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The main purpose of the thesis is to provide a comprehensive 

study of the stabil1ty theory of difference equations using the 

second method of Liapunov. This study not only unifies the 

rather fragmentar.y results of the present status of the theor,y, 

but also provides a number of new results. The work consists 

of three major parts: 

a) A series of theorems is established for each of eight 

different types of stability and asymptotic stability for the 

difference equations under consideration. Among these, the 

concept of lp-stability is introduced and investigated exten­

si vely. A1so, a new approach to studying which stabili ty pro­

perties are preserved under small perturbations is introduced 

and thoroughly studied. In general, most of the resul ts fall 

into two categories. The first involves the existence of a 

certain class of real scalar functions possessing particular 

properties .hase existence bpl,. the type of stabili ty being 

studied. The seccnd deals with the converse problem of deter­

m;n1ng conditions of stability and conditions on the difference 

equation .h1ch will guarantee the existence of such functions. 

b) These results are further extended to obtain a series 

of theorems on various forms of stability and asymptotic stability 

in the mole. In addition, a number of results on the boundedness 

and uniform boundedness of all solutions of the difference 

equation are presented. 

c) The preceding theor,y 1s then applied to a rather wiàe 

class of d1fference equations of the form 



.' 
... 

X(n ... ) + ~~(n ...... 1) + ...... + ~X(n) - F(n,X(n) , .... X(n ... -1)) • C. 

A techniqae is developed .biCh can be used to determine the 

conditions to be imposed on the coefficients al and on the 

:tanction F in order to insure stabili ty and asymptotic stabili ty 

for the solutions of the eqaatioD4 By way of illustration, 

the method is applied in detail to the case a • 4. 
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INTRODUCTION 

One of tbe major breaktbrougbs in tbe study of 

differential equations occurred in 1893 witb tbe publica­

tion of Liapunov's now famous paper "Probleme general de 

la stabilite du mouvement", in wbicb be introduced bis 

Direct Metbod for studying tbe bebavior of tbe solutions of 

differential equations. Tbe metbod is, in reality, ratber 

indirect in tbat tbe bebavior of tbe solutions is inferred 

from tbe existence of certain resl scalar functions witb 

various particular properties, instead of from a direct 

knowledge of tbe solutions. In essence, tbis class of sca­

lar functions, commonly called Liapunov functions in mucb 

of tbe literature on tbe subject, represents a generaliza­

tion of the total energy of a physical system. It is tbis 

possibility of determining the bebavior of tbe solutions 

implicitly that makes Liapunov's method so eminently useful, 

especially for non-linear differential equations wbere one 

cannot usually solve tbe equations explicitly. 

iii 

Wbile tbe full implications of Liapunov's approach 

were not fully appreciated for fort y years, and in fact, his 

work faded into obscurity during tbis time, it was finally 

"rediscovered" about 35 years ago and tbe subsequent use of 

it has made it tbe principal matbematical tool for dealing 

with problems involving linear and non-linear stability ques­

tions of aIl types, particularly in the tbeory of control 

systems. 



It was during this same latter period that the 
study of difference equations was given new impetus by the 
realization that such equations had certain extremely use­
fuI applications. With the development of high speed com­
puting machines, many differential equations which previous­
ly were considered insoluble, in the practical sense, were 
converted to approximate difference equations, which the 
computers could easily' handle. Also, many problems arose 
in the field of control theory in engineering which were 
expressible in terms of difference equations. Notable among 
these is the field of sampled data systems, in whicb a pro­
cess is examined at periodic intervsls to test various as­
p:ects of it. The mathematical formulation of the problem 
is essentially a difference equation and the behavior of 
the process, interpreted as the solution of the difference 
equation, is to be determined. 

iv 

As a result of such developments, not only was an 
intensive study of difference equations warranted, but also 
an approach to yield knowledge of the behavior of the solu­
tions was needed. Such an approacb turns out to be an appli­
cation of Liapunov's metbod to discrete variable systems. 
Wbile only a few such investigations bave yet been carried 
out, these few indicate that the method which was so fruit­
fuI for ditterential equations possesses an analogue tor 
âifference equations wh1ch 1s equally powerful. Krasov-
skii (7) transferred a number of results on the stability 
ot differential equations to ditference equations, tbough 
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Hahn (3) was the first to apply the direct method systema­

tically. The latter work, however, w~s main1y concerned 

with the linear difference equatio!'. 

X(n+l) - A(n)X(n) 

and, in particular, with the constant case in which stabi-

1ity criteria were obtained in terms of the size of the 

eigenvalues of the matrix A. Halana,. (4) extended some of 

this .ork and also gave the first results in the converse 

direction; that is, to determ:1ne under .hat conditions the 

proper Liapunov functions existe Kalman and Bertram (6) gave 

rather far-reaching extensions of the stability the ory for 

difference equations, especial1,. tor the general equation 

X(n+l) • f(n,X(n». (*) 

J'inally, a new book b,. Hahn (Stabi1i ty of Motion, Academic 

Press, New York, 1968) was brought to the author's atten­

tion after this thesis was comp1eted. A number of the re­

su1ts wh:iCh appear in the book were obta:ined independent1y 

in the present work. !hese are Theorema 1,13,17,35,37,38. 

In a somewhat different direction, stabilit,. cri­

teria for a particu1ar class of difference equations were 

estab1ished b,. Puri and Drake (11) for equations of the 

second and th:ird order. 

In the present work, both of these aspects, the 

theoretical and the practica1, are further investigated 

and the works previous1y mentioned are extended considera­

b1y. In Chapter 2 of Part l, a series of theorems is ob­

tained for .ch of eight different types of stabi1ity. In 



• 

• 

• 

vi 

particular, the concept of lp-stability for difference 

equations is introduced for the first time and the develop­

ment of this theory parallels Strauss' (12) study of LP-sta­

bility for differential equations. Koreover, a new approach 

to studying stability propertiec baing preserved under 

small perturbations is introduced and treated extensively. 

In addition, the concept of instability for difference equa­

tions is also presented. 

Essentially, for each of the types of stability 

under investigation, the behavior of the solutions of the 

difference equation is shown to be guaranteed by the exis­

tence of certain real scalar functions possessing particu­

lar properties. On the other band, we also consider the 

converse problem of determining under what conditions of 

stability for the equilibrium is the existence of such 

scalar function assured. This latter problem is approached 

in a number of ways, ei ther by strengthening the type of 

stability assumed or by mstricting the function f(n,X) in 

the difference eqaation (.). 

In Chapter 3, the concepts of boundedness of solu­

tions of the difference equa~ion and various types of sta­

bili ty in the whole are studied and a series of theorems 

is obtained for each. Moreover, throughout the work, those 

results which have been obtained by previous researchers 

are indicated in the appropriate places. As a consequence, 

Part l represents a comprehensive study of the application 

of Liapunov's Direct Kethod to difference equations. Simi­

lar extensive surveys for using this approach for differen-
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tial equations have been given in a paper by Antosiewiez (1) 

and in a book by Hahn (2). 

Incidentally, the term Liapunov function has been 

considerably overworked in that different sets of properties 

are ascribed to mch functions by different authors through­

out the literature. As a consequence, it was felt that itemi­

zation of the particular properties required of the scalar 

functions for each individu al theorem is preferable and this 

convention will be adhered to throughout the present work. 

In Part II, the methods of Puri and Drake are gene­

ralized to a scheme for treating difference equations of a~ 

order which fall into a rather wide class. The basis of this 

method is to obtàin conditions on the coefficients and on 

the given function in the non-linear équation 

X(n+m) + alX(n+m-l) + •••• + amX(n) + F(n,X(n), ••• X(n+m-l») = 0 

which will guarantee both stability and asymptotic stability 

for the equilibrium. The extension of their approach is 

done in such a way asm result in significant simplifications 

in the calculations which are req~ired to obtain the appro­

priate conditions of the ai and on F. This approach is il­

lustrated in Chapter 5, where the fourth order equation is 

treated in detail to determine conditions for stability and 

asymptotic stability. Koreover, certain of the theorems 

obtained by Puri and Drake yield only stability, not the 

asymptotic stabili ty claimed by the authors:. These theorems 

have been repaired in Chapter 6 and the corrections have been 

accompli shed using the modified technique from Chapter 4. 
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PART l 

SOPIE BESULTS ON THE STABILITY THEOBY OF DIFFEBENCE EQUATIONS 

Chapter 1: Basic Def1n1t1oDs and Concepts 

Let S be a divergent str1ctll monoton1c 1ncreas1ng 

sequence {s1J ot real Dumbers: 

s1 < si +1 11.1 ~ ~ si - (1) • 

The general d1tference equat10n 1s then g1ven bl 

X(s1+1) • f(s1'so'xo' 

subject to the 1n1t1al cond1t1on 

X(80 ) - xo , 

where X(s1) and f msl be vectors and f 1s a funct10n of the 

1n41cated arguments. 

However, we will concern ourselves w1th a somewbat 

s1mpler case; namell, when 

s1+1 - si - a, 
a constant, for all values of 1. We tbus will assume that 

there 1s 8 constant d1tterence between the elements of the 

sequence S. Further, there 1s obv10U8l7 no 10ss ot geners­

lit, 1n tak1ng th1s constant d1tterence a z 1 and, accor­

d1ng17, we mal then choose for the sequence S s1mp17 the sèt 

l ot all nonnegat1ve 1ntegers. 

In v1ew ot the above remarksi the d1fference equat~n 

we 8bsll study 18 

X(n+1) - f(n,X(n», (*: ) 

wbere 
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/ Xl (n) 

X(n) = \%2t' 
Xt(n) 

fl(n,X(n)) 
f 2(n,X(n)) 

fCn,X(n)) • = • • • 
ftCn,XCn)) • 

Here f i8 a function assuming values in Et, an arbitrary 

t-dimensional vector space and defined on 

= 

.~ 

Here llx\I denotes any t-dimensional norm of the vector 

X. The difference equation C*) will be subject to the 

initial condition 

XCno) = xo· 

Finally, in aIl of the following, we assume that 

f(n,a) = a 

for aIl n ~no ; that is, f is identically zero whenever 

XCn) is identically zero. An equivalent way of stating 

this is that X(n) = a is the trivial solution of equation C*). 

The difference equation problem stated above, con­

sisting of equation C*) and the initial condition, will 

always have a solution and this solution will be unique 

for aIl n~no. This may easily be seen since, for given 

Xo = X(no ) , X(no+l) is uniquely determined by 

X(no+l) = fCno,XCno)) = f(no'xo)· 



• Similarly, X(no+2) is uniquely determined by 

XCno+2) = f(nO+l,X(no+l)) , 

and so on, inductively, for every value of n ')no. 

3 

The unique solution of the above difference equation 

problem, which is equal to xo for n = no' is denoted by 

XCn) = F(n,no'xo), 

and is such that 

xo = X(no) = F(no,no'xo)· 

Furthermore, we note that if for a particular 

point (m,Y) in D!oR ' 

If f(m, Y) Il > R, 

then obviously Y(m+l) is also larger in norm than R. Con­

sequently, YCm+2) is not defined by the differenee equation 

C*), sinee f(m+l,Y(m+l)) is not defined. As a result of 

these remarks, unless otherwise mentioned, we will eoneern 

ourselves solely in the sequel with those solutions whieh 

are defined for aIl n~no. Equivalently, the only solutions 

considered are those whieh start in D!oR and remain in it 

for aIl n ~ no. 

We now define the various types of possible behavior 

of the solutions of the difference equation problems which 

will be of interest to us in the sequel. 

Definition 1: The equilibrium (or trivial solution) X = 0 

of the differenee equation C*) is said to be stable if, for 

any E: >0 and any noE l, there exists a ~(E ,no);> 0 sueh 

that \\ xo\\<~ implies that 
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for aIl n>no. 

Definition 2: The equilibrium X = 0 of the difference equa­

tion (*) is said to be uniformly stable if, for any e>O, 

there exists a b ( E ) > 0 such that no éland Il Xo 1( < ~ imply 

Il F(n,no ,xo) If < E 

for aIl n~no. 

Definition ~: The equilibrium X = 0 of the difference equa­

tion (*) is said to be guasi-asymptotically stable if for any 

noê l, there exists a ~(no» 0 such that IIxoU<~ implies 

F(n,no ,xo) ~ 0 

as n~CD • 

Definition 4: The equilibrium X = 0 of the difference equa­

tion (*) is said to be aSymptotically stable if it is both 

stable and quasi-asymptotically stable. 

Definition 5: The equilibrium X = 0 of the difference equa­

tion (*) is said to be guasi-eguiasymototically stable if for 

any no E l, there exists a ~(no)'> 0 such that U xoll<~ implies 

F(n,no'xo)~O 

uniformly on li xoll<~ as n ~CD • 

Definition 6: The equilibrium X = 0 of the difference eqùa­

tion (*) is said to be eguiasymptotically stable if it is 

both stable and quasi-equiasymptotically stable. 
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Definition 7: The equilibrium X = 0 of the difference equa­

tion (*) is said to be guasi-uniformly-asymptotically stable 

if there exists a ~ >0 such that no E. l, 1/ Xo II <:..è imply 

F(n,no ,xo) ~o 

uniformly on no E. l, {/ Xo \\<- ~ as n ~CD • 

Definition 8: The equiliQrium X = 0 of the difference equa­

tion (*) is said to be uniformly-asymptotically stable if 

it is both stable and quasi-uniformly-asymptotically stable. 

Definition 9: The equilibrium X = 0 of the difference equa­

tion (*) is said to be exponentially stable if there exists a 

B> 1 and, given any ~")o, a ~(E: » 0, such that no E. l, Ilxo \I<~ 

imply 

for aIl n ~no. 

Definition 10: The equilibrium X = 0 of the difference equa­

tion (*) is said to be lp-stable if it is stable and if for 

aIl noE: l, there exists a ~(~o) 0 such that IIxoll<::~ implies 

for some p> o. 

, .CD \ P 
"- k=n "F(k ,no ,xo )1l < CD 

o 

Definition Il: The equilibrium X = 0 of the difference equa­

tion (*) is said to be unstable if for every ~~ 0 and for 

every noË l, there exists some Xo with /1 xolf<E. such that 

\\ F(nl ,no ,xo) \\ ~ E. 
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Definition 12: The equilibrium X = 0 of the difference equa­

tlon (*) is said to be exponentially unstable if there exist 

B > land C ~ 0 su ch that for aIl r > 0, there exist Xo wi th 

tlxoU < r, and for aIl nI el, there exist no~ nI such that 

Il F(n,n
o 

,xo )1l 'l Ollxoll B(n-no ) 

for aIl n>"no. If the above relation holds for aIl Xo with 

UXo/1 < r, for some r> 0, then the equili brium is said to be 

completely exponentially unstable. 

The investigation of the various types of stability 

for the trivial solution X = 0 of the difference equation (*) 

will be carried out by using a certain class of real scalar 
Vln)~») 

function~Adefined on 

and such that V(n,O) = 0 for aIl n ~ no 1. In addition, a 

number of further properties will be required of these 

functions in various instances. The function V(n,X) is 

sa id to be Idpschitzian if for two points (n,Xl) and (n,X2) 

in its domain of definition, 

\ V(n,Xl ) - V(n,X2) \ ~ B 1( Xl - x2ll , 
where B is a positive constant. If this property holds 

only locally on D!o IR' , then we say that the funct.ion 

V(n,X) is locally Lipschitzian on this set • 

The function V(n,X) is said to be positive definite 
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on D!o'R' if, given any r, O<r<R', there exists a real 

number ber) ~ 0 such that V(n,X) ~ b :for aIl n ~ n~ and aIl 

X wi th r ~ nX \~<. R' and i:f, :for X = 0, V(n,O) = 0 :for aIl 

n ~ n~. The concept o:f posi ti ve de:fini teness can also be ex~ 

pressed in terms o:f the class Mo o:f aIl real-valued mono­

tone increasing :functions a(r), de:fined and positive :for 

r > 0 and satis:fying the condition a (0) = O. The :function 

V(n,X) is then positive de:finitei:f there exists a function 

a(r) o:f class Mo such that 

V(n,X ) ~ s( Il X U ) 

:for aIl n ~ n~. This equivalent :formulation will o:ften 

prove more use:ful. 

The :function V(n,X) is said to be negative de:finite 

i:f -V(n,X) is positive de:finite. Finally, V(n,X) is sa id 

to be posi ti ve semi-defini te if V(n,X)~ 0 for aIl n ~ n~; 

that is, V(n,X) may assume the value zero for some X other 

than X = 0, and a similar definition holds for V(n,X) being 

negative semi-de:finite. 

The non-negative scalar function V(n,X) is said to 

be decrescent (or, equivalently, admits of an in:finitesimal 

upper bound) if there exists a function a(r) of class Mo 

such that 

V(n,X) ~ a( \l X n) 
:for aIl n'q n~. 

The non-negative scalar function V(n,X) is said to 

be radially unbounded i:f :for each a > 0, there is ab> 0 

such that V(n,X) > a whenever /1 X t/>b and n ~ n~. 
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Corresponding to the function V(n,X), we define 
the total difference 

~V(n,X) = V(n+l,f(n,X)) - V(n,X). 
For convenience, we shall occasionally write this as 

~V(n,X) = V(n+l,X(n+l)) - V(n,X). 
~V(n,X) is obviously a measure of the growth or decay of 
the function V(n,X) with regard to increasing n along the 
discrete trajectories represented by the solutions of 
the difference equation (*). It should be noted that, in 
general, this can be calculated without direct knowledge 
of the actual solutions. Moreover, since we are considering 
only those solutions which start in D!o'R' and remain there 
for aIl n ~ no " À V(n,X) is well-defined for aIl n and aIl X • 

In the sequel, we consider the set 

, 

the intersection of the domains of definition of the 
functions f(n,X) in the difference equation C*) and the 
functions V(n,X). For simplicity, this intersection will 
be denoted by DnoR • 



• 

• 

• 

Chapter 2: Stability Theory of Difference Eguations 

2.1 Stability of the Equilibrium 

The basic theorem on the stability of the trivial 

solution of the difference equation 

X(n+l) = f(n,X(n» 

has been given by Hahn (3) in his Theorem 1. 

Theorem (Hahn): If there exists a real scalar function 

V(n,X) for which, on DR' no 
a) V(n,X) is positive definite 

b) AV(n,X) is negative semi-definite, 

then the equilibrium X = 0 of the difference equation (*) 

is stable. 

(*) 

9 

The following theorem is a partial converse of this 

result. Its proof depends on the fact that aIl solutions 

start at mme initial time no. Moreover, we consider the 

set D which consists of those points in D R which are no 
specifically determined by the given difference equation. 

To illustrate this, consider the scalar equation X(n+l) = ~(n). 
The point (no+l,~) is not a point of D since it is not the 

image under the equation of any point in DnoR• 

Theorem 1: If the equilibrium X = 0 of the difference equa­

tion (*) is stable on DnoR ' then there exists a real scalar 

function V(n,X) for which, on D, 
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a) V(n,X) is ,osi~ive definite 

b) AV(n,X) is negative semi-definite. 

Proof: For convenience, we introàuce the following 
notation. We write (n,X) to represent any parameter 
point in D and N as the independent variable. Thus, 
F(N,n,X) represents that solution of the difference 
equation evaluated at time N which passes through the 
point (n,X). In order to consider values of N for 
which n ~N~, it is necessary to interpret X as o 
X - F(n,n ,x ), for any appropriate Xo from which a o 0 

solution emanates which passes through (n,X). This 
Xo need not be unique • 

We now consider the scalar function 

V(n,X) = lIF(n ,n,X)U • o 
Since the equilibrium is stable, for aIl E /0, there 
exists a S.>o such that lJF(no,n,X) Il ~ ~ implies 
flx 1\ Lé. Correspondingly, i t follows that for ft X n ~é, 
V(n,X)~ ~ > 0, so that V(n,X) is positive definite. 

J4oreover, 

âV(n,X) - rlF(n ,n+l,X(n+l))i/ o 

since \n,X(n)) and (n+l,X(n+l)) are two successive 
points along the same trajectory. As a consequence, 
it follows that ~V(n,X) is negative semi-definite 
and the proo! is complete • 
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2.2 Unifora Stability of the Equilibrium 

The tollowing. theorem, origiially given by Kalman 

and Bertram (6), extends Hahn' s resul t to sufficient 

conditions for uniform stability. in their Theorem 1.1.4. 

Theorem (Kalllan and B,rtr8ll): If there exista a real 

scalar function V(n,X) for which, 6n DnoR' 

a) V(n,X) is positive definite 

b) V(n,X) is decrescent 

c) AV(n,X) is negative seai-definite 

then the equilibrium X a 0 of the difference equation (*) 

1s unitormly stable. 

Halanay (4) has supplied a converse theorem to 

the above result, in bis Th.or •• 3. 

Theorem (B8l8P~Y): If the equilibrium X = 0 of the 

difference equation (*) is uniformly stable, then there 

exists a real scaler function V(n,X) such that 

a( li X Il ) ~ V(n,X) ~ b( \1 X U ) , 

for some a(r) and ber) of class Mo' and such that 

A V(n,X) ~ 0 

These two theorems taken together supply necessary 

and sufficient conditions for uniform stability. The fol-
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sufficient conditions for uniform stability. 
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Theorem 2: The equilibrium X • 0 of the difference equa­

tion C*) is uniformly stable if and only if a continuous 

tunction aCr) of class .0 exists such that 

1/ FCn,no '%0) Il ~ aen xJI ) 
for every xo satisfying n %0 \\ ~~ for some ~ ~ R. 

Proof: This result, for the case of differential 

equations, has been given by Hahn (3) in his Theorem 

17.1. However, the proof that he gives depends solely 

on properties of the real number system and functions 

of real variables and hence carries over unchanged 

to the present case in which we are considering 

functions with arguments assuming only discrete 

values. 

This theorem can be used to derive a consequence 

dealing with the uniform stability of the equilibrium 

of difference equations in which the function f(n,X) is 

periodic in n. 

Theorem 3: If f(n,X) is periodie in n on DnoR and if 

the etuilibrium X = 0 of the difference equation 

X(n+l) = f(n,X(n)) 



• 

• 

• 

is stable, then it is uniformly stable. 

Proof: Let the period of t(n,X) with respect to n 

be m. Then 

• 

= 

f(no+m,~(no+m,no+m,xo)) 

f(no'xo) 

• P(no+l,no'xo)· 

In a similar lIBy, i t follows that 

P{n+m,no+m,xo) - ~(n,no'xo) 

for aIl n ~ no. As a resul t, the proof of the ana­

logous result for differential equations, as given 
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by Hahn (3) in his Theorem 17.2, is equally valid here 

since only properties of real uumbers and real valued 

functions are used to construct a comparison 

function satisfying 'the conditions of Theorem 2. 

