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Abstract

Using the Galerkin method to solve nonlinear integro-differential equations of
elliptic or parabolic type one needs to solve the resulting nonlinear systems of al-
gebraic or ordinary differential equations. To solve these equations with Newtons
method or a variant thereof can be very difficult and one needs a good initial
guess for the methods to converge. Also there might be multiple solutions and
it is virtually impossible to track all of them. In addition it is hard to study the
parameter dependence of solutions. We developed a remedy for these problems
by developing the sequential spectral method which avoids solving a nonlinear
system altogether. In the sequential spectral method a scalar nonlinear algebraic
or ordinary differential equation is solved at the initial stage and then the so-
lution of the original problem is obtained through iterations, we never have to
solve a nonlinear system at any stage of the method. The sequential spectral
method converges linearly for steady state problems and superlinearly in the case
of evolution. With the sequential spectral method we can obtain solutions to
any desired accuracy with much less effort than with the Galerkin method. We
can also increase the spectral degree of accuracy while the method is running.
In addition one can easily detect the existence of multiple solutions by observing
only a single equation and one can track those solutions. The behavior of the
solution and the dependence on parameters can be estimated and one can also
determine the blow up time for the corresponding parameter values by studying
only a single equation. We further show that the sequential spectral method can

be applied to a system of nonlinear elliptic partial differential equations.



Résumé

En utilisant la méthode de Galerkin pour résoudre des équations intégro-différentielle
non-linéaires de type elliptique ou parabolique, on a besoin de résoudre le systeme
non-linéaire d’équations algébriques ou d’équations différentielles ordinaires résultant.
Résoudre ces équations avec la méthode de Newton ou une variante peut se
révéler treés difficile et une bonne conjecture initiale est nécessaire pour que les
méthodes convergent. Il peut y avoir également de multiples solutions et en
pratique il est impossible de toutes les repérer. De plus il est difficile d’étudier
la dépendance des parametres des solutions. Nous avons developpé un remede
3 ces problemes en développant la méthode spectrale séquentielle qui permet
d’éviter de résoudre entiérement un systeme non-linéaire. Dans la méthode spec-
trale séquentielle, nous résolvons une équation scalaire algébrique non-lindire
ou une équation différentielle ordinaire a 1’étape initiale et ensuite la solution
du probléme original est obtenue par itérations, nous n’avons jamais besoin de
résoudre un systeme non-linéaire, a aucune étape de la méthode. La méthode
spectrale séquentielle converge linéairement pour des probléemes stationaires et
superlinéairement pour des problémes d’évolution. Avec la méthode spectrale
séquentielle, nous pouvons obtenir des solutions aussi précises que nous le souhaitons
en beaucoup moins d’effort qu’avec la méthode de Galerkin. Nous pouvons aussi
augmenter le degré spectral de précision pendant que la méthode s’exécute. De
plus il est facile de détecter I'existence de solutions multiples en observant seule-
ment une seule équation et on peut donc retracer ces solutions. Le comportement
de la solution et la dépendance des paramétres peuvent étre estimés et on peut
également déterminer le temps ou la solution devient singulire pour les valeurs
correspondantes des parametres en étudiant seulement une équation. En outre
nous montrons que la méthode spectrale séquentielle peut étre appliquée a un

systeéme d’équations différentielles partielles elliptiques non-linéaires.
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Chapter 1

Introduction

1.1 Introduction

Many problems arising from combustion theory, fluid dynamics, quantum me-
chanics, microwave theory, elasticity and structural mechanics can be described
by a mathematical model consisting of ordinary differential equations, partial
differential equations or integro-differential equations. These problems can be
linear in special cases, but in general they are nonlinear. For linear problems,
the Laplace and Fourier transform are often used to find analytical solutions. It
is however not possible to find analytical solutions for all linear problems. In
addition most of the real life problems are nonlinear and the search for analytical
solutions is a difficult task. Therefore, numerical methods have been developed to
solve these problems numerically. There are different types of numerical methods,
for example the finite difference method, the finite element method and spectral
methods. Each numerical method has its own advantages and limitations so it is
difficult to compare different numerical methods. However, many numerical tech-
niques are related. The Galerkin formulation, which is being used in many subject
areas, provides the connection. Within the Galerkin frame-work we can generate

finite difference, finite element and spectral methods. The idea of the sequential



spectral method developed in this thesis also stems from the Galerkin method
so we describe the Galerkin methods in Section 1.2 for the purpose of compari-
son and clarity. The sequential spectral method for elliptic and parabolic partial

differential equations or integro-differential equations is developed in Chapter 2.

1.2 The Galerkin Method

The origin of the Galerkin method is generally associated with a paper published
in 1915 by Galerkin, a Russian mechanical engineer, on the elastic equilibrium of
rods and thin plates [Gall5]. The use of the Galerkin methods increased rapidly
during the 1950’s. The Galerkin method has been used to solve many problems
in structural mechanics, dynamics, heat flow, hydrodynamic stability, magneto-
hydrodynamics, heat and mass transfer, acoustics, microwave theory, neutron
transport, etc. Problems governed by ordinary differential equations, lpartial
differential equations, integral equations and integro-differential equations have
been investigated via Galerkin formulations. Steady, unsteady and eigenvalue
problems have proved to be equally amenable to the Galerkin treatment. Es-
sentially, any problem for which governing equations can be written down is a
candidate for the Galerkin method. The Galerkin method is a member of the
larger class of methods known as the methods of weighted residuals [LP99].

Let €2 be a spatial domain with boundary 02. We consider an initial boundary

value problem

Lu = 0, X€EQ, t>0,
Bu = 0, x €, t>0, (1.1)
U(X,O) = uO(x)7 x € {2,

where L is a differential operator in space and time and B is a linear bound-

ary operator. We assume that some conditions are satisfied to ensure existence,



uniqueness and certain regularity of the solution of (1.1). The Galerkin method

is to find an approximate solution
N
a(x, ) = > a;(t) ¢;(x), (1.2)
Jj=1

where ¢;(x) are known basis functions and they are members of a complete set
of functions. The functions ¢;(x) are called trial functions and the coefficients
a;(t) are to be determined. Substituting the approximate solution (1.2) into the

original problem (1.1), we get in general a nonzero residual R(%), given by
R(4l) := Lii # 0. (1.3)

The Galerkin method requires the inner product of the residual and ¢ (x) to be

zero for all k, that is,
(R(@),¢x) =0, k=1,2,3,...,N. (1.4)

The coefficients a;(t) are determined by solving the system of N ordinary dif-
ferential equations given in (1.4). In the steady case, the coefficients are just
constants and we have to solve a system of N algebraic equations. To obtain a
solution by the Galerkin method most of the effort is required to solve the sys-
tem of equations (1.4). The accuracy increases by increasing N [Fle84] but the
solution of equations (1.4) then becomes more and more difficult.

In this thesis, we are mostly concerned with nonlinear initial boundary value

problems of the form

Lu = a%—Au—-F(u)=0, xeN, t>0,
Bu = 0, x €N, t>0, (1.5)
U(X, 0) = ’LL()(X), X € Q)



where o > 0. Substituting the approximate solution (1.2) into problem (1.5), the

system of equations (1.4) can be written in matrix form as

Ma+Ba+c=0, (1.6)

da1 dag

doy day .. ,98M] The elements of M, B and c are respectively

where a = |

mjr = a(Pj, ¢r),  bix = —(Ad;, dx)

N (1.7)
and ¢ =(FO_a;6;), ), k=12 ,N.

j=1
If orthogonal trial functions ¢;(x) are used, then M is a diagonal matrix. Since
orthogonal functions are linearly independent, the resulting equations (1.4) will
also be independent if the problem is linear. The use of orthogonal functions
¢;(x) also avoids a matrix factorization and subsequent matrix multiplication.
However, it maintains the high accuracy of using global trial functions. The choice
of orthogonal trial functions leads to spectral methods. If the trial functions are
chosen to be polynomials defined in small domains, called elements, then the
Galerkin method leads to the finite element methods.

An important feature of the traditional Galerkin methods, which has con-
tributed to its widespread use, is the ability to achieve high accuracy with few
terms in the approximate solution, provided the trial functions are chosen to take
advantage of a priori knowledge of the expected solution. Often an eigenfunc-
tion expansion of a related (and presumably simpler) problem is used. Mikhlin
[Mik64] proved that if a unique solution of the elliptic boundary value problem
exists, then a Galerkin solution will converge to it, under appropriate conditions.
Temam [Tem73] established such a result for a nonlinear elliptic boundary value
problem. Convergence of the Galerkin method for nonlinear initial boundary

value problems is discussed by Finlayson in [Fin72].



The idea of the Galerkin method is simple and can be applied to solve many
different problems but the most difficult task is to solve the system of equations
(1.4). For nonlinear parabolic partial differential or integro-differential equations,
the Galerkin method reduces the problem to one of solving a nonlinear system
of ordinary differential equations, which is not easy to solve in general. For
nonlinear elliptic boundary value problems, the coefficients a; are constants and
are determined by solving the system of N nonlinear algebraic equations given
by (1.4). For such systems solutions are usually sought using iterative schemes
such as the classical Newton method or variations thereof [BP81]. For such meth-
ods, the ability to determine a solution depends crucially on providing the solver
with an initial guess close to the solution. The difficulty in determining such
an initial guess invariably grows in proportion to the dimension of the system.
Another problem that is encountered with such classical root-finding algorithms
‘is their inability to consistently predict the multiplicity of solutions. Consider,

for example, the two-dimensional problem

flz,y) = 0,
9(z,y) = 0.

Both f and ¢ are completely arbitrary functions each of which has zero contour
lines. The solutions that are sought are those points which are common to the
zero contours of both f and g. In order to find all common points, the full zero
contours of both functions must, in some sense, be mapbed out. These contours
will, in general, consist of several disjoint closed or open curves. It is difficult
to know whether all disjoint pieces of the zero contours have been mapped out.
For a general nonlinear system, information about the number of solutions is
therefore difficult to obtain. Now assume, for argument’s sake, that one does
know with some degree of certainty that there are p solutions to the nonlinear

system. In addition, assume that p “good” initial guesses are available. Will



Newton’s method, for example, produce these p solutions? In [TAK96], it was
shown numerically that the Galerkin method (using Newton’s method for the
simultaneous equations) could not converge to a known, “supercritical” solution
of a certain elliptic problem. An example of a nonlinear integral equation where

the method fails to reveal all the solutions was presented by Katina in [Mic97].

1.3 Proposed Work

From the previous section we recognize the difficulty of solving the system of
equations obtained by the Galerkin method. To alleviate the situation, Tam
et al. introduced the sequential eigenfunction expansion method and applied it
to solve a semi-linear elliptic partial differential equation [TAK96]. The method
sought a solution in terms of a series expansion of the form 377, a;¢;, where
{¢;(x)} are the eigenfunctions corresponding to the operator, the domain and
the boundary conditions. In contrast to Galerkin methods, the coefficients are
determined sequentially by solving a single equation at each step and then through
iteration achieve convergence to (1.4). The sequential nature of the computations
‘makes the size of N soméwhat immaterial, as only a single equation is solved at
any stage of the procedure and hence the aforementioned difficulties are avoided.

The sequential eigenfunction expansion method, which we call the sequen-
tial spectral method (SSM), has been applied to nonlinear integral equations
[Mic97] and to parabolic partial differential equations [Alr00]. Independently a re-
lated frequency decomposition and subspace correction algorithm for an abstract
parabolic evolution equation has been proposed and analyzed in [Gan97]. The
present work investigates the applicability and robustness of the sequential spec-
tral method for nonlinear integro-differential equations of elliptic and parabolic
type and gives new convergence results for this method. The sequential spectral

method is developed in Chapter 2. We apply the sequential spectral method to



nonlinear Fredholm integro-differential equations of elliptic type in Chapter 3 and
of parabolic type in Chapter 4. We then extend the idea of Tam et al. [TAK96]
for elliptic partial differential equations to systems of elliptic partial differential
equations in Chapter 5. In all cases, the convergence of the sequential spectral
method is analyzed and problems from real applications are solved. The numer-
ical results are presented and are compared with the solutions by the Galerkin
method where possible.

The sequential spectral method has mainly the following advantages over the

Galerkin method:

1. Using the Galerkin method we need to solve a system of nonlinear alge-
braic or ordinary differential equations, whereas with the sequential spec-
tral method only a single algebraic or ordinary differential equation needs

to be solved at any step.

2. Using the Galerkin method we need to truncate the infinite expansion at
a fixed number N, where N has to be determined in advance. Using the
sequential spectral method we can continue to add new components a;,
without affecting the previous process and looking at the values of the

coefficients obtained, we can get an idea about the right choice of N.

3. With the sequential spectral method we can track multiple solutions which

are not easy to find by the Galerkin method.

Further advantages of the sequential spectral method will be seen in the next

chapters when we apply the method to solve different problems.

1.4 Definitions and Notations

Here are some of the notations and definitions used throughout the thesis. Bold

lower case letters, like x, are used for vectors and bold upper case letters, like
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A, are used for matrices. The inner product of the functions f and g is denoted
by (f,g) . If f and g are continuous functions in their domain 2, then (f,g) =
Jo f(x)g(x)dx. Since we are working with the eigenfunctions in this thesis, it
is natural to work in the L; norm. The Lo norm for a fanction f is defined
by ||f(*)|l2 = v/(f, f)- The Ly norm for a vector x in R is defined by ||x||s =

> i—1 |zj|* In some places, we use the L; norm of vectors and matrices, defined
by [[x|lr = 377, |z;] and ||A|ly = max; Y7L, |a;], respectively. We denote the
spectral radius of a matrix A by p(A), defined by p(A) = max; |A;|, where };

are the eigenvalues of matrix A.

Definition 1.1 A function f : Q CR* — R is Lipschitz if there ezists a
constant L > 0, called the Lipschitz constant, such that

lfx)—f¥)| <L |x-yl||, foralx,ye.

The completeness of functions can be defined in many ways. In particular the
concept of complete functions and an orthonormal basis are equivalent. Here we

define a complete set as follows

Definition 1.2 A set of orthogonal functions {¢;}, 7 = 1,2,3,... is called a
complete set if (f,¢;) =0, for j =1,2,3,..., implies f = 0, that is, if there

is no function in space which is orthogonal to every function ¢;.

Definition 1.3 A sequence {z,} of real numbers is said to be a contractive

sequence if there ezists a constant C € (0,1), such that
|Znt1 — Tn| < Clzy — Tp-1|, for alln € N.

The definition 1.3 can be extended for the vectors and functions with appropriate

norms.



1.5 Theorems

Throughout the thesis, we frequently use the results given by the following theo-

rems.

Theorem 1.1 (Mean Value Theorem in R") Let 2 be an open convez set in
R™* and f : @ C R* — R be a differentiable function on Q. Then for any X,
y € Q there exists an o € (0,1) such that

fx) = f(y) = VF(d) - (x-y),

whered=(1—a)x+ay € Qand Vf= (2L, 2L . 2

8z, Bz 7%)

Proof We define a curve g : R — R by
g(t) = f(x +tu), for0<t< ||y —x]||,

where u is a unit vector u = Wy:Lill The function g(¢) is differentiable and by
applying the Mean Value Theorem of a single variable to g(t) we get the result.
The details of the proof can be found in [Kos99] (pages 568-569). [

Theorem 1.2 (Mean Value Theorem for Integrals) Let f: Q CR* — R
be a continuous function in a closed, connected and bounded domain ) and
g: 0 CR* — R be an integrable function on Q and g(x) > 0. Then there
ezists p = (p1, D2, - - - »Pn) € Q such that

fx)g(x)dx = f(p) [ g(x)dx.
J J

Proof Since f(x) is continuous on the closed, bounded and connected domain

Q, by the Extreme Value Theorem, there exist m and M, real constants, such



that m < f(x) < M for all x € Q. And since g(x) > 0 for all x € 2, we have

mg(x) < f(x)g9(x) < Mg(x). Integrating over the domain we have

m / g(x)dx < / F(x)g(x)dx < M / g(x)dx.

