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Abstract

Using the Galerkin method to solve nonlinear integro-differential equations of

elliptic or parabolic type one needs to solve the resulting nonlinear systems of al

gebraic or ordinary differential equations. To solve these equations with Newtons

method or a variant thereof can be very difficult and one needs a good initial

guess for the methods to converge. Also there might be multiple solutions and

it is virtually impossible to track aIl ofthem. In addition it is hard to study the

parameter dependence of solutions. We developed a remedy for these problems

by developing the sequential spectral method which avoids solving a nonlinear

system altogether. In the sequential spectral method a scalar nonlinear algebraic

or ordinary differential equation is solved at the initial stage and then the so

lution of the original problem is obtained through iterations, we never have to

solve a nonlinear system at any stage of the method. The sequential spectral

method converges linearly for steady state problems and superlinearly in the case

of evolution. With the sequential spectral method we can obtain solutions to

any desired accuracy with much less effort than with the Galerkin method. We

can also increase the spectral degree of accuracy while the method is running.

In addition one can easily detect the existence of multiple solutions by observing

only a single equation and one can track those solutions. The behavior of the

solution and the dependence on parameters can be estimated and one can also

determine the blow up time for the corresponding parameter values by studying

only a single equation. We further show that the sequential spectral method can

be applied to a system of nonlinear elliptic partial differential equations.

i



Résumé

En utilisant la méthode de Galerkin pour résoudre des équations intégro-différentielle

non-linéaires de type elliptique ou parabolique, on a besoin de résoudre le système

non-linéaire d'équations algébriques ou d'équations différentielles ordinaires résultant.

Résoudre ces équations avec la méthode de Newton ou une variante peut se

révéler très difficile et une bonne conjecture initiale est nécessaire pour que les

méthodes convergent. Il peut y avoir également de multiples solutions et en

pratique il est impossible de toutes les repérer. De plus il est difficile d'étudier

la dépendance des paramètres des solutions. Nous avons developpé un remède

à ces problèmes en développant la méthode spectrale séquentielle qui permet

d'éviter de résoudre entièrement un système non-linéaire. Dans la méthode spec

trale séquentielle, nous résolvons une équation scalaire algébrique non-linaire

ou une équation différentielle ordinaire à l'étape initiale et ensuite la solution

du problème original est obtenue par itérations, nous n'avons jamais besoin de

résoudre un systeme non-linéaire, à aucune étape de la méthode. La méthode

spectrale séquentielle converge linéairement pour des problèmes stationaires et

superlinéairement pour des problèmes d'évolution. Avec la méthode spectrale

séquentielle, nous pouvons obtenir des solutions aussi précises que nous le souhaitons

en beaucoup moins d'effort qu'avec la méthode de Galerkin. Nous pouvons aussi

augmenter le degré spectral de précision pendant que la méthode s'exécute. De

plus il est facile de détecter l'existence de solutions multiples en observant seule

ment une seule équation et on peut donc retracer ces solutions. Le comportement

de la solution et la dépendance des paramétres peuvent être estimés et on peut

également déterminer le temps où la solution devient singulire pour les valeurs

correspondantes des paramètres en étudiant seulement une équation. En outre

nous montrons que la méthode spectrale séquentielle peut être appliquée à un

système d'équations différentielles partielles elliptiques non-linéaires.
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Chapter 1

Introduction

1.1 Introduction

Many problems arising from combustion theory, fluid dynamics, quantum me

chanics, microwave theory, elasticity and structural mechanics can be described

by a mathematical model consisting of ordinary differential equations, partial

differential equations or integro-differential equations. These problems can be

linear in special cases, but in general they are nonlinear. For linear problems,

the Laplace and Fourier transform are often used to find analytical solutions. It

is however not possible to find analytical solutions for aIl linear problems. In

addition most of the reallife problems are nonlinear and the search for analytical

solutions is a difficult task. Therefore, numerical methods have been developed to

solve these problems numericaIly. There are different types of numerical methods,

for example the finite difference method, the finite element method and spectral

methods. Each numerical method has its own advantages and limitations so it is

difficuIt to compare different numerical methods. However, many numerical tech

niques are related. The Galerkin formulation, which is being used in many subject

areas, provides the connection. Within the Galerkin frame-work we can generate

finite difference, finite element and spectral methods. The idea of the sequential
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spectral method developed in this thesis also stems from the Galerkin method

so we describe the Galerkin methods in Section 1.2 for the purpose of compari

son and clarity. The sequential spectral method for elliptic and parabolic partial

differential equations or integro-differential equations is developed in Chapter 2.

1.2 The Galerkin Method

The origin of the Galerkin method is generally associated with a paper published

in 1915 by Galerkin, a Russian mechanical engineer, on the elastic equilibrium of

rods and thin plates [Ga115]. The use of the Galerkin methods increased rapidly

during the 1950's. The Galerkin method has been used to solve many problems

in structural mechanics, dynamics, heat fiow, hydrodynamic stability, magneto

hydrodynamics, heat and mass transfer, acoustics, microwave theory, neutron

transport, etc. Problems governed by ordinary differential equations, partial

differential equations, integral equations and integro-differential equations have

been investigated via Galerkin formulations. Steady, unsteady and eigenvalue

problems have proved to be equally amenable to the Galerkin treatment. Es

sentially, any problem for which governing equations can be written down is a

candidate for the Galerkin method. The Galerkin method is a member of the

larger class of methods known as the methods of weighted residuals [LP99].

Let n be a spatial domain with boundary an. We consider an initial boundary

value problem

.cu
Bu

u(x, 0)

0,

0,

uo(x),

x E n, t > 0,

x E an, t > 0,

x E n,

(1.1)

where .c is a differential operator in space and time and B is a linear bound

ary operator. We assume that sorne conditions are satisfied to ensure existence,
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uniqueness and certain regularity of the solution of (1.1). The Galerkin method

is to find an approximate solution

N

iL(x, t) = L aj(t) cPj(x),
j=l

(1.2)

where cPj (x) are known basis functions and they are members of a complete set

of functions. The functionscPj(x) are called trial functions and the coefficients

aj(t) are to be determined. Substituting the approximate solution (1.2) into the

original problem (1.1), we get in general a nonzero residual R(u), given by

R(iL) := /:,iL =1= O. (1.3)

The Galerkin method requires the inner product of the residual and cPk(X) to be

zero for aIl k, that is,

(R(iL) , cPk) = 0, k = 1,2,3, ... ,N. (1.4)

The coefficients aj(t) are determined by solving the system of N ordinary dif

ferential equations given in (1.4). In the steady case, the coefficients are just

constants and we have to solve a system of N algebraic equations. To obtain a

solution by the Galerkin method most of the effort is required to solve the sys

tem of equations (1.4). The accuracy increases by increasing N [Fle84] but the

solution of equations (1.4) then becomes more and more difficult.

In this thesis, we are mostly concerned with nonlinear initial boundary value

problems of the form

/:'u _ Œ~~ - .6.u - F(u) = 0,

Bu 0,

u(X, 0) uo(X),

3

x E n, t> 0,

x E an, t > 0,

x E n,

(1.5)



where a 2: O. Substituting the approximate solution (1.2) into problem (1.5), the

system of equations (1.4) can be written in matrix form as

Mà+B a+c= 0,

where à = [d;t1 , d;t2 , • •• , d~f]. The elements of M, Band c are respectively

mjk = a(q;j, q;k), bjk = -(~q;j, q;k)
N

and Ck = (F(L ajq;j) ,q;k), j, k = 1,2,'" ,N.
j==l

(1.6)

(1.7)

If orthogonal trial functions q;j(x) are used, then M is a diagonal matrix. Since

orthogonal functions are linearly independent, the resulting equations (1.4) will

also be independent if the problem is linear. The use of orthogonal functions

q;j(x) also avoids a matrix factorization and subsequent matrix multiplication.

However, it maintains the high accuracy ofusing global trial functions. The choice

of orthogonal trial functions leads to spectral methods. If the trial functions are

chosen to be polynomials defined in small domains, called elements, then the

Galerkin method leads to the jinite element methods.

An important feature of the traditional Galerkin methods, which has con

tributed to its widespread use, is the ability to achieve high accuracy with few

terms in the approximate solution, provided the trial functions are chosen to take

advantage of a priori knowledge of the expected solution. Often an eigenfunc

tion expansion of a related (and presumably simpler) problem is used. Mikhlin

[Mik64] proved that if a unique solution of the elliptic boundary value problem

exists, then a Galerkin solution will converge to it, under appropriate conditions.

Temam [Tem73] established such a result for a nonlinear elliptic boundary value

problem. Convergence of the Galerkin method for nonlinear initial boundary

value problems is discussed by Finlayson in [Finn].
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The idea of the Galerkin method is simple and can be applied to solve many

different problems but the most difficult task is to solve the system of equations

(1.4). For nonlinear parabolic partial differential or integro-differential equations,

the Galerkin method reduces the problem to one of solving a nonlinear system

of ordinary differential equations, which is not easy to solve in general. For

nonlinear elliptic boundary value problems, the coefficients aj are constants and

are determined by solving the system of N nonlinear algebraic equations given

by (1.4). For such systems solutions are usually sought using iterative schemes

such as the classical Newton method or variations thereof [BP81]. For such meth

ods, the ability to determine a solution depends crucially on providing the solver

with an initial guess close to the solution. The difficulty in determining such

an initial guess invariably grows in proportion to the dimension of the system.

Another problem that is encountered with such classical root-finding algorithms

is their inability to consistently predict the multiplicity of solutions. Consider,

for example, the two-dimensional problem

j(x, y) 0,

g(x, y) O.

Both j and 9 are completely arbitrary functions each of which has zero contour

lines. The solutions that are sought are those points which are cornmon to the

zero contours of both j and g. In order to find aIl common points, the full zero

contours of both functions must, in sorne sense, be mapped out. These contours

will, in general, consist of several disjoint closed or open curves. It is difficult

to know whether aIl disjoint pieces of the zero contours have been mapped out.

For a general nonlinear system, information about the number of solutions is

therefore difficult to obtain. Now assume, for argument's sake, that one does

know with sorne degree of certainty that there are p solutions to the nonlinear

system. In addition, assume that p "good" initial guesses are available. Will
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Newton's method, for example, produce these p solutions? In [TAK96], it was

shown numerically that the Galerkin method (using Newton's method for the

simultaneous equations) could not converge to a known, "supercritical" solution

of a certain elliptic problem. An example of a nonlinear integral equation where

the method fails to reveal aIl the solutions was presented by Katina in [Mic97].

1.3 Proposed Work

From the previous section we recognize the difficulty of solving the system of

equations obtained by the Galerkin method. To alleviate the situation, Tarn

et al. introduced the sequential eigenfunction expansion method and applied it

to solve a semi-linear elliptic partial differential equation [TAK96]. The method

sought a solution in terms of a series expansion of the form Ej:l ajC/)j, where

{4>j(x)} are the eigenfunctions corresponding to the operator, the domain and

the boundary conditions. In contrast to Galerkin methods, the coefficients are

determined sequentially by solving a single equation at each step and then through

iteration achieve convergence to (1.4). The sequential nature ofthe computations

makes the size of N somewhat immaterial, as only a single equation is solved at

any stage of the procedure and hence the aforementioned difficulties are avoided.

The sequential eigenfunction expansion method, which we calI the sequen

tial spectral method (SSM), has been applied to nonlinear integral equations

[Mic97] and to parabolic partial differential equations [AlrOO]. Independently are

lated frequency decomposition and subspace correction algorithm for an abstract

parabolic evolution equation has been proposed and analyzed in [Gan97]. The

present work investigates the applicability and robustness of the sequential spec

tral method for nonlinear integro-differential equations of elliptic and parabolic

type and gives new convergence results for this method. The sequential spectral

method is developed in Chapter 2. We apply the sequential spectral method to
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nonlinear Fredholm integro-differential equations of elliptic type in Chapter 3 and

of parabolic type in Chapter 4. We then extend the idea of Tarn et al. [TAK96]

for elliptic partial differential equations to systems of elliptic partial differential

equations in Chapter 5. In aIl cases, the convergence of the sequential spectral

method is analyzed and problems from real applications are solved. The numer

ical results are presented and are compared with the solutions by the Galerkin

method where possible.

The sequential spectral method has mainly the foIlowing advantages over the

Galerkin method:

1. Using the Galerkin method we need to solve a system of nonlinear alge

braic or ordinary differential equations, whereas with the sequential spec

tral method only a single algebraic or ordinary differential equation needs

to be solved at any step.

2. Using the Galerkin method we need to truncate the infinite expansion at

a fixed number N, where N has to be determined in advance. Using the

sequential spectral method we can continue to add new components aj,

without affecting the previous process and looking at the values of the

coefficients obtained, we can get an idea about the right choice of N.

3. With the sequential spectral method we can track multiple solutions which

are not easy to find by the Galerkin method.

Further advantages of the sequential spectral method will be seen in the next

chapters when we apply the method to solve different problems.

1.4 Definitions and Notations

Here are sorne of the notations and definitions used throughout the thesis. Bold

lower case letters, like x, are used for vectors and bold upper case letters, like

7



A, are used for matrices. The inner product of the functions f and 9 is denoted

by (I, g) . If f and gare continuous functions in their domain st, then (I, g) =

In f(x)g(x)dx. Bince we are working with the eigenfunctions in this thesis, it

is natural to work in the L2 norm. The L2 norm for a function f is defined

by Ilf(x) 112 = -I(I,1). The L 2 norm for a vector x in ]Rn is defined by Ilxl/2 =

VLj=lIXjI2. In sorne places, we use the L l norm ofvectors and matrices, defined

by Ilxlll = Lj=llxjl and liA/Il = maxj L~llaijl, respectively. We denote the

spectral radius of a matrix A by p(A), defined by p(A) = maxj IÀj /, where Àj

are the eigenvalues of matrix A.

Definition 1.1 A function f : st ç ]Rn --+ ]R is Lipschitz if there exists a

constant L > 0, called the Lipschitz constant, such that

/f(x) - f(y)1 ~ L Ilx - yll, for aIl x, y E st.

The completeness of functions can be defined in many ways. In particular the

concept of complete functions and an orthonormal basis are equivalent. Here we

define a complete set as follows

Definition 1.2 A set of orthogonal functions {<pj}, j = 1, 2, 3, . .. is called a

complete set if (I, <pj) = 0, for j = 1,2,3, ... , implies f = 0, that is, if there

is no function in space which is orthogonal to every fundion <Pj.

Definition 1.3 A sequence {xn } of real numbers is said to be a contractive

sequence if there exists a constant C E (0,1), such that

The definition 1.3 can be extended for the vectors and functions with appropriate

norms.

8



1.5 Theorems

Throughout the thesis, we frequently use the results given by the fol1owing theo-

rems.