We note that if f(n,X) is independent of n, 

that is, if the equation 19 autonomous, then it is tri­

vially periodic. Cons equently, the above theorem gene­

ralizeà the corresponding result given by Kalman and 

Bertram (6) for this particular case. 

2.3 Asymptotic Stability of the Equilibrium 

We now tum to an examination of conditions 

under which the solutions to the difference equation 
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converge to zero. To begin, we cite a second theorem due 

to Hahn (3), his Theorem 2, which gives sufficient condi­

tions for asymptotic stabi1ity of the equi1ibrium. 

Theorem (Hahn): If there exists a rea1 sca1ar function 

V(n,X) for which, on DnoR' 

a) V(n,X) is positive definite 

b) V(n,X) is decrescent 

c) à. V(n,X) is negative definite 

then the equi1ibrium X = 0 of the difference equation (*) 

is asymptotica11y stable. 

The fo11owing theorem demonstrates that the con­

dition that the function V(n,X) be decrescent in Hahn's 

resu1t i6 unnecessarj. Th~ author origina11y used a 

longer and more comp1icated proof and wishes to thank 

Professor R. Datko for suggesting the present more e1e­

gant proof. 

Theorem 4: If there exists a rea1 sca1ar function V(n,X) 

for which, on D R' no 
a) V(n,X) is positive definite 

b) A V(n,X) is negative clefinite 

then the equilibrium X = 0 of the difference equation (*) 

is asymptotica1ly stable. 



Proof: lfom the hypü~heses, there exist fonctions 

a(r) and ber) of class .0 such that 

V{n,X) ~ a{HXU) A V(n,X) ~ - b(UXM). 

Moreover, 
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V(no+l,X(no+l» ~ ~ V(no,X(no» + V(no,X(no»' 

V(no+2,X{no+2» =.6 V(no'xo ) +AV(no+l,X(no+l» 

+ V(no'xo ), 

and so, by induction, 

V(no+k,~(no+k,no'xo» 

k,-\ '.? [-b{II:r(no +3 ,no ,xo).)] + V(no ,xo) 
j-

Tating the limitas k ~ CD , and using the l'sct that 

V(n,X) is non-negative, we find that 

k-' 
lim~CD L b(U:r(n +j,n ,x ) Il) ~ V(no ,xo) 

K--..- ~'Go 0 0 0 

whieh implies that 

b( n :r(no +k,no ,xo) il ) -? 0 

as k ~ CD , and therefore, since b(r) is monotonieally 

inereasing, 

:r(no+k,n ,x ) ~O o 0 

as k ~ CD; i. e., the equilibrium is asymptotically 

stable. 

The following result considerablY sharpens the 

above theorem. 
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Theorem 5: If there exists a real scalar function V(n,X~ 
for which, on DnoR' 

a) V(n,X) is positive definite 

b) A V(n,X) is negative definite 

then, given ~ r, O<r<R, there exists a ~(no,r»O 
such that for any Xo with ilxoll<~ and 8.DY E, O<.€<r<R, 
there exists an integer .vo(no ,r, € » 0 and an integer 
nI (no ,xo) in the interval [no' no + J)oJ such that 

Il F(nl ,no ,xo) " < E. 

Proof: The assumptions on the existence of the func­
tion V(n,X) on D R guarantee that the equilibriumo no 
X = 0 is stable. Renee, given any r, 0 < r <R, and 
any no in I, there exists a b(no,r)>. 0 such that 
for any Xo wi th "xo li < ~, we have 

1\ F(n,no ,xo) \\ < r 

for n) no. 

Now, si ven any € , 0 ~ € < r, there exist con­
stants a(E.) and b(e ), both positive, such that 

V(n,X) > a ~ V(n,X) ~ -b 

for n). no and O~ €~ J( X 1\ <: r. Define 

q(no ,r) = sup t V(no ,X) : n X Il < ~ ~ 
Po (no,r, €.) = [q/b] + l, 

where [q/b] represents the greatest integer in q/b. 

Now, given a.ny Xo with \\xo\l~~, either 

1\ Xo li ~ E. or " Xo Il <' E • 
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In the former case, for some n~ no' 

If F(n,no ,xo ) " ~ € • 
If E~flF(n,no,xo)1I ~ r throughout the interval 
[no,no+ »0] , then 

A V(n,lr(n,no ,xo» , - b 
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on this interval. Koreover, we have that 

V(no+l,F(no+l,no 'xo» = à V(no,F(no,no'xo» + V(no'xo) 

6 - b + V(no'xo ). 
Continuing in this manner, we determine that 

)) -1 

= 2 À V(no +k,F(no +k,no ,xo» 
k.-o 

+ V(no'xo) 

As a consequence, 

a4 V(no+~' F(no+~,no'xo» 

6 V(no ' F(no,no'xo» - ~ b 

= V(no ,xo ) - b [q/b] - b 

6 V(no'xo) + (b - q) - b 

= v(no'xo) - q 

~ 0, 

since q ~ V(no'X) , which contradicts the assumption 
that a >- O. Therefore, there exists an integer nI (no ,xo) 
in the interval [no ,no + ~] such that 

lt J'(nl ,no ,xo) 1\ ~E: • 
In the second case, where Il Xo Il <:. € , we simply 

let nl = no' so that 

Il F(nl ,no ,xo) \\ = Il xoH <. E. 



• 
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As an extension of this theorem, we have the 

following corollar,y. 
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Corollary 5.1: Assume the same hypotheses on V(n,X) hold 

as in Theorem 5, then g1ven any no e l and any r, 0 < r< R, 

there exists a ~(no,r»O, such that for any %0 with 

n%ol\~~ and tmy sequence t€k1, 0 ~ €" <: r, such that {€.k 5 
converges monotonica11y to zero, there exists a non-

decreasing sequence L~l of integers, ~+1> ~:)..no 

such that 

for all k • 

Proof: Given any r, 0 < r<. R, and no El, let ~ (nepr) 

and q(no,r) • sup V(no'X) > 0 be defined as in the 

proof of Theorem 5. Given the sequence [E:.J converging 

to zero, 0 ~ ~ <: r, there erlst sequences [akI and [bkI 

of positive elements such that 

A V(n,X) ~ - bk 

for a1l n~no and all X with Ek~IIXIl<r. Now define 

l)k_1 (no ,r, E k ) .. [ct/bki + 1. 

!rom the praof of the theorem, there exists some 

integer m. in the interval [n ,n + lJ ] such that x: 0 0 k.-I 

1\ 1P(~ ,no ,xo) If <. Ek.. 

Now let ~ be the smallest such integer in the interval 

for which othis ho1ds. This procedure determines a 

sequence [ ~J , k = 1,2, ••• with ~+l~~~ no and 



such that 

JI P(nj ,no ,xo) Il 4( ~ 
for aIl j. 
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The proof of the :tollowing result follows directly 
from that of ~eoreB 5· 

Theorem 6: If there exists a resl scalar f'unction V(n,X) 
for which, on DnoR' 

a) V(n,X) is positive definite 

b) V("n,X) is bounded 

c) Â V(n,X) is negative defiDite, 

then, given my noE l and trIJy r, 0 < r< R, there exists 
a ~(no,r) > 0 such that for any %0 with Il xolI< ~ and any 
E , 0 < E < r, there exists an integer V(r, cs ) > 0 which 
is independent of no' and an integer ~ (no ,xo ) in the 
intervaL [no,no+v] such that 

n F(nl ,no ,xo ) Il < E. • 

Proo!: Let Q be any upper boUDd for V(n,X) on DnoR. 
Then the proof of this theorem is the same as the 
proof of Theorem 5 w1th q replaced by Q. 

We no. consider some results on asymptotic 
stabili ty in the converse direction. The problem can 
be approached in several ways, either by imposing con­
ditions on the class tif functions :t(n,X) or by assuming 
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a more stringent form of asymptotic stability. ~e second 

possibility will be dealt with in the later sections. We 

begin the study of the first approach by stating the fol­

lowing Lemma due to. MasElers (10). 

Lemma (Ilassera): Gi ven 8ll1' real scalar function g(r) de­

fined and positive on every compact interval Je [O,CD) such 

that g(r)-"O as r-+CD; and given any real scalar function 

h(r), defined and continuous, positive and non-decreasing 

on [O,CD), then tllere exista, for any integer k > 0, a 

positive real scalar function G(r), of class Ok, and increa­

sing together wi th i ts first k deri vati vas on [0, CD) and 

with G(i)(O) = 0, i = O,l, ••• k, such that, for any real 

scalar function g* (r) on IO, CD ) , 

o ~ g*(r) ~ cg(r) , 

for some constant c > 0, the Integrals 

converge uniformly in g*. 

~e analogue of this lemma for difference equations 

would guarantee the existence oX the same scalar function 

G(r) and the uDiform convergence of 

O~ i ~k. 

However, the convergence of these sums in the discrete case 

follows immediately from the convergence of the corresponding 
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integrals, as given in the Lemma, by the integral test for 

the convergence of a series. Renee, it follows that the 

Lemma is valid for the discrete cases we are considering. 

\Ve sœll malte use of this Lemma in the following 

converse theorem, as weIl as in other theorems in later 

sections, where i t serves in the construct1.on of a real 

scalar function V(n,X) under the hypothesis that the 

equilibrium is asymptotically stable, if the given func­

tion f(n,X) is restricted to be linear; i.e., 

f(n,X) = A(n)X(n). 

Theorem ?: If the equilibrium X • 0 of the linear difference 

equation 

is asymptotically stable, then there exists a real scalar 

fUnction V(n,X) for which, on DR' no 
a) V(n,X) is positive definite 

b) AV(n,X) is negative definite. 

Proof: Denote by zen) the fundamental matrix solution 

of the linear difference equation which satisfies the 

initial condition 

Z(o) = I, 

the identity matrix. The general solution of the 

equation is then g1 ven by 

~(n,no'xo) = Z(n)Z-l(no)xo• 

Thus, :for n ~ no' replacing Xo ,no and n respecti vely by 
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X, n, and N,1re find 

JI X Il - Il Zen) Z-l(N)l'(N ,n,X) " 

~ JI Z(n)z-l(N) IJ IIl'(N,n,X) U • 

Now let 

g(n) :Il Il Zen) Z-l(N) JI • 

~or fixed X, g(n) goes to zero as n goes to infinity 

since the equilibrium is a.,.ptotically stable. 

Gi ven € > 0, there exists a constant a (€ ) > 0 

such that 

U l'(N ,n,X) U ~ a 

for aIl n.> N and 1} X Il ) E • !'urthermore, for eaeh X 

with li X "~q, for ~ q> 0, 

/1 ~(N ,n,X) 11 ~ CD 

uniformly as n"7 CD • 

_e now define 

00 

V(n,X) - L G[IIZ(k)Z-l(l'i)lIl1l'(N,n,X)U] 
k.=n 
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of) 

+ I: G[I\Z(k)Z-l(N)lIl1l'(N,n,x)II], 
k=N 

using the diserete form of Massera' s Lemma. This fune-

tion is positive definite sinee 

V(n,X)~ G [U Z(N)Z-l(N)1J Il l'(N ,n,X) Il] 
D G(It~(N ,n,X) U ) , 

which i8 zero only for X = 0, for any n. 

Moreover, 

~ V(n,X) = f G [n Z(k) Z-l(N) JI Il Jr(N,n+l,X(n+l»IJ] 
k=n~1 CIO 

- I. G 01 Z(k)Z-l(N)1/ Il l'(N,n,X(n» Hl 
k~n 
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= lill1t~œ G [U Z(k)z-l(N)II IIF(N,n+l,X(n+*)) Il] 

- G [II Z(K) Z-l(N)Il Il :r(lf ,n,X(n)) 1( ] 

= - G LM z(n)Z-l(N)I' fI:F(N,n,X)I'] 

~ - G(" XI) , 
since 

This proves that 4 V(n,X) is negative definite and 

hence completes the proof of the theorem. 

The tunction V(n,X) constructed in the proof of 

this theorem possesses the fol1owing interesting and useful 

property • 

Coro1la;r 7.1: Given the function V(n,X) constructed ~n 

Theorem 7, then given any r, 0 < r< R, and any )J~ N, 

there exists a }J-( }.) ,r) ~J) such that for any integer m in 

the interval [N, JJ] and any Y wi th Il y /1 ~ r, the conditions 

n~f- and V(n,X) ~ V(m,Y) both imply that UXll~r. 

Praof: :For a1l r, 0 <: r< R, and for a11 }) ~N, choose 

an integer po( J} ,r)~l) so large that for m in the 

interval [Nt Li] and Y wi th Il y Il ~ r, we have that 

n~f' an~ 
2 2. Glu Z(k)Z-l(N)/( "F(N,m,y)U] 

k=N 
00 

~ L G[ 1\ Z(k)Z-l(N) l\ \1 F(N,n,X) Il ] 
k~N 0 
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im.ply that Il X If~ r. This is possible since the solu­

tions tend to zero. Renee, if m is in the interval 

LN, lJ] and Y is sucb that Il y Il ~ r, thel1 n ~f' and 

V(n,X) ~ V(m, Y) 

both imply that 

f G [U Z(k)Z-l(li)Il Il F(N,n,X) 111 , V(n,X) 

k=N. ~ V(m,Y) 
ao 

~ 2 LGjZ(k) Z -l(li" n F(N ,m, y) UJ 
k=N 

which implies that n X Il ~ r. 

We shall no. consider an alternative set of suf­

ficient conditions for asymptotic stability of the equi­

librium. Although the hypotheses are stronger than those 

in Theorem. 4, they may be easier to apply. 

Theorem 8: If there exists a real scalar function V(n,X) 

for which, on DnoR' 

a) V(n,X) is positive definite 

b) d V(n,X) ~ - W(V(n,X)), for some scalar func­

tion W(r) of class Ko 

then the equilibrium X = 0 of the difference equation (*) 

is asymptotically stable. 

Proof: Since V(n,X) is positive definite, there exists 

a function a(r) of class Ko such that 

V(n,X) ~ a(lfXIl) • 

Therefore 
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w[v(n,x)] ~ W[a(\\XI\)] , 

so that 

L! V(~X) ~ - w[V(n,X)] ~ - w[a<l\xIDJ = - b(J!x1t) , 

25 

where the composite function b = Wol is also of class 

.0. Thus, LlV(n,X) is negative definite and the equi­

librium is asymptotical!y stable by Theorem 4. 

We note that if V(n,X) is also decrescent, then 

it is possible to reverse the implication that Â V ~-W(V) 

yield.s AV ~ -b(RXI\). 

2.4 Equiasymptotic Stability of the Equilibrium 

We next consider a series of theorems dealing 

with a more restrictive form of asymptotic stability; 

namely, equiasymptotic stability. 

Theorem 9: If there exists a real scalar function V(n,X) 

for which, on DnoR' 

a) V(n,X) is positive definite 

b) ~ V(n,X) is negative definite 

c) g1 ven any r, 0 < r<' R, and a.ny integer )) ~ no' 

there exists an E(r), 0 < E. <'r, and an integer 

f- ( J) ,r)~)J such that, for some integer m in 

the interval [no' v] and for some Y with !lY Il <: E. 

the conditions n~fL and V(n,X) L:. V(m,Y) together 
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impll" that OzU ~r, 
then the equilibrium Z = 0 of the difference equation (*) 

is equiasymptotically stable. 

Proof: Using Hahn's theorem, it follows that the 

equilibrium is stable. 

Given &Dy r, C <.r <R, let E(r) be the constant 

corresponding to r, according to the bypothesis c), 

04::. € <r. Bl" Theorem 5, given r and &Dy no ëI, there 

exists a ~(no ,r) > 0 such that for anl" Xo with Il xoll~~ 

and 8rJ.'3 E, 0 <. E<r, there exist integers V(no ' e.) 70 

and m in the interval [no ,no + u] such that 

li JI(m,no ,xo) \l <: E:. • 

1I0reover, gi ven no + J.) ,let f- (no +)) ,r) ~ no + V be the 

integer corresponding to no +)) according to the hypo­

thesis. 

Now, it follows that 

V(n,JI(n,no'xo)) ~ V(m,F(m,no'xo)) 

for aIl n ~ m, and this certainll" holds for n ~ t-. Con-

sequentll", 

Il F(n,no ,xo)" <: r, 

inclependentll" of xo ' for aIl R Xo H ~ ~ , .hich proves 

the equiasymptotic stabilitl". 

The follo.mg theorem gives an alternative set of 

conditions .bien also impll" the equiasymptotic stability 

of the equilibrium. 
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Theorem 12.:.. If there exist two real scalar functions U(n,X) 
and V(n,X) for which, on DnoR' 

a) U(n,X) is positive definite 

b) V(n,X) is positive definite 

c) V(n,X) is decrescent 

d) for 8.D;f positive rI' r 2 < R, the quantity 

4 V(n,X) + U(n,X) -? 0 

uniformly as n~ for aIl X such that 

rl~ IIXn~r2' 
then the equilibrium X = 0 of the difference equation (*) 
is equiasymptotically stable. 

Proof: Let [~~ be a.n:y non-increasing sequence 
which converges to zero, 

k = l,a, ••• 
Define 

fLl<. (ck ) = in! [V(n,X) : n ~ no' 1\ X Il = ck } 
Âk(ck) = sup [V(n,X): n)no ' "Xit < ckl. 

Note that 0 ~ lk<CD , while fk"> O. Further, if V(n,X) = f't;., 
then n~no and bk~ flXII~ck' for some constants bk(<it) >0. 
In addition, there exist constants ak(ck ) >0 and 

fk(ck) > 0 such that 

V(n,X) < fk 
U(n,X) ). 2 Sk 

for n) no' N X Il < ak; 

for n)no ' ak~UXII<R; 

that is, ~k < bk (ck ' fo~ aIl k. 

Furthermore, there exists a divergent sequence [J)kl 
of integers, Vic. (ck) > no' such that 
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Il V(n,X) + U(n,X) < f k 
for n).})k' ak ~ \lX\\ ~ cl; that is, 

I:::t. V(n,X) < - f k 
for n~ l{' ak~ nX l\ , cl. Wi thout any loss of gene­
rality, we assume that 

» > lJ + À If' "+2 "+1 k Jk+, 
for all k. 
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We now make use of the fact tlat ]I(n,no ,xo ) depends 
continuously on the L~tial value xo• Thus, for all 
no' ~ no' there exista a ~(cl,nO ') =6 *( ~ ,no '» 0 
such that for any %0 wi th Il %0 U c:: ~, i t follows that 

n ]I(n,no ' ,xo)11 < al 

on the interval [no' ,no' + ~]. Therefore, for n~ no ' + ~ ) 

\, )I(n,no' ,xo) Il < cl' 
for if not, there would be some n = n' ~ n '+.l) such o , 
that 

Il F(n' ,no' ,xo )1I ~ cl· 
This in turn would imply that 

V(n' ,FCn' ,no' ,xo)) ~ ft, · 
However, from the constructioD) 

V(no ' + ~ ,F(no ' + 1>. ,no' ,xo)) < fi· 
As a consequence, 

p, ~ Ven' ,PCn' ,no' ,xo)) ~ V(no ' + )J. ,7(no '+ l{ ,no' ,xo)) 
<. fa 

which is a contradiction. Therefore, we must have 

\\ F(n,no ' ,xo) Il < cl 
for all n» no' and for all Xo wi th li Xo II <~, and accor-

dingly, the equilibrium ia stable. 
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Now, either 

li F(ri.~ + 1.:>~ ,n~ ,xo) U. < a2 
or it is note In the former case, we conclude tliat 

Il F(n,n~ ,xo) U < c2 
for all n ) n~ + J),2 by the above chain of reasoning. 
On the other hand, suppose that 

Il :r(n~ +))~ ,n~ ,xo)" ) a2; 
then there would exist an integer ~ in 12' where 

such that 

Il F(~,n~,xo) V < a2 ; 
for if not, we would have the condition 

a2 ~ ":r(n,n~ ,xo ) \\ ~ Cl 
holding throughout 12 • This would imply that 

~ V(n,F(n,n~ ,xo)) <: - f2 
holds throughout 12 and therefore 

V(n~ + V~ + [~It}, :r(n~ + j)~ + [~/r,.),n~ ,xo)) 

- À 
~ 0, 

which is a contradiction. Hence, by an argument 
similar to the one employed above, 

\\ F(n,n~ ':0) il < c2 

1 

for all n.). ~ and all Xo \9i th 1\ Xo \\ < ~. )(oreover, 
this inequality holds for aIl n ~ n~+)):t +[l.lfJ; that 
is, i t holds for all n ~ n~ + Ys. Continuing in this 
manner, we can show that 

29 
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n F(n,n~ ,xo) \l < ck 
for aIl n ~ n~ + J)kH and for aIl Xo wi th Il Xo \\ 4 ~, for 

aIl k, which conc1udes the proof. 

Theorem Il: If aIl of the hypotheses of Theorem 10 are 

satisfied and if, in addition, the function f(n,X) is 

Lipschi tzian on DnoR for some constant K > 0, then the 

equilibrium X = 0 of the difference equation (*) i8 

uniform-asymptotica1ly stable. 

30 

Proof: The proof of this theorem is essentia1ly the 

same as that for ~heorem 10, except that ~e hew assump­

tion on f(n,X) a1lows the introduction of a decaying 

expon~ntia1 bound of the form 

Il F(n,no ,xo) n ~ \\xo \l Kn-no 

on the solution F(n,no'xo). 

Theorem 12: If the equilibrium X = .0 of the difference 

equation (*) is uniformly stable and if there exists a 

real scalar tunction V(n,X) for which, on DnoR' 

a) V(n,X) is positive definite 

b) A V(n,X) is negative defini te 

then the equilibrium is equiasymptotically stable. 

Proof: The equilibrium is obviously asymptotically 

stable, by Theorem 4, so that aIl that need be done is 

to show that aIl solutions tend to zero unifor.mly; 
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that is, we must show that the equi1ibrium is quasi­
equiasymptotica11y stable. 

Choose r< R sueh that for ~ E:, 0 ~ e. ~ r, 

31 

there exists a S (E ) > 0 such that no in I, "xo U < ~ 
imp1y 

il :F(n,n ,x ) \( <:: t o 0 

for n~ no. Let ~o. S (r) be the particu1ar 5 eorres-
ponding to E = r. ~ Theorem 5, gi ven DO in l and 
an::r X

o 
w1th Il Xc \1 ~ ~, there is an integer )J (no,r,é ) > 0 

and an integer D'in the interva1 [no,no+)}] such that 
\\ :F(n' ,no ,xo) n ~ ~ ( E ). 

This implies 

nF(n,no'xo)\\ <. E 
for a11 n ~ n', and hence, a fortiori, this inequa1i ty 
ho1ds for a11 n~no+» ~ n' and for any Xo with Il %0 11 ' ~ 
which conc1udes the proof. 

