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Preface

This thesis focuses on the analysis of areal data in three settings, namely a purely spatial and

a spatio-temporal disease mapping contexts, and small area estimation. This manuscript-

based thesis contains six chapters: Chapter 1 briefly introduces the concepts studied, and

Chapter 2 provides a more detailed literature review, Chapters 3–5 contain three original

manuscripts that are linked by the topic of areal data analysis, and Chapter 6 concludes

this thesis with a discussion of future work avenues. The references and appendices of each

manuscript are all available after the concluding Chapter 6.

Chapters 1, 2, and 6 were conceived and written by Victoire Michal (VM) and revised by

Alexandra M. Schmidt (AMS).

Chapter 3 was suggested by AMS and further conceptualised by VM. VM developed the

methodology, designed and conducted the simulation studies and the data analysis, and

wrote the manuscript. Substantial feedback came from AMS at every step of the process, in

particular, troubleshooting the simulation studies, and revising the manuscript. Regarding

the data analysis, Laís Picinini Freitas helped to obtain the data, to introduce the application

in the manuscript, and to provide insights on the results. Oswaldo Gonçalves Cruz provided

further valuable insights regarding the data application.

Chapter 4 was conceptualised via discussions between VM and AMS. The methodology

development, design of the simulation studies, data analyses, and manuscript writing were

conducted by VM. AMS provided valuable feedback, guidance, and revision at every step of

the process.

Chapter 5 was conceptualised via discussions between VM, Jon Wakefield (JW), and AMS.

VM developed the methodology, designed and conducted the simulation studies and the data

analysis, and wrote the manuscript. JW and AMS provided valuable guidance at every step

of the process. The Ghanaian data application arose from discussions with Alicia Cavanaugh,

Brian E. Robinson, and Jill Baumgartner.
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Abstract

This thesis focuses on the analysis of areal data, where an outcome is observed across different

areas of a region. Areal data commonly arise in disease mapping or small area estimation

(SAE). We aim to provide flexible spatial and spatio-temporal models in the analysis of

disease mapping data. Furthermore, we investigate different methods for SAE, including

machine learning (ML) approaches.

When the number of cases of a disease is recorded across different areas within a region,

disease mapping is useful to estimate the areal relative risk. The number of cases in an area

is often assumed to follow a Poisson distribution whose log risk may be written as the sum

of fixed and random effects. The BYM2 model decomposes each latent effect into a weighted

sum of independent and spatial effects. In the first manuscript, we extend the BYM2 model

to allow for heavy-tailed latent effects and accommodate potentially outlying risks, after

accounting for the fixed effects. We assume a scale mixture wherein the variance of the

latent process changes across areas and allows for outlier identification. We explore two

prior specifications of the scaling parameters and compare the proposed model to another

proposal in the literature, in simulation studies and in the analysis of Zika cases from the

2015-2016 epidemic in Rio de Janeiro.

Further, disease counts are increasingly recorded over time and across areas, and spatio-

temporal disease mapping models help understand the spread of the disease over time.

Commonly, the areal number of cases is assumed to follow a Poisson distribution, where

the log risk varies with space and time. Models have been proposed to account for a spatio-

temporal trend in the latent effects. In the second manuscript, we extend a spatio-temporal

model to allow for heavy-tailed effects to accommodate and identify outliers. At each time

point, we assume the latent effects to be spatially structured and include scaling parame-

ters in the precision matrix to allow for heavy tails. We investigate the performance of the

proposed model through simulation studies and analyse the weekly evolution of COVID-19
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cases across Montreal and France during the second wave.

When an outcome is measured across a fraction of the areas of a region through a survey

that samples few units per area, SAE methods are useful to obtain reliable estimates at the

areal level. In the third manuscript, we propose a comparison of different approaches for

model-based small area prediction when there are abundant auxiliary data for the sampled

and non-sampled areas. Random forest (RF) and LASSO approaches are compared with a

frequentist forward selection procedure and a Bayesian shrinkage method. To provide un-

certainty quantification of estimates obtained from RF and LASSO methods, we propose

a modification of the split conformal (SC) procedure that relaxes the assumption of ex-

changeable data. Through simulation studies, we assess the performance of the proposed SC

procedure and compare the four modelling approaches. Further, we estimate the areal mean

household log consumption in the Greater Accra Metropolitan Area using data available from

the sixth Ghanaian Living Standard Survey (GLSS) and the 2010 Population and Housing

Census. The dependent variable is measured only in the GLSS for 3% of all the areas, and

174 covariates are available from both datasets. For this analysis, a cross-validation study

showed that the Bayesian shrinkage method yielded smaller bias and MSE.

The methods proposed in the three manuscripts of this thesis contribute to the literature

on disease mapping, SAE, and ML. The first two add to the disease mapping literature by

accommodating and identifying outlying areas in spatial and spatio-temporal models. The

third manuscript contributes to the SAE literature by studying model-based approaches in

a high-dimensional setting, and to the ML literature by proposing a procedure to provide

uncertainty quantification of ML estimates.
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Abrégé

Cette thèse traite de l’analyse de données régionales, où une variable est observée dans

différentes régions d’un territoire. Les données régionales surviennent en cartographie des

maladies (CM) ou lors d’estimation pour petits domaines (EPD). Notre but est de développer

des modèles spatiaux et spatio-temporels flexibles en CM. De plus, nous étudions diverses

méthodes en EPD, dont des méthodes d’apprentissage automatique (AA).

Quand le nombre de cas d’une maladie est observé dans diverses régions, la CM sert à

estimer le risque relatif régional. On suppose souvent que le nombre de cas régional suit

une loi Poisson dont le risque log est la somme d’effets fixes et latents. Le modèle BYM2

définit chaque effet latent en la somme pondérée d’effets indépendants et spatiaux. Dans le

premier manuscrit, nous modifions le modèle BYM2 pour inclure des effets à queue lourde

et s’adapter aux risques aberrants, après prise en compte des effets fixes. Nous supposons

un mélange d’échelles où la variance latente change selon les régions et permet d’identifier

les valeurs aberrantes. Nous envisageons deux lois a priori pour les paramètres d’échelle et

comparons le modèle proposé à un autre via des études par simulation et dans l’analyse de

l’épidémie de Zika de 2015-2016 à Rio de Janeiro.

En outre, l’enregistrement récurrent du nombre régional de cas malades est de plus en plus

courant et les modèles spatio-temporels de CM aident à comprendre la propagation de la

maladie. On suppose que le nombre de cas régional suit une loi Poisson dont le risque log

varie dans l’espace et le temps. Des modèles d’effets latents à tendance spatio-temporelle ont

été proposés dans la littérature. Dans le deuxième manuscrit, nous élargissons un modèle

spatio-temporel existant afin d’inclure des effets à queue lourde pour s’adapter aux régions

aberrantes et les identifier. À chaque point dans le temps, nous supposons que les effets sont

structurés spatialement et incluons des paramètres d’échelle dans la matrice de précision pour

permettre des queues lourdes. Nous évaluons le modèle proposé via des études par simulation

et analysons l’évolution hebdomadaire de la COVID-19 durant la deuxième vague, à Montréal
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et en France.

Quand une variable est observée dans peu de régions via un sondage sélectionnant peu

d’unités par région, l’EPD mène à des estimations régionales fiables. Dans le troisième

manuscrit, nous comparons différentes méthodes basées sur le modèle pour la prédiction en

EPD en présence de nombreuses covariables. On compare des approches par forêt aléatoire

(FA) et le LASSO à une sélection ascendante fréquentiste et à une méthode de contraction

bayésienne. Pour mesurer l’incertitude des estimations par FA et le LASSO, nous proposons

de modifier la procédure de prédiction conforme scindée (PCS) afin d’assouplir l’hypothèse

d’échangeabilité des données. Nous évaluons la procédure PCS proposée via des études par

simulation et comparons les quatre approches. De plus, nous estimons la consommation log

moyenne des ménages dans la région métropolitaine du Grand Accra avec les données du

sixième Ghanaian Living Standard Survey (GLSS) et du Population and Housing Census de

2010. La variable dépendante est observée uniquement par le GLSS dans 3% des régions et

174 covariables sont disponibles. Une étude par validation croisée démontre que la méthode

par contraction bayésienne génère de plus petits biais et EQM.

Les méthodes proposées dans ces trois manuscrits contribuent à la littérature sur la CM,

l’EPD et l’AA. Les deux premiers participent à la littérature sur la CM en s’adaptant et

identifiant les régions aberrantes, via des modèles spatiaux et spatio-temporels. Le troisième

manuscrit contribue à la littérature d’EPD en étudiant des approches basées sur le modèle

dans un contexte de haute dimension. Il contribue aussi à la littérature en AA, en proposant

une procédure pour mesurer l’incertitude des estimations par AA.
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Chapter 1

Introduction

In this thesis, I focus on the modelling of areal data in two different contexts, namely disease

mapping and small area estimation (SAE). In the case of disease mapping, I am interested

in the identification of potentially outlying areas, which might be helpful to better under-

stand the spread of a disease and prioritise interventions. In the case of SAE, I investigate

different modelling approaches when few areas are sampled whereas numerous covariates are

available. Further, I propose a procedure to provide uncertainty quantification of complex

estimates (e.g., using the least absolute shrinkage and selection operator (LASSO), or ran-

dom forests) when data are not exchangeable. This is an important endeavour because the

exchangeability assumption is a strong one in the SAE context, and SAE heavily relies on

auxiliary information, due to the small areal sample sizes.

In disease mapping, areal data correspond to the number of cases of a disease recorded

across the areas of a region of interest. Further, in a spatio-temporal disease mapping

context, the disease counts are recorded across areas and over time. Commonly, in both

purely spatial and spatio-temporal frameworks, the counts are modelled following a Poisson

distribution with a log risk that includes fixed and latent effects. In a purely spatial setting,

the random effects are areal components that are assumed to be spatially structured in the
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sense that areas that are close to each other adjust similarly, whereas areas that are further

apart do not have strong autocorrelation. Various areal models have been proposed in the

disease mapping literature to allow for this spatial smoothing. For instance, Besag (1974)

proposed the intrinsic conditional autoregressive (ICAR) model, which assumes a purely

spatial autocorrelation of the areal effects. However, it can be argued that when the data

are not only spatially structured, the ICAR model does not perform well. Hence, proposals

such as Besag et al. (1991); Leroux et al. (1999); Riebler et al. (2016) model the areal effects

following a combination of spatial and independent structures. In a spatio-temporal setting,

the random effects are both spatially and temporally structured. This may be achieved

by decomposing the latent effects into the sum of temporal, spatial, and spatio-temporal

interaction components (Knorr-Held, 2000; Ugarte et al., 2012), or by only including spatio-

temporal interaction terms (Rushworth et al., 2014). In spatio-temporal models, the aim is

to borrow strength from neighbouring areas and from the past to smooth the risk surface

through time and across space.

However, these proposed purely spatial and spatio-temporal disease mapping models do not

accommodate spatial discrepancies, or specifically, outlying areas. Richardson et al. (2004)

argue that disease mapping models should perform two essential tasks: to smooth the areal

random noises, and to detect and adapt to true heterogeneity. Although there are various

proposals in the spatial and spatio-temporal literature that allow for spatial discrepancies

(see, e.g., Lawson and Clark (2002); Anderson et al. (2014); Lee and Lawson (2016); Rush-

worth et al. (2017)), they do not aim to identify potentially outlying areas. On the other

hand, in a purely spatial context, Congdon (2017) proposed a scale mixture prior distribu-

tion for the latent effects that allows for the identification of potentially outlying relative

risks, after accounting for covariates. This thesis extends the work of Congdon (2017) in two

different directions. First, I propose a purely spatial disease mapping extension of Congdon’s

prior that aims to ease interpretation and prior assignment of the model parameters, while

identifying potentially outlying areas. Then, the second case is to propose a spatio-temporal
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model that aims to identify potentially outlying areas, which, to the best of my knowledge,

has not been considered yet.

On the other hand, in the SAE context, areal data arise from a survey whose areal sample

sizes are small, and the aim is to produce estimates across all areas of a region of interest.

It is worth mentioning that SAE does not only apply to geographical areas and may consist

in producing estimates for any domains of a finite population, but in this thesis, I only focus

on regions divided into non-overlapping areas. Further, although SAE is part of the survey

sampling theory, the design-based estimators are not reliable, and a model-based approach is

usually adopted (Tzavidis et al., 2018). Although model-based estimation may be performed

at the unit-level or at the area-level (Rao and Molina, 2015), in this thesis, I only focus on

areal level models. Finally, in this setting, because of the small areal sample sizes (even

zero, in the case of out-of-sample areas), it is common to expand the auxiliary information

through exterior sources and produce areal estimates using these covariates.

In SAE, commonly, estimates rely on associations between the outcome and available co-

variates, particularly when there are many out-of-sample areas (Tzavidis et al., 2018; Erci-

ulescu and Opsomer, 2022). However, there is no consensus on variable selection approaches

(Ghosh, 2020). In the frequentist framework, a common variable selection method is the

least absolute shrinkage and selection operator (LASSO, Tibshirani (1996, 2011)). How-

ever, inference is not straightforward for LASSO estimates, because the distribution of the

regression coefficients is not continuous (Dezeure et al., 2015). Further, SAE has more re-

cently been extended to machine learning approaches (e.g., random forests (Krennmair and

Schmid, 2022)). Similarly to the LASSO approach, one issue with machine learning methods,

or, specifically, random forests, is how to provide uncertainty quantification of the resultant

estimates. Procedures have been proposed in the machine learning literature to compute

prediction intervals for random forest point estimates (Lei et al., 2018; Zhang et al., 2019).

These methods, however, rely on the assumption of exchangeable data, which may not be
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the case in a SAE context. This thesis extends the work of Lei et al. (2018) to propose a

procedure to compute prediction intervals of complex area-level estimates when data are not

exchangeable, in the context of SAE.

This thesis is organised as follows. Chapter 2 provides a more detailed literature review of

disease mapping and SAE methods. Then, in Chapter 3, a purely spatial disease mapping

model that identifies potentially outlying areas is proposed. This proposal is an alternative

to that of Congdon (2017), and their similarities and differences are discussed. The perfor-

mance of the two prior specifications of the proposed model is evaluated through extensive

simulation studies. Finally, the cases of Zika, a vector-borne disease, recorded across the

160 neighbourhoods of Rio de Janeiro during the first epidemic (2015-2016) are analysed to

identify potentially outlying areas with respect to the relative risk of Zika.

In Chapter 4, an extension of a spatio-temporal disease mapping model is proposed to ac-

commodate and identify potentially outlying areas. Two prior specifications of the proposed

model are considered and evaluated through simulation studies, to assess the performance

of the proposed model in the presence of neighbouring and distant outliers. Further, to

showcase the ability of the proposed approach to identify potential outlying areas, the model

is fitted to weekly COVID-19 cases and hospitalisations across the 33 boroughs of Montreal

and the 96 French departments, respectively, during the second wave.

In Chapter 5, four model-based SAE approaches are compared in the case where the number

of out-of-sample areas and the number of auxiliary information are high. Further, we pro-

pose a procedure to provide uncertainty quantification of complex estimates (e.g., LASSO

and random forests), when data are not exchangeable. We prove that the proposed proce-

dure yields prediction intervals of the right coverage rate and confirm this theoretical result

through simulation studies. Finally, in the Greater Accra Metropolitan Area (GAMA), the

mean household log consumption is estimated at the enumeration area (EA) level using

the sixth Ghanaian Living Standard Survey (GLSS), which comprises 3% of all EAs in the

4



GAMA. To augment the auxiliary information to the entire GAMA, the 2010 Population

and Housing Census is used.

Chapters 3 to 5 are stand-alone manuscripts. Chapter 3 is under a second round of revision

in the journal Statistical Methods in Medical Research. Chapter 4 is under revision for the

journal Spatial Statistics. Chapter 5 has been accepted for publication in the Journal of

Survey Statistics and Methodology.
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Chapter 2

Literature review

In this chapter, I discuss the theory that the three manuscripts of this thesis build upon.

Section 2.1 reviews common disease mapping models that are proposed to analyse areal

data while accommodating spatial autocorrelation. In particular, Section 2.1.1 provides an

overview of the literature on disease mapping models that allow for spatial discontinuities

and relax the amount of smoothing between neighbouring areas. Then, Section 2.1.2 dis-

cusses extensions of disease mapping models to the spatio-temporal framework. Section 2.2

introduces small area estimation methods that are useful to analyse areal data that arise from

a survey with small areal sample sizes. Finally, Section 2.2.1 reviews methods proposed in

the literature when a high-dimensional vector of auxiliary information is available.

Throughout this chapter and this thesis, vectors and matrices are denoted in bold. Further,

in this chapter, we assume that a region of interest is partitioned into n non-overlapping

areas, which are indexed by i = 1, . . . , n.
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2.1 Disease mapping

In spatial statistics, the types of observations are commonly divided into three categories

(Cressie, 2015): geostatistical data, spatial point pattern data, and areal data. In the case

of geostatistical data, a variable of interest is observed at fixed points in space and the aim

is to model the outcome by taking into account its location. In the case of spatial point

pattern data, the locations where an event has occurred is the response of interest, and the

goal is to estimate how the points are distributed across the region. In these two cases, the

locations are assumed to be continuous over a region of interest. On the other hand, the

case of areal data, or lattice data, refers to an outcome observed across a lattice, which may

be irregular, within a region of interest (e.g., France is divided into 96 departments). In that

case, the region (France) is divided into a finite set of disjoint areas (departments) and the

aim is to model the variable of interest while accounting for its location as it is expected that

neighbouring areas tend to have similar realisations of the process being observed. This thesis

focuses on the analysis of data recorded across different areas of a region of interest.

In particular, when the number of cases of a disease is recorded across the different areas

that form a region of interest, disease mapping methods are used to reliably estimate the

areal relative risk of that disease. The number of cases in an area is commonly assumed to

follow a Poisson distribution whose mean is the product of an offset and the relative risk

of the disease. The offsets correspond to the expected number of cases, were the disease

counts uniformly distributed across the region (Banerjee et al., 2014). The basic estimate of

the relative risk is the standardised morbidity ratio (SMR), which is the ratio between the

areal count and offset and corresponds to the maximum likelihood estimate in the frequentist

framework. However, in areas with small offsets, this estimate is unreliable as the variance

is inversely proportional to the offset. Hence, models where the relative risk is decomposed

in the log scale as the sum of an overall rate, and fixed and areal random effects have

been proposed to borrow strength from neighbouring areas and obtain reliable disease risk
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estimates (Wakefield, 2007; Banerjee et al., 2014). The inclusion of random effects also

accommodates overdispersion in the Poisson model that would otherwise assume equal mean

and variance for each area. Further, with the development of Markov Chain Monte Carlo

(MCMC) methods and founding work of Besag et al. (1991), disease mapping methods are

commonly incorporated in Bayesian hierarchical models (Banerjee et al., 2014; Lawson, 2018;

MacNab, 2022). The disease mapping models developed in Chapters 3 and 4 of this thesis

fall under this framework.

Regarding the areal disease risks, one might naturally expect that areas that are close to

each other are more correlated than distant areas. Besag (1974) introduced the intrinsic

conditional-autoregressive (ICAR) prior, where the spatial autocorrelation between areal

effects is accounted for through spatial weights. Let a region be comprised of n disjoint

areas and let b = [b1, . . . , bn]
⊤ be a set of random effects included in a Bayesian hierar-

chical disease mapping model. Besag (1974) assumes the following set of full conditional

distributions:

bi | b(−i), σ ∼ N

(︄
1

di

n∑︂
j=1

wijbj,
σ2

di

)︄
, i = 1, . . . , n, (2.1)

where b(−i) = [b1, . . . , bi−1, bi+1, . . . , bn]
⊤. The neighbourhood structure W = [wij] is defined

through the spatial weights wij and let di =
∑︁n

j=1wij be the sum of spatial weights for each

area. The most common spatial weights are 0–1 weights such that wij = 1 if areas i and j

share a border, and 0 otherwise. In that case, di =
∑︁

j∼iwij, where j ∼ i means that area

j is a neighbour of i, corresponds to the number of neighbours that the ith area has. Other

neighbourhood structures could be considered (Banerjee et al., 2014). For example, wij may

be defined as a function of the distance between the centroids of areas i and j, or one could

define wij = 1 if area j is part of the set of K-nearest neighbours of area i. The most common

0–1 neighbourhood structure is considered throughout this thesis. Regardless of the choice

for W , the use of Brook’s lemma (Brook, 1964) on the set of ICAR full conditionals (2.1)
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leads to a joint distribution for b that is proportional to

exp

(︃
− 1

2σ2
b⊤Qb

)︃
∝ exp

(︄
− 1

2σ2

∑︂
i ̸=j

wij(bi − bj)
2

)︄
, (2.2)

where Q = D − W , for D = diag(di) (Banerjee et al., 2014). Throughout this thesis,

for a vector a = [a1, . . . , an]
⊤, the notation diag(a) or diag(ai) is used indiscriminately.

Because Q is not a positive definite "precision" matrix, this joint distribution, denoted

ICAR(σ2,Q) hereafter, is not a proper multivariate normal distribution. This impropriety

implies that data could not be modelled through an ICAR(σ2,Q) distribution. Nevertheless,

a work around to deal with the impropriety of the ICAR distribution and guarantee the

propriety of the resulting posterior distribution is to impose a sum-to-zero constraint such

that
∑︁n

i=i bi = 0 (Banerjee et al., 2014). The necessity for this constraint stands out from the

right-hand side of equation (2.2), where it can be seen that were a constant added to all latent

effects, it would not be identifiable without the sum-to-zero constraint. Alternatively, it is

possible to make the ICAR distribution proper through the inclusion of another parameter.

More specifically, Q is altered into becoming a positive definite precision matrix. The proper

conditional-autoregressive (PCAR) prior introduces Qα = D−αW , which is a valid precision

matrix for |α| < 1 (Banerjee et al., 2014). The parameter α can be either fixed or estimated;

in this case, from a Bayesian point of view, a prior distribution must be assigned.

In the literature, different models built on the ICAR have been proposed to allow for spatially

structured latent effects (see, e.g., section 3.1 of Riebler et al. (2016) for a review). Besag

et al. (1991) introduced the BYM model where each random effect bi is decomposed into

the sum of two components, θi and ui. The two sets of random effects θ = [θ1, . . . , θn]
⊤

and u = [u1, . . . , un]
⊤ are assumed independent and one follows an ICAR prior structure,

whereas the other follows an independent structure across space. More specifically, Besag

et al. (1991) assume

bi = θi + ui, i = 1, . . . , n, (2.3)
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with θ ∼ Nn (0, σ
2
θIn) and u ∼ ICAR(σ2

u,Q), where In denotes the n × n identity matrix.

The introduction of the independent and identically distributed (i.i.d.) effects θ in this con-

volution model relaxes the assumption of a purely spatially structured variation. However,

it is important to mention that while σ2
θ is the variance of the marginal distribution of the

unstructured effects, σ2
u is the variance of a conditional distribution of the spatial effects

and hence depends on the neighbourhood structure under study (Sørbye and Rue, 2014).

Therefore, interpretation and prior assignment for these parameters should be done with

care. Moreover, while the sum θi + ui is identifiable, the variance parameters σ2
θ and σ2

u

suffer from an identifiability issue (MacNab, 2011; Lawson, 2018). The model proposed by

Leroux et al. (1999) overcomes this concern by introducing a single areal latent effect bi

whose covariance structure includes a spatial dependence parameter λ. Through the intro-

duction of this mixing parameter, the precision matrix of b is the weighted sum of a spatially

structured matrix and an unstructured one. Leroux et al. (1999) assume b ∼ Nn

(︁
0, σ2Q−1

L

)︁
,

where QL = (1−λ)In+λQ is a valid precision matrix for λ ∈ [0, 1). The joint Leroux prior

corresponds to the following set of full conditional distributions:

bi | b(−i), λ, σ ∼ N

(︄
λ

1− λ+ λdi

n∑︂
j=1

wijbj,
σ2

1− λ+ λdi

)︄
, i = 1, . . . , n. (2.4)

From the decomposition of QL and (2.4), one can see that when λ = 0, the latent effects

are purely random with no spatial structure, whereas λ = 1 results in the ICAR(σ2,Q)

distribution.

To allow for a spatial structure as well as an independent one using two sets of random effects,

Dean et al. (2001) proposed a reparametrisation of the BYM model (2.3) where, similar to

Leroux et al. (1999), they include a spatial dependence parameter, λ. They decompose

bi = σ
(︂√

1− λθi +
√
λui

)︂
, i = 1, . . . , n, where the unstructured effects θ ∼ Nn (0, In)

and the spatially structured u ∼ ICAR(1,Q) are independent. This weighted sum leads

to the joint distribution b ∼ Nn (0, σ
2 [(1− λ)In + λQ−]) , where Q− is the Moore-Penrose
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generalised inverse of Q. This generalised inverse is computed because Q is not of full

rank. To see that the Dean model is a reparametrisation of the BYM model (2.3), note

that bi = θBYM
i + uBYM

i , where θBYM =
[︁
θBYM
1 , . . . , θBYM

n

]︁⊤ ∼ Nn(0, σ
2
θIn) and uBYM =[︁

uBYM
1 , . . . , uBYM

n

]︁⊤ ∼ ICAR(σ2
u,Q) are independent, with σ2

θ = σ2(1 − λ) and σ2
u = σ2λ.

One difference between the Leroux and Dean priors, other than the use of two sets of random

effects, is that the spatial and independent structures appear in the precision matrix of the

Leroux prior, whereas in Dean’s proposal, they are introduced in the covariance matrix.

