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Abstract

An automated sequenti'll assignment proloeol for protctns is prescnted using hctcronudear

3D NMR. For lhe observed amino aeid spin syslems. the protocol indudes an algllrilhm III de­

temline lheir amino acid typcs. For the delecled polypeptides. lhe prolOClll indudes anolhcr al­

gorithm 10 sequenlially map lhem to the primary sequence. The fomler algorithm me'lsures lhe

similarity belween the delected spin syslems and the 20 standard amino acid pallerns. Both chcm­

ical shifl and lopologieal Iikeness are considered. Knowing lhe amino acid types. lhe Imlpping

algorithm assigns the detecled polypeptides to proper positions wilhin lhe proIein primary se­

quence. The assignmenl protocol c;m be applied to spin systems gener.tted l'rom many differenl

approaches. To demonstrate lhe assignmenl protocol. a few compuler algorithms were designed

to deduce the backbone and side-chain spin systems of proteins using heleronudear 3D NMR.

Magnetization transfer through peptide bonds can be observed in triple resommce 3D NMR. To

automate the backbone assignment using the through-bond correlalions. a generic algorilhm is

proposed. This algorithm searches and merges cross peaks mnong ail llvailable NMR spectm.

Individual spin systems can be extnlcted and Iinked to creale polypeplide chains based on the

observed inlerresidue correlalions. The algorithm is not restricted 10 any particular type of exper­

iment. Il is shown to be applicable to two sets of NMR speclr.l: the Iive-experimenl sel of 3D

HNCO. HNCA, HN(COlCA, HCACO, ISN TOCSY-HMQC and the one-expcriment set of 3D

CBCANH. For the side chain assignment, an automated approach using a constmined partitioning

algorithm has been developcd to extract side chain spin syslems of proleins by analyzing the 3D

HCCH-COSYrrOCSY spectra. The eXlracted amino acid spin systems show the chemical shifls .

of lhe component nuclear spins as weil as the conneclivities between these spins. A 90-rcsidue

protein, the N-domain ofchicken skeletaltroponin-C (1-90l, was used to test the implemenlation

of the above algorithms with both simulated and experimental data. Limitations of the illgori!hms

arc discussed.
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Résumé

Un prntocol automatis': pour l'attribution séquentielle des protéines est present':e en utilisant

RMN 3D. Le protocole utilise une algorithme pour d':terminer les types d'ilcides amin':s en ob­

serv'mt les systèmes de spin. Pour les polypeptides détectés le protocole utilise une algorithme

pour déterminer la séquence primaire. La première algorithme mesures les similarités entre les

systèmes de spin détecter et les vingts acides aminés standards. Le déplacement chimique et simi­

larités topologiques Sont aussi pris en considération. Connaisantles type;; d'acides aminés,l'algo­

rithme peut attribuer aux polypeptides détectés leur propres positions dilns Iii séquence primaire du

protéine. Cet protoc01 peut être appliqué ilUX systèmes de spin générés par milhodes différentes.

Pour démontré le protocole d'attribution, quelques algorithmes sont crées pour déduire Iii chaine

principille ct les systèmes de spin des chilines Iiltémles en uti1isilnt RMN 3D. Un tnmsfen de

magnétisiltion à travers les liaisons peptides peUl êtr~ observer en triple résonance RMN 3D. Pour

automatiser l'attribution de la chaîne principale en utilisant les liasons à tmvers les corrélations,

une algorithme générale est proposée. Cette algorithme, cherche et unit les pics croisés de tous

spectres RMN disponibles. Les systèmes de spin individuel peur être extracté et liés pour créer les

chaînes polypeptides basées surIes corrélations observés des interrésidus. Cette algorithme n'est

pas en paniculier limité a une seule expérience. L'algorithme est démontrée d'être applicable

aux deux séries de spectres RMN: la série de cinqs expériences de HNCO, HNCA, HN(CO)CA,

HCACO ISN TOCSY-HMQC 3D et à l'expérience de la série CBCANH 3D. Pour l'attribution des

chaines latérales on à déveloper une approche automatisée en utilisant une algorithme de punition

contrainte. Cette algorithme extrain: les systèmes de spin des chaînes latérales des protéines en

analysant les HCCH-COSYrrocSY 3D spectres. Les systèmes de spin des acides aminée ex­

tracté montre les déplacement chimiques des spins nucléaire composés et les rappons connectifs

entre ses spins. Une protéine de 90 ramifications de domaine-N du Troponin C(I-90) squellette

de poulet était utilisé pour essayer l'algorithme avec les résultats simulés et expérimentaux. Les

limitations de l'algorithme sont aussi discuter.
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Chapter 1

Introduction

This thcsis presents automatcd software for protein resonance assignment from heteronuclear

threc-dimensional nuclear magnetic resonance (NMR) spectra. The assignment strategy is divided

into three steps: (1) the extraction of amine acid spin systems, (2) the determination of amine acid

types for the cxtmcted spin systems, (3) the sequence-specific resonance assignments. A generic

sequential assignment protocol was proposed under which algorithms were developed to automate

the above three steps. The algorithms were implemented into computer progmms and validated

with simulated and real spectral data.

Using the proposed sequential assignment protocol, this thesis demonstmtes that a complete

automation of protein resonance assignment is possible. although in practice many aspects, such

as the lack of sufficiently accurate automated peak picking software and the uncertainties of the

amino acid type determination. have to be overcome before this ultimate goal can be achieved.

1.1 Motivation

Resonance assignment has direct implications on the structure determination of biomolecules

from NMR data. In particular. the sequence-specifie resonance assignment, as described in this

thesis. is the essential analysis step needed before the structure determination and refinement can

be conducted.

NMR based protein structure determination techniques have been widely used since early
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1980s, The established procedure consists of severalmajor steps 11-lI, FiN, the spin systems of

ail of the amino acid residues in the protcin are identilied. then a sequellliai assignmelll pn>,:edurc

attempts to map the extracted spin systems to the target protein's primary scquence', '1l1C rcsults

of the resonance assignments are then used to interpret the through-space NOE l'mss pcaks. fmm

which a number of distance constmints can be derived from ,malysis of the NOE data. l'inally.

these constraints are uscd to calculate the protein's 3D structure.

Since spectral overlap is proportional to the size of the molecule being studied. spectral anal­

ysis of larger molecules using 2D NMR becomes diflicuh if not impossiblc. \Vith the recelll

development of 3D and 4D heteronuclcar NMR [5.6]. the techniques of c10ning and cxpressing

ISN/13C labeled proteins, it is now possible to resolve the severe spectral overlap. rcsulting in C0l1l·

piete structure determination for larger proteins. Many of these muhidimensional heteronuclcar

NMR spectm take advantage of the scalar n,agnetization tnmsfer through peptide bonds and thus a

uniformly ISN/13C labeled protein is needed. Although 3D and 4D NMR simplify lhe overlapped

spectra, the analysis of spectra remains difficult as more data is acquired ,md must be analyzed.

It is genemlly accepted that the resonance assignment of NMR speclm is tedious and lime·

consuming work, hence. there have been many attcmpts [7-19]10 automate the resonancc assign·

ment part of the structure determination analysis.

Computer·assisted resonance assignment plays an important roll' for muhidimensional NMR

data .analysis. Although 3D and 4D heteronuclear NMR greatly reduce the speclml overlap, il is

at the expense of increased amount of data. Therefore, computer progmms arc needed and allow

a more unambiguous spectml analysis, making it possible to automate the resonance assignmenl

procedure. Similar results are difficuh to allain using 2D NMR only.

Numerous approaches [20] have been applied to the automated assignment problem using

multidimensional NMR. Vuister et al. [21] proposed an assignment stmtegy for homonuclear

3D NOE-HOHAHA spectrum, Kleywegt et al. [9] implemented and extended lhe stralegy for

homonuclear 3D [J,NOE]- and [NOE-J]-type NMR spectr.! of proteins. Osehkinat et al. [16]

presented an automated stmtegy making use of homonuclear 3D TOCSY-TOCSY and TOCSY·

NOESY. Among the attempts using heteronuclear 3D NMR, Zimmerman et al. [19] developed an

approach for determining the sequential order of amino acid spin syslems using 3D HCC(CO)NH-

.)
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TOCSY and <:onstraint propagation m<:thuds. B<:rnst<:in ,'1 al. [1 HI applied the te<:hnique of ,'om­

hinatorial minimization 10 ~u:hicvc the sequence-specifIe assigmncnt of protdns using 3D 15N_

IIMQC,TOCSY and 15N-II~IQC-NOESY. Twu ""mplcte protei,' automated resonanœ assign­

lIlent proto",,\s were propose.!. one was donc by Meadows <'1 al. [171 the other by Mordle <'1

a/. [221 The first makes use of 4D IINCAIIA, IIN(CO)CAIIA. IIC(COlNII-TOCSY, 3D IINCA

and IIN(CO)CA while the second protocol uses a set of 2D triple resonance NMR speclnl to

assign the protcin's backl;.~ne resonanccs. Some of these computer programs. for examplc. Zim­

merrnan's and Bernstein·s. automate sequential assil1nment only. Consequently. the amino acid

spin systems must be created ;Illd identified using other approaches. Meadow's and Morelle's pro­

tocols arc able to extr.let amino acid spin systems but an automated amino acid type recognition

routine is lacking. In addition. many of these programs put emphasis on particular kinds of NMR

experiments.

1.2 Issues

A self-contained automated assignment strategy should consist of three steps. (1) Extract­

ing the spin coupling segments (amino acids) that make up the biomolecule. (2) Mapping of the

spin coupling segments to amino acid residues. (3) Searching for a most probable spin system

sequence whieh matches the protein's primary sequence. These steps can be treated by a series

of algorithms: Constrained Partitioning (CPA) [23,24], fuzzy pattern recognition [25] and tree

searching [25,26], respectively. CPA can automatically extract and identify spin coupling seg­

ments l'rom a combination of the 2D COSY and TOCSY spectra where the latter is used as parti­

tioning constmints. The fuzzy pattern recognition algorithm deternlines the amino acid types for

those observed spin coupling segments. Once the amino acid types are deterlllined, each residue's

position within the protein sequence can be obtained l'rom the tree searching algorithm.
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1.3 Scope of the Thesis

In Ihis Ih~sis. ~xl~nsions [271 ar~ mad~ 10 Ih~ CPA algorilhm so thal th~ aliphalÏL" sid~ .-\lall1

spin sysl~lllS can b~ d~duc~d from h~l~ronucl~ar 3D NMR dat'l. A g~n~ric s~l\"~lllial assignlll~1ll

protocol is propos~d. Thr~~ algorithms. a prol~in backbon~ ~xlra~tion algorilhm [2S 1. an ül~lllkd

amino acid pallem recognition algorilhm [291 and a s~qu~nlial mapping algorilhm [2SI. ar~ ap­

l'lied 10 Ih~ s~quenlial assignmem protocol. Th~ m~lhods d~vclop~d in lhis wurk ar~ appliL"ahk III

a wide vari~ly of heleronucl~ar3D NMR ~xp~rim~nls. Th~ appliL"alions ar~ nol r~striL"lcd !lll'cr­

Iain special designcd NMR exp~rim~nls. This approach providcs a basis fur furlhcr dcvclopmclll

of a fully generic. i.e.. complelely independ~nl on the Iypes of inpul NMR cxperimcllls. aUlomatcd

assignmem software.

1.4 Organization of the Thesis

The Ihesis is organized as follows:

Chapler 2 highlighls lhe NMR based prolein struclure delerminalion procedures. inlroduces

Ihe NMR experimenls used in Ihe Ihesis and reviews Ihe previous work al Ihe aUlonmlion of 2D

NMR speclrum assignment. Il allempls 10 give an overview of Ihe earlier work Ihis Ihesis is based

upon as weil as emphasis of Ihe direcl relalionship belween resonance assignmenl and lhe slruclure

delerminalion. The subjecl of Ihe research. prolein resonance assignmenl. is defined in a formaI

manner in lhe same chapler.

Chapler 3 describes IWO approaches for lhe delerminalion of prolein backbone resommces.

The firsl one makes use oflhe triple resonance heteronuclear 3D NMR experiments. This approach

is able to extract individual spin systems as weil as establish the sequential connectivities. Anolher

approach is a direct eXlension of Ihe Iwo-dimensional CPA algorilhm. making CPA possible to

process three-dimensional NMR experiments such as ISN TOCSY-HMQC.

Chapler 4 presenls an algorilhm for the,assigmnent of protein aliphalic side chain resonances.

The deduced spin syslems can be merged with the backbone spin systems to provide possible

• candidates for Ihe amino acid Iype delerminalion.
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Chapler 5 ùea" \Vilh Ihe ami no aciù Iype ùelerminalion anù the sequence-specifie assign­

ment. An algorilhm is introùuceù 10 merge the previously ùeterll1ineù backbone and side chain

spin syslems. A malhemalical graph·theory-based spin pattern recognition algorilhm is describeù.

Finally, a sequenlial mapping algorithll1 places the recognized spin systems at posilions within the

prill1ary sequence. The interresidue connectivities can be crealeù by through-bond (from Iriple res·

onanee 3D NMR) or through-space (from 2D NOESY or 3D ISN NOESY·HMQC) correlations.

A scquential assigmnent protocol is discusseù 10 summarize lhe above algorilhms_

Chapter 6 eonc1udes Ihe thesis by highlighling the significant contributions of Ihe current

work, ùiscussing various possibilities of applying the research to real world cases, and pointing

out the directions for future investigation.
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Chapter 2

Related Issues and Previous Work

2.1 Introduction to 2D NMR spectroscopy

Essentially ail contempomry NMR work on biopolymers is donc with lwo-dimensional (201.

or three-dimensionul (3D) NMR. In lhis seclion. lhe most commonly seen 20 NMR experimellls

that are applied to protein resonance assignments are introduced .md their informUlion colllent is

described. Discussion emphasizes the experiments lhat are used in luter chapters.

2.1.1 COSY

The basic 20 NMR experiment based on through-bond scalar coupling is COSY(COrreIaled

SpeclroscopY) [30.31]. The COSY experiment has the simplest pulse sequence of ail 20 NMR

experiments. The pulse sequence is shown in Figure 2.1. In this experiment the spins undergo

prçcession about one another. in addition to the usual precession about the applied magnetic field.

Ouring the mixing period, Le.• the second pulse. of this experimetit, J-coupled spins exchange

coherence and communicate the information about their precession frequencies. The result. for

the COSY experiment. is that a eross peak between two spins, i, and j. will oceur at position

(8;,8j) and (/lj./l;) in the speetrum if spin i and j are direclly coupled to one another.

The eross peaks in COSY spectra are antiphase in chamcter, lhat is, hall' of lhe multiplet is

"up" and the other hall' is "down" as shown in a simulated 20 COSY spectrum in Figure 2.2.
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Figure 2.1: The pulse sequence of the 2D correlaled speclroscopy (COSY). Two 90-degree pulses are
sepamled by the mixing period ".

This fe:lture incre:lses lhe difficullies of doing aUlomaled peak picking. To delermine the center of

20CQSY /

ep/--------~, ,, ,, ,, ,, ,, ,
iS--------âo

1/"
F,('Hl

F,('H)

•

Figure 2.2: Simulaled 2D COSY conlour plOl of IWO coupling spins. Open circles wilh solid and dashed
Iines are cross peaks with posilive and negalive imensily. respeclively. The dispersive diagonal peaks are
represenled by filled circles.

each cross peak, two local maxima and minima have 10 be found which is difficull in a severely

overlapped speclrum.

ln COSY experiment. peaks also occur on the diagonal arising from coherence lhat remained

on lhe same spin afler Iwo pulses of lhe experimenl. In normal COSY lhe diagonal signaIs are

OUI of phase (dispersive) relalive 10 lhe cross peaks and are broader lhan lhe absorplion signal.

This phenomenon inlerferes with the deleclion of cross peaks near lhe diagonal. The cross and

diagonal peaks for a weakly coupled systems wilh Iwo 1 = 1/2 spins are derived in Appendix A.

A usefui revision 10 overcome the dispersive diagonal peaks is to apply a double quantum tiller,

which is discussed in the next seclion.
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2./.2 DQF-COSr

DQF-COSY was introduœd hy Ranœ er al. [.'2J Ali <:oh<:r<:ll(<: frum spins that dll nol ha\<,

wupling partners. i.e .. singlet in the spe<:lrum and ail .:oheren<:e that remain..d <Ill lh<' sanlt" spin

during the e\'olution period ri arc added to zero through a phase <:yd... Th.. result is Ih.. disap­

pearanœ of the ohscure diagonal peaks. DQF-COSY is now Ih.. usual 2D COSY ..,\p..rim..m for

hiomolecular applications although sometimes lhe prefix "DQF' is omilled. Appendi\ A gi\l'S an

examplc of the phase eycling scheme used in DQF-COSY.

2.1.3 TOCSY

A more recent 2D NMR experiment for identifying extended <:ouplings is TOCSY(fOtal

Correlation SpectroscopY) [33] which is also known as HOHAHA(HOmonudear HArlman HAhn

spectroscopy) [34.35]. An isotropic mixing is added after the evolulion time /1 hy applying a

sequence of pulse which effectively avemges out chemical shifts. This l'an be thought of as a

sequence of 1800 pulses. each of which refocuses the chemical shifts. In ellect. 'III eoupled spins

will have the same precession frequency. so they will be strongly coupled (Lld « J) and their

tmnsitions will be thoroughly mixed. In the collected FID. ail the coherences relum to their

original chemkal shifts but become labeled with the precession frequencies of alltheother spins

in the same spin coupling system. For e'tample. four spins li, j. k.l} are within a eoupled spin

system. In the TOCSY spectrum. cross peaks occur at position (/5;. di). (d;. dd. (d;. d,). (di. /5;).

(di. /5k>. (di.Iit>•... • etc. Figure 2.3 shows a simulated TOCSY spectrum for an alanine.

TOCSY

o 0 pH

o 0 aH

s

Figure 2.3: Simulated COSY and TOCSY spectra cf an alanine spin system with three spins. NH. aH
and tlH.•

o
COSY

NH
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In TOCSY Ihe mixing helween spins dœs not occur instantaneously. and the number of

spins intennediate between Ihe initial spin "nd Ihe delected spin can be adjusled by modifying the

isotropie mixing period of the experimenl. In other words. it is possible to control the number of

corrdaled spins within a spin system. A short mixing time TOCSY may only record cross peaks

arising l'rom adjaœnt prolons bUI not l'rom dislant prolons. An additional advantage of the TOCSY

experiment is that the eross peak multiplets are ail in-phase rather than antiphase. so there is no

loss of signal intensity for broad lines due 10 cancclation of overlapping antiphase component.

TOCSY experimenl provides redund:mt information 10 help resolving chemical shift degen­

eracy problem (more than one protons having the same frequency). TOCSY data are used aS

constr.lints If) conlirm cross peak merge in the computer aIgorilhm called Constr.lined Panitioning

Aigorilhm which is described in section 2.6.

2.1.4 NOESY

ln COSY :md TOCSY experiments. magnetization tr.lnsfer between spins is mediated by the

Ihrough-bond scaIar coupIings. The NOESY(Nuciear Overhauser Enhancement SpectroscopY)

[36-38]. on the other hand. takes advantage of the through-space dipolar couplings. To describe

the NOESY experiment, consider a pair of spin 1 and S, which are in close spalial proximity so

as 10 have the dipolar inter.lction. Figure 2.4 shows the pulse sequence of NOESY. The lirst 90°

9

90 90

Tm

90

Figure 2.4: The NOESY pulse sequence. The maximum distance to give an observable cross peak de­
pends on the value of rOI'

• pulse brings the magnetization of spin 1 down to the x - y plane. After the evolving period tlo

the second 90° pulse flips the magnetization of 1 back to the z axis. During the delay rOI, cross

.. '



• 2.1 Introduction 10 ZD i\;:\tR spcctr(ls(op~'

rdax:.J.tion hCl\\'ccn spin 1 anù S oc('ur:.; ô.lIlÙ S\,.ll1lC' nI' the sr"n 1 magncti/i.ltÎlltl is transfl'ITl'd It1 S.

In the ùctcction pcriod (:,. magnctiz;,ltion of spin S is ùc:tcch:d hUI thc FID ~;gnal \ ..It tlll" frcq\ll·lh..·~

of spin S) is amplitud~-modulat~d al th~ fr~qu~Il\:Y "f spin 1. Th~ r~slllt j-. Ih~ .:mss l'~a~ (,\{.,\\ \

in the NOESY spcctrum. By adjusting the mixing lime Tm. the maximum disl..uh.''': helwl.'Cn spins

for whi~h ~ross p~aks will b~ s~~n can b~ adjust~d.

To imerpr~t th~ inl~nsily of a NOESY cross p~ak. oœ must kno\\' that NOE IS .1 cons~qu~nl'l'

of modulation of th~ dipolar coupling b~tw~~n dinà~m nucl~ar spins by th~ Bm\\'nian motion of

th~ molcculcs in solulion. Th~ NOE im~nsity can b~ rcl,u~d to th~ distanc~ l' b~t\\'ccn th~ pr~­

irradiat~d (in th~ abov~ ~xampl~. spin /) and the obs~rved (spin S) spins by an ~qmuion of th~

gener.ll forrn [2].

\II

1
NOE ()( -f(T,)

(1'6)
(2.1 )

The second lcrrn is a function of the correlalion lime T, which accounts for the influence of th~

motional aver.lging process on the observ~d NOE. ln protein structure determination using NMR

spectroscopy. the NOESY experimems provide connectivities. sueh as cluN(i. i + 1l. tlNN(i. i + 1l.

between sequemially adjacem amino add residues. Those conn~ctivities arc the building blocks

for protein sequential assignmem.

2.1.5 Heterollllclear 2D NMR

ln ail of the above NMR experiments, the magm:tization tnmsfer is going l'rom proton to

proton, resulting in 1H-1H spectrd. When two different kinds of nuc1ear spins are considered, the

magnetization tr.lnsfer can be l'rom 1H to X or l'rom X to 1H, where X stands for De, 1SN or ,II Pin

biomolecules. Since the chemical shifts of heteronuclei, 13e and ISN, are usually weil disJlersed

while the protons tend to be c10sely overlapped, it is generdlly desired to place the crowded 1H

spectrum in F2 dimension where it can be finely digitized and leave the better dispersed 13e

or ISN spectrum in FI dimension. Another concern of heteronuc1ear NMR is that the naturdl

abundance of [3e and ISN is Jow (1.1 % of 13e, 0.37% for ISN in comparison with 99.9% of

• 1Hl. For example, only one percent of the protons will be attached to a 13e nucleus. the rest will

be attached to inactive 12e. Most recently presented heteronuclear 20 and 3D NMR experiments
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require unifonnly j,,>!ope (ahded "e or ";-.; III mercome the sensitivity prohlem. The' H_"e and

'11-' 'N eouplings are large ( 125-160 Hz for 'leI! and ~ 92 Hz for' J:"I!) [5J. and the efliciency

of magnctizalion transfer is Iiigh even when spectral lines are broad for high mokcular wdght

A elllHmonly used heteronuckar 2D NMR is HMQC(Heteronuclear Multiple Quanlum Co­

hen:nce spectrosLopy) [39]. The ,·C or ISN spins are recorded in the FI dimension whik the

prolons sealar coupled to the "c or ISN are recorded in the F" dimension.

2.2 Introduction to Heteronuclear 3D NMR Spectroscopy

ln lhree-dimensional NMR speClr.!. corrdations of thre.: diff~rent frequencies are gener.lled

lhrough IWO differcnt mixing limes of an experiment. The mixing mechanisms are the same as

in 2D NMR. that is. COSY. TOCSY. NOESY types mixing can also be used in 3D NMR. 3D

NMR experiments are essentially combinations of two 2D experiments (Figure 2.5). 3D NMR

11

p~rahon,-
"

mblng

evolution

"
,_, ...oIullon

"

•

l'Îgure 2.5: 2D and 3D general experimenls. ln the 2D experiment. the value of II is incremented to
obtain the second time-domain information. ln the 3D experiment. the value of II and 1" are incremented
to oblain the second and third dimension.

experill1ents can be classified according to the observed nuclei. Homonuclear 3D NMR observes

proton frequencies. Heteronuclear 3D NMR is further c1assified to double resonance experiments

(IH und 13e. IH und (SN) und triple resonance experiments (IH, (3e and ISN). Since our study
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J~scription is lil1lil~J ln h~l~ronu"kar.'D N:\IR.

Hctcronuclcar 3D Ni\'lR cxp..:rimcnls separait: the individua! prlllllll l"l·S'.Hlalh.'l'S al.· ...llnlill~

10 th~ "h~l1li~al shifts of th~ Jir~ctly honJ~ll h~l~ronud~i and sil1lullan~ously p,",,,lucl' illlp"n;llll

additional information ahout th~ ~h~mical shifts of th~ h~t~ronucki. Thus p,",lbl~lIls "r p,",>h>n

rcsonanCè o\"crlapping that occur for larg.e prolcins can he llVCn.:OI11C hy scpar~Hing th..: ~·n)\\'dl.·d

1H_1H 2D NMR plan~ illto many plan~s of a 3D Ni\'1R sp~~trulll as sllll\\'n in Figur~ 2.6.

•

Il

",,-_._·_·_~4/
F,(NH)

/

•

•
F,(NH)

/

/

Figure 2.6: Schematic iIIuslration of the relalionship b~lween I~N edited 2D and 3D spe~tm. The dosed
circles represenl three NH-aH cross peaks. which can be sepamled. in the cllITCsponding 3D speclnllll.
into three planes depending on lhe differenl chemical shifls of lhe amide nitrogen Iludei.

The spectml lille widlh of NMR speclm is approximalcly proportional to the inverse of lhe

molecular tumbling mte and therefore increases approximalcly linearly with lhe size of the protcin

[2.5). For large proteins (> 10 kD) the' H-'H J couplillgs are smaller than the speclmlline widlll,

makillg the 20 COSY spectrum ineffective. As melllioned above. the helerolluclear one-holld

c.:luplings are much larger than 3JHH. As a result, the line broadening problems can be overcome

by using the heteronuclear one-bond couplings inslead of 3JHH to achie~.. efficient magnelÎzation

lmnsfer of NMR experimellts.

The sensitivity. Le., the signal-to-noise Mio achievable in a unittime interval, of 3D NMR is

gener.llly lower than the 20 NMR counterpart (40). To overcome the l'roblem of loss of sensitivity,

more efficient magnetization tr.lnsfer steps are required because a greater percentage of the nuclear

• spin magnetization is lr.Insferred· from one nucleus to another, resulting in stronger signal intensity.

Heteronuclear 3D NMR takes advantage of the more efficient magnetization transfer (as much as'
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50% to 90'70) [5] between )JC or 15N and 1H so that a lower concentration protein sample can still

produce high sensitivily spectra.

We now briefly introduce sorne heteronuclear 3D NMR experiments which are used in the

following chapters.

2.2.1 Triple resollance heteronuclear 3D NMR

For rnoderate sized proteins ( - 20 kD), most of the one-bond J eouplings are significantly

larger than the spectral line width [5]. This means that the magnetization can be transferred ef­

ficiently from one nucleus to its directly bonded neighbor. A number of triple resonance NMR

experiments have been designed, correlating mainly the baekbone resonances. In chapter 3, a

compuler algorithm is presented to achieve the protein backbone assignment using heteronuclear

3D HNCO, HNCA, HN(CO)CA, HCACO, CBCANH experiments. Schematic representations of

Figure 2.7 and listings in Table 2: 1 show the nuclei that are correlated in the above 3D exper!­

ments. Those experiments are named according to the nuclei they correlated. For example, the

HNCO experiment correlates NH(i), N(i) and CO(i - 1).

HNCO H H 0 tID. H 0 HCACO H 031. 0 H lID. o
V\.N C -@ (&)~.c C~ V\.N ~'jê) N ~r~

H C H H C H H C H H C H
l l l l

resldue ;-1 resldue ; resldue ;-1 resldue ;

13

HNCAHHO

V\.N '4l'c

H C H
l

@.H 0
~ê-c~
• • •• 1

H C H
l

Figure 2,7: Sehematic illustration of the correlations shown in Table 2.1.

HN(CO)CA H H 0 CI». H 0
, " ., 1 1

V\.N-<t-c -e: C - C~
.. , • 1

HCH HCH

l l

•

resldue ;.)

resldue ;·1

resldue i

resldue ;

,esldue ;.) resldue i
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Table 2.\: Correlations obser\'ed in the the triple rcsonance NMR experiments.

t~

1 HNCO
CO(i - 1) N(i)

HCACO

NH(i) Ca(i - 1)
Cali)

HNCA

N(i)
N(i)

CBCANH

NH(i)
NH(i)

HN(CO)CA

C,,(i - 1) N(i) NH(i)

Ca(il COli) Ha(i) Ca(i-I) N(i) NH(i)
Cali - 1) CO(i - 1) Ha(i - 1) C~(i - 1) N(i) NH(i)

Cali - 1) N(i - 1) NH(i - 1)
CH(i - 1) N(i - 1) NH(i - 1)

2.2.2 Double resonance heteronuclear 3D NMR

3D IH-,sN TOCSY-lIMQC experimellt

This experiment provides intraresidue correlations between aliphatic and NH protons, infor­

mation which is important for identifying amino acid spin systems of proteins. 3D ISN TOCSY­

HMQC is a combination of 2D TOCSY and HMQC experiments. In the tirst step, magnetizu­

tion originating on aliphatic protons is transferred ta intraresidue NH protons via TOCSY type

isotropie mixing pulse sequence. At the end of the '2 evolution period, 1H magnetization is mn·

plitude modulated by the chemical shift of the directly bonded intmresidue ISN nucleus. The

NH protons are finally detected during the '3 detecting period. For cach of the amino acids of u

protein, the FI dimension records the chemical shifts of the aliphatic aH, pH, ... , etc., the ISN

is recorded in the F2 dimension while F3 records the NH chemical shifts. Figure 2.8 shows the

correlated nuclei by the 3D ISN TOCSY-HMQC experiment.

Figure 2.8: Correlations observed in the 3D ISN TOCSY-HMQC experiments.
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2.:.3 CllOosinK betlVeen Three- and Tll'o-dimensiona{ NMR

15

As we have seen in earlier discussion, 3D NMR experiments overcome the peak overlap

problem by introducing the third dimension and separating overlapped peaks into a number of 2D

planes. In the case of heteronuclear 3D NMR, use of larger one-bond couplings reduces the risk

of peak overlapping arising from line broadening effec!.

Three-dimensional NMR spectra provide sorne other advantages over 2D spectm as far as the

design of an automated software for resonance assignment is concerned. The first compUlational

advantage of using 3D NMR is that a single cross peak in a 3D NMR spectrum represents the

magnetic interolctions between three nuclei and provides the relationships between three chemical

shifts. For example, a cross peak (4.29, 119.50, 8.35) in 3D ISN TOCSY-HMQC spectrum repre­

sents the adjacency relationship between the chemical shifts of 119.50 and 8.35. In addition, the

chemical shifts of 8.35 and 4.29 must be in the same spin coupling system. To obtain the same

information from a 2D spectrum, one has to find a pair of 2D cross peak, in the above example,

a COSY peak (4.29,8.35) and a HMQC peak (I 19.50,8.35), having one chemical shift, 8.35, in

cornmon. Finding such pairs is not as straightforward as it is in the case of using 3D NMR. Degen­

erate ehemical shifts, e.g., (3.47, 8.35), may cause ambiguity when determining which chemical

shifts, 3.47 or 4.29, is in the same spin system with the resonance of 8.35 ppm.

The second advantage of using 3D NMR is thatthere are two ways of confirming the merging

of two 3D NMR cross peaks while there is only one way when merging two 2D peaks. For

example, to merge 3D peak {8;,8j,8kl and (8j,8k,8;), one can do so by verifying that the second

coordinate of peak 1 and the first coordinate of peak 2 are the same chemical shift. Additionally,

peak l 's third coordinate must also be consistent with peak 2's second coordinate.

3D NMR experiments tend to separate peaks away from each other, making peak shapes

more predictable. Peaks with beller shapes are more suitable to be picked by automated peak

picking softitares, since noise peaks can be more readily separated from real signais.

There are, however, several disadvantages of using 3D NMR. The time required to acquire

a spectrum increases with the increase of dimensionality. For example, a typical 3D HNCO ex-

• periment may take 3 days to acquire [5]. The sensitivity, i.e., the S/ N ratios, drops by ../2 with
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increasing of one dimension (40].

Despite the loss of sensitivity and increase of acquisition time. in many cases. especially with

large proteins. 3D NMR experiments are the only choice to conducl successful resonance assign­

ments. Moreover. computerized analysis become more desirable in 3D and 4D NMR because of

the large amount of data present and the difficulty of visualizing 3D and 4D data spaces.

2.3 Protein structure determination from NMR data

Remarkable progress has been made in applying NMR spectroscopy to the study of pro­

lein [3,41] in the past 15 years. NMR method provides complementary inform:llion aboul protein

structures to that from X-ray crystallography. For example. in NMR method. the solution condi­

tions can be varied over sorne ranges. the internai dynamics and chemical exchange phenomena

can be characterized and the effects of temperatures can be studied.

The NMR method can also be applied to other biomolecules. such as nucleic acids and

polysaccharides as weil as small molecules.

In this section a short survey is devoted to the NMR methodology for protein structure de­

termination. In the next section, the resonance assignment, our research subject, is described in

detail.

2.3.1 Basic approach

Figure 2.9 depicts the steps for determining solution structures from NMR data. Multi·

dimensional NMR data are acquired as a series of 1D spectra. The lime delays required for

frequency labeling in the evolution period result in loss of signal intensity, i.e., low sensitivily. In

addition to applying certain data manipulation techniques, higher concentration of protein sample

generally produces higher sensitivity. The typical concentration ofprotein sample required for 2D

COSY, TOCSY or NOESY experiment is about 2 mM. The required volume of sample solution

is about 400 tLl [42]. Higher concentration is desired provided that the protein is soluble and docs

not aggregate, since this not only provides higher sensitivity b~t also permits shorter experiment
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Figure 2.9: The nowchart of the protein structure delennination from NMR data.

time.

Once the NMR experimen1s are acquired, individual peaks in the spectra have to be assigned

to sequence-specific locations in the chcmical structure of protein before the distance information

in the NOESY spectrum can be fully interpreted. Sequence-specific NMR resonance assignment

plays a pivotai role in the structure determination process. The objective of our study is to automate

the resonance assignment procedures using computers. The detailed manual assignment strategies

is described in the next section.

FuHy analysis of the NOESY spectrum, the "NOE assignment", provides many distance

constraints between the hydrogen atoms of a protein. As described in equation 2.1 , the inter­

proton distance can be calculated from the intensity of the NOE cross peaks provided a fixed

distance can be found to calibrate equation 2.1. Generally speaking, an NOE peak with strong

intensity may indicate that two protons are within 2.5 Aof each other while a weak NOE peak

'corresponds to an upper Iimit of 5 A.
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Many other geometrical constraints Can be inferred using various Illethods. One of the con­

straints available from NMR data is dihedml angles. Two dihedml angles are associ.lled with each

peptide bond. Angle'" is the torsion angle between bond N - NH and Cu - aH while angle VI is

another torsion angle between bond Ca - aH and C - O.(Figure 2.10)

o'

Figure 2.10: The torsion angles of an amino acid rcsidue.

The dihedral angle'" can be calculated from the vicinal spin-spin couplings 3Jall-NII using

Karplus equation [43,44].

III

3JaH-NH = 6.4cos21J - 1.4cosIJ + 1.9 (2.2)

•

where IJ = 1'" - 60 01 and 3J is given in Hertz. With the use of the above equation, measurement

of 3JaH-NH present a complementary information to NOE distance constraints for calculating the

initial structure of a protein.

