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Abstract

An automated sequential assignment protocol for proteins is presented using heteronuclear
3D NMR. For the observed amino acid spin systems, the protocol includes an algorithm to de-
termine their amino acid types. For the detected polypeptides, the protocol includes another al-
gorithm to sequentially map them to the primary sequence. The former algorithm measures the
similarity between the detected spin systems and the 20 standard amino acid patierns. Both chem-
ical shift and topological likeness are considered. Knowing the amino acid types, the mapping
algorithm assigns the detected polypeptides to proper positions within the protein primary se-
quence. The assignment protocol can be applied to spin systems generated from many different
approaches. To demonstrate the assignment protocol, a few computer algorithms were designed
to deduce the backbone and side-chain spin systems of proteins using heteronuclear 3D NMR.
Magnetization transfer through peptide bonds can be observed in triple resonance 3D NMR. To
automate the backbone assignment using the through-bond correlations, a generic algorithm is
proposed. This algorithm searches and merges cross peaks wnong all available NMR spectra.
Individual spin systems can be extracted and linked to create polypeptide chains based on the
observed interresidue correlations. The algorithm is not restricted to any pasticular type of exper-
iment. It is shown to be applicable to two sets of NMR spectra: the five-experiment set of 3D
HNCO, HNCA, HN(CO)CA, HCACO, N TOCSY-HMQC and the onc-cxperiment set of 3D
CBCANH. For the side chain assignment, an automated approach using a constrained partitioning
algorithm has been developed to extract stde chain spin systems of proteins by analyzing the 3D
HCCH-COSY/TOCSY spectra. The extracted amino acid spin systems show the chemical shifts "
of the component nuclear spins as well as the connectivities between these spins. A 90-residue
protein, the N-domain of chicken skeletal troponin-C (1-90),\ was used to test the implementation
of the above algorithms with both simulated and experimental data. Limitations of the algorithms
are discussed.



Résumé

Un protocol automatisé pour attribution séquentielle des protéines est presentée en utilisant
RMN 3D. Le protocole utilise une algorithme pour déterminer les types d'acides aminds en ob-
servant les systemes de spin. Pour les polypeptides détectés le protocole utilise une algorithme
pour déterminer la séquence primaire. La premicére algorithme mesures les similarités entre les
systémes de spin détecter et les vingts acides aminés standards. Le déplacement chimique et simi-
larités topologiques sont aussi pris en considération. Connaisant les types d’acides aminés, I'algo-
rithme peut attribuer aux polypeptides détectés leur propres positions dans la séquence primaire du
protéine. Cet protocol peut étre appliqué aux systémes de spin générés par méihodes différentes,
Pour démontré le protocole d’attribution. quelques algorithmes sont crées pour déduire la chaine
principale et les systémes de spin des chaines latérales en utilisant RMN 3D. Un transfert de
magnétisation d travers les lizisons peptides peut étre observer en triple résonance RMN 3D. Pour
automatiser I"attribution de la chaine principale en utilisant les liasons 2 travers les corrélations,
une algorithme générale est proposée. Cette algorithme, cherche et unit les pics croisés de tous
spectres RMN disponibles. Les systémes de spin individuel peut étre extracté et li€s pour créer les
chaines polypeptides basées suflles corrélations observés des interrésidus. Cette algorithme n’est
pas en particulier limité a une seule expérience. L'algorithme est démontrée d’étre applicable
aux deux séries de spectres RMN: la série de cings expériences de HNCO, HNCA, HN(CO)CA,
HCACO "*N TOCSY-HMQC 3D et A I’expérience de la série CBCANH 3D. Pour I"attribution des
chaines latérales on A déveloper une approche automatisée en utilisant une algorithme de partition
contrainte. Cette algorithme extrain: les systémes de spin des chaines latérales des protéines cn
analysant les HCCH-COSY/TOCSY 3D spectres. Les systémes de spin des acides aminée ex-
tracté montre les déplacement chimicj;:es des spins nucléaire corposés et les rapports connectifs
entre ses spins. Une protéine de 90 ramifications de domaine-N du Troponin C(1-90) squellette
de poulet €tait utilisé pour essayer I'algorithme avec les résultats simulés et expérimentaux. Les
limitations de I’algorithme sont aussi discuter.
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Chapter 1

Introduction

This thesis presents automated software for protein resonance assignment from heteronuclear
three-dimensional nuclear magnetic resonance {NMR) spectra. The assignment strategy is divided
into three steps: (1) the extraction of amino acid spin systems, (2) the determination of amino acid
types for the extracted spin systems, (3) the sequence-specific resonance assignments. A generic
sequential assignment protocol was proposed under which algorithms were developed to automate
the above three steps. The algorithms were implemented into computer programs and validated
with simuluted and real spectral data.

Using the proposed sequential assighment protocol, this thesis demonstrates that a complete
~ automation of protein resonance assignment is possible, although in practice many aspects, such
as the lack of sufficiently accurate automated peak picking software and the uncertainties of the

amino acid type determination, have to be overcome before this uitimate goal can be achieved.

1.1 Motivation

Resonunce assignment has direct implications on the structure determination of biomolecules
from NMR data. In particular, the sequence-specific resonance assignment, as described in this
thesis, is the essential analysis step needed before the structure determination and refinement can
be conducted.

NMR based protein structure determination techniques have been widely used since early



1.1 Motivation

1980s. The established procedure consists of several major steps [ 1-4]. First. the spin systems of
all of the amino acid residues in the protein are identified, then a sequential assignment procedure
attempts to imap the extracted spin systems to the target protein’s primary sequence. The results
of the resonance assignments are then used to interpret the through-space NOE cross peaks, from
which a number of distance constraints can be derived from analysis of the NOE data. Finally,
these constraints are used to calculate the protein’s 3D structure.

Since spectral overlap is proportional to the size ot the molecule being studied, spectral anal-
ysis of larger molecules using 2D NMR becomes difficuit if not impossible.  With the recent
development of 3D and 4D heteronuclear NMR [5. 6], the techniques of cloning and expressing
ISN/3C labeled proteins, it is now possible to resolve the severe spectral overlap, resulting in com-
plete structure determination for larger proteins. Many of these multidimensional heteronuclear
NMR spectra take advantage of the scalar niagnetization transter through peptide bonds and thus a
uniformly PN/!3C labeled protein is needed. Although 3D and 4D NMR simplify the overlapped
spectra, the analysis of spectra remains difficult as more data is acquired and must be analyzed.

It is generally accepted that the resonance assignment of NMR spectra is tedious and time-
consuming work, hence, there have been many attempts [7-19] to automate the resonance assign-
ment part of the structure determination analysis.

Computer-assisted resonance assignment plays an important role for multidimensional NMR
data analysis. Although 3D and 4D heteronuclear NMR greatly reduce the spectral overlap, it is
at the expense of increased amount of data. Therefore, computer programs are necded and allow
a more unambiguous spectral analysis, making it possible to automate the resonance assignment
procedure. Similar results are difficult to attain using 2D NMR only.

Numerous approaches [20] have been applied to the automated assighment problem using
multidimensional NMR. Vuister et al. [21] proposed an assignment strategy for homonuclear
3D NOE-HOHAHA spectrum, Kleywegt et al. [9] implemented and extended the strategy for
homonuclear 3D [J,NOE]- and [NOE-J]-type NMR spectra of proteins. Oschkinat er al. [16]
presented an automated strategy making use of homonuclear 3D TOCSY-TOCSY and TOCSY-
NOESY. Among the attempts using heteronuclear 3D NMR, Zimmerman et al. [19] developed an

approach for determining the sequential order of amino acid spin systems using 3D HCC(CO)NH-

te



1.2 Issues

TOCSY and constraint propagation methods. Bernstein er ol [18] applied the technique of com-
hinatorial minimization to achieve the sequence-specific assignment of proteins using 3D '°N-
HMQC-TOCSY and ""N-HMQC-NOESY. Two complete proteia automated resonance assign-
ment protocols were proposed. one was done by Meadows et al. [17] the other by Morelle ¢t
al. [22] The first makes use of 4D HNCAHA, HN(CO)CAHA, HC(CO)NH-TOCSY. 3D HNCA
and HN(CO)CA while the second protocol uses a set of 2D triple resonance NMR spectra to
assign the protein’s backbone resonances. Some of these computer programs, for example. Zim-
merman’s and Bernstein’s, automate sequential assignment only. Consequently, the amino acid
spin systems must be created and identified using other approaches. Meadow’s and Morelle’s pro-
tocols are able to extract amino acid spin systems but an automated amino acid type recognition
routine is lacking. In addition, many of these programs put emphasis on particular kinds of NMR

experiments.

1.2 Issues

A self-contained automated assignment strategy should consist of three steps. (1) Extract-
ing the spin coupling segments (amino acids) that make up the biomolecule. (2) Mapping of the
spin coupling segments to amino acid residues. (3) Searching for a most probable spin system
sequence which matches the protein’s primary sequence. These steps can be treated by a series
of algorithms: Constrained Partitioning (CPA) [23, 24], fuzzy pattern recognition [25] and tree
searching [25, 26], respectively. CPA can automatically extract and identify spin coupling seg-
ments from a combination of the 2D COSY and TOCSY spectra where the latter is used as parti-
tioning constraints. The fuzzy pattern recognition algorithm determines the amino acid types for
those observed spin coupling segments. Once the amino acid types are determined, each residue’s

position within the protein sequence can be obtained from the tree searching algorithm,
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1.3 Scope of the Thesis

In this thesis, extensions [27] are made to the CPA algorithm so that the aliphatic side chin
spin systems can be deduced from heteronuclear 3D NMR data. A generic sequential assignment
protocol is proposed. Three algorithms, a protein backbone extraction algorithim [28]. an extended
amino acid pattern recognition algorithm [29] and a sequential mapping algorithm [28]. are ap-
plied to the sequential assignment protocol. The methods developed in this work are applicable to
a wide varicty of heteronuclear 3D NMR experiments. The applicitions are not restricted (o cer-
tain special designed NMR experiments. This approach provides a basis for further development
of a fully generic, i.¢., completely independent on the types of input NMR experiments, automated

assignment software.

1.4 Organization of the Thesis

The thesis is organized as follows:

Chapter 2 highlights the NMR based protein structure determination procedures, introduces
the NMR experiments used in the thesis and reviews the previous work at the automation of 2D
NMR spectrum assignment. It attempts to give an overview of the earlier work this thesis is based
upon as well as emphasis of the direct relationship between resonance assignment and the structure
determination. The subject of the research, protein resonance assignment, is defined in a formal
manner in the same chapter.

Chapter 3 describes two approaches for the determination of protein backbone resonances.
The first one makes use of the triple resonance heteronuclear 3D NMR experiments. This approach
is able to extract individual spin systems as well as establish the sequential connectivities. Another
approach is a direct extension of the two-dimensional CPA algorithm, making CPA possible to
pracess three-dimensional NMR experiments such as >N TOCSY-HMQC.

Chapter 4 presents an algorithm for the assigninent of protein aliphatic side chain resonances.
The deduced spin systems can be merged with the backbone spin systems to provide possibie

candidates for the amino acid type determination.
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Chapter 5 deals with the amino acid type determination and the sequence-specific assign-
ment. An algorithm is introduced to merge the previously determined backbone and side chain
spin systems. A mathematical graph-theory-based spin pattern recognition algorithm is described.
Finally, a sequential mapping algorithm places the recognized spin systems at positions within the
primary sequence. The interresidue connectivities can be created by through-bond (from triple res-
onance 3D NMR) or through-space (from 2D NOESY or 3D "*N NOESY-HMQC) correlations.
A sequential assignment protocol is discussed to summarize the above algorithms.

Chapter 6 concludes the thesis by highlighting the significant contributions of the current
work, discussing various possibilities of applying the research to real world cases, and pointing

out the dircctions for future investigation.



Chapter 2

Related Issues and Previous Work

2.1 Introduction to 2D NMR spectroscopy

Essentiaily all contemporary NMR work on biopolymers is done with two-dimensional (2D),
or three-dimensional (3D) NMR. In this section, the most commonly seen 2D NMR experiments
that are applied to protein resonance assignments are introduced and their information content is

described. Discussion emphasizes the experitents that are used in later chapters,

2.1.1 COSY

The basic 2D NMR experiment based on through-bond scalar coupling is COSY(COrrelated
SpectroscopY) [30,31]. The COSY experiment has the simplest pulse sequence of all 2D NMR.
experiments. The pulse sequence is shown in Figure 2.1, In this experiment the spins undergo
precession about one another, in addition to the usual precession about the applied magnetic field,
During the mixing period, i.e., the second pulse, of this experiment, J-coupled spins exchange ’
coherence and communicate the information about their precession frequencies. The result, for
the COSY experiment, is that a cross peak between two spins, i, and j, will occur at position
(8:,9;) and (8;,8;) in the spectrum if spin i and j are directly coupled to one another.

The cross peaks in COSY spectra are antiphase in character, that is, half of the multiplet is

"up” and the other half is “down™ as shown in a simulated 2D COSY spectrum in Figure 2.2.
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Figure 2.1: The pulse sequence of the 2D correlated spectroscopy (COSY). Two 90-degree pulses are
sepirated by the mixing period 1.

This feature increases the difficulties of doing automated peak picking. To determine the center of

20 COSY /
G ES
E . F.,('H)
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Figure 2.2: Simulated 2D COSY contour plot of two coupling spins. Open circles with solid and dashed
lines are cross peaks with positive and negative intensity, respectively. The dispersive diagonal peaks are
represented by filled circles.

each cross peak, two local maxima and minima have to be found which is difficult in a severely
overlapped spectrum.

In COSY experiment, peaks also occur on the diagonal arising from coherence that remained
on the same spin after two pulses of the experiment. In normal COSY the diagonal signals are
out of phase (dispersive) relative to the cross peaks and are broader than the absorption signal.
This phenomenon interferes with the detection of cross peaks near the diagonal. The cross and
dingonal peaks for a weakly coupled systems with two I = 1/2 spins are derived in Appendix A.
A useful revision to overcome the dispersive diagonal peaks is to apply a double quantum filter,

which is discussed in the next section.
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2.1.2 DQF-COSY

DQF-COSY was introduced by Rance er al. [32] All coherence from spins that do not have
coupling partners. i.c.. singlet in the spectrum and all coherence that remained on the same spin
during the evolution period £ are added to zero through a phase eyvele. The result s the disap-
pearance of the obscure diagonal peaks. DQF-COSY is now the usual 2D COSY experiment for
biomolecular applications although sometimes the prefix "DQF is omitted. Appendix A gives an

example of the phase cycling scheme used in DQF-COSY.

2.1.3 TOCSY

A more recent 2D NMR experiment for identifying extended couplings is TOCSY(TOtwi
Correlation SpectroscopY) [33] which is also known as HOHAHA(HOmonuclear HArtman HAhn
spectroscopy) [34.35]. An isotropic mixing is added after the evolution time £ by applying a
sequence of pulse which effectively averages out chemical shifts. This can be thought of as a
sequence of 180° pulses, each of which refocuses the chemical shifts. In effect, all coupled spins
will have the same precession frequency, so they will be strongly coupled (Ad <« J) and their
transitions will be thoroughly mixed. In the collected FID, all the coherences return to their
original chemical shifts but become labeled with the precession frequencies of all the other spins
in the same spin coupling system. For example, four spins {i, j. k, [} are within a coupled spin
system. In the TOCSY spectrum, cross peaks occur at position (d;, 8;), (8, &), (d;. &), (8;, &i),

(8, 8¢} (8, &), ... , etc. Figure 2.3 shows a simulated TOCSY spectrum for an alanine.

TOCSY
Q Q BH
o] O uH

CosY

Figure 2.3: Simulated COSY and TOCSY spectra cf an alanine spin system with three spins, NH, «H
and SH.
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In TOCSY the mixing between spins does not oceur instantancously, and the number of
spins intermediate between the initial spin @nd the detected spin can be adjusted by modifying the
isotropic mixing period of the experiment. In other words. it is possible to control the number of
correlied spins within a spin system. A short mixing time TOCSY may only record cross peaks
arising from adjacent protons but not from distant protons. An additional advantage of the TOCSY
experiment is that the cross peak multiplets are all in-phase rather than antiphase, so there is no
loss of stgnal intensity for broad lines due to cancelation of overlapping antiphase component.

TOCSY experiment provides redundant information to help resolving chemical shift degen-
eracy problem (more than one protons having the same frequency). TOCSY data are used as
constraints o confirm cross peak merge in the computer algorithm called Constrained Partitioning

Algorithm which is deseribed in section 2.6.

2.1.4 NOESY

In COSY and TOCSY experiments, magnetization transfer between spins is mediated by the
through-bond scalar couplings. The NOESY(Nuciear Overhauser Enhancement SpectroscopY)
[36-38], on the other hand, takes advantage of the through-space dipolar couplings. To describe
the NOESY experiment, consider a pair of spin I and S.‘which are in close spatial proximity so

as to have the dipolar interaction. Figure 2.4 shows the pulse sequence of NOESY, The first 96°

90 90 20

™ t

Figure 2.4: The NOESY pulse sequence. The maximum distance to give an observable cross peak de-
pends on the value of t,,.

pulse brings the magnetization of spin / down to the x — y plane. After the evolving period fy,

the second 90° pulse flips the magnetization of / back to the z axis. During the delay 7, cross
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relaxation between spin 7 and § oceurs and some of the spat 7 magnetization is transferred to 8
In the detection period f2, magnetization of spin § is detected but the FID signal (at the trequeney
of spin 8} is amplitude-modulated at the frequency of spin 7. The resuli s the cross peak (8;.80)
in the NOESY spectrum. By adjusting the mixing time 1, the maximum distance between spins
tor which cross peaks will be seen can be adjusted.

To interpret the intensity of a NOESY cross peak. one must know that NOE s a consequence
of modulation of the dipolar coupling between ditferent nuclear spins by the Brownian muotion of
the molecuies in solution. The NOE intensity can be related to the distance r between the pre-
irradiated (in the above example, spin 7) and the observed (spin §) spins by an equation of the

general form [2].

NOEO(Lf(r‘-) 2.n
{re)

The second term is a function of the correlation time t. which accounts for the influence of the
motional averaging process on the observed NOE. [n protein structure determination using NMR
spectroscopy, the NOESY experiments provide connectivities, such as dyn(, i 4+ 1), dn (i, i+ 1),
between sequentially adjacent amino acid residues. Those connectivities are the building blocks

for protein sequential assignment.

2.1.5 Heteronuclear 2D NMR

In all of the above NMR experiments, the magnetization transfer is going from proton to
proton, resulting in 'H-"H spectra. When two different kinds of nuclear spins are considered, the
magnetization transfer can be from 'H to X or from X to 'H, where X stands for 1*C, "N or "Pin
biomolecules. Since the chemical shifts of heteronuclei, '*C and SN, are usually well dispersed
while the protons tend to be closely overlapped, it is generally desired to place the crowded 'H
spectrum in F» dimension where it can be finely digitized and leave the better dispersed *C
or N spectrum in F; dimension. Another concern of heteronuclear NMR is that the natural
abundance of '*C and N is low (1.1% of 1*C, 0.37% for "*N in comparison with 99.9% of
IH). For example, only one percent of the protons will be attached to a '*C nucleus, the rest will

be attached to inactive '2C. Most recently presented heteronuclear 2D and 3D NMR experiments

1]
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require uniformly isotope labeled ¥ C or "N to overcome the sensitivity problem. The 'H-1"C and
'H="*N couplings are large (125-160 Hz for 'Jeyy and ~ 92 Hz for 'Jxy) [3]. and the efficiency
of magnetization transter is high even when spectral lines are broad for high molecular weight
muolecules.

A commonly used heteronuclear 2D NMR is HMQC(Heteronuclear Multiple Guantum Co-
herence spectroscopy) [39). The '*C or SN spins are recorded in the F| dimension while the

protons scalar coupied to the '*C or '*N are recorded in the F dimension,

2.2 Introduction to Heteronuclear 3D NMR Spectroscopy

In three-dimensional NMR spectra, correlations of three different frequencies are generated
through two different mixing times of an experiment. The mixing mechanisms are the same as
in 2D NMR. that is. COSY. TOCSY, NOESY types mixing can also be used in 3D NMR. 3D

NMR experiments are essentially combinations of two 2D experiments {Figure 2.5). 3D NMR

preparabon
€ 'yolution ditechion
1, tm t

HS

preparation

mining
evolution tm, erolution tn, detection
1, R 1

Figure 2.5: 2D and 3D general experiments. In the 2D experiment, the value of ¢, is incremented to
obtain the second time-domain information. In the 3D experiment, the value of 1y and ¢, are incremented
to obtain the second and third dimension,

experiments can be classified according to the observed nuclei. Homonuclear 3D NMR observes
proton frequencies. Heteronuclear 3D NMR is further classified to double resonance experiments

('H and '3C, 'H and 'N) and triple resonance experiments ('H, '*C and '*N). Since our study
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focuses on development of automated assignment tools for heteronuclear 3D NMR, the followimg
description 1s limited 1o heteronuclear 3D NMR.

Heteronuclear 3D NMR experiments separate the individual proton resonances aceording
to the chemical shifts of the directly bonded heteronuclei and simultancoushy produce important
additional information about the chemical shifts of the heteronuciei. Thus problems of proton
resonance overlapping that occur for large proteins can be overcome by separaiing the crowded

'H-'H 2D NMR plane into many planes of a 3D NMR spectrum as shown in Figure 2.6,

— o F.A"N)

FL("H}

F,(NH)

Figure 2.6: Schematic illustration of the relationship between N edited 2D and 3D spectra. The closed
circles represent three NH-aH cross peaks. which can be separated. in the corresponding 3D spectrum,
into three planes depending on the different chemical shifts of the amide nitrogen nuclei.

The spectral line width of NMR spectra is approximately proportional to the inverse of the
molecular tumbling rate and therefore increases approximately linearly with the size of the protein
[2,5). For large proteins ( > 10 kD) the 'H='H J couplings are smaller than the spectral line width,
making the 2D COSY spectrum ineffective. As mentioned above, the heteronuclear one-bond
couplings are much larger than *Jyy. As a result, the line broadening problems can be overcome
by using the heteronuclear one-bond couplings instead of ¥ Juy to uchit:\:e efficient magnetization
transfer of NMR experiments. '

The sensitivity, i.e., the signal-to-noise ratio achievable in a unit time interval, of 3D NMR is
generally lower than the 2D NMR counterpart [40]. To overcome the problem of ldss of sensitivity,
more efficient magnetization transfer steps are required because a greater percentage of the nuclear

spin magnetization is transferred from one nucleus to another, resulting in stronger signal intensity.

Heteronuclear 3D NMR takes advantage of the more efficient magnetization transfer (as much as
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50% to 90%) [5] between C or N and 'H so that a lower concentration protein sample can still
produce high sensitivity spectra.
We now briefly introduce some heteronuclear 3D NMR experiments which are used in the

following chapters.

2.2.1 Triple resonance heteronuclear 3D NMR

For moderate sized proteins ( ~ 20 kD), most of the one-bond J couplings are significantly
larger than the spectral line width [5]. This means that the magnetization can be transferred ef-
ficiently from one nucleus to its directly bonded neighbor. A number of triple resonance NMR
experiments have been designed, correlating mainly the backbone resonances. In chapter 3, a
computer algorithm is presented to achieve the protein backbone assignment using heteronuclear
3D HNCO, HNCA, HN(CO)CA, HCACO, CBCANH experiments. Schematic representations of
Figure 2.7 and listings in Table 2.1 show the nuclei that are correlated in the above 3D exper:-
ments. Those experiments are named according to the nuclei they correlated. For example, the

HNCO experiment correlates NH(i), N(i) and CO(i — 1).

Wneo H O H © @,H 0 noaco H @, ©

H @. 0
N - ®c e~ AN @ © N @@-N
HCH HCH HEH HCH
Z l Z l
residue i-1 residue § residue i-1 residue i
HNcA H H O @ H O cecand @.H o @ H o
“tN @ c §©-c~ m@{@_-c--@fc C~
HCH HCH H?‘H H.C M
Z Z
residue -1 residue § residua j-1 residue |

HNcoca H H © @.H O

residue i-1 residue i

Figure 2.7: Schematic illustration of the correlations shown in Table 2.1.
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Table 2.1: Correlations observed in the five triple resonance NMR experiments.

| HNCO [ HNCA | HN{COICA ]
COG —1) NGO NHG) Coli — 1) NG NH() C,i— 1 NG NH(@)
L Coli) N(#) NH()
RCACO 1 CBCANH [ ]
Ca (i) COo) He () Cali — 1) N() NH® ’
Coli—=1) COG=1) Ha(i—1) | Calti —1) N(i) NH()
Cali—=1) N{E-1) NH{(i-1
Cui —1) N(i=1) NHGE-1)

2.2.2 Double resonance heteronuclear 3D NMR

3D 'H-N TOCSY-HMQC experiment

This experiment provides intraresidue correlations between aliphatic and NH protons, infor-
mation which is important for identifying amino acid spin systems of proteins. 3D N TOCSY-
HMQC is a combination of 2D TOCSY and HMQC experiments. In the first step, magnetiza-
tion originating on aliphatic protons is transfetred to intraresidue NH protons via TOCSY type
isotropic mixing pulse sequence. At the end of the #; evolution period, 'H magnetization is am-
plitude modulated by the chemical shift of the directly bonded intraresidue 'SN nucleus. The
NH protons are finally detected during the t; detecting pericd. For each of the amino acids of a
protein, the F| dimension records the chemical shifts of the aliphatic oH, gH, ..., etc., the SN
is recorded in the F> dimension while F3 records the NH chemical shifts. Figure 2.8 shows the
correlated nuclei by the 3D 'SN TOCSY-HMQC experiment.

®® o "N TOGSY-HMQC
Y Hal(i) NLi) NH( i)
-/‘-@- C-Corv HPL() N(i) NH{ )
Hp2ti) N(i) NH{i)
@5® M) N NHG)
4 atc. etc. atc,

Figure 2.8: Correlations observed in the 3D 'N TOCSY-HMQC experiments.



2.2 Introduction to Heteronuclear 3D NMR Spectroscopy

2.2.3 Choosing between Three- and Two-dimensional NMR

As we have seen in earlier discussion, 3D NMR experiments overcome the peak overlap
problem by introducing the third dimension and separating overlapped peaks into a number of 2D
planes. In the case of heteronuclear 3D NMR, use of larger one-bond couplings reduces the risk
of peak overlapping arising from line broadening effect.

Three-dimensional NMR spectra provide some other advantages over 2D spectra as far as the
design of an automated software for resonance assignment is concerned. The first computational
advantage of using 3D NMR is that a single cross peak in a 3D NMR spectrum represents the
magnetic interactions between three nuclei and provides the relationships between three chemical
shifts . For example, a cross peak (4.29, 119.50, 8.35) in 3D >N TOCSY-HMQC spectrum repre-
sents the adjacency relationship between the chemical shifts of 119.50 and 8.35. In addition, the
chemical shifts of 8.35 and 4.29 must be in the same spin coupling system. To obtain the same
information from a 2D spectrum, one has to find a pair of 2D cross peak, in the above example,
a COSY peak (4.29, 8.35) and a HMQC peak (119.50, 8.35), having one chemical shift, 8.35, in
common. Finding such pairs is not as straightforward as it is in the case of using 3D NMR. Degen-
erate chemical shifts, e.g., (3.47, 8.35), may cause ambiguity when determining which chemical
shifts, 3.47 or 4,29, is in the same spin system with the resonance of 8.35 ppm.

The second advantage of using 3D NMR is that there are two ways of confirming the merging
of two 3D NMR cross peaks while there is only one way when merging two 2D peaks. For
example, to merge 3D peak (;,5;,6;) and (8;,6¢,4;), one can do so by verifying that the second
coordinate of peak 1 and the first coordinate of peak 2 are the same chemical shift. Additionally,

‘peak I’s third coordinate must also be consistent with peak 2's second coordinate.

3D NMR experiments tend to separate peaks away from each other, making peak shapes
more predictable. Peaks with better shapes are more suitable to be picked by automated peak
picking softwares, since noise peaks can be more readily separated from real signals.

There are, however, several disadvantages of using 3D NMR. The time required to acquire
a spectrum increases with the increase of dimensionality, For example, a typical 3D HNCO ex-

periment may take 3 days to acquire [5]. The sensitivity, i.e., the /N ratios, drops by v/2Z with
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increasing of one dimension [40].

Despite the loss of sensitivity and increase of acquisition time, in many cases, especially with
large proteins, 3D NMR experiments are the only choice to conduct successful resonance assign-
ments. Moreover, computerized analysis become more desirable in 3D and 4D NMR because of

the large amount of data present and the difficulty of visualizing 3D and 4D data spaces.

2.3 Protein structure determination _from NMR data

Remarkable progress has been made in applying NMR spectroscopy to the study of pro-
tein [3,41] in the past 15 years. NMR method provides complementary information about protein
structures to that from X-ray crystallography. For example, in NMR method, the solution condi-
tions can be varied over some ranges, the internal dynamics and chemical exchange phenomena
can be characterized and the effects of temperatures can be studied.

The NMR method can also be applied to other biomolecules, such as nucleic acids and
polysaccharides as well as small molecules.

In this section a short survey is devoted to the NMR methodology for protein structure de-

termination. In the next section, the resonance assignment, our research subject, is described in

detail.

2.3.1 Basic approach

Figure 2.9 depicts the steps for determining solution structures from NMR data. Multi-
dimensional NMR data are acquired as a series of 1D spectra. The time de_lays required for
frequency labeling in the evolution period result in loss of signal intensity, i.e., low sensitivity. In
addition to applying certain data manipulation techniques, higher concentration of protein sample
generally produces higher sensitivity. The typical concentration of protein sample required for 2D
COSY, TOCSY or NOESY experiment is about 2 mM. The required volume of sample solution
is about 400 1 [42). Higher concentration is desired provided that the protein is soluble and does

not aggregate, since this not only provides higher sensitivity but also permits shorter experiment
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Protein in solution, 0.5 ml, 2mM concentration
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Figure 2.9: The flowchart of the protein structure determination from NMR data.
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Once the NMR experiments are acquired, individual peaks in the spectra have to be aSsigned
to sequence-specific locations in the chemical structure of protein before the distance information
in the NOESY spectrum can be fully interpreted. Sequence-specific NMR resonance assignment
plays a pivotal role in the structure determination process. The objective of our study is to automate
the resonance assignment procedures using computers. The detailed manual assignment strategies
is described in the next section.

Fully analysis of the NOESY spectrum, the "NOE assignment”, provides many distance
constraints between the hydrogen atoms of a protein. As described in equation 2.1 , the inter-
proton distance can be calculated from the intensity of the NOE cross peaks provided a fixed
distance can be found to calibrate equation 2.1. Generally speaking, an NOE peak with strong

intensity may indicate that two protons are within 2.5 A of each other while a weak NOE peak

.corresponds to an upper limit of 5 A.
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Many other geometrical constraints can be inferred using various methods. One of the con-
straints available from NMR data is dihedral angles. Two dihedral angles are associated with each
peptide bond. Angle ¢ is the torsion angle between bond N — NH and C,, — oH while angle  is

another torsion angle between bond C, — «H and C — O.(Figure 2.10)

o

Figure 2.10: The torsion angles of an amino acid residue.

The dihedral angle ¢ can be calculated from the vicinal spin-spin couplings *Jyn_nn using

Karplus equation [43,44].
3Jati-NH = 6.4c08%0 — 1.4c0s9 + 1.9 (2.2)

where 8 = {¢ — 60 °| and 3J is given in Hertz. With the use of the above equation, measurement
of 3Jy—-NH present a complementary information to NOE distance constraints for calculating the
initial structure of a protein.

