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ABSTRACT

The main purpose of the thesis is to provide a comprehensive
study of the stability theory of difference equations using the
second method of Idapunov. This study not only unifies the
rather fragmentary results of the rresent status of the theory,
but also provides a mumber of new results. The work consists
of three major parts:

a) A series of theorems is established for each of eight
different types of stability and asymptotic stability for the
difference equations under consideration. Among these, the
concept of lp-stability is introduced and investigated exten-
sively. A4lso, & new approach to studying which stability pro-
perties are preserved under small perturbations is introduced
and thoroughly studied. In general, most of the results fall
into two categories. The first involves the existence of a
certain class of real scalar functions possessing particular
properties whose existence imply the type of stability being
studied. The seccnd deals with the converse problem of deter-
mining conditions of stability and conditions on the difference
equation which will guarantee the existence of such functions.

b) These results are further extended to obtain a series
of theorems on various forms of stability and asymptotic stability
in the whole. In addition, a number of results on the boundedness
and uniform boundedness of all solutions of the difference
equation are presented.

c) The preceding theory is then applied to a rather wide

class of difference equations of the form



X(a+m) + a,X(nimel) + ooo + 8 X(0) = F(2,X(0) y000eX(ntme1)) = O,
A technique is developed which can be used to determine the
conditions to be imposed on the coefficients 8y and on the
function ¥ in order to insure stability and asymptotic stability
for the solutions of the equation. By way of illustration,
the method is applied in detail to the case m = 4,
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INTRODUCTION

One of the major breakthroughs in the study of
differential equations occurred in 1893 with the publice-
tion of Liapunov's now famous paper "Probleme genersl de
la stabilite du mouvement", in which he introduced his
Direct Method for studying the behavior of the solutions of
differential equations. The method is, in reality, rather
indirect in that the behavior of the solutions is inferred
from the existence of certain real scaler functions with
verious particular properties, instead of from s direct
knowledge of the solutions. In essence, this class of sca-
lar functions, commonly called Iispunov functions in much
of the literature on the subject, represents a generaliza-
tion of the total energy of & physicel system. It is this
Possibility of determining the behavior of the solutions
implicitly thet makes Liapunov's method so eminently useful,
especislly for non-linear differential equations where one
cannot usually solve the equations explicitly.

Wkile the full implicetions of Liapunov's approach
were not fully appreciasted for forty years, asnd in fact, his
work faded into obscurity during this time, it was finally
"rediscovered" about 35 years ego and the subsequent use of
it baes made it the principsl mathematical tool for desling
with problems involving linear &and non-linear stability ques-
tions of sll types, particularly in the theory of control

systems.



iv

It was during this seme latter period that the
study of difference equations was given new impetus by the
realization that such equations had certsin extremely use-
ful applications. With the development of high speed com-
puting machines, many differentisl equations which Previous-
ly were considered insoluble, in the practicsal sense, were
converted to approximate difference equations, which the
cbmputefs could easily handle. Also, many problems arose
in the field of control theory in engineering which were
expressible in terms of difference equations. Notable among
these is the field of sampled data systems, in which e pro-
cess is exemined at periodic intervsls to test verious as-~
pPects of it. The mathematical formulation of the problem
is essentially a difference equetion end the behavior of
the process, interpreted as the golution of the difference
equation, is to be determined.

As a result of such developments, not only was an
irtensive study of difference equations warranted, but also
én spproach to yield knowledge of the behavior of the solu-
tions was needed. Such an approach turns out to be an appli-
cation of Liapunov's method to discrete variable systems.
While only & few such investigations have yet been carried
out, ;hese few iﬁdicate that the method which was so fruit-
ful for differentisl equations possesses an analogue for
difference equations which is equally powerful. Krasov-
skii (7) trensferred a number of results on the stability

of differential equations to difference equations, though



Hahn (3) was the first to apply the direct method systema-
tically. The latter work, however, was mainly concerned
with the linear difference equation
X(n+1) = A(n)X(n)

and, in particular, with the constant case in which stabi-
lity criteria were obtained in terms of the size of the
eigenvalues of the matrix A. Halanay (4) extended some of
this work and also gave the first results in the converse
direction; that is, to determine under what conditions the
proper Liapunov functions exist. EKalman and Bertram (6) gave
rather far-reaching extensions of the stability theory for
difference equations, especially for the general equation

X(n+1) = £(n,X(n)). *)
Finally, a new book by Hahn (Stability of Motion, Academic
Press, New York, 1968) was brought to the author's atten-
tion after this thesis was completed. A number of the re-
sults which appear in the book were obtained independently
in the presect work. These are Theorems 1,13,17,35,37,38.

In a somewhat different direction, stability cri-
teria for a particular class of difference equations were
established by Puri and Drake (11) for equations of the
second and third order.

In the present work, both of these aspects, the
theoretical and the practical, are further investigated
and the works previously mentioned are extended considera-~
bly. In Chapter 2 of Part I, a series of theorems is ob-
tained for ech of eight different types of stability. In



particular, the concept of lp-stability for difference
equations is introduced for the first time and the develop-
ment of this theory parallels Strauss' (12) study of IP-gta-
bility for differential equations. Moreover, a new approach
to studying stability properties being preserved under

small perturbations is introduced and treated extensively.
In addition, the concept of instability for difference equa-
tions is also presented.

Essentially, for each of the types of stability
under investigation, the behavior of the solutions of the
difference equation is shown to be gusranteed by the exis-
tence of certain real scalar functions possessing particu-
lar properties. On the other hand, we also consider the
converse éroblem of determining under what conditions of
stability for the equilibrium is the existence of such
scalar function assured. This latter procblem is approached
in a number of ways, either by strengthening the type of
stability assumed or by mstricting the function f(n,X) in
the difference equnation (*).

In Chapter 3, the concepts of boundedness of solu-
tions of the difference equation and various types of sta-
bility in the whole are studied and a series of theorems
is obtained for each. Moreover, throughout the work, those
results which have been obtained by previous researchers
are indicated in the appropriate places. 4s a consequence,
Part I represents a comprehensive study of the application

of Iliapunov's Direct Method to difference equations. Simi-

lar extensive surveys for using this approach for differen-
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tial equations have been given in a paper by Antosiewiez (1)
and in a book by Hahn (2).

Incidentally, the term Iiapunov function has been
considerably overworked in that different sets of properties
are ascribed to mch functions by different authors through-
out the literature. As & consequence, it was felt that itemi-
zation of the particular properties required of the scalar
functions for each individual theorem is preferable and this
convention will be adhered to throughout the present work.

In Part II, the methods of Puri and Drake are gene-
ralized to a scheme for treating difference equations of any
order which fall into a rather wide class. The basis of this
method is to obtain conditions on the coefficients and on
the given function in the non-linear equation
X(n+m) + alx(n+m-l) *eooot a X(n) + F(n,X(n),...X(n+m-1)) = 0
which will guarantee both stability and asymptotic stability
for the equilibrium. The extension of their approach is
done in such a way as to result in significant simplifications
in the calculations which are required to obtain the appro-
priate conditions of the a; and on F, This approach is il-
lustrated in Chapter 5, where the fourth order equation is
treated in detail to determine conditions for stability and
asymptotic stability. Moreover, certain of the theorems
obtained by Puri and Drake yield only stability, not the
asymptotic stability claimed by the authors. These theorems
have been repaired in Chapter € and the corrections have been

accomplished using the modified technique from Chapter 4.
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PART I

SOME BRESULTS ON THE STABILITY THEORY OF DIFFERENCE EQUATIONS

Chapter 1: Basic Definitions and Concepts

Let S be a divergent strictly monotonic increesing
sequence {s,] of resl numbers:

83 < 8341 11 84 = ®.

> e |
The general difference equation is then given by
X(8y44) = £(sy,84,x))
subject to the initisl condition
X(sg) = xg,
where X(s,) o2nd f may be vectors and f 1s a function of the
indicated arguments.
However, we will concern ourselves with a somewhst
simpler csse; namely, when
Si+1 - P17 %
a constant, for all values of 1. We thus will assume that
there 18 8 constant difference between the elements of the
sequence S. Further, there is obviously no loss of geners-
1ity in taking this constant difference 2 = 1 and, sccor-
dingly, we mey then choose for the sequence S simply the set
I of 211 nonnegative integers.
In view of the above remsrks; the difference equation
we shall study 1is
X(a+1) = £(n,X(n)), | (%)

where



X,(n)
xz(n)
X(n) = .

X.(n)

£,(n,X(n))
£5(n,X(n))
£(n,X(n)) =

ft(n,x(n)) .

Here £ is a function assuming values in Et, an arbitrary

t-dimensional vector space and defined on

t

DnoR

- {@XDeIxE : nsn 20, osyx“sa}.

- Here llX“ denzg;s any t-dimensional norm of the vector
X. The difference equation (*) will be subject to the
initial condition
X(no) = X,.
Finally, in all of the following, we assume that
f(n,0) = O

for all n >/no;

that is, f is identically zero whenever

X(n) is identically zero. An egquivalent way of stating

this is that X(n) = O is the trivial solution of equation (*).
The difference equation problem stated above, con-

sisting of equation (*) and the initial condition, will

always have a solution and this solution will be unique

for all nY n,. This may easily be seen since, for given

X = X(no), X(n°+l) is uniquely determined by

()
X(no+l) = f(no,X(no)) = f(no,xo) .



Similarly, X(no+2) is uniquely determined by
X(no+2) = f(n°+1,X(no+l)) .

and so on, inductively, for every value of n>/no.

The unique solution of the above difference equation
problem, which is equal to X, for n = D, is denoted by

X(n) = F(n’nosxo)o

and is such that

X, = X(no) = F(no,no

Furthermore, we note that if for a particular

,xo).

point (m,Y) in DZOR ,

I| £¢m, 1) >z,
then obviously Y(m+l) is also larger in norm than R. Con-
sequently, Y(m+2) is not defined by the difference equation
(*), since f(m+1,Y(m+1l)) is not defined. As a result of
these remarks, unless otherwise mentioned, we will concern
ourselves solely in the sequel with those solutions which

are defined for all n7? n,. Equivalently, the only solutions

t

noR and remain in it

considered are those which start in D
for all n> n,.

We now define the various types of possible behavior
of the solutions of the difference egquation problems which

will be of interest to us in the sequel.

Definition 1: The equilibrium (or trivial solution) X = O

of the difference equation (*) is said to be stable if, for
any € >0 and any n €I, there exists a $(e ,no)70 such
that || xo“<s implies that



i #(a,n ,x D<€

for all n? n,.

Definition 2: The equilibrium X = O of the difference equa-

tion (*) is said to be uniformly stable if, for any €0,

there exists a %(€ )> 0 such that n €I and ] xol(<S imply
| F(n,nx ) i< €

for all n>,n°.

Definition 3: The equilibrium X = O of the difference equa-

tion (*) is said to be quasi-asymptotically stable if for any

nOE I, there exists a S(no)> 0 such that llxoll<S implies

F(n,no,xo) -0

as n—->w.

Definition 4: The equilibrium X = O of the difference equa-

tion (*) is said to be asymptotically stable if it is both

stable and quasi-asymptotically stable.

Definition 5: The equilibrium X = O of the difference equa-~

tion (*) is said to be quasi-equiasymototically stable if for

any nOE,I, there exists a S(n°)> O such that Uxolks implies
F(n,no,xo)—>0

uniformly on |} xon(S as n o .

Definition 6: The equilibrium X = O of the difference egua-

tion (*) is said to be equiasymptotically stable if it is

both stable and quasi-equiasymptotically stable.



Definition 7: The equilibrium X = O of the difference equa-

tion (*) is said to be quasi-uniformly-asymptotically stable

if there exists a $>0 such that n &1I,ll X, <& imply
F(n,no,xo) ~0
uniformly on n, &1, (I xo\\<S as n—>m.

Definition 8: The equilibrium X = O of the difference equa-

tion (*) is said to be uniformly-asymptotically stable if

it is both stable and quasi-uniformly-asymptotically stable.

Definition 9: The equilibrium X = O of the difference equa-

tion (*) is said to be exponentially stable if there exists a

B> 1 and, given any €70, a $(&€ )> 0, such that n €1, I[xo\[<g
imply
WF(a,n ,x )< ep~(n-n.)

for all n>,no.

Definition 10: The equilibrium X = O of the difference equa-

tion (*) is said to be 1 _-stable if it is stable and if for

all n ¢ I, there exists a S(h°)> O such that || xo{(<8 implies

®
2 k'=noHF(k,no,xo)”p < ®

for some p)» O,

Definition 11: The equilibrium X = O of the difference equa-

tion (*) is said to be unstable if for every €70 and for

every no£ I, there exists some x_ with || xou<€ such that

(o]
“ F(nl’no’xo) “ 7 e



' > v
for some nl 4 no

Definition 12: The equilibrium X = O of the difference equa-

tion (*) is said to be eggonentiallz unstable if there exist
B>1 and C>0 such that for all r >0, there exist X, with

uxo“(r, and for all nlé‘_ I, there exist n°>, n, such that

| #(myngx Dl 3 Clfx ) B¢ERe)
for all nyn,. If the above relation holds for all X, with
"xo" <r, for some r> O, then the equilibrium is said to be

completely exponentially unstable.

The investigation of the various types of stability
for the trivial solution X = O of the difference equation (*)

will be carried out by using a certain class of real scalar

VinX),
functionsmdefined on
D® ={ (0,X)eIxE:nyn 'y0, |[xl<r
no'R' ’ € : 770 7 % =

and such that V(n,0) = O for all n) no'. In addition, a
nunber of further properties will be required of these
functions in various instances. The function V(n,X) is
said to be Lipschitzian if for two points (n,Xl) and (n,Xa)
in its domain of definition,

]V(n,xl) - V(n,X,)| € BUX, - %[,
where B is a positive constant. If this property holds
only locally on DZO'R' » then we say that the function
V(n,X) is locally Lipschitzian on this set.

The function V(n,X) is said to be positive definite



on DEO'R' if, given any r, O<r<R', there exists a real
number b{r)> O such that V(n,X)2 b for all n n; and all
X with r<{X(\<R' and if, for X = 0, V(n,0) = O for all
n)né. The concept of pcsitive definiteness can also be ex-
pressed in terms of the class Mo of all real-valued mono-
tone increasing functions a(r), defined and positive for
r>0 and satisfying the condition a(0) = O. The function
V(n,X) is then positive definite if there exists a function
a(r) of class Mo such that

V(n,X ) > a(l{ X))
for all n;n('). This equivalent formulation will often
prove more useful.

The function V(n,X) is said to be negative definite
if -V(n,X) is positive definite. Finally, V(n,X) is said
to be positive semi-definite if V(n,X)> O for all n)nc');
that is, V(n,X) may assume the value zero for some X other
than X = O, and a similar definition holds for V(n,X) being
negative semi-definite.

The non-negative scalar function V(n,X) is said to
be decrescent (or, equivalently, admits of an infinitesimal
upper bound) if there exists a function a(r) of class M
such that

V(n,X)£ a(N1 X ({)
for all ny n<'>.
The non-negative scalar function V(n,X) is said to

be radially unbounded if for each a >0, there is a > 0
such that V(n,X)>a whenever |[X[> and nyn}.



Corresponding to the function V(n,X), we define

the total difference

AV(n,X) = V{(n+l,f(n,X)) - V(n,X).
For convenience, we shall occasionally write this as

AV(n,X) = V(n+l,X(n+l)) - V(n,X).
AV(n,X) is obviously a measure of the growth or decay of
the function V(n,X) with regard to increasing n along the
discrete trajectories represented by the solutions of
the difference equation (*). It should be noted that, in
general, this can'be calculated without direct knowledge
of the actual solutions. Moreover, since we are considering
only those solutions which start in DEO!R. and remain there
for all nzno', AV(nBX) is well-defined for all n and all X.

In the sequel, we consider the set

t t
DnoR N Dno'R' ’
the intersection of the domains of definition of the
functions f(n,X) in the difference equation (*) and the
functions V(n,X). For simplicity, this intersection will

be denoted by DncR’



Chapter 2: Stability Theory of Difference Eguations

2.1 Stability of the Equilibrium
The basic theorem on the stability of the trivial
solution of the difference equation
X(n+1) = £(n,X(n)) (*)
has been given by Hahn (3) in his Theorem 1.

Theorem (Hahn): If there exists a real scalar function

V(n,X) for which, on D_  ,
o
a) V(n,X) is positive definite
b) AV(n,X) is negative semi-definite,
then the equilibrium X = O of the difference equation (*)

is stable.

The following theorem is a partial converse of this
result. Its proof depends on the fact that all solutions
start at ome initial time n,. Moreover, we consider the
set D which consists of those points in DnoR which are
specifically determined by the given difference equation.
To illustrate this, consider the scalar equation X(n+l) = ¥X(n).
The point (n°+1,%R) is not a point of D since it is not the

image under the equation of any point in DnoR’

Theorem 1: If the equilibrium X = O of the difference equa-

tion (*) is stable on D, R » then there exists a real scalar

function V(n,X) for which, on D,
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a) V(n,X) is Positive definite

b) AV(n,X) is negative semi-definite.

Proof: For convenience, we introduce the following
notation. We write (n,X) to represent any parameter
point in D and N as the independent variable. Thus,
F(N,n,X) represents that solution of the difference
equation evaluated at time N which passes through the
point (n,X). 1In order to consider values of N for
which n, <Nen, it is necessary to interpret X as

X = F(n,no,xo), for any appropriate x, from which a
solution emanates which passes through (n,X). This
X, need not be unique.

(o}
We now consider the scalar function

V(n,X) = ﬂF(no,n,X)f/ .
Since the equilibrium is stable, for all € >0, there
exists a 9 >0 such that UF(no,n,X) Il <% implies
IX <&, Correspondingly, it follows that for AXN2e,
V(n,X)>$§ >0, so that V(n,X) is positive definite.
Moreover, |

AV(n,X) = IF(a,,n+1,X(n+1)) ] - (F(n_,n,x(a)ll -

since (n,X(n)) and (n+1,X(n+1)) are two successive
points along the same trajectory. As a consequence,
1t follows that AV(n,X) is negative semi-definite

and the proof is complete.
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2.2 Uniform Stability of the Equilibrium

The following  theorem, originally given by Kalman
and Bertram (6), extends Hahn's result to sufficient
conditions for uniform stability, in their Theorem 1.1.4.

Theoren gKalnan and Bgrtranz: If there exists a real

scalar fuaction V(n,X) for which, on DnoR’
a) V(n,X) is positive definite
b) V(n,X) is decrescent
¢) AV(n,X) is negative semi-definite

then the equilibrium X = O of the difference equation (*)

is uniformly stable.

Halanay (4) has supplied a converse theorem to

the above result, in his Theorem 3.

Theorem (Halaray): If the equilibrium X = O of the

difference equation (*) is uniformly stable, then there

exists a real scalar function V(n,X) such that

aCllxil) & v(n,©) < v(uxi),
for some a(r) and b(r) of class Mo, and such that
A V(n,X)<0
for all n) n,.
These two theorems taken together supply necessary

and sufficient conditions for uniform stability. The fol-
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lowing theorem gives an alternate set of necessary and

sufficient conditions for uniform stability.

Theorem 2: The equilibrium X = O of the difference equa-

tion (*) is uniformly stable if and only if a continuous
function a(r) of class ¥  exists such that
I F(r,n sx )¢ allix )
for every x, satisfying | x\i £§ for some 94 R.
Proof: This result, for the case of differential
equations, has been given by Hahn (3) in his Theorem
17.1. However, the proof that he gives depends soleiy
on properties of the real number system and functions
of real variables and hence carries over unchanged
to the present case in which we are considering
functions with arguments assuming only discrete

values.

This theorem can be used to derive a consequence
dealing with the uniform stability of the equilibrium
of difference equations in which the function f(n,X) is

periodic in n.