Theorem 1.1 (Mean Value Theorem in ~n) Let n be an open convex set in

~n and f : n ç ~n ----+ ~ be a differentiable function on n. Then for any x,

yEn there exists an a E (0, 1) such that

f(x) - f(y) = Vf(d)· (x - y),

where d = (1 - a)x + ay E n and V f = (:~, ::2 '... ,:1..).
Proof We define a curve 9 : ~ ----+ ~ by

g(t) = f(x + tu), for 0 ~ t ~ Ily - xii,

where u is a unit vector u = IIY=:II" The function g(t) is differentiable and by

applying the Mean Value Theorem of a single variable to g(t) we get the result.

The details of the proof can be found in [Kos99] (pages 568-569). •

Theorem 1.2 (Mean Value Theorem for IntegraIs) Let f: n ç ~n ----+ ~

be a continuous function in a closed, connected and bounded domain n and

9 : n ç ~n ----+ ~ be an integrable function on n and g(x) 2:: O. Then there

exists p = (Pl,P2' ... ,Pn) E n such that

Lf(x)g(x)dx = f(p)Lg(x)dx.

Proof Since f(x) is continuous on the c1osed, bounded and connected domain

n, by the Extreme Value Theorem, there exist m and M, real constants, such

9



that m ~ f(x) ~ M for an x E O. And since g(x) ~ 0 for an x E 0, we have

mg(x) ~ f(x)g(x) ~ M g(x). Integrating over the domain we have

min g(x)dx ~ ln f(x)g(x)dx ~ M ln g(x)dx.

Now if In g(x)dx = 0, then In f(x)g(x)d"X = 0 and the desired equality is true.

If In g(x)dx =1= 0, then we can divide by it to obtain

In f(x)g(x)dx
m ~ f () ~ M.

Jn g x dx

By the Intermediate Value Theorem, there exists p E 0, such that
}; f(x)g(x)dx

f(p) = nIn g(x)dx ,which proves the result. •

The proof for the one dimensional case of this theorem can be found in many

books, for example [Kos99] but for the general case, it is often given as an exercise

in these books.

Theorem 1.3 Let {4)j(x)}, j = 1,2,3, ... be a complete set of orthonormal

functions. Then every square integrable function f(x) can be expanded in a series

using the orthonormal system of functions {cPj(x)},

00

f(x) = L ajcPj(x), where aj = (1, cPj),
j=l

which converges in the mean to f(x). In addition, Parseval's identity
00

Ilfll~ =L lajl2 holds.
j=l

10
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n

Proof For any Œl, Œ2, .. · ,Œn consider Sn = L ŒjcPj. Then
j=l

n n

= Ilfll~ - 2 LŒj(i,cPj) + L IŒjI2.
j=l j=l

Adding and subtracting E;=l l(i, cPj)12to complete the square, we obtain

n n

Iif - Snll~ = Ilfll~ + L l(i, cPj) - Œjl2 - L l(i, cPj)12.
j=l j=l

The minimum will be achieved by choosing Œj = (i, cPj) = aj (say) and the above

relation becomes

n

Iif - Snll~ = Ilfll~ - L lajl2.
j=l

Because the set {cPj(x)} is complete and hence closed so

Hm Iif - Snll~ = 0,
n-roo

(1.9)

(1.10)

which proves the required relation (1.8). Parseval's identity follows from relations

(1.9) and (1.10). The details of the proof can be found in [Kan97] (pages 148-150)

or [Det62] (pages 39-42). •

Theorem 1.4 The set of eigenfunctions {cPj} of Laplace's equation with Dirich

let, Neumann or Robin boundary conditions forms a complete orthonormal sys-

tem.

Proof The general proofis quite lengthy and can be found in detail in [DN66] (pages

245-249). Here we briefly describe the idea of the proof for Dirichlet boundary

11



conditions. In order to prove completeness of the eigenfunctions, it is sufficient

to show that the set of eigenfunctions of Laplace's equation spans a vector space

with convergence in the mean. Consider rn = 1 - 2:j=l ajc/>j, where aj are the

Fourier coefficients given by aj = (j, c/>j). Then according to relation (1.9)

n

Ilrnll~= 1I111~- Llajl2.
j=l

Also (rnl c/>j) = 0, for j = 1, 2, ... ,n. By the variational properties of the eigen

values and eigenfunctions, the Rayleigh quotient of rn is at least as great as the

(n + 1)st eigenvalue, that is,

E(rn ) , h' h' l' Il 112 E(rn )-11-1-12 2::: AnH, W 1C 1mp les rn 2 ~ -,--,
r n 2 An+1

(1.11)

where E(rn ) = In(.6.rn )2dx is the energy integral. The bilinear term is given by

E(u, v) = In \1u\1vdx. For the Laplace equation, we have

E(j, c/>j) = (\11, \1c/>j) = -(j, .6.c/>j) = Àjaj. Rence

n n

E(rn ) = E(j - L ajc/>j) = E(j) - L Àja; ~ E(j).
j=l j=l

From relation (1.11) we conc1ude Ilrn Il ~ ~ ~(j). Since Àn+1 -+ 00 as n -+ 00,
An+1

we can make Ilrnll~ as small as we please by choosing n sufficiently large and this

proves that any function can be written as a convergent series of the eigenfunc

tions and hence the eigenfunctions form a complete orthonormal system. •

Theorem 1.5 Let A be an n x n matrix with eigenvalues, Àj , j = 1, 2, ... ,n.

Then Hm A k = 0 if and only if the spectral radius of A, p(A) = m?X IÀjl, is
k--+oo l~J~n

less than 1.

12



Proof For the given matrix A, there exists a nonsingular n x n matrix P which

reduces the matrix A to its Jordan canonical form denoted by S, that is,

P-1AP = S =

o
o

(1.12)

where each of the ni x ni submatrices JI are the Jordan blocks. Since each

submatrix JI is upper triangular, so is Sand

J~ 0

o Jk
2

o 0

o
o

(1.13)

The Jordan blocks JI are upper triangular matrices with the eigenvalues on the

diagonal and 1 on the super diagonal and zero everywhere else and lim J~ = a
k-too

if and only if IÀjl < 1 for an j. Now from (1.12), we have A = PSP-1 , SO

Ak = pSkp-1. Thus Ak --t 0 if and only if p(A) < 1. The details of the proof

can be found in [Meyaa] (pages 617-618). •
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Chapter 2

The Sequential Spectral Method

2.1 Introduction

In this chapter, we consider the nonlinear initial boundary value problem

f:-u au
xE 0, t> 0,Œ- - Lu - F(u) = °

at '
au

xE 00, t> 0, (2.1)Bu r(x) an + s(x)u = 0,

u(x, 0) uo(x), xE 0,

where Œ ~ °and :n denotes the outward normal derivative on 00, the boundary

of O. The boundary functions r(x) and s(x) are nonnegative with either r(x) =
0, s(x) > °(Dirichlet condition) or r(x) > 0, s(x) ~ °(Neumann or Robin

condition). The function F(u) is a nonlinear function of u and may contain

spatial integrals of sorne nonlinear function of u. For Œ = 0, the problem becomes

an elliptic boundary value problem and there is no initial condition needed.

In general, the solution of the above problem is obtained numerically using

the finite difference or finite element method. Spectral methods are used if the

domain °is simple enough so that the set of eigenfunctions associated with the

Laplacian, the domain, and the homogeneous boundary conditions can be ob-
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tained easily. However, newer spectral methods can deal with more complicated

boundary conditions [LTOO]. In the spectral method, the solution is sought as an

infinite expansion in eigenfunctions with time dependent coefficients. The coeffi

cients are then determined by solving an infinite system of first order nonlinear

ordinary differential equations obtained by using sorne dosure conditions, cou

pIed with initial conditions derived from u(x, 0) = uo(x). An obvious advantage

of spectral methods is that the solution is amenable for further analysis which

is not possible by purely numerical methods. Many applications and advantages

of spectral methods can be found in [KPY98], [CCZ87] and [LTOO]. To proceed

numerically, the infinite system has to be truncated to a finite N-dimensional

system. In the Galerkin method, the dosure condition is that the residual has

zero projection on the first N coordinates of the space spanned by the eigenfunc

tions. This gives rise to solving an N-dimensional system of nonlinear ordinary

differential equations (algebraic equations when Œ = 0). While there exist now

quite robust algorithms in available software, such as Auto [DK], to carry out

integration, the nonlinearity can make the integration very difficu1t, if not impos

sible, for N sufficiently large. Also in the case of Œ = 0 the solution of the system

of nonlinear algebraic equations is not easy to find as discussed in Section 1.2.

For this reason, we develop an a1ternate method, in which the size of N does

not play an important role. We recognize that the difficu1ty with large N stems

from the requirement of the Galerkin method that the residual R(ft), where ft is

the approximate solution, should have zero projection on the first N coordinates

of the eigenfunctions space simu1taneously. To alleviate the situation, we relax

the requirement of simu1taneity, and compensate for it with iteration. We calcu

late the coefficients of the eigenfunctions sequentially, using the condition of zero

projection of R(ft) sequentially, and then through iteration achieve the condition

of zero projection of R(ft) on the N eigenfunction coordinates. The sequential

nature of this algorithm makes the size of N somewhat immaterial, as only a
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single equation has to be solved at any stage of the procedure. The sequential

spectral method is developed in Section 2.2. The convergence of the sequential

spectral method for different concrete cases is analyzed in Chapters 3, 4 and 5.

2.2 The Sequential Spectral Method (SSM)

We develop the sequential spectral method (SSM) for problem (2.1). Let {À j } and

{ePj(x)} be the eigenvalues and the orthonormal eigenfunctions of the Laplacian,

1::,."'. - -À ."'.'PJ - J'PJ' (2.2)

where the eigenfunctions {ePj(x)} satisfy homogeneous boundary conditions. We

expand the initial condition in the eigenfunctions,

00

u(X, 0) = uo(x) = L CjePj(x).
j=l

Sinee our primary concern is to construct a solution, we suppose that the existence

of a solution of problem (2.1) has been established. Of course, if we are able to

construct a solution, we have also proved its existence. To avoid the proliferation

of subscripts and superscripts for the approximating functions, we use fi, as a

generic symbol to denote an approximation to u in our development. After the

idea is explained, the formaI treatment will be presented with aIl the subscripts

and superscripts in place. Also we use u instead of u(x, t), but keep in mind that

wherever u and fi, appears, these are functions of space and time variables. For

the steady case there will be no time dependence.

We first set fi, = al (t)ePl (x) and compute the residual

(2.3)
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Now according to the Galerkin procedure we set the projection of R(ft) onto the

first eigenfunction cPl to zero. Using the notation of the inner product of two

functions, the condition (R(ft) , cPd = ü leads to

(2.4)

This is a first order ordinary differential equation for al(t), which together with

the initial condition al(Ü) = Cl determines al(t). For a = Ü it would be a scalar

equation for al and there is no initial condition needed. Equation (2.4) may

have more than one solution, in which case, each value of the coefficient al can

generate an expansion for u and the problem (2.1) could have multiple solutions.

To proceed, we focus on one solution. With al(t) so determined, we next take

ft = al(t)cPl(X) + a2(t)cP2(X) and compute again the residual,

Now, we require (R(ft), cP2) = Ü and using that the eigenfunctions {cPj(x)} are

orthonormal, we get

(2.5)

which, together with the condition a2(Ü) = C2, determines the function a2(t).

Proceeding in this manner, we generate a sequence of coefficients {aj(t)}, and
00

consider formally ft = L aj(t)cPj(x). We have the residual
j=l

R(ft) = f)a d:: cPj + ÀjajcPj) - F(f ajcPj).
j=l j=l

17
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Now using the completeness of the eigenfunctions (Theorem 1.4), we expand

00 00

F(L:: ajcPj) = L bk(t)cPk(X),
j=l k=l

where the coefficients bk(t) (bk will be constant if a = 0) are given by

00

bk(t) = (F(L ajcPj) , cPk)'
j=l

Equation (2.6) then takes the form

R(u) = ~ (a daj +). ·a· - b.) A..L.J dt J J J 'iJJ'
j=l

(2.7)

(2.8)

(2.9)

Now for u to be a solution, we would need (R(u), cPj) = 0 for aIl j, which would

imply

da'a-J+).·a·-b·=Odt J J J , for j = 1,2, .... (2.10)

where aj(O) = Cj. Unfortunately our aj(t) just computed will almost certainly

not satisfy (2.10) and we need to introduce an iteration scheme to achieve the

required equality in (2.10). Let u(n) denote the nth approximation of u, given by

00

u(n) = L a)n) (t)cPj(x)
j=l

and b)n) (t) be the coefficients in the expansion

00

F(u(n)) = L b)n) (t)cPj(x).
j=l

18
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We construct a new sequence {a;n+l) (tn from the solution of

d (n+l)
a aj + ). .a\n+l) (t) = b\n) (t) (n+l) (0) - .

dt J J J' aj - cJ '

where the coefficients b;n) (t) are given by

(2.13)

(2.14)

Once the {a;n+l)(tn are obtained, we construct a new approximate solution

00

u(n+l) = L a;n+l) (t)cf>j (x).
j=l

(2.15)

The decoupling procedure described in (2.3) -(2.5) provides the initial guess

{a;O) (t)} for the above iteration scheme. Depending on prior knowledge of the so

lution, any other initial guess could also be chosen. Ifwe multiply equation (2.13)
À'

by e~t and integrate from 0 to t, we obtain

(n+l) (t) - -~t[ + 1 l t
b(n) ( ) ~Td ]aj - e Q Cj - j T e Q T.

a °
(2.16)

If the iteration scheme (2.16) converges, theri R(u(oo)) = 0 and hence a solution

of problem (2.1) is obtained. The numerica1 results in Chapter 4 demonstrate

that the method captures the essence of the problem, and a;O)(t) is within a few

percent of a;oo) (t). Convergence to a tolerance of 10-6 is achieved in only a few

iterations.

For a = 0, the coefficients {aj} will be just constants and 0 btained sequentia1ly

by solving the corresponding algebraic equations. The conditions given in (2.10)

become

for j = 1,2, ....
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In order to achieve this equality, we introduce again an iteration. In the steady

case we assume that aIl the eigenvalues {À j } are positive. Let u(n) denote the nth

approximation of u, given by

00

u(n) = L a;n)cPj(x)
j=l

and b;n) be the coefficients in the expansion

00

F(u(n)) = L b;n)cPj(x).
j=l

We construct a new sequence {a;n+l)} by setting

\n+l) = ~b\n) = ~(F( (n)) ~.)
aJ À. J À. u ,'fJJ'

J J

from which we construct a new approximation

00

u(n+l) = L a;n+l) cPj(x).
j=l

(2.18)

(2.19)

(2.20)

(2.21)

Similar to the parabolic case the decoupling procedure of finding the coefficients

{aj} sequentiaIly provides the initial guess {a;O)} for the above iteration scheme.