The next step is to determine an initial protein structure which is consistent with the thou-
sands of NOE constraints and, frequently, with some other conformational constraints. Distance
geometry is the most commonly used mathematical procedure by which distance constraints are
converted into three dimensional structures [45]. Distance geometry procedure is essentially a
projection from a high-dimensional space (in which thousands of distance relations can be accom-
modated) into ordinary three-dimensional space. The initiul structures calculated from distance
geometry almost always violate many of the experimental constraints. Subsequently structure

refinement is required to obtain a high resolution protein structure.
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2.3.2  The important role of sequence-specific resonance ussignment

As above described, NMR spectra contain information to determine biomolecular structures
in solution. However, none of the embedded information can be used without having the reso-
nances of the biomolecules assigned. In other words, it must first be determined which resonance
come from which nuclear spins. This is # common problem or process in all spectroscopies. The
process of associating specific spins in the molecule with specific resonances is called sequence-
specific resonance assignment. |

Sequence-specific resonance assignment is essential in three areas of the biomolecular NMR
applications: (1) biomolecular structural analysis (2) intermolecular interaction with biopolymers
(3) studies of molecular dynamics. The importance of resonance assignment in those three areas
is discussed below.

As a first discussion consider the determination of protein structures from NMR data. The
structural information mainly comes from NMR cross peaks. An NOE peak between two hydro-
gen atoms (or groups of hydrogen atoms) is observed if these hydrogens are located at a shorter
distance than approximately 5.0 A from each other. Without sequence-specific resonance assign-
ment it is impossible to determine to which the two hydrogen atoms a specific distance constraint
refers. On the other hand, combined with resonance assignment these distance constraints can be
attributed to specific sites along the protein chain and therefore the three dimensional structure can
be formed.

The second application where resonance assignment is pivotal is the studies of intermolecu-
lar interaction. For example, in the study of the protein-DNA binding interaction, the binding sites
are the first thing we want to know. The intermolecular NOE peaks can manifest short distances
between nuclear spins located in different interacting molecules. Without sequence-specific as-
signment, such NOE data merely indicate that the intermolecular interaction has occurred. When
combined with assigned resonances, the NOE data identify the binding sites of the intermolecular
contacts.

The study of protein dynamics has made significant progress during the past several years.

These studies rely on the observation of certain spectral properties in distinct NMR lines (peaks)
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that can be correlated with intramolecular motions. Once the NMR lines responsible for the study
region (such as a methyl group) have been assigned, it is then possible to investigate the desired

spectral properties in the corresponding spectra.

2.3.3 The difference benveen resonance assignment and NOE assignment

Before describing the strategy of protein resonance assignment . the sometimes confusing
terms "NOE assignment” is clarified first.

The sequence-specific assignment of protein resonances is a process of associating specific
nuclear spins in the protein with specific resonances, i.c., chemical shifts. The process may or
may not involve NOE data. In traditional resonance assignment strategy using homonucicar 2D
NMR, the interresidue connectivities are established from NOESY data. Recently, heteronuclear
3D NMR provides interresidue connectivities through a series of triple resonance experiments,
there is hence no eed of using NOE data.

NOE assignment is the analysis of the NOESY peak set to locate as many proton-proton
distance constraints as possible. The sequence-specific resonance assignment usually assign only
a few buckbone NOE correlations, such as den(f, i + 1), dyn(i, § + 1), dun(i, i +3), ..., ete, The
backbone NOE correlations provide the required sequential connectivities for placing amino acid
residues to their corresponding locations balong the primary sequence. The majority of the NOE
peaks, however, remain unassigned in the resonance assignment stage. The NOE assignment
process is responsible for determining all the short- and long-range interresidue NOE correlations.

The chemical shift degeneracy sonetimes makes the complete NOE assignment difficult in
the protein side chain region. For example, consider 10 protons resonating at 1.88 ppm. Now
there is an NOE peak (1.88, 2.43) to be assigned. It is difficult to determine which one of the 10
protons gives the above NOE peak.
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2.4 Introduction to manual assignment strategy

Resonance assignment has been a major hurdle for protein structural analysis from NMR
data. Significant progress has been made through the introduction of 2D, 3D even 4D NMR ex-
periments. Combined with systematic approaches for spectral analysis, although it is still tedious,
time-consuming work. the resonance assignment of protein spectra is no longer an unmanageable
task.

Except for resonance assignment, most other parts of the protein structure determination rely
heavily on computers. Therefore it is natural to ask ourself the question: is it possible to develop a
fully automated resonance assignment software? The ultimate goal of this thesis is to accomplish
this by developing as fully an automated assignment tool as possible. Before discussing aspects
regarding automated resonance assignment, we will describe the traditional but efficient manual

assignment strategy.

2.4.1 Manual assignment from homonuclear 2D NMR spectra

After the 2D COSY and NOESY experiments were first applied to proteins, it was realized
that the intra- and interresidue covalent linkage can be readily achieved provided that the NMR
data are of high quality. The idea for systematic assignment of proton resonances in protein was
first proposed by Wiithrich et al. [4] in 1982, Another approach, proposed by Englander and
Wand [46], uses the same COSY and NOESY information but in different order. This approach is
referred to as the Main-Chain-Directed (MCD) assignment.

Wiithrich’s assignment strategy includes the following steps:

l. The spin systems of the protons in individual amino acid residues are identified using as
many as possible through-bond 'H-'H connectivities, which are mainly provided by 2D

COSY experiments.

2. Sequentially neighboring amino acid 'H spin systems are identified from observation of the

sequential NOE connectivities dyn(i, § + 1), dun(i, § + 1), or possibly dan(i, i + 1).

3. Combining the information in the above, it is possible to establish chains of amino acid spin
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systems corresponding to peptide segments that are sufticiently long to be unique when
compared to the primary sequence of protein. Sequence-specific assignment can then be
obtained by matching the identified spin system chains with the corresponding segment in

the independently determined protein primary sequence.

2.4.2  Identification of amino acid proton-proton spin systems

The identification of proton-proton the spin systems of individual amino acid residues is
usually achieved by analysis of 'H COSY spectrum in D> solution after replacement of all labile
protons with deuterium. One tries to collect all J-coupled resonances arising from the same
amino acid residue. The 20 common amino acid residues produce 10 different COSY connectivity
patterns for the aliphatic protons and four pattern for the aromatic rings. Figure 2.11 shows all
of the 14 patterns on COSY spectrum. In principle, it is impossible to distinguish a spin system
with one eH and two BH’s to be Ser, Cys, Asp, Asn, Phe, Tyr, His or Trp. All have the sume
connectivity pattern on a COSY spectrum (Figure 2.11). Howevef, different amino acids have
different chemical shift ranges, making it possible to reduce the candidate number by inspecting
the chemical shifts of the deduced spin systems. For example, serines have relatively downfield
chemical shifts for their two gH’s (~ 3.8 ppm), making serine an easily identified spin system.

In crowded COSY spectrum, spectral overlap and chemical shift degeneracy make the iden-
tification of unique patterns difficult. A RELAYED-COSY or TOCSY spectrum, which provides
redundant information about the amino acid patterns, often allows the ambiguous assignments to

be solved. An example is given in section 2.6.

2.4.3  Sequential assignment via proton-proton NOE

Using 2D COSY and possibly TOCSY spectra the 'H amino acid spin systems can be iden-
tified. As show in Figure 2.11, certain amino acids have unique connectivity patterns, such as Val,
Ile, Ala, Gly, Leu and Thr. It is possible to assign the deduced spin systems to those unique amino

acids directly. However, for AMX-type spin systems (one aH and two H’s), unique assignments
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Figure 2.11: The simulated COSY coupling patterns of the 20 common amino acids.

WA

are generally unachievable, Wilthrich [3] proposed four different methods to classify the amino
acid types, they are summarizcd in Table 2.2.

Before the NOE information can be used to create sequential connectivities, the deduced
spin systems must be classified according to one the the above amino acid types. This task is
achieved by inspecting the chemical shifts and the spin coupling patterns. In chapter 5 an auto-

mated approuch is described where the determination of amino acid types can be accomplished by
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Table 2.2: The four different methods to classify the 20 amino acids,

number of amino )
category acid types in Descriptions
this category
1 8 Gly. Ala, Vad, Leuw, lle, Thr, (all «CH — SCHo ). (adl others)
2 13 Gly. Ala. Val, Leu, Hle, Thr, Phe, Tyvr, Trp. His
Ser. (Cys, Asp.Asn), (all others)
3 13 Gly, Ala, Val, Leu, U, Thr, Phe, Tyr, Trp, His
Ser, (Cyvs.Asp.Asn), Pro. (Lys.Arg), (Met,Glu,Gind
4 18 Gly. Ala. Val, Leu, Ile, Thr, Phe, Tvr, Trp, His
Ser, Cys. (Asp.Asn). Pro, Lys, Arg, Met, (Glu,Gln)

computers.

Wiithrich and his coworkers [3] also found that there is a very high possibility that at least one
proton among the NH, ¢H, or 8H from one residue will be near (less than 3.5 A.i.c.. within the al-
lowed NOE range) to the NH of the following residue. Thus by searching appropriate dyn. dnn or
dgn(i. i + 1) NOE correlations in the NOESY spectrum, it should be straightforward to step from
one residue to the next along the primary sequence of the protein. Once the connections between
spin systems are established, the connected spin systems must be matched with the known protein
primary sequence. To illustrate the final sequential matching, consider the following example.
From the NOESY spectrumn, an 8-residue long polypeptide chain was found. The corresponding
amino acid types of the 8 residues were determined previously as Ala-Val-Leu-O-Thr-A-Gly-0
where O represents all the «CH — BCHs spin systems in the category | of Table 2.2, and A rep-
resents the amino acid type including Pro, Lys, Arg, Met, Glu and Gin. To find an unambiguous
matching of the 8-residue chain on the amino acid sequence, one has to inspect the protein primary
sequence to make sure there is only one segment fulfilling the Ala-Val-Leu-O-Thr-A-Gly-0 pat-
tern. If such a unique matching is found, the sequence-specific assignment for the 8-residue chain
is obtained. If not, the length of the connected polypeptide may need to be increased in order to

obtain a unique matching.

24
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244 Manual assignment from heteronuclear 3D NMR

Heteronuclear 3D NMR experiments make use of larger one-bond couplings. "Jy_x. where
X='*C or PN, to overcome the spectral line broadening problem. As described in section 2.2.1,
several triple resonance NMR experiments have been designed to conduct the sequence-specific
resonance assignments without using crowded NOESY spectta.

The interresidue correlations are traditionally provided by NOE type experiments where
through-space dipolar coupiings contribute to the observed cross peaks. Certain triple resonance
NMR experiments, such as 3D HNCA, HNCO, HCA(CO)N, also provide interresidue correlations
where one-bond scalar couplings contribute to the observed cross peaks. Properly combining sev-
eral triple resonance NMR experiments. it is possible to establish a sequential walk from one
residuc to the next without using NOE information. Figure 2.12 is an example where assignment
is carried out by overlapping two previously assigned frequencies in each subsequent spectrum.

In the first two steps (HNCA and TOCSY-HMQC), the NH and "N frequencies of residue (i)

NH| N |HA|[cAjcO NH N HNCA

+ NH| N |HA|CA cCO NH N TOCSY-HMQC

NH| N [HA|CA |CO NH N

+ NH N |HA|CA(CO NH N HCACO

NH| N |[HA[CAICO NH N

4+ NH N JHA|CACO NH| N HCA(CO)N

NH| N |HA|CA |CO NH | N

+ NH N HA CA|CO NH| N HNCO

NH| N |HA|CA |CO NH [ N

Figure 2.12: The assignment scheme using heteronuclear 3D NMR based on the through-bond correla-
tions. The assignment is conducted by overlapping two previously assigned frequencies in each subse-
quent spectrum,

are used to obtain the assignment of the C, and aH of the same residue. Then, the C, and eH
frequencies are used to obtain assignments for the CO of residue (i) and I5N of residue (i + 1)
with the HCACO and HCA(CO)N experiments. Finally, the CO and '*N frequencies are used
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to find the NH proton frequency of residue (1) with the HNCO spectmim, thus completing one
cyele of the assignment. In chapter 3. a similar but more figorous algorithm s deseribed to assign
the protein backbone resonances using heteronuclear 3D triple resonance experiments. Subse-
quent assigniment of protein side chain can be conducted using 2D DQF-COSY., TOCSY or 3D

HCCH-COSY/TOCSY. The corresponding automated approaches are deseribed in chapter 4,

2.5 General description of the automated resonance assignment

We have discussed the importance of resonance assignment in the protein structure determi-
nation from NMR data. The actual strategy to carry out & manual assignment is also described.
In this section, the characteristics of automated rescnance assignment tools are discussed, some
important problems and the limitations of automated assigniments are also addressed.

The strategy of automated resonance assignment essentially parallels the manual assignment
strategy. The assignment is divided into two parts: the spin system identification and the estab-
lishment of sequential connectivities. Although integration of resonance assignment and structure
calculation [20] have been proposed, almost all of the published attempts are designed for spin
system identification, sequential assignment or both. In other words, structure calculations are
usually separated from resonance assignments.

In terms of a complete automated assignment software, an automated tool must be pro-
vided to extract spin systems from available spectral data. Furthermore, an automated amino
acid type determination tool should also be provided. As for the sequence-specific assignment,
both common approaches, i.., use of interresidue NOE and use of triple resonance heteronuclear
3D NMR, should be taken into consideration. The design must allow the sequential connectiv-
ities to be created in a reasonable amount of time, for example, in several hours. A variety of
algorithms has been applied to implement the above requirements, including the ones using sys-
tematic approaches [20] as well as artificial intelligence such as expert systems [12, 13], neural
network [47,48], constraint propagation [19] and genetic algorithm [49].

An important characteristic of a good automﬁted assignment software is that it should have

the flexibility to accept many different types of NMR data from various experiments. NMR spec-
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troscopists are continuously creating novel experiments. The advance of NMR hardware and
biotechnology also enable them to design specific experiments for a specific protein sample. A
well-designed automated assignment software should not restrict itself to certain types of exper-
iments. However, algorithms designed for specific types of experiments sometimes outperform
general-purpose algorithms, because general-purpose algorithms might be unable to take full ad-
vantage of all the information embedded in a spectrum.

Although the ultimate goal of resonance assignment is complete automation, human inter-
vention is inevitable in today’s automated assighment tools simply due to the complexity of the
spectral data which make complete automation difficult to achieve. An automated assignment
software should not become a black box which prevents users from understanding the internal ac-
tions and process. It is better to allow the software to have the capability of interacting with users
at various stages during the assignment process while keep the integrity of the software from be-
coming merely a bookkeeping tool. As an example, our spin system extraction algorithm, which
is described in chapter 3 and 4, generates output files containing all the deduced spin systems.

Sometimes degenerate chemical shifts result in strange spin systems. Such a case is a spin system

‘with one aH and 4 SH’s that can be generated due to degenerate ¢H chemical shifts. Although

it is easy for computer algorithms to determine which spin systems are incompatible with the 20
common amino acids using the spin coupling patterns, human inspection might still be necessary
to separate the degenerate chemical shifts.

To obtain accurate assignment, a program should ideally be able to use as much information
as is available. Knowledge about the structural information, such as a helix, coil or 8-strand, may
make it possible to predict the chemical shift range of certain protons. In subsequent assignment,
the known chemical shift ranges can be treated as an additional evidence to confirm or deconfirm
the assignment. The experimental conditions under which the spectra are acquired may help users
to predii:t which peaks are present in the spectra, and which aren’t. A mutant or homologous
protein may be assigned rapidly as long as the original protein has been sequentially assigned [50,
51]. A 2D 13C HMQC spectrum may help to unfold the '3C chemical shifts of a 3D spectrum, Such
misceltaneous information sometimes isrindispensable for a successful resonance assignmeht.

In terms of the quality of the NMR data, a good automated assignment tool should be able to
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overcome problems caused by false and missing peaks.  The software should tolerate peak missing
to a considerable extent just as it should also be to reject false data. Again our own programs are

chosen to illustrate these points. A leucine is shown in Figure 2.13(a). It comprises 11 hydrogen

(a) (b} () (d)
& pH  sH pH
NH oM -j\jﬂ Q N oH L O NH oM }\-m BH NH aH BH yH oH
O | Q o= O (D OO L O )
o0 oD (.
BH' SH pH §H pH
leucine

Figure 2.13: A leucine and its three possible candidate spin systems. (a) The nornmal leucine spin system,

{b) A leucine without the SH-SH’ connection. (c) A leucine without one dH. (d) A leucine without one
BH and one 5H.

atoms and 8 3Jy_y couplings. Suppose the 3.1,;14_,;“' cross peak is missing duce to the broad
diagonal in the COSY spectrum. The extracted spin systern will probably look like the one shown
in Figure 2.13(b). Furthermore, after missing another peak of the methyl group, the deduced
spin system is shown in Figure 2.13(c). Finally, another missed §H redﬁces the spin systems to
the one shown in Figure 2.13(d). According to the spin system pattern recognition algorithm we
designed, all the spin systems in Figure 2.13(b), (c), (d) can be matched with Figure 2.13(a). In
other words, they all have chances to be assigned to a leucine. Certainly Figure 2,13(b) has the
greatest probability to be assigned because its spin coupling topology has the highest similarity
with an ordinary leucine.

To reject faise peaks, automated assignment algorithms should inspect all logical relation-
ships that exist between the suspicious peak and its surroundings. A genuine peak must have
several coupled neighboring peaks whereas a false peak may have one connected neighbor but
less likely to have two or three neighbors.

Data processing prior to assignment also plays a signiﬁcaht role in the design of automated
assignment softwares. Spectral artifacts which might be confusing in automated assignment proce-
dures should be removed prior to the start of the actual assignment processing. Before performing

a Fourier transform on the time-domain data, zero filling, linear prediction [52] and Karhunen-
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Loéve transformation {53] may be applied. After Fourier transform, ridges of 1] noise can be
removed manually [54,55].

The most critical pre-assignment processing is the peak picking procedure. The simplest
approach is ¢ither to pick all points above a given threshold or to use a maxima detecting procedure
to find local maxima. These simple approaches seem incapable. to date, of providing reliable peak
lists, a great volume of peaks, many of them noise, can be generated. A more advanced approach is
to implement user-defined peak shapes (for example, ellipsoid) and search for peaks having those
shapes in the spectrum. Garrett ef al. [56] have designed a software called CAPP based on this
approach. Artificial neural networks [57], after training with examples, also have the capability to
distinguish real from bad peaks.

Spectral alignment is another pre-assignment problem. Almost all assignment strategies use
several different types of spectra. The same hydrogen atom may appear at slightly different po-
sitions in those spectra. This chemical shift inconsistency can cause problems when comparing
chemical shifts or peaks from two or more different spectra. If the inconsistency is systematic, i.e.,
all nuclear spins shift toward the same direction with roughly the same distance, the correction is
straightforward. Otherwise a usual approach is to introduce tolerance values in the actual assign-
ment stage. Every comparison between two chemical shifts from different spectra must pass the
tolerance. Of course, some incorrect matches are inevitable.

Some people argue that automated assignment tools don’t have much use simply because
computers can do no more than human beings can. Although the argument is true, this doesn’t
imply that the computer-assisted assignments are valueless. Complete automation of resonance
assignment still remains a goal due to the complexity of the task. However, properly designed
automated assignment softwares do reduce the effort and the time required to assigh a spectrum,

Another common argument is that automated assignment tools should be able to get the
results with fewer data than human need. Many of the present automated assignment programs
simply emulate manual assignment strategies. It is apparent that to achieve the goal of "use fewer
NMR experiments” one must implement different assignment strategies exclusively for computers.
We would like to emphasize, however, that computer programs cannot achieve what people can’t.

I a person cannot get the assignment using a limited data set in an unlimited amount of time, there



2.6 Spin system identification

M

is no reason to ask computers to succeed.

Manual assignment is not 100% deterministic. That is, independently obained assigniments
from two persons might differ because of the human bias and intuition participated during the
assignment period. On the contrary. every step is deterministic in computer assigninent.  Intu-
ition and bias are not involved. 1If a person is able to assign a protein NMR data without using
any personal bias or intuition, i.e., every step must have a clear logical basis, computer-assisted
assignment tools should be able to produce identical assignment in much shorter time. This is

probably the main advantage of using automated resonance assignment tools.

2.6 Spin System Identification Using Constrained Partitioning Al-
gorithm (CPA)

2.6.1 Introduction

Parallel to the manual assignment strategy, automated assignment begins with the identifica-
tion of spin systems. Here the meaning of “identification” is two-fold. First of all the spin systems
must be extracted from NMR data. Secondly, the amino acid types of those spin systems must be
determined. Traditionally, 2D DQF-COSY and TOCSY provide sufficient NMR data for extract-
ing spin systems, at least for moderate sized proteins. The amino acid types are determined mainly
by human experience along with possibly other available chemical information. A computer algo-
rithm to extract spin systems from 2D 'H DQF-COSY and TOCSY spectra is introduced in this
section. The remaining amino acid type determination task is discussed in the next section where a

spin pattern recognition algorithm determines the amino acid types of spin systems automatically.

2.6.2 The Constrained Partitioning Algorithm

The most commonly used 2D NMR experiments for assigning protein resonances are DQF-
COSY and TOCSY. Both experiments observe proton-proton couplings and represent them as

cross peaks in the NMR spectra. The COSY experiment observes couplings between adjacent
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protons (within three bonds) while TOCSY experiment observes long range correlations between
all protons within a spin coupling system.

The algorithm responsible for the spin system extraction is called the Constrained Partition-
ing Algorithm (CPA). It partitions NMR data into amino acid spin systems based on fulfilling
certain constraints. CPA takes the peak list of DQF-COSY spectrum as the major data input. The
TOCSY peak list is treated as a database where constraint peaks can be found. The basic operation
CPA performs is the cross peak merge. CPA attempts to find all cross peaks belonging to a spin
system, merges these peaks together and constructs the spin system. For example, a serine spin
system is composed of four spins and four cross peaks: an NH, an aH ,two gH’s, NH-oH, oH-

BH;, aH-FH; and BH,-BHa2 (Figure 2.14). Merging one cross peak at a time, CPA can construct
BH

HN
~TN NH aH
CH — CH,— OH

p
~c0 ° P

pH'

Figure 2.14: A serine and its spin coupling system.

bl

a serine spin system in three steps. Before discussing the details of the spin system constructions,
the basic operation of merging of two peaks is first described.
Each 2D NMR cross peak correlates two spins. Therefore, as a result of the merge of two

peaks, a three-spin system is created. Figure 2.15 shows such a simple merge. A cross peak (§;,

Figure 2.15: Schematic illustration of the merge of two 2D NMR cross peaks.
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§;) is merged with another peak (§;+, ;). The condition to justify the merge is that {5, — ;| be
less than a merge tolerance, which is a value with the unit of chemical shift. A three-spin system
{i. j. k} can be thus formed. In a crowded NMR spectrum, many cross peaks might fulfitled the
above merge condition. That is, other than the peak (§;, 8;). one might also observe (§;», &),
(8prs B), ... . ete., whose first coordinates are all located within the merge tolerance of §;. A
way is needed to distinguish the peak that should be merged from those that simply satisfy the
tolerance requirement. CPA implements a constraint checking procedure which requires each
candidate peak, (8, &), (8;#, &), (8, &), - .. . to provide additional evidence, i.c., a constraint
peak, to support the merge. CPA has a ranking system which selects the most reliable evidence
from all the possible candidates. The actual merge takes place between the original peak and
the candidate having the most reliable evidence. The evidence peaks usuaily come from COSY

or TOCSY spectrum. Figure 2,16 shows two typical merge CPA conducts. In Figure 2.16(a), a
(@)

C{oj J J
i . .

& k' k
{b)
| S L I3 J ki
o000 + O O o—0—-0

Figure 2.16: Two typical merge conducted by algorithm CPA,

COSY or TOCSY constraint peak (3, 8;) is required to construct the three-spin system {i, j, k).
In Figure 2.16(b}, only a TOCSY constraint (8, 8x+) can provide the eligibility of the merge. The
mechanism shown in Figure 2.16 reduces the chance of incorrect merge and makes it possible
for CPA to process overlapped NMR spectra. Later in this section the limitations of CPA are
discussed where the ambiguities that CPA is unable to resolve are listed. The ranking system CPA
implements calculates a parameter which measures the deviation of the chemical shifts between

merging peaks. Suppose two COSY peaks (8;, ;) and {3+, &} are about to be merged. This means
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|8; — &;| is less than a merging tolerance 7,,,, typically 0.02 ppm for proton. Another TOCSY peak
{8+, &), the expected constraint, is also observed. Both {§; — &;+] and |§; — dy’| are less than

another chemical shift tolerance T... The ranking parameter A is defined as

A=1—-d xd» 2.3)

where
dy = 18; — 8|
To
d = 18; — &;¢| + 16x — S|
=T 2T,
0<d <1since|§; — 8| < Ty
0 < ds < Isince 18; — ;-\, |8 — 8| < T,
therefore

0<A<]|

Figure 2.17 is the pictorial representation of the ranking parameter. Depending on how close

J J
X
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¢
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i T g

Figure 2.17: Pictorial representation of the variables used in calculating the ranking parameter.

&; and &y, 8; and &, &, and &y are, the ranking parameter A bears a value from O to 1. A higher
value of A corresponds to a better match between the three peaks, hence, a more reliable merge is
expected. '

We now proceed to describe the construction of amino acid spin systems . CPA’s main goal is

to extract spin systems from NMR data. The extracted spin systems are processed as mathematical
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graphs and represented as adjacency lists [58]. Each graph represents an individual spin system.
The nodes of a graph correspond to the spins while the edges of a graph correspond to the cross

peaks. Figure 2.18 illustrates a graph and its corresponding spin system. The following pseudo

1 2 3
3 H H H
node IAdjacent nodes | | |
1 2 1]2 N—C—¢C
211,34 |
3|24 H
4123 4
4 possible structure

Figure 2.18: A spin coupling graph, its mathematical representation and the corresponding chemical
structure,

codes are responsible for constructing spin systems from NMR data.

void CreateSpinSystem{Peaklist_type 2D DQF-C0OSY, 2D TOCSY)
{

// Input : 2D DRF-COSY and TOCSY peak lists

// Output: spin systems represented as graphs

for each input COSY peak i |
add peak i into an empty spin system §; ;
for each input COSY peak j {

in the COSY peak list, find a peak n which is the most likely peak
to be merged with peak j ;

if peak j is a member of the spin system §;
add peak n into §;:

else if peak n is a member of the spin system §;
add peak j into §;;
]

}
output all §;

}

The above segment of computer codes produces N spin systems for a COSY data set con-
taining N peaks. There are, however, usually many redundant spin systems being formed. For
example, starting from cross peak 1, CPA might construct a spin system containing four peaks
{1,2, 3, 4}). Furthermore, the same spin system can also be created starting at peak 2, 3 or 4 in-

dependently. In this case, four identical spin systems can be created starting from four different
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peaks. A post-partitioning subroutine should be conducted over the extracted spin systems to

remove such redundancies.

2.6.3 Discussion and Limitation of CPA

Some technical problems related to CPA are discussed here. The first one involves symmet-
rical peaks. Homonuclear 2D NMR experiments produce symmetrical cross peaks on two sides of
the diagonal. Since both dimensions record proton frequencies, the two symmetrical peaks have
redundant information. Hence the symmetrical cross peaks are removed in CPA. The processed
peak data is then sent (o the subroutine CreateSpinSystem( ) to initiate the real partition-
ing. Another technical problem involves chemical shift tolerances. As seen in equation 2.3, two
types of tolerances are introduced. The tolerance 7, is used for merging two peaks. Another
tolerance T, is used for comparing evidence peak with the query peaks. In Figure 2,17, T, is
the tolerance for merging peak 1 and 2 while 7. is applied to judge if peak 3 is qualified as an
evidence for the merge. The “to-be-merged” peaks usually come from the same NMR data, in
this case, a 2D DQF-COSY spectrum. However, the evidence peak might come from a TOCSY
spectrum which could have a small inconsistency in the chemical shift positions. The tolerance
T might then need to be set to a greater value than 7,, to reflect this inconsistency. The default
values for 7, and T, are set to 0.02 ppm. The users are encouraged to set reasonable values for
those tolerances based on their knowledge about the NMR data, Using smaller tolerances means

that all merge is carefully verified, so that the risks of incorrect merge are low. However, small

tolerances might leave a number of peaks unpartitioned, that is, many peaks might be unable to

find their coupling partners. On the contrary, large tolerance values risk merging incorrect peaks
into a spin system which might have strange (unrecognizable) spin coupling pattern. Applying
appropriate tolerances relies on human experience and a trial-and-error approach may be needed
for determining appropriate tolerances.

CPA is designed to overcome spectral overlap. The adoption of additional constraints during
the merging stage helps to resolve many spectral overlap problems. Moreover, the number of

constraints used in the algorithm is not fixed. If a single TOCSY peak does not resolve the spectral
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ambiguity, one can add other constraints such as an additional 2D spectrum or the third coordinate
of a 3D NMR spectrum. In practice. if only 2D COSY and TOCSY data are provided, CPA fails 1o
separate certain spin systems under conditions of severe chemical shift degeneracy. In Figure 2.19

two amino acid residues having degenerate NH and oH resonances are shown. Spectroscopists

@)
NH  aH W,  pu;
Rewidue | 855 412 309 244
Residup | BS54 413 278 219 e}
(855 4.12) 278
) 100 (412 309)
(855 4.12) _ (412 244) (855 4.12) /
{412 309} _ (309 244) {412 309}
(412 244) 855 4.12\ (412 244) £ _.2m
(309 244) ”" (200 244) 854 — 413
i (3,13 2.78) \
(854 413) {413 219} 2.19
278 (413 278) (278 219)
{854 4.13) P (4.13 219}
{4.13 3.08) 854 — 413 (278 2.9) 218
{413 249} ’ ’
{278 2.18) ~
2.18

Figure 2.19: Schematic illustration of the chemical shift degeneracy problem. (a) Two spin systems
having degenerate NH and aH chemical shifts. (b) If a small chemical shift tolerance is chosen in CPA,
it is possible to resolve the degenerate NH and aH. (c) if a larger tolerance is used, an overlapped spin
system will be created due to the degenerate NH and aH resonances.

might be able to distinguish the cross peak (8.55, 4.12) from (8.54, 4.13). However, it is difficull
for computer programs to separate such nearly overlapped peaks. The cross peak data for the two
hypothetical amino acid residues are listed in Figure 2.19. In Figure 2,19(b), a small tolerance,
e.g., 0.005 ppm, is chosen. This tolerance is able to resolve the overlap which occurs at the two
degenerate NH and ooH peaks. In Figure 2.19(c), an ordinary tolerance of 0.02 ppm is chosen.
In this case, CPA considers peak (8.54, 4.13) a redundant peak of (8.55, 4.12) and discards the
former. A large spin system containing 6 resonances is constructed as a result. As mentioned
above, although a small tolerance solves the problem of chemical shift degeneracy, using small
tolerances may leave a lot of peaks unpartitioned. In practice, a moderate tolerance (0.01 to
0.03 ppm) is preferred. On the one hand, there won’t be too many unpartitioned peak. On the
other hand, unreasonably large spin systems generated by a small tolerance can still be manually
examined and resolved.

In general, CPA is unable to resolve the spectral overlap caused by two or more degenerate
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resonances within a spin system. An extension of the 2D CPA aigorithm is described in Chapter
4 where heteronuclear 3D NMR data are used to enhance the capability of overcoming spectral

overlap.