2.5 Uniform-Asymptotic Stabi1ity of the Equi1ibrium 

The resu1ts which fo110w dea1 with uniform-
asymptotic stabi1ity, an even more restrictive form of 
asymptotic stabi1ity than the equiasymptotic stabi1ity 
considered in the previous section. The first theorem 
in this direction has been given by Kalman and Bertram (~ 
in the1r Theorem 1.1 • 
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Theorem (Kalman and Bertram): If there exists a real 
scalar function V(n,X) for which, on DnoR' 

a) V(n,X) is positive definite 

b) V(n,X) is decrescent 

c) .6 V(n,X) is negati ve defini te 
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then the eqailibrium X • 0 of the difference equation (*) 
is UDi~orml7-asymptotically stable. 

_e DOW present a converse to this theorem. 

Theorem 13: If the equilibrium X = 0 of the Mfference 
equation (*) is uniformly-asymptotically stable, then 
there exists a real scalar tunction V(n,X) which satis-
fies on Dnor' for some r, 0 < r, R, the following conditions: 

s) V(n,X) is positive definite 

b) V(n,X) is decrescent 

c) V(n,X) is locally Lipschitzian 
d) ~V(n,X) ls negative definite. 

!,rOot: Choose r*, 0< r*<: R, so that for aIl e , 
o <: E. ~r*, there exists a S (€ ) > 0 suc?h that for 
ne. l and X w1 th U X li ~ b, 

Il J'(n+k ,n ,X) U <: E 

tor k ~O. By the bypothesis that the equilibrium i8 
uniformlY-asymptotically stable, it follows that there 
exists a ~o>O and, for aIl ~ >0, there exists an 
integer }) ("1 ) ~ no' such that, for nE l and 11 X \l ~ ~, 
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• n :r(n+k,n,X) \l ~ "l: 

--

-

• 

for k)-.2). Let 

r - mine ~c) , ~ (r·) ) 

and consider the region Dnor C DnoR defined by 

lX : IIXU<rJ. 

Now, given aD:3' non-increasillg sequence [cj } , 

0< c j < r, there exists an increasing divergent sequence 

[nj 1 ' nj(c j ) > 0, such that (n,X) E. Dnor imp1ies that 

li F(n+k,n,X) \\ < C j 

fo!' a11 k~ n j • 

Let g(k) be a real scalar function, positive and 

non-increasing for k> 0, such that g(k)~O as k~CD 

and, for a11 (n,X) E. Dnor ' 

l\ !'(n+k,n,X) i\ ~ g(k) 

on the interva1 [O,l1j ] and let 

g(nj +l ) = c j 
for a11 j. As a resutt, 

g(nj +1) 6- g(k) &: g(nj ) 

for a11 k in the interva1 [nj ,nj +1 ] , which implies 

Il !'(n+k,n,X)/\ <: c j ~ g(k) 

on the interva1 [nj ,nj +1 ]. This in turn implies 

U :r(n+k,n,X)1\ ~ g(k) 

for a11 k~O. 

Now let G(k) be the function associated with g(k), 

as given in the discrete form of Massera's Lemma, 

where we take h(k) = 1. Consider the scalar function 
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V{n,X) c Z G{ Il :r(n+k,n,X) Il ) • 
b-o 

This function is well-defined on Dnor and by the Lemma, 

G{s) is continuously differenttàble, which implies that 

V(n,X) i8 also continuoüsly ditterentiable with res-

pect to X. Also, by the Lemma, 
tIIO 

l: G' ( Il :r(n+k,n,X) Il ) 
"-0 

converges UDitormly, and hence is bounded on Dnor. As 

a consequence, the matrix i of partial derivatives 

of V(n,X) with respect to the components of X is also 

bounded. Thus, applying a generalized torm of the 

mean value theorem to V(n,X), we obtain 

=- n l(n,X·) n 1\ Xl-~ l\ 
f M l\ xl-x2ll , 

where X· is some value of X between Xl and X2 for each 

n. The above inequality demonstrates that V(n,X) is 

locally Lipschitzian. 

Moreover, choosing ~ = 0, 1re see that 

\ V(n,X1) - V(n,Q») = 1 V(n,Xl ) \ 

~ 14 Ilx1 \l , 

for each X with "xII <r; that is, 

1 V(n,X) \ ~ M 11 X \l , 

which implies that V(n,X) converges to zero with X, 

independently of n, which means that V(n,X) is decres­

cent. 

Furthermore, 
GO 

V(n,X) = 2: G [Il F(n+k,n,X) U] 
k=o 
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~ G [t\:F(n,n,X) ll] 
= G(\tx Il) , 

so that V(n,X) is positive definite. 
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Finally, we must investigate the total difference 
for V(n,X). This is given by 

10 

A V(n,X) = l [G(UI'(n+k+l,n+l,X(l1+l))ll) 
k-o 

- G(II:F(n+k,n,X(n))!f)] • 

This series, however, telescopes and leaves only the 
first term corresponding to k ~ 0 and the limiting 
term. Henee, 

A V(n,X) = lilr1t~(O G( IIlr(n+k+l,n+l,X{n+l)) Il ) 
- G( Il F(n,n,X(n)) " ) 

= - G(UX\(). 

sinee, by the uniform-asymptotic stability of the 
equilibrium, 

n F(n+k,n,X)" ~ 0 
as k -+(0 and G(Q) = -O. Thus, Â. V(n,X) is negative 
definite and the iheorem is proved. 

The previous Theorem 13 has been proved by Hala­
nay (4) in a much more restrictive form. His Theorem 4 
is as follows. 

Theorem (Halanay): If there exists a function mer) of 
class Mo such that the1mction f(n,X) satisfies the condi­
tion 
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Il f(n,X) n> m( IIxlI) , 
and if the equilibrium X = 0 of the difference equation (*) 
is uniformly-asymptotically stable, then there exista a 
real scalar function V(n,X) for which, on DnoR' 

a) V(n,X) is positive definite 

b) V(n,X) ls decrescent 

c) A V(n,X) is negative definite. 

We now present another criteriûn for the uniform­
asymptotic stability of the equilibrium. 

Theorem 14: If the equilibrium X = 0 of the difference 
equation (*) is uniformly stable and if there exists a 
real scalar function V(n,X) for which, on DnoR' 

a) V(n,X) i5 positive definite 

b) V(n,X) i8 bounded 

c) A V(n,X) ia negati ve definite 
then the equilibrium ia unifcrmly-aaymptotically stable. 

Proof: Chooae r <: Rauch that for arry €, ° < E ~ r, 
there exista a ~ ( E. ) > ° such that not I, Il Xo Il ~ ~ 
imply that 

\l F(n,no ,xo) l\ <:. E. 

for aIl n~no. Let ~ = ~ (r) be the particular ~ cor-o 

responding to E = r. By Theorem 6, given any noE l 
and a.ny %0 with 11 %0\1< ~D ' there exists an integer 
)) (r,E );> 0, which is independent of no' and an integer 
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n' (no ,xo) in the interval t no ,no + »] such that 
\\ F(n' ,no'xo)U < ~(é). 

Cons equently, 

\\ F(n,no ,xo) ~ ~ e 
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for aIl nq n'and hence, 8 fortiori, this inequality 
holds for aIl n~ no + J.> ~ n'and for al1 Xo with 
li Xo Il L.. ~o' which cOllcludeé the proo!. 

Before.continuing, we digress to develop some 
additionsl theory regarding solutions of difference equa­
tions which will prove useful in the sequel. The difte-
rence eq~ation under consideration is still 

Z(n+l) = t(n,X(n», 
but we no. require that the function f(n,X) sa~isfy a 
Lipsehitz condition in DnoR with constant K with respect 
to the second coordinate; i.e., 

Il f'(n~Xl) - r(n,~)\\ ~ K ILI1 - X2 \\ . 
A ~unction ~(n) is cal1ed an E -approximate 

solution of the difference equation under consideration if 
li ~(n+l) - :f(n,,$(n» li .tt: ~ 

for aIl n ~ no. The existence of such approximste solu­
tions follows directly from their existence for differen­
tial equations. 

We now consider two such approximate solutions, 
~l(n) and ~2(n), to the difference equation under consi­
deration which ditter trom the actual solution by at wost 
E: and € ,resr.ectively. That is, 1 ~ 



• 

• 

• 

U 911 (n+l) - f(n,91l (n)) Il .( Et 

Il 912 (n+l) - f(n,r42 (n)) li .( E2 • 

Further, 1re aSSUlle that at some in! tia1 value of n, no' 
these two approximate solutions differ from one ancther 
by at ilOSt eome amount ~ • Thus, 

Il 911 (no) - 912 (11
0 ) Il ~ ~ • 

As a resul t, we have 

n 1f1 (n+l) - r42 (n+1) - [f(n,r4l Cn» - f(n,lf2(n)] Il 
~€+E .E. 1 l.. 

Hence, 

n fltl (n+l) - 1!2(n+l) li ~ € + II f(n'''l Cn) - f(n,912(n)) Il 
~ E + K \\r41 Cn) - 1f2(n) \l • 

In parti cular, 

1\ Ifl (no +1) - 1f2 (no +1) U~ E + K n ffl (no) - 912 (no ) 1\ 

.f~+K~. 
:Furthermore, 

Il '1 {no +2) - 912 (no +2) Il <: E + KU $61 (no +1) - r42(no -fol) H 

< t + KE 2 
+ K ~ • 

Proceeding inductively, it follows that 

Il 911 (no+j) - r42 (no+j)1I 

<. E + e. K + E. K2 + • <# • <# + E. Kj-1 + ~ Kj 

l-Kj j r 
= E 1-K + K d • 

If, in the above, we now take the solution F(n,no'O) to 
be 911 , so that the corresponding E, = 0, and choose 



• 

• 

:r(n,no'xo) as ~2' where HxolJ<.~ and E2.= 0 a1so, then 

the preceding estimate yie1ds the f'ollowing inequality. 

U )lCn,no ,xo) - FCn,no ,0) 1 = 1 J'Cn,no ,xo) 1 
" Kn-no ~ , 

sinee E = E, + E:l = O. This estimate will be emp10yed in 

the proof' of the next theorem which gives fUrther con­

ditions for unif'orm-asymptotic stability of' the equili­

briwa. 

Theorem 15= If f'(n,X) is Idpscbitzian with constant K 

on DnoR and if the equ1librium X - 0 of' the dif'ference 

equation C*) satisf'ies the rollowing condition: 

given ~::>o and ~ E)O, there exists an 

in-eeger N-(€) ;> Q such t;h.at if x U< ~, n E l 
000 

imply ths.'C 

r.\ ~: "l' <. E. 1, JJ \:O .• l:4 .x ;_i . 0- C . 

~or aIl :G.~n .• N~ o . 
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then the equillbrium 18 uni:formly-asymptotica1ly stable. 

Proof': By defini tion, .. e need only show that the 

equi1ibrium is unit'orm1y stable. Given E., put ~(€) = E, for 

K< l, and for K .).1, let ~(€) = E rH, where N is 

the integer whose existence 1s specified in the hypo­

thesis for given E. Using the estimate for the solu­

tion of the difference equation obtained above, we find 

II FCn n x) Il ~ ~ Kn- no 
, 0' 0 
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{ E KD-Do ~ E.. (K<l) 

= E. rNKn-no ~ E (K.> 1) 

for aIl n in the interva1 [n , n +N ]. o 0 

Purthermore, the hypothesis guarantees that for 

any n~ n +N, and for the given €, o 
U :l(n,no t X o ) Il < €. 

Thus, this inequali ty holds for aIl n~ no' and hence 

we conclude that the equilibrium is indeed uniformly 

stable. 

The fol1owing theorem has been given by Hahn(2) 

for the case of differential equations. However, as was 

the case with Theorem 2, the proof given by Hahn depends 

solely on properties of the real number system and of func­

tions of real variables. According1y, no modifications 

are required to deal with functions whose arguments are 

diacrete and the result is stated without proof. 

Theorem 16: The equi1ibrium X = 0 of the difference equa­

tion (*) ia quasi-uniform1y-asymptotica11y stable if and 

only if there exists a continuous monotonically decreasing 

function ct{r), defined for aIl r ~O, satisfying the fo1-

lowing conditions: 

a) 1imr~ o-(r) = 0 

b) YF(n,no ,xo)U ~ o{n-no) 

for any xo with l\ Xo(\<::~' for some ~<R. 



• We May combine the two results, Theorem 2 and 

Theorem 16, to obtain a single necessary and sufficient 

criterion for uniform-asymptotie stability of the equi­

librium. 
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Theorem 17: The equilibrium X c 0 of the difference equa­

tion (*) ls uniformly-asymptotically stabIa if and only if 

there exist two real function~ f (r) am fT (r), such 

that the following conditions are fulfilled: 

a) f (r) ls defined, continuous, and monotonically 

increasing for 0 < r< R and f (0) = 0 

b) ~(r) is defined, continuous, and monotonically 

decreasing for all r~ 0 and 

limr.-,.oo 0"( r) = 0 

c) Il F(n,no,xo)H ~ <r(n-no ) f (Ux)\), 

for any x wi th 1\ x U ~ ~ , for some è ~ R. o 0 

In Theorem 3, we saw that if f(n,X) la periodic 

in n, atability implled uniform stability. We now present 

a similar result when the equilibrium la known to be 

asymptotically stable. 

Theorem 18: If f(n,X) ia periodic in n, and if the equi­

librium X • 0 of the difference equation (*) is asymp­

totically stable, then it is also uniformly-asymptotically 

stable. 
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Proof: The comparison function, wh1ch Hahn (2) con­

structs in his Theorem 17.5, satisfies the continuous 

form of Theorem 17. Moreover, this function fulfills 

the same requirements of Theorem 17 for discrete 

variables. 

As in Theorem 3, the special case dealing wlth 

f(n,X) being independent of n has been done by Kalman and 

Bertram (6) in their Theorem 1.1.1. 

Final1y, we consider a property which :fo11ows 

from some of the conditions imposed on V(n,X). 

Theorem 19: If there exists a real scalar function V(n,X) 

for which, on D R' no 
a) V(n,X) is positive definite 

b) il V(n,X) i5 negative definite 

th en , given arry rI and rit, 0 < r"< r'< R, there exist num­

bers q(r' ,rrr) >0 and c(r") > 0 sueh that the funetion 

W(n,X) = qnv(n,X) 

satisfies the condition 

Â "(n,X) ~ - e 

for aIl n~ no and ra ~ U 1: II.< r' • 

Proof: For 0< r" '-lIxU <'r ' < R, there exist positiv.e 

constants a and b such that V(n,X)~a and AV(n,X)~ -b. 

Renee, for the funetion W(n,X) = qDy(n,X), for any q, 

0<' q<. l, i t follows that 
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A .(n,X) = qn [qV(n+I,X(n+I)) - V(n,XCn»] 

:: qn [qAV(n,X) + (q-I)V(n,X)] 

~ qn [-qb + (q-l)a] 

= -c. 

2.6 Exponential Stability of the Equilibrium 
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We now consider an even more restrictive form of 
asymptotic stability; namely, exponential stability, where 
the solutions of the difference equation must decay expo­
nentiallY with increasing n. The first theorem of this 
section deals with sufficient con~ions for this type of 
decay in terms of the existence of a scalar function V(n,X). 

Theorem 20: If there exists a real scalar function VCn,X) 
for which, on DnoR' 

a) alU xl" ~ V(n,X) ~ a2UXUP 
for some positive constants al and 8 2 and 
some p> 0 

b) A V(n,X) ~ - a
3 

\\XO p 

for some positive constant 8
3 

c) a3/a2 < l 

then the equilibrium X - 0 of the difference equation C*) 
is exponentiallY stable. 

Proof: From the hypothesis, it follows that 
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A V(D,X) ~ -83 1\ XIlP 

~ (-83/82) V(n,X) 

CIl -e4 V(I1,X) , 
where, by s8sumptlon, 0 < s4 < 1. Bence, 

~V(n,X) - V(n+1,X(n+1» - V(n,X(n) ~ -84 V(n,X(n»j 
tbst'ls, 

so that 

V(n+2,X(n+2» ~ (1-s4) V(n+1,X(n+l» 

~ (1-s4)2 V(n,X(n». 

Proceed1ng 1nduct1ve1y, we obts1n 

V(n+k,X(n+k» ~ (1-s4). V(n,X). 
Thus, for n = no+k, th18 becomes 

Bence, 

V(n,X(n» ~ (1-S4)n-no V(no,X(no» • 

81 \l xUP (. V(n,X(n» ~ (1_e4)n-nO V{t30 ,X
O

) 

~. 82(1-84)n-nO Il XoJlP. 

As 8 resu1t, 

li Fbi,11
0

,XO)(\ P ~ (82/s1) (1_S4)0-nO 1/ Xo \\ P, 

so that 

li F(n,llo,xo) n ~ B· Cn- no I/xolli 
1.e., the equ111brium 1s exponent1e11y stsb1e. 

It œ1ght be lloted thàt tb1s resu1 t 1s somewbat 1Iore 
genera1 tbsn tbe sns10gou8 one g1ven by Krssovsk11 (S) for 
the ca8e of d1fferent1s1 equat10Ds where he 88Sumed P - 2. 

We have seen prevlously that exponent1al stsb111ty 
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1.p11e8 aIl of the other forms of atab111ty cOD81dered ao 

far. Ve cons1der DOW a partlal conver8e of one of the8e 

lmp11catlons _hen the glven functlon t(DTX) la 11near. 

Tbeorem 2~: If the equ1l1br1um X = 0 o~ the I1near dlffe­

r~nce equat10n 

X(n+l) - A(n)X(n) 

la UDlformly asymptot1cally stable, then lt ls also expo­

nentlally stable. 

Proof: S1nce the dlf~erence equat10n under consideratlon 

18 l1near, 1ts general solut1on 1e g1ven bl 

F(n,no'xo ' = Z{n)z-lCno)xo ' 

where Zen) aga1n denotes the fundamente1 matrlx solutloD 

for wh1ch 

Z{O) -= I. 

Let the norm of Z(n}Z-l{no) be denoted bl b(n,Do)' so 

that 

1\ F(n,no,xo) Il = ~ Z(n)Z-l{llo)Xo ~ 

~ b{n,no' lIxoi\ • 
Comparlng th1s eat1mate w1th the hypotbeses of Tbeorem 

11, we see tbat we Can take 

f Cr) = r 
and 

thet ls. 



Now, for D Q Dl ~ DO' 1 t follow8 that 

Z(D)Z-l(DO) - Z(D)Z-l(Dl)Z(Dl)Z-l(DO), 

aDd 88 8 cODsequeDce, 

b(D.~o) - " Z(D)Z-l(~o)" 

f. \1 Z(lt)Z-l(nl li Il Z(~l)Z-l(Do) " 

~ b(D,1l1} b{nl,no'. 

Now cons1deA' n .., Do+k}) ,'for some ))> O. Tbu8 

b (Do + P, no) ~ 0'" ( J) ) • 

Further, 
'1 k 

b{;Qo+k}V __ :00 ) .::: [0"( l> ) J ' 
9S seen from the follow~Dg induction argument. The 

inequa11ty has already been estab11shed for k - l, 80 

that we assume 

b{:OO -t-i,( V .• :0
0

) ~ [(7 ( li)J k 

and consider the (k+l)st term. 

b[~o+{k+l).::} ,:00 ] ~ b[no+(k+l)U ,no+kJ>] b(no+k» ,110 ) 

~. 0-[ (no+k V+ V) - (no+k v )J~( p il k 

.., tJ(v) [(j( j) )] k 

= Lcr ( iJ )] k+ 1 • 

Slnce ~(n-no) goes monotonlc811y to zero by a8sump­

tion, there exiata a ~ au~tlclent17 large so tbst for 

0'"( 1> ) < i. 
Thus, 

But, ainee n ~ no +k ,l) , we have 

k - (Il-Do)/V , 
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• 

so thst 

• 

It tberefore fo110ws thet 

Il F(n,no'xo' U ~ b- (n,.no' n xol\ 

< (2) -(n-no) Iv \1 X li 
o 

snd tbe equl11brlum ls expoDentls11y stable. 

2.7 Ip-Stabl11tY of the Equl11brlum 

Thus fsr, the types of stsbl1lty consldered .ay be 

grouped lnto 8 serles of cbslns ln whlcb each successlve 
concept of stabl11ty lmplles aIl tbst precede lt. Thus, 
the most restr1ctlve def1nltlon, that of exponentla1 
stab111ty, lmp11es unlform-asymptotlC stsbl11ty, whlcb 
ln turn lmpl1es equlasymptotlc stabl11ty. Contlnulng, 
equlasymptotlc stabl11ty lmp11es ssymptotlC stabl11ty, 
whlch then lmplles stabl11ty 1tself. In a separete dlrec­
tlon, the cha1n branches so tbat unlfor.-a".ptottc stabl­
llty 1mpl1es un1form stabl11ty, wblch ln tura glves sta­
bl11ty. The vsrlous lmplicatlons are ll1ustrated ln the 
8ccompanylng dlagram. 

Ve DOW conslder another type of stabl11ty whloh 
doea not qUite fit lnto elther of tbese chalns 01' succes­
slve types 01' atabl11tYi name1y, 1p-atabl11ty. From lta 
det1n1t1on, glven ln Def1n1t10n 10, we requ1re tbst the 
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p-tb powers of the solutlon of the difference equatlon 

X(D+l) - t(n,X(n») 
sre sWlllable for some p> o. Thst ls, 

00 p .2:: II F(k,Do '%o' Il < CD • 
k-no 

The convergence of 8uch a sua tor posltlve p lapllea 
automstlcslly thst 

\\ F(n ,!lo'Xo>UP ~ 0 

ss n ~(I), 80 tbst IIF(n,llo,xo)(1 ltselt goes to zero wltb 
lncresslng D. Thus, Ip-stabl1lt1 obvlously lmplles a8,ap­
totle stabl11ty. The folloWlng tbeore~ treats the rela­
tl0DSblp b$tween ~-stablllt1 and exponentlal 8tsbl11ty, 
tbe ot~,r end of the chs1n • 

Tbeorem 22: If the equl11brlum X z 0 of the dlfterenoe 
e~8t10n (.) 18 eXponentlally stable, tben lt ls s180 
l -stable. p 

Proof: If the equl11brlum 18 exponentlal17 stable, the 
solut10n te the dlfference equatlen sat1sfles an estl­
mate of the fors 

Il F (n • DO ' %0) Il ~ B n Xo li c n-no , 
tor Bome c, 0 < c < l, snd some B '> o. Tberefore 

Il F(n,IlO,xoln p ~ al' n xo" P cp(n-no) 
ând hence 

~ 

~n}\F(k,no'xo)UP ~ sP Il Xo uP f. (cP) k-no 
k=no 
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• BP \\Xo\\P 00 

ï: CCP)k 
. alloP k=nD 

sP Il XQUP oIJ 

~ 2: CCP)k 
clloP k·o 

= 
BP nXoIIP 

1 
CDOP • 

l-cP 

< CI) 

for any c, 0 < c < 1. 