Now if [, g(x)dx = 0, then [, f(x)g(x)dx = 0 and the desired equality is true.
If f, g(x)dx # 0, then we can divide by it to obtain

m<fQ ()dx<M.

Ja9(x) -

By the Intermediate Value Theorem, there exists p € 1, such that
(x)g(x)dx
f(p) = do

fQ g(x)dx
The proof for the one dimensional case of this theorem can be found in many

, which proves the result. |

books, for example [Kos99] but for the general case, it is often given as an exercise

in these books.

Theorem 1.3 Let {¢;(x)}, j = 1,2,3,... be a complete set of orthonormal
functions. Then every square integrable function f(x) can be expanded in a series

using the orthonormal system of functions {¢;(x)},
x) =) a;i(x), where a; = (f,¢y), (1.8)
j=1

which converges in the mean to f(x). In addition, Parseval’s identity
o0

17113 =D lasl* holds.
| j=1

10



n
Proof For any ay,qs,...,q, consider 5, = E o;¢;. Then
j=1

H.f'_ Sn”% = (f:f) - Q(fvsn) + (STHSW/)
= If1E -2 ai(F,85) + D losl”

Adding and subtracting 37, |(f, #;)|* to complete the square, we obtain
1 = Sall3 = 113+ D_1(F,85) = ol = D I(£, )"
j=1

j=1

The minimum will be achieved by choosing a; = (f, ¢;) = a; (say) and the above

relation becomes
1f = Salls = 1F15 =D lasl* (1.9)
j=1
Because the set {¢;(x)} is complete and hence closed so
lim |1f - Sull2 =0, (1.10)

which proves the required relation (1.8). Parseval’s identity follows from relations
(1.9) and (1.10). The details of the proof can be found in [Kan97] (pages 148-150)
or [Det62] (pages 39-42). n

Theorem 1.4 The set of eigenfunctions {¢;} of Laplace’s equation with Dirich-
let, Neumann or Robin boundary conditions forms a complete orthonormal sys-

tem.

Proof The general proof is quite lengthy and can be found in detail in [DN66] (pages
245-249). Here we briefly describe the idea of the proof for Dirichlet boundary

11



conditions. In order to prove completeness of the eigenfunctions, it is sufficient
to show that the set of eigenfunctions of Laplace’s equation spans a vector space
with convergence in the mean. Consider r, = f — Z_?.—_l a;¢;, where a; are the

Fourier coefficients given by a; = (f, ¢;). Then according to relation (1.9)

n
Irall3 = 17115 = D las*.
j=1
Also (r,,¢4) =0, for j=1,2,...,n. By the variational properties of the eigen-
values and eigenfunctions, the Rayleigh quotient of r, is at least as great as the

(n + 1)st eigenvalue, that is,

E E
Ern) 5 )11, which implies [jra|l2 < 272, (1.11)
| Irnf 5 Ant1

where E(ry) = [,(Arn)?dx is the energy integral. The bilinear term is given by
E(u,v) = [, VuVudx. For the Laplace equation, we have

E(f, ¢;) = (Vf,V;) = ~(f, A¢;) = Nja;. Hence

E(r,) = E(f — Za1¢1)— )—Z/\ja?SE(f)

From relation (1.11) we conclude ||r,||3 < . Since Apy1 — 00 a8 n — 00,

E(f)
)‘n+1
we can make ||r,||3 as small as we please by choosing n sufficiently large and this

proves that any function can be written as a convergent series of the eigenfunc-

tions and hence the eigenfunctions form a complete orthonormal system. [ |

Theorem 1.5 Let A be an n X n matriz with eigenvalues, A\;, j = 1,2,... ,n.

Then lim A* = 0 if and only if the spectral radius of A, p(A) = max |),|, is
k—o0 1<5<n

less than 1.

12



Proof For the given matrix A, there exists a nonsingular n X n matrix P which

reduces the matrix A to its Jordan canonical form denoted by S, that is,

PlAP=s=| 7 = T |, (1.12)
00 - J

where each of the m; x n; submatrices J; are the Jordan blocks. Since each

submatrix J; is upper triangular, so is S and

Jllco... 0)
O J ... 0O

sk=| T P T . (1.13)
O 0 ... J

T

The Jordan blocks J; are upper triangular matrices with the eigenvalues on the
diagonal and 1 on the super diagonal and zero everywhere else and kll)I{.lo J¥F =0
if and onmly if [A;] < 1 for all j. Now from (1.12), we have A = PSP!, so
A% = PSFP~!. Thus A* — 0 if and only if p(A) < 1. The details of the proof
can be found in [Mey00] (pages 617-618). |

13



Chapter 2

The Sequential Spectral Method

2.1 Introduction

In this chapter, we consider the nonlinear initial boundary value problem

Lu = a%;f—Au—F(u)=O, xeQ, t>0,
Bu = r(x)g—z + s(x)u =0, x€odf, t>0, (2.1)
u(x,0) = wup(x), x €,

where a > 0 and E)a_n denotes the outward normal derivative on 02, the boundary
of Q. The boundary functions r(x) and s(x) are nonnegative with either r(x) =
0, s(x) > 0 (Dirichlet condition) or r(x) > 0, s(x) > 0 (Neumann or Robin
condition). The function F(u) is a nonlinear function of v and may contain
spatial integrals of some nonlinear function of u. For a = 0, the problem becomes
an elliptic boundary value problem and there is no initial condition needed.

In general, the solution of the above problem is obtained numerically using
the finite difference or finite element method. Spectral methods are used if the
domain {2 is simple enough so that the set of eigenfunctions associated with the

Laplacian, the domain, and the homogeneous boundary conditions can be ob-

14



tained easily. However, newer spectral methods can deal with more complicated
boundary conditions [LT00]. In the spectral method, the solution is sought as an
infinite expansion in eigenfunctions with time dependent coefficients. The coeffi-
cients are then determined by solving an infinite system of first order nonlinear
ordinary differential equations obtained by using some closure conditions, cou-
pled with initial conditions derived from u(x,0) = ug(x). An obvious advantage
of spectral methods is that the solution is amenable for further analysis which
is not possible by purely numerical methods. Many applications and advantages
of spectral methods can be found in [KPY98], [CCZ87] and [LT00]. To proceed
numerically, the infinite system has to be truncated to a finite N-dimensional
system. In the Galerkin method, the closure condition is that the residual has
zero projection on the first IV coordinates of the space spanned by the eigenfunc-
tions. This gives rise to solving an N-dimensional system of nonlinear ordinary
differential equations (algebraic equations when a = 0). While there exist now
quite robust algorithms in available software, such as Auto [DK], to carry out
integration, the nonlinearity can make the integration very difficult, if not impos-
sible, for N sufficiently large. Also in the case of oz = 0 the solution of the system
of nonlinear algebraic equations is not easy to find as discussed in Section 1.2.
For this reason, we develop an alternate method, in which the size of N does
not play an important role. We recognize that the difficulty with large N stems
from the requirement of the Galerkin method that the residual R(%), where @ is
the approximate solution, should have zero projection on the first N coordinates
of the eigenfunctions space simultaneously. To alleviate the situation, we relax
the requirement of simultaneity, and compensate for it with iteration. We calcu-
late the coefficients of the eigenfunctions sequentially, using the condition of zero
projection of R(%) sequentially, and then through iteration achieve the condition
of zero projection of R(%) on the N eigenfunction coordinates. The sequential

nature of this algorithm makes the size of N somewhat immaterial, as only a
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single equation has to be solved at any stage of the procedure. The sequential
spectral method is developed in Section 2.2. The convergence of the sequential

spectral method for different concrete cases is analyzed in Chapters 3, 4 and 5.

2.2 The Sequential Spectral Method (SSM)

We develop the sequential spectral method (SSM) for problem (2.1). Let {),} and

{¢;(x)} be the eigenvalues and the orthonormal eigenfunctions of the Laplacian,

Apj = —Ajdb;, (2.2)

where the eigenfunctions {¢;(x)} satisfy homogeneous boundary conditions. We

expand the initial condition in the eigenfunctions,
[ ]
u(x,0) = up(x) = > _ ¢;;(x)
j=1

Since our primary concern is to construct a solution, we suppose that the existence
of a solution of problem (2.1) has been established. Of course, if we are able to
construct a solution, we have also proved its existence. To avoid the proliferation
of subscripts and superscripts for the approximating functions, we use % as a
generic symbol to denote an approximation to u in our development. After the
idea is explained, the formal treatment will be presented with all the subscripts
and superscripts in place. Also we use u instead of u(x, t), but keep in mind that
wherever u and % appears, these are functions of space and time variables. For
the steady case there will be no time dependence.

We first set & = a1(t)¢1(x) and compute the residual

R() = 04_451 + Margr — Faign). (2.3)
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Now according to the Galerkin procedure we set the projection of R(&) onto the
first eigenfunction ¢; to zero. Using the notation of the inner product of two

functions, the condition (R(%), ¢1) = 0 leads to

da1

Ck% + )\1&1 ( (a1¢1), ¢1) =0. (24)

This is a first order ordinary differential equation for a,(¢), which together with
the initial condition a;(0) = ¢; determines a,(¢). For & = 0 it would be a scalar
equation for a; and there is no initial condition needed. Equation (2.4) may
have more than one solution, in which case, each value of the coefficient a; can
generate an expansion for u and the problem (2.1) could have multiple solutions.
To proceed, we focus on one solution. With a;(t) so determined, we next take

@ = a1(t)¢p1(x) + aa(t)¢2(x) and compute again the residual,

dag

R(@) = o (d“lqsl + =

—— 2 ) + Aa1¢1 + Aaaads — Fa1¢1 + axg)

Now, we require (R(%),¢2) = 0 and using that the eigenfunctions {¢;(x)} are

orthonormal, we get

daz

OZE + Aot — (F(ar1 + a262), ¢p2) = 0, (2.5)

which, together with the condition as(0) = cp, determines the function as(t).

Proceeding in this manner, we generate a sequence of coefficients {a;(t)}, and
o9}
consider formally @ = Z a;(t)¢;(x). We have the residual

j=1

R(%) = Z( ¢J + Ajajé;) — Z a;$;)- (2.6)
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Now using the completeness of the eigenfunctions (Theorem 1.4), we expand

F(Yajs) = Y bu(t)u(x) (2.7

=1

where the coefficients by (f) ( by will be constant if &« = 0) are given by
be(t) = (F(O_a;d;), o). (2.8)
j=1
Equation (2.6) then takes the form
R(ﬂ):i o2% | 3 qi b ) 6 (2.9)
g T % T ) 95 -

Now for @ to be a solution, we would need (R(i), ¢;) = 0 for all §, which would
imply

da;

Y

+)\jaj—bj=0, for j=1,2,... . (2.10)

where a;(0) = ¢;. Unfortunately our a;(t) just computed will almost certainly
not satisfy (2.10) and we need to introduce an iteration scheme to achieve the

required equality in (2.10). Let u{® denote the nth approximation of u, given by

o0

u® = 3 0 (1)) (2.11)

i=1

and b§-") (t) be the coefficients in the expansion

F(u™) = i b ()i (x). (2.12)
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We construct a new sequence {a§-"+1)(t)} from the solution of

da§~"+ b

a—L— + 2"V = 17(1),  of*V(0) =g, (2.13)

where the coefficients b§") (t) are given by

b () = (F(u™), ¢5). (2.14)

Once the {a§~"+1) (t)} are obtained, we construct a new approximate solution

o
u® ) =36 (1) g;(x). (2.15)

7j=1
The decoupling procedure described in (2.3) -(2.5) provides the initial guess
{a§o) ()} for the above iteration scheme. Depending on prior knowledge of the so-
lution, any other initial guess could also be chosen. If we multiply equation (2.13)

As
by e=*t and integrate from 0 to t, we obtain
(n+1) '] L "y, N
a; " (t) = e % e; + E/o by (T)es Tdr]. (2.16)

If the iteration scheme (2.16) converges, then R(u(*)) = 0 and hence a solution
of problem (2.1) is obtained. The numerical results in Chapter 4 demonstrate

that the method captures the essence of the problem, and ago) (t) is within a few

percent of a§.°°) (¢). Convergence to a tolerance of 107® is achieved in only a few
iterations.

For a = 0, the coefficients {a;} will be just constants and obtained sequentially
by solving the corresponding algebraic equations. The conditions given in (2.10)

become
/\jaj—bj =0, fOI’ _]=1,2, . (217)
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In order to achieve this equality, we introduce again an iteration. In the steady
case we assume that all the eigenvalues {);} are positive. Let 4™ denote the nth

approximation of u, given by

o o]

u™ =" a{"¢;(x) (2.18)

j=1

and bg") be the coefficients in the expansion
[e.°]
Fu) = 5" g;(x). (2.19)
i=1 |
We construct a new sequence {a§"+1)} by setting
b = T (F™), ), (2.20)
from which we construct a new approximation

u™ = 3" g, (). (2.21)
Jj=1

Similar to the parabolic case the decoupling procedure of finding the coefficients
{a;} sequentially provides the initial guess {a§0)} for the above iteration scheme.
Depending on a priori knowledge of the solution, any other initial guess can also
be chosen. If the iteration scheme (2.18)-(2.21) converges, then R(u(®)) = 0
and hence a steady state solution of the problem (2.1) is obtained. Note that the
iteration (2.20) can only be defined under the assumption that all eigenvalues are
nonzero. However, in the case of Neumann boundary conditions, problem (2.2)
can have a zero eigenvalue. So, in general, for Neumann boundary conditions,
solutions can not be obtained by the sequential spectral method, but there are

certain forms of F'(u), which allow us to define the iteration scheme. These
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are discussed in Section 2.2.1. The sequential spectral method is applied to an
elliptic integro—differentiail equation in Chapter 3. We analyze the convergence of
the iteration scheme (2.18) - (2.21) and apply the method to a problem from an
application.

Note that in practice, we truncate the infinite expansion and use a finite num-
ber of eigenfunctions but here we have presented the sequential spectral method
for an infinite number of coeflicients. The number of coefficients needed is de-
pendent on the problem at hand and the required accuracy of the solution. In
the next chapters, we apply the sequential spectral method to particular types
of problems, analyze the convergence of the method and solve examples from
applications. The numerical results in the next chapters demonstrate that the
method captures the essence of the problem and the initial guess is within a few

percent of the exact solution in all applications treated in this thesis.

2.2.1 The Sequential Spectral Method with Zero Eigen-

value or Non-homogeneous Boundary Conditions

The iteration scheme (2.18)-(2.21) has been defined under the assumption that
the eigenvalues ); are nonzero. If there exists a zero eigenvalue of the eigenvalue
problem (2.2), A, = 0, then the iteration (2.20) can not be defined for j =
1. Hence, in general, the iteration scheme can not be defined if the eigenvalue
problem (2.2) has a zero eigenvalue. However, if \; = 0 and the nonlinear function
F(u) is a combination of a linear function (u, and a nonlinear function Fj(u),

that is ,

F(u) = Cu+ Fi(u). (2.22)
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Then we can define the iteration scheme as

a" = ﬁ (Fi(ut™), ), (2.23)

provided ¢ #X;, j=1,2,3,....

In Chapter 5, the algorithm is applied to a system of nonlinear elliptic par-
tial differential equations and to illustrate the idea, an example having a zero
eigenvalue is solved by defining the iteration as in (2.23).

