dividing and task

status. Each team, which has more than one processor, has a task stack.

Task Pool: A pool may contain waiting tasks. It keeps the status of the t!'8ks. Each

processor team has a task poo!.

As described previously, the basic program execution model is that of team­

dividing. This can be summarized as follows. A procedure starts to l'un sequentially
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on the leading processor of its allocated team. When the execution of the procedure

encounters a parallel fundion cali, the team is divided into two sub-teams with the

leading processors of these two sub-teams continuing on with the individual tasks

as specified in the parallel fundion cali. When both tasks have completed, the two

sub-teams arc joined and execution continues. In the case that a team has only

one pror.essor, instead of team-dividing, the parallel function calls will be executed

sequentially on the current processor.

By introducing the team-cooperation, wc change this basic execution model for

the case in which a team has only one processor. In the new model, team-cooperation

is carried out betwecn the leading processors of the sibling teams. This cooperation is

donc for the situation in which a team has only one processor, but has encountered a

parallel fundion cali that provides a new parallel task. In the previous simple model,

a I-processor team running on leading processor P simply executes the two parallel

tasks sequentially. However, in the team-cooperation morlel, processor P takes one

task to perform itself, and puts a concise description of the other task on its own task

pool (if the pool is not full). This task is now available to processor p's sibling team.

If the leading processor of P's sibling team, cali it P.ib, finds itseif idle waiting for P

to complete, then it will look in P's task pool to see if there is a task to stea!. If such

a task exists then P.ib steals it from p's pool and executes the task. Note that the

stolen task may execute new parallel function calls, and if the team associated with

P.ib has more than 1 processor, then the stolen task will be further sub-divided and

executed on sub-teams associated with P.ib.

When P finishes its first task, it checks to sec if the other task has been "stolen"

by its sibling team's leading processor. If the task remains (the sibling team was

always busy with its own tasks), P will take back the task and execute it. Otherwise,

P can deduce that P.ib has stolen the task, and perhaps has generated more subtasks.

Thus, P checks the task pool of P.ib to sec if it can steal a sub-task back.

Thus, we can tlummarize the team-cooperation mechanism as follows:

Entering a parallel function call f10œw1 /1 f20œw2:
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CASE 1 - The current team has more than one processor: Use t.he l'n­

tio of the weights 1.0 sub-divide the current tealll into two suo-teallls, TI

and T2, The leading processor for TI executes f20 and the leading pro­

cessor for T2 executes f 10.
•

CASE 2 - The curnmt team has only one processor, cali it l': If therc

is no room on the task pool, execute funetions fl 0 and f20 sequentially.

Otherwise, put a concise descript.or of the cali fl0 on p's task pool, and

execute f20. Artel' f20 has completed, check t.o see if the task for fl0

has been stolen. If il. has not oeen stolen, then execntc fl 0, If the tnsk

has been stolen, then its sibling team may still oe working on the task,

and P will look in P.ib'S task pool 1.0 try and steal back a sub-task.

Exiting a parallel function cali fl0IDwl Il f201Dw2:

When the leading processor that was given the task fOI' fl0 finishcs, I.hen

il. must wail. for the team with f20 to finish oefore control can move to the

statement following the call fl0IDwl Il f201Dw2. 1I0wever, l'nthel' than just

waiting idly, il. performs the Team-Cooperation to reducc the pl'Ocessor stail

time, This waiting scheme also has two dilferent cases.

CASE 1 - Team-Waiting: For a team which has more than one pl'Ocessor,

when a leading processor has finished a task, il. must synchronize with it.s

sibling team before control can be given 1.0 the statement following the

parallel function call. Il. checks the task pool of the leading processor of

its sibling team for a task that can be stolen. If such a task exists, it steals

and executes the task.

CASE 2 - PooI-Waiting: For a team which has only one processor, when the

leading processor has finished a task, il. must synchl'Onize with the team

which stole the task (fl0 in this example) from its task pool, 50 that the

control can be given 1.0 the statement following the parallel funetion call.

Il. checks the task pool of the Ieading processor of the team that stole the

task. If such a task exists, then il. must be a sub-task of the task il. is

waiting for, 50 it steaIs the sub-task back and executes the task.
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Wc can cxprcss our dividc-and-conqucr strategy as illustrated in Figure 3.2. Each

triangle represents a task. The triangle 1 can be divided into two triangles, triangle

1.1 and triangle 1.2. The same division can be applied to triangle 1.1 and

triangle 1.2 and 50 on. A stolen task must be a sub-triangle of a larger enclosing

triangle. For example, if task 1 is running on a I-processor team P, then the task

1.1 would he put on P's task pool. P's sibling team may steal task 1.1 and in turn

put task 1.1.1 on its task pool. This means that P may steal back task 1.1.1 and

50 on.

Figure 3.2: Divide-and-conquer cali graph

Let's take a trivial example again,

shared int a, b;
int x, Yi
mainO
{

shared int c, gi

func_A(&g)Ox Il func_B(&c)OYi
a =g + Ci

}
func_B(j)
int .j
{
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}

In this example, there is a parallcl runetion cali fune_CO Il fune.DO in the

fune..BO. Assume the program has a total or 2 processors and the execntion time

of fune.AO is less than that of fune..BO, and the execution time or fune_CO is

less than that of fune.DO. Figure 3.3 and Figure 3.4 illustrate the execution or the

example. In these two figures, d indieates that the task is finished, e indicates that

the task is heing exeeuted, and windicates that the task is waiting on ta.~k pool.

At first Processor 0 and Processor 1 are assigned as one team, temn [0 - 11, to the

program. The program l'uns initially on the leading processor, Processor 0, or this

team. The following description summaries the execution of the program stal'ting at

the first parallel funetion caU in mainO.

Step(l) (Figure 3.3): When execution of the programl'eaches the parallcl rnnctioll

cali,

fune.A(&g)~x Il fune..B(&e)~y,

it put these two tasks on the task stack of team [0 - 1]. The team is divided

into two sub-teams which are led by Processor 0 and Processor 1 rcspeetivcly.

These two sub-teams l'un fune..BO and fune.AO independently.

Step(2) (Figure 3.3): While team [1] is running fune.AO, team [0] encountcrs

another parallel function eall fune_CO Il fune.DO. At this time, there me

no more processors to be divided into two sub-teams, and one task (fune_CO)

has to he put on the task pool of team [0] for waiting while the other task

fune.D 0 is left r~nning on team [0].

Step (3) (Figure 3.3): At this point, team [1] has done its own task and is waiting

for joining \vith its sihIing team whieh still has a task on hand to l'un.
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Figure 3.3: Execution of example (Part 1)
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Figure 3.4: Execution of example (Part 2)
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Step (4) (Figure 3.3): This figure shows the team-cooperation between these two

sibling teams. 'lèam [1] steals the task which is waiting on the task pool of

team [OJ.

Step (5) (Figure 3.4): At this point, team [0] has finished its own task func.DO

and is waiting for joining with team [1]. There are no waiting tasks on the task

pool of team [1].

Step (6) (Figure 3.4): At this point, func_CO has been completed by team [lJ.

'l'cam [1] is waiting for team [0] to join into the original team, team [0 - 1].

Step (7) (Figure 3.4): After finishing the parallel function cali

func_C 0 Il func.D 0,

team [0] continues on the execution remaining in func..BO. Team [1] is waiting

for joining.

Stem (8) (Figure 3.4): Finally both team [0] and team [1] have encountered the

join point. A team-join will take place. And after this team-join action, the

statement a = g + C left in mainO will be executed on the leading processor

of team [0 - 1].

From this example we can see the ability of the team-cooperation to rebalance

work loads between teams so that high utilization of processors can be achieved. The

following figure, Figure 3.5, presents the situation when the original team has three

processors. We can see that the task stack is used when there is a team-dividing in a

team, and the task pool is used only for the one processor team. Similar figures can

be developed for the situation when a team has more processors. The implementation

of the task stack and task pool is discussed in chapter 5. More different cases can be

found in Appendix A. The reader can refer to them for detailed case studié:li on how

team-dividing and team-cooperation can work together on these cases.
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Figure 3.5: A more general example

3.5 Summary

In this chapter we have addressed our solution to the problcm of schecluling tasks. In

developing our approach we considered the following desirable requirements:

1. processor allocation should be inexpensive,

2. parallelism should be controlled so that scheduling overhead is reduced,

3. processors should work relatively independently in order to reduce contention
for locks and minimize synchronization, and

4. a limited form of task redistribution should be incorporatecl to allow load bal­
ancing.
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'1'0 achieve the first three requirements wc introduced the notion of teams of pro­

cessors and tcam-dividing strategies that can make use of user-supplied weights. To

achieve the fourth requirement we introduced the idea of team cooperation.

Wc have chosen the Processor-Team model to reduce the overhead of the acquisi­

tion of a processor. Different team-dividing strategies have been presented. A team­

cooperation has been introduced to enhance the performance of the Processor-Team

mode!. For our SELSYN system, the dynamic team-dividing strategy combining with

the team-cooperation was chosen. We calI this mechanism the Cooperating-Team

mechanism. Accordingly, the static team-dividing is called Even-Team mechanism,

and the dynamic team-dividing is called Weighted-Team mechanism. In order to

further study these mechanisms, we have done several test experiments using these

mechanisms on the BBN Butterfly GP-IOOO. The test results proved again that

Cooperating-Team mechanism has the best performance among the three mecha­

nisms. In the next chapter we present the details of these test results.
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Chapter 4

Experimental Results

In this c:hapter, we present the performance figures for the three schedulillg strategies

which have been described in the previous chapter. For the purposes of this chapter

we consider the following scheduling strategies:

Even-Team: Divide each team into two equal sized sub-teams. When t,here is only

1 processor in a team, execute parallel function calls seqllelltial1y.

Weighted-Team: Divide each team according to the ratio of weights as indicated

by the programmer. When there is only 1 processor in a team, execute paral1e1

function calls sequentially.

Cooperating-Team: Divide each team according to weights, assume the weights

are equal if no weights are provided. When there is only 1 processor in a team,

use the Team-Cooperation mechanism outlined in section 3.4.

Performance figures reported in this chapter were achieved on the BBN Butterny

GP-IOOO parallel processor. The test programs include small illustrative programs

and larger programs that are more similar to real applications.
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4.1 Butterfty Memory Organization

c

c

The architecture of the BBN Butterfiy parallel processor is a Shared-Memory /

Omega-Switch mode!. As illustrated in Chapter 2 in Figure 2.2, the BBN Butterfiy

is a looscly coupled system in which each processor is paired with its own memory

module. This memory organization makes ail memory local but globally accessible

through the switch at sorne penalty in access time. Ail processor cards are identical

and independent and are connected together by a network interconnection system,

called the Butterf/y Switc!l, which handles the data transfers from one memory mod­

ule to another. The timing information for the memory access is given in Figure

4.1 [BBN89]. Note that the time for a global access is considerably more than for

a local access. Also because of switch contention, this penalty access time may be

considerably worse at run time depending on the data traffic between the processors.

We will show this elfect with sorne of our results presented in the next sections.

Global Local Global/
(microseconds) (microseconds) Local

Figure 4.1: BBN memory access time

4.2 Experimental Approach

We have selected four dilferent programs as our benchmarks. They vary from larger

programs to small programs that were designed to test specific characteristics of the

scheduling mechanisms. They include,

1. Parallel quick sort.

2. An illustrative program to do computation on the nodes of a binary tree.
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3. An example that computes an approximation for the integral of a fuuction.