The next step is 10 delermine an initial protein structure which is consistent with the thou­

sands of NOE constraints and, frequently, with sorne other conformational constraints. Distance

geometry is the most commonly used mathematical procedure by which distance constraints are

converted into three dimensional structures [45]. Distance geometry procedure is essentially a

projection from a high-dimensional space (in which thousands of distance relations can be accom­

modated) into ordinary three-dimensional space. The initial structures calculnted from distance

geometry almost always violate many of the experimental constraints. Subsequently structure

refinement is required to obtain a high resolution protein structure.
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2.3.2 The importa!lt mie vfsequence-specific resollollce l/ssigllment

As above described. NMR spectra contain information lO determine biomolecular structures

in solution. However. none of the embedded information can be used without having the reso­

nances of lhe biomolceules assigned. In other words, il must first be determined which resonance

come from which nuclear spins. This is a cornmon problem or process in ail speclroscopies. The

process of associaling specifie spins in lhe molecule wilh specifie resonances is called seqllellce-

.\]Jccijic l''CSOIlllllce Clssigllmellt.

Sequence-spcci fic resonance assignment is essential in thrce areas of the biomolecular NMR

applicalions: (1) biomolecular slructural analysis (2) intermolecular interaction with biopolymers

(3) sludies of molecular dynamics. The importance of resonance assignment in those three areas

is discusscd below.

As a first discussion consider the detennination of protein structures from NMR data. The

struelural information mainly cornes from NMR cross peaks. An NOE peak between two hydro­

gen aloms (or groups of hydrogen atoms) is observed if these hydrogens are located at a shorter

distance than approximately 5.0 Â from each other. Without sequence-specific resonance assign­

ment it is impossible to determine to which the two hydrogen atoms a specific dislance constraint

refers. On lhe olher hand, combined with resonance assignment these distance constraints can be

atlribulcd to specifil' sites along the protein chain and therefore the three dimensional structure can

be formed.

The second application where resonance assignment is pivotai is the studies of intennolecu­

lar intemclion. For example, in the study of the protein-DNA binding interaction, the binding sites

<Ire the first thing we want to know. The intennolecular NOE peaks can manifest short distances

between nuclear spins located in different interacting molecules. Without sequence-specific as­

signment, such NOE data merely indicate that the intennolecular intemction has occurred. When

combined with <lssigned resonances, the NOE data identify the binding sites of the intermolecular

cont<lcls.

19

The study of protein dynamics has made significant progress during the past several years.

• These studies rely on the observation of certain spectral properties in distinct NMR Iines (peaks)
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lhat can be correlated \Vith intramolecular motions. Once the NMR lines responsihk for Ihe stu<fy

region (such as a methyl group) have been assigned. il is lhen possihle 10 in\'estigate the desired

spectral properlies in the corresponding speetm.

2.3.3 The dijferellce betll"eell resrJ/lrl/lce lIssiglllllellt (//u/ NOE lIssiglllllellt

Before describing the strategy of protcin rc$Ommce assignment . lhe somelimes confusing

terrns "NOE assignment" is c1arified firs\.

The sequence-specific assignment of protein rcsonances is a process of associaling specilic

nuclear spins in the protein with specific resonances. Le.• chemical shifts. The process may or

may not involve NOE data. In lraditional resonance assignment stmtegy using homonuclear 2D

NMR. the interresidue conneclivities are established from NOESY dala. Reccntly. heleronuclear

3D NMR provides interresidue connectivities through a series of triple resonancc experiments.

there is hence no ;eed of using NOE dala.

NOE assignment is the analysis of the NOESY peak set to locate as many prolon-proton

distance constraints as possible. The sequence-specific resonance assignmenl usually assign only

a few backbone NOE correlations. such as daN(i, i + 1), dNN(i, i + 1), daN(i, i +3), '" , elc. The

backbone NOE correlations provide the required sequential conneclivilies for placing amino acid

residues to their corresponding locations along the primary sequence. The majority of lhe NOE

peaks, however, remain unassigned in the resonance assignment slage. The NOE assignmenl

process is responsible for deterrnining ail the 5horl- and long-range interresidue NOE correlations.

The chemical shift degeneracy sometimes makes the complete NOE assignment difficult in

the protein side chain region. For example, consider 10 protons resonaling at 1.88 ppm. Now

there is an NOE peak (1.88. 2.43) to be assigned. It is difficult to determine which one of lhe 10

protons gives the above NOE peak.
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2.4 Introduction to manual assignment strategy

Resonance assignment has been a major hurdle for protein slructural analysis from NMR

data. Significam progress has been made through the introduction of 20. 30 even 40 NMR ex­

periments. Combined with systematic approaches for spectral analysis. aIthough il is stilltedious.

time-consuming work. the resonancc assignment of protein spectra is no longer an unmanageable

task.

Except for resonance assignment. most other parts of the protein structure determination rely

heavily on computers. Therefore it is naturalto ask ourselfthe question: is it possible to develop a

fully autom,lIed resonance assignmem software? The ultimale goal of this thesis is to accomplish

this by developing as fully an automated assignmem tool as possible. Before discussing aspects

regarding automated resonance assignmem. we will describe the tr.lditional but efficient manual

assignment strategy.

2.4./ ManI/al assignmentfrom hOlllolll/clear 2D NMR spectra

After the 20 COSY and NOESY experiments were tirst applied to proteins, it was realized

that the intm- and interresidue covalent linkage can be readily achieved provided that the NMR

datu ure of high quulity. The ideu for systemutic assignment of proton resonunces in protein was

tirst proposed by WUthrich et al. [4] in 1982. Another upprouch, proposed by Englunder und

Wund [46], uses the sume COSY and NOESY informution but in different order. This approuch is

referred to us the Muin-Chain-Directed (MCOl assignment.

WUthrich's assignment strategy includes the following steps:

1. The spin systems of the protons in individual amine acid residues are identified using as

many us possible through-bond 1H) H connectivities, which are mainly provided by 20

COSY experiments.

2. Sequentially neighboring amino acid 1H spin systems are identitied from observation of the

sequential NOE connectivities daN(i, i + n, dNN(i, i + Il, or possibly d/lN(i, i + n.

3. Combining the information in the above, it is possible to establish chains of amine acid spin

21
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systems cOiTesponding to peptide segments that (Ife surtieiemly long to he unique ",hen

compared to the primary sequenee of protein. Sequence-specitie assignmem can then he

obtained by matching the identified spin system chains with Ihe corresponding segmem in

the independently detemlined protcïn primary sequence.

2.4.2 Identification ofamino acid proton-proton spin systems

The identification of proton-proton the spin systems of individual amino acid residues is

usually achieved by analysis of 1H COSY spectrum in 020 solution after replacement of alliahile

protons wilh deuterium. One tries to collect ail J -coupled resonances arising l'rom Ihe same

amino acid residue. The 20 common amino acid residues produce 10 different COSY connectivity

pallerns for the aliphatic protons and four pallern for the aromalic rings. Figure 2.11 shows ail

of the 14 pallerns on COSY speclrum. In principle, it is impossible 10 distinguish a spin syslem

wilh one aH and two tlH's to be Ser, Cys, Asp, Asn, Phe, Tyr, His or Trp. Ali have the same

connectivity pallern on a COSY spectrum (Figure 2.11). However, different llmino acids have

different chemical shift ranges, making it possible to reduce the candidllle number by inspecling

the chemical shifts of the deduced spin systems. For example, serines have relatively downficld

chemical shifts for their two pH's (- 3.8 ppm), making serine an easily identified spin system.

ln crowded COSY spectrum, spectral overlap and chemical shift degeneracy make the iden·

tification of unique pallerns difficult. A RELAYEO·COSY or TOCSY spectrum, which provides

redundant information about the amino acid pallerns, often allows the ambiguous assignments to

be solved. An example is given in section 2.6.

2.4.3 Sequential assignment via proton-proton NOE

Using 20 COSY and possibly TOCSY spectra the 1H amino acid spin systems can be iden­

tified. As show in Figure 2.11, certain amino acids have unique connectivity pallerns, such as Val,

Ile, Ala, G1y, Leu and Thr. It is possible ta assign the deduced spin systems ta those unique amino

• acids directly. However, for AMX-type spin systems (one aH and two PH's), unique assignments
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Figure 2.11: The simulated COSY coupling patterns.of the 20 common amino acids.
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are genemlly unachievable. Wüthrich [3] proposed four different methods to c1assify the amino

acid types. they are summarized in Table 2.2.

Before the NOE information can be used to create sequentiaI connectivities, the deduced

spin systems must be c1assified according to one the the above amino acid types. This task is

achieved by inspecting the chemical shifts and the spin coupling patterns. In chapter 5 an auto­

mated approuch is described where the determination of amino acid types can be accomplished by
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Table 2.2: The four diffcrcnt mcthm.ls 10 classify the 20 :llninll acids.

numhcr of amino
catcgory aciù types in DcscriptillnS

this catcgory
1 8 Gly. Ala. Val. Leu. Ile. l11r. (ail "CH flCH~). (ail ulhers)
2 13 Gly. Ah•• Val. Leu. Ile. 11". Phe. Tyr. Trp. His

Ser. (Cys.Asp.Asnl.lall olhcrs)
3 15 Gly. Ala. Val. Leu. 110.11". Phe. Tyr. Trp. His

Ser. (Cys.Asp.Asn). Pru. (Lys.Arg). (Mel.Glu.GIIl)
4 18 Gly. Ala. Val. Leu. Ile. Thr. Phe. 'IYr. Trp. His

Ser. Cys. (Asp.Asn). Pm. Lys. Arg. Mel. (GlU.GlIl)

computers.

Wüthrich and his coworkers [3] also found that there is a very high possibility that al least one

proton among the NH. aH. or pH l'rom one residue will be near (1ess than 3.5 Â. i.e.. within thc al­

lowed NOE nlllge) to the NH of the following residue. Thus by searching appropriate claN. clNN or

djlN(i. i + 1) NOE correlations in the NOESY spectrum. it should be straightforward to step l'rom

one residue to the next along the primary sequence of the protein. Once the connections between

spin systems are established. the connected spin systems must be matched with the known protcin

primary sequence. To iIlustr.lte the final sequential matching. consider the following example.

From the NOESY spectrum. an 8-residue long polypeptide chain was found. The corresponding

amino acid types of the 8 residues were deterrnined previously as Ala-Val-Leu-O-Thr-6-Gly-O

where 0 represents ail the aCH - PCH2 spin systems in the eategory 1 of l'.lble 2.2. and 6 rep­

resents the amino acid type including Pro. Lys. Arg, Met, Glu and Gin. To find an unambiguous

matching of the 8-residue chain on the ami no acid sequence, one has to inspect the protein primury

sequence to make sure there is only one segment fulfilling the AlaNal-Leu-O.Thr-6-Gly-O pat·

tern. If such a unique matching is found. the sequence-specific assignment for the 8-residue chain

is obtained. If not. the length of the connected polypeptide may need to be increased in order to

obtain a unique matching.
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Heteronuclear 3D NMR experiments make use of larger one-bond couplings. 1JH -x. where

X=I.'C or l'N. to overeome the speetralline broadening problem. As deseribed in section 2.2.1­

several triple resonance NMR experiments have been designed to conduct the sequence-specific

resonanee assignments without using crowded NOESY spectm.

The interresiciue correlations are tmditionally provided by NOE type experiments where

through-spaee dipolar couplings contribute to the observed cross peaks. Certain triple resonance

NMR expcriments. such as 3D HNCA. HNCO. HCA(CO)N. also provide interresidue correlations

where one-bond scalar couplings contribute to the observed cross peaks. Properly combining sev­

eml triple resonance NMR experiments. il is possible to establish a sequential walk l'rom one

residue to the next without using NOE information. Figure 2.12 is an example where assignment

is carried OUi by overlapping two previously assigned frequencies in each subsequent spectrum.

ln the tirst two steps (HNCA and TOCSY-HMQC). the NH and ISN frequencies of residue (i)

25
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= NH N HA CA CO NH N

+ NH N HA CA CO NH N
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HCACO

HCA(CO)N
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Figure 2.12: The assignment scheme using heteronuclear 3D NMR based on the through-bond correla­
tions. The assignment is conducted by overlapping two previously assigned frequencies in each subse­
quent spectrum.

are used to obtain the assignment of the Ca and aH of the same residue. Then, the Ca and aH

• frequencies are used to obtain assignments for the CO of residue (i) and !SN of residue (i + 1)

with the HCACO and HCA(CO)N experiments. Finally, the CO and 1sN frequencies are used
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to tind (h~ NH prolon fr~qu~ncy of r~sidu~ li l with thc HNCO spcctnnll. thus c'omplcling onc'

cycle of the assignmcnl. ln chapter:'. a similar hUll11on: rigorolls algorithm i~ descrihl'd III as:ooign

the protein backbont: resommces using. hcteronudear 3D triple rl'Slll1an~e l.:'xpcrimcnts. SUhSl'­

qucnt assignm~nt of pmt~in sidc chain can b~ conduc(cd using 2D DQF-COSY. TOCSY or .'l)

HCCH-COSYrrOCSY. Thc ~orrcsponding 'lUtOlmltcd appmachcs arc dcscrib~d in chaptcr-l.

2.5 General description of the automated resonance assignment

w~ have discussed the importance of resonance assignmcnt in the pmtdn structurc d~l~rmi­

nation l'rom NMR data. The aClual stl".llegy to carry out .1 manual assignment is also d~scribed.

In this seclion. the chantcteristics of automat~d res<:nance assignment tools are discuss~d. som~

important problems and the limitations of automated assignm~nts are 'llso addressed.

The strategy of automated resonance assignment essentially par.lllels th~ manual assignm~1ll

stnttegy. The assignment is divided into two parts: the spin system identificalion and th~ ~slab­

Iishment of sequential connectivities. Although integmtion of resonance assigmnent and structure

calculation [20] have been proposed. almost ail of the published allempts ure design~d for spin

system identificution. sequentiul assignment or both. In other words. slructure culculutions ,Ire

usually sepumted From resonunce ussignments.

In terms of u complete uutomated assignment software. an automated tool must be pro­

vided to extmct spin systems From available spectntl data. Furthermore. an automated amino

acid type determination tool should also be provided. As for the sequence·speci fic assigmnenl.

both common approaches. i.e.• use of interresidue NOE and use of triple resonance heteronuclear

3D NMR. should be taken into consideration. The design must allow the sequentiul connectiv­

ities to be created in a reasonable amount of time. for example. in seveml hours. A variety of

algorithms has been applied to implementthe above requirements. including the ones using sys­

tematic approaches [20] as weil as artificial intelligence such as expert systems [12. 131. neuml

network [47,48]. constraint propagation [19] and genetic aIgorithm [49].

An important characteristic of a good automated assignment software is that it should have

the f1exibility to accept many differenttypes of NMR data From various experiments. NMR spec-
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troscopists are continuously creating novel experiments. The advance of NMR hardware and

biotechnology also enable them to design specific experiments for a specific protein sample. A

well-designed automated assignment software should not restrict itself to certain types of exper­

iments. However, algorithms designed for specific types of experiments sometimes outperform

general-purpose algorithms. because general-purpose algorithms might be unable to take full ad­

vantage of ail the information embedded in a spectrum.

Although the ultimate goal of resonance assignment is complete automation, human inter­

vention is inevitable in today's automated assignment tools simply due to the complexity of the

spectral data which make complete automation difficult to achieve. An automated assignment

software should not become a black box which prevents users from understanding the internai ac­

tions and process. Il is better to allow the software to have the capability of interacting with users

at various stages during the assignment process while keep the integrity of the software from be­

coming merely a bookkeeping tool. As an example, our spin system extraction algorithm, which

is described in chapter 3 and 4, generates output files containing ail the deduced spin systems.

Sometimes degenerate chemical shifts result in strange spin systems. Such a case is a spin system

.with one aH and 4 ,BH's that can be generated due to degenerate aH chemical shifts. Although

it is eusy for computer algorithms to determine which spin systems are incompatiblewith the 20

common amino acids using the spin coupling patterns, human inspection might still be necessary

to separate the degenerate chemical shifts.

To obtain uccurate assignment, a program should ideally be able to use as much information

as is available. Knowledge about the structural information, such as a helix, coil or ,B-strand, may

make it possible to predict the chemical shift range of certain protons. In subsequent assignment,

the known chemical shift ranges can be treated as an additional evidence to confirm or deconfirm

the assignment. The experimental conditions under which the spectra are acquired may help users

to predict which peaks are present in the spectra, and which aren'1. A mutant or homologous

protein may be assigned rapidly as long as the original protein has been sequentially assigned [50,

51]. A 2D 13C HMQC spectrum may help to unfold the 13C chemical shifts ofa 3D spectrum~ Such

miscellarieous information sometimes is indispensable for a successfuI resonance assignment.

In terms of the quality of the NMR data, a good automated assignment tool should be able to

27
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overcome problems caused by false and missing peaks. The software should lolerale peak missing

to a considenlble exlent just as it should also be 10 rejeet false dma. Ag<Jin our own programs 'Ire

chosen to illustrate these points. A leucine is shown in Figure 2.13(a). Il comprises Il hydrogen

2M

(a)

~H ôH, n
NH aH\r~ ~.

o-D·1°
L '0
~H' ôH'

leucine

(b)

~H ôH,-)
NH aH L. lH '--

0-0. O.
'0 '0
~H' ôH'

(c)

X
~~

NH nH. .' ~yH bH
I.=NJ. 0<)

\...
~H'

(d)

NH nH ~\H yH 6H
~_- )-\)--\,-)-1)-\-)

,

Figure 2.13: A leucine and ilS three possible candidate spin systems. (a) The nonnalleucine spin syslem.
(b) A leucine withoutthe pH-PH' conneclion. (c) A leucine wilhoUl one ~H. (d) A leucine witholll one
pH and one ~H.

atoms and 8 3JH-H couplings. Suppose the 3JpH-/lH' cross peak is missing due to the broad

diagonal in the COSY spectrum. The extracted spin system will probably look Iike the one shown

in Figure 2.13(b). Furthennore, after missing another peak of the methyl group, the deduced

spin system is shown in Figure 2.13(c). FinaIly, another missed fJH reduces the spin systems to

the one shown in Figure 2. 13(d). According to the spin system pattern recognition algorithm we

designed, aIl the spin systems in Figure 2.13(b), (c), (d) can be matched with Figure 2.13(a). In

other words, they ail have chances to be assigned to a leucine. Certainly Figure 2.13(b) has the

greatest probability to be assigned because its spin coupling topology has the highest similarity

with an ordinary leucine.

To reject faIse peaks, automated assignment algorithms should inspect aIl logical relation­

ships that exist between the suspicious peak and its surroundings. A genuine peak must have

several coupled neighboring peaks whereas a false peak may have one connected neighbor but

less Iikely tohave two or three neighbors.

Data processing prior to assignment also plays a significant role in the design of automated

assignment softwares. Spectral urtifacts which might be confusing in automated assignment proce­

dures should be removed prior to the start of the actual assignment prticessing. Before perfonning

a Fourier transfonn on the time·domain data, zero filling, linear prediction [52] and Karhunen-
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Loéve transformation [53] may be applied. After Fourier transform, ridges of 1) noise can be

removed manually [54,55].

The mosl crilical pre-assignmenl processing is the peak picking procedure. The simplest

approach is cithcr 10 pick ail points above a givcn threshold or to use a maxima detecting procedure

to find local maxima. These simple approachcs seem incapable, to date, of providing reliable peak

lists, a great volume of pcaks, many of them noise, can be genemted. A more advanced approach is

10 implemenl user-defined peak shapes (for example, ellipsoid) and search for peaks having those

shapcs in the speclrum. Garrell el CI/. [56] have designed a software called CAPP based on this

approach. Artificial neural nelworks [57], after training with examples, also have the capability to

distinguish rcal from bad peaks.

Spcctral alignment is another pre-assignment problem. Almost ail assignment slrategies use

seveml differenl types of spcclra. The same hydrogen atom may appear at slightly different po­

sitions in those spectra. This chemical shift inconsistency can cause problems when comparing

chemical shifts or peaks from two or more different spectra. If the inconsistency is systematic, Le.,

ail nuelear spins shift toward the same direction with roughly the same distance, the correction is

slmightforward. Otherwise a usual approach is to introduce tolerance values in the actual assign­

ment slage. Every comparison between two chemical shifts from different spectra must pass the

tolenmce. Of course, some incorrect matches are inevitable.

Somc people argue that automated assignment tools don't have much use simply because

compulers can do no more than human beings cano Although the argument is true, this duesn't

imply that the computer-assisted assignments are valueless. Complete automation of resonance

assignment still remains a goal due to the complexity of the task. However, properly designed

automuted ussignment softwares do reduce the effort and the time required to assign a spectrum.

Another common argument is that automuted assignment tools should be able to get the

results with fewer datu than human need. Many of the present automated assignment programs

simply emulate manual assignment strategies. Il is apparent that to achieve the goal of "use fewer

NMR experimenls" one must implement different assignment strategies exelusively for computers.

We wouId like to emphasize, however, that computer programs cannot achieve what people can't,

If a person cannot get the assignment using a limited data set in an unlimited amount of time, there
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is no reason to ask computers to succeed.

Manual assignment is not 100'70 deterministic. That is. independently ob..lined assignments

from two persons might differ because of the human bias and intuition participated during the

assignment period. On the contrary. every step is deterministic in computer assignmenl. Intu­

ition and bias are not involved. If a person is able to assign a protein NMR data without using

any personal bias or intuition. i.e.• every step must have a clear logical basis. computer-assisted

assignment tools should be able to produce identical assignment in much shorter time. This is

probably the main advantage of using automated resonance assignment tools.

2.6 Spin System Identification Using Constrained Partitioning AI·

gorithm (CPA)

2.6.1 Introduction

Parallel to the manual assignment strategy, automated assignment begins with the identifica­

tion ofspin systems. Here the meaning of "identification" is two-fold. First of ail the spin systems

must be extracted from NMR data. Secondly, the amino acid types of those spin systems must be

determined. Traditionally, 20 OQF-COSY and TOCSY provide sufficient NMR data for extrnet­

ing spin systems, at least for moderate sized proteins. The amino acid types are determined mainly

by human experience along with possibly other available chemical information. A computer algo­

rithm to extract spin systems from 20 1H OQF-COSY and TOCSY spectra is introduced in this

section. The remaining amino acid type determination task is discussed in the next section where a

spin pattern recognition algorithm determines the amino acid types of spin systems automatically.

2.6.2 The Constrained Partitioning Algorithm

The most commonly used 20 NMR experiments for assigning protein resonances are OQF­

COSY and TOCSY. Both experiments observe proton-proton couplings and represent them as

cross peaks in the NMR spectra. The COSY experiment observes couplings between adjacent

.\0
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protons (within lhree bonds) while TOCSY experiment observes long range correlations between

ail protons wilhin a spin coupling system.

The algorithm responsible for the spin system extraction is called the Conslrained Partition­

ing Aigorilhm (CPA). It partitions NMR data inlo amino acid spin systems based on fulfilling

certain constrainls. CPA takes the peak Iist of OQF-COSY speclrum as the major data input. The

TOCSY peak list is treated as a database where constraint peaks can be found. The basic operation

CPA performs is the cross peak merge. CPA altempts to find ail cross peaks belonging to a spin

system. merges these peaks together and constructs the spin system. For example, a serine spin

system is composed of four spins and four cross peaks: an NH, an aH .two ,BH's. NH-aH. aH­

pHJ, aH-,BH2 and PHI-,BH2 (Figure 2.14). Merging one cross peak at a time. CPA can construct

~H
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Figure 2.14: A serine and its spin coupling system.

a serine spin system in three steps. Before discussing the details of the spin system constructions.

the basic operation of merging of two peaks is first described.

Each 20 NMR cross peak correlates two spins. Therefore. as a result of the merge of two

peaks. a three-spin system is created. Figure 2.15 shows such a simple merge. A cross peak (Ii;.

Figure 2.15: Schematic illustration of the merge of two 20 NMR cross peaks.•

j
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Dj) is merged with another peak (D;,. Dkl. The condition to justify the merge is thatlD, - D;'I be

less Ihan a merge tolenmce. which is a value with the unit of chemical shi1'1. A tluee-spin system

li. j. k} can be thus formed. In a crowded NMR spectrum. many cross peaks mighl fulfilled the

above merge condition. That is. other than the peak (Di'. Dkl. one mighl also observe (d;". ,l,).

(D;",. D/II)•.. , • etc.• whose lirsl coordinates are alliocuted wilhin Ihe merge tolemnce of ,1;. A

way is needed 10 distinguish Ihe peak that should be merged l'rom those that simply salisfy the

tolernnce requiremenl. CPA implemenls a constrnint checking procedure which requires each

candidate peak, (D;', Dd. (D;", M, (D;"', D/II), ...• 10 provide addilional evidence. i.e.. a eonslmint

peak, 10 support the merge. CPA has a rnnking system which selects the most rdiable evidence

from ail the possible candidales. The aClual merge takes place belween the original peak and

the candidate having the mosl reliable evidence. The evidenee peaks usually come l'rom COSY

or TOCSY spectrum. Figure 2.16 shows two typicalmerge CPA conducls. In Figure 2. 16(a), a

(a)

i?j

j'

+
i
O

i'~
k' kk

(b)

k i' i j k' l' k i j

0-00-0 + 0- -0 0-0-0

Figure 2.16: Two typicalmerge conducted by algorithm CPA.

•

COSY or TOCSY constrnint peak (Dj'. DA') is required to construct the three-spin system li, j, kl.

In Figure 2. 16(b). only a TOCSY constrnint (Dj', Dk') can provide the eligibility of the merge. The

mechanism shown in Figure 2.16 reduces the chance of incorrect merge and makes it possible

for CPA to process overlapped NMR spectrn. Later in this section the limitations of CPA are

discussed where the ambiguities that CPA is unable to resolve are Iisted. The mnking syslem CPA

implements calculates a parnmeter which measures the deviation of the chemical shifts between

merging peaks. Suppose two COSY peaks (D;, Dj) and (D;,. Dkl are about to be merged. This means
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10; -0;'1 is less lhan a merging lolerance 7;". typically 0.02 ppm for proton. AnolherTOCSYpeak

(ol" ok'l. the expected constraint. is also observed. Both lOi - ol'I and 10k - ok'i are less than

another chemical shift lolerance T,.. The ranking parameter A is defined as

33

(2.3)
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where
dl = lOi - oi'i

Tm

d, = lOi - ol'I + 10k - ok'i
- 2T,.

0::: cll ::: 1 since lOi - oi'i ::: 7;"

therefore

O::;A::;1

Figure 2.17 is the pictorial representation of the ranking parameter. Depending on how close

j j'

_cTA

3 d,=li-i'1

"1~ .'( + )'
d,=--

2 )' 2
.-.

k k'

Figure 2.17: Piclorial representalion of the variables used in calculating the ranking parameler.

Oi und 0". 0i und 0i" Ok und Ok' ure. the runking purumeter A bears a value from 0 to 1. A higher

vulue of A corresponds to a beUer match between the three peaks. hence. a more reliable merge is

expected.

We now proceed to describe the construction ofamino acid spin systems. CPA's main goal is

to extract spin systems from NMR data. The extracted spin systems are processed as mathematical
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graphs and represented as adjacency Iists [58]. Each gruph represenls an individual spin system.

The nodes of a graph correspond to the spins while the edges of a graph correspond 10 the cross

peaks. Figure 2.18 ilIustrates a graph and its corresponding spin system. The following pseudo

3
2 3

H H H
node Adjacent nodes

1 1 1
1 2 N-C-C
2 1,3,4

1
3 2,4 H
4 2.3 4

4
possible structure

Figure 2.18: A spin cClupling graph. its mathematical representation and the corresponding chemical
structure.

codes are responsible for constructing spin syslems from NMR dala.

void CreateSpinSystem(Peaklist_type 20 OQF-COSY, 20 TOCSY)
{
Il Input: 20 DQF-COSY and TOCSY peak lists
Il Output: spin systems represented as graphs

for each input COSY peak i 1
add peak i into an empty spin system Si ;
for each input COSY peak j (

in the COSY peak list, find a peak Il which is the most likely peak
to be merged with peak j

if peak j is a member of the spin system ~

add peak Il into Si;
else if peak Il is a member of the spin system Si

add peak j into ~;

)
output all Si;

The above segment of computer codes produces N spin systems for a COSY data set con·

taining N peaks. There are, however, usually many redundant spin systems being formed. For

example, starting from cross peak l, CPA might construct a spin system containing four peaks

• [1,2,3,4). Furthermore, the same spin system can also be created starting at peak 2, 3 or 4 in­

dependently. In this case, four identical spin systems can be created starting from four different
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peaks. A posl-partitioning subrouline should be conducled over the exlracled spin systems 10

remove sueh redundancies.

2.6.3 Discussion and Limitation ofCPA

Sorne lechnical problems related to CPA are discussed here. The first one involves symmet­

rical peaks. Homonuclear 20 NMR experimenls produce symmetrical cross peaks on two sides of

the diagonal. Since both dimensions record proton frequencies, the two symmetrical peaks have

redundant infonnation. Hence the symmetrical cross peaks are removed in CPA. The processed

peak dala is Ihen sent 10 the subroutine CreateSpinSystem ( ) to initiate the real partition­

ing. Anolher technical problem involves chemical shift tolerances. As seen in equation 2.3, two

types of tolerances are introduced. The tolerance T,,, is used for merging two peaks. Another

tolemnce Tc is used for comparing evidence peak with the query peaks. In Figure 2.17, T,,, is

the tolerance for merging peak 1 and 2 while Tc is applied to judge if peak 3 is qualified as an

evidence for Ihe merge. The "to-be-merged" peaks usually come from the same NMR data, in

this case, a 20 OQF-COSY spectrum. However. the evidence peak might come from a TOCSY

speclrum which could have a small inconsislency in the chemical shift positions. The tolerance

1'.. might then need to be set to a greater value than T,,, to reflect this inconsistency. The default

values for T,,, and Tc are set to 0.02 ppm. The users are encoumged to set reasonable values for

those tolerances based on their knowledge about the NMR data. Using smaller tolerances means

that ail merge is carefully verified, so that the risks of incorrect merge are low. However, small

tolerances might leave a number of peaks unpartitioned, that is. many peaks might be unable to

find their coupling partners. On the contrary. large tolerance values risk merging incorrect peaks

into a spin system which might have strange (unrecognizable) spin coupling pattern. Applying

appropriate tolerances relies on human experience and a trial-and-error approach rnay be needed

for detennining appropriate tolerances.

CPA is designed to overcome spectral overlap. The adoption of additional constraints during

the rnerging stage helps to resolve many spectral overlap problems. Moreover. the number of

constraints used in the algorithm is not fixed. Ifa single TOCSY peak does not resolve the spectral
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ambiguity. one can add other constmints such as an additional 2D speclnllll or the third coordinate

of a 3D NMR spectrum. In practice. if only 2D COSY and TOCSY data are provided. CPA t,tils 10

sepamte certain spin systems under conditions of severe chemieal shift degeneraey. In Figure 2.19

two amino acid residues having degenenlle NH and aH resonances are shown. Speetroscopists

('1

l'III ail Pli, illl.
Residue i 8.55 4.12 3.09 2.44
Residu. 1 a.54 4.13 2.78 2.19

(bl

(8.55 4.12) }
(4.12 3.09 ~

(4.12 2.44)
(3.09 2.44)

(8.54
(4.13
(4.13
{2.la

4.131 }
3.09)
2.191
2.19)

3.09
./

8.55 - 4.12

"­
2.44

2.78

./
8.54 - 4.13

"­
2.19

(01

(8.55 4.12)
(4.12 3.09)

(4.12 2.44)
(3.09 2.44)

IS.54 4.13)
(4.13 2.781
(4.13 2.19)
(2.78 2.19)

(B." 4121 }(4.12 3.09)
(4.12 2.44)
(3.09 2.44)
(4,13 2,781
(4.l3 2.19)
(2.78 2.19)

2.78

/
/ ./' 2.78

8.54 - 4.13

\21B
2.76

Figure 2.19: Schematic illustration of the chemical shift degeneracy problem. (a) Two spin systems
having degenerate NH and aH chemical shifts. (b) If a smull chemical shift tolerance is chosen in CPA.
it is possible to resolve the degenenlle NH and aH. (c) if u lurger tolemnce is used, an overlapped spin
system will be created due to the degenerate NH and aH resonunces.

might be able to distinguish the cross peak (8.55, 4.12) from (8.54, 4.13). However, it is diflicult

for computer programs to separate such nearly overlapped peaks. The cross peak data for the two

hypothetical amino acid residues are Iisted in Figure 2.19. In Figure 2.19(b), a smalltolerance,

e.g., 0.005 ppm, is chosen. This tolemnce is able to resolve the overlap which occurs at the two

degenerate NH and aH peaks. In Figure 2.l9(c), an ordinary tolerance of 0.02 ppm is chosen.

In this case, CPA considers peak (8.54, 4.13) a redundant peak of (8.55, 4.12) and discards the

former. A large spin system containing 6 resonances is constructed as a result. As mentioned

above, although a smalltolemnce solves the problem of chemical shift degeneracy, using small

tolerances may leave a lot of peaks unpartitioned. In practice. a modemte tolenmce (0.01 to

0.03 ppm) is preferred. On the one hand, there won't be too many unpartitioned peak. On the

other hand, unreasonably large spin systems generated by a smalltolemnce can still be manually

• examined and resolved.

In general, CPA is unable to resolve the spectral overlap caused by two or more degenerate
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resonanees withill a spin system. An extension of the 2D CPA algorithm is deseribed in Chapter

4 where heleronuclear 3D NMR data arc used to ellhancc the capability of overcoming spectral

overlap.

2.7 Determination of amino acid types

2.7./ [mmdl/crion

An iligorithm calicd CPA (Constrained Partitioning Aigorithm) is described in the previous

section. CPA tmces and extmcts spin coupling systems from homonuclear 2D NMR spectm. The

observed spin systems have to be sequentially assigned to the proper positions withill the primary

sequence of the proteill. Before the sequential assignment can be done, the identities, the amino

llcid types, of those spin systems must be determined. Although it is difficult to determine exactly

to which specific amino acid an observed spin system corresponds, it is, however, possible to find

a number of amino acid candidates to which a spin system may be assigned. Traditionally this

task is donc mllllually. Knowing the number of protons and their chemical shifts, experienced

spectroscopists are able to identify the amino acid types of observed spin systems. A simple

eXllmple using the traditional strategy to determine a glycine spin system is that almost ail spin

systems having one proton with chemical shift around 8 ppm and the other two protons around 4

ppm can be identified as glycines.

ln this chapter. attempts are made to automate the amino acid type delermination. Algo­

rithms are proposed to allow computers to "visualize" the spin system patterns, i.e., to recognize

distinct spin patterns. The recognition is based on chemical shift as weil as topological matches.

ln the example of glycine, the spin pattern recognition algorithm not only makes sure the observed

chemical shifts ure indeed in the expected ranges but also examines the topology of the pattern,

i.e., there are fewer than 3 spins and they should be connected to each other through scalar cou­

plings. To achieve this goal. the proposed algorithms use the mathematics of graph theory and the

simple fuzzy subsettheory. Background of those topics is introduced in first followed by detailed

description of the pattern recognition algorithm.
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The paHern recognition algorithlll was originally rrorosed ,mù al'l'lied to hOlllonllckar 2D

NMR dma by XII el al. [25] in 1993. An extended version is described in charler :; whcre the

application is extended to helemnuc\e'lr 3D NMR.

2.7.2 Backgroulld

2.7.2.1 IlItmdllcliem to grap!l I!lem'y

The mathelllUlical gmphs are graphical represelllalions of nodes and lines. The nodes are

called l'erlices and the linking lines are called edges. When the linking lines are directed. they are

refeITed to as arcs. Mmhematically speaking. a gr'lph consists of a verlex and an edge sets. The

exact definition of graphs can be given as Ihe follows [59]: a grap!l g COIISiSls ofCll'erlex sel V 011

w!lic!la pClir relcltioll ê is defilled.