Sørbye and Rue (2014) point out that in the cases of ICAR and Leroux distributed spatial

effects (namely, all the spatial effects listed above), the variance parameters σ2
u and σ2 lie

in the conditional distributions of the random effects. Hence, their impact depends on the

neighbourhood structure of the region of interest. These conditional variance parameters

play a role in the amount of smoothing of the spatial effects across the areas. This implies

that a prior imposed on the conditional variance parameter may not lead to the same level

of smoothing when studying two different regions (e.g., the 96 French departments and the

160 districts of Rio de Janeiro). In particular, Best et al. (1999) discuss the sensitivity to

prior assignments in the BYM model. Therefore, in the case of the ICAR prior, Sørbye and

Rue (2014) suggest scaling the spatial effects by a factor h in order to guarantee that σ2,

or σ2
u, approximately corresponds to the marginal variance of the spatial components, and

is independent of the neighbourhood structure of the region. In particular, they compute h

as the generalised variance of the spatial effects: h = exp
[︁
(1/n)

∑︁n
i=1 ln

(︁
Q−

ii

)︁]︁
, where Aij

denotes the element on the ith row and the jth column of a matrix A. Riebler et al. (2016)

argue that although the Leroux prior cannot be scaled, one may build on Sørbye and Rue

(2014) and modify the Dean model to include scaled spatial effects. They propose the BYM2

model, which decomposes each random effect as the following weighted sum:

bi = σ
(︂√

1− λθi +
√
λu⋆

i

)︂
, i = 1, . . . , n, (2.5)
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with unstructured components θ ∼ Nn (0, In) independent of the scaled spatial effects

u⋆ = [u⋆
1, . . . , u

⋆
n]

⊤ = u/
√
h, where u ∼ ICAR(1,Q). Alternatively, one may write u⋆ ∼

ICAR(1,Q⋆), with scaled "precision" matrix Q⋆ = hQ, such that V(u⋆
i ) ≃ 1, i = 1, . . . , n.

Hence, the scaling process of the spatial components implies that σ2 is approximately

the marginal variance of each latent effect: V(bi | σ, λ) = σ2 [(1− λ)V(θi) + λV(u⋆
i )] ≃

σ2 [(1− λ)× 1 + λ× 1] = σ2. It is worth mentioning that similar to Dean et al. (2001), the

covariance matrix for b is a combination of the unstructured and spatially structured ma-

trices, σ2 [(1− λ)In + λQ−
⋆ ]. Finally, Riebler et al. (2016) point out that due to the scaling

process of the spatial effects, the variance and mixing parameters, σ2 and λ, now lie in the

marginal distribution of the random effects. Therefore, their influence on the smoothing of

the random effects is independent of the neighbourhood structure of the region of interest,

which eases their prior assignment and interpretation. The work summarised in the first

manuscript (Chapter 3) of this thesis builds on the BYM2 model to take advantage of the

interpretability of the model parameters.

2.1.1 Spatial discontinuity

All the models described in the previous section assume constant variability of the latent

effects across space. However, it is reasonable to imagine that some areas may have ab-

normally high or low disease risks which might not be well accommodated by covariates

and smooth spatial effects. Richardson et al. (2004) explicitly state how important it is for

disease mapping models to be able to adapt between smoothing and adjusting to abrupt

changes in the risk surface. While the models from Section 2.1 aim to smooth the risk sur-

face, more recently, other models have been proposed to allow for spatial autocorrelation

while simultaneously accommodating spatial discontinuities.

In order to adjust to abrupt changes in the risk surface, Lawson and Clark (2002) build on

the BYM model (2.3) and further decompose the spatial effect into a mixture of two spa-

tially structured components. They assume bi = θi + λiu
(1)
i + (1 − λi)u

(2)
i , i = 1, . . . , n,
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where the unstructured components θ ∼ Nn(0, σ
2
θIn) are independent of the two inde-

pendent sets of spatial effects, u(1) =
[︂
u
(1)
1 , . . . , u

(1)
n

]︂⊤
and u(2) =

[︂
u
(2)
1 , . . . , u

(2)
n

]︂⊤
. The

first vector of spatial components is assigned an ICAR prior, u(1) ∼ ICAR(σ2
u1,Q), while

the second vector is assumed to follow a "jump" model whose joint distribution is propor-

tional to exp
(︂
−1/(2σ2

u2)
∑︁

i ̸=j wij

⃓⃓⃓
u
(2)
i − u

(2)
j

⃓⃓⃓)︂
. Note how this jump model resembles the

ICAR prior (2.2), using the L1 distance instead of the L2. This model aims to allow for

jumps, or local discrepancies, in the spatial surface. Yan (2007) proposes an alternative

way to introduce a new set of spatially structured components in the BYM model to allow

for spatial heteroscedasticity, and hence spatial discontinuity. Yan writes the BYM model

(2.3) as bi | ui, σ
2
θ ∼ N (ui, σ

2
θ) , i = 1, . . . , n, and points out that one can account for het-

eroscedasticity by allowing the variance σ2
θ to vary across space. Specifically, Yan decomposes

each latent effect as the sum bi = θi + u
(1)
i , i = 1, . . . , n, with ICAR spatial components

u(1) ∼ ICAR(σ2
u1,Q) independent of the heteroscedastic random effects θi ∼ N

(︁
0, σ2

θi

)︁
,

where ln
(︁
σ2
θi

)︁
= ς + u

(2)
i , i = 1, . . . , n, and u(2) ∼ ICAR(σ2

u2,Q). However, Congdon (2017)

argues that the inclusion of three different sets of random effects in the models proposed by

Lawson and Clark (2002) and Yan (2007) leads to identifiability issues.

Another approach to adjust for discrepancies in the risk surface lies in clustering methods,

which are multiple-step procedures. First, clusters are elicited to separate the areas of the

region of interest based on the observed data; then the clustering information is incorporated

within a disease mapping model through added cluster effects, which may be fixed or random.

Anderson et al. (2014) propose a (n+1)-step approach where n different sets of clusters are

first defined, and then n models are fitted to the data, one for each set of clusters. They

provide an algorithm to elicit the n different sets of clusters based on the neighbourhood

structure and the differences between the areal log SMRs, where various difference measures

are discussed. Then, for each set of k clusters of areal indices, Cj, j = 1, . . . , k, each areal

latent effect is decomposed into the sum of a spatial random effect and cluster fixed effects as

follows: bi = ui +
∑︁k

j=1 1[i∈Cj ]βj, i = 1, . . . , n, where 1[·] denotes the indicator function, u ∼
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ICAR(σ2
u,Q), and βj

i.i.d.∼ N (0, 10). Finally, the best clustering partition is defined as the one

that leads to the smallest deviance information criterion (DIC, Spiegelhalter et al. (2002)).

Santafé et al. (2021) note that when the number of areas is large, the clustering method

proposed by Anderson et al. (2014) is not computationally feasible. They propose a different

clustering approach that is a two-step procedure. First, they introduce a new algorithm to

elicit clusters, namely the density-based spatial clustering (DBSC) algorithm that leads to

a single cluster partition. Then, based on the resulting set of clusters, they consider three

different models. If the DBSC algorithm results in no clusters, the latent effects are assumed

to follow the Leroux prior (2.4), b ∼ Nn(0, σ
2Q−1

L ). If k clusters Cj, j = 1, . . . , k, are elicited,

for k small, then each latent effect is decomposed as bi = ui +
∑︁k

j=1 1[i∈Cj ]βj, i = 1, . . . , n,

with u modelled through the Leroux prior, and βj
i.i.d.∼ N (0, 10). Finally, if k is large, then

the areal effects are bi = ui +
∑︁k

j=1 1[i∈Cj ]δj, i = 1, . . . , n, where the cluster random effects

are further assumed to follow a Leroux prior, δ = [δ1, . . . , δk]
⊤ ∼ Nk

(︁
0, σ2

δQ
−1
L,δ

)︁
. The k × k

precision matrix is defined as QL,δ = (1− λδ)Ik + λδ (Dδ −Wδ) , where the neighbourhood

matrix relative to the clusters, Wδ =
[︂
w

(δ)
ℓj

]︂
, is defined based on the adjacency between

the areas within clusters ℓ and j, and Dδ = diag
(︂∑︁k

j=1w
(δ)
ℓj

)︂
. Adin et al. (2022) further

develop the clustering approach proposed by Santafé et al. (2021) to allow for the inclusion

of covariates.

A third approach to adjust to changes in the risk surface, after accounting for the fixed

effects, is that of Congdon (2017), which is a single-step method that aims to accommodate

and identify potentially outlying areas. Congdon proposes a modification of the Leroux prior

(2.4) by including scaling mixture components, κ = [κ1, . . . , κn]
⊤, where κi > 0, i = 1, . . . , n,

whose role is to allow for discrepancies. Congdon assumes

bi | b(−i),κ, λ, σ
2 ∼ N

(︄
λ

1− λ+ λdi

n∑︂
j=1

wijκjbj,
σ2

κi(1− λ+ λdi)

)︄
, i = 1, . . . , n, (2.6)

where κi
i.i.d.∼ Gamma(ν/2, ν/2). These scaling mixture parameters are termed "outlier
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indicators" in Congdon (2017), as κi < 1 indicates that area i is an outlier, after accounting

for the fixed effects. Specifically, let area i be an outlier, then κi < 1 inflates the conditional

variance in (2.6), which allows the latent effect to differ from the overall surface. Moreover,

let neighbouring areas i ∼ j be non-outlying and outlying, respectively. Then κj < 1, and

the contribution of bj in the conditional mean of bi is decreased. Therefore, the ith area

borrows less strength from its outlying neighbour j, than from its other neighbours whose

κ ≮ 1. Note that κ = 1n = [1, . . . , 1]⊤ yields the Leroux prior (2.4). Additionally, the full

conditionals (2.6) result in the joint distribution b ∼ Nn

(︁
0, σ2Q−

C

)︁
, where QC =

[︁
QCij

]︁
has diagonal elements QCii

= κi(1 − λ + λdi), i = 1, . . . , n, and off-diagonal elements

QCij
= −λwijκiκj, i ̸= j. Although this symmetric matrix is not always a valid precision

matrix for λ ∈ [0, 1), the diagonal dominance condition (Banerjee et al., 2014) states that

for QC to be symmetric positive definite, it is sufficient that QCii
>
∑︁

j ̸=i |QCij
|, ∀i ⇔

λ < min
i

{︂
1/
(︂
1− di +

∑︁
j ̸=iwijκj

)︂}︂
. One appeal of Congdon’s approach, compared to a

clustering procedure (e.g., Santafé et al. (2021)), is that in a hierarchical Bayesian model, all

the model parameters, including the scaling mixture components, are estimated in a single

step. The first two manuscripts of this thesis (Chapters 3 and 4) build on the model proposed

by Congdon (2017) to accommodate outlying areas in purely spatial and spatio-temporal

settings. The main aim of the work presented in these first two chapters is to specifically

identify potential outliers, which may help decision makers prioritise interventions.

It is worth mentioning that alternative approaches that rely on the estimation of the neigh-

bourhood matrix W have been proposed to accommodate discontinuities in the estimated

surface. The goal of these proposals is to adjust for spatial discrepancies without neces-

sarily identifying outliers, as is the case for the model proposed by Congdon (2017). For

a binomial outcome, Dean et al. (2019) propose a two-step procedure where they first test

for statistical differences between the observed proportions in neighbouring areas. When

two neighbouring proportions are found to be statistically different, the spatial structure

is updated such that the two areas are not considered as neighbours. Specifically, the up-
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dated neighbourhood matrix Wupdated =
[︂
w

(updated)
ij

]︂
has elements w

(updated)
ij = 0, if wij = 0,

w
(updated)
ij = 0, if neighbouring areas i ∼ j (wij = 1) are found to have statistically dif-

ferent proportions, and w
(updated)
ij = 1, otherwise. Then, using the updated neighbour-

hood structure, a Leroux prior is assigned to the latent effects. More recently, Corpas-

Burgos and Martinez-Beneito (2020) propose to adapt to spatial discontinuities by relax-

ing the 0–1 structure assumption, and estimate a vector of parameters c = [c1, . . . , cn]
⊤

in order to alter the matrix W as follows: WCBMB = diag
(︁
c1/2

)︁
W diag

(︁
c1/2

)︁
. Hence,

WCBMB =
[︂
w

(CBMB)
ij

]︂
has elements w

(CBMB)
ij = 0, if wij = 0, and w

(CBMB)
ij =

√
cicj, oth-

erwise. Further, they assume ci
i.i.d.∼ Gamma(ν, ν), i = 1, . . . , n. The authors extend both

the ICAR prior (2.2) and the Leroux model (2.4) in the univariate and multivariate disease

mapping settings. In particular, one parametrisation of their so-called adaptive Leroux

prior is such that b ∼ Nn

(︂
0, σ2

[︁
(1− λ)diag

(︁
c1/2

)︁
+ λ

(︁
DCBMB −W CBMB

)︁]︁−1
)︂
, where

DCBMB = diag
(︂∑︁n

j=1w
(CBMB)
ij

)︂
. This distribution corresponds to the n full condition-

als bi | b(−i), c, λ, σ ∼ N
(︂
λ
∑︁

j ̸=i wij
√
cjbj/

(︂
1− λ+ λd

(c)
i

)︂
, σ2/

(︂√
ci

[︂
1− λ+ λd

(c)
i

]︂)︂)︂
,

i = 1, . . . , n, where d
(c)
i =

∑︁
j ̸=i wij

√
cj. One may notice that this distribution resembles

the full conditional (2.6) proposed by Congdon (see, e.g., Table A.6 in Appendix A.8 of the

first manuscript). However, Corpas-Burgos and Martinez-Beneito (2020) remark that in the

case of a univariate outcome, their parametrisation may suffer from an identifiability issue.

This is not the case with the proposal by Congdon (2017).

2.1.2 Spatio-temporal framework

We now focus on the case of disease counts recorded over time and across the areas of a region

of interest, which is the main focus of the second manuscript (Chapter 4). Spatio-temporal

disease mapping models aim to estimate the evolution of the disease relative risk across

space. Commonly, spatio-temporal extensions of the hierarchical Bayesian disease mapping

models described in Section 2.1 assume that the number of cases in an area at a point in

time follows a Poisson distribution whose mean is the product of an offset and the relative

16



risk of the disease, which varies over time and across space. The offsets correspond again to

the expected number of cases for a uniform spread of the disease. These may vary across

space and time (see, e.g., Bernardinelli et al. (1995); Ugarte et al. (2012)), or depend on

space only (see, e.g., Freitas et al. (2021)). The first spatio-temporal model for areal counts

was proposed by Bernardinelli et al. (1995). In the log scale, they decompose the relative

risk as the sum of an overall rate, a random spatial component, a temporal fixed effect, and

a space-time interaction term. Specifically, let µit be the relative risk at time t = 1, . . . , T,

in area i = 1, . . . , n, they assume: ln (µit) = β0 + bit, where the spatio-temporal latent effect

is bit = u
(1)
i + βtimet + u

(2)
i timet, with covariate timet. Different priors are discussed for the

two vectors of spatial effects, u(1) and u(2), including an independent normal distribution,

the ICAR prior (2.1), and the BYM model (2.3). This specification of the log risk, however,

does not allow for random temporal effects.

In the case of a binomial outcome, Knorr-Held (2000) extends this spatio-temporal model

such that the log odds are decomposed into β0 + bit, where bit = v
(1)
t + v

(2)
t + θi + ui + εit.

Knorr-Held includes unstructured temporal and spatial effects, v(1) =
[︂
v
(1)
1 , . . . , v

(1)
T

]︂⊤
∼

NT (0, σ2
v1IT ) and θ ∼ Nn (0, σ

2
θIn), respectively, as well as temporally and spatially struc-

tured components, v(2) =
[︂
v
(2)
1 , . . . , v

(2)
T

]︂⊤
and u ∼ ICAR(σ2

u,Q), respectively. A first-order

random walk is assigned to v(2), with joint distribution proportional to

exp

(︄
−1/(2σ2

v2)
T∑︂
t=2

(︂
v
(2)
t − v

(2)
t−1

)︂2)︄
∝ exp

(︂
−1/(2σ2

v2)v
(2)⊤Rv(2)

)︂
, (2.7)

or v(2) ∼ NT (0, σ2
v2R

−) , where the T × T temporal structure matrix R = [Rij] is a tridi-

agonal matrix with upper and lower diagonal elements Ri−1 i = Ri i+1 = −1, and with

main diagonal elements R11 = Rnn = 1 and Rii = 2, i = 2, . . . , n − 1. The matrix

R may be seen as a temporal counterpart of Q, where each time point has two neigh-

bours: the previous and the following time points. Knorr-Held discusses four types of mod-

els for the space-time interaction component εit, namely, an unstructured parametrisation,
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a purely temporal evolution, a purely spatial autocorrelation, and a fully spatio-temporal

structure. Knorr-Held argues that the fourth parametrisation is the most interesting one,

that is, ε = [ε11, . . . , εn1, . . . , ε1T , . . . , εnT ]
⊤ ∼ Nn×T

(︁
0, σ2

ε (R⊗Q)−
)︁
, where ⊗ denotes

the Kronecker product. Finally, when this fourth interaction parametrisation is consid-

ered, Knorr-Held further proposes to remove the unstructured temporal effects, such that

bit = vt + θi + ui + εit, with v = [v1, . . . , vT ]
⊤ ∼ NT (0, σ2

vR
−) and the sum of spatial effects

θi + ui, i = 1, . . . , n, corresponds to the BYM model (2.3).

More recently, Ugarte et al. (2012) build on Knorr-Held (2000) and decompose the spatio-

temporal latent effects such that bit = ui + vt + εit, with temporal effects assigned a ran-

dom walk prior (2.7), and spatio-temporal effects assumed to follow the fourth interac-

tion parametrisation proposed by Knorr-Held, ε ∼ Nn×T

(︁
0, σ2

ε (R⊗Q)−
)︁
. The proposal

by Ugarte et al. (2012) is particularly appealing because they reduce the parameter space

by including a single set of spatial effects u, which are modelled according to the Leroux

prior (2.4). Rushworth et al. (2014) propose to further reduce the parameter space and

assume that the spatio-temporal latent effects only include space-time interaction terms.

Additionally, they propose a temporal extension of the Leroux prior (2.4) to model the

interaction components. Specifically, they assume the vector of spatio-temporal effects

b = [b11, . . . , bn1, . . . , b1T , . . . , bnT ]
⊤ to be modelled as follows:

b·1 ∼ Nn

(︁
0, σ2Q−1

L

)︁
, and b·t| b·t−1 ∼ Nn

(︁
αb·t−1, σ

2Q−1
L

)︁
, t = 2, . . . , T, (2.8)

where b·t = [b1t, . . . , bnt]
⊤ , t = 1, . . . , T, and α ∈ [0, 1] is a temporal smoothing parameter,

which may be seen as the temporal counterpart of λ. If α = 0, the spatio-temporal effects are

purely spatially structured, with b·t independent of b·t−1, and if α = 1, b is fully structured

across space and over time. The model proposed in the second manuscript (Chapter 4) of

this thesis builds on the Rushworth model (2.8).

In this section, the spatio-temporal distributions listed thus far are temporal extensions of
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the spatial priors for areal data described in Section 2.1. However, Rushworth et al. (2014)

mention that their proposal does not accommodate spatial discrepancies in the risk surface.

Models have been proposed in the literature on spatio-temporal disease mapping to try

to allow for spatial disparities over time. For example, as an extension of the clustering

approaches discussed in Section 2.1.1, Lee and Lawson (2016) allow for jumps in the risk

surface over time by including cluster effects in the spatio-temporal components. They

assume bit = βZit
+ εit, with ε distributed according to the Rushworth model (2.8), and

where the k cluster-specific intercepts are indicated by Zit ∈ {1, . . . , k} and are assigned

a uniform prior. Alternatively, Rushworth et al. (2017) extend the Rushworth model (2.8)

such that the spatial neighbourhood structure W is estimated from the data. Specifically, in

the logit scale, the non-zero spatial weights, ln (wij/(1− wij)) , i ∼ j, are assumed to follow

a Leroux prior (2.4) such that the back transformation yields spatial weights estimated

between 0 and 1.

It is worth mentioning that additional ways to model spatio-temporal areal counts have been

proposed in the literature. For example, Nobre et al. (2005) consider a modification of the

ICAR prior (2.1) that is similar to a dynamic linear model, where the conditional variance

parameter is allowed to vary with time in the log scale. Specifically, they assume b·t ∼

ICAR(σ2
t ,Q), t = 1, . . . , T, with ln (σ2

t ) ∼ N
(︁
ln
(︁
σ2
t−1

)︁
, σ2

σ

)︁
, t = 1, . . . , T, and ln (σ2

0) = 0.

Similarly, Napier et al. (2016) allow the variance parameter to evolve through time within the

Leroux model (2.4). They also include a purely temporal effect vt and assume bit = vt + εit,

where ε·t = [ε1t, . . . , εnt]
⊤ ∼ Nn

(︁
0, σ2

tQ
−1
L

)︁
, t = 1, . . . , T . Independent inverse gamma

priors are assigned to σ2
t , t = 1, . . . , T . Therefore, in these alternative specifications of spatio-

temporal models, the interaction between space and time happens through the inclusion of

time-dependent parameters within spatially structured random effects.
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2.2 Small area estimation

In disease mapping (Section 2.1), we commonly assume that the data are observed across all

areas of the region of interest. However, areal data may also arise from a survey where an

outcome of interest is observed within some areas of a region (Lawson, 2018). In particular,

when the areal sample sizes are small, small area estimation (SAE) methods are useful to

obtain reliable estimates at the areal level (Rao and Molina, 2015). Interestingly, another

name for disease mapping is "small area health studies". SAE is part of the survey sampling

theory and has become increasingly popular in the last 50 years (see, e.g., Pfeffermann (2013);

Ghosh (2020)), in particular among statistical official organisations (e.g., World Bank (2015);

Census Bureau (2018)).

As part of the survey sampling theory, SAE methods may be divided into design-based

and model-based approaches (Rao and Molina, 2015). The design-based framework assumes

that within a finite population of interest, all variables are fixed and the randomness of an

observed sample comes from the sampling process. In that case, an estimator of a quantity

of interest relies on the sampling weights that result from the sampling design. On the

other hand, the model-based framework assumes that the sample is fixed, and the outcome

is treated as a random variable, as is the case in classical statistics. In that setting, an

estimator of a quantity of interest relies on model assumptions and not on the sampling

design.

In SAE, the quantity of interest is an areal summary of the response variable. Through

design-based methods, this may be computed by direct estimators, which only use the re-

sponse variable and sampling weights within a particular area to produce an estimate (e.g.,

weighted estimators introduced by Horvitz and Thompson (1952) or Hájek (1971)). Hence,

one cannot produce estimates for areas that are missing from the sample. Indirect estimators,

such as model-assisted estimators (e.g., GREG estimator, Särndal et al. (2003)) are proposed

to borrow strength from other areas and covariates to allow for estimates in non-sampled
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areas. The aim of indirect methods is to increase the effective areal sample sizes. However,

when areal sample sizes are small, design-based estimates are commonly not reliable (e.g.,

low precision) and model-based methods are favoured (Tzavidis et al., 2018).

Let a region of interest be divided into n areas of sizes Ni, i = 1, . . . , n, and let k = 1, . . . , Ni

be the unit index. Assume that the interest is to estimate yi = (1/Ni)
∑︁Ni

k=1 yik, i = 1, . . . , n,

the areal means of outcome y. This is the objective of the work summarised in the third

manuscript of this thesis (Chapter 5), however, it is worth mentioning that other targets

of inference may be of interest (e.g., non-linear quantity to measure poverty at the areal

level (Molina et al., 2014)). Model-based SAE relies on a model assumption for the response

variable y and vector of auxiliary information x. In particular, model-based SAE often

uses exterior sources of information (e.g., census) to augment the survey auxiliary variables.

In the model-based framework, SAE can further be divided into unit-level and area-level

approaches. In the first case, unit-level responses are linked to unit-level auxiliary variables.

For example, for a continuous outcome, Battese et al. (1988) propose to model the response as

follows: yik = x⊤
ikβ+bi+eik, where each areal random effect, bi, is assumed independent of the

unit-level error, eik, with zero means and variances σ2
b and σ2

e , respectively. However, it may

be difficult to obtain unit-level auxiliary information for the entire finite population, while

areal summaries may be more accessible. In area-level models, the outcome and covariates

are aggregated at the areal level before modelling. The first area-level SAE model is proposed

by Fay and Herriot (1979), they assume ˆ︁yi = x⊤
i β + bi + ei, where ˆ︁yi is the direct estimator

of the areal mean response computed from the sample, xi is the vector of area-level auxiliary

variables known for all areas, bi is an areal random effect with mean 0 and variance σ2
b , and ei

is the sampling error with mean 0 and known design variance of the areal direct estimator,

σ2
e,i, computed using the sampling design information. Historically, model-based SAE is

conducted under the frequentist framework, and empirical best linear unbiased predictors

(EBLUPs) are computed. For example, under the Fay and Herriot model, the areal EBLUP

is x⊤
i
ˆ︁β + ˆ︁bi = ˆ︁γiˆ︁yi + (1− ˆ︁γi)x⊤

i
ˆ︁β, with ˆ︁γi = ˆ︁σ2

b/
(︂ ˆ︁σ2

b + σ2
e,i

)︂
, where ˆ︁β and ˆ︁σ2

b denote the
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estimators of β and σ2
b , respectively. However, it is important to mention that model-based

SAE approaches have been extended to the Bayesian framework (see, e.g., Datta and Ghosh

(1991); Gómez-Rubio et al. (2010); Molina et al. (2014)) and, more recently, to machine

learning procedures (see, e.g., Krennmair and Schmid (2022)). The third manuscript of this

thesis investigates area-level SAE methods under all three settings (Chapter 5).

2.2.1 Variable selection and machine learning approaches

In model-based methods, when abundant auxiliary variables are available for all areas from

the survey and exterior sources, it may be necessary to select a subset of covariates to

model the outcome. Under any framework, variable selection is a common research topic

in statistics (see, e.g., Porwal and Raftery (2022) for a comparison of 21 different selection

methods under the frequentist and Bayesian paradigms). In the frequentist framework, the

most common variable selection procedures are multiple-step approaches, where different

models are fitted to the data by iteratively adding or removing covariates, based on a chosen

comparison criterion. Specifically, a forward selection procedure starts with a model that

includes only an intercept and adds one covariate at a time, based on the resulting criterion.