2.7 Determination of amino acid types

2.7.1  Introduction

An algorithm called CPA (Constrained Partitioning Algorithm) is described in the previous
section. CPA traces und extracts spin coupling systems from homonuclear 2D NMR spectra. The
observed spin systems have to be sequentially assigned to the proper positions within the primary
sequence of the protein. Before the sequential assignment can be done, the identities, the amino
acid types, of those spin systems must be determined. Although it is difficult to determine exactly
to which specific amino acid an observed spin system corresponds, it is, however, possible to find
a number of amino acid candidates to which a spin system may be assigned. Traditionally this
tusk is done munually. Knowing the number of protons and their chemical shifts, experienced
spectroscopists are able to ideritify the amino acid types of observed spin systems. A simple
example using the traditional strategy to determine a glycine spin system is that almost all spin
systems having one proton with chemical shift around 8 ppm and the other two protons around 4
ppm can be identified as glycines.

In this chapter. attempts are made to automate the amino acid type determination. Algo-
rithms are proposed to allow computers to "visualize™ the spin system patterns, i.e., to recognize
distinct spin patterns. The recognition is based on chemical shift as well as topological matches.
In the example of glycine, the spin pattern recognition algorithm not only makes sure the observed
chemical shifts are indeed in the expected ranges but also examines the topology of the pattern,
i.e., there are fewer than 3 spins and they should be connected ta each other through scalar cou-
plings. To achieve this goal, the proposed algorithms use the mathematics of graph theory and the
simple fuzzy subset theory. Background of those topics is introduced in first followed by detailed

description of the pattern recognition algorithm.
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The pattern recognition algorithm was originaliy proposed and applied to homonuclear 2D
NMR data by Xu er al. {25] in 1993. An extended version is described in chapter 5 where the

application is extended to heteronuclear 3D NMR.

2.7.2  Background
2.7.2.1  Introduction to graph theory

The mathematical graphs are graphical representations of nodes and lines. The nodes are
called vertices and the linking lines are called edges. When the linking lines are directed, they are
referred to as arcs. Mathematically speaking, a graph consists of a vertex and an edge sets. The
exact definition of graphs can be given as the follows [59]: « graph G consists of a vertex set V on

which a pair relation € is defined.
Gg=(V£E) (24)
A set of vertex pairs can be defined by means of the pair relationship. The vertex pairs can
be ordered or unordered. (see Figure 2.20) Two vertices are adjucent if they are connected by

Unordered ordered vertex
vertex pair (a,b) pair (a,b)

O—® O—O®

Figure 2.20: Ordered and unordered vertex pairs.

an edge. The linking edge and the two vertices are said to be incident to one another. Grapﬁs
composed only of arcs are called directed graphs. The number of edges incident with a given
vertex is called the degree, g, of that vertex. Two degrees are assigned to each vertex in a directed
graph. The indegree, g~, counts the number of arcs ending on this vertex. The outdegree, g*,
counts the number of arcs originating from this vertex. The concepts of indegree and outdegree
are used later in this chapter. E

Figure 2.21 shows a pair of ordered graph. A linearly ordered graph is the graph with both

indegree and outdegree of each vertex equal to 1. A partially ordered graph is the grap whose
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Figure 2.21: Lincarly ordered and partially ordered graphs.

indegree and outdegree of each vertex can be greater than 1. A walk is a sequential collection
of edge pairs, originating from one vertex and ending on another. There is no restriction on how
many times a vertex can be traversed through a walk, For directed graphs, of course. the traverse

can only be conducted through the direction of the arcs.

2.7.2.2 Gruph Representation

It is necessary to represent the mathematical structure of a graph using some kind of data
structure in order to solve graph related problems by computer programs. Since our pattern recog-
nition algorithm demands random access to the vertices of a graph, in the implementation, graphs
are represented as adjacency lists where each vertex keeps an array holding all the adjacent ver-

tices. A typical implementation may look like this:

//MAX is the maximum number of vertices in the graph
typedef int Adjacencylist_type[MAX];
typedef struct {
int n;
int valence[MAX]:
Adjacencylist_type A[MAX];
JGraph_type;

2.7.2.3 The Concept of Fuzzy Subsets

The concept of fuzzy subsets was first introduced in 1965 by Zadeh [60]. It is a novel way of
representing fuzziness happened everyday in our life. The fuzzy subset theory s a generalization
of conventional mathematical set theory.

There are two kinds of imprecision or vagueness in data or information recorded from our

environment, The first one is statistical, like flipping up a coin, the outcome is not certain but
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can be predicted statistically, The other imprecision is non-statistical. For example, two persons
are much alike. One application of fuzzy subset theory is to quantitatively describe the similarity
between two objects. This is also the main feature which is applied to our amino acid recognition
algorithm.

For conventional sets, the mt:mbership of the elements is determined by precise properties.
For example. the set of numbers H from 6 to 8 is crisp; we write H = {(r e R | 6 < r < 8}

Equivalently, H is described by its membership function, my:

1 : 6=r=<38
my(r) = (2.5
0 : otherwise
The above membership function corresponds to a 2-values logic, that is, is an element of the sel
or isn’t.
On the other hand, a fuzzy subset contains elements having imprecise properties which in
turn lead to multi-values membership function. The rigorous definition of the fuzzy subset was

given by Zadeh {61]: let E be a set, denumerable or not, and let x be an clement of E. Then a

fuzzy subset A of E is a set of ordered pairs

{x (N VreE ‘ (2.6)

where 3 () is the grade or degree of membership of v in A. Thus, if 15 (x) takes its values ina
set M, called the membership set, one may say that x takes its value in M through the membership
Jfunction j15 (x). Note that A is called a fuzzy subset and not fuzzy set, since the reference set E is.

not fuzzy.

Consider the following example. A finite set with five elements:
E = (x|, x2, X3, X4, X5} 2.7
A fuzzy subset A can be defined by the expression |
A={(x1102),(x210), (x310.3), (x4 | 1. (x510.8)) 2.8)

where x; is an element of the reference set E and where the number placed after the bar is the
value of the membership function for the element. Fuzzy subset A contains a little x;, does not

contain xa, a little x3, contains x4 completely, and a large part of xs.
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2.7.3  Amino acid type identification

The through-bond correlations observed in NMR spectra can be used to extract spin sys-
tems. The computer algorithm CPA (Constrained Partitioning Algorithm), which is described in
section 2.6, automatically extracts amino acid spin systems using through-bond scalar couplings.
CPA takes input from correlation spectra, such as 2D DQF-COSY and TOCSY. Figure 2.22 is a

sample spin system extracted from CPA.

@_ Node |chemical shift adjacency list
N 1H |8.969 2
' y 2H |4.432 13,5
®_@\ ‘ 3H |2002 245
N aH (o8 T 3.5
5H |2.120 2,34

Figure 2.22: A five-spin system. Its spin coupling graph and the corresponding mathematical represen-
tation using an adjacency list.

The spin system shown in Figure 2.22 has five spins. An adjacency list is used to represent the
connectivity relationships between those five nodes. An important remaining question is which
amino acid does this spin system belong to?”. It might be a leucine as there are two SH’s and one
yH. It might also be a methionine, a glutamine, an arginine or a lysine since they all have two
BH’s and one yH. On the other hand, it is obvious that this observed spin system must not be a
glycine, an alanine, or a serine . .. , etc., because these amino acids don’t have the yH. This kind
of analysis inspired us to design computer programs to automate the determination of amino acid
types. A spin pattern recognition algorithm was developed to accomplish this task. The algorithm

determines the amino acid types of the extracted spint coupling systems using topological analysis,

such as the numbers of SH and yH, as well as chemical shift analysis. Using Figure 2.22 as an |

example, suppose the two BH’s have chemical shifts 2.022 and 2.120 ppm, respectively. It is more
likely that the query spin system is a glutamine than it is an arginine, because the former has the
expected SH chemical shifts of 1.92 and 2.10 ppm [62] while the latter has SH chemical shifts of
1.63 and [.79 ppm. (See Table 2.3 for the expected chemical shifts for the 20 amino acids)
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The following section describes the basic principles of the spin pattern recognition algorithm,
The original version of the algorithm is applied to spin systems obtained from homonuclear 2D
NMR.

2.7.3.1 Graph represeniation of the amino acidy

As shown in Figure 2.22, spin coupling patterns can be defined by mathematicai structures

called graphs. Each spin corresponds to a vertex of the graph and each J coupling connection

corresponds to an edge of the graph. Mathematically a graph is represented as a set of vertices and

edges.

G={VE&) 2.9)

Grof} and Kalbitzer [62] produced a chemical shift database for the 20 amino acids using
published NMR assignment data. The averaged chemical shifts and standard deviations for each
proton in the 20 commonly seei. *:mino acid were reported. Using those data, with respect o cach

of the 20 amino acids, the reference set of an amino acid graph can be constructed as
RS('.) = {Vrcf‘ gref}, i = Alu. Gly. Thl'. e (2.‘0)

where V,, is the set of chemical shifts of NH, oH, H, ... , aso-called cluster, and &,y is the set
of edges connecting vertices in the cluster V,.r. Vs has a corresponding chemical shift standard
deviation set AV,.; where the data is taken from GroB’s database. Table 2.3 lists the expected
chemical shifts and the standard deviation data from the 20 amino acids. A sample reference
set of alanine RS(alanine) = { (8.15,4,24, 1.32}, (8.15 — 4.24,4.24 —-1.32}} and ils standard
deviation set AV, = {8.15/0.62, 4.24/0.38, 1.32/0.28} are shovin in Figure 2.23.

8.15 4.24 1.32

Figure 2,23: A simple alanine spin system,

~ The chemical shifts of deduced spin systems usually have a certain deviation from the ex-

pected values. Protein secondary structures and local chemical environments are factors to effect
Vi

e
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Table 2.3: The expected proton chemical shifts for the 20 amino acids. The standard deviations are also
given. Data are taken from GroB's paper. All numbers are in ppm.

amino acid || NH aH AH Others

Ala B.15/062 | 4.24/038 | 1.32/0.28

Arg 8.20/0.83 | 4.28/0.35 | 1.63/0.43.1.79/0.34 | yH 1.52/0.34, 1.56/0.34
§H 3.11/0.19, 3.14/0.19
£H 7.21/0.16

Asn 8.29/0.6Z | 4.73/0.30 | 2.69/0.32,2.95/0.27 | 6H 7.18/0.55, 7.18/0.32

Asp 8317051 | 4.65/0.28 | 2.63/0.31,2.93/0.33

Cys 8.25/0.70 | 4.64/0.75 | 2.86/0.38, 3.19/0.38

Gly 8.31/0.62 | 3.74/4.17

4.17/0.28

Gn 8.28/0.61 | 4.43/0.45 | 1.92/0.27.2.10/0.20 | yH 2.29/0.25. 2.35/0.20
¢H 6.85/0.38, 7.61/0.29

Glu 8.22/0.60 | 4.34/0.42 | 1.97/0.20,2.04/0.18 | yH 2.27/0.20, 2.3470.21

His 8.28/0.57 | 4.54/0.19 | 2.94/0.39,3.26/0.29 | 52H 6.99/0.33, £;H 8.10/0.36

Tie 8.26/0.72 | 4.13/0.52 | 1.74/0.37 vH 1.01/0.26. 1.30/0.32
0.78/0.24, 5H 0.69/0.25

Leu 8.19/0.60 | 4.25/0.49 | 1.60/0.37. 1.71/0.31 | yH 1.51/0.30
8H 0.68/0.40, 0.83/0.25

Lys 8.28/0.65 | 4.23/0.42 [ 1.7470.38. 1.84/0.34 | yH 1.30/0.39, 1.36/0.37
5H 1.54/0.24, 1.57/0.23
£H 2.91/0.13, 2.97/0.10
¢H 7.53/0.50

Met 8.10/0.43 | 4.41/0.51 | 1.89/0.19, 2.03/0.21 | yH 2.55/0.17.2.60/0.13
¢H 1.98/9.21 :

Phe 8.49/0.80 | 4.69/0.48 | 2.85/0.28, 3.16/0.28 | 6H 7.12/0.27, H 7.17/0.30
tH 7.08/0.29

Pro 4.48/0.31 | 1.88/0.35,2.18/0.40 | yH 1.92/0.50, 2.02/0.45
5H 3.62/0.28, 3.77/0.29

Ser 8.48/0.58 | 4.50/0.47 | 3.72/0.44, 3.89/0.43

Thr 8.30/0.75 | 4.53/0.43 | 4.17/0.31 vyH 1.15/0.16

Trp 8.43/037 | 4.29/0.80, | 3.06/0.23, 3.42/0.22 | £, H 10.15/0.30, 5, H 7.18/0.30
e3H 7.39/0.24, £3H 7.00/0.30
n2H 7.17/0.17, £2H 7.41/0.32

Tyr 8.57/0.89 | 4.64/049 | 2.81/0.19, 3.04/0.28 | 8H 7.00/0.20, £H 6.70/0.20

Val 8.20/0.61 | 4.16/0.55 | 2.02/0.25 yH 0.76/0.22, 0.88/0.18

the exact position of chemical shifts. Therefore, it is difficult to determine that a vertex of an
observed spin system is exactly a certain specific spin. A more appropriate representation is that
the vertex of a spin system is more likely to be one proton, e.g., an a}i"than another one, e.g., a
BH. The fuzziness of the mappings that appear in this case indicates that fuzzy subsets are proper

—~
P
-

Il representations for the experimentally observed spin systems.
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FS=1{V.E. u} 2.1D

where V is a chemical shift subset, in the case of Figure 2.22, V = { 8.969, 4.432, 2.022, 2,385,
2.120}, £ is the subset of all the connections between elements in V. p is the membership subset.
Suppose there exists a homomorphic mapping between F§ and RS(lcucine). In other words,
FS§ is a subgraph of RS, or F§ can be assigned to a leucine. Assume the deviation between
the experimental and expected chemical shifts follows the normal distribution, the membership
function p2(j) can be defined as

. _ Vi = Vreslleucine)); 2 2
#(J)—CXPI [ (AVyes(loncine)); ]/2] -

where V; is the jth chemical shift of the observed spin system of FS§, (V,.r(leucine)); is the
corresponding chemical shift of a leuciné ;11 the amino acid database, (AV,.s(leucine)); is the
standard deviation of (V,.r(leucine))j. u( j)" represents the degree of membership of mapping
Jjth spin of F'S to the corresponding position of RS.

Table 2.4 lists the membership values calculated using equation 2.12. 1t is obvious that
chemical shift 4.432 ppm is the most likely resonance to be mapped to the orH of a leucine whereas

2.385 ppm has a low membership in terms of mapping to the yH of a leucine.

Table 2.4: The comparison of chemical shifts between a fuzzy subset F'S, i.e., the observed spin system,
and a reference set RS, the expected amino acid spin system. The calculated membership values are also
shown.

obscrved chemical expected chetnical
shifts of 8 (in ppm) | shifts of RS(leucine) | degree of membership
' fstandard deviation

8.969 NH 8.19/0.60 043
4432 aH 4.25/0.49 0.93
2.022 BH 1.60/0.37 0.52
2,120 BH' 1.71/0.31 0.42
2.385 yH 1.51/0.30 0.14
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2.7.3.2  Pattern Recognition Algorithm

The actual pattern recognition algorithm involves two major stages. In the first stage, a homo-
morphic graph mapping algorithm is used to topologically determine if an observed spin system
is a subgraphs of an amino acid. In the second stage, a similarity value is calculated between the
observed spin system and that amino acid based on the membership functions. A standard leucine
spin system and an observed spin system are shown in Figure 2.24. The first stage of the pattern

H, — SH, . 1 4
b ) (0 () ()
I\/I_I-\l qH_ oy X T~
O—Q | Q ,
N N
prr(_ SH'C) oFr 5

(e
.(j
O

slandard leucine observed spin syslem

A B

Figure 2.24: A standard leucine spin coupling graph and the observed spin system which might be as-
signed to the leucine.

recognition algorithm determines if graph B can be mapped to graph A topologically. Once the
mapping if confirmed, the subsequent task involves the determination of similarity between A and
B numerically.

The homomerphic graph mapping algorithm was implemented through a Heuristic Back-
tracking Algorithm (HBA) [63]. If HBA finds at least one mapping between a query graph oG
and a supergraph SG, QG is said to be a subgraph of SG, namely QG € SG. HBA is composed
of two procedures. In the first procedure, a "walking” procedure travels through a QG to find all
of the possible routes connecting e\;ery nodes of QG. The fbllow_ing codes explains the principle

of the walking procedure,

void walking(QueryGraph_type, ... ) \ o
l - ‘\;i.“

//This function genere. es partially ordered graphs on each of the
//input query graph

/7

i
Ji
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//Input: Query graphs, cbserved from NMR spectral data

//Output: All of the possible partially ordered graphs, also known
// as routes.

/7 These routes are stored in a data structure called ROUTE
/7 which will
/7 be used in a subsequent algorithm of HBA().

arbitrarily choose a node from QG as the antrance node;
save this node as the first element of a new route;
push this entrance node into BranchStack;

while BranchStack is not empty |
pop a node from BranchStack;
append current node intoc route;
while there are still branches to walk |
choose any branch to keep on walking while save the rest
in BranchStack;
}
1

store route into ROUTE;

The procedure first arbitrarily chooses an entrance node on @G, then all the untravelled
nodes at each branch are saved into the data structure of a stack. Once the walking comes across
an ending node, a node in the stack is popped out and the walking is resumed starting at that node.
Using graph B of Figure 2.24 as an example of @G, the possible routes include 7 -6 —4 ~ 5 —
3-2-1,7-6-5-4-3-2~1,7-6—-4-5-3-1-2,...,etc. All those routes are
saved in a large data structure called ROUTEZ.

The second part of HBA performs the actual mapping actions, Once all the routes, also
known as the partially ordered graphs, are created and saved in ROUTE, HBA walks on 8G

| following each of the routes in the data structure of ROUTE. If the complete walk for a given
route on the supergraph SG is accomplished, a mapping between QG and SG is determined and
that route has all the information about this mapping. The entire procedure is explainr.d ﬁsing the

following codes.

void HBA (ROUTE_type ROUTE, SuperGraph_type SG)

{

//HBA (Heuristic Backtracking Algorithm) walks on the supergraph SG.
//Information saved in ROUTE controls the walking. If the complete
//walk for a given route is accomplished, a mapping between

//the route and SG is determined.

//Input: 1. The data structure ROUTE, generated by the function walking().
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/7 ROUTE contains all the partially ordered routes of the
¥} query graph QGC.
/7 2. The supergraph 5G.

for each of the route in ROUTE (
while there are still untouched nodes left in SG {
choose a node in SC as the entrance node;
while ( not arrive at the end of the route) &&
( there are still branches to walk on 5G) |
loock for a branch on SG matching current node of
route, essentially we examine adjacent degrees and
the chemical shift differences;
if a matching branch is found {
if not arrive at the end of the route
walk to the next node of SC;
else
go back one nede on 5S¢, choose another branch;
}
if arrives at the end of the route
a mapping between QG and SG is determined, the
actual mapping is the one saved in the route;

It is emphasized that there mright exist more than one mapping between a QG and an SG.
For instance, in Figure 2.24 the query graph B is a subgraph of supergraph A, but there are four
different ways of mappings between B and A. The mappings are listed in Table 2.5.

Table 2.5: The four different mappings between the observed spin system and the standard leucine. See

Figure 2.24.
mapping || QG(B) - SG(A) j

l{|7->NH|6—>aH |4 8H|5—>8H [3-yH |1=286H ]| 2 éH
2|7 NH |[6—>0aH [4—> fH [5— BH |3—+yH |2—>0H | | = oH
3[[7>NH|[6=>aH |5+ BH |4 BH |3 yH|12>8H | 2= 5H
4[|7>NH 6> aH |5—> pH |4—> pH |3—>yH |[2—>8H | 1 — éH

In order to select the best mapping, an evaluation scheme must be introduced to discriminate
all the mappings. This problem is solved by implementing a similarity evaluation system, which
| is discussed in the following.
‘ In terms of fuzzy mathematics, the query graphs, i.e., the observed spin systems, are fuzzy

subsets (FS) with respect to the 20 amino acid reference sets (RS). Our goal is to determine an
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overall similarity value between a fuzzy subset F§ and its reference set RS. Consider a query spin

system which can be represented as the following fuzzy subset F§
FS={{vi.v vz, ... .l e nyev, vyorvg, L)) (2.13)

This spin system has » spins and a number of couplings between vy and va . vy and vy, ... , etc.

Suppose this spin systemn can be mapped to the amino acid RS (%)
RS(AY = {{rr w2, 03, .. ) {inoua naens, ) {on . O Oug 20D (2.14)

where n; = NH, aH, 8H, ..., k =Alaor Gly or Thr, and o, s are the sets of standard deviations

of 1;’s. RS(k) has a total of N spins. Suppose there are M ditferent mappings between FS and
RS(k)

FSC,RSk)ym=1toM (2.15)

The similarity for the mth mapping between F§ and RS(k) is defined as

Y [utv; > w}]2
Similarity S(m) = | =! (2.16)

"

where u{v; = ur) is the degree of membership of mapping the jth spin of F'S onto the /th node
of RS (k). Apparently the best mapping is the one having the maximum S (i) therefore the overall
similarity between F'S and RS (k) is given by

S(F§ — RS(k)) = max(S(m)),m=ltwoM. 7 2.17)

As the final example, Figure 2.25 shows an observed spin system. Using HBA, the spin
system can be mapped to valine, leucine, glutamine and arginine. There are two different ways of
mapping the spin system to valine while there are 16, 24, and 116 ways of mapping it to leucine,
glutamine and arginine, respectively. The mappings are summarized in Table 2.6. As an example,
the first proton (7.754 ppm) of the observed spin system can be assigned to the NH of valine, which

has an expected chemical shift of 8.20 ppm. Using equation 2.12, the degree of membership for
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1H 2H 3H 4H SH

7.754 13984 2074 0956  0.826 ppm

Figure 2.25: A deduced 5-spin system which might be assigned to Val, Leu, Glu or Arg. See Table 2.6.

‘Table 2.6: The mapping between a 5-spin system and various amino acids. For example, the observed
7.754 ppm spin node can be assigned to valine’s NH proton, which has an expected chemical shift of 8.20
ppm. There are two different ways of mapping the observed spin system to a valine.

" aminoacid |f actual mappings (all numbers are in ppm) |
TH(7.754) | 2H(3.084) | 3H(2.073) | 4H(0.956) | SH(0.826) |
Val 8.20 4.16 2.02 0.76 0.88
2 mappings 8.20 4.16 2.02 0.38 0.76
Leu 8.19 4.25 1.60 1.71 1.51
16 mappings 8.19 425 . 1.60 1.51
0.68 1.51 1.60 1.7 4.25
Glu 8.22 4.34 1.97 2.04 2.27
24 moappings 8.22 4,34 2.04 227 2.34
Arg 8.20 4.28 1.63 1.79 1.52
116 mappings 8.20 4,28 1.79 1.52 1.56

all the proton mappings can be obtained. For instance, the membership between mapping 7.754
und 8.200 ppm is 0.77.

(2.18)

[8.20—1.754 2
1|

0.77 = exp I———‘M—-

where 8.20 is the expected chemical shift for valine’s NH while 0.61 is its standard deviation. The
similarity between the spin system shown in Figure 2.25 and various amino acids are listed in
the last column of Table 2.7. The figures are calculated using equation 2.16. As an example, the
overall similarity of mapping the spin system to Val is 0.92, which is the maximum value between

0.92 and 0.87 and is obtained from equation 2.17.

Having accomplished all the procedures, the spin systems derived from CPA now have asso-



2.7 Determination of amino acid types S0

Table 2.7: The simitarity values between the observed spin system, (Figure 2.25) and various candidate
amino acids. The membership values are calculated by equation 2,12, The similarity values are caleulated
by equation 2.16.

i membership to various protons of the wmino acids { similaruy

amino acid TH(7.754) | 2H(3.084) [ IH(2.074) [ JH(0.956) | SH({.826)
Val 0.77 0.95 0.98 0.67 0.96 0.87
2 mappings 0.77 0.95 0.98 0.91 0.96 092
Leu 0.77 0.86 0.44 0.052 0.074 0.55
16 mappings 0.77 0.86 0.50 0.22 0.074 0.57
Glu 0.74 0.70 0.87 0.00 0.00 0.60
24 mappings 0.74 0.70 0.98 0.00 0.00 0.00
Arg 0.87 0.70 0.59 0.050 0.12 (157
116 mappings 0.87 0.70 0.71 0.25 0.047 0.60

ciated amino acid type information. It is possible to construct a "deduced-spin-systems to amino-
acids” table where the candidate amino acids for each spin systems are listed. As a subsequent
processing, the Tree Search Algorithm (TSA) is responsible for achieving the sequential assign-

ment. Figure 2.26 is an sample "deduced-spin-systems to amino-acids” table.

81: Asp/0.901 Asn/0.829 Phe/0.803 ......
82: Ala/0.778 Arg/0.732 Leu/0.715 ......
8§3: Gly/0.738 Thr/0.555 Phe/0.551 ......
S4: Phe/0.803 Ser/0.705 Ile/0.648 ......
85: Leus0.760 Arg/0.731 Lys/0.720 ......

Figure 2.26: A "deduced-spin-system to amino-acids” table. For example, spin system S| might be
assigned to Asp, Asn, or Phe, ... , etc. The overall similarity values between the spin system and the
amino acids are also shown. A higher similarity indicates a better match.
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2.8 Sequence-specific resonance assignment using Tree Search Al-
gorithm (TSA)

The Tree Search Algorithm (TSA) [25] was designed to obtain the sequential assignment
of protein MMR data based on the spin systems extracted by CPA. TSA takes input of the spin
systems and the associated amino acid type information determined trom CPA and the pattern
recogﬁition algorithm, respectively. The output of TSA is the final sequentially assigned amino
acid residues.

The entire protein resonance assignment can be divided into three stages. In the first stage,
CPA is used to extract the individual amino acid spin systems from 2D DQF-COSY and TOCSY
spectral dat. The second stage of the assignment involves amino acid type recognition algorithm,
which is described in the previous section. The spin pattern recognition algorithm determines ail
of the possible amino acids to which a spin system might be assigned. The information is listed
in a "deduced-spin-system to amino-acids™ table as the one shown in Figure 2.26. Once the table
is prepared, TSA is responsible for mapping deduced spin systems into corresponding positions
within the protein primary sequence in the final stage of the resonance assignment. The inter-
residue correlations required to establish sequential connectivities are provided by NOE type of
experiments. TSA relies on exhaustive searches over all possible sequential assignments which are
satisfied with the protein primary sequence and the “'spin-system to amino-acids”™ table. Several
rules are prépared to determine a globally optimized final assignment. Reliable assignment can be
obtained provided that the assigned polypeptide segments are sufficiently long.

Before the exhaustive searches can be started, information obtained from the pattern recog-
nition algorithm must be converted tc an appropriate format. The original information depicts the
amino acid types of each observed spin system. However, TSA needs to know all the candidate
spin systems of each residue. A preliminary conversion the original data is necessary for this

purpose. The following codes illustrate the conversion:

void ConverTable()

{

//Input: 1. Protein primary sequence.

¥ 2. "spin-system" to "amino-acids" table.
//output: 1. "residue" to "spin systems® table,
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‘n
t

for

for

sort the candidates of K;,
their overall similarity value:

Si

S3

{(i=1l;i<=n;i++)

if (A ==R)

(3=1;d<=f();j++)
for (k=1;i<=N;k++}

put 5 in the candidate list of R;:

Ay App A -
Az Ax Az ---
Azl Az Az -

Anl Au‘.! An3 v

1_ converted to

Ry | By Bi2 B3 -
Ry | By B2 By -
R3; | By B3 By ---

Ry | BNt Bn2 Bya -+ -

A
Azp
Az

.....................

Anf(n)

(i=1 to M} accerding to

1. atotal of n deduced spin systems
2. each spin system §; has
S () possible amino acid candidates.

Ai;€l Ala, Gly, Thr, ...}

3. The protein has N residues,
4, Ry — Ra — ... — Ry is the primary sequence,
anG[SI‘ S!- ttt Sn]-

The remaining task is to map each spin system to its expected position within the primary

sequénce. Recalling that the pattern recognition algorithm determines all the possible amino acid

candidates of the observed spin systems, a mathematical similarity is calculated for each pair

of the mapping between a spin system and an amino acid. For example, the similarity for the

mapping between spin system S10 and the alanine is 0.87 while the similarity for mapping S10to -

the threonine is 0.53. This means that S1C has a higher chance of being assigned to the alanine

than to the threonine. Suppose another spin system S18 can also be assigned to an alanine with

a similarity 0.94. As far as the assignment of the alanine is concerned, $18 is a better candidate

than S10 is because of the higher similarity value. The spin system candidates in the “residue to

spin-systems” table are sorted in descending order of each candidate spin system’s similarity. The

assumption made here is that a spin system candidate with higher similarity has greater probability

to be assigned to its corresponding amino acid.
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Table 2.8: An "amino-acid-residue 1o spin-systems™ table. For example, the spin system No9, 3, 14, 28,
. all may be assigned to Alal0. However, enly one assignment is actually chosen.

[ Residue [[ spin system candidates |
Alul) 9 314 28 v 51 7T 14
Phell 4 8 i1 24 33 17 25
Aspl2 L1145 8 33 19 17 25
Tyrl3 214 8 39 50 30
Serld 8§ 2 4 21 39 33 25 11
Lys15 14 23 54 69 31 38 42
Argi6 [| 23 14 51 52 54 37
Tlel7 1 6 12 27 15 39

The actual procedures of the sequential assignment are illustrated using an example shown
in Table 2.8. According to the assumptions made, the most probable assignment for AlalQ is spin
system S89; the most probable assignment for Phell is S4: ... | ete. Therefore the most probably
sequential assignment for the polypeptide segment Alal0 — Pheil — ... — lle17 is §9-84-S11-
S521-88-514-823-S1. However, there is no way to guarantee that the spin system with the highest
similarity value is always the right one to be assigned. To cope with this problem, TSA searches
all possible assignment combinations and in a subsequent step discriminates them with certain
criteria in order to determine the most probable sequential assignment. In the above example, the
possible assighment combinations for the query polypeptide include §9-54-811-821-88-514-823-
S1,89-84-S11-821-58-514-823-56, $9-84-S11-S21-S8-514-823-812,... , etc.. There are a total
of 8x7x8x6x8x7x6x6 = 5419008 paths to be traversed. In practice, not all of the paths are
valid. For instance, once the spin system S4 is assigned to Phel 1, $4 can’t be assigned to another
residue in the following assignment, i.e., a spin system can't occur twice in a sequential assign-
ment. Having applied this restriction, there is no need to traverse all the 5419008 combinations.
However, the actual amount of searching is still a heavy load in terms of the computing time.