,Ill

g = {V.ê} (2.4)

A set of vertex pairs can be defined by llleans of the pair relationship. The vertex pairs can

be orclered or lI/lOre/ered. (see Figure 2.20) Two vertices are adjClcell1 if Ihey are connecled by

Unordered
vertex pelr (e,b)

0---®
ordered vertex

pelr (B.b)

0--®

•

Figure 2.20: Ordered and unordered vertex pairs.

an edge. The linking edge and the two vertices are said to be illcidelll to one another. Gruphs

composed only of arcs are called direcled graphs. The number of edges incident with a given

vertex is called the degree. g. of that vertex. Two degrees are assigned to each vertex in a directed

gruph. The illdegree. g-. counts the number of urcs ending on this vertex. The olltdegree. g+.

counts the number of arcs originating from this vertex. The concepts of indegree and outdegree

are used later in this chapter. .
.~J

Figure 2.21 shows a pair of ordered gruph. A lilleurly ore/ered gmph is the gmph with both

indegree and outdegree of each vertex equal to 1. A purliully ore/ered graph is the grar" whose
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linearty orderec:l graph partially ordered graph
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Figure 2.21: Lincarly ordcred and parlially ordcred gmphs.

indcgree and outdegree of each vertex can be greater lhan 1. A \l'alk is a sequenlial collection

of edge pairs. originating from one vertex and ending on another. There is no restriction on ilow

many times a vertex can be tmversed through a walk. For direcled gmphs. of course. the traverse

can only be conducted through the direction of lhe arcs.

2.7.2.2 Gmph Represell/C1tio/l

Il is necessary to represent the mathcmatical struclure of a graph using sorne kind of data

struclure in order to solve gmph related problems by computer progrolms. Since our pattern recog­

nition algorilhm demands random access to the vertices of a graph. in the implementation. graphs

are represcnted as adjacency lists where each vertex keeps an army holding ail the adjacent ver­

tices. A typical implementation may look like this:

IIMAX is the maximum number of vertices in the graph
typedef int AdjacencyList_type[MAX];
typedef struct 1

int ni

int valence[MAX];
AdjacencyList_type A[MAX1:

)Grap!l.-type;

2.7.2.3 The CO/lcept ofFll'a.,v SlIbsets

The concept of fuzzy subsets was lirst introduced in 1965 by Zadeh [60]. It is a novel way of

representing fuzziness happened everyday in our life. The fuzzy subsettheory is a genemlization

of conventional mathematica! set theory.

There are two kinds of imprecision or vagueness in data or information recorded From our

environmenl. The lirst one is statistical. like ftipping up a coin. the outcome is not certain but
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can be predicted statistically. The other imprecision is non-statistical. For examplc. two pcrsons

arc much alike. One application of fuzzy subset theory is to quantit.uivcly describe the similarity

bel\\'een two objects. This is also the main feature which is applicd 10 our amino acid rccognition

algorithm.

For conventional sets. the membership of the clements is detennined by precise propcrties.

For example. the set of numbers H from 6 to 8 is erisp; we write H = (r E R. 1 6 ~ r ~ 8).

Equivalently. H is described by its membership function. m1/:

{

1 6<r<8
ml/(r) = - -

o otherwise

The above membership function corresponds to a 2-values logie. thal is. is an clement of the set

orisn't.

On the other hand, a fuzzy subset contains elements having imprccise properties which in

tum lead to multi-values membership function. The rigorous definition of the fuzzy subset Wl\S

given by Zadeh [61]: let E be a set. denumerable or not, and let x be an clement of E. Then li

fuzzy subset À of E is a set of ordered pairs

(x 1 /LA (x»}. 'Ix E E (2.6)

where /LA (x) is the grade or degree of membership of x in À. Thus. if /L,\. (x) tllkes its values in a

set M, called the membership ut, one may say that x takes its value in M through the membership

fimctioll /LÀ(x). Note that À is called a fuzzy subset and not fuzzy set, since the reference set E i~

not fuzzy.

Consider the following example. A finite set with five elements:

A fuzzy subset À can be defined by the expression

À = {(Xt 10.2), (X2 1 0), (xli 0.3), (X4 1 \J, (xs 1 0.8))

(2.7)

(2.8)

where Xi is an element of the reference set E and where the number placed after the bar is the

• value of the membership function for the element.. Fuzzy subset À contains a liule Xt, does not

contain X2, a \iule Xl, contains X4 completely, and a large part of xs.
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2.7.3 Amillo acid type idelltijicarioll

The through-bond correlations observed in NMR spectr.l cao be u:ied to extr.lct spin sys­

tems. The computer algorithm CPA (Constr.lined Panitioning Algorithm), which is described in

section 2.6, automatically extracts amine acid spin systems using through-bond scalar couplings.

CPA takes input from com~lation spectr.l, such as 20 OQF-COSY and TOCSY. Figure 2.22 is a

sample spin system extr.lcted from CPA.
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Node ~emical shift
1H 8.969

2H 14.432
3H 2.(Y.l~

:~ I;.~~~

adjacency Iist

2

1.3,5

2.4,5

3,5

2,3,4
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Figure 2.22: A live-spin system. Ils spin coupling graph and the corresponding mathernatical represen­
tation using an adjacency Iist.

The spin system shown in Figure 2.22 has live spins. An adjacency Iist is used to represent the

connectivity relationships between those live nodes. An imponant remaining question is "which

amino acid does this spin system belong to?". It might be a leucine as there are two pH's and one

yH. It might also be a methionine, a glutamine, an arginine or a lysine since they ail have two

pH's and one yH. On the other hand, it is obvious that this observed spin system must not be a

glycine, an alanine, or a serine .•. ,etc., because these amino acids don't have the yH. This kind

of analysis inspired us to design computer programs to automate the determination of amino acid

types. A spin pattern recognition algorithm was developed to accornplish this task. The algorithm

determines the amino acid types of the extr.lcted spin coupling systems using topological analysis,

such as the numbers of pH and y H, as weil as chemical shift analysis. Using Figure 2.22 as an ,

example, suppose the two PH's have chemical shifts 2.022 and 2.120 ppm, respectively. It is more

likely that the query spin system is a glutamine than it is an arginine, because the former has the

expected pH chemical shifts of 1.92 and 2.10 ppm [62] while the latter has pH chemical shifts of

1.63 and 1.79 ppm. (See Table 2.3 for the expected chemical shifts for the 20 amino acids)
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The following section describes the basic principles of the spin pattern recognition algorithm.

The original version of the algorithm is applied to spin systems obtained from homonuclear :lD

NMR.

2.7.3./ Graph represelllCllioll of the a/llÎ/w acid"

As shown in Figure 2.22, spin coupling patterns can be defined by mathenmticai structures

called graphs. Each spin corresponds to a vertex of the gmph and each J coupling eonnection

corresponds to an edge of the graph. Mathematically a gmph is rcprcsented as a set of vertices and

edges.

42

g = IV, t'} (2.9)

GroB and Kalbitzer [62] produced a chemical shift database for the 20 amino acids using

published NMR assignment data. The averaged chemical shifts and standard deviations for ellch

proton in the 20 commonly seeh .mino acid were reported. Using those data, with rcspectto each

of the 20 amino acids, the reference set of an amino acid graph can be constructed as

RS(i) = (V"f' t'''f)' i = Ala. G1y. Thr.... (2.10)

where Vref is the set of chemieal shifls ofNH, aH,,BH, ... , a so-ealled clusler, and t'ref is the set

of edges eonneeting vertiees in the eluster V"f' V"f has a eorresponding ehemieal shifl standard

deviation set t:.Vref where the data is taken from GroB's database. Table 2.3 Iists the expeeted

ehemieal shifts and the standard deviation data from the 20 amino aeids. A sample rcferenee

set of alanine RS(alanine) = {(8.IS, 4,24, 1.32). [8.15 - 4.24. 4.2~:-: .32)) and its standard

deviation set tl.V"f =18.15/0.62.4.24/0.38. 1.3:;;/0.28) arc shO\!m in Figure 2.23.

8.15 4.24 1.32

Figure 2.23.: A simple alanine spin system.

• The ehemieal shifts of dedueed spin systems usually have a certain deviation from the ex-

peeted values. Protein seeondary structures and local chemieal environmenls are fa(;tors to effeet
y.
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Tahle 2.3: The expecled prolon chemical shifts for the 20 amino acids. The standard deviations arc also
given. Data arc laken from GroB's paper. Ali numbers arc in ppm.

aminu acid NH etH flH Others
Ala 8.15/0.62 4.24/0.38 1.3210.28
Arg 8.20/0.83 4.28/0.35 1.63/0.43. '1.79/0.34 YH 1.5210.34. 1.56/0.34

~H 3.11/0.19. 3.14/0.19
EH 7.21/0.16

Asn 8.29/0.6: 4.73/0.30 2.69/0.32.2.95/0.27 ~H 7.18/0.55. 7.78/0.32
Asp 8.31/0.51 4.65/0.28 2.63/0.31.2.93/0.33
Cys 8.25/0.70 4.64/0.75 2.86/0.38.3.19/0.38
Gly 8.31/0.62 3.74/4.17

4.17/0.28
Gin 8.28/0.61 4.43/0.45 1.9210.27.2.10/0.20 yH 2.29/0.25. 2.35/0.20

EH 6.85/0.38. 7.61/0.29
Glu 8.2210.60 4.34/0.42 1.97/0.20.2.04/0.18 yH 2.27/0.21). 2.34/0.21
His 8.28/0.57 4.54/0.19 2.94/0.39.3.26/0.29 ozH 6.99/0.33. el H 8.10/0.36
Ile 8.26/0.72 4.13/0.52 1.74/0.37 yH 1.01/0.26.1.30/0.32

0.78/0.24. oH 0.69/0.25
Leu 8.19/0.60 4.25/0.49 1.60/0.37.1.71/0.31 YH 1.51/0.30

oH 0.68/0.40. 0.83/0.25
Lys 8.28/0.65 4.23/0.42 1.74/0.38. 1.84/0.34 YH 1.30/0.39. 1.36/0.37

oH 1.54/0.24. 1.57/0.23
EH 2.91/0.13. 2.97/0.10
,H 7.53/0.50

Mel 8.10/0.44 4.41/0.51 1.89/0.19,2.03/0.21 yH 2.55/0.17,2.60/0.13
eH 1.98/(1.21 .

Phc 8.49/0.80 4.69/0.48 2.85/0.28.3.16/0.28 oH 7.1210.2;.~H 7.17/0.30
,H 7.08/0.29

Pro 4.48/0.31 1.88/0.35. 2.18/0.40 YH 1.9210.50. 2.0210.45
oH 3.6210.28, 3.77/0.29

Scr 8.48/0.58 4.50/0.47 3.7210.44,3.89/0.43
Thr 8.30/0.75 4.53/0.43 4.17/0.31 yH 1.15/0.16
Trp 8.43/0.37 4.29/0.80. 3.06/0.23.3.4210.22 EIH 10.15/0.30.oIH 7.18/0.30

e3H 7.39/0.24. '3H 7.00/0.30
q2H 7.17/0.17. '2H 7.41/0.32

Tyr 8.57/0.89 4.64/0.49 2.81/0.19,3.04/0.28 oH 7.00/0.20, EH 6.70/0.20
Val 8.20/0.61 4.16/0.55 2.02/0.25 yH 0.76/0.22. 0.88/0.18

the exact position of chemical shifts. Therefore. it is difficult to determine that a vertex of an

observed spin system is exactly a certain specific spin. A more appropriate representation is that
"the vertex of a spin system is more likely to be one proton, e.g., an aH than another one, e.g., a
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v ,BH. The fuzziness of the mappings that appear in this case indicates that fuzzy subsets are proper

• Ii representations for the experimentall{observed spin systems.
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A deduced spin system. as the one shown in Figure 2.22. ean be represented as a l'uzzy subset

FS = {V.t'.It} (2.1 \)

where V is a chemical shi ft subset. in the case of Figure 2.22. V = { 8.969. 4.432. 2.022. 2.385.

2.120}. t' is the subset of ail the connectiClns between elements in V. /l is the membership subset.

Suppose there exists a homomorphie mClppillg between FS and RS(\eucine). In other words.

FS is a subgraph of RS, or FS can be assigned to a leucine. Assume the deviation belween

the experimental and expected chemieal shifls follows the normal distribution, the membership

function /lU) can be delined as

. {[Vj - (Vre/(/eIlCÎlle»j]2/2 }/l(j)=exp -
(AVre/(I~'ICÎlle» j

(2.12)

•

where Vj is the jth chemical shift of the observed spin system of FS, (Vrt/(/eIlCÎlle»j is the

corresponding chemical shift of a leucine 111 lhe amino acid database, (AVre/(lellei Ile» j is the

standard deviation of (Vre/(leIlCÎlle»j. /LU) represents the degree of membership of mapping

jth spin of FS to the corresponding position of RS.

Table 2.4 Iists the membership values calculated using equation 2.12. Il is obvious Ihut

chemical shift 4.432 ppm is the mostlikely resonance to be mupped to the aH of u leucine whereus

2.385 ppm has u low membership in terms ofmupping to the rH ofu leucine.

Table 2,4: The compurison of chemical shifls between u fuzzy subsel FS, i.e., lhe observed spiIl system,
and a reference set RS, the expected amine acid spin system. The calculated membership values are also
shown.

obsc'vcd chemical expecled chemical
shifts of /,S (in ppm) shiflS of RS(leucine) degree of membership

ISlandard devialion
8.969 NH 8.19/0.60 0.43
4.432 aH 4.25/0.49 0.93
2.022 fJH 1.60/0.37 0.52
2.120 fJH' 1.7110.31 0.42
2.385 YH 1.5110.30 0.14
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2.7.3.2 Paltem Recognition Algorithm

The actual pattern recognition algorithm involves two major stages. In the tirst stage. a homo­

morphie graph mapping algorithm is used to lopologically determine if an observed spin system

is a subgraphs of an amino acid. In the second stage. a similarity value is calculated between the

observed spin system and that amino acid based on the membership funclions. A standard leucine

spin system and an observed spin system are shown in Figure 2.24. The tirst stage of the pattern

45

standard leucine

A

observed spin system

8

Figure 2.24: A standard leucine spin coupling graph and the observed spin system which mighl be as­
signed 10 lhe leucine.

recognition algorithm determines if graph B can be mapped to graph A topologically. Once the

mapping if contirmed. the subsequent task involves the determination of similarity between A and

B numerically.

11le homomorphie graph mapping algorithm was implemented through a Heuristic Back­

tmcking Aigorithm (HBA) [63]. If HBA finds at least one mapping between a query graph QG

and a supergraph SG, QG is said to be a subgraph of SG, namely QG ~ SG. HBA is composed

of two procedures. In the tirst procedure, a "walking" procedure'travels through a QG to find ail

of the possible routes connecting every nodes of QG. The following codes explains the principle

of the walking procedure.

•
void walking(QueryGraph..type... , )
t " _
IIThis function genèi~;~s partially ordered graphs
Ilinput query graph .
Il

),

on each of the
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If Input :
IIOutput:
Il
Il
Il
Il

Query graphs, observed fIom NNR spectral data
All of the possible partiallv ordered graphs, also known
as routes.
These routes are stored in a data structure called ROUTE
which will
be used in a subsequent algorithm of HBA().

•

arbitrarily choose anode from QG as the entrance node:
save this node as the first element of a new route:
push this entrance node inta BranchStack:

while BranchStack is not empty (
pop anode from BranchStack;
append current node inta route:
while there are still branches to walk (

choose any branch to keep on walking while save the rest
in BranchStack;

)
store route inta ROUTE:

The procedure first arbitrarily chooses an entrunce node on QG, then ail thc untruvcllcd

nodes at each brunch are saved into the data structure of a slack. Once the walking cornes across

an ending node, a node in the stack is popped out and the walking is resumed starting at that Ilode.

Using graph B of Figure 2.24 as an example of QG, the possible routes include 7 - 6 - 4 - 5­

3 - 2 - l, 7 - 6 - 5 - 4 - 3 - 2 - l, 7 - 6 - 4 - 5 - 3 - 1 - 2, ... ,etc. Ali those routcs ure

saved in a large data structure called RûUTE.

The second part of HBA performs the actual mapping actions. Once ail the routes, also

known as the partially ordered graphs, are created and saved in ROUTE, HBA walks on SG

following eacn of the routes in the data structure of ROUTE. If the complete walk for a given

route on the supergraph SG is accomplished, a mapping between QG and SG is determined and

that route has ail the information about this mapping. The entire procedure is explainr:d using the

following codes.

void HBA(ROUTE_type ROUTE, SuperGraph_type SG)
(
IIHBA (Heuristic Backtracking Algorithm) walks on the supergraph sa.
IIInformation saved in ROUTE controls the walking. If the complete
Ilwalk for a given route is accomplished, a mapping between
Ilthe route and sa is determined.

IIInput: 1. The data structure ROUTE, generated by the function walking().
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Il ROUTE contains all the partially ordered routes of the
Il query graph QG.
Il 2. The supergraph SG.

for each of the route in ROUTE (
while there are still untouched nodes left in SG (

choose a node in SO as the entrance node;
while ( not arrive at the end of the route) &&

( there are still branches to walk on SG) (
look for a branch on SG rnatching current node of
route. essentially we examine adjacent degrees and
the chernical shift differences;

if a rnatching branch is found (
if not arrive at the end of the route

walk to the next node of SG:
else

go back one node on SO. choose another branch;
}
if arrives at the end of the route

a rnapping between QG and SG is de terrnined , the
actual rnapping is the one saved in the route:

Il is emphasized thatthere Il'ight exist more than one mapping between a QG and an SG.

For instance, in Figure 2.24 the query graph B is a subgraph of supergrnph A, but there are four

different ways of mappings between Band A. The mappings are listed in Table 2.5.

Tobie 2.5: The four different mappings between the observed spin system and the standard leucine. See
Figure 2.24.

QG(B) -+ SG(AJ
1 7-+ NH 6-+ aH 4 -+ pH 5 -+ pH 3-+ yH 1-+ clH 2 -+ clH
2 7-+ NH 6-+ aH 4 -+ pH 5 -+ pH 3-+ yH 2 -+ clH 1 -+ clH
3 7-+ NH 6-+ aH 5 -+ pH 4 -+ pH' 3-+ yH 1-+ clH 2 -+ clH
4 7-+ NH 6-+ aH 5 -+ pH 4 -+ pH' 3 -+ yH 2 -> clH 1 -+ clH

1 mnpping ~

IJ10rder to select the best mapping, an evaluation scheme must be introduced to discriminate

ail the mappings. This problem is solved by implementing a similarity evaluation system, which

is discussed in the following.

• In terms of fuzzy mathematics, the query grnphs. Le.• the observed spin systems. are fuzzy

subsets (FS) with respect to the 20 amino acid reference sets (RS). Our goal is to determine an
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ovcrall similarity value between a fuzzy subset FS 'lIld its referenee set RS. Consider a query spin

system which can be represented as the following fuzzy subset FS

(2.13)

This spin system has 1/ spins and a number of couplings between VI and V.1 • VI and V4 • • " • ete.

Suppose this spin system can be mapped to the amino acid RS(k)

RS(k) = {{l/J. 112. 113 • ••• J. {1I1 ....1I2.1I2 ....1I3 ••• • J. (a,,!, a",. a U1 •••• 1I (2.14)

where Il; = NH. aH. ,aH....• k =Ala or G1y or Thr. and a;'is are the sets of standard deviations

of Il;'s. RS(k) has a total of N spins. Suppose there are M dilTerent mappings between FS und

RS(k)

F S t:;1II RS(k).1II = 1 to M

The similarity for the IIIth mapping between F Sund RS(k) is detined as

(2.15)

Similarity S(III) =
/1 2
L [/L(Vj -> Ill)]
1=1

Il
(2.16)

where /L(Vj -> UI) is the degree of membership of mapping the jth spin oF FS onto the Ith node

of RS(k). Apparently the best mupping is the one having the maximum S(III) therefore the overall

similarity between FS and RS(k) is given by

S(FS -> RS(k» = max(S(III»,1Il = Ito M. (2.17)

•

As the tinal example. Figure 2.25 shows an observed spin system. Using HBA, the spin

system can be mapped to-valine, leucine, glutamine and arginine. There are two different ways of

mapping the spin system to valine while there are 16,24, and 116 ways ofmapping itto leucine,

glutamine and arginine, respectively. The mappings are summarized in Table 2.6. As an example,

the tirst proton (7.754ppm) of the observed spin system can be assigned ta the NH of valine, which

has an expected chemical shift of 8.20 ppm. Using equation 2.12, the degree of membership for
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4

2 3

5

lH 2H aH 4H sH
7.754 3.984 2.074 0.956 0.826 ppm

Figure 2.25: A deduced 5.spin system which might be assigned to Val. Leu. Glu or Arg. See Table 2.6.

Table 2.6: The mapping belween a 5·spin system and various amino acids. For example. the observed
7.754 ppm spin node can be assigned 10 valine's NH prolon. which has an expecled chemical shift ofS.20
ppm. There ure IwO different ways of mapping the observed spin system to a valine.

aClual muppings (ull numbcrs are in ppm)

IH(7.754) 2H(3.084) 3H(2.074) 4H(0.956) 5H(0.826)
Vul 8.20 4.16 2.02 0.76 0.88

2rmlppings 8.20 4.16 2.02 0.88 0.76
Leu 8.19 4.25 1.60 1.71 1.51

16 muppings 8.19 4.25 1.71 1.60 1.51
0.68 1.51 1.60 1.71 4.25
.. . ... ... ... ...

Glu 8.22 4.34 1.97 2.04 2.27
24 mappings 8.22 4.34 2.04 2.27 2.34

.. . .. . ... ... ...
Arg 8.20 4.28 1.63 1.79 1.52

116 1I1l1ppings 8.20 4.28 1.79 1.52 1.56
., . .. . .. . .. . ...

1 amino acid D

ail the proton mappings can be ohtained. For instance, the membership between mapping 7.754

and 8.200 ppm is 0.77.

(2.18)

where 8.20 is the expected chemical shi ft for valine's NH while 0.61 is its standard deviation. The

similarity between the spin system shown in Figure 2.25 and various amino acids are Iisted in

the last column of Table 2.7. The figures are calculated using equation 2.16. As an example, the

ovenlll similarity of mapping the spin system to Val is 0.92, which is the maximum value between

• 0.92 and 0.87 and is obtained from equation 2.17.

Having accomplished ail the procedures, the spin systems derived from CPA now have asso-
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Table 2.7: The similarity values between (he observed spin system. (l-'igure 2.25) and various ~andidale

amino acids. The membership values are ~alclllated by ~qllation 2.12. The sinlilarity values are ~aklllatcd

by equation 2.16.

1 similarih' 1I11cmbcrship 10 various protons of the aminu addsu
amino acid IH(7.754) 2H(3.0~4) 3H(2.074) 4H(O.956) 5H(0.~2n)

Val 0.77 0.95 O.9~ O.n7 0.96 O.~7

2 muppings 0.77 0.95 O.9~ 0.91 0.96 o.n
Leu 0.77 O.~n OA4 0.052 0.074 0.55

16 mappings 0.77 0.S6 0.50 0.22 O.ON 0.57
... '" ... .. . .. ' .. .

Glu 0.74 0.70 O.S7 O.IKl O.IKI O.nO
24 mappings 0.74 0.70 0.9S 0.00 O.IKI O.IKl

... ... ... .. . .. ' . ..
Arg O.S7 0.70 0.59 0.050 0.12 0.57

116 mappings 0.S7 0.70 0.71 0.25 0.097 O.nO
... ... ... ... .. . ...

ciated amino acid type infonnation. It is possible to construct a "deduced-spin-systems to mnino­

acids" table where the candidale amino acids for each spin syslems are Iisted. As Il slÎbsequelll

processing. lhe Tree Search Algorithm (TSA) is responsible for achieving the sequenlillilissign­

ment. Figure 2.26 is an sample "deduced-spin-systems to IImino-licids" tllble.

SI: Asp/O.901 Asn/O.829 Phe/0.803 ......
52: A1a/O.778 Arg/0.732 Leu/0.715 ......
s3: G1y/0.738 Thr/0.555 Phe/0.551 ......
s4: Phe/0.803 Ser/O.705 I1e/0.648 ......
55: Leu/0.760 Arg/0.731 Lys/0.720 ......

. . .. . .... .

Figure 2.26: A "deduced-spin-syslem to amino-licids" lable. For example. spin syslem SI mighl be
assigned to Asp. Asn. or Phe. . .. • etc. The ovcm)) similarity values between the spin system and the
amino acids are also shown. A higher similarity indicales a be\ter match.

-~=---=-=:--

•
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2.8 SCllucncc-spccific rcsonancc as.'rj:i~nmcnt

2.8 Sequence-specifie resonance assignment using Tree Search AI-

gorithm (TSA)

The Trec Search Aigorithm (TSA) [25] was designed to obtain the sequemial assignment

of protcin NMR data based on the spin systems extraeted by CPA. TSA takes input of the spin

systems and the associated amino acid type information determined l'rom CPA and the pattern

recognition algorithm. respcctively. The output of TSA is the final sequentially assigned amino

acid residues.

The entire protein resonance assignment can be divided imo three stages. In the first stage,

CPA is used to extract the individual amino acid spin systems l'rom 20 OQF-COSY and TOCSY

spectml data. The second stage of the assignment involves amino acid type recognition algorithm.

which is described in the previous section. The spin pattern recognition algorithm determines ail

of the possible amino acids to which a spin system might be assigned. The information is listed

in a "deduced-spin-system to amino-acids" table as the one shown in Figure 2.26. Once the table

is prepared. TSA is responsible for mapping deduced spin systems into corresponding positions

within the protein primary sequence in thl: final stage of the resonance assignment. The inter­

residue correlations required to establish sequential connectivi:ies are provided by NOE type of

experimems. TSA relies on exhaustive searches over ail possible sequential assignments which are

satisfied with the protein primary sequence and the "spin-system to amino-acids" table. Several

mies are prepared to determine a globally optimized final assignment. Reliable assignment can be

obtained provided thatthe assigned polypeptide segments are sufficiently long.

Before the exhaustive searchcs can.be started, information obtained l'rom the pattern recog­

nition nlgorithm must be converted to an appropriate format. The originnl information depicts the

amino ncid types of each observed spin system. However. TSA needs to know ail the candidate

spin systems of each residul'. A preliminary conversion the original data is necessary for this

purpose. The following codes iIlustrute the conversion:

void ConverTable()
1
IIInput: 1. Protein primary sequence.
Il 2. "spin-system" to "amino-acids" table.
IIOutput: 1. "residue" to "spin systems" table.

51
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for (i~l;i<=n;i++)

for (j=l;j<=f(i);j++1
for (k=l;i<=N;k++)

if (Ai; ==R,l
put Sj in the candidate list of RI.;

sort the candidates of Ri. (i:::;l to N) according to
their overall sirnilarity value:

52

SI A!I AI2 AI3 .•• AI/(I)

S2 A21 A22 A23 ••• A2{(2)

S3 A31 A32 A33 ••• AJ{(3)

Sil AllI A'l:!: A,,3 ... A"f(II)

Rconverted to

RI BII BI2 BI3 •••

1. a lotal of 11 deduced spin syslems

2. each spin system Si hus

J(il possible umino acid cundidules.

AijE{ Ala. G1y. Thr.... }

3. The prolein has N rcsidues.

4. RI - R2 - ••• - RN is the primary sequence.

B"I/IE(SIo S2.···, S"J.

RN BNI BN2 BN3 '"

The remaining task is to map each spin system to its expecled position within the primary

sequence. Recalling that the pattern recognition algorithm delermines alllhe possible amino acid

candidates of the observed spin systems, a malhematical similarily is calculaled for each pair

of the mapping between a spin system and an amino acid. For example. lhe similarity for lhe

mapping between spin system S 10 and the alanine is 0.87 while the similarity for mapping S 10 to

the threonine is 0.53. This means that SIC has a higher chance of being assigned to the .\Ianine

than to the threonine. Suppose another spin system S 18 can also be assigned to an alanine with

a similarity 0.94. As far as the assignment of the alaniue is concerned, S 18 is a better candidate

than S 10 is because of the higher similarity value. The spin system candidates in the "residue to

soin-systems" table are sorted in de.cending order of each candidate spin system's similnrity. The

assumption made here is that a spin system candidate with higher similarity has greater probability

to be assigned to its con'esponding amino acid.
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Table 2.1l: An "aminu-aci<!-rcsi<!uc 10 spin-systems" (;Ible. For e,ample. the spin system No.9. 3. I.J. 28 •

. ... . ail may he assigncd to Ala 1O. HO\\'f:\'cr. onl)' one assignmcnt Îs aClually chosen.

.
" . .. ...................................
AlalO 9 .1 1-1 28 -19 51 7 1-1
Phdl 4 ~ Il 24 33 17 25
Aspl2 Il 4 5 ~ 33 19 17 25
Tyrl3 21 4 ~ 39 50 30
Ser 1-1 ~ 2 4 21 39 33 25 Il
Lysl5 14 23 54 69 31 3K 42
Argl6 23 14 51 52 54 37
1Ic17 1 6 12 27 15 59

1 Rcsiduc 0 spin svslI:T11 canùid'IICs

The actual procedures of the sequential assignment are illustmted using an example shown

in Table 2.8. According to the assumptions made. the most probable assignment for Ala 10 is spin

system S9; the most probllble assignment for Phe II is S4; .. , • etc. Therefore the most probllbly

sequential lIssignment for the polypeptide segment Ala 10 - Phe 11 - ... - Ile 17 is S9-S4-S 11­

S21-S8-S 14-S23-S 1. However. there is no way to gUllr.lntee that the spin system with the highest

similarity value is always the right one to be assigned. To cope with this problem. TSA searches

(/1/ possible assignment combinations and in a subsequent step discriminates them with certain

criteria in order to determine the most probable sequential tlSsignment. In the above example. the

possible lIssignment combinations for the query polypeptide include S9-S4-S II-S21-S8-S 14-S23­

SI, S9-S4-S II-S21-88-S 14-S23-S6. S9-S4-S II-S21-S8-S 14-S23-S 12, ...• etc.. There are a total

of 8x7x8x6x8x7x6x6 =5419008 paths to be traversed. In practice. not ail of the paths are

valid. For instllnce. once the spin system S4 is assigned to Phe II. S4 can't be assigned to another

residue in the following assigmnent, Le.• a spin system can't occur twice in a sequential assign­

ment. Having applied this restriction. there is no need to traverse ail the 5419008 combinations.

However, the actual amount of searching is still a heavy load in terms of the computing time.

A number of criteria are set to determine the most probable or the best assignment. The most

important criterion is the observation of interresidue correlations. TSA counts the number of NOE

cross peaks obser/ed between each adjacent spin system pairs. Knowing these numbers. TSA

is lIble to determine the total number of observed NOE peaks within each U3signment ïath. In

Table 2.9 thc number of NOE peaks observed between spin system S9 and S4 is two, between S4
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Table 2.9: Th~ possibl~ ~lssignmc:nt of ~1Il S-rcsiuuc polypcplilil,.·. Thl'fC an: t\Hl NOE I.:nlSS pC~lks hl'l\\'l,.'l,.'n

spin syslom S9 and S4. 0,," NOE noss poak bOl\\'oon S4 anu Sil ..... ole.

NOE c\'iucn..:c o==J

'--_-J~'-- I lolal 16 NOE poak, [iUiUf6 NOE oVluon"o, 1

., -
AhliO S9

2 't'cs
Pild 1 S4

1 't'cs
Aspl2 Sil

3 Yc:-.
Tyr 13 S21

4 't'cs
Sorl4 SN

1

1

,"cs
Lysl5 Sl4

0 No
Argl6 S23

5 ,"cs
lId7 SI

.. -

1 Rcsiduc ~ AssÎcnmcnt 1 No of NOE pC1ks 1

and 8 11 is one. between 8 Il and 821 is three•...• etc. The tollli observed NOE for the assigl1ment

01'89-84-8 II-S21-S8-S 14-S23-S 1to AlalO-Phe 1I-Aspl2-Tyrl3-Ser1 4-Lys 15-ArgI6-lIe17 is 16.

TSA was designed to keep the assignment with the greatest number of (lbserved NOE correlations.

1\vo things must be noticed here. First. the original version of TSA [251 does 1101 discriminate

NOE peaks. In other words. ail the NOE peuks ure considered to huve the sume contribution

in terms of interresidue correlations. The fact thut backbone NOE peaks such as uaN(i. i + 1)

and dNN(i. i + 1) ure more important in establishing sequenliul connectivity than NOE between

side chain protons is not taken into considenltion. In the c'Jmmerciul vcrsion ofTSA [641. which

is bundled into a resonance assignment puckage called CAPRI. sequentiul NOE peaks do receive

higher weights than side chuin NOE peaks. The secor.c1 feuture ofTSA is that it allows the absence

ofNOE connections in an assigmnent. In Table 2.9. for exumple. no NOE correlation between spin

system S14 and S23 is observed. As missing data arising l'rom spectf'.l1 overlap or incomplete peak

picking procedures is not nlre in protein NMR. it is dangerous to discard the entire assignment for

lacking of one evidence of NOE cross peak. Hence TSA permits the absence of NOE connection

in order not to lose any potential assignment.

In the situation that two or more assignments have the same number of total NOE peaks.
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other rules arc necessary to pick up the best assignmenl. Infonnation which hasn't been used to

this point is the mathematical similarities. obtained from equation 2.17. Suppose an assignment

maps spin system S; to residue R;. S;+I to residue R;+I •.. , . Si+N-1 to residue Ri+N-I' The

similarity between S; and Ri is vU). The TSA similarity parameter for the above assignment can

be delined as

55

v = ~v(i)xv(Î + I)x .. ·xv(i + N - 1) (2.19)

If more than one assignment has the same number of NOE peaks. their TSA similarities are caIcu­

lated using equation 2.19. The assignment having the greatest TSA similarity remains while the

rest are discarded.

If the above two criteria are not sufficient to resolve the best assignments. TSA is able to

measure the chemical shift deviation between observed NOE cross peaks and the correspondirg

spins in the spin systems. For example. an NOE peak is found between spin system Si and S j.

S; has live spins: Î 1. Î2. Î3. Î4 and Îs. Sj has four spins: ilo h. h and i4. Suppose the distance

between Î 1 and h are close enough to produce an NOE cross peak (ô". Ôb) where Iô" - ô;11 and

IÔb - ôhl are within a proton chemical shifttolerance. Ideally.lô" - ô;11 and IÔb - ôhl should be

zero. TSA delines a parameter to measure the difference between the observed NOE pec ". ,(ô"'

Ôb), and their original spins, Î 1 and h in this particular case. This parameter is essentially the

geometric mean of the two absolute values. The delinition of this parameter is described in the

following:

Suppose the IlIth spin in one spin system and the nth spin in another spin system are in close

proximity to produce an NOE peak. The observed cross peak in 2D NOESY is (ô"' Ôb) where ô"

and Ôb are the observed chemical shifts for spin III and n, respectively. Parameter p is defined as

p= (2.20)

where T is the chemical shift tolerance. For the assignment of an N-residue polypeptide. i.e.,

the assignment maps spin system S; to residue R;, S;+I to residue R;+I, .,. ,S;+N-I to residue

Ri+N-1o (N - 1) parameters of p can be defined. Smaller parameters indicates beller matching

between the NOE peaks and their corresponding spins. Therefore, TSA defines an overall NOE
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(2.21)

A larger P corresponds to a betler assignmenl.

To summarize the seqllcnl!::l assignment for an N-residue polypeptide Rj -· • ·-Ri·' N _\. TSA

first constructs a "residue to spin-systems" table. In tl:is table residue Rj h..s Cj c:mdidme spin

systems. TSA thec exh..ustivdy searches ail n~~-I Cj assignment combinalions tû detemline

the most probable assignment. The number of the a:tually tnlVersed :Issignment combinutions is

fewer than the estimated one because a single spin system c..n not appear twice in ..ny assigmnenl.

TSA adopts a few criteria to dcterrnine l:,e final assignments. First the ..ssignments with Ihe

greatest number of tOial NOE peaks are kept. If more than one ..ssignment has the same number.

TSA computes the TSA similarity for each of the assignment using equation 2.19. If this similarity

cannot break the tic bctween lhe assignments, equation 2.21 is used to further discriminate the

assignments.