Theorem 3: If f(n,X) is periodic in n on DngR and if

the equilibrium X = O of the difference equation
X(n+l) = £(n,X(n))
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. is stable, then it is uniformly stable.
Proof: Let the period of f£f(n,X) with respect to n

be m. Then

F(n°+m+l ,n°+m,x°) = f(no+m,F(n°+m,no+m,xo))

f(no,xo) |
= r(no+1’n°,xo)o

In a similar wmy, it follows that

F(n+m,no+m,x°) = F(n,no,xo)
for all n3 n,. As a result, the proof of the ana-
logous result for differential equations, as given
by Hahn (3) in his Theorem 17.2, is equally valid here
since only properties of real numbers and real valued

. functions are used to construct a comparison

function satisfying the conditions of Theorem 2.

We note that if f£(n,X) is independent of n,
that is, if the equation is autonomous, then it is tri-
vially periodic. Consequently, the above theorem gene-
ralizes the corresponding result given by Kalman and
Bertram (6) for this particular case.

2.5 Asymptotic Stability of the Equilibrium

We now turn to an examination of conditions

‘ under which the solutions to the difference equation
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converge to zero. To begin, we cite a second theorem due
to Hahn (3), his Theorem 2, which gives sufficient condi-
tions for asymptotic stability of the equilibrium.

Theorem (Hahn): If there exists a real scalar function
V(n,X) for which, on DnoR’

a) V(n,X) is positive definite

b) V(n,X) is decrescent

c) AV(n,X) is negative definite
then the equilibrium X = O of the difference equation (*)
is asymptotically stable.

The following theorem demonstrates that the con-
dition that the function V(n,X) be decrescent in Hahn's
result is unnecessary. The author originally used a
longer and more complicated proof and wishes to thank
Professor R. Datko for suggesting the present more ele-

gant proof.

Theorem 4: If there exists a real scalar function V(n,X)

for which, on D ’
n.R
a) V(n,X) is positive definite
b) A V(n,X) is negative definite
then the equilibrium X = O of the difference equation (*)
is asymptotically stable.
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Proof: Ffom the hypotheses, there exist functions
a(r) and b(r) of class M, such that
¥(n,X) 2 a(ixl) AV(n,X) £ - b(IXN).
Moreover,
V(n,+1,X(n,+1)) = AV(n,,X(n))) + V(n ,X(n))),
V(no+2,x(no+2)) = Av(no,xo) +A V(n°+1,x(no+1))
+ V(no,xo),
and so, by induction, ey
V(n°+k,F(n°+k,no,xo)) = AV(n°+,j ,P(no+;] ,no,xo))
30
+ V(no,xo)

k-

<j=Z. [-b(P(n +3,n ,x )] + V(ng,x )

Taeking the limit as k ->® , and using the fact that
V(n,X) is non-negative, we find that

k-1
LB 0 5§° b(IF(n +3,n_,x D)) £ V(a ,x,)

which implies that

b(h F(n°+k,n°,x°) HN)=>0
as k> , and therefore, since b(r) is monotonically

increasing,

F(no+k,n°,xo) —>0
as k—>w; i.e., the equilibrium is asymptotically
stable.

The following result considerably sharpens the

above theorem,
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Theorem 5: If there exists a real scalar function v(n,X)

for which, on DnoR’

a) V(n,X) is positive definite

b) A V(n,X) is negative definite
then, given any r, O<r<R, there exists a S(no,r)>0
such that for any x, with | x <8 and any €, 0<€<r<g,
there exists an integer Do(no,r,e )> 0 and an integer
nl(no,xo} in the interval [no, n_+ V,] such that

i F(nl,no,xo) i< €.

Proof: The assumptions on the existence of the func-
tion V(n,X) on Dn,R guarantee that the equilibrium
X = 0 is stable. Hence, given any r, O<r<R, and
any n, in I, there exists a S(no,r)2 O such that
for any x, with || xoﬂ<s, we have
I\F(n,no,xo)|\< r
for n2 n,.
Now, given any € , 0<€<pr, there exist con-
stants a(€ ) and b(€ ), both positive, such that
V(n,X) > a AV(n,X)€ -b
for n>n  and 0< €<)(XN<r. Define
az,,r) = sup { V(n,X) ; HXN< S
Yo (nyor,€) = [ap] + 1,
where [q/b]] represents the greatest integer in q/b.
Now, given any x, with \\xoll<g , either
I\ xlI>€ or Il x li<€.
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In the former case, for some n> n_,
" F(nano’xo)”)e .
If €< llF(n,no,xo)N < r throughout the interval
[no,n°+ W1, then
A V(n,l‘(n,no,xo)) £ -0
on this interval. Moreover, we have that
V(no+l,F(n°+l,no,xo)) = A V(no,F(no,no,xo)) + V(no,xo)
€ -b + V(no,xo),

Continuing in this manner, we determine that

=1
V(n°+ Y ,F(no-l-)g {ﬁo,xo)) = EA V(n°+k,F(no+k,n°,xo))

+ V(no ,xo)

< V(no,xo) - Y b,
As a consequance,
as V(n°+%, F(no-u% ,no,xo))
£ V(n, F(no,no,xo)) - Q0o
= V(no,xo) -bJJa/v] -1
£ V(no,xo) +(b=-q) -b
= V(no,xo) -q

o,

IN

since q > V(no,x), which contradicts the assumption
that a>0. Therefore, there exists an integer nl(no,xo)
in the interval [no,n°+ i3] such that
I F(nl,no,xo) l<e,
In the second case, where || X, H< €, we simply
let ny = n,, so that
| #(nyn ,x )l = x|l < €.
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As an extension of this theorem, we have the

following cofollary.

Corollary 5.1: Assume the same hypotheses on V(n,X) hold

as in Theorem 5, then given any n°€ I and any r, O<r<R,
there exists a S(no,r)> 0, such that for any x, with
!!xol\<5 and any sequence {ek’g, 0<€ < r, such that {(—:k}
converges monotonically to zero, there exists a non-
decreasing sequence {nk} of integers, m ,>n >n
such that

WF(y,n,,x ) |l < €
for all k.

Proof: Given any r, O<r<R, and n €I, let S(no,r)
and q(no,r) = sup V(no,x) > O be defined as in the
proof of Theorem 5. Given the sequence {ek} converging
to zero, 0< €k< r, there exist sequences {ak} and {bkf
of positive elements such that
v(n,X) > ay AvV(n,X) £ - by
for all n> n, and all X with € <IXli<r. Now define
Dk_‘(no,r, €) = [[q/'bm + 1.
From the proof of the theorem, there exists some
integer m_ in the interval [no,no-l- b _, ] such that
i F(mk,no,xo) Il < €.
Now let D, be the smallest such integer in the interval
for which this holds. This procedure determines a
sequence {nk} y K =1,2,... with nk+1>/nk>no and
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such that
il F(na,no,xo) il < QJ
for all j.

The proof of the following result follows directly
from that of Theorem 5.

Theorem 6: If there exists a real scalar function V(n,X)

for which, on Dn,R’

a) V(n,X) is positive definite

b) V(n,X) is bounded

c) A V(n,X) is negative definite,
then, given any nos I and any r, O<r< R, there exists
a g(no,r)>0 such that for any x, with || x°|l<5 and any
€ , 0<&€<p, there exists an integer V(r,€ )> 0 which
is independent of n,, and an integer nl(no,xo) in the
interval [no,no+v_] such that

I} F(nl,no,xo)ll <&,

Proof: 1Iet Q be any upper bound for V(n,X) on Dn R°
(-}
Then the proof of this theorem is the same as the

proof of Theorem 5 with q replaced by Q.

We now consider some results on asymptotic
stability in the converse direction. The problem can
be approached in several ways, either by imposing con-

ditions on the class 6f functions f(n,X) or by assuming



a more stringent form of asymptotic stability. The second
possibility will be dealt with in the later sections. We

begin the study of the first approach by stating the fol-

lowing Lemma due to Massera (10).

Lemma (Massera): Given any real scalar function g(r) de-

fined and positive on every compact interval JC [O,0) such
that g(r)—+0 as r>o ; and given any real scalar function
h(r), defined and continuous, positive and non-decreasing
on [0,m ), then there exists, for any integer k>0, a
positive real scalar function G(r), of class Ck, and increa-
sing together with its first k derivativeson (0,0 ) and
with G(i)(o) =0, i=0,1,...k, such that, for any real
scalar function g*(r) on J0,w),

0 g*(r) < cg(r),

for some constant ¢ >0, the integrals
(1) :
{90 e ) ne) ar Osisk
]

converge uniformly in g*.

The analogue of this lemma for difference equations
would guarantee the existence of the same scalar function

G(r) and the uniform convergence of

ad

Z ¢3¢ g5 ) n(y 0¢ i<k,

e

However, the convergence of these sums in the discrete case

follows immediately from the convergence of the corresponding
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integrals, as given in the Lemma, by the integral test for
the convergence of a series. Hence, it follows that the
Lemma is valid for the discrete cases we are considering.

We shall make use of this Lemma in the following
converse theorem, as well as in other theorems in later
sections, where it serves in the comstruction of a real
scalar function V(n,X) under the hypothesis that the
equilibrium is asymptotically stable, if the given func-
tion £(n,X) is restiicted to be linear; i.e.,

£(n,X) = A(n)X(n).

Theorem 7: If the equilibrium X = O of the linear difference

equation
X(n+1) = A(n)X(n)
is asymptotically stable, then there exists a real scalar
function V(n,X) for which, on D R
a) V(n,X) is positive definite
b) AV(n,X) is negative definite.

Proof: Denote by Z(n) the fundamental matrix solution
of the linear difference equation which satisfies the
initial condition
Z(0) = I,
the identity matrix. The general solution of the
equation is then given by
Fn,n ,x,) = Z(2)2 Ha))x,.

Thus, for n)no, replacing X, o0, and n respectively by
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X, n, and N, we find
JEH = I 2@z (®FE,n,3) i
< )l 2z tmI I7w,0,00 .
Now let
gn) = Il z@ztmll .
For fixed X, g(n) goes to zero as n goes to infinity
since the equilibrium is asymptotically stable.
Given € >0, there exists a constant a(€ )>0
such that
| #(8,n,X){| > a
for all n2N and ||X|| > €. Purthermore, for each X
with (| X||>q, for any ¢> 0, |
| *(¥n, Dl >
uniformly as n—>w.
We now define

V(n,X) = kZ ¢ [1z00)z"X(mll 11 7(x,n,3) U]

o0

+ 2 e lhzooz il ixm,a,ol ),
using the discrete form of Massera's Iemma. This func-
tion is positive definite since

V(n,x3> ¢ [Il Z(Mz 1m I 7N, 0,21 ]
= G(IX¥(¥,n,X)4 ) ,
which is zero only for X = 0, for any n.
Moreover,

AV@,D =2 e[z mI I #(N,0e1,X(ne1)) ]

=nel

- kZ ¢ [Il 20y 2”2 |f 1§ 2 (,m,X(0))H]
>n
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um_, _c[| 2027 M I7(, 202, X(a+2)) 11|

- e[l zm®z XN | #(¥,0,%(2)) Il ]

- ¢ [hz@z X mi P(N,n,0)Il ]

é - G(leﬂ),
since

Lzl < Vz()zt(m] lzm,n,0)l .
This proves that AV(n,X) is negative definite and

hence completes the proof of the theorem.

The function V(n,X) constructed in the proof of
this theorem possesses the following interesting and useful

property.
Corollary 7.1: Given the function V(n,X) constructed in

Theorem 7, then given any r, O<r<R, and any V> N,

there exists a ,u.( L,r)>V such that for any integer m in
the interval [N,D] and any Y with f vll< r, the conditions
n2p and V(n,X) € V(m,Y) both imply that |l XIl<r.

Proof: For all r, 0<r<R, and for all Y 2N, choose
an integer (VY ,r)>D so large that for m in the
interval [N,U] and Y with lIYll¢r, we have that
n2 d
7p o2 1
2}{2 cLi 2a0z-ml |l F(N,m, )l |
=N

o0

>/I<Z e[l 2z~ @Il I 2(¥,n, D |
=N _
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imply that || X[|€r. This is possible since the solu-
tions tend to zero. Hence, if m is in the interval
[N,U] and Y is such that || Y(|<r, then n)/b and
V(n,X) £ v(m,Y)

both imply that

)3 ¢ Lz z il Il #(w,n,x) 1] ¢ v(a,2)

k=N ~ _ £ v(z,Y)

< 2782002 X (W1 1#(F,n,1) ]

which implies that J|X|| .:;:‘

We shall now consider an alternmative set of suf-
ficient conditions for agymptotic stability of the equi-
librium. Although the hypotheses are stronger than those
in Theorem 4, they may be easier to apply.

Theorem 8: If there exists a real scalar function V(n,X)

for which, on D ’
noR
a) V(n,X) is positive definite
b) A V(n,X) £ - W(V(n,X)), for some scalar func-
tion W(r) of class M
then the equilibrium X = O of the difference equation (*)

is asymptotically stable.

Proof: Since V(n,X) is positive definite, there exists
a function a(r) of class Mo such that
V(n,X) > a(ix{).

Therefore
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¥[v(a,0)] > w[a(uxn)] ,
8o that
AV(zX) £ - W[V(a,D)] £ - waizid] = - b0lixh),
where the composite function b = W°& 41is also of class
M,. Thus, AV(n,X) is negative definite and the equi-
librium is asymptotically stable by Theorenm 4,

We note that if V(n,X) is also decrescent, then
it is possibleto reverse the implication that 4 V<£-W(V)
Fieids AV £ -o(JX|)).

2.4 Equiasymptotic Stability of the Equilibrium

We next consider a series of theorems dealing
with a more restrictive form of asymptotic stability;
namely, equiasymptotic stability.

Theorem 9: If there exists a real scalar function V(n,X)

for which, on DnoR’

a) V(n,X) is positive definite

b) A V(n,X) is negative definite

c) given any r, 0<r<R, and any integer ))ano,
there exists an €(r), 0<€<r, and an integer
}J.(}.) »T)>) such that, for some integer m in
the interval [no,))] and for some Y with [|T]l< e
the conditions n)ﬂ, and V(n,X) < V(m,Y) together
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imply that {X|l<=,
then the equilibrium X = O of the difference equation (*)
is equiasymptotically stable.

Proof: Using Hahn's theorem, it follows that the
equilibrium is stable.

Given any r, O <r <R, let €(r) be the constant
corresponding to r, according to the hypothesis c),
0<€<r., By Theorem 5, given r and any no&I, there
exists a S(no,r) >0 such that for any x, with llxouég
and any €, O<€<r, there exist integers \)(no, €)>0
and m in the interval [no,n°+v] such that

ur(m,no,xo)“ < €.
Moreover, given n+ L, let fk(no+l),r)2 n +)) be the
integer corresponding to n +) according to the hypo-
thesis.

Now, it follows that

V(n,F(n,nb,xb)) < V(m,?(m,no,xb))
for all n7m, and this certainly holds for n » /-A-. Con-
sequently,
NF(n,n ,x )l < r,
independently of x,» for all I\xbu<£ S , which proves
the equiasymptotic stability.

The following theorem gives an alternative set of
conditions which also imply the equiasymptotic stability
of the equilibrium.
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Theorem 10: If there exist two real scalar functions U(n,X)

and V(n,X) for which, on D ,
noR

a) U(n,X) is positive definite
b) V(n;X) is positive definite
c) V(n,X) is decrescent
d) for any positive rys 5 <R, the quantity
AV(n,X) + 0(n,X)—>0
uniformly as n—® for all X such that
< liXli¢r,,

then the equilibrium X = O of the difference equation (*)
is equiasymptotically steble.

Proof: Iet Z °k?§ be any non-increasing sequence
which converges to zero,

0<ck<R, X = l,a,ooo

Define
/—lk(ck) = inf {V(n,x) :nyn , Nl = ck}
A (ck) = sup {V(n X) : nyn, (IXf < ck}

Note that 0 < ).<co » While /“k>o Further, if V(n,X) = )‘-Lk,
then n>n and b < llxll<ck, for some constants bk(ck)>0
In addition, there exist constants ak(ck) > 0 and

fk(ck) > 0 such that

¥(n,X) < }J'k for n»n_, HXII<ak;
U(n,X) > 29, for n2n,, a8, <UXI<R;
that is, ak<bk( Cyes for all k.
Furthermore, there exists a divergent sequence {_uk}

of integers, ) (ck) > n,, such that
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AV(n,X) + U(n,X) < fk
for n)))k, akSI\x“écl; that is,
AV(n,X) ¢ - f k
for n}))k y & leu$cl. Without any loss of gene-
rality, we assume that
> + A
))I<+2 Uk+| k /Skﬂ
for all k.
We now make use of the fact thd:l?(n,no,xo) depends
continuously on the initial value X e Thus, for all

n'2> n , there exists a S(cl,no') =& (1)',no')>0

o o
such that for any x, with || x_||< ¥, it follows that
n F(n’no':xo)" < 31
3 L}
on the interval [no ,n°'+))']. Therefore, for n} n°'+))l 5
i F(n$no'1xo)l' < cli
for if not, there would be some n = n' > no'+ )). such
that
l| F{n* »n "y x Dl > cye
This in turn would imply that
V(n',F(n',no',xo)) 2 P’I o
However, from the construction,
] ] L
’V(no +))| ,F(no D smy ,xo)) < rl.l .
As a consequence,
}1‘ < V(n',F(n' 2R ' ,xo)) < V(no'+ 1)‘ ,F(no ' Y ,n ' ,xo))
</_1_‘
which is a contradiction. Therefore, we must have
| F(n,no',xo)" <eq

for all nyn ' and for all x, with | x°|l<5, and accor-

dingly, the equilibrium is stable.



New, either
. S ?
il F(n)+ L, ,no,xo)n < a,
or it is not. In the former case, we conclude that
1 F(n,no,xo)ﬂ <e,
for all n ) n6+ Uz by the above chain of reasoning.
On the other hand, suppose that
I F(n, +V, an),x, M > 2 a5

then there would exist an integer n, in 12, where

[n;+va’n’0+l)a+ [1‘/5'2]],

such that
I #(ap,0,x ) | < ay5
for if not, we would have the condition
ay £ “F(n,nc'),xo)“ £ ey
holding throughout 12. This would imply that
AV(D,F(D.,D&,XO)) < = fz
holds throughout 12 and therefore

V(ng+y + /f:}’ F(ng+ v, +I) /o Jonl %))

V(n+v,F(n+v - ,x)) - A
o,

IN N

which is a contradiction. Hence, by an argument
similar to the one employed above,

I\ F(n,n »X, W < cy
for =all n>/n2 and all x with || X, I<S. Moreover,
this inequality holds for all n > n;-i- 331 +[[l‘lf2]; that
is, it holds for all n n +), . Contimuing in this

3
manner, we can show that

29
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| #(z,n;,x ) I < ¢y
for all n)n’«a-))kﬂ and for all x  with || X, \<S, for

all k, which concludes the proof.

Theorem 11: If all of the hypotheses of Theorem 10 are

satisfied and if, in addition, the function f(n,X) is
Iipschitzian on Dn,R for some constant K >0, then the
equilibrium X = O of the difference equation (*) is
uniform-asymptotically stable.

Proof: The proof of this theorem is essentially the
same as that for Theorem 10, except that the hew assump-
tion on £(n,X) allows the introduction of a decaying
exponential bound of the form
| F(n,no,xo)“ < \\xo\l K22
on the solution F(n,no,xo).
Theorem 12: If the equilibrium X = .0 of the difference
equation (*) is uniformly stable and if there exists a
real scalar function V(n,X) for which, on Dn,R’
a) V(n,X) is positive definite
b) A V(n,X) is negative definite
then the equilibrium is equiasymptotically stable.

Proof: The equilibrium is obviously asymptotically
stable, by Theorem 4, so that all that need be done is
to show that all solutions tend to zero uniformly;
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that is, we must show that the equilibrium is quasi-
equiasymptotically stable.

Choose r<R such that for any €, 0<€ <,
there exists a 8(€)>0 such that n, in I, | x, I < S
imply

il F(n,no,xo) < ¢
for n) n . ZLet §°= S(r) be the particular S corres-
ponding to € = r. By Theorem 5, given n,in I and

any x, with || x,){<§,,» there is an integer ¥ (a ,r,€ )>0

and an integer n' in the interval [no,n°+)J_] such that
WP o ,x ) 1< §CE).
This implies
|#(a,n ,x )\l < €
for all n»n', and hence, a fortiori, this inequality
holds for all Byn +V > n' and for any x, with || x°l|< Y

waich concludes the proof.