On the other band, the follo.lng rether tr!~lal 
exaaple lndlcetes tbat 8syaptotlC 8tablllty, and even 
equls81MPtotlc stsblllty, does not necesssrll, 1apl7 lp­
atsbl11ty • 

Example: Cons1der the scsler d1rference e~at1on 

X(n+l) - logfD+2J X(n), log 11+3 

wb1ch aay be wrltten es X(n+l) z A(n)X(n), 80 tb8t the 
equat10n ls I1near. The solut1on of the l1near dltrerence 
equat10n 18 glven b7 

F(n,nO'xO) a Z(n)Z-lCnO)xO, 
whlcb for thls part1cular equat10n beCOm8S 

It 18 obvl0U8 that as n goe8 to lnflnlty, the solut1on 
tends to zero, so that the equ1l1br1um 18 1ndeed asympto­
t1call7 stable. In fact, s1nce the d1rrerence equat10n 1s 
l1nesr, the equ1l1br1um must be equ1ssyœptot1call, stable. 
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Rowever, 

pO 
00 p L \tp(k,no,xo)I\P = [log(no+2)]P \1 xo\\P l. [1 J k-n ~. 10g(k+2) o 

~2no 

and the latter series 18 known to diverge for aIl P~ o. 
Rence, the equil1brium for this d1fference equation is 
not lp-stable ~or any p. 

We now present a sufficient criterion for lp-sta­
bi11ty in the form of the existence of a scsiar function 
V(n,X) • 

Theorem 23: If there exists a resl scalar !unction V(n,X) 
for which, on D R' no 

a) V(n,X) 15 positive definite 

b) A V(n,X) ~ - c Bxi\P, for some P~ 0 and some 
c>O 

then the equ11ibrium X = 0 of the dif!erenee equation (*) 
1s lp-stable. 

Proof: The existence of the funetion V(n,X) with s 
negative definite total differenee implies that the 
equilibrium 1s stable. Thus, given any no'> l, a So 
can be chosen sueh that Il xoU < ~c imp11es that 

Il J'(n,no ,xo)'\ <.. M 
for some M> 0 and for aIl n). no. 

Now, define, for n)nl , for any nI> no' 
n-I 

G(n) = V(n,F(n,no ,xo» + cE nF(k'tno ,xo) U p. 
k ... n.-, 
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We note that 

G(n1 ) = V(n1,F(n1,no'xo» + c UF(n1-l,no,xo)K P 

:: V(n1 ,xl) + c Il F(nl-l ,no ,xo ) If P , 

where we have written xl :: F(nl,no'xo). Furthermore, 

A G(n) :: LlV(n,F(n,n ,x ) 
o 0 

+ c n F(n 7 D.o ,xo) Il P 

~ -cHF(n,no'xo ) ~P + cil F(n,no ,xo} Il P , 

so that 

À G(n) ~ o. 

As a consequence, it follows that 

G(n) ~ G(n
1

) 

for aIl n.> nI- '~nat is, 
1'1 -\ 

V(n,FC!l,n ,x) + c L IIF(k,n ,x )U P 
o 0 ~-n~1 0 0 

or equivalently, 

so that 
1')-1 

~ V(n1,x1 ) ... cU F(nl-l,no'xo ) flP , 

n-\ 
C ~ Y F(k,no ,xo) 1\ P 

Je o.", 

Ck.~h, H F(k ~n.o ,xo ·: \\ ;. ~ 'il(nI ,xl) L. V{no ,xo ) 

for aIl n ~ nI- This implies that 
~-l 

L 1{ F(k ,n ,x ) ij P ~ (l/c)V(n ,xo). 
1:: - n.. 0 0 0 

Tating the limitas n ~<D , we f'ind that 
OC) 

L li F(k,no'xo ) K P '= (l/c}V(no'xo)' 
/C.~ n. 

wlùch implies 
CIO 

L \\ F(k,no ,xo ) U p < CD , 

"-no 
and thus the equilibrium i5 Ip-stable. 

, 
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We no. turn to possible converses to the previous 
theorem which will guarantee the existence of scalar func­
tions V(n,X). The first such result, for the case of a 
linear difference equation, requires nothing more than 
the asumptton that the eqailibrium is lp-stable. How­
ever, for the case of arbitrary f(n,X),' additional asump­
tions will oe neceasary. 

Theorem 24-: Ii' the equilibrium X • 0 of the linear diffe-
rence equation 

X(n+l) = A(n)X(n) 
is lp-stable, then tnere exists a real scalar function V(n,X) 
for which, on D R' no 

a) V(n,X) is positive definite 
. , 
'0) V(n,X) is locally Lipschitzian 

c) ~V(n,X) ~ -UXHP. 

Proo!: Since the difference equation is linear, the 
general solution is given by 

F(n,no'xo) - z(n)z-l(no)xo• 
Further, sinee Ip-stability implies stability, there 
exists an M> 0 such that 

1\ Zen) lt ~ 11 

for aIl n) no. 

We now define 

sen) = n Zen) l\ 
and 



• ~(n,X) :: Il Z-l(n)X Il , 
so that 

~(no ,xo) == "z-l(no)xo Il ., 
and therefore, it follows that 

1{ F(n,no ,xo) II ~ s(n)~(no ,xo)· 
As a consequence, 

Il Xo JI :: Il F(no ,no ,xo ) il ~ s(no)~(no ,xo)· 
Now define 

cO tQ 

V(n,X) = 2. [s(k)lI(n,x)1p + l [s(k)$6(n,X)]P ken ~~o 
for aIl poLnts (n,X) in D R. Both of these series no 
converge since the equilibrium is 1 -stable. The proof p 
that this fUnction satisries the theorem depends on 
the following three properties for this choice of V(n,X). 

Property 1: There erlst two positive constants 

cl and c2 such tbat 

c1llxliP 6 V(n,X) ~ c~t Z-l(n) uPaX\\p 
for aIl points (n,X) in D R. no 

We have 
t:IO 

V(n,X) ~ 2 &0 LS(k)~(n,X)] P 
CIO 

::: 2 c-(n,X)l P "> [s(k)] P w dO 

~ 2 Il Z-l(n)l\P Il xl\P &o[S(k)]P 

z: c
2 

\1 Z-l(n) I\P U xUP. 

llurthermore, 
t:tO 

V(n,X) J. I:. [s(k) ~(n,X)1p 
k,=o 

:: 2:. [s(k) II Z-l(n)X n] P E:o 
~ t. l s(k) 1( Xl\] P Ils(n)]P 

k-=ô 
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cO 

II: .?o [S(k)jP IIxliP / Il zen) HP 
CIO 

~ (l!ll)P JI xUP Z [S(k)jP 
\::::0 

:a c1l\X IlP • 

Koreover, it ia evident that V(n,O) • 0, for a11 n~no. 

Property 2: ~ V(n,X) L. -u x(IP. 

Wa have 

~(n,X) 0: n Z-l(n)X Il = 
=- IlF(O,n,X)\~. 

Rence, 

~(n,F(n,no'xo» = Il F(O,n,F(n,no'xo»1( 
li: "z-l(n)z(n)z-l(n

o
)x

o 
Il 

• ~ z-l(no)xo ~ 

Now 
eD 00 

V(n,F(n,no ,xo» ::z ~~[ s(k)!lf(no ,xo)] P + ~t>[ s(k)~(no ,xo)J P, 

where the second term is independent of n for a11 

(no'xo) in DnoR. Therefore, 

Â V(n,F(n,no'xo») = V(n+l,F(n+l,no 'xo» 

As a resu1t, 

- V(n,F(n,no'xo» 
=- - [s(n) ~(no ,xo)]P 

:a - [II Z(n)" " z-l(no)xoll] p. 

A V(no ,:r(noitllo ,xo» = - [II zeno) Il \\ z-l(no)xotl] P 

~. - JI xoliP• 

However, this inequa1ity is va1id for every (no'xo) in 
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Dn R, 80 tbat we ma7 conclude tbat o 
.6 V(n,X) ~ - "xliP 

tor ever 7 (n,X) ln Dnoa. 

Propert7 3: Tbere ex18ts a posltive constant c, 
suoh tbat 

\ V(n,XI ' - V(n,X2' 1 
L. 0, [HXIIIP-I + IX2I1P-I]lIz-1(n)IlP IIX1-X211. 

We have 

1 V(n,XI ' - V(n,x2,1 
la IJIr.~f[8(k)fII(D,XI)]P - [s(k,.,(n,X2)]p} 

+ Ï. [[ s(k)"(n,Xl>J P - [8(k)"(D,X2>] p} l\ 
~ .. o 

~ 2 lit. [S(k)]p[[é(D,xlf -[fI(n,x2f]1I 
~ 2 t. [8 (k) JP 1" Z-1(a)X1IIP - " Z-l(a)XiI P 1· 

Now, by tbe meaD value theorem, given SD7 t.o real num­
bers rI and r 2 , 

1 rl
P 

- r2
P 1 - t p rP-1 (rl-r2) , 

p(rlP- 1 t r 2
P- 1 ) !rl-r2' , 

where rI ~ r {, r2. App17lng th18 resul t to tbe above, we 
obtaln 

'nz-1(n)X1IIP - llZ-1(D)X21\pl 

~ p LIIZ-1(D)X11I p-l .. 1\ z-1(n)x2 1t P-l] • 

• lu Z-1(n)X11I - \\ Z-1(n)X2 \\ 1 
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~ p 1\ Z-l(n) IIP- 1 [u Xl "P-1 f "X2\JP-1] • 

• 1\ Z-1(n)X1 - Z-l(n)~ il 
~ P IIZ-1(n)I{P [Il X1UP- 1 + \l ~\\P-11 Hx1-X211 • 

Rence, 

t V(n,X1 ) - V(n,12)\ 
.cJ 

"7 ~ 2 2. [S(k)] Pp" Z-l(n)IlP OIX UP-1 + li X 1lP-1J. k=o 1 2 

• Il Xl - ~" 
- C

3 
U Z-l(n)llp DrI1UP- 1 + Il ~llP-1] UX1-~ (1 • 

Thus, Property 1 shows that V(n,X) is positive defi­
ni te, wh11e Property 2 demonstrates the CDndi tion on 
AV(n,X) and Pro pert y 3 proves that V(n,X) i8 10ca11y 
Lipschitzien. 

We no. consider the possibi1ity of proving the 
existence of a sca1ar function V(n,X) for the arbitrary 
dif'f'erence equation (.). In order to obtain a.ny resu1ts, 
it 1s necessar,y to impose more stringent conditions than 
merely Ip-stab11ity for the equilibrium. as was done in 
Theorelll 24. 

Theorem 25: Suppose that the equilibrium X • 0 of the 
differenct:; equation (.) 1s Ip -stable and -turther, suppose 
that for each fixed n, ~ F(k,n,X) exists for ~ point 
in DnoB; moreover, suppose that 

s = sUP(k,X)é: DnoR~i;o Il F(k+n,n,X) IIP-
l 

/1 i(k+n,n,x~, ••• X~) li} 
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• 

• 

is bounded, where i ia the matrix of partial derivatives 

• 
i(k+n,n,xi, ••• X;) =('ê> Fi (k+n,n,Xi ), 

~x3 -;, 
Xj are the eomponents of the veetor X and (n,xi), ••• (n,X;) 

Then there exists a res1 sea1ar 

fonction V(n,X) for which, on DnoR' 

a) V(n,X) is positive detinite 

b) V(n,X) is loca1ly ldpaehitzian 

c) A V(n,X) ~ -IJxlIP• 

Proof: 'le define the function 

cD 

V(n,X) =- L Il :r(k,n,X)U p 
\::.0;1\ 

and demonstrate that it possesses aIl of the required 

properties for the tunction described in the statement 

of the theorem. This tunetion can be rewritten as 

Furthermore, 

V(n,X) 
,., 

= L Il:r(k+n,n,X) HP • 
E ... o 

p(J 

V(n,O) :z l Il P'(k+n,n,O) UP :. 0, 
'-'.0 

ainee F(k,n,O) :z ° for aIl k. Koreovsr, 

V(n,X) ~ U F(n,n,X) UP :z lt XUP, 

whieh proves that V(n,X) ia positive detiDite. 

We now app1y the eatimate derived in the proof 

of Property 3 in the previous theorem to obtain 
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~ [)UF(k+n,n,Xl)1l p - Il F(k+n,n,~) nP l l .. o 
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~ Ï. P [II F(k+n,n,xl )IIP- 1 + \1 F(k+n,n,~)ftP-l] • 
k=O 

• \ Il F(k+n,n,Xl ) Il - U Jf(k+n,n,~) ~ r . 
Imposing the requirement that the solution F(k,n,X) 
be a differentiable funetion of X for eaeh fixed n, 
then on the olosed iilterval [(n'Xl)' (n,~)J in 
DnoR' we may apply a generalized form of the mean 
value theorem to obtain 

where i 

of the theorem, for some points (n,Xi), ••• (n,Xt? 
the elosed interval. Renee, the ab ove estimate for 
the differenee between V(n,X) evaluated for two diffe­
rèDt values of X becomes 

co 

~ L. p [\I:F(k+n,n,Xl ) l\P-l + 1\ F(k+n,n,~) \\p-l 1· 
~=o 

• \l i(k+n,n,Xi, ••• X~) \\ It Xl-~'" 

6. 2ps ft Xl - ~ 1/ ; 

that is, V(n,X) is loeally Lipsehitsian. 
Finally, we consider the total difference for 

V(n,X) • !ro begin,; we note that 

F(k,n,F(n,no'xo)) = Jf(k,no'xo) 
sinee the solution to a differenee equation through any 
given point is unique and sinee, at the point (n x) 

0' 0 ' 
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Renoe, 

00 

V(niF(n,no,xo» • l ltF(k,no,xo)IIP, 
so that ~=" 

dO 

6 V(n,X) = ï: Il F(k,no'xo)\\P k-" ... , 
= -1( F(n ,no ,xo>{tP 

~ o. 
In faot, ~V(n,X) is equal to zero if and only if F(n,no'xo ) 
is equal to zero, whioh ooours if and only if Xo = o. 
Thus we oonolude tbat ~V(n,X) i8 negat1ve definite 
and henoe this funotion V(n,X) 8ati8fies all of the re­
quirements of the theorem. 

We now oonsider tbe linesr differenoe equation 

X(n+l) = A(n)X(n) 
and tbe assooiated equation 

X(n+l) = A(n)X(n) + g(n,X(n», 
where the term g(n,X(n» may be considered as a perturba­
tion of the linear system. If the equilibrium X = 0 of tbe 
linear equation p08SeSS!es 80me form of stabili ty and if tbe 
perturbation is small in some sense, tben it is reasonable 
to expeot tbat the equilibrium of the perturbed equation 
should sbare the same stability property. The following 
tbeorem provides proof of tbis expeotation for tbe oase of 
Ip-stability. 

Theorem as: If the equilibrium X = 0 of the linear diffe-



rence equstion 

X(D+1) • A(n)X(n) 
is 1p-stsb1e, tben the equi1ibrium of the sssocisted per­
turbed equation 

X(n+l) = A(n )X(n) + g(n ,X(n» 
is a1so 1p-stable provided tbe perturbation g(n,X(n) 
satisfies the conditions: 

a) g(n,O) = 0 tor all n).no 
b) 1\ A(n)X(n) + g(n,xen»l\ ~ (lA(n)X(n)1\ 
c) 1\ Z-l(n) IlP II g(n ,X(n »It ~ 0 unitormly as 

~ x(n)ij 

Il xlI~o. 

Proof: If X(n) = 0 1a lp-stsble for tbe linear equat1on, 
tben, by Tbeorem ~, tbere exists a scslar function V(n,X) 
sati~tying tbe conditions on DnoR' 

1. clllXIlP ~ V(n,X) ~ 02 11 Z-l(n)\(P Il xllP 
2. âV(n,X) ~ -lIxl(P 
J. 1 V(n ,Xl) - V(n ,X2)1 ~ c3 [UX1Up-1 + ~ X2\\P-l ] • 

• JI Z-l(n)I(P lIX1-X2~. 
Tbis f~nction will be used to p~ove tbe 1p-stability of 
the perturbed equst10n. Tbê total difference of tbis 
funct10n for tbe perturbed equation is given by 

âVp(n,X) = V(n+l,AX + g) - V(n,X) 
= V(n+l,AX + g) - V(n+l,AX) + V(D+l,AX) - V(n,X) 
.6 1 V(n+l,AX+g) - V(n+l,AX)I + V(n+l,AX) - V(n,X) 
~ c

J [1\ AX+gllp-l + 1/ AXIIP-l] Il Z-l(n)l( p Il g/\ 
+ !:l. VL(n ,X) 
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using condition b) on AX + g and the defini tion of 
total difference of V(n,X) for the linear difference 
equation. Thus, 

, - c\\xHP, 
for some posi ti ve c < 1 for fi X Il suffieiently small 
since by assumption c), 

lIZ-l (n)UP 11 sU 
t X r 

with Ux Il. Rence, 

.6 Vp(n,X) ~ - If X IIP 

~o 

and the equilibrium of the perturbed equation is also 
lp-stable by an application of Theorem 23. 

2.8 Stability Under Perturbations 

We now consider in greater depth the situation 
where a given difference equation is altered by the addition 
of a "small" perturbing term to f(n,X). In particular, we 
consider the difference equation (*) 

X(n+l) = f(n,X(n)) 

and the associated perturbed difference equation 
Y(n+l) = f(n,Y(n)) + g(n,Y(n)). 



• As before, we impose the condition 

f(n,a) - a 
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for aIl n~no. However, there are two possible approBches 

to follow ~th regard to g(n,Y). The first is where the 

perturbing function satisfies a condition of the form 

g(n,a) - 0 

for aIl ::.:=;.no a180. In this case, the trivial solution 

X = a is a common solution to both the perturbed and the 

';' unperturbed difference equations. The second possibility 

arises when the above condition on g(n,Y) does not hold, 

but when it is known that the perturbation is "small" in 

some sense. 

As an example of the first possibility, we con­

sider the following theorem originally given by Hahn (3) 

and dealing with the case where the equilibrium of the 

unperturbed equation is exponentially stable. 

Theorem (Hahn): If the equilibrium X = 0 of the linear 

difference equation 

X(n+l) - A(n)X(n) 

is exponentially stable, then~e equilibrium of the per­

turbed equation 

Y(n+l) = A(n)Y(n) + g(n,Y(n)) 

is also exponentially stable, provided that 

a) g(n,a) = 0 for aIl n~no 

b) I/g(n,Y)tf~aUYII, 

for some sufficiently small constant a. 
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We now turn to an examination of maintaining some 
type of stability property when the perturbation is small, 
but not necessarily zero for Y = O. We begin by introducing 
one definition of stability under such small perturbations. 

Definition 13: The equilibrium X = 0 of the unperturbed 
difference equation C*) is said to be totally stable if, 
for every ~ '> 0, there exist two positive constants 
)., C ~) and ~l-C,) such that 

1/ gCn, YCn)) JI ~ b~ 

for aIl Cn,Y) in DnoR imply that 

Il F*Cn,n ,x )" L (;;. o 0 

for aIl n ~no for every solution F*'(n,no ,xo) of the 
perturbed difference equation 

Y(n+l) • fCn,Y(n)) + gCn,Y(n)). 

The following theorem for tota"l stability of 
the equilibrium is a consequence of this definition. 

Theorem 27: If there exists a real scalar function V(n,X) 
for which, on DnoR ' 

a) V(n,X) is positive definite 
b) V(n,X) is decrescent 

c) V(n,X) is locally Lipschitzian 
d) ÂV(n,X) ia negative definite for the unperturbed 
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difference equation (.) 
then the e~1ibriua X = 0 of the difference equation (.) 
18 total17 stable. 

Proo:t: B7 the candi tions in the bypothesis on V(n,X), 
there exist functions a{r) and ber) of class .0 such 
that 

s{Jlx,,) ~ V{n,X) ~ b{IlXU) 
and a fuDction c{r), also of class .0' 8Uch that for 
the unperturbed difference equation, 

A V{n,X) ~ - c{IIXU). 
1Iow, given €, 0< E< R, choose a constant q, 0< q.c::: a(ë ). 
filen there exists a constant r( q) > 0 such that 

V(n,X·) • q 

iaplies r< nX·U<E for sOlle X· w1th "X·" > O. l'ur-
thermore, 

Â V(n,X·) ~ - c(UX·JD ~ - c(r), 

ainee r ~ qX·U • 
We now consider the total difference of V(n,X) for 

the perturbed difference equation. This becomes 

~Vp(n,X(n» = V(n+l,f(n,X)+g(n,X» - V(n,X(n» 

= V{n+l,t(n,X)+g(n,X» - V(n+l,f(n,X» 

+ V(n+l,t(n,X» - V(n,X(n» 

~ J V(n+l,t(n,X)+g(n,X» - V(n+l,f(n,X»\ 

+ Â VL(n,X) 
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for ~ sufflc1ently small, uslng the fact that V(n,X) ls 

locally Llpschltzlan wlth constant K. 

We now choa se (" = , ( E") such that ~ < E and ot l , 

V(no'xo ) < q 

for ft xoli <~. Then, for aIl n~ no, 

Q Ftn,no ,Xo ) B< € , 

for lf not, there would exlst an nl~ no ~ch that 

V(nl,X) > q, 

slnce q( a(E ) = E. But 

. V(no'xo ) <. q 

and A Vp(n,X) ls negatlve def1nlte, which lmplles that 

V(n,X) ls monotonlcally decreaslng. Thus we lndeed have 

" F1n,no ,Xc)n < ~ 
for n xoll <~I and "g(n,X(n»ft < ~. Bence, the equlllbrlum 

ls totally stable. 

1.1' we compare this result with Theorem 13, we 

obtain the .1'ollowing relation. 

Theorem 28: 1.1' the equilibrium X = 0 0.1' the di.1'.1'erence equa­

tion (*) is uni.1'ormly asymptotically stable, then it is also 

totally stable • 
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We next consider a slightly different approach to 

this entire problem. In particular, we will investigate 

how the solutions of the perturbed equation behave with 

respect to the solutions of the unperturbed difference equa­

tion. Thus, for example, we will consider such possibilities 

as whether the perturbed solutions will remain close to, or 

even approach, the unperturbed solution. 

Definition 14: The solutions of the perturbed difference 

equation 

YCn+l) - fCn,YCn)) + g(n,YCn)) 

are said to be stable with respect to the unperturbed dif­

ference equation (*) if, for aIl E "?O and aIl no (, l, there 

exists a ~ C " ) "':> 0 such that IIx~ -xJ ~<.) implies 

«F*Cn,n ,x*) - F(n,n ,x )0 ~~ o 0 0 0 

for aIl n~no' for every solution F*Cn,no'x~) of the per-

turbed difference equation. 