Having discussed the way TSA selects the most probable assignment. we now investigmc

the em;,: of the length of polypeptide chain on the sequential assignment. TSA is designed based

on a ~Iobal optimization assumption. The optimization is conducted on the number of total NOE

correlations. the TSA similarity in equation 2.19 and the parameter P in equation 2.21. It is

assumed that a bener result cornes out when a longer protein chain is adopt;;uù"the assigning

targel. In other words, for an N-residue protein, TSA has the highest chance of producing the

correct assignment provided that residue 1 to residue N are set to be assigned simultaneously. If

the N-residue protein is divided into several segments. for example, rcsidue 1-20. 17-40, 37-N

(N > 40. of course) and TSA is conducted over these segmented polypeptides one after another.

a I?cal optimization might be reached whereas the global optimization is unable to be reached.

Certainly, the coœputational load is heavy in order to reach the global optimization. For shorter

polypeptide segments, the lime required to complete the assignment can be significantly shorter.

The implementation of TSA was proved to be effective on a testing run of a Z1 rcsidue

. polypeptide [25]. For this relatively small polypeptide. the order of magnitude of the execution

time to assign the entire polypeptide is minutes. However, for bigger proteins. such as the ones
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having 70 or more residues. a "permutation explosion" problem makes the execution of TSA

exceed an deceptable CPU time limil. To overcome this permutation explosion problem. one

can allempt to reduce the numbcr of car.Jidate spin system" of each residue. i.e.. the length of

each row in the "residue to spin-systems" table. Fewcr candidate spin systems implies that fewer

assignments need to be ':"a·/ersed. SomelÎmes it is obvious to manu..Hy assign many spin systems.

The "residue to spin-systems" table can be manually revised according tG ail available information

(obluined from NMR and/or other sources) 50 as to reduce the possibility ofhuvir-g the permutation

explosion. Il is also suggested that TSA can be run segment by segment to save time. although

this violales the principle of reaching global optimization. For a 70 residue protein. for example.

one can assign residue 3-25. 20-45. 40-70 at three separate runs of TSA. making sure that the

overlapped residues are assigned to the same spin systems.

The commercial version ofTSA [641. bundled in SYBYL. Tripos Inc.. made more revisions

in both computational and methodological aspects.
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Chapter 3

Determination of Protein Backbone Spin

Systems

3.1 Introduction

This c'Japt~r reports computer algorithms that can extmct a protcin's backbone spin sys­

tems using heteronuclear 3D NMR. Because many heteronuclear 3D NMR e1.periments are able

to record both intra- and interresidue correlations, the sequential informlllion embedded in the

spectm can a1so be derived at the same time. The algorithms presented in this study are not de·

signed for any specifie NMR experiment, so that any generul duta set cun be used. 1\vo sets of

3D NMR experiments are used to demonstrute how the the protein backbone is extracted by the

at;;orithms. The first set of NMR duta consists of 3D HNCO, HNCA. HN(CO)CA. HCACO and

ISN TOCSY·HMQC. The second set of NMR datu is 3D CBCANH. Experimental dutu from the

first set of NMR experiments were used to test the implemented algorithms. The target protein

is the calcium loaded N-domain of chicken skeletal troponin-C(residue 1-90). Along with the

sequence-specifie resonance assignment protocol presented in chapter 5. it is possible to achieve

the goal of developing a nearly fully automated resonance assignment package. This package is

able to extruct backbone spin systems; create dipeptide links from interresidue correlations ob·

• served in heteronuclear 3D NMR; obtain spin systems of protein side chain; merge backbone and

side chains; identify amino acid types; a~d, finally, achieve sequence-specifie assignment.
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3.2 Identification of backbone spin patterns
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Many heteronuclear 3D NMR experiments (5) have been designed for assigning backbone

resonances of ISN/De isotope enriched proteins. These experiments usually observe correlations

belween three or more nuclei on a protein's backbone. Bolh inter- and intraresidue correlations

ean be recorded Iherefore making it possible to assign the backbone resonances, along with their

sequential connectivities, by applying heteronuclear 3D NMR exclusively.

Before illustmling how 10 make use of the information provided by 3D NMR experiments,

a gcncral description of using computer algorithms to assign NMR cross peaks is discussed here.

In gencral NMR cross peaks from 3D spectm cun be represented as (/J; ,/Jj ,/Jkl where Ihe three

coordinates denote the tllree chemical shift values. For homonuclear 3D NMR allthree coordinate.

reprcsent prolon chcmical shifts. For heleronuclear 3D NMR, /J;, /Jj and /Jk can be proton, carbon

or nitrogen chemical shifts. To make use of the 3D NMR data, computer algorithms usually

perform the following steps: for a starting peak Po(/J;o,/Jjo,/Jko)' a seareh is conducted on the

same spectrum or other spectra to find one or more peak PI (/J;" /Ji! ,/Jk,), P2(/Ji2,/Jh ,/Jk2) •••

• Pli (/J;" , /J j", /Jk,,) fmm which two resonances are in cornmon with Po. For example, Po and

PI may have the same resonances in the first two coordinates. That is, two resonances satisfy

the relationships of I/Jio -/Jill ~ (a pre-defined tolemnce) and I/Jjo -/Ji! 1~ (another pre-defined

tolemnce). The next step involves the implementation of a mnking system to distinguish peaks

P" P2 . •• Pli in such a way that a peak Pm is picked which is the most Iikely peak to be in the

same spin coupling system with Po. At this stage the target spin system expands its size from three

resonances to four. This operation is shown in Figure 3.1. The ranking system usually involves

searching for evidence in the way of peaks to confirm the merging of Po and Pm. In summary, to

extract spin coupling systems out of 3D NMR peaks.cc.mputer algorithms must have the following

features: (1) the algorithms must be able to merge cross peaks, (2) in order to merge two cross

peaks, t>\-\l of the three coordinates should overlap, (3) to verify the merge, other spectral evidence

in the foITO <If cross peaks is required.

:·~.The application of heteronuclear 3D NMR to protein backbone assignment is now discussed.

• Figun:~3.2 shows a .protein backbon~ segment. Atypical triple resonance heteronuclear 3D NMR
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\ 1..

~)

'.

'.

condilions that must
be satislled:
IO~,.O.) <- Ttllcrallcl:
1°/""°1,,,' c. TIl!crJlII,71."

Figure 3.1: A 3D NMR cross peak Po(/>;", 8j". 81,,) c.m be merged with anolher peak P,,,(8;M' 8jM' 81M )

provided lhatthe two conditions shown are satisfied. The merge resulls in li spin system with four spins
(ia, jo, ka. k",).

H H H H

N-terminal N C C N C C C·lenniNII

C 0 C 0

~I L/-v~

R"I R.

Figure 3.2: The chemical structure of a dipeptide with only lhe backbone atoms shown.

spectrum observes correlations of three resonances. a proton, a carbon and a nitrogen. For ex·

ample, the 3D HNCA [65] experiment gives inler· and intmresidue correlations between NH. N

and Ca. Some experiments can even observe correlations spunning more than three spins such us

CBCANH [66], where inter· and intraresidue Cp, Ca. NH and N correlations are extracted in one

single experimen!. Since both inter· and intnlresidue correlations are available in heteronuclear

3D NMR, individual amino acid residues and sequential connectivities can be obtained simulla·

neously. Suppose the general merging algorithm described above is applied. which means there

must be at least three correlations available to constmct the complete backbone spin system of

an amino acid. Here complete backbone spin systems are the ones having their N, NH, aH, Cu

• and CO resonances assigned. Figure 3.3 shows two of the possible combinations l'rom which the
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haekhone spin systems ean be eonslrueted. Note that these threc correlalions may come from thrce

different experimenls. However it is also possible Ihat they ail come from the same expcrimcnt

TOCSY·HMQC HNCA

~
"H ~H.,' Il .

N.' :N: Cu

HCACO

•
.(

Figure 3.3: The construclion of a backbone spin syslem is shown. Two possible approaches are Iisted.
ln the upper one, an HNCO peak, an HN(CO)CA peak and an HCACO peak are merged 10 forrn a spin
system. [n the lowcr one, a TOCSY-HMQC peak. an HNCA and an HCACO peaks are merged. The
filled circles represcntthe overlapped resonances discovered by the computer algorithm in order to merge
peaks.

which combines multiple information into one spectrum.

Recall in Figure 3.2 thatthe minimuh' peptide unit having inter- and intraresidue correlations

is a dipeptide, i.e., two adjacent amino acid residues. It has been demonstrated Ihat three NMR

correlations are required to create an amino acid residue. To create a dipeptide, h'Jwever, eight

inslead of six NMR correlations must be observed. The additionaltwo correlations are necessary

for establishing the interresidue connectivity. SeeFigure 3.4 for the pictorial illustration. In the

next section the implementation of these ideas is described.
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Figure 3.4: The formation of a dipeptide unit, In step J. residue (i) is a determined spin system. A total
of live peaks are required to extend the assignment from residue (i) to residue (i - 1). Step 1and 2 involve
the interresidue correlations while step 3 to 5 use intraresidue correlations. Note that residue (i) needs
three correlations to construct itself. Hence a total of eight correlations are required for the construction
of a dipeptide unit.
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3.2./ Descriptioll ofbackbolle assigllIllelll strategy

ln this section cxamples from two sets of heteronuclear 3D NMR spectm arc adopted to

iIIustrate the general algorithrn discussed in the previous section. Figure 3.5 shows the five 3D

NMR experiments used in the first set of spectra.

Corrclaled
resonances

'~N TOCSY HMOC (1,2,3) (7,8,9)

7 • ,
H H H H HNCA (1,2,4) (1,2.10) (7,8,10)

• 10 12
, • •

N C C N C c HN(CO}CA (1,2,10)

Il 5

C 0 C 0 HCACO (3,4,6) (9,10,12)

~

j·1 HNCO (1,2,12)

I,'igurc 3.5: Five triple resonance NMR experiments and the nuclei they correlate.

The algoriihm for assigning protein backbone was designed in such a way to start the search­

ing from ..::y of the input NMR experirncnts. The advantage ofchoosing a specifie experiment may

sometimes be obvious. For example. spectroscopist. may notice that a certain experimem is more

sensitive. hence it is reasonable to startthe assignment procedure from that experiment. However,

it is emphasized that the complete assignment of a dipeptide can be achieved through more than

one path. Figure 3.6 describes an eight steps scenario of assigning a dipeptide where cross peaks

of 3D HNCO were chosen as the starting experiment. Each of the eight steps involved in the

assignment procedure has an associated NMR cross peak. In step l, the HNCO peak (1.2.3) is

selected as the initial spin system. In step 2, the ISN-HMQC-TOCSYpeak (1. 2. 4), where the first

two frequencies are in cornmon witll the previous HNCO peak (1,2,3), is added to the spin sys­

tem. Similarly, by repeming the eight steps. the ten resonance dipeptide (N. NH. aH. Ca. CO);_I

- (N. NH. aH. Ca. CO); can be constructed.

In the second example, a single 3D CBCANH experiment was chosen as the input data

to iIIustrate how backbone assignment can be achieved through vanous approaches. Each of

• the 3D CBCANH peak may have four interpretations: NH-N-Ca(interresidue), NH-N-CIl(inter­

residue), NH-N-Ca(intmresidue) and NH-N-CIl(intraresidue). Ca resonances of glycine and Cil
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N Cu C' NH uH
R~ldlle ,.1 9 7 3 10 8
Resll;hJe 1 1 5 6 2 4

Sleps E.penm~,l
C1'OSS~ak R~sults

'nvohlC'd

HNCO (l,2.J) IdentJty ltulle rl.'sooances. 1.2 and J

, "N TOCSY'
{1.2.-Ij trom 1.2. g~ resonance '"HMOC

3 HNCA (t,2,5) Irom l ,2.~ lesonance 5

4 HCACO (-I.5,6) Irom 4,5. gut resonaoce 6

5 HN(COICA {t,Z,7} !rom 1,2. gel lesonance 7

6 HCACO (3.7.8) Irom 3,7, gelresonance 8

7
nN TQCSY.

(8.9.10) Ilom 7.8. gel reSONll'lC8 9 and 10
HMDC

• HNCA (7,9,10) same as abave

Figure 3.6: The eight steps ure listed for ussigning the 10 resonanccs of u dipeptide. Sturling l'rom the
3D HNCO cros' peuk (1. 2. 3). euch subsequent step adds one more resonance to the dipeptide. muking
a 10 resonance spin system.

resonances of ail other residues arc opposite in phuse relative to the other Cu correlutions [66]. Tu

resolve the ambiguities between the inter- and intraresidue CBCANH peaks. unother 3D experi­

ment. CBCA(COlNH [67]. muy be helpful. CBCANH has several udvuntages over the tradilionul

heteronuclear 3D NMR experimenls. for exumple. HNCA. in that CBCANH is uble 10 dislinguish

inter- and inlmresidue peaks in tenns of Ihe peak inlensilies [66]. Moreover. aliphatic Cu and

Cp frequencies appear in opposile phases in CBCANH [66] making il possible 10 separate Ihe

Ca l'rom Ihe Cp in aliphalic region. Figure 3.7 shows a Iypical dipeplide and ils corresponding

cross peaks l'rom 3D CBCANH speclrum. Figure 3.8 shows how the assignmenl procedure using

CBCANH is accomplished. Nole that addilional speclra may be necessary in order 10 obtain Ihe

frequencies of aH. ,BH and CO.

3.2.2 Implementation oftlze algoritlzm

Our algorilhm. Dipeptide Backbone Panilioning Aigorilhm (DBPAl. is composed of Iwo

• pans. In the tirst part ail possible dipeplides are exlraLtec.:~om available spectra. Following this.

the individual dipeplides are merged 10 forrn polypeplides in Ihe second slage. The algorilhm used
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Correlated
resonances

CBCANH (1,2,10) NH,. N,. Ca'.l
7 , 3

H H H H (1,2,11) NH., N•• C~.,

• •• 12 2 4 •
N C C N C C (1,2,4) NH,. N,. Cu,

11 5

C 0 C 0 (1,2,5) NH•• N" C~.

'- -- -------1-1 (7,8,10) NH'I' N"I' Cu, .•

(7,8,11) NH"I' N'.l' CJJ"1

~ïgure 3.7: 3D CBCANH experimclll providcs threc inter· and three intmresidue correlations of a dipep­
tide,
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SliPS cross peak

(1.2,10)

(1.2.11)

(1.2,4)

(1,2.5)

(7.8.10)

(7,8.11)

Results

Idenbly three resonances. 1.2 and 10

hom 1.2. gel resonance 11

hom t ,2. gel resonance 4

hom 1,2. get fesonance 5

Irom 10.11. gel te!onanc8 7

Irom 10,11, gel ,esonance 8

•

Figure 3.8: The six correlations provided by the 3D CBCANH exprriment can be used to create a dipep­
tide with 8 resonances.

in the extraction of backbone spin systems and creation of dipeptides is Iisted in the following

pseudo codes.

void CreateDipeptide(PeakList_type, ... l
1

StartingSpectrum=SelectStartingSpectrum(all of the input spectral;
for each of the peak in StartingSpectrum 1

dipeptide=AddSpinsToDipeptide(the peak);

for every possible two spin pair (i,jl combinat ion in above dipeptide
t

In the entire spectrum database excluding the starting spectrum,
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look for peaks (I,j'.k). (I.J./.;') dnd (Ll,j')
\.;hich have t\\'o Erequencies in conunon wirh tht,;~

initial spin pair (;,j);

if many peaks satîsfy the above condition
BestPeak=RankiI19PrOcedure{all of the peaks

(i'.j',k) , (i',J.el and (k,i'.j') 1;

dipeptide=AddSpinsToDipeptide(BestPeakl:

1
if the number of spins in this dipeptide has reached ten

Il (N,NH,aH,Ca,CO) Eor two peptides
keep this dipeptide;

The pseudo code is self-explmmtory except for the ranking procedurt' which is responsible for

choosing the most probable peak to be merged into the existing spin system out of many possible

candidate peaks. The pseudo :(lde~ for this mnking procedure is outlined in the following:

peak_type RankingProcedure(const Peak_type *, .,. )
(

two resonances io and jo
all 3D ~IR peaks with two
io and Jo

frequencies in common with
IIInput: 1.
Il 2.
Il
IIExample:
Il peak l (il.jl.I:1l
Il peak 2 (i2. h k2)

Il peak 3 (i3. h. k3)

whêre
where
where

lio-id::::
lio-i21::::
lio - hl ::::

tolerance.
to!erance.
tolerance.

IJo-Jd::::
IJo - hl::::
IJo - hl::::

tolerance
tolerance
tolerance

•

1IOutput: The most likely peak that can be merged with iu and Ju
define a ranking parameter:
for peak 1: Ai"d - JI/u id. liu id
for peak 2: A2= 1- JI/u /21. liu hl
Eor peak 3: A3= 1- Jliu i31.IJu hl

return peak" (ill.j".k,,) with greatest A value:

The geometric mean Jlio - i,,1 * Uo - j,,1 was adopted as the measure of the average de­

viation between peak Il and peak O. The geometric mean was chosen over the arithmetic mean

because the former tends to reduce effects frum extremes of large and small values.

OBPA has an option to handle two different searching operations. Both operations can be

used in the construction of a dipeptide.
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1. Given a dipeptide with II/ assigned frequencies. DSPA takes two frequencies. ~,. ~j. where

i. j E (I. 2..... 11/1 and i i' j. and scarches a candidate peak having two frequencie:, over­

lapped with 0,. ~ j in the spectrum database. Suppose the third frequenc)' of the candidale

peak is Ok. ~k will be merged inlo Ihe dipeptide anu r,'sult in a dipeptide with II/ + 1assigned

resonancc. If many candidate peaks are found. a rank!ng system is implcmented in DBPA to

seleci a peak from the many candidates and merg': this peak 10 the dipeptide. Ahemalively.

a user can tell DSPA to make a replicalion of the dipeplide for each of Ihe candidale peaks

and merge Ihal candidate peak 10 Ihe replicaled dipeptide.

2. Given a dipeplide with II/ assigned frequencies. DSPA lakes IWO frequencies.Ii,.li j • where

i. jet 1. 2..... II/} and i 0;6 j. tll1d searches two candidate peaks in Ihe inpui speclrum

dalabase. The tirsl candidate has frequency li; and IWO olher Îrequencies. suppose Ihey

are denoted as ~k tll1d ~" The second candidate peak has frequency li j. ~k and li,. Nole

Ihallwo frequencies tire overlupped between Ihe IWO candidate peaks. DSPA would merge

resonunce lik and 0/ inlo the dipeplide. This prœedure re~uhs in a dipeplide with 111 + 2

frequencies.

These operaiions can bolh be seen in Figure 3.6. The tirsl operalion is used in slep 1 10 slep 6

while Ihe second operalion is used in step 7 and 8.

Oace Ihe dipeplide database htls been created, it is possible to merge these dipeptides into

longer chains such as tripeplide. letrapeptide . .. etc. For example. a dipeptide R ID - R28 can

be merged with R28 - R35 to nmke a tripeptide R ID - R28 - R35 where Ri simply indicates

this is the ith residue retrieved by DBPA. The aim of constructing these polypeptides is to identify

the umino acid type infonnation of their component residues thereby mapping them to the primary

sequence of the protein. The probability that an "amino-acid-type-recognized" polypeptide occurs

only once in u protein depends on the length of the polypeptide [3]. A longer polypeptide has a

higher probability of being mapped uniquely to its corresponding primary sequence. The algo­

rithm PGA(Polypeptide Genemting Algorithm)listed below shows how dipeptides can be merged

together to foml polypeptides. Details conceming the amino acid type recognition and primary

sequence mapping are discussed in chapter 5.
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void C~eatePolypeptideiDip0ptiàe_type.

1

R3 - R5 - R1lJ - RIS o. Rio and R3 - R5 - R29 - NIN - R~S

R3 - R5
R5 - R29
R29 - RIS
RIS - Rio
RIS - 3S
produce output

/IInput: a set of dipeprides
I/Output: pol}~eptides

//Examples:
Il
Il
Il
! 1
fi
Il

for each dipeptide in the input
copy this dipeptide into the polypeptide chain p.
for e~ch dipeptide in the input 1

if this dipeptid~ can be merged with chain /'
p:lsh this dipeptide into stack S:

)
append ( P. S) ; /! append() function will increase the length

Il polypeptide P

void append(Polypeptide_type p. Stack_type s)
(

while stack s is not empty (
pop a dipeptide element out of s then merge it with polypeptide p;

for each available dipeptide in the input of CreatePolypeptide()
if this dipeptide can be merged with polypeptide l' (

push this dipeptide into stack s2;

Il An empty s2 implies that there is no
Il dipeptide can be merged with polypeptide p
Il If this is a nonempty s2. c~ll append()
Il recursively with argument polypeptide p
Il and stack s2

if stack .2 is empty {
store polypeptide pinto output list;

else {
append (p. s2) ;

•
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3.2.3 Applicatio/lS wul Results

Ali of the algorithms arc implcmenled in C computer language and were tested on a 90

residue globular prolein. Figure 3.9 is a brief nowchart iIIustrating the relationships between the

input data and various algorithms. The experimental data were provided by University of Alberta.

Ali spectra were oblained on a V'lrian Unity 600 NMR spectrometcr opemting at 30 oC [68].

The sample protcïn is the calcium-Ioaded regulatory N-domain of chicken skeletal troponin-C

(NTnC. residue 1-90). Uniformly enriched ISN and 13C NTnC were also prepared. Available

heteronuclear 3D NMR experiments include 3D HNCA. 3D HNCO. 3D HNCOCA. 3D HCACO.

3D ISN TOCSY-HMQC and NOESY-HMQC.
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Cross peaks were automatically picked l'rom the transformed 3D spectm using the CAPP

peak picking program [56]. The CAPP program is run al the noise level. therefore a number of

l'aise peaks arc unavoidably picked. Many of these l'aIse peaks can be removed by filtering the

peak Iists of the 3D spectra through high signal-to-noise 2D spectra [68]. The final peak Iists were

given to the authors by B. Sykes atthe University of Alberta [68].

The 3D HNCO peak list contains 135 cross peaks compared with about 90 peaks predicted

for a 90 residue protein. The 3D HCACO peak Iist has 125 peaks, 3D HNCA has 242 peaks,

which include both interresidue NH; - N; - Ca;_1 and intraresidue NH; - N; - Ca; peaks. 3D

HN(CO)CA has 135 peaks and ISN TOCSY-HMQC consists of 141 peaks. Ali peak Iists were

input into DBPA as shown in Figure 3.9.

To process peaks coming l'rom different spectm, various tolerance values are introduced since

the spectm were not perfectly aligned. The tolerance value for comparing proton frequencies was

chosen to be 0.05 ppm. For the rest of the nuclei, tolemnce values are 0.40 ppm for nitrogen, 0.30

ppm for CO anù 0.47 ppm for Ca. These tolemnce values are adjustable based on user's experience

and spectr.l quality. The âigorithm DBPA produced 161 dipeptides which in tums was input into

the algorithm PGA. ln PGA. the 161 dipeptides were compared against each other to eliminate

redundant spin systems, finally resulting in 98 unique backbone spin systems. Theoretically 90

spin systems should be observed for the 90-residue NTnC. ".

• According to Figure 3.6, eight 3D NMR cross peak.~ are required to construct a dipeptide.
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ln practice. it is unady [Il ohtain NMR duta set without missing peaks. Hence. lhe abilit)" of

handling missing peaks I>ecomes an important eriterion for aUlomated assignment tools. In the

Troponin-C 'p,'ctral data. thirly-four of the 86 amino acid residues have al leasl one missing peak.

ln the first run of DBPA wc defined a suecessfully assigneè dipeptide as Ihe one having ail of Ihe

10 resonanee identified. This is il sIrict condition. As a result, the above 34 rcsidues were nol

assigned in th~ tirst run of DBPA. The sucœssful assignment pereentage is approximately 60%

(sec Table 3.1).

Table 3.1: Tbe "xtracled residues ui proIein NTnC using Dipep­
lide Backbone Parlilioning Algorilhm. See lexl for lhe defini!ion of
various runs of DBPA.

Ohscrvcd rcsiducs Ohscrvcù residucs Observed re,idues Residues unablc 10

in the lirst run in the second run in lhe third run assign without human
,,[OBPA ,,[OBPA ,,[OBPA inspcctiOl, of daln

05
Q6
Q7
AS
E9

AIO
RII
AI2
FI3
L14
SI5
EI6
EI7
MIS
119
A20
E21
F22

-,
K23
A24
A25

F26
027

F29
030
A31
032
033
G34

035
D36
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3.2 Identification of h'lckbon~~pin patterns

1.17
S3S

T3lJ
K4U
E41

L4"
G43
T44

V45
M46

R47.
M4S

J.4lJ
G5U

Q51 --N52
P53
T54

K55
E56

ESi
L58

059
MU
161

162
E63

E64
V65
066
E67

068
G69
870

071
172

173
074

F75
E76

E77
F78
L79

V80
M81
M82
V83
R84
Q85
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MX!> 1

,

KX7
EXX
DX~

A~() 1

Perhaps the besl way to de,nonstrate how OBPA overcomes Ihe peak missing problem is to

use Ihe eXilmple shown below. Residue E57 of Troponin-C misses a 3D NMR peak. the HCACO

peak (aH. Cu. CO). HCACO and HNCO arc the two experiments observing CO frequencies.

While HNCO peaks. (CO(i - 1). HN(i). N(i». in general delermine Ihe CO resonance of the

first residue of a di peptide. lack of HCACO peak makes DBPA unable to determine the CO fre­

quency of E57 in dipeplide E56-E57. As a resuh. E56-E57 remained in the category of unassigned

dipeptides in Ihe first run of DBPA on Troponin-C data set because its CO frequency has not been

determined yet. In order to idenlify E57. users have an option to relax the IO-resonance definition

of a dipcptide. In other words. OBPA can Ihink of E57 ilS Ihe second residue üf dipeptide E56-E57

even thûugh E57 h::s iln undelermined resonance. The relaxation of the definition of dipeptiJes

must be conducled carefully. because the possibility ofreceiving mulliple assignments for a dipep­

lide is increasing duc to the fact that ulily seven inslead of eight peaks are required for identifying

a dipeptide. A compromised approach is to take out ail the used peaks. Le.. peaks that have been

used by DBPA to construct dipeptides in the first run. before the second run of OBPA. Using this

approaeh. DBPA successfully assigned additional four dipepiides. E56·E57. E57-E58. 068-069

and 069-S70 in the second run. Note that the CO frequencies of these residues are absent. Proper

human assistance could help to retrieve the absent frequencies.

Sometimes a single missing peak may lead to two unassigned resonanees in a dipeptide.

Using Troponin-C as an example. the missing ISN TOCSY·HMQC peak. (N, NH. aH), of F78

makesOBPA failing to determine the aH frequeney of F78 in dipeptide E77-F78. The missing

aH results in a missing CO of F78 because the CO frequeney is supposed to cornes from peak

(aH. Ca. CO). To eXlract a dipeptide with two missing frequeneies. in this example CO and

aH. one needs to further relax the definition of a dipeptide. that is. eight assigned resonanee ean

• be eonsidered as an assigned dipeptide in the third run of OBPA. Using the Troponin-C data.

additional 12 dipeptides were detennined after the third run of DBPA. This makes the pereentage
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of assigned residues to about 7ger (67 of SS).

Eighteen residues remain unassigned after three nms of DBPA. Each of these rl',iL!ues has

two or more missing peak>. Before conducting appropriate manual inspection on the spectral data.

it is difticult 10 assign more residue at this stage.

3.3 Discussion

Computer algorithms 'Ire presented 10 aUlomate lhe resonanœ assignment of protein hack­

bone using heteronuclear NMR. The principle anù implemenlUlion of the algorithm DBPA (Dipcp­

tide Backbone Partilioning Algorilhm) is described. The differenœs helween DBPA and lmdi­

tional heleronuclear NMR assignmenl stralegy arc illuslmted as the following.

DBPA and manual assignment share a cornmon slmtegy. namely they bolh make use of Ihe

sealar magnetization lransfers Ihrough peptide bonds inslcad of using Ihe lhrough-sp",:e di pole­

dipole inlemclion 10 eSlablish lhe sequenlial conneclivilies. Figure 3.10 shows 'Ilypical manual

assignment path l'rom residue(i) 10 residue(i - 1) using heleronuclear 3D NMR. Inilially. a 3D

HNCO cross peak HN(i)-N(i)-CO(i - 1) wus selecled. Kecping the frcquency of CO(i - 1) in

mind. searches can be conduclcd on lhe 3D HCACO speclrulll la locale a cross peak COli - 1)­

Ca(i - l)-aH(i - 1). Once lhe aH(i - 1) frequency has been determined. lhe following seurch .

on ISN TOCSY-HMQC reveuls lhe resonunces of NH(i - 1) und N(i - 1). This lerlllinllies one

ileralion where seven resonllnces (NH(ii. N(i). CO(i - 1). Ca(i - 1). aH(i - 1). NH(i - 1).

N(i - 1» are found. Figure 3.11 gives lhe sumlllary of lhe procedures. Nole lhal each search

was performed based on lhe knowlcdge of one frequeney. For example. bath Cali - 1) and

aH(i - 1) were found on lhe 3D HCACO speclrum based on lhe known CO(i - 1) ehemieal

shifts. However. alllbiguilies resulting from overlupped CO(i - 1) may inercuse lhe diflicullies

of applying such manual assignment slralegy. In lhe DBPA ulgorilhm. lhe chunee of lhe above

overlapping is redueed by using IWO known frequencies 10 determine one unknown frequeney. As

shawn in Figure 3.11 and 3.12. bOlh of lhe NH(i) and N(i) eonlribule la lhe delerminal;on of

lhe Cali - 1) using 3D HN(CO)CA. Moreover. in eases lhal il is ambiguous la delermine lhe

resonanees ofNH(i - 1) and N(i - 1) from lhe known frequency ofCa(i - 1) using 3D HNCA
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i-"N TOCSY· ~
1 F _=,sN 1
'HMQC ,- 1,

3. H ct(i-1 ),NH( i·1 ),N(i-1) 1

1 HCACO F,=Ca 1

1 i
12. CO(i-1 l,C a(i'1 ),Ha(i'l) ,
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F,(Ha)

F,(HN)

L-_---'f- -'F,(Ha)

F,(CO)
1

FI
1. HN( i),N( il,Cui '-1)

L- ...JF,(HN)

F,(CO)

Figure 3.10: Schematic illustmtion of using three triple resonance correlation experiments to obtain the
sequential assignment, Staning from peak 1 in 30 HNCO, N and NH of residue(i), and CO, Ca. aH.
NH and Nof residueCi - 1) can be obtained once the three peaks are merged, This is a typical stmtegy of
manual assignmenl.

spectrum. OBPA automatically allempts to find another path to confirm the assignment of the

NH(i - 1) and N(i - 1), In Ihis particular case, DBPA looks for the frequencies of NH(i - 1)

and N(i - 1) from the known aH(i - 1) using 3D ISN TOCSY-HMQC. Figure 3.12 shows the

cC'!Inectivities delermined by DBPA. Comparing Figure 3,12 to Figure 3.10. it is obvious that

computer programs are gomi attaking more NMR evidencc.~ to resolve the possible ambiguities.

DBPA offers an option which affects the number of the output spin systems. The basic op­

eration DBPA performs is searching. With respect to each sturting peak. DBPA looks for ail the

candidate peaks which can be merged with the starting peak in available NMR spectra. In sec­

tion 3.2 we described a ranking parameter using which it is possible to select the best candidate.

• The ranking procedure measures the chcmical shift difference betwcen the candidate and the sturt­

ing peaks so as to decide which candidate is the most Iikely one to be purtitioned with the sturting



•

Figure 3.11: Comparison of the mant",1 and autom~ted assignn,cn! str.llegies. On the left. the manual
assignment str.ltegy assigns 7 resonances using three cn..;:; peaks (see Figure 3.10). On the right. OBPA
assigns 7 resonances using live cross peaks (see Figure 3.12).

peak. However. correct merge doesn't always occur atthe besl candidate. Consider the following

example: live candidates peaks, (Oil' 0il' 0/, ), (Oi,. oh. 0/,). ... ,(Oi~. 0i" Il(,), Were ohserved al1J

about to be merged with the slmting pe,lk (Oio' 0io' 0(0)' Suppose (0;,. 0;" .l,,) is the one that should

be partitioned into the spin system with the starting peak but coincidently the chemical shifl differ­

ences lo;~ - oiol and 10i~ - 0iol are smaller than l.l;, - 0;01 and l.lh - 0iol, respectively. As a result,

the best candidate will be determined as the firth candidate instead of the correct one, the second

candidate peak. To avoid this situation, OBPA implements an option hy enabling which ail of the

above five candidates would be kept. In other words, the capability of choosing the be:;t candidate

will be disabled. The implication of this option is that there will be five independent four-spin

systems. (0;0' Ilio' Oko' Il,, J. {o;o' 0io' Oko' ,I" J•... ,{Oi". 0io' Ok". Ol~ J. Only one of the above merge

is correct whereas the correct one is not necessary the one having the best partitioning parameter.

It should be pointed out that once the multiple merging option is enabled. it affects ail merging

steps. Thê number of output spin systems couId grow rapidly. Users should be able to deterrnine

when the option needs to be enabled depending upon the overlaps of the NMR spectra.

OBPA is not designed for specific NMR experiments. It can process many combinations

of triple resonance heteronuclear 3D·NMR experiments and give the backbone resonnnce assign-
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F,(HN)

F,(HN)

F,(Ca)F,(CO)

IHNCA F]= 15N

1
5 Cll(r.ll.HN( ,·lj,N( '-1)

F,(Cn)

"N TOCSY· F
l
='5N HCACO F;?=Cn

HMOC

4. HU(j·II.NH( 1·1),NI,·I) 3. COI i-I),Cu(,.( ).HIl(i-l)

>E)
.

F,(Hn) F,(Ha)

F,(HN) F,(CO) ..

HNCO F
2
=15N HN(CO)CA F

2
::15N

J; 111

1. HN( i),N(i),CO( j·l) 2. HN( ;I,N( jl.C ....~i.1)

F,(HN)

Figure 3.12: Schematic illustmlion of using live 3D triple resonance correlalion experimenls 10 oblain Ihe
sequenlial assignmenl. Seven reson.lnces (NH and Hof residue(i), N, NH, a H. Ca, CO of residue(i - 1»
can be obtuined. This is the assignmenl path our computer algorilhm uses.

ment. However, il is neccssary to supply sufficienI infomlalion to OBPA in order to accomplish

complete dipeptide assignments. For cxample, a single 3D HNCO spectrum does not provide

enough infomlation to assign a dipeptide because only three resonances. NHi. Ni, and COi-io can

be determined. Similarly. a 3D HNCO and a HNCA. giving four resonances, NHi, Ni. Cai and

COi-l, don't provide enough infomlation, either. Apparently we need to detemline whether.ln

• NMR data set have sufficient information to assign the 10 resonances of a dipeptide. A simple

algorithm was designcd to vcrify the completeness of input NMR data set. The algorithm is Iisted
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as follows:

void VerifyCornpleteness (Heteronuclear3DNNR_type .... l

leadingAlI possible permutations of the input NMR experiments
to a complete dipeptide backbone assignment, i.e .•
( N. NH. a H. Ca. CO)i-1--( N. NH. a H. Ca. COli

AlI available hèteronuclear 3D NHR spectra. Required
information includes the resonances observed in the experiment
and the correlations between the resonances.

Example: For 3D HNCO spectrum. the input information is
( NHi. Ni. COi_Il.