We developed the sequential spectral method for homogeneous boundary con-
ditions. However in some problems with non-homogeneous boundary conditions,
the boundary conditions could be made homogeneous by certain transformation
of variables. Those problems can in turn be solved by the sequential spectral
method. We solve a problem in Chapter 5, where the original problem has non-

homogeneous boundary conditions.
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Chapter 3

Nonlinear Elliptic

Integro-Differential Equations

3.1 Introduction

In this chapter, we apply the sequential spectral method to the nonlinear elliptic

boundary value problem

Ly = Au+F(u)=0, x €,
Ou (3.1)
Bu = r(x)% +s(x)u=0, xe€oN,

where % denotes the outward normal derivative on 0€2, the boundary of 2. The
boundary functions r(x) and s(x) are nonnegative with either r(x) =0, s(x) > 0
(Dirichlet condition) or r(x) > 0, s(x) > 0 (Robin condition). In accordance to
the discussion in Section 2.2.1, we have eliminated the case of Neumann boundary
conditions due to the possible existence of a zero eigenvalue in that case. The
function F'(u) is a nonlinear function of » and also contains spatial integrals of
some nonlinear functions of u. The existence of solution of problem (3.1) depends

on the nature of F'(u). We describe here two particular forms of F(u), for which
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we solve examples later in the thesis.
In the first case

Flu)= W (3.2)

(Jq f(w)dx)?’
where f is Lipschitz continuous and positive, p > 0 and 6 > 0. Such nonlocal
problems arise, for example, in the study of phenomena associated with the oc-
currence of shear bands in metals being deformed under high strain rates [Bur94],
[ONNN94], [BT96], in modeling the phenomena of Ohmic heating [Lac95a], [Lac95b],
in the investigation of the fully turbulent behavior of a real flow, using invariant
measures for the Euler equation [CLMP92|, and in the theory of gravitational
equilibrium of polytropic stars [KN91]. In the case of homogeneous Dirichlet
boundary conditions, the following facts follow from the classical theory of par-

tial differential equations [BL97]:

1. Any solution of the boundary value problem (3.1), where F'(u) is given by

(3.2), is positive for x € Q with outer normal derivative 3¢ < 0 for x € 9.

2. For Q = {z : |z| < 1}, any solution of the boundary value problem (3.1)-

(3.2) is radially symmetric and radially decreasing.

Second, we consider nonlinear functions of the form

Flu)=o ( fulw) + b /Q fg(u)dx) , (3.3)

where b and o are positive constants. The nonlinear functions f;(u) and fa(u)
are continuous on (2, locally Lipschitz with respect to u and convex, f(0) >
0, f2(0) > 0 and f, is increasing in u. Such a problem arises in the thermal
explosion process of a compressible reactive gas, see [BB82] and [Pa092]. For
fi(u) = fo(u) = €™, v > 0, Pao has proved that there exists a critical value of

o, denoted by o*, such that for o < ¢*, the boundary value problem (3.1) has
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a positive solution [Pa092]. The convergence of the sequential spectral method
for a general nonlinear function F'(u) is analyzed in Section 3.2 under a Lipschitz
condition on F. In Section 3.3 a nonlinear elliptic integro-differential equation
arising in the model of shear banding having F'(u) of the form given by (3.2) is
solved and the numerical results are compared with the Galerkin method. The
advantages of the sequential spectral method over the Galerkin method become
apparent in this first application.

Our convergence analysis is based on the following result about contractive

sequences.

Theorem 3.1 Every contractive sequence of real numbers is a Cauchy sequence,

and hence, convergent.

Proof We follow the proof in [Kos99](page 105). Let the sequence {z,} be a
contractive sequence. Then, by definition, there exists a constant C € (0,1), such

that
|Tni2 = Tng1] < C|$n+1 —z,|, forallne N.
Using the above inequality repeatedly, we have
|Zni2 = Tng1| < Cltngs — 2a| < C¥lzn — Tpoe| < -+ < C"zy — 34,

For m > n we obtain

IN

|Tm — Tm—1]| + |Tm—1 — Tm—2| + +* + |Tn41 — Tu)
(Cm 24 C™ 3 4.+ O™ Y)|zg — 1
Cn—l(cm—n~1 + Cm—n—2 4+t 1)’2:2 - 151[

Crt (25 e — =

|Tm — Tal

A

< C"—I(T%E)L’lh — .’E1|.
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Since (:25)|%2 — z1| is a constant and lim C"~' =0, because 0 < C <1, the
n—o0

sequence {z,} is a Cauchy sequence. Since a Cauchy sequence is convergent, the

sequence {z,} is convergent. u

3.2 Convergence Analysis

We analyze now the convergence of the iteration scheme (2.18) - (2.21). Let

u(™ (x) denote the nth approximation of u(x), given by
u®(x) =Y al"¢;(), (34)
j=1

and bg") be the coefficients in the expansion

o0

Fu(x)) =Y 6 6;(x). (3.5)

j=1

We construct a new sequence {a§~"+1)} by setting
A = ) = L(F(), 85, (3.6)
g XN

from which we construct a new approximate
o
1
w0 =30 Vg(x). (37)
j=1

Here {);} are the eigenvalues and {¢;(x)} are the orthonormal eigenfunctions of

the corresponding eigenvalue problem,

Ap=—-Xp, Bp=0. (3.8)
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To investigate the convergence of the above iteration scheme, we consider the
difference of corresponding coefficients a; between two iteration steps,
(n+1) _ (n) (n _ (n 1)

a; /[F U F(u'""")]¢;dx. (3.9)
In order to prove convergence, we will prove that the sequence {ag-")} is contrac-
tive, that is, |a("+ a§~")| <cC |a§") - a§"“1)| with a constant 0 < C <1 and
then convergence follows by Theorem 3.1. In our convergence analysis, we do
not write the spatial dependence of the functions involved explicitly to avoid long
expressions but we mention the dependence of every function separately when
it first appears. Suppose F(u() is continuous in Q U 8Q and differentiable in

Q2 for each nonnegative integral value of n, then by the Mean Value Theorem

(Theorem 1.1),
F(u™) — F(u™Y) = %%(g(n))(u(n) - u(n—l))

for some £ (x) between u(™(x) and u(™ Y (x). Inserting this result into equa-
tion (3.9) we obtain

(n+1) _ () _
a; ]

=5 | G —ugax (3.10)

Now if (u(™ — u("~1)¢,; does not change sign in Q then by applying the Mean

Value Theorem for Integrals (Theorem 1.2), we can write

(n41) _ (m) _ 1 3F (n) (n—1)\ 4
a; ' —a; =% 8u ) — u\" ) psdx, (3.11)
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for 77].") = ¢ (p), for some p € Q. The right hand side of this last expression

can now be related back to the coefficients a;,

/ﬂ (u® — u™V)g;dx = /ﬂ (Z(azg") - az("—l))@) ¢jdx

i=1 (312)
—,m _ (1)
—aj - a/j .
Using this result in equation (3.11) we get
1 OF _
a§n+1) _ agn) _ )\ au( (n))( agn 1))
Since the eigenvalues A; are nonnegative and increasing, we obtain
1 OF _
6 — o] < = [5-(f)] Jaf” = o). (313)
Therefore the mapping (3.9) is contractive if
max [gF(n]("))l <A, Vnandj. (3.14)

Hence if the derivatives of F' are uniformly bounded by A;, the method converges,
if (u™ — u("D)¢, does not change sign in Q. Now if (u™ — u"~)g, changes
sign in {2, then we can not apply the Mean Value Theorem for Integrals to equa-
tion (3.10) and thus can not get the relation (3.13) for each of the coefficients
a; separately. Instead, we prove that the sequence {u(™} is contractive. From

equation (3.9), we have

n n 1 n n—
Y — o = r/ [F(u™) = Fut)] ¢ydx, (3.15)
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Let
9™ (x) = Fu™) — F(u®D), (3.16)

Since the set of eigenfunctions {¢;} is a complete set of orthonormal functions

(Theorem 1.4), we can expand ¢(™(x) in a Fourier series in {¢;} (Theorem 1.3),

o0
9™ (x) =" giV4;(x), (3.17)
Jj=1
where the Fourier coeflicients g§") are given by
g = (9", ¢5) = (F(u™) = Fu™ )], ¢;). (3.18)
Relation (3.15) then becomes
n 1
o™ —af" = g, (3.19)
7

Multiplying both sides by ¢;, 7 =1,2,3,... and summing over j we obtain

i (a§"+1’ ol ) = i:: %L- : (3.20)

i=1

We now define a new function

oo (n
A™ (x Z g—j\— : (3.21)

e
where %— are the Fourier coefficients of 2™ (x). Using the definitions of u™ and

u(m+) from relations (3.4) and (3.7) in the left hand side of equation (3.20), we
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obtain
u™ ) — ™ = p(m, (3.22)
Taking the Lo norm squared on both sides we have
[V — a3 = [[A] (3.23)

Since Parseval’s identity holds for the complete set of orthonormal eigenfunctions

{#;} (Theorem 1.3), we obtain

o (n)

g; 1 &
D = = 3 151 < 55 D1 (3:24)
j=1 J j=1

because the eigenvalues {);} are positive and increasing. Since gj(-") are the Fourier

coefficients of the function g(™(x), using the Parseval’s identity again we obtain
[+ — u| < S lg] (3.25)

From relation (3.16), we have
19113 = || F(u®™) = Fu® D)3 (3.26)

Assuming F'(u) to be globally Lipschitz in L, with Lipschitz constant L, we

obtain

lg®™Il3 < Lillu®™ —u® 3. (3.27)

30



Inserting this result into relation (3.25), we obtain
1 2 LE w2
[[u®* — ™3 < Sl =l (3.28)

The above inequality is for the L, norm squared, but this was done only to
facilitate the presentation. If we follow the procedure of (3.22) - (3.28) without
the square, or simply taking the square root of (3.28) we obtain

L
a0 = uly < S = u D) (3.29)
1

Therefore the sequence {u(™} is contractive if Ly < A; and the sequential spectral

method converges. Thus we have proved

Theorem 3.2 Let F(u) be globally Lipschitz with Lipschitz constant L,
|F(u) = F(v)|l2 < Lr|lu —vll2, Vu,v € Ly,
and let A1 be the smallest positive eigenvalue of the eigen’uﬁlue problem (8.8). If
Lp < A, (3.30)

then the sequential spectral method converges.

Hence under condition (3.30), we have R(u(™) — 0 for n — oo, implying that
u{) is a solution of equation (3.1). The convergence rate and the a priori error

bound is given by the following theorem.

Theorem 3.3 (Linear Convergence) Let F(u) satisfy the hypotheses of The-
orem 3.2. Then the sequential spectral method (3.4)-(3.7) converges to a solution

u(x) of problem (8.1) at the rate
)], < (ZFyn ©)
= S Dl - s CED
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In addition, we have the a priori error estimate

(5=
|| — u™ ||, < 1—5;11 W — 4O, (3.32)
A1

Proof Let u(™(x) be the nth iterate of the approximate solution,

u™(x) = > ag.")qu (x). Let u(x) be a solution of the problem (3.1), then

u(x) = z;";l a;j¢;(x). Since u(x) is a solution of equation (3.1), we have
00 1
> " Njajgi(x) = F(u), which gives a; = 1 (F(w), ¢5)-
- ¥

Using the value of a§") from equation (3.6), we consider

o - o = - / F(n) — F(u®™)]g;dx. (3.33)
For finding the error we follow the derivations in (3.16) - (3.29) and obtain
m). <« LF (n-1)
[lw = w2 < S=lu = w7Vl (3.34)
1
Applying this inequality inductively, we get
Lr\? Lr\"
fu=u®l < (35) u— w0 < < () -l (339
)\1 /\1 )
Since Lf— <1,
lim ||Ju — 4|, < lim Lr n||u—u(0)]|2=0 (3.36)
n—00 n—oo \ A; ’ )

and {u(™} converges to u linearly.
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Now we prove the second error bound. By inequality (3.29), we have

(nt1) _ Lp (n-1) Le\" ) _ . ©
||u ™|, < ““HU —u" < < N [|lut” —u™|]2. (3.37)
For m > n, we have
) = D < ) = D] [ = D] e [ —

Lp\™* Lr\"
<[=£ Ju® = 2w @y 4+ [ ZE) u® = u @],
/\1 /\1

B LF n LF m—n—1 LF m—n—2 LF W ©
_(/\1) [()\1> +()\1> + +)\ 1)l ull

Now lim,;_,00 ™ = u, so

Le\" < (LrY’
o=l = i [0 =y < (2)" 0 0,3 (47)

=0
Lry\n
= LHu(l) w0 ||y,
1-3E
which gives the a priori error bound. [ ]

Note that the relation (3.31) also gives an error bound in terms of the exact
solution. Since the exact solution is usually not known, the a priori bound (3.32)
can be useful to estimate the error. Note that the condition (3.14), which is
obtained under the assumption that {u(™ — u(*~1}¢, does not change sign, is in
accordance with condition (3.30), because for a continuous differentiable function,
the maximum value of the derivative serves as a Lipschitz constant.

In Theorem 3.2, we assume F'(u) to be globally Lipschitz in L. From relation
(3.31), we see that all iterates stay in a ball B(u,r), centered at the solution u,

with radius r = ||u — u(®||,. So we can relax the global Lipschitz condition, F'(u)
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only needs to be Lipschitz in the ball B(u,r).

Corollary 3.1 Let F(u) be locally Lipschitz in o ball B(u,r), centered at the
solution u, with radius r = ||u — u(®||s, where u% is the initial guess, with Lips-
chitz constant Ly, and let A\, be the smallest positive eigenvalue of the eigenvalue
problem (3.8). If Lr < Ay, then the sequential spectral method converges at the
rate given in (3.31)

We emphasize that condition (3.30) which allows us to prove convergence, is
a sufficient condition but it is not necessary. The iteration may converge even if
condition (3.30) is violated. In order to check condition (3.30) we need to find
the Lipschitz constant Lz, but in practice we just run the algorithm and let the

numerical results demonstrate whether convergence is achieved or not.

3.2.1 Convergence Analysis for Neumann Conditions

We defined the sequential spectral method (3.4) - (3.7) for homogeneous Dirichlet
or Robin conditions to ensure that the eigenvalues of problem (3.8) are positive.
In the case of Neumann conditions, the problem (3.8) can have a zero eigen-
value and the equation (3.6) cannot be defined. According to Section 2.2.1, if
F(u) = (u+ Fi(u) then we define the iteration scheme (3.4) - (3.7) by replacing
equation (3.6) with

(i1 _ 1 (™). g,
a; - ()\] _ C) (Fl(u )7¢])7 (338)

provided ¢ # A;, j =1,2,3,.... If Fi(u) is Lipschitz in a ball which contains
all iterates of (™ with Lipschitz constant Lz, then the convergence analysis of
the sequential spectral method follows in the same way and we obtain that if

Ly, < |C|, then the sequence {u(™} is contractive.
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3.3 Numerical Results

To illustrate the sequential spectral method, we choose an integro-differential
elliptic boundary value problem coming from the formation of shear bands in
materials [BLT99]. The formation of shear bands in metals has important impli-
cations to a variety of technological processes. These bands are observed in very
thin zones and generally regarded as a precursor to material failure. Shear band
formation is caused by the heat generated in regions with highest strain rate.
With insufficient time for diffusion of this heat, a localized thermal softness of
the metal occurs which enhances plastic flow in a thin zone. This localization of
plastic strain into an adiabatic shear band during rapid plastic shear shares some
interesting similarities with the ignition problem in combustion for chemically
reactive systems. _

Consider loading a thin walled tube of metal of length d in torsion with the
ends held at constant temperature Ty, the initial temperature of the tube. One
end of the tube is fixed and the other end is twisted at a constant rate v = vy. Let
7(x,t) denote the shear stress and S(x,t) the shear strain. If the plastic strain

rate is given by Arrhenius law

as —anE
5 =# e~KE (3.39)

where F is the absolute temperature, AH(7) is the activation enthalpy and K is
the Boltzmann constant, then the mathematical model for the shearing process

can be written as a reaction diffusion equation which describes the energy balance
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coupled with a compatibility equation,

oE ’E  _ —LHm
= — K W THP € KE y
S —AH(r)
55 = MHEe KE

(3.40)
E(0,8) = E(d,t) =Ty, E(z,0)=T,

-v(0,8) = 0,v(d,t) = vo.