Definition 15: The solutions of the perturbed difference 

equation 

YCn+l) = f(n,Y(n)) + g(n,YCn)) 

are sàid to be aSymptotically stable with respect to the 

unperturbed difference equation C*) if they are stable with 

respect to i t and if, for aIl no f. l, there exists a ~ (no) > 0 

such that Il x~ -xo" L 5('1 implies that 

nF*(n,no'x~) - F(n,no,xo)11 ~O 

as n -=!DCD for every solution F*Cn,no ,x~) of the perturbed 
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difference equation. 

The last definition is equivalent to the statement 
that aIl solutions of the perturbed difference equation 
which start sufficiently near to the unperturbed solution 
eventually approach it. Koreover, we note that both of 
these definitione are independent of the behavior of the 
solutions of the unperturbed equation. In fact, the follo­
wing simple examples show that these solutions may be 
stable, asymptotically stable, or even unstable. 

Example 1: Consider the unperturbed difference equation 
X(n+l) :. Xo 

whose stable solution is F(n,no'xo ) 
turbed equation 

Y(n+l) = Xo + Yo' 

= x • o and the per-

for some sufficiently small Yo. The perturbed solution 
is given by 

Consequently, 

= x* o = 

F*(n,no'x~) - F(n,no'xo) = Yo 
and Definition 14 holds with ~ - ~ , for any E:..,. O. 

Exemple 2: Ccinsider the unperturbed difference equation 
X(n+l) - aX(n) 

with 1 al <= l, whose asymptotically stable solution is 

= 



• 

• 

• 

In addition, consider the perturbed equation 

Y(n+l) 2 (a+b)Y(n), 

with b sufficiently small; in particular, take any b in 
the open interval (O,l-a). The associated solution is 
then given by 

= 
and therefore, 
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(/F* (n,no ,x~) - F(n,no ,xo)JJ = /1 (a+b)n-nOx~ - an-noxo Il , 
which approaches zero as n ~, for a.rry x~. 

Example 3: Consider the unperturbed difference equation 
X(n+l) = X(n) + x ln , o 0 

whose unstable solution is given by 

F(n,no '2xo ) 

In addition, consider 

= 

Y(n+l) = yen) + xo/no + g(n), 
CD where g(n) is any sequence for which ~ g(k) = O. 

The corresponding solution is then given by 
n-I 

= x + nx ln + ~ g(k) o 0 0 ~k=no ' 
and> by the choice of g(n), it is obvious that the dif­
ference between the two solutions approaches zero as n ~Q) • 

We now present several theorems which supply suffi­
cient conditions for these types of behavior to hold in 
terms of the existence of real scalar functions U(n,X), 
which are similar to those used in the previous results. 
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Theorem 29: If there exists a real scalar function UCn,X) 
for which, on Dn~R ' 

a) UCn,X) is P9sitive definite 
b) llU(n,YCn)-XCn)) is negative semi-definite, 

then the solutions of the perturbed difference equation 
YCn+l) = fCn,Y) + g(n,Y) 

are stable ~±th respect to the unperturbed difference equa­
tion C*), provided that 

UP*Cn,n ,x*) - F(n,n ,x )N ~ R o 0 0 0 
for aIl n~ no. 

Proof: Bince UCn,X) is positive definite, there is a 
function a(r) of class Mo such that 

U(n,X) ) aCItXI/). 

Now, gi ven any G , choose x~ sufficiently close to 
xo so that 

Ux*-x 1/ <: ~ U(n ,x* - x ) .é. a( E ). o 0 000 
It then follows that 

IF*Cn,n ,x*) - F(n,n ,x )U ~E o 0 0 0 

for aIl n ~no ; for, if not, there would be some 
nI ~no such that 

nF*(nl,no'x~) - F(nl,no,xo)II ~~ • 
This, however, would imply that 

UCnl,F*Cnl,no'x~) - F(nl'~o'xo)) 

~ a( I(P*Cnl,no'x~) - F(nl ,no ,xo )1I ) 

~ a( E) 



• 
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> UCno ,x~ - Xo) 

? U(nl,F*(nl,no'x~) - FCnl,no'xo))' 

which is a contradiction. 

Theorem 30: If there exists a real scâlar function U(n,X) , 
for which, on DnoR ' 

a) UCn,X) is positive definite 

b) ~U(n,YCn)-X(n)) is negative definite, 
then the solutions of the perturbed difference equation 

Y(n+l) = f(n,Y) + gCn,Y) 
are asymptotically stable with respect to the unperturbed 
difference equation C*), provided that 

flF*Cn,no ,x~) - F(n,no ,xoH ~ R 
for aIl n ~ no. 

Proof: The proof of this theorem follows directly 
from that for Theorem 4, taking into account the 
type of modifications which appear in the proof of 
Theorem 29. 

It should be noted that both of these results 
hinge on the requirement that 

lIF*(n,no'x~) - F(n,no ,xo )1I ~ R 
for aIl n. The following theorem gives one fairly simple 
set of conditions on the functions fCn,X) and g(n,Y) which 
will guarantee that this condition holds. 



• 
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Theorem 31: If the function f(n,X) satisfies a ~pschitz 

condition with respect to the variable X with constant L< 1 

and if the function g(n,Y) satisfies 

Ijg(n,Y) Il ~ a IIY Il , 

"for some sufficiently sma11 positive constant a, th en 

nF·(n,üo'x~) - F(n,no'xo)U ~ R 

for aIl n~no' provided that x~ is chosen sufficiently 

close to xo. 

Proo!: For simplicity, we will denote 

f(no+j) = f(no+j,F·(no+j,no'x~)). 

It then follows, after a somewhat involved inductive 

argument, that 

nF·(no+k,no'x~) - F(no+k,no'xo)" 

~ Lk "x~ -xo l' + , JÇ~ Il ~k + ak-lL + ak- 2L2 + ••• + aLk- l J 
+ IIf(no) /1 [ak- 1 + ak- 2L + ••• + aLk- 2 1 + ••• + 

+ lIfCno +k-3) II L a2 + aL] + 

~ Lnx;-xoll + R r(ak + ak-lL + ••• + aLk-l) 

+ (ak- l + ak- 2L + ••• + aLk-2) 

+ ••• + (a2 + aL) + a] 

z Lnx*-x U + R tCa + a2 + ••• + ak) + LCa + a2 + ••• +a
k

- l ) o 0 

+ ••• + Lk-ICa)] 

= LUx~-xolI + Ra/Cl-a) LCI-ak ) + L(1_ak - 1) + ••• +Lk-ICl_a)] 

~ Lnx~-xo" + Ra/Cl-a) Il + L + ••• + Lk-l ] 

~ LI\x~-xoli + aR/Cl-a) (l-L). 



• 
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This quanti ty, however, ean be made smaller than R by 
choosing x~ sufficiently close to Xo and by taking a 
sufficiently small, since L<I. 
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By way of example, we now present one of the usual 
type of results on preserving stability under perturbations 
which is now merely an immediate application of Theorems 
30 and 31. Essentially, this is Hahn's 'result just mentioned. 

Theorem 32: If the linear equation 

- A(n)X(n) 

is asymptotically stable wi th ()A(n)U 5 b < l for aIl n, 
then the solutions of the perturbed difference equation 

Y(n+l) - A(n)Y(n) + g(n,Y(n)) 
where 

IIg(n,Y) Il ~ a ~Y Il 
for some sufficiently small positive constant a, are also 
asymptotically stable. 

It is fairly apparent at this point that the 
notions introduced in this section can easily be extended 
to encompass as weIl the various refinements of the sta­
bility properties which have already been studied. For 
example, if definitions ana1ogous to Definitions 14 and 15 
are introduced for the solutions of the perturbed difference 
equation being either lp-staoie or exponentially stable with 
respect to the unperturbed equation (*), the following 
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results can easily be demonstrated • 

Theorem 33: If there exists a real scalar function U(n,X) 
for which, on DnoB ' 

a) u(n,X) is positive definite 

b) ,dU(n,Y(n)-X(n)) 5 - c,Y(n)-X(n)OP 

for some p ~O and some c::>O, 
then the solutions of the perturbed difference equation 

Y(n+l) = f(n,Y(n)) + g(n,Y(n)) 
are lp-stable with respect to the unperturbed difference 
equation (*), provided that 

UF*(n,no ,x~) - F(n,no ,xo ) Il ~ R 

for all n ~no. 

Theorem 24: If there exists a real scalar function U(n,X) 
for which, on DB' no 

a) alnXgp ~U(n,X) 5 a2 11XRP 

for some positive constants al and a2 and 
for some positive p 

b) A U(n, Y(n)-X(n)) ~ - a3 IIY(n) -X(n)1I P 

for some positive constant a3 , where a3/a2 <l, 
then the solutions of the perturbed difference equation 

Y(n+l) = f(n,Y(n)) + g(n,Y(n)) 
are exponentially stable with respect to the unperturbed 
difference equation (*), provided that 

nF*(n,no'x~) - F(n,no,xo)JI ~ B 

for aIl n ~no. 



• Finally, it should be noted that an entirely 
analogous theory can be developed for perturbations of 
differential equations. 

2.9 Instability of the Equilibrium 
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We next consider sufficient conditions to guaran­
tee that the equilibrium is unstable~ Without such cri­
teria, the inability to determine an appropriate Liapunov­
type function to deduce stability or asymptotic stability 
of any kind would be totally inconclusive. O~ the other 
hand, the determination of a function satisfying the 
condi tions in the theorems below resol ves the situation 
immediately. The first result is the discrete analogue 
of Liapunov's Second Theorem on instability. 

Theorem 35: If there exists a real scalar function V(n,X) 
for which, on DR' no 

a) V(n,X) is bounded 

b) ~V(n,X) = a V(n,X) + W(n,X), 

where a is a positive constant and W(n,X) 

is a semi-definite function defined on DnoR 
c) if W(n,X) is not identically zero, then in 

each subdomain Dn
l 

r II DnoR ' there exist points 
(n,X) for which V(n,X) and W(n,X) have the 

same sign for aIl n ~ nI' 
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then the equilibrium X = 0 of the difference equation (*) 
is u1.l...'itable. 

Proof: Suppose that Dülr is any subdomain o·~ DnoR in 
which V(n,X) and W(n,X) are both positive at some 
points. Let (n1,xl ) be one such point and eonsider 
the solution ~Cn,nl,xl). We have 

~~[(&+l)-n V(n,~(n,nl,xl))l 
= (a+l)-(n+l) V(n+l,~(n+l,nl,xl)) - (a+l)-nv(n,F(n,nl,x 

= (a+l)-Cn+l)[V(n+l,F(n+l,nl,xl )) - (a+l)V(n,F(n,nl,xl ) 

= (a+l)-(n+l)[~V(n,F(n,nl,xl)) aY(n,F(n,nl,x1))] • 

Consequently, along this partieular trajeetory, 

W(n,F(n,nl ,xl)) = AV(n,F(n,nl ,xl)) - aV(n,F(n,n1 ,xl)) 

= (a+l)+(n+l).A[(a+l)-nv(n,F(n,nl 'Xl))] 
and ainee W(n,X) is positive, 

~ [ (a+l)-n V(n,F(~.,nl 'Xl))] ~ o. 
Thus, (a+l)-n 1T(n,X) inereases along this partieular 
trajeetory and henee 

and therefore 

whieh beeomes arbitrarily large as n~CD. However, we 
assumed that V(n,X) is bounded on DR' and so the solu­no 
tion must leave D R and it must do 50 across the no 
boundaryn X Il= R; that is, the equilibrium is unstable. 
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The second resu1t is the discrete analogue of 
Cetaev's theorem on instability. It was originally given 
by Hahn (3). 

Theorem (Hahn): If there exists a real sca1ar function 
V(n,X) for which 

a) in every Dn1r C Dn~R ' for r arbitrari1y sma11, 
there exist X such that V(n,X) < 0, for aIl 

n ~nl' 

b) V(n,X) is bounded from below in some sub-
domain D CD R in which V(n,X).::. 0, no 

c) in this particular subdomain D, 

.l1 V(n,X) ~ -a( IVI ) L ° 
for some function a(r) of class Mo' 

then the equi1ibrium X - ° of the difference equation (*) 
is unstab1e. 

2.10 Some Stabi1ity Theorems given by Hurt 

We conc1ude this chapter by citing some results 
obtained by Hurt (5) in a paper brought to the author's 
attention after the research work for this thesis was 
comp1eted. In this paper, a number of theorems are 
presented dealing with stabi1ity theory for difference 
equations using a somewhat different approach than the 
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one employed here. The principal concepts and results 

are given below. 
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A point X· in Et is said to be a positive limit 

point of X(n) if there exists a strictly monotonie diver­

gent sequeno~ ~ of integers such that X(nk ) ~X· as 

k~CD. The union of aIl the positive limit points':of 

X(n) is the positive limit set. 

Theorem (Hu~t): If there exists a real scalar function 

V(n,X) for which, on some set G in Et and for aIl n~no' 

a) V(n,X) is bounded below 

b) V(n,X) is continuous as a function o~ X 

c) .6 V(n,X) ~ - W(I) ~ 0, 

for some continuous function W(X) , 

then every solution which starts in Gand remains in G 

for aIl n approa~hes the set 

A· = t X : W(X) = 0 J U [CD ~ • AU{CD}, 
where tCD! represents the vector at infinity. 

We note that if V(n,X) is positive definite 

and ÀV(n,X) is negative semi-definite, then this theo­

rem reduces to Hahn's theorem on stability. If, in 

addition, the function à V(n,X) is negative definite, 

or eguivalently, if the function W(X) is of class Mo' 

then we obtain Theorem 4 on asymptotic stability. In 
1- t this case, we have A· = l 0 l and aIl solutions will 
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thus approach the origin as n ~ CD • 

A fUnction X*(n) is said to be a solution of 

the autonomous difference equation 

X(n+l) = f(Z(n)) 

on (-CD, CD) if for any no in (-CD, CD), 

F(n-n ,n ,X*(n)) = X*(n). 
000 

A set B is said to be an invariant set for the 

autonomous difference equation if Xo in B implies that 

there is a solution X* (n) for the equation on (-CD , Œ)) 

such that X*(n) is in B for aIl n and further t~ùt 

X*CO) = xo • 

Theorem (Hurt): If there erlsts ares} sca lar functj,on 

V(X) for the autonomous difference equation 

X(n+l) = f(X(n)) 

for .hich, on some set G in Et, 

a) V(X) is bounded below 

b) V(X) is continuous 

c) A V(X) 4!( 0, 

then every solution which starts in Gand remains in G 

for aIl n is either unbounded or approaches some invar­

iant set contained in 

A = [x : aV(X) = os 
as n ~CD • 
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The difference equation (*) is said to be asymp-
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totically autonomous if it is possible to write it as 
X(n+l) = g(X) + h(n,X) , 

where h(n ,X) ~ 0 as n ~ uniformly ior aIl X in any 
compact set. 

Theorem (Burt): If a solution X(n) of the difference 
equation (.) approaches a closed bounded set A as n-+CD 
and if Zen) is also a solution of the asymptotically 
autonomous difference equation 

X(n+l) = g(X) + h(n,X), 
then it approaches the largest invariant set for the 
autonomous difterence equation 

X(n+l) = g(X) 

contained in A as n ~ CD • 
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Ohapter 3: Boundedness of SolutioDS and Stability 

in the Whole 

'.1 Boundedness of Solutions 

Thus far, .. e have been eoneerned .. 1th the dif­

ferenee equation 

Xen+l) - f(n,X(n», 

where the funct10n f(n,X) has been assumed bounded and 

has been defined only for the semi-bounded domain 
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(*) 

DnoR = {(n,X) € l x Et : n) no~ 0, « X U ~R] • 

In the present ehapter, .. e .. ill eonsider the case where 

the norm of the veetor X .. ill be allo .. ed to be possibly 

unbounded. The differenee equation to be studied will be 

Z(n+l) z g(n,Z(n», C**) 

where the funetion g{n,X) eonsidered is defined throughout 

l Je Et, for aIl n ~ no' and where gCn,X) assumes values 

throughout Et, though otherwise, the equation C·*) will 

possess aIl of the properties previously indicated for the 

equation (*). Moreover, the complement of DRin l x Et no 
• .. ill be denoted by DnoR ; t~at is, 

D~oR = [(n,X)E.I x Et : n~no~O, U XU~R>O J. 
In addition, .. e will consider the region 

DnoCD :al [(n,X) EIx Et; n ~ no> 0 J . 

Definition 16: A solution to tùe differenee equation (**) 

is said to be bounded if, g1ven any no'> 0 and any ra> 0, 

there exists a B(no,ro) > 0 such that for any Xo .. ith Ilxofl<ro ' 
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tor all n~ no. 

Detinition j1: A solution to.the difference equation (**) 

is said to be uniforml:y bounded if, given any ro> 0, 

there exists a Bero) > 0 .. such that for any no ~ 0, and any 

Xo with Il xoJI < ro' 

for all n~ no. 

Definition 18: A solution to the difference equation (**) 

is said to be ultimately bounded if, given any noël and 

any ro and r l , ro> r l > 0, there exists a B(rl ) > ° and 

an integer )) (ro ,rl
) > ° such that for any Xo with Il xoU < r o ' 

Il F(n,no ,xo) Il < B 

for all n ~no+ V. 

Definition 19: A solution to the difference equation (**) 

is said to be uniformly ultimately bounded if, given any 

ro and r l , ro> r l > 0, there exists a B(rl » 0 and an 

integer )J (ro ,rl ) >0 such that for any nof:. l and any Xo 

wi th Il X o Il < r 0 ' 

for all n~no+ v. 

We now develop criteria for the various types of 

boundedness enumerated above in terms of the existence of 



certain real scalar functionswith particular properties , 
which are defined on DU Rand which are quite similar to o 
tha functions used in the previous chapter. 

Theorem 36: If there exists a real scalar function W(n,X) , 
for which, on DneR' 

a) W(n,X) is positive definite 

b) W(n,X) -+ CD uniformly as X~ CD 

c) Â. W(n,X) is negative semi-definite 

then every solution of the difference equation (**) is 
bounded. 

hoof: Choose any no~ 0 and any ro> Rand define 

w(no,ro ) :: sup [w(no'X) : R<llxll<.roJ • 
Further, take B(no,ro ) > R sucb that W(n,X} > w for 
n> 0 and X such that Il X /1 ~B. As a consequence, if 

I\xoll < ro' then 

Il F(n ,no,xo} 1( ~ B 

for a11 n~no; for if not, tbere woald be some n'> no 
sucb tbat 

Tbus, 

w ( W(n',F(n',no,xo» ~ W(no'xo} ~ w, 
since W(n,X) haa a negative semi-definite total d1fference 
so tbat tbis is a contradiction. Hence, II F(n,no,xo ) /1 

1s bounded by B for all n :)DO. 



Tbeorem n·: If there ex1sts a resl scslar funct10n li(n ,X) , 
for wh1ch, on Dn R' 

o 
, a.l,: V(n,X) 18 positive def1n1te 

t b) V(n ,X) 18 bounded on the 8et 1)( (5 () li), where 

5 18 any open 8phere conts1n1ng the set 

If = [X: " xli ~ R ] 
c) W(n ,X) -:::» CI) , un1formly a8 X ~ CD 

d) ~ W(n,X) 1s negat1ve 8emi-def1n1te 
then every solution to the d1fference equat10n (**) 1s 
un1formly bounded. 

Proo!: G1ven any ro>R, there ex1sts 8 spbere of radius S, ro~ 
S,conta1ning tbe set li defined in tbe statement of tbe 
tbeorem and sucb that W(n,X) 1s bounded on IX (S 11 N~. 
Define 

vero) = sup.[ W(n,X) : n~ 0, R 6 11 X U~ro} • 
'le observe tbat since W(n,X) 1s bounded, w < CD. Let 
B(ro) > R be such tbet W(nIrX)"> w for n ~ 0 snd X sucb 
tbst 1/ X JJ~ B. As a consequence, 1{ xoll < ro and no~ 0 
1mply 

Il P(n,no'%o) If < B 
for a11 n ~ no; for if not, tben tbere would be aome 
nt> no for wh1cb 

Rence, 

w < W(nt ,Ir(n t ,no'%o» ~ W(no,%o) ~ w, 
ainee A W(n,X) 1s negst1ve sem1-def1n1 te, wb1cb 1s 



li contradiction. Thus, 1\ l'(n ,no ,xo) Il is uniformly 
bounded by B. 
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The hypotheses of the previous theorem can be ex­
pressed in alternate terms which occas10nally may be easier 
to apply. The conditions are stated in the folloWing equi­
valent theorem. 

Theorem ,?A: If there exista a real scalar function W(n,X) 
for which, on D~oR ' 

a) W(n,X) ~ a(UXI), for some positive increasing 
function a(r) 

b) W(n,X).) b(\lXU), for some non-negative increa­
sing function ber) 

c) 4W(n,X) 1a non-positive, 
then every solution of the difference equation (**) is 
unif'ormly bounded. 

We no. present a criterion for unif'orm ultimate 
boundedness of all solutions to the difference equation 
under consideration which is a direct analogue of Theo­
rem '6. As with Theorem '6, there is a1so an equivalent 
formulation .biCh will be stated after the proof of Theo-
re,m 78. 

Theorem 38: If there exists a real scalar function W(n,X) 
for Which, on D~oR ' 



a) W(n,X) 1s posit1ve def1n1te 

b) W(n ,X) ia bound ed on the set IX (5 f'\ N~, where 
5 ia any open spbere containing tbe set 

N=[X:IIXII~R3-
c) W(n,X) ~ (1) uniformly as X~(I) 

d) A W(n,X) 1s negat1ve definite 

then every solut1on to the difference eguat10n (**) 1s 
un1formly ult1mately bounded. 

Proot: G1ven any ro and rl' ro> r1> R, we dëf1ne 
w(ro ) =- sup [ W(n,X) : n:;' 0, R ~ 1\ X ll<ro ~ • .., 

Let a(rl» 0 be a constant aucb tbat 

~ W(n,X) ~ -a 

for D~ 0 and any X w1tb Il X Il.> r1. Further, let 

}) (ro ,r1) = [w/a] + 1. 

Now, given any no~ 0 and any Xo w1tb Uxo\{<ro ' then 
ei tber fi Xo lI< 1'1 or 1'1 ~ UXo \~ < ra. In the former caee, 
tbere exista a B{r1) ~ R such that 

H F(n,Do'xo ) U < B 

for al1 n~ no, by the argument in the p:revious proofs. 