Conversely, a backward elimination procedure starts with a full model and each step consists

in removing one covariate based on the computed criterion. In both cases, once the set of

relevant auxiliary variables is defined, a final model that includes these covariates is fitted

to the data. Multiple criteria have been proposed in the literature, Wakefield (2013) lists

the most widely used ones, including the Akaike information criterion (AIC, Akaike (1998)),

the Bayesian information criterion (BIC), Mallow’s Cp (Mallows, 1973), and the adjusted

R2. Although it is beyond the scope of this thesis, it is worth mentioning that design-based

model comparison criteria have been proposed in the survey sampling literature (see, e.g.,

Lumley and Scott (2015)).

On the other hand, regularisation methods, or shrinkage methods, have also been proposed

to select a subset of covariates and model the data in a single step. These regularisation

22



methods impose a constraint on the regression parameters in order to shrink the irrelevant

coefficients towards 0. For example, the ridge regression (Hoerl and Kennard, 1970) assumes

the constraint
∑︁p

j=1 β
2
j ≤ c, for some c ≥ 0, where p is the total number of covariates.

Alternatively, the ridge regression may be written in the following Lagrangian form:

argmin
β∈Rp

{︄
(1/2n)

n∑︂
i=1

(︁
yi − x⊤

i β
)︁2

+ λ

p∑︂
j=1

β2
j

}︄
, (2.9)

for some λ > 0. A different shrinkage approach is the least absolute shrinkage and selection

operator (LASSO, Tibshirani (1996, 2011)), which imposes the constraint
∑︁p

j=1 |βj| ≤ c, or,

in the Lagrangian form:

argmin
β∈Rp

{︄
(1/2n)

n∑︂
i=1

(︁
yi − x⊤

i β
)︁2

+ λ

p∑︂
j=1

|βj|

}︄
, (2.10)

for some λ > 0. This is a popular variable selection method, as it leads to regression

coefficients that are exactly zero and excludes the corresponding covariates from the model

(Hastie et al., 2015). However, the LASSO yields non-linear estimates and inference should

be conducted with care. For instance, Dezeure et al. (2015) argue that bootstrap approaches

may not be adequate to assess the uncertainty of estimates obtained through the LASSO,

due to the non-continuity of the distribution of the regression parameters.

In the Bayesian framework, variable selection consists in imposing an informative prior on the

regression parameters. A covariate is said to be selected if the posterior credible interval of its

corresponding coefficient does not include 0. Multiple shrinkage methods have been proposed

in the Bayesian framework, where coefficients are assigned prior distributions that peak at 0.

In particular, for a model of the form yi
i.i.d.∼ N

(︁
x⊤
i β, σ

2
)︁
, i = 1, . . . , n, then assuming the

prior βj
i.i.d.∼ N (0, σ2/λ), j = 1, . . . , p, leads to a maximum a posteriori estimator of the form

(2.9) (Reich and Ghosh, 2019). Therefore, Bayesian ridge regression consists in assigning each

β parameter a normal prior with mean 0 and variance σ2/λ. Similarly, the Bayesian LASSO
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(Hans, 2010) assumes βj
i.i.d.∼ DE(0, λ/σ2), j = 1, . . . , p, where DE(a, b) denotes the double

exponential distribution with mean a and scale b. This double exponential prior leads to a

maximum a posteriori estimator of the form (2.10) (Reich and Ghosh, 2019). An alternative

is the horseshoe prior proposed by Carvalho et al. (2010) that assumes βj ∼ N (0, λ2
jτ

2), and

τ, λj ∼ HC(0, 1), j = 1, . . . , p, where HC(a, b) denotes the half-Cauchy distribution with

location a and scale b. This popular shrinkage prior (Datta and Ghosh, 2013; Porwal and

Raftery, 2022) is studied in a SAE context in the third manuscript of this thesis (Chapter

5).

Alternatively, machine learning approaches, and in particular random forests, may be used

to naturally select relevant covariates. It is worth mentioning that random forests are becom-

ing popular in the survey sampling literature (Breidt and Opsomer, 2017; Dagdoug et al.,

2023), and are a novelty in the SAE context (Krennmair and Schmid, 2022; Newhouse, 2023).

Breiman (2001) proposed a random forest algorithm, with a collection of B regression trees,

where each tree consists in repetitively partitioning the data points into subgroups, which

are called nodes, based on covariate splits. Each tree is grown on a bootstrap sample of the

original dataset. The point estimates that result from Breiman’s random forest procedure

correspond to the average over the B estimates from the B trees. In each tree, a sequence

of covariate splits leads to a number of final nodes, and an estimate is computed as the

mean of the responses within the adequate final node. Therefore, in addition to naturally

select auxiliary variables through covariate splits, random forests present the advantage that

non-linear relationships between an outcome and covariates are inherently accommodated.

However, the uncertainty assessment of random forest point estimates is not always straight-

forward (Wager and Athey, 2018), in particular, when the interest lies in predictions for new

data points. Similar to the case of the LASSO, Wager et al. (2014) argue that bootstrap

approaches may not be adequate for random forest uncertainty assessment, since numerous

trees would need to be grown, which may be computationally inefficient. Although they are

outside the scope of this thesis, it is worth mentioning that various Jackknife procedures
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have been introduced to compute uncertainty intervals (see, e.g., Wager et al. (2014); Wager

and Athey (2018); Lei et al. (2018)). These methods should be considered with care as they

are proposed for different random forest algorithms. Recently, Zhang et al. (2019) proposed

the so-called out-of-bag (OOB) prediction intervals for random forest point estimates. They

argue that since the first step of a random forest algorithm is to select a bootstrap sample

of the original dataset, there exist for each data point (yi,xi) a random forest that does not

include (yi,xi). This smaller random forest comprises all the Bi trees grown on bootstrap

samples that do not include (yi,xi). Therefore, from a single random forest procedure, each

yi has an OOB prediction, ˆ︁yOOB
i , which is the prediction based on the random forest made

of Bi trees. Let di = yi − ˆ︁yi, i = 1, . . . , n, be the OOB errors, and let d(α) be the 1 − α

empirical quantile of the d’s. The OOB prediction interval of a new data point, x, is defined

as
[︁ˆ︁y + d(α/2), ˆ︁y + d(1−α/2)

]︁
, where ˆ︁y is the point estimate that results from inputting x in the

random forest made of B trees. The simulation studies summarised in Zhang et al. (2019)

show that the OOB prediction intervals perform similarly to the prediction intervals com-

puted from the split conformal (SC) procedure proposed by Lei et al. (2018). However, one

advantage of the SC procedure over the OOB approach is that the OOB procedure is tied to

the random forest algorithm, whereas SC inference may be applied to a variety of modelling

methods. In particular, in addition to random forests, Lei et al. (2018) consider the SC pro-

cedure to compute prediction intervals for estimates obtained through a LASSO regression

(2.10). The first step of the SC procedure is to divide the dataset {(yi,xi), i = 1, . . . , n} into

two equal sized samples, S1 and S2. Then, the modelling method of interest (e.g., random

forest, LASSO) is trained on S1. Predictions are obtained for all data points in the remaining

dataset, ˆ︁yi, i ∈ S2, and absolute residuals are computed, such that Ri = |yi−ˆ︁yi|, i ∈ S2. Fi-

nally, the SC prediction interval of a new data point, x, is
[︁ˆ︁y ±R(α)

]︁
, where R(α) is the 1−α

empirical quantile of the R’s and ˆ︁y is the point estimate computed for the new data point

x. The SC procedure relies on the assumption of exchangeable data and guarantees that

the prediction intervals yield the correct coverage (Angelopoulos and Bates, 2021). However,
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the assumption of exchangeable data is strong, in particular in a SAE context, and some

extensions of the SC procedure have been proposed to accommodate non-exchangeable data

(see, e.g., Tibshirani et al. (2019); Barber et al. (2023)).

2.3 Summary

This chapter has provided an overview of the literature on disease mapping and SAE, which

are methods used to analyse and provide estimates at the areal level. Regarding disease map-

ping methods, I discussed the issue of spatial discontinuity and reviewed models previously

proposed to adapt to changes in the risk surface. I also discussed spatio-temporal models

available in the literature to analyse data recorded across different areas of a region and over

time. Finally, regarding SAE, I discussed model-based methods and different approaches to

deal with numerous auxiliary variables.
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Chapter 3

A Bayesian hierarchical model for

disease mapping that accounts for

scaling and heavy-tailed latent effects

Preamble to Manuscript 1. In disease mapping, Congdon (2017) proposed a modification

of the Leroux prior (Leroux et al., 1999), where the latent effects are spatially structured and

include independent scaling mixture components that aim to identify areas with potentially

outlying disease risks, after accounting for the effect of covariates. Riebler et al. (2016)

introduced the so-called BYM2 model, which decomposes each latent effect into the sum

of an unstructured and a scaled spatially structured component, where the scaling process

aims to ease interpretation and prior assignment of the model parameters. However, the

BYM2 model assumes the variance of the latent effects is constant across areas. The goal

of this manuscript is to relax this assumption and investigate if we are able to estimate the

parameters of the proposed model.

This manuscript proposes an alternative disease mapping model to that of Congdon (2017).

The proposed model is an extension of the BYM2 to allow for heavy-tailed latent effects
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through the introduction of scaling mixture components to accommodate and identify po-

tential outliers. Two prior specifications of the proposed model are investigated: one with

independent scaling mixture parameters, and one where they are spatially structured.

The contributions of this manuscript include (i) a new disease mapping model that aims to

identify potential outliers after accounting for covariates, (ii) a spatially structured distri-

bution for the scaling mixture components, (iii) a comparison of the interpretation of the

parameters included in the proposed and Congdon’s models, (iv) a thorough simulation study

to investigate the ability of the proposed model in identifying potential outliers compared

to Congdon’s prior, (v) a study on how the proposed model may help in the analysis of the

first Zika epidemic (2015-2016) in Rio de Janeiro.

This manuscript is under a second round of review for the journal Statistical Methods in

Medical Research.
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Abstract

In disease mapping, the relative risk of a disease is commonly estimated across different

areas within a region of interest. The number of cases in an area is often assumed to follow

a Poisson distribution whose mean is decomposed as the product between an offset and the

logarithm of the disease’s relative risk. The log risk may be written as the sum of fixed effects

and latent random effects. The BYM2 model decomposes each latent effect into a weighted

sum of independent and spatial effects. We build on the BYM2 model to allow for heavy-

tailed latent effects and accommodate potentially outlying risks, after accounting for the

fixed effects. We assume a scale mixture structure wherein the variance of the latent process

changes across areas and allows for outlier identification. We propose two prior specifications

for this scale mixture parameter. These are compared through simulation studies and in the

analysis of Zika cases from the first (2015-2016) epidemic in Rio de Janeiro city, Brazil. The

simulation studies show that, in terms of the model assessment criterion WAIC and outlier

detection, the two proposed parametrisations perform better than the model proposed by

Congdon (2017) to capture outliers. In particular, the proposed parametrisations are more

efficient, in terms of outlier detection, than Congdon’s when outliers are neighbours. Our

analysis of Zika cases finds 23 out of 160 districts of Rio as potential outliers, after accounting

for the socio-development index. Our proposed model may help prioritise interventions and

identify potential issues in the recording of cases.

30



3.1 Motivation

The first Zika cases in the Americas were identified in 2015, when it was considered a benign

disease. However, in October 2015 an unprecedented increase in the number of microcephaly

cases in neonates was reported in the Northeast of Brazil and was later associated with the

Zika virus infection during pregnancy (Lowe et al., 2018). The Zika virus is transmitted to

humans by the bite of infected Aedes mosquitoes, the same vectors that transmit dengue,

chikungunya and yellow fever. Dengue is the most prevalent Aedes-borne disease in the

world and around 3.9 billion people in 129 countries are at risk of acquiring the disease

(World Health Organization, 2020). Because of climate change, the global distribution of

Aedes mosquitoes is expanding, increasing the number of people exposed to Aedes-borne

diseases.

In the city of Rio de Janeiro, Brazil, the first Zika epidemic occurred between 2015 and

2016, with more than 35 thousand confirmed cases (Freitas et al., 2019). The city is the

second-largest in Brazil, with approximately 6.3 million inhabitants, and its main tourist

destination. Rio de Janeiro has a tropical climate and a favourable environment for the

Ae. aegypti mosquitoes, which are highly adapted to urban settings. Despite efforts to

control the vector population, the city has suffered from dengue epidemics every three to

four years, in general (Nogueira et al., 1999; Honório et al., 2009; dos Santos et al., 2019).

The widespread presence of the mosquito also allowed the entry and rapid dispersion of Zika

and chikungunya viruses (Freitas et al., 2019). This epidemiological scenario highlights the

need for novel strategies to help design interventions that are more effective in decreasing

the burden of established Aedes-borne diseases and preventing emerging and re-emerging

arbovirus diseases from causing new outbreaks. In this sense, we propose a model that

has the potential to help prioritise interventions by identifying areas with outlying risks

with respect to the entire region and with respect to their neighbours, while accounting for

covariates.
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Motivating the proposed model, we have available the Zika counts aggregated by neighbour-

hood for the period of the first Zika epidemic in the city of Rio de Janeiro. The data come

from the Brazilian Notifiable Diseases Information System (SINAN – Sistema de Informação

de Agravos de Notificação). In Brazil, cases attending healthcare facilities with a suspected

diagnosis of Zika are reported to this system, usually by the physician. The standardised

morbidity ratios (SMR) for the Zika counts by neighbourhood during the study period are

presented in Figure 3.1. Although the epidemic affected most of the city, some neighbour-

hoods seem to have been hit harder than others and some, not at all. The diversity of the

territory of Rio de Janeiro is possibly an important factor influencing this. Regarding the

city’s geography, for instance, there are mountains that separate different areas which may

act as a natural barrier for the spread of the disease. Additionally, Rio’s territory is het-

erogeneous in terms of demographic, socio-economic, and environmental characteristics that

are involved in the distribution of Aedes-borne diseases (Freitas et al., 2021).

For this analysis, we have available the socio-development index, an index that includes

indicators related to sanitation, education and income, and for which higher values represent

better socio-economic conditions. In places with inadequate sanitary conditions, the female

Ae. aegypti can more easily find any type of container filled with water to deposit her eggs.

In Rio de Janeiro, a city with great social disparities, the socio-development index ranges

from 0.282 (in Grumari, a neighbourhood in the West region) to 0.819 (in Lagoa, South

region) (Prefeitura do Rio de Janeiro, 2018).

3.1.1 Literature review

In the last 30 years, the field of disease mapping has experienced an enormous growth. This

is because it is an important tool for decision makers to obtain reliable areal estimates of

disease rates over a region of interest. Disease mapping methods, or ecological regression,

further help understanding the underlying associations between covariates and the disease

risk. Commonly, Bayesian hierarchical models are used to model the disease cases observed
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Figure 3.1: Map and histogram of the SMR distribution for the Zika counts across the 160
neighbourhoods of Rio de Janeiro, between 2015 and 2016.

across the different areas that form a region of interest. The number of cases in an area

is assumed to follow a Poisson distribution whose mean is decomposed as the product of

an offset and the relative risk of the disease. Further, in the log scale, the relative risk

is decomposed as the sum of covariates and latent (unobserved) areal effects. The latent

components accommodate overdispersion as this decomposition of the log-relative risk can

be seen as a Poisson-lognormal mixture model, if the latent effects follow a normal prior

distribution.

Usually, these latent effects follow a spatial structure, a priori, such that neighbouring lo-

cations will adjust similarly after accounting for the available covariates. Indeed, it seems

natural to expect that areas that are close to each other are more correlated than areas that

are further apart. Let b = [b1, . . . , bn]
⊤ be the vector of latent effects for the n areas of the

region of interest. Different models have been proposed in the literature for the b’s. First,

a commonly used spatial model for the latent effects that does not accommodate outliers is

the intrinsic conditional auto-regressive (ICAR) prior (Besag, 1974). Under the ICAR prior

distribution, it is assumed that bi | b(−i), σ
2
b ∼ N

(︂
(1/di)

∑︁n
j=1 wijbj, σ

2
b/di

)︂
, i = 1, . . . , n,

where b(−i) = [b1, . . . , bi−1, bi+1, . . . , bn]
⊤, W = [wij] is a n × n matrix of weights, wij, that

defines the neighbourhood structure and where di =
∑︁n

j=1wij. Note that σ2
b is the variance

parameter of the conditional distribution of bi given its neighbours. It can be shown (Baner-
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jee et al., 2014) that the joint distribution of b is proportional to exp
[︁
−(1/2σ2

b )b
⊤Qb

]︁
, with

Q = D−W , where D = diag(di). The spatial weights are often set as wij = 1 if areas i and

j share a border and wij = 0, otherwise. To ease the notation, let b ∼ ICAR(σb,Q) denote

the multivariate ICAR distribution. Using this common adjacency matrix, the joint ICAR

distribution is not a proper multivariate normal distribution as the "precision" matrix, Q, is

not positive definite. One issue with the ICAR model is that it does not perform well when

there is no underlying spatial structure in the data (Riebler et al., 2016).

To accommodate the presence of independent latent effects, Besag et al. (1991) proposed

the so-called BYM model, where each areal latent effect is decomposed as the sum of an

unstructured component and a spatially structured component. As pointed out by MacNab

(2011), this model presents an identifiability issue as the two variance components cannot

be distinguished. To avoid the introduction of two random effects for each area, like in the

BYM model, Leroux et al. (1999) proposed an alternative distribution for the latent spatial

effects that includes a spatial dependence parameter, λ. The latter is a mixing parameter

in the unit interval that allows the variance of the latent effects to be decomposed into

a weighted sum between an unstructured and a spatially structured variance components.

On the other hand, regarding the BYM model, Sørbye and Rue (2014) argued that scaling

the spatially structured effects is essential to ease interpretation and prior assignment of

the variance parameter of the latent effects, independently of the neighbourhood structure.

Hence, Riebler et al. (2016) proposed the BYM2 model, that decomposes the latent effects

into a weighted sum of unstructured random noises with unit variance and scaled structured

components. The vector of latent spatial effects is scaled according to the neighbourhood

structure. This BYM2 model is a modification of the Dean model (Dean et al., 2001), which

is itself a modification of the BYM model. In the BYM2 model, the decomposition of the

ith latent effect is as follows:

bi = σB

(︂√
1− λθi +

√
λu⋆

i

)︂
, i = 1, . . . , n, (3.1)
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where λ ∈ [0, 1] and θ ∼ N (0, I) is independent of the scaled spatially structured compo-

nents, u⋆ = [u⋆
1, . . . , u

⋆
n]

⊤ ∼ ICAR(1,Q⋆). Let the matrix Q−
⋆ be the generalised inverse of

Q⋆, which is a scaled version of the ICAR "precision" matrix, Q: Q⋆ = hQ. The scal-

ing factor, h, is proportional to the generalised variance that arises from an ICAR model,

h = exp
[︁
(1/n)

∑︁n
i=1 ln

(︁
Q−

ii

)︁]︁
. Note that the scaling factor only depends on the graph of the

region under study. This scaled ICAR prior corresponds to u⋆ =
[︂
u1/

√
h, . . . , un/

√
h
]︂⊤

,

for u ∼ ICAR(1,Q). As stated in Sørbye and Rue (2014), this scaling process allows

each structured component to have a variance of approximately 1. For further discus-

sion on the scaling process, refer to section 3.2 of Riebler et al. (2016). It results that

V(bi | σB)= σ2
B [(1− λ)V(θi) + λV(u⋆

i )] ≃ σ2
B [(1− λ)× 1 + λ× 1] = σ2

B. Hence, a marginal

variance, σ2
B, is defined for the latent effects and all the parameters can be interpreted for

all neighbourhood structures.

Spatial heteroscedasticity is not explicitly considered in the previous models. However, it

is reasonable to imagine that some areas may have abnormally high or low disease risks.

Richardson et al. (2004) emphasised the importance for disease mapping models to be able

to differentiate and adapt between smoothing the risk surface and capture abrupt changes

in relative risks. This issue of spatial heteroscedasticity has been increasingly considered

over the recent years. For instance, regarding geostatistical data, Palacios and Steel (2006)

proposed a log-normal scale mixture of a Gaussian process to accommodate heavy tails.

To allow for disparities, Congdon (2017) proposed a modification of the Leroux prior by

including scale mixture parameters. More specifically, Congdon (2017) assumes

bi | b(−i),κ, λ, σ
2
C ∼ N

(︄
λ

1− λ+ λdi

n∑︂
j=1

wijκjbj,
σ2
C

κi(1− λ+ λdi)

)︄
, i = 1, . . . , n, (3.2)

with κi
i.i.d.∼ Gamma(ν/2, ν/2), i = 1, . . . , n and ν ∼ Exp(1/µν), for some value of µν fixed

by the analyst. These positive parameters, κ = [κ1, . . . , κn]
⊤, allow for discrepancies in

the neighbouring estimated risks, while the usual CAR-type priors aim to locally smooth
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the risk surface. The scale mixture parameters are termed outlier indicators as κ < 1

captures outliers. Again, for λ ∈ (0, 1), σ2
C is the variance parameter of the conditional

distribution of bi given its neighbours. This implies that the interpretation of σ2
C differs with

every spatial structure, which renders its prior assignment not straightforward and makes

interpretation difficult. It can be shown (Congdon, 2017) that the joint distribution of the

latent effects is b | σ2
C , λ,κ ∼ N

(︁
0, σ2

CQ
−
C

)︁
, where the "precision" matrix has diagonal

elements QCii
= κi(1− λ+ λdi) and off-diagonal elements QCij

= −λwijκiκj. The diagonal

dominance condition (Rue and Held, 2005) states that a sufficient condition for a symmetric

matrix QC to be symmetric positive definite is QCii
>
∑︁

j ̸=i |QCij
|, ∀i. Hence, it is sufficient

that λ ∈ [0, 1) and λ < min
i

{︂
1/
(︂
1− di +

∑︁
j ̸=i wijκj

)︂}︂
, for QC to be a valid precision

matrix. Note that if κ = 1n, then Congdon’s prior is the Leroux prior, which is proper

for λ ∈ [0, 1). This mixture differs from the commonly used normal-gamma model, as the

scale mixture components appear both in the mean and in the variance of the conditional

distribution. Because the scale mixture components appear in the conditional mean, areas

that share a border with an outlying area give this outlier a lower weight. Let neighbouring

areas i and j be outliers, and let area k be a neighbour of i and not an outlier. Then, bj

contributes by a weight of κj < 1 to the conditional mean of bi, whereas bk contributes by

a factor of κk > κj. This is a drawback when there are multiple outlying areas that are

neighbours, as they will not borrow strength from each other.

Different from Congdon (2017), Dean et al. (2019) addressed local discrepancies by changing

the neighbouring structure according to the observed data. This approach differs from

Congdon’s as it is a two-step procedure that implies changing the neighbourhood structure.

Other models have been proposed to allow the strength of the spatial autocorrelation to

vary over a region of interest. Corpas-Burgos and Martinez-Beneito (2020) proposed the so-

called adaptive ICAR and adaptive Leroux models, which are modifications of the ICAR and

Leroux models, by estimating the weights in the matrix W . The adaptive Leroux model they

proposed (CB-MB model) can be tied to Congdon’s model (3.2). For λ = 0, Congdon’s model
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yields independent latent effects with variance divided by the scaling mixture component.

Similarly, when λ = 0, the CB-MB model yields independent latent effects with variance

divided by the spatial weight (see, e.g., Table A.6 in Appendix A.8). However, Corpas-Burgos

and Martinez-Beneito point out that a single dataset is not enough to learn about those

weights; so they suggest that their method is more suitable when modelling a multivariate

outcome, where the neighbourhood structure is the same for the different outcomes. On

the other hand, MacNab (2023) recently proposed a model that allows the spatial mixing

parameter, λ, to change across space. This approach allows the underlying structure of

the latent effects of the areas to differ from their neighbours, when necessary. The model

proposed by MacNab differs from our proposal because it points out which structure, between

the independent and spatially structured included in the BYM2 model, is more important

for each region. The method proposed by MacNab does not allow for different variances

across the region of interest, nor the identification of outlying areas.

The main aim of this paper is to propose a method to accommodate and identify outlying

areas, following a single step inference procedure. We propose a modification of the BYM2

prior (3.1) that is able to identify outlying areas, after accounting for the effect of covariates.

A scale mixture is introduced in the BYM2 model. The proposed model keeps the appealing

property of parameter interpretation while capturing potentially outlying areas and allowing

the neighbouring outlying areas to borrow strength from each other. Areas may be outliers

with respect to the whole region of interest, namely areas with extreme disease risks; or with

respect to their neighbours, termed spatial outliers. Throughout, the term "outlier" refers

to both types of outliers: extremes and spatial outliers. This paper is organised as follows:

Section 3.2 describes the proposed model, then a simulation study showcases the performance

of the proposed model in section 3.3. Additionally, the application of the proposed model to

the data presented in section 3.1 from the 2015-2016 Zika epidemic in the 160 neighbourhoods

of Rio de Janeiro is shown in section 3.3. Section 3.4 concludes with a discussion.
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3.2 Proposed model

Let a region of interest be partitioned into n non-intersecting areas. Let Yi be the number of

cases in area i, i = 1, . . . , n, and Ei, the expected number at risk in that area. The counts

are modelled through the following Poisson model:

Yi | Ei, µi ∼ P(Eiµi),

where µi denotes the relative risk in area i and Ei is an offset. Commonly, the risk is

decomposed in the log scale as follows:

ln(µi) = β0 + xiβ + bi,

where β0 is the overall log risk, xi is a p-dimensional vector with the explanatory variables

in area i, associated with the p coefficients β, and bi is a random effect for area i. This

latent effect is included in order to allow for overdispersion in the Poisson model that would

otherwise assume equal mean and variance for area i. The latent areal effects can also

accommodate an assumed underlying spatial structure in the data. To that end, a spatial

structure is defined through the matrix W = [wij]. Throughout this paper, we assume that

two areas are said to be neighbours if they share a border. This implies that wij = 1 if areas

i and j are neighbours and wij = 0, otherwise. In this setting, di =
∑︁n

j=1wij corresponds

to the number of neighbours of area i. To model the latent areal effects accounting for

such 0-1 spatial structure, we propose a modification of the BYM2 prior (3.1), that is, we

assume

bi =
σ

√
κi

(︂√
1− λθi +

√
λu⋆

i

)︂
, i = 1, . . . , n, (3.3)

where σ > 0 is divided by the scaling mixture component κi > 0, and where λ ∈ [0, 1].