A number of criteria are set to determine the most probable or the best assignment. The most

important criterion is the observation of interresidue correlations. TSA counts the number of NOE

cross peaks observed between each adjacent spin system pairs. Knowing these numbers, TSA
is able to determine the total number of observed NOE peaks within each assignment path, In

Table 2.9 the number of NOE peaks observed between spin system S9 and S4 is two, between S4
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Table 2.9: The possible assignment of an 8-residue polypeptide. There are two NOE cross peaks between

spin system 89 and S4. one NOE cross peak between S4and S11,... L ete,
[ Residue [ Assignment | No. of NOE peaks | NOE cvidence |
AlalQ Sv
2 Yus
Phell 54
| Yes
Aspl2 Shi
3 Yes
Torl3 $21
4 Yes
Serld S8
I Yes
LyslS Si4
0 No
Arglé 523
5 Yes
llel? St
L H | total 16 NOE peaks | 1otal 6 NOE evidences |

and S11is one, between S11 and S21 is three. ... , etc. The total observed NOE for the assignment
of 89-54-511-521-88-S14-523-§1 to Alal0-Phe 1 1-Asp12-Tyri3-Serl4-Lys15-Argl6-llel 7 is 16.
TSA was designed to keep the assignment with the greatest number of observed NOE correlations.
Two things must be noticed here. First, the original version of TSA [25] does not discriminate
NOE peaks. In other words, all the NOE peaks are considered to have the same contribution
in terms of interresidue correlations. The fact that backbone NOE peaks such as dgn(i, i 4+ 1)
and dnyn (i, § 4+ 1) are more important in establishing sequential connectivity than NOE between
side chain protons is not taken into consideration. In the commercial version of TSA [64], which
is bundled into a resonance assignment package called CAPRI, sequential NOE peaks do receive
higher weights than side chain NOE peaks. The secord feature of TSA is that it allows the absence
of NOE connections in an assignment, In Table 2.9, for example, no NOE correlation between spin
system S14 and S§23 is observed. As missing data arising from spectral overlap or incomplete peak
picking procedures is not rare in protein NMR, it is dangerous to discard the entire assignment for'
lacking of one evidence of NOE cross peak. Hence TSA permits the absence of NOE connection
in order not to lose any potential assignment.

In the situation that two or more assignments have the same number of total NOE peaks,
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other rules are necessary to pick up the best assignment. Information which hasn’t been used to
this point is the mathematical similarities, obtained from equation 2.17. Suppose an assignment
maps spin system S; to residue R;. S;4) to residue Riyq. ... . Sizn—1 to residue Riyy—1. The
similarity between S; and R; is v(i). The TSA similarity parameter for the above assignment can

be defined as

V= {v@)xv(i+ Dx---xv(i + N = 1) (2.19)

[f more than one assignment has the same number of NOE peaks, their TSA simtlarities are calcu-
lated using equation 2.19. The assignment having the greatest TSA similarity remains while the
rest are discarded.

If the above two criteria are not sufficient to resolve the best assignmenis, TSA is able to
measure the chemical shift deviation between observed NOE cross peaks and the correspondirg
spins in the spin systems. For example, an NOE peak is found between spin system S; and S;.
Si has five spins: iy, i3, i3, iy and is. S; has four spins: ji, ja, j3 and j4. Suppose the distance
between {; and jz are close enough to produce an NOE cross peak (3., 8,) where |8, — &;| and
|85 — &j,| are within a proton chemical shift tolerance. Ideally, |3, — §;,| and |8, — 8;,| should be
zero. TSA defines a parameter to measure the difference between the observed NOE pes ™ (3.,
8p), and their original spins , §; and j; in this particular case. This parameter is essentially the
geometric mean of the two absolute values. The definition of this parameter is described in the
following:

Suppose the mth spin in one spin system and the nth spin in another spin system are in close
proximity to produce an NOE peak. The observed cross peak in 2D NOESY is (8,, 8,) where &,
and §;, are the observed chemical shifts for spin m and n, respectively. Parameter p is defined as

_ Iaa - 5m| I‘sb - ‘snl
p= ‘/ T X T _ (2.20)

where T is the chemical shift tolerance. For the assignment of an N-residue polypeptide, i.e.,
the assignment maps spin system S; to residue R;, S;4) to residue Riy1, ... , Sixn—) to residue
Ritn-1. (N — 1) parameters of p can be defined. Smaller parameters indicates better matching

between the NOE peaks and their corresponding spins. Therefore, TSA defines an overall NGE
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parameter P as

P=1— YY(picin Y X (Pig1—ip2) %o o X (PiaN -2eniny 1) (2.2

A larger P corresponds to a better assignment.

To summarize the sequentiz] assignment for an N-residue polypeptide R;-- - R, v-1. TSA
first constructs a “residue to spin-systems” table. In this table residue R; has C; candidate spin
systems. TSA ther exhaustively searches all ]'['{,‘::"_l C; assignment combinations to determine
the most probable assignment. The number of the actually traversed assignment combinations is
fewer than the estimated one because a single spin system can not appear twice in any assignment.
TSA adopts a few criteria to determine wie final assignments. First the assignments with the
greatest nuinber of total NOE peaks are kept. If more than one assignment has the same number,
TSA computes the TSA similarity for each of the assignment using equation 2.19. If this similarity
cannot break the tic between the assignments, equation 2.21 is used to further discriminate the
assignments.

Having discussed the way TSA selects the most probable assignment, we now investigatc
the effc.: of the length of polypeptide chain on the sequential assignment. TSA is designed based
on a global optimization assumption. The optimization is conducted on the number of total NOE
correlations, the TSA similarity in equation 2.19 and the parameter P in equation 2.21. It is
assumed that a better result comes out when a longer protein chain is adoptcu-as.the assigning
target. In other words, for an N-residue protein, TSA has the highest chance of producing the
correct assignment provided that residue | to residue N are set to be assigned simultaneously. If
the N-residue protein is divided into several segments, for example, residue 1-20, 17-40, 37-N
(N > 40, of course) and TSA is conducted over these segmented polypeptides one after ah;thcr.
a local optimization might be reached whereas the global optimization is unable to be reached.
Ceﬁainly. the computational load is heavy in order to reach the global optimization. For shorter
polypeptide segments, the time required to complete the assignment can be significantly shorter.

The implementation of TSA was proved to be effective on a testing run of a 21 residuc
.- polypeptide [25]. For this relatively small polypeptide, the order of magnitude of the execution

time to assign the entire polypeptide is minutes. However, for bigger proteins, such as the ones
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having 70 or more residues, a “permutation explosion” problem mokes the execution of TSA
exceed an acceptable CPU time limit. To overcome this permutation explosion problem. one
can atiempt to reduce the number of carndidate spin systeins of cach residue, i.e.. the length of
cach row in the "residue to spin-systems™ table. Fewer candidate spin systems implies that fewer
assignments need to be {-aversed. Sometimes it is obvious to manualdly assign many spin sysiems.
The "residue to spin-systems™ table can be manually revised according tc all available information
(obwined from NMR and/or other sources) so as to reduce the possibility of havirg the permutation
explosion. It is also suggested that TSA can be run segment by segment to save time, although
this violaies the principle of reaching global optimization. For a 70 residue protein, for example,
one can assign residue 3-25, 20-45, 40-70 at three separate runs of TSA, making sure that the
overfapped residues are assigned to the same spin systems,

The commercial version of TSA [64], bundled in SYBYL, Tripos Inc., made more revisions

in both computational and methodological aspects.



Chapter 3

Determination of Protein Backbone Spin

Systems

3.1 Introduction

This chapter reports computer algorithms that can extract a protein’s backbone spin sys-
tems using heteronuclear 3D NMR. Because many heteronuclear 3D NMR experiments are able
to record both intra- and interresidue correlations, the sequential information embedded in the
spectra can also be derived at the same time. The algorithms presented in this study are not de-
signed for any specific NMR experiment, so that any general data set can be used. Two sets of
3D NMR experiments are used to demonstrate how the the protein backbone is cxtracted by the
algorithms. The first set of NMR data consists of 3D HNCO, HNCA, HN(CO)CA, HCACO and
I5N TOCSY-HMQC. The second set of NMR data is 3D CBCANH. Experimental data from the
first set of NMR experiments were used to test the implemented algorithms. The target protein
is the calcium loaded N-domain of chicken skeletal troponin-C(residue 1-90). Along with the
sequence-specific reﬁonance assignment protocol presented in chapter 3, it is possible to achieve
the goal of developing a nearly fully automated resonance assignment package. This package is
able to extract backbone spin systems; create dipeptide links from interresidue correlations ob-
served in heteronuclear 3D NMR; obtain spin systems of protein side chain; merge backbone and

side chains; identify amino acid types; ang; finally, achieve sequence-specific assignment.



3.2 Identification of backhane spin patterns

3.2 Identification of backbone spin patterns

Many heteronuclear 3D NMR experiments [S] have been designed for assigning backbone
resonances of N/1C isotope enriched proteins. These experiments usually observe correlations
between three or more nuciei on a protein’s backbone. Both inter- and intraresidue correlations
can be recorded therefore making it possible to assign the backbone resonances, along with their
sequential connectivities, by applying heteronuclear 3D NMR exclusively.

Before illustrating how to make use of the information provided by 3D NMR experiments,
a general description of using computer algorithms to assign NMR cross peaks is discussed here.
In general NMR cross peaks from 3D spectra can be represented as (8;. d;. 8) where the three
coordinates denote the three chemical shift values. For homonuclear 3D NMR ail three coordinates
represent proton chemical shifts. For heteronuclear 3D NMR, §;, 8; and §; can be proton, carbon
or nitrogen chemical shifts, To make use of the 3D NMR data, computer algorithms usually
perform the following steps: for a starting peak Po(d,.8;,. 8k,). a search is conducted on the
same spectrum or other spectra to find one or more peak Pi(d;,.8j,. 8, ), Pa(diy, 850 88,) ...

P (5;,, 8;,. 8,) from which two resonances are in common with Py. For example, Py and
P, may have the same resonances in the first two coordinates. That is, two resonances satisfy
the relationships of |8;, — &;,| < (a pre-defined tolerance) and [}, — §;,} < (another pre-defined
tolerance). The next step involves the implementation of a ranking system to distinguish peaks
Py, Px... P, insuch a way that a peak P, is picked which is the most likely peak to be in the
same spin coupling system with Py. At this stage the target spin system expands its size from three
resonances to four. This operation is shown in Figure 3.1. The ranking system usually involves
searching for evidence in the way of peaks to confirm the merging of Py and P,,. In summary, to
extract spin coupling systems out of 3D NMR peaks. computer algorithms must have the following
features: (1) the algorithms must be able to merge cross peaks, (2) in order to merge two cross
peaks, two of the three coordinates should overlap, (3) to verify the merge, other spectral evidence
in the form of cross peaks is required.

“The appllc.mon of heteronuclear 3D NMR to protein backbone a551gnment is now discussed.

Figurt;"3.2 shows a protein backbone segment. A'typical triple resonance heteronuclear 3D NMR
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Figure 3.1: A 3D NMR cross peak Py(8i,, 8j,. 61,) can be merged with another peak P, (8;,,. 8;,.. &.,)
provided that the two conditions shown are satisfied. The merge results in a spin system with four spins
lio, Jjo. ko, ku}.

N-terminal N [ c N c c C-terminal
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Figure 3.2: The chemical structure of a dipeptide with only the buckbone atoms shown.

spectrum observes correlations of three resonances, a proton, a carbon and a nitrogen. For ex-
ample, the 3D HNCA [65] experiment gives inter- and intraresidue correlations between NH, N
and C,. Some experiments can even observe correlations spanning more than three spins such as
CBCANH [66], where inter- and intraresidue Cg, Cy, NH and N correlations are extracted in one
single experiment. Since both inter- and intraresidue correlations are available in heteronuclear
3D NMR, individual amino acid residues and sequential connectivities can be obtained simulta-
neously. Suppose the general merging algorithm described above is applied, which means there
must be at least three correlations available to construct the complete backbone spin system of
an amino acid. Here complete backbone spin systems are the ones having their N, NH, aH, C,

and CO resonances assigned. Figure 3.3 shows two of the possible combinations from which the
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backbone spin systems can be constructed. Note that these three correlations may come from three

different experiments. However it is also possible that they all come from the same experiment

TOCSY-HMGC HNCA

CEOAO R OXO

m m a By m !
HCACO

Figure 3.3: The construction of a backbone spin system is shown. Two possible approaches are listed.
In the upper one, an HNCO peak, an HN(CO)CA peak and an HCACO peak are merged to form a spin
system. [n the lower one, a TOCSY-HMQU peak. an HNCA and an HCACO peaks are merged. The
filled circles represent the overlapped resonances discovered by the computer algorithm in order to merge
peaks.

which combines multiple information into one spectrum.

Recall in Figure 3.2 that the minimurs peptide unit having inter- and intraresidue correlations
is a dipeptide, i.e., two adjacent amino acid residues. It haé been demonstrated that three NMR
correlations are required to create an amino acid residue. To create a dipeptide, however, eight
instead of six NMR correlations must be observed. The additional two correlations are necessary
for establishing the interresidue connectivity. See Figure 3.4 for the pictorial illustration. In the

next scction the implementation of these ideas is described.
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Figure 3.4: The formation of a dipeptide unit. In step 1, residue (i} is a determined spin system. A total
of five peaks are required to extend the assignment from residue (i) to residue (i —1). Step | and 2 involve
the interresidue correlations while step 3 to 5 usc intraresidue correlations. Note that residue (i) needs
three correlations to construct itself. Hence a total of eight correlations are required for the construction
of a dipeptide unit.
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3.2.1 Descripiion of backbone assignment strategy

In this section examples from two sets of heteronuclear 3D NMR spectra are adopted to
illustrate the general algorithm discussed in the previous section. Figure 3.5 shows the five 3D

NMR experiments used in the first set of spectra.

Correlated
resgnances
N TOCSY HMQC {1,.2.3) (7.8.9)
L 9 1 3
" " H H HNCA (1.2.4) (1,2,10) (7.8.10)
8 10 12 2 4 s
N c c N c c HN{CO)CA {1.210)
" 5 ‘
c [+ [ 1] HCACO {3.4.6) (9,10,12}
‘u—.______________.—‘ ‘\.__‘_____“_-___'_.-ﬂ
i-l i HNCO {1.212)

Figure 3.5: Five triple resonance NMR experiments and the nuclei they correlate,

The algorithm for assigning protein backbone was designed in such a way to start the search-
ing from any of the input NMR experiments. The advantage of choosing a specific experiment may
sometimes be obvious. For example, spectroscopists may notice that a certain experiment is more
sensitive, hence it is reasonable to start the assignment procedure from that experiment. However,
it is emphasized that the complete assignment of a dipeptide can be achieved through more than
one path. Figure 3.6 describes an eight steps scenario of assigning a dipeptide where cross peaks
of 3D HNCO were chosen as the starting experiment. Each of the eight steps involved in the
assignment procedure has an associated NMR cross peak. In step 1, the HNCO peak (1,2, 3) is
selected as the initial spin system. In step 2, the '"N-HMQC-TOCSY peak (1, 2, 4), where the first
two frequencies are in common with the previous HNCO peak (1,2,3), is added to the spin sys-
tem. Similarly, by repeating the eight steps, the ten resonance dipeptide (N, NH, oH, C,, CO);_;
—~ (N, NH, aH, C,. CO); can be constructed.

In the second example, a single 3D CBCANH experiment was chosen as the input data
to illustrate how backbone assignment can be achieved through various approaches. Each of
the 3D CBCANH peak may have four interpretations: NH-N-C,(interresidue), NH-N-Cg(inter-
residue), NH-N-C,(intraresidue) and NH-N-Cg(intraresidue). C, resonances of glycine and Cg
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Residue i-1 g 7 3 10 3
Residue 1 1 8 6 2 4
Stops E T:;::_:'t cross peak Results
1 HNCO {1.2.9 kientty three resonances, 1.2 and 3
N TOCSY-
2 HMOC {121 Irom 1.2, get resonance 4
3 HNCA {1.2.5) from 1,2, gt resonance 5
4 HCACO {4.5,6) trom 4,5, gut resonance §
S HN{COICA (1.2 trom 1,2, get resonance 7
8 HCACO {3.72.8) from 3.7, get resonance 8
YN TOCSY-
7 HAMOC {8.9,10) trom 7.8, get resonance 9 and 10
[:] HNCA {7.9,10) some as above

Figure 3.6: The eight steps are listed for assigning the 10 resonances of a dipeptide. Starting from the
3D HNCO cross peak (1. 2. 3), each subsequent step adds one more resonance to the dipeptide, making
a 10 resonance spin system.

resonances of all other residues are opposite in phase relative to the other C,, correlations [66]. To
resolve the ambiguities between the inter- and intraresidue CBCANH peuks, another 3D experi-
ment, CBCA(CO)NH [67], may be helpful. CBCANH has several advantages over the traditional
heteronuclear 3D NMR experiments, for example, HNCA, in that CBCANH is able to distinguish
inter- and intraresidue peaks in terms of the peak intensities [66]. Moreover, aliphatic C,, and

Cp frequencies appear in opposite phases in CBCANH [66] making it possible to separate the

* C, from the Cp in aliphatic region. Figure 3.7 shows a typical dipeptide and its corresponding

cross peaks from 3D CBCANH spectrum. Figure 3.8 shows how the assignment procedure using
CBCANH is accomplished. Note that additional spectra may be necessary in order to obtain the

frequencies of aH, SH and CO.

3.2.2 Implementation of the algorithm

Qur algorithm, Dipeptide Backbone Partitioning Algorithm (DBPA), is composed of two
parts. In the first part all possible dipeptides are extrauec.h_-‘rom available spectra. Following this,

the individual dipeptides are merged to form polypeptides in the second stage. The algorithm used
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Correlated
resonances
CBCANH (1.2,10} NH . N,Ca
7 9 [ 3
H H H H {1,2,11) NH . N,.CB ,
s 10 12 2 4 &
N Cc c N Cc C (1,2,9) NH.N.Cu,
1n 5
c 0 c 0 {1,2.5) NH,N.CB,
e —— e —— -“——-__—_._-—
i-l i (7,8,10) NH N .Ca
7811 NH_.N,.CB,

“igure 3.7: 3D CBCANH experiment provides three inter- and three intraresidue correlations of a dipep-
tide,

Staps £ross peak Results
1 {1.2,10) Identity three resonances, 1.2 and 10
2 {1.2.11) from 1,2, get resanance 11
'NH N Ca CB
Residuei-t = 7 8 10 11 3 (t.2,4} from 1,2, get resonance 4
Hssidual 1 2 4 5 ...........................................................................................

4 [t.2,5) from 1,2, get resonance 5
5 (7.8,10) from 10.11. get resonance 7
6 7.811) from 10,11, gel «esonance 8

Figure 3.8: The six correlations provided by the 3D CBCANH experiment can be used to create a dipep-
tide with 8 resonances. '

in the extraction of backbone spin systems and creation of dipeptides is listed in the following
pseudo codes.

void CreateDipeptide{PeakList_type, ... )
{

StartingSpectrum=SelectStartingSpectrum({all of the input spectra);
for each of the peak in StartingSpectrum |

dipeptide=AddSpinsToDipeptide (the peak);
for every possible two spin pair {i,J) combination in above dipeptide

{

In the entire spectrum datakbase excluding the starting spectrum,
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look for peaks G, JL4kY., (. F.40) and (A6, 00
which have two frequenciles in common with the
initial spin pair (i,f);

if many peaks satisfy the above condition
BestPeak=RankingProcedure{all of the peaks
(0 k), WLk and (K07 )

dipeptide=addSpinsToDipeptide (BestPeak) ;

]
if the number of spins in this dipeptide has reached ten
// (N,NH,uoH,Ce,C0O) for two peptides
keep this dipeptide:

The psevdo code is self-explanatory except for the ranking procedure which is responsible for

choosing the most probable peak to be merged into the existing spin system out of many possible

candidate peaks. The pseudo codes for this ranking procedure is outlined in the following:

peak_type RankingProcedurel{const Peak_type *, ... )

{

//Input: 1. two resonances iy and jo

!/ 2. all 3D NMR peaks with two frequencies in common with
/! ip and jy
//Example:

// peak 1 (i|. j1. k1) where |ip—i|| £ tolerance, |jo~ jj| £ tolerance
// peak 2 (i1, j.k2) where |ip— i1 & tolerance, [jo— j2| £ tolerance
// peak 3 (i3, ji.k3) where |ip— i3] € tolerance, |jop— ji] € tolerance

//0utput: The most likely peak that can be merged with iy and jy
define a ranking parameter:
for peak 1: Ai=l~Jlw—ul*ljo=il
for peak 2: Ax=l-lio—=ul*ij—J2
for peak 3: Ai=l~JTo—-nl*ljo— i

return peak n {i,, ju.ky) with greatest A value;

The geometric mean /[ig — i,] % | jo — Jju| was adopted as the measurc of the average de-

viation between peak n and peak 0. The geomelric mean was chosen over the arithmetic mean

because the former tends to reduce effects from extremes of large and small values.

DBPA has an option to handle two different searching operations. Both operations can be

used in the construction of a dipeptide.
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I. Given a dipeptide with m assigned frequencies, DBPA takes two frequencies, §,. é;. where
i, je{1.2,-- .m)undi # j,and searches a candidate peak having two frequencies over-
lapped with §,. 8; in the spectrum database. Suppose the third frequency of the candidate
peak is 8. 8¢ will be merged into the dipeptide and result in a dipeptide with s + 1 assigned
resonance. 1f many candidate peaks are found. a ranking system is implemented in DBPA 1o
select a peak from the many candidates and merge this peak to the dipeptide. Alternatively,
a user can ell DBPA to make a replication of the dipeptide for cach of the candidate peaks

and merge that candidate peak to the replicated dipeptide.

ha

Given a dipeptide with m assigned frequencies, DBPA takes two frequencies. &, §;, where
i, jel{l,2,.-- .m}and i # j, and searches two candidate peaks in the input spectrum
database. The first candidate has frequency §; and two other irequencies, suppose they
are denoted as §; and ;. The second candidate peak has frequency §;. & and §;. Note
that two frequencies are overlapped between the two candidate peaks. DBPA would merge
resonance 8; and &y into the dipeptide. This procedure results in a dipeptide with m + 2

frequencies.

These operations can both be seen in Figure 3.6. The first operation is used in step | to step 6
while the second operation is used in step 7 and 8.

Oiice the dipeptide database has been created, it is possible to merge these dipeptides into

longer chains such us tripeptide, tetrapeptide ... etc. For example, a dipeptide R10 — R28 can

be merged with R28 — R35 to make a tripeptide R10 — R28 — R35 where R; simply indicates
this is the /th residue retrieved by DBPA. The aim of constructing these polypeptides is to identify
the amino acid type inforination of their component residues thereby mapping them to the primary
sequence of the protein. The probability that an “amino-acid-type-recognized’ polypeptide occurs
only once in a protein depends on the length of the polypeptide [3]. A longer polypeptide has a
higher probability of being mapped uniquely to its corresponding primary sequence. The algo-
rithm PGA(Polypeptide Generating Algorithm)listed below shows how dipeptides can be merged
together to form polypeptides. Details concerning the amino acid type recognition and primary

sequence mapping are discussed in chapter 5.
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void CreatePolypeptide(Di
{
//Input: a set of dipeptides
//Output: polypeptides
//Examples:

o]

ept ide_type, ... )

1/ R3 — R3S

if R5 - R2Y

/7 R29 - RIS

l RIS - R16

i RIS —38

// produce output R3I—R5— RV~ R18-- R16 and R3— RS~ RV~ RIS — R3S

for each dipeptide in the input |
copy this dipeptide into the polvpveptide chain P;
for each dipeptide in the input |
1f this dipeptide can be merged with chain P |
pish this dipeptide into stack §;
}

)
append{Pf.S); /! append() function will increase the length
// polypeptide P

void append(Polypeptide_type p, Stack_type &)
{
while stack s is not empty |
pop a dipeptide element out of s then merge it with polypeptide p;
for each available dipeptide in the input of CreatePolypeptide() |
if this dipeptide can be merged with polypeptide p |
push this dipeptide into stack s2;

}

}

// An empty 52 implies that there is no
// dipeptide can be merged with polypeptide p
// If this is a nonempty s2, call append(}
// recursively with argument polypeptide p
// and stack s2
if stack s2 is empty |
store polypeptide p into output list;
} else |
append({p,s2);
}
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3.2.3  Applications and Results

All of the algorithms are implemented in C computer language and were tested on a 90
residue globular protein. Figure 3.9 is a brief flowchart illustrating the relationships between the
input data and various algorithms. The experimental data were provided by University of Alberta.
All spectra were obtained on a Varian Unity 600 NMR spectrometer operating at 30 °C [68].
The sample protein is the calcium-loaded regulatory N-domain of chicken skeletal troponin-C
(NTnC, residue 1-90). Uniformly enriched '*N and '"*C NTnC were also prepared. Available
heteronuclear 3D NMR experiments include 3D HNCA, 3D HNCO, 3D HNCOCA, 3D HCACO,
3D *N TOCSY-HMQC and NOESY-HMQC.

Cross peaks were automatically picked from the transformed 3D spectra using the CAPP
peak picking program {56]. The CAPP program is run at the noise level, therefore a number of
false peaks arc unavoidably picked. Many of these false peaks can be removed by filtering the
peak lists of the 3D spectra through high signal-to-noise 2D spectra [68]. The final peak lists were
given to the authors by B. Sykes at the University of Alberta [68].

The 3D HNCO peak list contains 135 cross peaks compared with about 90 peaks predicted
for a 90 residue protein. The 3D HCACO peak list has 125 peaks, 3D HNCA has 242 peaks,
which include both interresidue NH; — N; — Ca;_; and intraresidue NH; — N; — Ca; peaks. 3D
HN(CO)CA has 135 peaks and '*N TOCSY-HMQC consists of 141 peaks. All peak lists were
input into DBPA as shown in Figure 3.9. A

To process peaks coming from different spectra, various tolerance values are introduced since
the spectra were not perfectly aligned. The tolerance value for comparing proton frequencies was
chosen to be 0.05 ppm. For the rest of the nuclei, tolerance values are 0.40 ppm for nitrogen, 0.30
ppm for CO and 0.47 pplﬁ for Cy. These tolerance values are adjustable based on user’s experience
and spectra quality. The ﬁigorithm DBPA produced 16! dipeptides which in turns was input into
the algorithm PGA. In PGA, the 161 dipeptides were compared against each other to eliminate
redundant spin systems. finally resulting in 98 unique backbone spin systems. Theoretically 90
spin systems should be observed for the 90-residue NTnC. - )

According to Figure 3.6, eight 3D NMR cross peaks are required to construct a dipeptide.
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Figure 3.9: The flow diagram of the partitioning algorithm.
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In practice. it is unitkely to obtain NMR data set without missing peaks. Hence, the ability of
handling missing peaks becomes an important criterion for automated assignment tools. In the
Troponin-C spectral data, thirty-four of the 86 amino acid residues have at least one missing peak.
In the first run of DBPA we defined a successfully assigned dipeptide as the one having all of the
10 resonance identified. This is @ strict condition. As a result, the above 34 residues were not
assigned in the first run of DBPA. The successful assignment percentage is approximately 60%
{sce Table 3.1). 7

Table 3.1: The extracred residues of protein NTnC using Dipep-
tide Backbone Partitioning Algorithm. See text for the definition of
various runs of DBPA.

Observed residues | Observed residues | Observed residues Residues unable to
in the first run in the second run in the third run | assign without human
of DBPA of DBPA ol DBPA inspectio. of data

D5

Gb
Q7
A%
)

Al0
RIT

Al2
Fi3
Li4
515
EiG
El7

MI8
119

A20
B2l
F22
K23

A4

A25

F26
D27

F29
D30
All
D32
G33
G34

G35
D36
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137
S38
T39
K40
EH
()
G13
T3
Vi3
Md6
R47
i M8
B 1.49
G50
Q51
N52
P53
T54
K53
ES6
L58
D39
A50
161 -
162
E62
E64
V65
D66
E67
D68
G6Y
S70
G71
T72
73
D74
F75
E76
E77
F78
L79
V80
MS1
M82
V83
R84
Q85
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K87
ESS
Dgy
A0

Perhaps the best way to demonstrate how DBPA overcomes the peak missing problem is to
use the example shown below. Residue E5S7 of Troponin-C misses a 3D NMR peak, the HCACO
peak {(eH, Cy, CO). HCACO and HNCO are the two experiments observing CO frequencies.
While HNCO peaks, (CO(i — 1), HN(i), N(i)), in general determine the CO resonance of the
first residue of a dipeptide, lack of HCACO peak makes DBPA unable to determine the CO fre-
quency of E57 in dipeptide ES6-E57. As aresult, E56-E57 remained in the category of unassigned
dipeptides in the first run of DBPA on Troponin-C data set because its CO frequency has not been
determined yet. In order to identify E57, users have an option to relax the 10-resonance definition
of a dipeptide. In other words, DBPA can think of E57 as the second residue of dipeptide ES6-E57
even though E57 hes an undetermined resonance. The relaxation of the definition of dEpcpiiJes
must be conducted carefuily, because the possibility of receiving multiple assignments for a dipep-
tide is increasing due to the fact that onily seven instead of eight peaks are required for identifying
a dipcptide. A compromised approach is to take out all the used peaks, i.e., peaks that have been
used by DBPA to construct dipeptides in the first run, before the second run of DBPA. Using this
approach, DBPA successfully assigned additional four dipepiides, E56-E57, E57-E58, D68-G69
and G69-870 in the second run. Note that the CO frequencies of these residues are absent. Proper
human assistance could help to retrieve the absent frequéncies.

Sometimes a single missing peak may lead to two unassigned resonances in a dipeptide.
Using Troponin-C as an example, the missing '’N TOCSY-HMQC peak, (N, NH, oH), of F78
makes DBPA failing to determine the oH frequency of F78 in dipeptide E77-F78. The missing
aH results in a missing CO of F78 because the CO frequency is supposed to comes from peak
(eH, Cy, CO). To extract a dipeptide with two missing frequencies, in this example CO and
aH, one needs to further relax the definition of a dipeptide, that is, eight assigned resonance can
be considered as an assigned dipeptide in the third run of DBPA. Using the Troponin-C data,

additional 12 dipeptides were determined after the third run of DBPA. This makes the percentage
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of assigned residues to about 79¢- (67 of 83).
Eighteen residues rematn uanassigned after three runs of DBPA. Each of these residues has
two or more missing peaks. Betore conducting appropriate manual inspection on the spectral data,

it is difficult to assign more residue at this stage.

3.3 Discussion

Computer algorithms are presented to automate the resonance assignment of protein back-
bone using heteronuclear NMR. The principle and implementation of the algorithm DBPA (Dipep-
tide Backbone Partitioning Algorithm) is described. The differences between DBPA and tradi-
tional heteronuclcar NMR assignment strategy are illustrated as the following.

DBPA and manual assignment share a common strategy, namely they both make use of the
scalar magnetization transfers through peptide bonds instead of using the through-space dipole-
dipole interaction to establish the sequential connectivities. Figure 3.10 shows a typical manual
assignment path from residue(i) to residue(i — 1) using heteronuclear 3D NMR. Initially, a 3D
HNCO cross peak HN(i)-N(/)-CO(i — 1) was selected. Keeping the frequency of CO(i - 1) in
mind, searches can be conducted on the 3D HCACO spectrum to locate a cross peak COti — 1)-
Ca(i — 1)-aH(i — 1). Once the aH({i — 1) frequency has been determined, the following scatrch
on PN TOCSY-HMQC reveals the resonances of NH(i — 1) and N(i — 1). This terminates one
iteration where seven resonances (NH(i), N(i), COG@ — 1), Ca(i — 1), oH{i — 1), NH@i = D),
N( — 1)) are found. Figure 3.11 gives the summary of the procedures. Note that each search
was performed based on the knowledge of one frequency. For example, both Ca(i — 1) and
aH(i — 1) were found on the 3D HCACO spectrum based on the known CO(i — 1) chemical
shifts. However, ambiguities resulting from overlapped CO(i — 1) may increase the difficulties
of applying such manual assignment strategy. In the DBPA algorithm, the chance of the above
overlapping is reduced by using two known frequencies to determine one unknown frequency. As
shown in Figure 3.11 and 3.12, both of the NH(i) and N(i) contribute to the determination of
the Ca(i — 1) using 3D HN(CO)CA. Moreover, in cases that it is ambiguous to determine the

resonances of NH(i — 1) and N(i — 1) from the known frequency of Ca(i — 1) using 3D HNCA
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Figure 3.10: Schematic iltustration of using three triple resonance correlation experiments to obtain the
sequential assigninent. Starting from peak 1 in 3D HNCO, N and NH of residue(i}, and CO, Ca, oH,
NH and N of residue(i — 1) can be obtained once the three peaks are merged. This is a typical strategy of
manual assignment.

spectrum, DBPA automatically attempts to find another path to confirm the assignment of the
NH(i — 1) and N{i = 1). In this particular case, DBPA looks for the frequencies of NH({ — 1)
and N(i — 1) from the known aH(i — 1) using 3D "N TOCSY-HMQC. Figure 3.12 shows the
connectivities dektermined by DBPA. Comparing Figure 3.12 to Figure 3.10, it is obvious that
computer prograﬁ\s are good at taking more NMR evidences to resolve the possible ambiguities.
DBPA offers an option which affects the number of the output spin systems. The basic op-
eration DBPA performs is searching. With respect to each starting peak, DBPA looks for all the

candidate peaks which can be merged with the starting peak in available NMR spectra. In sec-

~ tion 3.2 we described a ranking parameter using which it is possible to select the best candidate.