4. A 4x4 puzzle search program.

We applied our tlrree mechanisms, which are described in previous sections, 1.0

each benchmark. Each mechanism was tested on varying numbers of processors, and

each mechanism was tested ten times on every processor configuration 1.0 gel. t.he

average performance. In order to compare the performance of the three mechanisms,

we generated the same test cases for each test benchmark. From the experimental

results, which are presented in following sections, we can sec the dilferent ability of

the three mechanisms to deal with a variety of work load distributions.

4.3 Example 1: Quicksort

The first experiment we performed was with parallel quicksort. Quicksort. manipulates

a list. It first divides the input list into three parts, where the first part contains

clements less than the pivot value (called Pl, the second pMI. contains thc elemcnts

equal to P, while the elements greater than P fall into the third part. Note that

the first part and the third part of this Hst can be quicksorted independentiy. Thus,

we can simply specify that these two executions may execute in parallel. The basic

sequential algorithm can be shown in pseudo-code as follows,

quick-6ort(head)

{

if (length(head) > 1) {

partition(head, &part1, &part2, &part3);

1* using first element, part3, as pivot *1
quick-sort(part1);

quick-sort(part3);

combine-lists(part1, part2, part3);

}

}
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Our parallel version will be

quick-sort(head)

{

if (length(head) > 1) {

partition(head, &part1, &part2, &part3);

1* using first element, part3, as pivot *1
quick-sort(part1)~(length(part1))

Il quick-sort(part3)~(length(part3));

1* sort part 1 and part 3 in parallel *1

combine-lists(part1, part2, part3);

}

}

In terms of testing our scheduHng mechanisms, the important characteristic of

this parallel quicksort is that the work Joad of these two executions may be quite

different. For example, consider the following input Hat:

3 2 1 100 23 13 35 8 9 10 3 12 7 9 30

ACter partitionO, it will be divided into the following three parts,

Part 1: 2 1

Part 2: 3 3

Part 3: 100 23 13 35 8 9 10 12 7 9 30

Now we can see that part 1 and part 3 have 2 elements and 11 elements that

need to be sorted respectively. This unevenness of the partitioning step tests the

ability of our mechanisms to dealwith an unbalanced work load distribution which

is unpredictable at compile-time.
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Figure 4.2: Quicksort: 8192 elements (10 cases)

In Figure 4.2, we present thl' result of sorting 8192 clements. The x-axis represents

the number of processors, while the y-axis represents execution time in machine ticks

(one tick equals to 62.5 microseconds[BBN89].). The dotted line represents the perfor­

mance of the Even-Team mechanism, the da,hed line represents the Weighted-Team

mechanism and the stippled line represents the Cooperating-'l'cam mechanism. As

we have described in previons sections, the Wl'ighted-Team and Cooperating-'1'eam

mechanisms have weights associated with each parallcl task. ln this experiment, for

the Weighted-Team and Cooperating-'l'eam mechanisllls, the wcight of the task is

chosen as the numher of the elements it will sort.
W
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Comparing the three performance lines, we can see that if the number of processors

is greater or equal to 2, the Cooperating-'l'eam gets the best performance. When

there are more than 2 processors, the Weighted-'l'cam is in the second position and

the Even-'l'eam is the worst. Figure 4.3 summarizes the relative performance among

the three mechanisms running on six processors.
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Time Spcedup
( xI03ticks) (compared to Even-Team)

Even-Team 32 1.00
Weighted-Tcam 25 1.28
Cooperating-Team 23 1.39

Figure 4.3: Relative performance on six processors

Running the Even-Team on one processor is equivalent to running the sequential

program. That is, the Even-Team mechanism immediately resorts to tlle seqllential

computation when only one processor is available. However, the Weightcd-Team and

the Cooperating-Team mcchanisms have sorne amount of overhead, even if only one

processor is available. From the three performances for the one processor case, wc

can detcrmine the overhead of the Weighted-Team and the Cooperating-Team mech­

anisms by comparing them with the Even-Team case. Even though the overhead is

significant, wc can sec the benefits of the more expensive mechanism for all cases with

more than one processor. Even the worst case, on 11 processors, the Cooperating­

Tcam still can get a 1.3 speedup when compared to the Even-Tcam.

In the previous quicksort experiment, wc used the number of clements to be sorted

to predict the work load. In order to test the effectiveness of the Cooperating-Team

mechanism for the cases where the workload cannot be predicted, wc experimented

with setting the weights of the two parallel calls to be equal. This experiment is shown

as bold \ine in Figure 4.4. Let us first compare the Cooperating-Team mechanism

with predicted workloads, the stippled \ine, and the Cooperating-Team mechanism

with workloads artificially set to be equal, the bold Hne. As expected, the stippled

Hne shows better performance than the bold Hne. However, wc can sec that the

Cooperating-Team mechanism adapts to wrongly predicted workloads and outper­

forms the Even-Tcam mechanism in all cases by comparing the bold Hne with the

dottcd \ine. For the two to six processors cases it even outperforms the Weighted­

Team mechanism that has correctly predicted workloads.
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In order to get more precise test results for these mechanisms, in some cases wc

repeated the experiment more than 10 times. Figure 4.5 presents the average result.s

which are obtained by testing 100 random lists, where each list has 4096 elements. III

this figure, the curve Cooperating-Team(l), the bold line, represents the test when wc

forced the weights to be equal for the Cooperating-Team mechanism. Comparing this

Figure 4.4 to Figure 4.5, we can see the similar shape of these performance curves.

This demonstrates the stability of these mechanisms.

The results of these experiments show that the Coopcrating-Team has its best

relative performance when the number of processors is around four. lt also shows

that the Cooperating-Tea~ mcchanism does have the ability to balance the work

load amo~g processors 50 that the total execution timc can be reduced. Figure 4.6

shows the relative performance on four processors derived from Figure 4.5.
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Figure 4.5: Quicksort: 4096 elements (100 cases)
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l'ime Speedup
( x103ticks) (compared to Even-l'eam)

Even-Team 21 1.00
Weighted-Team 19 1.11
Cooperating-Team 14 1.50
Cooperating-Team(l) 16 1.31

Figure 4.6: Relative performance on four processors

4.4 Example 2: Binary Tree Evaluation

The test results presented in this section are achieved by evaluating random binary

expression trees, as shown in Figure 4.7. The leaf nodes contain random numbers

and the internai nodes contain the operation codes and space to store intermediate

results. In addi tion each node contains the size of its subtree.
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Figurc 4.7: A sampic binary cxprcssion trcc

The program recursively evaluatcs through this trcc and rcturns the valuc caleu­

lated ta thc root. The pat'allel pscudo-code is as follolVs,

eval(root)

{

if (root != leaf) {

eval(root->leftchild)~root->leftchild.size

Il eval(root->rightchild)~root->rightchild.size;

1* according to the root->opcode, perform the operation

on root->left->value and root->right->value

and store in root->value *1
}

return;

}

Figure 4.8 shows the result on a randomly generated tree with 20000 nodes. In

this experiment, the weight chosen for the Weighted-Team and Cooperating-Tcam

mechanisms is according ta the number of nodes in the sub-tree being evaluatcd.

Clearly, the Cooperating-Team and Weighted-Team take the advantagc of this wcight
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information. In cvery case for two or more processors, the Weighted-Team mechanism

outperforms the gven-Team mechanism. By examing the results for the one processor

case, wc can observe the overhead for the Cooperating-Team mechanism. Although

this overhead is large, the Cooperating-Team outperforms both the Even-Team and

the Weighted-Team once it gets more than one processor and it shows very strong

rebalancing potential on the four processor case. For this case, the Cooperating-Team

shows a 1.93 speedup over the Even-Team and a 1.50 speedup over the Weighted-

Tcam.
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Figure 4.8: Random binary tree evaluation: 20000 nodes

The tree the program evaJuates in the previous experiment is a random tree and

therefore not balanced. What will the performance be if it is a balanced tree? In

the other words, how do our mechanisms face a balanced work Joad? To answer this

question, we tested our mechanism on a balanced binary tree which also has 20000

Hodes. The performance resuJts for this balanced tree test are presented in Figure 4.9.

For this experiment, every mechanism gets the precise information for team dividing.
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Figure 4.9: Balanced binary tree evaluation: 20000 nodes

Since it is a balanced tree, the Weighted-'l'eam mechnnislll loses its ndvûntage. The

performance of the Even-Team and the Weighted-Team Illechanislll are allllost the

same. We can hardly distinguish them in the Fignre ".9. The Coopemting-Tellln

also lost its advantage of rebalancing ability. The performance shape of Coopemting­

'l'eam is very similar to the other two mechanisms' performance shape;and the Bnla\l

gap between them represents the overhead of the Coopemting-Tealll mechanism.
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Although in the previous experiments the tree sizes are fairly large, the compu­

tation load of each task is rather small. In the next experiment, we put a dclay loop

at each evaluation step so that we can examine the performance for a heavier com­

putation load. The result of this test is given in Figure 4.10. For this experimcnt,

we can see the shape of the figure is still as we would expcct. However, sorne advan­

tages of the Cooperating-Team mechanism becomes more obvious. In the prcvious

binary experiments, we gave the times only for 1, 2, 4, 8 and 16 processors. In this

experiment, we have data points for ail processor numbers from 1 processor to 28
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processors. As we can sec, the stippled line, which represents the Cooperating-Team

performance, dedines smoothly as the number of processors is increased. However the

Even-T'cam has a step-like curve which changes radically when we double the number

of processors. Thus in many cases, the Even-Team can not get any performance im­

provement from adding more processors. This is because the Even-Team mechanism

always divides the team into equal sub-teams. But if the size of a team is not an é>ven

number, one sub-team will be smaller and since there is no rebalancing ability, the

speed is limited by the speed of the speed of the smaller te=. Thus because of the

unbalanced work Joad, the Even-Team can not rebalance the distribution even though

it does get more free processors on hand. However, bccause of the rebalancing abil­

ity, the Cooperating-Team mechanism always gets performance improvement when

it gets more processors. The Weighted-Team, on the other hand, can get improved

performance in most cases because of the accurate work load prediction. But it gets

slightly worse performance once there are more than 14 processors take part in the

computation. That is because that the memory contention becomes the major fac­

tor aifecting the performance when the number of processors is increased to certain

extent. By contrast, the Cooperating-Team has the rebalancing ability to distribute

the work when memory contention causes unbalanced work load.

Wc have presented the memory accessing information in Figure 4.1 in the pre­

vious section. To reduce the effect of memory access contention, in previous test

experiments, wc allocated the data on 11.11 processors of the system, even though the

experimental program may not use 11.11 of these processors. In next two binary tree

evaluation experiments, wc restrict the data allocation to the processors which the

tests will use. For example, when testing the program on 2 processors, half the tree

nodes will be allocat.ed on processor 1 and half on processor 2. In Figure 4.11, a very

obvious phenomenon that can be noticed is that the Weighted-Team and the Even­

Team mechanism get worse performance on two processors than on one processor.