Depending on a priori knowledge of the solution, any other initial guess can also

be chosen. If the iteration scheme (2.18)-(2.21) converges, then R(u(oo)) = 0

and hence a steady state solution of the problem (2.1) is obtained. Note that the

iteration (2.20) can only be defined under the assumption that aIl eigenvalues are

nonzero. However, in the case of Neumann boundary conditions, problem (2.2)

can have a zero eigenvalue. So, in general, for Neumann boundary conditions,

solutions can not be obtained by the sequential spectral method, but there are

certain forms of F(u), which allow us to define the iteration scheme. These
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are discussed in Section 2.2.1. The sequential spectral method is applied to an

elliptic integro-differential equation in Chapter 3. We analyze the convergence of

the iteration scheme (2.18) - (2.21) and apply the method to a problem from an

application.

Note that in practice, we truncate the infinite expansion and use a finite num

ber of eigenfunctions but here we have presented the sequential spectral method

for an infinite number of coefficients. The number of coefficients needed is de

pendent on the problem at hand and the required accuracy of the solution. In

the next chapters, we apply the sequential spectral method to particular types

of problems, analyze the convergence of the method and solve examples from

applications. The numerical results in the next chapters demonstrate that the

method captures the essence of the problem and the initial guess is within a few

percent of the exact solution in aIl applications treated in this thesis.

2.2.1 The Sequential Spectral Method with Zero Eigen

value or Non-homogeneous Boundary Conditions

The iteration scheme (2.18)-(2.21) has been defined under the assumption that

the eigenvalues À j are nonzero. If there exists a zero eigenvalue of the eigenvalue

problem (2.2), À1 = 0 , then the iteration (2.20) can not be defined for j =
1. Renee, in general, the iteration scheme can not be defined if the eigenvalue

problem (2.2) has a zero eigenvalue. However, if À1 = 0 and the nonlinear function

F(u) is a combination of a linear function Cu, and a nonlinear function F1 (u),

that is ,

(2.22)
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Then we can define the iteration scheme as

(n+l) _ 1 (F ( (n)) "".)
aj - (À

j
_ () 1 U ,'fJJ' (2.23)

provided (=/:- Àj , j = 1,2,3, ....

In Chapter 5, the algorithm is applied to a system of nonlinear elliptic par

tial differential equations and to illustrate the idea, an example having a zero

eigenvalue is solved by defining the iteration as in (2.23).

We developed the sequential spectral method for homogeneous boundary con

ditions. However in sorne problems with non-homogeneous boundary conditions,

the boundary conditions could be made homogeneous by certain transformation

of variables. Those problems can in turn be solved by the sequential spectral

method. We solve a problem in Chapter 5, where the original problem has non

homogeneous boundary conditions.
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Chapter 3

N onlinear EIIiptic

Integro-Differentiai Equations

3.1 Introduction

In this chapter, we apply the sequential spectral method to the nonlinear elliptic

boundary value problem

.cu
Bu

6u+F(u)=0, xEn,
au

r(x) an + s(x)u = 0, x E an,
(3.1)

where tn denotes the outward normal derivative on an, the boundary of n. The

boundary functions r(x) and s(x) are nonnegative with either r(x) = 0, s(x) > °
(Dirichlet condition) or r(x) > 0, s(x) > °(Robin condition). In accordance to

the discussion in Section 2.2.1, we have eliminated the case of Neumann boundary

conditions due to the possible existence of a zero eigenvalue in that case. The

function F (u) is a nonlinear function of u and also contains spatial integrals of

sorne nonlinear functions of u. The existence of solution of problem (3.1) depends

on the nature of F(u). We describe here two particular forms of F(u), for which
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we solve examples later in the thesis.

In the first case

of(u)
F(u) = Un f(u)dx)P' (3.2)

where f is Lipschitz continuous and positive, p ~ 0 and 0 > O. Such nonlocal

problems arise, for example, in the study of phenomena associated with the oc

currence of shear bands in metais being deformed under high strain rates [Bur94],

[ONNN94], [BT96], in modeling the phenomena of Ohmic heating [Lac9Sa], [Lac9Sb],

in the investigation of the fully turbulent behavior of a real fiow, using invariant

measures for the Euler equation [CLMP92], and in the theory of gravitational

equilibrium of polytropic stars [KN91]. In the case of homogeneous Dirichlet

boundary conditions, the following facts follow from the classical theory of par

tial differential equations [BL97]:

1. Any solution of the boundary value problem (3.1), where F(u) is given by

(3.2), is positive for xE n with outer normal derivative ~~ ~ 0 for x E an.

2. For n = {x : Ixl < 1} , any solution of the boundary value problem (3.1)

(3.2) is radially symmetric and radially decreasing.

Second, we consider nonlinear functions of the form

F(u) = a (fI(U) + bl h(U)dX) , (3.3)

where b and a are positive constants. The nonlinear functions fI(u) and h(u)

are continuous on n, locally Lipschitz with respect to u and convex, fI (0) >

0, f2(0) > 0 and h is increasing in u. Such a problem arises in the thermal

explosion process of a compressible reactive gas, see [BB82] and [Pao92]. For

fl (u) = h (u) = e'u, 'Y > 0, Pao has proved that there exists a critical value of

a, denoted by a*, such that for a < a*, the boundary value problem (3.1) has
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a positive solution [Pao92]. The convergence of the sequential spectral method

for a general nonlinear function F(u) is analyzed in Section 3.2 under a Lipschitz

condition on F. In Section 3.3 a nonlinear elliptic integro-differential equation

arising in the model of shear banding having F(u) of the form given by (3.2) is

solved and the numerical results are compared with the Galerkin method. The

advantages of the sequential spectral method over the Galerkin method become

apparent in this first application.

Our convergence analysis is based on the following result about contractive

sequences.

Theorem 3.1 Every contractive sequence of real numbers is a Cauchy sequence,

and hence, convergent.

Proof We follow the proof in [Kos99](page 105). Let the sequence {xn } be a

contractive sequence. Then, by definition, there exists a constant C E (0,1), such

that

Using the above inequality repeatedly, we have

For m > n we obtain

IXm - xnl < IXm - xm-ll + IXm-l - Xm-2/ + ... + IXn+l - xnl

< (Cm - 2 + Cm - 3 + ... + Cn- l)lx2- xli

cn-l(cm-n-l + c m- n- 2 + ... + 1)lx2 - Xli

cn-le-l~~-n)lx2 - Xli

< c n- 1 C2c )lx2 - xli.
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Bince (l~c)lx2 - xII is a constant and lim Cn
-

l = 0, because 0 < C < 1, the
n--+oo

sequence {xn } is a Cauchy sequence. Bince a Cauchy sequence is convergent, the

sequence {xn } is convergent. •

3.2 Convergence Analysis

We analyze now the convergence of the iteration scheme (2.18) - (2.21). Let

u(n) (x) denote the nth approximation of u(x), given by

00

u(n)(x) = L a)n)cj>j(x),
j=l

and b)n) be the coefficients in the expansion

00

F(u(n)(x)) = Lb)n)cj>j(x),
j=l

We construct a new sequence {a)n+l)} by setting

\n+l) = ~b\n) = ~ (F( (n)) ",.)
aJ À. J À . u ,'PJ'

J J

from which we construct a new approximate

00

u(n+l) (x) = L a)n+l) cj>j(X).
j=l

(3.4)

(3.5)

(3.6)

(3.7)

Here {Àj} are the eigenvalues and {cj>j (x)} are the orthonormal eigenfunctions of

the corresponding eigenvalue problem,

6cj> = -Àcj>, Bcj> = O.

26

(3.8)



To investigate the convergence of the above iteration scheme, we consider the

difference of corresponding coefficients aj between two iteration steps,

(3.9)

In order to praye convergence, we will prove that the sequence {a;n)} is contrac

tive, that is, la;n+l) - a;n) 1 ::; Cla;n) - a;n-l) 1 with a constant 0 < C < 1 and

then convergence follows by Theorem 3.1. In our convergence analysis, we do

not write the spatial dependence of the functions involved explicitly to avoid long

expressions but we mention the dependence of every function separately when

it first appears. Suppose F(u(n)) is continuous in n u an and differentiable in

n for each nonnegative integral value of n, then by the Mean Value Theorem

(Theorem 1.1),

for sorne ç(n) (x) between u(n) (x) and u(n-l) (x). Inserting this result into equa

tion (3.9) we obtain

\n+l) _ \n) = ~1aF(dn))( (n) _ (n-l))d..·daJ aJ , . a '" u u 'f'J X.
AJ n u

(3.10)

Now if (u(n) - u(n-l))c!>j does not change sign in n then by applying the Mean

Value Theorem for Integrals (Theorem 1.2), we can write

(3.11)

27



for 1J)n) = ç-(n) (p), for sorne pEst. The right hand side of this last expression

can now be related back to the coefficients aj,

(3.12)

Using this result in equation (3.11) we get

(n+l) _ (n) _ ~ aF ( (n))( (n) _ (n-l))
aj a j - À. au 1Jj aj aj .

J

Since the eigenvalues Àj are nonnegative and increasing, we obtain

(3.13)

Therefore the rnapping (3.9) is contractive if

(3.14)

Renee if the derivatives of Fare uniforrnly bounded by À1 , the rnethod converges,

if (u(n) - u(n-l))c/Jj does not change sign in st. Now if (u(n) - u(n-l))c/Jj changes

sign in st, then we can not apply the Mean Value Theorern for Integrals to equa

tion (3.10) and thus can not get the relation (3.13) for each of the coefficients

aj separately. Instead, we praye that the sequence {u(n)} is contractive. From

equation (3.9), we have

(3.15)
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Let

(3.16)

Since the set of eigenfunctions {cPj} is a complete set of orthonormal functions

(Theorem 1.4), we can expand g(n)(x) in a Fourier series in {cPj} (Theorem 1.3),

00

g(n)(x) = Lgjn)cPj(x),
j==l

where the Fourier coefficients gJn
) are given by

Relation (3.15) then becomes

(n+!) (n) _ 1 (n)
aj - aj - ;:.gj

J

(3.17)

(3.18)

(3.19)

Multiplying both sides by cPj, j = 1,2,3, . .. and summing over j we obtain

We now define a new function

00 (n)

h(n)(x) := L g~. cPj(x),
j==l J

(3.20)

(3.21)

(n)

where Yi. are the Fourier coefficients of h Cn)(x). Using the definitions of uCn ) and
J

u(n+l) from relations (3.4) and (3.7) in the left hand side of equation (3.20), we
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obtain

(3.22)

Taking the L 2 norm squared on both sides we have

(3.23)

Bince Parseval's identity holds for the complete set of orthonormal eigenfunctions

{cPj} (Theorem 1.3), we obtain

(3.24)

because the eigenvalues {).,j} are positive and increasing. Binee g)n) are the Fourier

coefficients of the function g(n)(x), using the Parseval's identity again we obtain

Ilu(n+l) - u(n) II~ ::; ;21Ig(n) II~.
1

From relation (3.16), we have

(3.25)

(3.26)

Assuming F(u) to be globally Lipschitz in L2 with Lipschitz constant L F , we

obtain

(3.27)
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Inserting this result into relation (3.25), we obtain

(3.28)

The above inequality is for the L 2 norm squared, but this was done only to

facilitate the presentation. If we follow the procedure of (3.22) - (3.28) without

the square, or simply taking the square root of (3.28) we obtain

(3.29)

Therefore the sequence {u(n)} is contractive if LF < À1 and the sequential spectral

method converges. Thus we have proved

Theorem 3.2 Let F(u) be globally Lipschitz with Lipschitz constant L F ,

and let À1 be the smallest positive eigenvalue of the eigenvalue problem (3.8). If

(3.30)

then the sequential spectral method converges.

Rence under condition (3.30), we have R(u(n) -+ 0 for n -+ 00, implying that

u(oo) is a solution of equation (3.1). The convergence rate and the a priori error

bound is given by the following theorem.

Theorem 3.3 (Linear Convergence) Let F(u) satisfy the hypotheses of The

orem 3.2. Then the sequential spectral method (3.4)-(3.7) converges to a solution

u(x) of problem (3.1) at the rate

(3.31)

31



In addition, we have the a priori error estimate

(3.32)

Proof Let u(n) (x) be the nth iterate of the approximate solution,

u(n)(x) = L~l a)n)cPj(x). Let u(x) be a solution of the problem (3.1), then

u(x) = L~l ajcPj(x). Since u(x) is a solution of equation (3.1), we have

Using the value of a)n) from equation (3.6), we consider

(3.33)

For finding the error we follow the derivations in (3.16) - (3.29) and obtain

(3.34)

Applying this inequality inductively, we get

Since L F < 1
>'1 '

lim Ilu - u(n)112 S lim (LF)n Ilu - u(O)112 = 0, (3.36)
n-+oo n-+oo À1

and {u(n)} converges to u linearly.
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Now we prove the second error bound. By inequality (3.29), we have

For m > n, we have

Now limm -+oo u(m) = u, so

which gives the a priori error bound. •
Note that the relation (3.31) also gives an error bound in terms of the exact

solution. Sinee the exact solution is usually not known, the a priori bound (3.32)

can be useful to estimate the error. Note that the condition (3.14), which is

obtained under the assumption that {u(n) - u(n-l)}<pj does not change sign, is in

accordance with condition (3.30), because for a continuous differentiable function,

the maximum value of the derivative serves as a Lipschitz constant.

In Theorem 3.2, we assume F(u) to be globally Lipschitz in L2 • From relation

(3.31), we see that aIl iterates stay in a baIl B(u, r), centered at the solution u,

with radius r = Ilu - u(O)112' So we can relax the global Lipschitz condition, F(u)
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only needs to be Lipschitz in the baIl B(u, r).

Corollary 3.1 Let F(u) be locally Lipschitz in a ball B(u, r), centered at the

solution u, with radius r = Ilu - u(O) 112, where u(O) is the initial guess, with Lips

chitz constant L p , and let ÀI be the smallest positive eigenvalue of the eigenvalue

problem (3.8). If L p < ÀI , then the sequential spectral method converges at the

rate given in (3.31)

We emphasize that condition (3.30) which allows us to prove convergence, is

a sufficient condition but it is not necessary. The iteration may converge even if

condition (3.30) is violated. In order to check condition (3.30) we need to find

the Lipschitz constant L p , but in practice we just run the algorithm and let the

numerical results demonstrate whether convergence is achieved or not.

3.2.1 Convergence Analysis for Neumann Conditions

We defined the sequential spectral method (3.4) - (3.7) for homogeneous Dirichlet

or Robin conditions to ensure that the eigenvalues of problem (3.8) are positive.