The ranking procedure measures the chemical shift difference between the candidate and the start-

ing peaks so as to decide which candidate is the most likely one to be partitioned with the starting
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. experiments . experiments
Steps - manual assignment . involved computer assignment  involved

1 NHiNi.COi-1 | wnco | NHiNi.COi-l | wnco

1IN

2 CAi-1,Hai-1 | Hoaco Coi-1 | HN(CO)CA
3 i NHi-1,Ni-l 1 SN-TOCSY Hou-1 | Heaco
\
b
| | AN 'SN-TOCSY
! I NH-LNET | anganca
i

Figure 3.11: Comparison of the manual and automated assignment strategies, On the left, the manual
assignment strategy assigns 7 resonances using three cross peaks (see Figure 3.10). On the right, DBPA
assigns 7 resonances using five cross peaks (see Figure 3.12).

peak. However, correct merge doesn’t always occur at the best candidate. Consider the following
example: five candidates peaks, (8i,. 8;,. 8 ), (8ias 8j5, 82), -+ -+ (Bis, B, 81 ), were observed aiud
about to be merged with the starting peak (8, 8;,. 8;). Suppose (8;,, 8:,. 5, ) is the one that should
be partitioned into the spin system with the starting peak but coincidently the chemical shift differ-
ences |8;; — 8;,| and |8;; — 8;,| are smaller than |5;, — &;,| and |5}, — &;,|, respectively. As a result,
the best candidate will be determined as the fifth candidate instead of the correct one, the second
candidate peak. To avoid this situation, DBPA implements an option by enabling which all of the
above five candidates would be kept. In other words, the capability of choosing the best candidate
will be disabled. The implication of this option is that there will be five independent four-spin
systems, {8;5, 85, Okg 81y 1 {8ip. 8o Bkgs S by - o+« {8igs 8y, Bkg dig ). Only one of the above merge
is correct whereas the correct one is not necessary the one having the best partitioning parameter.
It should be pointed out that once the multiple merging option is enabled, it affects all merging
steps. The number of output spin systems could grow rapidly. Users should be able to determine
when the opﬁon needs to be enabled depending upon the overlaps of the NMR spectra.

DBPA is not designed for specific NMR experiments. It can process many combinations

of triple resonance heteronuclear 3D NMR experiments and give the backbone resonance assign-
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Figure 3.12: Schematic illustration of using five 3D triple resonance correlation experiments to obtain the
sequential assignment. Seven resonances (NH and H of residue(i), N, NH, oH, Car, CO of residue(i — 1))
can be obtained. This is the assignment path our computer algorithm uses.

ment. However, it is necessary to supply sufficient information to DBPA in order to accomplish
complete dipeptide assignments. For example, a single 3D HNCO spectrum does not provide
enough information to assign a dipeptide because only three resonances, NH;, N;, and CO;_;, can
be determined. Similarly. a 3D HNCO and a HNCA, giving four resonances, NH;, N;, Co; and
CO;_,, don't provide enough information, either. Apparently we need to determine whether an
NMR data set have sufficient information to assign the 10 resonances of a dipeptide. A simple

algorithm was designed to verify the completeness of input NMR data set. The algorithm is listed
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as follows:

void VerifyCompleteness{Heteronuclear3DNMR_type, ...)

{

/7

// Input : All available heteronuclear 3D NMR spactra. Required

1/ information includes the resonances observed in the experiment
I/ and the correlations between the resonances.

/7

// Example: For 3D HNCO spectrum, the input information is

'y { NH;, N;, COi_1).

//

// Output: All possible permutations of the input NMR experiments leading
/7 to a complete dipeptide backbone assignment, i.e.,

// { N, NH.e H. Cr, CO)i-)--( N, NH,a H. Ca, CO),

suppose the number of input NMR experiments is N;

compute all possible N! permutations for the N NMR experiments;
for each of the permutation |

£ill the three observed resonances of the first experiment inte an
empty dipeptide backbone;

for each of the remaining N - | experiments in this permutation |
if two and only two of the three observed resonances overlaps
with any other two resonances in the dipeptide backbone
add the third resonance of this experiment into the
dipeptide backbone;

if all of the 10 rescnances of the dipeptide backbone are filled
a complete permutation is found, break the inner loop;

}

if the dipeptide backbone are filled with 10 resonances
output this permutation;
else

this permutation does not provide sufficient information to assign
10 backbone resonances;

Essentially this apﬁ: oach follows the same concept of DBPA, namely, two overlapped resonances
coming from two 3D NMR cross peaks confirm the merge of these two peaks. In the beginning all
possible permutations of the supplied NMR experiments are computed. For a data set containing
N spectra, there are N! permutations. Here a permutation means a sequence of using NMR spectra
to construct dipeptiﬁes. These N! permutations are then examined to determine whether sufficient
NMR correlations for dipeptide construction are present. Consider the following five NMR spec-

tra: 3D HNCO, HNCA, HN(CO)CA, HCACO, 3N TOCSY-HMQC. A total of 5! = 120 possible
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ways exist in terms of applying the tive speetra sequentially. Not all the permutations result in a
complete assignment of a dipeptide. It is possible that none of them provide sufticient informa-
tion. Given a data set containing N NMR spectra, our program extracts all the permutations that
produce complete dipeptides, i.e., all of the 10 resonances of a dipeptide are determined. Note
that there might be more than one successful permutation. Currently our algorithm does not dis-
tinguish those permutations. in other words, the algorithm does not evaluate the permutations and
determine the best assignment approach. This is simply due to the complexity of the information
provided by the variety of NMR experiments. As new experiments are invented quickly. itis nei-
ther possible nor necessary to allow the algorithm to assess individual NMR experiments. This
task is lefl to be done manually.

We mentioned that it is possible that more than one permutation of input NMR experiments
can be adopted by DBPA to assign the dipeptide resonances. Here an example is given to illustrate
two different approaches of using a five-experiment data set. Available experiments are 3D HNCO,
HNCA, HN(CO)CA. HCACO and "N TOCSY-HMQC. Both of the assignment approaches start
at a HNCO cross peak. The first approach assigns dipeptides from C-terminal to N-terminal. A
total of 8 peaks are involved. The second approach assigns dipeptides in the reverse order, namely
from N-terminal to C-terminal, and involves 9 peaks. Figure 3.13 lists the assignments and all of
the involved peaks in the order they are used. The reported result in section 3.2.3 were produced

using the first approach of Figure 3.13 simply because fewer involved peaks means less chance of

having missing peaks. DBPA has an option to control the assignment dircction. As illustrated in’

Figure 3.13 where dipeptides can be assigned from C- to N-terminal (resi-due(i) to (i — 1)) or from
N- to C-terminal (residue(i - 1) to (1)). Users can select either one as the assignment approach.
In this chapter we introduced the procedure that requires a minimum of eight correlations to
assign the backbone resonances of a dipeptide. The minimum number is determined based on the
fact that each residue’s backbone has five resonances (N, aH, Ca, NH, CO), thus a dipeptide is
composed of 10 resoﬁ&nces. Suppose these 10 resonances are denoted as (ai. b1, c1.d), e1) and
(a2, ba, 2, d2, €3) where the first five nimbers represent the resonances of residue 1 while the last
five numbers are the resonances of residue 2. One of the possible combinations of the eight nec-

essary correlations are {a), by. 1), (b1, e, di}s {er, di, e}, {dy, e, a2}, {c1. dy, B2}, {az, b3, €3},
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Figure 3.13: Example showing two approaches for the assignment of a dipeptide.

{ba, €2, da), lca. da, ea). In this case, correlation {ay, by, o1} and {by, ¢r. dt} give rise to Tour reso-
nances, ay, b1, c; and ). Similarly, resonance ¢; can be detennined by merging (b, ¢y, dy} and
[ci, dy. e }. Repeating this procedure, all the 10 resonance can be determined. [tis generally not
easy to declare a minimum sct of required NMR experiments for automated assignment strategy
like the one discussed here, nor is it necessary. There are many different NMR experiments, each
provides one or more inter- or intraresidue correlations. What is relevant here is the minimum

number of correlations between the nuclei, not the number of NMR spectra.

3.4 Summary of the spin system determination from triple reso-

nance NMR

Algorithms are proposed to automate the resonance assignment of protein backbone us-
ing through-bond interresidue correlations. DBPA(Dipeptide Backbone Partitioning Algorithm)

merges cross peaks among avatlable NMR spectra and extracts the backbone spin systems. Ev-
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ery merge is confirmed by two picces of evidences, ie. two overlapped frequencies of a 3D
cross peak.  To Tulfill this requirement. six intraresidue and two interresidue correlations are
needed to construct the spin sysiems of a dipeptide. Once all the possible dipeptides are ob-
tained. PGA(Polypeptide Generating Algorithm) links the dipeptides to form polypeptides. Each
of the polypeptides in turn can be manually or automatically assigned to the primary sequence
of the protein. DBPA can be applicd to many different types of NMR experiments. The five-
experiment set { 3D HNCO, HNCA. HN(CO)CA. HCACO and *N TOCSY-HMQC ) along with
3D CBCANH were chosen to demonstrate the generality of DBPA.

3.5 Using double resonance heteronuclear 3D NMR

3.5.1 Introduction

TOCSY type NMR experiments play important roles in protein resonance assignment.
TOCSY cross pecks have absorption peak shape, thereby simplifying the peak identification and
picking procedure. Most available automated peak picking software can process TOCSY type
spectra while some of them have difficulties processing COSY type experiments. TOCSY exper-
iment obscrves neighboring as well as distant correlations between protons. In other words, the
TOCSY spectruin generally consists of all the informaticn available on the COSY spectrum. In
practice, by setting a short mixing time, the 2D homonuclear TOCSY spectrum provides almost
the same cross peak information 2D DQF-COSY does. Moreover, by setting an appropriate long
mixing time, the TOCSY experiment is able to provide long range cross peaks between amide
proton and oH, 8H, yH. even §H.

In this section we demonstrate the way a single TOCSY type experiment can be used to
construct amino acid spin systems. A computer algorithm called NCPA(Nitrogen Constrained
Partitioning Algorithm) was proposed. The implementation of the algorithm was tested on a N
TOCSY-HMQC spectrum of the 90-residue protein NTnC. Once the amino acid spin systems are
crgated by NCPA, the amino acid pattern recognition program determines the amino acid types of

observed spin systems. In the final stage. the sequential assignment protocol described in chapter 5
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takes responsibility of placing the spin svstems within protein primary sequence.

~lgorithm NCPA shares the same assignment strategy as its predecessor. CPA (Constrained
Parutioning Algorithm) [23, 24]. The main task CPA perforins is to merge as many NMR cross
peaks as possible in order o torm spin systems, Each merging operation has to be strictly con-
firmed by constraints. which could be another cross peak in the sinme spectrum or in a supplemen-
tary spectrumi. Spin systems are created in the form of graphs. @ combination of nodes (spins) and
edges (cross peaks) and represented by adjacency lists. The extracted graphs contain information
of chemical shifts as well as inter-resonance connections which make the design of an automated
algorithm for amine acid type wdentification casier. There is. however, a major difference between
NCPA and CPA. CPA tkes COSY as its primary input spectrum while NCPA takes TOCSY spec-
trum as the only inpul. As is seen in the next section, in principle N TOCSY-HMQC provides
all correlations between side chain protons and amide NH. Correlations between side chain pro-
tons themselves are not observed in the spectrum, however. Spin systems derived by NCPA are
therefore different from thosc derived by CPA due to the lacks of correlations between side chain
protons. NCPA's spin systems requires a revised database of the standard amino acid patterns to

carry out the sptn pattern recoghition.

3.5.2 Concept

For larger proteins, the NH-oH fingerprint region, where most resonance assignment strate-
gies start from, may have severe overlap of multiple cross peaks. To solve this problem, Marion
et al. [69] proposed two 3D NMR experiments, the ' H-'3N TOCSY-HMQC snd NOESY-HMQC,
to provide the through-bond and through-space connectivitics necessary for the sequential assign-
ment procedure. In the above experiments, the 'H and PN resonances are recorded in Fy and F
dimensions, respectively. The NH resonances are recorded in F3 dimension. The Fy ("H) - F3('H)
projection corresponds to the Fi('H) — Fz('NH) region of a regular 'H-'"H NOESY or TOCSY
spectrum and thus ensures that.the NH-aH connectivities can be ¢asily observed, Figure 3.14
shows that residues having ditferent '>N chemical shifts appear on different Fy — £ planes. All

protons within an amino acid residue are observed in a straight line intersected with the F3 axis at



3.5 Using donble resonance heteronuelear 3D NMR

resdue 1 resdue 2

[ ] S,

* S
. L4 Soally,
“N;‘\\Nl: N . . B .
ATH )
]
F.{""N) -
) RIS
M
. ‘ R F.A'm
. - Sakh
BN, b e L T
S{NH) ,
F NH}

Figure 3.14: A simulated 3D ¥N TOCSY-HMQC spectrum. Cross peaks belonging to the same residue
are observed in an F)-Fx planc. The corresponding Fa coordinate is the chemical shift of that residue’s
amide nitrogen nucleus.

the chemical shift of that residue’s amide proton. Spectra overlap is resolved by projecting the reg-
ular 2D 'H-"H TOCSY or NOESY into many F|{'H)— F3(*H) planes. One possible limitation for
the two 3D NMR experiments is that the spectral ambiguities occur in case that two residues have
common '*N and NH resonance frequencies. Another problem for the 'H-*N TOCSY-HMQC
and NOESY-HMQC experiments involves the relatively smaller ¥ Jayi—an couplings for a-helix

based proteins. The small J couplings might give rise to weak yH, §H, ... | etc., cross peaks.

3.5.3 The Constrained Partitioning Algorithm using Nitrogen chemical shifts

The algorithm takes the only input from the 3D 'H-'*N TOCSY-HMQC spectrum and out-
put the individual amino acid spin systems. The basic concept of the algorithm is simpic: to
merge two 3D N TOCSY-HMQC cross peaks (§H;, 6Ny, 8(NH),) and (§Hz, 6Na, §(NH),), the
chemical silift differences of |6N; — Na| and |8(NH), — §(NH);| must be observed within their
corresponding chemical shift tolerance values. For the comparison of |dN) — N3], the tolerance
of nitrogen chemical shift is set to be 0.20 ppm by default, while the tolerance of proton chemical

shift for the comparison of |§{NH), —8(NH),| is set to 0.02 ppm. If both of the above comparisons
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are satisfied. a spin svstem with three protons and one nitrogen is constructed as the one shown

in Figure 3.15. Note in Figure 315 that the protons oH and SH have their own connections to
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Figure 3.15: The merge of two 3D "N TOCSY-HMQC cross peaks. Two resonances, NH and N in this
particular case. are required to be overlapped in order to conduct the merge. A four-spin system will be
created.

{NH),. However, they don’t have i connection between each another. This is the feature for the
spin coupling patterns generated from TOCSY type experiments. Since the correlations between
aliphatic side chain protons are not observed. it is generally not possible to establish the connec-
tivities between side chain protons. Figure 3.16 lists a few example spin systems generated from

the 3D 'H-’N TOCSY-HMQC experiment.
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Figure 3.16: Some sample spin systems deduced from the 3D **N TOCSY-HMQC spectrum.

The following codes explain the detailed partitioning operations.
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SpinSys Tem_type NSOPA L Teakiisr tyve 3D CRN TOoOSY HMOO)
{
I
// Input :
// Qutput:
I
for each of the veakx i (i=. to N} in

the 15N TOUSY-HMNOO peak list

search a cross peax n i nt

n 1s cthe most likely peak to be in the same spin system with
peak 1;

record pair {i, #) in a temporary table;

}

for each input peak i {i=1 to N} |
add peak i into a new spin system §;
for each of the peak j {j=1 to N} in
the 15N TOCSY-HMQC peak list |

find the most likely partner peak for peak j from the above temporary
table, suppose the partner peak is peak n;

if peak j is a member of the spin system J;
add peak n into S;; '
else if peak # is a member of the spin system §;
add peak j into &

get rid of the redundant spin systems:
output all §;;

)

In principle N input peaks give rise to N output spin systems. However, a number of them
are redundant spin systems. For instance, starting from the cross peak (oH, N, NH) of an alanine,
the spin system {N. NH. oH, H} can be created; on the other hand, the same spin system can
also be derived from the cross peak (BH. N, NH} of the same alanine. One of the above two
spin systems are redundant and must be removed from the output. This is why NCPA conducts
a purging operation before giving the spin system output. One may also notice that many spin
systems are composed of only onc peak in the output list of an NCPA running. Falsely picked
peaks are the common reason for those one-peak spin systems, because a false peak generally can
not be merged with other cross peaks.

Once the spin systems are generated from the N TOCSY-HMQC data, the information
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of the amino acid types is requured tor the eventual placement of the spin systems within the
primary sequence. fn chapter 3 we deseribed an amino acid pattern recognition algorithm which
determines the spin system t pes automatically. The original algorithm deals with the spin systems
extracted trom homonuclear 20 NMR data. As we've seen earlier, the spin svstems extracted from
3D "*N TOCSY-HMQC consist of both protons and amide nitrogen atoms. This indicates that a
standard chemical shift databuse for wmide nitrogens is needed to perform the automated pattern
recognition. In addition, the standard patierns of the 20 amino acids must be revised to reflect
the fact that no connectivity between side chain protons is established in the "N TOCSY-HMQC
spectra. The expected chemical shifts of the amide nitrogens for the 20 commonly seen amino

acids are listed in Table 3.2, The data was provided by Chaoy [70]. The chemical shifts are listed

Table 3.2: The expected chemical shifts of amide nitrogen nuclei for the three protein conformations.
Numbers are in ppm. The standard deviations are also given.

Aming Helin Sheet Coil
Acid meian st ucin sid mean std
Ala |j 12236 282 12472 522 12447 4.37
Arg )| 11979 287 12450 4.6 12056 5.25
Asn || 11723 339 12243 551 11881 449
Asp i 11981 290 12273 465 12027 4.28
Cys || 118.06 336 11915 357 11890 4.08
Gln ) 11928 391 12212 385 12043 397
Glu || 11922 262 12321 374 12158 4.08
Gly || 10748 393 11073 445 109.84 3.80
His || 11745 199 12148 449 11870 4.72
Tle )| 12020 344 12473 4.20 12080 6.88
Leu || 12042 318 12539 427 12295 393
Lys | 120.16 255 123.27 482 12106 448
Met || 11819 3.06 12244 538 12061 392
Phe §§ 11960 345 12197 422 121.68 6,53
Pro || 13314 396 N/A NA 13683 176
Ser | IS.‘)I 342 11803 361 117.18 4.88
Thr || 11573 489 11747 515 11551 6.20
Tep 3| 11999 176 12495 396 12029 5.72 o
Tvr || 120019 331 12275 4.83 120,19 5.07 ‘
Val || 11974 447 12333 480 12061 591

according to three major structural components: helix, sheet and coil.
In Figure 3.17 the expected spin coupling patterns for a serine are fistea. The spin systems
derived from the 3D '*N TOCSY-HMQC spectrum differs from the one derived from 2D COSY.
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Figure 3.17: Comparison of the spin systems deduced from 3D "N TOCSY-HMQC and from 2D
COSY/TOCSY spectra. The former has an amide nitrogen resonance and is lack of the connectivity
between side chain protons.

To complete the sequence-specific assignment, the individual amino acid spin systems must
be placed in their corresponding positions within the protein primary sequence. Up to this point the
only NMR experiment used is 3D SN TOCSY-HMQC which docs not provide any interresidue
information. A similar 3D NMR experiment, >N NOESY-HMQC, provides the through-space
correlations needed for the sequential assignment. The 3D 'SN NOESY-HMQC experiment re-
solves spectral ambiguities which limit the analysis of the conventional 2D NMR spectra. The
absence of overlapping cross peaks in 3D NOESY-HMQC allows the unambiguous identification
of den(i, i + 1) and dyn(i. i + 1) through spuce nuclear Overhauser connectivities which are
necessary for connecting spin systems sequentially. Our strategy of applying the 3D SN NOESY-
HMQC experiment is similar to the one described in chapter 5. Using the interresidue correlations
provided by SN NOESY-HMQC, the individual amino acid spin systems can be connected to
form many dipeptides. Those dipeptides are used as the building blocks of polypeptide chains
which in turn are to be mapped to the proper positions within the primary sequence. The actual
mapping task involves the use of an algorithm called PMA which is described in chapter 5.

A dyn(i, i + 1) cross peak in NOESY connects the oH of a residue and the NH of the
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tollowing residue while adsx (i + 1) cross peak connects the amide protons of two sequentially
neighboring residues. The dox .0 = D and dax i § 4 T cross peaks are the two commonly used
interresidue correlations in wdentitving sequentially connected amino actd spin systems [2]0 A
simple program was designed to create dipephides from the deduced spin systems. The required
interresidue information is adopted from the d xtic i + 1) and dax(i.1 + 1) peaks of the 3D
SN NOESY-HMQC spectrum. The codes for the establishment of dipeptides from 3D NOESY-
TIMQC are listed below:

void annn({PeakList_type 3D 15N NOESY-HMQC, SpinSystem_type. ... }

|

I

// Input : 1. 3D 15N NOESY-HMQC peak list.

/7 2. all of the spin systems derived by the algorithm NCPA.
'y Totally N spin systems.

// Output: dipeptides connected through dnn(i,i+l) and dan(i,i+1)
//

for each of the spin system pair [i.f], (i.j=1 to N, i&]) |
if both dnn{i,i+1l}) and dan({i,i+l) are observed in
the input peak list
link spin system §; and §; to a dipeptide § —§;;

]

ocutput all discovered dipeptides:;

}

The discovered dipeptides along with the available amino acid type information makes it possible

to use our sequential assignment protocol to complete the sequential assignment.

3.5.4 Applications and Results

The N TOCSY-HMQC and NOESY-HMQC spectra were provided by University of Al-
berta [68]. Sample protein is the calcium-loaded regulatory N-domain of chicken skeletal tro-
ponin-C (1-90). Both experiments were catried out on a Varian Unity-600 NMR spectrometer
operating at 30 °C. The mixing times for 'SN TOCSY-HMQC and NOESY-HMQC are 70 and
150 ms, respectively. The N carrier frequency is 117.44 ppm and the spectra width is 23.03 ppm.
The "N chemical shifts are reported relative to external acidic NH4Cl (24.93 ppm). Automatic

peak picking of the transformed 3D spectra was achieved using the CAPP program [56]. A total
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of 241 BN TOCSY-HMQC and 675 N NOESY-HMQC cross peaks were reporied. The peak
Jist was then given the the authors by B. Svhes o8]

The algorithm NCPA was implemented using C fanguage. Ona 75 MUz Pentinm computer,
the typical execution time for the entire execution is about 3 misuies,

Using the 241 "N TOCSY-HMQC peaks, NCPA program produced 82 spin svatems. The
tolerance value for nitrogen and proton chemical shifts are set o 0,20 amd 0.02 ppm, respectively.
Each deduced spin system consists of an amide nitrogen, amide proton and some protons. A
sample output of NCPA is listed here:

/*9th G/ Total Peaks= 3

//Peak 25 (8.660 , 5.140 , 117.860)

//Peak 26 (B.660 , 2.790 , 117.850)

//Peak 27 (8.660 , 2.%40 , 117.860)

//TOCSY-HMQC 1.00 25(5.140, 8.660,117.860)+26(2.790, 8.660 , 117.850)
//TOCSY-HMQC 1.00 27(2.540, 8.660,117.860})+25(5.140, B8.660 , 117.860)
//8pin Coupling Topological Graph:

N,117.857

14,8.660,2,3,4

2H,5.140,1

i4,2.790,1

4H,2.540,1

In the listing, a spin system with four protons and one nitrogen was created from the N TOCSY-
HMQC peak 25, 26 and 27, The adjacency list of the spin system is also shown, For example,
proton 1H (8.660 ppm) has three ncighbors: 2H, 3H and 4H, Among a total of 82 output spin sys-
tems, seventy-four of them can be verified against the independently done manual assignment [68).
Figure 5.9 summarizes the result of the NCPA run.

As a subsequent test, we examined the interresidue dyn(i, i+ 1) ;lnd dnn(i, i+ 1) correlations,
Upon the 675 SN NOESY-HMQC peaks and 82 deduced spin systems, a total of 77 dipeptides
were generated. Those dipeptides were linked to one another to form the 174 polypeptides with
the length from 3 to 10 residues. On an carlier run of the amino acid pattern recognition program,
the amino acid types of the 82 deduced spin systems were determined. The output is digested
in the following listing where each spin system has a candidate list showing the possible amino
acids.

Gl{lst G): Tle/0.793 Leu/0.766 Arg/0.74) Lys/0.741 Ser/0.614 ......
G2{2nd G): Ile/0.658 Arg/0.618 Lys/0.618 Met/0.543 Gin/0.536 ......
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In the lasi sequential assignment stage, the algorithm PALA successfully assigned residue 4

W 1015020, 21 10 24. 27 10 30 and 79 10 86.

355 Discussion

The sample protein NTnC (1-90) has tive major helix segments [68]. In those segments, most
of the * I on are less than 6 Hz. The small couplings often result in shorter TOCSY transfer. In
other words, the >N TOCSY-HMQC spectrum doesn’t provide a sufticient number of long range
through-bond cross peaks. This can be veritied from the output of the NCPA program. Many of
the extracted spin systems contain N, NH. oH and gH only. The additional side chain resonances
are unable to be determined as the spectral data is insufficient. The shert side chain effects the
accuracy of the determination of amino acid types. because it is the side chain that makes the 20
amino acids distinct to one another. The low percentage of successfully assigned residues are due
to the incomplete TOCSY connections.

Without using '*N NOESY-HMQC experiment, '*N TOCSY-HMQC itself provides an alter-
nate approach to determine the amino acid side chain resonances. The more detailed side chain
information is available, the more accurate determination of amino acid types can be anticipated.

The "N TOCSY-HMQC alone might not be able to provide sufficient data for a complete reso-

~ nance assignment. However the extracted spin system information does play an important role

in the overall sequential assignment process. See section 5.2 for further discussion of the NCPA

algorithm.
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3.6 Summary of spin system determination from double resonance

3D NMR

The algorithm NCPA. (Nitrogen Constrained Partitioning Algorithng, was proposed to au-
tonmate the determination of amino acid spin svstems. The fgorithm is a direct exienston of the
2D CPA algortthm <desceribed in chapter 2. The algorithm has the feature that it car aceept a sin-
gle TOCSY type NMR experiment as the input and identity the individoal spin systems trom 2D
TOCSY or 3D "N TOCSY-HMQC spectrum. Along with the sequential connectivities provided
by 3D "N NOESY-HMQC. we demonstrated the possibility of ustng a minimum number of NMR

experiments to conduct the automated sequential assignment.

Y



Chapter 4

Automated Extraction of Aliphatic Side-chain

Spin Systems

4.1 Introduction

The aim of this chapter is to extend the CPA algorithm to 3D NMR and present a computer
assisted spin system extraction procedure based on 3D HCCH-COSY and HCCH-TOCSY NMR
spectra.

Resonance assignment of a protein’s backbone can be achieved by a combination of several
triple resonance 3D NMR experiments [S]. Furthermore, to obtain the detailed structure of a
protein, the NOE cross peaks of the chain nuclei must be unambiguously assigned so that enough
distance constraints can be produced to construct the protein side chain orientation. The analysis
of NOE cross peaks usually requires the side chain resonance assignment to be completed. Several
3D NMR cxperiments have been proposed for the resonance assignment of protein side chain, such
as 3D HCCH-COSY [71-73], HCCH-TOCSY [74]. HCC(CO)NH-TOCSY [75,76] and HCCNH-
TOCSY [75.77].

Among the Qeveml attempts for the automated analysis of 3D NMR, two of them {9, 16}
studied the applications of homonuclear 3D NMR to protein proton resonance assignments. The
rest of the approaches use triple resonance heteronuclear 3D NMR to obtain the assignment of

protein backbone [17] and to establish the sequential connectivities of amino acid spin systems
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[18.19]. The watlability of the information about spin systems, including backbone and side
chain resonances. as well as the amino acid types. is crucial in all these methods, However, in
all of the heteronuclear 3D NMR approaches imentioned abave, the intormaton of side chain
spin systems has to be manually obtained clsewhere, This chapter is directed in this regard 1o
design an automatie strategy o obtain the information of protein spin svateins, In this chapter
an algorithm is proposed to extract aliphatic stde chain spin systems from heteronuclear 30 NMR
data ot proteins. The algorithm merges cross peaks from 3D NMR data, such as 3D HCCH-COSY,
to form spin coupling, systems. At cach merging step at least two constraints are required o assure
the validity of the merge. Thus an additional NMR spectrum, such as 3D HCCH-TOCSY can be
used to supply these constraints, The output spin coupling systems are given as i series of graphs
represented as adjaceney hists which can be processed by the subsequent graph pattern recognition

algorithm, which is described in chapter 5. to perform the amino acid identitication.

4.2 Methods for extracting side-chain spin systems
4.2.1 Concept of the peak merging process

The central idea of the algorithm is to extract amino acid spin systems from NMR spectra, To
illustrate how this approach works, a simple three-spin system is first considered(see Figure 4.1),

On a 2D DQF-COSY NMR spectrum, such a three-spin system gives two cross peaks on cach

Figure 4.1: Example of a chemical structure fragment with three hydrogen atoms.

side of the diagonal, while in a 2D TOCSY spectrum, an extra peak is observed on cach side(see
Figure 4.2). To construct this three-spin system from the cross peak data, conventional assignment
procedure probably picks the starting point from the peak 1 (see Figure 4.1 and 4.2), then observes

the peak 2 in a subsequent searching in theipeak list. In terms of an automated computer procedure,

93



4.2 Methads for extracting side-chain spin svstems

//
A/ ko/
S

°"  F('H) y °"  F('H)
i !
C =}
F,('H) F,('H)
2D DQF-COSY 2D TOCSY

Figure 4.2: 2D DQF-COSY and TOCSY specira of the chemical structure shown in Figure 4.1, The
peaks on other sides are not displayed for convenience.

for peak | (8;. 8;). and peak 2 (8. &). if §; and 8;+ are close enough (controlled by a pre-defined
tolerance value), the three-spin system, {i. j, k), can be constructed. Applying this procedure to
the entire peak list enables, in principle, all the amino acid spin systems to be extracted. However,
in certain regions of the spectrum, heavy overlap makes this kind of merging process unreliable.
Suppose, for example, we have two three-spin systems, {§;. 8;, 5} .(d1, 8, 8}, and coinci-
dentally wo spins. j and m, have resonance frequencies which are similar in values (see Figure
4.3). The COSY cross peaks produced by the two systems are (8;, 8;7), (87, &), (1. 8m) and
(8nr. S0} where §;, 8,7, 8,,, and 6§, are difficult to distinguish in terms of chemical shifts. In the
analysis of the peak merging procedure, it is necessary to determine that the cross peak (d;, 3;)
should bé merged with (8 i 81 ) OF (S, 8n). Since j and m have similar resonance frequencies, an
extra constraint is necded to remove the ambiguity. One way is to look at the TOCSY spectrum.
If spin i. j, k are indeed in the same spin system, i.e., §; and §;» come from the same spin, the
TOCSY cross peak (J;, &) should be observed. Similarly, if i, j, n are in the same spin system,
r;amcly §; and §, come from the same spin, another TOCSY cross peak (§;, 8,) should be ob-
served. Hence by cross referencing with such TOCSY constraints, one can reduce the possibility

of the ambiguitics caused by spectral overlap, making it possible to design an automated spin
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Figure 4.3: (a) Three-spin systems {8;. §;. 8} and {3, §,,. 8} where §, and &, are within a chemical shift
tolerance, (b) 2D DQF-COSY and TOCSY spectra of the above spin systems.

system extraction algorithm.