This degradation in performance occurs because the 2-processor case has non-local

memory accesses while the 1-processor case makes only local memoryaccess. The

"t.her factor that causes this degradation is the processor resource waste. Because
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Figure 4.10: Random binary tree eva1uation with delay loop: 20000 nodes
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of the uneven work load distribution, the Even·Team and Weighted-Temn J1lccha­

nisms can waste processor resources on the 2·processor case. Thus, t,he parallclism

on 2·processors is not enough 1.0 offset memory access contention between processors

and the access penalty of the remote memory access. By contrast, because of the

rebalancing ability of the Cooperating.Team mechanism, il. still can gel. better per­

formance on 2 processors compared 1.0 its performanc" on 1 processor. Comparing

1.0 Figure 4.8, we can find that in the one processor case, the performances in the

Figure 4.8 are worse than that in the Figure 4.11. This is because in the former ex·

periment, the data is scattered on a11 of the processors of the system so that there are

more remote memory accesses. On the other hand, as we add more processors, the

memory contention becomes the major factor affecting the performance. We can see

once there are more than four processors, the performances in the Figure 4.8 become

better than that in the Figure 4.11. A similar situation a1so happens for the balanced

binary tree evaluation. We can conclude this by comparing Figure 4.9 and Figure
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Figure 4.11: Random binary tree evaluation: 20000 nodes
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Comparing Figure 4.11 and Figure 4.12, several observations can be made. The

first one is for the 2-processor case. In both figures, the Even-Team mechanism

and the Weighted-Team mechanism get worse performances on 2-processor than that

on I-processor. However in Figure 4.11, the performances difference is much more

pronounced. This is because the experiment performed in Figure 4.12 was on balanced

trees and therefore the workload is weil predicted, the Even-Team and the Weighted­

Team mechanisms are only affected by remote memory access and memory contention

and not affected by wasted processor resources. Secondly, because of the balanced

trees, we can find in Figure 4.12 that the performances of ail the mechanisms are

quite close, and the Cooperating-Team mechanism keeps almost the same shape in

both figures.

(
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1'0 study this situation further, we performed sevem\ othel experiments to com­

pare performances under different test environments. In order to get the performance

of dealing with small work load as weil, we chose a small tree size, 1023 nodes in

total, to do our experiments. First let 's see the performances on a randorn tree. The

performances shown in Figure 4.13 was measured without a delay loop, while Figure

4.14 was measured with a delay loop added in each task.

In Figure 4.13, we can see that because the tree is unbalanced, the Weighted­

Team mechanism is better than the Even-Team mechanism. But because of increasing

memory contention for cooperation and the smallsize of the tasks, the performance of

the Cooperating-Team mechanism becomes worse than that of the Weighted-Team,

if more than 6 processors take part in the execution. In Figure 4.14, wc addcd

a delay loop to each task. With this incrcased workload in cach task, wc sec an
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even larger dilferencc between the performances of the Even-Team and the Weighted­

Team mechanisms. The Weighted·Team shows a larger advantage now because the

overhead for synchronization and contention is relatively small when the work load is

large. Also note that with larger work load, the Cooperating-Team provides the best

performance. Figure 4.15 presents the relative speedup results for the experiment

with delay loop.

Figure 4.16 presents the result of evaluation a balanced tree with a delay loop. As

expected, the Weighted-Team loses its advantage. The Cooperating-Team still keeps

the best performance, but its advan~.age is minor becausc the work load is balanced

and the is not much need for Team-Cooperation.

(
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Time Specdup
( xWticks) (comparcd to Even-Team)

Even-Team 12 1.00
Weighted-Team 5.9 2.03
Cooperating-Team 4.8 2.50

Figure 4.15: Relative performance on six processol'S

4.5 Example 3: Quadrature

o

In the Quicksort and Binary tree evaluation examples, the computation load was not

too heavy, but the problem size was quite large. In this section, we present a smaller

application, the computation of an approximation for the integral of a funetion. The

program attempts to produce an approximation that falls within an error tolerance
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specified by the liser.

The technique, which we used to compute an approximation of an integral over

an area, is called Simpson's rule [CCSO] and amounts to computing the value of

f(z/} +4f(zm} + f(zr}
6

where Zl is the left boundary, Zr is the right boundary, and Zm is the midpoint.

To get the approximation within the desired tolerance, we divide the inter-:a1. at the

midpoint, lise Simposn's rule again to compute approximations for each half, add the

two results together, and check the sum to see how close the cruder approximation

is to the more refined computation. If the two values are "close enough", that is,

the dilference is less than the allowable difference specified by user, we take the sum,

which is the more accurate value we hope, and calI it our approximation. On the other

hand, if the dilference exceeds the specified tolel'ance, we recursively integrate each
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half of the interyal, add the two results, and calicd the sllm the desired approximatioll.

The parallel program can be easily written as follows,

evaluate(integral. ~tart~ end)

float *integral. start. end;

{

compute approximations;

if ( not close enough ) {

evaluate(&left_integral. start. (start+end)/2)

Il evaluate(~~ight_integral.(start+end)/2. end);

*integral =left->integral + right->integral;

} else {

*integral = sum of approximations;

}

}

The function that was integrated in our experiments follows,

f(x) = sin(4 *arctan(l) *x)Y/ fac/m'(Y)

factor(y) = factor(ly/2J) * (1 - (0.5/ly/2J))

where fac/or(O) = 1, y = 30.

The performance curves are shown in Figure 4.li. Since in this cxample, the work

load is almost balanced, we can sec the Weighted-Team mechanism lost its adyantage

compared to the Even-Team mechanism, while the Cooperating-Team still keeps a

Iittle bit better performance than original one.

The other point we can get from this figure is that the performance of the three

mechanisms is fairly close. One reason we haye mentioned aboye is that the work

load is balanced. The other reason is that the COIII pu tatioll is a small part of each

parallel task.
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Figure 4.17: Quadrature

4.6 Example 4: Parallel Search

Search is one of the most important techniques in artificial intelligence area. Since it

involves the creation and manipulation of trees, it can frequently take advantage of

multiple processors.

c

For our test, we chose a 4 by 4 puzzle search application. By giving an initial

pattern and a goal pattern, the program attempts to find the solution paths which

can transform initial pattern into goal pattern. There are a number of ways to do

a search. The method we used is the bound-first search method. The programs

searches the nodes which can be generated within the oost bound. If within the

current cost bound, no solution can be found, the cost bound is increased and the

search is restarted. This process is iterated until a goal is round. This parallel search

manipulates a search tree, where each node has at most three children. We now come

to the issne of how exactly such a tree should be represented during execution of the
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- program. We have chosen an approach ("symmctric list") that gencmlizes ensily to

trecs in which cach node can have any numbcr of childrcn. In the data for ench node

we includc a pointer to

its parent node
its first child
its sibling

Thus, we can represent the search tree shown in Figurc 4.18 with thc billlll"Y sCIIl'ch

tree shown in Figure 4.19.

l"igure 4.18: Search tree

o

1.1 1.2

Figure 4.19: Binary scarch tree
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Using this binary tree representation, the paral1el search program can be describcd

as fol1ows,

search(root)

{

if ( goal has been already found ) {

return;

} else {

if (root->state == goal ) {

output the solution path;

return;

} else {

if ( satisfy the search bound ) {

generate children nodes;

}

}

}

if ( there is child node to be searched ) {

search(root->firstchild)//search(root->sibling);

}

}

Figure 4.20 shows the test result by applying the Even-Team mechanism and

the Cooperating-Team mechanism to this program. We can sec a very impressive

performance achieved by the Cooperating-Team mechanism. The Cooperating-Team

mechanism gets 1.56 speedup over the Even-Team mechanism on 4 processors. On

more than 4 processors, it keeps a 1.3 speedup.

We note very litt1e speedup for cases when there are more than 5 processors.

This is because that we are looking for only one of many possible solutions. Thus,

by searching for solutions in parallel one generates extra tasks that have performed

extra or speculative work over what would be required for a sequential search. As

the number of processors is increased this amount of wasted work also increases. To
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Figure 4.20: Searching: find one possible solution

compare the performance more precisely, we modified the program so that it searchcs

for ail possible solutions within the cost bound. This result is .bwn in Figure 4.21.

For this case, both performances improve as the number of processors illcreases. In

addition, the Cooperating·Team gets a 2.48 speedup over the Even·Team mcchallism

for the 16 processors case.

In our previous parallel search experimellts, ail the weights were chosen equally.

However, in order to take more advantage of our Cooperating·Team mechallism, the

user could adjust the weight which is associated with each task, so that the most

hopeful search branch can be assigned more proccssors. Although therc are mallY

strategies for searching, our mechanism can balance the work load so that the pel"

formance may be improved further.
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Figure 4.21: Searching: find all possible solutions

4.7 Summary

In the previous sections, we reported our experimental results. The first experiment

we performed was parallel quicksort. Different cases have been tested, including the

cases of different problem sizes, different item Iists, and including the cases in which

wc artificially gave the wrong weight information to predict the work load. The results

show the strong rebalancing ability of the Cooperating-Team mechanism.

The experiment of evaluating binary trees focuses on studying the factors which

affect parallel performance. These factors include memory locality, memory con­

tention, task size, processor resources and so on. The Cooperating-Team mechanism

achieves the best performance in most situations.

A fairly small experiment we performed was to compute an approximation for the

integral of a function. The last experiment is the parallel search. Both of them show
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sorne advantages of the Cooperating-Team mechanism.

From these expermental results on the BBN BuLtcrfly GP-I 000, Wc can "nllllllarize

the factors that affect the self-scheduling mechanislIl. They arc,

Parallelism: This faetor is the base factor of a parallc1 progralll. Withont paral­

lelism, the program cannot take any .dvantage of parallcl proces"or'" capabil­

ities, and ail of the three mechanisllls achievc pOOl' perrormancc whcn therc i"

not enough available parallelism.

Memory locality: In many parallel architectures, memol'y access time is a hcavy

overhead compared to computation. This is true for a machine like the BBN

Butterfly GP-IOOO, it's better to access local memOI'y rather t.han non-Ioca.!

memory. The locality effect can be noticed by comparing t.he pel-fOl'llHlnCC"

between the tests which allocate data on only the pl'Ocessors it u"es and the

tests which allocate data on ail of the pl'Ocessol's or the system. This faetor

affects the performance of every scheduling mechanislll.

Memory contention: When a computation performs lllany non-local melllory ac­

cess we see a performance degradation duc to switch contention and lIlelllory

contention. In sorne cases we see that memol'y locality and llIemory contention

interaet. That is, some:.times we can reduce the effeet of memory contention by

spreading out the data on more processors. In addition, memory contention

may also cause some unexpected changes in Joad balancing. Our experirnental

results indicate that in these cases the Cooperating-Team mechanism is able ta

rebalance the workload and therefore avoids some of the perrormance degrada­

tion due to memory contention.

Granularity control: Due ta the overhead or the Illechanism itself, a program need"

to control the granularity of parallelism to get bett.er performance. COlllparing

the performances of the test cases of different problem sizes, we can observe

that this is significant. Due to the increased overhead of the Cooperating­

Team mechanism, larger scale tasks are more suitable for the Cooperating-Team

mechanism.
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c Parallelism control: The importance of parallelism control has been shown by the

sup"rior performance of the Cooperating-Team mechanism. The Cooperating­

'l'l'am mechanism controIs parallelism and takes more advantage of the parallel

processor. Each of the three mechanisms has adopted a parallelism control

schemc. The Even-Team mechanism itnd the Weighted-Team mechanism con­

trol thc parallclism by executing the pll..mllel tasks sequentially, when therc is

only one processor in a team. However, in the same situation, the Cooperating­

Team mechanism would put one task on its pool for waiting, executing the

other task lirst. If within this execution period, some processor becomes free, it

steals t.his task, otherwise, the current team take it back to execute. Thus, :he

Cooperatin6·Team mechanism gives more opportunity to make use of the free

processors.

Other overhead: This overhead may be due to the system itself, such as process

crcation overhead, memory allocation overhead, etc. This overhead can be no­

ticed by comparing the performances which were achieved on one processor with

those on more than one processor. The results showed that the Cooperatillg­

'l'cam mechall ism has more overhead than the others.