In the case of Neumann conditions, the problem (3.8) can have a zero eigen

value and the equation (3.6) cannot be defined. According to Section 2.2.1, if

F (u) = (u + FI (u) then we define the iteration scheme (3.4) - (3.7) by replacing

equation (3.6) with

(n+l) _ 1 (F ( (n)) '/".)
aj - (À

j
_ () lU, 'f'J , (3.38)

provided (=1= Àj , j = 1,2,3, .... If FI(u) is Lipschitz in a baIl which contains

aIl iterates of u(n) with Lipschitz constant L pll then the convergence analysis of

the sequential spectral method follows in the same way and we obtain that if

L Ft < 1(1, then the sequence {u(n)} is contractive.
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3.3 Numerical Results

To illustrate the sequential spectral method, we choose an integro-differential

elliptic boundary value problem coming from the formation of shear bands in

materials [BLT99]. The formation of shear bands in metals has important impli

cations to a variety of technological processes. These bands are observed in very

thin zones and generally regarded as a precursor to material failure. Shear band

formation is caused by the heat generated in regions with highest strain rate.

With insufficient time for diffusion of this heat, a localized thermal softness of

the metal occurs which enhances plastic flow in a thin zone. This localization of

plastic strain into an adiabatic shear band during rapid plastic shear shares sorne

interesting similarities with the ignition problem in combustion for chemically

reactive systems.

Consider loading a thin walled tube of metal of length d in torsion with the

ends held at constant temperature Ta, the initial temperature of the tube. One

end of the tube is fixed and the other end is twisted at a constant rate v = Va. Let

r(x, t) denote the shear stress and S(x, t) the shear strain. If the plastic strain

rate is given by Arrhenius law

as -.t>H(r)

7it = ft e KE , (3.39)

where E is the absolute temperature, 6H(r) is the activation enthalpy and K is

the Boltzmann constant, then the mathematical model for the shearing process

can be written as a reaction diffusion equation which describes the energy balance
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coupIed with a compatibility equation,

aE _ K, a2E
8t ax2

av
ax

E(O, t)

. v(O, t)

-i:>.H(T)

TJlP e~,
-i:>.H(T)

jj e KE ,

E(d, t) = To, E(x,O) = To,

0, v(d, t) = Vo .

(3.40)

By integrating the compatibility equation and nondimensionalising, we obtain

the non-local parabolic problem

u(-I,t)

u(x, 0)

u(l, t) = 0,

uo(x) 2: 0,

(3.41)

where 8 > 0 and P 2: o. A detailed derivation can be found in [BLT99] or

[BT96]. The nonlocal initial boundary value problem (3.41) appears to be very

much like the classical ignition model for rigid reactive materials assuming one

step Arrhenius chemistry and in fact reduces to the ignition model for p = O. The

model developed by Burns in [Bur94] has p = 1. Burns model has been studied

in detail by Bebernes and Talaga in [BT96] and they have verified that a unique

bounded solution exists for aIl 8 > 0, This implies that no shear banding occurs

in Burns mode!. If, however, the model is given with 0 ~ p < 1, then there exists

a critical value 8*, such that, for aIl 8 > 8*, the solutions blow up in finite time.

This does predict shear banding as observed in the experiments of Merchand and

Duffy [MD88].

The associated steady state problem is

82u 8 eU

- 8x2 - (J~1 eUdx)p'
u(-I) = u(l) = O. (3.42)

From the c1assical theory of partial differential equations any solution of the
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boundary value problem (3.42) is radially symmetric and radially decreasing

[BL97]. So the problem (3.42) can be written as

éPu 8 eU

- 8x2 - (2 fol eUdx)p'
u'(O) = 0, u(l) = o. (3.43)

Bebernes and Lacey in [BL97] have proved

Theorem 3.4

1. Ifp:2: 1, then the boundary value problem (3.43) has a unique solution for

aU 8> O.

2. If 0 :::; P < 1, then there exists 8* > 0 such that the boundary value prob

lem (3.43) has

(a) two solutions for 8 < 8*

(b) one solution for 8 = 8* and

(c) no solution for 8 > 8*.

We examine solutions of the problem (3.43) for different values of p by ap

plying the sequential spectral method and the Galerkin method and compare the

numerical results. We will denote the truncated solution obtained by the Galerkin

method by ug
. From the eigenvalue problem

d</>
dx (0) = 0, </>(1) = 0,

we obtain the eigenvalues Àj = [(2j ;1)?r]2 and orthonormal eigenfunctions

Â.. - 102 ((2j -1)?rX)' - 1 2 3'l'J - Y ~ cos 2 , J - , , , ....

For p = 1, we obtained, with the sequential spectral method (SSM), a unique

solution for all values of 8 > O. Tables 3.1 and 3.2 compare the values of the

coefficients aj from the SSM and gj from the Galerkin method for 8 = 1 and
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Galerkin SSM

J 9j a~O) a~6)

1 0.189173752 0.189561292 0.189173752
2 -0.005704984 -0.005705579 -0.005704984
3 0.001228008 0.001227847 0.001228008
4 -0.000469654 -0.000446864 -0.000469654
5 0.000210188 0.000210130 0.000210188
6 -0.000115091 -0.000115055 -0.000115091
7 0.000069716 0.000069691 0.000069716

Table 3.1: Comparison of the coefficients obtained by the Galerkin method and
the sequential spectral method for p = 1 and 8 = 1.

Galerkin SSM

J 9j a~U) a~8)

1 0.610427863 0.612456619 0.610427863
2 -0.009285960 -0.009276831 -0.009285960
3 0.002380523 0.002379187 0.002380523
4 -0.000878048 -0.000877113 -0.000878048
5 0.000415311 0.000414748 0.000415311
6 -0.000228054 -0.000227697 -0.000228054
7 0.000138411 0.000138124 0.000138411

Table 3.2: Comparison of the coefficients obtained by the Galerkin method and
the sequential spectral method for p = 1 and 8 = 3.

8 = 3. The coefficients a;O) are found by using bisection method and the Galerkin

coefficients 9j are obtained by using the nonlinear equation solver in Maple with

standard tolerance of 10-10 . Figures 3.1 and 3.2 show the Galerkin solution

u 9 = 2:.;=1 9jcPj (x) and the initial solution u(O) = 2:.;=1 a;O) cPj (x) at the start of

first iteration in the sequential spectral method and the error lu9 - u(O) 1between

these solutions. We see from the figures and tables that the a;O) are very close to

the Galerkin coefficients 9j and converge to 9j in only a few iterations.

We see from Tables 3.1 and 3.2 that the coefficients aj become smaller when

j increases, and the coefficient of first eigenfunction is important. This is one

of the great features of the spectral methods and gives spectral accuracy. While

using the sequential spectral method, we can use this decaying property of the
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Figure 3.1: Comparison of u 9 and u(O) and the error ju9 - u(O) 1 for p = 1 and
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Figure 3.3: Solutions for a~O) of equation (3.44) for p = 1/6 and for different
values of 6, where 6* ~ 1.14286338.

coefficients to determine N, the number of terms in the expansion to achieve

required accuracy.

For 0 ::; p < 1, we found two solutions for 6 < 6*. By the Galerkin method the

existence of multiple solutions can not be found easily. While in the sequential

spectral method, we first solved the equation

(3.44)

to find the value of al. Two values of al were found for 0 ::; p < 1 and 6 < 6*.

Each value of al can generate an expansion and we immediately see that multiple

solutions are possible. By plotting the graphs of equation (3.44) for different

values of 6, we observe that equation (3.44) has two values of al for 6 < 6*

and the two solutions come closer and closer together as 6 approaches 6* from

the left and merge to one solution at 6 = 6*. Figure 3.3 shows the graphs of

equation (3.44) for p = 1/6 and different values of 6.
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Figure 3.4: Two solutions u = L;=1 ajcPj(x) of problem (3.43) for p = 1/6 and
8 = 1.14 < 8*.

We computed the two solutions of the problem (3.43) for p = 1/6 and 8 = 1.14

by the Galerkin method and the sequential spectral method. The solutions are

shown in Figure 3.4 and a comparison of the coefficients aj and gj is given in

Tables 3.3 and 3.4. Here again the initial coefficients a;O) are not far from the

Galerkin coefficients gj but it takes a bit more iterations to converge. Figures 3.5

and 3.6 show the solutions u 9, u(O) and the error lu9 - u(O) 1for the two solutions.

In using the Galerkin method, we need to truncate the infinite expansion at a

fixed number N, where N has to be determined in advance. Using the sequential

spectral method we can continue to add new components aj without affecting the

previous process and looking at the values of the coefficients obtained, we can get

an idea about the right choice of N. The time of computations depends upon the

nature of the nonlinearity in the problem and the number N. In the sequential

spectral method, we always have to solve a single scalar equation regardless of

the value of N. However, the time of computations depends much on N in the

Galerkin method. For solving a system of N equations a good choice of the initial
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Galerkin SSM

J 9j
,(0) ,(70)

ai a,
1 0.904836965 0.918163001 0.904836965
2 -0.004699530 -0.004422257 -0.004699530
3 0.002457131 0.002460107 0.002457131
4 -0.000902004 -0.000900857 -0.000902004
5 0.000430335 0.000429725 0.000430335
6 -0.000237206 -0.000236814 -0.000237206
7 0.000144341 0.000143966 0.000144341

Table 3.3: Comparison of the coefficients of the first solution obtained by the
Galerkin method and the sequential spectral method for p = 1/6 and 8 = 1.14.

Galerkin SSM

J 9j
,(0) ,(63)a, a,

1 1.056103439 1.054778681 1.056103439
2 -0.000228582 -0.000357669 -0.000228582
3 0.002430340 0.002439498 0.002430340
4 -0.000865839 -0.000868569 -0.000865839
5 0.000416076 0.000416994 0.000416076
6 -0.000229851 -0.000230235 -0.000229851
7 0.000140093 0.000140128 0.000140093

Table 3.4: Comparison of the coefficients of the second solution obtained by the
Galerkin method and the sequential spectral method for p = 1/6 and 8 = 1.14.
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Figure 3.5: Comparison of ug and u CO) and the error lug _uCO) 1 for the first solution
for p = 1/6 and 8 = 1.14.
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guess is crucial. Using a;O) from our SSM as the initial guesses for gj, the time

of computations decreases but still it is about ten times the time taken by SSM

for N = 7. The ratio of computational time of the Galerkin and the sequential

spectral method increases as we increase N. Figure 3.7 compares the logarithm

of the time taken by the Galerkin method and the sequential spectral method for

p = 1, 6 = 1 and different values of N. Here computational time is the time taken

by using the nonlinear equation solver in Maple for both the Galerkin and the

sequential spectral methods. Using the method of least squares, the approximate

slopes for the Galerkin and the sequential spectral methods are 6.086 and 3.381

respectively. This means that the approximate computational complexity for the

Galerkin method is tg ~ N 6 and for the SSM is t s ~ N3.

If 0 ::; p < 1, then by Theorem 3.4, there exists a value 6* such that the

boundary value problem (3.43) has no solution for 6 > 6*. We tried to estimate

the critical value 6* by examining equation (3.44) numerically. The estimates for

6* for different values of pare given in Table 3.5. The dependence of 6* on p is

also shown in Figure 3.8. These estimates are virtual1y impossible to find by the

Galerkin method. This is a big advantage of the sequential spectral method: the

behavior of the solution can be estimated by examining a single scalar equation
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Figure 3.7: Comparison of the computational time for the Galerkin method and
SSM for p = 1, 8 = 1 and different values of N. Approximate slope for the
Galerkin method is 6.086 and for SSM is 3.381.

instead of solving a system of N equations in the Galerkin method.
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p 8* p 8*
0.00 [0.8773,0.8774] 0.60 [2.7456,2.7457]
0.04 [0.9327,0.9328] 0.70 [3.6693,3.6694]
0.08 [0.9930,0.9931] 0.75 [4.3724,3.2725]
0.10 [1.0251,1.0252] 0.80 [5.3903,5.3904]
0.20 [1.2087,1.2088] 0.90 [10.232,10.233]
0.25 [1.3179,1.3180] 0.92 [12.596,12.597]
0.30 [1.4417,1.4418] 0.94 [16.501,16.502]
0.40 [1.7454,1.7455] 0.96 [24.238,24.239]
0.50 [2.1567,2.1568] 0.98 [47.229,47.230]

Table 3.5: Range for the values of 8* for different values of p
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oL-------'-:-_L-------'-:-----'-,---------'-----'_---'-----'_---'-----'
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P

Figure 3.8: Dependence of 8* on p.
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Chapter 4

N onlinear Parabolic

Integro-Differential Equations

4.1 Introduction

In this chapter, we consider the nonlinear Fredholm integro-parabolic equation

L-U
au
--6u-F(u)=0 x E n, t > 0,
at '

au (4.1)Bu r(x) an + s(x)u = 0, x E an, t> 0,

u(x, 0) uo(x), x E n,

where //n denotes the outward normal derivative on an, the boundary of n. The

boundary functions r(x) and s(x) are nonnegative with either r(x) = 0, s(x) > °
(Dirichlet condition) or r(x) > 0, s(x) ~ °(Neumann or Robin condition). The

nonlinear function F (u) also contains spatial integral of sorne nonlinear function

of u. In this thesis we are concerned with F(u) of the form

F(u) = h(u) + Lh(u)dx,
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where fI and 12 are nonlinear functions of u and are continuous on 0 x [0, 00),

locally Lipschitz with respect to u and convex, fI(O) > 0, 12(0) > 0 and 12 is

increasing in u. In the case of homogeneous Dirichlet conditions, existence of

solutions has been proved in [BE82] and is summarized in the following theorem

Theorem 4.1 If r(x) = 0, Uo E L2 (0) and sUPxEn uo(x) < 00, then prob

lem (4.1) has a unique classical solution on 0 x [0, T) , where either T = 00

or T < 00 and limt-tT- sUPxEn u(x, t) = 00.

Theorem 4.2 Ifr(x) _ 0 and ifuo(x) =0 for xE 0, then the solution u(x, t) of

the problem (4.1) is nonnegative and nondecreasing as afunction oft on Ox [0, T),

provided the derivatives fi and f~ are Lipschitz continuous.

We apply the sequential spectral method developed in Chapter 2 to prob

lem (4.1), where now a = 1. We analyze the convergence of the iteration scheme

in Section 4.2 and find a surprising new convergence result in the evolution case:

the convergence rate is faster than any linear rate if a =/:- O. In Section 4.3 we

carry out numerical computations on a nonlinear parabolic integro-differential

equation arising from combustion theory and compare the results obtained by

the sequential spectral method and the Galerkin method.