As the size of the target protein increases, the corresponding 2D NMR spectrum becomes
more crowded. It is unlikely that one constraint alone can resolve the overlap when doing peak
merging. One solution is to acquire another 2D NMR spectrum which may provide additional
information to resolve the overlap. Another way is to introduce the third dimension in which
another nucleus can be used as the additional constraint, The former was treated previously in
chapter 2 while we discuss the latter in this chapter.

The complete amino acid spin systems of a protein’s side chain can be determined by 3D
HCCH-COSY and HCCH-TOCSY experimnents [6,71,73,74]. Both experiments make use of the
one bond 'H—"'3C (~ 140Hz) and '*C—'3C (~ 30 — 40Hz) J couplings to transfer magnetization

along the side chain via the pathway

m Lien e Heg 3 e Iy
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To interpret the 3D HCCH COSY/TOCSY spectra. consider first a 2D TOCSY segment.

Figure 4.4 shows the spectrum that corresponds to the chemical structure shown on the left of the

ligure.
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Figure 4.4: (a) Structure of a CH-CH fragment. (b) The corresponding 2D TOCSY spectrum. Cross
peak | has chemical shifts (8H,, dHz). cross peak 2 has chemical shifts (§Ha, Hy).
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Figure 4.5: (a) The same structure as in Figure 4.4(a). (b) The corresponding 3D HCCH-TOCSY spec-
trum, The 'H(F;) — '"H(F3) planes are similar to that of 2D '"H— 'H COSY or TOCSY experiment, except
that the '"H(F)) — 'H(F3) are edited by the chemical shift of the *C nuclei. Note that peak | and 2 do not
occur symmetrically on both sides of the diagonal on the same plane.

Figure 4.5 shows the 3D HCCH-TOCSY spectrum of the same CH-CH fragment as in Figure
4.4. The 'H(F)) — 'H(F;) planes are similar to that of 2D 'H — '"H COSY or TOCSY experiment,
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except that these planes are edited by the chemical shifts of the '*C auclei. Henee oft-diagonal
peaks ina "H — 'H plane at the "*C frequency arise from protons directly bonded to thay *C. For
example. in Figure 4.5, the magnetization transter pathway of cross peak | (SH, 3Cy, dH) fol-
lows the path Hy — C; — C; — Ha. while the transter pathway of cross peak 2 (SHa, 5Cy. SHD
has path H» — Cs - C; — H,. The cross peaks 1 and 2 in 3D HCCH experiments do not
occur symmetrically on both sides of the diagonal of the same plane. but rather. oceur on ditterent

Fi — F3 planes as shown in Figure 4.5.

4.2.2  Concept of the algorithm

The NMR data set used in the present algorithm are 3D HCCH-COSY and 3D HCCH-
TOCSY. Currently the implemented computer program is designed to process peak lists. That
is, cross peaks in the spectra must have been previously picked by a reliable peak picking pro-
cedure. In the peak list, cross peaks are represented by three chemical shitt coordinate points,
e.g., (3.52, 538.17, 1.46), where the first coordinate denotes the resonance [requency of the proton
which is directly bonded to the carbon. The frequency of that carbon is the second coordinate,
while the third coordinate is the frequency of another proton which can be reached by the transfer
of magnetization along the side chain via the HCCH pathway. In the following context, a generic
3D cross peak is represented as (H;, Cy, H;). The corresponding chemical structure of the 3D

HCCH-COSY cross peak (H;, Cy, H;) are shown in Figure 4.6.

Hr { ‘:lj H.l
. or

c, o

. H.:

}

Figure 4.6: The possible chemical structures corresponding to the 3D HCCH-COSY cross peak (H;, Cy,
H;). In the left, the chemical shift of the carbon to which H; bonds is undetermined.

The algorithm, called ASPA(Aliphatic Side-chain Partitioning Algorithmn} , starts with the
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entire HCCH-COSY data set being searched to find pairs of cross peaks. (H;. Cy. Hj)and (H;. Cy-.
Hy ), which have one proton and one carbon resonance Irequencies in common. In the algorithm,
H, .H, and C) .C- are tested te determine whether they are within the user-defined chemical shift
tolerance values , such as 0.02 ppm for proton and 0.20 ppm for carbon. There are three different
situations regarding the connectivities between protons and carbons to be considered in merging
cross peaks into spin systems. The first is that all of the three protons, H;, H; and H; bond
to different carbons. A schematic view in Figure 4.7 shows the two HCCH-COSY cross peaks
Llong with various constraint peaks, can arrive at a merged spin system. Figure 4.7(d) is the first
possible merged spin system which is formed from Figure 4.7(a) along with the two constraint
peaks shown in Figure 4.7(b). Similarly. the spin system in Figure 4.7(¢) can be obtained from the
two cross peaks shown in Figure 4.7(a) along with the two constraint peaks in Figure 4.7(c).

A second case occurs when H; and Hy bond to the same carbon as shown in Figure 4.8. One
of two possible constraint peak sets, Figure 4.8(b) or Figure 4.8(c), is required to confirm that the
spin system shown in Figure 4.3(d) can be constructed. A third case has H; and H; bonded to
the same carbon as shown in Figure 4.8(e). The presence of two constraint peaks, Figure 4.8(f),
confirms the spin system shown in Figure 4.8(g).

To summarize the above pictorial representations, Figure 4.9 shows the control flow of the

partitioning algorithm.
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Figure 4.7: Schematic representation showing the 3D HCCH-COSY cross peaks, (H;, Cy, H;) and (H;,
C\-, Hy), are merged to form a spin system. Each cross peak contains three frequencics depicted by filled
circles, while the open circles indicate the frequencies are unknown from the cross peak data. (a) Two
cross peaks (H;, Cy, H;} and (Hy, Cyr, Hy), where H;, H;r and Cy, C; are within the specified tolerance.
(b) The two possible cross peaks (H;, Ca, Hy) and (Hj, C;, H;) as the constraints. (¢} Another two
possible peaks (Hy, Cs, H;) and (Hi, Cs, H;) as the constraints. (d) The possible merged spin system
with three protons, H;, H;, Hy, and three carbons, C;, C; ,Ca. (e) Another possible merged spin system.
The two peaks in (a) along with the two constraint peaks in (b) lead to the spin system in (d), The two
peaks in (a) along with the two constraint peaks in (c) lead to the spin system shown in (e). In summary,
. (a)-(b)-(d) is a possible pathway to merge two cross peaks while (a)-(c)-(e) is another one.
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Figurc4.8: (a) The two 3D HCCH-COSY cross peaks (H;. Cy. Hy) and (Hp, Cy, Hy). (b) The two peaks
(H;, Ca. Hy) and (H;, Cs, H;) as the constraints. (c) Another two peaks (H;. Ca, H;) and (Hy, Ca, H;) as
the constraints. (d) The merged spin system with three protons, H;, H; ,Hy, and two carbons, C; and Ca.
The two peaks in (a) along with the two constraint peaks either in (b} or (c) lead to the spin system in {d).
(c) The two 3D HCCH-COSY cross peaks. (f) The two peaks as the constraints. (g) The merged spin
system with three protons, H;, H; ,Hy, and two carbons, C; and Ca. The two peaks in () along with the

two constraint peaks in (f) give rise to the spin system in (g).
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are within the 'H chemical shift tolerance range. and €, and Cj- are within the *C chemical shilt
tolerance range. Do the followinyg steps to testif H,. Cy. H; and Hy can be added o a spin system.

Step2 If a HCCH-TOCSY (H;, Ca. Hy) is lound

and 2 HCCH-COSY (H;. C2, Hi) or HCCH-TOCSY (H;. Ca. H;) is found
then add H;, Cy, H;, Hy and Ca to a spin system.

Step3 clse it a HCCH-TOCSY (Hi. Ca. Hj) is found

and a HCCH~COSY (Hy. Ca. H;) or HCCH-TOCSY (H;. Ca. H; ) is found
then add H;, Cy. H;. Hy and Cz 10 a spin system.

Stepd clse if a HCCH-COSY (H;, Ca, Hy) is found

and a HOCCH-COSY (Hj, Ca, H;) ur HCCH-TOCSY (Hj, Cs, H;) is found
then add H;, Cy, H;, Hy and Ca to a spin system.

StepS clse if a HCCH-COSY (Hy, Ca, H;) is found

and a HCCH-COSY (Hy, Ca, H;) or HCCH-TOCSY (Hy. Ca, H; ) is Tound
then add H;, C), H;, Hy and Ca to i spin system.

Step6 Back to Stepl until no more COSY cross peak pair fullilled the condition of Stepl remain in the data

sel.

Stepl Scarch the HCCH-COSY cross peak list for pairs of (H;. CyL Hpy and (H:, Cyel H), where H, and H,:

Figure 4.9: Control flow of the partitioning algorithm.

(1111
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4.2.3  Detailed description of the algorithm

The algonithm takes input from the 3D HCCH-COSY and HCCH-TOCSY peak lists then
conducts partitioning operations 1o extract the aliphatic side chain spin systems. Suppose that NV
peaks are picked in the 3D HCCH-COSY spectrum. For cach peak § in the peak list. the algorithm
attempts to merge all other peaks that possibly reside in the same spin system with the peak i. For
a peak Tist with N peaks, the output of V spin systems are expected. The details of the partitioning
operations are listed in the following code segments,

SpinSystem_type partitioning(PeakList_type 3D HCCH-COSY, HCCH-TOCSY)

{

// This function is the kernel of the Aliphatic Side chain

// Partitioning Algorithm

!/

// Input : 3D HCCH-COSY and HCCH-TOCSY peak lists

// Output: For N 3D HCCH-COSY peaks, the output will be N spin systems.

r Those systems are not the final ocutput. A merging
f/ procedure is to be applied to obtain the final side chain
r/ spin systems.

for each of the peak i {i=1] to N} in the HCCH-COSY peak list {
put peak i into spin system S5;;
for each of the peak j (j=1 to N) in the HCCH-CUSY peak list |

n=best_partition{j);
// Find the peak n in the
// HCCH-COSY peak list
// which is the moat likely peak
// to be merged with peak j ;
if peak j is a member of the spin system §;
add peak n into §;;
else if peak n is a member of the spin system §;
- add peak j into S;;
}
)
output all §;;

}

A function called ‘best_partition() is invoked within the partitioning(). The

former is responsible for the actual searching and merging tasks and is listed in the following.

Peak_type best_partition{Peak_type m, PeakList_type 3D HCCH-COSY,
HCCH-TOCSY])
(

// Input : 1. 3D HCCH-COSY and HCCH-TOCSY peak lists.
/7 2. the cross peak m in the HCCH-COSY peak list.
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Cutput: Return the peax which 1s considered ro have the best

chance to be parcitioned with the poak m.

for each of the peak { (1=1 to N} in the HOCH COSY peax list |
i€ peak | can be merged with peak m |
call mergel(), mergel{) or mergeld() dependinag on the

gel
overlapped resonances between the peak f and m;
compute the ranking parameter A

return the peak with the highest ranking parameter;

Three merging functions are invoked within the the function of best _partition().

P =

mergel (). merge2 () and merge3 () perform the operations illustrated in Figure 4.7,
Figure 4.8(a)-(d) and Figure 4.8(¢)-(g). respectively.

void mergel (Peak_type m, Peak_type n, PeaklList_type 3D HCCH-COSY/TOCSY)
{

// Input two peaks m and n. They are overlapped in the first and

// second coordinates.

if the peak {(Hj, C:, H:) can be observed in the peak list
of 3D HCCH-TOCSY and
the peak (Hj, C:, H;) can be observed in the peak list
of 3D HCCH-COSY or TOCSY |

The peak m and n are allowed to merge.
Note that the following calculation decides if m and n can be
actually merged.

compute the ranking parameter A;

} else if the peak (H:, Cy, H;) can be observed in the peak list
of 3D HCCH-TOCSY and
the peak (H;, C3, H;) can be cbserved in the peak list
of 3D HCCH-COSY or TOCSY |

the peak mt and n are allowed to merge;
compute the ranking parameter A;

} else
the peak m and n are not allowed to merge:

}

void mergel (Peak_type m..Peak_type n, PeakList_type 3D HCCH-COSY/TOCSY)
®

if the peak (Hj, Ca, Hy) can be observed in the peak list

103
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}

14

of 2D HCCH-TOCSY or CO3Y and
the: peak (H,, Cax, ) can be observed in the peax lis
nf 1D HCCH-TOCSY or COST|

it

The peak m and n are allowed to merge.
tiote that the following calculation decides if m and n can
be actually merged,

compute the ranking parameter s;

} else if the peak (M, C2, H,} can be observed in the peak list

of 3D HCCH-TOCSY and
the peak (ff;,, Cr, H;) can be observed in the peak list
of 3D HCCH-COSY or TOCSY |

the peak m and n are allowed to merge:
compute the ranking parameter A;

] else
the peak m and n are not allowed to merge;

void mergel(Peak_type m, Peak_type n, PeakList_type 3D HCCH-COSY/TOCSY)}

that none of the peak can be merged with the peak i therefore peak i retains its single status. For

example, due the lack of side chain hydrogens, glycines always give rise to one-peak spin systems

if the peak {Hy, Cy, H;) can be observed in the peak list

of 3D HCCH-TOCSY or COSY and
the peak (Hi., Ci, H;) can be observed in the peak list
of 3D HCCH-TOCSY or COSY{

The peak m and n are allowed to merge.
Note that the following calculation decides if m and » can
be actually merced.

compute the ranking parameter A;

} else
the peak m and n are not allowed to merge;

Note that some of the output spin system S; might contain only one peak. This indicates

(aH, Ca, aH").

frequencies of protons and carbons are both determined. The connectivity relationship between

Figure 4.10 is a fragment of the output spin system from ASPA. Note that the resonance

the protons is also displayed using the adjacency list.
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*8th G Total Peaks= 2 ;
Peak 19 (4.652 , 70.400 , $..435)

JoPeak 20 (4.652 , T70.400 , 1,176y

S/ 8pin Coupling Topological Graph:

1H,4.652(70.400),2.3

2H,4.438(61.085),1

3H,1.176(21.310).1

Figure 4.10: An example of the extracted spin system represented by the adjacency list. In this case, the
two HCCH-COSY cross peaks (No.19 and No.20) were merged into a three-proton spin system. Proton
1 (4.652 ppm) bonds to a carbon (70.400 ppm), couples to proton 2 (4,438 ppm) and proton 3 (21.310
ppm). Proton 2(21.310 ppm) bonds to a carbon (61.083) and couples to proton 1 (41652 ppm).

As the number of peaks und the complexity ol spectra increase, the uniqueness of the merging
process is compromised. In other words, for a specific peak with which it is common that more
than one candidate peak can be merged. This is mainly due to the spectral overlap, making it
necessary to design a strategy to rank the candidate peaks, in other words, to select the most likely
merging from the many possibilities.

A scoring parameter in the partitioning algorithm is introduced to rank all the candidate
peaks. Consider the cross peak (H;, Cy, H;), with which the candidate peak, (H;, Cyr, Hy) can be
merged based on the presence of the constraints already discussed(see Figure 4.9), The two con-

straints might be the presence of peaks (Hyr, Ca. Hj») and (Hgr, Cx, H;»). The scoring parameter

A is defined as
o D ) (IU|)
— —_— —_ (4.1
(Tn) (f-’fu Tc

w) = |8¢, — écy, |

A=l—\"/

where

wo = |8x, — dn,|
Ty = the tolerance value for comparing proton chemical shifts

T¢ = the tolerance value for comparing carbon chemical shifts
(D) + D2}

7 &
with D) and D> depending on the constraining peaks as

D=

Dy = 8y, — 8n, | + |84; — 8,
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hs,t;z - r‘iul. )
Dy =1y — oy | +——F—— —du.l
Figure 4,11 tlustrates all the distance used in equation 4.1,
W, d,. dy
H.H H, H. H.H H  H.H CF H,
e | |
ml . e
H, H,. H, H, H,
ki i
dy) dy
D =dy +dy, D=d +d,

Figure 4.11: Pictorial representation of the variables used in calculating the scoring parameter. The solid
circles represent the observed resonances. The dashed-line circles represent the undetermined resonances.
The filled circles are the constraint peaks.

wp measures the difference of the chemical shifts between the original and candidate peaks
in the first coordinate of the involved 3D cross peaks. 7Ty is the user-defined tolerance value
to compare the proton chemical shifts. Candidate peaks which make wq greater than Ty are
discarded, thus wy is always less than or equal to Ty, or wo/Ty < 1.

w measures the difference of the carbon cherical shifts between the original and candidate
peaks. Te is the tolerance value for comparing carbons. Similarly, w/T¢c < 1.

D measures how well the two constraint peaks match the original and candidate peaks. A
smaller D corresponds to a better match.

The above three factors are used to decide how good a candidate peak is. In terms of the
first factor wy, a smaller proton chemical shift difference between H; and H; indicates a better

. match of the cross peak (H;, C;. H j) and (Hy, Cyr, Hp). Secondly, a smaller carbon chemical shift
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difference. i.e. a smaller wy. between € and Cy-also indicates a better match. Finally, 17 uses
the constraint peaks to evaluate the two to-be-merged peaks.

The computer program caleulates the scoring parameter for each of the merging pair giving
a score from O to . A higher value of A is taken as a better mateh. Under such o scoring striegy,

the candidate peak with the largest value of A is chosen to merge with the original peak.

4.3 Results

The algorithm was implemented in C programming languages. A simple GUI (graphical user
interface) has been built for the implemented program based on X 11 MOTIF library. Figure 4.12

shows the snapshot of the running program. The program was tested on both real and simulated 3D

Figure 4.12: The snapshot of the implemented computer program.

HCCH-COSY/TOCSY data for the 90-residue protein N-domain of chicken skeletal troponin-C
{1-90).

The experimental spectra and manual assignments were provided by University of Alberta
[68). The simulated data were generated based upon the manual assignments. Both exact and
dispersive (with respect to chemical shifts, described later) simulations were used. The testing

procedures and results are described below.
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430 Analvsis of sinudated 31 HCCH-COSY/TOCSY dutu

Simulations were generated based upon the manual assignments conducted previously at
University of Alberta [68]. Here an example is given to dlustrate how the simulation were done.
Figure 4. £3 shows the manual assignment for Met3 and Thred which are used to generate the COSY

and TOCSY peaks that should exist for these residues. The generated peaks are also shown in the

3 Mer 4 Thr
N W] 11€.0%0 CO8Y
HN HM 8.0173
CA 55.950 Ca 61.08% 4.438 £1.085% 4.652
HA 3.840 HA 4.438 4.652 70.400 4.438
CB CB 73.400 4.652 70.400 1.176
HB1 HB 4.652 1.176 21,310 4.852
HB2 G2 21.310
HB2 HG2 1.176 TOCSY
CG c 175.000 4.438 §1.085 1.176
HGL 1.176 21.310 4.438
CE 16.600
HE 2.070
C 177.100

Figure 4.13: Fragment from the manual assignment listing of the N-domain of chicken skeletal troponin-
C (1-90). Met3 and Thrd are shown here. Some resonances were not assigned, for example, Cg and Hy of
Met3. For Met3, the assigned resonances are not sufficient to simulate COSY cross peak. The simulated
cross peaks for Thr 4 are shown on the right of Thrd's manual assignment.

figure. Resonance frequencies from Cg, Hg, C, and H, are missing for Met3. Therefore no
cross peak can be simulated from the manual assignment for this residue. For Thr4, four HCCH-
COSY cross peaks can be generated, among them two are symmetrical cross peaks. Similarly, six
HCCH-TOCSY cross peaks can be generated as there are two additional peaks of (Hg, C,, Hy)
and (H,. C,.. Hy).

At the first stage of testing, no chemical shift dispersion was introduced in the simulated data
sel. That is, two cross peaks are allowed to be partitioned into a spin system as long as they share
exactly same chemical shift value. The value of the chemical shift tolerance is therefore zero. The
purpose of simulating the exactly data is to confirm that the algorithm works as designed. A total
of 674 HCCH-COSY cross peaks and 1014 HCCH-TOCSY were simulated for the protein NTnC.

Note that among all of the amino acid residues, glycines are considered to be two-spin systems.
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Each has two H,, protons. The amide proton s not detectable i HCCH spectrum. Sumilarls,
alanines. cach of which has one H,, and three meths L are also two-spin sy stems, The algonthim
was designed to extract the amine acid spin systems with three or more spins, henee aliamnes and
alveines are excluded in this particular test. Glyveines and alanines are considered during the real
data testing presented later in this chapter. Another point of note is that the chemical shift data of
aromatic carbons are not aviilable since their resonance frequencies are much higher ¢~ 130ppny

than that of aliphatic carbons, As a consequence of the above, and due to several residues it

being detected in the manual assignments. only 63 residues ol the 90 were simuiated.

The test reselts are summarized in Table 4.1, Note that all the spin systems that were included

in the simulated data 63 residues are detected. The execution time for this running is about S

minutes on a 75 MHz Pentium PC.

Table 4.1: Results tor the test of simulated dita L See wext for details

No. of No. of §.5. [ No. oSS, |
Residues | vccurrence | simulated obtained | Remurks
of a residuc | as input from owput
Gly 7 N/A NIA spin systems with 2 spins are not tested
Ala 10 N/A NIA spin systems with 2 spins are oot tested”
Asp 10 10 10
Glu 13 9 Y E-1.57.67.77 were not simulated due to incomplete data
Lys 4 4 4
Met 8 7 7
Gln 4 3 3
Arg 3 3 3
Val 4 4 4
Leu 5 4 4
Phe 6 4 4
Ile 5 5 5
Thr 5 3 5
Ser 4 3 k]
Pro I 1 1
Asn ] 1 |
[ Total] 90 [ 63 [ 63

4Gly has two H, which produces only one cross peak pair. This is excluded lrom the simulation.
bFor the same reason as Gly.

In the second test, the manual assignment, which results in 63 spin systems, were modified

by the introduction of chemical shift dispersion. That is, to better simulate real experimental data,

1w
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systematic dispersion less than the pre-defined tolerance was introduced for every frequencies.
The main aim of this test is to inspect the algarilhlﬁ's capability of handling ill-aligned cross peaks.
To better explain the dispersion. consider a three-spin system AMX. In principle there should be
three cross peaks occurring on either side of the diagonal of the COSY or TOCSY spectrum. These
three peaks are represented as (3a. 8x ). (Sa. dy) and {8y, dx ). The simulated dispersion involves
a pseudo random number generator which gives random numbers R; between -0.5 and +0.5. The
simulated cross peaks are thus modified to (85 + Ry 7. 8x + RaT), (34 + R3T.8m + RyT) and
(On -+ RsT, dx + ReT), where T is the tolerance value. For this particular testing, 7 is set to 0.02
ppm for protons and 0.20 ppm for carbons.

An example of a spin system and its simulated COSY/TOCSY cross peaks are listed in Figure

4.14 which can be compared with Figure 4.13.

4 THR -=-> COSY

N 116.090 4.436 61.102 4.645

HN 8.013 4.645 70.403 4.433

Cca 61.085 4.644 70.338 1.168

HA 4.438 1.183 21.309 4.656

CB 70.400

HB 4.652 ---> TOCSY

CG2 21.310 4.445 61.106 1.171

HG2 1.17¢6 1.175 21.390 4.445

c 175.000 |

Figure 4.14: Fragment from the manual assignment listing of the N-domain troponin-C (1-90), Thrd is
shown. The simulated cross peaks for Thr 4 are shown on the right. Note that a small chemical shift
dispersion is introduced in the simulation, for example, 4.446 vs. 4.433.

The result of applying the algorithm to the randomly distributed data set is listed in Table 4.2.
Fifty-six of the 63 residues are successfully partitioned and no missing assignment was founc{. of
the residues that are not successfelly separated, 4 are glutamines, one is methionine and 2 are
isoleucines. These residues have severely overlapped resonance frequencies. For example, Figure
4.15 shows that E16 has 4 spins which are overlapped with E21. The inability to resolve such

overlapped spins is discussed in the discussion section.
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Table 4.2: Results for the test of simulated data H. See text tor details
No.of | No, of $.5. [ No. of §.8. )
Residues | occurrence | simulated ubtained Remarks
ol a residue as input from output
Gly 7 N/A N/A spin systems with 2 spins are not tested!
Ala 10 N/A N/A spin systems witl 2 spins are not tested”
Asp 10 10 10
Glu 13 9 5 E9.16.21,63 were not separated
Lys 4 4 4
Met 3 7 6 MJ6 were not separated with Glutaming
Gln 4 3 3
Arg 3 3 3
val 4 El 4
Leu 5 4 4
Phe 6 4 4
Ile 5 5 3 119 and 162 are not separated.
Thr 5 5 5
Ser 4 3 3
Pro 1 | ]
Asn 1 1 1
Total 9% | 63 | 56 | ]

“Gly has two H, which produces only one cross peak pair. This is excluded lmm lln, simulation,
bFor the same reason as Gly.

(a)

@) () (1)
e
(1) (1)

(b)

H o
N €
H CH,
CH,
¢
¢) o
Glutamic
acid

(©

3v73

L

60.087

" E2!

E16 )
2.035 2,351 4.140 1.965 2,180
. . averlap | 0 ;

; \ i ! 1
wW2a0[ 36870 59050 [w200] 36000
‘ E ;
2070 2413 2050 | [2410
W’"“p overlap

Figure 4.15: An example of two residues with three degencrate resonances. (1) The graph representation
of the glutamic acid. (b) The chemical structure of the glutamic acid. (c) Glul6 and Glu21 are shown
with their chemical shifts. Resonances in the boxes overlap.
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4.3.2  Analysis of experimental 3D HCCH-COSY/TOCSY data

The success of the test on the simulated data indicates that the problem of chemical shift
degeneracy can be successfully resofved by the algorithm. The capability of handling missing
peaks and spectrum artifacts is however inadequately tested by the simulated data, Therefore, it is
stitl necessury to conduct a test using the real data.

3D HCCH-COSY/TOCSY spectra of the test protein troponin-C were obtained from Univer-
sity of Alberta [68]. Cross peaks in these spectra were picked automatically from a quick run of the
CAPP software [56]. No refinement in terms of peak picking were done since the original spectra
and the peak picking program were not available to the authors. A total of 915 HCCH-COSY
and 710 TOCSY cross peaks were picked by the CAPP software. 321 of the 915 COSY peuks
and 225 of the 710 TOCSY peaks can be verified as real peaks by comparing with the previously
conducted manual assignment.

Since extensive spectrum folding is employed in the multidimensional NMR experiments, the
actual 13C chemical shifts are given by x £ nSW, where v is the ppm value of a carbon obtained
from the spectrum, » is an integer and SW is the spectral width. It is necessary to unfold the *C
chemical shifts so that our program can work on the real '3C chemical shift data. A '*C 2D HMQC
peak list is available from the same source for this unfolding purpose. The unfolding procedure
is divided into two stages. First each of the HCCH-COSY and TOCSY cross peaks (H;, C;, H;)
are examined against the '3C HMQC peak list. If the 2D '*C HMQC cross peak (H;, C; — SW) is
found, the 3D cross peak is corrected to (H;, C; — SW, H;). The same procedure is also applied to
the HMQC peaks (H;, C;) and (H;, C;+SW). Secondly, for each 3D cross peak (H;, Ci, H;}, if no
corresponding 2D C HMQC (H;, C; & nSW) is found, a statistical 3C chemical shift database

[78] is used to empirically determine the unfolded value of carbon chemical shifts. Following

this the 915 HCCH-COSY peaks and 710 TOCSY peaks are used as the input for our program. _

Various proton and carbon chemical shifts tolerance values are checked to get good partitioning.
Essentially, a small tolerance generates more reliable results. In practice, however, small tolerance
is unuble to find all the spin systems due to the experimentally inconsistent chemical shift values,

i.¢., the same spin could have different chemical shifts in different spectra. A large tolerance might
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mcorrectly merge the independent spin systems together. Compromise should be chosen caretully,
Table 4.3 shows the partitioning results of the 915 COSY and 710 TOCSY peaks based upon the

proton chemical shift tolerance 0.03 ppm and *C tolerance 0.40 ppm.

Table 4.3: Results for the test of real data

No. of No. of ALA,
Residues | occurrence obtained Remarks
of aresiduc | from output
Gly 7 5 G33.43.50,61.71
Ala 10 10 ALR10,12,2531.90, (A20,23,60 not sepanited)
Asp 10 4 D39, (D5,27.59 not separted)
Glu 13 4 EY.16,21, (EL7Z.MI18,V6S not separated
Lys 4 3 Ka01.55 (K87, Q8S not separated)
Met 8 3 M3, 18,86
Gln 4 2 Q51,85
Arg 3 3 RI147.84
val 4 2 V65,50
Leu 5 4 Li442.58.79
Phe [ l FI3
Ile 5 5 119,37.61.62.73
Thr 5 4 Td,39.44,54
Ser 4 3 §2,38,70
Pro 1 [ ps3
Asn | I Bl N52 _
[T Total | — 90 55 ]

As can be seen from Table 4.3 some of the amino acid spin systems are incorrectly merged
together, e.g., A20, A24 and A60 were given as a large spin system. This is because all of their
resonance frequencies overlap. By checking the manual assignment, those three alanines share
common Hy, Hg, Co and Cy frequencies. (see Figure 4.16) Resolving such cases, after the auto-
mated assignment is done, is a relatively simple manual task.

Another point of note from Table 4.3 is that some expected spin systems are missing. For
example, out of the 10 aspartic acids, only 4 can be found. This is mainly due to the missing
of crucial peaks in the experimental data. Aspartic acid is an AMX spin system and therefore
should have one oH and two SH’s. According to our algorithm, all of the correlations between
(He, Hp1), (Ho, Hg2) and (Hg;, Hg2) must be observed in order to place Hy, Hp and Hga into

a spin system. The algorithm’s condition is stricter than regular manual assignments procedure
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(a) (b} (c) D"""‘
A0
55120 17,70
H, H, -
. N ¢
C, G ”n AN
H CH, S4Y10) 17,700
"n Alanine

4179 LS

ASD

54810 17.700

HIENHEH
HiH

Figure 4.16: (2) The graph representation of un alanine. (b) The chemical structure of an alanine. (c)
A20, A24 and A60 are shown with their chemical shifts. Resonances in the boxes overlap. It can be seen
that these three alanines have nearly degenerated chemical shifts.

since avoiding incorrect merge is essential for computer-assisted assignment tool. By carefully
checking the peak lists, for D30, D32, D36, D59, D66, D68 and D89, the correlations between
Hg) and Hga are all missing, i.e., neither the COSY (Hg), C, Hg2) nor the TOCSY (Hg. C, Hga)
cross pcuk was found in the peak lists. This is probably due to the fact that these SH cross peaks

arc too close to the diagonal 1o be unambiguously identified.