In the latter case, wbere rl~Uxo\l<ro' there exista 
an integer n' be'tween no and no+~ sucb that 

Il F(n',no,xo)l\ <. rl; 
for if not, tben 

If F(n ,no ,xo> \1 ~ r1 
for al1 n in tbe interval [no,no+ lJ]; bence, 

w(no+JJ ,F(no+lJ ,no,xo}} ~ W(no'xo ) - al) 



• W(no'xo) a([w/aB + 1) 

~ W(no'xo ) a(w/a - 1) - a 

~ 0, 
which i8 impossible b,. the definition of ... Rence, 
in e11;her case, 

" J'(n,no ,xo) ft < B 
for all n)-n 1 and therefore, this inequali ty holds 
for aIl n >no +)). 

!he alternative formulation of this theorem, lIhich 
was mentioned previously, i8 given by the following 8tate-
ment. 

Theorem ?BA: If there exists a real scalar function W(n,X) 
for which, on D~oR' 

a) W(n,X) ~ a(ltXi\), for some positive increasing 
function a(r) 

b) W(n,X) ~ b(VXiO, for some non-negative increa­
sing tunction ber) 

c) Â W{n,X) "= -c(IlXID, for some positive continuous 
function c(r) 

then ever,y solution of the difference equation (**) i8 
uniformly ultimatel,. bounded. 



• 3.2 Stability in tbe Wbole 

We now consider tbe possibility of stability for 
tbe equilibrium of tbe difference equation under study wben 
tbe initial values are allowed to become arbitrarily large 
in norme We begin by oiting tbe pertinent definitions. 
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Definition 2QLL The equilibr1um X = 0 of the difference egua­
tion (**) 1s aaid to be 8BYmptotically stable in tbe wbole 
if it ia stable and if (no'xo) in IxEk implies 

F( n ,n~"xo) ~ 0 
aB n ~Q) • 

Defipition 21: The equil1brium X = 0 of the difference 
equation (**) is said to be eguiasymptotioally stable in 
tbe wbole"if it 1e stable and if 

F{n,l'lo'xo) ~O 
uniformly in Xo for U xoll {. r, where r ia fixed but arbttrarily 
large, as n ~<D • 

Definition ~ The equilibr1um X = 0 of the differenoe 
equation (**) is ja1d to be uniformly-asymptoticalll stable 
in tbe whol~ if every solution ot tbe difference equation 
ia uniformly bounded and if, given any positive numbers ro 
and rl' tbere existe an integer !J (ro,rl) > 0 sucb tbat, 
given no~ 0, and any Xo witb Il xoll <. r o ' we bave 

" F(n,no'xo}" ~ rl 
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Definition a,: The equilibrium X = 0 of the ditference 
equation C··) is said to be lp-stable in the whole if it 
is stable and if the series 

(JIll 

z:. I\F(k,no ,xo)n p < CD 
k., no 

for every (no'xo) in Dnom • 

Finally, we consider a series of theorems which 
yield conditions under which we may conclude that the 
various types of stability and asymptotic stability hold 
in the whole. The following two results were obtained 
originally by Kalman and Bertram (6) in t~ir Theorems 
1.1.2 and. 1.1. 

flleorem (Kalman and. Bertram): If there exists a real 
sca1ar function V(n,X) for which, on Dnooo ' 

a) V(n,X) is positive definite 

b) V(n,X) is radial1y unbounded 
c) A V(n,X) is negative definite 

then the equilibrium X = 0 of the dirference equation C··) 
1s equiasymptotically stable in the who le. 

Theorem (Ka~ and Bertram): If there exists a real 
scala~ tunction VCn,X) for which, on DncCD ' 

a) V(n,X) is positive definite 

b) T(n,X) is decre&~&nt 
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c) V(n,X) 1s radiall,. unbounded 

d) Â V(n,X) 1s negative definite 
then the equilibrium X = 0 of the difference equation(**) 
1s uniforml,.-asymptoticall,. stable in the .hole. 

We now consider the case where the function 
s(n,X) is periodic in Il. 

Theorem 39: If the flnctiong(n,X(n» is periodic in n 
and if ~he equilibrium X z 0 of the «ifference equation (**) 
is stable in the .hole, then it ls also uniforml,. stable 
in the _hole • 

Proo:f': The comparison tunction used to prove Theorem 
3 satis:f'iea aIl of the requlrements for the :f'unction 
described in Theorem 2, .here the bound, S , on the 
values oflxJ ma,. be allo.ed to become arbitrarily large. 
Renee, the etability ie uniform in the whol&. 

Theorem 40-1 If the function g(n,X(n)) ia periodic in n 
and i:f' the equilibrium X = 0 of the di:f'ference equation 
(**) is asymptot1cally stable in the whole, then it ia 
uniformly asymptot1cally stable in the who le. 

Proof: The comparison function used to prove Theorem 
18 satiefies aIl of the requirementa for the function 
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described in Theorem 16, where the bound on the values 
of "xo Il, ~, may be allowed to become arbi trarily 
large. As a consequence, the asymptotic stability 
is indeed uniform a~ptotic stabilit7 in the who le. 

Kalman and Bertram (6') have also supplied the 
follo.ing criterion for uniform asymptotic stability in 
the whole in the autonomous case •. in thè~r Theorem 1.2. 

Theorem (Kalman and Bertram): If the function g(n,X(n)) 
is independent of n and if there exists a real scalar func-
tion V(n,X) for wh1ch, on DnoCD ' 

a) V(n,X) Is positive definite 

b) V(n,X) is continuous as a function of X 
c) V(n,X) is radially unbounded 
d) 4 V(n,X) is negative definite 

then the equilibrium X = 0 of the difference equation 
X(n+l) = g(X(n)) 

is uniformly asymptotically stable in the whole. 

The following theorem extends the concept of 
Ip-stability to Ip-stability i~ the whole. 

Theorem ~6: If there exists a real scalar function V(n,X) 
for which, on DnoCD ' 

a) V(n,X) is positive definite 

b) V(n,X) ~<D as U xlI~ uniformly on the set 



• 

• 

• 

no~ n~N, for every integer N~no 
c) A V(n,X) 6 -ell:xIJP , for some constant c> 0 

snd some p)O 

then the equi1ibrium X = 0 of the difference equation (**) 
is 1p-stab1~ in the who1e. 

Preo:!: The proof of this theorem fo11ows direct1y 
from that given for TheoreB -23 since, from condition 
b) on V(n,X), it fo11ows that (n,F(n,no'xo» is in 
DnoCD :!o~ a11 n~ no and every (no ,xo) in DnoCD • 
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PART II 

STABILIT"Y CRITERIA 

FOR .l CERTAIN CLASS OF DIJ'FEBENCE EQUATIONS 

Chapter 4: T.he Difference Equation of Order m 

We will now apply par~ of the prec2d1ng thsory on 
the stabilit7 and asymptotic stability of the equilibrium 
to the solutions of a certain class of difference equations. 
In particular, we will concern ourselves with the following 
difference equation of order m 

X(n+m) "+ alX(n+m-l) + •••• + amX(n) 
- P(n,X(n), ••• X(n+m-l» = 0, 

where the ai' i = 1,2, ••• m, are resl constants and F is a 
real scalar function of the indicated arguments satisfying 
the condition 

P(n,O, ••• O) = 0 
for aIl n greater than or equal to some no in l •. When the 
function ~ is identically equal to zero, we shall speak 
of the difference equation as being homogeneo'Ds; otherwise, 
if the function F is present, we will say that the aquation 
is non-homogeneous. 

The present chapter is concerned with the general 
m~ order case for which we develop a method for determinig 
tJ'.e conditions under which the equilibrium of the difference 
equation (4.1) ls stable or a~ptotlcally stable. In Chap­
ter 5, we will treat the particular case m = 4 Ln complete 



• 

• 

• 

94 

detail. The eases m a 2 and m = 3 have already been con­
sidered by Puri and Drake (11). Several comments on and 
extensions of their work appear in Chapter 6. 

That the class of equations represented by equation 
(4.1) actual1y encompasses a very wide set of difference 
equations can be seen from the tact that an arbi trary non­
linear ditference equation of the form 

X(n+m) = fl[n,X(n), ••• X(n+m-l)] X(n+m-l) + ••• 
••• + fm~n,X(n)] X(n) 

+ f (n,X(n), ••• XCn+m-l)] , 
where fCn,O, ••• 0) = ° for aIl n~no' can be expressed 
in the form given in equation (4.1). This is possible by 
~iting equation (4.2) as 

X(n+m) + alX(n+.m-l) + ••• + amX(n) + 

+ t fI [n,X(n) , ••• X(n+m-l)] - a11 X(n+m-l) + .... 
+ ••• + [fm[n,Z(n)] - am\ Zen) + 
+ f [n,X(n), ••• X(n+m-l) 1 

(4.2) 

= X(n+m) + alX(n+m-l) + ••• + amX(n) - P[n,X(n), ••• X(n+m-l~ 
= 0, 

where the a i are arr:! real constants. 

In order to discuss the possible stability and asymp­
totic stability of the trivial solution of the difference 
equations in the class under consideration, we will deter­
mine what conditions must be imposed on the coefficients 
ai and on the fUnction·F which will guarantee such stability 
or asymptotic stability. 

Before proceeding with this discussion, we note that 



lt ls posslble, and lndeed far more eonvenlent, to rewrlte 

equatlon (4.1) as the matrlx equatlon 

where 

X(n) 

A = 

and 

X(n+l) = A X(n) - bF, 

= 

0 

0 

0 
• 
• 
• 
0 

-am 

X1 (n) X(n) 

X2 (n) X(n+1) 
= • 

• • 
• • 

~(n) x (n+m-l) 

1 0 0 • ••••••••••• 0 

0 1 0 • • • • • • • • • • • • • • • 

0 0 1 • • • • • • • • • • • • • • • 

• 
• 
0 •••••••••••••••••••••• 0 

-am_l 

b = 

• • • • • • • • •••• • • • • • •• ~82 

o 

o 
• 
• 
• 
o 

1 

\ 
i 

, 

0 

0 

0 
• 
• 

J · 1 

) -al 

(4.:3> 

We flrst conslder the homogeneous case, where F = 0 

in equatlon (4.3). In o~der to obtaln a useful sea1ar 

funct10n V(n,X) w1tb wbleh to study the stabl11ty and esymp­

totle steb111ty of the trlv1al solution of equatlon (4.3), 

lt ls exped1ent to tr~nsform the var1able veetor X(n) lnto 

a new veetor quant1ty 



," yen) a Q. X(n) , ~ 

where Q ls a resl m x m 1II8trlx whlch ls to be determlned. 
If the transformatlon Q ls applled to the œetrlx equatlon 
(4.3), we obtaln 

Y(n+1) = Q X(n+l) 

= QA X(n) 

= QAQ-I yen) 

= li yen), 

where ve have put 

Il 2: QAQ-l, 

whlch ls a slml1erlty transformatlon between the matrlx 
A and some matrlx R. wbere Q 18 88sumed non-s1DgUlar. 

Antlclpetlng an expresslon whlch wl11 arlse ln the 
sequel, it ls convent~nt to lmpose the follow1ng condition 
on the metrlx R. 

1 0 0 • • • • • • 0 

0 1 0 · . . . . . 0 

RTR a 0 0 l • • • • • • 0 
• • • 

• • · . l • 
• • • 

~ 0 0 0 ...• 0 , 
where BT denotes the trenspo~e or the matrlx R. From thls 
condltlon, lt ls posslble to determlne an expllclt form for 
B. Wrltlng 

r I1 r12 · ...... rl,m_l 11. 
r21 r22 • • • • • • • r2,m_l B2 li=- • • • • 

• • • • 
r m 1 rm,2 • •••••• r Hm , , m,m-1 

(4.4) 

(4.6) 

(4.7) 



condition (4.7) becomes 

1'11 1'21 ••••• l' a-l,l l'm, 1 1'11 1'12 • •••• 1'l,m-1 
1'lZ 1'22 •••••••• l'm, 2 1'Zl • • • • • • • • • l' Z,m-l • • • • • • • • • • • • Rl RZ • • • • • • • • • • • ~ l'ml • •••••••• 1'm,m-1 

l 0 0 ••••••• 0 

0 1 0 ••••••• 0 
• • • • • • • • • • • • 0 0 0 ••••• 1 0 

0 0 0 ••••• 0 1'2 • This mat1'ix p1'oduct repl'esents a system ot m2 equations. 
Howeve1', of thes8, the equations c01'1'esponding to the sub­
diagonal terms in the mat1'ix on the 1'ight will be identical 
witb the equations c01'responding to tbe symmetric auper­
diagonal terms. That is, (m-l)m{Z equations will be repea­
ted and hence tbere are onlr 

= 

independent relations, one of wbicb ia 

Rl 

R2 • 
• 
• 
Ra 

1'Z = R1Z + RZ2 + ••• + Rm2• (4.8) 
As a consequence, we bave (mZ+m)/2 - 1 expressions with 
wbicb to dete1'mine the m{m-l) unknown rij in terms of tbe 
m Rt t s. Thus, 

m(m-l) of' l = (m-2) (m-1) 
2 

of tbe 1'ij May be chosen a1'bitra1'i1y. In pa1'ticular, wp. 
cboose a11 of tbe terms below the first suodiagonal as zero~ 
i.e., 1'J1 = 1'41 = ••••• = l'ml = 1'42 = ••• = r m2 = ••• = 1'm,m-2 = o. 



As a result, 

r ll r 12 •••••••••••• Rl \ r21 r 22 R2 • • • • • • • • • • • • 
0 rJ2 • • • • • • • • • • • • B; R: 
0 0 • • • • • • • • • • • • R4 
• • • 
• • • 
• • • 0 0 ••••••• r~,m-l Rm 

If equatioD (4.7) is DOW expaDded iD terms of this 
cboice of R, a form for R is obtaiDed, but DOt a unique ODe. 
For aDy giveD columD of thi8 matr1x R, there 18 a cho1ce of 
signs for the elemeDts 8S indicated below in eguatioD (4.10), 
but tbe cboice for any given column i8 indepeDdent of tbe 
cboic. for aDy otber column. !bus, 

+R2 ±~ ±~ ••••• +R1Rm Rl -:r; faf'3 f?o î .. f..,-,)..., 
-Rl +- +~ ;tR~4 
.f~ f~)3 J-a fif 

0 +.13. +RJR!§: 
R: j'a - f!>f't (4 .10) 

0 0 -.h. 
+ .f'l 

• • • +Rm-1Rua ~-l • • • f""-' )WI • • • 
0 0 0 • • • • • • "+ î,.,,-\ R , 

fn-\ m 
wbere 

~ 2 2 
f~ = Rl + R2 
~ R 2 R 2 2 ("4 .11) f3 = l + 2 + RJ 

• 
• 2 2 Rm2 r 2• ~: = Rl + R2 + ••• + = 



!hat th~ condition iaposed on ~ to yield equation 
(4~lO) is not as arbitrary as would appear may be seen 
from the followiug example for 111 ~ S. From conditiaa (4.9), 
ve see that six zero positions are permitted in the R 
1Ilatrix. Ve assume that they are chosen as shawn: 

r11 r12 r 1J r14 Rl 

r2l r22 r2J r24 R2 
R: 0 0 l'JJ rJ4 ~ 

0 0 r4J r44 R4 
0 0 r

SJ r
S4 RS • 

Ve now apply condition (4.7) and obtain, among others, 
following five equations, 

a) 

b) 

c) 

d) 

2 2 r ll + r 2l :1 l 

r 11Rl + r 21R2 s 0 
2 2 _ l r 12 + r22 -

rliRl + r 2iR2 :1 0 
e) rllr12 + r 21r 22 = O. 

Using a) and b), it follows that 

rl12 
+R2 --
î~ 

r2l = 
-Rl *-î2. , 

the 

where ~~ is defined in equations (4.11). Purther, from a) 
and dl, we obtain 



However, vhen ve attemp1;_to introduce tbese four exp~~!1-
SiODS, vith any appropr1a~e. coabination of signs, into 
relation el, ve are 1ed to a contradiction. For examp1e, 
choosing 

equation e) becomes 

= -1 ~ o. 

Since the matrices A and Rare sim11ar, they have 
the same characteristic po1ynomia1s. Equating sim11ar 
powers of À in 

det(A - À 1) = det(R - À 1), 
we obtain a set of m equations expressing the ai in terms 
of the ~ and the .f~. As a further consequence of the 
sim11arity of A and R, it follows that 

det(A) det(R) , 
where 

from condition (4.7). By specifying the signs of the e1e­
ments of R a8 given by 

laO 



• 

• 

• 

R = 
o 
• • • • • • 

RIR, 

f:l!3 

R~, 

~:a. î~ 

-~ 
f~ 

•••••••• 

•••••••• 

o •••••••• ~ •••••••••••••••• o 
we will have that 

det(R) = r. 

• • • • • • • • • • • • 
li 

m 

l'urtherDiozoe, fram the gi ven form of A, i t follows that 
dete.) z (_l)m am det(lm) 

= (_l)m am ' 
where lm represents the m x m identity matrix. As a 
consequence, we may conclude that 

or equi valent ly , 

= 
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(4.12) 

Thus, this will be one of the m conditions (the one, in 
p&rticular, corresponding to the zerotb terms) obtained by 
equating the coefficients of the powers of À in the charac­
teristic polynomials of A and. li, since the constant term 
in the characteristic polynomial of a matrix is simply 
the determiDant of that matrix. Unfortunately, there 
appears to be no general expression for these conditions • 

At this point, it WQuld seem natural to calculate 



the matr1x Q from the relat1onsh1p QA _ RQ. However, th1s 
w11l1eaè to.2 equat10ns vh1ch are'exceed1ng1y diff1cu1t 
to solve for .> 3. Accord1ng1y, 1t 1s 1nstead adv1sable 
to carry out the details of the next few steps in the pre­
sent development to see what freedom ex1sts to impose con­
ditions on Q which will simpl1fy 1t. In part1cular, ve seek 
to find which permiss1b1e conditions will y1e1d the greatest 
simplification for tbe 1ater detailed ca1culat1on8. 

To determine the stab111ty and asymptot1c stabi1ity 
of the aqu11ibr1um of e1ther the homogeneous or the non­
homogeneous d1fference equat1on, we shall 1ntroduce 8S a 
possible choi~~ tor the sca1ar function V(n,X) 

tb2 

V(n,X) = yT(n)Y(n). (4.14) 
This 1s equivalent to 

V(n,X) = XT(n)QTQX(n}, 
vh1ch 1s a SUll of squares and hence 1s positive def1n1 te, 
whatever the par-t1cular form of Q. 

Hext, we invest1gate the total difterence of V(n,X) 
for the homogeneous equation. This 1a given by 

~ V(n,X) = V(n+l,X(n+l» - V(n,X(n» 

= yT(D+l)Y(n+l) - Y!(n)Y(n) 

'= yT(n)RTRY(n) _ yT(n}Y(n) , 

= yT Cn ) [ RTR - l J yen) 
= (rZ_l) y 2 

m 
~o 

for r 2-1 < 0, using equation ( 4. 7) • That 1 s, ve must bave 
r

Z = Ba Z < 1. (4.l5) 
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Thus, the reason for imposing condition (4.7) on R becomes 

apparent. Furtbermore, we note that one of the principal 

conditions under which the equilibrium X = 0 of the homo­

geneous system is stable is that equation (4.15) holds for am. 

Moreover, it follows thst 

V(n,X) = XT(n)QTQX(n) 

= (Q,X)T(Q,X) 

= <QX,QX> 

= Il QXV 2 

~ ~Q~2 axn2, 

where <::x,y> represents the inner product of the vectors 

x and y. As a consequence, we note that the function V(n,X) 

ia decrescent, though in view of Theorem 4, this condition 

1s not required for asymptotic atability. 

We now consider the non-homogeneous difference 

equation 

X(n+l) = AX(n) - bF. 

As before, we apply the transformation Q to obtain 

Y(n+l) 

We again choose 

= Q,X(n+l) 

= QAX(n) - QbF 

= RY(n) - QbF. 

V(n,X) = yT(n)Y(n) = XT(n)QTQ,X(n), 

which ia positive definite, as noted previously. The total 

difference of V(n,X) for the non-homogeneous equation is 



gi.vell by 

A v(~,x) _ [y'Rf - bTQ'P] [ RY _ Qbll] _ y!ly 

= y~fRY - L yfR!fQb + bTQTRyJ F + 

+ bTQTQbF2 _ yTy • 

Hence, 

L1 T(n,X) = yf[RTR - ~ y - 2 yTRTQbF + bTQTQbF2, (4.16) 
using tbe fact tbat 

aince botb expressions are sca1ars. 

In o~der to simpl1fy condition (4.16), ve sba11 first 
simpl1fy tbe term Qb. Nov 

qll q12 •••••••• q1m 
• 

q21 • Q- • • 
• • 
• • 

qlll ••••••••••••• qmm 
and 

i 

\ ( q1m 

q2m 

J. 
0. 

Qb = 

\ 
• 
• 

\ qmm 
Accordingly, if ve could cboose ql.m = q2m = • • • = qm-1,m = 0 
and qmm = l, the12 

( 0 

0 
• Qb = • = b. (4.17) 
• 
0 

1 

! 



!bat this choice is indeed possible is a consequence of 
the following consideration. Wben expanding Qi = RQ, as 
noted before, ve obtain m2 relations between the .2 + lm 

guantities, gij' ai and ~, i,j = 1,2, ••• m. In addition, 
the eguations obtained by eguating the characteristic poly­
nomials of A and R yield m further relations between these 

Rence, ve have .2 + m eguations relating the guantities. 

m2 + 2m guantities gij,ai'~' so tbat m of the g1j can 
be choaen arbitrarily and 80 condition (4.11) 1s juatified. 

Ideally, now, ve should be able to determine Q 
explici tly by expanding QA = RQ, vi th 

gll g12 •••••• gl,m-l 0 \ • 

l • • Q ~ • • 
• 0 

1 

qml ••••••••••• q l 1 i 
m,m- J 

(4.18) 

and then simplifying the m2 eguations vhich result by intro­
ducing the expressions for the ai in terms of the ~, as 
given by the relations obtained by equating the character­
istic polynamisls of A and R. Untortunately, the computa­
tion 1s still quite involved and there appears to be no 
general form which the Q matrix assumes for any cboice of m. 
Of course, for any particular value of m~ the calculation can 
be performed, as 1s done for the case m = 4 in tbe folloving 
chapter. 