4.2 Convergence Analysis

Now we analyze the convergence of the sequential spectral method (2.11)-(2.16)

applied to the problem (4.1). Let u(n) (x, t) denote the nth approximation of

u(x, t), given by

00

u(n) (x, t) = 2: a;n\t)cf>j(x)
j=l
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and let b;n)(t) be the coefficients in the expansion

00

F(u(n) (x, t)) = LbJn)(t)cjJj(x).
j=l

We construct a new sequence {aJn+l) (tH from the solution of

(4.4)

d (n+l) (t)
aj + À. (n+l) (t) = b(n) (t)

dt JaJ J'

or equivalently by setting

(n+l) (0) - .aj - cJ (4.5)

where the coefficients bJn) (t) and Cj are given by

from which we construct a new approximate

00

u(n+l) (x, t) = L aJn+l) (t)cjJj(x).
j=l

(4.6)

(4.7)

(4.8)

In the following convergence analysis we do not write the dependence of the

functions on x and t explicitly. To investigate the convergence of the sequential

spectral method we consider the difference of coefficients aj at two iteration steps,
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Inserting the value of b;n)(T) frorn (4.7), we have

Let

(4.11)

Then equation (4.10) becornes

(4.12)

Suppose F(u(n)) is continuous and differentiable in its dornain for each nonnega

tive integer n, then by the Mean Value Theorern (Theorern 1.1), we have

for sorne ç(n) (x, t) between u(n)(x, t) and u(n-l) (x, t), and so Sjn)(T) can be written

as

(4.13)

Now if (u(n) - u(n-l))l/Jj does not change sign in 0, then applying the Mean Value

Theorern for IntegraIs (Theorern 1.2), we find

(4.14)

for T/jn)(T) = ç(n)(p,T), for sorne p E O. Now using equation (4.3) and the
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orthonormality of the eigenfunctions {tPj}, we have

( (u(n) - u(n-l))tPjdx =1(f)a~n) - a~n-l))tPi) tPjdx
ln 0. t=l (4.15)

= a)n)(T) _ a)n-l) (T).

Using this result in equation (4.14), we get the value of Sjn)(T) in terms of the

coefficients aj (T) as

S~n)( ) = aF( ~n)) ( \n)( ) _ \n-l)( ))
J T au TJJ aJ T aJ T.

Renee by equation (4.12) we have

Therefore

Let t be in the interval [0, T] and assume that ~~ is uniformly bounded. Let

max 1 aa
F

(TJjn)) 1 = M j for an n. Then we have
O::;t::;T u
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Now using induction on n we have

~ Mje-Ajtl t ln .. .1Tn

-

1

eAjTn la;1) - a;O) 1 dTn . .. dT2dT1'

(4.19)

Let Ej = max la;1)(t) - a;O) (t)1 and Àj > 0 for aIl j then we have
O:$t:ST

(4.20)

Since L~:~ (Ai~)k -+ eAjt as n -+ 00, the right hand side of (4.20) will be zero as

n -+ 00 provided ~~ (rÔn
)) is bounded for aIl values of n, j and t E [0, T] and the

iteration scheme converges. In fact, boundedness of the derivative is only required

in the baIl which contains iterates of u(n). The inequality (4.20) can be obtained

provided there is no zero eigenvalue. If À1 = 0, then for j = 1 the relation (4.20)
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becomes

(4.21 )

which also proves convergence for ain )(t), but the rate of convergence is different.

The bound obtained in (4.20) is the sharpest bound we couId get. In order

to obtain a simpler bound which shows more clearly the super linear convergence

rate, we consider equation (4.18) again, that is,

(4.22)

Since e-Àj(t-Tt} ~ 1 for Tl E [0, tl, we obtain

(4.23)

Now using induction on n we obtain as for the case of ).1 = 0

(4.24)

where Ej = max la;l)(t) - a;O) (t)l. This proves that the sequence {aJ\n)(t)} con
O<t<T

verges, provided ~~ ('Tj)n)) is bounded for aIl values of n, j and t E [0, Tl, again
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Figure 4.1: Comparison for the bounds (4.20) and (4.24), the lower one corre
n-l (À t)k

sponds to (-l-)n[1 - '" _1_e-.À1 t] and the upper one is t
n.

.À1 ~ k! n!
k=O

boundedness is required in a baIl which contains aIl iterates of u(n), and the iter

ation scheme (4.3) - (4.8) converges. We compare the two bounds given in (4.20)

and (4.24), by omitting the common terms Mt) and Ej . Figure 4.1 shows a

comparison of (..l.)n[1 - "n-l (.À1
t
)k e-.À1t] and t

n. The first bound depends on
.À1 L.ik=O k! n!

the eigenvalues but the latter does not and one can c1early see in the Figure 4.1

that the first bound is much sharper. Here we have taken À1 = 1r2 , which is the

smallest eigenvalue for the numerical example solved in Section 4.3.

Now if (u(n) - u(n-l))c!>j changes sign in n then we can not apply the Mean

Value Theorem for IntegraIs to equation (4.13) and would thus not be able to

prove convergence of each of the coefficients a;n) (t) seperately. But as in Chap

ter 3 we can analyze the convergence of the sequence {u(n)} rather than for the

coefficients separately. We consider equation (4.10), that is,

(4.25)
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Let

(4.26)

Using the completeness of the set of orthonormal eigenfunctions {cPj} we expand

g(n) (x, t) as a Fourier series in {cPj(x)} (Theorem 1.3),

()()

g(n) (x, t) = L g;n) (t)cPj(X) ,
j=l

where the Fourier coefficients g;n) (t) are given by

(4.27)

Then relation (4.25) becomes

(4.29)

Multiplying both sides by cPj, j = 1,2,3, ... and summing over j we obtain

f)a;n+l)(t) - a;n) (t)}cPj(x) = f=l t

e->'j(t-r)g;n) (T)dT cPj(x). (4.30)
j=l j=l 0

We now define the new function

(4.31)

where J~ e->'j(t-r)g;n) (7)d7 are the Fourier coefficients of h(n) (x, t). Using the

definitions of u(n) and u(n+l) from relations (4.3) and (4.8), in the left hand side
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of equation (4.30), we obtain

(4.32)

Taking the L 2 norm squared with respect to the spatial variables on both sides

we have

(4.33)

Now Parseval's identity holds for the complete set of orthonormal eigenfunctions

{<pj} (Theorem 1.3). Thus we obtain

(4.34)

because e->'j(t-r) :::; 1 for 0 :::; T :::; t. Using Cauchy Schwarz we have

and since t E [0, Tl, the relation (4.34) becomes

(4.36)

because the series L:j:l IgJn
) (T) 1

2 converges uniformly. Since gJn
) (t) are the
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Fourier coefficients of the function g(n)(x, t), using Parseval's identity again, we

arrive at

Ilu(n+l) - u(n) II~ ~ T l t

Ilg(n) II~dT

=T l t

IIF(u(n)) - F(u(n-l))II~dT.
(4.37)

Assuming that F(u) is globally Lipschitz in L 2 for every t E [0, T] with Lipschitz

constant LF , we obtain

(4.38)

and by induction on n we get

(4.39)

where Eo = max: Ilu(l) - u(O) II~ is the initial error. The above inequality holds
O<t<T

for every t E [0, T], therefore we have

(4.40)

which proves that {u(n)} is a Cauchy sequence and hence {u(n)} converges to a

limit. Thus we have proved
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Theorem 4.3 Let F(u) be globally Lipschitz in L 2 with Lipschitz constant LF,

Then the sequential spectral method (4·3) - (4.8) converges.

Note that we have obtained convergence also in the case when {u(n) - u(n-l)}4>j

does not change sign provided ~~ (rôn
)) is bounded for all n, j and t E [0, T]

which means that LF is finite because for a continuous differentiable function

the maximum value of the derivative serves as a Lipschitz constant. Rence the

conditions in that typical case are in accordance with the conditions for the

general case. The following theorem gives the convergence rate of the sequential

spectral method for evolution problems of the type (4.1).

Theorem 4.4 (Superlinear Convergence) Let F(u) satisfy the hypotheses of

Theorem 4.3. Then the sequence {u(n) (x, tn defined by the sequential spectral

method (4.3) - (4.8) converges to a solution u(x, t) of problem (4.1) at the rate

(4.41)

Proof Let u(x, t) be a solution of the problem (4.1), u(x, t) = E;:l aj(t)4>j(x),

and let u(n) (x, t) be the nth iterate of the approximate solution,

u(n) (x, t) = E;:l a;n) (t)4>j(x). Then the difference in the Fourier coefficients sat

isfies

Following the steps from (4.26) - (4.40), we obtain

(4.43)
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(T2L2)n ( ) (T2L2)n
Since limn-too r = 0, the sequence {u n } converges to u at the rate rn. ~

(T2L2 )n
which shows superlinear convergence of {u(n)}, since r goes to zero fastern.

than any fixed "'In. •
The results obtained above are similar to the results for the Picard-Lindel6f iter

ations for initial value problems (see [Pic93] and [Lin94]).

In Theorem 4.3, we assume F(u) to be globally Lipschitz in L2 . From relation

(4.41), we see that aIl iterates stay in a baIl B(u, r), centered at the solution u,
(T2L2 )n ( )

with radius r 2 = maxnEN( r) maxO<t<T Ilu-u ° II~. SO we can relax the globaln. --

Lipschitz condition, F(u) only needs to be Lipschitz in the baIl B (u, r).

Corollary 4.1 Let F(u) be locally Lipschitz in L2 in a ball B(u, r),centered at
(T2L2 )n

the solution u, with r2 = maxnEN( nr )maXo9::;T Ilu - u(O) II~, where u(O) is the

initial guess, with Lipschitz constant L F . Then the sequential spectral method

(4.3) - (4·8) converges at the rate given in (4.41).

We emphasize that the conditions in Theorem 4.3 are again sufficient condi

tions for the iteration to converge and they are not necessary. In order to check

this sufficient condition we have to check that F(u) is Lipschitz, but in practice

we just run the algorithm and let the numerical results demonstrate whether

convergence is achieved or not. The numerical results in Section 4.3 demonstrate

that the method captures the essence of the problem, and a)O)(t) is within a few

percent of a;oo)(t). Convergence to a tolerance 10-6 is achieved in only a few

iterations.

4.3 N umerical Results

Using the sequential spectral method, we analyze an integro-parabolic boundary

value problem arising from combustion theory of thermal explosion [Pa092]. The

58



governing equations are

~~ - D6u = (J (e'Y
u + bLe'YU(y,t)dY) ,

au
r(x) an + s(x)u = 0,

u(x,O) = uo(x),

x E n, t> 0,

x E an, t > 0,

x E n,

(4.44)

where u is the temperature distribution of a gas, D, (J and! are positive constants,

b is a nonnegative gas constant and tn denotes the outward normal derivative on

an. Here (J is the Frank-Kamenetski parameter. The last term on the right hand

side is due to the compressibility of the gas.

When b = °and Uo = 0, the existence of a solution is proved in [BeI87],

Bellout also proved that solutions blow-up in finite time for certain values of (J,

For b > 0, Pao discussed the case of Neumann boundary conditions in [Pao80]

and showed that the solution u(x, t) of the problem (4.44) blows-up in finite

time for any (J > O. The case of homogeneous Dirichlet boundary conditions is

discussed in [BB82] and [BE82] and it is proved that there exists a critical value

of (J, denoted by (J*, such that for (J < (J*, the problem (4.44) has a positive

solution which converges to a steady state solution and for (J > (J* no positive

steady state solution can exist and there exists a finite time T* such that a unique

solution u(x, t) exists in nx [0, T*) and limHT* {maJScE!1 u(x, t)} = 00. Pao proved

the same results for the more general case of b and Uo being nonnegative, not

necessarily zero, in [Pao92].

We will do numerical computations for the one dimensional case with homo

geneous Dirichlet boundary conditions

âu D (J[e'Yu + bl1

e'Yu(y,t)dy], x E (0,1), t > 0,(Jt - U xx

u(O, t) u(l, t) = 0, t> 0,

u(x,O) 0, x E (0,1).

(4.45)
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Existence of a nonnegative and nondecreasing solution of the problem (4.45) is

obtained by Theorem 4.2. We will solve the problem for the values a = 1/2,

b = D = 1 = 1. The orthonormal eigenfunctions {cPj} and the corresponding

eigenvalues {À j } satisfy

and hence the eigenfunctions and the eigenvalues are

To use the sequential spectral method (SSM), we expand the initial condition

o = u(x,O) = ,Ej:l CjcPj(x), which gives Cj = 0 for all values of j. Using the

sequential spectral method, we found that the even Fourier coefficients satisfy

la~~) (t) 1 < 10-20 for j = 1,2,3,4, t > 0 and hence decided to investigate this

further:

Lemma 4.1 Let u(n) (x, t) = ,Ej:l a;n) (t)cPj(x) be the nth approximation of so

lution of problem (4.45), obtained by the SSM, then the even Fourier coefficients

a~j)(t) = 0, V j > O,t > O,n E N.

Proof The proof is technical and is given in the Appendix A. •
Since by the above lemma the even Fourier coefficients are zero, we drop them

from the expansion. Therefore, using the Galerkin method to solve the above

problem, the procedure reduces the problem of solving a system of 2N nonlinear

ordinary differential equations to the solution of a system of N nonlinear ordinary

differential equations. Note that this kind of observation can not be obtained

directly by using the Galerkin method.

For N = 10, Tables 4.1 to 4.5 show a comparison between the coefficients
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Galerkin SSM

t 91(t) aiO)(t) ai6)(t)
0.05 0.036309792 0.036295110 0.036309792
0.10 0.059549494 0.059514302 0.059549494
0.50 0.099915189 0.099861831 0.099915189
1.00 0.101112835 0.101050321 0.101112835
1.50 0.101116171 0.101057200 0.101116171

Table 4.1: Comparison of the coefficients al(t) and 91(t).

9j(t) and aj(t) obtained by using the Galerkin method and the sequential spec

tral method for different values of t. We have used an adaptive Runge-Kutta

method of order 4 with error control of order 5 to solve the ordinary differen

tial equations. The results show that the coefficients a)O) (t) are very close to

the Galerkin coefficients 9j(t) and in only 6 iterations aj(t) converges to the

Galerkin coefficients to a tolerance of 10-6. The solution to the problem is given

by u(x, t) = L:J=192j-l(t)4>2j-l(X). Figures 4.2 to 4.6 also show that there is

a very small difference in the initial coefficients a;O) (t) and 9j (t) already, for

j = 1,3,5,7,9. The steady state for a;O)(t) is reached at t = 1 except for aiO
) (t).

The errors Igj(t) - a)O)(t)1 are very small and the maximum values of the errors

for j = 1,3,5,7,9 are given in the captions of Figures 4.2 to 4.6.