Output:

{
Il
Il Input
Il
Il
li
Il
Il
Il
Il
Il
Il

suppose the nurnber of input NMR experirnents is N;
comput.e aIl possible N! permutations for the IV !,fMR experiments;
for each of the permutation 1

fill the three observed resonances of the first ex~erirnent inta an
empty dipeptide backbone,

for each of the remalnlng N- 1 experimencs in chis permutation (
if two and only two of the three observed resonances overlaps
with any other two resonances in the dipeptide backbone

add the third resonance of this experiment into the
dipeptide backbone;

if aIl of the 10 resonances of the dipeptide backbone are filled
a complete permutation is found. break the inner lOOPi

if the dipeptide backbone are filled with 10 resonanceS
output this permutation:

else
this permutation does not provide sufficient information to assign
10 backbone resonances;

•

Essentially this app' .'ach follows the same concept of DBPA. namcly. two ovcrl;lppcd resonances

coming l'rom two 3D NMR cross peaks confirm the merge of these two peaks. In the beginning ail

possible permutations of the supplied NMR expcriments are computed. For a data set containing

N spectra. there are N! pennututions. Here a permutation means a sequence ofusing NMR spectra

to construct dipeptiues. Thesc N! permutations are then examined to determine whether sufficient

NMR correlations for dipeptide construction are present. Consider the following five NMR spec­

tra: 3D HNCO. HNCA. HN(CO)CA. HCACO. ISN TOCSY-HMQC. A total of 5! = 120 possible
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ways exist in terms of applying lhe live speclra sequentially_ NOl ail the permutations resull in a

complele assignmenl of a di peptide. Il is possihle that none of them provide sufficient informa­

tion. Given a data set <:onlaining N Ni\IR speclra. our program extraclS ail the permutations that

produce <:omplele dipeplides. i.e...dl of the 10 resonanccs of a dipeptide ure delermined. Note

that there might he more Ihan one successful permutation. Currently our algorithm docs not dis­

tinguish those permutations. In other words. Ihe algorithm does not evaluate the permutations and

detennine the best assignment approaeh. This is simply duc to the complexity of the information

provided by the V~l iely of NMR experin.ents. As new experimcnts are invented quickly. it is nei­

ther possible nor necessary ta alla\\' lhe algorilhm 10 assess individual NMR experiments. This

task is left to be donc l1umually.

We mentioned that il is possihle thal more th.m one permutation of input NMR experiments

can be adopted by OBPA to assign the dipeptide resonances. Here an example is given ta iIIustmte

two different approaches of lIsing a five-experiment data set. Available experiments are 30 HNCO.

HNCA. HN(CO)CA. HCACO and ISN TOCSY-HMQC. Bath of the assignment approaches start

al a HNCO cross peak. The lirst approach assigns dipeptides l'rom C-terminalto N-terminal. A

total of 8 peaks lIre involved. The second approach assigns dipeptides in the reverse arder. namely

l'rom N-terminalto C-terminul. und involves 9 peaks. Figure 3.13 Iists the ussignments and ail of

the involved peuks in the order they ure used. The reported result in section 3.2.3 were pro<luced

using the first approuch of Figure 3.13 simply because fewer involved peaks means less chance of

huving missing peuks. OBPA hus un option ta control the assignment direction. As iIIustrated in

Figure 3.13 where dipeptides cun be ussigned l'rom C- ta N-terminul (resi:!ue(il to (i - 1)) or l'rom

N- ta C-terminul (residue(i -- 1) ta (il). Users can select either one as the assignment approach.

ln this chapter we introduced the procedure that requires a minimum of eight correlations to

assign the backbone resommces al' a dipeptide. The minimum number is determined based on the

fact that each residue's backbonc has live resonances (N. aH. Ca. NH. CO). thus a dipeptide is

composed of 10 resonunces. Suppose these 10 resonances are denoted as (a,. hl. CI. dl. el) and

(al. bl. Cl. dl. el) where the lirst live nUlnbers represent the resonances of residue 1 while the last

five numbers are the resonunees of residuc 2. One of the possible combinations of the eight nec­

essary correlations ure {CIl. bl. cd. (b l . ct. cid. (CI. dl. ed. (dl. el. CIl!. {CI. dl. bû. {al. hl. CÛ.

79
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•

Figure 3.13: Exampk showing two approachcs for the assignmenl of a dipeplide.

(b2. C2. cl2l. {c2. th. e2}. [n this case. corn:lation {tli. b l • Ci} and {b l • Ci. cld give risc to four rcso­

nances. lI(, bl. CI and cll. Similarly. rcsonancc el can be dctcrmined by mcrging {bl. CI. cld IInd

(cio cll. el)' RepclIling this procedure. 1111 the 10 rcsommce can be determincd. Il is gcncrally not

easy to declare a minimum set of req:lired NMR cxpl'riments for llUlOmated assignl1ll:nl stralegy

Iike the one discussed here. nor is it necessary. There are many diffcrcnl NMR experimenls. cach

provides one or more inter- or intrarcsidue correlations. What is relevanl herc is the minimum

number of correlations between the nuclei, not the number of NMR spectra.

3.4 Summary of the spin system determination from triple reso-

nanceNMR

Algorithms are proposed to automate the resonance assignment of protein backbone us­

ing through-bond interresidue correlations. DBPA(Dipeptide Backbone Partilioning Algorithm)

merges cross peaks among available NMR speetra and extracts the backbone spin systems. Ev-
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cry merge is conlirmed hy IWo picces of evidences. i.e.. t""O overlapped frequencies of a 3D

cross peak. To fullill lhis rCl)uirelllent. six intraresidue and t""O il1lerresidue correlations arc

needed to eonstruet the spin syslems nf a dipeplide. Once ail the possihle dipeptides arc ob­

tained. PGA(Polypeptide Gcnerating Algorithm) links the di peptides to fOrtll polypeptides. Each

of the polypeptides in tllm ean he lIlanllally or autolllatieally assigned to the primary sequence

of the protein. DBPA can be applied to many different types of NMR experiments. The five­

experiment set ( 3D HNCO. HNCA. HN(CO)CA. HCACO and ISN TOCSY-HMQC) along with

3D CBCANH were ehosen to dcmonstrate the generality of DBPA.

3.5 Using double resonance heteronuclear 3D NMR

3.5. J [Ilfmdl/cfioll

TOCSY type NMR experiments play important roles in protein resonance assignmenl.

TOCSY cross pe:,ks have absorption peak shape. thereby simplifying the peak identification and

picking procedure. Most lIvllilable lllltomated peak picking software can process TOCSY type

spectru while some of them h'lVe dilliculties processing COSY type experiments. TOCSY exper­

iment observes neighboring liS weil liS dislllnt correlations between protons. ln otht:r words. the

TOCSY spectrum gener.lllv eonsists of lIlIthe infomlllticn available on the COSY spectrum. In

pmctice. by st:tting a shon mixing time. tht: 2D homonudear TOCSY spectrum l'l'ovides almost

the same cross peak informlltion 2D DQF-COSY does. Moreover. by setting an appropriale long

mixing time. the TOCSY e.xperimel1l is able to provide long mnge cross peaks between amide

proton and aH. ,BH. yH. "l'en 8H.

ln this section wc dcmonstrate the wllY u single TOCSY type experiment can be used to

construct umino ucid spin systems. A computer ulgorithm culled NCPA(Nitrogen Constrained

Panitioning A\gorilhm) was proposed. The implementation of the algorithm was tested on a ISN

TOCSY-HMQC spectrum of the 90-residue protein NTnC. Once the amino acid spin systems are

created by NCPA. the ami no ucid pattern recognition progrum deterrnines the amino ucid types of

observed spin systems. ln the fimll stuge. the sequential ussignment protoco\ describcd in chapter 5
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takes n:spon~ibility l)f plai.:ing the.: spin systems within pH)tein primary Se.:lJlIc.:11I.:c.:.

'\lg'..lrithm NePA sharr:s the.: same.: assignmc.:nt stratc.:gy as ilS prc.:dc.:l'c.:ssnr, CPA (Cunstrainc.:d

Partnioning Aigorilhml 123.2-11. The main task CPA performs is to merge as many Ni\IR l'WSS

peaks as possible in urde.:r ln funn spin systems. Each mcrging ope.:ratiun has to he strktly 1,.'011­

finned by constraints. which eo:Iid he another cwss peak in the same spectrllm or in a sllpplemen­

tary spectrum. Spin systems arc created in the form of gral'hs. a comhinalillll of nodes (sl'ins) and

edges (cross peaks) and represented hy 'Idjaœncy lists. The extracted graphs colllain information

of chemical shifts as weil as inter-resonance connections which make the design of an automateO

algorithm for amino acid type identification casier. There is. however. '1 major diflàen.;e hetween

NCPA and CPA. CPA takes COSY as its prim'Iry input spectnlm while NCPA takes TOCSY spee­

trum as the only input. As is seen in the next section. in principle ISN TOCSY-I-IMQC provides

ail correlations bctween side dmin protons and amide NH. Correlations belween side chain pro­

tons themsclves arc not observed in the spectrum. however. Spin systems derived by NCPA arc

therefoœ different l'rom those deri"ed by CPA due to the lacks of correlations between side chain

protons. NCPA's spin systems reqllires a revised dat:lbase of the sttmdard ,nllino acid patterns to

carry out the spin pattern recognition.

3.5.2 Concept

For larger proteins, Ihe NH-aH Iingerprint region, where most resonancc assignmcm slmte­

gics start l'rom, may Imve severe overlup of multiple cross peaks. '1'0 solve this problem, Marion

et al. [69] proposed two 3D NMR experiments, the 1H-,sN TOCSY-HMQC and NOESY-HMQC,

to provide the through-bond and through-sp'ice connectivities neccssary for the sequential assign­

ment procedure. ln the above experimenls. Ihe 11-1 and ISN resonanees arc rccorded in FI ilnd F2

dimensions, respectively. The NH ccsonances arc œcorded in f, dimension. The FI (11-1) - F3(1 1-1)

projection corresponds 10 the FdIH) - F:(INH) region of a œgular 11-1_ 11-1 NOESY or TOCSY

spectrum and th!!s ensures thal the NI-I-aH connectivities can be easHy observed. Figure 3.14

shows that residues having different ISN chemical shifts appear on ditl'erenl FI - F3 planes. Ali

protons within an amino acid residue arc observed in a stmightline intersccted with the F3 axis at

lIZ
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Figure3.1~: A simuhlled 3D I;N TOCSY-HMQC sp.:etnlln. Cross peaks bdonging 10 the s:une residue
are observed in an F,-F, plane. The eorresponding F2 coordinate is the chemical shift of that residne's
amide nitrogen nucleus.

the chemical shift oftlmt n:siùue's amide prolon. Spectm overlap is rcsolved by projecting the reg­

ular2D IH-1H TOCSY or NOESY illlo m.my FI (IH)_ Fl(IH) planes. One possible limitation for

the two 3D NMR experiments is thm Ihe spectml :nnbiguities occur in case that two residues have

common ISN and NH resonance frequencies. Another problem for the 1H-,sN TOCSY·HMQC

and NOESY-HMQC experimellls involves the relativcly sm:tller l JNII-uH couplings for a-helix

based proteins. The snmll J couplings might give rise to weak yH.IJH, ...• etc.. cross peaks.

3.5.3 The Constrained Partitionillg Algorithm I/sing Nitmgen chemiclll shifts

The algorithm takes Ihe only input from the 3D 1H-,sN TOCSY-HMQC spectrum and out·

put the individual :nnino acid spin systems. The basic concept of the algorithm is simple: to

merge two 3D ISN TOCSY-HMQC cross peaks (IJH),IJN),IJ(NHl1l and (IJH2.IJN2.IJ(NHhl. the

chemical shift differences of IIJN) -IJN21 and IIJ(NHl 1 -1J(NHhl must be observed within their

corresponding chemical shift tolerance values. For the comparison of IIJN 1- IJN21. the tolemnce

of nitrogen chemical shifl is sel to be 0.20 ppm by default. while the tolenmce of proton chemical

shift for the comparison of IIJ(NH)I-IJ(NHhl is selto 0.02 ppm. [fboth of the ubove comparisons

.)
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arc satisticJ. a spin ...y... lc.=m \\ ilh Ilirc.=L' prottllb ~UlJ one nitrogen is ~onstructed as the one shown

in Figure 3.15. "ole in Figure .1.15 lhatlhe prolOlb aB 'lnci {lB haw their own connections 10

H H H H H H H H

H C H C C H C C

" ~
,;,i:","

.,,'.
,';",11\

.\,,,11,

,"\oH:

NNH)

,"iMI) .';I.ml <ÎII\ll1

Figure 3.15: The merge oftwo 3D "N TOCSY-Hl\IQC cross peaks. Two resonances. NH and N in this
panicular case. are require<l 10 he overlappe<l in oroer to con<lucllhe merge. A four-spin system will he
crealed.

(NH) 1. However. they don't have a conncction bclwccn cach anolhcr. This is lhe feature for the

spin coupling pallcms gcncrmcd from TOCSY type cxpcrimcnts. Since the correlations between

aliphatic side chain prolons arc nol obscrvcd. it is generally not possible ta establish the connec­

tivities helween side c1min prolans. Figure 3.16 lists a few example spin systems generaled from

the 3D IH_ISN TOCSY-HMQC expcrimcnt.
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N N NIl ~ ••'"H C CH, CH, CH, HM C'. 6(11111
C 0 NH,

'''' ..... """'\ 64IHI

Figure 3.16: Sorne sample spin syslems deduced from the 3D ISN TOCSY-HMQC speclrum.

The following codes explain lhe delailed partitioning operations.
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/1 Input: 3D 15X 7C~SY-~~~~C ;~0~k li~:t.

/1 Output: amino ac:d ::!~:.:; sy:.::::: ...".'::-.s.
Il

for each of the pea~ i li:::: '_'-'1 .\' l i:1
the ':'51\' ?(X~;-;\·-:::·:,,-"C peak list

search a cross peel.:':' Il ::: ,:b:> input peak list such tlhlt

Il is che mast likt"ly pe<1~: :::ü be in the samt' spin systt:.".'nl \... ith
peak 1;

record pair U. Il) i:1 a ':.l2:nporary table;

for each input peak i (i::::' :::0 S) 1
add peak; inta a ne\..' spin system Si;

for each of the peak; (jol to N) in
the 15N TOCSY-HNQC peak 1ist 1

find the most likely partner peak for peak j from the above temporary
table. suppose the partner peak is peak Il:

if peak j is a member of the spin system ~

add peak Il into Si;

else if peak Il is a member of the spin system Si
add peak j into S,;

get rid of the redundant spin systems;
output aU Si;

ln principle N input peaks give rise to N output spin systems. However. a number of them

are redundant spin systems. For instance. starting l'rom the cross peak (aH. N. NH) of an alanine.

the spin system (N. NH. aH. tlH\ can be crealed; on the other hand. the same spin system can

also be ~erived l'rom the cross peak (tlH. N. NH) of the same alanine. One of the above two

spin systems are redundant and musI be removed l'rom the output. This is why NCPA conducts

a purging operation before giving the spin system OUlpUt. One may also notice that many spin

systems are composed of only one peak in the output list of an NCPA running. Falsely pieked

peaks aèe the common reason for those one-peak spin systems. because a l'aise peak generally can

• not be merged with other cross peaks.

Once the spin systems are generuted l'rom the ISN TOCSY-HMQC data. the information
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of the i1mino acid lypl· ... i ... rcqllll"L'd IIlI" Ihe 1:\-enIllal placement of the spin systems wirhin the

prim;Ir)' sequence. !n dlapter 3 \\l' lk ...~.:rihed an o.lmino aciJ path:rn n:cognition algorithm which

dctcrmincs the spin -.y ...II.'m t~ pc.: ... ~IlJl\ 1l1wlically. The original ;t1gorithm Jeal ... \Vith the spin systems

CXlractcd from hom':Hllh.:lc;u" 2D ~\IP. data. A ... wc"n: secn carlier. the spin systems cx.tractcd l'rom

3D 15N TOCSY-U:\IVC "o'lSis' of holh l'roll"" and :nllid~ ni'rog~n allltllS. This indica'~s that a

standard chemica' shifl dalah"s~ for amide nitrog~ns is n~ed~d 10 p~rform th~ automated patlem

recognition. In addition. th~ standard p"H~rns of th~ 20 ..mi no acid, must b~ revised to reflect

the facl th..t no conn~ctivity h~l\\wn sid~ ch..in protons is eSlablished in the ISN TOCSY-HMQC

S~Clr.l. Th~ ~xp~cl~d ~h~mic.1i shi fIs of th~ amid~ nilrog~ns for the 20 commonly s~~n amino

acids ar~ listed in Tahl~ 3.2. Th~ dala w," provided by Choy [70). Th~ chemical shifts are listed

Table 3.2: The ~xp~cl~d chemiea\ shilh of amide nitrogen nllcl~i for th~ lhrc~ prolcin conformalions.
Numbers arc in l'l'Ill. Th~ s!andard dcvimions arc also giv~n.

Amino fleI!.\ Shee' Coil
Aeid I1h.:;m sld mc;,m std mcan sld

AI.. 1:!.:!.3h :! J{:! 124.72 5.22 124:47 4.37
Arg 11~.7~ :un 124.50 4.16 120.56 5.2"
Asn 117.23 3A~ 121.43 5.51 IIS.81 4.4~

Asp 119.S 1 2.90 122.73 4.65 120.27 4.28
Cys IIS.On 3.36 11~.15 3.57 118.90 4.08
Gin 11~.2s 3.<J 1 122.12 3.85 120.43 3.97
Gill 119.22 2.62 123.21 3.74 121.58 4.08
Gly 1117AS 3.~3 109.73 4.45 109.84 3.80
His 117045 1.<J9 121.48 4.49 118.70 4.72
Ile 120.20 3.44 124.73 4.20 120.80 6.88

Leu 120.42 3.18 125.39 4.27 122.95 3.93
Lys 120.16 2.55 123.27 4.82 121.06 4.48
l\lcl Il KI<J 3.06 122.44 5.38 120.61 3.92
Ph~ 11<J.(~1 3045 121.97 4.22 121.68 6.53
Pro 13}.14 3.% NIA NIA 136.83 1.76
Scr 115.<J1 3042 118.03 3.61 117.18 4.88
111' 115.73 4.8<J < 117.47 5.15 115.51 6.20
Trp Il ~.<J~ 1.76 124.95 3.96 120.29 5.72
lYr 120.1<J 3.31 122.75 4.83 120.19 5.07
V..I 11~.74 4.47 123.33 4.80 120.61 5.91

86

according 10 Ihree m:ljor strucluml components: heli". sheet :lnd coil.

• ln Figure 3.17 the expecled spin coupling p:lttems for a serine are Iislea. The spin syslems

derived l'rom Ihe 3D ISN TOCSY-HMQC speclrum differs l'rom Ihe one derived l'rom 2D COSY.
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Figure 3.17: Comparison of the spiIl systems deduœd l'mm 3D l~N TOCSY-HMQC and l'rom 2D
COSYffOCSY spectr.l. The former h:\S an amide nitrogen resonance and is lack of the cOllnectivily
between side chain protons.

To complete the sequence-specific assignment. the individual amino acid spin systems must

be placed in their corresponding positions within the protein prim'IrY sequence. Up to this poilll the

only NMR experiment used is 3D ISN TOCSY-HMQC which docs not provide :my inlerresidue

infonnation. A similar 3D NMR experiment. ISN NOESY-HMQC, provides the through-space

correlations needed for the sequential assignmenl. The 3D ISN NOESY-HMQC experimenl re­

solves spectml ambiguities which limit the analysis of the conventional 20 NMR spcctm. The

absence of overlapping cross peaks in 3D NOESY-HMQC allows the unambiguous identification

of daN(i. i + 1) and dNN(i. i + 1) through space nuclear Overhauser conneetivities which an:

necessary for connecting spin systems sequentially. Our stmtegy of applying the 3D ISN NOESY­

HMQC experiment is similar to the one described in chapler 5. Using Ihe interresidue correlations

provided by 1sN NOESY-HMQC, the individual amino acid spin systems can be connecled 10

fonn many dipeptides. Those dipeptides are used as the building blocks of pl'Iypeptide chains

which in tum are to be mapped to the proper positions within the primary sequence. The actual "

mapping lask imolves the use of an algorithm called PMA which is described in chapter 5.

A daN(i, i + 1) cross peak in NOESY connects the aH of a residue and the NH of the
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1. 3D 15N NOESY-HNQC peak list.
2. all of the spin systems derived by the algorithm NCPA.

Totally N spin systems.
dipeptides connected through dnn(i.i+l) and danli.i+l)

•

ft lllt lwing rc ... îl!lIl.' whilc.= a d" (i. i ~ 1J cros ... pcak collnCl".'h Ihl.: amide pnl[ons of {WO sC:l)ucntially

I1I..'ighh()ring n::-.idl1l.· .... Thl.: du,(i. i ~ Il and d",ti. i + Il (ft)...... peak... an: the.: t\Hl ('(HllnHmfy usc.:J

intl.'rn: ... iduc l.'orn:lation, in idcnlifying sc.:lJw:ntially l'lHlncc(cd amino acid ;;pin systems [2]. A

simple progrmn was dcsigncd 10 crealc dipcptidcs l'rom the dcùuccd spin systems. The n:quin:ù

inteITesidue information is adopted from the "u~(i. i + 1) and ":<~(i. i + 1) peaks of the 3D

ISN NOESY-Ui\'IQC speetrum. The codes for the establishment of dipeptides from 3D NOESY­

IIMQC arc lisled bdo\\':

va id élnnn (PeùkLlst_typ,~ 3D 15N NOESY-HNQC, SpinSystem_type •... )

1
Il
Il Input
Il
Il
Il Output:
Il

for each of the spin system pair li.jJ, Ii.j= 1 to N. i#ji 1
if both dnn(i.i+l) and danli.i+l) are observed in
the input peak list

link spin system Si and S, to a dipeptide Si - Sj;

1
output all discovered dipeptides:

The discovered dipeptides along with the available amino acid type information makes it possible

to use our sequenliul assignment protocol to complete the sequential assignment.

3.5.4 Applications and Resllits

The ISN TOCSY-HMQC and NOESY-HMQC spectra were provided by University of Al­

berta [68]. Sample protein is the calcium-Ioaded regulatory N-domain of chicken skeletal tro­

ponin-C (1-90). 80th experiments were carried out on a Varian Unity-600 NMR spectrometer

operatingal 30 oC. The mixing limes for ISN TOCSY-HMQC and NOESY-HMQC are 70 and

150 ms. respcctively. The tSN carrier frequency is 117.44 ppm and the spectra width is 23.03 ppm.

The ISN chemical shifts are reported relative to extemal acidic N~CI (24.93 ppm). Automatic

peak picking of the transforrned 3D spectra \Vas achieved using the CAPP progrolm [56]. A total
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nI' 2-l1 1':,\ TOCSY-II:\IQC and hi:' 1':,\ :'\OESY-II:\Il)C ,'1"" l'e.I~' ",'r,' 1'1>,'rt.·d. The l''''I~

Iist "as tlien giyenlhe the alllhnrs hy H. S\~e, Ih~1

Th~ algorithm i\CPA \\'0.1:-. il1lpktll~IHL'd using C lan)Uagl'. On a ï5 ~1I11 1\,ntiul1l \.'Pllll'lItl'l.

the typil.:al c\.cnnilln lime for the t:ntÎn... L'\l:L'utinll is apPUI ~ minlltl.',"'.

Using the 2-l1 l'N TOCSY-II:\IQC l'cab. NCPA prngram prndu,"'d ~2 spin sy't.·llb. Th,'

10icrancc value for nitrogcn anù proton dtemiL'al shifts an.: set ln O.::!() and n.n2 l'pm. n.'spl'\.1in.'ly.

Each dcduccd spin system consists of an amilll: nitrogclI. amide proton and sollle protons. :\

sample output of NCPA is listed hae:

/'9th C/ Total Peaks= 3
//Peak 25 18.660 5.140 117.8601
//Peak 26 18.660 , 2,790 , 117.8501
//Peak 27 18,660 , 2,540 , 117.860)
//TOCSY-HMQC 1.00 2515.140, 8.660,117.860)+2612.790, R.660
//TOCSY-HMQC 1.00 2712.540, 8.660,117.860)+2515.140, 8.060
//Spin Coupling Topological Gr?~n:

N,1l7.857
IH,S.660,2,3,4
2H,5.l40,l
3H.2.790,l
4H.2.540.l

117.R501
117.R601

•

ln the listing. il spin system with four protons and one nitrogen W.IS ereated l'rom the ISN TOCSY·

HMQC peak 25, 26 and 27, The adjacency liS! of the spin system is also shown, For example,

proton 1H (8.660 l'pm) has three ncighbors: 2H, 3H and 4H, Among a lotal of 82 output spin sys­

tems, seventy-four ofthem can be verified against Ihe independently done manual assignment [681.

Figure 5.9 summarizes Ihe result of Ihe NCPA run.

As a subsequent test, we examined the interresidue duN (i, i +1) and dNN (i, i +1) correlalions,

Upon the 675 ISN NOESY-HMQC peaks and 82 deduced spin systems, a total of 77 dipeptides

were genemted. Those dipeptides were linked to one another to form Ihe 174 polypeptides with

the length l'rom 310 10 residues. On an earlier run of Ihe amino acid pattern recognition progmm,

tlie amino acid types of the 82 dedueed spin systems were determined. The output is digesled

in the following listing where each spin system has a candidate Iist showing the possible amino

acids.

Gl(lst Cl: Ile/0.793 Leu/O.766 Arg/O.74l Lys/O.74l Ser/O,6l4
C2(2nd Cl: Ile/O.65S Arg/O.6lS Lys/O.6lS Met/O.543 Cln/0,536
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ln the I.t",t sequeruial a.... signrnent stage. the.: algorithl11 Pl\lA slh':l:'essfully assigncr..i n:sidue..t

h' JO. 15 III 20. 2 J hl 2-1. 27 tll .~O and 7<J to XC>.

3.5.5 IJisf"lI.uio1/

The samplc protein NTnC ( I-<JO) has Ih'e major hcJix segments [681. In those segments. mosl

of lhe .' 11'011·· "II ,Ire kss than 6 Hz. The small eoupJings orten result in shorler TOCSY Imnsfer. In

nlher wnnls, lhe l'N TOCSY-HMQC speetrum ùocsn'l proviùe a suflicient number of long rangc

lhrough-bnnù cross peaks. This can be writieù from the outpul of the NCPA program. Many of

the extmcteù spin syslems conlain N, NH. aH anù flH only. The ,Iùùitional siùe chain resommces

arc mmble ln be ùetermineù as lhe speclral ùata is insuflicient. The short slùe chain eO'ects lhe

accumcy of lhe ùelermination of "mino "ciù types. because il is the siùe chah' that makes lhe 20

mnino "ciùs ùistinct 10 one "nother. The low percent"ge of succcssfully "ssigned rcsidues arc due

to lhe ineomplele TOCSY conneel;ons.

Withoulusing ISN NOESY-HMQC experiment. 1sN TOCSY-HMQC itself provides lm alter­

mile "pprO:lch 10 ùetermine the "mina "cid side chain resonances. The more detailed side chain

informmion is "v..ilable. the more "CCurate delermin"tion of "mino acid types can be "nticipmed.

The lsN TOCSY-HMQC "Ione mighl not be able to provide sufficient data for a complete reso­

nancc assignmenl. However lhe extmcted spin system information docs play an important role

in the ovemll sequential assignment process. Sec section 5.2 for further discussion of the NCPA

..Igorithm.
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3.6 Summary of spin s~'stcm dctermination from douille rl'SOn;ll1l'l'

3DNMR

The algorithm NePA, (Nitrog~n Conslrain~d Partitiollin~ .·\I~orithl1l). was IlI"\lptl~l.·\lltl ;lU­

tUIllô.lh: tht: dètcrminô.ltion of ami nu ô.\('id ~rin sysh:ms. Thl.' ;,lIgl1rithm is a din..yt ,'\k'USHlTl "," Ih~

1D CPA algorilhm deserihed in ehapler 1. The algorilhm has Ihe fcalurl' Ihal il "a" a"ù'pl a ""­

gle TOCSY type NMR experiment as Ihe input and idemiry Ihe indi\idual spin syslellls rmlll 11)

TOCSY or 3D ISN TOCSY-HMQC spectmm. Along with Ihe seqllemialcolll1l'di\'ilil's "fI"'i.bl

by 3D ISN NOESY-HMQC. wc demonstrated the possihilily or lIsing <Imiuimum nUll1ber or Ni\IR

experilllents to conduet the automaled seqllential assignmenl.

"1
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Chapter 4

Automated Extraction of Aliphatic Side-chain

Spin Systems

4.1 Introduction

The aim of this chapter is 10 eXlend Ihe CPA algorilhm 10 3D NMR and presenl a computer

assisted spin syslem eXlmction procedure based on 3D HCCH-COSY und HCCH-TOCSY NMR

speclra.

Resommce assignmenl of a prolein's backbone can be achieved by a combinUlion of several

lriple resonance 3D NMR experimenls [5]. Furthermore. 10 obtain the delailed struclure of a

prolein. the NOE cross peaks of lhe chain nuclei mUSI be unambiguously assigned 50 thUl enough

dislance constraints can he produced 10 constructthe protein side chain orienlation. The analysis

of NOE cross pcaks usually requires the side chain resonance assignmentto be compleled. Several

3D NMR expcriments have been proposed for the resonance assignmenl ofprotein side chain, such

:\S 3D HCCH-COSY [71-73]. HCCH-TOCSY [74]. HCC(CO)NH-TOCSY [75.76] and HCCNH­

TOCSY [75.77].

Among the seveml anempts for the automated analysis of 3D NMR. two of them [9, 16]

sludied the applications of homonuclear 3D NMR to protein proton resonance assignments. The

• rest of the approaches use triple resonance heteronuclear 3D NMR to obtain the assignment of

prolein backbone [17] and to establish the sequential conneclivities of amino acid spin systems



•

•

IlS. 19]. Th~ a\'ailahility Pl' thL' inf\lfll1atilHl ah\llli ~pin ... ~ ... ll."I1l"" in\':ll1din~ h~h.:J...h\"ll· and ... ide

I.:'hain n:sonancc.:s. as ",dl as the.: al1lill~l a",:id tYIlL':-;. i ... ,,:nh..'ial in ail thl":'iol' Tlll·tlH'ds. 1hl\\'l.'vl'r. in

ail nf the hC:h.:ronudc.:ar 3D N~IR arpro~h.·hl,.·s mc.:ntillllcd ah~l\'c.:. (hl.: il1f~lrmatilln \)f i,il- I.."hail1

spin sysh:ms has ln he.: llli.lI1l1ally llhtaincd dsc\\'hc.:n.:. This L·haph..·r is dirl',,:tt..·d in thi rl'gard hl

design an automatÎc strah:gy to ohtain the.: infllnnation of prllh:in spin sY:'ih:ms. In this ....'haptc:r

an algorithm is proposee! to extraet aliphatiè side ehain spin syslems from heteronudear 3D Ni\lR

data of proteins. The algorithm merges eross peaks from 3D Ni\IR d'Ila. sueh as 3D IICTII-COSY.

10 foml spin coupling "ystc.:ms. At c.:ach mc.:rging stc:p al Icast 1\\'0 I.:llllstraÎnts arc fC'lIuin:d hl a"''''Uft:

the validity of the mcrge. Thus an additional Ni\lR speelrum. SUdl as 3D HCCII-TOCSY ean hv'

usc:d 10 suppl)' thcs~ constraints. Tht: uutput spin ~ollpling syslt:IllS art: giVl.:n as a scrit:s of graphs

represented ;IS adjueeney lists whieh ean he pmeessed hy the suhse'luenl gruph panern reeognilion

algorithm. which is described in ehapter 5. tll perform lhe ",nino add idenlilkation.

4.2 Methods for extracting side-chain spin systems

4.2.1 COllcept (!fthe peak mergillg process

The celltml idea of the algorithm is to eXlract amino acid spin systems from NMR spectm. To

illustmte how lhis approach works. a simple three-spin system is firsl considered(see Figure 4.1 l.

On a 20 DQF-COSY NMR spectrum. such a three-spin system gives two eross peaks on eaeh

H,

C,

Figure 4.1: Example of a chemical structure fmgment with three hydrogen aloms.

side of the diagonal. while in a 2D TOCSY speetrum. an extra peak is observed on each side(see

Figure 4.2). To constructthis three-spin system [rom the cross peak dma. eonvenlional assignment

procedure probably picks the starting painr from the peak 1 (see Figure 4.1 and 4.2). then observes

the peak 2 in a subsequent searching in thell"C'oIk list. In terms of an automated computer procedure.
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~ïJ:urc -1.2: 2D DQF-COSY and TOCSY speelra of the chemica( stmclUre shown in Figure 4.1. The
pl'aks un olhcr siùcs ~,rc not cJisplaycd for convcnkncc.

for peak 1 (,5i . Ji)' and peak 2 (15 j'. Jd. if c5i and J j'arc close enough (controlled by a pre-defined

tolenmcc value). the three-spin system. li. j. kl. can be constmcted. Applying this procedure to

the entire peak Iist enables. in principle. ail the amino acid spin systems to be extmcted. However,

in cerlain regions of the spectrum. heavy overlap makes this kind of merging process unreliable.

Suppose. for example. wc have IWO three-spin systems, {Ji. Ji. c5d .{JI. Jm • Jill. and coinci­

dentally two spins. j and /1/, have resonance frequencies which are similar in values (see Figure

4.3). The COSY cross peaksproduced by the IWO syslems are (15;. Ji)' (Ji" Jd. (J/.c5m) and

(Jm'. JIl ) where Ji' Ji" c5m and Jm, are difficultto distinguish in terms of chemical shifts. In the

tIImlysis of the peak merging procedure, it is necessary to determine Ihalthe cross peak (Ji. Ji)

should bè'merged with (Ji" Jd or (Jm,. JIl ). Since j and /1/ have similar resonance frequencies. an

extm constr.1Ïnt is needed to remove the ambiguity. One way is to look al the TOCSY spectrum.

If spin i, j. k are indeed in the same spin system, i.e., c5i and Ji' come l'rom the same spin, the

TOCSY cross peak (Ji. Jd should be observed. Similarly. if i. j, Il are in the same spin system,

nam"ly Ji and Jm, come l'rom the same spin, another TOCSY cross peak (Ji. JIl ) should be ob­

served. Hence by cross referencing with such TOCSY constr.lints, one can reduce the possibility

of the ambiguities caused by spectml overlap. making it possible 10 design an automated spin
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Figure 4.3: (a) Three-spin systems {.Ii . ~ ,. ~d and {~/. ~",. ~,,} \Vhere ~ 1 and ~'" are \Vilhin a d,emica\ shin
tolemncc. (b) 20 OQF-COSY and TOCSY speclm of the abo\'C spin syslems.

system extraction algorithm.

As the size of the larget protein increases, Ihe corresponding 20 NMR spectrulll becollles

more crowdcd. Il is unlikely Ihat one constraint 'llone C'm resolve the overlap when doing peak

merging. One solution is to acquire another 20 NMR spectrulll which lIlay provide additional

information to resolve the overlap. Anolher way is to introduce the third dimension in which

another nucleus can be used as the additional constrainl. The former was treated prcviously in

chapter 2 white wc discuss the laller in this chapter.

The complete amino acid spin systems of a protein's side chain can be determined by 3D

HCCH-COSY and HCCH-TOCSYexperitnents [6,71,73,74]. Both experiments make use oflhe

one bond 1H_ 13C (- 140Hz) and 13C_13C (- 30 - 40Hz) J eouplings to tmnsfer magnelizalion

along the side chain via Ihe pathway
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'It) inlerpret the 3D IICCI-I COSYrrOCSY speetra. onsider tirst a 2D TOCSY segment.

Figure -1.4 shows the spectrulll Ihal corresponds 10 the chemical structure shown on the left of the

fig.ure.

Mil MI:

"l' 'II~'

l J
i:.I,I-"--\E,.)

• 2

1 : F/Hl

1

':
, ·1 iSH.

1 1L ~ ~

FtHl

20 TOCSY

~'igure 4.4: (a) Structure of a CH-CH fragment. (b) The corrcsponding 2D TOCSY spectrum. Cross
peak 1 has chemical shifts (~HI. ~H2). cross peak 2 has chcmical shifts (~H2. ~HI).

ac, "",,~ --,..v

(b)(a)

"~I
, H,

ac,

L i aH, aH,
IC, CI F,(Ile)

- ,

Figure 4.S: (a) The same structure as in Figure 4.4(a). (b) The corrcsponding 3D HCCH-TOCSY spec­
trum, The IH(FI) -IH(FJ) planes are similarto that of2D IH_IH COSY orTOCSY experiment,except
that the 1H(F,) - 1H(FJ) are edited by the chemical shift of the IJC nuclei. Note that peak 1 and 2 do not
oecur symmetrically on both sides of the diagonal on the same plane.