The component θi is assumed independent of u⋆
i . In particular, θ ≡ [θ1, . . . , θn]

⊤ ∼ N (0, I),

and u⋆ ≡ [u⋆
1, . . . , u

⋆
n]

⊤ ∼ ICAR(1,Q⋆). Components θi and u⋆
i are termed the unstruc-

38



tured and the scaled structured component, respectively. Like in the BYM2 model (Riebler

et al., 2016) (3.1), the "precision" matrix is such that Q⋆ = hQ, where the scaling fac-

tor, h, is computed from the neighbourhood structure (see section 3.1.1). It results that,

V(bi | σ, κi) = (σ2/κi) [(1− λ)V(θi) + λV(u⋆
i )] ≃ (σ2/κi) [(1− λ)× 1 + λ× 1] = σ2/κi.

Hence, σ2/κi represents the approximate marginal variance of the ith area’s latent effect.

Moreover, the variance-covariance matrix, V , of the proposed latent effects, b, is given by

V = σ2K−1× [(1− λ)I + λQ−
⋆ ], where K = diag(κi). Thus, the parameter λ represents

the weight of the spatial effect in the variance of the latent process. Note that this distribu-

tion is a proper multivariate normal for small values of λ, depending on the neighbourhood

structure. Indeed, the diagonal dominance condition (Rue and Held, 2005) implies that it

is sufficient that λ ∈ [0, 1) and λ < min
i

{︂
1/
(︂
1−Q−

⋆ii
+
∑︁

j ̸=i |Q−
⋆ij
|
)︂}︂

for the covariance

matrix, V , to be valid.

In a nutshell, the proposed model uses interpretable parameters to accommodate outlying

areas while identifying them. The proposed model points at neighbourhoods that need

heavy-tailed latent effects, through the introduction of the scale mixture components, κ =

[κ1, . . . , κn]
⊤. Area i is identified as an outlier when κi < 1. Different from Congdon (3.2),

the proposed model makes use of parameters that intervene on the marginal distribution

of the latent effects. Therefore, their prior assignment is simplified as their interpretation

remains the same regardless of the neighbourhood structure. This concerns the weight of

the spatial structure λ, the marginal variance σ2, as well as the scaling mixture parameters

κ1, . . . , κn when the κ’s are assumed independent across the region.

We now compare the interpretation and roles of the scale mixture components κ in the

proposed model and in Congdon’s model. To interpret the scale mixture components κ, the

importance of the spatial structure in the data, measured by λ, must be taken into account.

When λ = 0, both models reduce to independent latent effects without spatial structure. In
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that case, κi < 1 only impacts the marginal variance of the ith latent effect and identifies

an outlying area that showcases an extreme disease risk, after accounting for covariates.

When λ = 1, the proposed latent effects become bi = (σ/
√
κi)(ui/

√
h), i = 1, . . . , n. The

κ’s intervene on the marginal variances and κi < 1 acts as an outlier indicator by inflating

the ith marginal variance and hence allowing the ith effect to differ from the overall mean

structure. Additionally, when λ = 1, the conditional distribution of the latent effects may

be written as follows:

bi | b(−i), σ
2,κ ∼ N

(︄
1

di

n∑︂
j=1

wij

√︃
κj

κi

bj,
σ2/h

κidi

)︄
, i = 1, . . . , n. (3.4)

We compare the conditional distributions (3.2) and (3.4) considering the case where neigh-

bouring areas i and j are both outliers with κi, κj < 1 and i ∼ j. In both distributions

(3.2) and (3.4), the ith and jth conditional variances are inflated by κi and κj, respectively.

Regarding the conditional means, in the proposed model, κj/κi ≃ κi/κj ≃ 1 and outlying

effects are allowed to borrow strength from neighbouring outliers. However, in Congdon’s

model, the mutual weights of bi and bj are deflated and areas i and j contribute less to their

mutual latent effects. This feature of borrowing strength in the proposed model is attractive

in the case where neighbouring areas have extreme disease risks.

In the next subsection, different prior distributions are discussed for the scale mixture com-

ponents.

3.2.1 Prior specification of the scale mixture component

A natural choice, and used by Congdon (2017), is to assume:

κi
i.i.d.∼ Gamma (ν/2, ν/2) , i = 1, . . . , n, and ν ∼ Exp(1/µν), (3.5)
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where the hyperparameter’s mean µν controls the magnitude of ν. When λ = 0, marginalising

the proposed distribution (3.3) of the latent effect, bi, with respect to κi yields a Student-t

distribution with µν degrees of freedom, that is tµν . The introduction of κi hence allows for

heavier tails than a Gaussian distribution for the latent effects. In this case, µν corresponds

to choosing the degrees of freedom of the resulting t distribution, which impact the moments

of the distribution as well as its tails. A large µν results in a distribution close to being

normal, which is inadequate to capture outliers. On the other hand, µν < 3 implies a t

distribution whose variance is not defined. Some simulation studies showed that setting

µν = 4 performed well, which is the value suggested by Gelman et al. (2004).

Another possible prior specification for the κ’s is to borrow ideas from Palacios and Steel

(2006) who proposed the inclusion of a scale mixture component in the variance of a Gaussian

process. The authors suggest the usual gamma mixing is not always appropriate, as not all

positive moments exist. Additionally, they point out that the t distribution that results from

marginalising over the gamma scaling mixture parameters may still overestimate the overall

variance and struggle to detect specific outlying areas. In particular, they assume that the

scale mixture component follows a log-Gaussian process with the same spatial structure as

the one defined for the main Gaussian process. Here, we propose a scaled log proper CAR

prior distribution for the κ’s. This form of discretisation of the method proposed by Palacios

and Steel (2006) is applied to the latent effects, bi, i = 1, . . . , n, which include both the

structured and unstructured components, in order to keep the interpretative property of

the parameters. This contrasts with the method proposed by Palacios and Steel (2006) as

they introduced a scale mixture only for the spatially dependent components, leaving the

unstructured components untouched. Let the scale mixture components be modelled as

follows:

ln(κi) ≡ −νκ
2

+ zi, i = 1, . . . , n,

where z ≡ [z1, . . . , zn]
⊤ | νκ ∼ N

(︁
0, νκQ

−1
α,⋆

)︁
and νκ ∼ Exp(1/µνκ),

(3.6)
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where Qα,⋆ = hQα = hα[D−αW ] is again a precision matrix that is scaled by hα, which is

computed based on D−αW . The parameter α guarantees Qα to be a valid precision matrix

for α ∈ [0, 1) (Banerjee et al., 2014). For this proper distribution to be close to an ICAR

prior, we impose α = 0.99. The proper CAR distribution is scaled in order to approximately

have that V[ln(κi) | νκ] ≃ νκ × 1. Similarly to Palacios and Steel (2006), this prior implies

E(κi | νκ) ≃ 1, which corresponds to a constant marginal variance across the areal latent

effects, and V(κi | νκ) = [exp (V(ln(κi | νκ))− 1)] exp (2E(ln(κi | νκ)) + V(ln(κi | νκ))) ≃

[exp(νκ)− 1] exp (−νκ + νκ) = exp (νκ) − 1, ∀i. For νκ close to 0, κ is close to 1 with a

small variance. A bigger νκ allows the κ’s to differ greatly from 1 and to be closer to 0,

when necessary. Palacios and Steel (2006) suggest that a reasonable prior mean for νκ is

µνκ = 0.2. The simulation studies we conducted suggest that a sensible choice for µνκ is

µνκ = 0.3, which yields [0.2, 2.4] as the 95% prior credible interval for the κ’s. This includes,

κi = 1 while allowing for departure from κi = 1, to accommodate the potentially outlying

random effect of area i. This prior specification for the κ’s allows the mixture components

to borrow strength from neighbouring κ’s. This may be of particular interest when outlying

areas are neighbours.

3.2.2 Inference procedure

Following the specifications discussed in the previous section, the resultant posterior distri-

butions, regardless of the prior specification for κi, do not have a closed analytical form.

Therefore, the posterior distributions are approximated through computational methods. In

particular, Markov Chain Monte Carlo (MCMC) methods are considered. The Hamiltonian

Monte Carlo method implemented in the R package rstan (Stan Development Team, 2020)

is used for the simulation studies and real data application that follow. Morris et al. (2019)

note that the No U-Turn Sampler implemented in rstan is more efficient than other MCMC

samplers to obtain reliable estimates of the posterior distributions induced by the complex

autoregressive type of models that are of interest in this paper.
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One way to approximate a proper posterior distribution when assigning an ICAR prior, is to

add a sum-to-zero constraint on the parameters in order to distinguish them from any added

constant. This is necessary due to the invariance of the ICAR distribution to the addition

of a constant (Rue and Held, 2005). The sum-to-zero constraint is applied to the spatial

components of the proposed model, u, that need to be distinguished from the global intercept,

β0. More precisely, we add a soft sum-to-zero constraint, that is
∑︁n

i=1 ui ∼ N (0, (n/1000)2).

The rstan implementation of the BYM2 model is discussed by Morris et al. (2019) and the

code for the proposed model, which is a modification of the BYM2, is available in Appendix

A.1.

The scaling factor, h, needed in the BYM2 and in the proposed model, is computed through

the R package R-INLA (Integrated Laplace Approximation, Rue et al. (2009), www.r-inla

.org) as explained by Riebler et al. (2016).

3.3 Data analyses

In this section, we present the results of a simulation study that was conducted to assess

the performance of the proposed model. The results from fitting the proposed model to

data obtained from the first Zika epidemic that took place between 2015 and 2016 in Rio de

Janeiro are also shown. In both cases, we consider the two parametrisations of the proposed

model, which correspond to the two prior specifications of the scaling mixture components

described in section 3.2.1. In the simulation study and in the data application, the proposed

model is compared to Congdon’s model (Congdon, 2017). Out of completeness, we also

consider the two prior specifications for the κ’s for Congdon’s model. Namely, Congdon’s

model is fitted with the κ’s following the original independent prior Gamma distributions

(3.5), as well as with spatially structured κ’s (3.6).

In the simulation study, we generate data for the 96 French departments and contaminate

some areas. The goal is to check whether our proposed model is able to identify the generated
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outliers. Then, in the Zika data analysis in Rio de Janeiro, we compare the results of our

proposed model to Congdon’s as well as the BYM2 (Riebler et al., 2016) and Leroux (Leroux

et al., 1999) models. We identify some potentially outlying districts which might be of interest

to decision makers.

3.3.1 Simulation study: neighbouring outliers in France

In this section, we present the results from a simulation study wherein some arbitrary neigh-

bouring areas in France are contaminated into outlying areas, to assess the performance of

the proposed model in comparison to the one proposed by Congdon. The design of the sim-

ulation study is inspired by Richardson et al. (2004), where the goal is to assess the ability

of the proposed model to both smooth over non-contaminated areas while capturing and

identifying the contaminated ones. Richardson et al. (2004) emphasised the importance for

disease mapping models to adapt to these abrupt changes in the risk surface.

In this simulation study, 20 departments are contaminated such that 2 groups of 10 neigh-

bouring outliers are created. Out of simplicity, there are no covariates included in the gener-

ating process nor when fitting the models. First, all n = 96 latent effects, which correspond

to log relative risks in this covariate-free simulation study, are set to 0: bi = 0, i = 1, . . . , n.

Then, the offsets [E1, . . . , En]
⊤ are computed based on the 2019 department size estimates

available on the Institut National de la Statistique et des Études Économiques (INSEE)

website (https://statistiques-locales.insee.fr/#c=indicator). We define five off-

set categories based on the empirical offset quantiles. The first category corresponds to the

smallest offsets and the fifth category, to the largest ones. The categories are termed "Small"

for E ≤ 568, "Medium low" for E ∈ (568, 906], "Medium" for E ∈ (906, 1428], "Medium

high" for E ∈ (1428, 2399] and "High" for E > 2399. Based on these categories, we select

20 departments to be outliers, such that each group of 10 neighbouring outliers contains 2

areas of each offset category. Within each such pair of departments, the relative risks are

contaminated into outliers by setting bi = ln(0.5) and bi′ = ln(1.5). The resulting outliers
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are mapped in the left panel of Figure 3.2, highlighting the offset sizes and imposed relative

risks. Finally, R = 100 populations of size n = 96 are created according to a hierarchical

Poisson model, that is, Yi ∼ P (Ei exp[bi]). The only source of randomness across the 100

replicates comes from the repeated sampling from a Poisson distribution.

Relative risk

0.5
1.5

Offset category

Small
Medium low
Medium
Medium high
High

Congdon Congdon−logCAR

BYM2−Gamma BYM2−logCAR

0 50 100
Outlier detected (%)

Figure 3.2: Left panel: French departments arbitrarily chosen to be outliers in the simulation
study. Colours depict the offset category based on the empirical offset quantiles. The points
represent the relative risk set to each outlying district. Right panel: Percentage of times
among 100 replicates that the outliers were identified by each model, in the simulation study.
The outliers are pointed out when κu < 1, where κu is the upper bound of the posterior 95%
credible interval of κ.

Using the two scale mixtures described in section 3.2.1, the Congdon model is compared to

the proposed model. The first version of the proposed model is denoted BYM2-Gamma and

the second, BYM2-logCAR. The original Congdon model is termed Congdon, whereas the

one with spatially structured scale mixture components is denoted Congdon-logCAR. For

the four models, the intercept is given a quite vague prior: β0 ∼ N (0, 102) and the mixing

parameter, λ, is assigned a uniform, U(0, 1), prior distribution. The same N+(0, 1) prior

is considered for σ, which is a marginal standard deviation in the proposed model, while

it is a conditional standard deviation in Congdon’s. Finally, in the BYM2-Gamma and

Congdon models, the prior distribution for the κ’s is described in (3.5) with ν ∼ Exp(1/4).

For the BYM2-logCAR and Congdon-logCAR parametrisations, the κ’s follow a priori the
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distribution in (3.6) and we set ν ∼ Exp(1/0.3).

The models are fitted through the R package rstan (Stan Development Team, 2020). For

each dataset, the MCMC procedure consists of 2 chains of 20,000 iterations with a 10,000

burn-in period and a thinning factor of 10. Convergence of the chains is assessed through

trace plots, effective sample sizes and the ˆ︁R statistic (Gelman and Rubin, 1992; Vehtari

et al., 2021).
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Figure 3.3: Top panel: WAIC across the 100 replicates for the proposed models and Cong-
don’s, in the simulation study. Dashed lines: mean WAIC for each model. Bottom panel:
MSE over the 100 replicates for the proposed models and Congdon’s according to the true
relative risk and the offset size, in the second simulation study.

In terms of WAIC (Watanabe and Opper, 2010), for which smaller values are preferred,

the proposed BYM2-Gamma model yields the smallest value among the four models, as

shown in Figure 3.3, with an average WAIC of 962 versus 967, 972 and 975 for Congdon,

BYM2-logCAR and Congdon-logCAR, respectively. In terms of MSE, Figure 3.3 shows that

all models perform similarly: on average over the 100 replicates and all areas, the BYM2-

Gamma’s MSE is 0.0003, versus 0.0004 for Congdon and 0.0005 for both models with the

logCAR parametrisation.
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Regarding the detection of outliers, Table 3.1 and the right panel of Figure 3.2 show how

often each model accurately detects departments as outliers (sensitivity) and non-outliers

(specificity), depending on the offset category. That is, the sensitivity is equal to the per-

centage of outliers detected among the contaminated departments over the 100 replicates.

The specificity is the percentage of departments not identified as outliers among the ones

whose true relative risk is equal to 1, over the 100 replicates. The definition for sensitivity

and specificity are taken from Richardson et al. (2004). Area i is detected as an outlier

when κu,i < 1, where κu,i is the upper bound of the 95% posterior credible interval of κi.

Congdon’s model with spatially structured κ’s tends to identify more outliers than truly

present in the data (overall specificity of 93%, versus 99.9% for both BYM2-Gamma and

Congdon, and 98.7 for BYM2-logCAR). More importantly, while both parametrisations of

the proposed model always identify all the contaminated areas, overall, the two versions of

Congdon’s model miss 22% and 13% of the outliers. That is, the proposed spatially struc-

tured prior for the κ’s allows Congdon’s model to identify 10% more outliers than the model

with independent mixture components.

Offset category BYM2-Gamma BYM2-logCAR Congdon Congdon-logCAR

Sensitivity

Small 100.0 100.0 87.7 99.0
Medium low 100.0 100.0 86.4 92.6

Medium 100.0 100.0 66.7 75.0
Medium high 100.0 100.0 68.0 81.2

High 100.0 100.0 77.0 81.7
Overall 100.0 100.0 78.1 86.8

Specificity

Small 100.0 99.2 99.9 89.2
Medium low 99.9 96.1 99.9 90.1

Medium 99.7 99.9 99.9 92.6
Medium high 99.9 98.1 100.0 93.5

High 100.0 100.0 100.0 100.0
Overall 99.9 98.7 99.9 93.1

Table 3.1: Sensitivity and specificity of the outlier detection for each model, depending on
the offset size, in the simulation study.

Further simulation studies

To further assess the performance of the proposed model, other simulation studies were
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conducted. In Appendices A.3 and A.4, two simulation studies show the ability of the two

versions of the proposed model to recover the true parameters when data are generated from

the model itself. This suggests that the proposed model does not suffer from identifiability

issues. In particular, the proposed model is able to identify and distinguish, for each district,

the outlier indicators, the spatial components and the unstructured components, individually.

Appendix A.5 presents a simulation study without contaminating any areas into outliers,

which results in the proposed model performing well compared to the prior by Congdon

(2017), in terms of WAIC and in terms of outlier detection, where Congdon’s model wrongly

identifies non-outlying areas as outliers. Appendix A.6 presents the results from a simulation

study where arbitrary distant areas in France are contaminated into outliers. Again, the goal

is to assess the ability of the proposed model to identify these outliers. As discussed in Section

3.2, in that scenario where outliers are far from each other, the proposed model performs

similarly to Congdon’s model. To show that the performance of the proposed model is

independent of the neighbourhood structure under study, we present in Appendix A.7 the

results from two simulation studies that use the map of Rio de Janeiro, where some districts

are contaminated into outliers. A third simulation study shown in Appendix A.7.3 aims

to resemble the data analysis presented in Section 3.3.2, wherein a covariate is included,

and relative risks vary more over the region of interest. We found that the proposed model

performed better in identifying the outliers, compared to Congdon’s model.

3.3.2 Cases of Zika during the 2015-2016 epidemic in Rio de Janeiro

The total numbers of cases of Zika were recorded across the 160 neighbourhoods of Rio de

Janeiro during the first epidemic, which took place between 2015 and 2016. Let Yi be the

disease count in district i = 1, . . . , 160. A hierarchical Poisson model is fitted to these data

with offsets, E, computed from, P , the areal population sizes, Ei = Pi

(︂∑︁
j Yj/

∑︁
j Pj

)︂
. We

consider a socio-development index, x, as an explanatory variable for the number of cases.

Identifying districts with potentially outlying risks, after accounting for the covariate, may
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be useful for decision makers to understand how to prevent Zika and where to start from.

The distribution of Zika is described through a map and a histogram of the standardised

morbidity ratio (SMR), Y/E, in Figure 3.1 in section 3.1. Some districts seem to present

different SMR values than the mean surface, such as the island Paquetá, Barra de Guaratiba

and Pedra de Guaratiba, with SMRs of 7.3, 6.5 and 5.9, respectively. In the lower tail

of the SMR distribution, three districts did not record any cases and thus present null

SMRs, namely Gericinó, Vasco da Gama and Parque Colúmbia. However, the SMR being

an exploratory tool, one cannot conclude that high or low SMR values necessarily indicate

outlying districts. Therefore, we are interested in comparing which districts are identified as

potential outliers, after accounting for the socio-development index, by the two versions of

the proposed model and Congdon’s. The same priors are defined for the parameters as in

the simulation study presented in section 3.3.1 and the two versions of the proposed model

and Congdon’s are again denoted BYM2-Gamma, BYM2-logCAR, Congdon and Congdon-

logCAR. We further compare the performance of the four models to the BYM2 and Leroux

models which do not accommodate potential outliers.

All models are fitted in rstan (Stan Development Team, 2020) with 2 chains of 20,000

iterations thinned by 10 and of which 10,000 are burnt. As assessed by the trace plots,

the effective sample sizes and the ˆ︁R statistics, the two chains have mixed well for all six

models and convergence is attained. Appendix A.2 presents the trace plots, effective sample

sizes and ˆ︁R statistics for a selection of parameters from the two parametrisations of the

proposed model. The proposed BYM2-Gamma model took 15 minutes to run while the

proposed BYM2-logCAR needed 11 minutes. In comparison, Congdon’s model converged in

22 minutes and the Congdon-logCAR, in 11 minutes.

The results from the fitted models are presented in Table 3.2 and Figure 3.4. In terms of

WAIC, the proposed BYM2-Gamma model performs best among the six considered. There

is an important performance gain when accommodating outliers (BYM2-Gamma, BYM2-
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logCAR, Congdon and Congdon-logCAR: 1335, 1342, 1337 and 1339, respectively, vs BYM2

and Leroux: 1371 and 1374, respectively). Congdon’s prior does not seem to perform signifi-

cantly worse than the BYM2-Gamma model. Interestingly, even though the proposed model

has 160 more parameters than Congdon’s, its effective number of parameters is similar (80 vs

81). The models are further compared in terms of MSE, where MSE = (1/N)
∑︁N

i=1(Yi− ˆ︁Yi)
2,

where ˆ︁Yi is the fitted value, that is, the estimated mean of the posterior predictive distribu-

tion. All models yield similar values, between 243.5, for the Congdon-logCAR model, and

245.7 for the Leroux model.

Regarding the intercept, β0, the proposed models and Congdon’s give similar results, whereas

the Leroux and BYM2 models yield smaller posterior means and lower credible interval

bounds. This is probably due to the difference in the spatial effects that are allowed to

be more extreme in the Congdon, Congdon-logCAR, BYM2-Gamma and BYM2-logCAR

models. All six models indicate a negative relationship between the development index and

the risk of Zika, with negative posterior 95% credible intervals for β that do not include

0. We cannot directly compare the parameters λ and σ between the BYM2-type models

and Leroux-type priors, as these lie in the marginal and conditional distributions of the

latent effects, respectively. Marginally, the BYM2-type models yield similar weights of the

spatially structured components on the latent effects (posterior means for λ of 0.6 and

0.7). For the Leroux-type models, the point estimates for λ show slightly more difference

(e.g. 0.6 for Leroux and 0.8 for Congdon). This difference may be due to the presence of

outliers in the data, which results in the Leroux model finding more random noise in the

latent effects. The same observation can be made for the marginal and conditional standard

deviation, σ, regarding the BYM2-type models and the Leroux-type models, respectively.

The posterior credible interval for σ is significantly higher in the BYM2 model compared to

the two parametrisations of the proposed model, and in the Leroux model compared to the

two versions of Congdon’s model. Indeed, the proposed models are able to estimate a smaller

overall variance for the latent effects, which is then adjusted through the κ’s when needed.
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Finally, it can be noted that there seems to be enough information in the data to learn about

the hyperparameter ν. This parameter was assigned a prior mean of 4 and prior 95% credible

interval of [0.1, 14.7] for the BYM2-Gamma and Congdon models and resulted in posterior

means of about 2 and posterior 95% credible intervals of about [1, 3]. The BYM2-logCAR and

Congdon-logCAR models assigned an exponential distribution with mean 0.3 for ν, inducing

a prior 95% credible interval of [0.0, 1.1], and yielded posterior credible intervals of [0.7, 2.3]

and [0.9, 2.9], showing the need for some κ’s to be different from 1, a posteriori.

BYM2 BYM2-logCAR BYM2-Gamma Congdon Congdon-logCAR Leroux

Model fit

WAIC 1371.2 1342.3 1335.6 1337.5 1339.2 1373.9
pW 88.6 82.3 80.0 81.0 81.1 89.2

MSE 244.8 243.7 244.1 244.3 243.5 245.7

Parameters’ posterior summaries

Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI)

β0 1.6 (0.4,2.8) 2.5 (1.3,3.5) 2.5 (1.7,3.4) 2.4 (1.4,3.2) 2.0 (1.0,3.0) 1.2 (-0.1,2.4)
β -2.8 (-4.8,-0.8) -4.2 (-5.8,-2.3) -4.3 (-5.6,-2.9) -4.0 (-5.4,-2.6) -3.7 (-5.1,-1.9) -1.9 (-4.1,-0.1)
λ 0.7 (0.4,0.9) 0.6 (0.2,0.9) 0.7 (0.3,0.9) 0.8 (0.5,0.9) 0.6 (0.2,0.9) 0.6 (0.2,0.9)
σ 0.8 (0.7,0.9) 0.4 (0.3,0.5) 0.4 (0.3,0.5) 0.6 (0.4,0.8) 0.6 (0.4,0.8) 1.2 (0.9,1.5)
ν - 1.4 (0.7,2.3) 2.2 (1.4,3.3) 1.9 (1.3,2.8) 1.7 (0.9,2.9) -

Table 3.2: Results from the analysis of Zika reported cases in Rio de Janeiro in 2015-2016.
Model assessment (WAIC) and parameter posterior summaries: posterior mean and 95%
credible interval (CI) for BYM2, BYM2-logCAR, BYM2-Gamma, Congdon and Leroux.

We now focus on the outliers detected by the proposed models and Congdon’s, as shown

in Figure 3.4. District i is again found to be a potential outlier, after accounting for the

socio-development index, if κu,i, the upper bound of the posterior 95% credible interval

of κi, is below 1. In Figure 3.4, the blue and red coloured districts help distinguish the

detected outliers on the lower tail of the SMR distribution from the ones on the upper tail.

After accounting for the socio-development index, some districts are pointed out by the four

models, such as Gericinó, Parque Colúmbia, Vasco da Gama and Maré, on the lower tail

of the SMR distribution, Barra de Guaratiba and Bonsucesso, on the upper tail. However,
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Congdon’s model and both versions of the proposed approach do not point out Paquetá in

the upper tail, whereas the Congdon-logCAR model detects it. This may be explained by

the offset size of Paquetá, which is among the smallest in the entire region of Rio. Note,

however, that the BYM2-Gamma model is close to identifying Paquetá as an outlier as it

results in κu = 1.04 for this district. Neither of the four models identify Pedra de Guaratiba,

which has a high SMR, as shown in Figure 3.1. Interestingly, the district of São Cristóvão

is detected as an outlier by all models except the BYM2-Gamma model, with κu = 1.2.