By integrating the compatibility equation and nondimensionalising, we obtain

the non-local parabolic problem

du _ 9w _ g e
at . T (f_I L erdz)P’
uw(=1,1) = u(l,t) =0, (3.41)

u(:c,O) = wup(z) >0,

where § > 0 and p > 0. A detailed derivation can be found in [BLT99] or
[BT96]. The nonlocal initial boundary value problem (3.41) appears to be very
much like the classical ignition model for rigid reactive materials assuming one
step Arrhenius chemistry and in fact reduces to the ignition model for p = 0. The
model developed by Burns in [Bur94] has p = 1. Burns model has been studied
in detail by Bebernes and Talaga in [BT96] and they have verified that a unique
bounded solution exists for all § > 0. This implies that no shear banding occurs
in Burns model. If, however, the model is given with 0 < p < 1, then there exists
a critical value é*, such that, for all § > ¢*, the solutions blow up in finite time.
This does predict shear banding as observed in the experiments of Merchand and
Duffy [MD88|.
The associated steady state problem is
o%u §ev

~53 = (f_ll cedn)p’ u(—1) =u(1) =0. (3.42)

From the classical theory of partial differential equations any solution of the
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boundary value problem (3.42) is radially symmetric and radially decreasing

[BL97]. So the problem (3.42) can be written as

u J e

022~ (2 [ exda)?’

W'(0)=0, wu(l)=0. (3.43)

Bebernes and Lacey in [BL97] have proved
Theorem 3.4

1. If p > 1, then the boundary value problem (3.48) has a unique solution for
all § > 0.

2. If 0 < p < 1, then there exists 6* > 0 such that the boundary value prob-
lem (3.43) has

(a) two solutions for § < &*
(b) one solution for § = 6* and

(c) no solution for § > 6*.

We examine solutions of the problem (3.43) for different values of p by ap-
plying the sequential spectral method and the Galerkin method and compare the
numerical results. We will denote the truncated solution obtained by the Galerkin

method by u¢. From the eigenvalue problem

¢ _ _
@ - _)‘¢7 _(0) - 07 ¢(1) - 01

we obtain the eigenvalues \; = [Q’%EP and orthonormal eigenfunctions
¢j = ﬁcos(w), 7j=1,23,....

2
For p = 1, we obtained, with the sequential spectral method (SSM), a unique
solution for all values of § > 0. Tables 3.1 and 3.2 compare the values of the

coefficients a; from the SSM and g; from the Galerkin method for 6 = 1 and
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Galerkin SSM

. . (0) (6)

J 9i a; a;

1 0.189173752 0.189561292 0.189173752
2 | -0.005704984 | -0.005705579 | -0.005704984
3 0.001228008 0.001227847 0.001228008
4 | -0.000469654 | -0.000446864 | -0.000469654
5 0.000210188 0.000210130 0.000210188
6 | -0.000115091 | -0.000115055 | -0.000115091
7 0.000069716 0.000069691 0.000069716

Table 3.1: Comparison of the coefficients obtained by the Galerkin method and
the sequential spectral method for p=1 and § = 1.

Galerkin SSM

: ) (0) (8)

j 9 a; a;

1 0.610427863 0.612456619 0.610427863
2 | -0.009285960 | -0.009276831 | -0.009285960
3 0.002380523 0.002379187 0.002380523
4 | -0.000878048 | -0.000877113 | -0.000878048
5 0.000415311 0.000414748 0.000415311
6 | -0.000228054 | -0.000227697 | -0.000228054
7 0.000138411 0.000138124 0.000138411

Table 3.2: Comparison of the coefficients obtained by the Galerkin method and
the sequential spectral method for p =1 and § = 3.

d = 3. The coeflicients ago) are found by using bisection method and the Galerkin
coeflicients g; are obtained by using the nonlinear equation solver in Maple with
standard tolerance of 1071°. Figures 3.1 and 3.2 show the Galerkin solution
w! = ¥7_; g;$;(z) and the initial solution u® = ¥7_, a{¥¢;(z) at the start of
first iteration in the sequential spectral method and the error |u¢ — u(?| between
these solutions. We see from the figures and tables that the ago) are very close to
the Galerkin coefficients g; and converge to g; in only a few iterations.

We see from Tables 3.1 and 3.2 that the coefficients a; become smaller when
j increases, and the coefficient of first eigenfunction is important. This is one

of the great features of the spectral methods and gives spectral accuracy. While

using the sequential spectral method, we can use this decaying property of the
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Figure 3.1: Comparison of u¢ and u(® and the error
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Figure 3.2: Comparison of u9 and u(® and the error
é=3.
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Figure 3.3: Solutions for a§°’ of equation (3.44) for p = 1/6 and for different
values of d, where 0* =~ 1.14286338.

coefficients to determine N, the number of terms in the expansion to achieve
required accuracy.

For 0 < p < 1, we found two solutions for § < §*. By the Galerkin method the
existence of multiple solutions can not be found easily. While in the sequential

spectral method, we first solved the equation

7r_2a1 . 5\/51‘01 e\/§ a1¢08 5 g %dz —0 (3'44)
(2 fol e\/§ a1 cos ’;—wdm)p ’

4

to find the value of a;. Two values of a; were found for 0 < p < 1 and § < §*.
Each value of a; can generate an expansion and we immediately see that multiple
solutions are possible. By plotting the graphs of equation (3.44) for different
values of §, we observe that equation (3.44) has two values of a; for § < §&*
and the two solutions come closer and closer together as d approaches §* from
the left and merge to one solution at § = ¢*. Figure 3.3 shows the graphs of
equation (3.44) for p = 1/6 and different values of §.

40



ost . |

Figure 3.4: Two solutions u = Z;zl a;¢;(z) of problem (3.43) for p = 1/6 and
§d =114 < 6*.

We computed the two solutions of the problem (3.43) forp = 1/6 and § = 1.14
by the Galerkin method and the sequential spectral method. The solutions are
shown in Figure 3.4 and a comparison of the coefficients a; and g; is given in
Tables 3.3 and 3.4. Here again the initial coefficients ago) are not far from the
Galerkin coefficients g; but it takes a bit more iterations to converge. Figures 3.5
and 3.6 show the solutions u9, u(® and the error [u9 — u(®| for the two solutions.

In using the Galerkin method, we need to truncate the infinite expansion at a
fixed number NV, where N has to be determined in advance. Using the sequential
spectral method we can continue to add new components a; without affecting the
previous process and looking at the values of the coefficients obtained, we can get
an idea about the right choice of N. The time of computations depends upon the
nature of the nonlinearity in the problem and the number N. In the sequential
spectral method, we always have to solve a single scalar equation regardless of
the value of N. However, the time of computations depends much on N in the

Galerkin method. For solving a system of N equations a good choice of the initial
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Galerkin SSM

j 9i a§0) a§70)

1 0.904836965 0.918163001 0.904836965
2 | -0.004699530 | -0.004422257 | -0.004699530
3 0.002457131 0.002460107 0.002457131
4 | -0.000902004 | -0.000900857 | -0.000902004
5 0.000430335 0.000429725 0.000430335
6 | -0.000237206 | -0.000236814 | -0.000237206
7 0.000144341 0.000143966 0.000144341

Table 3.3: Comparison of the coefficients of the first solution obtained by the
Galerkin method and the sequential spectral method for p = 1/6 and 6 = 1.14.

Galerkin SSM

A o

1 1.056103439 1.054778681 1.056103439
2 | -0.000228582 | -0.000357669 | -0.000228582
3 0.002430340 0.002439498 0.002430340
4 | -0.000865839 | -0.000868569 | -0.000865839
5 0.000416076 0.000416994 0.000416076
6 | -0.000229851 | -0.000230235 | -0.000229851
7 0.000140093 0.000140128 0.000140093

Table 3.4: Comparison of the coefficients of the second solution obtained by the
Galerkin method and the sequential spectral method for p = 1/6 and § = 1.14.
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Figure 3.5: Comparison of u? and u(®) and the error |u? —u(?| for the first solution
for p=1/6 and § = 1.14.

42



—— Galerkin
- - S8M

u? or u(®

L L ' L L s L L L L L 1 L s L L L -y
Q

[ 01 [+3-] 03 04 Om.’) 0.6 07 08 0.9 1 "o 01 02 03 04 OxS 08 07 08 0.8 1

Figure 3.6: Comparison of ¢ and u® and the error |[u9 — u(?| for the second
solution for p =1/6 and ¢ = 1.14.

guess is crucial. Using a§0) from our SSM as the initial guesses for g;, the time
of computations decreases but still it is about ten times the time taken by SSM
for N = 7. The ratio of computatidnal time of the Galerkin and the sequential
spectral method increases as we increase N. Figure 3.7 compares the logarithm
of the time taken by the Galerkin method and the sequential spectral method for
p =1, =1 and different values of N. Here computational time is the time taken
by using the nonlinear equation solver in Maple for both the Galerkin and the
sequential spectral methods. Using the method of least squares, the approximate
slopes for the Galerkin and the sequential spectral methods are 6.086 and 3.381
respectively. This means that the approximate computational complexity for the
Galerkin method is t, =~ N® and for the SSM is t, ~ N3,

If 0 < p < 1, then by Theorem 3.4, there exists a value 6* such that the
boundary value problem (3.43) has no solution for § > §*. We tried to estimate
the critical value 6* by examining equation (3.44) numerically. The estimates for
0* for different values of p are given in Table 3.5. The dependence of §* on p is
also shown in Figure 3.8. These estimates are virtually impossible to find by the
Galerkin method. This is a big advantage of the sequential spectral method: the

behavior of the solution can be estimated by examining a single scalar equation
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Figure 3.7: Comparison of the computational time for the Galerkin method and
SSM for p = 1, 6 = 1 and different values of N. Approximate slope for the
Galerkin method is 6.086 and for SSM is 3.381.

instead of solving a system of N equations in the Galerkin method.
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p o p o

0.00 | [0.8773,0.8774] | 0.60 | [2.7456,2.7457
0.04 | [0.9327,0.9328] | 0.70 | [3.6693,3.6694
0.08 | [0.9930,0.9931] | 0.75 | [4.3724,3.2725
0.10 | [1.0251,1.0252] | 0.80 | [5.3903,5.3904]

[

[

[

0.20 | [1.2087,1.2088| | 0.90 | [10.232,10.233
0.25 | [1.3179,1.3180] | 0.92 | [12.596,12.597
0.30 | [1.4417,1.4418] | 0.94 | [16.501,16.502]
0.40 | [1.7454,1.7455] | 0.96 | [24.238,24.239]
0.50 | [2.1567,2.1568] | 0.98 | [47.229,47.230

Table 3.5: Range for the values of ¢* for different values of p

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 09 1

Figure 3.8: Dependence of §* on p.
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Chapter 4

Nonlinear Parabolic

Integro-Differential Equations

4.1 Introduction

In this chapter, we consider the nonlinear Fredholm integro-parabolic equation

Lu = %%—Au—F(u):O, xeN, t>0,
By = T(X)g—z + s(x)u=0, x €00, t>0, (4.1)
u(x,0) = uo(x), x € 0,

where % denotes the outward normal derivative on 02, the boundary of Q2. The
boundary functions r(x) and s(x) are nonnegative with either r(x) = 0, s(x) > 0
(Dirichlet condition) or r(x) > 0, s(x) > 0 (Neumann or Robin condition). The
nonlinear function F'(u) also contains spatial integral of some nonlinear function

of u. In this thesis we are concerned with F'(u) of the form

Fu) = fi(u) + /ﬂ fa(u)dx, (4.2)
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where f; and f, are nonlinear functions of u and are continuous on Q2 x [0, 00),
locally Lipschitz with respect to u and convex, fi(0) > 0, f2(0) > 0 and f; is
increasing in u. In the case of homogeneous Dirichlet conditions, existence of

solutions has been proved in [BE82] and is summarized in the following theorem

Theorem 4.1 If r(x) = 0, up € L*(Q) and sup,equo(x) < oo, then prob-
lem (4.1) has a unique classical solution on Q X [0,T) , where either T = oo

or T < oo and lim,_,r- sup,cq u(x,t) = 0o

Theorem 4.2 Ifr(x) =0 and if up(x) = 0 for x € Q, then the solution u(x,t) of
the problem (4.1) is nonnegative and nondecreasing as a function of t on Qx[0,T),

provided the derivatives f] and f}, are Lipschitz continuous.

We apply the sequential spectral method developed in Chapter 2 to prob-
lem (4.1), where now o = 1. We analyze the convergence of the iteration scheme
in Section 4.2 and find a surprising new convergence result in the evolution case:
the convergence rate is faster than any linear rate if o # 0. In Section 4.3 we
carry out numerical computations on a nonlinear parabolic integro-differential
equation arising from combustion theory and compare the results obtained by

the sequential spectral method and the Galerkin method.

4.2 Convergence Analysis

Now we analyze the convergence of the sequential spectral method (2.11)-(2.16)
applied to the problem (4.1). Let u{™(x,t) denote the nth approximation of
u(x,t), given by

o0

(x,1) = Z a; n) t)q’)J (4.3)

Jj=1
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and let b§") (t) be the coefficients in the expansion

= K6

We construct a new sequence {a§"+1)(t)} from the solution of

dal" ™V (1)

T =600, ") =

or equivalently by setting

" (1) = e=Mit[c / B (r)edTdr],

J
where the coefficients bg") (t) and c; are given by
B2 (6) = (F(u™), ¢;) and ;= (u, ),

from which we construct a new approximate

o
n+1 Za n+1) t)d’]

=1

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

In the following convergence analysis we do not write the dependence of the

functions on x and ¢ explicitly. To investigate the convergence of the sequential

spectral method we consider the difference of coeflicients a; at two iteration steps,

t
o () — al (1) = M /0 M — K D)dr.
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Inserting the value of b;") (1) from (4.7), we have

o (1) — a(t) = e / T / F®D)gdxdr.  (4.10)

Let

(%) (7) = / F (™) = Fu=Y]gdx. (4.11)

Then equation (4.10) becomes

3

t

o (1) — (1) = e M / N7 S () dr. (4.12)
0

Suppose F(u(™) is continuous and differentiable in its domain for each nonnega-

tive integer m, then by the Mean Value Theorem (Theorem 1.1), we have

oF

Fu™) - Fu"Y) = 9

€)™ - u),

for some £ (x, t) between u(™ (x, ) and u(™V(x,t), and so S () can be written

as
(n) OF  tu)y(, (n) _ (1)
SO(r) = [ I2 () — urD)gax, (4.13)
I q Ou

Now if (u(™ — u(~1))¢; does not change sign in (2, then applying the Mean Value
Theorem for Integrals (Theorem 1.2), we find

S (r) = ?91: (™) /Q (™ — u D), dx, (4.14)

for 77 ( ) = £M™(p, ), for some p € Q. Now using equation (4.3) and the
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orthonormality of the eigenfunctions {¢;}, we have

W _ ey e — [ [Ny om0y )
@ = gax= [ (sz af >¢z) bix

i=1

= agn) (1) — ag-""l)(T).