4.4 Discussion

The advantage of using 3D HCCH-COSY/TOCSY experiments to resolve the chemical
shift degeneracy is discussed in this section. Comparisons are made to the conventional 2D
COSY/TOCSY method. _

In Figure 4.17, two amino acid residues whose H,, and Hg have close resonance frequencies
are illustrated. In the 2D COSY/TOCSY approach, two cross peaks can be merged into a spin
system as long as they share a common resonance frequency and there is a constraint to confirm
that these two cross peaks belong to the same spin system. In the above example, the cross peak
(4.073, 2.049) and (4.073, 2.175) belong to one spin system, while (4.062, 2.057) and (4.062,
2.943) belong to another spin system. The problem is that 4.073 and 4.062, as well as 2.049 and
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(ﬂ) (b) Overlap
l‘I | HI: H, H, 1073 ] 2049 [I&_EJ 2057 |
C C | ] T 0\"‘.‘”“]’ .-_._7 T
1 Il Cr— C| SRI71 30635 S7841 37444
H 3 H ¥ 2175 2943

Figure 4.17: Schematic illustration explaining how overlapped resonances are resolved.  See text for
details. (a) Fragments from two molecules are shown. (b) The chemical shifts of the protons and carbons
are displayed. Resonances in boxes are those having significantly overlapped chemical shifts.

2.057, are too close to be distinguished computationally using 2D data alone. As a conscquence,
all four cross peaks (4.073, 2.049), (4.073, 2.175), (4.062, 2.057) and (4.062 2.943) arc incorrectly
merged into a large spin system, which is apparently wrong because this large spin system contains
three Hy’s and as many as four Hy's. In other words, from 2D NMR, cross peaks (4.073, 2.049)
and (4.062, 2.943) are put into the same spin system since they have one frequency in common,
4.073 vs. 4.062. Besides, the presence of the TOCSY peak (2.057, 2.943) incorrcctly confirms
the merging. In contrast, if 3D NMR cross peaks are available, the computer algorithm will verify
if 4.073 and 4.062 bond o the same carbon. If not, these two resonances, 4.073 and 4,062, are
put into different spin systems and thus the degeneracy problem is solved. In case that the carbon
bonded to 4.073 overlaps with the carbon bonded to 4.062, (sce Figure 4.17, if 58.771 and 57.841
cannot be distinguished,) even 3D NMR cannot solve this triple degeneracy situation.

Table 4.4 summarizes the limitations of the present algorithm of handling overlap ambigui-
ties. It should be noticed that Table 4.4 simply lists the theorctical limitations of the algorithm,
while in practice, certain overlap can be resolved by using the scoring parameter introduced in
equation 4,1.

In general, two factors effect the efficiency of the algorithm. They are the chemical shift
degeneracy and the missing peaks. Degencrate chemical shifts usually result in large spin systems
which are formed by incorrect merging of two of more spins systems. On the other side, missing

of crucial peaks is the major cause of the absence of expected spin systems.



4_.4 Discussion

116

Table 4.4: Summary of the overlap resolution. See Figure 4.17 for notation.

C I
H; overlaps with Hy | resolved by | unable to
H» overlaps with Hx | checkingCy | resolve

Hi overlaps with Ha | resolved by | unable to
Hj overlaps with Hy | checking Ca | resolve

H; overlaps with Hy

Hzx overlaps with Hy unable to unable to
C) overlaps with Cy- resolve resolve
H) overlaps with Hy

Hs overlaps with Ha unable to unable v
Hs overlaps with Hy resolve resolve

The tests of this algorithm on both simulated and experimental data show that if there is no
missing peak, the algorithm correctly produces all the desired spin systems that can be extracted
from 3D duata. Nevertheless, in the case where critical cross peaks are missing, expected spin
systems may not be extracted. To cope with this problem, one can relax some merging conditions,
described in Figure 4.9. However, less stringent merging conditions may risk getting incorrect
results.

Another feature of our algorithm is that the number of input experiments is flexible. To ob-
tain the complete spin system of an amino acid including all the resonance frequencies and their

connectivity relationships, COSY type experiments, which observe three-bond scalar couplings,

and TOCSY type experiments, which record long range relay couplings, are required. A sole -

COSY experiment, can still provide much information about resonance frequencies and connec-
tivity between spins. Because CPA and ASPA both need long range couplings to confirm merge
ol some cross peaks, the lack of the TOCSY type cross peaks may cause incomplete exiraction of
certain amino acids, such as the threonines. A sole TOCSY type experiment, on the other hand,
provides sufficient information concerning all the resonance frequencies, but fails to provide com-
plete connectivities between spins,

Although ASPA was designed for 3D HCCH-COSY/TOCSY NMR specira, the idea can
be extended to other 3D NMR experiments. The basic concept behind this algorithm is to take

advantage of the third dimension as an additional constraint so as to reduce the ambiguities causing
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by heavy overlap.

Under certain manual assignment sitwations, side chain spin systems are investigated afier
the backbone spins have been successtully assigned. Therefore the backbone H,,, C, frequencies
can be taken as the starting points for the side chain assignment. In the design of ASPA, however,
the traditional protein resonance assignment strategy was adopted, 1.e., the spin system identifica-
tion is accomplished prior to sequential assignment. This implies that sequential information of
amino acid residues is not incorporated into the algorithm. A possible improvement of the algo-
rithm includes adding an option to supply H,. C, frequencies from carlier backbone assignments
so that more efficient searches can be achieved due to a resulting smaller searching space. Fur-
thermore, an integrated computer assisted cnvironment for protein resonance assignment using 3D
heteronuclear NMR is described in chapter 5. This environment includes complete identification
of the protein backbone and side chain resonances, the pattern recognition of the deduced amino

acid spin systems, and the creation of the sequential connectivity.

4.4.1 Options of the implemented computer program

The implemented program provides an option to remove the duplicated peaks occurring at
the same half of the spectrum. Here duplicated pecaks ire referred to those peaks picked by the au-
tomated picking program as separate peaks but are close in ppm. These peaks might be attributed
to the noise level of the spectrum, However, it is also possiblc' that the peaks considered to be
duplicated are actually arising from distinct correlations. The algorithin is in a dilemma. On the
one hand, close positioned peaks, e.g., (4.29, 35.43, 2.98) and (4.28, 35.38, 3.00), might casily
produce unreasonable large spin systems such as the one with two aH’s at 4.29 and 4.28 ppm,
On the plher hand, to merge the close positioned peaks prior to the partitioning process increases
the risI; of losing significant peaks. If the option of removal of duplicated peaks is enabled, a set
of chemical shift tolerance will be used to judge the removal. The default setting for this option
is to enable the removal. It might be necessary to disable this sctting if a crowded spectrum is
processed and the falsely picked peaks have been manipulated by other means in earlier stages.

The algorithm not only merges NMR peaks to form spin systems, it also merges the small,
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fragmented spin systems to become bigger ones. Once all of the N initial spin systems arc gen-
erated, the algorithm merges them and constructs the bigger. less redundant spin systems. Fig-
ure 4.18 shows the redundancy and how the corresponding merge can be performed to resolve the

redundancy. It should be noticed that the merge in Figure 4.18 is not always safe. In crowded
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Figure 4.18: The merging of two spin systems. Spin system S is constructed from the cross peak |,
2 and 10. Spin system S2 is constructed from cross peak 3, 4 and 5. Suppose peak 3 and peak 10 are

symmetrical cross peaks, i.e., they represent the correlations between the same two protons. It is possible
to construct another spin system 83 by merging S1 and S2.

spectra, it might be difficult to verify two peaks are symmetrical ones or not. If peak i and peak
Jj are incorrectly considered as symmetrical peaks, the partitioning algorithm will merge the spin
systems originating from peak { and from peak j. This incorrect merge usually gives rise to large
spin systems. In other words, the merge operation described in Figure 4.18 has the risk of produc-
ing unreasonably large spin systems. The default setting of the option is to enable the spin system
merge. The redundant spin systems usually can be effectively eliminated while overlapped spin

systems can also be properly merged. In severely crowded spectra, the option of merging spin
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system might need to be disabled otherwise many large spin systems will be constructed. By skip-
ping the automated spin system merging. one must manually examine all the output spin systems

and determine which of them should he merged or deleted.

4.4.2  Peak unfolding problem

The chemical shifts of carbon nuclei usually span the range from 10 ~ 80 ppm. To save
experimental time, the practical spectral width on the dimension observing carbon is set to around
30 ppm. Apparently extensive spectrum folding is applied. It is introduced earlier this chapter
that one can unfold the carbon chemical shifts using the chemical shifts of the directly honded
hydrogen atoms. For example, the carbon in a methyl group, which is casily determined by the
smail 'H chemical shift, must has relatively small chemical shift. Therefore a 50 ppm chemical
shift for the carbon in a methyl group should be unfolded to 50 — (spectral width) ppm.

Usually the experimental spectral width SW is chosen in such a way that the aliphatic carbon
resonances are folded no more than once into the observed spectral width, This can be uchieved by
setting the experimental spectral width equal to /3 the aliphatic carbon frequency range. Suppose
the aliphatic carbon chemical shifts range from 15 to 75 ppm. The corresponding spectral width
can be set to 30 ppm. If the phase ramp for the folded dimension, the carbon dimension, is chosen
to be 180°, the folded cross peaks have the opposite sign of non-lolded peaks [17]. Given this
experimental condition, the carbon resonances can be unfolded using the sign of the corresponding

cross peaks.

4.5 Summary

The Aliphatic Side-chuin Partitioning Algorithm, ASPA, is proposed in this chapter to auto-
matically extract amino acid spin systems from three dimensional COSY and TOCSY type exper-
iments. This algorithm is extended from the 2D Constrained Partitioning Algorithm, whose muin
feature is that all the merging steps are accomplished byl imposing various constraints. Another

distinct feature of ASPA is that by supplying both COSY and TOCSY type experiments, not only
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the resonance frequencies of all the spin systems can be determined, but their connectivity rela-
tionships are also extracted. This makes the design of subsequent pattern recognition procedure
casier.

The extracted amino acid spin systems can be used in various sequential assignment ap-
proaches. A number of sequential assignment strategies [7.9. 18,25, 79] can be applied to the
deduced spin systems. The algorithm described in this chapter provides a strategy to obtain the
side chain resonance of proteins. By properly incorp orating the backbone and side chain informa-

tion, an integrated sequential assignment protocol is introduced in the next chapter.



Chapter 5

Development of an Integrated Software

Environment for the Sequential Assignment

5.1 Introduction

Resonance assignment is tedious work in protein structure determination from NMR. To de-

velop a computer-assisted resonance assignment package, several steps have to be accomplished.
I. The spin coupling systems of all the residues must be determined.

2. Tne sequential connectivities between these spin systems must be established based on
available interresidue correlations.
3. The spin system identification, i.e., which amino acid each determined spin system actually
j
is, must be conducted. !
4. The sequence-specific mapping between the spin systems and the primary sequence of the

protein must be created.

In chapter 3, we present a computer algorithm to extract spin systems of the protein backbone.
This chapter reports a complete resonance assignment protocol covering the above four steps us-

ing heteronuclear 3D NMR. Initially an algorithm was developed to merge data from the protein
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backhone and aliphatic side chain spin systems. Sccondly, a spin system pattern recognition algo-
rithm is extended to automatically determine all the possible amino acids cach spin system may
be assigned to. Finally. a mapping algorithm maps the deduced spin systems to their proper
positions within the protein primary sequence. The protocol of sequence-specific assignment
and the implementation of the algorithms are described in this chapter. Application of all the
proposed computer algorithms to a 90-residue protein is reported. The heteronuclear 3D NMR
experiments involved in the application include 3D HNCO, HNCA, HCACO, HN(CO)CA, SN
TOCSY-HMQC, HCCH-COSY and HCCH-TOCSY.

5.2 Toward the sequential assignment

As mentioned in chapter 3, the spin systems of individual amino acid residues and the se-
quential connectivities between these patterns can be derived from heteronuclear 3D NMR. The
remaining problem of the protein resonance assignment is to match the derived polypeptides onto
the known protein primary sequence. This task can be done manually using human expertise.
For example, spectroscopists may notice that one of the spin systems in a polypeptide might be
& leucine. Moreover, another spin system three residues away from the leucine may be identi-
fied as a glycine. Provided that the leucine-X-X-glycine pattern occurs only once in the primary
sequence, it is easy to match the target polypeptide to the correct primary sequence.

To automate this "polypeptide to primary sequence™ mapping, it is necessary to have suf-
ficient information about each spin coupling system, i.e., one must know all the possible amino
acids each spin system could be. Suppose a polypeptide is composed of 5 spin systems, S1 —
82— §3 — 54 — §5. Spin system S1 is identified to be one of the following amino acids: leucine,
isoleucine or valine. Similarly, S2 can be one of serine, phenylalanine ... , etc., see Figure 5.1.
Knowing the amino acids each spin system may be assigned to, it is possible to construct a set of
primary sequence combinations. In Figure 5.1 these combinations include Leu-Phe-Arg-Gly-Glu,
Leu-Ser-Arg-Gly-Glu, Leu-Asp-Arg-Gly-Glu, . .. , etc. If the polypeptide is long enough and the
number of possible amino acids each spin system may be assigned to is not too large, a unique

mapping between the polypeptide and the primary sequence can be achieved. This is shown Fig-
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Figure 5.1: Schemitic representation of the mapping of a polypeptide §1-82-53-84-85 to Leud-Asp5-
Arg6-Gly7-Glu§. Residue S1 can be assigned to one of Leu, e and Val. There are 180 possible combina-
tions of amino acid sequences for this polypeptide. In this example, the sequence Leu-Asp-Arg-Gly-Glu
is the correct mapping on the actual primary sequence.

ure 5.1. Only Leu-Asp-Arg-Gly-Glu has a matcking position within the primary sequence, that is
residue 4 to residue 8 on the protein’s primary sequence, while all the other combinations fuil to
find 2 match. Thus it is reasonable to assign the polypeptide S1 — §2 —~ §3 — §4 — 85 to residue
14-15-16-17-18. In the case that a unique mapping is not possible, a ranking parameter can be
introduced based on the mathematical similarities between each spin system of the polypeptide
and its possible amino acid identity.

The amino acid pattern recognition algorithm{(AAPR) was designed to achieve the goal of
mapping individual spin pattern to possible amino acids residues. AAPR gives all possible amino
acids each of the spin patterns may be assigned to. Every possible assignment has an associated
similarity value measuring the likeness between the amino acid and the spin system. In general, it
is not easy for computer algorithms to determine the amino acid types for deduced spin systems
based on the backbone frequencies exclusively. Several database of protein chemical shifts were
published [62,78]. Although it is possible to classify the backbone spin systems using one of
the database, the accuracy of the amino acid type recognition will be higher if the side chain
information of each spin system is also available. The more details available of a spin system leads

to a more accurate spin pattern recognition. For this reason, the algorithm ASPA [27](Aliphatic
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Side-chain Partitioning Algorithm) was designed to retrieve the aliphatic side chain resonances
of proteins from heteronuclear 3D NMR. Combining the protein backbone with the side chain
information, an amino acid pattern recognition procedure can provide sufficient information about
cach spin pattern thereby making it possible to automate the mapping between polypeptides and
prolein primary sequence.

In summary, DBPA was developed to retrieve a protein’s backbone resonances and establish
parts of the sequential connectivities in the forms of dipeptides. PGA is then responsible for merg-
ing retrieved dipeptides to polypeptides. ASPA was designed to extract a proteins’ aliphatic side
chain information. Having the information of backbone and side chain spin systems, AAPR gives
knowledge about the amino acid types of each spin pattern. PBSMA (Protein Backbone Side chain
Merging Algorithm) then is required to merge backbone and side chain frequencies. The final step
involves an algorithm called PMA(Polypeptide Mapping Algorithm) which maps the polypeptides

to the primary sequence. Figure 5.2 shows the relationships between these algorithms.

5.2.1 Integration of backbone and aliphatic side chains v

Many 3D NMR experiments have been proposed for protein side chain resonance assign-
ment, such as 3D HCCH-COSY [71-73], HCCH-TOCSY [74], HCC(CO) NH-TOCSY [75,76]
and HCCNH-TOCSY [75,77]. These experiments resolve the crowded side chain proton regions
of traditional 2D DQF—COSY and TOCSY by introducing the third dimension. Therefore the over-
lapped 2D spectrum can be split into a series of less overlapped 2D planes in the 3D experiments.
For example, the "H-'H planes in 3D HCCH-COSY experiment resemble the 2D 'H-'H COSY
spectrum except that these planes are edited by the chemical shifts of the '*C nuclei bonded to the
'H resonance observed in the Fy dimension of 3D HCCH experiment.

The‘algorilhm ASPA was proposed to automatically extract amino acid spin systems from
three dimensional HCCH-COSY and TOCSY experiments,

Side chain spin systems are usnally investigated after the backbone spins are successfully
a551gned provided that the I3N/'3C labeled protein samples are available thereby triple resonance

3D NMR data can be acqmred The backbone «H and C frequencies can then be taken into
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Figtl_l[rc 5.2: A flow diagram of the sequential assignment protocol using heterenuclear 3D NMR,

consideration in creating side chain spin systems. For example, DBPA produces backbone spin
systems, the oH and C,, chemical shifts of these spin systems can be taken as the starting points for
side chain resonance assignment using ASPA. Thus more efficient searches can be accomplished
due to a resuiting smaller searching space. -

The side chain resonance frequencies can also be revealed by experiments observing long
rapze couplings between protons, such as 2D TOCSY and 3D '°N TOFSY-HMQC. In principle
a sole 2D TOCSY or 3D SN TOCSY-HMQC spectrum has sufficient information to assign a
protein’s entire side chain and‘backbone spins. In practice, however, not all spin systems can be
identified in a TOCSY experiment, especially in the case of a-helix based proteins which huve
small 3JnH-ei coupling constants.

Despite the fact that a sole TOCSY experiment sometimes fails to provide sufficient infor-
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mation for long spin systems, it is still useful to examine these TOCSY experiments as they have
simpler cross peak patterns compared to DQF-COSY. NCPA(Nitrogen Constraint Partitioning Al-
gorithm) was proposed to extract the amino acid spin coupling systems from 2D TOCSY or 3D
SN TOCSY-HMQC experiment. NCPA is complimentary to ASPA as both of them provide side

chain information but using different approaches(see Figure 5.3).

2D TOCSY
" 30 HCCH-COSY .
and HCCH-
TOCSY CPA
(Censtraint . 30 "NTOCSY-
Paritioning Algetithm) HMQC
¥ v 3
* ASPA alohat NCPA
souccH1ocsy - - W (Atphatic Skiechain o, BRhalic sida chain {Nitrogen Conatraint

apin systarns

Partitioning Algorithrm) Pattitiening Algorithmi)

D HCCKH-
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| racarding aliphatic ! : ooy
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'l and proton
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Figure 5.3: Many approaches can be used to obtain protein's side chain resonances. In this example,
three algorithms were designed to extract side chain spin systems from 2D and 3D NMR spectra.

The actual procedure to merge the backbone and side chain spin systems are described in the

following pseudo codes:

void MergeBackboneSidechain({BackboneSpinsystem_type, ..

4

SidechainSpinsystem_type, ... )
( .
//Input: 1. a set of backbone spin systems B, B, Bs,...
7/ 2. a set of side chain spin systems §),52,85s,...
// 3. if available, another set of side chain spin
// systems 71.7Ta,... )
//Examples: B; were derived from algorithm DBPA, B; contains
/1 {N,NH,oH,Ca, CO} .
’ §; were derived from algorithm NCPA, §; contains
/7 (N,NH,aH,BH, ... ).
/7 Ty were derived from algorithm ASPA, 7; contains
/. (aH, H, yH,Ca,CB, ... }.
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//0Qutput: a set of amino acid spin systems A).A>...4; with
/f backbone and side chain information.

for each of the backbone spin systems #; |
for each of the side chain spin system §; |
compare B; and 5;:
if B; and §j share several
common resonances, e.g., oH,NH,N |
if another set of side chain spin
systems T; are available {
if({{one or more resonance in B; can be found in T;) &&
(one or more rescnance in §; can be found in T3)) |
Aj=B;+85;+ T
}

| else
Ar=B;+8;;

To merge a backbone and a side chain spin systems, PBSMA requires that they share several
common frequencies. Suppose a backbone amino acid conlains five frequencies (NH, N, «H, C,,,
CQO), and a side chain spin system is composed of four spins (NH, «H, gH,, #H2). Depending
on the NMR experiments used to construct these spin systems, some resonances may be present
in both the backbone and the side chain spin systems. In the above example, NH and ooH are the
two overlapped resonances. The more overlapped resonances found, the more reliable the merge.
In some cases, another experimental data set provides additional information which can be used
as extra constraints to confirm the merge of a backbone and a side chain spin system. 3D HCCH-
COSY/TOCSY provides aliphatic side chain resonances including aH, Ca, 8H, C8, ... , cic,,
these frequencies can be treated as the additional constraints for merging backbone and side chain
resonances. In other words, to merge a backbone spin system, which has the resonances of NH, N,
aH, Ca, CO, and a side-chain spin system, which has the resonances of NH, «H, H,, 8Ha, one
can check the spin system output from 3D HCCH-COSY/TOCSY to seek evidence such as the
spin system (oH, Ca, SH;, CB, BHa, ... ) where two frequencies (¢H and Ca) can be found in
the backbone candidate while another two (¢H and H,) can be found in the side chain candidate.

Once the backbone and side chain spin systems are properly merged, it is possible to perform

the amino acid identification process, that is, to recognize these spin systems according to their
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spin coupling patterns and chemical shifts. The aim of spin pattern recognition is to obtain all
possible amino acids that a spin system may be assigned to. The spin pattern recognition algorithm
described in section 2.6 conducts the identification of the deduced spin systems. This algorithm
makes use of fuzzy mathematics to recognize the distinct pattern of each amino acid. Many spin
system recognition algorithms(e.g., the one by Kleywegt [8]) utilize chemical shift information
exclusively. However, our algorithm is able to recognize amino acids’ spin topologies based on
the fact the cach topology has different connectivities between its components. Along with the
chemical shift information, the graph theory and fuzzy mathematics based pattern recognition
algorithm provides more accurate results in terms of determining the possible amino acids that a
spin system corresponds to.

The backbone and side chain spin systems can be extracted from various NMR experi-
ments. Backbone spin systems may come from 3D HNCO, HNCA , HCACO, HN(CO)CA and
'>N TOCSY-HMQC, they may also come from 3D CBCANH experiment. Similarly, side chain
spin systems may be derived from 3D HCCH type experiments as well as from HCC(CO)NH-
TOCSY. Even 2D DQF-COSY and TOCSY NMR spectra provide valuable information for the
determination of spin systems. The spin system candidates therefore may consist of various in-
formation. Those spin systems from 2D COSY/TOCSY may contain proton frequencies whereas
those spin systems derived from 3D HCCH COSY/TOCSY may be composed of carbon and
proton frequencies, Moreover, the spin systems may differ from each other in terms of the con-
nectivity relationships. Spin systems from TOCSY type experiments may not contain the details
of side chain connectivities. For example, TOCSY type experiments are unable to distinguish
spin systems 4.53(aH), 2.25(8H), 1.93(8H) from system 4.53(a«H), 1.93(8H), 2.25(yH) as it is
not generally easy to determine if a specific peak is arising from short or long range coupling.
Figure 5.4 provides a summary of the three different kinds of spin systems described above and
several experimentally observed spin systems are given as examples.

Figure 5.5 illustrates how an experimentally observed amino acid spin system is mapped
to various amino acid residueé. The standard amino acid patterns may contain protons only;
protons and nitrogens; protons and carbons; or protons, carbons and nitrogens, depending on the

availuble NMR experiments. The proton database of the standard 20 amino acid was adopted
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Figure 54: Aspartic acid is used to show a spin coupling systems can have various types of nuclei. The
possible experiments generating these systems also listed.

from GroB [62]). The nitrogen database was adopled from Choy [70] and the carbon chemical
shift database was adopted from Wishart [78]. Note that in Figure 5.5 there might be more than
one mapping from an observed spin system to a standard amino acid. For each of the mapping
there is an associated value representing the similarity between the observed and the standard spin
systemns, Details about the similarity values is presented in section 2.7, After performing the
pattern recognition on all of the extracted amino acid spin systems, & “spin pattern to residues”
table can be created where one can locate all the possible amino acids that each spin system can
be assigned to. Figure 5.6 shows a small segment of such a table. Note that amino acids with low

similarity values were eliminated to shorten the table.

A brief summary is presented for the topics described up to this point. Amino acid spin sys-’
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Figure 5.5: Schematic representation of the mappings between an observed spin system and its amino
acid candidates: Val, lle, Met, Glu, Arg and Leu. Note that there could be more than one mapping for the
same amino acid, such as the cases of Met and Arg.

tems with backbone and side chain information are derived. The identities of these spin systems
are examined, that is, a table, such as the one shown in Figure 5.6, will be given so that all the pos-

sible amino acids that a spin system may be assigned to will be listed. The sequential assignment
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Figure 5.6: A "spin-system to amino-acids” table. Spin system No. 15 can be assigned to one of Gln,
Glu, Met, Ile, Arg, Lys or Leu. This table was generated by the Amino Acid Pattern Recognition algo-

rithm. The number below each amino acid denotes the similarity between that amino acid and the spin
system on the very left. A higher similarity indicates a closer match. The values range from O to |,

problem is partially solved by using triple resonance 3D NMR since these experiments provide
the interresidue correlations from which polypeptides can be built. The rest of the resonance as-
signment task is to map these polypeptides to their actual positions within the primary sequence
with the help of the spin system to amino acids table”. This task can be achicved manually since
spectroscopists usually have additional information at hand to guide them through the mapping
of the polypeptides. Here a general purpose sequential assignment protocol was proposed to au-
tomate the mapping. This protocol aims at giving an additional ool to help spectroscopists to
handle tedious assignment work. The first step of the sequential assignment protocol involves a
conversion of the "spin-system to amino-acids” table to an "amino acid residue to spin systems”
table. Figure 5.7 illustrates such a conversion, Once the conversion is done, the remaining work
is to check each of the polypeptides against the "aminoc-acid-residue to spin-systems” table. If
a polypeptide can be located in the table, the corresponding assignment is immediately deter-
mined. In Figure 5.8, a nine-residue polypeptide is used to explain the assignment procedure. The
Polypeptide Mapping Algorithm, PMA, was designed to carry out the mapping. The pscudo codes
of PMA are listed here.
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Fipure 5.7: Conversion between i Uspin-system to amino-acids™ table to the "amino-acid-residue to spin-
B

spin ; possibie amino
systems | acids _
S1 | Thr Asn Met Gln ......

amino acid possible spin
_ residues | systems  _
§

S2 (val Ile GIln Glu ...... Leu79 [811,875877, ......
l valso |§2, ...
S11 |Ala Leu Arg Ile ...... Met81 | 81,515,575, ......
‘ Met82 | 81,815,875, ......
S15 ! Gln Glu Met Ile ...... valss |82, ...

Argsd | 811,875,577, ......
Gln85 | 81,582,815, ...

Met86 | 81,815,875, ...
877 Arg Leu Ile Ala ...... i

§75 {Arg Leu Ile Met ......

systems” table.

void MapPolypeptide (primary_sequence, polypeptides,

{

SpinSystemToAmninoAcid_table )

//Input: 1. protein’s primary seguence R - Rr—R3—...—R,.

/! e.,g.: Glu9-Alall0-Argll-Alal2-Phel3-Leuld{-Serl5-Glyle-Glul7- ...
/1

/! 2. a set of polypeptides: P, Piy, P, ... ...

¥ e.g.: P =815-511-875-877-881-582-588-566-832

/ where § stands for spin systems.

/1

/7 3. spin-systems to amino-acids table which maps each spin
/7 system to the possible amino acids.

/ e.g.:

/! Spin system Possible amino acids

1/

7/ s15 Gln,Glu,Met, Ile,

7/ 511 Ala,Leu,Arg,Ile, ...

// 575 Arg,Leu,Ile, Met, .

/1 577 Arg,Leu,Ile,Ala, ..

//

¥

/1

Known the protein'’s primary sequence, it is possible to convert
the above table to the "amino-acid-residue to spin-systems* table ;

S e.g.:

7/ Residue Possible spin system candidates
¥

/! H

/ Glug .«v ... +825,815,812, ... ...

/! Alalg ... ,554,811,813, .

/! Argll ove ++.874,875,85, ... ...

y Alal2 cer aes +.,549,877,885, ...
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¥ N
//
for each of the polypeptide F=38,-5, -5, —...- %, |
for each of the aminec acid residue K, in the primary sequence |
check(l,j}; // to see if §; can be found in the candidate

// list of R; ;

H
]
void check{integer p,integer q)
{
if spin system S§;, can be found in the candidate list
of residue R,
{
if (p<m) // spin system Si, is
// the end of polypeptide P
and (¢ +{n—phsm| // assure that there are enough number
// of residues remaining
// in the primary sequence to be
// mapped to polypeptide P
check{p+ 1,94+ 1);
// call itself recursively
} else if {(p==n) |
a mapping is found; // §,~-->R;
H Si-=->Rjy
// S;'j——->Rj.|.2

1 S -=-=>Rjsn

In the pseudo codes the function check{) is called recursively to compure cach clement of a

polypeptide with a residue of the primary sequence. If check () reaches the end of the polypep-

tide, a proper mapping is located as shown in Figure 5.8,

5.2.2 Applications

A sequential assignment protocol is describe in the previous section. The protocol involves

two major steps. In the first step amino acid spin systems are extracted from NMR spectra, then

linked to form polypeptides. In the second step, all amino acid spin systems are identified ac-

cording to their spin topological patterns. As a result, polypeptides can be mapped to the primary

sequence automatically. Each of these tasks can be achieved through various strategies, both
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Gy ++ 28 15 p12 -**
Alald ** 54 11313 -

Argtt e 74 75| 5 -
Ala12 tre 49 77I95‘"

Phetd e 93 89 IBB e
Leutd +++ 15 82!81 P

SertS «++ 290 88 4 ¢+
Glul6 +++ BB 66 B5G ..

Glut? cer 12 32I23 aes

Figure 5.8: Nlustration of a possible sequential assignment of the polypeptide 15-11-75-77-81-82-88-66
to Glu9-Alnl0-Argl1-Alal2-Phel3-Leul4-Serl5-Glui6-Glul7. The numbers on the right are the spin
system numbers,

manually or using computer algorithms. To illustrate the effectiveness of the sequential assign-
ment protocol, severial computer aigorithms were implemented to accomplish all the mentioned
tasks. The details of these algorithms are already described in previous sections while this section
presents the application of these computer progrmﬁs to a real case.

‘Sample protein is the calcium-loaded regulatory N-domain of chicken skeletal troponin-C
(NTnC) residue 1-90. -Uniformly enriched '*N and *C NTnC were also prepared. Available
heteronuclear 3D NMR experiments include 3D HNCA, 3D HNCO, 3D HNCOCA, 3D HCACO,

~ 3D SN TOCSY-HMQC and NOESY. Peak lists of the above NMR experiments were given to

the authors by the University of Alberta [68). Peaks were picked using the CAPP pick peaking
program [56], then processed by a filter program to remove some of the false peaks [68].