The expel'imelltal results which were presented in previous sections, demonstrate

that oUl' Cooperatillg-'l'cam sclf-scheduling mechanism has a better pcrformance in

gencral, cspecially in adjustillg to unbalanced work load. It gives users a general

balanced execution elwironment to develop applications based upon the divide-and­

conquer concept.
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Chapter 5

Implementation

In this chapter, we present an overview of the SELSYN implemenl.al.ion. This chaVl.er

is organized as fol1ows, we fi l'st give a sl.ructmal overview of the compilel". Fol1owing

that, 1wo parts of our compiler, the parsel' and the code generator am presented. The

code generation part also includes a description of the implemenl.ation dct.ails of I.he

run-time environlJ1ent.

5.1 Overview of the Compiler

The implementation of SELSYN-C has two integrated parts: a source-ta-source com­

piler, and a run-time environment. The source-ta-source cOlllpilel' functions as a

front-end in the system. The back-end is the high-Ievel compilel' of the target ma­

chine. Linked with the run-time environl11ent implemented on the targcl. machine,

the output abject code can l'un directly on that machine. Figure 5.1 iliustrates the

structural overview of the implementation.

The source-ta-source compiler performs two functions. The fi l'si. function is parsing

the SELSYN-C source code and construeting the internaI represenl.ation. The other

function is high-level source code generation for the target machine. Thcses two

functions arc independent of each other. The interface bcl.ween I.helll is the intel'llal
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Figure 5.1: Structure overview

representation of the source program. Wc now introduce the construction of the

internai representation.

5.2 Constructing the InternaI Representation

We chose the ONC C compiler, ONU CCI, as our work base. There are two l'casons

fol' this choice. One reason is that OUN CC is free to modify. The other l'Cason

is that the ONU CC adopts the AST ( Abstract Syntax Tree) as an intermediate

representation, which can retain the structure of the program, as its intermediate

representat.ion fOl' carrying out high-Ievel compiler optimizations.

'Copyright (C) 1988 Frec Software Foundntion, Ine.
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We have used a modified version of the parser from GNU CC as the front-end of

onr compiler. Rather than only using AST ta retain the stmctnre of the progl'iun

only up ta statement level as original GNV CC does, wc need ta keep t.he st.mctlll'e of

the entire program, by creating a complete AST for the progl'iun. This work hiL' heen

done by Sridharan [Sri91]. Based on this complete AST, many transformal,ion can he

carried out on it, such as code transformation2 • In addition ta keep the sn l'port. fol'

original C language, we make use of this complete MiT t.o contain t.he informat.ion

which is supported by our language extensions.

The first modification we performed was la snl'port. the shared storagc dcclaration.

A new key wonl, SHARED is adopted in am language extension. ln order' t.o sn l'port,

it, the reserved keywords hash table has becn modified. The GNU C <'Ompiler, likc

many othcr compilers, uses a hash table to han,lie keywords. lIoweycr, the ord.'r of

keywords in its hash table has becn choscn for pCl'fecl hashing. This is achicved hy

using a program called "gperr', which is a separate part of the GNU C cunlpiler.

According ta our language extensions, we 1lI0dHied the data file which contains all of

the keywords of C language, thcn generated a new Imsh t.able and semching fnnction .

The source-to-source compiler not only nccds ta parse the new keyword, hnt. alsu it.

needs to retain this new information of the sharcd storage. Thus wc had t.o modify t.he

internai representation. Rather than creating a symbol table, t.he GNU C compiler'

represents the variables and their t.ypes as "Tree Nodes" in the AST". The modi­

fication ta support the shared storage type has becn perfonned on t.hese t.ree node

definitions. An attribution bit has been added in the Declaration Node definition

st1'llcture ta indicate the shared storage attribution of the variable.

In addition ta the SHARED deciaration, several nell' node types have been added

in arder ta represent the new operators. The parallel fnnclion cali is represented by

a new PARALLEL.EXPR node, which contains the wdght informat.ion of the parallel

function cali.

The target dependent part of the source-to-somcc compiler is the high level code

2For a discussion of the AST transformation, the reader ilia)' l'l'fer to [SriDl].
"For the details of the ONU C compiler description, the reader ma)' refer to [Sri9!].
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generation fUllction. According 1.0 the specifies of dirrerent target machines, dirrerent

high level codes lIeed 1.0 be generated. We describe this implementation along with

the descriptioll of the run-time environment implementation in the next few sections.

5.3 Generating Code

As we have introduced, the output of our source-to-source compiler is high level source

code which is specifie 1.0 the target machine. Now we present how 1.0 generate such

output source code. The two main features of our language extension is the shared

data storage alld the parallcl function calI. In the following sections, we outline how

these featllres have been implemented.

5.3.1 Implementing Shared Data Storage

The architecture of our target machine, BBN Buttel'fly GP-1000, has been illustrated

in Chapter 2 in Figure 2.2. The GP-1000 operating system Mach 1000, is an extension

or the Carnegie Mellon University (CMU) Mach operating system, which itself is an

extension of the Berkeley 4.3 BSD Unix operating system·l. Mach 1000 takes the

basic premise of CM U Mach and extends il. 1.0 include Butterfly-specific concepts

such as c1usters and vi l'tuai processor management library subroutines. To facilitate

parallel programming, Mach 1000 provides an application library with routines for

processor alld memory management and allocation. This application library, kllown

as the Uniform System (US) library, provides subroutines that can be called from C

language pr"i;;'ams [MoySS].

The Unifol'lll Syst.em uses the Mach 1000 vil'tuaI memory system 1.0 implement

globally shared memol·Y. The globally shared memory and processor private memory

can be viewed as shown in Figure 2.3 in chapter 2. In order 1.0 support our shared

storage, we need 1.0 allocate the shared variables in the globally shared memory part.

"The difTerellce h"twe"" Mach 1000 alld Berkeley 4.3 BSD cali he round ill [Moy88].
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1 As discussed in chapter 4, memory contcntion arfects pcrfol'lnance. Wt' allo""l.c on"

heap in the shared memory of each individnal proCCSSOI' so that. the Illclllory conl.t'nl.ion

is reduced. Based on the same idea, each processor has a ta.~k stack and pammctl'r

heap allocated in the shared mcmory spacc so that the Coopeml.ing-Tt'alll mode!

could be carried out. Recall the memory allocation figlll't', Figurt' 2.'1, prl'st'nt.t'd in

Chapter 2. Wc can draw a similar figmc, Fignre 5.2, illnstmting t.he Il\elnory st.at.lls

after we allocate such heaps and stacks fol' processor 111. The point.ers 1.0 nHlniplllat.c

these shared spaces are kept in the processor-private n1enlory on cach l'l'Ocessor. The

shared variables are allocated easily in these heaps by t.he maniplllating t.ll<'se point.el·s.

Processorm

Text (Program)
- .. _--_ .. _------

te -< Heap
Pointers manipulalcd
Share" Heap, Task Slack

-------------- an" Parameter Heup

Stuck

---_oooo--------

Processor-priva

G10bally

Sharcd

Memory

Shared Heap

:"---1 Task Stack

Parameter Heup

Area

Figure 5.2: Shared storage

o
Let us consider the sum example again given in Figure .5.3. In this exa",!)lc, there
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'define MAX 1000
shared int a[MAX]:
mainO
{int final_sum;

sum(a, 0, MAX, &final_sum):

}

/* sum all entries a[l .. r], put in result */
sum(a,l,r,result)
int aD ,l,r, *result;

{ shared int suro_left, sum_right:

/* if only one entry left, then that is the suro */
if (1 == r)

*result =a[l]:
else

{ /* suro left nalf and right half in parallel,
rcsult is sum of left and right */

int midpoint:
midpoint = (1 + r) / 2:
sum(a,l,midpoint, &sum_left) // sum(a,midpoint+l,r,&sum_right):
*result =sum_left + sum_right:

}
}

Figure 5.3: An example SELSYN-C program

is a parnllel funetion cali,

sum(a,l,midpoint,&sumJLeft) 1/ sum(a,midpoint+l,r,&sum-right).

ln order to dispatch the function onto different processors, the function arguments

have to he made available to the other processors via the shared memory. We have

allocated a parameters heap for this purpose. For each function a parallel version

is crcated which contains one parameter. This parameter is the address of a shared

memory space which contains the arguments needed for the funetion. The example

fundion example sum0 would have a parallel version as,



o

int PP_sum (PARA)
int *PARA;

1* Modified function name, so that it can
accept shared variables passing. *1

{int *fpoint =my_local_heap;
1* Obtain parameters via shared space *1

int * a = *«int * *) PARA)++;
int 1 =*«int *) PARA)++;
int r = *«int *) PARA)++;
int * result = *«int * *) PARA)++;

Within the function sum 0, therc are two sharet! variables, sum_left alld sum-.right.

Since the shared variables have to be allocated in OUI' pre-allocated Il<'ap. tlll' ('0(1<. 1.0

declare these two shared variables is,

int *sum.left ; int *sum_right
sum.left = «int * ) my_local_heap)++;
sum_right = «int * ) my_local_heap)++;

1* Allocate the memory space for shared variables *1

Note the type shared int is translated into type int *. This is "ecallse that the

space for shared variables are assigned from the sharet! variable heap. 011<' 11101''' lev,,1

of address referencc is created. Some more examples arc,

shared int * j is translated into int * * j,

and shared int * * j is translated into int * * * j.

5.3.2 Implementation of the Cooperating-Team Model

Before we introduce how to implement parallel function cali feat ure , Wc Iirst present

the implementation of the processor management. Studying the expcrinwntal results

presented in Chapter 4, we have seen that our dynamie team-dividing strategy com­

bining with team-cooperation, ealled the Cooperating-Team mechiLnism, has strong

advantages over the statie team-dividing strategy. We now explore the ilTlplemclI'

tation issues to detel'mine whether the overhead of Cooperating-'\'eam lIIeehanisrn

can be acceptably minimized. Current\y, the Cooperatillg-Team mcdlanisrn hiL~ bœn

implemented on BBN Butterfly GP-IOOO.
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Task Description

The core data strudure of the system is the concise task descriptor. AIl of the actions

which need to be performed for team division and team cooperation are accomplished

via the task descriptor. The concise task descriptor is designed to keep the information

of a ready to l'un task. 1t is defined as follows,

(

/* task descriptor */
typedef struct taskInfo{

int teamNo;
int (*func) 0;
int veight;
int teamSize;
int startProc;
int endProc;
int '·PARA;
int sibLeader;

int stat;
int ack;
struct taskInfo *next;

} task;

/* */
/* the runnable task */
/* the associated veight */
/* number of team members */
/* leading processor */
/* last processor in team */
/* parameters chain */
/* leading processor of

sibling team */
/* WAIT, EXEC, DDNE, EXIT */
/* acknovledgement */

(

This descriptor is used to for both team-dividing and team-cooperation. The

meaning of the field sibLeader is slightly dilferent when used for team-dividing or

for team-cooperation. In team-dividing, it's obvious that it indicates the leading

processor of the sibling team. While in the team-cooper"tion, this field indicates

which leading processor stole the current task.

We designed a stack which functions as both a task stack and a task pool. It

ads as a task stack for team-dividing, however it acts as il task pool for task waiting

and task stealing. Wc can summarize these two actions, when encountering a parallel

fundion cali,

Casel: When there is more than one member in a team, team-dividing will oeeur.

Two concise task deseriptors are pushed onto the staek. Thus, the staek rune­

tions as task staek for team-dividing periods.
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Case2: When there is only one rnember in a team, the task stack will flllletioll as a

task pool which can store waiting tasks. The top of t.he stack will operaI,., lik,' a

pool of tasks. Each waiting task descriptor is put in the pool. Tasks ar(' t.aken

out in FIFD order.