Using this result in equation (4.14), we get the value of S](-") (7) in terms of the

coefficients a;(7) as
$(r) = S=(m™) (V1) = ol V(7))
Hence by equation (4.12) we have

¢
a§-"+1) (t) — agn) (t) = e"‘it/o e %(nj(n)) (agn) (1) - g."—l) (T)) dr. (4.16)

Therefore
. . xit [ e 1OF 1 -
(@) - aP (1) < e A]t/o Y \%(n}- N e (r) — oD ()dr. (4.17)

Let ¢ be in the interval [0,T] and assume that & is uniformly bounded. Let

OF | (n
Juax %(n]( N| = M; for all n. Then we have
t
6§00 - 0] < M [ o m) - ot Dr)ldn. (@19
0

50



Now using induction on n we have
t T1 1 9
ia§"+” (t) — a§n)(t)| < sze"’\jt/ / eN |a§~"_ ) a§~"_ )| dradmy
0o Jo

t T1 T2
< Mie™t / / / eN |a§"_2) — a§~"—3)| dradredr
0 Jo Jo
t pm Tn—1. 1 0
< Mj"e‘)‘ft/ / / e |a§~ ) ag- )| dr, . ..drodr.
0 Jo 0

(4.19)

Let E; = max ]a (1) - a (t)| and A; > 0 for all j then we have
T o<

Tn—1
|a(n+1)( t) — al™ ()| < M} Eje t/ / / eN™dr, . .. dradn
0

Tn—2 AiTn—1 __ 1
—MnE G—At/ / / (6]—) dTn_l...dedTl
0 ’\j
Tn—3 AjTn-2 _ 1 T
=M'E; e_’\Jt/ / / (e - n~2> AT —
I 0 Jo 0 )‘? )‘j :

Ajt _ 1 1 t2 tn—l
_—_'MnE —)‘jt € — — — et — —
it ( )\;-‘ /\;-‘"1 2! A?‘2 (n—1)! Aj
MME; At (At)? (A0t .
37 _ v J .. J —Ajt
DY [1 <1+ T TR P T
M'E = by
§s J —Ajt
i (1 R

(4.20)

Since 3"h~, (—’\fi — eVt as n — oo, the right hand side of (4.20) will be zero as
n — oo provided &£ (77](")) is bounded for all values of n, j and t € [0,7T] and the
iteration scheme converges. In fact, boundedness of the derivative is only required
in the ball which contains iterates of 4(™). The inequality (4.20) can be obtained

provided there is no zero eigenvalue. If \; = 0, then for j = 1 the relation (4.20)
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becomes

6™ (8) - o (1) < MPE, / / / . drydr.
(4.21)
MnEl '7

which also proves convergence for a(")( t), but the rate of convergence is different.
The bound obtained in (4.20) is the sharpest bound we could get. In order
to obtain a simpler bound which shows more clearly the super linear convergence

rate, we consider equation (4.18) again, that is,

a0 0) — o7 @) < M /‘> 07 () = o D (rldn. (4.22)
Since e~*(t-7) <1 for 7y € [0,#], we obtain

|a§n+1) (t) — ag.") ()] < M; /Ot |a§n) () — a§."—1) (11)|dry. (4.23)
Now using induction on 7 we obtain as for the case of A\; =0

t T1
1 n - -
|a§n+ (@) - ag. @) < Mf/(; /0 |a§~" b_ ag." 2| drydr,

t T T2 9
<M / / / [agn_ ) aé"—?’)[ drsdredr
o Jo Jo

t e Tn—1
< M”/ / / [a(.l) - a§-0)| dry, . ..dmdn
M"E / / / ...dngTl

—M"E

(4.24)

where E; = Do |a(-1) (t) - ag-o) (t)|. This proves that the sequence {ag.") (t)} con-

verges, provided 2£ (77]( ) is bounded for all values of n, j and ¢ € [0,T], again
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Figure 4.1: Comparison for the bounds (4.20) and (4.24), the lower one corre-

S Qu)F e .t
sponds to (%)"[1 — Z —k—|e‘ '] and the upper one is &;.
k=0 )

boundedness is required in a ball which contains all iterates of u(®, and the iter-
ation scheme (4.3) - (4.8) converges. We compare the two bounds given in (4.20)
and (4.24), by omitting the common terms M;") and E;. Figure 4.1 shows a
comparison of (E) - 305, (’\,‘C—?ke"\lt] and £. The first bound depends on
the eigenvalues but the latter does not and one can clearly see in the Figure 4.1
that the first bound is much sharper. Here we have taken A; = w2, which is the
smallest eigenvalue for the numerical example solved in Section 4.3.

Now if (u™ — u{"~1)¢. changes sign in  then we can not apply the Mean
Value Theorem for Integrals to equation (4.13) and would thus not be able to
prove convergence of each of the coefficients a§") (t) seperately. But as in Chap-
ter 3 we can analyze the convergence of the sequence {u(™} rather than for the

coeflicients separately. We consider equation (4.10), that is,

o (1) — ol (1) = / et / [F(u™) = F(uD)|g,dxdr.  (4.25)
0 Q
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Let
g™ (x,1) := F(u™) - F(u™D). (4.26)

Using the completeness of the set of orthonormal eigenfunctions {¢;} we expand

g™ (x,t) as a Fourier series in {¢;(x)} (Theorem 1.3),
g™ (x,t) = Z (™) (¢ (4.27)

where the Fourier coefficients g (t) are given by

o) = (4, 85) = (F™) = Fu™ )], ¢,). (4.28)

Then relation (4.25) becomes

t
a§~”+1) (t) — agn) (t) = /0 e N7 g](-") (1)dr. (4.29)

Multiplying both sides by ¢;, j =1,2,3,... and summing over j we obtain
00 o t
S (@) - o B}t = 3 / NN ()dr pi(x).  (4.30)
j=1 j=1v0

We now define the new function

K9 =3 [N r)ar g0, (431)
j=170

where f; e"’\i(t'T)gJ(-n)(T)dT are the Fourier coefficients of h{™(x,t). Using the
definitions of 4™ and u(™*V) from relations (4.3) and (4.8), in the left hand side
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of equation (4.30), we obtain
um D _ ) = pm), (4.32)

Taking the L, norm squared with respect to the spatial variables on both sides

we have
™D — w2 = [|™)])3. (4.33)

Now Parseval’s identity holds for the complete set of orthonormal eigenfunctions

{¢;} (Theorem 1.3). Thus we obtain

(n+1) _ u(n)Hg

M2

[

t
1/ g
0
2
/ =X (t— T)|g n)( )|d7'> (4.34)
0

[ o)

because e~ *¢=7) < 1 for 0 < 7 < t. Using Cauchy Schwarz we have

(/Ot |9jn)(7)|d’f> (/ |9(n) 'r)|2d7) (/ 1d7-> —t/ |g(n) J2dr  (4.35)

and since ¢ € [0, T], the relation (4.34) becomes

1

.
1l

M2

<.
Il

Ms

>
<2

1

<.
I

a0 - ||2<TZ [ 1w
=T / 3 lo(r)r,
(et

(4.36)

because the series 322, |g (”)(T)lz converges uniformly. Since g( )(t) are the

95



Fourier coefficients of the function ¢ (x, ), using Parseval’s identity again, we

arrive at

t
a4 —u®E < T [ g™ ar
- 0 (4.37)
=7 [ IIF) - F® )]
0

Assuming that F'(u) is globally Lipschitz in Ly for every ¢ € [0, 7] with Lipschitz

constant L, we obtain
¢
1 — | < 7L [ | - oD ar, (4.38)
0
and by induction on n we get

t Tt
[+t — g ™)2 < T2L%/ / [ — ™= 2drydr;
0o Jo

t 1 Tn—1
oz [ [ I - O .m0
0 J0 0

i 1 Tn—1
< T"L2E, / / / dTy . . . dTadm
0 J0 0

tn
< TMLEEy
n.

where Ey = Joax. |[ul) — w©@||2 is the initial error. The above inequality holds

for every ¢ € [0, T, therefore we have

T2L2 n
max |[u™D — ™2 < 7L max |[u — u©@|2, (4.40)
0<t<T n!  0<i<T

which proves that {u™?} is a Cauchy sequence and hence {u(™} converges to a

limit. Thus we have proved
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Theorem 4.3 Let F(u) be globally Lipschitz in Lo with Lipschitz constant Ly,
||F(u) = F(v)||l2 < Lr|lu —vl||2, VY u,v € Lo.

Then the sequential spectral method (4.3) - (4.8) converges.

Note that we have obtained convergence also in the case when {u(® — u(""1}g;
does not change sign provided 4- (77] )} is bounded for all n, j and t € [0, T]
which means that Ly is finite because for a continuous differentiable function
the maximum value of the derivative serves as a Lipschitz constant. Hence the
conditions in that typical case are in accordance with the conditions for the
general case. The following theorem gives the convergence rate of the sequential

spectral method for evolution problems of the type (4.1).

Theorem 4.4 (Superlinear Convergence) Let F(u) satisfy the hypotheses of
Theorem 4.8. Then the sequence {u'™(x,t)} defined by the sequential spectral
method (4.3) - (4.8) converges to a solution u(x,t) of problem (4.1) at the rate

T2[2
max |ju — u™||3 < —(—~—F) max ||lu —u °)||§. (4.41)
0<t<T n! 0<t<T

Proof Let u(x,t) be a solution of the problem (4.1), u(x,) = 3 72, a;(t)$;(x),
and let u(™(x,t) be the nth iterate of the approximate solution,
ul® (x,t) = > J (t)qﬁj (x). Then the difference in the Fourier coefficients sat-

isfies

a;(t) — a{(t) = / A=) / [F(u) — F(u™)]$,dxdr. (4.42)
Following the steps from (4.26) - (4.40), we obtain

T?L%
(L) max |lu —ul®||2. (4.43)

2
_ <
max [|u ul Il2 - n! 0<t<T

0<t<T
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272 \n 212 \n
Since lim,,_, o, (T_Tl:vﬁ)_ = 0, the sequence {u(™} converges to u at the rate L) s,F)

: . . T21,2)7
which shows superlinear convergence of {u(™}, since T2 goes to zero faster

than any fixed ™. [ |
The results obtained above are similar to the results for the Picard-Lindeldf iter-
ations for initial value problems (see [Pic93] and [Lin94]).

In Theorem 4.3, we assume F'(u) to be globally Lipschitz in Lp. From relation
(4.41), we see that all iterates stay in a ball B(u,r), centered at the solution u,

(T2L2 n

2" maxgcrer ||u—u®| |2 So we can relax the global

with radius 72 = max,cn( nl

Lipschitz condition, F'(u) only needs to be Lipschitz in the ball B(u,r).

Corollary 4.1 Let F(u) be locally Lipschitz in Ly in a ball B(u,r),centered at
T2L2)"

LEL) maxgcrcr [lu — u® |13, where u® is the

the solution u, with r* = max,en(
initial guess, with Lipschitz constant Lrp. Then the sequential spectral method

(4.3) - (4:8) converges at the rate given in (4.41).

We emphasize that the conditions in Theorem 4.3 are again sufficient condi-
tions for the iteration to converge and they are not necessary. In order to check
this sufficient condition we have to check that F(u) is Lipschitz, but in practice
we just run the algorithm and let the numerical results demonstrate whether
convergence is achieved or not. The numerical results in Section 4.3 demonstrate
that the method captures the essence of the problem, and a§0)(

percent of a§~°°)

t) is within a few
(). Convergence to a tolerance 10~® is achieved in only a few

iterations.

4.3 Numerical Results

Using the sequential spectral method, we analyze an integro-parabolic boundary

value problem arising from combustion theory of thermal explosion [Pa092]. The
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governing equations are

3_u —DAu=o (67“ + b/ e"“(y’t)dy) , X€Q,1t>0,
ot Q
r(x)g—g +s(x)u =0, xedn, t>0, (44
U(X, 0) = UO(X)7 X € Q)

where u is the temperature distribution of a gas, D, o and -y are positive constants,
b is a nonnegative gas constant and % denotes the outward normal derivative on
0. Here o is the Frank-Kamenetski parameter. The last term on the right hand
side is due to the compressibility of the gas.

When b = 0 and uo = 0, the existence of a solution is proved in [Bel87].
Bellout also proved that solutions blow-up in finite time for certain values of o.
For b > 0, Pao discussed the case of Neumann boundary conditions in [Pao80]
and showed that the solution u(x,?) of the problem (4.44) blows-up in finite
time for any ¢ > 0. The case of homogeneous Dirichlet boundary conditions is
discussed in [BB82] and [BE82] and it is proved that there exists a critical value
of o, denoted by o*, such that for & < ¢*, the problem (4.44) has a positive
solution which converges to a steady state solution and for ¢ > ¢* no positive
steady state solution can exist and there exists a finite time T™* such that a unique
solution u(x, t) exists in 2 x [0, T*) and lim,_,7- {max, g u(x,)} = cc. Pao proved
the same results for the more general case of b and uy being nonnegative, not
necessarily zero, in [Pa092].

We will do numerical computations for the one dimensional case with homo-

geneous Dirichlet boundary conditions

1
& — Dug, = ofe™+ b/ e™Widy], z € (0,1), t>0,
0
w(0,8) = u(l,t) =0, t>0, (4.45)
u(z,0) = 0, z € (0,1).
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Existence of a nonhegative and nondecreasing solution of the problem (4.45) is
obtained by Theorem 4.2. We will solve the problem for the values o = 1/2,
b= D = v = 1. The orthonormal eigenfunctions {¢;} and the corresponding
eigenvalues {);} satisfy

%,
Ox?

= -—)\jgbj, where ¢](0) = ¢](1) =0
and hence the eigenfunctions and the eigenvalues are
¢; = V2sin(jnz), N =712 §i=1,2,3,....

To use the sequential spectral method (SSM), we expand the initial condition
0 = u(z,0) = 32, c;¢;(x), which gives ¢; = 0 for all values of j. Using the
sequential spectral method, we found that the even Fourier coefficients satisfy
]ag;-) ()] < 10720 for j = 1,2,3,4, t > 0 and hence decided to investigate this
further:

Lemma 4.1 Let u®™(x,t) = PRy ag-") (t)p;(x) be the nth approzimation of so-
lution of problem (4.45), obtained by the SSM, then the even Fourier coefficients

a(t) =0, ¥j>0,t>0,neN.

Proof The proof is technical and is given in the Appendix A. [ |

Since by the above lemma the even Fourier coefficients are zero, we drop them
from the expansion. Therefore, using the Galerkin method to solve the above
problem, the procedure reduces the problem of solving a system of 2N nonlinear
ordinary differential equations to the solution of a system of N nonlinear ordinary
differential equations. Note that this kind of observation can not be obtained
directly by using the Galerkin method.

For N = 10, Tables 4.1 to 4.5 show a comparison between the coefficients
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Galerkin SSM
t g1(t) ol () ai” (2)
0.05 | 0.036309792 | 0.036295110 | 0.036309792
0.10 | 0.059549494 | 0.059514302 | 0.059549494
0.50 | 0.099915189 | 0.099861831 | 0.099915189
1.00 | 0.101112835 | 0.101050321 | 0.101112835
1.50 | 0.101116171 | 0.101057200 | 0.101116171

Table 4.1: Comparison of the coefficients a;(¢) and g1 (2).

g;(t) and a;(t) obtained by using the Galerkin method and the sequential spec-
tral method for different values of . We have used an adaptive Runge-Kutta
method of order 4 with error control of order 5 to solve the ordinary differen-

tial equations. The results show that the coefficients ago)

(t) are very close to
the Galerkin coefficients g;(t) and in only 6 iterations a;(¢) converges to the
Galerkin coefficients to a tolerance of 107%. The solution to the problem is given
by u(z,t) = Z?:l g2j—1(t)p2j—1(z). Figures 4.2 to 4.6 also show that there is
a very small difference in the initial coefficients ago) (t) and g,(t) already, for
j=1,3,5,7,9. The steady state for agp) (t) is reached at t = 1 except for a§°’ (t).
The errors |g;(t) — a§-0) (t)| are very small and the maximum values of the errors
for j =1,3,5,7,9 are given in the captions of Figures 4.2 to 4.6.