If we DOW cons1der again the total difference of 
V(n,X} in the non-homogeneous case, as given by eguation 
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(4 •. 16), we see that essentially aIl that remain to be eal­
eulated are the two quantities bTQTQb a~d yfRfQb. Sinee, 
by our ehoiee for Q" Qb :: b, we immedi,a_ly see that the 
former term is simply 1. As for tbe latter term, it invol­
ves tbe produet of yTRT and Qb. HoweTer~ ainee Qb = b, 
only tbe lsst element' ,01 1;be' veetor RY will contri bute to 
tbe produet, so tbat 

yTRTQb = - !:..,.-. y 1 + 'R Y • j", m- -lD m 
Hence, e~uation (4.1,6) reduces to 

(r2-1)Y 2 _ 2F f- îm-.y 1 + 'R y] + F2• m l f~ m- -lD m 
Moreover, onee Q is known, we may caleulate Ym- l and Ym' 
using tbe faet that Ya QX. Finally, after ÂV(n,X) la 

expressed in terms of tbe original Xi' aIl tbat 1a neces­
sary to insure asyaptotie stabil1ty of the equilibrium 
X :: 0 of the non-bomogeneous ditference equation 1s to im­
pose tbe condition of negative definiteness on ~V(n,X). 
This 1s accomplished by determining those conditions on' 
the 8 i which will guarantee the negative definiteness of 
~V(n,X). The precise method of doing this is illustrated 
in the next chapter. 

(4.19) 

(4.20) 



Chapter 5: The Difference Equation of ~ourtb Or.er 

We now apply the results and techniques ot the pre­
ceding chapter on the a-tb order ditference equation to the 
particular case wbere m = 4. !hus, the d1fterence equation 
unâer consideration 1s 

X(D+4) + a1X(n+3) + aZX(n+2) + 83X{n+l) + 8 4X(n) 

+ F[ n,x(n), ••• X(n+3>] = 0, 
wbere al' a2' a) and 84 are real constants and F 1a a real 
Bca1ar funot1on of the indicated arguments satisfying 

F(n,O,O,O,O) -= 0 
for a11 n ~ no ~ o. Equi valently, equation (5.1) can he wri t­
ten BS the matrix eguation 

X(D+l) -= AX(n) - bF, .: ".' 

vberè 
1 Xl (n) \ X(n) 

\ 
\ 

( 1 \ 
X2(n) X(n+l) 1 X(n) = : 

1 ! X
3 

(n) i X(n+2 ) 

\ 
i i 

1 X4(n) 
1 

X(n+3 ) ! , 

0 l 0 0 \. 
i \ 
{ 0 0 l 0 \ 

\ 
\ A = \ 

° 0 0 l , 
1 

\ -a4 -a3 
! 

-a2 -al ; 

/ ' 
and 

0 

0 
b = 0 

1 • 



Treating the hom~geneous case 

f1rst, we aga1n 1ntroduce the transformation Q to obta1n 
yen) = QX(n) 

and 

Y(n+l) = RY(n) , 

where R 18 defined by 

RQ ~. QA. 

We now 1apose tbe condition tbat R s8t~8fy 

l 0 0 0 \ 
RTR 

0 1 0 0 \ 
z \ 

0 0 l 0 1 
1 

0 0 0 2 ! 
ri· 

For tbe case m = 4, condition (4.9) of the previou8 cbap­
ter guarantees that we May set 

(m-lHm-Z) = J 
2 

of tbe elements of R to zero, and following the general 
pattern establisbed in that chapter, we take 

rJl = r 41 = r42 = 0, 
so t bat 

r l1 rIZ r IJ RI 

R 
r 21 r 2Z r2J R2 = 

0 rJ2 rJJ RJ 
0 0 r4J R4 • 

As a result, equation (5.6) becomes 
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(5.3 ) 

(5.4) 

(5.6) 



rll r 2l 0 0 r Il r 12 rIJ Rl 
r12 r 22 rJ2 0 r2l r 22 r 2J R2 
rIJ r 2J rJJ r4J 0 rJ2 rJJ RJ 
Rl R2 ~ R4J 0 0 r4J R4/ 

wh1ch leads to the follow1ng set of equat1ons: 
) 22 a rll + r2l a 1 

b) rllrl2 + r 2Ir 22 = 0 

c) rllrlJ + r 2lr 2J = 0 

d) rllRl + r2IR2 = 0 
) 2 2 2 e r12 + r22 + rJ2 = 1 

f) r12rlJ + r22r 2; + rJ2rJJ = 0 

g} rIzRl + r2~2 + rJ2~ = 0 
} 2 222 h rIJ + r2J + rJJ + r4J = 1 

1) rIJRl + rZJR2 + r:3JR:3 + r!f.3R4 = 0 
j) RI2 + R2

2 + RJ2 + R42 = r 2• 

1 0 

0 1 
:z 

0 0 

\ 0 0 

To solve tbese equatiçns, we proceed as follows. 
From d) and a), we obtain 

wbere 

_2 __ R 2 R 2 
v 1 + 2· 

Accord1ngly, 

• 

- . . 

I09 

0 0 

0 0 

1 0 

0 r
2 

J ' 

(5.8) 

In a s1m1Iar manner (as shown in Appendix A), the otber ele­
ments of Rean be determined in terme of Rl' R2' RJ and R4 
up to tbe1r signs, to yield 



+~ +~ +RIR4 Rl 
-Cf"" -a-f - rf 
-Rl ±~ +R~4 R2 +-

Rs 0- <l.f rJ 
0 -cr ±~ +T ry 
0 0 ++- R4 .-

wbere 
a. 222 f ::: Rl + R2 + RJ • 

S1nce tbe matrices A and Rare similar, we may 
equate tbeir cbsrseterietic polynomials and thus obtain 

det(A - À 1) ::: det(R - À 1) 

:: )..'1 + 81 A.? + a2 À;}. + sJ À + a4 
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(5.9) 

(5.10) 

~ À~ - i [+R4 + ~;4 + !~ + ~ J 
+ À~f~ + RnR4 t R2R4 + R2R4 +_I2~R4+~] tr rCl"g a- r(f" <Jf f 
- À [+ R2r + R2~r + ~ +R4 l 

0- (if f r . 
+ r, 

on expanding det(R - À 1), cOllecting the coefficients of 
like powers of À , and simplifying the terme using equa­
tions (5.8), (5.10), and relation j) from the expansion 
of equat10n (5.6). Renee, 

-R4 - RJR4 - R2RJ -!2.. rf <J'"f ~ 

~ + RzRJR4 + RzR4 + ~2R~ + R2R:JR4 + ~ f r CJf ~ ra- (jf j 
-rR2 _ Rn r _.RJR4 _ R4 
~ ~! .f r 

(S.lla) 

(5.11b) 

(5.1le) 



s4 :: -for. 

For purposes ot reterence in tbe sequel, ve sbsll refer 
to tbe abov6 four relations ss equations (S.11). 

In tbe process of performing tbis calculation, as 
was notea previous1y, a:particular cb01ce 1s made of the 
signs of tbe components of R, so tbat ve t1nally bave a 
unique expression tor R given )y 

.~ ~ R]R4 
Rl \ <r 0-$ rj 

-~ R~J R2RIf: R2 1 
R (j 

~ rf 
1 

:: 

0 (f" .~R~ RJ 1 
f 1 

r~ 1 
-.+- 1 0 0 R4 • r 

We now turn to an exp1icit ca1culation of tbe ma­
trix Q from tbe re1ationahip QA ~ RQ. From tbe discussion 
in the previous cbapter, we know tbat we may cboose 

q14 :: q24 = qJ4 ,. 0, 

q44 a l, 
so that Q bas tbe general form 

q11 q12 Ql3 

q21 q22 q23 Q :: 

qJl qJ2 qJJ 

q4l q42 q4J 

0 

0 

0 

1 • 

Subat1tuting tbia form for the Mstrix Q into tbe relation 
QA ,. RQ leads to tbe equation 

111· 

(S.lld) 

(S.12) 



qll ql2 q1J 

qZ1 q22 q2J 

qJl QJ2 QJJ 

R1RJ 
0"') 

Ra 
a-f 

-0"" 

T 
o 

o 

o 

o 

1 

~ 
rf 

RZR4 

rf 
~ 
r~ 

-4.-
r 

1 

100 

o 1 0 

001 

o 

o 

o 

l 

Multiplying th1s out, we obta1n sixteen equations. Among 
tben, we find sucb s1m~le expressions as 

qlJ = Rl 

q2J = R2 

qJJ = 1) 
q4J - al = R4· 

Substituting from eguations (5.11), the last relation yields 

- RJR4 _ RZRJ _R2 
r! a-f 0- • 

Tbe other elements of Q are Dot so easily determined, as 
the remaining twelve equations are far more complicated. 
The actual computations are carried out in Appendix B. Tbe 
resulting expressions for the qij tbere obtained are sim­
p1ified by introducing the values for the ai in terms of 
tbe ~, as g1ven by eguations (5.11). TbUB, we fina11y 
obta1n for Q, 



Q 

• 
-

• 

0 0 Rl 0 

0 -(j R2 0 

.. 
-~3 -~J R3 0 (5.13) 

a- 0--

~4 ... ~R3R4 .. ~ _~ - R,R4 - y, 1 a r ra-J S (j rs lS'f 

With these preliminary results, we May now consider 
the sealar functlon V(n,X) = yT(n)Y(n). As mentioned pre­
viously, this will al_ays be positive definite, so all 
that remains ia to consider the sign of its total difference 
~V(n,Z) for the difference equation under study. From 
equation (4.15) of the previous chapter, with m 2 4, 
we have ~or the homogeneous case 

A V(n,X) ... (r2 - 1) Y42 , 
which will be non-poStive for r 2 

2 a4
2<1. Rence .. e have 

Theorem 42: If, for rea1 constants a1 ,a2 ,a
3 ,a4 , equations 

(5.11) can be solved for real numbers R1 ,R2 ,R3, R4 _hich 
satisfy the condition 

2 = r < l, 
then the equillbrium X = 0 of the homogeneous difference 
equation of fourth order 

ls stable • 



We now attempt to determine those conditions on the ai 

which will guarantee that ~V(n,X) is negative definite 
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and which therefore suffice for asym~totic stability for 

the homogeneous difference equation. That is, subject to 

these conditions, ~V(n,X) will be zero when, and only when, 

Xl = X2 = X3 = X4 = O. Thus we consider 

~V(n,X) = Cr2-1) Y42 = o. 
We note that this does not automatically imply that ~V(n,X) 

is negative definite in the Y coordinates. Using equa­

tion (5.3) to determine Y4 , this becomes 

+ [R2R4 + R2R3R4 + ~ 1 X2 - [~ + R3R4 + R2R;J x: 
(' (J'" rcrj j 0- f'f rJ" .f . 

+ X4 ] 2 = o. 

This expression is obviously zero if each of the Xi is zero. 

Therefore, we must consider under what conditions 

is equal to zero. This is equivalent to 

R 
X(n+;) ; ~ X(n) 

r 

If, in relation (5.15), we replace n by n+l, we also have 

X(n+4) 
R lRR RRR R'" = ~ X(n+l) _ 2 4 + 2 3 4 + :2J X(n+2) 
r r (1'" ,.. cr~ f 

+ ~ + ~ + ~ X(n+;). L
R R R R R J 
(i rf (if 

We now substitute for X(n+;) a.ud X(n+4) from equations (5.15) 



• 

• 

• 
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and (5.16) into the homogeneous difference equation and 
obtain, after simplifying the resulting expression using 
equations (5.11), 

= o. 

We first investigate the case in which R3 = o. 
Then equation (5.17) reduces to 

or equi valent ly, if f.t 0, 

R2X(n+l) = cr- Z(n). 

X(n) = 0, 

Now, if R2 = ° also, then GiX(n) = O. However, if we 
assume that cr is non-zero, then it follc~s that 

X(n) = ° 
for aIl n~ no. On the other hand, if R2 .t 0, we obtain 

X(n+l) = 0-' X(n). 
""1l2 

Substituting tms expression into the homogeneous difference 
equation, we find 

(J''t (j~ 2-

8 4 ] = 1:(11) [ 
(j 0-

R 4 + al RT + a2 ~ + a
3 -+ 

R2 R2 2 2 

The term in the brackets is precisely the characteristic 
polynomial of the matrix A evaluated for 

À = (T / R2 -

Renee, for asymptotic stability in the present case, we 
must have the expression in the brackets non-zero; i.e., 
we must assume that Ci/R2 is not an eigenvalue of the 
matrix A. As a consequence, we conclude that 

O. 



• 
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X(n) = ° 
for aIl n) ne. 

We now consider equation (5.17) in the case where 
R, ~ O. It then fo11ows that 

X(n+2) = Z(n+1) [
R2 1 + ~ J 
R,CJ" 0-

As was done previous1y, this equation can be used to express 
both Z(n+,) and X(n+4) in terms of simp1y Zen) and X(n+1). 
After substituting these three re1ationships into the 
homogeneous difference equation, we find that it reduces 
to 

aX(n+l) + bX(n) = 0, 

where 

R2'f' R2 f 2 2 RI R2 + RI R4 f a = 
R ;0" 2R ~<:t' R (1'2 R,<r , , , 

2 2 2 
+ 

RI R2R2 R2 R4 RI B3R4 
(TSf -~ -

R, j J 

R 2 R2R4 (j _ R2:i b l + = ~ R 2 • , , R, 

We now consider separately the cases where a is zero and 
non-zero. In the first instance, where a = 0, equation 
(5.18) reduces to 

bX(n) = 0, 

(5.18) 

so it is necessar,y to show that b ! O. If b = 0, then it can 



be written in tbe following two forms. 

2 Z R Zp o a 0" - RZ + (J'" R~4 - Z ~ 

~ 
o :: RZ Z ( l + J IR) - CT RZR4 '2.. 

- (t • 

The first is a quadratic equation in 0', so tbat 

{j :: -RZR4 ± RZ (R4Z + 4 .. 4$ /RJ)i 
Z 

Equivalently, 

(j" -RZ 
= -R4 ± (R42 + 4 + 4$ IRî)! 

2 • 

• 

The second expression for b = 0 1s quadret1c in RZ' 

RZ a + CTR4 ± cr (R42 + 4 .. 4,f fRJyt 
Z 

or equiv61ently, 

~= 
cr 

.... R4 ± (R42 + 4 + 4f IR)1-
Z 

As a consequence, 

(j' !!.z.... 
RZ - cr :: 

Tbat is, 

R1Z =-0'" RzR4. 
Tbus, if b = 0, it follows tbat 

R Z 
= - Z.f 

~ 

, 

• 

• 

so tbat 

Hence, RZ :: 0 also. But if R2 = 0, then b = R12 = 0, wbich 
is impossible since we assume R1Z + RZZ =~ > O. 

Secondly, we consider the case wbere a # O. Tb en 



• 
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X(n+l) = -b/a Zen). 

Substi tuting this into the homogeneous equation, we find 
X(n) [(b/a)4 - al (b/a)3 + a2Cb/a)2 - a

3
Cb/a) + a41 = o. 

The term in the brackets is the characteristic polynomial 
of the matrix A evaluated for À = -b/a. ~nus, if we as­
sume that -b/a is Dot an eigenvalue of A, th en 

X(n) = ° 
for aIl n) no. 

Collecting the above results, we have the following 
theorem. 

Theorem 43: If 

a) for real constants a l ,a2 ,a
3

,a4 , equations C5.ll) 
can be solved for real numbers R1 ,R2 ,R

3 
and 

R4 which satisfy the conditions 
2 2 222 RI + R2 + R3 + R4 = r < 1 

R12 + R2
2 = 0-'1>0, 

b) R3 = 0, R2 ~ ° implies +~/R2 is not an 
eigenvalue of A, 

c) for real constants a and b defined by equation 

(5.18) for R3 ~ 0, a 1 ° implies -b/a is 
not an eigenvalue of A, 

then the equilibrium X = ° of the homogeneous difference 
equation of fourth order 

X(n+4) + a l XCn+3) + a2X(n+2) + a
3
X(n+l) + a4X(n) = ° 

is asymptotically stable. 



We now turn our attention to a consideration of the 
non-bomogeneous ditterence equation (S.l). From the dis­
cussion ot the previous cbapter, we see tbat we need only 
examine the behavior of tbe total d1fference A. Ven ,X), 
wh1ch 1s g1ven by 

119,' 

Â V(n,X) :: (r2-1) Y42 - 2( -f Ir YJ + R4Y4)F + F2, (S.19) 
for the case m'2 4. Furtber, using the expression for Q 
given in equation (S.lJ) and tbe matrix eguation Y :: QI, 
we tind 

YJ ::. . f Xl - (R2/°- ) (RJ+f )X2 + RJXJ 

Y4 = -~ X + [R2R4 + R~JR4 + ~ ] X2 ~ tR2 - RJR4 _ R~31 X r l cr r rG"f) 0' r j cr):J 3 

Hence, eguation (S.19) reduces to 

Â V(n,X) :: 

We may rewrite tbis as 

2 
+ F • 

Â V{n,X) = K - 2 Et2 

Xl +( R2f4 + R2~f\ X • r~ ra- ï 2 

+ x4· 

(S.20) 
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wbere 

(5.21) 
+ 1. R2 _ RJR4 _ R2R3)x R4 F 1.2-\ a- rfcr- f J + X4 - r!-l J 

Since, by bypo'tbesis, r 2-1< 0, we see immediately tbat 
K~ O. Rence,.à. V{n,X) as given by equation {S.20} will be 
non-positive for 

-2PEtX1 + (f:; ~ RW)X2 -R!f ~] + F2f~:=:}o. 
or equivalently, 

• 

Again, collecting the above results, ve bave tbe fol­
lowing tbeorem. 

Tbeorem -M: If, 

a) for rea1 constants al t a2' a3' and a4' equations 
(S.11) can be solved for real numbers Rl' R2' BJ and R4 wbicb satisfy the conditions 

Rl2 + R2
2 + R;2 + R42 = r 2<'1 

R1 2 + R2
2 = 0'"2. /' 0, 

b) tbere exista a real functioD F{n,Ul,U2,UJ ,U4) 
aucb tbat F{n,Ul ,U2,UJ ,U4) ~ 0 if and only if 
Ul = U2 = UJ = U4 = 0 and whicb satisfies tbe 
condition 

(S.22) 



1'21 

o < 
, 

then the equil1br1um X = 0 of the non-bowogeneous difference 
equst10n of fourth order 

X(n+4) + slX(n+3) + sZX{n+2) + a3X(n+l) + a4X{n) 

+ F (n ,X (n ) , ••• ,X ( n+ 3 ) ) = 0 
1s stable. 

F1nally, ve will now 1nvest1gate under what con­
ditions the equ1librium of tbe non-homogeneous equat10n (S.l) 
1s asymptotically stable. From the discussion for the 
general case in the previous chapter, we already know that 
the scalar function 

V(n,X) _ yT(n)Y{n) 

is decrescent, so that we need only determine under what 
conditions itstotal difference, as given by equation (S.20), 
1s negative def1nite for the non-homogeneous equation. To 
do this, we set ~ V(n,X) a 0 and obtSin K = 0 and 

F
2 [t:-:~~} 2F f-Ç Xl + ( ~l + R~~) X2 - R~~ X)]. (5.2)) 

both of which must hold simultaneously. Equation (5.23) 

is valid if F = 0, but we assume that F is zero if and only 
if each of the ~n) = 0, for all n, which in turn would 
guarantee that K s ° also. Thus, the case which needs inves­
tigation ia where equation (5.23) i8 d1v1ded by F to reduce 
to 



p ... V 

(S.24) 

and where K ~ 0 7ields 

= -~ X, + (R2R4 ... RzR3R4 f ~)X r.&. ra- r(Tf f 2 

+ Pel - R~~ - Rq ) lJ + X4. 

If equation (S.25) is multipl1ed by R4 and the resalt is 
added to equation (S.24), ve ob tain 

• ::II -(r+ ~'lr )Xl + f_R2 ~~ ~ R~3 + R2r + .h2~r ... R3R4) X2 \ r <J'" nr (J'" O'"f ~ . 
. ~ (s.26) +( -~_ RzR4 _ ~ - R2RJR4) + R X r J <J f O-f XJ 4 4. 

We now substitute this value for F into eguation (S.l) to 
obtain 

For simp11c1ty, we sball write this as 

X(n+4) + bl X(n+3) + b2X(n+z) + bJX(n+l) + b4X(n) ~ o. (S.28) 
Equations (5.24) and (5.26) yield two separate ex­

pressions for the function F. If we equate these two for­
mulations, ve find tbat 



• 
~ 

+ x [_ B,B4 <f+') + ~ + B2B, ] 
, r f (r~-') a- a--r · 

If we now introduce this expression into equation (5.27), 

we can eliminate X(n+4) and X(n+3), leaving 

r 2B2B4 cr- 2B, 29.4 2( r." ... \) R2~ R~,R4] 
X(n+2) l r (f'-') + ra (f'a-,)5 + r - r ~lf t"') 

l 2B4 2B~,B4 2 f (r~· i) 2R2R, 2~4 2 (~ 1-~ 
+ X(n+l) - - - - - * .,.{ ra.- 1) r~ O-lf~-l)~ r:a.o- (~~-l);;a. 

+ 2B,
2B

4 + B.2r2. _ R~'l + x [-2B,R42.f({:L+O_~] 
rtf-') r 0- (" a- (n) Î~ (r-IL-, )~ r 

= c3X(n+2) + c2X(n+l) + clX(n) = o. 
Now, if c3 z 0, then equation (5.29) reduces to 

cl%(n) + c2X(n+l) = O. 

If, further, c2 = 0, then 

• clX(n) = O. 

• 

Thus, if we assume that cl # 0 in this case, it follows that 

X(n) = 0 

for aIl n~no. 

If, on the other hand, c
3 

= 0 and c2 # 0, then 

we may solve for X(n+l) as 

Z(n+l)~ -cl /c2 Zen). 

Introducing this into equation (5.28), we have 

Zen) [ (-c
1
/c2)4 + bl (-cl /c2) 3 + b2(-cl /c2)2 

+ b,(-cl /c2) + b4 ) - o. 

Rence, if we assume that the term in the brackets is 

non-zero, then we must again have that 

X(n) = 0 



for all n ~ no~ o. 
Ve now oons1der the oase when 03 ~ 0, so tbat we 

may solve for X(n+Z) in equation (5.29). 
X(n+2) = -01/03 X(n) - 0z/03 X(D+l). 

Us1ng this expression to eliminate X(D+3) and X(D+4) and 
subst1tut1ng them into equation (,'.28), ve obtain 

X(D+l) [(-02/0;)2 + clc2/c32 + b1 (-cz/o;)2 - bl(Cy03) 

- b2(oZ/c3) + b3 ] 
+ ~(n) [ - 01 c22/ o3' + bl(C1Cz/o;2) - b2(cl/03) + b4 ] 

- dl X(n+l) + d2X(n) • o. (5.31) 
New, if dl = 0, then d2x(n) • 0 also. Bence, if 

ve impose the assumption that d2 ~ 0, ve obtain 
X(n) = 0 

fer all n~noùO. For tbe other elternative, 
X(n+l) = - d2/dl Zen}. 