The Congdon models detect few more potential outliers than both versions of the proposed

model. Our simulations have shown that the Congdon models tend to detect non-outliers

more often than the BYM2-Gamma model. We believe that this explains the differences in

the outliers identified after accounting for the socio-development index.

Congdon Congdon−logCAR

BYM2−Gamma BYM2−logCAR

Outlier No Yes
(SMR<1)

Yes
(SMR>1)

Figure 3.4: Maps of the outliers indicated by each model when analysing the Zika counts.
The outliers are pointed out when κu < 1, where κu is the upper bound of the posterior 95%
credible interval of κ. The outliers on the lower tail are distinguished from the ones on the
upper tail of the SMR distribution.
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3.4 Discussion

In this paper, we propose a disease mapping model that is able to identify areas with poten-

tially outlying disease risks, after accounting for the effects of covariates. Outliers refer to

areas with extreme risks - on the tail of the risk distribution - as well as spatial outliers, after

accounting for covariates. Spatial outliers correspond to areas whose risk differs from their

neighbours, after accounting for covariates. The proposed model is a scale mixture of the

BYM2 model (Riebler et al., 2016). Two different prior specifications are proposed for the

scale mixture components in order to compare independent components and spatially struc-

tured components. Our model allows for a straightforward interpretation of the parameters,

that is common to every data application, while accommodating outliers. The parameters’

interpretation is eased by the scaling process of the latent spatially structured components

(Sørbye and Rue, 2014).

A simulation study presents the performance of the two versions of the proposed model

compared to the one by Congdon (2017), as well as a version of Congdon’s model that uses our

proposed spatially structured mixture components. The neighbourhood structure of France is

used and the latent effects of some neighbouring departments are contaminated to control the

presence of outliers. The BYM2-Gamma version of the proposed model always performs best

in terms of WAIC and in terms of MSE. Regarding the detection of outliers, the two versions

of the proposed model always identify the contaminated departments, compared to the two

parametrisations of Congdon’s model that miss up to 33% of the outliers. Additionally, the

BYM2-Gamma version of the proposed model does not detect non-contaminated districts.

Finally, in all of our simulation studies, the proposed model always performs at least as well

as Congdon’s, and often better, both in terms of WAIC, MSE and of outlier identification

(see, e.g., Appendices A.6, A.7).

The cases of Zika that were recorded in Rio de Janeiro during the first 2015-2016 epidemic

are analysed using the two parametrisations of the proposed model as well as the model by
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Congdon (2017) and its version with spatially structured mixture components, the BYM2

(Riebler et al., 2016) and the Leroux prior (Leroux et al., 1999). All six models find that

there is a fairly strong negative association between the socio-development index and the

number of cases, meaning that richer districts have lower disease risks. This finding is

consistent with previous studies conducted in Rio de Janeiro, one investigating the first

chikungunya epidemic in the city (Freitas et al., 2021) and another also investigating Zika,

but using a different methodological approach (Raymundo and de Andrade Medronho, 2021).

These studies, including ours, indicate that improving sanitary conditions and reducing socio-

economic disparities are of paramount importance to fight Aedes-borne diseases.

Figure 3.5: Map highlighting some districts identified as outliers by at least one model when
analysing the Zika counts. Orange: São Cristóvão; Red: districts with small offsets; Blue:
districts whose population sizes increased significantly after the 2010 census; Purple: districts
combining both characteristics; Green: districts with zero cases recorded.

After accounting for the effect of the socio-development index, some neighbourhoods are

detected as potential outliers by the proposed models and Congdon’s, both in the lower and

upper tails of the number of cases’ distribution across the districts. Out of the 23 neighbour-

hoods identified as outliers, irrespective of the model, the proposed models BYM2-logCAR

and BYM2-Gamma identified 11 (47.8%) and 14 (60.9%), respectively. The four models

do not always point out the same districts as potential outliers. One possible explanation

for that is the small offset sizes of some districts. The simulation study with neighbouring
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outliers showed that, when the offset is small, the models that impose a spatially structured

prior on the scaling mixture components tend to accurately identify outlying areas more of-

ten than the models with a priori independent mixture components. Regarding the analysis

of Zika cases, Figure 3.5 shows in red and purple the districts identified as outliers by at least

one of the four models and whose offsets are among the smaller 5%. For example, based on

the results from the second simulation study, it is possible that, when analysing the Zika

counts, Camorim (purple) and the island Paquetá (red) are missed by the BYM2-Gamma

and Congdon models while they are pointed out by the Congdon-logCAR model (Figure 3.4)

because of their smaller offset sizes (Figure 3.5).

Figure 3.5 highlights in green the districts with zero Zika cases recorded between 2015-

2016: Parque Colúmbia, Gericinó and Vasco da Gama. These 3 districts are pointed out

as outliers by the four models, as shown in Figure 3.4. One potential explanation for these

zero recorded cases is that when the disease appeared for the first time in 2015, it was not

immediately identified as Zika. Further, there is evidence that epidemics in Rio de Janeiro

tend to spread starting from the north-east of the city (Freitas et al., 2019). It is then

possible that when the authorities began registering the Zika cases, there were no cases to

record in the two northern districts highlighted in blue, Parque Colúmbia and Gericinó.

Another potential reason is that it is not uncommon in Rio de Janeiro for a person to report

as their neighbourhood of residence a neighbourhood that actually shares a border with the

one where they actually live. For instance, Parque Colúmbia and Gericinó are relatively

new districts and the population might not yet be used to naming them as their districts

of residence. Similarly, a person living in Vasco da Gama (southern green district) may

report São Cristóvão (orange) as their district. This would artificially cause Vasco da Gama

to record zero cases and be detected as a potential outlier. Further, if a given district is

accounting for a proportion of the cases that are in fact from the neighbouring areas (e.g.,

São Cristóvão), this would artificially increase the risk of this district. In fact, Figure 3.4

shows that São Cristóvão is pointed out as a potential outlier by all models but the BYM2-
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Gamma. Therefore, the inaccurate information on the district of residency may artificially

create outliers.

Finally, artificial outliers may be caused by inaccurate information on the areal population

sizes used to compute the offsets. While the disease counts were recorded during 2015-2016,

the population sizes were extracted from the previous census, dating from 2010. Between

2010 and 2015-2016, the population sizes may have increased in some districts, without being

reflected in the offsets in this analysis, causing the artificial detection of increased disease

risks. Figure 3.5 highlights in blue and purple the districts identified as potential outliers and

whose sizes have largely increased since 2010, according to more recent aerophotogrammetry

flights by the Health Secretariat of the city. The eastern blue districts are pointed out as

outliers by all four models in Figure 3.4. Further investigating these districts would help

determine whether they do present outlying disease risks or if they are artificial outliers.

An interesting side effect of the proposed model seems to be that by identifying outliers

and further investigating the results, the authorities might better understand the population

dynamics in the region of interest, in between censuses, and identifying potential issues in

the accurate recording of cases.

Therefore, we suggest exploring both prior specifications for the scaling mixture components,

using the proposed model and Congdon’s, and further investigation on the detected districts

should be conducted by decision makers and experts to fully comprehend the detected out-

lying behaviours. Also, it is important to emphasize that some socio-environmental factors

that influence the burden and distribution of Aedes-borne diseases may be heterogeneous

within the districts, our spatial unit of analysis. For example, the same district may have

areas with favelas (slums) and areas with middle and upper class condominiums. The socio-

development index will not capture this intra-district social inequality, and a recent study

showed evidence about the presence of socio-economic inequalities in the distribution of

dengue, Zika and chikungunya in two Latin American cities (Carabali et al., 2020). Another
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possibility is the presence of large potential breeding sites, such as dumps and vacant lots. It

is also worth mentioning that spatial confounding, which is beyond the scope of this work, is

a potential issue that may affect the estimated latent effects (Dupont et al., 2022; Urdangarin

et al., 2023) and identified potential outliers. Hence, interpretation of the results should be

done with care.

To conclude, we believe our proposed model to be useful to decision makers. First, the

parameters’ interpretation eases the use of our model regardless of the data spatial structure.

This may help decision makers to create a systematic procedure to analyse data with our

proposed model, in which non-informative priors for the parameters could be defined for

any spatial structure. Then, the introduction of scaling mixture components improves the

recovering of the observed and potentially outlying disease risks, as assessed by the model

performance criteria (WAIC and MSE). Finally, these mixture components together with

high estimated risk ratios help identify all the potential outlying areas in which interventions

may need to be prioritised.
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• A.1: Stan code for the proposed model
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• A.4: Simulation study: generating data from the proposed BYM2-logCAR model
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Chapter 4

A spatio-temporal model to detect

potential outliers in disease mapping

Preamble to Manuscript 2. In disease mapping, in a purely spatial setting, Congdon

(2017) proposed a modification of the Leroux prior (Leroux et al., 1999) to include scaling

parameters that identify potentially outlying areas, after accounting for fixed effects. Further,

Rushworth et al. (2014) proposed an extension of the purely spatial Leroux prior to the

temporal framework. That is, at each time point, the vector of spatially structured latent

effects are assumed to be centred around the random effects at the previous time point.

The Rushworth model, however, assumes the conditional variance of the latent effects to be

constant across space and over time, which does not allow the capture of observations that

might fall on the tail of the distribution of the latent effects.

This manuscript proposes a spatio-temporal disease mapping model that allows for spatial

heteroscedasticity. The proposed model extends that of Congdon (2017) to the spatio-

temporal setting, similarly to how Rushworth et al. (2014) extended the Leroux prior. That

is, areal scaling mixture parameters are included in the Rushworth model to allow and

identify potential outliers. Finally, two prior distributions are investigated for the scaling
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parameters, namely, independent and spatially structured components.

The contributions of this manuscript include (i) a novel spatio-temporal disease mapping

model that aims to identify areas whose risks are potentially outlying at some time points,

after accounting for fixed effects, (ii) extensive simulation studies to investigate the ability

of the proposed model to identify outliers, (iii) two data applications to showcase how the

two prior specifications of the proposed model may help in the analysis of weekly COVID-19

cases and hospitalisations across Montreal and France, during the second wave.

This manuscript is under revision for the journal Spatial Statistics.
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Abstract

Spatio-temporal disease mapping models are commonly used to estimate the relative risk

of a disease over time and across areas. For each area and time point, the disease count is

modelled with a Poisson distribution whose mean is the product of an offset and the disease

relative risk. This relative risk is commonly decomposed in the log scale as the sum of

fixed and latent effects. The Rushworth model allows for spatio-temporal autocorrelation

of the random effects. We build on the Rushworth model to accommodate and identify

potentially outlying areas with respect to their disease relative risk evolution, after taking

into account the fixed effects. An area may display outlying behaviour at some points in

time but not all. At each time point, we assume the latent effects to be spatially structured

and include scaling parameters in the precision matrix, to allow for heavy tails. Two prior

specifications are considered for the scaling parameters: one where they are independent

across space and one with spatial autocorrelation. We investigate the performance of the

different prior specifications of the proposed model through simulation studies and analyse

the weekly evolution of the number of COVID-19 cases across the 33 boroughs of Montreal

and the 96 French departments during the second wave. In Montreal, 6 boroughs are found

to be potentially outlying. In France, the model with spatially structured scaling parameters

identified 21 departments as potential outliers. We find that these departments tend to be

close to each other and within common French regions.
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4.1 Introduction

Since 1995, disease mapping models have been proposed to estimate the spatio-temporal

trend of relative risks (Bernardinelli et al., 1995; Lawson, 2018). In the literature on spatio-

temporal disease mapping, models commonly assume that the disease cases follow a Poisson

distribution whose mean is the product between an offset and the relative risk, which varies

through time and across space. The relative risk is usually written as the sum of fixed and

latent effects. Commonly, the random effects are spatially structured and evolve through

time (see, e.g., Lee et al. (2018) for an overview). Further, in their discussion, Rushworth

et al. (2014) note that two neighbouring areas may behave differently over time, which

is usually not accounted for in spatio-temporal disease mapping models. We propose a

spatio-temporal model that identifies potential outliers with respect to the disease risk. In

particular, the proposed model aims to identify any area whose behaviour over time differs

from their neighbours or the rest of the region of interest. This provides decision makers

with tools to help prioritise interventions and implement localised policies.

Knorr-Held (2000) proposed a spatio-temporal disease mapping model wherein the log rela-

tive risks are decomposed as the sum of fixed, temporal, spatial and space-time interaction

effects. Four different interaction patterns are considered, the more complex case assuming

interaction terms that are both spatially and temporally structured. The covariance matrix

for this interaction term is constructed following Clayton (1996). It is given by the Kronecker

product between a temporal random walk structure and a spatial intrinsic conditional au-

toregressive (ICAR) structure (Besag, 1974). Ugarte et al. (2012) built on Knorr-Held (2000)

to model the spatial effects following a Leroux prior (Leroux et al., 1999), while keeping the

covariance matrix for the space-time interaction term as the combination of a random walk

and ICAR interaction structure. Rushworth et al. (2014) proposed to reduce the parameter

space by including only the space-time interaction effects and further introduced the Leroux

structure in the spatio-temporal structure. More specifically, let b·t = [b1t, . . . , bnt]
⊤ be the
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vector of areal latent effects at time t, they assume

b·1 ∼ N
(︁
0, σ2Q−1

L

)︁
, and b·t | b·t−1 ∼ N

(︁
αb·t−1, σ

2Q−1
L

)︁
, t = 2, . . . , T, (4.1)

with conditional variance parameter σ2, temporal smoothing parameter α ∈ [0, 1] and spatial

smoothing parameter λ ∈ [0, 1). The precision matrix QL = (1 − λ)I + λ(D − W ) is the

one proposed by Leroux et al. (1999), with W = [wij] a n × n matrix of spatial weights

and D = diag(di), for di =
∑︁

j ̸=iwij. The spatial weights are commonly defined as wij = 1

if areas i and j share a border, and wij = 0 otherwise. Hence, Rushworth et al. (2014)

assume a non-separable spatio-temporal structure, where the temporal trend appears in the

conditional means and the spatial structure, in the precision.

On the other hand, the models mentioned above assume spatial homogeneity through time.

In the purely spatial setting, this issue of spatial heterogeneity may be addressed by al-

lowing the spatial structure W to be estimated from the data (see, e.g., Lee and Mitchell

(2013); Dean et al. (2019); Corpas-Burgos and Martinez-Beneito (2020)). Another approach

is to allow the spatial dependence parameter λ to vary across space, which accommodates

local differences in the spatial structure (MacNab, 2023). Other authors proposed two-step

procedures to elicit clusters of areas that behave similarly and include that information

in the spatial model (Anderson et al., 2014; Santafé et al., 2021). Congdon (2017) al-

lowed for disparities by modifying the Leroux prior to include scaling mixture components

κi > 0, i = 1, . . . , n, such that b = [b1, . . . , bn]
⊤ ∼ N (0, σ2Q−

C), where the precision matrix

has diagonal elements QC,ii = κi(1− λ+ λdi) and off-diagonal elements QC,ij = −λwijκiκj.

This joint distribution proposed by Congdon (2017) corresponds to the following conditional

distributions:

bi | b(−i) ∼ N

(︄
λ

1− λ+ λdi

n∑︂
j=1

wijκjbj,
σ2

κi (1− λ+ λdi)

)︄
, i = 1, . . . , n. (4.2)
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In this proposal, the scaling mixture parameters help identify potential outliers, wherein

κi < 1 implies that the ith area is a potential outlier. Let area i be an outlier and a

neighbour of area j. Then κi < 1 inflates the conditional variance for bi while allowing bj

to allocate less weight to the outlying bi in its conditional mean, and borrow more strength

from its non-outlying neighbours.

In the spatio-temporal setting, proposals have been made to extend some methods discussed

in the previous paragraph. For instance, Lee and Lawson (2016) proposed to include a

piecewise constant intercept term to identify clusters of areas that behave similarly over

space and time. Rushworth et al. (2017) proposed a spatio-temporal model where the spatial

structure is estimated based on the data. Different from these methods, the main aim of this

paper is to propose a spatio-temporal model that accommodates and specifically identifies

potential outlying areas, after accounting for fixed effects. Specifically, we propose to extend

Congdon’s prior in equation (4.2) to the spatio-temporal setting, similarly to how Rushworth

et al. (2014) (4.1) extended the Leroux prior (Leroux et al., 1999). Throughout this paper,

the term outlier designates both areas that may behave differently from their neighbours

(spatial outliers), and areas that present extreme risks.

4.1.1 Illustration

To investigate the benefits of the proposed model, we consider two examples related to

the coronavirus disease 2019 (COVID-19) pandemic. Due to the spatial dimension of the

disease, disease mapping and spatio-temporal methods have been widely used to analyse

COVID-19 counts (see, e.g., Franch-Pardo et al. (2020) for a review) in order to help decision

makers understand the disease and implement policies. Further, COVID-19 counts tend to

show different behaviours over time and across areas (see, e.g., Figures 4.1 and 4.2 for the

behaviour of COVID-19 standardised morbidity ratios (SMRs) during the second wave in

Montreal and in France).
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First, we have data available across the 33 boroughs of Montreal, where the number of

COVID-19 cases have been recorded weekly during the second wave, between August 23rd

2020 and March 20th 2021 (see, e.g., Institut national de santé publique du Québec (2024) for

a COVID-19 timeline in the province of Quebec). The data come from the Institut national

de la santé publique du Québec (INSPQ). Figure 4.1 showcases the SMR distribution for the

COVID-19 cases across space at three different time points. Even with limiting policies in

place (Institut national de santé publique du Québec, 2024), some boroughs appear to have

elevated SMRs at some time points but not all, while other boroughs seem to never show

extreme values. Similar to Michal et al. (2022), three auxiliary variables are considered to

analyse these weekly COVID-19 cases, namely the number of beds in long-term care centres

(Centres d’hébergement et de soins de longue durée, CHSLDs), the median age by borough

and the population aged 25-64 with a university degree (Ville de Montréal, 2016), as a proxy

for the socio-economic status.
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Figure 4.1: Maps of the SMR distribution across the boroughs of Montreal at three different time points
(top) and distribution of the total number of COVID-19 cases over time (bottom).
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As another example of the need to investigate outlying observations in spatio-temporal dis-

ease counts, we study the COVID-19 second wave in France. We have available the weekly

counts of hospitalisation due to COVID-19 during the second wave, across the 96 French de-

partments. In France, the second wave lasted 26 weeks between early July 2020, and the end

of the year 2020 (Costemalle et al., 2021). The data are publicly available from the French

national health agency (Santé publique France, 2023). Figure 4.2 shows the evolution of the

COVID-19 SMRs across the French departments. It appears that some departments might

behave differently than the others, in particular at the beginning of the second wave.
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Figure 4.2: Maps of the SMR distribution across the French departments at three different time points
(top) and distribution of the total number of COVID-19 hospitalisations over time (bottom).

This paper is organised as follows. Section 4.2 proposes the spatio-temporal model that

accounts for and identifies outlying areas over time. Therein, the inference procedure, which

is performed following the Bayesian paradigm, is also discussed. Section 4.3 shows the per-

formance of the proposed model under different simulation scenarios (Section 4.3.1). Then,

the proposed model is fitted to the COVID-19 data in Montreal (Section 4.3.2) and in France
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(Section 4.3.3). Section 4.4 provides concluding remarks and points to potential future av-

enues of research.

4.2 Proposed model

Consider a region divided into n non-overlapping areas studied over T time points. Let Yit

be the number of cases of a disease recorded in area i at time t. Let Ei be the expected

number at risk in area i, which we assume to be constant over time. The number of cases is

modelled as follows:

Yit | Ei, µit ∼ Pois (Eiµit) ,

where µit is the relative disease risk for the ith area at time t, which is decomposed as

log (µit) = β0 + x⊤
i β + bit,

where the intercept β0 corresponds to the overall log risk across time and space, the p

regression coefficients β multiply the vector of areal-level covariates xi, and bit is a latent

effect for the ith area at time t, which captures whatever is left after accounting for the

covariates. A square n × n matrix of weights W = [wij] is defined to account for a spatial

structure in the latent effects. Two areas i and j are said to be neighbours with a weight wij =

1 if they share a border and wij = 0, otherwise. From this 0-1 neighbourhood structure, the

diagonal matrix D = diag(di), where di =
∑︁

j wij, corresponds to the matrix whose diagonal

elements are the areal numbers of neighbours. We propose a modification of the Rushworth

prior (4.1) to model the vector of latent effects b = [b11, . . . , bn1, . . . , b1T , . . . , bnT ]
⊤. Let

b·t = [b1t, . . . , bnt]
⊤, we assume

b·1 ∼ N
(︁
0, σ2Q−

C

)︁
, and b·t | b·t−1 ∼ N

(︁
αb·t−1, σ

2Q−
C

)︁
, t = 2, . . . , T, (4.3)
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with temporal dependence parameter |α| < 1, variance parameter σ > 0, and QC as proposed

by Congdon (2017). The matrix QC has diagonal elements QCii
= κi(1− λ + λdi) and off-

diagonal elements QCij
= −wijλκiκj, where λ ∈ [0, 1] and κi > 0, i = 1, . . . n. The matrix

QC may be written as

QC = diag1(κ)⊙
[︁
(1− λ)I + λ

(︁
D −W ⊙ κκ⊤)︁]︁ , (4.4)

where diag1(κ) denotes the square matrix with diagonal elements κ = [κ1, . . . , κn]
⊤ and off-

diagonal elements equal to 1. From expression (4.4), it is clear that the mixing parameter λ is

a spatial dependence parameter and λ = 0 yields temporal latent effects that are independent

across space, while λ = 1 implies fully structured spatio-temporal effects. Similarly, α

appears as a temporal dependence parameter in the prior distribution (4.3), where α = 0

leads to vectors of latent effects b·t that are spatially structured and independent over time,

and α = 1 implies fully structured spatio-temporal effects.

Our main contribution lies in the inclusion of the scaling parameters κ. In expression

(4.4), they appear in the diagonal elements of the precision matrix, and κi < 1 inflates the

conditional variances of the latent effects for the ith area. Additionally, the κ’s impact the

spatial weights as follows: W ⊙ κκ⊤ = [wijκiκj]. Hence, at any time t, κi < 1 implies an

inflated conditional variance for the ith latent effect, and a decreased correlation between

areas j and i when they are neighbours. Following Congdon (2017), these parameters act as

outlier indicators and an area i is defined as a potential outlier if κi < 1. An area may be

outlying at all time points, or at some points in time.

Further, the role of the scaling parameters can be studied from the conditional distribu-

tions of the latent effects that result from (4.3). For t ≥ 2, the joint distribution of the

latent effects, (4.3), corresponds to the set of n Gaussian conditional distributions with ex-

pectation E
(︁
bit | b·t−1, b(−i)t

)︁
= αbit−1 + λ/(1 − λ + λdi)

∑︁
j∼i κj(bjt − αbjt−1) and variance

V
(︁
bit | b·t−1, b(−i)t

)︁
= σ2/ (κi(1− λ+ λdi)) , where b(−i)t = [b1t, . . . , bi−1t, bi+1t, . . . , bnt]

⊤ and
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j ∼ i means that areas i and j are neighbours. Hence, for outlying area j a neighbour of

area i, κj is smaller than 1 and the difference bjt − αbjt−1 contributes less to the conditional

mean of bit than another neighbour ℓ whose κℓ is greater or equal to 1.

Two priors are proposed for the scaling mixture components. First, following Congdon

(2017), independent gamma priors are assigned to the scaling mixture components, κi
i.i.d.∼

Gamma(ν/2, ν/2). This implies that E(κi | ν) = 1 and V(κi | ν) = 2/ν, a priori ; that is, the

prior assumption is that area i is not an outlier, with small variance for large hyperparameter

ν. Following Gelman et al. (2004) and Michal et al. (2024), we assume ν ∼ Exp(1/4). Second,

we investigate a discretisation of the continuous spatially structured scaling process proposed

by Palacios and Steel (2006). For this discrete parametrisation of Palacios and Steel (2006),

we follow Michal et al. (2024), who assign a proper conditional autoregressive (PCAR)

prior to the scaling components. They assume ln(κi) ≡ −ν/2 + zi, with scaled spatially

structured z ≡ [z1, . . . , zn]
⊤ ∼ N

(︁
0, νQ−1

ρ,⋆

)︁
and ν ∼ Exp(1/0.3). The precision matrix

Qρ = D − ρW , which is positive definite for ρ ∈ [0, 1) (Banerjee et al., 2014), is scaled

by hρ = exp
[︁
(1/n)

∑︁n
i=1 ln

(︁
Q−1

ρ,ii

)︁]︁
such that Qρ,⋆ = hρQρ. This scaling of the spatially

structured precision matrix yields approximate marginal variances V(ln(κi) | ν) ≃ ν, for any

spatial structure under study (Riebler et al., 2016). Similar to the case of independent gamma

priors on the scaling components, this spatially structured prior implies that E(κi | ν) = 1,

which means that the ith area is not an outlier a priori. For further discussion regarding

these two priors for the κ parameters, see Michal et al. (2024).

4.2.1 Inference procedure

The proposal (4.3) and the Rushworth model (4.1) do not yield posterior distributions with a

closed form. Therefore, to approximate the posterior distribution of the resultant parameter

vector we resort to Markov Chain Monte Carlo (MCMC) methods. Specifically, we use

the R package rstan (Stan Development Team, 2020), which efficiently estimates posterior

distributions from complex hierarchical models where spatial and temporal structures are
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studied, using a sampler based on a Hamiltonian Monte Carlo algorithm (Morris et al.,

2019).

To avoid a potential identifiability issue between the intercept and the latent effects in

the proposed model (Rue and Held, 2005), we impose a sum-to-zero constraint on b·1,

the latent effects for the first time point. In the MCMC procedure, a soft sum-to-zero

constraint corresponds to assuming
∑︁n

i=1 bi1 ∼ N (0, 0.001n) (Morris et al., 2019). The

rstan code implemented to fit the proposed model in the simulation studies and data ap-

plications summarised in Section 4.3 is displayed in Appendix B.1. For more details on

the data and code, see https://github.com/vicmic13/SpatioTemporal_DiseaseMapping

_OutlyingAreas.