We note from the above results that the initial coefficients a§0) (t), for j =
1,3,5,... is a decreasing sequence and also a§-6) (t) is decreasing for the given
problem. Figure 4.7 shows a;(t) and as(t), at the initial step and then at the
final step, which indicates that the coefficient of the first eigenfunction is the most
important. This is because the eigenfunctions are intrinsic to the operator, the

domain, and the boundary conditions and leads to the spectacular performance

of spectral methods in general.
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Galerkin SSM
£ gt ) )
0.05 | 0.003403936 | 0.003403852 | 0.003403936
0.10 | 0.003484777 | 0.003484172 | 0.003484777
0.50 | 0.003555878 | 0.003557170 | 0.003555878
1.00 | 0.003557947 0.003557664 0.003557947

Table 4.2: Comparison of the coefficients a3(t) and g3(t).

Galerkin

SSM

t

g5(t)

0
ag) (t)

6
as’ (t)

0.05

7.43001 x 10~*

7.43029 x 1072

7.43001 x 10~

0.10

7.51272 x 10~*

7.51463 x 10~*

7.51272 x 10~*

0.50

7.66064 x 10~*

7.66340 x 104

7.66064 x 10~*

1.00

7.66504 x 1074

7.66482 x 1074

7.66504 x 1074

Table 4.3: Comparison of the coefficients a5(t) and g5(t).

Galerkin

SSM

t

g7(t)

0
ar” (1)

6
0]

0.05

2.70664 x 104

2.70804 x 10~4

2.70664 x 10~

0.10

2.73640 x 104

2.73290 x 10~*

2.73640 x 10~ ¢

0.50

2.78979 x 10~4

2.79383 x 104

2.78979 x 10~*

1.00

2.79140 x 10~*

2.78768 x 10~4

2.79140 x 104

Table 4.4: Comparison of the coefficients az(t) and g-(t).

Galerkin

SSM

t

(%)

o)

3
a” (2)

0.00

1.27363 x 1074

1.27451 x 10~*

1.27363 x 10~¢

0.10

1.28719 x 104

1.29053 x 1014

1.28719 x 1074

0.50

1.31221 x 10~*

1.31048 x 1074

1.31221 x 1074

1.00

1.31296 x 104

1.31279 x 104

1.31296 x 1074

Table 4.5: Comparison of the coefficients ag(t) and go(t).
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Figure 4.2: Comparison of initial coefficients a{” (£) and the Galerkin coefficient
1(¢). The maximum difference is max, |g;(t) — a{® ()| = 6.8567 x 105 .
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Figure 4.3: Comparison of initial coeflicient ago) (t) and the Galerkin coefficient
g3(t). The maximum difference is max, |gs(t) — a{ (t)| = 4.3968 x 1076 .
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Figure 4.4: Comparison of initial coefficient a{” (¢) and the Galerkin coefficient
gs(t). The maximum difference is max; |g5(t) — aéo) ()| = 1.0251 x 10~8.
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Figure 4.5: Comparison of initial coefficient a$°) (t) and the Galerkin coefficient
g7(t). The maximum difference is max; |g7(¢) — a$°’ ()] = 1.1768 x 107° .
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Figure 4.6: Comparison of initial coefficient ol (t) and the Galerkin coefficient
go(t), here max; |go(t) — a¥ (¢)| = 2.1151 x 1076 . -
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Figure 4.7: Comparison of the values of a{” (t) and a{” (t) on the left and on the

right comparison of the values of a{® () and agﬁ) (t). The first eigenfunction is
dominant in the solution
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Using the sequential spectral method, we have to solve a single ordinary differ-
ential equation at each step, which is easier than solving N simultaneous ordinary
differential equations, obtained by using the Galerkin method, especially when
N is large and implicit methods are used. For N = 10, the computational time
for the Galerkin method is about eight times the time required by the sequen-
tial spectral method. The ratio of the computational time grows as N becomes
large because the Galerkin method takes much more time for large N, but in our
method we always have to solve one single ordinary differential equation regard-
less of the value of N.

According to the results by Pao in [Pa092] the problem (4.45) has a positive
solution for ¢ < ¢*, which converges to a steady state solution. We applied
the iteration scheme from Chapter 3 to find a steady state solution of the prob-
lem (4.45) for the values 0 = 1/2, b = D = v = 1. Using the sequential spectral
method, we again found that |a§°)| < 107% for j even in steady case also, so a;
are important for only odd values of j. This information reduces the problem
of solving a system of 2NN algebraic equations to a system of N equations in
the Galerkin method. Table 4.6 shows the numerical results obtained using the
Galerkin and the sequential spectral method for N = 10. The result shows that

the initial coefficients ago)

are not very far from the Galerkin coeflicients g; and in
only 6 iterations a; converge to the Galerkin solution. We see that the solution
for the problem (4.45) converges to this steady state solution. Figure 4.8 also
shows that there is a very small difference between the solution obtained from
the initial coefficients a§0) and the Galerkin coefficients g;, [u9 — u(®| < 10~ for
all values of z € Q.

Equation (4.44) has been studied in detail in [Pao92] to establish existence of

a solution and Pao has derived a bound for the critical value o* given by

Ao
ve(l + 52|/ @)

ot < (4.46)
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Galerkin

SSM

J 95 a§°’ a§6’

1| 0.101116171 0.1010572002 0.101116171
31 0.003557947 | 0.0035576649 0.003557947
5| 0.000766504 0.0007664819 0.000766504
7| 0.000279139 0.0002791332 0.000279139
9| 0.000131298 0.0001312960 0.000131298

Table 4.6: Comparison of the coeflicients obtained by the Galerkin and the se-
quential spectral method.
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Figure 4.8: Comparison of u9 = Zgjqu and v©® = Zag-o)qﬁj and the error

[u? — w0,

i=1
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b vy=1/4 y=1/2 v=1 y=2 7y=3

1/4 | [11.548,11.549] | [5.774,5.775] | [2.887,2.888] | [1.443,1.444] | [0.962,0.963]

1/2 | [0.811,9.812] | [4.905,4.906] | [2.452,2.453] | [1.226,1.227] | [0.817,0.818]

1 | [7.544,7.545] | [3.772,3.773] | [1.886,1.887] | [0.943,0.944] | [0.628,0.629

2 | [5.162,5.163] | [2.581,2.582] | [1.290,1.201] | [0.645,0.646] | [0.430,0.431]

3 | [3.924,3.925] | [1.962,1.963] | [0.981,0.082] | [0.490,0.491] | [0.327,0.328]

Table 4.7: Range for values of 6 = 0*/D

where )y is the principal eigenvalue of the eigenvalue problem
DA¢p+Xrp =0, Bp=0 ondf,

and ¢(x) is the eigenfunction corresponding to A¢ and it is normalized such that
Q7! [, ¢dz = 1. @ is defined by ® = max, . ¢(x). We consider the ordinary
differential equation for finding the coefficient a\” (t) to estimate the critical value

o*.

Table 4.7 shows ranges for ¢* for certain values of D, v and b. These
results show that ¢* is directly proportional to D and inversely proportional to
v. Figure 4.9 shows the dependence of o* on b obtained by Pao and by using
the first equation in the SSM, the estimates are very close for small values of b.
The functional dependence of ¢* obtained in this way agrees with the functional
dependence obtained by Pao. This indicates that only by looking at a single
equation for a§°’ (), we can get an estimate of the critical value of o* for the
problem, which is not easy to obtain by using the Galerkin method.

It has been proved in [Pa0o92] and [BE82], that for ¢ > o¢*, the solution of
the problem (4.45) will blow up in finite time, t = T*. We tried to estimate
the dependence of T* on o, by looking again at the single ordinary differential
equation obtained for solving a{” (t). For D = b = v = 1, the values of T* for

different values of ¢ are shown in Table 4.8. The dependence of T™* on ¢ is also

shown in Figure 4.10.
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Figure 4.9: The functional dependence of the critical value o* on b obtained
analytically by Pao and by the SSM.

o T*
1.887 | 20.2213
1.89 | 9.28358
1.90 | 4.75030
2.00 | 1.47360
2.50 | 0.49790
5.00 | 0.13790
10.0 | 0.05790

Table 4.8: The values of T* for D=b=v=1.

25

20

Figure 4.10: The values of critical time 7™ for different values of o.
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Chapter 5

Systems of Nonlinear Elliptic

Partial Differential Equations

5.1 Introduction

We introduced the sequential spectral method in Chapter 2 and applied the algo-
rithm to nonlinear elliptic and parabolic integro-differential equations in Chapters
3 and 4. The idea was first introduced by Tam et al. in [TAK96] to solve a semi-
linear elliptic partial differential equation arising from microwave heating. In this
chapter, we extend the idea to a system of nonlinear elliptic partial differential
equations. To facilitate the presentation, we consider a system of only two equa-
tions. The method can however be applied to a system of N equations in the
same manner. We develop the procedure in Section 5.2. In Section 5.3, we ana-
lyze the convergence of the method in the case of identical and different boundary
conditions for v and v. The numerical results are presented in Section 5.4 and a

comparison with the Galerkin method is performed.
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5.2 The Expansion Procedure

We consider the system of nonlinear elliptic partial differential equations in a

domain 2,

Au+ F(u,v) =0,

(5.1)
Av + G(u,v) =0,
subject to homogeneous Dirichlet or Robin boundary conditions
ou
Av=r(x)— +s1(x)u=0, xe€0Q,
In (5.2)
Bv = rg(x)éﬁ + s53(x)v =0, x €09,

where % denotes the outward normal derivative on 0f2, the boundary of 2. The
boundary functions 7(x) and ro(x) are nonnegative and s;(x) and sa(x) are
positive. The functions F' and G are nonlinear functions of v and v. Note that
we have not included the case of Neumann boundary conditions. In fact, in the
case of Neumann conditions, we can have a zero eigenvalue, which will not allow
us to define the iteration scheme (5.17) or (5.18). Therefore, we are constructing
the procedure under the assumption that the eigenvalues are positive. However,
as discussed in Section 2.2.1, there are certain special forms of the functions F’
and G which can allow us to apply the method in the case of a zero eigenvalue
also and we discuss those in Section 5.3.1. We develop the algorithm for the
general case, that is, when u and v satisfy different boundary conditions. If the
boundary conditions are identical, A = B, then the algebra is simpler.

Let {);} and {¢;(x)} be the eigenvalues and the orthonormal eigenfunctions

for the eigenvalue problem

Ap=-Xp, Ap=0, x e (5.3)
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and let {u;} and {¢;(x)} be the eigenvalues and the orthonormal eigenfunctions

for the eigenvalue problem

A= —wp, Bp=0, xe (5.4)

In the case of identical boundary conditions, A\; = y; and @;(x) = 1;(x).

We denote

Qu) = Au+ F(u,v),

(5.5)
R(v) = Av+G(u,v).

As in the case of integro-differential equations, we use @ and ¢ as generic symbols
for the approximations of u and v. To begin, we take & = a;¢;(x) and ¥ =

c191(x). Then the residuals become

Q(a) = —Ma1d + Fard1, civhr),

(5.6)
R(7) = —pecy + Glardr, ciyhr).

Using the notation of the inner product of two functions, and following the

Galerkin idea, we set (Q(@), ¢;) = 0 and (R(9),4:1) = 0. These conditions give

—Aar + (F(ar¢1,c191),¢1) = 0,

(5.7)
—picy + (Glarr, c91),¥1) = 0.

Solving this pair of algebraic equations, we find the values of a; and ¢;. This
system may have more than one solution, in which case, each solution will give
rise to an expansion for v and v. To proceed, we focus on one solution. After
finding the values of a; and c¢;, we next take @ = a1¢1(X) + ag¢p2(x) and ¥ =
c11(x) + c2i2(x). Now we set the projection of Q(@) onto ¢o and the projection
of R(7) onto 1, to be zero, that is, (Q(%),d2) = 0 and (R(7),42) = 0. These
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conditions and the orthonormality of {¢;(x)} and {:(x)} lead to

=Xty + (F(a1¢1 + aoda, c1thy + c21a), ¢2) = 0,

(5.8)
—pacy + (G(a161 + asda, 1Py + cotfa),9P2) = 0

We find the values of a; and c; by solving this system. In the case of multiple
solutions, we have to take one at a time. Proceeding in the same manner, we

generate a sequence of coefficients {a;} and {c¢;} and consider formally

Zajqﬁj (x) and o= chzp]

Then the residuals are givén by

Q@) = ), uy 4%+ F()_ aid, city),

i = i (5.9)
R(7) = Z NJCJ¢J+GZ“J¢J>ZCJ'/’J
j=1 =

Now using the completeness of the eigenfunctions {¢;} and {¢;} we can expand

FO aids, Y cith) =Y bign(x) (5.10)
j=1 j=1 k=1

and

GO a5, Y city) = dthi(x), (5.11)
Jj=1 Jj=1 k=1
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where the coeflicients by and di are given by

e o= (FO_aidi, > i), dr),
7j=1 j=1

o oo (5.12)
de = (G a5 Y cits), v)-
j=1 j=1
Then (5.9) becomes
Q@) = D (—Na; +b)é;,
it (5.13)

R(%) (—mjc; + dj);.

[
Il
—

H
.Mg

For 4 and 7 to be a solution, we need (Q(%), ;) = 0 and (R(9),%;) = 0, for all j,

as in the Galerkin method. This means that we need
bj —Aja; =0 and d; — pjc; =0, forall j. (5.14)

If the above conditions hold then (5.13) implies fhat Q(@) = 0 and R(%) =0, and
so & and ¥ will be a true solution. But for the a;, b;, ¢; and d; just computed,
(5.14) will not hold in general and we need to introduce an iteration scheme to
achieve the required equality (5.14). Let 4™ and v(™ denote the nth approxima-

tions of u and v, given by

U = 3 (),
= (5.15)

W0 = 3 e ).
j=1
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and b ") be the coefficients in the expansion

F(u(n)’v(n)) — Zb(")¢]

(5.16)
Glu™, ™) = Zd‘"’z/zj
(n+1) (n+1) .
We construct new sequences {a; ' '} and {c;" '} by defining
1 1 n  (n
o™ = b = (P, 0), ¢)) (5.17)
Y j
and
1 1
= Ly Lgum ) g (5.18)
Hj Hj
Using these new values of the coeflicients, we form the new iterates
o9} o
u™H(x) = Z a§"+1)¢j (x) and o™*)(x Z C§n+l)¢1 (5.19)
Jj=1 3=1

We denote the values of {a;} and {c;} obtained by the decoupling procedure by
{a!”} and {c{”} to have the initial guess u(® and v for the iteration scheme. In
fact, depending on prior knowledge of the solution, any other initial guess could
also be chosen. If the iteration scheme (5.15) - (5.19) converges, then Q(u(*) =0
and R(v(*)) = 0 and hence a solution of the boundary value problem (5.1)-(5.2)
will be obtained. The numerical work in Section 5.4 indicates that the method

captures the essence of the problem and a;o) and c;o)

() and c§-°°)

are within a few percent
of a; , and we get convergence to a tolerance of 107% in only a few

iterations.

(6]



5.3 Convergence Analysis

In this section we analyze the convergence of the sequential spectral method
(5.15)-(5.19). We need the following result for the convergence of sequences of

vectors.