To manipulatc this stack, wc used four pointers which point. t.o ta"k stark "01.1.0111,

task stack top, task pool bottolll and task pool top respect.ivdy. W., delnollstl'1t1,., tilt'

details of this manipulation in Appendix A.

Each processor is assigned one such task stack. The stack is IIsed once a prol'l'SSc"

becomes the leading processor of a team and encounters a paralld fllnct.ion calI. Ail

of the processol' assigllments are accolllplished via this two·fllnct.ion stac1"

Task Issuing and Hoping

As we described, the execution always starts on the leading pl'Oe('ssol·. Th" k'ading

processor is the only processor that can issue parallcl tasl\S. The algorithln fOI' leadill!-\

processor to issue tasks as follows (assume it encounters a parallel fllndion e.JlI,

func..A(a) / / func..B(b»),

if ( only one processor on current team) {
put func_A(a) on task pool vaiting;
execute func_B(b);
if (func_A(a) still waiting on pool) {

take func_A(a) back fr~m pool;
execute func_A(a);

} else {

}
} else {

TASKISSUE
TEAM_WAITING

}

Figure 5.4: Task issuing algorithm for leading proccssor
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The step TASKISSUE calculates the ratio between the two weights associated with

the two tasks (functions) and according to this ratio the current team is divided into

two subteams, which execute func..A(a) and func.B(b).

The leading processor of the current team will become the leading processor of

olle sllbtearn which executes func.B(b). One child processor of cllrrent team will be

signaled to become the leading processor to execute func..A (a). We say that this

child proccssor has been hoping to get a task to execute. The task hoping algorithm

of the child-pl'Occssor is presented in Figure 5.5.

child_processor()
{

Initialization;
vhile ( Not Terminated )

{

vait to get a task to execute
svitch (TASK_CODE)

{

case WAIT:
Become leading processor

and execute the task;
TEAM_WAITING; /. join its sibling team ./
break;

case EXIT:
Terminate the processor;
break;

}
}

}

Figure 5.5: Task hoping algorithm for child processor

Notc that both the leading processor and child processor have the TEAM_WAITING

step. The TEAM_WAITING and POOL_WAITING accomplish the synchronization between

teams. Team-C'loperation may happen in these steps. In the next subsection we

prcsent the algorithms fol' these two functions.
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Synchronization and Cooperation

Vnder two cases, synchronization is needed. One case is at the team-dividing point.

When both subteams finish thcir tasks, they need to merge togcLhel' into one team.

The two subteams wait for each other to finish their tasks. The otller synchl'Onization

happons when a task has been stolen by the other team. The pl'Occssor which lost

the task should wait for the task to be finished. Dming the waiting pel'Îod or the

synchronization, 'l'cam-Cooperation may happen.

The toam waiting scheme and the pool waiting "cheme are prescntcd in Fignre lUi

and Figure 5.7.

While ( sibling team hasn't finished task ) {
if ( task waiting on sibling team's task pool) {

steal one to execute.
}

}

}

Figme 5.6: Team-waiting aigorit.llln

POOL_WAITINGO
{

While ( Stolen task hasn't finished ) {
if ( task waiting on the processor that stole the task ) {

steal a sub-task back to execute
}

}

}

Figure 5.7: Pool-waiting algorithm

The idea behind these two algorithms is to use the waiting periot! to check whcther

the idle processor may offer hclp to a busy proccssor.

As wc said previously, the goal of the 'l'carn-Cooperation is to rebalance the work

load between the processors. '1'0 achieve this pmpose, the remainillg rllnn,,!>le tasks
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arc storm! in the pool waiting for an idle processor to stea! them. However, a team

rnay have several sibling teams which can stea! from its pool. According to the

maximum nllmber of sibling teams, we can decide the number of waiting tasks that

lIlay he allowed in the individualleading processor's pool. Since the processor team is

organized during run-time, this number varies at run-time for each individua!leading

processor depending 011 how many times the team it leads has been divided. By

considering this factor, the task issue algorithm for leading processors can be slightly

mod ified as shown in Figure 5.8.

if ( only one processor in current team) {
if ( task-pool not full ) {

put func_A(a) on task pool vaiting;
execute func_B(b);
if (func_A(a) still vaiting on pool) {

take func_A(a) back from pool;
execute func_ACa);

} else {
POOL_WAITING

}
} else {

execute func_B(b);
execute func_A(a);

}
} else {

increase task-pool size;
TASKISSUE ;
TEAM_WAITING ;

}

Figure 5.8: Revised task issuing algorithm

5.3.3 Link Ta the Run-Time Environment

Each paralle! fUl1ction cali is implemented by generating code for the case when there

is more than one processor in the current team (team division) and the case when

thel'e is only one pl'ocessor in the current cUl'l'ent team (adding a. task descriptor
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to the leading processor's pool). The generated code makes use of calls to the I1111­

time system to handIe synchronization. Note that procedures calls, POOL_CHECKO •

POOL.WAITING(). factor(), issueTask(), UsLock(), and UsUnlock(), refer to

calls to the run-time environment. The implementation of those primates for the

BBN Butterfly OP-IOOO is given in Appendix C.

/ •••• Here goes the transformation for parallel function calI •••• /
/. sum(a,l.midpoint. tsum_left) // sum(a,midpoint+l,r.lsum_right) */
if ( my.index == my.endpoint ) {

/. Only one member in team. ./
int .arglist; int .para••paral;
parai = arglist = arg.list.ptrs[my.index];
.«int ••) arglist)++ =a ;
.«int .) arglist)++ = l ;
.«int .) arglist)++ = midpoint
.«int ••) arglist)++ = (t .sum_left)
para = arglist ;
/. Setup for sum(a,l,midpoint. tsum_left) ./
.«int ••) arglist)++ = a ;
.«int .) arglist)++ = (midpoint + 1) ;
.«int .) arglist)++ = r ;
.«int ••) arglist)++ = (t .surn_right)
arg_list.ptrs [my.index] = arglist;
/. Setup for sum(a,midpoint+l,r,tsurn_right) ./
if ( my.task < my_task_top ) {

UsLock(taskStack_lock[my.index], 0);
if «(poolStack_top[my.index] - poolStack_base[my_index])

< my.pending_no)
Il (poolStack.base[my_index]

== tearnStack.top[my.index]» {
/. Enough Task Pool space ./
.my.current.pending++;
my_task->func = PP_sum ;
my_task->stat =WAIT;
my.task->startProc =my_index;
my_task·>PARA = parai;
my_task·>next = HULL;
/. Create the waiting task description ./
if (poolStack_base[my_index] == teamStack_top[my_index]){

poolStack_base[my.index] =poolStack.top[my_index]
=my_task++;

}else { poolStack_top[my_index] =my.task++;
}
UsUnlock(taskStack.lock[my.index]);
/. Setup one task waiting on the pool ./
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c PP_sum(para);
'0 Execute the other task on current processor 0'
if ( POOL_CHECK() == 1 ) { '0 Check task pool 0'

PP_sum(paral); arg_list_ptrs(my_index] =parai;
'0 Take the task back to current processor 0'

} else {
POOL_WAITINGO;
'0 Wait for joining.

Team-Cooperation may take place 0'
}

} else {
'0 Task-Pool is full. Execute both tasks

on current processor 0'
UsUnlock(taskStack_lock[my_index]);
pp_sum(para) ;
arg_list_ptrs[my_index] =para;
PP_sum(paral);
arg_list_ptrs(my_index] =parai;
}

} else { fprintf(&:_iob[2]. OIstack overflov \n Ol );

exit(3);
}

} else { '0 More than one member in a team 0'
taskPtr taskPointer. taskPointerT;
int oarglist; int otemp;
taskPointerT = taskPointer = my_task++;
taskPointer->func =PP_sum ;
taskPointer->veight =1 ;
arglist =taskPointer->PARA =arg_list_ptrs(my_indez];
taskPointer->stat =WAIT;
taskPointer->next = my_task;
temp = arglist;
.«int o.) arglist)++ =a ;
.«int .) arglist)++ =l ;
o«int .) arglist)++ =midpoint
.«int o.) arglist)++ = (&: .sum_lèft)
arg_list_ptrs[my_index] = arglist;
,. Setup for sum(a.l.midpoint. &:sum_left) 0'
taskPointer = my_task++;
taskPointer->func =PP_sum ;
taskPointer->veight =1 ;
arglist =taskPointer->PARA =arg_list_ptrs[my_index];
taskPointer->stat =WAIT;
taskPointer->next = NULL;
.«int ••) arglist)++ =a ;
.«int .) arglist)++ = (midpoint + 1)
.«int .) arglist)++ = r ;
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*((int * *) arglist)++ = (& *sum_right) ;
arg_list_ptrs[my_index] = arglist;
1* Setup for sum(a,midpoint+l,r,&sum_right) *1
poolStack_base[my_index] = teamStack_top[my_index]
=poolStack_top[my_index] =taskPointer;

1* Create task description *1
factor(taskPointerT); 1* Setup for team-dividing *1
my_pending_no++;
issueTask(taskPointerT);
1* Issue tasks and join. Team-Cooperation May take place *1
my_pending_no--;

}

Wc give some further explanation on this genemted code here. The lIIanipulat.ion or

arglist is to prepare the function 's parameters for transferring to anot.hel· processor.

Ali or the paramclers that need to be transrerred arc put in t.he pl·e-a.llocated slmred

space. For the case of more than one processor in a team, after t.wu t.ask descript.ors

have bccn prepared, the team-dividing sclup fundion factorO and tealll-dividinp;

funclion issueTaskO arc invoked. \n the case or one pr0Cl'SSOI' I.<.'alll, if t.he t.ask

pool has enough space, one task descl'iptor will be put on it for wait.ing, the other

task is carried out on the local processor. The fnnclion POOL.CHECKO is called to

check whether the waiting task has been stolen by other proCl'SSOI'S ~ince the local

processol' finished its own task on hand. POOL_WAITINGO is called to synchroni~"

the processors if task stealing has happened. For the situation, where there is one

processor in a team and not enough pending space on task pool, the two tasks are

carried out sequentially on the local proccssor.

5.3.4 Initialization

As wc illustrated in the structura! overview, the object module has to be linked with

the run-time environment. It includes the link with the initialization part, which is

the main entry to invoke t.he application. Our mechanism is based on Cooperating­

'l'cam model, and in order to carry out this mechanism, in the initial phase or an

execution, the Cooperation-Team system has to get control of ail or the available

processors. The first step of this initialization phase is achieved via Uniform Sy~tmn's
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c routine InitializeUsO. This rouLine creaLes and sLarLs a Uniform SysLem process

on every available processor in the clusLer, sets up the memory that is globally shared

among ail Uniform System processes in the cluster, and initializes the Uniform System

storage allocator5• Artel' this firsL step, the processors are under the control of the

Cooperating-'l'cam system. The next step in initialization is to prepare the memory

space for the mechanism usage. This includes the task stacks and the parameter

stacks and shared memory storage. After this initialization phase, ail of the available

processors to the execution have been constructed as one team. Every processor has

the same copy of the execution code. The leading processor starts the execution, and

the l'est of the processors start to wait for the tasks that may assigned to them and

hopc to become a leading processor. The algorithms for both leading processor and

t.hese waitillg processors have been presented in the previous sections.

5.4 Summary

OUl' implementation is currentlyon the BBN Butterfly OP-JDDD. The implementation

includes

• Il language parser for the SELSYN-C.

• Code generation for the BBN Butterfly C.

• Support for shared storage.