• Figure 4.5 shows the 3D HCCH-TOCSY spectrum of the same CH-CH fragment as in Figure

4.4. The tH(FI) - IH(FJ) planes are similarto that of20 tH - IH COSY orTOCSY experiment,
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exœpl lhal lhese planes arc ediled hy lhe d\emkal shi fIs of Ihe l'e nu"ki. lien",' off-dia~onal

peaks in a 1H - 1H plane al lhe l'C frequency arise from pmlons dire"lly honded 10 lh.1l Ile. h'r

example. in Figure -l.5. lhe magnelizalion lmnslèr palh",ay of cross peak 1 (,HI I. ,\C1. ,\II,) fol­

lo"'s Ihe palh HI ~ CI ~ C, ~ H,. ",hile lhe Imnslà palh",ay of emss peak 2 (,\II,. ,le,. 811 1)

has palh H2 ~ C2 ~ C1 ~ HI. The cross peaks 1 and 2 in 3D HCCH experimenls do nol

occur symmelrically on bolh sides of lhe diagonal of Ihe same plane. bU! mlher. ,"'eur on di flèrenl

FI - F3 planes as shown in Figure -l.5.

4.2.2 Concept oftlle algoritllm

The NMR dala sel used in Ihe present algorilhm are 3D HCCH-COSY and 3D IICCH­

TOCSY. Currently lhe implemenled compuler prognull is designed 10 proeess peak liSIS. llml

is, cross peaks in Ihe SpeClr.l muSI have been previously picked by a reliable peak picking pro­

cedure. In lhe peak Iisl, cross peaks arc represented by Ihree chemical shift coordinale poillls.

e.g., (3.52,58.17. 1.46), where Ihe firsl coordimlle denoles the resommce frequency of the proton

which is direclly bonded 10 Ihe carbon. The frequency of Ihal carbon is Ihe second coordimlle,

while Ihe Ihird coordinale is Ihe frequeney of another proton which can be reached by the transfer

of magnetization along the side chain via the HCCH pathway. In the following context, a generic

3D cross peak is represented as (Hi. CI. Hj). The corresponding chemical structure of the 3D

HCCH-COSY cross peak (Hi, CI. Hj) are shown in Figure 4.6.

H. H. Hi• J

or

C '! ,C
I1

. H.
J

Figure4,6: The possible chemical structures corresponding to the 3D HCCH-COSY cross peak (Hi, CI,
Hi)' In the le1'1, the chernical shifl oflhe carbon 10 which Hj bonds is undetermined.

The algorithm, called ASPA(Aliphatic Side-chain Partitioning Aigorithm) , starts with the
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cntirc "CCII-COSY data sct hcing scarchcd to IInd pairs of cross pcaks. (Hi. CI. Hj) and (Hi', CI'.

Il, ). which haVé onc proton and onc carbon rcsom,"ce frcquencies in common. In the algorithm.

Il, JI" and CI .CI' arc tested tu determine whether they arc within the user-dellned chemical shift

tolerance values. sueh as 0.02 ppm for prOlon and 0.20 ppm for earhon. There arc three different

situmions regarding the connectivities between protons and carbons to be considered in merging

cross peaks into spin systems. The IIrst is that ail of the three protons. Hi. Hj and Hk bond

to different cilfbons. A sehematie view in Figure 4.7 shows the two HCCH-COSY cross peaks

.along with v..rious constmint peaks. c..n arrive at a merged spin system. Figure 4.7(d) is the tirst

possible merged spin system whieh is formed from Figure 4.7(..) along with the two constmint

peaks shown in Figure 4.7(b). Simil..rly. the spin system in Figure 4.7(e) can be obtained from the

two cross peaks shown in Figure 4.7(a) along with the two constraint peaks in Figure 4.7(c).

A second case occurs when Hj and Hk bond to the same carbon as shown in Figure 4.8. One

of two possible constraint peak sets, Figure 4.8(b) or Figure 4.8(c), is required to contirm that the

spin system shown in Figure 4.8(d) can be constructed. A third case has Hi and Hj bonded to

the same carbon as shown in Figure 4.8(e). The presence of two constmint peaks, Figure 4.8(f),

conllrms the spin system shown in Figure 4.8(g).

To summarize the above pictorial representations, Figure 4.9 shows the control lIow of the

partilioning algorithm.

98
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(a)

(b)
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" .....

• carbon or proton with known frequency

....
,...... carbon or proton with unknown frequency

•

Figure 4.7: Schematic representation showing the 3D HCCH-COSY cross pcaks. (Hi. C" Hj ) and (Hi'.
Ct'. l'Id. are merged to form a spin system. Each cross peak contains thrcc frcqueneies depieted by filled
circles. while the open circles indicate the frequencies arc unknown from the cross peak data. (a) Two
cross peaks (Hi> C" Hj ) and (Hi'. CI'. l'Id. wherc Hi> Hi' and C" CI' are within the specified tolemnce.
(b) The two possible cross peaks (Hj • C2. Hk) and (Hj • C2. Hi) as the constmints. (c) Another two
possible peaks (Hk• C). Hj ) and (Hk. C). Hi) as the constmints. (d) The possible merged spin system
with three protons. Hi> Hj • Hk. and three carbons. C" C2 .C). (e) Another possible merged spin system.
The two peaks in (a) along with the two constmint peaks in (b) lead to the spin system in (d). The two
peaks in (a) along with the two constmint peaks in (c) lead to the spin system shown in (e). In summary•
(a)-(b)-(d) is a possible pathway to merge two cross peaks while (a)-(c)-(e) is another one.
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(a) (h)
Il, Il,

(d)

Il.\1 \1

/\ CI C. CI C, \ H, H
. -'.~-

, 1 1

.'-".' ~, ' .J
1 1 H, HI

"
.".~',

Cr C,
1

C, ' (c) Il H H H C, C,
\'

,
1

, 1

/\
H, .J H,

CI C, C, C,

H, .. H,

(e) (1) (g)

•

• carbon or proton with known frequency

carbon or proton with unknown frequency

Figurc4.8: (a) The two 3D HCCH-COSY cross peaks (H;. CI. H}) and (Hi" CI'. Hd. (b) The two peaks
(H). C2. Hl) and (H). C2. H;) as the constrnims. (c) Anothertwo peaks (Hb C2. H}) and (Hl. C2. Hi) as
the conslrnints. (d) The merged spin system with three protons. H;. H} .Hl. and two carbons. CI and C2.
The Iwo peaks in (a) along with the two constrninl peaks eilher in (b) or (c) lead to the spin system in (d).
(e) The two 3D HCCH-COSY cross peaks. (1) The two peaks as the constrnints. (g) The merged spin
syslem wilh three prolons. H;, H} ,Hb and two carbons. CI and C2. The two peaks in (e) along with the
two constmim peaks in (1) give rise to the spin system in (g).
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Stepl Seareh Ihe HCCH-COSY cruss peak Iist for pairs of (Hi. CI. H,) anù (H,'. l'". Hl!. where H, :md Il..
afC within the IH chcmic~11 shi ft lolcrancc mngc. anù CI and Ci' :m: within thc De chcmk:.ll shirl
tolcrancc range. Do the following stcps to test if H,. CI. 1-1 1 anù 1-14 c:m he mldc..llo ;, spin system.

Step2 Ifa HCCH-TOCSY (Hj. C2. Hd is lilUnù

anù a HCCH-COSY (H). C2. H;) nr HCCH-TOCSY (H" C2. Hi) is fnund

then aùù Hi. C,. Hj. H4 :md C210 a spin system,

Step3 cIse if a HCCH-TOCSY (Hl. C2. H j) is fnunù

and a HCCH-COSY (Hl- C2. H;) or HCCH-TOCSY (Hl- C2. Hi) is fnund

lhen add Hi. CI. Hj. H4 and C2 ln a spin system.

Step4 cise ifa HCCH-COSY (Hj. C2. Hl! is "lUnd

:md a HCCH-COSY (Hj. C2. Hi) nrHCCH-TOCSY (Hj. C2. H;) is fnuud

then add Hi. CI. Hj. H4 and C2 10 a spin syslem.

StepS cise if a HCCH-COSY (Hl- C2. Hj) is found

and a HCCH-COSY (Hl- C2. Hi) or HCCH-TOCSY (Hl- C2. Hi) is found

then add Hi. CI. Hj. H4 and C2 to u spin system,

Stcp6 Buck 10 Stcpl until no more COSY cross peuk pair fullilled Ihe cnndiliun uf Stcpl renUlin in lhe datu
scl.

Figure 4.9: Control now of lhe partilioning algorithm.

IlIt



3D HCCH-COSY and HCCH-TOCSY peak 1ists
For N 3D HCCH-COSY peaks. the output will be N spin systems.
Those systems are nct the final output. A merging
procedure is to be applied to obtain the final side chain
spin systems.

• "~2 \1cl~~~~~L~~!...'clin~ sidc·chain spin s~·stcms~·~ ...:1...:11::::2

-/.2.3 /J"tai/ed descriptioll o{rhe a/gorithm

Th~ algorithm lakes input l'rom Ihe 3D HCCfI-COSY and HCCH-TOCSY peak lists Ihen

eonduets partitioning operations to extraet the aliphatie side chain spin systems. Suppose Ihal N

peaks arc picked in the 3D HCCH-COSY speetrum. For each peak i in the peak Iist. the algorilhm

attempts to merge ail other peaks that possibly reside in the same spin system \Vith the peak i. For

a peak list \Vith N peaks. the output of N spin systems are expeeted. The details of the partitioning

operations arc listcd in the following. code scgmcms.

SpinSystem_type partitioning(PeakList_type 3D HCCH-COSY. HCCH-TOCSYl
1
Il This function is the kernel of the A1iphatic Side chain
Il Partitioning A1gorithm
Il
Il Input:
Il Output:
Il
Il
Il

for each of the peak; (;=1 to N) in the HCCH-COSY peak 1ist (
put peak; inta spin system Si j

for each of the peak j (j=l to N) in the HCCH-CUSY peak list

I/=best-partition(j) ;
Il Find the peak 1/ in the
Il HCCH-COSY peak 1ist
Il which is the rno~t 1ikely peak
Il to be merged with peak j

if peak j is a mernber of the spin system ~

add peak 1/ into Si;
e1se if peak 1/ is a mernber of the spin system Si

add peak j into Si;

1
output aIl Si;

,Peak_type best-partition (Peak_type 1/1. PeakList_type 3D HCCH-COSY.
HCCH-TOCSY)

A function called 'best_partition () is invoked within the partitioning (). The

fonner is rcsponsible for the actual searching and merging tasks and is Iisted in the following.

• (
Il Input
Il

1. 3D HCCH-COSY and HCCH-TOCSY peak 1ists.
2. the cross peak 11/ in the HCCH-COSY peak 1ist.
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Ot:.tput: Retu~n

chance
the P2d;":; ',\'hic:: i..s
to bc p~rt~ti0~cd

•

fo~ eaen of the peak i (;=1 tL' N) in the HC'I...·H L'~)SY IX"d~: l ~~n

if p"':!ak i can be merged \\'ith peak nt {

calI mergel (l, merge:: (l or mcrge3 () d~~pt."'ndinÇl L'r1 t.llt'

overlapped resonances bet\·:een the pè~1k ; cH1d 111;

compute the ranking parameter :\,:

return the peak with the highest ranking parameter;

Three merging functions ;Ire invoked within the the function of besLparti tian ().

rnergel (). rnerge2 () ;lnd rn-=rge3 () perform the operations illustrated in Figure ".7.

Figure 4.8(;I)-(d) ;lnd Figure 4.8(e)-(g). respeclivcly.

void mergel(Peak_type Ill. Peak_type 1/. PeakList_type 3D HCCH-COSY/TOCSY)
1
Il Input two peaks III and 1/. They are overlapped in the first and
1/ second coordinates.

if the peak (f~. C2. Ih) can be observed in the peak list
of 3D HCCH-TOCSY and
the peak (Hj. C2. Hi) can be observed in the peak list
of 3D HCCH-COSY or TOCSY 1

The peak III and 1/ are allowed to merge.
Note that the following calculation decides if III and 1/ can be
actually merged.

compute the ranking parameter A;

else if the peak (Ih. C). f~) can be observed in the peak list
of 3D HCCH-TOCSY and
the peak (fh. C). Hi) can be observed in the peak list
of 3D HCCH-COSY or TOCSY 1

the peak III and 1/ are allowed to merge:
compute the ranking parameter A:

1 else
the peak III and 1/ are not allowed to merge:

void merge2(Peak_type III. Peak_type 1/. PeakList_type 3D HCCH-COSY/TOCSY)
(

if the peak (Hj. C2. Hl) can be observed in the peak list
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(Jf'~n HCCH-IOCS'{ or COS':' ar:.d

U:t", p~-'ak (1/ 1 ' C:?. /f,) ca~~ b.:; obs'Ô:"r·,,··~à ' ~ :-.he pea;': l iSi:

0f 3D BeCH-TOCSY or COSY!

The peak", and" dt-e allm..'eà t.e merge.
noT:e that the follo;·;ing calculation cieciàes iE 111 anà " can
be actually merged.

compute the ranking parameter A:
else if the peak (/1,. Cl. Il,l can be observed in the peak list

of 3D HCCH-TOCSY and
the peak (/~, C~. Ih) can be observed in the peak list
of 3D HCCH-COSY or TOCSY 1

the peak III and Il are allowed ta merge:
compute the ranking parameter A;

J else
the peak III and" are net allowed to merge;

void merge3(Peak_type n,. Peak_type Il. PeakList_type 3D HCCH-COSY/TOCSY)

if the peak (II,. C2. Hj) can be observed in the peak list
of 3D HCCH-TOCSY or COSY and
the peak (Hl. Cl. Hi) can be observed in the peak list
of 3D HCCH-TOCSY or COSY!

The peak III and" are allowed te merge.
Note that the following calculation decides if II/ and n can
be actually merged.

compute the ranking parameter A;

} else
the peak II/ and Il are not allowed to merge;

Note thut sorne of the output spin system Si might eontuin only one peuk. This indicutes

Ihal none of Ihe peuk cun be merged with the peuk i thereforc peuk i relains ils sin/:'Je status. For

example, due the luek of side chain hydrogens, glycines ulways give rise to one-peuk spin systems

(aH, Ca, aH').

Figure 4,10 is u fragment of the output spin system from ASPA. Note that the resonance

frcquencies of protons und eurbons ure both determined. The eonnectivity rclutionship between
",
-'the protons is ulso displuyed lIsing the udjucency list.
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·Sth G.' ~otal ?eaks= ~

Peak 19 (4.652 . 70.400 , ~.·~3S)

Peak 20 {4.ÔS2 , 70.·;00 . l.1~6l

,';Spin Coupling Topological Gr-aph:
IH,4.652(70.400l,2.3
:?H.4.43R(61.0SSl,1
3H.l.176121.3101.1

Figure 4.10: An examplc of the extr.,cted spin system represet1le<l hl' the a<l.l"""ncy lis!. In this ct"".lh"
1,,"0 HCCH-COSY cross peaks (No.19 and No.20) \\We merg"d imo a thrœ-pnllon spin syst"m. P","'n
1 (4.652 ppm) bonds ta a carbon (70.400 ppm). conpks to proton 2 (4.43S ppm) an<l proton 3 (21..110
ppm). Proton 2(21310 ppm) bonds 10 a carbon (61.085) and coupks to pnllon 1 (4.652 ppm).

As the number of peaks and the complexity of "pectra increase. the uuiqueness of the merging

proecss is compromised. In other words. for a speeilie peak wilh whkh it is common tlmt more

than one candidate peak can be merged. This is mainly duc (0 the spectral overlap. making it

neœssary to design a strategy to rank the candidate peaks. in other words. to select the most Iikely

merging from the many possibilities.

A scoring parameter in the partitioning algorithm is imroduced to rank ail the candidate

peaks. Consider the cross peak (Hi, CI, Hj), with which the candidtlle peak, (H;" CI'. Hd can be

mergcd based on the prcsence of the eonstraims alrcady discussed(see Figure 4.9). The two con­

stmints might be the presence of peaks (Hk', C2. H j') and (Hk", C2" Hi"). The scoring parmueter

A is defined as

•

'!Gwn) ( D ) (lUI)A = 1- ~ Til 2Tu Tc

where

WI = I~c, - ~cl,1

Wn = I~II, - ~lIi,1

Til = the tolerance value for comparing proton chemical shifts

Tc = the tolemnce value For eomparing carbon chemieal shifts

D = (DI + D2)
2 -::-

with DI and D2 depending on the eonstraining peaks us

(4.1 )



•
- '\11.1

Figure -l.11 illuslr;lles alllhe dislanee uscd in cqualion -l.I.

H, .. H,
H
"'11

H. Il H

Figure 4.11: Pictorinl representation of the vnriables used in cn!culating the scoring pnrnrncter. The solid
circles represent the observed resonances. The dnshed-Iine circles represent the undetermined resonances.
The filled circles 'Ire the constrnint peaks.

Wu measures the difference of the chemical shifts between Ihe original and candidale peaks

in Ihe first coordinate of the involved 3D cross peaks. TH is the user-defined tolemnce value

to compare the proton chemical shifts. Candidate peaks which make Wu greater Ihan TH are

discarded.lhus Wu is always less Ihan orequal to TH. or WU/TH :'0 1.

Wl measures the difference of the carbon chemical shifts belween Ihe original and candidate

peaks. Tc is Ihe tolemnce value forcomparingcarbons. Similarly. wl/Tc:'O 1.

D measures how weil the two constmint peaks match the original and candidate peaks. A

smaller D corresponds to a better match.

The above three factors are used to decide how good a candidate peak is. In terms of the

first faclor Wu. a smaller proton chemical shift difference between H; and Hi' indicates a better

• match of the cross peak (H;. CI. Hj) and (H;" CI" Hkl. Secondly. a smaller carbon chemical shift
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difli:rcnœ. i.c.. a smaller 1/'1. "c(wccn CI and CI alsll indi.:alcs a "cltcr mald.. Finally. [> UsCs

Ihc conslr.tinl pcaks 10 cmlualc Ihc tWllln·"c-mcrgcd pcaks.

The computer progr;.ml cakulatcs the :'\coring raral1l~tcr for c;'lch llf titI.: ml.:r~in~ pair gi\"in~:

a score: l'rom 0 to 1. A highcr value of :\ is lakcn as a ncttcr matl.·h. l indl."r slIl....h a sl.·oring strah:gy.

thc candidate pcak \Vith the largest value nf :1 is chosen tll merge with the original pcak.

4.3 ResuUs

The algorithm was implemenled in C programming languages. A simple GUI (graphical user

interface) has been built for the implemenled program based on X Il MOTIF library. Figure ".12

shows the snapshot of the running progmm. The progmm was tested on both real and simulated 3D

Figure 4.12: The snapshot of the implemented computer progrolm.

HCCH-COSYrrocSY data for the 90-residue protein N-domain of chicken skelctaltroponin-C

(1-90).

W7

•
The cxperimental spectra and manual assignmenls were provided by University of Alberta

[68]. The simulatcd data were genemted based upon the manual assignmenlS. Both exact and

dispersive (with respect to chemical shifts, described later) simulations were.. used. The testing
,

procedures and results are described below.
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Simulation:-- wt:n: gcncratcd hascd upon the manu;.!1 a:"sigrllllcnh I.:onductcd prC\'Îously al

(:nivc:r... ity of Alhcrta [6XI. Hc.:n.: an ê\;Imple is gin~n lo illustralc ho\\' the :,îtllulation \Vcn: done.

Figure -l.I.1 ,hnw, ,he manual a"ignment fnr !'-kt.' ami Thr-l which arc used to generme the COSY

al'll TOCSY peab that shnuld exi,t fnr these residues. The generaled peaks arc also shown in the

1 r·h-r. ·1 Thr
N N 116.090 COSY
HN EN 8.013
CA 55.950 CA 61.085 4.438 61.085 4.652
HA 3.840 HA 4.438 4.652 70.400 4.438
CS CS 70.400 4.652 70.400 1.176
Hal HS 4.652 1.176 21.310 4.652
HS2 CG2 21.310
HB2 HG2 1.176 TOCSY
CG C 175.000 4.438 61.085 1.176
HG1 1.176 21. 310 4.438
CE 16.600
HE 2.070
C 177.100

Figure 4.13: Fmgmelll from the manual assignmellliisting of the N-domain of chicken skeletal troponin­
C (1-90). Met3 and Thr4 are shown here. Sorne resonances were not assigned. forexample. C~ and H~ of
Met3. For Met3. the assigned rcsonances arc not surticielllto simulate COSY cross peak. The simulated
cross peaks for Thr 4 are shown on the right of Thr4's manualassignment.

figure. Resonance frcquencies l'rom C~. H~. C y and Hy arc missing for Met3. Thercforc no

cross peak c:m be simulmed from the manual assignmelll for this rcsidue. For Thr4. four HCCH­

COSY cross peaks can be genenlled. among them two arc symmetrical cross peaks. Similarly. six

HCCH-TOCSY cross peaks can be genemted as there arc two additional peaks of (Ha. Ca' Hy )

and (Hy • Cy. Hu).

At the first stage of testing, no chemical shift dispersion was introduced in the simulated data

set. That is, two cross peaks are allowed to be partitioned illlO a spin system as long as they share

exactly same chemical shif! value. The value of the chemical shift.tolemnce is therefore zero. The

purpose of simulating the exactly data is to confinn that the algorithm works as designed. A total

01'674 HCCH-COSY cross peaks and 1014 HCCH-TOCSY were simulated for the protein NTnC,

Notc that among ail of thc amino acid residues, glycines are considered to be two-spin systems.

WH
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Eat.:h has 1\\"0 Ilt prlltlHb. Th..: amide pnlhll1 h Ih11 dL'lL'",,'tahlL' in IICel1 ~pl'",:trlll11. Simliarh.

alanines. ':ô.lt.:h llfwhidl has llflL' H(I and thrCl' I1h..'lllylll:;. an.' als"lwll-"'pin ... ~ :-oll.:m .... l'hl' al~l\nlhlll

W.1S dc:signc:J 10 I.:Xlr;'1I:l th.: aminll ;'h.:id spin :,ysh..'l1b "ith Ihn..'L' lll" llHll"L' '-'1'111:"0. 11l..'I1I".'I,.' alal1ll1l· ... and

gly..:inl:s arc I.:xduJcu in Ihis parti .... ular It.'St. Gly .... iues and alallinL's arl,.' ",'lHlsidl,.'n..d durill~ thl' I"l'al

dala I~sting pr~s~lll~d lat~r in Ihis Ch'lpl~r. :\'l\llh~r p"illll,f nlll,· is Ihal Ih~ dl~lIli,'a1 shifl dala III

aromatic carhons an: Ilot f.l\'ailahh: sinl..'c thcir n:sonallL'C frcqucllcit:s an: IllUdl hig.hl"r ( .... 130pI'IHl

than that of aliphatic carhons. .""\S a l:Ol1sl:quc:nt.:l.: of thL' ahll\'L'. and duc 10 Sl'\'I,.. ral rl'siliuL'S Ilot

bdng ùctcctcd in the manual assignlllents. only 6.~ rcsiducs ur thc 90 wcrc simuiall'll.

Th~ t~sl r~sults "r~ summ"riz~d inlhhl~ 4.1. NllI~ th"l alllh~ spin sysl~ms thal \\'~r~ inciulkd

in Ih~ simulm~d d"m 63 r~sidu~s ar~ d~l~cl~d. Th~ ~x~cution lilll~ for Ihis running is ahoul :;

minut~s on a 75 MHz P~ntium Pc.

Table 4.1: R~suhs for Ih~ t~st of sim1l1al~" dal" 1. S~~ I~xl for "~lai1s

No. uf Nu. ur s.S. No. ,,1' S.S.
-_.'--

Residues uccurrence silllult.llcJ uht~\ÎncJ Rcm.uks
of a rcsiduc moi input l'rom UUlput

Gly 7 NIA NIA
-

!'orin system' Wilh :! SllIIl!'o arc IlUlle!'olc~I"

Ala 10 NIA NIA srin s)'sICI1l' \\Iilh :! !'ol,ins 'ln: lltlIIC!'oICd
"Asp 10 III III

Glu 13 9 9 E-II.57.()7.77 \\Icrc lIul simulatcd duc ln inl:Ulnl"ctc li;'ta

Lys 4 4 4
Met 8 7 7
Gln 4 3 3
Arg 3 3 3
Val 4 4 4
Leu 5 4 4
Phe 6 4 4
Ile 5 5 5
Thr 5 5 5
Ser 4 3 3
Pro 1 1 1
Asn 1 1 1

Total 1 90 63 63

•
aGly has two Ha which pro"u~cs only one crass peak p"ir. 111is is cxclu"~" framlhe simulation.
"For the same reason as Gly.

ln the second test, the manual assignment, which resu\ts in 63 spin systems, were modified

by the introduction of chemical shift dispersion. That is, to belter simulale rcal experimelllaidata,
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sYSlemalic dispersion less than Ihe pre-dclined tolerancc \Vas inlroduccd for e"ery frequencies.

The main aim of Ihis lest is 10 inspect the alg'Jrithm's capabilily ofhandling iII-aligned cross peaks.

Ta beller explain the dispersion. consider a Ihree-spin system AMX. In principle Ihere should be

three cross peaks occurring on either side of the diagonal of the COSY or TOCSY speclrum. These

Ihree peaks are represenled as (0".0:-;). (0". SM) and (0~1- 0:-;). The simulated dispersion involves

a pseudo random number generalor which gives random numbers Ri belween -0.5 and +0.5. The

simulated cross peaks are Ihus modified 10 (0" + RI T. 0:-; + R2 Tl, (0" + R3 T. OM + R4 T) and

(OM + Rs T. ox + R6Tl, where T is the lolerance value. For Ihis particular lesling. T is sel 10 0.02

ppm for protons and 0.20 ppm for carbons.

An example ofa spin system and its simulated COSyrrOCSY cross peaks are Iisleà in Figure

4.14 which can be compared with Figure 4.13.

4 THR
N
HN
CA
HA
ca
Ha
CG2
HG2
C

116.090
8.013

61.085
4.438

70.400
4.652

21.310
1.176
175.000

---> COSY
4.436 61.102 4.645
4.645 70.403 4.433
4.644 70.338 1.168
1.183 21.309 4.656

---> TOCSY
4.445 61.106 1.171
1.175 21.390 4.445

Figure 4.14: Fragment from the manual assignmenllisling of the N-domain lroponin-C (1-90). Thr4 is
shown. The simulated cross peaks for Thr 4 are shown on Ihe right. Nole Ihal a small ehemical shift
dispersion is inlroduced in Ihe simulalion, for example, 4.446 vs. 4.433.

The result of applying the algorithm to the randomly distribuled dala sel is Iisled in Table 4.2.

Fifty-six of Ihe 63 residues are successfully partilioned and no missing assignment was found. Of
\'

the residues Ihal are not successfl:lly separated, 4 are glutamines, one is methionine and 2 are

isoleueines. These residues have severely overlapped resonance frequeneies. For example, Figure

4.15 shows Ihut El 6 has 4 spins which are overlapped wilh E2 t. The inability to resolve such

overlupped spins is discussed in Ihe discussion section.
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Table -1.2: R~sults for Iho lost of sit11ulatod dala II. Soo 10\t fur dOlails

No. of No.orS.s. No.orS.s. --
Residues occurrence sil11ul:ucd ohtaincd Rcmarks

of:\ rcsilluc :IS input l'mm (lUlrut

Gly 7 NIA NIA ~pin systems wilh :! SpinS :ln: n,'( h:Sh:d"

Ala 10 NIA NIA spin systems with 2 spins :ue nut h:Sh:J '

Asp 10 10 III
Glu 13 9 5 E9.16.:!1.6.' wcn: 1\,)( sC(l:mlh:J

Lys -1 -1 -1
Het a 7 6 Mol6 wen: mit scparaled Wilh G1UImnine
GIn -1 3 3
Arg 3 3 3
Val -1 -1 -1
Leu 5 -1 -1
Phe 6 -1 -1
Ile 5 5 3 119 >l1ll1162 urc nut scpamtcl1.
Thr 5 5 5
Ser -1 3 3
Pro 1 1 1
Asn 1 1 1

==T:o:ta:I:::1 =:9:0====6::3==-_..::5.::.6_-L :J
aGly has two H. whieh produees only one cross peak pair. 11lis is oxcludod from tho simulation.
"For the same reason as Gly.

(a) (b) (c)
616 621

H 0 3.973 2.1135 2.353 4.140 1,965 2.IHO

N C C
uvcrlap

1

129.;(X) I-
I

1

·129.~(Xl]li CH, 60.0H7 J6.H70 59,ISO J6.IlKI
1

CH, 1

C 1
2

.
070 l 12.m l .12.0S0 1 8.

0 O·
Glutamlc _:.-

acld ov.:rlnp ovcrlnp

Figure 4.15: An example of two residues with three degenemte rcsonanees. (a) The graph representation
of the glulamic acid. (b) The chemical structure of the glulamic acid. (c) Glu 16 and G1u21 are shown
wilhlheir chemical shifts. Resonances in the boxes overlap.
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4.3.2 Alla/l'sis oj"experime11Ta/ 3D HCCH-COSYITOCSY data

The suceess of the test on the simulated data indicates that the problem of chemical shift

dcgcneracy can he successfully resolved hy the algorithm. The capability of handling missing

peaks and spcctrum artifacts is however inadcquately tested by the simulatcd data. Therefore, it is

still necessary to conduet a test using the real dma.

3D HCCH-COSYrrOCSY spectra of the test protein troponin-C were obtained from Univer­

sity of Alberta [68]. Cross peaks in thesc spcctra were picked automatically from a quick run of the

CAPP software [56]. No refinement in tcrms of peak picking wcrc done since the original spectm

and the peak picking progmm were not available to the authors. A total of 915 HCCH-COSY

and 710 TOCSY cross peaks were picked by the CAPP software. 321 of the 915 COSY peaks

and 225 of the 710 TOCSY peaks can be verified as real peaks by comparing with the previously

conducted manual assignment.

Since extcnsive spcctrum folding is employed in the multidimcnsional NMR experiments, the

actuallJC chemical shifts are given by x ± IlSW, where x is the ppm value of a carbon obtained

from the spcctrum, Il is an integcr and SW is the spectral width. It is necessary to unfold the 1JC

chemical shifts so that our program can work on the reallJC chemical shift data. A IJC 20 HMQC

pcak list is available from the same source for this unfolding purpose. The unfolding procedure

is divided into two stagcs. First each of the HCCH-COSY and TOCSY cross peaks (Hi, Ci, Hj)

arc cxamined againstthc 1JC HMQC peak lis!. If the 2D 1JC HMQC cross peak (Hi, Ci - SW) is

found,thc 3D cross peak is corrected to (Hi, Ci - SW, Hj). The same procedure is also applied to

the HMQC peaks (Hi, Ci) and (Hi, Ci+SW). Secondly, foreach 3D cross peak (Hi, Ci, Hj), ifno

corrcsponding 20 IJC HMQC (Hi, Ci ± IlSW) is found, a statisticallJC chemical shift database

[78] is uscd to empirically deterrnine the unfolded value of carbon chemical shifts. Following

this the 915 HCCH-COSY peaks and 710 TOCSY peaks are used as the input for our program.

Various proton and carbon chemical shifts tolerance values are checked to get good partitioning.
"

Esscntially, a small tolerance genemtes more reliable results. In practice, however, small tolerance

is unable to find ail the spin systems due to the experimentally inconsistent chemical shift values,

Le., the same spin could have different chemical shifts in different spectra. A large tolerance might
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ineorreetly merge the independelll spin syslems together. Compromise shollid he ehosen ""rcflllly.

T"ble 4.3 shows the pmtitioning reslllts of the 915 COSY 'lIld 710 TOCSY pe"ks h"sed upou the

proton ehemie,,1 shift toleraucc 0.03 ppm "nd I,C tolerauce 0.-1() ppm.

Table 4.3: Resulls for the test of re,,1 d"t"

No. of No.ofA.A.
Residues occurrence oOlaincd RCI1l:.lfk~

of a rcsiduc l'rom output

Gly 7 5 GJJ.·O.SO.f1I).71
Ala 10 10 AI .N.IO,12.25.31.1)(). (t\20.24.6tl nul SCllamtcd)
Asp 10 4 089, (05.27.59 nut sCpari1h:l.1)

Glu 13 4 EIJ.16.21. (EI7.l\.11 S.VC15 nut scpanlicli
Lys 4 3 K-IO.55 (KR? Q85 not scp.mucl1l
Met 8 3 1\13.18.86

GIn 4 2 Q51.N5
Arg 3 3 RII,47.N4
Val 4 2 V65.NIl
Leu 5 4 L14,42.5N.79
Phe 6 1 FI3
Ile 5 5 119.37.61.62.73
Thr 5 4 T4.39A4.54

Ser 4 3 S2.3N.'1l
Pro 1 1 P53
Asn 1 1 N52

Total 1_---..:.90=___---..:.5::..5_-1.. _

As can be ~een from Table 4.3 some of the amino IIcid spin systems lire incorrectly merged

together, e.g., A20, A24 IInd A60 were given liS Il IlIrge spin system. This is beclluse 1111 of thcir

resonllnce frequencies overillp. By checking the mllnulli lIssignment, those lhree IIll1nines shure

common Ha, HIl' Ca IInd Cil frequencies. (see Figure 4.16) Resolving such Cllses, after the lIuto­

mated assignment is done, is Il relatively simple manuul task.

Another point of note from Table 4.3 is that some expected spin systems are missing. For

example, out of the 10 aspartic acids, only 4 can be found. This is mainly due to the missing

of crucilll peaks in the experimental data. Aspartic acid is an AMX spin system and therefore

should have one aH and two pH's. According to our algorithm, ail of the correlations between

(Ha, Hill), (Ha, H1l2) and (Hill> H1l2) must be observed in order to place Hu, Hill and HIl2 into

a spin system. The algorithm's condition is stricter than regular manual assignments procedure.,
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(a) (0) (c) a 8
,\21l

J;,\;,\,:!of 117.700 l
Il,,

" 1\ H 0

C n Cil
" 1\

N C C 8 I l ,;,\0;,\ 1

,\z.I
H CH,

1
5J"JIO

1 In.7'M' l
" 1\ Alanine

8 1 1,:,\03 1

,\611

15,J.N1 ol 117.700
1

Figure 4.16: (a) The gmph represenmtion of an alanine. (b) The chelmcal structure of an alanine. (c)
A20, A24 and A60 arc shown with their chemical shifts. Resonances in the boxes overlap. It can be seen
that these thrce alanines have nearly degenemted chemical shifts.

since avoiding incorrect merge is essential for computer·assisted assignment tool. By carefully

checking the peak Iists, for 030, 032, 036, 059, 066, 068 and 089, the correlations between

H~I and H~2 arc allmissing, i.e., neither the COSy (H~I, C, H~2) nor the TOCSV (H~I' C, H~2)

cross peak was found in the peak lists. This is probably due to the fact thatthese fJH cross peaks

arc too close to the diagonalto be unambiguously identified.

4.4 Discussion

The adv:mtage of using 30 HCCH·COSVrrocsv experiments to resolve the chemical

shift degenemcy is discussed in this section. Comparisons are made to the conventional 20

cosvrrocsv method.

ln Figure 4.17, two amine acid residues whose Ha and Hp have close resonance frequencies

ure iIIustmted. ln the 20 cosvrrocsv approach, two cross peaks can be merged into a spin

system as long as they share a common resonance frequency and there is a constraint to confirrn

that these two cross peaks belong to the same spin system. In the above example, the cross peak

(4.073,2.049) and (4.073,2.175) belong to one spin system, while (4.062,2.057) and (4.062,

2.943) belong to another spin system. The problem is that4.073 and 4.062, as weil as 2.049 and
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(a)

HI H,

1 1

CI -C~

1

H)

HI' H,.

1 1

CI'-C~.

1

H).

(b)
(hcrt,!,

[4Jt7.) 1 El l~~;';J 1_;(~;;1

O\'crl;lp

;~.771 )0,(,); ;U41 )7,444

1.175 :.'!.lJ-t3

•

Figure 4.17: Schematic illustration explaining how overlapped re~onance~ arc rc~olved. Sec texi for
details. (a) Fragments l'rom two molecules arc shown. (b) The chemical shifts of the protons and carhons
arc displayed. Resonances in boxe~ arc tho~e having signilicantly overlupped chemicul shifts.