2.5 Uniform-Asymptotic Stability of the Equilibrium

The results which follow deal with uniform-
asymptotic stebility, an even more restrictive form of
asymptotic stability than the equiasymptotic stability
considered in the previdbus section. The first theorem
in this direction has been given by Kalman and Bertram (6)
in their Theorem 1.1.
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Theorenm gKalman and Bertramz: If there exists a real

scalar function V(n,X) for which, on Dn,R’

a) V(n,X) is positive definite

b) V(n,X) is decrescent

¢c) AV(n,X) is negative definite
then the equilibrium X = O of the difference equation (*)
is unifomly-asymptotically stable.

We now present a converse to this theoren.

Theorem 13: If the equilibrium X = O of the difference

equation (*) is uniformly-asympt;otically stable, then
there exists a real scalar function V(n,X) which satis-
fies on Dn,r’ for some r,. O<r¢R, the following conditions:
&} V(n,X) is positive definite
b) V(n,X) is decrescent
¢) V(n,X) is locally Lipschitzian
d) AV(n,X) is negative definite.

Proof: Choose r*, 0<r*< R, so that for all €,
C <&s<r*, there exists a Sce )>0 suc?lg that for
n€I and X with | Xl <§,

Il F(n+k,n,X) || < €
for k 20. By the hypothesis that the equilibrium is
unifomly-asymptotically stable, it follows that there
exists a S,,)O and, for all 7)>0, there exists an

integer V(M )>n_, such that, for n€I and Jixll< 5;,

o
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| P(ask,n, )\l € %
for k2YV . Let
r = min(§ ,8(r*) )

and consider the region D <D defined by
n DR

oT
§x: uxll<r} .
Now, given any non-increasing sequence §c j} ,
o< °J< r, there exists an increasing divergent sequence
{nJ} R na(cd) > 0, such that (n,X)€ Dn, implies that

| PCa+ikc,n,x) W < c

r

for all k> nj.

Let g(k) be a real scalar function, positive and
non-increasing for k> 0, such that g(k)-=>0 as k>
and, for all (n,X)eDnor ,

 P(a+k,n,X)U £ g(x)
on the interval [O,nj] and let
g(n,j-t-l) = cj
for all j. A8 a resuit,
for all k in the interval [nj,n3+lj s Which implies
| P(n+k,n,X)|{ < c; £ g(k)
on the interval [nj ?n;]-a»l] . This in turn implies
“ F(n+k,n,x)ll < S(k)
for all k2 O.

Now let G(k) be the function associated with g(k),

as given in the discrete form of Massera's Lemma,

where we take h(k) = 1. Consider the scalar function
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V(n,X) = 7 6( | ®(n+k,n,0) ).
k=0
This function is well-defined on Dn p @nd by the Lemma,
(-]

G(s) is continuously differentiable, which implies that
V(n,X) is also continuously aifferentiable with res-

pect to X. Also, by the Lemma,
o0
2 &'(l] *(a+k,n,X) || )
k=o

converges uniformly, and hence is bounded on Dn As

°
& consequence, the matrix & of partial derivati;es
of V(n,X) with respect to the components of X is also
bounded. Thus, applying a generalized form of the
mean value theorem to V(n,X), we obtain
1 V(2,2)) - V(0,201 = N a@,x0l 1x,-x, |
< ¥ix-x| ,
where X* is some value of X between Xl and 12 for each
n. The abcve inequality demonstrates that V(n,X) is
locally Iipschitzian.
Moreover, choosing 12 = 0, we see that
| ¥(n,%)) - V(2,0)) | V(n,X;)\
< wix b,
for each X with | Xli<r; that is,
| v(a, 01 ¢ Mlix W,

which implies that V(n,X) converges to zero with X,
independently of n, which means that V(n,X) is decres-
cent.

Furthermore,

V(n,X) =‘:Z° G[IlF(n«n-k,n,X)ll]
=0
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2 ¢ [WF(n,n,X) ]
= c(lixlp,
go that V(n,X) is positive definite.
Finally, we must investigate the total difference

for V(n,X). This is given by

o<
AV(2,X) = 2 [6(IF(n+k+2,n+1,X(n+1))]])
k-o - e(lIF(avk,n,X(m))] .

This series, however, telescopes and leaves orly the
first term corresponding to k = O and the limiting
term. Hence,
AV(n,X) = lim, o GC || F(n+k+1,n+1,X(n+1)) ) )
- (Il F(n,n,X(n)) Il )

= - G(Ix\),
since, by the uniform-asymptotic stability of the
equilibrium,

\ (n+k,n,X)\| 30
as k> and G(0) =-0. Thus, A V(n,X) is negative

definite and the theorem is proved.

The previous Theorem 13 has been proved by Hala-
nay (4) in a much more restrictive form. His Theorem 4

is as follows.

Theorem gHalanazzz If there exists a function n(r) of

class M) such that the finction f{n,X) satisfies the condi-

tion



36

I £Ga,0 1> mCuzily,
and if the equilibrium X = O of the difference equation (*)
is uniformly—asymptotically stable, then there exists a
real scalar function V(n,X) for which, on DnOR’
a) V{(n,X) is positive definite
b) V(n,X) is decrescent

¢) A V(n,X) is negative definite.

We now present another criterion for the uniform-

asymptotic stability of the equilibrium.

Theorem 14: If the equilidrium X = O of the difference

equation (*) is uniformly stable and if there exists =
real scalar function V(n,X) for which, on DnoR’

a) V(n,X) is positive definite

b) V(a,X) is bounded

¢) AV(n,X) is negative definite

then the equilibrium is uniformly-asymptotically stable.

Proof: Choose r<R such that for eny €, O0< €<pr,
there exists a S(E, )> 0 such that nog I, i x i< S
imply that

i F(n,no,xo) l < €
for all nyn . Let So = § (r) be the particular § cop—
responding to € = r. By Theoren €&, given any noE_ I
and any x_ with || xoll< So » there exists an integer
Y (r,€ )> 0, which is independent of D, and an integer
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n'(n,,x ) in the interval [no,no+))] such that
I F(n',n ,x )l < §(e).
Consequently,
W #(a,n ,x )l < €
for all n>n' and hence, & fortiori, this inequality
holds for all n) no-.uJ 2 n' and for all X, with

Hx ilg So, which concludes the proof.

Before contimuing, we digress to develop some
additional theory regarding solutions of difference equa-
tions which will prove useful in the seguel. The diffe-
Tence ecuation under consideration is still

X(n+1l) = £(n,X(n)),
bui we now require that the function f(n,X) satisfy a

Iipschitz condition in D R with constant X with respect
(-]

n
to the second coordinate; i.e.,
f f(ngxl) - r(n,xz)ﬂ € Eix, - X\ .

A function 4(n) is called an € —approximate

solution of the difference equation under comsideration if
i #To+1) - £(n,d(a))li < €

for all n};no. The exisvence of such approximate solu-
tions follows directly from their existence for differen-
tial equations.

We now consider two such approximate solutions,
dl(n) and ¢2(n), to the difference equation under comsi-

deration which differ from the actual solution by at most

€, and €a » respectively. That is,



I 6;(n+1) - £(a,4,(a)) I < €
" da(n"’l) - f<nsdz(n))" < an
Further, we assume that at some initial value of n, n,,
these two approximate sciutions differ from one anckher
by at most some amount S. Thus,
| ¢,(a) - g(a )il £ § .
As a result, we have
I 6)(2¢1) - gp(ae1) - [ £(n,8,()) - £(n,8,(n))] |
£ e, + e:L = €,
Hence,
| ¢,(a+1) - g (a+)ll <€ + W £(n,8;(0)) - £(n,4,(n)) |l
€€+ Klgy(a) - g | .
In particular,

“ dl(no*l) - de(no"'l)“(E + K “dl(n0> - ¢2(n0) “
£¢ +KS.
Furthermore,
I £1(85+2) - g(m«2) | < € + Kllg)(a+1) - gy(n +1)
<€ s+xe +x3¢.
Proceeding inductively, it follows that
I #1(ag+3) - go(a +3)1 .
< €+ €8+ €k, ... +egdl 5k
=€ %E%i + K9S,

If, in the above, we now take the solution F(n,no,O) to

be #,, 8o that the corresponding € = 0, and choose
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F(n,no,xo) as 52, where leoll<§ and €2= O also, then
the preceding estimate yields the following inequality.
llF(n,no,xo) - F(n,no,o)l = IF(n,no,xo)ﬂ
& Kn.no S ,
since €=€,+€ = 0. This estimate will be employed in
the proof of the next theorem which gives further con-

ditions for uniform-asymptotic stability of the equili-

brium.

Theorem 15: If f£(n,X) is Idpschitzian with constant K

on DnoR and if the equilidrium X = O of the difference
equation (*) satisfies the following condition:
given §>0 and any €7C, there exists an
integer ¥(€) >0 such that xo"< So, n €I
imply theat
i ?ih,,nc,xc}li < &
for all n;»;a{)»N,

then the equilibrium is uniformiy-asymptotically stable.

Proof: By definition, we need only show that the
equilibrium is uniformly stable. Given € , put $(€) = € s for
K<1, and for K21, let (&) =€K'N, where N is

the integer whose existence is specified in the hypo-

thesis for given € . Using the estimate for the solu-

tion of the difference equation obtained above, we find

I F(n,no,xo) ||« Sg2-Re



€ g0

IN

c (E<1)

€exgrme & ¢ (E>1)
for all n in the interval [n_, n +N J.

Furthermore, the hypothesis guarantees that for
any n>» nO+N, and for the given €,

il F(n,no,xo) Il <€.

Thus, this inequality holds for all n)no, and hence
we conclude that the equilibrium is indeed uniformly
stable.

The following theorem has been given by Hahn(2)
for the case of differential equations. However, as was
the case with Theorem 2, the proof given by Hahn depends
solely on properties of the real number system and of func-
tions of real variables. Accordingly, no modifications
are required to deal with functions whose arguments are

discrete and the result is stated without proof.

Theorem 16: The equilibrium X = O of the difference equa-

tion (*) is quasi-uniformly-asymptotically stable if and
only if there exists a continuous monotonically decreasing
function a(r), defined for all r >0, satisfying the fol-
lowing conditions:

a) lim , o(r) = O

b) ”F(n,no,xo)l[ < O(n—no)

for any x, with W x, i< S, for some J&<R.,
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We may combine the two results, Theorem 2 and
Theorem 16, to obtain a single necessary and sufficient
criterion for uniform-asymptotic stability of the equi-

librium.

Theorem 17: fThe equilibrium X = O of the difference equa-
tion (*) is uniformly-asymptotically stablz if and only if
there exist two real function§ 5’(r) amd o (r), such
that the following conditions are fulfilled:
a) SD(r) is defined, continuous, and monotonically
incressing for O<r< R and f (0) =0
b) o(r) is defined, continuous, and monotonically
decreasing for all r2> 0 and
limr——bco o(r) =0
¢) f Flo,n ,x Nl £ O°(a-n ) ¢ (= 1),
for any x_ with I\xoﬂz_g , for some § <R,

In Theorem 3, we saw that if f(n,X) is periodic
in n, stability implied uniform stability. We now present
& similer result when the equilibrium is known to be

asymptotically stable.

Theorem 18: If f(n,X) is periodic in n, and if the equi-
librium X = O of the difference equation (*) is asymp-

totically stable, then it is also uniformly-asymptotically
stable.
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Proof: The comparison function, which Hshn (2) con-
structs in his Theorem 17.5, satisfies the continuous
form of Theorem 17. Moreover, this function fulfills
the same requirements of Theorem 17 for discrete

variables,

As in Theorem 3, the special case dealing with
f(n,X) being independent of n has been done by Kalman and

Bertram (6) in their Theorem 1.1.1.

Finally, we comnsider a property which follows

from some of the conditions imposed on V{n,X).

Theorem 19: If there exists a2 real scalar function V(a,X)

for which, on DnOR’
a) V(n,X) is positive definite
b) A V(n,X) is negative definite
then, given any r' and r", 0<r"< r'< R, there exist num-
bers q(r',r") >0 and ¢(r") >0 such that the function
WwW(n,X) = q®v(e,X)
satisfies the condition
AW(n,I< ~-c¢
for all n»n; and r "<UXli<r.

Proof: For OKr"<lIXl {r'< R, there exist positive

constants a and b such that V(n,X)2a and A V(n,X)£ -b.

Hence, for the function W(n,X) = qnv(n,x), for any q,
0<q< 1, it follows that
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A W(n,X) = q®[qV(a+1,X(n+1)) - V(n,X(n))]
= ¢ [aA¥(@,0) + (¢-1)¥(2,D)]
£ 9" [-qb + (g-1)a]

= =C.

2.6 Exponential Stability of the Equilibrium

We now consider an even more restrictive form of
asymptotic stability; namely, exponential stgbility, where
the solutions of the difference equation must decay expo-
nentially with increasing n. The first theorem of this
section deals with sufficient condtions for this type of

decay in terms of the existence of a scalar function V(n,X).

Theorem 20: If there exists a real scalar function V(an,X)

for which, on D )
n R
a) alnleé V(n,X) £ azﬂx\ip
for some positive constants 2y and a, and
some p> 0
b) AV(n,X) £ - aB\\Xllp
for some positive constant 8.5
c) 83/82 <1 '
then the equilibrium X = O of the difference equation (*)
is exponentially stable.

Proof: From the hypothesis, it follows that



A V(n,X) < -a4 I xuP
£ (-83/92) V(n,X)
= gy V(n,X),
where, by sssumption, O<ab< 1. Hence,
AV{n,X) = V(a+1,X(n+1)) - V(a,X(n)) < -8, V(n,X(n));

thet ‘is, )

V{n+l,X(n+1)) £ (1-gy) V(n,X(n)),
80 that

V(n+2,X(n+2)) < (1-2)) V(n+1,X(n+1))

< (l-ab)2 V(n,X(n)).

Proceeding inductively, we obtein

V(o+k, X(n+k)) € (1-8,)% V(n,X).
Thus, for n = nytk, this becomes

Vin,X(n)) € (1-24)""% V(n_,X(n,)).
Hence,

p WXIP ¢ V(2,X(n)) < (1-8,)% 0 V(ng,x,)

€ 25(1-g,)"" 0 ) x )P,
As 2 result,
llF(ﬁ,no,xo)“ P¢ (az/al)(l-ah)n‘no I x, W P,
sc thst
il F(n,no,xo)fl £ Be cB-Po 1xq 3

i.e., the equilibrium is exXponentislly stable.

It might be noted that this result is somexhat more
genersl than the anslogous one given by Krssovekii (8) for
the cese of differentisl equations where he sssumed P =2,

We hsve seen previously that exponential stebility
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implies all of the other forms of stability considered so
far. We consider now s partisl converse of one of these

implications when the givern function f(n,X) is linear.

Theorem 21: If the equilibrium X = 0 of the linear diffe-
rence equstion

X(o+1l) = A(n)X(n)
is uniformly asymptotically stable, ther it is also expo-
nentially stable.

Proof: Since the difference equation under considerstion
is linear, 1its genersl solution 1ie given by
F{n,ng,x,) = Z(n)Z‘l(no)xo,
where Z(n) agein denotes the fundamentsl matrix solutiom
for which
2(0) = I.
Let the norm of Z(n)Z‘l(no) be denoted by b(n,n,), so
that
| Fla,no,x) | = | ()2 tng)x, |
¢ bla,n ) jxjf .
Compsring this estimate with the hypotheses of Theorem
17, we see that we con taske
g(r) = r
and
b(n,n,) € o'(n-n,);
thet 1is,

N F(n,no,xo)'lé hxoll 0 (n-ny).



Now, for n7n, > n,, it follows that
Z(n)Z‘l(no) = Z(n)2-1(n;)2(ny)2"1(n,),
and a8 a consequence,
b(n,n,) = | Z(n)2-1(n,) |
< 1 2(2)2" X0y I Z2(ny)2"1(ny) ||
= b{n,m)} blm,n,).
Now comsider n = n +k) , for some V> 0. Thus
blo,+ ¥, n,} & (Y}
Purther,
blagri s ,ao) <fr(v )] ¥,
es seer from the following induction srgument. The
inequality hss alreazdy beer estsblished for k = 1, so
thet we zssume
blog+ky ,n0) < E@?’ (¥ )j k
and consider the (k+l)st term.
b[no+(k+l}.':.~‘~‘ ,nolé bino+{k+1)£ﬁ ,no+kv] b(ng+k v ,n,)
< ol (ngrky+v) - (ng+k v )__[Er(;: }Jk
= 7(v) [o(v )]k
= for(w)]¥,

Since 0~ (n-p,) goes monotonically to zero by assump-
tion, there exists a Y sufficiently large so that for
n=n,+» , or n-n, =1 ,

c(p)< %.
Thus,
blngtkv ,n)) € [o (v )]¥ < (pk.
But, since n = n,+tk» , we have

k = (n-ng)/p ,
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80 that
b(n,n°)< (2)=(p-n0) /¥ .
It therefore follows thet

I F(n,ny,x,) 0 € v (nyn5) I x|\

< (2)=(B-ng)/v BN

end the equilibrium is exponentially stable.

2.7 lp-Stebility of the Equilibrium

Thus far, the types of stability consideread may be
grouped into s series of chsins in which each successive
concept of stsbility implies all thst precede it. Thus,
the most restrictive definition, thet of exponentisl
8tabllity, implies uniform-asymptotic stability, which
in turr implies equissymptotic stability. Continuing,
equlssymptotic stability implies ssymptotic stability,
which then implies 8tability itself. 1In s sepsrate direc-
tion, the chain branches so thet uniform-ssymptétic stabi-
lity implies uniform stebility, which in turm gives sta-
bility. The verious implications sre 11llustrated in the
accompanying diasgrom.

We now consider another type of stability which
does not quite fit into either of these chains of succes-

slve types of 8tability; nsmely, 1 -stability. From its

P
definition, given in Definition 10, we require thst the
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P-th powers of the solution of the difference equation

X(n+1) = £(n,X{n))
are summable for some p>0. Thet is,

S P

:.Zno”F(k,no,xo) l<o.
The convergence of such a sua for positive p implies
sutomatically that

I F(n,n,x )P —0

a8 n—=>®, s0 thst IIF(n,no,xo)ﬂ itself goes to zero with
incressing n. Thus, lp-sta‘bility obviously implies asymp-
totic stability. The following theors=m treats the rela-
tionship bstween lp-stability and exponential stability,
the other end of the chsin.

Theorem 22: If the equilibrium X = 0 of the difference
equetion (*) is exponmentielly stable, then 1t is slso
p-Btable

Proof: 1If the equilibrium is exponentially stable, the
solution to the difference equation satisfies sn esti-
mate of the form

| Fla,ng,x) Il ¢ Blx,y o0,
for some ¢, 0« €c<1l, snd some B> 0. Therefore

i F(n,no,xo)"p < BP x Il P cP(n-no)

and hence

o

, 20 K-
g%llF(k,no,xo)Np < BP|x P Zz"; (ePy*~Po



= Bp \]xnnp i k

(cP)
. unop k=no
p od

€ Bpl‘xgﬂ' 2 (P)E

hop | Geo

P P
L Buxg?

cnop l-cp
< @®

for any ¢, 0<e<1.

On the other hand, the following rather triviel
example indicetes that esymptotic stability, and even
equiasymptotic stebility, does not necesssrily imply lp-
stability.

Exapple: Consider the scsler difference equation

= 10g{n+2
X(a+1) —1'65{53';' X(n),

which mey be written as X(n+l) = A(n)X(n), so thet the
equetion 1s linmeer. The solution of the linear difference
equation 1s given by

F(n,ng,x,) = Z(n)Z'l(no}xo,

Wwhich for this particuler equation becomes

F(u,n,,x.) = log(n. +2) x_.
*TorTo log(n+2) ° °

It 18 obvious that as n goee to infinity, the solution

tends to zero, s0 that the equilibrium is indeed asympto-
tically stable. 1In fact, since the Aifference equation is
linear, the equilibrium must be equlasymptoticelly stable.