• Il run-time library, which provides the following functions,

Main: a main entry to initialize the system and invoke the application.

childO: performs the task hoping for waiting processor.

factorO: setup for team-dividing.

issueTaskO: performs team-dividing and team-joining.

5The detailed description of the Uniform System can he found in [Sen88].
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TEAM_WAITINGO: performs synchronization bctwecn tcams.

POOL_CHECKO: performs the tnsk-takcn baek fl'Omloealtnsk wait.in!!; pool.

POOL_WAITINGO: perforll1s t.he synehl'Oniznt.ion bclwecnteams which have

team-eooperat.ion.

The language parser is machine independent. \"'hile the l'est. of the eompollcnls arc

machine dependent parts of the implement.alion. Sinee the language par5er eonll~ins

ail the information of program structure, nllaching dirfcrentmachine depcndcnt. part.·.;

to it can generate object codes for different t.argcl machines. Cur-cntthe object. l'ode

is generated for BBN BUI.terlly GP-lOOO.
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Chapter 6

Related Work

Many researchers are rising to the challenge of exploiting parallel processing. Efforts

on devcloping parallcl programming languages include inventing new languages and

adding neIV featllres to various existing sequentiallanguages. Further work has been

donc for devclopil!g various scheduling strategies.

ln this chapter, wc outline other related work in the areas of both parallel program­

ming languages and scheduling mechanisms. We compare these to our SELSYN-C

language and Cooperating-Team mechanism whkh has been presented in this thesis.

6.1 Parallel Programming Languages

Th., development of parallel programming languages is an attractive field 01 res(:arch.

Some researchers have worked on developing entirely new languages for parallel pro­

grams, such as Strand [FT89J, PCN [CT90], SISAL [MSA+8S] and BLAZE [MvR87].

Although these are interesting and orten elegant languages, they do not satisfy our

goal of being familial' to programmers.

There are also many activities which involve developing extensions to existing lan­

guages. In this area, one of thl;; major thrusts has been the development of extensions
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1.0 the language FORTRAN. This is duc 1.0 t.he fact thal, t.raditionally. lI1any paral­

lei applications have come froll1 the scientific cOlllll1unity and have therefore focused

on techniques l'or dciiling with arrays. In addition. many prograll1s aud parallcl ap­

proaches have been developed in FO HTRAN. There are several proposed extensions 1.0

this language, which include EPEX/Fortran [DGNPSS], Cedflr FOHTRAN [CPIILSSj

and Force [Jor87, .JBAJ89]. SOllle of them were invented f<lr earlier d<1veloped vedor

processors and they contain specific constructs that allow t,he prugrall1mer 1.0 exploit,

vector machines. For instance, CedaI' FOltl'RAN was developed for the CedaI' Vec­

1.01' Processor. Force was devcloped for J'lHMD multiprocessors with a shared Inemory

programming mode!. This language was implemented as an extension supported hy il

preprocessor. Severai other researchel's have focused on developing extensions to lan­

guage C. Efforts in this direction include Concurrent C [CUR8!)], paralld-C [I\SS:l],

PCP [13 mS!)] , and .Jade [LR!) 1]. Concurrent C is targctcd for \.he Concurrent Se­

quential Process mode!. Parallcl-C is an attempt for t.he SIMD and MIMD modes of

parallelism. II. includes the delinition of parallcl variables, functions and expr"ssions.

PCP oITers some constructs 1.0 specify the parallclislll of ,1 progralll. Sinlilar to FOITe

it was targcted 1.0 the shared memory programming mode!. .Jade is a data-orient"d

language for parallelizing programs. lt is targcted towards exploiting parallclisnl a\.

a coarse-grain leve!. In the domain of symbolic languages Iike Lisp \.here Ims he"n

eITort in designing Mul-T [IŒM89] and lVlultilisp [HaI85]. By using a new cons\.ruct.,

future, programmer can express the parallelism explicitly in the Lisp.

Rather than developing a new high-Ievellanguage, wc have select.ed the progralll­

ming language C as the basis of our work because il. is familial' to a wide range of

programmers, and thus il. provides a large user base for our new langtl"ge. SELSYN-C

is an extension set 1.0 C. It provides a very simple way 1.0 express parallclisln explicitly

in impel'ative language C. This extension includes the dcfinition of shmcd variables

and parallcl fundion calls. Close 1.0 sorne related work, our progralllining modcl is

targeted 1.0 MIMD multiprocessors with the shared memory mode! and \.he paralle!ism

expression is al. a coarse-grain leve!. Compared 1.0 the other devclol'lnent on the C

extensions, our language has the advantage of being easy 1.0 use and understand.

We have concentrated on minimizing the number of new keywords ami opcrators.
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Jlurther, wc have introduccd application specifie extensions that arc useful for the

compiler (wcights). This information is nsed to organize a dynamic self-scheduling

parallcl prograrn rather than a statically- scheduled parallcl program. QUI' language's

hackbone, the dynall1ic scheduling mechanisll1 is discussed in the next section.

6.2 Scheduling Mechanism

Backing Ul' our language extensions, wc devcloped a self-scheduling ll1c:'char:ism t.hat

can achieve high efficiency and good utilization of processors. One bonefit of this

ll1echanisll1 is that il reduces synchronization overhead so that processor stal) time

can be decreased.

Several rclated methods to solve the synchronization overhead have been 1'1'0­

posed. A synchronization method by fuzzy barriers was suggested by Gupta and

Epstein [GE9D]. The main idea of this method is to divide an inslruction stream into

two kinds of regions, non-barrier regions and barrier regions. Streams with no barrier

regions reCluire no barricr synchronizations. While fol' the steall1S wilh barrier region

<LI'cas, synchronizalion should finish within a barrier region. The goal of this method

is lo l'l'duce lhe processor stail time. The processor ean wail fol' synchronization

while il is execuling lhe instructions within the banier region. The tolerance of the

ll1echanisll1 to the variation in the rate at which each stream progresser. is Iimited

by the number of instructions in the barrier regions. Thus, the larger the barrier

regions, the less likely it is that the processor will staIl. Figure 6.1 (a) presents the

traditional barrier synchronization. The synchronization must occur exactly at two

haITier points of the two processes. While Figure 6.1 (b) illustrat.es fuzzy barriers. In

lhis ca-'e, synchronization only needs to finished somewhere within the two barrier re­

gions. Therefore, this method gives more tolerar:ce time for synchronization. However

one potential weak point is that the compiler may not be able to find a big enough

synchronization region, so that it may 1'.ot substantially improve the performance.

The mcthod is suitable for synchronization among small scale tasks, snch as synchro­

nizalion of loop iteratiolls and may not function weil for synchronization among tasks
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Figure G.]: Principle of fllzzy barrier

such as synchronization between two pl'Occdul'Cs. QUI' 'l'CllIu-Collper.'.tion idea is pro­

posed for this pm·pose. Instead of finding t.he smail pieces of barrier region statieally

at compile-time, our 'l'cam-Cooperation scheme dynamically linds exccul,ablc tasks

to reduce the processor stail time at run-time.

QUI' work on scheduling is mainly innuenced by the work of WorkCrew [VHSS]

and PCP [Br089]. The WorkCrell' approach [VH88] introduccs il lIIechanisIII that.

handles task division properly. Undel' this modcl, a ccntralized schedulel' collt.rols

the processor acquisition and task dispatching. Whenever a processor mccts il task

that can be divided into two subtasks, it issues a processor request to the centml

scheduIer and continues on executing one of the subtasks on its own. The WorkCrcll'

approach won't adually dispatch the other subtilsk unlcss a processor becomes idle.

This means that the processor, which issued the pl'ocessor request, will also exccut.e

the other subtask on its own if no other processor has taken this queued subtask. The

WorkCrew mechanism is based on a fork mechanism and therefore it faces the cost

of processor acquisition.

Eugene Brooks introduced a split-join model rather than a fork-join model [BI'089J.

In the split-join model the job starts out with ail of the processors it will ever have,
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iLnd this team of procpssors is disassociated into independent subteams as nested con­

currency is encountered. The weak point of this system is its inability to balance the

work load betwccn independent processors. In addition, their approach emphasizes

loop iterations, while our Processor-l'cal? approach is targeted towards coarse-grain

procedure level parallelism and divide-and-conquer parallelism.

Our mechanism has the iLdvantage of both these two mechanisms. We reduce the

cost by adopting the split-join mode! (which we cali team-division), while at the same

time we introduced team-cooperation to rebalance the work distribution. Rather than

having a centralized task-pool, we create individual controller for each team so that

the cost is reduced further.

Other related research on task scheduling has been introduced for Strand [1"1'89]

and for Mul-T [IŒM89]. Mul-T uses lazy task creation to control the parallelism and

to try to balance the work distribution. Both approaches adopted central schedulers

fol' which high expense can be expected. Our mechanism uses sorne similar ideas, but

is implemented in the domain of the popular language C.

6.3 Compiler Generated Self-Scheduling Programs

SelC-scheduling programs can be manually generated. For instance, in the WorkCrew

model [VR88], it is the programmer's responsibility to write necessary procedure

calls to ensure correct synchronization and value retrieva1. However, it is cleatly

more preferable if the programmer can invoke a compiler to automatically generate

a sclf-scheduling version of a source program. This idea has becn accepted by many

researchers and sorne of them devcloped language preprocessors to support this idea.

Fol' example, such a preprocessor has been adopted in PCP [Br089] and Force [Jor87,

JBAJ89]. Foster designed an source-to-source transformation which transforms a

high·level concurrent language into imperative language C and Fortran [FT89, F090].

Our source-to-source transformation is from the parallel C extension, SELSYN-C, to

BBN Butterny C, which is specific to the target machine. The extensions become part

so



--

o

of the extended C gramlllar. Our source-to-source transformation emphasizes more on

the internai representation for the parallelislll so that different transformations ean he

performed. Fol' instance, variables storage type conversion, fnnction t.ype and name

transformation and so on. In addition, the internai representat.ion can 1><: ntilized fOI'

generating code for different. machine parallc1 progmmming tools.

6.4 Summary

In this chapter, wc presented and compared the main rclated devcloping tn'nds f",'

both pamllel programming languages and scheduling mechanisms. On t.he port.al,ilit.y

issue, we also compared t.he preprocessor IIppl'Oach and sonrC-e-to-sOUI'ce t.ransfol'lna­

tion appl'Oach fol' language implementat.ion. From onr discnssion, Wc can sec t.hat.

the techniques fol' parallcl programming languages and self-schednling pl'ogranls Il1Iv.·

been widely studied and developed, and it is still onc of the most challenging al'­

eas in providing software environments fol' pamllcl pl'Ogramming. SELSYN-C ilIlll

Cooperating-Tealll lllechanislll is our endeavor to meet. this challenge.
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Chapter 7

Conclusions and Further Work

This thcsis has rcportcd on thc SELSYN-C compiler and the associated Cooperating­

'J'cam schcduling IIIcchanism. The SELSYN-C compiler has been implemented and is

clII'rclltly producing pamllcl code for the BBN Butterny GP-IDDD parallel processor.

As discussed in this thesis, the design our the SELSYN-C language was driven

by the need fol' an "easy-to-use" language that was accessible to a wide variety of

programmers. Otar SELSYN-C language consists of simple extensions to C that free

the programmel' from dealing with architectural details Iike processor management.

Rather, the program mer can concentrate on the application and leave the details of

schedllling and resource management to be IUilldled completely by the the SELSYN-C

compiler and associated run-time Iib~ary. SELSYN-C supports two major extensions

to C: (1) the distinction between processor-private and globally-shared data, and

(2) the introduction of weighted parallel function calls. It provides users with a

simplc way to declare parallelism explicitly. N'lW keywords, constructs and idioms

are lIIinimized fol' this purpose. By using thes!:: simple but useful extensions, the

pl'Ogmmmer can express shared data, explore parallelism at the coarse-grain level,

and take advantage of the parallel architectures.