2.057, ure too close to be distinguished compututionally using 2D data alone. As a consequence,

ail four cross peaks (4.073, 2.049), (4.073, 2.175), (4.062, 2.057) and (4.062 2.943) arc incorrectly

merged into a large spin system, which is upparently wrong becuuse this lurge spin system col1lains

three Hjl's and as many as four Hy's. In other words, l'rom 2D NMR, cross peaks (4.073, 2.049)

and (4.062, 2.943) are put into the same spin system since they have one frequency in common,

4.073 vs. 4.062. Besides, the presence of the TOCSY peak (2.057, 2.943) incorrectly conlirms

the merging. In contmst, if 3D NMR cross peaks arc available, the computer algorithm will verify

if 4.073 and 4.062 bond to the same eurbon. If not, these two resomll1ces, 4.073 and 4.062, arc

put into different spin systems and thus the degenerucy problem is solved. In case that the curbon

bonded t04.073 overlaps with the eurbon bonded to 4.062, (sec Figure 4.17, if 58.771 and 57.841

eannot be distinguished,) even 3D NMR eannot solve this triple degeneruey situation.

Table 4.4 summarizes the limitations of the present algorithm of handling overlap ambigui­

tics. It should be notieed that Table 4.4 simply Iists the theoretieul limitations of the ulgorithm,

while in praetiee, certain overlap ean be resolved by using the scoring parameter introdueed in

equation 4.1.

In general, two factors effeet the effieieney of the algorithm. They are the ehemieal shift

degeneracy and the missing peaks. Degenerate ehemieal shifts usually result in large spin systems

whieh are forrned by incorrect merging of two of more spins systems. On the other side, missing

of crucial peaks is the major cause of the absence of expeeted spin systems.
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Table 4.4: Summary of the overlap resolution. See Figure 4.' 7 for notation.

m 'D-
HI oycrlaps \Vith HI' rcsol"cd hy unahle 10

H! oycrlaps with 1-12' chccking CI rcsol\'c

Hi oycrlaps \Vith 1-12' resolved hy unahlc tn
H;\ o\'cr!~lps \Vith HJ' chccking C,! rcsol\'c

HI ovcrlaps \Vith HI'
1-12 ovcrlaps with H:l' un..hlc 10 unablc to
CI ovcrlaps with CI' rcsolvc rcsol\'c

HI nvcrlapswilh HI'
1-12 ovcrlaps \Vith 1-12' "",,hic 10 unahlc to
1-1.1 o\'crlaps \Vith HJ' rcsolyc rcsol\'c

The tests of this algorithm on both simulated and experimental data show that if there is no

missing peak, the algorithm correctly produces ail the desired spin systems that can be extracted

l'rom 3D data. Nevertheless, in the case where critical cross peaks are missing, expected spin

systems may not be extracted. '1'0 cope with this problem, one can relax sorne merging conditions,

described in Figure 4.9. However, less stringent merging conditions may risk gelling incorrect

results.

•

Another feature of our algorithm is that. the number of input experiments is flexible. '1'0 ob­

tain the complete spin system of an amino acid including ail the resonance frequencies and their

connectivity relmionships, COSY type experiments, which observe three-bond scalar couplings,

and TOCSY type experiments, which record long range relay couplings, are required. A sole

COSY experiment, can still provide much information about resonance frequencies and connec­

tivity between spins. Because CPA and AS PA both need long range couplings to confirrn merge

of some cross peaks, the lack of the TOCSY type cross peaks may cause incomplete extraction of

certain amino acids, such as the threonines. A sole TOCSY type experiment, on the other hand,

provides sufficient information concerning aB the resonance frequencies, but fails to provide com­

plete connectivities between spins.

Although ASPA was designed for 3D HCCH-COSyrrOCSY NMR spectra, the idea can

be extended to other 3D NMR experiments. Thebasie concept behind this aIgorithm is to take

advantage of the third dimension as an additional constraint so as to reduce the ambiguities causing
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by heavy overlap.

Under certain rnanual i.lssignmcnt situations. sille chain spin systcms arc in\'cstigalcll ~lncr

the backbone spins have been sueccssfully assigned. Thercfore the backbone Il,,. C" frelJuencies

can be taken as the starting points for the side chain assignmel1l. In lhe design of ASPA. hnwever.

the lraditional protein resommec aS5igmnent 5trategy was adopled. i.e .. Ihe spin system idel1lilica­

tion is accomplished prior to sequential assignmenl. This implies thm sequential information of

amino acid residues is not incorporated into the algorithm. A possible improvcment of the algo­

rithm includes adding an option to supplYHa. C" frequencies l'rom earlier backbone assignmel1ls

50 that more efficient searches Can be achieved due to a resulting smaller searching spaee. Fur­

thermore. an integrated computer assisted environment for protein resonance aS5ignment llsing 3D

heteronuclear NMR is described in chapter 5. This environment includes complete identilication

of the protein backbone and side chain resonances. the pattern recognition of the deduccd mnino

acid spin systems, and the creation of the sequential connectivity.

4.4./ Options oftlle implemented computer progralll

The implemented program provides an option to remove the duplicated peaks occurring at

the same hall' of the spectrum. Here duplieated peaks arc referred to those peuks pieked by the an­

tomated pieking program aS separate peaks but arc close in l'pm. These peaks might be allributed

to the noise level of the speetrum. However, it is also possible that the peaks eonsidered to be

duplieated are aetually arising l'rom distinct correlations. The algorithm is in a dilemma. On the

one hand, close positioned peaks, e.g., (4.29, 35.43, 2.98) and (4.28, 35.38, 3.00), might easily

produee unreasonable large spin systems sueh as the one with two aH's at 4.29 und 4.28 l'pm.

On the other hand, to merge the close positioned peaks l'rior to the partitioning proeess inereases

the risk of losing signifieant peaks. If the option of removal of duplieated peaks is enabled, a set

of ehemieal shift toleranee will be used to judge the removal. The default setting for this option

is to enable the removal. il might be neeessary to disable this seuing if a erowded speelrum is

proeessed and the falsely pieked peuks have been manipulated by other means in earlier stages.

The algorithm not only merges NMR peaks to form spin systems, it al50 merges the small,

\17
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fragmel1!ed spin syslems ln heeome higger ones. Once aJl of the N initial spin systems arc gen­

emleù. the algnrithm merges them and eonstruets the higger. less redundam spin systems. Fig­

ure 4.1 Hshows the redundaney and how the eorresponding merge can be perforrned 10 resolve the

redundaney. Il should be nOliced that the merge in Figure 4.1 S is not always safe. In crowded

,.0 c?cr + ~20 2 0
,/0 0 ,0

U + 10 if '0 51

20 0 2 0

0 0'0 0'0
3 + 3

0 0
0'0 0'0
3 +

0 5 0
3 52

0 0 5 0

51 + 52 53

oP3
0'0 Jf4 0
3

20 0 5 0 2 0 50

Figure 4.18: The merging of IWO spin systems. Spin syslem SI is conslructed from the cross peak l,
2 und 10. Spin system S2 is conslructed from cross peuk 3, 4 and 5. Suppose peak 3 and peak 10 arc
symmetrical cross peaks, i.e., they rcprcsenlthe correlalions between the sume two protons. 11 is possible
to construclunolher spin syslem S3 by merging SI and S2.

speclra, it mighl be difficult 10 verify Iwo peaks are symmetrical ones or not. If peak i and peak

j ure incorrectly considered as symmetrical peaks, the partilioning algorithm will merge the spin

systems originating from peak i and from peak j. This incorrect merge usually gives rise to large

spin systems. In other words, the merge operation described in Figure 4.18 has the risk of produc­

ing unreasonably large spin systems. The default seuing of the option is to enable the spin system

merge. The redundant spin systems usually can be effectively eliminated while overlapped spin

systems can also be properly merged. In severely crowded spectra, the option of merging spin

118
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system might necd to he disahlcd other\\·ise many large spin systems will he eonstrueted. Ry ski,,­

ping the automatcd spin system I1lcrging. one must manually examine 0111 the output spin systems

and r1etermine which of them should he merged or dcleted.

4.4.2 Peak IIl/jcJ/dil/g prob/em

The chemical shifts of carbon nuc\ci usually span the range l'rom 10 ~ /l0 l'pm. To save

experimentaltime. the practical spectral width on the dimension ohserving curhon is set to around

30 l'pm. Appurently extensive spectrum folding is applied. Il is introduced earlier this chapter

that one can unfold the carbon chemical shifts using the chemical shifts of the directly honded

hydrogen atoms. For example, the carbon in a methyl group. which is easily determined by the

small 1H chemical shi ft, must has relatively small chemical shin. Therefore a 50 l'pm chemical

shin for the carbon in a methyl group should be unfolded to 50 - (spectral width) l'pm.

Usually the experimental spectral width S W is chosen in such a \Vay thal the aliphalic carbon

resonances are folded no more Ihan once into Ihe observed spectral \Vidth. This clin be llchievcd by

selling Ihe experimental speelral widlh equallo 1/3 Ihe aliphalic carbon frequency mnge. Suppose

the aliphatie carbon chemical shins range l'rom 15 1075 l'pm. The eorresponding speelral width

can be selto 30 l'pm. If the phase ramI' for the folded dimension, Ihe curbon dimension, is ehosen

10 be 1800
, the folded cross peaks have Ihe opposite sign of non-folded peaks [17]. Given Ihis

experimenlal condition, tht: carbon resonances can be unfolded using the sign of Ihe corresponding

cross peaks.

4.5 Summary

The Aliphatic Side-ehain Partitioning Aigorithm, ASPA, is proposed in this chal'1er to auto­

matieally extract amino acid spin systems l'rom three dimensional COSY and TOCSY Iype t:xper­

iments. This algorilhm is extended l'rom the 2D Conslrained Partilioning Aigorithm, whose main

feature is that ail the merging steps are accomplished by imposing various constraints. Anotht:r

distinct feature of ASPA is that by supplying bolh COSY and TOCSY type experiments, not only
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thc rc"mancc frcqucncics of ail thc spin systcms can hc dctcrmincd. but thcir connectivity rela­

tionships are also extractcd. This makes the design of subsequent pattern recognition procedure

casier.

The extracted amino acid spin systems can be used in various sequential assignment ap­

proaches. A number of sequential assignment strategies [7.9. 18.25.79] can be applied to the

dcduced spin systems. The algorithm described in this chapter provides a str.ltegy to obtai:l the

side chain resonance ofproteins. By properly incorF'.Jrating the backbone and side chain informa­

tion. an integrated sequential assignment protocol is introduced in the next chapter.

\20
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Chapter 5

Development of an Integrated Software

Environment for the Sequential Assignment

5.1 Introduction

Resonance assignment is tedious work in protein structure determination l'rom NMR. To de­

velop a computer-assisted resonance assignment package, seveml steps have to be accomplished.

1. The spin coupling systems of ail the residues must be determined.

2. Tne sequential connectÏ'!ities between these spin systems must be establishcd buscd on

available interresidue correlations.

3. The spin system identification, i.e., which amino acid each determined spin system actually
J

is, must be conducted. .

4. The sequence-specific mapping between the spin systems and the primary sequence of the

protein must be created.

In chapter 3, we present a computer algorithm to extmct spin systems of the protein backbone.

This chapter reports a complete resonance assignment protocol covering the above four steps us­

ing heteronuclear 3D NMR. Initially an algorithm was developed to merge data from the protein
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hackhllne anù aliphatie siùe chain spin systems. Secllnùly. a spin system pattern recognition algo­

rithm is extenùeù tll aUlomatically ùetennine ail the possible amino acids eaeh spin system may

be assigneù to. Finally. a mapping algorithm maps the deduccù spin systems to their proper

positions within the protein primary sequence. The protocol of sequence-specific assignment

and the implementation of the algorithms arc described in this chapter. Application of ail the

proposed computer algorithms to a 90-residue protein is reponed. The heteronuclear 3D NMR

experiments involved in the application include 3D HNCO. HNCA. HCACO. HN(CO)CA. ISN

TOCSY-HMQC. HCCH-COSY and HCCH-TOCSY.

S.2 Toward the sequential assignment

As mentioned in chapter 3. the spin systems of individual amino acid residues and the se­

quential connectivities between these patterns can be derived f.om heteronuclear 3D NMR. The

remaining problem of the protein resonance assignment is ta match the derived polypeptides omo

the known protein primary sequence. This task can be done manua\ly using human expenise.

For example. spectroscopists may notice that one of the spin systems in a polypeptide might be

u leucine. Moreover. another spin system three residues away From the leucine may be identi­

lied as tt glycine. Provided that the leucine-X-X-glycine pattern occurs only once in the primary

sequence. it is eusy ta match the target polypeptide ta the correct primary sequence.

Ta uutomute this "polypeptide ta primary sequence" mapping. it is necessary ta have suF­

ficient inFormation about each spin coupling system. Le.• one must know a\lthe possible amino

acids each spin system couId be. Suppose a polypeptide is composed of S spin systems. SI ­

S2 - S3 - S4 - SS. Spin system SI is idemified ta be one al' the Fo\lowing amino acids: leucine.

isoleucine or valine. Similarly. S2 can be one al' serine, phenylalanine ...• etc.• see Figure S.l.

Knowing the amino acids each spin system may be ussigned ta. it is possible la construct a set of

primary sequence combinations. ln Figure S.1 these combinations include Leu-Phe-Arg-Gly-Glu.

Leu-Ser-Arg-Gly-Glu. Leu-Asp-Arg-Gly-Glu•... ,etc. If the polypeptide is long enough and the

number oF possible amino acids each spin system may be assigned to is not tao large. a unique

mapping between the polypeptide and the primary sequence can be achieved. This is shown Fig-
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51

52

Lcu·Phe·Alg·QI... ·G1u

leu·StltoArg·G1v·Gtu

54 Gly .;la

55 GltL Asn Het Arg Lys

Actual primary sequence:

Lcu'Asp-Arg-GlY'Glu

clyl-A.p2-Trp' .Leu4-AspS-Arg6-Gly7-Glu8

•

Figure 5.1: Schemalic representalion of the mapping of a polypeptide 51-52-53-5-1-55 tu Leu-l-Asp5­
Arg6-Gly7-G1uS. Residue SI can be ussigned to one of Leu. Ile :md Vu!. There ure 180 possihle eombiuu­
tions of umino aeid sequences for this polypeptide. In this eXllInple. the sequence Leu-Asp-Arg-G1y-Glu
is the correct mupping on the actuul primury sequence.

ure 5.1. Only Leu-Asp-Arg-G1y-G1u hus u matching position withiu the primary sequence. thut is

residue 4 to residue 8 on the protein's primary sequence, while aIl the other combinalÎons lililto

find a match. Thus it is reasonable to ussign the polypeptide SI - S2 - S3 - S4 - S5 to residue

14-15-16-17-18. In the cuse that a unique mapping is not possible, a mnking panuneter can be

introduced bused on the mathematieal similarities between each spin system of the polypeptide

and its possible amino acid idenlily.

The amino acid pallern recognition algorithm(AAPR) was designed to achieve the goal of

mapping individual spin pallern to possible amino acids residues. AAPR gives ail possible amino

acids eaeh of the spin pallems may be ussigned to. Every possible assignment has an associated

similarity value meusuring the likeness between the amino acid and the spin system. In geneml, it

is not eusy for computer algorithms to determine the amino acid types for deduced spin systems

based on the bac~bone frequencies exclusively. Several database of protein chemical shifts were

published [62,78]. Although it is possible to c1ussify the backbone spin systems using one of

the databuse. the accuracy of the amino acid type recognition will be highcr if the side chain

information ofeach spin system is also available. The more details avàilable of a spin system leads

to a more accurate spin pallern recognition. For this reason. the algorithm ASPA [27](Aliphatic
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Side-chain Partitioning Aigorithm) was designed 10 relrieve the aliphatic side chain resonances

of proteins from heteronuclear 3D NMR. Combining the protein backbone with the side chain

information. an amino acid pattern recognition proccdure can provide sufficient information about

eaeh spin pattern thereby making it possible 10 automate the mapping between polypeptides and

protein primary sequence.

[n summary. DBPA was devc10ped to rctrieve a protein's backbone resonances and establish

parts of the sequential connectivities in the forms of dipeptides. PGA is then responsible for merg­

ing retrieved dipeptides to polypeptides. ASPA was designed to extract a proteins' aliphatic side

èhain information. Having the information of backbone and side chain spin systems. AAPR gives

knowledge about the amino acid types of each spin pattern. PBSMA(Protein Backbone Side chain

Merging Aigorithm) then is rcquircd to merge backbone and side chain frcquencies. The final step

involves an algorithm called PMA(Polypeptide Mapping Aigorithm) which maps the polypeptides

to the primary sequence. Figure 5.2 shows the relationships between these algorithms.

5.2.1 Integration ofbackbone and aliphatic side chains

Many 3D NMR experiments have been proposed for protein side chain resonance assign­

ment, such as 3D HCCH-COSY [71-73], HCCH-TOCSY [74], HCC(CO) NH-TOCSY [75,76]

and HCCNH-TOCSY [75,77]. These experiments resolve the crowded side chain proton regions

of traditional2D DQF-COSY and TOCSY by introducing the third dimension. Therefore the over-
"

lapped 20 spectrum can be split into a series of less overlapped 20 planes in the 3D experiments.

For example, the IH-'H planes in 3D HCCH-COSY experiment resemble the 20 IH-'H COSY

spectrum except that these planes are edited by the chemical shifts of the 13C nuclei bonded to the

1H resonance observed in the FI dimension of 3D HCCH experiment.

The algorithm ASPA was proposed to automatically extract amino acid spin systems From

three dimensional HCCH-COSY and TOCSY experiments.

Side chain spin systems are usually investigated after the backbone spins are successfully

assigned provided that the (SN/13C labeled protein samples are available thereby triple resonance
:::::-. . -

3D NMR data can be acquired. The backbone aH and C" frequencies can then be taken into
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D.peptlde Baeltbone Pal'tlhOning A1gcltlU'lm (OBPA) t.l"es
lnpullrom ava'lable heleronucJea' 30 NMRs~ ... SUC"
a5 30 HNCO. HNCA. HN(CO)CA. HCACQ and 1SN
TOCSY·HMOC. 0' 30 CBCANH.

t25

. ;':;"~~: ~naln Partitioning Algorithm(ASPA) taklls
input Itom 30 HCCH·COSY and HCCH·TOCSY ta Illltrnc:t
OIiphatic: side chain reson8tlC1ls.