Theorem 5.1 Let {x(")} be a nonnegative sequence satisfying x™ < Ax-1,
where A is any n X n matriz. If the spectral radius p(A) is less than 1, then the

sequence {x(”)} converges to 0 for any initial guess x©),

Proof From x(™ < Ax(~1 we have by induction
x(n) S Ax(n_l) S A2x(n_2) S .o S Anx(o)_
Taking the limit, we have

lim x™ < lim A"x©, (5.20)

n—0o0 n—00

By Theorem 1.5, lim,,_,oo A™ = 0 if p(A) < 1, therefore lim x(™ = 0, because
n—00
{x(} is a nonnegative sequence. Hence the sequence {x™} converges to zero.

In order to investigate convergence of the sequential spectral method, we
consider the difference of the corresponding coefficients a; and c; between two

iteration steps,

1
a§"+1) - a§") =1 /Q[F(u("),v(")) — F(u™ y(r=D)] g dx (5.21)
7
and
1
c§"+1) - c§") = o n[G(u("),v(”)) — G(umY oy jop,dx. (5.22)
j
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By applying the Mean Value Theorem to equations (5.21) and (5.22) and then
applying the Mean Value Theorem for Integrals under the assumptions that
(u™ — u("‘l))qu, (ul™ — u(n—l))zpj, (v — U(n—l))qgj and (v® — U(n—l))¢j do not
change sign, we can prove convergence of the iteration scheme as we have done
in Chapter 3. We observed in Chapter 3 that the conditions of convergence in
this particular case are in accordance with the conditions obtained in the general
case. Therefore here we describe only the general case. Of course, the results will

imply convergence for any particular case. Let

g™ (x) :=F(u™) — F(u™Y),
P (x) :=G(u™) - Gu"V).

(5.23)

Since each of the set of eigenfunctions {¢;} and {t;} forms a complete set of
orthonormal functions (Theorem 1.4), we can expand g™ and p™ in a Fourier

series in {¢;} and {¢;} (Theorem 1.3) respectively,

g™ (x Z g i(x

(5.24)
p™ (x Zpﬁ")%
where the Fourier coefficients gJ ) and p ) are given by
o = (6, 05) = (P, 00) = PO 00 D)),
P = 0™, 9) = (1G(u™,v) = GuY, o), ).
Using the definitions in (5.23), the relations (5.21) and (5.22) become
n 71/ 1 n
=L
(5.26)

1
C§n+1) _ c§n) — _pg.n).
Hj
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Multiplying both sides of the first equation with ¢;, j = 1,2,3,... and of the

second equation with ¢;, 7 =1,2,3,... and summing over j we obtain

(n)

S (o) =3 %o,

o I (5.27)
n n D;
Z(é g ))'ﬁj Z ).
j=1 H]
We now define the new functions ™ (x) and ¢(™(x)
oo g(n)
R (x) := Z ;\_% (x),
= N
];1 (n) (528)
7™ (x) ;:Z ~yh(x),
j=1 p’]

™ m

where )’\— and ~2— are the Fourier coefficients of 2(™ (x) and ¢(™ (x) respectively.
J 3

Using the definitions of u(™, u(™+) 9™ and »®™+Y from relations (5.15) and

(5.19), in the left hand side of equation (5.27), we obtain

D) _ ym = pm),

(5.29)
pt) — () = )
Taking the Ly norm squared on both sides we have
(n+1) _ ,,(n)[12 h(n) 2
U U = ,
|| = 1K1 530
[0 — o3 = {1g™|[5.
Now we consider only the first equation in the above relation, that is,
[|u+) — 4|2 = ||h(|[2. Parseval’s identity holds for the complete set of
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orthonormal eigenfunctions {¢;} (Theorem 1.3), therefore we obtain
oo (n)

9; 1 —
[ —u®E =3 TS < 5 > g P, (5.31)
j=1 J 1 j=1

because the eigenvalues {);} are positive and increasing. Since g](-") are the Fourier

coefficients of the function g™ (x), using Parseval’s identity again we obtain

[+~ u < S lla®]E,
or taking the square root we get
) = w®fy < g  5.3)
From relation (5.23), we have
19l = [|F (™, 0™) = F(u®D,®D)]],. (5.33)

Assuming F'(u,v) to be globally Lipschitz in both u, v, with Lipschitz constant
L, and L, respectively,

F u("),v(n) —_ F u("_l)’lv(n) < L u(n) — u(n_l) ,
1, 07) — F®D, ), < L | b

P, 07) = ), 0 < Lo = o@D,

Using the triangle inequality and the above assumption, with Lr = max(L,, L,),

we have

1F @™, 0®™) — F® ™, D)|l; < Le(|[ul® — u*D||s + [[o — o@D |3).
(5.35)
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Using this assumption in (5.33), we obtain
g™l < Le(lul™ ~ u®Dlly + || = o®D[ly). (5.36)
Inserting this result into (5.32), we have
_ L e -
[Jult ) — u®™]l; < /\—T (Ilul = u®=Dlly + [[o® — ™). (5.37)
Performing operations similar to (5.31)-(5.37) the second relation in (5.30) gives
(1) _ @], < LG (1@ _ 1) (n) _ y(n-1)
[0 — v HzSI(IIU —u lp+ ot = o"V) (5.38)

where G(u,v) is assumed to be globally Lipschitz with Lipschitz constant Lg.
Combining relations (5.37) and (5.38), we have

[ = ] el I B ARk bl (5.39)
[t — oy, %cla %le o™ — »(=D)],
Hence we have an inequality over one iteration step of the form
xmD) < Ax™), (5.40)
where
() _ y(n-1) Lr Lg
NONN B L ) RN o (5.41)
o) = om0 Le Lo

By Theorem 5.1, if the spectral radius of A is less than 1, then the sequence x(™
converges to zero, which means that the iteration scheme (5.15)-(5.19) converges.
Now the eigenvalues of the matrix A are Ap € {0, an + %IQ} So the spectral

radius is p(A) = % + I;fli, because all quantities are positive. Thus we have
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proved
Theorem 5.2 Let F(u,v) and G(u,v) be globally Lipschitz in u and v, with
Lipschitz constants Ly and Lg,

||F(ur,v1) — F(ug,va)lla < Lr (JJus — uz|l2 + ||vi = v2][2),
v Uy, Uz, V1,02 € L2'

[[G(ur,v1) — G(ug,v2)||2 < Le (|Jur — uallz + [|vr — v2]]2),

(5.42)

Let Ay and u, be the smallest positive eigenvalues of the eigenvalue problems (5.3)

and (5.4) respectively. If

Lg Lg)
= +=) <1, 5.43
(M N (5.43)

then the sequential spectral method (5.15)-(5.19) converges.

Hence under the conditions of Theorem 5.2, u(®) and v(*) are a solution of
problem (5.1). The following theorem gives the rate of convergence and the a

priori error estimate.

Theorem 5.3 (Linear Convergence) Let F(u,v), G(u,v) satisfy (5.42) with
(5.48). Then the sequences {u™} and {v™} defined by the sequential spectral
method (5.15) - (5.19) converge to a solution u,v of problem (5.1)-(5.2) at the

rate

L L
Lr  Le

—a®IL ([ — o <(
(= s+ llo = o) < (524 L

n
) (Il = u Ol + [[v = v ],)

(5.44)

and the a priori error estimate is given by

Lp Lg\n
5+
(e = u™fo + |o = o™M][5) < &+

(1) _ © 1) _ 4©
< gy ([t = w2 + ([0 = 0®]5).
e Sy

(5.45)
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Proof Let u(™(x) and v(™(x) be the nth iterate of the approximate solution,
given by uM(x) = 2, alg(x) and oW (x) = Y2, Ps(x). Let u(x)
and v(x) be a solution of the problem (5.1)-(5.2), u(x) = > o1 a;$i(x) and
v(x) = D22, ¢j1bi(x). Since u, v is a solution of problem (5.1)-(5.2), we have

=5 L (F(u,v),¢;) and c;= i(G(U,U),’l/JJ) Using the values of a( ™ and cg-")
from (5.17) and (5.18), we consider

= i‘/[F(u,v) — F(u("),v("))]¢jdX,
(5.46)
4 = L [6l) -G, v

Following the steps from (5.23) to (5.39), we obtain

L R I O e I (5.47)
lo—v®lz )\ & & lo = v*= [
and defining
— ™ Lr Lp
u u
e(n) := I I and A= M 2 | (5.48)
v — ™l be 2o
H1 H1

the relation (5.47) becomes e(,) < Ae(,_;). Taking the L, norm on both sides,

we have ||em) || < ||Aew-1)|l1 < ||All1]lew-1)]|:- Applying this inequality induc-
tively, we obtain

lemlls < NJAlLllem-yll < [JAlEllem-2ll: < -+ < [[A[]T]le]]s,

which by the definition of the L; norm gives

L L
(lu=u®™lla + [l = o™]l) < (;ﬁ ;TG> (llw = 6|l + ]jv = v®]}2),
1

(5.49)
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because the columns of A are identical and positive. Since (i—f + %ﬁ—") <1, we

n
have lim,,_, o (I;\—f + %‘11) = 0 and therefore

Hm (|lu— u™]f, + [Jv = v™]|5) = 0. (5.50)

n—o0

Hence {u(™}, {v™} converges to a solution u, v and the rate of convergence is
given by (5.49).

Now we will find the a priori estimate for the error. We define

(nt+1) _ 4(n)

(n+1) _ || u™ ||z

€y = D) , (5.51)
[ — o],

and by using the definition of A from (5.48), the relation (5.39) can be written
as egn)ﬂ) < Aegn) y- Taking the L; norm on both sides, we obtain

||e n+1)||1 < [|Alx |Ie(2) 1)||1_ Applying the inequality inductively, we obtain

1 L el
lefay 1l < [[Alldllefey 1 < AN ezl < -+ < |AlI]le -

For m > n, we have

-1 1
el < llebm |11 + lleSm— 3l + -+ + [lefmr ™Iy

< [lAlTYlefg l + 1Al lefg) [l + -+ + [|Al[7llefg ]l (5.52)
= [IA[I (HAIIP=" + AP 4+ (Al + 1) (el

Since the sequences {u™} and {v™} converge to u and v, we have

lim,, 00 ||e ||1 ||em)||1- Hence letting m — oo in the above inequality, we
obtain
(o o]
1ol AT
llem!h = IIAII?Z [ENHIEH 1—_HA1IEHG§°§HI' (5.53)
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Using the definition of the L; norm we get the a priori estimate for the error

L L
e + Loy

L L
1- (5 +38

(= ulla+ flo = o]l) < (1 = w1l + [ = oO[}).
|
In Theorem 5.2, we assume F(u,v), G(u,v) to be globally Lipschitz in both u
and v. From the relation (5.44), we found that all the iterates are in the ball
B((u,v),T), centered at the solution (u,v), with radius r = |[u — u(®||y + |jv —

v®]];. So we need F(u,v) and G(u,v) to be Lipschitz only in the ball B((u,v),r).

Corollary 5.1 Let F(u,v) and G(u,v) be locally Lipschitz in a ball B((u,v),r),
centered at the solution (u,v), with radius r = |ju — u@||y + ||v — vO||s, where
u®, v are the initial guesses, with Lipschitz constants Ly and Lg. Let Ay and
w1 be the smallest positive eigenvalues of the eigenvalue problems (5.3) and (5.4)
respectively. If (f\—f -+ %?) < 1, then the sequential spectral method (5.15)-(5.19)

converges at the rate given in (5.44).

We emphasize that the condition (5.43) which allows us to prove convergence
is a sufficient condition and it is not necessary. The iteration may converge even
if the condition (5.43) is violated. The above discussion is for general boundary
boundary conditions A4 and B . In the particular case of A = B, that is, when u
and v satisfy identical boundary conditions, then the eigenvalues and eigenfunc-
tions of the problems (5.3) and (5.4) are the same. The iteration scheme and con-
vergence analysis follows in the same manner and we obtain that if L+ Lg < Aq,

then the sequential spectral method converges.

5.3.1 Convergence Analysis for Neumann Conditions

We developed the sequential spectral method (5.15)-(5.19) under the assumption
that neither A; nor y, is zero. This is because (5.17) or (5.18) cannot be defined
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for j =1, if Ay = 0 or y; = 0. Hence, in general, the iteration scheme can not be
defined if the eigenvalue problem (5.3) or (5.4) has a zero eigenvalue. However,
there are certain forms of F(u,v) and G(u,v) which can allow us to define the
iteration scheme in that case as well and they are discussed in Section 2.2.1. If
A1 = 0 and the nonlinear function Fi(u,v) is a combination of a linear term (ju

and a nonlinear term F(u,v), that is,
F(u,v) = Qu + Fi(u,v), (5.54)
then we can define the iteration scheme

(i) L ) g,
a] (/\] _ Cl) (Fl (U » U )7 ¢])’ (555)

provided ¢ # 2;, j=1,2,3,.... Similarly, if 4#; = 0 and G(,v) has the form
G(u,v) = (v + G1(u,v), (5.56)
then we can define the iteration scheme

ey _ L ™) ™Y o).
¢ (Nj—'C2)(G1(u , 0'™), ;) (5.57)

provided (o # p;, j =1,2,3,.... If both A\; and p; are zero, then the equa-
tions (5.17) and (5.18) in the iteration scheme (5.15)- (5.19) will be replaced by
equations (5.55) and (5.57) respectively. The convergence of the iteration scheme
can be analyzed similarly. It is found that a sufficient condition for convergence
is that IIé_fI + IL?ST < 1. To illustrate this idea, we have solved a system of elliptic
partial differential equations with p; = 0 where G(u,v) is of the form given by

(5.56). The numerical results are presented in the next section and a compari-

son with the solution obtained by the Galerkin method is given. Convergence is
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obtained again in only a few iterations.

5.4 Numerical Results

In this section we solve a system of elliptic partial differential equations arising
from a chemical reaction. Suppose the reaction A — B takes place in two steps,
the first is a reversible binding to an enzyme, A + E = C, and the second is the
dissociation of the complex so formed into the product with the release of the
enzyme C' — B+ E. The reaction is to take place within a region 2 in which all
the species can freely diffuse but whose boundary 0f2 is permeable only to A and
B. The original system consist of four equations but under certain conditions
and by nondimensionalising the quantities we obtain system of two equations. A
detailed derivation can be found in [Ari75]. The steady state equations governing

the concentrations can be written as

Au = Cilu(l—v)—(k—x)v], x€Q,

Av = CE~u(l —v)+ k), x € Q, (5.58)
,3—2%+u = 1, g;%:O, x € 09,

where % is the outward normal derivative on 02. The parameters C; and C,

are positive constants and their values depend on the diffusion coefficients. The
constants x and y corresponds to the rate constants. The above system has been
studied in [Ari75] and [Ari72]. We solve the problem for the slab 0 < z < 1. In
order to have homogeneous boundary conditions for u, we put u = w+ 1. So we

will solve the problem

Aw = CHw+1)(1—-v)~(k—x)], z€(0,1),
Av Ci[—(w + 1)(1 — v) + k], z € (0,1), (5.59)

B +w = 0, & =0, z=0,1.
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The orthonormal eigenfunctions ¢;(z), ¥;(z) and the corresponding eigenvalues

Aj, pj satisfy the equations

A¢; = —Ajp;, where ﬂ%+¢j=0 forz =0,1.

a9

o =0 for z=0,1.

A’(,b] = —/.LJ’(/JJ, where

Solving these equations, we get

¢; = 1/Eﬂ—EJ—.Qp— [sin(jmz) — Bjm cos(jmz)], A;=j27%, j=1,2,3,....

Y; = V2 cos ((j — 1)rz), pi=G-1%7% j=123,....