We note from the above results that the initial coefficients a;O) (t), for j =
1,3,5, ... is a decreasing sequence and also a;6) (t) is decreasing for the given

problem. Figure 4.7 shows al(t) and a3(t), at the initial step and then at the

final step, which indicates that the coefficient of the first eigenfunction is the most

important. This is bècause the eigenfunctions are intrinsic to the operator, the

domain, and the boundary conditions and leads to the spectacular performance

of spectral methods in general.
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Galerkin SSM

t g3(t) a~O)(t) a~6)(t)

0.05 0.003403936 0.003403852 0.003403936
0.10 0.003484777 0.003484172 0.003484777
0.50 0.003555878 0.003557170 0.003555878
1.00 0.003557947 0.003557664 0.003557947

Table 4.2: Comparison of the coefficients a3(t) and g3(t).

Galerkin SSM

t g5(t) a~O)(t) a~6) (t)
0.05 7.43001 x 10-4 7.43029 X 10-4 7.43001 X 10-4

0.10 7.51272 x 10 ·4 7.51463 x 10 -4 7.51272 x 10 -4

0.50 7.66064 x 10-4 7.66340 X 10-4 7.66064 X 10-4

1.00 7.66504 X 10-4 7.66482 X 10-4 7.66504 X 10-4

Table 4.3: Comparison of the coefficients a5(t) and g5(t).

Galerkin SSM

t g7(t) a~O)(t) a~6) (t)
0.05 2.70664 x 10-4 2.70804 X 10-4 2.70664 X 10-4

0.10 2.73640 x 10-4 2.73290 X 10-4 2.73640 X 10-4

0.50 2.78979 x 10 ·4 2.79383 x 10 -4 2.78979 x 10 -4

1.00 2.79140 X 10-4 2.78768 X 10-4 2.79140 X 10-4

Table 4.4: Comparison of the coefficients a7(t) and g7(t).

Galerkin SSM

t g9(t) a~O)(t) a~6) (t)
0.05 1.27363 x 10 ·4 1.27451 x 10 -4 1.27363 x 10 -4

0.10 1.28719 x 10-4 1.29053 X 10-4 1.28719 X 10-4

0.50 1.31221 x 10-4 1.31048 X 10-4 1.31221 X 10-4

1.00 1.31296 X 10-4 1.31279 X 10-4 1.31296 X 10-4

Table 4.5: Comparison of the coefficients a9(t) and g9(t).
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Figure 4.2: Comparison of initial coefficients aiO) (t) and the Galerkin coefficient
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Figure 4.3: Comparison of initial coefficient a~O) (t) and the Galerkin coefficient
93(t). The maximum difference is maxt 193(t) - a~O)(t)1 = 4.3968 x 10-6 .
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Using the sequential spectral method, we have to solve a single ordinary differ

ential equation at each step, which is easier than solving N simultaneous ordinary

differential equations, obtained by using the Galerkin method, especially when

N is large and implicit methods are used. For N = 10, the computational time

for the Galerkin method is about eight times the time required by the sequen

tial spectral method. The ratio of the computational time grows as N becomes

large because the Galerkin method takes much more time for large N, but in our

method we always have ,to solve one single ordinary differential equation regard

less of the value of N.

According to the results by Pao in [Pa092] the problem (4.45) has a positive

solution for (]' < (]'*, which converges to a steady state solution. We applied

the iteration scheme from Chapter 3 to find a steady state solution of the prob

lem (4.45) for the values (]' = 1/2, b = D = "( = 1. Using the sequential spectral

method, we again found that la)O) 1 < 10-30 for j even in steady case also, so ai

are important for only odd values of j. This information reduces the problem

of solving a system of 2N algebraic equations to a system of N equations in

the Galerkin method. Table 4.6 shows the numerical results obtained using the

Galerkin and the sequential spectral method for N = 10. The result shows that

the initial coefficients a)O) are not very far from the Galerkin coefficients 9i and in

only 6 iterations ai converge to the Galerkin solution. We see that the solution

for the problem (4.45) converges to this steady state solution. Figure 4.8 also

shows that there is a very small difference between the solution obtained from

the initial coefficients a)O) and the Galerkin coefficients 9i' lu9 - u(O) 1~ 10-4 for

aIl values of x E O.

Equation (4.44) has been studied in detail in [Pa092] to establish existence of

a solution and Pao has derived a bound for the critical value (]'* given by

* Ào(]' < --,----,---:-:--:-
"(e(l + bIOI/<I»
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Galerkin SSM

J gj a~O) a~6)

1 0.101116171 0.1010572002 0.101116171
3 0.003557947 0.0035576649 0.003557947
5 0.000766504 0.0007664819 0.000766504
7 0.000279139 0.0002791332 0.000279139
9 0.000131298 0.0001312960 0.000131298

Table 4.6: Comparison of the coefficients obtained by the Galerkin and the se
quential spectral method.
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Figure 4.8: Comparison of u g = L gjlj>j and u(O) = L a;O) lj>j and the error
j=l j=l
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b ,= 1/4 ,= 1/2 ,=1 ,=2 ,=3
1/4 [11.548,11.549] [5.774,5.775] [2.887,2.888] [1.443,1.444] [0.962,0.963]
1/2 [9.811,9.812] [4.905,4.906] [2.452,2.453] [1.226,1.227] [0.817,0.818]
1 [7.544,7.545] [3.772,3.773] [1.886,1.887] [0.943,0.944] [0.628,0.629]
2 [5.162,5.163] [2.581,2.582] [1.290,1.291] [0.645,0.646] [0.430,0.431]
3 [3.924,3.925] [1.962,1.963] [0.981,0.982] [0.490,0.491] [0.327,0.328]

Table 4.7: Range for values of if = a* / D

where Ào is the principal eigenvalue of the eigenvalue problem

D6.lj) + Àlj) = 0, Blj) =° on an,

and lj)(x) is the eigenfunction corresponding to Ào and it is normalized such that

10,1-1 In lj)dx = 1. <I> is defined by <I> = maJScETI lj)(x). We consider the ordinary

differential equation for finding the coefficient a~O) (t) to estimate the critical value

a*. Table 4.7 shows ranges for a* for certain values of D, , and b. These

results show that a* is directly proportional to D and inversely proportional to

f. Figure 4.9 shows the dependence of a* on b obtained by Pao and by using

the first equation in the SSM, the estimates are very close for small values of b.

The functional dependence of a* obtained in this way agrees with the functional

dependence obtained by Pao. This indicates that only by looking at a single

equation for a~O)(t), we can get an estimate of the critical value of a* for the

problem, which is not easy to obtain by using the Galerkin method.

It has been proved in [Pao92] and [BE82], that for a > a*, the solution of

the problem (4.45) will blow up in finite time, t = T*. We tried to estimate

the dependence of T* on a, by looking again at the single ordinary differential

equation obtained for solving a~O) (t). For D = b = , = 1, the values of T* for

different values of a are shown in Table 4.8. The dependence of T* on a is also

shown in Figure 4.10.
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(J T*
1.887 20.2213
1.89 9.28358
1.90 4.75030
2.00 1.47360
2.50 0.49790
5.00 0.13790
10.0 0.05790

Table 4.8: The values of T* for D = b = 'Y = 1.
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Figure 4.10: The values of critical time T* for different values of (J.
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Chapter 5

Systems of N onlinear Elliptic

Partial DifferentiaI Equations

5.1 Introduction

We introduced the sequential spectral method in Chapter 2 and applied the algo

rithm to nonlinear elliptic and parabolic integro-differential equations in Chapters

3 and 4. The idea was first introduced by Tarn et al. in [TAK96] to solve a semi

linear elliptic partial differential equation arising from microwave heating. In this

chapter, we extend the idea to a system of nonlinear elliptic partial differential

equations. To facilitate the presentation, we consider a system of only two equa

tions. The method can however be applied to a system of N equations in the

same manner. We develop the procedure in Section 5.2. In Section 5.3, we ana

lyze the convergence of the method in the case of identical and different boundary

conditions for u and v. The numerical results are presented in Section 5.4 and a

comparison with the Galerkin method is performed.
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5.2 The Expansion Procedure

We consider the system of nonlinear elliptic partial differential equations in a

domain n,

6u + F(u, v) = 0,

6v + G(u,v) = 0,

subject to homogeneous Dirichlet or Robin boundary conditions

au
Au =Tl(X) an + Sl(X)U = 0, x E an,

av
Bv - T2(X) an + S2(X)V = 0, x E an,

(5.1)

(5.2)

where tn denotes the outward normalderivative on an, the boundary of n. The

boundary functions Tl(X) and T2(X) are nonnegative and Sl(X) and S2(X) are

positive. The functions F and Gare nonlinear functions of u and v. Note that

we have not included the case of Neumann boundary conditions. In fact, in the

case of Neumann conditions, we can have a zero eigenvalue, which will not allow

us to define the iteration scheme (5.17) or (5.18). Therefore, we are constructing

the procedure under the assumption that the eigenvalues are positive. However,

as discussed in Section 2.2.1, there are certain special forms of the functions F

and G which can allow us to apply the method in the case of a zero eigenvalue

also and we discuss those in Section 5.3.1. We develop the algorithm for the

general case, that is, when u and v satisfy different boundary conditions. If the

boundary conditions are identical, A = B, then the algebra is simpler.

Let {>'j} and {</>j(x)} be the eigenvalues and the orthonormal eigenfunctions

for the eigenvalue problem

6</> = ->.</>, A</> = 0, x E an
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and let {j1j} and {?pj (x)} be the eigenvalues and the orthonormal eigenfunctions

for the eigenvalue problem

In the case of identical boundary conditions, Àj = j1j and c/>j(x) = ?pj(x).

We denote

Q(u) .- 6u + F(u, v),

R(v) .- 6v + G(u, v).

(5.4)

(5.5)

As in the case of integro-differential equations, we use uand il as generic symbols

for the approximations of u and v. To begin, we take u = alc/>l(x) and il =

Cl ?Pl (X). Then the residuals become

Q(u)

R(il)

-Àlalc/>l + F(alc/>l' Cl?Pl) ,

-j1lCl?Pl + G(alc/>l, Cl?Pl)'
(5.6)

Using the notation of the inner product of two functions, and following the

Galerkin idea, we set (Q(U)'c/>l) = 0 and (R(il), ?Pl) = O. These conditions give

-Àlal + (F(alc/>l, Cl?Pl), c/>d

-j1lCl + (G(alc/>l' Cl?Pl) , ?Pl)

0,

O.
(5.7)

Solving this pair of algebraic equations, we find the values of al and Cl. This

system may have more than one solution, in which case, each solution will give

rise to an expansion for u and v. To proceed, we focus on one solution. After

finding the values of al and Cl, we next take u = alc/>l(x) + a2c/>2(x) and il =

Cl ?Pl (x) + C2?P2(X), Now we set the projection of Q(u) onto c/>2 and the projection

of R(il) onto ?P2 to be zero, that is, (Q(u), c/>2) = 0 and (R(il) ,?P2) = O. These
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conditions and the orthonormality of {cPi(X)} and {'l/Ji(X)} lead to

-À2a2+ (F(alcPl + a2cP2, CI'l/J1 + C27/J2) , cP2)

- f-L2 C2+ (G(al cPl + a2cP2, CI7/JI + C27/J2) , 7/J2)

0,

o.
(5.8)

We find the values of a2 and C2 by solving this system. In the case of multiple

solutions, we have to take one at a time. Proceeding in the same manner, we

generate a sequence of coefficients {aj} and {Cj} and consider formally

00 00

iL = L ajcPj(x) and v = L Cj7/Jj(x).
j=l j=l

Then the residuals are given by

R(v) L -f-LjCj7/Jj + G(L ajcPj, L Cj7/Jj).
j=l j=l j=l

Q(iL)
00 00 00

L -ÀjajcPj + F(L ajcPj, L Cj7/Jj) ,
j=l j=l j=l
00 00 00 (5.9)

Now using the completeness of the eigenfunctions {cPj} and {7/Jj} we can expand

00 00 00

and

F(L ajcPj, L Cj7/Jj) = L bkcPk(X)
j=l j=l k=l

00 00 00

G(L ajcPj, L Cj7/Jj) = L dk7/Jk(X),
j=l j=l k=l
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where the coefficients bk and dk are given by

00 00

(F(L ajc/>j, L Cj'ljJj) , c/>k),
j=l j=l
00 00

dk (G(L ajc/>j, LCj'ljJj), 'ljJk)'
j=l j=l

Then (5.9) becomes

(5.12)

R(v) L(-P,jCj + dj)'ljJj.
j=l

Q(iL)
00

L(-Àjaj + bj)c/>j,
j=l
00 (5.13)

For iL and v to be a solution, we need (Q(iL), c/>j) = 0 and (R(v), 'ljJj) = 0, for aIl j,

as in the Galerkin method. This means that we need

(5.14)

If the above conditions hold then (5.13) implies that Q(iL) = 0 and R(v) = 0, and

so iL and v will be a true solution. But for the aj, bj , Cj and dj just computed,

(5.14) will not hold in general and we need to introduce an iteration scheme to

achieve the required equality (5.14). Let u(n) and v(n) denote the nth approxima

tions of u and v, given by

00

u(n)(x) = L a)n)c/>j(X) ,
j=l
00

v(n)(x) = L C)n)'ljJj(x).
j=l
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and bJn) , dJn) be the coefficients in the expansion

00

Lb)n)cj>j(x),
j=l
00

L dJn)1/Jj(x).
j=l

(5.16)

We construct new sequences {a)n+l)} and {c)n+l)} by defining

and

\n+l) = ~d\n) = ~(G( (n) (n)) ni•. )
CJ J U , V ,'PJ'

/-Lj /-Lj

Using these new values of the coefficients, we form the new iterates

00 00

u(n+l)(x) = L a)n+l)cj>j(x) and v(n+l)(x) = L c)n+l)1/Jj(x).
j=l j=l

(5.17)

(5.18)

(5.19)

We denote the values of {aj} and {Cj} obtained by the decoupling procedure by

{aJO)} and {cJO)} to have the initial guess u(O) and v(O) for the iteration scheme. In

fact, depending on prior knowledge of the solution, any other initial guess could

also be chosen. If the iteration scheme (5.15) - (5.19) converges, then Q(u(oo)) = 0

and R(v(oo)) = 0 and hence a solution of the boundary value problem (5.1)-(5.2)

will be obtained. The numerical work in Section 5.4 indicates that the method

captures the essence of the problem and aJO) and cJO) are within a few percent

of a)oo) and C)OO) , and we get convergence to a tolerance of 10-6 in only a few

iterations.
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5.3 Convergence Analysis

In this section we analyze the convergence of the sequential spectral method

(5.15)-(5.19). We need the fol1owing result for the convergence of sequences of

vectors.

Theorem 5.1 Let {x(n)} be a nonnegative sequence satisfying x(n) ~ Ax(n-l),

where A is any n x n matrix. If the spectral radius p(A) is less than 1, then the

sequence {x(n)} converges to 0 for any initial guess x(O).