51

However,
oo = 1 P
.Zn “F(k,nogxo)“p = [log(n°+2)]p|| Xo“p Z [ log(k+2)}

o k’no
and the latter series is known to diverge for all p> O.
Hence, the egquilibrium for this difference equation is

oot lp-stable for any p.

We now present a sufficient criterion for lp-sta-
bility in the form of the existence of a scalar function
¥(n,X).

Theorem 23: If there exists a real scalar function V(n,X)

for which, on D R
n R
a) V(n,X) is positive definite
b) AV(n,X)< - ¢iXiP, for some p2> O and some
c>0
then the equilibrium X = O of the difference eguation (*)
is lp-stable.

Proof: The existence of the function V(n,X) with a
negative definite total difference implies that the
equilibrium is stable. Thus, given any no) 1, a So
can be chosen such that || xoli <Sc implies that

I P(n,no,xo)u <M
for some M> 0 and for all n)no.

Now, define, for n)nl, for any n,>1n,

G(n) = V(n,F(n,no,xo)) + c"f ||F(k,no,x°) Il P,
ken.—;
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We note that
G(nl)

V(nl,F(nl,no,xo)) + c“F(nl-l,no,xo)K p
V(nl,xl) + c|| F(nl-l,no,xo)" p

where we have written X, = F(nl,no,xo). Furthermore,

A G(n) = AV(n,F(n,no,xo)) + ¢ ﬂF(n,no,xo)ll p
< —cllF(n,no,xo) WP o+ el F(n,no,xo) fe
sc that
AG{n) < 0.
As & consequence, it follows that
&(n) < &(n,)

for all n2n That is,

1
V(n,F(n,n 2 X X)) o+ ¢ Z NP{x, B X )y P

= N1
< V(nl,xlj + c“ F(nl-l,no,xo)‘lp ’

or equivalently,

O<V<n F\D,«,._,Xb/" J\n ‘(3‘ - Z “F(k no,x )“p 9
- .L - k n
SO that
0~
| TSP 1 Z v/
for alil n 3n1. This implies that

N -i
i /.’ N B p L
&-Zn,“ Fk&,no,xoz i ¥ & (l/c)V(no,xo).

Taking the limit as n—>w , we find that
o0

kan, I ?(x, n, xo) {P < (l/c)V(no,xo),

which implies
Z I Fle,n ,x ) (P < o,
-no

and thus the equilibrium is 1 p-stable.
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We now turn to possible converses to the previous
theorem which will guarantee the existence of scalar func-
tions V(n,X); The first such result, for the case of a
linear difference equation, requires nothing more than
the asumption $hat the equilibrium is lp-stable. How-
ever, for the case of arbitrary f£(n,X), additional asump-

tions will be necessary.

Theorem 24: If the eguilibrium X = O of the linear diffe-

rence equation
Z(2+1) = A(n)X(n)
is lp-stable, then there exists a real scalar function V(n,X)
for which, on DnoR’
2) V(2,X) is positive definite
b} V(n,X) is locally Lipschitzian
A ¥(2,X) £ -JxIP,

(1]
[

Proof: Since the difference equation is linear, the
general solution is given by
F(n,no,xo) = Z(n)Z'l(no)xo.
Further, sipce lp-stability implies stability, there
exists an MO such that
N z(n) ll £ u
for all nj) n,.
We now define

s(n) = |l z(a){l



62,0 = |z ln)x|
8o that

-1
8(ng,x,) = | 27N ))x ||,
and therefore, it follows that

I F(n,no,xo)" < s(n)é(n,x,).

As a consequence,

Iz = I#Ga,,n ’X, )] P s(ny)é(n,,x ).
Now define .
V(2,X) - z [s(08,D[? + 2 [s(i)d(n,x)]P

for all p01nts (n X) in D n R Both of these series

converge since the equilibrium is 1 -stable. The proof
that this funetion satisfies the theorem depends on
the following three properties for this choice of V(n,X)

Property 1: There exist two positive constants

c1 and Co such that

clﬂxﬂp £ ¥(n,X) ¢ e,ll 2" 1(2) IPpx|P
for all points (n,X) in DnoR’
We have

V(2,X) £ 22 [s(x)4(n,5)] P
= 2 [4(a,x)I? é, [s(x)] P

£

£ 2l @I® 2P Z [s(i)]P

= ¢, Il 271 )IIP I x|P,
Furthermore,

V(n,X) >

Ma

> & [s(x) 4(n,x)]P
= £ [s(x) I 2@z ]P

-«Q

> Z [ I xU] P/is(n)]P

=0

7‘..




55

- Z [sGI® UxiP / Il ()P
> (AP | TP é (e(x)[P

= elllxllp.
Moreover, it is evident that V(n,0) = 0, for all n> n,.
Property 2: AV(n,X) £ - xIP,
We have

6(n,X) = Nz i@zl = (20027 )z |
= || ®?(0,n,X)} .

Hence,

#(n,F(2,n,,x)) = || #(0,n,F(n,n_,x)) ||
= Iz @)z@z i )x, |
= Nz i ))x, |
= d(no,xo).

Now

V(n,F(n,no,xo)) = k:Z:[s(k)d(no,xo):(P + go[s(k)d(no,xo)_] P
where the second term is independent of n for all
(no,xo) in DncR‘ Therefore,
A V(n,F(n,no,xo)) = V(n+1,F(n+1,n°,xo))
- V(n,F(n,.no,xo))
= - [s(n) g!(no,xo)]P
= = [iz@l 1zl )= I ] P.
As a result,
A V(no,r(noa,no,xo)) = - ):M Z(no)” \ Z'l(no)xollj P
£ - ]{xollp.

However, this inequality is valid for every (no,xo) in



Dnon: 80 that we moy conclude that
ADV(n,X) £ - IxIP
for every (n,X) in Dy -

Property 3: There exists s positive constant ¢
such that

| v(a,X;) - V(n,X,) |
£ ey [1% 1P + §x P 1jiz= ()| P (i, -x, ).

3

We have
[¥(n,%)) - V(n,x,)]
= || Z{[e(08(2,1)]? - [s(k)g(n,x,)IP }

+ ’z{[s(k)d(n,xl)lp - [s(k)g(n,X,)] ’} I

keo

<2 | kf [ ]™[ 60n, %, P - [g(a,x, P}l
< zz’: [ s(x)]? '{}z‘l(n)xlllp- fl z‘l(n)xzﬂp,- .

Nou; by the mean value theorem, given any two reel num-

bers r; end r,,
P -r,P| = |p Pl (ry-r,) |
SR LA e I Y
where ri<r<rp. Applying this result to the sbove, we
obtain

, 2= a)x P - | z-l(n)xznp!

¢ p lIz-ta)xy ) Py 27l (a)x, | P1] .

o||| z‘l(n)xlll -l z'l(n)xz “l
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p hz 2 @)IP-T fux, P-1 4 Gz P-1] -

* iz, - 2la)g|

IN

) < p Iz @IP [z 1P 4 g2 g, .

Hence,
| ¥(a,x)) - ¥(a,x,)|

P 2§°[s(k)]p pllzt@IP fox >-2 4 ((x,)P-2]-

iz, - xl
= oy Iz @llP [yx P2 4y x, (P17 iz -z, f

Thus, Property 1 shows that V(n,X) is positive defi-
nite, while Property 2 demonstrates the ondition on
AvV(n,X) and Property 3 proves that V(n,X) is locally
Lipschitzian.

We now consider the pPossibility of proving the
existence of a scalar function V(n,X) for the arbitrary
difference equation (*). In order to obtain any results,
it is necessary to impose more stringent conditions than
merely lp-stability for the equilibrium, as was done in

Theorem 24.

Theorem 25: Suppose that the equilibrium X = O of the

difference equation (*) is lp-stable and further, suppose
that for each fixed n, %I F(k,n,X) exists for any point

in D R’ ROreover, suppose that
no

s = sup(k'ng”n,n&zjo | P(k+n,n,x) |21 | B(k+n,n,X;,...X,) n‘}
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is bounded, where & is the matrix of partial derivatives

e—

219 ,
xJ are the components of the vector X and (n,II),...(n,X;)

*
8(k+n,n,X],...X7) ,(arit(km,n,xi)

are point=s in Dn,R‘ Then there exists a real scalar
function V(n,X) for which, on Dn,R’

a) V(n,X) is positive definite

b) V(n,X) is locally Iipschitzian

e) AvV(n,Xx) £ -lIx|P,

Proof: We define the funetion
o0
V(n,x) = kz “F(k’n’x)up
=N

and demonstrate that it possesses all of the required
properties for the function described in the statement

of the theorem. This function can be rewritten as
o0
V(n,X) = é;;"r(k+n,n,x)“p .
Furthermore,
V(n,0) =§o"r(k+n,n,0)\|p = 0,
since F(k,n,0) = O for all k. Moreovsr,
V(a,X) 7 F(n,n,)IP = |[2YP,

which proves that V(n,X) is positive definite.
We now apply the estimate derived in the proof
of Property 3 in the previous theorem to obtain

‘ V(nszl) - v(n’xz)l
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<2 |iRCiern,n, X IP - [[B(ken,n,X)IP|

~©

£7 pl:ll F(k-r-n,n,xl)"p'l + | F(k+n,n,xa)ﬂp'1_] .
k=0 .

'\llF(k+n,n,xl)ﬂ - llr(k+n,n,12)“[.

Imposing the requirement that the solution P(x,n,X)
be a differentiable function of X for each fixed n,
then on the olosed interval [ (n,X,), (n,x21] in
Dn,R’ we may apply a generalized form of the mean

value theorem to obtain
F(k+n,n,xl) - F(k+n,n,2é) = E(k+n,n,xi,..xtf) (Xi-!é),

where & and the x; are as defined in the statement
of the theorem, for some points (n,Xi), ...'(n,x‘ in
the closed interval. Hence, the above estimate for
the difference between V(n,X) evaluated for two diffe-

reat values of X becomes

‘ v(n’xl) - V(n,xa)\
< ‘goP[“F(lmn,n,xl)(\P'l + 1l F(k+n,n,22)“p-l]‘
-\l 8(k+n,0,X§,... 200 Nz -x, |l

= 2psllx) - 1,05
that is, V(n,X) is locally ILipschitgian.
Finally, we consider the total difference for
V(n,X). To begin, we note that
F(k,n,F(n,nb,xo)) = F(k,no,xb)
since the solution to a difference equation through any

given point is unique and since, at the point (HO’xb)’



P(k,no,F(no,no,xo)) = F(k,no,xo).

Hence,
V(n,P(n,no,xo)) - Z‘a "F(kynovxo)"p’
so that ken
A V(D,X) = kthH" F(k,nopxo)“p - k=Zn u F(k’nOQon‘ P

= || ¥(n,n4,x,)|P
< 0.

In fact, AV(n,X) is equal to zero if ang only if F(n,nq,x,)

is equal to zero, which occurs if and only if Xo = 0.
Thus we conclude that AV(n,X) is negative definite
and hence this function V(n,X) satisfies all of the re-

quirements of the theorem.

We now consider the linesr difference equation
X(n+1) = A(n)X(n)
and the associated equation
X(n+1) = A(n)X(n) + g(n,X(n)),
where the term g(n,X(n)) may be congidered as a perturba-
tion of the linear system. If the equilibrium X = 0 of the
linear equation possesses some form of stability and if the
perturbstion is smell in some gense, then it is ressonsbie
to expect that the equilibrium of the Perturbed equation
should share the same stability property. The following
theorem provides Proof of this expectation for the case of

lp-etability.

Theorem 26: If the equilibrium X = 0 of the linear diffe-
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rence equation

X(n+1) = A(n)X(n)
is lp-stable, then the equilibrium of the aggociated per-
turbed equetion
X(n+1) = A(n)X(n) + g(n,X(n))

is slso 1,-steble provided the perturbation g(n,X(n))
satisfies the conditions:

a) g(n,0) = 0 for all n)n,

®) | A(@)X(@) + &(n,x(n)) £ [[a(n)x(a) |

c) jlz-l(n)"pltgﬁp,x(n))ﬂ —> 0 uniformly as
(x|

I x|+o.

Broof: 1If X(n) = 0 is 1,-stable for the linear equation,
then, by Theorem 24, there exists s scalar function V(n,X)
satiefying the conditions on DnOR’

1o qlxl® £ V(n,X) £ e, |z-1(n)(P | x|P

2. AV(n,x) < -||x|P |

3. |V(n,x1) - V(n,x5)] <« e [Ix3 P~ + b X P-1] o

e [l 271 ()P || X1-X,| .

This function will be used to prove the lp-atability of
the perturbed equation. Ths total difference of this
function for the perturbed equation is given by

AVo(n,X) = V(n+1,AX + g) - ¥(n,X)

V(n+l,AX + g) - V(n+1,AX) + V(n+1,4X) - V(n,X)
1V(n+1,4%:¢) - V(0+1,4X)| + V(n+1,AX) - V(n,X)
o3 L axvglP=2 | ax|P2] )1 -2 () | g

+ AVy(n,X)

IN

IN
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se, [2laxP-2] Jz 1l gl - §xp,

using condition b) on AX + g and the definition of
total difference of V(n,X) for the linear difference

equation. Thus,
AVp(n,X) € 2e AP~ HZIP-LY 2 2()(P g - fxfP

2¢, || 41271 | 272 P (g ] ]
x|

= )P [ 1

< - c“xup,
for some positive ¢ <1 forll X llsufficiently small

since by assumption ¢),

I x§
with \X|{ . Hence,
AVp(n,X) € - [[XP
and the equilibrium of the perturbed equation is also

lp-stable by an applicaticn of Theorem 23.

2.8 Stability Under Perturbations

We now consider in greater depth the situation
where a given difference equation is altered by the addition
of a "small" perturbing term to f(n,X). In particular, we
consider the difference equation (*)

X(n+1) = £(n,X(n))
and the associated perturbed-difference equation

I(n+1) = £(n,¥(n)) + g(n,¥(n)).
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As before, we impose the condition
. £f(n,0) = 0
for all n>n,. However, there are two possible approaches
to follow with regard to g(n,Y). The first is where the
perturbing function satisfies a condition of the form
g(n,0) = O

for 211 23xn also. In this case, the trivial solution
X = 0 is a common solution to both the perturbed and the
unperturbed difference equations. The second possibility
arises when the above condition on g(n,Y) does not hold,
but when it is known that the perturbation is "small" in
some sense.

As an exsmple of the first possibility, we con-
sider the following theorem originally given by Hahn (3)

and dealing with the case where the equilibrium of the

unperturbed equation is exponentially stable.

Theorem (Hahn): If the equilibrium X = O of the linear

difference equation
X(n+1) = A(n)X(n)
is exponentially stable, then he equilibrium of the per-
turbed equation )
Y(n+1) = A(n)Y(n) + g(n,¥(n))

is also exponentially stable, provided that

a) g(n,0) = 0 for all n>n_

) Hgla,Dll< alfYl,

for some sufficiently small constant a.



We now turn to an examination of maintaining some
type of stability rroperty when the perturbation is small,
but not necessarily zero for Y = 0. We begin by introducing

one definition of stability under such small perturbations.

Definition 13: The equilibrium X = O of the unperturbed

difference equation (*) is said to be totally stable if,
for every & >0, there exist two positive constants

*(€) and $,(¢) such that

Ixll <, Il g(n,Y(n)) I < $2
for all (n,Y) in D, g imply that

"F‘(n,no ,xo)ll < €

for all n»n  for every solution F"(n,no,xo) of the

perturbed difference equation

I(n+1) = £(a,X(n)) + gla,¥(n)).

The following theorem for total stability of

the equilibrium is a consequence of this definition.

Theorem 27: If there exists a real scalar function V(n,X)

for which, on DnoR s

a) V(n,X) is positive definite

b) V(a,X) is decrescent

¢) V(n,X) is locally Lipschitzian

d) AV(n,X) is negative definite for the unperturbed
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difference egquation (*)
then the equilibrium X = O of the difference equation (*)
is totally stable.

Proof: By the conditions in the hypothesis on V(n,X),
there exist functions a(r) and b(r) of class M, such
that

a(JIxld <€ v(n,x) € by
and a function c¢(r), also of class ¥,, such that for
the unperturbed difference equation,

AV(n,X) £ - c(lIXl).
Now, given €, 0< €< R, choose a constant Q, 0<qg< a(€).
Then there exists a comstant r(q) >0 such that
V(n,X*) = ¢

implies r<[|X*lKE for some X* with [(X*/>0. Pur-

thermore,
A4 V(n,X*) < - c(IX*))) € - e(x),

since r < [[x*|l .
We now consider the total difference of V(n,X) for

the perturbed difference equation. This becomes
Avp(n,x(n)) = ¥(n+l,f(n,X)+g(n,X)) - V(n,X(n))
= V(n+1,f(n,X)+g(n,X)) - V(n+l,£(n,X))
+ V(n+l,£(n,X)) - V(n,X(n))
< | V(a+1,£(n,X)+g(n,X)) - V(n+l,£(n,X)))\

+ A V1 (n,X)




g6

< klrmX)ee(nX) - oin, X+ A Vp(n,x)

Klg(n,X)l  + AV (n,X)
€ K§ 4+ AV(nX)
£ 0
for 5; sufficliently small, using the fact that V(n,X) is
locally Lipschitzian with constant K.
We now choose SI = S.(e) such that S|<€ and
V(ngsx,) € q
for B xli<§. Then, for all n3 n,,
0 Fdtl’l’nosxo)lKG ’
for if not, there would exist an nj 3 n, 3uch that
V(ny,X) > q,
since q¢ a(€ ) = € . But
- Ving,x,) < g
and AVp(n,X) is negative definite, which implies that
V(n,X) is monotonically decreasing. Thus we indeed have
i F1n,n°,xo)"< €
for | xH<$ and Hs(n,x(n))kS’. Hence, the equilibrium
1s totally stable,

If we compare this result with Theorenm 13, we

obtain the followirg relation.

Theorem 28: If the equilibrium X = O of the difference equa-

tion (*) is uniformly asymptotically stable, then it is also

totally stable.
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We next consider a slightly different approach to
this entire problem. In particular, we will investigate
how the solutions of the perturbed equation behave with
respect to the solutions of the unperturbed difference equa-~
tion. Thus, for example, we will consider such possibilities
as whether the perturbed solutions will remain close to, or

even approach, the unperturbed solution.

Definition 14: The solutions of the perturbed difference

equation
¥(n+1) = £(n,Y¥(n)) + g(n,¥(n))
are said to be gtable with respect to the unperturbed dif-

ference equation (*) if, for all €50 and all n, £I, there

exists a $(&)>0 such that lx3-x ) <5 implies
"F‘(n,no,x;) - F(n,no,xo)// <€

for all n3n_ , for every solution F*(n,n ,x;) of the per-

(o]
turbed difference equation.

Definition 15: The solutions of the perturbed difference

equation
Y(n+1) = £(n,Y(n)) + g(n,¥(n))

are said to be asymptotically stable with respect to the

unperturbed difference equation (*) if they are stable with

respect to it and if, for all n, £ I, there exists a So(no)>0
such that § Xo=X,ll <50 implies that
ﬂF‘(n,no,x;) - F(n,no,xo)” >0

as n-»wo for every solution F*(n,n

01%5) of the perturbed



difference equation.

The last definition is equivalent to the statement
that all solutions of the perturbed difference equation
which start sufficiently near to the unperturbed solution
eventually approach it. Moreover, we note that both of
these definitions are independent of the behavior of the
solutions of the unperturbed equation. In fact, the follo-
wing simple examples show that these solutions may be

stable, asymptotically stable, or even unstable.

Example 1: Consider the unperturbed difference equation

X(n+1) = X,

whose stable solution is F(n,no,xb) = X9 and the per-
turbed equation

Y(n+1) = Xy * Tos
for some sufficiently small Yoo The perturbed solution

is given by
F‘(n,no,x;} = x3 = X * Tge
Consequently,
* *) _ =
F (n,nb,xb) F(n’no’xb) Y

and Definition 14 holds with § = € , for any €> 0.