4.3 Data analyses

In Section 4.3.1, we present the results from a simulation study where the goal is to assess

the performance of the proposed model (4.3) compared to the Rushworth model (4.1). Data

are first generated from the Rushworth model and some areas are contaminated into outliers

that we aim to identify. Note that in Appendix B.2, we present results from a simulation

study where data are generated from the proposed model to check whether we can recover

the parameters used to generate the data. The results suggest that we can estimate the

parameters of the model and there does not seem to be any identifiability issue in the model.

Finally, Sections 4.3.2 and 4.3.3 provide the analyses of the COVID-19 data across the 33

boroughs of Montreal and the 96 French departments.

4.3.1 Simulation study

The simulation study presented in this section is inspired by the analyses shown in Ap-

pendix C of Fonseca et al. (2023) and by the simulation studies summarised in Michal et al.

(2024). We aim to investigate the performance of the proposed model when compared to the
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Rushworth model, and assess its ability to identify outliers when the truth is known. The

region of interest is Montreal, which is divided into n = 33 boroughs, and the time period is

arbitrarily set to T = 52 time points, in order to mimic weekly data recorded over a year. A

known set of boroughs is contaminated at some of the time points, but not all, into outlying

areas. The goal is to identify these areas that sometimes present outlying risks.

Two simulation scenarios are considered to experiment with the prior specification of the

scaling mixture components. In both scenarios, the overall log risk is β0 = −1 and the latent

effects bit, i = 1, . . . , n, t = 1, . . . , T are generated according to the Rushworth model (4.1)

with λ = 0.7, α = 0.85, and σ = 0.3. Both simulation examples use offsets E1, . . . , En

taken from the analysis of COVID-19 cases shown in Section 4.3.2. The offsets are sorted

into five categories based on their magnitude. The levels are termed "Small" (E < 26),

"Medium low" (E ∈ [26, 45)), "Medium" (E ∈ [45, 108)), "Medium high" (E ∈ [108, 147)),

and "High" (E ≥ 147). In each simulation scenario, five boroughs (one per offset category)

are then selected to be contaminated into outlying areas at given times. In one case, the

selected boroughs are distant from each other and do not share a border, and in the second

scenario, the five boroughs are neighbours. The maps on the left-hand side of Figure 4.3

highlight the selected outliers based on their offset size, for each simulation scenario. For j

denoting one of the five selected areas in each scenario, we contaminate its latent effect as

follows: bcontaminated
jt = bjt + rjt × cjt, with cjt ∼ U

(︁
max(|b(1)t|, |b(n)t|), 1.5max(|b(1)t|, |b(n)t|)

)︁
,

where b(1)t and b(n)t denote the minimum and maximum generated latent effects at time t,

respectively. The quantity rjt ∈ {0, 1} determines whether the jth area is outlying at time

t as follows: for t = 1, rjt ∼ Ber(0.4), and for t ≥ 2, rjt = rjt−1 with probability 0.8, or

rjt ∼ Ber(0.4) otherwise. Figure B.4 in Appendix B.3 shows the latent effects generated from

the Rushworth model before and after contamination. Finally, for each simulation scenario,

R = 100 datasets of n = 33 boroughs and T = 52 time points are created according to the

hierarchical Poisson model Yit ∼ Pois(Ei exp(β0 + bit)).
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Six models are fitted to the data generated for each simulation scenario. First, because

Rushworth et al. (2014) discuss the necessity to estimate the parameter α, the Rushworth

model (4.1) is fitted with α = 1 and with a prior α ∼ U(−1, 1), denoted R(1) and R(α), re-

spectively. Then, four versions of the proposed Heavy Rushworth model (4.3) are considered:

two impose α = 1 and the two others assume a uniform prior, α ∼ U(−1, 1). For each pair,

one version, denoted HR(·), imposes independent gamma priors to the scaling parameters,

κi ∼ Gamma(ν/2, ν/2), with hyperparameter as discussed in Section 4.2, ν ∼ Exp(1/4),

while the other, denoted HR-LPC(·), imposes the spatially structured prior for κ that is

defined in Section 4.2 with hyperparameter ν ∼ Exp(1/0.3). The prior assignment and

notation of the six models considered are summarised in Table 4.1.

Model α κ ν

R(1) 1 – –
R(α) U(−1, 1) – –
HR(1) 1 Gamma(ν/2, ν/2) Exp(1/4)
HR(α) U(−1, 1) Gamma(ν/2, ν/2) Exp(1/4)

HR-LPC(1) 1 log-PCAR Exp(1/0.3)
HR-LPC(α) U(−1, 1) log-PCAR Exp(1/0.3)

Table 4.1: Notation and description of the six models fitted to the simulated data.

For each model, the MCMC procedure with two chains converged after 5,000 iterations with

a burn-in period of 2,500 iterations and a thinning factor of 5, as assessed by the traceplots,

effective sample sizes and ˆ︁R statistic (Gelman and Rubin, 1992; Vehtari et al., 2021).

Figure 4.3 and Table 4.2 show how often the four versions of the proposed model identify

the correct set of contaminated boroughs, depending on the simulation scenario. Area i is

identified as an outlier when κu,i < 1, where κu,i denotes the upper limit of the posterior

95% credible interval for κi. In Table 4.2, the sensitivity measures the frequency of correct

outlier identification (%) and the specificity quantifies how often the models do not point

out areas that are not contaminated (%). For both measures, higher values are preferred.

When the contaminated boroughs are not neighbours, the proposals HR(α) and HR-LPC(α),

which estimate α, perform better than the ones with fixed α = 1. In particular, HR(1) and
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HR-LPC(1) correctly identify Sainte-Anne-de-Bellevue (purple borough in Figure 4.3) only

26% and 5% of the time, respectively, while HR-LPC(α) and HR(α) reach 69% and 88%

sensitivity values for this contaminated borough with a small offset. A similar result is

obtained in the second scenario, where both HR(α) and HR-LPC(α) identify Montréal-

Ouest (purple borough) at least 90% of the time, whereas the versions with fixed α = 1

do not find this borough in more than 50% of the replicates. When the offsets are larger,

in both simulation scenarios, the four versions of the proposed model accurately point out

the correct outliers 100% of the time. In terms of smoothing, in both simulation scenarios,

all models equally succeed in not identifying irrelevant areas (e.g., overall specificities above

99.6).

Offset category HR(1) HR(α) HR-LPC(1) HR-LPC(α)

Distant outliers

Sensitiviy

Small 26.0 88.0 5.0 69.0
Medium low 100.0 100.0 100.0 100.0

Medium 100.0 100.0 100.0 100.0
Medium high 100.0 100.0 100.0 100.0

High 100.0 100.0 100.0 100.0
Overall 85.2 97.6 81.0 93.8

Specificity

Small 99.8 99.8 99.8 99.8
Medium low 100.0 100.0 100.0 100.0

Medium 100.0 100.0 99.8 100.0
Medium high 99.2 100.0 100.0 100.0

High 99.8 100.0 100.0 100.0
Overall 99.8 99.9 99.9 99.9

Neighbouring outliers

Sensitiviy

Small 50.0 90.0 40.0 91.0
Medium low 100.0 100.0 99.0 100.0

Medium 100.0 100.0 100.0 100.0
Medium high 100.0 100.0 100.0 100.0

High 100.0 100.0 100.0 100.0
Overall 90.0 98.0 87.8 98.2

Specificity

Small 100.0 99.8 100.0 99.8
Medium low 99.8 99.8 100.0 100.0

Medium 99.7 99.8 99.7 99.8
Medium high 99.0 99.6 100.0 100.0

High 99.2 100.0 100.0 100.0
Overall 99.6 99.8 99.9 99.9

Table 4.2: Sensitivity and specificity of the outlier detection for each version of the proposed model in both
simulation scenarios, depending on the offset size and overall.
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Figure 4.3: Left: maps of the selected boroughs of Montreal that were contaminated into outlying areas
based on their offset sizes, for each simulation scenario. Right: Percentage of times each borough is detected
as a potential outlier according to the four versions of the proposed model across the two simulation scenarios.
A borough is defined as a potential outlier when κu < 1, where κu is the upper limit of the 95% posterior
credible interval for κ.

Regarding the performances of the models, Table 4.3 summarises, for each simulation sce-

nario, the average WAIC (Watanabe and Opper, 2010) computed across the 100 replicates

for each model, as well as their average MSE within the contaminated and non-contaminated

boroughs, and overall. For more details on these performance measures, Figure B.5 in Ap-

pendix B.3 shows the WAIC values across the 100 replicates for each model, as well as their

average MSE across the different offset size categories. Smaller WAIC values are preferred

and in both simulation scenarios, Table 4.3 shows that HR(1), HR(α), HR-LPC(1) and HR-

LPC(α) perform better than R(1) and R(α) (e.g., when outliers are distant, R(α) yields

10,829 as the average WAIC, vs 10,757 for HR-LPC(α)). In terms of WAIC, HR(α) and

HR-LPC(α) always perform better than the Rushworth models, or than the proposed mod-

els with fixed α = 1. Further, in this case where the true temporal dependence parameter

is α = 0.85, when neighbouring boroughs are contaminated, the Rushworth model with

unknown α is correctly pointed out by WAIC as the best model when compared to both

versions of the proposed model where α = 1 is fixed. It can also be noted that, as expected,

when distant boroughs are contaminated, HR(α) performs slightly better than HR-LPC(α),
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while the converse is observed with neighbouring outliers. Finally, in both scenarios, when

α is estimated, both the Rushworth and Heavy Rushworth models (with independent and

spatially structured κ) perform better than their counterparts with fixed α = 1. This result

is sensible, as the data were generated with α = 0.85.

With respect to the MSE based on fitted and observed values, regardless of the simulation

scenario, the four versions of the proposed model tend to perform better than the Rushworth

model among the contaminated boroughs (e.g., for neighbouring contaminated boroughs,

the average MSEs are 8.0 and 40.0 for HR-LPC(α) and R(α), respectively). However, to

a lesser extent, the converse is observed within the non-contaminated areas (e.g., overall

MSEs of 14.4 and 7.7 for HR-LPC(α) and R(α), respectively, in the same scenario). Finally,

in terms of MSE, regardless of the scenario, the proposed HR(α) and HR-LPC(α) tend to

perform slightly better than HR(1) and HR-LPC(1) (e.g., for distant contaminated boroughs,

overall average MSEs of 14.3 vs 17.6 for HR(α) and HR(1), respectively), which agrees with

Rushworth et al. (2014).

R(1) R(α) HR(1) HR(α) HR-LPC(1) HR-LPC(α)

Distant outliers

WAIC 10,912.2 10,829.1 10,819.2 10,755.5 10,814.0 10,757.4
pW 647.5 631.3 568.7 569.4 573.0 572.2

MSE
Contaminated 44.4 33.9 7.4 6.6 8.9 7.1

Not contaminated 10.6 8.4 19.5 15.7 18.2 15.3
Overall 15.7 12.2 17.6 14.3 16.8 14.0

Neighbouring outliers

WAIC 10,861.0 10,797.2 10,818.8 10,758.2 10,811.7 10,756.9
pW 635.7 622.9 573.0 573.7 575.4 575.8

MSE
Contaminated 52.2 40.1 8.4 7.4 9.7 8.0

Not contaminated 9.4 7.7 18.0 14.6 17.3 14.4
Overall 15.9 12.6 16.5 13.5 16.2 13.4

Table 4.3: Average WAIC and MSE computed over the 100 replicates for each model and each simulation
scenario under the different fitted models. The MSE results are distinguished between the contaminated
boroughs, the non-contaminated ones, and overall.
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4.3.2 Analysis of COVID-19 cases in Montreal during the second

wave

The number of COVID-19 cases were recorded weekly across the n = 33 boroughs of Montreal

during the second wave, which consisted of T = 30 weeks between August 23rd 2020 and

March 20th 2021 (Institut national de santé publique du Québec, 2024). Let Yit be the

number of cases recorded in the ith borough during the tth week, for i = 1, . . . , n and

t = 1, . . . , T . Following Section 4.2, the number of COVID-19 cases is modelled via a

Poisson distribution whose offset Ei is computed using the total number of cases and the

population size of each borough, denoted P . In particular, for each borough i, Ei is assumed

constant over time and the offsets represent the overall expected number of cases were the

disease spread uniformly across space, during the second wave. Hence, we compute Ei =(︂∑︁
i,t Yit/

∑︁
i Pi

)︂
× Pi/T (Freitas et al., 2021) and yield expected cases that range from

1.3 to 233.9. Further, three auxiliary variables that are measured at the borough level are

standardised and included to model the COVID-19 cases: the median age, the percentage of

the population aged 25-64 with a university diploma, and the number of beds in CHSLDs.

Figure 4.1 in Section 4.1.1 shows the SMR distribution across the boroughs in Montreal at

three different points in time, alongside the evolution of the total number of cases. It can be

seen that some boroughs have elevated SMRs across some weeks, but not all. For example,

during the week of October 18th 2020, Mont-Royal and Dorval have higher SMRs than the

rest of Montreal, as well as higher SMRs than those observed in those two boroughs during

previous weeks or following ones. The aim of this analysis is to identify potential outlying

boroughs, after accounting for the covariates’ effect. Similar to Section 4.3.1, four versions

of the proposed model are fitted to these weekly counts. The models are again denoted

HR(1), HR(α), HR-LPC(1) and HR-LPC(α), as summarised in Table 4.1. The performance

of the proposed model is compared to that of the Rushworth model, both by fixing α = 1

and imposing a prior α ∼ U(−1, 1). All prior specifications follow the same ones used in the

simulation study (Section 4.3.1).

77



The six models are fitted in R using the rstan package (Stan Development Team, 2020).

Convergence of two MCMC chains is attained after 10,000 iterations with a burn-in period

of 5,000 and a thinning factor of 5. The diagnostics used to assess convergence are the trace

plots, the effective sample sizes, and the ˆ︁R statistic (Gelman and Rubin, 1992; Vehtari et al.,

2021).

Table 4.4 shows the performance measures for each model, and the estimated posterior

summaries for the parameters. In terms of WAIC, smaller values are preferred, and the

proposed model always performs better than the two versions of the Rushworth model (e.g.,

6779 vs 6870, for HR-LPC(α) and R(α), respectively). All models that allowed the temporal

dependence parameter α to be estimated yielded smaller WAICs than the ones that fixed

α = 1. In fact, R(α), HR(α), and HR-LPC(α) resulted in 95% posterior credible intervals

for this parameter that were smaller than 1 (approximately (0.8, 0.9)). Finally, regarding the

WAIC values, HR(α) performs the best among the four versions of the proposed model, which

seems to indicate that there is no need for spatially structured scaling mixture components

when analysing COVID-19 cases in Montreal during the second wave. The overall MSE

results agree with the WAIC ones: the models that estimate α perform better than the ones

with fixed α = 1 (19, 21 and 21, for R(α), HR(α) and HR-LPC(α), respectively, vs 23, 26

and 24 for their respective counterparts). The MSE results are further distinguished between

the boroughs identified as potential outliers by the proposed model, and the rest of Montreal.

In the potentially outlying areas, the four versions of the proposed model yield MSEs that

are about 3 times smaller than the Rushworth ones. However, in the boroughs that are not

found to be potential outliers by the proposed model, the MSEs that result from fitting the

Rushworth models are 1.7 times smaller than the ones obtained from the proposed Heavy

Rushworth models.

The three covariate effects are found to be weak by all models. The posterior 95% credible

intervals for the coefficient corresponding to the percent of the population aged 25-64 with

78



a university diploma all include 0 (e.g., (−1, 0.3) for HR(α)). While the credible interval for

the age regression parameter includes 0 in the R(1) model ((−0.3, 0.0)), they are negative and

are on the cusp of including 0 in the HR(1), HR(α) and R(α) models (e.g., (−0.22,−0.01)

for R(α)). The same result is obtained for the number of CHSLD beds’ parameter, where

the posterior credible intervals almost include 0 (e.g., (-0.18, -0.00) for HR(1) and (-0.12,

0.01) for HR(α)).

R(1) R(α) HR(1) HR(α) HR-LPC(1) HR-LPC(α)

Model fit performance measures

WAIC 6921.9 6870.3 6803.3 6764.6 6793.3 6778.6
pW 468.8 458.8 437.6 425.6 435.7 430.1

MSE
Outliers 46.3 39.2 11.7 11.4 14.2 14.5

Not outliers 17.9 15.1 29.4 23.0 25.8 22.5
Overall 23.1 19.5 26.2 20.9 23.7 21.1

Posterior summaries for the parameters: Mean (95% CI)

β0
-2.56 -1.49 -2.25 -1.37 -2.55 -2.45

(-3.13,-1.99) (-2.27,-0.78) (-2.81,-1.64) (-1.96,-0.86) (-2.96,-2.11) (-2.90,-2.04)

βdiploma
0.16 -0.46 0.04 -0.40 0.08 -0.08

(-0.68,1.01) (-1.09,0.24) (-0.86,0.90) (-1.05,0.30) (-0.79,0.89) (-0.88,0.75)

βage
-0.14 -0.11 -0.14 -0.11 -0.12 -0.12

(-0.29,0.00) (-0.22,-0.01) (-0.27,-0.00) (-0.21,-0.02) (-0.26,0.02) (-0.25,0.00)

βbeds
-0.11 -0.05 -0.09 -0.05 -0.09 -0.06

(-0.22,-0.00) (-0.13,0.02) (-0.18,-0.00) (-0.12,0.01) (-0.20,0.00) (-0.16,0.02)

α
- 0.87 – 0.87 – 0.92

(0.82,0.92) (0.81,0.93) (0.87,0.97)

λ
0.90 0.94 0.55 0.59 0.41 0.50

(0.85,0.94) (0.91,0.97) (0.32,0.88) (0.37,0.89) (0.18,0.76) (0.25,0.83)

σ
0.43 0.45 0.31 0.33 0.32 0.34

(0.40,0.47) (0.42,0.49) (0.27,0.36) (0.29,0.38) (0.28,0.36) (0.29,0.38)

ν
- - 3.58 4.14 2.20 1.88

(2.03,5.93) (2.22,6.91) (1.28,3.43) (1.02,3.06)

Table 4.4: Results from the analysis of COVID-19 reported cases in Montreal during the second wave
(23/08/2020 – 20/03/2021). Model assessment (WAIC and MSE) and parameter posterior summaries:
posterior mean and 95% credible interval (CI).

The spatial dependence parameter λ is estimated closer to 1 by the Rushworth models than

by the four versions of the proposed model (e.g., posterior means of 0.94 and 0.59, for
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R(α) and HR(α), respectively). This means that at each time point when modelling the

latent effects, the Rushworth model gives more weight to the spatial structure compared to

the proposed model. On the other hand, the four versions of the Heavy Rushworth model

estimate smaller conditional standard deviations of the random effects than the Rushworth

models (e.g., posterior means of 0.33 and 0.43, for HR(α) and R(α), respectively). This result

is sensible as the inclusion of the scaling mixture components κ in the proposed model allows

the variances to be raised in the boroughs that need it, without increasing the variability in

the entire city of Montreal.

Figure 4.4 displays maps of the posterior means, at different time points, of the relative

risks and the latent effects resulting from the proposed HR(α) model, which is the one that

performed best in terms of WAIC, among all the models considered. The circles indicate

which boroughs are identified as potential outliers. It is worth mentioning that the same

6 boroughs are indicated as potential outliers by the HR(1), HR-LPC(1), and HR-LPC(α)

models. Similar to Section 4.3.1, borough i is found to be a potential outlier if κu,i < 1,

where κu,i is the upper limit of the 95% posterior credible for κi. It is interesting to see

that boroughs may be found to be potential outliers without always presenting extreme risk

or latent effect. For example, Dorval (red circle) and Mont-Royal (black circle) appear to

have high estimated relative risks and latent effects during the week of October 18th, 2020,

compared to the other areas, without it being the case 3 weeks earlier or during the week

of January 3rd, 2021, which is the second wave peak as shown on the right-hand side of

Figure 4.4. Similarly, Outremont (gray) shows higher values during the week of September

27th, 2020, but not during the following weeks. This is the aim of the proposed model, to

identify areas that may have shown unexpected behaviours at some time points, to better

understand the spread of the disease and prioritise future interventions.

It is also interesting to note that some areas might sometimes have high estimated risks

without being identified as potential outliers, e.g. Saint-Leonard, the darkest borough during
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the week of January 3rd, 2021. The map of the posterior means of the latent effects for that

week shows that after accounting for the fixed effects, the remaining latent effect for Saint-

Leonard behaves like the rest of Montreal. On the other hand, le Plateau Mont-Royal (green

circle), which does not appear to have extreme estimated risks over time, has an estimated

latent effect that differs from its neighbours during the October 18th week. This behaviour

is found to be potentially outlying by the proposed model and further investigation might

help understand it.

2020−09−27

2020−10−18

2021−01−03

1

2

3

4

5

Relative
risk

2020−09−27

2020−10−18

2021−01−03

−2

−1

0

1

2

3

Latent
effect

0

2000

4000

6000

8000

20
20

−
09

−
01

20
20

−
10

−
01

20
20

−
11

−
01

20
20

−
12

−
01

20
21

−
01

−
01

20
21

−
02

−
01

20
21

−
03

−
01

N
um

be
r 

of
 c

as
es

0

2000

4000

6000

8000

20
20

−
09

−
01

20
20

−
10

−
01

20
20

−
11

−
01

20
20

−
12

−
01

20
21

−
01

−
01

20
21

−
02

−
01

20
21

−
03

−
01

N
um

be
r 

of
 c

as
es

0

2000

4000

6000

8000

20
20

−
09

−
01

20
20

−
10

−
01

20
20

−
11

−
01

20
20

−
12

−
01

20
21

−
01

−
01

20
21

−
02

−
01

20
21

−
03

−
01

N
um

be
r 

of
 c

as
es

Figure 4.4: Maps of the COVID-19 relative risks (left) and latent effects (centre) estimated by the Heavy
Rushworth model for three different time points across the boroughs of Montreal and total number of cases
recorded over time in Montreal (right). Solid coloured circles: boroughs identified as potential outliers by
the Heavy Rushworth model, the colours distinguish the boroughs to help discuss the results. The outliers
are pointed out when κu < 1, where κu is the upper bound of the posterior 95% credible interval of κ.
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4.3.3 Analysis of COVID-19 hospitalisations in France during the

second wave

In this section, the weekly hospitalisation counts due to COVID-19 are studied across the n =

96 French departments, during the second wave. In France, the second wave consisted of T =

26 weeks, from July 2020 to December 2020, included (Costemalle et al., 2021). Let Yit be

the hospitalisation count recorded in department i = 1, . . . , 96 at time t = 1, . . . , 26. Similar

to Section 4.3.2, the hospitalisation counts are modelled according to a Poisson distribution

whose offsets E are computed from the weekly counts and the departments’ population sizes.

Figure 4.2 in Section 4.1.1 maps the evolution of the SMRs (top) and of the total number

of hospitalisations (bottom). Some departments seem to have extreme values, compared to

their neighbours or the rest of France, at some time points. For example, during the peak

hospitalisation week (November 16th, 2020), Pyrénées-Atlantiques and Hautes-Pyrénées (two

south-west departments) seem to have recorded higher SMRs than their neighbours, while

Haute-Corse (northern Corsica) appears to be on the lower tail of the SMR distribution that

week. To further study these potentially outlying behaviours, the proposed model is fitted to

the data and compared to the Rushworth model. It is worth mentioning that since Corsica

is an island, its two departments do not share a border with any other departments. There

are however daily ferries travelling between these two departments and the three south-

east ones on the Mediterranean Sea (Bouches-du-Rhône, Var, and Alpes-Maritimes), hence

a spatial weight wij = 1 is assigned between all of them. Additionally, the proportion of

population aged 75 or older is included in the models as a covariate that is fixed through

time, xi. The same priors as the ones described in the previous sections are considered for

the model parameters and are again denoted HR(1), HR(α), HR-LPC(1), HR-LPC(α), R(1),

and R(α).

The MCMC procedure that included two chains converged for all six models after 10,000 it-

erations, a burn-in period of 5,000, and a thinning factor of 5, as assessed through trace plots,
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effective sample sizes and ˆ︁R statistics (Gelman and Rubin, 1992; Vehtari et al., 2021).

Table 4.5 summarises the performances of the models and parameter posterior distributions.

In terms of WAIC, the proposal yielded smaller values than the Rushworth model (e.g., 23,450

and 23,263 for R(α) and HR(α), respectively). The proposed HR-LPC(α) performs the best,

among the six models considered, which may indicate a need for spatially structured scaling

mixture components, κ’s. Note that the difference is small between the proposed models that

estimate α and the ones with fixed α = 1 (e.g., 23,263 and 23,261 for HR(1) and HR(α),

respectively). This result is sensible as both HR(α) and HR-LPC(α) estimate (0.96, 0.99)

as the posterior 95% credible interval for α, which is very close to α = 1. On the other

hand, R(α) yields a smaller WAIC value than R(1) (23,450 vs 23,468), which corresponds to

α estimated smaller than 1, with a posterior 95% credible interval of (0.93, 0.96).

In terms of MSE, similar to Sections 4.3.1 and 4.3.2, all versions of the proposed model result

in smaller values among the departments identified as potential outliers, compared to R(1)

and R(α) (e.g., 8.6 vs 27.3 for HR-LPC(α) and R(α), respectively). On the other hand, R(1)

and R(α) perform better in terms of MSE among the departments that are not identified as

potential outliers (e.g., 12.1 vs 31.3 for R(1) and HR(1), respectively).

Regarding the regression coefficient, all models agree on a significantly negative relationship

between the proportion of the population aged 75+ and the hospitalisation counts (e.g.,

posterior mean of -2.8 with 95% credible interval (-4.5, -0.9), for HR(α)), which seems

counter-intuitive. This may be due to the fact that the available hospitalisation data do

not include COVID-19 counts recorded in long-term medical care centres (Établissement

d’hébergement pour personnes âgées dépendantes, EHPAD), whereas EHPADs are populated

by the elderly and were the epicentre of COVID-19 cases during the second wave (Lehot-

Couette, 2020).