The amino acid spin systems can be derived from three separated algorithms each using a dif-
ferent set of NMR experiments. Algorithm DBPA involves several triple resonance heteronuclear
3D NMR experiments and is able to deduce the backbone spin systems. In addition, polypeptides
can be created since the interresidue information can also be observed from some triple resonance
NMR experiments. The details of DBPA are presented in éhapter 3. DBPA gi;{.?e 98 output pro-

tein backbone spin systems, 58 of which can be verified against the separately conducted manual
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assignment [68). Using the interresidue information embedded in the NMR cross peaks, 161
dipeptides car be created based on the 98 spin systems. Further, a total of 3432 polypeptides with
length from 3 to 26 were built from this 161 dipeptides.

Besides triple resonance experiments, spin systems can also be determined from TOCSY
type experiment exclusively as long as sufticient fong range couplings can be observed. Algo-
rithm NCPA was used to extract spin systems composed of amide nitrogen and protons from '*N
TOCSY-HMQC. Application of NCPA to the 90-residue NTnC gives a total of 83 spin systems
of which 73 can be verified against manual assignment [68]. The tolerance values for comparing
proton and nitrogen chemical shifts were chosen to be 0.02 ppm and 0.20 ppm, respectively.

Side chain resonances occur in crowded aliphatic regions of NMR spectra. Therefore com-
plete assignment of side chain resonances is a challenging undertaking especially for large pro-
teins., The algorithm ASPA was designed for the 3D HCCH-COSY/TOCSY NMR spectra. For
protein NTnC, nine hundred and fifteen HCCH-COSY peaks and 710 HCCH-TOCSY peaks were
automatically picked by CAPP. The output of ASPA includes 60 spin systems among which 55 can
be verified against the manual assignment. However there arc 395 unpartitioned cross peaks which
may arise from the falsely picked peaks by the automaticaliy peak picking progﬁm. Figure 5.9
summarizes the spin systems information retricved up to this point.

The remaining task, that is, the second part of the sequential assignment protocol involves
the integration of available spin system information, the recognition of amino acid types and the
mapping of polypeptides to their anticipated position on the protein primary sequence.

Three types of information are available for the spin systems.
1. The backbone spin systems containing sequential information from triple resonance NMR.
2. The spin systems derived from TOCSY type correlations.
3. The side chain spin systems determined from 3D HCCH type experiments.

Algorithm PBSMA analyzed these data and gave 40 spin systems with detailed side chain correla-
tions and 32 spin systems with TOCSY correlations on the side chain. Figure 5.10 is the schematic

representation of these two types of spin systems and their corresponding building blgcks. Once
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Figure 5.9: The results of the sequential assignment protocol for the 90-residue protein NTnC. NCPA
represents the extracted residues using 3D "N TOCSY-HMQC and Nitrogen Constraint Partitioning
Algorithm, ASPA represcats the extracted side chain spin systems using 3D HCCH-COSY, HCCH-
TOCSY and Aliphatic Side-chain Partitioning Algorithm. DBPA represents the extracted backbone spin
systems using 3D HNCO, HCACO, HNCO, HN(CO)CA., '*N TOCSY-HMQC and Dipeptide Backbone
Partitioning Algorithm. “Final" represents the sequence-specific assigned residues. Lack of sufficiently
long backbone polypeptides between residue 35 and 80 prevents automated sequence-specific assignment
in that region. However, individua! residue’s assignment is still obtained.

the complete amino acid spin systems, that is, the backbone and side chain, are constructed as
shown in Figure 5.10, they can be identified using algorithm AAPR. Figure 5.6 shows a fragment
of the output from AAPR. In the final stage, PMA mapped the 5432 polypeptide candidates to
the primary sequence based on the similar information shown in Figure 5.6. PMA gave a total of
2161 mappings. Of these, m‘any are redundant. For example, polypeptide 8-9-49-15-11 (where
the numbers denote spin systems numbers) was assigned to GlnG~Gln7-Ala8-Glu9-Alal0, while
simultancously the polypeptide 8-9-49-15-11-75 was assigned to GIn6-GIn7-Ala8-Glu9-Alal0-
Argll. It is obvious that the former is a redundant mapping of the latter. A set of rules were
introduced to remove such redundancies. In addition, human expertise and intuition can also be
applied to reduce the number of mapping. Details about these rules are described in the next
section.\\:

The final assignment includes mapping of a 14-residue polypeptide to “"Gln7 Ala8 Glu9



5.3 Discussion 137

Py e S g

Backbone - -sidachain’. . ‘.
(a) H " H H H H
N c c Cn Ch OH N c c
o " CHOH O

e L LR T e
;ﬁgﬁrataglnoladg-!spln*systam'ﬁ%

Figure 5.10: Illustration of the merging of backbone and side chuin spin systems. Filled circles represent
overiapped resonances. (a) Chemical structure of serine’s backbone and side chuin. (b) Using 3D HCCH-
COSY and HCCH-TOCSY, it is possible to obtain the carbon frequencies of side chains. Thus the merged

spin system contains proton and carbon frequencies. (c) Using 3D SN TOCSY-HMQC, the side chuin
spin system contains a nitrogen frequency.

AlalO Argil Alal2 Phel3 Leul4 Serl5 Glul6 Glul7 Met18 llel19 Ala20”, a 7-residue polypep-
tide to "lle19 Ala20 Glu21 Phe22 Lys23 Ala24 Ala25", a 7-residuc polypeptide to "Met28 Phe29
Asp30 Ala31 Asp32 Gly33 Gly34”, a 7-residue polypeptide to "Arg84 GIn85 Met86 Lys87 Glu88
Asp89 Ala90”. Figure 5.9 lists the summary of the results.

5.3 Discussion

The algorithm PBSMA provides a way to integrate thé backbone and side chain data of pro-
teins. The detailed information of the backbone and side chain can be determined independently
using different NMR data. PBSMA does not limit itself to certain types of experiments, On the

contrary, PBSMA accepts a wide variety of spin systems including spin systems composed of
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protons, spin systems composed of protons and carbons. in addition to spin systems composed of
protons, carbons and nitrogens. As examples to illustrate the effectiveness of PBSMA, two sets
of experimental data were used. The first set of NMR data includes 3D HNCO, HNCA, HCACO,
HN(CO)CA and '*N TOCSY-HMQC. The spin systems of the backbone and parts of the sequen-
tial connectivities can be obtained from those five experimenis. Furthermore, >N TOCSY-HMQC
alonc provides another set of spin systems based on the long range couplings between protons. PB-
SMA merges the backbone and side chain data by overlapping each backbone spin system with
its side chain counterparts. They can be merged if reasonable overlapping between these two
can be verified. The second sets of NMR data to test PBSMA includes two more experiments,
3D HCCH-COSY and HCCH-TOCSY. These two NMR experiments give an additional set of
side chain spin systems which in turn act as constraints 10 increase the a. Equmcy of PBSMA. The
more experimental data available, the more accurate the backbone and_Side chain merging can be
anticipated.

The second algorithm discussed in this chapter is the Amino Acid Pattern Recognition algo-
rithm(AAPR). Originally this pattern recognition algorithm was designed for spin systems con-
taining protons only. The extended version is presented where other atoms can be included in the
spin patterns. The availability of hetero atoms (carbon and nitrogen) mainly depends on experi-
mental data. Spin patterns with carbon resonances can be derived provided that the NMR data set
which correlates carbon and proton frequencics is available. Here the flexibility of the resonance
assignment protocol is evident, since the accepted types of experimental data are almost unlimited.

The third and the most important algorithm is PMA(Polypeptide Mapping Algorithm). It
is responsible for mapping all the polypeptides to their proper positions on the protein primary
scquence. In principle, unique mapping can be determined provided that the polypeptide is suf-
ficiently long. For example, a 10-residue polypept.Je could end up being mapped' uniquely to
residue 18-27 on the primary sequence. However, in practice, this kind of uniqueness is not likely
since each component residue of a polypeptide could be assigned to many amino acids (although
only one of them can be correct). This usually leads to multiple possibilities. A set of rules was
introduced to manipulate such kind of multiple possibilities. The first rule is the simplest one aﬂd

depends on human experience. Recall in conducting aminoracid pattern recognition, each spin sys-
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tem is assigned a similarity value with respeet to an amino acid. This value is caleulated according
to a mathematical similarity between the query spin system and the standard one. Both topologi-
cal and chemical shift similarities are considered during the process. The similarity values range
from O to 1. a higher value indicating a closer match. Having obtained cach residue’s similarity,
an overall score of each mapping can be given. Suppose a polypeptide 81 — S2— 83~ ... = S, is
mapped to the primary sequence between residue Ry, and R(p1n_1y. The simiiarity value between

Si and R(p4i-.1y is denoted as r;. The overall score of this mapping is defined as

3.0

Because all of r;’s range between 0 to 1, the overall score also ranges from 0 to-I. A higher
score indicates a more likely mapping. The first rule to reduce the number of multiple mapping
is to simply set a threshold for the overall scores from all the mapping. Only those mapping with
scores higher than this threshold remains. A typical threshold value is between 0.6 to 0.7 and
is determined by the quality of all spectra and individual user’s experience. This threshold of
mapping score can eliminate a large number of multiple mapping.

The second rule deals with the redundant mapping. Suppose polypeptide P; can be mapped
to S;, and another polypeptide P; can be mapped to §;, where S are segments on the primary
sequence. Suppose F; is a subset of P; and §; is a subset of §;. Mapping P;-§; will be discarded
since it is a subset of mapping P;-S;. For example, polypeptide (S5 — §4 — §91 — §94 — §95) is
mapped'tg\rcsidue 30-34 while polypeptide (521 — §78 — §5 — §4 — §91 — §94 — §95) is mapped
to resi&iué%i&l. It is obvious that the former is a redundant mapping with respect to the latter. In
cases that more than one polypeptide can be mapped to residuc 28-34, a third rule is .gs;%d,_gfhich
suggests that the polypeptide with the highest mapping score is pickcd. Similarly, :I‘ f’j b‘o‘&pcplidc
can be mapped to more than one position, the mapping with the highest score is Eeht.

By employing these rules, the number of mapping can be reduced to a reasonable figure
wherebS? users are able to'manually select the final assignment.

" The efficiency of the Polypeptide Mapping Algorithm is a considerable improvement over
its predecessor, the Tree Search Algorithm(TSA). Consider the following example. A polypeptide

with N spin systems is to be assigned. In Figure 5.11, suppose each amino acid residue has 10

A

&
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possible spin system candidates, only one of them can be assigned to the corresponding residue. In

N residuas palypephide N

/—._\___/'\______,_.-\
OonE Einin
s::\'?e?::e spin System candidates S::::::G spin system candidates
Rl B Rl D
H sl EI anl B
R, £ R.:
N N
I\\ RuN-l S l . . . H,‘¢s.| . .
avarage situation: SN
wotst Situation: 10N compare opgrations
compare operations

Figure 5.11: Performance analysis of Polypeptide Mapping Algorithm. An N-residue polypeptide is
to be assigned. In the worst situation, the correct spin systems all occur at the end of the spin system
candidate lists. 10N comparisons are expected in this case. In the average situation, the correct spin

systems occur in the middle of the spin system candidate lists thus a total of SN comparisons can be
expected.

~ the worst situation the correct mapping occurs at the last spin systems of each residue, ths a total
of 10N comparison operations must be conducted in order to assign this N residues polypéptide.

In the average situation, however, only SN comparisons are needed.

3.3.1 Options of the implemented computer program

The Polypeptide Mapping Algorithm provides several options by adjusting which one can

fine tune the sequential mapping procedure. The first dption deals with the multiple mapping of a
polypeptide. This is illustrated in Figure 5.12. Reca‘l that before PMA starts the actual mapping
actions, amino acid types of each observed spin system must have been obtained. In the sequential
assignment protocol, the amino acid types are determined by the Amino Acid Pattern Récognition

‘ 'nlgori_ggm. As an cxample; the amino acid types of several spin systems and are shown in Fig-
ure S.El'é(a). The,\ mathematical similarity between each spin system and its amino acid candidate

is also shown. The similarities are calculated by comparing the query spin system with the statis-
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Figure 5.12: An example showing multiple assignments of a polypeptide. Tc polypeptide contains 7
5 in systems, $5-88-515-514-524-59-817. (a) The possible amino ucids each deduced spin system can
be assigned to. The associated similarity values are also shown. (b) The polypeptide has three mapping
positions within the primary sequence: Alal0-- - --Tyr16, Thrd5-. . Ser51 and Ala73-. . -Phe79.

tically determined standard amino acids. It is possible that an an':nino acid with low similarity is
assigned eventually. In Figure 5.12(b) a simulated sequential assignment is listed. For example,
the candidate spin systems for residue Alal0includes S4, S5, 834, §24, ... , cte. Each of them has
an associated similarity which is directly translated from Figure 5.12(a). Consider the polypeptide
S$5-S8-S15-514-824-59-517, three different assignments can be located from Figure 5.12(b). The
polypeptide might be assigned to Ala10-Glul1-Ser12-- . .-Tyr16, Thr43-Asn46-Phed7-. . .-SerS |
or Ala73-Arg74-Asp75-- - --Phe79. Each assignment has its overall assigning score which is cal-
culated using equation 5.1. The assignment bearing with the highest score is considered more
likely to be the correct one. However, users have the option to output all valid assignments or the
one with the greatest assigning score. If all valid assignments are chosen to be printed out, the
ﬁsers must manually verify them. With respect to each polypeptide, PMA outpuls the assignment
having the greatest assigning score by default, |

The second option provided by PMA is best explained by an example. Consider a 10-residue

polypeptide S54-S45-58-59-S49-S58-568-534-535-897 as shown in Figure 5.13. To make the



5.3 Discussion

Residue Candidate spin systems Comments
Gly20 e 84 L
Asp21 .45 ...
Thr22 | - R
lle23 RN :
Ser24 cirvreenerraeaens 49 L
Gin25 <88
Arg26 ..J 68 is not in the candidate list of Arg26
Lys27 . ..J 34 is not in the candidate list of Lys27
Ala2s .. 35is not in the candidate list of Ala28
Phe29 . 97 is not in the candidate list of Phe29

Figure 5.13: An example showing that different lengths of polypeptides might lead to different assign-
ment results. If the assigning polypeptide is chosen to be §54-545-58-59-549-558-568-S34-835-597,
there is no corresponding assignment within the known primary sequence. An assignment, however, can
be determined once the assigning polypeptide is chosen to be a shorter one, $54-545-58-59-549-858.

sequential assignment, PMA attempts to locate the query polypeptide in the “residue to spin-
systems” table. If the polypeptide appears in the table, the corresponding assignment can be
determined immediately from the left column of the table. If the query polypeptide doesn’t have
a corresponding position in the table, it is considered that the assignment for the polypeptide on
this particular protein segment is unavailable. However, although the assignment for the entire
polypeptide is not available, there might be chances to assign part of the polypeptide. To investi-
gate the pessibility for such a “partial” assignment, it is possible to customize PMA so that one or
more rcsiduc‘\c\i.jln be subtracted from the either end of the query polypeptide. Attempts then are
addressed to\‘ﬁﬁrd the assignment of that shorter polypeptide. This procedure can be conducted
itcratively unti] an assignment is reached. In the example in Figure 5.13, the assignment is deter-
mined for the polypeptide $54-545-S8-59-549-858 which is four-residue shorter than the original
one. The implication of the above iterative subtraction procedure falls on the fact that the sequen-
tinl connectivity between S58 and S68 might be incorrectly established in earlier stage. In other
words, S68-534-535-897 should not be conngr‘:ed with the 554-545-58-59-549-558 during the
polypeptide generation period. This possible ﬁznistake resulted in a 10-residue polypeﬁtiﬂd\g\\&hich

apparently is too long to be successfully assizned. Finally, it should be noticed that by turning

on the iterative mapping option of PMA, there arz risks that more assignments will be output and '

/
/r'

W
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nceded to be analyzed. A reasonable compromise is to sct a lower limit of permitted fength of
the assigning polypeptides, for example, four or five residues. By restricting the length of the

polypeptides. the output mappings will remain manageable.

5.4 Summary

The sequential assignment protocol presented in this chapter is the first one using amino acid
pattern recognition and heteronuclear 3D NMR. Detected spin patterns are compaured with the 20
standard amino acid patterns to determine their amino acid types. The comparison is twofold.
First, the similarities of chemical shifts are calculaed. Secondly, the topological consistency be-
tween the query pattern and standard pattern is checked. Using heteronuclear 3D NMR, the chem-
ical shifts can include nitrogen, carbon and proton nuclei. DBPA(Dipeptide Backbone Partitioning
Algorithm), ASPA( Aliphatic Side-chain Partitioning Algorithm) and NCPA(Nitrogen Constraint
Partitioning Algorithm) are introduced to extract the backbone and side chain spin systems from
heteronuclear 3D NMR spectra. PBSMA(Protein Backbone Side-chain Merging Algorithm) is
introduced to incorporate all the spin system information and prepare spin patterns for amino acid
type determination. These "amino-acid-type-determined” spin systems then become the input of
PMA(Polypeptide Mapping Algorithm). Along with the sequential connectivities extracted in
DBPA, PMA completes the final assignment. =

A complete resonance assignment protocol is presented. It is fully automated and generic,
i.e., not limited to any particular NMR experiment. However, the automated assighment protocol
is not designed to entirely replace the manual assignment. Proper human intervention still plays

an important role in the computer-assisted protein resonance assignment.
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Conclusion

This thesis presents automated approaches for doing resonance assignment of proleins from
heteronuclear 3D NMR spectra. Algorithms for extraction of spin systems and establishment of
sequential connectivities are described in the contexts of a constrained partitioning mechanism
and a graph theory based pattern recognition procedure. The proposed algorithms are validated

with simulated and experimental data based on implemented computer programs.

6.1 Contributions to original research

The research described in this thesis represents contributions to the development of auto-
maled NMR resonance assignment tools. The specific contributions to original research may be

stated as lollows:

1. An automated spin system extraction algorithm is proposed. The algorithm has the follow-

ing features:

(2) The input data can be taken from a wide variety of triple resonance heteronuclear 3D

NMR spectra:fl;lo specific type of NMR experiment is required for the input.

(b) The algorithm is able to determine if the input data provide sufficient information to

accomplish:the complete backbone resonanqt_:.%ﬁgﬂment.
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(¢) The backbone spin systems are determined based on strict merging rules to overcome
spectral overlap. The sequential connectivities are established in the form of dipep-
tides which subsequently can be converted into polypeptides.

{d) The extraction algorithm is flexible so that users can control the behavior of the al-
gorithm through various options. The deduced polypeptides can be placed to corre-
sponding protein primary sequence manually or by the automated approach discussed

in chapter 3.

2. An algorithm for determining the side chain spin systems of proteins has been formu-

lated. The implemented computer program is applicd to the 3D HCCH-COSY and HCCH-
TOCSY experiments. Use of heteronuclear correlation experiments can resolve certain
chemical shift degeneracy problems which can’t be otherwise handled by the conventional
2D COSY and TOCSY experiments. The available carbon chemical shifis are able w sepa-
rate potential spectral overlap. Previous conducted backbone assignment provides ol and
C, resonances which can be incorporated into the side chain extraction algorithm to lurther
separate the crowded aliphatic side chain region. The deduced aliphatic side chain spin sys-
tems can be integrated with the independently determined protein backhone spin systems

thus making a fully automated sequential assignment protoco! possible.

. An automated sequential assignment protocol is applicd to the information of spin systems

determined in the above two stages. The protocol is centered around a spin pattern recogni-
tion algorithm. The algorithm determines the amino acid types for the deduced amino acid

spin systems using mathematical graph theory and fuzzy subset thcory. The determined

amino acid types along with the detailed spin system information are sent into a mapping ™~

algorithm to complete the sequence-specific resonance assignment. In most available au-
tomated assignment packages, the determination of amino acid types and the mapping of
deduced polypeptides are not completely automated. The proposed protocol presents the
possibility of developing a fully automated assignment package although the complexity of

the experimental data make the complete awtomation not realistic at the present time.
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4. In addttion to the above three studies. the possibility of using fewer NMR experiments, in
our study, 3D "*N TOCSY-HMQC and NOESY-HMQC. to conduct the sequence assign-
ment is investigated. An algorithm for determining spin systems from the 3D N TOCSY-
HMQC experiment is presented. Despite the fact that a sole TOCSY experiment might not
he able to provide all the long range correlations. the TOCSY data contain sufficient infor-
mation for constructing the backbone and part of the side chain spin systems. With some
extension, the spin pattern recogniticn algorithm is able to determine the possible amino
acid types for all the deduced spin systems. Along with the 3D '*N NOESY-HMQC spec-
trum, which provides through-space sequential connectivities, the deduced spin systems can

be placed to the corresponding primary sequence.

6.2 Practical application

The implemented computer programs have been applied to a real-life situation: the auto-
mated assignment of a 90-residue protein. In general, available NMR experiments maybe differ-
ent from the ones demonstrated. In planning resonance assignment of proteins using cbmputer—

assisted methods, the current studies may be useful in the following ways:

I. Determination of protein aliphatic side chain resonances. Given correlation spectra of the
side chain resonances, our algorithm can determine aliphatic side chain spin systems au-
tomatically. If the oH and C, resonances have been independently assigned prior to the
determination of side chain resonances, the @H and C, information can assist the partition-
ing algorithm in such a way that every merging of a spin system must be initiated from an

. ravailable @H/Cq node.

‘2. Extraction of protein backbone spin systems. Our algorithm offers flexibility in this aspect.

The input NMR experiments can be a single 3D CBCANH spectrum or it can be a set of

many triple resonance NMR experiments. The algorithm is able to inform users whether the

. input data is 2 complete set or not. Moreover, the through-bond sequential connectivities

are established at the same time of the deduction of individual backbone spin systems.
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3. Creation of polvpeptide chains from already estublished dipeptides. Dipeptides consist of
two amino acid spin systems which are already determined either manually or through an
automated approach. Once all the dipeptides are ready, our algorithm is able to merge the
individual dipeptides into longer stretehes which can be further assigned onto the protein

primary sequence.

4. In the case where triple resonance NMR experiments are not available, our assignment
package is able to take the input from 2D COSY. TOCSY and 3D "N TOCSY-HMQC
spectra and output the individual amino acid spin systems. The sequential conneetivitics
can be determined from the through-space correlations obtained from 2D NOESY or 3D
15N NOESY-HMQC.

5. Determination of amino acid rvpes. The amino acid types of the deduced spin systems
can be determined automatically through the pattern recognition technique. The input spin
systems can be composed of proton, carbon and mtrogen nuclei and can be derived either

manually or by computer-assisted methods.

6. The sequence-specific assignment can be determined automatically. In this case, the de-
duced spin systems, the information about amino acid types along with the established
polypeptide chains act as the input of the automated mapping procedure, The correspond-

ing positions of the deduced spin systems within the primary scquence can be determined.

The above operations can be conducted independently, that is, users can manually conduct any

part of the assignment and then integrate the result into the automated assignment approach.

6.3 Future work

This study has_presented several opportunities for future research. In the long term, the
possibilities (; -using various advanced computing methods, such as artificial neural networks,
genetic algorithms, parallel algorithms, to automate the protein resopance assignment remain to
be explored. In the short term, several related extensions from the current work should be further

investigated. They are described in the followin'g;./'
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6.3.1  Auwtomation of spectrum analysis

All of the algorithms described in this thesis require the input data to be presented in the form
of peak lists. Thercfore, a reliable automated peak picking procedure becomes crucial. Unfortu-
nately, due to the complexity of actual spectra, a perfect automated peak picking program remains
to be developed. A fully automated resonance assignment package cannot be realized without a
robust peak picking program. Current peak picking algorithins are mostly focused on the analy-
sis of peak shapes by comparing the shapes of real and false peaks. A possible extension from
our studices is to develop an intelligent peak picking algorithm which considers not only the peak
shapes but also the logical relationships between the suspicious peaks and their surroundings. For
example, a genuine peak should have coupled partners whereas a false peak should not. By imple-
menting these types of logical constraints, along with the investigation of peak shapes, it should

be possible to improve the reliability of the current peak picking procedures.

6.3.2 Assignment of the aromatic protons

A dircct extension of the aliphatic side chain extraction algorithm is to include the aromatic
prolons into the assignment target. To cope with the aromatic proton assignments, the algorithm
should extract aromatic spin systems as well as create proper relationships between the aromatic
ring and its aliphatic partner. The selection of experiments is also important because some NMR

experiments don’t record aromatic resonances, especially for aromatic carbons.

6.3.3 Use of information not determined from NMR

Besides the protein primary sequence, which is neéessary for the sequence-specific resonance
assignment, other information obtained from physical or chemical methods may be helpful in
designing an automated assignment software. For example, the protein secondary structures can
be roughly determined from various approaches inclﬁding chemical and computational ones [3].
The uvailubiiity of secondary structures provides information about the distribution of backbone

chemical shifts, especially «H’s. This is a useful criterion which should be considered when doing
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the sequential mapping of spin systems. Currently there is no systematic approach developed or
implemented in our assignment protocol. A well-destgned expert system might be necessary Lo

make use of all such types of misceliancous information.

6.3.4 Nucleic acids and carbohvdrates

The resonance assignments between proteins, nucleic acids and polysacchartdes have fun-
damental similaritics. It is necessary to identify NOE correlations between neighboring residues,
which enable one to step along the backbone of the polymer. When degeneracy occurs in the
chemical shifts of an assigning residue, it can be resolved through correct identification of the
type of that residue and a knowledge of the primary sequence. The techniques developed for
protein resonance assignment in principle can be applied to nucleic acids and polysaccharides.
Although the details remains to be defined, the development of an automated approach for nucleic

acids and polysaccharides resonance assignment is a feasible long term goal.

r



Appendix A

Derivation of the cross and diagonal peaks of

2D COSY and DQF-COSY experiments

This appendix presents the 2D COSY and deuble quantum filiered COSY experiments using
a more theoretical approach.

First consider the evolution of a density operator under the unperturbed weak coupling
Hamiitonian 7 -

H= Z by, + Z Z'ZJ!' Jrliz 1 (A.1)
% k<l :

The shift frequency of nucleus £ in the rotating frame is defined by Q; = wor — wy s, with the
Larmor frequency wyy and the rf frequency w,y, Ji is the scalar coupling between nucleus k& and
. _ )

Since all terms in equation A.l commute, the evolution caused by the individual terms can
be computed separately in arbitrary order:

o(t+1) = []exp(=iQthe) [Jexp(—indur2libi:)o ()
' k :

k<l

x [Texptmur2tichie) [JexptQelsy (A2)
ket k ‘

or symbolically:

Qrl, Qrh. adyar2l b, ah3t2hh
iy @by mhotdhich whs 5

o(t)

oot 1T) (A.3)



By expanding the exponential, it is straightforward to prove the tollowing relations for 1=1/2
spins [SO].

eTWE el = ] cosg + 1 sing
e—iwl.- I_\.e‘"""" — 17\_ cosp — I, sing
eTh el = [ cosp ~ I, sing

e~ vh [.\'L"W‘ = ,’_\. cosg + L sing
e~ b LWl = [ cosp + Iy sing

e ¥l el = I cosp — L sing (A
Thus, the effects of the chemical shifts, scalar couplings and radio-frequency pulses can be

treated as rotations of the angular momentum operators. The effects of some 90° pulses with

different phases are summarized.

3k (3 (31, (Fi-y

I:_ _— - ¥ [: —— I_‘ l: —_— 1‘\' ,: — “"l.‘
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Figure A.1: (a) the pulse sequance of 2D-COSY, (b) the pulse sequence of 2D COSY with the double
quantum filter. The numbers denote the points of time.

For a spin system with two I=1/2 spins, the density operator of the basic 2D COSY experi-

ment can be described as follows: (the lower indices of o; refer 1o the points of time in F__igure Al



the original system is

oy = L-+ I;- (A.6)
after the first 90 degree pulse,
g = —Ik'\- - I!."
after the evolution time ¢y,
or = —[cos 7yt — 2l iz sin wlyty ] cos Sty

e cOs Ity + 2Uxy Iy sin gty ] sin ety
—[Ij; cos ity + 21 Iy, sin wlyn] cos §211)

+[Ijx cos whyty + 21 I, sin wlyn ] sin Q4 (AD
after the second 90 degree pulse,

oy = —[li.cos wlyty + 2l Iy sin whyt1] cos 4t
+[ Iy cos wlyty — 20 Iy sin whyen ] sin Qi
—[I1z cos wlyty + 21y I sin wlptr] cos Sty

+[Iie cos wlyty ~ 2Ly 1y, sin Tyt ) sin 24ty (A.8)

The third term of o3, Ik cos /ity sin Qi1), leads to the diagonal peak at w; = w2 =
while the other diagonal peak at w; = w3 = € is contributed by the seventh term. The fourth term
of a3, 2l 1)y sin it sin Q1) will resume precession at £ = /i, in the detection period and
thereforg lead to a cross peak multiplet at @y = Q, w; QTQ, with antiphase doublet structure. The
other cross peak, at wy = Qy, w2 = § is contributed by the eighth term, 21, I, sin wJity sin Q1.

Multiple quantum filtering can be achieved by the sequence [81] 90°(¢)-£]—90° (¢)-90°(x)-
acquisition. For the double quantum filter, the phase ¢ is cycled through the values ¢ = 0, 7/2,
r, 3w /2. The resulting signals are alternately added and subtracted to eliminate all the terms but
the pure double quantum coherence. Table A.l shows one of the possible phase cycling schemes.

The pure double quantum state can be represented as
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Table A.1: The evolution of density operators for a iwo-spin system through a phase cycled COSY pulse
sequence. The indices of ¢ are the points of _me m Figure AL

[ pulse | density operator for the two-spia system (k. 7). oo = It + Ii: ‘ ]
(%)t oy | =l — Iy

o2 | =l cos afyty = 2 sin wdgiyleos Sty + [y cos @ity o Qigedy; sin it beos $4n
~{hcos hgn + 20 I sin wlgn ) cos ety + Vi cos gy 4 20 I sin et P sin 2y
a3y | —[l: cos adyt) + 2 die sin Tt Jcos Qi + [ cos adyyy — 20 sin e isinsin
== cos mlyny 4+ 2 By sin wdygn feos Qp) + e cos adigty — 28 I sin gty 1 sin
(%)\ g1 | Ik + I

o1 | [rx c08 mliahy + 2l I sin mlytiJcos Sty + [y cos mdirty = 2 iz sinowdygn Jeos Sy
+U cos adgpty 4 20 I sin gty Yeos Sty + L vos wdipny — 206 Iy sin gy sin iy
03 | —[fx-cos syt — 2l dpy sin thgty | cos 2ty + [ iy cos ity + 28D sin mign [ sin€in
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+[ 1008 wlepty — 2501y sin Rl cos 0 = Lo cos mhgn 4 20 0 sin g ] sin Sy
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The third pulse (with a constant phase) generates the single quantum coherence to be detected:

| .
o=z (@I Ity + 20 D1 )cosQuty + (2Uke iz + 2D I )cos ] sin whyty
(A.11)

- “The first and the fourth terms give rise to the diagonal peaks while the second and the third
terms lead to the cross peaks. All diagonal and cross peaks consist of antiphase multiplets with
almost pure 2D absorption peak shapes. Thus broad diagonal lines can be eliminated. ‘Besides, all

the single spin signals are suppressed, particularly those stemming from solvent.

N
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Appendix B

The 20 common amino acids and their spin

coupling graphs -

This appendix lists the chemical structures and the proton-proton spin coupling graphs of the

20 common amino acids.
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