Example 2: Cdnsider the unperturbed difference equation
X(n+l) = aX(n)

with |aj< 1, whose asymptotically stable solution is

n—
Doy

F(n,no,xo) = a S
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In addition, consider the perturbed equation
Y(n+1) = (a+b)¥(a),
with b sufficiently small; in particular, take any b in
the open interval (0,1-a). The associated solution is
then given by
F‘(n,no,x;) = (a+b)n-n°x;
and therefore,

UF*(n,no,xg) - F(n,no,xo)ﬂ = ”(a+b)n-n°x; - an°n°x°” ,

which approaches zero as n & y for any xg.

Example 3: Consider the unperturbed difference equation

X(n+1) = X(n) + X,/

whose unstable solution is given by
F(n,nb,2xo) = x, + nx /n..
In addition, consider
Y(n+1) = Y(n) + x,/n, + gln),
®
where g(n) is any sequence for which S glx) = o.

The corresponding solution is then given by

n-1

* x _
F (n,no,xb) = x, + nxo/no + 25;=n° g(k),

and; by the choice of g(n), it is obvious that the 4if-

ference between the two solutions approaches zero as n->wo.

We now present several theorems which supply suffi-
cient conditions for these types of behavior to hold in
terms of the existence of real scalar functions U(n,X),

which are similar to those used in the previous results.
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Theorem 29: If there exists a real scalar function U(n,X)

for which, on DnoR ,
a) U(n,X) is positive definite
b) AU(n,Y(n)-X(n)) is negative semi-definite,
then the solutions of the perturbed difference equation
I(n+1) = £(n,Y) + gln,Y)
are stable with rgspect to the unperturbed difference equa-
tion (*), provided that
"F*(n,no,x;) - F(n,no,xo)” <R

for all n> no.

Proof: Since U(n,X) is positive definite, there is a
function a(r) of class M such that
U(n,X) » a(ixu).
Now, given any € , choose x; sufficiently close to
x, so that
*x x

It then follows that

IF*(n,no,xS) - F(n,no,xo)l( <&
for all nzn;; for, if not, there would be some
nl7no such that

ﬂF‘(nl,no,x;) - F(nl,no,xo)ll ZE€ .
This, however, would imply that

U(nl,F*(nl,no,X;) - F(nl"no’x0>)

=2 a( “F‘(nl,no,x;) - F(nl,no,xo)l/ )

> a(e)
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*
Zz U(nl,F'(nl,nb,x;) - F(nl,no,xo)),

which is g contradiction.

Theorem 30: If there exists a real scalar function U(n,X)

for which, on DnoR s
a) U(n,X) is positive definite
b) AU(n,¥(n)-X(n)) is negative definite,
then the solutions of the perturbed difference equation
Y(n+1) = f£(n,Y) + g(n,Y)
are asymptotically stable with respect to the unperturbed
difference equation (*), provided that
"F*(n,no,x;) - F(n,no,xb)”'é R

for all n3 no.

Proof: The proof of this theorem follows directly
from that for Theorem 4, taking into account the
type of modifications which appear in the proof of

Theorem 29.

It should be noted that both of these results
hinge on the requirement that
”F‘(n,no,x;) - F(n,no,xo)ﬂ <R
for all n. The following theorem gives one fairly simple
set of conditions on the functions f(n,X) and g(n,Y) which

will guarantee that this condition holds,
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Theorem 31: If the function f(n,X) satisfies a Lipschitz
condition with respect to the variable X with constant L<1
and if the function g(n,Y) satisfies
lg(n,Y) l< alyl .
for some sufficiently small positive constant a, then
"F*(n,no,x;) - F(n,no,xo)l) <R
for all n E2 provided that x; is chosen sufficiently

close to xo.

Proof: For simplicity, we will denote
s - = *
f(n +j) = £(n +3,F (no+j,no,xo)).
It then follows, after a somewhat involved inductive
argument, that

ﬂF‘(no-*k,no,x;) - F(n°+k,no,x°)"

< Lkux;-xou + Aix3l [ak + a5l 4 K212 4 aLk']']
+ “f(no)ﬂ [a¥1 + o521 & .., + al¥27 + ... +
+ Nf(n +k-3)1) {a° + al T+ a £ (n +x-2)11

€ Lixg-xy + R F(a® + o511 + .., + aI¥-1)

+ (a1 4 K21 oo + aI¥k™d)

*aeo + (2% + al) + a |

k_
= I:llx;-x it + R Wa+ ac + ... + ak) + L(a + a° +...+a 1y
* oo+ I5HD)]

= Lixj-x |y + Ra/(1-a) Y(l-ak) + L(1-a5"1) +...+Isk-l(l-a)3
< I -x 4 + Ra/(1-a) lL+n+... +1517]
€ Dleg-x )l + aR/(1-a)(1-L).
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This quantity, however, can be made smaller than R by
choosing xg sufficiently close to X, and by taking a

sufficiently small, since L<i,

By way of example, we now present one of the usual
type of results on preserving stability under perturbations
which is now merely an immediate application of Theorems

30 and 31. Essentially, this is Hahn's result just mentioned.

Theorem 32: If the linear equation
X(p+1) = A(n)X(n)
is asymptotically stable with DA(n)f <b <1 for all n,

then the solutions of the perturbed difference equation
Y(n+1) = A(n)Y(n) + g(n,Y(n))
where
NeCa, DN < a HY 4
for some sufficiently small positive constant a, are also

asymptotically stable.

It is fairly apparent at this point that the
notions introduced in this section can easily be extended
Tto encompass as well the various refinements of the sta-
bility properties which have already been studied. For
example, if definitions analogous to Definitions 14 and 15
are introduced for the solutions of the perturbed difference
equation being either lp-stdsie or exponentially stable with
respect to the unperturbed equation (*), the following
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results can easily be demonstrated.

Theorem 33: If there exists a real scalar function U(n,X)

for which, on 2l)n°R s
a) U(n,X) is positive definite
b) AU(n,¥(n)-X(n)) & - c§¥(a)-X(a)IP
for some p 20 and some ¢ >0,
then the solutions of the perturbed difference equation
Y(n+1) = £(n,Y(n)) + g(n,Y(n))
are lp-stable with respect to the unperturbed difference
equation (*), provided that
"F‘(n,no,x;) - F(n,no ,xo)” <R

for all n>/no.

Theorem 34: If there exists a real scalar function U(n,X)

for which, on DnoR ,
a) 8, [XIP <U(n,X) = a, IXWP
for some positive constants a8y and a, and
for some positive P
b) AU(n,Y(n)-X(n)) <- az dY(n)-X(a)ll P
for some positive constant a3, where a3/aa<l,
then the solutions of the perturbed difference equation
Y(n+1) = f£(a,¥(n)) + g(n,¥(n))
are exponentially stable with respect to the unperturbed
difference equation (*), provided that
'IF*(n,no,x;) - F(n,no,xo)ll £ R

for all n >n,.
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Finally, it should be noted that an entirely
analogous theory can be developed for perturbations of

differential equations.

2.9 Instability of the Equilibrium

We next consider sufficient conditions to guaran-
tee that the equilibrium is unstable. Without such cri-
teria, the inability to determine an appropriate Liapunov-
type function to deduce stability or asymptotic stability
of any kind would be totally inconclusive. Oxr the other
hand, the determination of a function satisfying the
conditions in the theorems below resolves the situation
immediately. The first result is the discrete analogue

of Iiapunov's Second Theorem on instability.

Theorem 35: If there exists a real scalar function V(n,X)

for which, on QnoR ’

a) V(n,X) is bounded

b) AV(n,X) = a V(n,X) + W(n,X),
where a is a positive constant and W(n,X)
is a semi-definite function defined on Dn°R

¢) if W(n,X) is not identically zero, then in
each subdomain Dn r(IDnoR » there exist points
(n,X) for which V(n,X) ana W(n,X) have the

same sign for all n?nl,
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then the equilibrium X = O of the difference equation (*)

is urstable.

Proof: Suppose that Dﬁ r 18 any subdomain of DnoR in
which V(n,X) and W(n,X) are both positive at some
points. Let (nl,xl) be one such point and consider

the solution F(n,nl,xl). We have

A.[(a-*l)-n V(n,F(n,nl,xl))]
(2+1)™ D) (ae1 F(ae1,n) %)) - (a+2)"V(n,¥(a,n, ,x

(a+l)-(n+1)[V(n+1,1’(n+1,nl,x1)) - (a+l)V(n,F(n,nl,xl)

(e+1)” ** D[ AV B0y ,x)) - a¥(a,P(a,ny 2,00 ]
Consequently, along this particular trajectory,

W(n,F(n,nl,xl)) =AV(n,F(n,nl,xl)) - aV(n,F(n,nl,xl))

(a*-l)"'(nﬂ‘)ﬂ[(a+1)'1"‘V(n,F(n,n1 ,xl) )]

and since W(n,X) is positive,
A (84357 V(a,F(2,n,,x))] > 0.
Thus, (a+1)™® V(n,X) increases along this particular
trajectory and hence
(a+1)™02 V(n,F(n,nl,xl)) 2 (a+1)™™1 V(nl,xl)
and therefore
V(n,F(n,nl,xl)) 7 (a+1)2™ V(nl,xl),

which becomes arbitrarily large as n->m . However, we
assumed that V(n,X) is bounded on DnoR » and so the solu-~
tion must leave DnoR and it must do so across the

boundary | X || = R; that is, the equilibrium is unstable.
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The second result is the discrete analogue of
Cetaev's theorem on instability. It was originally given
by Hahn (3).

Theorem (Hahn): If there exists a real scalar function
V(n,X) for which

a) in every b .cC D, R » for r arbitrarily small,

there existlx such that V(n,X) < 0, for all
n 2n,,
b) V(n,X) is bounded from below in some subdb-
domain D CDnoR in which V(n,X) < 0,
¢) in this particular subdomain D,
AV(n,X) < -a(IVi) <o
for sdme function a(r) of class ¥,

then the equilibrium X = O of the difference equation (*)

is unstable.

2.10 Some Stabilitz Theorems given by Hurt

We conclude this chapter by citing some results
obtained by Hurt (5) in a paper brought to the author's
attention after the research work for this thesis was
completed. In this baper, a number of theorems are
bresented dealing with stability theory for difference

equations using a somewhat different approach than the
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one employed here. The principal concepts and results

are given below.

A point X* in EV is said to be a positive limit
point of X(n) if there exists a strictly monotonic diver-
gent sequernce n, of integers such that X(nk)-ﬁ>x' as
k~>mo . The union of all the positive limit peints of

X(n) is the positive limit set.

Theorem (Burt): If there exists a real scalar function

V(n,X) for which, on some set G in EY and for all n2n,

a) V(n,X) is bounded below

b) V(n,X) is continuous as a function of X

c) AV(n,X) £ - W(X) <O,

for some continuous function W(X),

then every solution which starts in G and remains in G
for all n approaches the set

£ - WD -0} Vol - aufa},

where {a>§ represents the vector at infinity.

We note that if V(n,X) is positive definite
and AV(n,X) is negative semi-definite, then this theo-
rem reduces to Hahn's theorem on stability. If, in
addition, the function AV(n.X) is negative definite,
or equivalently, if the function W(X) is of class ¥,
then we obtain Theorem 4 on asymptotic stability. In

this case, we have A = ?O}' and all solutions will
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thus approach the origin as n > .

A function X*(n) is said to be a solution of
the autonomous difference equation
X(n+1) = £(X(n))
on (-w, @) if for any n, in (cw, @),
F(o-n ,n ,X*(n )) = ZX*(a).

A set B is said to be an invariant set for the
autonomous difference equation if X, in B implies that
there is a solution X*(n) for the equation on (-® , o)
such that X*(n) is in B for all n and further that
X*(0) = x_.

(o]

Theorem (Hurt): If there exists a real scalar function

V(X) for the autonomous difference equation
X(n+1) = £(X(n))
for which, on some set G in Et,
a) V(X) is bounded below
b) V(X) is continuous
c) AV(X) <o,
then every solution which starts in G and remains in G
for all n is either unbounded or approaches some invar-
iant set contained in
A = §X: AVX@ - o}

8 n->w.

The difference equation (*) is said to be asymp-



totically autonomous if it is possible to write it as
X(n+1) = g(X) + n(n,X),
where h(n,X) =0 as n —=» uniformly for all X in any

compact set.

Theorem (Hurt): If a solution X(n) of the difference

equation (*) approaches a closed bounded set A as n~s>m
and if X(n) is also a solution of the asymptotically
autonomous difference equation
X(n+1) = g(X) + h(n,X),
then it approaches the largest invariant set for the
autonomous difference equation
X(n+l) = g(X)

contained in A as n s> .

80
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Chapter 3: _Boundedness of Solutioms and Stabiligz

in the Whole

3.1 Boundedness of Solutions

Thus far, we have been concerned with the dif-
ference equation
X(n+1) = £(n,X(n)), (*)
where the function f(n,X) has been assumed bounded and
has been defined only for the semi-bounded domain
D g = {(n,x)el x EY : n>n >0, l(xu‘R} .
In the present chapter, we will consider the case where
the norm of the vector X will be allowed to be possibly
unbounded. The difference equation to bte studied will be
X(n+1) = g(n,X(n)), (**)
where the function g(n,X) considered is defined throughout
Ix Et, for all n>,no, and where g(n,X) assumes values
throughout EY, though otherwise, the equation (**) will
possess all of the properties previously indicated for the
equation (*). Moreover, the complement of D pinIx EY
will be denoted by D, ; ; that is,
Bp - {@DEIxE :adn >0, [X[>R>0].
In addition, we will consider the region
D = {(n,x)EIxEt i nn 2 0}-

Do

Definition 16: A solution to the difference equation (**)

is said to be bounded if, given any no)'o and any r >0,

there exists a B(n,,T,) >0 such that for any x, with uxbﬂ<ro,



] F(n,no,xo)ll <B

for all n> .

Definition j7: A solution to.the difference equation (**)
is said to be uniformly bounded if, given any r°> 0,

there exists a B(ro)>0~ such that for any no> O, and any
X, With | %] <z
Il #(a,n_,x )< B

for gll n) R,.

Definition 18: A solution to the difference equation (**)

is said to be ultimatély bounded if, given any n,& I and

any r, and r,, r°>rl> O, there exists a B(r1)> 0 and

an integer ))(ro,rl)>0 such that for any x, with I xou< Ty
N F(n,n ,x )l < B

for all n),no+)).

Definition 19: A solution to the difference equation (**)

is said to be uniformly ultimately bounded if, given any

r, and Ty Ty r,> O, there exists a B(rl)>0 and an

integer l)(ro,rl)>0 such that for any no&’,I and any X,

with || x| <T,»
| F(n,no,xo)l( 4B

for all nyn + V.

We now develop criteria for the various types of

boundedness enumerated above in terms of the existence of
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certain real scalar functiomswith particular properties
which are defined on Dn'oR eand which are quite similar to

the functions used in the Previous chapter,

Theorem 36: If there exists a resl gcalar function W(n,X)
for which, on DnloR’

a) W(n,X) is positive definite

b) W(n,X) > ® uniformly ss X—

¢) AWw(n,X) is negative semi-definite
then every solution of the difference equation (**) ig

bounded.

Eroof: Choose any n,> 0 and any To> R and define

w(ng,r ) = sup {W(no,x) : R(l[xﬂ<r°} .

Further, take B(no,ro)>R such that W(n,X)>w for
n>0 and X such that [/ X[|»B. As a ccnsequence, if
| Xoll < Tos then

I F(n,ng,x,) 1l < B
for all n) ng; for if not, there would be some n'> n,
such that

| F(n*,n4,x,)[ > B.
Thus,

w< W(n',F(n',ng,x,)) < W(ng,x,) & w,

since W(n,X) has a negative semi-definite total difference
so that this is a contradiction. Hence, I F(n,nqg,x,) |

is bounded by B for all n 7Dy



Theorem ¥2: If there exists s real scalar function W(n,X)
for which, on Dn;R'

a). W(n,X) is positive definite

b) W(n,X) is bounded on the set IX (S nN'), where

S is any open sphere containing the sét
F={x: lxl¢r}

¢c) W(n,X)> o, uniformly as X >

d) A w(n,X) is negative semi-definite
then every solution to the difference equation (**) ig

uniformly bounded.

Proof: Given any r,> R, there exists s sphere of radius S, r°\<
8, containing the set N defined in the statement of the
theorem and such that W(n,X) is bounded on IX (SnNs.
Define
w(ro) = sup{ W(n,X) : n3o, RSHXh’<rO} .
We observe that since W(n,X) is bounded, w< ® . ILet
B(ry) >R be such thei W(n,X)>w for n»0 end X such
that |/ X2 B. As a consequence, | x,l<r, and ny> 0
imply
l #(n,nq,x,)[ < B
for ell n >,no; for if not, then there would be some
n'> n, for which
( F(n',no,xo)l[ 2 B.
Hence,
w < W(n',B(n',04,x0)) < W(ng,x,) < w,

since A W(n,X) is negative gemi-definite, which is
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& contradiction. Thus,lLF(n,nb,xb)" is uniformly
bounded by B,

The hypotheses of the previous theorem can be ex-
pressed in alternate terms which occasionally may be easier
Yo apply. The conditions are stated in the following equi-

valent theorem.

Theorem 37A: If there exists a real scalar function W(n,X)

for which, on D&oR s
a) W(n,X) € a(XK), for some positive increasing
function a(x)
b) W(n,X) > b(RXW), for some non-negative increa-
sing function b(r)
c) 4W(a,X) is non-positive,
then every solution of the difference equation (**) is

uniformly bounded.

We now present a eriterion for uniform ultimate
boundedness of all solutions to the difference equation
under consideration which is a direct analogue of Theo-
rem 36. As with Theorem 36, there is also an equivalent
formulation which will be stated after the proof of Theo-
rem 38,

Theorem 28: If there exists a real scalar function W(n,X)
for which, on DﬁoR ,



a) W(n,X) is pogitive definite
b) W(n,X) 1s bounded on the set IX (snnﬁ, where
S is any open sphere containing the get
F=§x:| Xll<r §
e) W(n,X)>w uniformly as X—>o
d) A w(n,X) is negative definite
then every solution to the difference equation (**) ig

uniformly ultimately btounded.

Proof: Given ény r, and rq, r°>r1> R, we défine
wirg) = sup { W(2,X) : 0, B¢l Xler,yd .
Let a(r1)> 0 be a constant such that i
4 w(n,Xx) € -g
for n2> 0 and aﬁy X with 1 Xl3r;. Purther, let
J (ro,rl) = [w/a]} + 1.
Now, given eny n,> 0 and any X, with || xol(<ro, then
either | x (/< ry or rlélix°“<ro. In the former case,
there exists a B(ry) > R such that
] P(n,ng,x )< 3
for =11 n) Doy by the argument in the previous proofs.
In the latter case, where rlélixo\1<ro, there exists
an integer n' between Do and ny+) such that
| F(n',nq5,x,) 1l € ry;
for if not, then
I F(n,ng,x,) || > ry
for all n in the interval [ngsno+V]; hence,

Wng+b ,F(ng+y ,ng,x,)) < W(ng,x,) - av



= W(no,xo) - a([w/a_ﬂ + 1)
£ W(no,xo) - a(w/a - 1) - g
= W(no,xo) - w

< 0,
which is impossible by the definition of W. Hence,
in either case,
il F(n,n ,x )f| < B
for all n»n' ana therefore, this inequality holds

for all n >0, + V.

The alternative formulation of this theorem, which

was mentioned Previously, is given by the following state-

ment.

Theorem 38A: If there exists a real scalar function W(n,X)

for which, on I)I'1

RS
o
a) W(n,X) ¢ a(l{Xid, for some DPositive increasing

function a(r)

b) W(a,X) ) b(§Xil), for some non-negative increa-
sing function b(r)
c) AW(n,X) < -¢(IXll), for some positive continuous
function c(r)
then every solution of the difference equation (**) is

uniformly ultimately bounded.



3.2 Stability in the Whole

We now congiger the possibility of stability for
the equilibrium of the difference equation under study when
the initisl values sre allowed to become arbitrarily large

in norm. We begin by citing the Pertinent definitions.