Similar to the results obtained for the COVID-19 cases in Montreal, the Rushworth models

estimate a higher spatial dependence parameter (e.g., posterior mean of 0.93 for R(α)) than
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the proposed models (e.g., posterior means of 0.52 and 0.35 for HR(α) and HR-LPC(α),

respectively), indicating that a higher weight is allocated to the spatial structure when the

model does not accommodate for potential outliers. Finally, the variance parameter is greater

in the Rushworth model than in the proposed model, with 95% posterior credible intervals

that do not overlap (e.g., (0.50, 0.54) vs (0.31, 0.36), for R(α) and HR(α), respectively).

R(1) R(α) HR(1) HR(α) HR-LPC(1) HR-LPC(α)

Model fit performance measures

WAIC 23,468.5 23,450.5 23,261.5 23,262.8 23,256.6 23,249.1
pW 1249.0 1246.7 1233.9 1236.4 1225.1 1222.8

MSE
Outliers 27.1 27.3 8.7 9.0 8.9 8.6

Not outliers 12.1 12.3 31.3 29.6 28.9 27.1
Overall 15.8 15.6 25.7 24.4 24.3 23.0

Posterior summaries for the parameters: Mean (95% CI)

β0
-1.47 -1.50 -1.52 -1.50 -1.50 -1.52

(-1.67,-1.18) (-1.65,-1.33) (-1.74,-1.38) (-1.70,-1.32) (-1.66,-1.33) (-1.70,-1.36)

β
-2.77 -2.48 -2.71 -2.84 -2.88 -2.63

(-5.37,-0.75) (-4.15,-1.03) (-4.07,-0.63) (-4.52,-0.96) (-4.47,-1.40) (-4.17,-1.07)

α
- 0.94 - 0.98 - 0.98

(0.93,0.96) (0.96,0.99) (0.96,0.99)

λ
0.91 0.93 0.51 0.52 0.34 0.35

(0.87,0.95) (0.90,0.96) (0.38,0.68) (0.39,0.68) (0.23,0.49) (0.24,0.49)

σ
0.52 0.52 0.33 0.33 0.32 0.32

(0.50,0.54) (0.50,0.54) (0.31,0.35) (0.31,0.36) (0.30,0.33) (0.30,0.34)

ν
- - 3.03 3.20 2.06 1.94

(2.22,4.03) (2.37,4.26) (1.52,2.79) (1.41,2.58)

Table 4.5: Results from the analysis of COVID-19 hospitalisations in France during the second wave
(06/07/2020 – 03/01/2021). Model assessment (WAIC and MSE) and parameter posterior summaries:
posterior mean and 95% credible interval (CI).

Figure 4.5 shows the distribution of the relative risk posterior means (left) and the latent

effect posterior means (middle) at three time points, alongside the evolution of the total

number of hospitalisations in France (right). The displayed posterior means correspond to

the ones estimated by the proposed HR-LPC(α) model, which performed the best in terms

of WAIC among the ones considered. Further, the detected potential outliers are indicated

via coloured circles, where the colours correspond to different French regions, to help discuss
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the results. A map of the French regions is available in Figure B.6 in Appendix B.4. The

proposed model identifies 21 departments as potential outliers, after accounting for the fixed

effects. In particular, groups of neighbouring outliers seem to be identified, corresponding to

different French regions. For instance, out of the 12 departments within the French region

Auvergne-Rhône-Alpes (red circles), four departments are found to be potential outliers.

Similarly, half of the departments in Centre-Val de Loire (yellow circles) are found to be

potential outliers. Conversely, some French regions seem to gather none of the potentially

outlying departments (e.g., Hauts-de-France, Bretagne).
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Figure 4.5: Maps of the COVID-19 relative risks (left) and latent effects (centre) estimated by the Heavy
Rushworth model with spatially structured outlier indicators for three different time points across the French
departments and total number of cases recorded over time in France (right). Solid coloured circles: depart-
ments identified as potential outliers by the HR-LPC(α) model, the colours correspond to the French regions
to help discuss the results. The outliers are pointed out when κu < 1, where κu is the upper bound of the
posterior 95% credible interval of κ.

Similarly to the results for the analysis of COVID-19 cases in Montreal, it is interesting to
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note that the departments identified as potential outliers do not appear to have outlying

estimated latent effects or relative risks at all time points. For instance, the Bouches-du-

Rhône department (purple circle) is identified as a potential outlier and has a high estimated

latent effect compared to its neighbours during the week of July 27th, 2020, but not later in

the year. Similarly, at the beginning of the wave, northern Corsica (green circle) differs from

its neighbours (e.g., Bouches-du-Rhône, due to the daily ferries) with a negative estimated

latent effect.

Finally, it can again be noted that relative risks estimated on the tails of the distribution do

not necessarily coincide with an outlier identification. For example, during the wave peak,

the estimated risk of hospitalisation for the Loire department is extreme and that area is

identified as a potential outlier (red circle). On the other hand, still during the wave peak,

Hautes-Alpes corresponds to the other extreme estimated risk, but is not identified as a

potential outlier.

4.4 Discussion

This paper proposes a spatio-temporal disease mapping model that allows for the identifi-

cation of potential outliers, after accounting for fixed effects. The proposed model extends

the Rushworth model (Rushworth et al., 2014) by including a scale mixture component in

the conditional variance of the spatio-temporal latent effects similarly to Congdon (2017).

Two prior specifications are investigated for the scaling mixture components, namely one

that assumes the mixing components to follow independent gamma distributions with mean

1, and another one that allows for a spatial structure for the mixing components. It is ex-

pected (Michal et al., 2024) that the independent prior specification would perform better

when the potentially outlying areas are far from each other, while situations where potential

outliers are neighbours should favour the proposed model with a spatially structured prior

specification. We suggest exploring both prior specifications and using WAIC to compare
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which model fits best.

The results from two simulation studies help assess the ability of the proposed model to

identify outlying areas in a spatio-temporal setting. The 33 boroughs of Montreal and their

spatial structure were used to generate weekly data following the Rushworth model over

a year (52 time points). Some areas were contaminated into being outliers. In one case,

distant areas were selected, while neighbouring ones were contaminated in a second case.

In both scenarios, the proposed model performed well in terms of outlier identification. In

particular, when the offsets were not small, the correct areas were pointed out 100% of the

time. This result agrees with the literature on disease mapping that suggests that models

perform better when the offsets are large (see, e.g., Richardson et al. (2004)). The two

simulation studies further showed that when outliers are neighbours, the proposed model

with spatially structured scaling parameters tended to perform better than the one that

assumed independent components.

This fact was further observed in the analyses conducted on COVID-19 cases and hospi-

talisations in Montreal and France, respectively. In the analysis of weekly COVID-19 cases

recorded across the 33 boroughs of Montreal during the second wave, the proposed model

with independent scaling parameters performed better in terms of WAIC than the one assum-

ing a spatial structure, and non-neighbouring boroughs were found to be potential outliers.

On the other hand, in the analysis of weekly COVID-19 hospitalisations observed during the

second wave across the French departments, the proposal with spatially structured scaling

parameters performed the best among the fitted ones, and groups of neighbouring depart-

ments were pointed out as potential outliers. Finally, 6 Montreal boroughs and 21 French

departments are identified as potential outliers during the second wave, after accounting

for the fixed effects. Further investigation of these areas might help understand why these

presented potentially outlying behaviours, when compared to the rest of the regions of in-

terest.
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It is worth mentioning that the proposed model allows for spatial heteroscedasticity, but

assumes the overall variability to be constant over time. Napier et al. (2016) extended the

Leroux prior (Leroux et al., 1999) into the spatio-temporal setting by allowing the variance

parameter to vary with time. It would therefore be interesting to allow for the scaling

mixture components of the proposed model to vary with space and time, similarly to the

spatio-temporal dynamic linear model of Fonseca et al. (2023).

We believe that the proposed model can be useful to decision makers during an epidemic.

Identifying areas that behave differently over time compared to the rest of the region may

help to understand the spread of a disease better. Additionally, the proposed model may help

policymakers implement localised policies or decide where to prioritise interventions.

Funding

Michal was partially supported from an award from the Fonds de Recherche Nature et Tech-

nologies [B2X - 314857], Quebec. Schmidt is grateful for financial support from the Natural

Sciences and Engineering Research Council (NSERC) of Canada (Discovery Grant RGPIN-

2017-04999) and IVADO [Fundamental Research Project, PRF-2019-6839748021].

Appendices

Supplementary material is available in Appendix B:

• B.1: Stan code for the proposed Heavy Rushworth model

• B.2: Simulation study: data generated from the proposed model

• B.3: Supplementary material for the simulation study shown in Section 4.3.1

• B.4: French regions
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Chapter 5

Model-based prediction for small

domains using covariates: a comparison

of four methods

Preamble to Manuscript 3. When few areas are sampled and abundant auxiliary vari-

ables are available, model-based small area estimation (SAE) heavily relies on the association

between the variable of interest and covariates. Model-based SAE may be performed in three

different frameworks, namely the frequentist, Bayesian, and machine learning settings. How-

ever, there is no consensus on how to perform variable selection in the SAE literature. Fur-

ther, inference for point estimates that result from the LASSO or random forest approaches

is not straightforward, in particular when data are non-exchangeable, which is common in a

SAE context. These gaps in the SAE and machine learning literatures motivated the work

conducted in this manuscript.

This chapter proposes a comparison, in the context of SAE, of four popular modelling meth-

ods that handle high-dimensional auxiliary information. Further, a procedure which extends

that of Lei et al. (2018) into relaxing the assumption of exchangeable data is proposed to
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compute prediction intervals for complex estimates (e.g. LASSO and random forests).

The contributions of this manuscript include (i) a simulation study to compare model-based

area-level frequentist, Bayesian, and machine learning approaches in a SAE context with a

high number of out-of-sample areas, (ii) a new procedure to provide uncertainty quantifica-

tion for complex estimates (e.g., LASSO, random forests) when data are not exchangeable,

(iii) a simulation study to assess the performance of the proposed procedure to compute pre-

diction intervals compared to the original SC method, (iv) the estimation of the mean house-

hold log consumption across all enumeration areas (EAs) in the Greater Accra Metropolitan

Area (GAMA), in Ghana.

The notation in this chapter changes slightly from the previous chapters. In this thesis, thus

far, we assumed that a region of interest was divided into n non-overlapping areas, indexed

by i = 1, . . . , n. In this chapter, we assume that a region (e.g., GAMA) is divided into M

areas (e.g., EAs), which are indexed by c = 1, . . . ,M .

This manuscript has been accepted for publication in the Journal of Survey Statistics and

Methodology.
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Abstract

We consider methods for model-based small area estimation when the number of areas with

sampled data is a small fraction of the total areas for which estimates are required. Abun-

dant auxiliary information is available from the survey for all the sampled areas. Further,

through an external source, there is information for all areas. The goal is to use auxiliary

variables to predict the outcome of interest for all areas. We compare areal-level random

forests and LASSO approaches to a frequentist forward variable selection approach and a

Bayesian shrinkage method using a horseshoe prior. Further, to measure the uncertainty of

estimates obtained from random forests and the LASSO, we propose a modification of the

split conformal procedure that relaxes the assumption of exchangeable data. We show that

the proposed method yields intervals with the correct coverage rate and this is confirmed

through a simulation study.

This work is motivated by Ghanaian data available from the sixth Living Standard Survey

(GLSS) and the 2010 Population and Housing Census, in the Greater Accra Metropolitan

Area (GAMA) region, which comprises 8 districts that are further divided into enumeration

areas (EAs). We estimate the areal mean household log consumption using both datasets.

The outcome variable is measured only in the GLSS for 3% of all the EAs (136 out of 5019)

and 174 potential covariates are available in both datasets. In the application, among the

four modelling methods considered, the Bayesian shrinkage performed the best in terms of

bias, MSE and prediction interval coverages and scores, as assessed through a cross-validation

study. We find substantial between-area variation with the estimated log consumption show-

ing a 1.3-fold variation across the GAMA region. The western areas are the poorest while

the Accra Metropolitan Area district has the richest areas.
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5.1 Motivation

In 2015, the United Nations (UN) released their 2030 agenda for sustainable development

goals (SDGs) consisting of 17 goals, the first of which was to end poverty worldwide (United

Nations, 2015). For their first SDG, the UN made seven guidelines explicit, including the

implementation of "poverty eradication policies" at a disaggregated level. To that end, pro-

ducing reliable and high resolution spatial estimates of socioeconomic status and income

inequality is fundamental to help decision makers prioritise and target certain areas for

decentralised interventions (Elbers et al., 2002). These detailed maps empower local com-

munities to understand their situation compared to their neighbours, which also helps when

planning interventions (Bedi et al., 2007).

In Ghana, household surveys are collected every 5 to 7 years to measure the living conditions

of households across Ghanaian regions and districts and to monitor poverty. To keep track

of the Ghanaian population wealth, the equivalised consumption is recorded for the sam-

pled households. Although the household income is not directly measured, the equivalised

expenditure is an alternative that allows decision makers to assess a household’s standard

of living (Johnson et al., 2005). This measure corresponds to the household consumption

scaled by a weight based on the number of members in the household. We aim to estimate

the equivalised consumption at a disaggregated level, to help communities, civil society or-

ganisations, and policymakers better understand the distribution of the households’ living

standard in Ghana, in order to prioritise certain areas when implementing poverty eradica-

tion policies. The sixth Ghana Living Standards Survey (GLSS), conducted in 2012-2013,

was the last household survey carried out prior to the new UN SDGs agenda. The fifth

GLSS had shown that inequalities had increased since 2006. In particular, although the

overall poverty decreased nation-wide, the wealthiest decile of the population consumed 6.8

times more than the poorest (Cooke et al., 2016). A downside of these household surveys

is that the sampling design is stratified two-stage cluster sampling, which only allows for
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reliable survey sampling estimates at the district level, at best. Ghana is divided into 10

regions, which were comprised of 170 districts in 2010 or, at a finer level, around 38,000

enumeration areas (EAs). Producing reliable estimates at the EA level would further help

the authorities in their policy decisions (Corral et al., 2022).

We analyse data from the sixth GLSS for the Greater Accra Metropolitan Area (GAMA),

which consists of 8 districts. The GLSS used a stratified two-stage cluster sample in which

strata are defined by an urban or rural indicator. Then, the clusters, which correspond to

the EAs, were sampled following proportional to size sampling. Within the sampled EAs,

15 households were systematically sampled. For each sampled household, we have detailed

assessment of consumption and their level of education, employment, assets, totalling 174

auxiliary variables. This gives a sample of 136 EAs out of the 5019, in this Ghanaian region.

This issue of observing a small proportion of all the areas implies the need to adopt a model-

based prediction approach (Pfeffermann, 2013; Tzavidis et al., 2018; Ghosh, 2020; Erciulescu

and Opsomer, 2022; Hogg et al., 2023). Additionally, the sampled EAs are anonymised, which

means it is unknown which 136 EAs of the 5019 EAs are represented in the survey. Finally,

we have data available from the 2010 Ghanaian census for all EAs in the GAMA. Among

others, the same 174 variables are measured in this census and in the sixth GLSS. The aim of

this work is to produce estimates with uncertainty of the mean log household consumption

at the EA level in the GAMA. Note that, as is common in the literature on poverty mapping,

we focus on the equivalised consumption in the log scale to model symmetrical data (Elbers

et al., 2003; Nguyen et al., 2017). If needed, the estimates could be transformed back into

the original scale.

In this paper, to deal with the higher number of auxiliary variables compared to the number

of sampled EAs, we assess the performance of random forests and the LASSO (which per-

forms variable selection) to estimate the mean household log consumption at the EA level

in the GAMA. For the sake of comparison, we also consider a forward variable selection
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approach in the frequentist framework and a Bayesian shrinkage method using a horseshoe

prior. For all four approaches, we adopt EA-level models. Due to the nature of the moti-

vating Ghanaian datasets, where only a small proportion of the areas are sampled and are

anonymised, synthetic small area estimators are of interest. Further, we propose a modifica-

tion of the split conformal procedure to compute prediction intervals for the random forest

and LASSO predictions while relaxing the assumption of exchangeable responses, which is

necessary due to the complex sampling design.

This paper is organised as follows. Section 5.1.1 briefly reviews the literature on small area

estimation (SAE) and variable selection in the frequentist, Bayesian and machine learning

frameworks. Section 5.2 describes the four methods that will be compared and the proposed

procedure to produce prediction intervals for estimates obtained through random forests

and the LASSO. Section 5.3 shows the results from two simulation studies. First, Section

5.3.1 presents a comparison between the proposed modified split conformal and the original

split conformal procedures. Then, Section 5.3.2 provides a comparison between the four

methods that perform variable selection. Section 5.4 discusses the results from the four

methods applied to the Ghanaian datasets. Finally, Section 5.5 concludes the paper with a

discussion.

5.1.1 Literature review

SAE concerns estimation of area-level summaries when data are sparse or non-existent in

the areas (Rao and Molina, 2015). This area of research in survey sampling has greatly

evolved in the last 50 years (Pfeffermann, 2002; Pfeffermann, 2013; Rao and Molina, 2015;

Ghosh, 2020). Tzavidis et al. (2018) points out that the use of SAE by national statistical

institutes (NSIs) and other organisations to produce official statistics exhibits this increasing

popularity; e.g., the povmap software developed by the World Bank (Elbers et al., 2003; World

Bank, 2015) and the Small Area Income and Poverty Estimates project carried out by the

US Census Bureau (Census Bureau, 2018).
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In survey sampling, the design-based framework may be distinguished from the model-based

framework. Design-based methods, also called randomisation methods, assume the variable

of interest to be fixed in the finite population while the randomness comes from the sam-

pling process. Direct (weighted) estimators have favourable design-based properties in large

samples and rely only on the sampling weights and the recorded responses within each sam-

pled area to produce areal estimates. Hence, estimates for non-sampled areas are missing.

Additionally, data sparsity will yield imprecise direct estimates at the areal level. Similarly,

data sparsity within areas may lead to imprecise model-assisted estimates. These latter

approaches also fall under the umbrella of design-based inference. Model-assisted methods

are design-based approaches which model the responses to gain precision but are still design

consistent (Särndal et al., 2003). An alternative is to use model-based approaches, where the

responses are no longer assumed fixed but treated as random variables which are modelled

using auxiliary information and/or random effects. In model-based methods for SAE, it is

common to use exterior sources of information to augment the auxiliary information from

the sample to the entire finite population; for example, using information obtained from cen-

suses. Tzavidis et al. (2018) describe a two-step approach to produce model-based small area

estimates. First, a model is fitted using the survey responses and survey auxiliary variables.

Then, the outcome is predicted for the entire finite population according to the estimated

model parameters and finite population auxiliary information.

Abundant auxiliary information may be measured in the sample, for the sampled areas,

and through exterior sources, for all the areas of the region of interest. It may therefore

be necessary to select a subset of covariates to model the response variable, in the pres-

ence of high-dimensional auxiliary information. In this way, precision can be increased as

unnecessary auxiliary variables are not included. The inference procedure for model-based

approaches can be performed under the frequentist or Bayesian frameworks, or with flexible

parametric models via machine learning techniques.
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Machine learning methods are becoming more popular in the survey sampling community; see

for example, Wang et al. (2014) and Breidt and Opsomer (2017). However, it is not straight-

forward to perform inference and assess the estimates’ uncertainty under these approaches.

For example, the bootstrap does not work for non-smooth targets such as LASSO estimates

(Dezeure et al., 2015). Among machine learning methods, random forests (Breiman, 2001)

can be fitted to unit-level or area-level data for a flexible approach. Random forests are a

collection of regression trees that recursively partition the responses into increasingly homo-

geneous subgroups (nodes), based on covariate splits. Random forests potentially have the

benefit of accommodating non-linear relationships and complex interactions, and naturally

select variables through these covariate splits. Each individual regression tree is fitted on

a bootstrap sample of the original dataset. There is a growing literature on methods to

measure the uncertainty of random forest point estimates, for example using different Jack-

knife approaches (Steinberger and Leeb, 2016; Wager et al., 2014; Wager and Athey, 2018)

or V -statistics (Zhou et al., 2021). However, the subsampling procedures have drawbacks,

including their computational overheads and their unclear application to survey data. Re-

cently, Zhang et al. (2019) proposed the so-called out-of-bag (OOB) prediction intervals,

which are computed based on quantiles of the random forest out-of-bag prediction errors.

These denote the difference between a data point’s outcome and its point estimate, obtained

from a random forest grown without said data point. In simulation studies, Zhang et al.

(2019) show that their proposed method performs similarly to the split conformal (SC) ap-

proach proposed by Lei et al. (2018). The SC approach may be used to compute prediction

intervals for any modelling method (e.g., linear models or random forests) and is a novelty

in the literature on survey sampling (Bersson and Hoff, 2022; Wieczorek, 2023). To compute

prediction intervals for random forest estimates through the SC method, the original dataset

is first split into two datasets. A random forest is trained on one subsample, and point

estimates and their associated prediction errors are obtained for the other subsample. Then,

the intervals are computed based on the empirical quantiles of the prediction errors from the
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second subsample. Note that while the OOB method proposed by Zhang et al. (2019) only

estimates prediction intervals for random forests, the SC method can potentially be applied

to any modelling procedure used to obtain point estimates. A common feature of all these

prediction interval methods is that the data are assumed to be exchangeable (Angelopoulos

and Bates, 2021). This is a strong assumption and is not usually true for data gathered from

a complex survey design.

Inference procedures for model-based approaches can also follow the frequentist or the

Bayesian paradigms. In these frameworks, variable selection is an important yet contentious

research topic. In the frequentist framework, two-step procedures are common. Variables

are first iteratively selected (forward selection) or removed (backward elimination) to model

the outcome, based on the optimisation of some criterion (e.g., AIC, BIC, R2). Then, a final

model that includes only the selected covariates is fitted to the data. In SAE, it is common

to select variables by comparing models through some criterion (for example, AIC or BIC,

or survey sampling adjusted versions); see e.g., Han (2013); Rao and Molina (2015) and

Lahiri and Suntornchost (2015). In the frequentist framework, regularisation methods have

also been proposed in the literature, such as ridge regression and the LASSO (Tibshirani,

1996, 2011; McConville et al., 2017). These methods apply constraints to the regression

parameters. However, in the case of the LASSO, these constraints yield estimates of the

model parameters whose uncertainty estimation is difficult, especially in a survey setting. In

a simulation study, Lei et al. (2018) show that their proposed SC method performs well in

computing prediction intervals for predictions obtained through the LASSO, when the data

are exchangeable.

In the Bayesian framework, variable selection is conducted by imposing informative priors

on the model parameters. Multiple shrinkage priors have been proposed in the literature,

for example, Bayesian ridge regression and the Bayesian LASSO (Hans, 2010). In the for-

mer, a Gaussian prior is assigned to the regression parameters, while a double-exponential
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distribution is used for the latter. It can be shown that, under the respective priors, com-

puting the maxima a posteriori to estimate the parameters results exactly in ridge-type and

LASSO-type estimators (Reich and Ghosh, 2019). A more recent popular approach is the

use of the horseshoe prior (Carvalho et al., 2010), which imposes a priori a heavier weight

towards 0 than a normal or double-exponential distribution (Datta and Ghosh, 2013; Porwal

and Raftery, 2022).

5.2 Methods

Let a region be divided into M non-overlapping areas, Ac, c = 1, . . . ,M . Denote by

Nc the number of units in Ac, with outcomes yck, k = 1, . . . , Nc. The main goal is to

estimate the areal mean yc = (1/Nc)
∑︁Nc

k=1 yck for all areas c = 1, . . . ,M , using a sam-

ple of nc units taken from c = 1, . . . ,m areas. Denote by s the set of area and house-

hold indices included in the sample and denote by sc, c = 1, . . . ,M , the set of sam-

pled units in the c-th area. Let fc = nc/Nc be the sampling fraction within each area.

For any variable a, let ac = (1/Nc)
∑︁Nc

k=1 ack, c = 1, . . . ,M , be the population areal

mean, and a(s)c = (1/nc)
∑︁

k∈sc ack, c = 1, . . . ,m and a(ns)c = (1/(Nc − nc))
∑︁

k/∈sc ack =(︁
ac − fca

(s)
c

)︁
/(1 − fc), c = 1, . . . ,M , the areal means for the sampled (subscript (s)) and

non-sampled (subscript (ns)) units, respectively. For all M areas, the estimation target may

be decomposed as follows

yc =
1

Nc

(︄∑︂
k∈sc

yck +
∑︂
k/∈sc

yck

)︄
= fcy

(s)
c + (1− fc)y

(ns)
c , c = 1, . . . ,M. (5.1)

To estimate yc, the non-sampled mean, y(ns)c , remains to be estimated for all M areas. Letˆ︁Y (ns)

c , c = 1, . . . ,M , be the estimator of y(ns)c , c = 1, . . . ,M . The prediction approach

estimator (Lohr, 2021) for the target of inference is

ˆ︁Y c = fcy
(s)
c + (1− fc)

ˆ︁Y (ns)

c , c = 1, . . . ,M. (5.2)
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The uncertainty of ˆ︁Y c may be measured using prediction intervals of level (1−α)%, PI(1−α),

of the form

PI(1−α)%

[︂ˆ︁Y c

]︂
= fcy

(s)
c + (1− fc)PI(1−α)%

[︃ˆ︁Y (ns)

c

]︃
, c = 1, . . . ,M. (5.3)

Note that for a non-sampled area c′, fc′ = 0 and the estimator reduces to ˆ︁Y c′ =
ˆ︁Y (ns)

c′ , with

prediction interval, PI(1−α)%

[︂ˆ︁Y c′

]︂
= PI(1−α)%

[︃ˆ︁Y (ns)

c′

]︃
.