Proof From x(n) ~ Ax(n-l) we have by induction

Taking the limit, we have

lim x(n) < lim Anx(O) .
n-+oo - n-+oo

(5.20)

By Theorem 1.5, limn-+oo An = 0 if p(A) < 1, therefore lim x(n) = 0, because
n-+oo

{x(n)} is a nonnegative sequence. Rence the sequence {x(n)} converges to zero.

•
In order to investigate convergence of the sequential spectral method, we

consider the difference of the corresponding coefficients aj and Cj between two

iteration steps,

(5.21 )

and

(5.22)
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By applying the Mean Value Theorem to equations (5.21) and (5.22) and then

applying the Mean Value Theorem for Integrals under the assumptions that

(u(n) - u(n-l))cPj, (u(n) - u(n-l))'ljJj, (v(n) - v(n-l))cPj and (v(n) - v(n-l))'ljJj do not

change sign, we can prave convergence of the iteration scheme as we have done

in Chapter 3. Weobserved in Chapter 3 that the conditions of convergence in

this particular case are in accordance with the conditions obtained in the general

case. Therefore here we describe only the general case. Of course, the results will

imply convergence for any particular case. Let

g(n)(X) :=F(u(n)) - F(u(n-l)),

p(n)(x) :=G(u(n)) - G(u(n-l)).
(5.23)

Since each of the set of eigenfunctions {cPj} and {'ljJj} forms a complete set of

orthonormal functions (Theorem 1.4), we can expand g(n) and p(n) in a Fourier

series in {cPj} and {'ljJj} (Theorem 1.3) respectively,

00

g(n)(x) = Lgjn)cPj(x),
j=l

00

p(n)(x) = LP;n)'ljJj(x),
j=l

where the Fourier coefficients gjn) and p;n) are given by

g;n) = (g(n),cPj) = ([F(u(n),v(n)) - F(u(n-l),v(n-l))],cPj),

p;n) = (p(n),'ljJj) = ([G(u(n),v(n)) _ G(u(n-l),v(n-l))],'ljJj).

Using the definitions in (5.23), the relations (5.21) and (5.22) become

(n+l) (n) _ 1 (n)
aj - aj - ;:.gj ,

J

(n+l) (n) _ 1 (n)
C, -Co - -p.

J J p,j J
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Multiplying both sides of the first equation with <Pj, j = 1,2,3, ... and of the

second equation with '!/Jj, j = 1,2,3, ... and summing over j we obtain

00 00 (n)

'"" ( \n+l) _ \n)) A.. = '"" ~A..L...J aJ aJ 'fIJ L...J À. 'fIJ'
j=l j=l J

00 00 (n)

'"" ( (n+l) _ (n)) ni•. _ '"" ~nl•.L...J Cj Cj 'fIJ - L...J . 'fIJ'
j=l j=l I1J

We now define the new functions Mn) (x) and q(n) (x),

(5.27)

(5.28)

(n) (n)

Where 9j and Pj are the Fourier coefficients of h(n) (x) and q(n) (x) respectively.
À j I1j

Using the definitions of u(n), u(n+l) , v(n) and v(n+l) from relations (5.15) and

(5.19), in the left hand side of equation (5.27), we obtain

u(n+l) _ u(n) = h(n) ,

v(n+l) _ v(n) = q(n).

Taking the L 2 norm squared on both sides we have

Ilu(n+l) - u(n) II~ = Ilh(n) II~,

Ilv(n+l) _ v(n) II~ = Ilq(n) li~.

(5.29)

(5.30)

Now we consider only the first equation in the above relation, that is,

iiu(n+l) - u(n) II~ = IIMn) II~. Parseval's identity holds for the complete set of
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orthonormal eigenfunctions {<pj} (Theorem 1.3), therefore we obtain

(5.31)

because the eigenvalues {À j } are positive and increasing. Since gjn) are the Fourier

coefficients of the function g(n) (x), using Parseval's identity again we obtain

or taking the square root we get

(5.32)

From relation (5.23), we have

(5.33)

Assuming F(u, v) to be globally Lipschitz in both u, v, with Lipschitz constant

Lu and Lv respectively,

IIF(u(n),v(n)) - F(u(n-l),v(n))//2 ~ Lullu(n) - u(n-l)//2'

IIF(u(n),v(n)) - F(u(n),v(n-l))112 ~ Lvllv(n) - v(n-l)112.
(5.34)

Using the triangle inequality and the above assumption, with L F = max(Lu , Lv),

we have

IIF(u(n), v(n)) - F(u(n-1), v(n-l)) 112 :::; LF(llu(n) - U(n-l) 112 + Ilv(n) - V(n-l) 112)'

(5.35)

79



Using this assumption in (5.33), we obtain

Inserting this result into (5.32), we have

Performing operations similar to (5.31)-(5.37) the second relation in (5.30) gives

where G(u, v) is assumed to be globaIly Lipschitz with Lipschitz constant LQ •

Combining relations (5.37) and (5.38), we have

Rence we have an inequality over one iteration step of the form

where

(5.40)

(

LF !:..E..)and A = >'1 >'1 .
!:sJ.. !:sJ..
/t1 /t1

(5.41)

By Theorem 5.1, if the spectral radius of Ais less than 1, then the sequence x(n)

converges to zero, which means that the iteration scheme (5.15)-(5.19) converges.

Now the eigenvalues of the matrix A are ÀA E {D, ~ + ~}. 80 the spectral

radius is p(A) = ~ + ~, because aIl quantities are positive. Thus we have

80



proved

Theorem 5.2 Let F(u, v) and G(u, v) be globally Lipschitz in u and v, with

Lipschitz constants L F and LG ,

IIF(U1,VI) - F(U2,V2)112 < LF (11u1- u2112 + IIv1- v2112),

IIG(U1,V1) - G(U2,V2)112 < LG (11 u1- u2112 + IIv1- v2112)'

(5.42)

Let >'1 and Ml be the smallest positive eigenvalues of the eigenvalue problems (5.3)

and (5.4) respectively. If

(LF LG)-+- <1,
>'1 Ml

then the sequential spectral method (5.15)-(5.19) converges.

(5.43)

Rence under the conditions of Theorem 5.2, u(oo) and v(oo) are a solution of

problem (5.1). The following theorem gives the rate of convergence and the a

priori error estimate.

Theorem 5.3 (Linear Convergence) Let F(u, v), G(u, v) satisfy (5.42) with

(5.43). Then the sequences {u(n)} and {v(n)} defined by the sequential spectral

method (5.15) - (5.19) converge to a solution u, v of problem (5.1)-(5.2) at the

rate

(Ilu - u(n)112 + Ilv - v(n)112) :::; (LF + LG)n (IIu - u(O)112 + Ilv - v(O)112)
>'1 Ml

(5.44)

and the a priori error estimate is given by

(5.45)
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Proof Let u(n) (x) and v(n) (x) be the nth iterate of the approximate solution,

given by u(n)(x) = :L~1 a}n)c/>j(x) and v(n)(x) = :L~1 C}n)'lj;j(x). Let u(x)

and v(x) be a solution of the problem (5.1)-(5.2), u(x) = :L~1 ajc/>j(x) and

v(x) = :L~1 Cj'lj;j(x). Binee u, v is a solution of problem (5.1)-(5.2), we have

aj = fi (F(u, v), c/>j) and Cj = :i (G(u, v), 'lj;j). Using the values of a}n) and C}n)

from (5.17) and (5.18), we eonsider

(5.46)

Following the steps from (5.23) to (5.39), we obtain

and defining

(
LF LF)

and A:= ~ ~ ,
!:si. !:si.
/1-1 /1-1

(5.48)

the relation (5.47) beeomes e(n) :::; Ae(n-1)' Taking the L 1 norm on both sides,

we have Ile(n)111 :::; IIAe(n-1)111 :::; IIAI111Ie(n-1)111' Applying this inequality indue

tively, we obtain

which by the definition of the L 1 norm gives

(Ilu - u(n)112 + Ilv - v(n)112) :::; (LF + LG)n (Ilu - u(O)112 + Ilv - v(O)112) ,
À1 Ml

(5.49)

82



because the columns of A are identical and positive. Since (L F + La) < 1 we
>'1 J1.l '

have limn-too (~~ + t~)n = 0 and therefore

(5.50)

Rence {u(n)}, {v(n)} converges to a solution u, v and the rate of convergence is

given by (5.49).

Now we will find the a priori estimate for the error. We define

(5.51)

and by using the definition of A from (5.48), the relation (5.39) can be written

as e~~~I) ::::; Ae~~~I)' Taking the LI norm on both sides, we obtain

Ile~~~I)111 ::::; IIAIIIlle~~~I)IiI- Applying the inequality inductively, we obtain

For m > n, we have

Ile~~)111 ::::; Ile~:~I)111 + Ile~:=~~111 + ... + Ile~~r)111

::::; IIAII~-llle~~~111 + IIAII~-21Ie~~~111 + + IIAII~lle~~~111 (5.52)

= IIAII~ (IIAII~-n-I + IIAII~-n-2 + + IIAIII + 1) Ile~~~IiI-

Since the sequences {u(n)} and {v(n)} converge to u and v, we have

limm-too Ilei~)111 = Ile(n)lll' Rence letting m ---* 00 in the above inequality, we

obtain
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Using the definition of the L 1 norm we get the a priori estimate for the error

•
In Theorem 5.2, we assume F(u, v), G(u, v) to be globally Lipschitz in both u

and v. From the relation (5.44), we found that aIl the iterates are in the baIl

B((u,v),r), centered at the solution (u,v), with radius r = Jiu - u(O)112 + IIv
V(O)I/2' 80 we need F(u, v) and G(u, v) to be Lipschitz only in the baIl B((u, v), r).

Corollary 5.1 Let F(u,v) and G(u, v) be locally Lipschitz in a ball B((u,v),r),

centered at the solution (u, v), with radius r = Ilu - u(O) 112 + Ilv - v(O) 112, where

u(O), v(O) are the initial guesses, with Lipschitz constants L F and L G . Let À 1 and

!J1 be the smallest positive eigenvalues of the eigenvalue problems (5.3) and (5.4)

respectively. If (~~ + ~) < 1, then the sequential spectral method (5.15)-(5.19)

converges at the rate given in (5.44).

We emphasize that the condition (5.43) which allows us to prove convergence

is a sufficient condition and it is not necessary. The iteration may converge even

if the condition (5.43) is violated. The above discussion is for general boundary

boundary conditions A and B . In the particular case of A = B, that is, when u

and v satisfy identical boundary conditions, then the eigenvalues and eigenfunc

tions of the problems (5.3) and (5.4) are the same. The iteration scheme and con

vergence analysis follows in the same manner and we obtain that if L F +L G < À1 ,

then the sequential spectral method converges.

5.3.1 Convergence Analysis for Neumann Conditions

We developed the sequential spectral method (5.15)-(5.19) under the assumption

that neither À1 nor !J1 is zero. This is because (5.17) or (5.18) cannot be defined
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for j= 1, if À1 = 0 or P,1 = O. Hence, in general, the iteration scheme can not be

defined if the eigenvalue problem (5.3) or (5.4) has a zero eigenvalue. However,

there are certain forms of F(u,v) and G(u,v) which can allow us to define the

iteration scheme in that case as weIl and they are discussed in Section 2.2.1. If

À1 = 0 and the nonlinear function F1(u, v) is a combination of a linear term (lU

and a nonlinear term F1 (U, v), that is,

then we can define the iteration scheme

(n+l) _ 1 (F ((n) (n)) Â..)
aj - (À

j
_ (1) 1 u ,v ,'fJJ'

(5.54)

(5.55)

provided (1 =1= Àj , j = 1,2,3, .... Similarly, if P,1 = 0 and G(u, v) has the form

then we can define the iteration scheme

c\n+l) = 1 (G (u(n) v(n)) n/•• )
J ( /") 1 , ,'l''],

P,j - .,,2

(5.56)

(5.57)

provided (2 =1= P,j, j = 1,2,3, .... If both À1 and P,1 are zero, then the equa

tions (5.17) and (5.18) in the iteration scheme (5.15)- (5.19) will be replaced by

equations (5.55) and (5.57) respectively. The convergence of the iteration scheme

can be analyzed similarly. It is found that a sufficient condition for convergence

is that ~~I +~ < 1. To illustrate this idea, we have solved a system of elliptic

partial differential equations with P,1 = 0 where G(u, v) is of the form given by

(5.56). The numerical results are presented in the next section and a compari

son with the solution obtained by the Galerkin method is given. Convergence is
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obtained again in only a few iterations.

5.4 Numerical Results

In this section we solve a system of elliptic partial differential equations arising

from a chemical reaction. Suppose the reaction A -+ B takes place in two steps,

the first is a reversible binding to an enzyme, A +E ~ C, and the second is the

dissociation of the complex so formed into the product with the release of the

enzyme C -+ B + E. The reaction is to take place within a region n in which aIl

the species can freely diffuse but whose boundary an is permeable only to A and

B. The original system consist of four equations but under certain conditions

and by nondimensionalising the quantities we obtain system of two equations. A

detailed derivation can be found in [Ari75]. The steady state equations governing

the concentrations can be written as

6u C?[u(1 - v) - (Il; - X)v], x E n,
6v C~[-u(1 - v) + Il;V], x E n,

(jau + u 1, av - ° x E an,an an - ,

(5.58)

where ln is the outward normal derivative on an. The parameters Cl and C2

are positive constants and their values depend on the diffusion coefficients. The

constants Il; and X corresponds to the rate constants. The above system has been

studied in [Ari75] and [Ari72]. We solve the problem for the slab °::; x ::; 1. In

order to have homogeneous boundary conditions for u, we put u = w + 1. So we

will solve the problem

6w

6v

Raw +w
jJ an

C?[(w + 1)(1 - v) - (Il; - X)v],

C~[-(w + 1)(1 - v) + Il;V],

0,
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x E (0,1),

x = 0,1.
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The orthonormal eigenfunctions if>j(x), '!/Jj(x) and the corresponding eigenvalues

Àj , J.1j satisfy the equations

A'!/J '!/J h o'!/Jj -- 0LJ. . - -//.' . W ere
J - r'J J' an

Solving these equations, we get

for x = Q, 1.

if>j .J l+!}P7r2 [sin(j7fx) - j3j7f cos(j7fx)], Àj = P7f2
, j = 1,2,3, .

'!/Jj V2 cos ((j - 1)7fx), J.1j = (j - 1)2 7f2, j = 1,2,3, .