Definition 20: The equilibrium X = 0 of the difference equa-

tion (**) ig gaig to be agymptotically stable in the whole

1f 1t is stable and if (ng,x,) in IxEK implies
F(n,na,xo)-ﬁ>0

as n—->w,

Definition 21l: The equilibrium X = 0 of the difference

equation (**) ig saig 4o be cquisgymptotically stable in

the whole if it ig stable and if
F(n,no,xo)'—>0
uniformly in Xo for | x )l €T, where r is fixed but arbitrarily

large, as n =@ .

Definition 22: The equilibrium X = ¢ of the difference
equation (**) is §aig to be uniformlx-asxmptoticallx gtable
in_ the whole if every solution of the difference equation
is uniformly boundeg and if, given ény positive numbers T,
and r;, there existe ap integer Ll(ro,r1)>'0 such that,
given n,> 0, ang any x, with || xoll<r°, we have

I P(n,n4,20) I < £y



for all n}no*- V.

Definition 23: The equilibrium X = O of the difference
equation (**) is said to be ;p:gtable in the whole if it

is stable and if the series
P-4

Z ¥, ,x )P <

k" no
for every (no,xo) in Dnocc .

Finally, we consider a series of theorems which

Yield conditions under which we may conclude that the
various types of stability and asymptotic stability hold
in the whole. The following two results were obtained
originally by Kalman and Bertram (6) in their Theorems
l. 102 a-nd l‘ l.

Theorem (Kalman and Bertram): If there exists a real

Scalar function V(n,X) for which, on Dno ® °
a) V(n,X) is positive definite
b) V(n,X) is radially unbounded
c) A V(n,X) is negative definite
then the equilibrium X = O of the difference equation (**)

is equiasymptotically stable in the whole.

Theorem gKalnan and Bertramzz If there exists a real

scalar function Vv(n,X) for which, on Dn ® *
-3

a) V(n,X) is positive definite

b) V(n,X) is decresesnt



e) V(n,X) is radially unbounded

d) A v(n,X) is negative definite
then the equilibrium X = O of the difference equation (**)
is uniformlyhasymptotically stable in the whole.

We now consider the case where the funetion

g(n,X} is periodic in n.

Theorem 29: If the finction 8(n,X(n)) is periodic in n
and if the equilibrium X = O of the difference equation (**)
is stable in the whole, then it is also uniformly stable

in the whole.

Proof: fThe comparison function used to prove Theorem

3 satisfies all of the requirements for the function
described in Theorex 2, where the bound, 8 s on the
values of l{xJ may be allowed to become arbitrarily large.
Hence, the stability is uniform in the whole.

Theorem 40: If the function g(n,X(n)) is periodic in n

and if the equilibrium X = O of the difference equation
(**) is asymptotically stable in the whole, then it is
uniformly asymptotically stable in the whole.

Proof: fThe comparison function used to prove Theorem

18 satisfies all of the requirements for the funetion
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described in Theorem 16, where the bound on the values
of || x, ” s &, may be allowed to become arbitrarily
large. As a consequence, the asymptotic stability
is indeed uniform aguptotic stability in the whole.

Kalman and Bertram (6’-) have also supplied the
following criterion for uniform asymptotic stability in

the whole in the autonomous case,-in their Theorem 1.2.

Theorem (Kalman and Bertram): If the function g(n,X(n))

is independent of n and if there exists a real scalar func-
tion V(n,X) for which, on Dnoco ’
a) V(n,X) is positive definite
b) V(n,X) is contimuous as a function of X
¢) V(n,X) is radially unbounded
d) A4 v(n,X) is negative definite
then the equilibrium X = O of the difference equation
X(n+l) = g(X(n))
is uniformly asymptotically stable in the whole.

The following theorem extends the concept of
lp-stability to lp-stability iz the whole.

Theorem 4_]_.: If there exists a real scalar function V(n,X)
for which, on Dn., ®
a) V(n,X) is positive definite

b) V(n,X) > as | X uniformly on the set
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n,£n<N, for every integer N 7n°
c) A V(a,X) £ -c|xlP , for some constant c>0
and some p >0

then the equilibrium X = O of the difference equation (**)
is lp-stable in the whole.

Proof: The proof of this theorem follows directly
from that given for Theorenm 2% since, from condition
b) on V(n,X), it follows that (n,F(n,no,xo)) is in

Dn,co for all n) n, and every (no,xo) in Dn.cn .




93

PART II
STABILITY  CRITERIA

FOR A CERTAIN CLASS OF DIPFERENCE EQUATIONS

Chapter 4: The Difference Equation of Order m

We will now apply parc of the pPreceding theory on
the stability and asymptotic stability of the equilibrium
to the solutions of a certain class of difference equations.
In particular, we will concern ourselves with the following
difference equation of order n

X(n+m) + a;X(n+m-1) + ..., + a X(n)
- ¥(a,X(n), ... X(n+p-1)) - 0,

where the 8> 1 =1,2,...m, are real constants and F ig g

(4.1)

real scalar function of the indicated arguments satisfying
the condition
F(n,0,...0) = o

for all n greater than or equal to some n, in I,. When the
function F jig identically equal to zZero, we shall speak
of the difference equation as being homogeneous; otherwise,
if the function F is present, we will say that the equation
is non-homogeneous.

The present chapter is concerned with the general
m% order case for which we develop a method for determinig
tle conditions under which the equilibrium of the difference
equation (4.1) is stable or agymptotically stable. 1In Chap-
ter 5, we will treat the rarticular case m = 4 in complete
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detail. The cases m = 2 and m = 3 bave already been con-
sidered by Puri and Drake (11). Several comments on and
extensions of their work appear in Chapter 6.
That the class of equations represented by equation
(4.1) actually encompasses a very wide set of difference
equations can be seen from the fact that an arbitrary non-
linear difference equation of the form
X(n+m) = fl[n,x(n),...x(n#m-l)] X(n+m-1) + ...
cer + £, 10,X(0)] X(n) (4.2)
+ f [n,x(n),... X(n+m-l)] ,

where f(n,O,...O) = 0 for all n}no, can be expressed
in the form given in equation (4.1). This is possible by
writing equation (4.2) as

X(n+m) + a;X(n+m-1) + .., + a X(n) +
+ {fl[n,x(n),... I(n+m-l)] - al} X(n+m-1) + ...
+ oeeo + {fm[_n,x(n)] - amlg X(n) +
+ f‘[n,x(n),...x(n+m-1)1
X(n+m) + alx(n+m-l) * ees + amX(n) - F[ﬁ,x(n),...x(n+m-lﬂ
= 0,

where the &4 are any real constants.

In order to discuss the possible stability and asymp-
totic stability of the trivial solution of the difference
equations in the class under consideration, we will deter-
mine what conditions must be imposed on the coefficients
a8; and on the function F which will guarantee such stability
or asymptotic stability.

Before proceeding with this discussion, we note that
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‘ it is pos'sible, and indeed far more convenlent, to rewrite
equation (4.1) as the metrix equation
X(n+l) = A X(n) - bF, ' (4.3)
where
Xy (n) " X(n)
Xa) X?(n) | ) x(n-.rl)
X, () X(ntw-1) | ,
0 1 0 0D veveeceeessl 0
0 0 1l 0 civeceecseenees O
0 0 0 R ¢
A = . . .
S S S
“8p “Bpel cccceccccceiceiiiianly =8y
and
0
0
b = |
0
1 o

We first consider the homogeneous case, where P = 0
in equation (4.3). In order to obtsin s useful scelsr
function V(n,X) with which to study the stability and esymp-
totic stebility of the triviel solution of equetion (4.3),
1t 1s expedient to transform the varisble veotor X(n) into

‘ & new vector quantity
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¥(n) = Q X(n),- (4.4)
where Q 18 2 real mx m motrix which i1s to be determinea.
If the transformetion Q is epplied to the metrix equation
(4.3), we obtain
I(ntl) = Q X(n+1)

= QA X(n)
= Q™1 Y(n)
= R Y(n), (4.5
where we have put
R = QaQ-i, (4.6)

which 1s 2 simllsrity trensformetion between the motrix

A and some metrix R, where Q is aasumed non-ginguliar.
Anticipating en expression which will srise in the

sequel, it is conventent to impose the following condition

on the matrix R.

1 o o ...... o
0 1 0...... o0
BIR = 0 0 1 ...... 0 (%.7)
A
0 0 0....0 2

’

where BT denotes the trenspose of the metrix R. From this
condition, it 1s possible to determine sn explicit form for
B. Writing

I‘ll 1‘12 ®eo o 0000 rl’m-l Bl

r r P R
R = 21 Faz 2,m-1 2

B

Tm,1 Tm,2 ccesee. "m,m-1 “m [’



condition (4.7) becomes

rll r21 L N WY rm-l’l rm’l rll rlz ®® o0 o0 rl,m-l Rl
r12 r22 ........ rm’z r21 ......... rz’m-l R2
Rl R2 ..........' % rml ......... rm’m-l Rm

1 O o ....Q.. o

0 1 0 D...... o

6 6 6 ..0..1 6

0 0 0 .....0 2 .

This matrix product represents s system of m2 equations.
However, of these, the equations corresponding to the sub-
diagonal terms in the matrix on the right will be identical
with the equationsg corresponding to the symmetric super-
diagonal terms. That is, (m~1)m/2 equetions will be repea-

ted and hence there are only

ol - m(g-l) - m? ; m

independent relations, one of which ig
r? - Ri% 4+ R22 + eee + Ry, (4.8)
As a consequence, we have (m2+m)/2 - 1 expressions with
which to determine the m(@-1) unknown Tij in terms of the
m Ri's. Thus,
a(z-1) - m§+m +1 = (m-2%§m-l} (4.9)
of the rij may be chosen arbitrarily. 1In particular, we

choose all of the terms below the firgt subdiagonal sas zZero;

oeo’ 1'31 = 1'41 T eecee = I‘ml 42 = eee = rm2 = eee = rm’m_z = Oo



As a result,

rll 1'12 ®0ccoevsnrseee Rl
1'21 1‘22 ®o000c00e00000 Rz

r32 00000 cevcse R3
R %

oo-oo

Qe ¢ o

OOOOOOOrm’m-l Rm L]

1f equation (4.7) is now expanded in terms of this
choice of R, a form for R is obteined, but not a unigue one.
For any given column of this matrix R, there is a choice of
8igns for the elements ss indicated below in equation (4.10),
but the choice for any given column is independent of the
choice for any other column. Thus,

B2 BB GRIBL . (RiRy
$a €253 §2 84 §-1 §im _1

21 BBy 4RoR, -
Sa $a€a 2 §4 ' .

R~R '
0 T8 +3°4 :
R = * Sﬁ 6354 : (% .10)

0 0 ALY . .

T . .
S L
O o o oo oevoe 1 %L Rm [}

where

R12+R.22+ oo +Rm2 =1‘2.



That the condition imposed on R to yield equation

(4.10) is not as arbitrary as would appear may be seen
From conditian (4.9),

from the following exsmple for m = 5.

we see that six zero positions are Permitted in the R

matrix. We assume that they are chosen as shown:

11

r21
0

0
0

T2

Tr2
0

0
0

T13
b o 23
733
r 43
53

T1y
T2y
1'3 L
Tiy
r 5 A

R .

We now apply condition (4.7) and obtain, among others, the

following five equations,

2
a) 1'11 + r212 =1

b) r11By + T51Ry = 0

2
c) r 5+ r222 =1
4) r1oBy + TyRy = 0

e) T11T1p + T5Tpy = O,
Using a) and b), it follows that

= -3-

T21

where ¢, is defined in

and d), we obtain

Too =

T2

= *—-

equations (4.11).

Further, from g)



However, when we attempt to introduce these four expreag-
sions, with any appropriate combination of signs, into

relation e), we are led to a contradiction. For example,

choosging
r Rty e R B Ry
11 = 2 *21 » *22 12 ’
§2 £ $a £

equation e) becomes

1'111'12 + 1’21222 = _?2_ [ ] [-R- ___1_
>

[
- [Rz/g:“+ B %o |

= -1 # o.

]

Since the matrices A and R are similar, they have
the same characteristic polynomials. Equating similar
powers of A in

det(A - A I) = det(R - AI),
we obtain & set of m equations expressing the a; in terms
of the Ry and the (+ As a further consequence of the
similarity of A and R, it follows that
det(A) = det(R),

det(R) = Vaet(2'R) - LZ

from condition (4.7). By specifying the signs of the ele-

where

ments of R as given by
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)
-]

R.R R.R

] L4 eeeeeees Im R
?233 fs g‘l | ?"‘“?"‘ ) 1

-]

By
fh
‘-ﬁ Ra ;2 RZR4 oo vosoeo RERm R
2
fa ?1 93 ?3 fq ?m-lgm
R = o (4.12)
o -5 R,R, s
5 :
. 3 ) .
O ......0'3...'00..O...'..OO ‘E"—’_\ R
fm N
we will have that
det(R) = koY
Furthermore, from the given form of A, it follows that
m
det(4) = (-1) & det(Im)
where Im represents the m x m identity matrix. A4s a
consequence, we may conclude that
or equivalently,
a = {(-1% g, . (4.13)

m
Thus, this will be one of the m conditions (the one, in

particular, corresponding to the zerot terms) obtained by
equating the coefficients of the powers of \ in the charac-
teristic polynomials of A and R, since the constant term

in the characteristic polynomial of a matrix is simply

the determinant of that matiix. Unfortunately, there
appears to Be no general expression for these conditions.

At this point, it would seem natural to calculate
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the matrix Q from the relationship QA = RQ. However, this
will lead to m? equations which gre exceedingly difficult
to solve for m> 3. Accordingly, it is instead advisable

to carry out the details of the next few steps 1n the pre-
sent development to see what freedom exists to impose con-
ditions on Q which will simplify it. In particular, we seek
to find which permissible conditions will yield the greatest
simplification for the later detailed calcuilations.

To determine the gtability and asymptotic stability
of the 2quilibrium of either the homogeneous or the non-
homogeneous difference equation, we shall introduce as a
pPossible choice for the scalar function V(n,X)

V(n,X) = Y'(n)¥(n). (4.14)
This is equivelent to
V(n,X) = x¥(n)Q7ax(n),
which is & sum of Squares and hence is positive definite,
whatever the particular form of Q.

Next, we investigate the totsl gifference of V(n,X)

for the homogeneous equation. This is given by
A V(1,X) = V(n+1,X(n+1)) - V(n,X(n))

= Y0+ 1)¥(n+1) - YE(n)¥(n)

= Y (2)RTRY(n) - Y%(n)¥(n).

Y@ [2%R-1] ()

= (r%-1) v 2

<90
for r2-1<o0, using equation (4.7). That is, we must bave

r? - am2< 1. (4.15)
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Thus, the reason for imposing condition (4.7) on R becomes
apparent. Furthermore, we note that one of the principal
conditions under which the equilibrium X = O of the homo-
geneous system is stablé is that equation (4.15) holds for a .

Moreover, it follows thst
X7 (2)QTQx(n)

(@ Tqx)
<KX ,QX>
- nqxv

< AQR2 1XN2,

V(z,X)

where £x,y> represents the inner product of the vectors
x and y. As a consequence, we note that the function V(n,X)
is decrescent, though in view of Theorem 4, this condition

is not required for asymptotic stability.

We now consider the non-homogeneous difference
equation
X(n+1) = AX(n) - VbF,

As before, we apply the transformation @ to obtain

Y(n+1) = QX(n+1)
= QAX(n) - QbF
= RY(D.) - QbF-

We again choose
V(2,X) = Y(a)Ya) = XN(n)QTQx(n),
which is positive definite, as noted previously. The tctal

difference of V(n,X) for the non-homogeneous equation is
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&iven by

AV(,X) = [YRT - v7% | [ gy - an] - YTy

= Y%y - [v%%p . TRy | F 4
+ pQTqer? - yly,
Hence,
A v(n,Xx) = YT[RTR - I] Y -2 YRTQup 4 bTQTQbFZ, (4.16)
using the fact that
YTRTQb = vTQTRy,

gince both expressions are scalars.

In order to simplify condition (4.16), we shall first
8implify the term Qb. Now

QIl QIZ ®eevcocoe qlm
21 .

qlll LK IR I SO qmm

and

Accordingly, if we could choose

and 9pm = 1» then

/

Qb = (4.17)

H Oees e 0 o
1]
o
L]



That this choice is indeed pPossible is a consequence of
the following consideration. When expanding QA = RQ, as
'noted before, we obtain m<? relations between the m?2 + 2m
quantities, 91 j» @5 and Ri’ i,j=1,2,e..m. 1In addition,
the equations obtained by equating the characteristic poly-
nomials of A and R yield m further relations between these
quantities. Hence, we have m< + @ equations relating the
w? + 2m quantities qij’ai’Ri’ 8o that m of the 93 3 can
be chosen arbitrarily and so condition (4.17) is Justified.
Ideally, now, we should be able to determine Q

explicitly by expanding QA = RQ, with

qll QIZ ecs0es ql’m.l 0 \
Q= . S (4.18)
. 0
i
{
qml ........... qm’m.l 1 /

and then simplifying the m2 equations which result by intro-
ducing the expressions for the a in terms of the Ri’ as
given by the relations obteined by equating the character-
istic polynomisals of A and R. Unfortunately, the computa-
tion is still quite involved and there appears to be no
gexeral form which the Q matrix assumes for any choice of m.
Of course, for any particular value of m, the calculation can
be performed, as is done for the case m = 4 in the following
chapter.,

If we now congider again the total difference of

V(n,X) in the non-homogeneous case, as given by equation
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(4.16), we see that essentially all that remain to be cal-
culated are the two quantities bTQTQb and YIRTQb. Since,
by our choice for Q, Qb = b, we immediately see that the
former term is simply 1. As for the latter term, it invol-
ves the product of YTRT and Qb. However, since Qb = b,
only the last element .of the vwector RY will contridute to
the product, so that

YRIQD = - S v ) 4 R,Y . (4.19)

Hence, equation (4.16) reducea to

A 7(0,X) = (r2-1)7 2 - [ S"'_*:Y o1 * Ry¥p ] + P2, (4.20)
Moreover, once Q is known, we may calculate Y -1 and Y
using the fact that Y = QX. Finally, after AV(n,X) is
expressed in terms of the original xi, all that is neces-
sary to insure asymptotic 8tability of the equilibrium
X = 0 of the non-homogeneous difference equation is to im-
pose the condition of negative definiteness on AV{(n,X).
This is accomplished by determining those conditions on'
the a; which will guarantee the negative definiteness of
AV(n,X). The precise method of doing this is illustrated
in the next chapter.
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Chapter 52  The Differencg Equstion of Pourth Order

We now apply the results and techniques of the Ppre-
ceding chapter on the m-th order difference equation to the
pParticular case where m = 4. Thus, the difference equation
under considerstion is

X(n+4) + a,X(n+3) + a,x(n+2) + aBX(n+l) + ahx(n)

+ F[jn X(n),...X(n+3)] (5.1)
where a1, ap, 83 and 8;, are real constants ang F is a resal
scalar funotion of the indicated arguments gatisfying

P(n,0,0,0,0) = 0
for all n»ny> 0. Equivalently, equation (5.1) can be writ-
ten as the matrix equation
» X(n+l) = AX(n) - bF, (5.2)
wheré
/ Xy(n) X X(n) \
Ko [ X,(n) ; _ | xtae) }
X3(n) | L X(n+2)
\ Xy(n) ! K(me3) |
© 1 0o o\
i 0 0 \
A = @
( 0 1 }
‘ah ~83 -a, -a; [
and
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Treating the homogeneous cage
X(n+l) = AX(D)

first, we again introduce the transformation Q to obtain

¥(n) = Qx(n) (5.3)
and
Y(n+1) = RY(n), (5.4)
where R is defined by
RQ = Qa. (5.5)
We now impose the condition that R satisty
1 0 o0 o \
P 0 1 o o |
RR = ! (5.6)
0 0O 1 o j
!
0 0 o g2 [ e
For the cese m = 4, condition (4.9) of the previous chap-
ter guarantees that we may sget
(m=1) (m-2) = 3
2
of the elements of R to 2ero, and following the general
prattern established in that chapter, we take
r31 =Ty, = Tyo = o,
80 1 hat
T11 T12 T3 Ry
r T, Ty R
R = sl 22 "3 T2 (5.7)
r32 r33 R.3
0 0 rl‘B Ru Y

As a result, equation (5.6) becomes



1 Toy 0 0 rll T, r13 Rl
T2 r22 r32 0 T2 r22 r23 R2
r13 r23 r33 rh3 0 r32 r33 33'
Rl R2 R3 R#/ 0 0 r43 R#/ \

which leads to the following set of equations:

© O O
© O ¢+ o
© ~ o o

a) rllz + r212 = 1

c) rllrl3 + r21r23 =0
d) rllRl + rzlaz = 0

e) r122 + r222 + r322 =1

f) r12r13 + r22r23 + r32r33 = 0

€) TyR) + TR, + TyaRy = 0
h) r132 + 1232 + r332 + r432 =1

i) r13R1 + r23R2 + r33R3 + rasRa = 0
i) R% 4 RP 4 B2 4 B2 L 12,
To solve these equations, we proceed as follows.