In order to provide an effective and efficient scheduling strategy, we have incor­

porated the notion of wcights into the SELSYN-C language, and wc have dcvclopcd
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a new Cooperating-Team scheduling lIIeehanislII that l'an Illake usc of these wcights.

In addition, our approaeh pl'Ovides a meehanism fol' balancing the workload in the

cases where the weights are not known or not col11pletcly aeeurate. The scheduling

mechanism l'as implemented based on a l'roressor-'l'ealll lllodc1, which can relluce

the overhead of processor acquisition. In addition, a dynamic temn-dividing strategy

was chosen as an effective ll1ethod to organize the pl'Oeessor-teal11s. COl11bining this

strategy with the team-cooperation schcnll', the Coopemting-Tealll Illcc1mnislll l'as

established to achieve the goal of both high efficicncy and high ntilizat,ion.

FinaIly, wc have demonstrated the effectivencss of our approach on seveml divide­

and-concluer applications. 'l'hroughout our experimental results, om Cooperating­

'l'cam mechanisll1 demonstrates its strong ability of rebalancing the work load betwecn

the processor-teal11s. It gives IIsel'S a general balane,,,1 execution environlllent to

develop applications based upon the divide-and-conquer conœpt..

Our development of SELSYN-C concentrated on the goal of silllplicil.y, clficieney

and good processor utilization. As wc discussed in chapter 6, our language has the

advantage of being easy to use. Ilowever, severai uscflll features could be added 1.0

improve the SELSYN-C language. One such extension would he t,o allow multiple

parallel function l'aIls to enhance the exploitation of the parallc1ism. In addition, var­

ious high-leve1loop constructs could make SELSYN-C more general in il.s expression

of paraIlelism.

By analyzing the experimental results, we l'an notice that one of IllOS!. significant

factors affecting performance was the locality of data. Recause of the da!.a locality on

the system, memory access delays and contention l'an significantly affect. perform'lIlce.

Further improvement would be achieved by studying and adopting differcnl. data

mapping strategies that could be supported at the language levc1.

Combining the compiler techniques to automatically exploit parallelism is another

possible improvement or extension to our system. Hendren introduced an analysis

method to automaticaIly figure out tasks that l'an be executed in parallc1 [Hen90J.

While the approach of Jade is compiler analyzing aids by the notions which l'an be
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utilized by the programmer ta express the data dependency [LR91 J. Bath approaches

can he adopted using our SELSYN-C ta explore parallelism at a more fine-grain level.

ln conclusion, we have reported our endeavor on developing an "easy-to-use" lan­

guage and an efficient scheduling mechanism. In addition to the advantages ',,'e have

alrcady demonstrated, the further success of these approaches will deperld on fur­

ther performance improvement \Vhich \Vould make it possible for the programmer to

express parallelism atll11levels of granularity rather than only at a coarse-grain level.
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Appendix A

A Case Study of the SELSYN

Mechanism

In lhis appendix, IVe il1ustr;1J,e different cases lhal OUI' syslem l1lay face. Wc st.lldy ill

detail how team·dividing and leam·cooperation work toget.hcr 011 t.hese C<l."'S.

The fol1ol','ing figures in lhis appendix il1ustrate leal1l.dividing, lask st.ad; illrol'­

malion, and lask pool informalion. The team-cooperatinn is illust.rnled by showillg

a sequence of "snoopshots" of Ule t~:k stack and task pool. First. of ail, wc dcscrib"

sOl1le notations that are used in OUI' figures.

• T _T is the task stack top pointer.

• P_B is the pool bottom poinler.

• P _T is the pool lop pointel'.

• D represents thal the task has be done.

• E represents lhat the task is being executed.

• W represents that the task is waiting.

• Busy, Idle represent the slatus of the leam.
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Figure A.l: Case example 1

The first case is presented in Figure A.l. In this figure, the processor team has

been divided into team [0 - N-l], team [N], and team [N+l]. The task stack and task

pool are shawn for team [N] and team [N+l]. The detailed situal,ion for team [0 _

N-l] is not shown in this case. The figure is divided into two parts,

o

Part (1): This shows the situation when team [N] is busy and it has thl'ee othel'

tasks, which are represented by W in the figure, on the waiting pool. While

its sibHng team [N+l], led by processor N+l, is id le waiting for the team-join

with team [N] into team [N - N+l].This is indicated by D at the bottom of

processor N's task stack. Note that processor N is the leading prOCe8501' of team

[N - N+l]. That's why it can issue a parallel task and keer> two concise t1L~k

descriptions on its task 5tack.
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Part (2): Vnder our mechanism, the team-cooperation will happen between these

Lwo Leams. Processor N+l, the leading processor of team [N+l], checks the

Lask pool of processor N, which is the leading processor of team [N], and steals

a waiting Lask to execute on team [N+l). The Lask status at the bottom of the

Lask pool of team [N] is changed to E. The staLus of team [N+l) is changed

from idle to busy.

[N+I]

E T_T T_T

0 0

W E
P_B

W W
P_B

P_T P_T

Busy Busy ldle Busy Busy Busy

(1) (2)

Figure A.2: Case example 2

Case 2, which is presented in Figure A.2, could happen following case 1. That is,

Part (1): Artel' team [N+l] finishes the task which was stolen from team [N], team

[N] is still busy with its own tasks and there are still two tasks left on its leading

processor's task pool. This situation means that the team-join for team [N] and

team [N+l) can not yet take place.
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Part (2): Similar to the case 1, processor N+l will steal a task l'rom processor N.

This should help to balance the load betwecn the two telt'llF.

Note that in both case 1 and case 2, task-cooperation always steals the wait.illg

task at the bottom of the waiting pool. That's because in a recnrsive decompositioll,

the earlier a task is generated, the heavier work load it may rl'present.

N+II

P_B E E

P_B
D T3 P3 D T_T W P_T

Busy

(1)

Idle Busy Busy Busy

(2)

Busy

o

Figure A.3: Case example 3

Case 3, Figure A.3, is a similar situation to case l, but the statuses of tl'am [N]

and team [N+l] are reversed, that is, team [N] is idle while team [N+l] is busy. In

this figure,

Part (1): This time, team [N] finished its tasks first and is waiting l'or its sibling

team, team [N+l), tojoin into team [N - N+l].
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Part (2): Under this situation, leading processor N of team [N] takes a waiting task

from the bottom of processor N+l 's task pool to balance the progress of the

two teams.

N+l] [N+l]

E E

T_T
E

T_T
E P_B P_B

W W

W W
P_T

W P_T
(

Busy Idle Busy Busy Busy Busy

(1) (2)

Figure AA: Case example 4

Figure A.4 shows a situation when the processor N finishes its own task on hand.

There are still tasks on its task pool waiting for execution and haven't been stolen

by any processor, while the processor N+I is busy with its own task. Under this

situation, processor N takes one task back from the top of its own task pool. This

action is indicated by the dilferent positions of P _Tin this figure.

The similar situation can happen as in Case 5, Figure A.5. Neither team [0 - M-I]

nor team [M - N-I] is ready for a team-join. At this moment, there is no other team
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Figure A.5: Case example 5

to give 1\ haml to team [N] to carry out the tasks which are waiting on the task pool

of processor N. Team [N] takes one waiting task on its own.

Case 6, Figure A.6, shows the situation when team [NI has fillished its tasks 011

hand, and ail of the tasks which were put on the task pool when thcy were isslled

by processor N were stolen and have been executed by its sibling teams. 'l'cam [NI is

waiting for its sibling team, team [N+l], to join into team [N - N+ 1]. Under these

circumstances, team [N] gives a hand to its busy sibling tcam, team [N+J]. Processor

N takes a task from the bot tom of the processor N+l's task pool in order to balance

the two teams' progress.

In section 3.4 of Chapter 3, we described the rules for task stealing. l3ecause of

these rules, a team may have opportunities of Team-Cooperation with severallcadillg
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Figure A.6: Case example 6

proccssors dcpending on how many times its parent team has been diyided. Here is

iL cxamplc to show a situation in which a team hayc Team-Cooperation with more

than one lcading processor.

Thc Casc 7, shown in Figure A.7, may be changed into two situations because of

thc task stealing contention among the leading proccssors. In this case, the waiting

l.ask of team [OJ can be stolen by processor 1, the leading processor of idle sibling

tcam Pl, or by processor 2 which is the leading processor of idle team [2 - 3J. During

thc pcriod that they are waiting for a team-join, both of them are checking ii there

is any task waiting on the task pool of team [OJ. Thua, either team [1] or team [2 - 3J

may get the task from team [0]. Which team gets it varies upon factors at run-time.

It can be affccted by the physicallocation of the pl'ocessors, bus or network switch 1

'The Iink between Jlroccssors 011 the BBN is called But/crflg Switch. Refer ta Figure 2.2
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Figure A.i: Case example i

contention and other factors.

A more general case of Case i is presented in Figure A.S. In this figure, part

(1) shows a situation when team [0 - N-I] has waiting tasks. Ali of team [0 - N-l]

members are busy. While team [O, N·I]'s sibling temn team [N - N+I], is waiting fOI'

team-join.

Although Team [N . N+I] maybe far away from team [0 - N-I], it will take a task

from team [0 - N-I] to execute because it is the sibling team of tcam [0 - N-I], as

shown as part (2) in Figure A.S.

Once team [N - N+I] gets its task from team [0 - N-I], it executes it independently

from team [0 - N-I]. Thc team-dividing and tcam-cooperation may happcn within

the team, depending on the situation this team cncounters. If tcam [N - N+I] meets

a parallel function call, the tcam-dividing will take place. The team will be divided

iuto two sub·teams, team [N] and tcam [N+I], since thcrc arc two pl'Ocessors in team
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[N - N+IJ. This action is shown as part(3) in Figure A.S. Perhaps there will be

team-cooperation happening between these two sibling subteams, team[N] and tcalll

[N+IJ. or between processor 0, which the leading processor of team [OJ, and processor

N, which is the leading processo. of tcam [NJ.