Substituting tbis expression into equation (5.28), ve find 
Z(n) [ (-d2/dl)4 + b1 (-d2/d1 ») + b2(-d2/dl)2 

+ b3 (-d2/dl) + b4 ] = o. 
Thus, as in equation (5.30), ve must assume that the term 
in the braokets 1a non-zero to insure tbat 

Zen) = 0 
for al1 n ~ no~ O. 

Summ~rizing the above resu1ts, we obta1n the !ol­
lowing theorem. 

(5.32) 



Theorem 45: If, 

o < 

a) for resl constants al' s2' sJ and a4' equations 
(S~ll) can be solved for real numbers RI' R2' 
EJ and R4 wbicb satisfy the conditions 

Rl2 + R22 + ~2 + R42 • r 2< l 
R12 + R22 21 (j'l.;> 0, 

b) tbere exista a real tunctioD F(n,U1 ,U2,uJ ,U4 ) 
sucb that F(n,Ul'U2,uJ ,U4 ) = 0 if and only if 
U1 = U2 = UJ = U4 = 0 and wbich furtber 
satis!ies the condition 

c) for real constants bl , b2, b; and b4 as defined 
by equation (5.28), cl' c2 and cJ as defined 
by equat10n (5.29) , and dl and d2 as de:tined 
by equation (5.)1) , 

1) cJ s 0, c2 = 0 imply that cl ~ 0 
2) cJ s 0, c2 ~ 0 1mply tbat 

, 

<-C1/C2)4 + bl(-cllc2)J + b2(-clIc2)2 + bJ(-cl/c2) + b4 ~ 0, 
J) 03 ~ 0, dl = 0 1mply tbat d2 ~ 0 
4) c) ~ 0, àl ~ 0 imply tbat 

(-à2/àl)4 + bl(-d2/àl») + b2(-d2/dl t + bJ (-à2ldl) + b4 ~ 0, 
tben the equilibrium of the non-bomogeneous ài:tference equa­
tion of fourtb order 

X(D+4) + a1X(n+J) + szX(D+2) + aJX(D+l) + s4X(n) 
+ F(n,X(n), ••• X(D+J» = 0 



1a as.Jmptotically stable. 

Ve sball now apply the above results to several 
exemples of specific non-homogeneous difference equations 
of tbe fourth order. 

Ezample 1: CODsider tbe difference equation 
X(D+4) + i(l-J2) X(D+2) - (1/]2) X(n) 

~. 
• . J. 

+ c C{l/J2)x(n) - tX(D+2)] _ 0, 1 + b 2(n) [ 

wbere ben) is any rea1 scalar function of n. Then equations 
(5.11) ma1 be solved to yield 

Rl = ~ - t, R2 = R4 - O. 
As a result, Q"":a.= t and (_ r 2 = i. Tberefore, Theorem 
~ insures stabil1ty in tbe bomogeneous case (c = 0). 

Moreover, USiDg tbe notation of Tbeorem 4), 
a = 0 b _ 1. 

Tbus tbe equilibrium of tbe homogeneous case (c = 0) is 
1 t t - " a so ssymp 0 1ca •• 1 stable. 

Purtbermore, the non-bomogeneous term satisfies 
the estimste 

1 + :Z(n) [-(l/J2)X(n) - tX(D+2) ] 

-(l/~E)X(D) - iX(D+2) 

c 

~ 2(r2 -\} 
~~ - \ 

= 2, 
wbeDever c~ Z for aU n ~no~ O. Rence, by Theorem 4.4, tbe 



• 

equilibrium of the non-homogeneous equation wi th c ~ 2 

ls stable. 

~inall7, using the notation of Theorem 45, 
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bl = 0 b2 = ~(l+.rn- ) b3 = 0 b4 - l/n 

cl = -1/.f2 c2 = 0 c
3 

... ~ 

dl = 0 d2 ,. 1+.12 • 

These values correspond to the case given in the Theorem ~ 

for c3 ~ 0, but dl = O. The only additional condition for 

asymptotic stability is that d2 be non-zero, which is ful­

filled. 

Example 2: Oonsider the difference equation 

~(n+4) + (1/J2) X(n+3) - ~(n+l) - (1/12) X(n) 

c sin [(l/J2)X(n) -. ~X(n+l)] = 0, 
l + h2 (n) 

where h(n) is any real scalar function of n. .ls in Example 

l, equations (5.11) are solvable to yield 

Rl = R2 = ~ 
and, as a result, 

cr2. = !'J. = r 2 ,. ~. 
Thus, by Theorem 42, we conclude that the equilibrium of 

the homogeneous equation (c = 0) is stable. 

To investigate asymptotic stability of the homo­

geneous equation, we must examine the situation when R3 = O. 

In that case, 

cr' /B.2 = J2 , 
and hence 

(cr /B.2 )4 + al (0- /B.
2

)3 + a2( 0'" /R2)2 + 8
3

( o-/B.2) + a4 



=: (J2)4 += (1/J'2) (J2)3 - ~(S2) 
a 6 - J2 # o. 

(l/m 
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Therefore, the equi1ibrium is asymptotica11y stable for 
c • o. 

If c # 0, then the non-homogeneous term satsifies 

1 + h (n) , ~ ------- • 1 

c2 » [sin [(1/J2) Zen) - ~(n+1)11 c 

-(1/$2) Zen) + ~(n+1) 1 + h2(n) 

c 2, 
whenever c ~ 2 for a11 n ~ no ~ o. Thus, this gi ves the 

condition for stability of the equi1ibrium in the non-
homogeneous case. 

Hina11y, using the notation of Theorem 45, we find 
bl = -1/12 b2 = 0 b3 = ~ b4 = -1/12 

cl =: -1/J2 c2 = ~ c3 = o. 
Thus, we must investigate the case c3 • 0 and c2 # O. Rere 

c1/c2 = -)2 
and 

= ,'4 - 2 # 0, 

and so, by Theorem 45, the equilibrium is asymptotica11y 
stable for a11 n~no ~O in the non-homogeneous case 
whenever c ~ 2. 



• 
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Chapter 6: Some Remarks on the Work of Puri and Drake 

At this point, several remarks on the work dàne by 
Puri and Drake (:1~) are in order. Essentially, the theo­
rems that they state in their paper purport to be sufficient 
conditions for asymptotic stability of the equilibria of 
the non-homogeneous difference equations of second and 
third orders. However, the conditions they obt~'; .. actua11y 
yield no more than the usual stability. The principal 
reason for this is that the scalar functions V(n,X) that 
they consider are required to possees regative semi-defi­
Dite total differences. That is, they impose no conditions 
on A V(n,X) to insure that it is negative definite. It 
is the purpose of the present chapter to determine the 
supplementary conditions on the scalar functions V(n,X) 
for the cases m = 2 and m = 3 which will gu~antee asymp­
totic stability of the equilibria. 

Moreover, it turns out that utilization of the 
approach outlined in Chapter 4 leads to a far simpler for­
mat for the conditions and so will be adopted here instead 
of the formulation used by P..lri and Drake. 

We tirst consider the case m = 2. For reference, 
the forma for the various quantities which appear when wor­
king through the entire scheme will be stated. We have 

so that 

Il, ) 

~, 



and 

Q = (_R;2 :). 
As a result, 

Yl = ~Xl 
Y2 = -(Rz/r)Xl + X2• 

As mentioned above, it is necessary only to study 
under wbat conditions the total difference of V(n,X) = yTy 
is negative definite for the difference eguation 

X(n+2) + alX(D+l) + aiX(n) + F(n,X(n),X(n+l» = O. 
We have 

Substituting the values for the Yi' we find 

2 + F. 

(6.1) 

~ V( n,X) = (r2-l) [( -R2/r )Xl + X2] 2 - 2[ -rXl + R2X~ P + F2 

= (r2_1) [(-R2/r)X1 + X2 - (R2/r2-l)F]2 

+ 2(R12/r)FX1.,.{Rl2-1)/(r2-l) F2. 
In order that this expression be non-positive, we impose 
the condition 

2(R1
2/r)Xl F + (Rl 2-l}/(rZ-l) pZ ~ 0, 

or eguivalently, 

Th en , in order for AV(n,X) to be zero, it i5 necessary that 



-

R2 F == - R2 X X2 r 2_l - 1 + 
r 

and 

Rl2 - 1 F Rl2 = -2 Xl· r 2 - 1 -r 

If equation (6.2) is now multiplied by R2 and the result 
added to equation (6.), we obtain 

F (-r R 2 
= - ...L. ) Xl + R2X2• r 

Alsc, by equating the two values for the function F given 
in equations (6.2) and (6.4)~ we obtain 

X2 == - ~ (Rl 2 + ~ Xl· 
r (Rl 2 - 1) 

Equation (6.5) gives an expression for X(n+2) in terms 
of X(n+l) simply by replacing n by n+1. As a consequence, 
we can substitute in the original difference eguation for 
X(n+l), X(n+2) and F from eQ.uations (6.4) and (6.5) and 
thus obtain 

(6.2) 

(6.) 

(6.4) 

(6.5) 

.,. (r + ~~)lx(n) = o. 
r -1 

If this expression 1s now expanded and simplifiee, we final1y 
find that 

_ R12] Zen) ~ o. 
r 



---

Renee, if we specify tbat 

l2R/(R12 + 1) 

r(R
1

2 _ 1)2 

tben it follows tbat 

Zen) = o 
for all n ~ no~ O. This 1eads to the fol1cwing result. 

Tb eorem !l5..L If 

a) for rea1 constants al and a2, equations (6.1) 
cari be solved for rea1 constants Rl and R2 
wbicb satisfy the conditions 

b) tbere exiets a real function F(n,U1 ,U2 ) auch 
that F(n,U1 ,U2) = 0 if and on1y if U1 = U2 = 0 
and wbich further satiefies the condition 

-2R12(r2 - 1) 

r(R1
2 - 1) 

< 0, 

then the equilibrium X = 0 of the non-homogeneous difference 
equation of second order 

X(n+2) + al X(n+1) + a2X(n) + F(n,X(n),X(n+1» = 0 

ie asymptotica11y stable. 

It ia wortb remarking here that in the bomogeneous 



case, for m = 2, Puri and Drake bave actually shawn that 
the total difference of tbeir scalar function V(n,X) ia 
indeed negattve definite. 

We now turn to an investigation of tbe asymptotic 
stability of the equilibrium of the difference equation of 
tbird order. As before, ve l1st the relevant quantit1es 
prior to the study. They are 

!z.- R1RJ Rl f rf 
R= RJ R6 R2 i l'f 

0 --f- ~ J' (" 

a3 =-r, 

0 Rl 0\ 
Q = -g R

2 
o 1 

1 ) ~ _R2_~ 
f r-~ • r 

As a consequence, we find that 

Yl - RlXI 
y 2 = J Xl + R2X2 

Y"l = ~l + f-R
2 - ~Jx 

.1 r L r r-f 2 + ~ • 

Tbe total difference for the saalar function V(n,X) = yTy 

in tb1a case 1s given by 



À V(n,X) = (r2~1)YJ 2 - 2[(- f Ir )Y2 + ~YjJ:r + F2 

= (r
2-1l [ ~l +ry -R;f) X2 + X:3r 

-2 [ rX1 + ~r -~2)X2 + RJX:3]F + 
This may be rewritten as 

In order to bave tbis negative semi-detinite, we must impose 
tbe condition 

~ 

f-'F2~0 :.., .....;;:, r-

or equiva1ent1y, 

• 

We now examine under wbat conditions Â V(n,X), as 
given by equation (6.8), is zero. 

, 
We must bave 

. (6.10) 

If equation (6.9) i8 mu1tip1ied by R; and tbe resu1t added 
to equation (6.10), ve obtain 

(6.11) 



Moreover, equating tbe two values of F obtained in equa­
tions (6.9) and (6.1i), we find 

(-RJ/
L 

- ~ Xl +fR2$ + R:f5.:1' + 1- + R~X2 + 

Tbe difference equation under consideration is 
X(n+3) + alX(n+2) + aiX(n+1) + a;X(n) 

+ F(n,X(n),X(n+l),X(D+2» = O. 

",~. 

13; 

Witb tbe expressions for the ai given in equations (6.7) and 
for F from equation (6.11), tbis equation becomes 

X(n+;) + f-~ - RZR3\X(n+2) + ( .!J. - !zî..\X(ll+1) ... ..t2.x(n) \. ) r~ tj r r -; r 

(6.J 

(6.1; ) 

Equation (6.12) can now be solved for X(ll+Z), and 
correspondingly for X(n+3) by rep1acing n by n+1, in terms 
of X(n) and X(n+l). Introducing these values into equation 
(6.13) and simplifying f we obtain 

R,;~l 
- --r-]X(ll+l) 

Now, if Cl = 0, tben we must bave c2 ~ 0 to insure that 

X(n) = 0 

for all n ~ no~ O. On tbe other band, if Cl -1 0, tben 

X(n+l) = -c2/cl X(n), 
so'tbat equation (6.1;) becomes 

(6.14) 

[(-cZ/c1 ); + blC-cZ/cl)Z + bZ(-cZ/c1) + b~X(n) = o. 



Thus, if the term in tbe brackets in non-zero, then 

X(n) = 0 
for all n ~ no~ o. 

Summarizing tbe above results, ve obtain the fol­
lowing tbeorem. 

Tbeorem 56: If 

a) for real constants al' a2 and aJ' equations 
(6.7) can be solved for real numbers Rl' R2 
and RJ whicb furtber satisfy tbe conditions 

R12 + R22 + ~J = r2 < 1 

Rl 2 + R2
2 

:1 t?~ ~ 0 , 
b) tbere exista a real function F(n,Ul ,U2,uJ ) sucb 

tbat F(n,Ul ,U2,UJ ) = 0 if and only if Ul = U2 = 

2.36 

= UJ = 0 and wbicb furtber satisfies tbe condition 

<... 0, 

c) given real constants bl' b2 and bJ , as defined 
by eguation (6.1J),and Cl and c2' as defined by 
eguation (6.14), 

1) Cl = 0 implies c2 ~ 0 

2} Cl ~ 0 implies 
. J 

(-c2/c1 ) + b1 (-c2/cl)2 + b2(-c2/cl) + bJ F 0, 

tben tbe equilibrium X a 0 of tbe non-bomogeneous difference 
equation of tbird order 

X(n+J) + al X(n+2) + a2X(D+l) + aJX(n) + F(n,X(n), ••• X(n+2» 

o 
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is asymptotieally stable. 

Finally, we consider the homogeneous case for m = 3. 

For this differenee equation, the total differenee of 

V(n,X) is given by 

R (R2 R~2)y ] 2 
A V(n,X) - (r

2
_1){ 7?- Xl - f + r- f T2 + X~ • 

If this expression is zero, then 

Z(n+2) 
-R 

la ..:2 Zen) 
r 

R R R) + ( 2 3 + ~ X(n+ 1) rs f · 
-" 

Substituting this into the differenee eqllation and simpli­

fying the resul t, we have 

2-
f Zen) -(' 

This immediately redu ces to 

R2Z(n+l) = f Z(n). 

Now, if R2 = 0, it follows that 

Zen) = 0 

= o. 

for all n). no' sinee f" O. On the other hand, if R2 # 0, 

then we have 

Z(n+l) = Cj IR2]X(n). 

Substituting this into the original differenee equation 

of third order, we obtain 

2 Rl (f - R2R3) X(n) = O. 

Thus, if we assume that the term preeeding X(n) is non-

zero, then we eonelude again that 

(6.16) 
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X(n) = 0 

for aIl n~no. 

Summarizing the above results, we obtain the fol­
lowing theorem. 

Theorem 47: If 

a) for real constants al' a2 and 8 3 , equations 
(6.7) can be solved for real numbers RI' R2 
and R3 which satisf,. the conditions 

R12 + R2
2 + R32 

a r 2 < l 
2 2 2 RI + R2 = j > 0, 

b) R2 F 0 implies that R12( î - R~3) F 0, 
then the equilibrium X - 0 of the homogeneous difference 
equation of third,order 

X(n+3) + a l X(n+2) + a2X(n+l) + a
3
X(n) • 0 

is asymptotically stable. 

Finally, to conclude this section, we consider 
how "good" the results in Part II are. In particular, 
we will compare some of the preceding results for homo­
geneous difference equations with the standard conditions 
for asymptotic stability for such homogeneous equations; 
namely, the Schur-Cohn criterion. For the case m = 2, 
the Schur-Cohn conditions are 

1 a21 <. 1 

l aIl < Il + a21 • 
The corresponding conditions based on the work in this 
chapter are obtained by actually solving equations (6.1) 



• 

• 

for R1 and R2 • We a1ready have the condition 

r 2 = a2
2 < 1. 

The first part of equations (6.1) yie1ds 

As a consequence, 

R 2 
1 

and therefore, 

= 

= 

• 

= 

Hl = c::) l (1+a2 )2 - a 1
2

] ~, 
where it is necessary to impose the condition 

(1+a2)2 > a1
2 , 

1~9 

so that RI is indeed a rea1 number. Thus, we note that 
the conditions obtained here are identical with the Schur­
Cohn conditions, as was pointed out by Puri and Drake. 

However, for the car-~ ~ = ;, Puri and Drake 
mere1y observed that their conditions were similar in 
form to those gi ven by the Schur-Cohn cri terion. The 
latter are 

, a; \ <. l 

\ a;2 - 1 \> )a1a3 - a2 ' 
l + al + a2 + a3 ~ 0 

1 - al + a2 - a3 ~ o. 
As above, we obtain our conditions by solving equations 



• 

• 

• 

(6.?). To begin, we_find that 

= 

where we have alrea~ imposed 

a 2 
3 

Consequently', 1re have 
a 

j = r 2 R 2 
- 3 

and therefore, 

where we must assume 

= 
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Thus, we note, the first t'Wo conditions here are ident1cal 
with the first two Schur-Cohn conditions. Moreover, it is 
possible to solve for R2 by substi~Jting for R3 , rand f 
into equations (6.?), and based on this, RI can be de­
termined. As before: the evaluation of RI results in a 
square root and it 1s necessary to impose the additional 
condition 

[(a3
2 - 1) - (a2 - a l a3)] 2 > (a2a3 - al )2. 

We then find, after a somewhat detailed calculation, that 
the last t'Wo conditions in the Schur-Cohn criterion imply 
the above inequality. Thus, for the case m = 3, the condi­
tions stated in Theorem 47 are at least as gocd as those 
given by the Schur-Cohn conditions • 

However, when a similar analysis is applied to 
the case m = 4, the complexity of the terms becomes so 



• 

• 

• 
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great that no definite conclusion can be formed. All that 

can be said is that the first two conditions obtained based 

on the development in this chapter coincide with the first 

two Schur-Cohn conditions, while the remaining conditions 

are similar in form to the ramaining Schur-Cohn conditions. 

It is felt by the author, though, that the conclusion 

obtained above for m = 3 will probably also hold for the 

case m = 4 • 



APPenàix Ai Calculation of tbe MStrix R 

In Cbapter 5, condition (5.6) was imposeà on tbe 

matrix R. The expansion of tbis condition led to a series 

of ten relations. It was sbown tbere tbat equations d) and 

a) togetber yield 

and r2l = +" ~ • 
(1" 

From relations b) and g), it follows tbat 

r22 = (R2~)r12 

rJ2 = -( 0'~/R1R:3 )r12· 
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Substituting tbese expressions into equation e), tbere results 

and beDce we obtain 

, 

wbicb implies ihat 

+ R~J and - 0' 
r 22 = rJ2 = - . -- + f C7~ 

In a totally similar manner, relations c), f) and i) yield 

expressions for r~J' r)J and r4J' respectively, in terme of 

rlJ- Substituting tbese results into equation b), we find 

r lJ
2(r2f'" IRl2R42) = l, 

wbicb gives tbat 

• 



· ' 

This in turn implies tbat 

= + R~4 --rf 

= !~ ry 

r43 = +.1.. 
r , 

wb1cb results in tbe form for tbe matrix R given in equa­
t10n (S.9). 



Append1x B; Calculat10n of tbe MBtr1x Q 

Wben the relation QA = RQ 1s expanded, the follow1ng 

set of equat10ns 1s obta1ned: 

a) 0 = (-R2/0" )qll + (Rl~/O"f )q2l + (R1R4I'rS)q3l + ~q4l 

b) qll = (-R2/0')q12 + (RlR:3/<tf )q22 + (Rl R4I'r f )q32 + ~q42 

c) ql2 = (-R~<r )ql3 + (~~/0'".f )q23 + (Rl R4I'r r)q33 + ~q43 

d) q13 = ~ 

e) 0 = (Rl / cr- )qll + (R2~/o-f )q21 + (R~l/r ~ )q3l + R2q41 

f) q21 = (~I (j )q12 + (R~/(]'"f )q22 + (R2R4/rr )q32 + R2q42 

g) q22 = (R1/a-)q13 + (R2RJ/~S )q23 + (R2Rl/rf )q33 + R2q43 

h) q23 = R2 

i) 0 = (-Vif )q2l + (~R4I'r g )q31 + ~q41 

j) q31 = (- ~/f )q22 + (~Rl/r) )q32 + ~q42 

k) q32 = (- 0'/ f )q23 + (~R4/rf )q33 + R; q43 

1) q33 = R3 

m) -a4 = (- ~ / r- )q31 + R4q4l 

n) q4l- a3 = (-f/r )qJ2 + R4q42 

0) q42 - a 2 = (-.f / r )q33 + R4
q43 

p) q43 - al = R4· 

As was noted prev1ously, we 1mmediately bave, from 

relation p), 



Substituting.this expression for q43 and.the ones from 
equations dl, h) and 1) into relation 0), we find upon 
us1ng equat10n (S.llb) to express a2, 

q42 = (R~4"rO") (1 t ~/ f ) .,. ~/ r · 
Simi1ar1y, substituting q23' q33 and q43 into relation k) 
we obta1n 

q32 = (-R2/ S )( ()"" + ~2/ <r) + R2~/ (j 

= (R2/cr)~ - f ). 
Substitution of these same quantities into relation g) yie1ds 

and simi1ar1y, from equation cl, 

o. 

The derived expressions for q32 and q42 are now substituted 
into relation n), 8long with the value for 8

3 
given in equa­

tion (S.llc) to give 

q4l = (R2/rcr)(R4
2+f) - (R~/ro-)( f + R42/f ) 

+ rR~/O"j' - rR2/<:r -. R4/r 

= -R4/r , 
upon simplification. Furthermore, equation m) yields 

a. Cf /r)q3l = a4 + R4q4l = +r + R42/ r = +,f Ir, 
which implies tbat 

q3l = + f · 
Once q3l and q4l are known, relation i) gives 



and henoe, 

Finally, equation a) is used to determine 

Tbus far, all ten of the unknown q .. have been de-
l.J 

termined from only ten of the sixteen equations a) - pl. 
However, the remaining six relations are satisfied for the 
values for the qij obtained, es oan be seen from direct 
substitution and subsequent simplifioation. 
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