From d) and a), we obtsin

?

+ R
rllz —'3’2—

where

o? = ;% + B2, (5.8)

Accordingly,

R
r = ;._l.
21 ;

In a similar manner (as shown in Appendix A), the other ele-
ments of R can be determired in terms of X1, Ry, Ry and R,
up to their signs, to yield
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Y 38253 1325&_ Ry
R = o G-'f r_f : (509)
0 -G d
AR
0 0 . R, /,
c
where
§ = R2+R2 Ry°. (5.10)

Since the matrices A and R are similer, we may
equate their characteristic Polynomials and thus obtain
det(A -2 I) = det(R -2 1)

]

il

A" + 31)3 + 821a + 831 + a,_’

= Aﬂ - )?(j+R4 + R Ekfil_ + kax]
rf 0"33 g
+ )\1[531 + B2RaRy 4 RoBy, | RoRy +.P2f3_3‘*+1.’3_]
P roe g~ ra ap [
“A[F Bar . BoRyr , mom, By |
G}: § .
+r,

on expanding det(R -2 I), collecting the coefficients of
like powers of A » and simplifying the terms using equa-
tions (5.8), (5.10), and relation j) from the expansion
of equation (5.6). Hence,

- =B, -R3Ry, _ RoR, _ R 5.1la)
aj = 4 —%?- *5?51 7#; (5.11s
82 = IRy | RpRRy , RoRy RzR4 + BoB3Ry, +E,1 (5.11%)

[2 rap o f
—2—- p

g O'f f
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8y = +r.
For purposes of reference in the sequel, we shall refer
to the above four relations as equations (5.11).
In the process of Performing this calculation, as
was noted previously, @.particular choice is made of the
signs of the components of R, so that we finelly have a

unique expression for R &iven by

: EZ_ R_]Ea_ BBy Ry
a T rp
- El. RyR RZRQ R, '
R = o o3P °§ ,
0 -2 RaR I
f %——h— R3 /

v
~—

0 0 -—$ R, .

r

We now turn to an explicit calculation of the ma-
trix Q from the relationship QA = RQ. PFrom the discussion
in the previous chapter, we know that we may choose

914 = 4 = a3 = O,
Qpy = 1,
80 that Q has the general form

91 9, 93 O
Q = | %21 922 9 O
931 932 933 O

Wi Gz 3 1.

Substituting this form for the matrix Q into the relation
QA = RQ leads to the equation

11¥%

(5.114)

(5.12)
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a1 9, 93 0 / 0 1 o0 o
a7 95,5 q23 0 0O o0 1 o
931 93, 935 0 0 0 o 1
\ 1 %2 Wy 17| ey -ey —ap -ay |
/ R RyR. R.R \
R R R,R \
T 02};3 3;’ B2 0] 9y ay 923 O
0 ~-%_  R.R
\ ¢ l}éfi Bl w1 e gy o
3 v’, \“
\ © ° Ry A W2 ey 1 /.

\
Multiplying this out, we obtain sixteen equations. Among

them, we find such simple expressions asg

%33 = By

Substituting from equations (5.11), the last relation yields

qu = - R3RH - R2R3 q—fﬁL
‘s 5 T

The other elements of Q are not so easily determined, as
the remaining twelve equations are far more complicated.
The actual computations are carried out in Appendix B. The
resulting expressions for the qij there obtained are gim-
plified by introducing the values for the a; in terms of
the Ry, as gilven by equations (5.11). Thus, we finally

obtain for Q,
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0 o Rl 0
o] ~-C R, 0
Q = +$ -BBRs _Byp B, 0 (5.13)
o < '
o BN, R R URE, _RR )
r or irOj? ‘g G- rS GT? .

" With these preliminary results, we may now consider
the sealar function V(n,X) = YT(n)Y(n). As mentioned pre-
viously, this will always be tositive definite, so all
that remains is to consider the sign of its total difference
AV(n,X) for the dtfference equation under study. From
equation (4.15) of the previous chapter, with m = 4,
we have for the homogeneous case

AV(R,X) = (2 -1) 1,2,

which will be non-podtive for r2 = 42<,1. Hence we have

Theorem 42: 1If, for real congtants al,aa,aa,au, equations
(5.11) can be solved for real numbers Rl’R2’RB’ Ry which
satisfy the condition

312 +R22 +R§2 +R42 - r°< 1,

then the equilibrium X = O of the homogeneous difference

equation of fourth order
X(n+4) + alx(n+3) + aZX(n+2) + aax(n+1) + aax(n) = 0

is stable.
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We now attempt to determine those conditions on the a;
which will guarantee that AV(n,X) is negative definite
and which therefore suffice for asymptotic stability for
the homogeneous difference equation. That is, subject to
these conditions, AV(n,X) will be zero when, and only when,
Xl = X2 = X3 = X4 = 0. Thus we consider

AV(n,X) = (r°-1) 1% - o.
We note that this does not automatically imply that A&V(n,X)

is negative definite in the Y coordinates. Using equa-

tion (5.3) to determine Y, , this becomes

(r%-1) { Fax, [RgRu + BBRR, Eé] X -] Ry , BiR, , BB, 7y
r ~ o f‘O‘f g o r‘f o~§ :
+ xa}a = 0.
This expression is obviously zero if each of the Xi is zero.

Therefore, we must consider under what conditions

- E&xl +['32R4 + 323334 + Ez]:x - Eg ¢ %534 + RgRj]X3 + X,
o ro roe 3 2 ¢ re a-sn‘
(5.14)
is equal to zero. This is equivalent to '
R R.R R.R_R R_~+
_ ‘_4 { _ 2 4 2 5 4 + _5 e N
X(n+3) = P X(n) [(0_ + rcf g ji\n*'l/ |
, (5.15)
- R R_R R.R
+ [ =, 24,2 5]X(n+2).
¢ ¢ o P
If, in relation (5.15), we replace n by n+l, we also have
R R.R R.R_R R_~
_ 4 2 4 2 34 _éj
M) = Ex@) -] 2% 52 ¢l xe
R, R,R, RR (5.16)
+Z-—- + 28, 2 3] X(n+3).
q «“f crf

We now substitute for X(n+3) aund X(n+4) from equations (5.15)
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and (5.16) into the homogeneous difference equation and
obtain, after simplifying the resulting expression using

equations (5.11),

rR.R R
ByX(n+2) - X(n+1)L 33 + iel + X - o. (5.17)

We first investigate the case in which R3 = 0.
Then equation (5.17) reduces to

Zf
g

a—

X{n+1) =+ 5’ X(n) = o0,

or equivalently, if f" o,
R X(n+1) = ¢ X(n).
Now, if R, = 0 also, then ¢ X(n) = O. However, if we
assume that I is non-zero, then it follows that
X(n) = 0
for all n» n_. On the other hand, if R2 # O, we obtain
X(n+l1) = 9~ Z(n).
R,

2
Substituting this expression into the homogeneous difference

equation, we find

5
\\ o o
X(n)[? +alg3— +82R7— +8.3R-—2+84J=0.

The term in the brackets is precisely the characteristic
polynomial of the matrix A evaluated for

A= o/R.
Hence, for asymptotic stability in the present case, we
must have the expression in the brackets non-zero; i.e. ’
we must assume that Q@ /32 is not an eigenvalue of the

matrix A, As a consequence, we conclude that
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X(n) = O
for all n» n,.
We now consider equation (5.17) in the case where

R3 # 0. It then follows that

X(n+2) = X(n+l)[

= ] -f— X(n).

R g

As was done previously, this equation can be used to express
both X(n+3) and X(n+4) in terns of simply X(n) and X(n+1).
After substituting these three relationships into the

homogeneous difference equation, we find that it reduces

to
aX(n+1) + bX(n) = o, (5.18)
where
3 % 2 2
e - 28  Bf  BRE BB
RO 07 R RZq R, 02
3 2 3 3
R.°R.R R.2R R.°R_R

We now consider separately the cases where a is zero and
non-zero. In the first instance, where a = O, equation
(5.18) reduces to

bX(n) = O,
80 1t is necessary to show that b ¥ 0. If b = O, then it can
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be written in the following two forms.
2

2 R
0= 0% -Ry2 + 0" RyR, - 2332
0=R2 (14 § /R3) - ORR, -a?,
The first is a quadratic equation in 0°, go thst
“BoRy * Ry (R, + 4 4 4P /R, 2

T =
2 .
Equivalently,
O | R+ (B2 + b + 4§ /Ryt
= i 4 3
k2 2 .

The second expression for b = 0 is quadretic in Ry, 80 that

+0R, t o (ha + 4 4 l}fﬂg)&
2 ’

R, =

or equivslently,
ga_z +Ry * (sz + 4 4+ 4?/31)5
(o g
2 .

As a consequence,

2
L .2 _ g-RE2 g - -R
RZ g OR - 4
2 G'Bz

That is,

Rlz 3-0' RZRI}O
Thus, if b = 0, it follows that

2
Rlz + O’RzRu -Ré}zf = -.RZRBIS .

Hence, R, = 0 also. But if Ry = 0, then b = Ry2 = 0, which

0

is impossible since we agsume Rlz + RZZ =0 > 0,

Secondly, we consider the case where a £ 0, Then
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‘ | X(n+1) = -b/a X(n).

Substituting this into the homogeneous equation, we find

X(n) | (o/a)* - & (b/a)3 + a(b/a)2 - a5(b/a) + a,] = oO.
The term in the brackets is the characteristic polynomial
of the matrix A evaluated for A = -b/a. Thus, if we as-
sume that -b/a is not an eigenvalue of A, then

X(n) = 0
for all n) n,.
Collecting the above results, we have the following

theorem.

Theorem 43: If

a) for real constants 81+83,83,8,, equations (5.11)
‘ can be solved for real numbers Rl’R2’R5 and
R4 which satisfy the conditions
RZ + B2 . B2 + R,2 - r%<1
R12 - R22 = @™o,
b) R3 = 0, R, # 0 implies +0/R, is not an
eigenvalue of A,
c) for real constants a and b defined by equation
(5.18) for 33 #0, a £ 0 implies -b/a is
not an eigenvalue of A4,
then the equilibrium X = 0 of the homogeneous difference
equation of fourth order
X(n+4) + alx(n+3) + aZX(n+2) + aBX(n+1) + a4X(n) =0
is asymptotically stable.
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We now turn our attention to a consideration of the
non-homogeneous difference equation (5.1). From the dis-
cussion of the previous chapter, we see that we need only
examine the behavior of the total difference A V(n,X),
which is given by

AV(n,X) = (r?-1) v,2 - 2( -¢ /r T3 + RyYL)F + F2, (5.19)
for the case m = 4. Further, using the expression for Q
given in equation (5.13) and the matrix equation Y = Qx,
we find

I3 = ¢X - (Ry/o ) (Ry4+¢ )X; + R3X;5
Y, =5k x) +[RZR‘4 + RoRsRy +_3]x2 ):RE‘ B3Ry _ BoRs X3
cr r‘(s‘f S’ "f c‘g
+ Xb.

Hence, equation (5.19) reduces to

v 0B (et
+(-% -5’3? Rﬁl) X3 + X"J
-2 Erxl + (?2 + r?& + ljtﬁt)xz

+ (.._R% RZRER &_} X3 + Ruxb J F

+ FZ.

We may rewrite this as

AV(n,X) = K - 2[-;11(1 +(£r2§.1+§%%_§_>x2 -%3_—‘?- X3J F
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where

K = (1'2-1) [’g& Xl + 11_*2:_‘* + E%%‘%_*%l) xz

(5.21)
+<_R J?l?.-RR)X3+xl# —Qél_]

Since, by hypothesis, r2-1<f0, we see immediately that
K€ 0., Hence, 4V(n,X) as given by equation (5.20) will be

non-pogsitive feor

> >
2 ¢ R2 R3f 2{’ —-l] .
-zpl_:;xl+ (,.—¢ )X ]+F 'S._z:\‘o,
or equivalently,
0 < F(n’x]_QXZ’XB’x[',) é g (rz_]_! (5.22)

PN By, Gryy ¢ R

Again, collecting the above results, we have the fol-

lowing theorem.

Theorem 44: Iz,

a) for real constants ay, 82> 83, and a),, equations
(5.11) cen be solves for resl numbers Ry R,,
R3 ang R4 which satisfy the conditions
R12 + R22 + R32 + Ruz = r2& 1
R12 + R2 2 0* > o,
b) there exists a real function F(n,Ul,Uz,Uj,Uh)
such that F(n,Ui,Uz,Uj,Uh) = 0 if and omly if
Ul = U2 = U3 = Uh =0 and which SatiSfies the

condition
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F(D,UI,UZ,UB,Ub) < 2 2_1
R (aF By, - 35 5] < e

0 <«

then the equilibrium X = 0 of the non-homogeneous difference
equation of fourth order
X(n+h) + 27X(n+3) + a,X(m+2) + aBX(n+l) + a,X(n)
+ F(D,X(D),...,X(n-l-j)) = 0
is stable.

Finally, we will now investigate under what con-
ditions the equilibrivm of the non-homogeneous equation (5.1)
is asymptotically stable. From the discussion for the
general case in the previous chapter, we already know that
the scalar function

V(n,X) = Y'(n)¥(n)
is decrescent, so that we need only determine under what
conditions itstotal difference, as given by equation (5.20),
is negative definite for the non-homogeneous equation. To
do this, we set AV(n,X) = 0 ang obtdin K = 0 and
F? f:] ZF[L X + (7-21 28) x, - —KXBJ (5.23)

both of which must holg simultaneously. Equation (5.23)
is valid if F = 0, but we agsgume that F is zero if ang only
if each of the X{(n) = 0, for all n, which in turn woulg
guarantee that K =« 0 alsgo. Thus, the case which needs inves~

tigation is where equation (5.23) is divided by F to reduce

40



v

[f“-t] Fxl ( *‘&1)12 = Xg] (5.24)

and where K = 0 yields

LT R4x, ( _.233_1+_+_3_)x2

r* -1
/2 Ry R,R (5.25)
3
( 2 ‘23 )25 Xy,
If equation (5.25) ig multiplied by R, and the result is
added to eguation (5.24), we obtain
B =-(r+ §/r)X; + /Rzﬁ 4 RoB3 | Bor , haRyr RJRI&)XZ
g T (o 8 o-j) .
Byr _ Ry (5.26)
B3¢’ RoRy _ r-_zg_is.)x + R
+( - PR T3 oo /% * Fula,
We now substitute this value for F into equation (5.1) to
obtsain
X(n+4) + X(n+3)[ - RoBy _ Ry
.P c:? e
+ X(n+2)1.+-—lf- + BB, -2Rh 433 (5.27)
fop
+ X(n+1) _z.f_ RoBy Ru] - x(n)_fj -
rao c -

For simplicity, we shall write this as
X{n+4) + by X(n+3) + boX(n+2) + bBX(n+1) + bX(n) = 0. (5.28)
Equations (5.24) and (5.26) Yield two separate ex-
pressions for the function F. If we equate these two for-
mulations, we find thsat

enff 0] s [e ) <

§ ¢



R(fﬂ) R, R_anj]
[rg(g-t)+z+a~g .

If we now introduce this expression into equation (5.27),
we can eliminate X(n+4) and X(n+3), leaving

ZRR 2R R (f +\) R ]

X(n*”[ e —r%f"n" - E 'r-_aéTﬁTY

2R, 2R.BR, f(f +\) 2Rf1 R, 2 (¢ +)
[ (g“) P’“G‘(§> 0> "0‘(g Y
2 2
R, R R ~2R,R, %o ( +l)
Bs By  Bop r'i:é +X(n)[ 5’ _g_:{

r‘Lf -l) rg ’(g -1)*
= °3x(n+2) + ¢ X(n+1) + c;X(n) = o. (5.29)
Now, if ¢z = O, then equation (5.29) reduces to
\ ] )
c,X(n) + c,X(n+1) = oO.

If, further, ¢, = 0, then
Clx(n) = 00

Thus, if we assume that ¢y # O in this case, it follows that

X(n) = O

for all n>,n°.
If, on the other hand, cy = 0 and c, # 0, then
we may solve for X(n+1l) as
X(n+l)= -¢,/c5 X(n).
Introducing this into equation (5.28), we have
4 3 2
Hence, if we assume that the term in the brackets is

non-zero, then we must again have that

X(n) = 0
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for a1l n»ny> 0,
. We now consider the case when c3 # 0, 50 that we
may solve for X(n+2) in equation (5.29).
X(n+2) = -cl/c X(n) - cz/c X(n+1).
Using this expression to eliminate X(n+3) ang X(n+4) ang
substituting them into equation (5.28), we obtain

X(m+1) [ (=cp/e5)2 + °1°2/%3% + By(=cp/e3)? - by (ey/0,)
-b (cz/c3) + b3]
+ X(n) [- c;¢p /c3 + bl(clcz/c3 ) - bz(cl/c3) + bb]
= )X(n+1) + 4,X(n) = o, (5.31)

Now, if d, = 0, then d,X(n) = 0 also. Hence, if
we impose the essumption that d, # 0, we obtain
X(n) = 0
fcr 81l nY n°>/0. For the other alternative,
X(n+1) = - dp/dq X(n).
Substituting this expression into equation (5.28), we fing

x(n)[(-az/al)‘* + by(-dy/d,)3 + bo(~dy/a,)2

(5.32)
+ b3(=dy/dy) + bb] 0.

Thus, as in equation (5.30), we must assume that the term
in the brackets is non-zero to insure that

X(n) =0
o? 0.
Summgrizing the above results, we obtain the fol-

for all =ayn

lowing theorem.



‘ Theorem 25: 1If,

a) for real constants a1, a,, aé and a,, equations
(5:11) can be solved for resl numbers Ry, Ry,
R3 and Ry which satisfy the conditions

R;2 + Rzz + R32 + R42 = r2<]
R1? + R,2 2 0> 0,

b) there exists a real function F(n,Ui,UZ,Uj,UA)
such that F(n,Ui,Uz,Ué,Uh) = 0 if and omly ir
Ui = Ué = U3 = Uy = 0 and which further
satisfies the conditton

F(n,03,0,,U5,0,) . 22
§

FEm + (E28 4 Baiyey - - 2R g ]

c) for resl congtants by, by, b3 and by as defined

0 ¢

by equation (5.28), 15 ¢, and C3 as defined
by equation (5.29), ang dy end d, as defined
by equation (5.31),

1) 3 = 0, ¢ = 0 imply that cy £ 0

2) €3 = 0, c3 # 0 imply that

(-cl/cz)4 + bl(-cl/c2)3 + bg(-c]_/cz)2 + b3(-cy/c,) + by #£ 0,
3) e340,¢8 =0 imply that 4, £ 0
L) c3 £ 0, d; # 0 imply that

(-dz/al)" + bl(-dz/dl)3 + bg(-dz/al)’+ by (-ez/al) + b, £o0,

then the equilibrium of the non-homogeneous difference equa-

tion of fourth order
X(n+l) + a1X(n+3) + aX(n+2) + a3X(n+1) + ayX(n)
+ F(n,X(n),...X(n+3)) =0




‘ is asymptotically stable.

We shall now apply the gbove results to several

examples of sgpecific non-homogeneous difference equations
of the fourth order.