From the above cases, wc can sec how the team-cooperation works fol' the dilfcrent.

situations. Each case shows that team-cooperation can rebalance the work load alllong

the teams.
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Appendix B

SELSYN-C Code For Binary Tree

Evaluation

'include <stdio>
/. Tree node definition ./

typedef struct Node {
int op_code;
int size;
double pin;
struct Node *left;
struct Node *right:

} node;
typedef node * nodePtr;
'define OPCODE 4
'define FALSE 0
'define TRUE 1
nodePtr treeGen():
int usproc;
int totalproc:
/* Generate a balancad random binary tree */
nodePtr treeGen(size)
int size:
{
nodePtr pointer;
int leftSize;
int flag =FALSE;
long int big =Ox7FFFFFFF:
long :andO;

if ( usproc == totalproc )
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uspror. = 0;
pointer = (nodePtr) shared_malloc(usproc. sizeof(node»;
usproc++;

1* Allocate tree nodes on all of the processors *1
if ( pointer == NULL ) {

perror(" malloc");
exit(3) ;

}
pointer->size = size;
if ( size == 1 ) {

pointer->op_code = -1;
pointer->pin = (double) rand() 1 big;
return(pointer);

}

pointer->op_codo =(int) (OPCODE * (double)«double)rand() 1 big»;
1* Generate random node value and operation code *1

size--;
if ( size > 2 ) {

leftSize =size 1 2;
if ( leftSize y. 2 == 0 ) leftSize++;

} else {
leftSize = 1;

}
pointer->left =troeGen(leftSize);
pointer->right =treeGen(size - leftSize);
return(pointer);

}
1* Recursively evaluate a binary tree *1
func(root)
nodePtr root;
{

if ( root->size > 2 ) {
int l_weight. r_weight;
l_weight = root->~.eft->size;

r_weight =root->right->size;
func(root->left)Qroot->left->size

Il func(root->right)Qroot->right->size;
1* Evaluate left and right sub-tree in parallel *1

switch ( root->op_code )
{

case 0:
root->pin =root->left->pin + root->right->pin;
break;

case 1:
root->pin =root->left->pin - root->right->pin;
break;

case 2:
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root->pin = root->left->pin * root->right->pin:
break;

case 3:
root->pin =root->right->pin - root->left->pin;
brel:ll:

}
1* Perform operation on return values *1

Free(root->left):
Free(root->right);
}

return;
}
void
1*********1
main(treeSize)
1*********1
int treeSize;
{
int flag;
nodePtr root;
float val:
int *PARA. *PARAO:
int i;

if ( (treeSize Yo 2) == 0 ) {
fprintf(stderr, 01 Tree size must be odd\nOl

);

exit(2);
}
srand(1) ;
usproc =0:
totalproc =TotalProcsAvailable ();

1* Get total number of processors .1
root =treeGen(treeSize):

1. Generate a binary tree .1
func(root) ;

1. Evaluate a binary tree .1
fprintf(stderr. 01 Evaluation result is Yof \n Ol

• root->pin);
Free(root);
return;

}
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Appendix C

Source Code of The Run-Time

Library

linelude <us.h>
linelude <stdio.h>
extern eurrent_proe;
linelude "inelude'util.h" ,* Utility maeros *,
linelude "inelude'task.h" ,* Task deseriptor *,
,* Synehronize vith sibling team *,
TEAM_VAITING(teamPointer)
taskPtr teamPointer;
{
vhile ( teamPointer->stat !a DORE) {

,* Vait sibling team finish its task *,
taskPtr assistant;
int *fpoint a my_loeal.heap;
assistant a poolStaek_base[teamPointer->startProe);

,* Get the handle of sibling team's task pool *'
if «(assistant !a teamstaek_top[teamPointer->startProe)

Il (assistant aa poolStaek_top[teamPointer->startProe]»
tt (assistant->stat aa VAIT»{ ,* extra *'

'* If there is any vaiting task on pool *,
UsLoek(taskStaek.lock[teamPointer->startProe), 10);
assistant a poolStaek.base[teamPointer->startProe];
if «assistant 'a teamstaek_top[teamPointer->startProe])

Il (assistant aa poolStaek_top[teamPointer->startProe]»{
if ( assistant->stat aa VAIT ) {

,* Steal a task *,
assistant->stat • EXEC;
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poolStack_base[teamPointer->startProc]
= teamStack_top[teamPointer->startProc];

} else {
poolStack_base [teamPointer->startProc] ++;

}
*current_pending[teamPointer->startProc]--;
UsUnlock(taskStack_lock[teamPointer->startProc]);

1* Adjust sibling team's pool manipulate pointers *1
(*assistant->func)(assistant->PARA);

1* Execute the stolen task *1
UsLock(taskStack_lock[assistant->startProc].O);
assistant->stat = DONE;
UsUnlock(taskStack_lock[assistant->startProc]);

1* set state to DONE *1
} else {

UsUnlock(taskStack_lock[teamPointer->startProc]);
}

} else {
UsUnlock(taskStack_lock[teamPointer->startProc]);

}
} 1* extra query to reduce the lock contention *1

my_local_heap =fpoint;
}

return;
}
1* Check if task has been stolen *1
POOL_CHECK()
{
UsLock(taskStack_lock[my_index]. 10);
if (poolStack_top[my_index]->stat == WAIT ) {

1* Task is still vaiting on pool *1
poolStack_top[my_index]->stat = DONE;
my_task--;
if (poolStack_top[my_index] <= poolStack_base[my_index]) {

poolStack_base[my_index] =teamStack_top[my_index];
}
poolStack_top[my_index]--;
*my_current_pending--;
UsUnlock(taskStack_lock[my_index]);
1* Release task from task pool *1
return (1);

} else {
UsUnlock(taskStack_lock[my_index]);
1* Task has been stolen *1
return (0);

}
}
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1* Synchroniza with team which stole the task *1
POOL_WAITINGO
{

while (poolStack.top[my.index]->stat != OONE ) {
1* Stolen task hasn't be finished *1
taskPtr assistant;
int *fpoint =my_local.heap;
assistant =poolStack.base[poolStack.top[my_index]·>sibLeader];
1* Get the handle of the task pool of which team stole the task *1
if ((assistant != teamStack_top[poolStack_top[my.index]·>sibLeader]

Il assistant == poolStack.top[poolStack_top[my.index]->sibLeader] )
&& assistant->stat == WAIT ) { 1* extra *1

1* If there is any task waiting on that team *1
UsLock(taskStack_lock[poolStack_top[my.index]·>sibLeader].10);
assistant =poolStack.base [poolStack_top Emy_index] ·>sibLeader] :
if ((assistant != teamStack.top[poolStack_top[my.index]->sibLeader]

Il assistant == poolStack.top[poolStack.top[my.index]·>sibLeader] )
&& assistant->stat == WAIT ) {

1* Steal back a task *1
assistant·>stat =EXEC;
assistant->sibLeader = my.index;
if ( poolStack_base[poolStack.top[my.index]·>sibLeader]

== poolStack.top[poolStack_top[my.index]->sibLeader]) {
poolStack.base[poolStack_top[my.index]·>sibLeader]
= teamStack.top[poolStack.top[my_index]->sibLeader]:

} else {
poolStack.base[poolStack.top[my.index]·>sibLeader]++;

}
*current_pending[poolStack_top[my.index]·>sibLeader]·-;
UsUnlock(taskStack_lock [poolStack.top [my.index] .>sibLeader] ) ;

1* Adjust the manipulate pointers *1
(*assistant·>func) (assistant·>PARA);

1* Execute the stolen task *1
UsLock(taskStack_lock[assistant->startProc].O);
assistant->stat =DONE;
UsUnlock(taskStack_lock[assistant->startProc]);

1* Set the task status to be finished *1
} else {

UsUnlock(taskStack.lock[poolStack.top[my.index]·>sibLeader]);
}

} 1* extra query to reduce the lock contention *1
my_local.heap =fpoint;

}
UsLock(taskStack_lock[my_index], 0);
arg_list_ptrs[my_index] = poolStack_top[my_index]->PARA;
poolStack.top [my.index] --;
my_task··;
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if (poolStack_top[my_index] < poolStack_base[my_index]) {
poolStack_t.cse Emy_index] = teamStack_top Emy_index] ;

}
UsUnlock(taskStack_lock [my_index] ) ;

1* Release task description. adjust manipulate pointers *1
return;

}

1*
Assign the processors to sub-teams
*1
void factor(taskPointer)
taokPtr taskPointer;
{
int i, j;
int sum = 0;
int p. p_endpoint;
int interval;
int l_team. r_team;
int input_point;
taskPtr Pointer;
input_point = my_endpoint;
Pointer = taskPointer;
taskPointer->weight = abs(taskPointer->weight);
sum = taskPointer->weight;
while ( taskPointer->next != NULL ) {

taskPointer = taskPointer->next;
taskPointer->weight = abs(taskPointer->weight);
sum += taskPointer->weight;

}
1* Accumulate weights *1

p_endpoint = my_endpoint;
interval = (my_endpoint - my_index + 1);
if (Pointer->weight == Pointer->next->weight Il interval<= 2) {

l_team = interval » 1;
} else {

l_team = (Pointer->weight * interval) 1 sum;
if (l_team == 0 ii Pointer->weight != 0) {

l_team++;
}
if «my_endpoint - l_team) < my_index ii Pointer->next->weight 1= 0) {

Lteam--;
}

}
my_endpoint -= l_team;
Pointer->teamSize = l_team;
Pointer->startProc = my_endpoint + 1;
Pointer->endProc = p_endpoint;

101



....­-

o

Pointer->sibLeader = my_index;
Pointer->next->sibLeader = Pointer->startProc;
Pointer =Pointer->next;
Pointer->startProc = my_index;
Pointer->endProc =my_endpoint;
Pointer->teamSize =interval - l_team;
my_endpoint =input_point;

1* Assign sub-teams to t~o tasks *1
return;

}

1*
Issue sub-tasks
*1
issueTask(taskPointer)
taskPtr taskPointer;
{

short *p_pending;
int *p_arglist;
int input_endpoint =my_endpoint;
int *fpoint =my_local_heap;
if (taskPointer->teamSize != 0) {

if (taskPointer->startProc != my_index) {
my_endpoint -= taskPointer->teamSize;
START(taskPointer->startProc.taskPointer); 1* let processor p start *1
taskPointer->next->stat =EXEC;
(*taskPointer->next->func)(taskPointer->next->PARA);

1* Execute one task on local team *1
UsLock(taskStack_lock[my_index).O);
taskPointer->next->stat ., nONE;
UsUnlock(taskStack_lock[my_index);
TEAH_WAITING(taskPointer);

1* Synchronize ~ith sibling team *1
taskPointer->ack =20;
~hile (taskPointer->next->ack != 20 ) {};

1* release pending lock *1
} else {

my_endpoint = input_endpoint;
taskPointer->next->stat =nONE;
taskPointer->stat =EXEC;
(*taskPointer->func)(taskPointer->PARA);
taskPointer->stat =DONE;

}
}else {

taskPointer->stat =nONE;
taskPointer->next->stat =EXEC;
(*taskPointer->next->func) (taskPointer->next->PARA);
taskPointer->next->stat =nONE;
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UsLock(taskStack.lock[my.index].O);
arg.list.ptrs[my.index] =taskPointer·>PARA;
taskPointer·>stat = ·1;
taskPointer·>next·>stat =·1;
taskPointer·>ack =0;
taskPointer·>next·>ack = 0;
(taskPtr) my.task··;
(taskPtr) my.task··;
poolStack.base[my.index] =poolStack.top[my.index]
=teamStack.top[my.index] =my.task;

UsUnlock(taskStack.lock[my.index]);
my.local.heap = fpoint;

/* Release task descriptor from task stack.
adjust manipulate pointers */

returnj
}
/*

Task hoping for child processors
*/
void
child()
{ taskPtr pending;

int my.exit. procedure.num;
long oldval;
my.exit = 0;
Atomic.add(start.counter.·l); /* signal this processor started */
while (my.exit == 0) { /* while this processor not killed */

int *fpoint = my.local.heap;
WAIT.NDNNULL(*my.task.pointer); /* wait for work to do */
pending =*my.task.pointer;
UsLock(my.busy.lock.O);
*my.task.pointer =NULL;
UsUnlock(my.busy.lock);
procedure.num =pending->stat;
my.endpoint =pending·>endProc;
switch (procedure.num)
{

case WAIT:
oldval = Atomic.add.long«long)tpending·>stat. -7);
my.pending.no++;
(* pending·>func)(pending·>PARA);

/* Execute assigned task */
oldval =Atomic.add.long«long)tpending·>stat. 1);
TEAH.WAITING(pending·>next);

/* Synchronize with sibling team */
my_pending.no-·;
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}

pending->next->ack =20:
break;

case EXIT:
1* Entire program is finished *1

atomadd32(&pending->ack. -1):
my_exit = 1;
break;

}
my_local_heap =fpoint;

}
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