Numerically wetruncate the expansion at N = 6. Using the Galerkin method

we obtain the system of equations

6 6 6

(À j + CDgj + C~(1- L gkif>k L ek'!/Jk - (1 + '" - X) L ek'!/Jk, if>j) = 0,
k=l k=l k=l

6 6 6

(J.1j + (1 + "')C~)ej - C~(1- L gkcPk L ek'!/Jk + L gkcPk, '!/Jj) = 0,
k=l k=l k=l

(5.60)

for j = 1,2,3, ... ,6. To solve these 12 nonlinear equations, we use a fixed point

iteration of the form

(5.61)

for j 1,2, ... ,6. The computations are performed for the parameter values
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Galerkin SSM

J gj a~O) a~8)

1 -3.324326 x 10-3 -3.302877 X 10-3 -3.324326 X 10-3

2 5.569387 x 10 ·r 7.730235 x 1O-"{ 5.569387 X 10-7

3 -4.444987 X 10-5 -4.427130 X 10-5 -4.444987 X 10-5

4 3.720939 x 10 olS 4.121142 x 10 'lS 3.720939 X lO-lS

5 -5.801788 x 10 -0 -5.804807 x 10 -0 -5.801788 x 10 -0

6 7.692260 X 10-9 9.428359 X 10-9 7.692260 X 10-9

Table 5.1: Comparison of the coefficients aj and gj for 13 = 1.

Cl = C2 = '" = 1, X = 0.25. A similar fixed point method is used to solve the

system of two equations obtained at each step in the sequential spectral method.

Tables 5.1 and 5.2 show a comparison between the coefficients gj and aj for w

and the coefficients ej and Cj for v obtained by using the Galerkin method and

the sequential spectral method. The results show that the initial coefficients

aJO) and cJO) are very close to the Galerkin coefficients gj and ej and converge

to the Galerkin coefficients to a tolerance toI = 10-8 in only 8 iterations. The

truncated solution to the problem (5.58) is given by u(x) = 1+~J=l gjcPj(x) and

v(x) = ~J=l ej'l/;j(x). Figures (5.1) and (5.2) also show that there is a very small

difference in the solutions u(O), ug and v(O), vg .

We note from the above results that aJO) and cJO), for j = 1,3,5, ... are de

creasing sequences and also for j = 2,4,6, .... The same behavior is observed

for aJ8) and CJ8) for the given problem. So the coefficients of the first eigenfunc

tions are more important. This is because the eigenfunctions are intrinsic to the

operator, the domain and the boundary conditions.
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'.005

r,..'o

Galerkin SSM

J ej
JO) C~8)Ci

1 3.533922 X 10-1 3.533947 X 10-1 3.533922 X 10-1

2 1.336607 x 10 -4 1.326501 x 10 -4 1.336607 x 10 -4

3 5.110983 X 10-6 5.069182 X 10-6 5.110983 X 10-6

4 2.424781 X 10 7 2.415259 X 10 7 2.424781 X 101
5 2.750798 X 10-7 2.727424 X 10-7 2.750798 X 10-7

6 1.149816 x 10 8 1.166550 x 10 8 1.149816 X 10-8

Table 5.2: Comparison of the coefficients Cj and ej for f3 = 1.

-Galerkin
- - SSM

'5

0.5

0.995

o Ql nz M M MMdl M M 1

X
~ Q1 Q2 M Q4 Q5 0.6 Ql dB Qg 1

X

Figure 5.1: Comparison of u g = 1 + E.%,l gjf/)j and u(O) = 1 + E.%,l a)O)ifJj for
N = 6, f3 = 1 and the error lug - u(O) 1 .

0.5'--~~~~~~-'-----'C=_~G.2e<kiC="=il
- - SSM

0.5
4.5

~ 0.4999.,
0.4999r,..

o
0) 0.4998.,

0.4996

0.4997

0.4997

2.5

0.4996

0.49960'------0:'-:-.'-----='=0.2,-------::'0.':-3-0:7-.------:'=0.5------='0.6==----=0:'::-.7--:-:0.6------::0.•,------"

X
20='-0:'-:-.'------::02'-------:0'=-.. ----:'-c0'-----:'0.=-5-0:7-.6 -----='=0.7'-------:0':-.6----:'-co.•---',

X

Figure 5.2: Comparison of vg = E.%,l ej'l/Jj and v(O) = Ef=l c)O)'l/Jj for N = 6,
f3 = 1 and the error Ivg - v(O) 1 .
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Chapter 6

Conclusion

6.1 Main Research Results

In this thesis, we developed the sequential spectral method for nonlinear partial

differential equations and integro-differential equations of elliptic and parabolic

type. We proved that the sequential spectral method converges linearly for the

elliptic case and superlinearly for the parabolic case. We found many advantages

of the sequential spectral method over the classical Galerkin methods:

(i) In the sequential spectral method, one needs to solve a single algebraic (in

the elliptic case) or ordinary differential equation (in the parabolic case) at

each step instead of a system of equations in the Galerkin method.

(ii) In the sequential spectral method, we can continue to add components until

we get the required accuracy and this does not affect the previous process.

(iii) The existence of multiple solutions can be detected by solving a single

equation (see Figure 3.3).

(iv) The time of computation is much lower than for the Galerkin method. For a

certain example in Section 3.3, the approximate computational complexity
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for the Galerkin method is tg ::::::: N 6 and for the SSM is t s ::::::: N 3 (see

Figure 3.7).

(v) The dependence of the solution on parameters can be analyzed by studying

a single equation, and also estimates for critical values of the parameters

can be obtained (see Tables 3.5 and 4.7, Figures 3.8 and 4.9).

(vi) The blow up time can be estimated for corresponding parametric values

(see Table 4.8 and Figure 4.10).

The sequential spectral method is a new method, introduced by Tarn et. al in

[TAK96] for a semi-linear elliptic partial differential equation. Al Refai has de

veloped the method for parabolic partial differential equations and systems in

[AIra0] but the conditions for convergence obtained were not transparent and

difficult to verify. We have obtained convergence conditions depending on the

Lipschitz constant of the nonlinear function F(u) and proved that the conver

gence is linear in the elliptic case (Theorem 3.3) and superlinear in the parabolic

case (Theorem 4.4), and we also found a priori estimates for the error. We have

also extended the idea to a system of elliptic partial differential equations and

proved linear convergence of the sequential spectral method and an a priori es

timate for error (Theorem 5.3). Since the sequential spectral method is a new

method, many issues remain to be investigated.

6.2 Future Research Directions

Observing the advantages of the sequential spectral method, one naturally wants

to apply the method to a variety of problems described by partial differential

equations, integro-differential equations and integral equations from applications,

especially problems which were hard to solve up to now. We developed the

method for the case of F(u), that is, the nonlinear term depends only on u.
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Al Refai has applied the sequential spectral method to the Kuramoto-Sivashinsky

equation, which has a nonlinear term of the form F(u, ux ) and proved convergence

for that equation only [AlrOO]. There is no general theory for equations with

nonlinearity F(u, ux )' We have started to work on a parabolic integro-differential

equation with a nonlinear term of the form F(u, Ut). We have developed the

iteration scheme and applied it to a model problem and obtained very promising

numerical results but we have not yet proved convergence. This will be one of

our research projects in the near future. We hope that the idea can be applied

to more general systems containing higher derivatives of u with respect to the

spatial variables. Also hyperbolic equations seem to be a good candidate for

this method, we have especially nonlinear wave equations in mind. Al Refai has

applied the method to a wave type equation and got numerical results but there is

no convergence analysis yet [AIra0] . Katina has developed the sequential spectral

method for nonlinear integral equations [Mic97] and we have also obtained first

results to extend this idea to systems of integral equations. Finally the method

should be extended to systems of integro-differential equations.

A complete different approach would be to study a discretized version of this

sequential spectral method. This would allow us to use the method on arbitrary

domains with general boundary conditions. The interesting question would be

if it pays off to compute sorne of the lower eigenfunctions numerically and then

to apply the sequential spectral method to resolve the nonlinearity, compared to

a Finite Element approach. For consistent discretizations we would expect that

similar convergence for the sequential spectral method could be obtained as far

the continuous case shown in this thesis.
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Appendix A

Proof of Lemma 4.1

We now prove Lemma 4.1. To this end, we need

Lemma A.l For every even m, odd k l and nl E N, and N EN, we have

1 N1II sinnl (kl7fx) sin(m7fx)dx = O.
o l=l

Proof From the trigonometric identities, we know that

(A.l)

sin(k1r(l - x)) = {

We first split the integral in half,

-sin(k7fx), if k is even,

sin (k7fx) , if k is odd.
(A.2)

1 N 1/2 N1II sinnl (kl7fx) sin(m7fx)dx =1 II sinnl (kl7fx) sin(m7fx)dx
o l=l 0 l=l

1 N+! II sinnI (kl7fx) sin(m7fx)dx.
1/2 l=l
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Then putting x = 1 - u in the first integral on the right hand side of equation

(A.3) and using (A.2), the first integral becomes

fl1/2 Il::1 sinnl (kl1r(l - u)) sin(m1r(l - u))( -du)

- f1~2 Il::1 sinnl (kl1ru) sin(m1ru)du

(A.4)

and hence with (A.3)

1 N1II sinnl (kl1rx) sin(m1rx)dx = 0,
o l=l

for every even m, odd kl and nl E N, and N E N.

Lemma A.2 For every j > 0,

1
1 .

o eE~=l a2k-l (t) sin(2k-1)1I"x sin(2j1rx)dx = o.

Proof Using the series expansion of exponential functions, we have,

1
1 .

o eE~=l a2k-l (t) sin(2k-1)1I"x sin(2j1rx)dx =

11~ [Ek=l a2k-1(t) sin(2k - l)1rx]n . (' )d
L.J , sm 2J1rX x.

o n=l n.

•

(A.5)

(A.6)

By Lemma A.l, an the integrals on the right hand side will be zero and hence

t .
Jo eE~=l a2k_l(t)sin(2k-l)1I"x sin(2j1rx)dx = 0,
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Lemma A.3 Let u(O) (x, t) = EJ=l a)O) (t)cjJj(x) be the initial approximation for

the solution of problem 4.45, obtained by the SSM. Then the even Fourier coeffi

cients a;~)(t) = 0, V l > 0, t > O.

Proof To find the initial guess u(O) (x, t) = ~J=1 a)O) (t)cjJj(x) , we need to solve

the nonlinear ordinary differential equations for the Fourier coefficients a)O) (t),

with initial condition a)O)(O) = 0, sequentially for j = 1,2,3, .... Here D, a and

'Y are positive constants. In order to prove that the even coefficients a;~)(t) =

0, V l > 0, t > 0, we prove that a;~) (t) = 0 is the unique solution of the corre

sponding equation. First we prove, by induction, that a;~)(t) = 0 is a solution of

the corresponding ordinary differential equation.

For l = 1, we find a~O) (t) by solving

~~ 11
~ ~_2_ + DÀ a(O) = aV2 e'YV2[al sin(1Tx)+a2 sin(21Tx)] sin(21rx)dx

dt 22 ° ' (A.9)

together with initial condition a~O) (0) = O. We see that a~O) (t) = 0 is a solution

of equation (A.9), if

11 (0).° e'YV2a1 (t) sm(1TX) sin(21rx)dx = 0,

which is true by Lemma A.2. 80 the result is true for l = 1.

Now suppose that the result is true for l = m, that is, a~~(t) = 0 is a solution

of

da(O) 11
(0) (0)

~ + DÀ a(O) = a "2 e'YV2[L.:k'=l a2k_ 1 sin((2k-1)1Tx)+a2m sin(2m1TX)] sin(2m1rx)dxdt 2m 2m v~ ,
o .

(A.lO)
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where a~~(O) = O. To prove that the result is true for l = m + 1, we consider

d (0)
a2(m+l) (0)

dt + DÀ2(m+l)a2(m+l) =

(lV211
e'Yv'2[Ek~·/ a~~_l sin((2k-l}]rx)+a~~~+1) sin(2(m+l)'Il"x)] sin(2(m + 1)1rX)dx,

(A.11)

where a~~~+l) (0) = O. By Lemma A.2, we have

which implies that a~~~+l)(t) = 0 satisfies equation (A.11) for aIl t > O. Hence

the result is true for l = m + 1 and the induction is complete.

In order to prove uniqueness, we use the Lipschitz property as for the Picard

Lindel6f iterations for initial value problems (see [Pic93] and [Lin94]). We have

to solve the ordinary differential equations (A.8) for the coefficients ajO) (t),

(A.12)

with the initial condition ajO) (0) = 0, sequentially for j = 1,2,3, ....

Let

(A.13)

To see that this function is Lipschitz, we compute

If(aJO)) - J(àJO)) 1 =

(lV2 111
e'Yv"2E{:~ aiO) sin(k'Il"x) [e'Yv"2aJO) sin(j'll"x) _ e'Yv"2ëiJO) sin(j'll"x)] sin(j1rx)dx 1.

(A.14)
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By the Mean Value Theorern, we have

(A.15)

for sorne ç(x) between 'YV2a;O) sin(j1rx) and 'YV2a;O) sin(j1rx). Using this result

in relation (A.14), we obtain

If(a;O)) - f(a;O)) 1 ::; 2a'Y 11 e,V2E{:'~ a~O) sin(kll"x)+{(x) la;O) - a;O) 1 . 1 sin(j1rx)/2dx.

(A.16)

Therefore f(a;O)) is Lipschitz,

(A.17)

with Lipschitz constant,

Using the definition of f(a;O)) in equation (A.12), we have

(0)
da· (0) (0)
_J_ = -D)..·a. + f(a. )dt J J J'

Let
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then g(a;O) is Lipschitz,

Ig(a;O) - g(a;O) 1= 1- DÀja;O) + f(a;O) + DÀja;O) - f(a;O) 1

::; (DÀj + Lf)la;O) - a;O) 1

_ L 1 (0) _ - (0) 1

- 9 aj aj ,

with Lipschitz constant,

(A.21)

(A.22)

because D and Àj are positive. Hence there exists a unique solution of equations

(A.12) and thus the solution a~~) (t) = 0 we found is unique. •

We are now able to prave Lemma 4.1:

Proof From Lemma A.3 we found that a~~) (t) = 0, 'ri l > 0, t > 0 in the

initial guess u(O) (x, t). For the nth approximation by the SSM, we need to solve

linear ordinary differential equations for the Fourier coefficients a;n\t),

da\n) (n) ~ tfn[""j (n-I l (). (k )]
Jt + DÀjaj (t) = av 2 Jo e'Yv2

L.Jk=1 ak t sm 1rX sin(j-7rx )dx, (A.23)

with initial condition a;n) (0) = 0, sequentially for j = 1,2,3, .... Here D, a and

'Y are positive constants. For n = 1, we have

with initial condition a;l) (0) = 0, j = 1,2,3, .... Now for the even coefficients

j = 2l, we have by Lemma A.2

(A.25)

98



which has solution a~~) (t) = 0, for l = 1,2,3, .... Similarly by induction and

the results of Lemma A.2, aIl the approximations are zero if the initial approxi

mation is zero.Therefore the even Fourier coefficients a~7) (t) = 0, V l > 0, t > O.•
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