Exsmple 31: Consider the difference equation
X(n+l) + 3(1-J32) X(n+2) - (1/)2) X(n)

F e Famim) - $2(m+2)| . o,
+ zz ,

where b(n) is any resl scalar function of n,

Then equations
(5.11) may be solveg to yield

B) = B; - %, R, = R, = 0.
4s a result, o*% % ang S?; r

= %, Therefore, Theorem
42 3

nsures stability in the homogeneous case (¢ = 0).

Moreover, using the notation of Theorem 43,
a=10 b=1,
Thus the equilibrium of the homogeneous case (¢ = 0) is
also asymptotically stable.
Furthermore ’

the non-homogeneous term satisfies
the estimate

c LY -
m [ (I/JE)X(D) Q‘X(!H-Z)J . c

~ 2
=(1/72)x(n) - 3x(n+2) 1 + b%(n)

< 2(r2 <)

N

. = 2,

whenever c< 2 for al1 n2n,> 0. Hence, by Theorem 44, the
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equilibrium of the non-homogeneous equation with c <2
is stable.
Finally, using the notation of Theorem 45,

b, =0 b2=3é(1+J'2') by = 0 b, = 1/02

clz—l/.’-é- c2=0 cBS%
d; =0 d2=1+5‘.

1

These values correspond to the case given in the Theorem~&g,
for C3 # 0, but d; = O. The only additional condition for
asymptotic stability is that d2 be non-zero, which is ful-
filled.

Example 2: Consider the difference equation
E(n+4) + (1/32) X(n+3) - ¥X(n+1) - (1/92) X(n)
- —c—-z-— sin[(l/@x(n) - ¥X(n+1) | = o,
1 + h%(n)
where h(n) is any real scalar function of n. As in Example
1, equations (5.11) are solvable to yield
R, =R, = % R; =R, =0
and, as a result,
c_z - gaz r2 - %

Thus, by Theorem 42, we conclude that the equilibrium of
the homogeneous equation (¢ = 0) is stable.

To investigate asymptotic stability of the homo-

geneous equation, we must examine the situation when R3 = O,

In that case,

and hence
(O/R)* + a)(0/By)% + a (/B2 + a,(O/RY) + g,
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= (D 2 0D - WD) - (WD
= 6-J2 £ o,
Therefore, the equilibrium is asymptotically stable for

c =0,
If ¢ # O, then the non~homogeneous term satsifies
c
-(1/J2) X(n) + ¥X(n+1)

o 1

1 + ()

52.1.‘2_'1.
g-l
= 2,

whenever ¢<£2 for all n>,n°>/O. Thus, this gives the

condition for stability of the equilibrium in the non-
homogeneous case.
Finally, using the notation of Theorem 45, we find
by =-1J2 b,=0 b, =% b, = -1/J2

3 =
¢, = =132 cy = % ¢z = O.
Thus, we must investigate the case cy = O and ¢, # 0. Here

and
D% - WDOD? + wID - 1
= 4~ 2 £0,
and so, by Theorem 45, the equilibrium is asymptotically

stable for all n)no 2C in the non-homogeneous case

whenever ¢ £ 2.



Chapter 6: Some Remarks on the Work of Puri and Drake

At this point, several remarks on the work déne by
Puri and Drake (11) are in order. Essentially, the theo-
rems that they state in their paper purport to be sufficient
conditions for asymptotic stability of the equilibria of
the non-homogeneous difference equations of second and
third orders. However, the conditions they obtain:actually
Jield no more than the usual stability. The principal
reason for this is that the scalar functions ¥(n,X) that
they consider are required to Dossess regative semi-defi-
nite total differences. That is, they impose no conditions
on AV(n,X) to insure that it is negative definite. It
is the purpose of the present chapter to determine the
supplementary conditions on the scalar functions V(n,X)
for the cases m = 2 and m = 3 which will guarantee asymp-
totic stability of the equilibria.

Moreover, it turns out that utilization of the
approach outlined in Chapter & leads to a far simpler for-
mat for the corditions and so will be adopted here instead
of the formulation used by Puri and Drake.

We first consider the case m = 2. Por reference,
the forms for the various quantities which appear when wor-

king through the entire scheme will be stated. We have
R,/r R1

so that
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a1 = =(R,/T + R,)
1 2 2 (6.1)
82 = r
and
Ry 0
Q =
-_Ro 1/.
r
As a result,
I =B

As mentioned above, it is necessary only to study

Iy

under what conditions the total difference of V(n,X) = Y
is negative definite for the difference equation
X(n+2) + a1X(n+1) + a,X(n) + F(n,X{(n),X(n+1)) = O.

-

We have -
AV@X) = (rP-1)7,? - 2 (-ry/r)y; + B[P + ¥2.
Substituting the values for the Y;, we fing
AV(n,X) = (r%-1) [(-Rp/r)x; + X]% - 2[-rx; + RoXp| P + P2
2
(r%-1) [(-Ro/r)xy + %, - (Rp/w2-1)3]
+ 2(Ry%/r)FX; (R 2-1)/(r2-1) P2,

In order that this expression be non~positive, we impose
the condition
2 2 2 2 ¢
2(R/T)XF + (Ry2-1)/(r2-1) F< 0,
or equivalently,

~2(RBy%/7)(r?-1)/(R,2-1) € §_1 < o.

Then, in order for AV(n,X) to be zero, it is necessary that



R
—_— F = -2 x , x (6.2)
r -1 T 1 2
and
R.2 - 1 Ry 2
1 F - -2 1 X.. (603)
rz -1 r 1

If equation (6.2) is now multiplied by R, and the result
added to equation (6.3), we obtain

2
F - (=-R0)x g, (6.1)
r

Also, by equating the two values for the function F given

in equations (6.2) and (6.4), we obtain

2
Xz = - R_2 (Rl + l) Xl. (6.5)
T (B2 - 1)

Equstion (6.5) gives an expression for X(n+2) in terms

of X(n+1) simply by replacing n by n+l. As a consequence,
we can substitute in the original difference equation for
X(n+1), X(n+2) and F from equations (6.4) and (6.5) ang
thus obtain

2(Rr-2,1)2 2
Ry“(Ry4+1 2
[2‘1 ) t (a2 BB

re(R1<-1)° T r(By% - 1)

2 2
SRTB T+ 1) (r + _R}i)]X(n) = 0.
r(R12 "') r A

If this expression is now expanded snd simpiified, we finally

f%é? 2% + 1 2
_ﬁz (R1” + 1) - EE_:] X(n) = o.
r?(R,2 -1)2 r

find that




132"

Hence, if we specify that

[2122 (B2 + 1) _ng s o
) 1 ’
r(Ry2 - 1)
then it follows that
X(n) = 0
for a1l n>n, > 0. This leads to the follewing result.

Theorem 45: If .
a) for real constants 8y &nd a,, equations (6.1)

can be solved for real constants R1 and R,

which satisfy the conditions

2R,%(Ry2 + l)
{ 2\ -_l]Rl £ 0,
I'(Rl - l)
b) there exists a real function F(n,Ul,UZ) such
that F(n,Ul,Uz) = 0 if and only if Uy =U,=0

and which further satisfies the condition

2R (r? - 1) < F,u Uy,0, )

r(Ry% - 1) u

then the equilibrium X = 0 of the non-homogeneous difference

< 0,

equation of second order
X(n+2) + a1X(n+1) + aZX(n) + F(n,X(n),X(n+1)) =

is asymptotically stable.

It is worth remarking here that in the homogeneous



case, for m = 2, Puri and Drake bhave actually shown that
the total difference of their scalar function V(n,X) is
indeed negative definite.

We now turn to an investigation of the asymptotic

stability of the equilibrium of the difference equation of

third order. As before, we list the releveant quantities

prior to the study. They are

R, RJR3 R

[3 re 1
F s
0 -_‘g_ Ry i
- R R
o = ¢ -—Soz'-R3
Ry, ™Ry By
82 = + +
s yF
83 ==T,
0 R-'l o\
Q = -€ RZ 0
CRE TN
T Y -9
As a consequence, we fing that
Yl = Rlxl

Y2 =-5> Xl + R2X2
R R R
T, = 3y L[R2 L BBy
The total difference for the scaler function V(n,X) = YTY

in this case is given by

(6.7)



A V(n,X) = (rvz-—l)YBZ - 2[(-§/r)r + RBY_]F + P2
= (r -1)[ &X +<‘_ _& xz+x37

-2[ rX; + Pf’ - }2_) X, + R3X3]F + F2,
This may be rewritten as
AV(n,X) (rz-l)[ ~R-3-X +-—3. )XZ + XB —?_ ]
-2[ _g_xl ]r + £ F2 (6.8)
2=\

In order to have this negative semi~definite,
the condition

we must impose

2 R 2
_2[. Xq = =2 ]F -1 2

or equivalently,

~2(r?-1) < F <
r( gz-l) h —f’Xl + Ryp X; 0.

We now examine under what conditions AvV(n,X), as

given by equation (6.8), is zero. We must bhave

R R R
r—z-%—lF = %Xl +<'?2-—$>X2 + X3 (6.9)

2 R
..22_"' F oo 2¢%x, - 2504 . - (6.10)
r 1 é; 1 r 2

1f equation (6.9) is multiplied by R; and the result added
to equation (6.10), we obtain

F =< _;‘;.r)xl +(£3§§3—- Er%f' Egz{)xZ + RXy 0 (6.11)
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Moreover, equating the two values of F obtained in equa-~
tions (6.9) and (6.11), we fing

(.3%3_1 ) %)xl + fRog 4 2208, %24 Efz—%’)xz + (¢-1)%5 = 0 (6.1

The difference equation under consideration is
X(n+3) + a3X(n+2) + asX(n+1) + aBX(n)

With the expressions for the a

for F from equation (6.11),

i 8iven in equations (6.7) ana
this equation becomes
X(n+3) +(-% - l;zgl@g)x(mz) (& -E;i)um) +$ 2(n)

= X(m3) + byX(n+2) + byX(n+1) + b3X(n) = 0 (6.13)

Equation (6.12) can now be 80lved for X(n+2), ang
correspondingly for X(n+3) by replacing n by n+l,
of X(n) and X(n+1).

in terms
Introducing these values into equation

(6.13) ang simplifying. we obtain
2R,R3e _ 2R,R_ 2

ﬁi7
Mg-IP Fg%?ﬁ)a [k

T2 2 2 2 ‘ o
(g -l)r r g (g () r~§ (T ) r ‘
= ¢X(n+1) + c,X(n) = o, (6.14)

Now, if ¢} = 0, then we must have c

X(n) =0

> # 0 to insure that

for &all n>,n°> 0. On the other hand, if ¢y # 0, then

X(n+l) = -¢3/cy X{(n),
8o that equation (6.13) becomes

[('°2/°1)3 + bl('°2/°1)2 + bz(-cz/cl) + bé]X(n) = 0.
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Thus, if the term in the brackets in non-zero, then
X(n) = 0
for all n Zn,> 0,
Summerizing the above results, we obtain the fol-

lowing theorem.

Iheorem 5§: It

a) for real constants 81s 82 and a;, equations
(6.7) can be solved for real numbers Ry, R,
and R3 which further satisfy the conditions
R12 + R22 + R33 =ri< 1]
B2 + Ry? = 650,
b) there exists a real function F(n,Ui,Uz,QB) such
that F(n,Ui,Uz,Uj) = 0 if and only if Uy = U, =
= Ub = 0 and which further satisfies the condition

-2(r2-1) _ F(a,0y,0,,U,) < o
r(¢>1) -¢ Uy + R,¢ T,

c) given resl constants by, b, and b3, a8 defined
by equation (6.13), and €y and c,, as defined by
equation (6.14),
1) ¢y = 0 implies c, £ 0
2) c; # 0 implies
(-cé/cl)3 + bl(-cz/cl)2 + bz(-cz/cl) + by £ 0,
then the equilibrium X = 0 of the non-homogeneous difference
equation of third order
X(n+3) + a;X(n+2) + a,X(n+1) + aBX(n) + F(n,X(n),...X(n+2))
= 0
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is asymptotically stable.

Finally, we consider the homogeneous case for m = 3,
For this difference equation, the total difference of
V(n,X) is given by

AV(a,X) = (r-n[_zx (—*.-—2 +x]

If this expression is zero, then

- R R.R R
X(n+2) = —2 X(n) + (—2-2+-3)x<n+1> (6.15)
T s OFT |

Substituting this into the difference equation and simpli-
fying the result, we have

R
- £ 2 2% x@) - o (6.16)
r

This immediately reduces to
sz(n"’l) = f x(n).

Now, if 32 = 0, it follows that

X(n) = 0
for all n)no, since f # O. On the other hand, if R2 £ 0,
then we have

X(a+l) = [§ /R,JX(n).
Substituting this into the original difference equation
of third order, we obtain

2(g-RR>x(n) = o.

Thus, if we assume that the term preceding X(n) is non-

zero, then we conclude again that
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Xn) = 0
for all nYn.
Summarizing the above results, we obtain the fol-
lowing theorem.

Theorem 47: If

a) for real constants 8,, a5 and 85, equations
(6.7) can be solved for real mumbers B, R,
and R3 which satisfy the conditions
2 2 2 2
R,° + R, +B° = <
2 2 _ »
Rl +R2 _y>0,
2
b) R, # 0 implies that BR,(¢g -2233) £ 0,
then the equilibrium X = O of the homogeneous difference
equation of third. order
X(n+3) + a,X(n+2) + a,X(n+1) + aBX(n) = 0

is asymptotically stable.

Finally, to conclude this section, we consider
how "good" the results in Part II are. In particular,
we will compare some of the preceding results for homo-
geneous difference equations with the standard conditions
for asymptotic stability for such homogeneous equations;
namely, the Schur-~Cohn criterion. For the case m = 2,
the Schur-Cohn conditions are
’82' <1
ba f <1+ ay| .
The corresponding conditions baged on the work in this

chapter are obtained by actually solving equations (6.1)
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for Rl and R2. We already have the condition

2 2
r = 8.2 < l.

The first part of equations (6.1) yields

R2 = -al/(l+1/r)
= 88,
lvay,
Ag a consequence,
2 2 2 2 a 2
R = »° - R = a 1l 1
1 2 2{ (1"“2)]

and therefore,

_[_ % 2__20%
Rl —(1+ag)[(l+82) a1] ’

where it is necessary to impose the condition
(l+az)2 > 812,
so that Rl is indeed a real number. Thus, we note that
the conditions obtained here are identical with the Schur-
Cobn conditions, as was pointed out by Puri and Drake.
However, for the car- 3 = 3, Puri and Drake

merely observed that their conditions were similar in
form to those given by the Schur-Cohn criterion. The
latter are

IaB"< 1

\a32 - 1|>'zalla3 - azi
1+ a, + a, + a3 > 0
l-a; + ay - a3 7 0.

As above, we obtain our conditions by solving equations
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(6.7). To begin, we. find that
- - 2 -
R, - 83(82 alas)/(a5 1),
where we have already imposed
2 _ 2
az" = r < 1.

Consequently, we have

2 2 2 2 2 2 2 2 142
S = -R3 = 8 [(a3 - 1) -(az- 8185)]/(85 -1)

and therefore,
§ = a[(a® - 121 oy - a1a? Hia,2 - 1),

where we must assume

(a32 - 1)? >'(82 - ala3)2.
Thus, we note, the first two conditions here are identical
with +he first two Schur-Cohn conditions. Moreover, it is
possible to solve for R2 by substituting for RB’ r and'f
into equations (6.7), and based on this, R, can be de-
termined. As before, the evaluation of Rl results in a
square root and it is necessary to impose the additional
condition

[(832 -1) - (a, - alaB)] 2 > (82a5 - al)z.
%e then find, after a somewhat detailed calculation, that
the last two conditions in the Schur-Cohn criterion inply
the above inequality. Thus, for the case m = 3, the condi-
tions stated in Theorem 47 are at least as gocd as those
given by the Schur-Cohn conditions.

However, when a similar analysis is applied to

the case m = 4, the complexity of the terms becomes so
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great that no definite conclusion can be formed. All that
can be said is that the first two conditions obtained based
on the development in this chapter coincide with the first
two Schur-Cohn conditions, while the remaining conditions
are similar in form to the remaining Schur-Cohn conditions.
It is felt by the author, though, that the conclusion
obtained above for m = 3 will probably also hold for the

case m = 4,
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Appendix A; Calculation of the Matrix R

In Chapter 5, condition (5.6) was imposed on the
matrix R. The expension of this condition led to a geries
of ten relations. It was shown there that equations d) and

a) together yield

R
rll = -Q:'?- andg r21 = ¥ Rl .

ra
From relations b) and g), it follows that

(Ro/Ry )7y
—( Oz/RlRB )1'12-

T22
r32

Substituting these expressién; into equastion e), there results

1122 (O*/B2)(§* /3% - 1,
and hence we obtain
rp = 45
7§
which implies that
r,, = EEEZ and r32 = 3 ?; .

7s
In a totally similar manner, relations c), f£) and i) yield

expressions for T23s r33 and ruj, respectively, in terms of

r13. Substituting these results into equation h), we find
r132(r2§>°‘/312342) = 1,

which gives that
+ BBy

S

r13 =




143

This in turn implies that

&
[
+I
Fo

which results in the form for the matrix R given in equa-
tion (5.9).



Appendix B; Calculation of the Mstrix Q

When the relation QA = RQ is expanded, the following

set of equations is obtained:

a)
b)
c)
d)
e)

£)

g)
b)
i)
3)
k)
1)
m)
n)

o)

p)

0 = (-By/0" )ay; + (RyRy/ 0@ )gy + (3134/1'5’)‘331 * Bay
21 = (Bpfoday, + (RyR3/0¢0)ap, + (RyRy/r ¢ oz, + Byay,
a4y, = (-RZ/G‘)QIB + (3133/0}’)923 + (Rth/rf)933 * Byay,

a3 = R

0= (By/a@)ayy + RBy/0¢ oy + (RpRy/re Jagy + Ryqy,
G21 = (Ba/ 3 )ay, + (RRy/a¢ Yoy, + (BpRy/rp )ag, + Rogy,
a4y, = (Rl/o-)q13 + (3233/03 Jagy + (R,R,/r¢ Jagy + LT
23 = B,

0= (=979 Jay + (BR/7¢ Jagy + Ryqy,
31 = (=97 ey, + (RyRy/re oy, + Byqy,
933 = B5

-au = (‘?/" )931 + Rl'"ql#l

Wy -8y = (=¢/rda;, + Buay,
Ao ~ aZ = (‘f/r )Q33 + Rl[.ql}j
Uz ~ 8 = By

As was noted previously, we imnediately have, from

relation p),
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U3 = -(Rjﬂq/rf ) - (3233/0?) -R,/0.
Substituting this expression for U3 and the ones from

equations d), h) and 1) into relation 0), we £ind upon

using equation (5.11b) to express 8,9

ap = (RyR/ro-)(1 + Ry/e ) + By/p
Similarly, substituting 923+ 933 end 9y into reletion k)

we obtain

(-By/9 ) 0 + By2/0) + R,Ry/ O
(Rz/a’ )GRB - g ).

Substitution of these same quantities into relation g) yields

932

2
9, = B,%/0°) + R,/ q) =—-a,
and similerly, from equation c),

92 = 0.

The derived expressions for q32 and 9, &8re now substituted
into relation n), along with the value for 83 given in equa-
tion (5.11c) to give
(Ry/r o) (B2 §) - (RpRy/ra)( @ + R 2/ )

+ rR233ﬁqf - rRz/o' - Ru/r

U1

= -RL’/I',

upon simplification. Furtbhermore, equatior m) yields
2 U
(¢ /r)q31 = 8, + Byq) +r + R </r = $Q/r,
which implies that

Once 433 and q,, are known, relation i) gives
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(/0 ey = (RyRy/rp ) £) = By(Ry/T) = 0,
and hence, '
921 = O.
Finaelly, equation a) is used to determine
a1 = 0.

Thus far, all ten of the unknown qij have been de-
termined from only ten of the sixteen equations a) -~ p).
However, the remesining six relstions are satisfied for the
values for the qij obtained, es can be seen from direct

substitution and subsequent simplification.
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