i An elltended version 01 Constralnt Partllionlng A!gotittlrn
, (CPAIIs used 10 alltract amlno add spin syslems tram the
l~N TOCSY·t'1MOC apectrum.

~~~;~~t . .." ,- -, .~. -
Jî.~~':X.:.::::r-

----

Prole,n B3ckOOno St .JeCh..1ln Merglng Algolllhm (PBSMAl
... merges ail aVi!11.3tl1e IIllorT1'\olllon abOut ilmlno l'Icld Spin

sysTems lrom varlOus 3lgonlhms.

•
Amino Acid Pattern RecognitiOn (AAPR) algolilhm
identifies the 81111"0 acid types. fat alllhQ metged spin
:lysl.ms

•
1Polypeptide M<lpplng A1gofllhm (PMA)lakollho
. pofypeplldes c'ealed by C8PA and Iha reluits 01 MPR.
. map lhes. polypeplides 10 proper positions on tho proloin
primary sequence.

•

Figure 5.2: A tlow diagram of Ihe sequential assignment protocol using heleronuc)c:lr 3D NMR.
l'

consideration in creating side chain spin systems. For example, DBPA produccs backbonc spin

systems,lhe aH and Ca chemical shifts ofthese spin systems can be taken as the starting points for

side chain resonance assignment using ASPA. Thus more erficient searches can be accomplished

due to a resulting smaller searching space.

The side chain resonance frequencies ca" also be revealed by experimenls observing long

ral)J!e couplings between protons, such as 2D TOCSY and 3D ISN TOCSY-HMQC. In principle
~~,' ~

a sole2D TOCSY or 3D ISN TOCSY-HMQC spectrum has surficient information 10 assign a

protein's entire side chain and 'backbone spins. In practice, however, not ail spin systems can be

identified in a TOCSY experiment, especially in the case of a-helix based proteins which huve

small 3JNH_aH coupling constants•

Despite the fact that a sole TOCSY experiment sometimes fails to provide sufficii:nt infor-

•.
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mation for long spin systems, it is still usefulto examine these TOCSY experiments as they have

simpler eross peak patterns compared 10 DQF-COSY. NCPA(Nitrogen Constraint Partitioning AI­

gorithm) was proposed to extract the amino acid spin coupling systems from 2D TOCSY or 3D

ISN TOCSY-HMQC experimenl. NCPA is complimentary to ASPA as both of them provide side

c1uiin information but using different approaches(see Figure 5.3).

.::J
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3[.1 HCCH·COSY
and HCCH·

TOCSY

,

[3D HCCH·TOCSY

oitièr-ôxp9rln18nIS
lecotding olipholic
aide chain carbon

and prolon
relOnal'lCfll

.
ASPA

IAllphllllc Sidedlaln
Portllionlng A1gorllhm)

CPA
(Conslralnl

Partilioning A1gorilhml

•
.,! abph4lic slde chain
, spin syslems

NCPA
(Nitrogen Constralnt

Partillonlng Algorithm)

3D liN TOCSY·
HMOC

30 HCCNH·
TOCSYand

HCCICO)....
lOCSY

Figure 5.3: Many approaches can be used to obtain protein's side chain resonances. In this example.
three algorilhms were designed to extract side chain spin systems from 2D and 3D NMR spectra.

The uctual procedure to merge the backbone and side chain spin systems are described in the

following pseudo codes:

void MergeBackboneSidechain(BackboneSpinsystem-type, ,
SidechainSpinsystem-type, .

•

/ /Input: l.
1/ 2.
/ / 3.
1/
//Examples:
1/
1/
1/
1/
1/

a set of backbone spin systems BI. B2. B3, .••
a set of side chain spin systems SI. S2. S3, ...
if available, another set of side chain spin
systems TJ, T2 ....
Bi were derived from algorithm DBPA, Bi contains

(N,NH,aH,Ca,CO) •
Sj were derived from algorithm NCPA, Sj contains

(N,NH,aH,,BH, ... ).
Tt were derived from algorithm ASPA, Tt contains

(aH,,BH,yH,Ca,C,B, ... ).
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/1
//Outpl.lt: a set. of amino acid spin systems :\I.:\;!... :\; \.;ith
/1 backbone and side chain information.

for each of the backbone spin systems IIi {
for each of the side chain spin system Si

compare Bi and Sj;

if Bi and Sj share several
commen resonances. e.g., aH,NH,N
if another set of side chain spin
systems Tl are available {

if ( (one or more resonance in /li can be found in 11) &&

(one or more resonance in Sj can be found in T~)) {

AI= Rj +S; +Tl;
}

else
AI = Bi + Sj;

U7

•

To merge a backbone and a side chain spin systems. PBSMA requires thùtthey shure severnl

common frequencies. Suppose a backbone amino acid contains five frequcncies (NH, N, aH, Cu,

CO). and a side chain spin system is composed of four spins (NH, aH, f:lHt. f:lH2). Depending

on the NMR experiments used to construct these spin systems, sorne resonances may be present

in both the backbone and the side chain spin systems. In thc above exumple, NH and aH lIre the

two overlapped resonances. The more overlapped resonances found, the more reliable the merge.

In sorne cases, another experimental duta set provides additional information which cun be used

as extra constraints to confirm the merge of a buckbone and a side chain spin system. 3D HCCH­

COSyrroCSY provides uliphatic side chain resonances including aH, Ca, f:lH, Cf:l, ... ,etc.,

these frequencies can be treated as the additional constraints for merging backbone and side chain

resonances. In other words, to merge a backbone spin system, which hus the resonances of NH, N,

aH, Ca, CO, and a side-chain spin system, which has the resonances of NH, aH, ,BHt. f:lH2, one

can check the spin system output from 3D HCCH-COSYrrocSY to seek evidence such as the

spin system (aH, Ca, ,BHI. C,B, ,BH2' .,. ) where two frequencies (aH and Ca) can be found in

the backbone candidate while another two (aH and ,BHI) can be found in the side chain candidate.

Once the backbone and side chain spin systems are properly merged, it is possible to perform

the amine acid identification process, that is, to recognize these spin systems according to their
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spin coupling pallerns and chemical shifts. The aim of spin pallern recognition is to obtain ail

possible amino acids that a spin system may be assigned to. The spin pallern recognition algorithm

descrihed in section 2.6 conducts the identification of the deduced spin systems. This algorithm

makes use of fuzzy mathematics to recognize the distinct pallern of each amino acid. Many spin

system recognition algorithms(e.g.• the one by Kleywegt [8]) utilize chemical shift information

exclusively. However, our algorithm is able to reeognize amino acids' spin topologies based on

the faet the each topology has different connectivities between its components. Along with the

chemical shift information. the graph lheory and fuzzy mathematics based pallern recognition

algorithm provides more aceurate results in terms of determining the possible amino acids that a

spin system corresponds to.

The baekbone and side chain spin systems can be extracted from various NMR experi­

ments. Backbone spin systems may come from 3D HNCO. HNCA • HCACO, HN(CO)CA and

ISN TOCSY-HMQC. they may also come from 3D CBCANH experimenl. Similarly, side chain

spin systems may be derived from 3D HCCH type experiments as weil as from HCC(CO)NH­

TOCSY. Even 2D DQF-COSY and TOCSY NMR spectra provide valuable information for the

determination of spin systems. The spin system candidates therefore may consist of various in­

formation. Those spin systems from 2D COSYrrOCSY may contain proton frequencies whereas

those spin systems derived from 3D HCCH COSyrrOCSY may be composed of carbon and

proton frequencies. Moreover, the spin systems may differ from each other in terms of the con­

nectivity relationships. Spin systems from TOCSY type experimenls may not contain the details

of side chain connectivities. For example, TOCSY type experiments are unable to distinguish

spin systems 4.53(aH), 2.25(IlH), 1.93(IlH) from system 4.53(aH), 1.93(IlH), 2.25(yH) as it is

not genemlly easy to determine if a specific peak is arising from short or long range coupling.

Figure 5.4 provides a summary of the three different kinds of spin systems described above and

several experimentally observed spin systems are given as examples.

Figure 5.5 ilIustrates how an eXPerimentally observed amino acid spin system is mapped

to various amino acid residues. The standard amino acid patterns may contain protons only;

protons and nitrogens; protons and earbons; or protons, carbons and nitrogens, depending on the

available NMR experiments. The proton database of the standard 20 amino acid was adopted
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H N

Aspartic acid CH CH, COOH

0 C

graphical representation 01 possible NMR
the spin systems. cach experiments possible spin systems

components of edge represcnls a
spin system corrclalion observed 'rom generaling the left observed

NMA speclra system experlmenlally

lack 01 11~1, Md 11H:
conneclion

11Hl ' IIHl

protons
NH ' , uH

2oo0F-COSY
NH "H Ntl ' , ntt . , 1111

anly and TOCSY

l'"' IIH;> IACk 01 ono lUI

"H lOfl

nilragens
3D I5N TOCSY-

and , N . , NH \ ; pHI
HMOC

N . NH '

protons

, 11H2 ' lack 01 one IlH IIH ' '

30CBCANHI i' N ' Cil ,
N ' en ' IIHI

nUragens HBHANHar L
• carbons

l, NH ~. ; ntl i l, CIl 1 HNCO.HCACO. 1 NH 1 .. nH ' j Inn)
and HNCACO,HNCA.

protans I5N TOCSY.HMOC lDck Dl one l'H
.\ IIH2 ! : CIl:

Figure 5.4: Aspartic acid is used to show a spin coupling systems can have vurious types of nuclei. The
possible experiments genemting these systems also listed.

12'1

•

From GroB [62]. The nitrogen dutabase was adopted From Choy [70] and the carbon chemical

shiFt database was adopted From Wishart [78]. Note that in Figure 5.5 there might be more than

one mapping from an observed spin system to a standard amino acid. For each oF the mapping

there is an associated value representing the similarity between the observed and the standard spin

systems. Details about the similarity values is presented in section 2.7. Aner perForming the

pattern recognition on ail oF the extracted amino acid spin systems. a "spin pallern to residues"

table can be created where one ean locate ail the possible amino aeids that each spin system can

be assigned to. Figure 5.6 shows a small segment oF such a table. Note that amino aeids with low

similarity values were eliminated to shorten the table.

A' brief summary is presented for the topies deseribed up to this point. Amino acid spin sys-'
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Figure 5.5: Schematic representation of the mappings between an observed spin system and ils amino
ucid candidates: Vul, Ile, Met, Glu, Arg and Leu. Note thatthere couId be more than one mapping for the
same amino acid, such as the cases of Met and Arg. "

tems \Vith backbone and side chain information are derived. The identities of these spin systems

are examined, that is, a table, such as the one shown in Figure 5.6, will be given so that ail the pos­

sible amino acids that a spin system may be assigned to will be Iisted. The sequential assignment



• 5.2 TOWfUd the scqucntial assignrncnt 1.\1
--~---

15 G," ~M<ll "" A'g L~'s Ll'U

oen 0.854 07J8 0621 0615 0615 0595

11 @LllU A~ "" V. MI"l Glu Gin '"' S.., P", A.o
0.898 0819 0,94 0781 0.125 0620 0616 0610 ') 545 05:15 il4M 0415

75 @LOU '" M<ll V. GIn G,"
0.820 0799 0,702 0702 0665 0636 " ..

77 A~ Loo U, @ Vm GI" G," Mill PM Th. "'P Coly
0931 0908 0,8Sa 0.841 0.779 0,147 0.738 0692 0654 0619 0566 0565

81 A~ LV' ~ Ser G'" Th< L," Mel C," V.
0.856 0.858 0.726 0.617 0.591 0.591 0585 0585 0581 0566

82 Il, A~ ". ~ GIn Mllt G'" Poo
0.650 0.636 0,636 0.589 0.586 0570 0570 00141

88 Th. "'" MOI G" Pho V. G'" "" A~ Lou Il. @0.572 0.774 0771 0.730 0.715 0.685 0671 0666 0636 0.629 0.621 o~..

66 Vm '" G" ~ L~ A~ ~" Mel Ph, GIy S.. Th<
0.819 0.763 0.705 0.871 0.666 0.662 0657 0632 Q.547 0,468 0.436 O,4~O

32 (;J Gm Vm Il, Th, SOI LV' "'" GI, L",
0.813 0.604 0.728 0.728 0.702 0.697 0,673 0.673 0,669 0.631

Figure 5.6: A "spin-system to amino-acids" table. Spin system No. 15 can be assigned to one of Gin.
Glu. Met, Ile, Arg, Lys or Leu. This table was generated by the Amino Acid Pattern Recognition algo-
rithm. The number below each amino acid denotes the similarity between that amino acid and the spin
system on the very left. A higher similarity indicates a closer match. The values mnge l'rom 0 to 1.

•

problem is partially solved by using triple resonance 3D NMR since these experiments provide

the interresidue correlations l'rom which polypeptides can be built. The rcsl of the resonance as­

signment task is to map thesc polypeptides to their actual positions wilhin the primary sequence

with the help 01' the "spin systcm to amino acids tablc". This lask can be achievcd manually since

spectroscopists usually have additional information at hand to guide them through thc mapping

01' the polypeptides. Hcre a general purpose sequential assignmcnt protocol was proposed to !lU­

tomate the mapping. This protoeol aims at giving an additional iool to help spcctroscopists to

handle tedious assignment work. The first step 01' Ihe scqucntial assignmcnt protocol involves a

conversion 01' the "spin-system to amino-acids" table to an "amino acid residue to spin systems"

table. Figure 5.7 illustrates such a conversion. Once the conversion is donc, the rcmaining work

is to check each 01' the polypeptides against the "amino-acid-rcsidue to spin-systems" table. IF

a polypeptide can be loeated in the table, the corresponding assignment is immediately deter­

mined. In Figure 5.S, a nine-residue polypeptide is used to explain the assignment procedure. The

Polypeptide Mapping Algorithm, PMA, was designed to carry out the mapping. The pseudo codes

01' PMA are Iisted here.
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amine acid possible spin
residues_Lsystelns _

1 .

spin possibie amino
systems acids

51 Thr Asn Net GIn

52 Val Ile GIn Glu

511 Ida Leu Arg 118

515 GIn Glu Het Ile

575 Arg Leu Ile Het

577 Arg Leu Ile Ala ......

Leu79

ValBO

HetS1

Net82

valB)

ArgB4

GlnB5

NetB6

511,575,577.......

52.......

i 51.515.575 ..

1 51,515.575 .

1
52.......
511.575,577, ..

51.52,515 ..

51.515,575 ..

Figure 5.7: Conversion between" "spin-system to "mino-"cids" lUbie to the "mnino-"cid-residue to spin­
systems" table.

void MapPolypeptide(primary_sequence, polypeptides,
5pin5ystemToAminoAcid-table

1. protein' s primary sequence RI - R2 - R3 - .,. - Hm .
e.g.: Glu9-AlaIO-Arg11-A1a12-Phe13-Leu14-5er15-Gly16-Glu17-

2. a set of polypeptides: PI. P2. PJ. ... . ..
e.g.: PI=515-511-575-577-581-582-588-566-532

where 5 stands for spin systems.

3. spin-systems to amino-acids table which maps each spin
system to the possible amine acids.

e.g. :
5pin system Possible amine acids

the protein's primary sequence, it is possible to convert
above table to the "amino-acid-residue to spin-systems" table
e.g. :
Residue Possible spin system candidates

... ,525,515,512, ..
,554,511,513, .
.. ,574,575,55, .
..... ,549,577,595, ..

GIn, Glu, Met, Ile,
A1a,Leu,Arg,I1e,
Arg, Leu, Ile, Met,
Arg, Leu, Ile,Ala,

1
G1u9
Ala10
Arg11
Ala12

515
511
575
577

Known
the

IIInput:
Il
Il
Il
Il
1/
1/
Il
Il
Il
Il
1/
Il
Il
Il
Il
Il
Il
Il

Il
Il
Il
Il
1/
1/
Il
Il•
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1/
1/

for each of the polypeptide Pi = Sil - S'1 - S'l - ... - S,"
for each of the amino acid residue R, in the pril1léu-y sequt::ncl.:~

check(l,j); 1/ ta see if Sil can be found in th\;:..... candidate
/1 list of Ri ;

J
void check(integer p,integer q)

if spin system Si,. can be found in the candidate list
of residue Rif

(
if (1'::;11) Il spin system Si, is

Il the end of polypeptide ~

and ('1 + (II - p))::;m{ 11 assure that there are enough number
Il of residues remaining
Il in the primary sequence ta be
Il mapped to polypeptide ~

check(p+ 1,'1+ 1);
Il call itself recursively

} else if (1'==11) 1
a mapping is found; Il ~I--->Rj

Il Si,--->Rj+1
/ / S(\ --->Rj+2

Il S;/f--->Rj+1I

In the pseudo codes the function check () is called recursively to compure euch element of u

polypeptide with a residue of the primury sequence. If check () reaches the end of the polypep­

tide, a proper mapping is located as shown in Figure 5.8.

5.2.2 Applications

A sequential assignment protocol is describe in the previous section. The protocol involves

two major steps. In the /irst step amino acid spin systems are extracted l'rom NMR spectra, then

Iinked to forrn polypeptides. In the second step, ail amino acid spin systems ure identified uc­

cording to their spin topological pallerns. As a result, polypeptides can be mapped to the primary

sequence automatically. Each of these tasks can be achieved through various strategies, both

\.1.\
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Figure 5.8: lIIustmtion of a possible sequential assignment of the polypeptide 15-11-75-77-81-82-88-66
to G1u9-AluI0-Argll-AlaI2-PheI3-LeuI4-Serl5-G1uI6-G1uI7. The numbers on the right ure the spin
system numbers.

manually or using computer algorithms. To iIIustrate the etl"ectiveness of the sequential assign­

ment protocol. seveml computer algorithms were implemented to accomplish allthe mentioned

lasks. The delails of Ihese algorithms are already described in previous seclions while this section

presenls the applicalion of Ihese computer programs to ;; real case.

Samp!e prolein is Ihe calcium-Ioaded regulalory N-domain of chicken skeletal lroponin-C

(NTnC) residue 1-90., UniFormly enriched ISN and 13C NTnC were also prepared. Available

heteronuclear 3D NMR experiments include 3D HNCA, 3D HNCO, 3D HNCOCA, 3D HCACO.

3D ISN TOCSY-HMQC and NOESY. Peak Iists of the above NMR experiments were given to

the authors by the University of Alberta [68]. Peaks were picked using the CAPP pick peaking

program [56]. then processed by a filter program to remove sorne of the false peaks [68].

The amino acid spin systems can be derived from three separated algorithms each using a dif­

ferent set of NMR experiments. Algorithm OBPA involves severaltriple resonance heteronuclear

3D NMR experiments and is able to deduce the backbone spin systems. In addition, polypeptides

can be created since the interresidue information can also be observed from sorne triple resonance

NMR experiments. The details of OBPA are presented in chapter 3. OBPA gà.~e 98 output pro­

lein backbone spin systems. 58 of which can be verified againstthe separately conducted manual
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assignment [68]. Using the interresidue infoml'Ilion embedded in the Ni\lR cross peaks. 161

dipeplides car. be created based on the 98 spin systems. Further. a tolal of j·B:! polypeptides wilh

length l'rom 3 10 26 \Vere built l'rom this 161 dipeptides.

Besides triple resonancc experiments. spin systems ean also be determined l'rom TOCSY

type experimenl exclusively as long as sufticient long range couplings c,m be observcd. Algo­

rilhm NCPA \Vas used to exlr.lct spin syslems composed of amide nilrogen and prolons l'rom I~N

TOCSY-HMQC. Application of NCPA to Ihe 90-residue NTnC givcs a 101'11 of 83 spin systems

of \Vhich 73 can be verified againsl manual assignment [68]. The lolcrancc values for comparing

prolon and nilrogen chemical shifts \Vere chosen 10 be 0.02 ppm and 0.20 ppm. respeclivcly.

Side chain resonances occur in cro\Vded aliphalic regions of NMR speelra. Therefore eom­

plele assignment of side chain resonanccs is a challenging underlaking especially for large \lro­

teins. The algorilhm ASPA \Vas designed for the 3D HCCH-COSyrrOCSY NMR speclra. For

prolein NTnC, nine hundred and fifteen HCCH-COSY peaks and 710 HCCH-TOCSYpe'lks were

automatically picked by CAPP. The output of ASPA includes 60 spin systems among which 55 can

be verified againstthe manual assignment. However there are 395 unpartitioned cross pcaks which

may arise l'rom the falsely picked peaks by the automaticaliy peak picking progr.lm. Figure 5.9

summarizes the spin systems information retrieved up to this point.

The remaining task, that is, the second part of the scquential assignment protocol involves

the integration of available spin system information, the recognition of amino acid types and the

mapping of polypeptides to thdr anticipated position on the protein primary sequence.

Three types of information are available for the spin systems.

1. The backbone spin systems containing sequential information l'rom triple resonancc NMR.

2. The spin systems derived l'rom TOCSY type correlations.

3. The side chain spin systems determined l'rom 3D HCCH type experiments.

135

•
Aigorithm PBSMA analyzed these data and gave 40 spin systems with detailed side chain correla­

tions and 32 spin systems with TOCSY correlations on the side chain. Figure 5.10 is the schematic

representation of these two types of spin systems and their corresponding building blacks. Once

C·
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Figure 5.9: The results of the sequential assignment protocol for the 90-residue protein NTnC. NCPA
represents the extmcted residues using 3D ISN TOCSY-HMQC and Nitrogen Constmint Partitioning
Aigorithm. ASPA represents the extmcted side chain spin systems using 3D HCCH-COSY. HCCH­
TOCSY and Aliphatic Side-chain Partitioning Aigorithm. DBPA represenL' the extmcted backbone spin
systems using 3D HNCO. HCACO, HNCO, HN(CO)CA. ISN TOCSY-HMQC and Dipeptide Backbone
Partitioning Aigorithm. "Final" represents the sequence-specifie assigned residues. Lack of sufliciently
long backbone polypeptides between residue 35 and 80 prevents automated sequence-specifie assignment
in that region. However, individual residue's assignment is still obtained.

the complete amine acid spin systems. that is, the backbone and side chain. are constructed as

shown in Figure 5.10. they ean be identified using algorithm AAPR. Figure 5.6 shows a fragment

of the output from AAPR. In the final stage, PMA mapped the 5432 polypeptide candidates to

the primary sequence based on the similar infOimation shown in Figure 5.6, PMA gave a total of

2161 mappings. or these. many are redundant. For example, polypeptide 8·9-49·15·11 (where

the numbers denote spin systems numbers) was assigned to G1n6-G1n7·Ala8·G1u9·AlalO, while

simullaneously the polypeptide 8·9-49·15·11·75 was assigned to G1n6·G1n7-Ala8·G1u9·AlalO·

Arg Il. Il is obvious that the former is a redundant mapping of the latter. A set of rules were

introduced to remove such redundancies. In addition, human expertise and intuition can also be

applied to reduce the number of mapping. Details about these rules are described in the next
. \\.,

secllon.

The final assignment includes mapp:ng of a l4-residue polypeptide to "G1n7 Ala8 G1u9
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Figure 5.10: lIIustmtion of the merging ofbackbone and side chain spin systems. Filled cireles represent
overlapped resonances. (a) Chemical structure of serine's backbone and side chain. (b) Using 3D HCCH­
COSY and HCCH-TOCSY, il is possible to obtain the carbon frequencies ofside chains. Thus the merged
spin system contains proton and carbon frequencies. (c) Using 3D I~N TOCSY-HMQC, the side chllin
spin system contains Il nitrogen frequency.

AlalO Argll Alal2 Phel3 Leul4 SeriS G1u16 G1ul7 Metl8 I1e19 Ala20", a 7-residue polypep­

tide to "Ile 19 Ala20 G1u21 Phe22 Lys23 Ala24 Ala2S", a 7-residuc polypeptide to "Met28 Phc29

Asp30 Ala31 Asp32 G1y33 G1y34", a 7-residue polypeptide to "Arg84 G1n8S Met86 Lys87 G1u88

Asp89 Ala90". Figure S.9 lists the summary of the results.

5.3 Discussion

The algorithm PBSMA provides a way to integrate the backbone and side chain data of pro­

teins. The detailed information of the backbone and side chain can be determined independently

• using different NMR data. PBSMA does nol limit itself 10 certain types of experiments. On the

conlrary, PBSMA accepts a wide variety of spin systems including spin systems composed of
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prolons. spin systems composcd of protons and carbons. in addition to spin systems composed of

prolons. carbons and nitrogens. As examples 10 iIIustrate the effectiveness of PBSMA. two sets

of experimelllai data were used. The first set of NMR data includes 3D HNCO. HNCA. HCACO.

HN(CÛlCA and ISN TOCSY-HMQC. The spin systems of the backbone and parts of the scquen­

tial conneetivities can be oblaincd From those five experiments. Furlherrnore. ISN TOCSY-HMQC

..Ione provides another sel ofspin systems based on the long range eouplings belween protons. PB­

SMA merges the backbone and side chain data by overlapping each backbone spin system with

ils side chain counterparts. They can be merged if reasonable overlapping between these two

e:tn he verified. The second sets of NMR dala to test PBSMA includes two more experiments.

3D HCCH-COSY and HCCH-TOCSY. These two NMR experimellls give an additional set of

side chain spin syslems which in turn acl as eonstntinls to increase the a: 'eurncy of PBSMA. The

more experimental data available, the more aecumle the barkbone and side chain merging can be

anticipated.

The second algorithm discussed in this chapter is the Amino Acid Pattern Recognition algo­

rilhm(AAPR). Originally this pattern recognition algorithm was designed for spin systems con­

taining protons only. The extended version is presenled where other aloms can be induded in the

spin patterns. The availability of hetero atoms (carbon and nitrogen) mainly c!epends on experi­

mental data. Spin patterns with carbon resonances can be derived provided that the NMR data set

which correlates carbon and proton frequencies is available. Here the ftexibility of the resonance

assignment protoeol is evident, since the aecepted types ofexperimental data are almost unlimited.

The third and lhe most important algorithm is PMA(Polypeptide Mapping AIgorithm). It

is responsible for mapping ail the polypeptides to their proper positions on the protein primary

sequence. In principle, unique mapping ean be deterrnined provided that the polypeptide is suf­

ficiently long. For example. a IO-residue polypept:Je couId end up being mapped uniquely to

residue 18-27 on the primary sequence. However, in proctice, this kind of uniqueness is not Iikely

since each component residue of a polypeptide could be assigned to many amino acids (although

only one of them can be correct). This usually leads to multiple possibilities. A set of rules was

introduced to manipulate such kind of multiple possibilities. The first rule is the simplest one and

depends on human experience. Recall in conducting amino acid pattern recognition, each spin sys-

138
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tem is assigned a similarity value with respect to an amino acid. This mlue is cakulated according

to a mathematical similarity belween the query spin system and lhe sl:mdard one. Both topologi­

cal and chemical shift similarities arc considered cluring the process. The similarity values range

from 0 to 1. a higher value indicaling a c10ser match. Having oblained each residue's similarily.

an overall score of each mapping can be given. Suppose a polypeptide SI - S1 - S.1 - ... - S" is

mapped 10 the primury sequence between re>idue RI' and R11'+"-II' The simiiarity value belwccn

5i and R1/,+i-_1) is denoted as ri. The ovemll score of this mapping is defined as

1.\9

(5.1 )

•

Because ail of ri's range between 0 10 l, lhe overall score <llso mnges from 0 10·:. A higher

score indicules <1 more Iikely mapping. The first mie to reduce lhe number of multiple mapping

is to simply set <1 threshold for the ovemll scores from <Ill the mapping. Only those ll1<1pping wilh

scores higher than this threshold rem<lins. A typical threshold value is between 0.6 100.7 and

is detennined by the quality of <Ill spectm and individu<lJ user's eltperience. This threshold of

mapping score can elimin<lte a large number of ml1hiple mapping.

The second mIe deals with the redund<lnt mapping. Suppose polypeptide Pi c<ln be mapped

10 5i, <lnd another polypeptide Pj ean be mapped to 5j, where 5 <Ire segmenls on the prim<lry

sequence. Suppose Pi is a subset of Pj and Si is <1 subset of Sj. M<lpping Pi-Si will be dise<lrded

sinee it is a subset of m<lpping PrSj. For elt<lmple, polypeptide (S5 - S4 - S91 - S94 - 595) is

m<lpped to residue 30-34 while polypeptide (521 - 578 - 55 - 84 - 591 - 594 - 595) is m<lpped
_::-~'--

to resiilue 28:'34. It is obvious thatthe fonner is a redund<lnt m<lpping with respect 10 the I<lUer. In

c<lses that more than one polypeptide can be m<lpped to residue 28-34, a third mie is ~e_d-"'I:ich
'.-- ~-~-- .-

suggesls th<ltthe polypeptide with the highest mapping score is pick!:d. Simil<lrly, if li polypeptide

"can be mapped to more than one position, the mapping with the highest score is kept.

By employing'these mIes, the number of mapping can be reduced to a re<lson<lble figure

whereby users arc able to 'inanually select the final ussignmenl.

The efficiency of the Polypeptide Mapping Aigorithm is a considerable improvement over

its predecessor, the Tree Search Algorithm(TSA). Consider the following eltample. A polypeptide

with N spin systems is to be assigned. In Figure 5.11, suppose each amino acid residue has 10
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possihle spin system candidates. only one of them can be assigned to the corresponding residue. In

N rO'Sldoos poIypophde N

~
0000 DOD

140

N

pnmary
sequence

A,

RIO'

R,.~

C AH'"

Spin systom candidates

o
o
o

WOfStSiluation: 10N
compare operations

N

pnmary
sequence spin system candidales

o
El

o

avarage sltualkln: 5N
compare operations

•

Figure 5.11: Performance analysis of Polypeptide Mapping Aigorithm. An N-residue polypeptide is
to be assigned. In the \Vorst situation. the correct spin systems ail occur at the end of the spin system
candidate Iists. ION comparisons are expected in this case. In the average situation. the correct spin
systems occur in the middle of the spin system candidate Iists thus a total of 5N comparisons can be
cxpected.

the worst situation the correct mapping occurs at the last spin systems of each residue, Îli'~S a total

of ION comparison operations must be conducted in order to assign this N residues polypèptide.

In the average situation, however, only 5N eomparisons are needed.

5.3. J OptÎO!IS ofthe implemented campI/ter program

The Polypeptide Mapping Aigorithm provides several options by adjusting which one can

fine tune the sequential mapping procedure. The first option deats with the multiple mapping of a
"

polypeptide. This is iIIustrated in Figure 5.12. Recall that before PMA starts the actual mapping

actions, amino acid types of each observed spin system must have been obtained. In the sequential

assignment protocol, the amino acid types are determined by the Amino Acid Pattern Recognition

algorit~m. As an example. the amino acid types of several spin systems and are shown in Fig·

ure 5.12(a). The mathematical similarity between each spin system and its amino acid candidate
Y"

is also shown. The similarities are calculated by comparing the query spin system with the statis·

'1\.
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Figure 5.12: An example showing multiple assignments of a polypeptide. T~c polypeptide eontains 7
'l'!! systems, SS-S8-S IS-S 14-S24-S9-S 17. (a) The possible amino Ilcids each deduccd spin system can
be assigned to. The associated similarity values are also shown. (b) iThe polypeptide Ims three mapping
positions within the primary sequence: Ala10.....Tyr16, Thr4S-· ~ ',SerSI und Alu73.....Phe79.

t~ t

tically determined standard amino acids. Il is possible that an amino acid with low similarity is

assigned eventually. In Figure S.12(b) a simulated sequential assignment is listed. For example,

the candidate spin systems forresidue AlalO includes S4, 8S, 834, 824, ... , etc. Each ofthem has

an associated similarity which is directly translatcd from Figure S.12(a). Considel the polypeptide

8S-88-815-8 14-824-89-8 17, three different assignments can be located from Figure 5.12(b). The

polypeptide might be assigned ta AlalO-G1ull-8erI2.. · ..TyrI6, Thr45-Asn46-Phe47··· ·-SerSI

or Ala73-Arg74-Asp7S·· . ·-Phe79. Each assignment has its overall assigning score which is cal·

culated using equation S.1. 'The assignment bearing with the highest score is considered more

Iikely to be the correct one. However, users have the option to output ail valid assignments or the

one with the greatest assigning score. If ail valid assignments arc chosen ta be printed out, the

users must manually verify them. With respect ta cach polypeptide, PMA outputs the assignment

having the greatest assigning score by default.

• The second option provided by PMA is best explained by an example. Consider a IO-residue

polypeptide 854-845-88-89-849-858-868-834-835-897 as shawn in Figure 5.13. Ta make the
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Resldue Candidate spin systems Comments

Giy20 .......... 54 .........
Asp21 .... 45 ...............
Thr22 .......... 8 ...........
lIe23 ........... 9 .........

Ser24 .................. 49.
Gln25 .... 58 ...........•...
Arg26 ... ... '" ... ... ... ... .. 68 is not in tha candidate Iist of Arg26
Lys27 ... '" ... ... ... ... ... .. 34 is not in the candidate list of Lys27
Ala28 '" ... ... ... ... ... ... .. 35 is not in the candidate list of Ala28
Phe29 ... ... ... ... ... ... ... .. 97 is not in the candidate Iist of Phe29

Figure 5.13: An example showing that differcntlengths of polypeptides mightlead to differcnt assign­
ment rcsults. If the assigning polypeptide is chosen to be 554-545-58-59-549-558-568-534-535-597,
therc is no corresponding assignment within the known primary sequence. An assignment, however, can
he detennined once the assigning polypeptide is chosen to be a shorter one, 554-545-58-59-549-558.

sequential ussignment, PMA allempts to locate the query polypeptide in the "residue to spin­

systems" tuble. If the polypeptide appears in the table, the corresponding assignment can be

determined immedimely from the left column of the table. If the query polypeptide doesn't have

u corresponding position in the table, it is eonsidered thm the ussignment for the polypeptide on

this purticulur protein segment is unavailuble. However, although the ussignment for the entire

polypeptide is not avuilable, there might be chances to assign part of the polypeptide. To investi­

gute the pos~.ibility for sueh u "purtiul" ussignment, it is possible to customize PMA so thut one or

more residue~(ln be subtructed from the eilher end of the query polypeptide. Allempts then ure

uddressed towurd the ussignment of thut shorter polypeptide. This procedure can be eondueted

ilemlively until an assignment is reaehed. In the example in Figure 5.13, the assignment is deter­

mined for the polypeptide 554-545-88-59-549-558 which is four-residue shorter than the original

one. The implication of the above iterutive subtmction procedure falls on the fact thât the sequen­

tiul connectivity between 558 and 568 might be incorrectly established in eurlier stage. In other

words, 568-534-535-597 should not be conner'cd with the 554-545-58-59-549-558 during the

polypeptide generution period. Thispossible ~istake resultedin a IO-residue polypepl!de,which
\\ 1,

apparently is too long to Île successfully as~iii~rd. Finally, it should be noticed that by'iurning
':'.
"

on the iterulive mapping option of PMA, there ai-~ risks thal more assignments will be output and
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needed to be analyzed. A reasonable compromise is to sel a 10\Ver limil of permilled Icngth nf

the assigning polypeptides. for exmnplc. four or tive residues. By restricting Ihe length "f the

polypeptides. the oUlput mappings will remain manageahle.

5.4 Summary

The sequential assignment protocol presented in this chapter is Ihe tirst one using mnino acid

pallern recognition and heleronuclear 3D NMR. Delected spin pallerns me compmed with the 20

standard amino acid pallerns to determine their 'lmino acid Iypes. The eomparison is Iwofold.

Firsl, the similarities of chemical shifts arc ealcuhlled. Secondly, the lopological consistency he­

Iweenthe query pallern and standard pallern is ehecked. Using heleronuclear 3D NMR, Ihe chem­

ical shifts Can include nitrogen, carbon and proton nuclei. DBPA(Dipeptide Backhone P:lrlitioning

Aigorithm), ASPA( Aliphatic Side-chain Partitioning Aigorithm) and NCPA(Nilrogen Conslrainl

Parlitioning Aigorithm) are introduced to extractthe backbone and side chain spin syslems from

heteronuclear 3D NMR speetra. PBSMA(Protein Baekbone Side-chain Merging Aigorithm) is

introduced 10 ineorpomte ail the spin system information and prepare spin pallerns for amino aeid

type determination. These "amino-acid-Iype-determincd" spin systems then become the input of

PMA(Polypeptide Mapping Aigorithm). Along with the sequential conneetivilies extracted in

DBPA. PMA completes the final assignment.

A complete resonance assignment protocol is presented. Il is fully automaled and generie.

i.e.• nol limited to any partieular NMR experimenl. However. the automated assignment protoeol

is not designed to entirely replàce the manual assignmenl. Proper human inlervention still plays

an important role in the computer-assisted protein resonance assignment.

14.1
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Chapter 6

Conclusion

This lhesis presents aUlomaled approaches for doing resonance assignment of proleins from

heleronuclear 3D NMR spectm. Aigorithms for eXlraclion of spin syslems and establishment of

scqucnlial conncctivities arc described in lhc contexts of a constrained partitioning mechanism

and a graph theory based pattern recognition proccdurc. The proposed algorilhms are validated

with simulatcd and cxpcrimental data based on implcmented compuler programs.

6.1 Contributions to original research

•

,
.~',

.OC>.'
The research described in this thesis represents contributions to the development of auto­

mulcd NMR resonance assignment tools. The specific contributions to original research may be

stated us follows:

1. An automaled spin system extmction algorithm is proposed. The algorithm has the follow­

ing features:

(a) The input data ~an be taken from a wide variety of triple resonance heteronuclear 3D

NMR spectm~Nospecific type of NMR experiment is required for the input.

(b) The algorithm is able to determine if the input data provide sufficient information to

accomplishlhe complete backbone resonance~.:;,signment.
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(c) The backhonc spin systems an: dch:rmincd hascd on strict tllcrging ruh:s to o\'crcomc

spectral overlap. The sequential connectivities are cstahlishcd in the form of dipq'­

tides which suhsequently can he converted into polypeptidcs.

(d) The extraction algorithm is llexihle so that users can control the hehavior of the al­

gorilhm through various oplions. The deduœd polypeptides can he placed to corre­

sponding protein primary sequence manually or hy the automated appmach discussed

in chapter 5.

2. An algorithm for determining the side c1min spin systems of proleins Ims heen formu­

lated. The implemented computer program is applied to the 3D HCCH-COSY and HCCH­

TOCSY experiments. Use of heteronuclear correhllion experiments can resolve certain

chemical shift degeneracy problems which ctm't be otherwise Imndled by Ihe conventional

2D COSY and TOCSY experiments. The available ctlrbon chemical shi fis arc able to sepa­

mte potential spectral overlap. Previous conducted backbone assignment provides a H and

Ca resonances which can be incorporated into the side chain extraclion ulgorithmto further

sepuMe the crowded uliphutic side chuin region. The deduced uliphtllic side chain spin sys­

tems cun be integrated with the independently determined protein buckbone spin systems

thus muking a l'ully automated sequential assignment protoeol possible.

I~S

.~

3. An automated sequential ussirnment protoeol is applied to the information of spin systems

determined in the above two stuges. The protoeol is centered uround u spin pultern recogni­

tion ulgorithm. The algorithm determines the amino tlcid types for the deduced umino ucid

spin systems using mathematical graph theory and fuzzy subset theory. The determined

amino acid types ulong with the detailed spin system information tire sent into a mapping­

algorithm to complete the sequence-specific resonance ussignment. In most tlVuiluble au­

tomated assignment packages, the deiermination of umino aeid types und the mupping of

deduced polypeptides are not completely automated. The proposed protocol presents the

possibility of developing a l'ully automated assignment package ulthough the complexity of

the experimental data make the complete alltomUlion not reulistic at the present time.
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4. In addilion 10 Ihe ahove three sludies. Ihe possibility of using fewer NMR experimel1ls. in

our study. 3D 15N TOCSY-I-IMQC and NOESY-I-IMQC. to eonduet the sequence assign­

menl is investigated. An algorithm for determining spin systems l'rom the 3D ISN TOCSY­

HMQC experimellt is presel1led. Despite the faet that a sole TOCSY experiment might not

be able to provide ail Ihe long range correlations. the TOCSY data eontain suffieient infor­

mation for construcling the backbone and part of the side chain spin systems. With sorne

extension. the spin pattern recogniticn algorithm is able to delerrnine the possible amino

acid types for ail the deduced spin systems. Along with the 3D ISN NOESY-HMQC spcc­

lrum. whieh provides through-space sequel1lial connectivities. the deduced spin systems can

be plaeed to the corresponding prinmry sequence.

6.2 Practical application

The implementcd computer programs have been applied to a real-life situation: the auto­

mated ussignment of u 90-rcsidue protein. In genentl. uvuilable NMR experiments maybe di ffer­

ent l'rom the ones demonstrated. In plunning resonance assignment of proteins using computer­

assisted m~thods. the current studies may be useful in the following ways:

1. Determillatiol/ ofproteill alipllCltic side cllaill resolllmces. Given correlation spectnt of the

side chuin rcsonances. our algorithm can deterrnine aliphutic side chain spin systems au­

tomutically. If the aH and Ca resonances have been independently assigned prior to the

detcrminution of side chuin resonunces. the aH und Ca information can assistthe partition­

ing ulgorithm in such a \Vay that every merging of u spin system must be initiuted l'rom an

,uvuilubleaH/Ca node.

2. Extractioll ofproteill backbolle spil/ systems. Our algorithm offers flexibility in this aspect.

The input NMR experiments can be a single 3D CBCANH spectrum or it can be a set of

muny triple resonance NMR experimel1ls. The algorithm is able to inforrn users whether the

input duta is a complete set or not. Moreover. the through-bond sequential connectivities

are established at the same time of the deduction of individuul backbone spin systems.
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3. Creatioll ofpo/ypeplit!c c/llIill.l'}i"OIll a/rcat!,· c.l'Iahli.l'hct! t!ip,'plit!,'.I'. Dipeptides ~onsist of

two amino acid spin systems \\'hi~h are already determined either manually or throllgh an

automated approaeh. On~e ail the dipeptides arc ready. our algorithm is ahle to merge the

individual dipeptides into longer stretehes whid, ~an he fllrther assigned onto the protein

primary sequence.

4. In the case where triple resonance NMR experiments ure not av.lilahle. our assignment

package is able to take the input l'rom 2D COSY. TOCSY and 3D "N TOCSY-HMQC

spectra and output the individual amino acid spin systems. The seqllential eonneetivities

can be determined l'rom the through-space correlations ohtained l'rom 2D NOESY or 3D

ISN NOESY-HMQC.

5. Delemlillalioll of alllillo acicl I)·pes. The amino acid types of the dedueed spin systems

can be determined automatically through thc pallern recognition technique. The input spin

systems can bc composcd of proton, carbon and nitrogen nuclci and elll1 he derived cither

manually or by computer-assistcd mcthods.

6. The seq/lellce-specific C1sSiglllllelll CCIII he cleremlillecl C1l1/o/llCllicCllly. In this case, the de­

duced spi~ systems, the information about ami no acid types along with thc established

polypeptide chains act as the input of the automated mapping procedure. Thc corrcspond­

ing positions of the dcduccd spin systcms within thc prinmry scquenee ean be detcrmined,

The abovc operations can be conducted independently, that is, users Clll1 rmmually conduct any

part oFlhe assignment and then integrate the rcsult into thc automated assignment approach.

6.3 Future work

1~7
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This study~h~~lm~sented several opportunities for future research. In the long lerm. lhe

'---_.- "-"

possibilities of using various advanced compuling methods, such as artificial neun.1 networks.

genetic algorithms, parallel algorithms, to aUlomute the protein rcsonance assignmcnt romain to

be explored. ln the short term, several rclated extensi.ons From the current work shoultl be furlher
,';' ---,

investigated. They arc described in the following.
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Ali of the algorithms described in this thesis require the input dam to be presented in the l'onn

of peak lists. Therel'ore. a reliable automated peak picking procedure becomes crucial. Unl'ortu­

natcly. due to Ihe complexity of actual spectra. a perl'ect automated peak picking progrum remains

to be devcloped. A l'ully automated resonance assignment package cannot be realized without a

robust peak picking progrum. CUITent peak picking algorithms are mostly l'ocused on the analy­

sis of peak slmpes by comparing the shapes of real and l'aise peaks. A possible extension l'rom

our studies is to devclop an intelligent peak picking algorithm which considers not only the peak

shapes but also the logical rclationships between the suspicious peaks and their sUIToundings. For

example, a genuine peak should have coupled partners whercas a l'aise peak should not. By imple­

menting these types of logical construints. along with the investigation of peak shapes, it should

be possible 10 improve the rcliability of the CUITent peak picking procedures.

6.3.2 Assignlllellt ofthe al'Omatic protons

A direct extension of the aliphutic side chuin extntction ulgorithm is to include the aromatic

protons into the ussignment target. To cope with the aromutic proton assignments, the algorithm

should extruct uromutic spin systems liS weil as crcate proper relationships between the aromatic

ring and its aliphatic pllrtner. The selection of experiments is also important because sorne NMR

experiments don't record aromatic resonances, especially for aromatic curbons.

6.3.3 Use ofinformationnot determinedfl'Om NMR

Besides the protein primary sequence, which is necessary for the sequence-specific resonance

assignment, other information obtained l'rom physical or chemical methods may be helpful in

designing an uutomuted ussignment softwure. For example, the protein secondary structures can
.)

be roughly detennined l'rom vurious approaches inc1uding chemical and computational ones [3].

The availability of secondury structures provides information about the distribution of backbone

chemical shifts, especially aH's. This is a usefui criterion which should be considered when doing

1~8
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the sequential mapping of spin syslems. Currently there is no systemalÏ<: llpproa.h de"e1oped or

irnplcmcnted in our assignrncnt protocol. A wdl-ùcsigncd cxpcrt systcm might he ncccssary to

make use of ail su.h types of misœlianeous information.

6.3.4 Nucleic acids and carbolzl"C/mtes

The resonance assignments between proleins. nuelek acids and polysaœharides ha"e fun­

damental similarities. Il is Ilt'cessary to identify NOE correlations belween ncighboring residues.

which enable one to step along Ihe backbone of the polymer. When degenemey oceurs in the

chemical shi fIs of an assigning residue. il ean be resolved through correct identilkation of the

type of that residue and a knowledge of the primary sequence. The ledmiques developed for

protein resonance assignment in principle can be applied 10 nudcic acids and polysaedmrides.

Allhough Ihe delails romains to be defined, Ihe developmenl of lm aulOlmued llpproach for nuclcic

acids and polysaccharides resomlllcc assignlllcnl is a fcasiblc long tcnn goal.
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AppendixA

Derivation of the cross and diagonal peaks of

2D COSY and DQF-COSY experiments

This appendix presents the 2D COSY and double quantum filtered COSY experiments using

a more theoretical approach.

First consider the evolution of a density opemtor under the unperturbed weak coupling

Humiltonian

H =LQkh: + LL21l'lklh:II:
k k<1

(A.I)

The shift frequency of nucleus k in the rotating fmme is defined by Qk = WOk - wrf. with the

Larmor frequency WOk and the rf frequency wrf. lkl is the scalar coupling between nucleus k and

J.

Since ail terms in equation A.I commute, the evolution caused by the individual tenns can

be computed separately in arbitrary order:

-,~

l
_ Ci or symbolically:

u(t + r) = Ilexp(-iQrh,)Ilexp(-i:rrJkl r2h,I/,)u(t)
k k</

X Ilexp(i:rrJkl r2h,I/,)Ilexp(iQrh,)
k<1 k

(A.2)

(A.3)
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By expanding the exponemial. it is str:lightfnr\\'ard (0 pro\'e Ihe fo\lo\\'ing relations for 1= 1n

spins [80].

l'- i",/: /.,.,/li'l: = Il COS cP + 1\. sinlp

e- i ,.,/: !yei"'I: = Ir COSIfl - l, sin cp

e-i'l'I, l,ei" I, = l, cos l{J - l,. sin l{J

e-i'l'I, l,.ci'l'/' = !.,. eosl{J + l, sin l{J

15\

(A.4)

Thus, the effects of the chemical shifts, scalar couplings und radio-frequency pulses Cl\l1 he

treated as rotations of the angular momemulll operators. The elTeets of sollle 90" pulses with

different phases are summarized.

(~h
1-~ -l,.- .

1
(:th

.t~ lx

(~h

1\.~ 1-. -

(:th
l,~ lx

1
(~'h 1

.t~-;:

(~h
l,.~ l,.

(~)-,

1., --=---. 1.,

(;;. l_\
1\. --=---. -1.. .

(~)-\.

l, --=---. -1.\

(A.5)

(8lk90 , Jt90.
l, lllblll:.

• 0 1 2 3111111""-

(b)

Figure A.I: (a) the pulse sequence of 2D-COSY, (b) Ihe pulse sequence of 2D COSY with the double
quantum filter. The numbers denote the points of time.

~ For a spin system with two 1=1/2 spins, the density operator of the basic 2D COSY expcri-

ment can be described as follows: (the lower indices of (1; refer to the points oftime in Figure A.I)
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the original system is

1
_,
~-

(A.6)

aCter the first 90 degree pulse.

aCter the evolution time 11.

+[h., cos lrJklll +2hyft, sin rrJklld sin nkll

-[II., cos rrJkllt +2h,h, sin lTJkltd cos nltl

+[11., cos rrhltl + 2h, lly sin rrJkltll sin nltt

aCter the second 90 degree pulse,

(]3 = -th, cos rrJklll + 2h., lly sin rrJklttl cos nkll

+[hx cos rrJkltl - 2h, II)' sin rrJkllll sin nkll

-[l" cos rrJklll + 2h.\·h, sin rrJkltd cos nltl

+[11., cos rrJkltl - 2hyl,z sin rrh,td sin n,tl

(A.7\

(A.8)

The third term of (]3, lk., cos lrJkltl sin nktl, leads to the diagonal peak at WI = W2 = nk

while the other diagonal peak at Wt = W2 = ni is contributed by the seventh term. The founh term

of (]3, 2h,I,)' sin rrhltl sin nkll. will resume precession at ni ± rrh, in the detection period and

therefo~ lead to a cross peak multiplet at WI = nk. W2 \>n, with antiphase doublet structure. The

othercross peak. at w, = nf, W2 =nk is contributed by theeighth term, 2h)'I,z sin rrJkttt sin nltt.

Multiple quantum filtering can be achieved by the sequence [8Il900(~)-tl-900(~)-900(x)­

acquisition. For the double quantum filter, the phase ~ is cycled through the values ~ = 0, rr/2,

rr, 3rr/2. The resulting signaIs are alternately added and subtracted to eliminate ail the terms but

the pure double quantum coherence. Table A.I shows one of the possible phase cycling schemes.

• The pure double quantum state can be represented as
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Table A.l: The evolution of density operators for a ;\Vo-spin "yslem through a phase cyckd COSY pulse

sequence. The indices of (T arc the points of ~.~t~ ln Figure A.!.

1 pulse i dcnsi'y operalor for thc two-sp'.) syslcm (k 1) "Il - 1,: + II:

(1" l, "1

"2

".'
(1" ly al

a2

a3

(1" l-., al

a2

a3

(1"l-). al

a2

a3

1hy cos :rJut( 2h.t ft: sin rr)ulll cus f2"tl + 1/A.t ~o .... HJ""I + 2.h." il: sm :rJutll cos nif,
-(II\- cos rrJU11 + 2h.:.1rt sin ;rJurd eus nltl + litt cos rr}Htl + 2h: th' sin rr)At(j 1sin nit)

th: cos :lJUtl + 2h.t lh' sin ;rJU/II cos n,;;11 + tlh cus rrJu/) '2h:. 11\. sin rrjUft 1sin nlfl
-[!I:: cos :rJkl11 + 2/'ah~ sin rr)kllil ~osQltl + litt cos rrJutl - 2/h·lt: sin TrJut11 sin n,II

[1,,, cos TrJkll1 + lh,·ft: sin TrJuIIl cos Qkll + [lA.' cos TrJk'll 214 • ft: sin TrJulll cos QOt
+[lh cos 1rJUtl + 2/ic:..1h· sin nJutl: ,aSn/1 + (i'l' \:05 ;rJutl - 21,.: ht sin rrJut.1 sin n,fi

th: cos TrJkllt 2h,·ft, sin TrJklll1 cos Qkll + [14,· cos TrJkll1 + 21,:110 sin TrJuIl1 sinQklt
-[ft, cos TrJkll1 - 2h.~ li>- sin TrJkllIl cos Q,II + [1". cos TrJUII ~ 21" ft, sin ".Julll sin Q,II

2QT 1 r 7f 7f 7f 7f]
G3 - 4t-G3 ("2),' + G3("2 ).,. - G3("2)-, +G3("2)-)'

1 [ l' .- 2: 2h., /ysm 7fh/11 cosQkl1 + 2J", hysm 7fJklll cosQll1 +

2hyJ",sin7fJk/llcosQkll + 21/yh"sin7fJklllcosQII.] sin 7fJklll

(A.9)

(A.IO)
~<--:-=-~,

•

\'~ - The third pulse (with a constant phase) generates the single quantum coherence to be1detected:

(A.II)

<The tirst and thç fourth terms give rise to Ihe diagonal peaks white the second and the third

terms lead to the ~r~s peaks. Ali (liagonal and cross peaks consist of antiphase muIIipiets with

almost pure 2D absorplion peak shapes. Thus broad diagonallines can be eliminatedo'i3esides. ail

the single spin signaIs are suppressed. particularly those slemming from solven!.
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AppendixB

The 20 common antino acids and their spin

coupling graphs

This appendi~.lists the chemical structures and the proton-proton spin coupling graphsofthc

'20 c(;mmon amino acids.
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