Numerically we truncate the expansion at N = 6. Using the Galerkin method

we obtain the system of equations

(A + CDg; + C¥( 1—}:gk¢k2ek¢k— 1+n—x)2ek¢k,¢])—o
k=1 k=1 (5.60)

(1 + (1 +&)C3)e; — C3(1 - Z 9k Pk Z ex + ngqbk, ¥) =

for j =1,2,3,...,6. To solve these 12 nonlinear equations, we use a fixed point

iteration of the form

6
(+1) _ 0] 0
Tl +02) 1+ng mZek Yt (LK —%) D et 65)

k=1

. ) 6
(+1) _ Cy Z Z 0] E : O]
e = ) 9 ¢k d’k + 9 ¢k)"/’yj)’
J M + (1 + K’)C k=1

(5.61)

for j = 1,2,...,6. The computations are performed for the parameter values
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Galerkin

SSM

9j

O

pe

—3.324326 x 1073

]
—3.302877 x 1073

3
~3.324326 x 1073

5.569387 x 1077

7.730235 x 1077

5.569387 x 10~'

—4.444987 x 107°

—4.427130 x 10~°

—4.444987 x 107°

3.720939 x 1078

4121142 x 1078

3.720939 x 10~°

—5.801788 x 1078

—5.804807 x 10~°

—5.801788 x 107°

O U | W N .

7.692260 x 10~° |  9.428359 x 10~° 7.692260 x 10~°

Table 5.1: Comparison of the coefficients a; and g; for 8 = 1.

Ci=Cy=k=1, x = 0.25. A similar fixed point method is used to solve the
system of two equations obtained at each step in the sequential spectral method.
Tables 5.1 and 5.2 show a comparison between the coefficients g; and a; for w
and the coefficients e; and c; for v obtained by using the Galerkin method and
the sequential spectral method. The results show that the initial coefficients
a§0) and c§-0) are very close to the Galerkin coefficients g; and e; and converge
to the Galerkin coefficients to a tolerance tol = 1078 in only 8 iterations. The
truncated solution to the problem (5.58) is given by u(z) = 1+ Zgzl 9;¢;(z) and
v(z) = Zg=1 e;j¥;(z). Figures (5.1) and (5.2) also show that there is a very small
difference in the solutions u(®, u¢ and v©®, v9.

0)

We note from the above results that a;” and cg_o), for j = 1,3,5,... are de-

creasing sequences and also for j = 2,4,6,.... The same behavior is observed
for ag_s) and c§~8) for the given problem. So the coefficients of the first eigenfunc-
tions are more important. This is because the eigenfunctions are intrinsic to the

operator, the domain and the boundary conditions.
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Galerkin

SSM

€j

5o

52

3.533922 x 101

1
3.533947 x 1071

i
3.533922 x 107!

1.336607 x 10~*

1.326501 x 10~*

1.336607 x 1074

5.110983 x 107°

5.069182 x 107°

5.110983 x 10~°

2.424781 x 1077

2.415259 x 1077

2.424781 x 1077

2.750798 x 10~7

2.727424 x 1077

2.750798 x 10~7

O O x| W N %,

1.149816 x 10~

1.166550 x 108

1.149816 x 1078

Table 5.2: Comparison of the coefficients c; and e; for 8 =1.

— Galerkin
1005} —-SSM
T /\
25 1
—~
e 2
3 2
= ! 5
° 5.5}
o
S
e
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0995
. L \ \ . \ \ . \ 0 L \ . . . \ . .
o [X] 02 03 04 01'5 06 o7 08 09 1 o a1 02 03 0.4 05 0.6 07 08 oe 1
T

Figure 5.1: Comparison of uf = 1+ Y1 | g;¢; and u® =1+ 37 al”'4; for
N =6, 8 =1 and the error |u? — u(®] .

—— Galerkin
- — 85M
4

04997

04996 |-

0.4906
(J

L
o9 1

L L L L L L L n L L L 2 L L L
01 oz 0.3 04 05 08 0.7 08 09 1 [} 01 02 03 o4 05 0.6 0.7 08

T

Figure 5.2: Comparison of v9
B =1 and the error [v9 — (@] .

Z;’V:I e;¥; and v©® = EN c(o)@bj for N = 6,

J=1"j
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Chapter 6

Conclusion

6.1 Main Research Results

In this thesis, we developed the sequential spectral method for nonlinear partial
differential equations and integro-differential equations of elliptic and parabolic
type. We proved that the sequential spectral method converges linearly for the
elliptic case and superlinearly for the parabolic case. We found many advantages

of the sequential spectral method over the classical Galerkin methods:

(i) In the sequential spectral method, one needs to solve a single algebraic (in
the elliptic case) or ordinary differential equation (in the parabolic case) at

each step instead of a system of equations in the Galerkin method.

(ii) In the sequential spectral method, we can continue to add components until

we get the required accuracy and this does not affect the previous process.

(iii) The existence of multiple solutions can be detected by solving a single

equation (see Figure 3.3).

(iv) The time of computation is much lower than for the Galerkin method. For a

certain example in Section 3.3, the approximate computational complexity
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for the Galerkin method is t, =~ N® and for the SSM is ¢, &~ N3 (see
Figure 3.7).

(v) The dependence of the solution on parameters can be analyzed by studying
a single eQuation, and also estimates for critical values of the parameters

can be obtained (see Tables 3.5 and 4.7, Figures 3.8 and 4.9).

(vi) The blow up time can be estimated for corresponding parametric values

(see Table 4.8 and Figure 4.10).

The sequential spectral method is a new method, introduced by Tam et. al in
[TAK96] for a semi-linear elliptic partial differential equation. Al Refai has de-
veloped the method for parabolic partial differential equations and systems in
[Alr00] but the conditions for convergence obtained were not transparent and
difficult to verify. We have obtained convergence conditions depending on the
Lipschitz constant of the nonlinear function F'(u) and proved that the conver-
gence is linear in the elliptic case (Theorem 3.3) and superlinear in the parabolic
case (Theorem 4.4), and we also found a priori estimates for the error. We have
also extended the idea to a system of elliptic partial differential equations and
proved linear convergence of the sequential spectral method and an a priori es-
timate for error (Theorem 5.3). Since the sequential spectral method is a new

method, many issues remain to be investigated.

6.2 Future Research Directions

Observing the advantages of the sequential spectral method, one naturally wants
to apply the method to a variety of problems described by partial differential
equations, integro-differential equations and integral equations from applications,
especially problems which were hard to solve up to now. We developed the

method for the case of F(u), that is, the nonlinear term depends only on u.
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Al Refai has applied the sequential spectral method to the Kuramoto-Sivashinsky
equation, which has a nonlinear term of the form F'(u, u,) and proved convergence
for that equation only [Alr00]. There is no general theory for equations with
nonlinearity F'(u,u;). We have started to work on a parabolic integro-differential
equation with a nonlinear term of the form F(u,u;). We have developed the
iteration scheme and applied it to a model problem and obtained very promising
numerical results but we have not yet proved convergence. This will be one of
our research projects in the near future. We hope that the idea can be applied
to more general systems containing higher derivatives of u with respect to the
spatial variables. Also hyperbolic equations seem to be a good candidate for
this method, we have especially nonlinear wave equations in mind. Al Refai has
applied the method to a wave type equation and got numerical results but there is
no convergence analysis yet [Alr00]. Katina has developed the sequential spectral
method for nonlinear integral equations [Mic97] and we have also obtained first
results to extend this idea to systems of integral equations. Finally the method
should be extended to systems of integro-differential equations.

A complete different approach would be to study a discretized version of this
sequential spectral method. This would allow us to use the method on arbitrary
domains with general boundary conditions. The interesting question would be
if it pays off to compute some of the lower eigenfunctions numerically and then
to apply the sequential spectral method to resolve the nonlinearity, compared to
a Finite Element approach. For consistent discretizations we would expect that
similar convergence for the sequential spectral method could be obtained as far

the continuous case shown in this thesis.
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Appendix A

Proof of Lemma 4.1

We now prove Lemma 4.1. To this end, we need

Lemma A.1 For every even m, odd k; and ny € N, and N € N, we have

/1 H sin™ (kﬁrm) sin(mnz)dz = 0. (A.1)

0 =

Proof From the trigonometric identities, we know that

—sin(knz), if k is even,
sin(kn(1 — z)) = (km) (A.2)
sin(krz), if k is odd.
We first split the integral in half,
12 N
/ Hsm kﬂrw ) sin(mnz)dr = / Hsm (kymrz) sin(maz)dzx
’ (A.3)

+ / Hsm (kyrz) sin(mnz)dz.
1/

2121
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Then putting £ = 1 — u in the first integral on the right hand side of equatibn |
(A.3) and using (A.2), the first integral becomes

[N, sin®™ (k) sin(maz)dz = [ [N, sin™ (kyr (1 — w)) sin(ma (1 — w))(—du)

0 1

= -/ 11/2 1Y, sin™ (k;mu) sin(mru)du

(A.4)
and hence with (A.3)
1 N
/ H sin™ (kyrz) sin(maz)dz = 0,
0 =1
for every even m, odd k; and n; € N, and N € N. ||
Lemma A.2 For every j > 0,
1 )
/ e2h=102k—1(t) sin(2k—1)mz sin(2jmrz)dz = 0. (A.5)
0
Proof Using the series expansion of exponential functions, we have,
T
/ ezi=1 agk—1(t) sin(2k—1)mz sin(2j7rx)d:17 —
° (A.6)

my sin(2jrz)dz.

/1 i (>4 aze-1(t) sin(2k — 1)ma]”

By Lemma A.1, all the integrals on the right hand side will be zero and hence
1, .
/ e2k=1 02k-1(O)SINER-1)72 G (95 dr = 0, V § > 0. (A.7)
0
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Lemma A.3 Let u((x,t) = Z;”l i O(t)¢,;(x) be the initial approzimation for
the solution of problem 4.45, obtained by the SSM. Then the even Fourier coeffi-

cients a()():O, VIi>0,t>0.

Proof To find the initial guess u®(x,1) = 3722, a$” (t)¢;(x), we need to solve

the nonlinear ordinary differential equations for the Fourier coefficients a;o) (1),

dago)

1
it +D/\ja§-0)(t) =0v2 / g1V = 3 (B sin(ko) sin(jrz)dz, (A.8)
0

with initial condition a§-0) (0) = 0, sequentially for j = 1,2,3,.... Here D, o and
7 are positive constants. In order to prove that the even coefficients agl)) (t) =
0, VI>0,t >0, we prove that agl)) (t) = 0 is the unique solution of the corre-
sponding equation. First we prove, by induction, that agl)) (t) = 0 is a solution of
the corresponding ordinary differential equation.

For [ = 1, we find a{”(t) by solving

da

1
d + D)\2a(0) — 0\/5/ e'y\/i[ago) sin(vrz)+a§°) sin(21rz)] sin(27r:c)d:1:, (A.9)
0

together with initial condition g\’ (0) = 0. We see that al”)(¢) = 0 is a solution
of equation (A.9), if

1
/ e7V2et” O 5in(n2) i (9r3) dz = 0,
0

which is true by Lemma A.2. So the result is true for [ = 1.
Now suppose that the result is true for | = m, that is, a( ) (¢ (t) = 0 is a solution

of

(0)
di";tm +.D)\2ma — 0.\/_/ e’)’\/_[zk 1a2lc 1 sin((2k— 1)7rw)+a sin(2maz)] sin(2m7r:l:)d.’1:,

(A.10)
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where a{) (0) = 0. To prove that the result is true for [ = m + 1, we consider

0
At 1y

0
TR D\a(m+1) 541y =

' V2[00 gin((2k—1) m)+a sin(2(m+1)7z)]
0‘\/5-/ e’ k=1 %2k-1 TE) T (m+1) M sin(2(m + 1)7z)dz,
0

(A.11)

where aggnﬂ)(o) = 0. By Lemma A.2, we have

1
/ ez;cnﬂ a‘gk) 1 sin(2k— )7z sm(2(m + 1)7r:v)d$ =0,
0

which implies that a2(m +1)(t) = 0 satisfies equation (A.11) for all ¢ > 0. Hence
the result is true for [ = m + 1 and the induction is complete.

In order to prove uniqueness, we use the Lipschitz property as for the Picard-
Lindelof iterations for initial value problems (see [Pic93] and [Lin94]). We have

to solve the ordinary differential equations (A.8) for the coefficients a( (1),

0
dt

1
ja () = ov/2 / eVITh 7 Oselbn) in(jng)dn,  (A12)
0

with the initial condition a (O) = 0, sequentially for j =1,2,3,.
Let

( t) — 0.\/—/ e')'\/_[Z:,c la,(co)(t)sm(km:)+a( )(t) sin(jmz)] sm(]7r:c)dx. (A.13)

To see that this function is Lipschitz, we compute

0 ~{0
7@ - 1@ =
1
O’\/§ / 67‘/525; llaio) sin(knz) [e'y\/fag-o) sin(jmz) _ efyx/iég-o) sin(jww)]
0

sin(jrz)dz|.

(A.14)
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By the Mean Value Theorem, we have
< - (0) s
|67\/§a§0) sin(jmz) e’Y\/iaJ(-o Sm(]ﬂ'm)l — ef(w),y\/ilag_o) — &§0)| . lsin(jﬂ‘x)l, (A15)

for some £(z) between 'y\/§a§-0) sin(jnz) and 7\/5&5-0) sin(jrz). Using this result

in relation (A.14), we obtain

1 j — -
|f(a§-0)) - f(é§~°))l < 20’)’/ V2risie sin(kn2)+£(2) | (0) _ &§0)| | sin(jnz)2dz.

7
0
(A.16)
Therefore f (a§~0)) is Lipschitz ,
7@ = £GP < Lela® - a0, (A17
with Lipschitz constant,
1 j — .
L= 207/ e"V2Tizia sin(kr2)+£(2) | sin(jnz) |2 da. (A.18)
0 .
Using the definition of f (a§0)) in equation (A.12), we have
da(~0)
— = ~DXad” + £ (@) (A.19)
Let
9(af"(#)) = —DA3a{ () + £(af (1)), (A.20)
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then g(ag-o)) is Lipschitz,

~(0 0 ~ ~(0
19(a5”) — 9@)| = | = Djal” + £(al”) + DAY — (@)
< (DX + Ly)|al” — & (A.21)
= Ly|“§0) - ~('0)|7

with Lipschitz constant,
Ly=D);+ Ly, (A.22)

because D and A; are positive. Hence there exists a unique solution of equations

(A.12) and thus the solution a{ (t) = 0 we found is unique. =

We are now able to prove Lemma 4.1:

Proof From Lemma A.3 we found that agl)) (¢)) =0, VI>0,t > 0in the
initial guess u(®(x,t). For the nth approximation by the SSM, we need to solve
linear ordinary differential equations for the Fourier coefficients a§.") (1),

(n) -

da; 1 ; .
—Eljt_ + D)\jagn) (t) = a\/i/ VAT " Osink )] i (irpVdz,  (A.23)
0

with initial condition a§~") (0) = 0, sequentially for j = 1,2,3,.... Here D, ¢ and

v are positive constants. For n = 1, we have

(v

a; ! - .
d;f + DAja‘;l) (t) = ov2 / €7V} os a3y 8 sin((2h—L)7a)] sin(jrz)dz, (A.24)
0

with initial condition ag.l)(O) =0,5=1,23,.... Now for the even coefficients

J = 2l, we have by Lemma A.2

2L 4 Dagal) =0, a(0) =0, (A.25)



which has solution ag;) (t) =0, for I = 1,2,3,.... Similarly by induction and
the results of Lemma A.2, all the approximations are zero if the initial approxi-

mation is zero.Therefore the even Fourier coefficients a(;;) (t)=0,VIi>0,t>0.m
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