Random forests and the LASSO are considered to estimate ˆ︁Y (ns)

c in the model-based frame-

work. For the sake of comparison, we also consider a forward variable selection approach in

the frequentist paradigm and a Bayesian shrinkage method. The four modelling approaches

assume there are p-dimensional covariates available from the sample, {xck, c, k ∈ s}, as well

as areal covariate means, xc, c = 1, . . . ,M , which are known for all the areas of the finite

population. Such information may be obtained from a census. Inference is carried out at the

areal level in all four methods. In this model-based framework, at the unit level, the finite

population response values y are assumed to be an independent and identically distributed

(i.i.d.) realisation of super population random variables Y whose sampled and non-sampled

moments are, at the area level:

E
(︂
Y

(s)

c

)︂
= µ

(︁
x(s)
c

)︁
, V

(︂
Y

(s)

c

)︂
= σ2/nc,

E
(︂
Y

(ns)

c

)︂
= µ

(︁
x(ns)
c

)︁
, V

(︂
Y

(ns)

c

)︂
= σ2/(Nc − nc). (5.4)

Therefore, inference is conducted using
{︁(︁

y(s)c ,x(s)
c

)︁
, c = 1, . . . ,m

}︁
and the non-sampled

mean predictions, ˆ︁Y (ns)

c , c = 1, . . . ,M , are computed using the available covariates’ non-

sampled means, x(ns)
c , c = 1, . . . ,M .
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5.2.1 Random forest and LASSO approaches

First, we consider a random forest prediction approach. This non-parametric method makes

no further assumption to Model (5.4). Following Breiman (2001), random forest point esti-

mates are the average over B point estimates obtained from training B independent regres-

sion trees on B bootstrap versions of the original sample. Each regression tree partitions the

bootstrap response values based on splitting rules applied to covariates. A random forest al-

gorithm is described in appendix C.3. Hence, with a random forest procedure, the estimator

(5.2) becomes ˆ︁Y c = fcy
(s)
c + (1− fc)

(︄
m∑︂

c′=1

wc′(x
(ns)
c )y

(s)
c′

)︄
, (5.5)

where the weights wc′(·) result from the random forest procedure described in appendix C.3.

Second, we consider the LASSO to predict the areal non-sampled means, assuming a lin-

ear relationship between the covariates and the outcome, while performing variable se-

lection. The estimation via the LASSO applies to p-dimensional regression coefficients

β, resulting in ˆ︁βLASSO by solving min
β∈Rp

{︂⃦⃦
y(s) − x(s)β

⃦⃦2
2
/(2m) + λ ∥β∥1

}︂
, λ ≥ 0, where

y(s) =
[︂
y
(s)
1 , . . . , y(s)m

]︂⊤
and x(s) =

[︂
x
(s)⊤

1 , . . . ,x(s)⊤

m

]︂⊤
. Note that the shrinkage penalty pa-

rameter λ is fixed after a 10-fold cross-validation, seeking the smallest test MSE. Therefore,

the estimator (5.2) becomes

ˆ︁Y c = fcy
(s)
c + (1− fc)

[︂
x(ns)⊤

c
ˆ︁βLASSO

]︂
. (5.6)

To measure the uncertainty associated to the random forest and LASSO predictions (5.5)

and (5.6), we propose a modification of the SC prediction intervals of Lei et al. (2018) which

relaxes the assumption of exchangeable sampled and non-sampled data points. The original

SC procedure assumes Y
(s)

c and Y
(ns)

c to be exchangeable. However, as shown in (5.4), Y (s)

c

and Y
(ns)

c are not exchangeable. Hence, in the proposed modified SC procedure, we assume
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the mean structures to be similar and allow the variances to be scaled differently, as is the

case in (5.4). Specifically, in this context of a complex sampling design, we assume the

variance is independent of the sample strata. The unit-level variance, σ2, is assumed fixed

across the strata and the sampled and non-sampled areal-level variances only vary with the

number of sampled and non-sampled units, nc and Nc − nc, respectively. We propose to

scale the residuals computed in the original SC procedure before computing the empirical

quantile necessary to the prediction intervals. Said quantile is then scaled when computing

the prediction intervals. The proposed scaled SC procedure can be described through the

following steps:

1. Randomly split
{︁(︁

y(s)c ,x(s)
c

)︁
, c = 1, . . . ,m

}︁
into two equal sized datasets. Denote by

S1 and S2 the resulting two sets of area indices;

2. Train a random forest or a LASSO approach on
{︁(︁

y(s)c ,x(s)
c

)︁
, c ∈ S1

}︁
and predict{︃ˆ︁Y (S2)

c , c ∈ S2

}︃
;

3. Compute the scaled absolute residuals Rc =
√
nc ×

⃓⃓⃓⃓
y(s)c − ˆ︁Y (S2)

c

⃓⃓⃓⃓
, c ∈ S2;

4. Find dα, the kαth smallest residual R, for kα = ⌈(m/2 + 1)(1− α)⌉;

5. Let the prediction interval be PI(1−α)%

[︃ˆ︁Y (ns)

c

]︃
= ˆ︁Y (ns)

c ± dα/
√
Nc − nc, c = 1, . . . ,M .

Hence, for random forest or LASSO predictions (5.5) or (5.6), the uncertainty (5.3) be-

comes

PI(1−α)%

[︂ˆ︁Y c

]︂
= ˆ︁Y c ± (1− fc)

dα√
Nc − nc

.

Appendix C.1 provides a proof of the (1 − α)% marginal coverage of the proposed scaled

split conformal prediction intervals.
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5.2.2 Forward selection

As a comparison, we consider a frequentist method with the commonly used forward ap-

proach with AIC as a variable selection criterion. Model (5.4) is completed by assuming

the errors are normally distributed. To predict ˆ︁Y (ns)

c , the forward approach is a two-

step procedure. First, a subset of K covariates z is selected among the available x’s.

To that end, linear models are iteratively fitted, adding one covariate at a time based

on the resulting AIC value. Then, using the selected covariates, a linear model is fitted:

y(s)c ∼ N
(︂
z(s)⊤

c η, σ2/nc

)︂
, c = 1, . . . ,m, to estimate ˆ︁η, ˆ︁V (ˆ︁η) and ˆ︁σ. The steps required

to run this forward approach are detailed in Appendix C.2. The estimator and uncertainty

(5.2) and (5.3) become , respectively,

ˆ︁Y c = fcy
(s)
c + (1− fc)

[︂
z(ns)⊤

c ˆ︁η]︂ ,
PI(1−α)%

[︂ˆ︁Y c

]︂
= ˆ︁Y c ± qα(1− fc)

√︄
z(ns)⊤
c

ˆ︁V (ˆ︁η) z(ns)
c +

ˆ︁σ2

Nc − nc

,

where qα denotes the α-level quantile from a N (0, 1) distribution. Note that uncertainty in

the covariates selected is not accounted for.

5.2.3 Bayesian shrinkage approach

Finally, a Bayesian approach is considered, where all the available covariates, x, are used

in a single step to model the outcome while applying the horseshoe prior (Carvalho et al.,

2010) to the regression parameters. Similar to the forward approach, a normal distribution

is further assumed for Model (5.4). The observed sampled means are modelled through

y(s)c ∼ N (x(s)⊤
c β, σ2/nc), c = 1, . . . ,m, with priors βj ∼ N (0, λ2

jτ
2), j = 1, . . . , p, and

σ, τ, λ1, . . . , λp ∼ HC(0, 1), where HC(a, b) stands for a half-Cauchy distribution with

location a and scale b. In this prior, τ corresponds to the global shrinkage and λj, to the

local shrinkage. Then, inference is conducted through the posterior distribution, which is
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approximated through a Markov Chains Monte Carlo (MCMC) procedure. The estimator

and its uncertainty (5.2) and (5.3) become

ˆ︁Y c = fcy
(s)
c + (1− fc)

(︄
1

L

L∑︂
ℓ=1

ˆ︁Y (ns)(ℓ)

c

)︄
,

PI(1−α)%

[︂ˆ︁Y c

]︂
= fcy

(s)
c + (1− fc)

[︃ˆ︁Y (ns)

c,lowerα ,
ˆ︁Y (ns)

c,upperα

]︃
,

where ˆ︁Y (ns)(ℓ)

c ∼ N
(︂
x(ns)⊤

c β(ℓ), σ(ℓ)2/(Nc − nc)
)︂
, ℓ = 1, . . . , L, c = 1, . . . ,M , is the ℓth

element of the MCMC posterior predictive sample, with β(ℓ) and σ(ℓ) the ℓth elements in the

MCMC samples. The α-level empirical quantiles from the posterior predictive sample are

denoted ˆ︁Y (ns)

c,lowerα and ˆ︁Y (ns)

c,upperα
.

5.3 Simulation study

This section presents two simulation studies to assess the performance of the proposed scaled

SC procedure and to compare the four modelling methods. Section 5.3.1 focuses on the pro-

posed scaled SC method that computes prediction intervals while relaxing the assumption of

exchangeable data points. In Section 5.3.2, different generating models and sampling designs

are studied to compare the four model selection methods described in Section 5.2.

Inference is performed in R. The random forests of B = 1000 trees are trained using the

ranger package (Wright et al., 2022). For each simulation scenario, the random forest

hyperparameters are fixed after a cross-validation study of different values. The code to con-

duct the proposed scaled SC procedure for random forest estimates is available in appendix

C.4. The LASSO method is conducted through the glmnet package, using the cv.glmnet

function to define the optimal shrinkage penalty parameter. Bayesian inference is performed

with the NIMBLE package (de Valpine et al., 2017). Convergence of the MCMC chains is

assessed through trace plots, effective sample sizes and the ˆ︁R statistic (Gelman and Rubin,
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1992).

5.3.1 Simulation study: scaled split conformal procedure

To assess the performance of the proposed scaled SC procedure, five model-based simulation

scenarios are considered: R = 500 finite populations are created, and the different simula-

tion scenarios correspond to the various sampling designs applied to that finite population.

Assume that each finite population consists of M = 500 areas of sizes Nc, c = 1, . . . ,M,

with minc(Nc) = 50 and maxc(Nc) = 500. For c = 1, . . . ,M, and k = 1, . . . , Nc, the response

variable has distribution

yck
i.i.d.∼ N (9.5 + x1,ck − x2,ck + 2x3,ck − x4,ck + 2x5,ck + x6,ck, 1),

with 6 unit-level covariates, x1, . . . , x6
i.i.d.∼ N (0, 1), which are the same across the finite

populations. In this model-based framework, the same areas and units are sampled across

the different finite populations. From each finite population, a sample is drawn according to

five sampling designs, which constitute the simulation scenarios:

1. (Stratified) Select all m = M = 500 areas and within each area, sample nc = 0.5Nc, c =

1, . . . ,m units;

2. (Stratified) Select all m = M = 500 areas and within each area, sample nc = 0.7Nc, c =

1, . . . ,m units;

3. (One-stage) Sample m = M/2 areas and within each area, select all nc = Nc, c =

1, . . . ,m units;

4. (Two-stage) Sample m = M/2 areas and within each area, sample nc = 0.5Nc, c =

1, . . . ,m units;

5. (Two-stage) Sample m = M/2 areas and within each area, sample nc = 0.7Nc, c =

1, . . . ,m units.
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The proportion of sampled areas is higher in the stratified sampling designs, as all areas

are selected. Hence, the areal-level inference is conducted on more data points in the first

two scenarios than in the remaining three, and we expect any modelling method to perform

better in these two scenarios. The one-stage and two-stage designs all yield m = 500 areal-

level responses. The difference between these last three scenarios is in the sampling fraction

within areas. Out of the five simulation scenarios considered, the fourth one is the closest

to the Ghanaian data analysed in Section 5.4.

For each simulation scenario and in each sample, the estimates described in equation (5.2) are

computed using four methods: a linear model that includes the correct six covariates, a linear

model that omits x4, x5 and x6, a random forest method that considers all six covariates to

grow the trees, and a linear LASSO model. The random forest hyperparameters are set after

a cross-validation study as mtry = 2 and nodesize = 5. For each scenario, in each sample

and for each modelling method, 50%, 80% and 95% prediction intervals (5.3) are computed

following the SC and the proposed scaled SC procedures. These non-parametric methods

may be applied to any modelling approach: a linear regression method as well as a machine

learning method. The objective of this simulation study is to assess whether the proposed

scaled SC method yields valid coverage rates of the prediction intervals.

All results are shown in Figure 5.1. The observed coverages for each scenario, method

and interval level are shown in the left panel and the interval widths, in the right panel.

The simulation scenarios are identified by their 1-5 number, as described above. Further,

we differentiate the results for the sampled and non-sampled areas (Yes/No, respectively).

Scenarios 1 and 2 only present results for sampled areas, as all areas are sampled in a

stratified sample. Scenario 3 only shows the results for non-sampled areas because the

target is exactly estimated in the sampled areas since all units are selected in a one-stage

sample. Therefore, in the third scenario, we measure the predictions’ uncertainty only in the

non-sampled areas.
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In the first scenario and for the sampled areas in the fourth scenario, nc and Nc−nc are equal.

Therefore, the data points are exchangeable and the SC and proposed scaled SC approaches

are the same. In these scenarios, both methods yield the right coverages of the prediction

intervals, regardless of the modelling method. In terms of interval widths, the linear model

with incorrect set of covariates leads to the widest intervals under both SC procedures. The

linear model with correct covariates and the LASSO method yields the narrowest intervals

regardless of the SC method.

For all other sampling schemes, nc ̸= Nc − nc. Therefore, the sampled and non-sampled

means, Y (s)

c and Y
(ns)

c , are not exchangeable, with differently scaled variances, σ2/nc and

σ2/(Nc − nc), respectively. In these cases, the original SC intervals obtained for all four

modelling methods do not attain the right coverages. The original SC leads to under-

coverage of the prediction intervals. On the other hand, the proposed scaled SC procedure

produces prediction intervals with the right coverages, regardless of the interval level and

modelling method. In particular, when fitting a linear model, with the LASSO constraint

or with the right mean structure, the scaled SC intervals have exactly the right coverages.

When modelling with a non-parametric random forest approach or with a linear model

assuming the wrong mean structure, the scaled SC prediction intervals show a slight error

in the coverage rate.

In terms of interval width, the proposed scaled SC intervals tend to be a little wider than

the original SC ones, for all interval levels. Regardless of the simulation scenario, the SC

intervals and proposed scaled SC intervals obtained for the random forest estimates tend

to be narrower than the ones obtained for the linear estimates using the incorrect set of

covariates.

Finally, Appendix C.5 shows the results from the equivalent simulation study in the design-

based framework. In this case, the finite population is assumed fixed and different samples

are taken. Similar results are obtained: when nc ̸= Nc − nc, the proposed scaled SC proce-
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Figure 5.1: Coverages and widths of the prediction intervals (PI) obtained from the proposed
scaled and original split conformal (SC) procedures for the four modelling methods and across
the five simulation scenarios (1-5). Yes: coverages and widths across the sampled areas; No:
coverages and widths across the non-sampled areas.

dure yields the correct coverages, while the original SC approach produces under-covering

prediction intervals.

5.3.2 Simulation study: prediction methods comparison

To compare the performance of the random forest and the LASSO methods to the frequentist

forward variable selection and the Bayesian shrinkage approaches, as described in Section

5.2, a model-based simulation study is conducted considering three generating models for

the outcome and five sampling designs. Similar to Section 5.3.1 and Appendix C.5, a design-

based counterpart to this simulation study is shown in Appendix C.6, producing similar

results. We replicate R = 100 times the creation of three finite populations of M = 1000

areas of sizes Nc with minc(Nc) = 50 and maxc(Nc) = 500 as follows::

A. yck ∼ N
(︁
20 + x⊤

ckβ, 0.5
2
)︁
, where the covariates are such that xck ∼ N100(0, I) and

with coefficients β⊤ = (1,−1, 2,−1, 2, 1, 2, 1,−1, 1, 0, . . . , 0);

B. yck ∼ N
(︁
20 + x⊤

ckβ, 0.5
2
)︁
, where the covariates are such that xck ∼ N100(0,Σx), with
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Σx =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0.5 . . . 0.5

0.5 1 . . . 0.5

...
... . . . ...

0.5 0.5 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, and β⊤ = (1,−1, 2,−1, 2, 1, 2, 1,−1, 1, 0, . . . , 0)/10;

C. yck ∼ N
(︁
x2
1,ck + exp

(︁
x2
2,ck

)︁
, 0.3

)︁
, with covariates xj,c ∼ U(−1, 1), j = 1, . . . , 100.

The covariates are the same across the replicated populations and the randomness comes

from the y’s. Populations A and B assume a linear relationship between the outcome and

the first 10 covariates. In scenario B, however, the strength of the association is weak and

the covariates are correlated. Population C is inspired by Scornet (2017) and assumes a

non-linear relationship between the outcome and covariates. Throughout this simulation

study, areas are indiscriminately termed "areas” or "EAs”. From each finite population, a

sample is drawn following the two sampling schemes:

1. (Stratified) Select all m = M = 500 areas and within each area, sample nc = 15, c =

1, . . . ,m, units;

2. (Two-stage) Sample m = M/2 areas and within each area, sample nc = 15, c =

1, . . . ,m, units.

These simulation scenarios were motivated by the Ghanaian data analysed in Section 5.4,

where only 15 households were sampled within the selected areas. Additional sampling

designs are considered in Appendix C.7, where a higher number of sampled units within

the selected areas, and in Appendix C.8, where a simulation study aims to emulate the

Ghanaian data analysed in Section 5.4. For each scenario, the estimates and their prediction

intervals are computed as described in Section 5.2. Further, for each scenario, the estimates

and their uncertainty are also computed assuming anonymised EAs. In this context, the

modelling methods are trained on the sample and predictions are obtained ignoring which

areas have been sampled, that is, assuming fc = 0, c = 1, . . . ,M, at the prediction stage.

Once again, this study with anonymised EAs is run because the available Ghanaian data
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that is analysed in Section 5.4 does not identify the sampled EAs. The random forest

hyperparameters are set following a cross-validation study conducted for each simulation

scenario. A random forest with hyperparameters set to (mtry, nodesize) = (10, 5) is found

to perform the best for both sampling schemes in populations A and B. In population C, we

set (mtry, nodesize) = (70, 200) and (mtry, nodesize) = (70, 9), for the stratified samples

and the two-stage samples, respectively. In all scenarios, the Bayesian approach runs through

a MCMC procedure with two chains of 5,000 iterations, which include a burn-in period of

2,500 iterations. We find out that with these values, practical convergence was attained,

as assessed by the trace plots, effective sample sizes and ˆ︁R statistics (Gelman and Rubin,

1992). For a particular finite population and sampling scheme, running the random forest

over 100 replicates takes 55 minutes, while the LASSO takes 4 minutes, the forward method

takes 7 minutes and the Bayesian approach, 2.5 hours.

The methods’ performances are compared via four measures: the mean absolute bias AB =

(1/R)
∑︁R

r=1

∑︁M
c=1

⃓⃓⃓ ˆ︁Y c − yc

⃓⃓⃓
/M, mean squared error MSE = (1/R)

∑︁R
r=1

∑︁M
c=1

(︂ˆ︁Y c − yc

)︂2
/M,

coverages of 50%, 80% and 95% prediction intervals Cov(1−α)% = (1/R)
∑︁R

r=1

∑︁M
c=1 1yc∈[L,U ]/M×

100, with [L,U ] the (1 − α)% prediction interval, and their proper interval score S(1−α)% =

(1/R)
∑︁R

r=1

∑︁M
c=1

(︁
(U − L) + 2/α

[︁
(L− yc)1L>yc + (yc − U)1U<yc

]︁)︁
/M (Gneiting and Raftery,

2007). Smaller values of the interval proper scores are preferred, indicating narrow inter-

vals and average close to the nominal. Additionally, we extract which covariates have been

selected from each method. Note that in the Bayesian framework, a covariate is said to

be selected when its coefficient’s posterior 95% credible interval does not include 0. For

the random forest approach, when the p-value related to a variable’s importance (Altmann

et al., 2010) is smaller than 0.05, said variable is deemed selected. The variable importance

is computed based on results from random forests fitted with permutations of the set of

covariates.

Figure 5.2 shows the selected covariates by each method for each model and sampling design.
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When the association is linear between the covariates and the outcome (A and B), regardless

of the sampling design, the forward approach tends to adequately select the true auxiliary

information. However, it also tends to select irrelevant variables. Each unimportant covariate

is selected about 20% of the time by the forward method. In scenario A, the LASSO and

Bayesian approaches also select the right covariates 100% of the time, while rarely including

redundant covariates. When the covariates are correlated, the LASSO and Bayesian methods

tend to miss the right covariates 20%– 70% of the time, depending on the sampling design.

In scenarios A and B, the random forest method misses the right covariates 10%–50% of

the time, while it always captures the correct set when the association is non-linear. The

LASSO selects 1 out of 2 correct covariates about 80% of the time in this third population.

Both the forward and Bayesian approaches miss the correct set of covariates in scenario C

almost 100% of the time and include irrelevant variables.
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Figure 5.2: Covariate selection frequency for each method across the 6 simulation scenarios.
Left of the vertical dashed line: true covariates used in the generating models.

Figure 5.3 shows the absolute biases multiplied by 100, MSEs, prediction intervals’ cover-

ages and proper scores for all methods, generating models (A-C) and sampling schemes.

The results for the sampled and non-sampled areas are differentiated through the red and

black symbols, respectively. Only results for the sampled EAs are produced for the strati-

fied sampling design, as all areas are sampled. The results assuming the anonymised EAs
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are distinguished from the ones in which we know which areas have been sampled by the

circle and cross symbols, respectively. The results shown in Figure 5.3 are also provided in

Appendix C.9, in Tables C.2 – C.9.

For all performance measures, the four modelling approaches yield similar results when it is

known and unknown which areas have been sampled. For example, in population C with

a two-stage sampling design and regardless of the modelling method, the MSE results over

the anonymised sampled EAs are not worse than the results over the non-sampled EAs.

This result is reassuring as for analysing the Ghanian data, where the sampled EAs are

anonymised.

In terms of bias, all methods are virtually unbiased with mean absolute biases between 0 and

0.08, regardless of the population and sampling design. In the linear scenarios, the random

forest tends to yield slightly higher mean absolute biases, compared to the forward, LASSO

and Bayesian methods, which is sensible as the correct mean structure cannot be estimated

in this non-parametric approach.

In terms of MSE, there does not seem to be a difference between the LASSO, forward and

Bayesian methods, for all simulation models and sampling schemes. These three methods,

which fit linear models, yield slightly smaller MSEs than the random forest approach when

the association between the covariates and the outcome is strongly linear (A). For scenario

C, however, the random forest produces smaller MSEs than the three linear modelling ap-

proaches. The random forest method divides the other three modelling methods’ MSEs by

a factor of 3 in population C, regardless of the sampling scheme. This result is explained by

the fact that the random forest approach is a non-parametric method that adapts better to

the non-linear setting.

The prediction intervals computed for all four methods in each sampling scheme for popula-

tions A and B yield the right coverages, with a slight under-coverage for the random forest

approach. This may be due to the incorrect mean structure that is fitted to the data. These
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intervals are wider for the random forest method in model A, for both sampling designs, as

deduced from the proper interval scores. When the relationship between the outcome and the

covariates is non-linear (C), we observe that all four modelling methods yield under-coverage

in both sampling designs. The random forest method, which accommodates a non-linear re-

lationship, leads to prediction intervals with slightly higher coverage rates than the other

three methods, in particular across the sampled areas, but still misses the targetted rates by

about 30%. Note, however, that the random forest approach produces prediction intervals

with smaller proper scores than the other three modelling methods.

5.4 Areal log consumption prediction in the Greater Ac-

cra Metropolitan Area

In this section, the four modelling methods described in Section 5.2 are applied to the data for

the Greater Accra Metropolitan Area (GAMA) in Ghana. Using the sixth GLSS and the 2010

Ghanaian census, a complete map of the mean equivalised consumption (in the log scale) is

produced across the M = 5019 enumeration areas (EAs), for each method. Note that in the

household survey, only m = 136 EAs have been sampled. To provide estimates in the missing

areas, the response values are modelled using the p = 174 auxiliary variables which are

measured in both available datasets and have been scaled for computational efficiency.

For the random forest approach, due to the small sample size m and following Hastie et al.

(2009), a cross-validation study on the survey data was run to set the hyperparameters to

B = 1000 trees grown with mtry = 25 and nodesize = 3. The Bayesian approach required

two MCMC chains of 100,000 iterations, including a burn-in period of 50,000, and a thinning

factor of 15. Convergence was attained as assessed by the trace plots, effective sample sizes

and ˆ︁R statistics.

Wakefield et al. (2020) point out the importance of including the design variables in model-
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Figure 5.3: Mean absolute bias, MSE, coverages and proper scores of the prediction intervals,
obtained for each method across the 6 simulation scenarios. RF: Random forest approach.
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based small area estimation methods. To that end, the urban indicator, which corresponds to

the sample strata, is added to all four modelling methods. In the forward selection approach,

this inclusion means that the urban indicator is added to the vector of selected covariates,

even if it was not selected in the first step. In the Bayesian shrinkage and LASSO methods,

it means there is no shrinkage applied to the regression coefficient that corresponds to the

urban indicator. Finally, in the random forest approach, it means that the urban indicator

is part of the variables considered for each covariate split. Figure 5.4 presents the covariates

that were selected by each method. Despite all methods including the urban indicator, only

the random forest finds it relevant with a p-value for its variable importance smaller than

0.05. Additionally, Figure 5.4 shows that the horseshoe prior leads to only one variable

whose coefficient’s posterior 95% credible interval does not include 0. The LASSO approach

selects about 6% of the available covariates (11 variables), while the forward method and

random forest methods select more than 12% of the variables (21 and 22, respectively). The

variable indicating whether a household’s floor is made of cement or concrete is selected by

all four methods.
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Figure 5.4: Selected covariates for each method when modelling the log equivalised consump-
tion in GAMA.

Figure 5.5 shows the mean log consumption areal estimates and their 95% prediction in-
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tervals’ widths for each of the four methods. Among the four methods, the random forest

approach yields the most homogeneous point estimates across the EAs. This can further

be seen in Figure 5.6 which compares the predictions obtained using each method for each

EA. The prediction interval widths are shown across the EAs in Figure 5.5 and compared

between the modelling methods in pairwise scatter plots in Figure 5.7. The prediction in-

tervals computed for the linear approach with forward variable selection are the narrowest.

As expected, the widths of the intervals obtained through the proposed scaled SC approach

for the random forest and LASSO predictions behave similarly. The widths are of the form

(1− fc)× 2× dα/
√
Nc − nc, where dα is the only quantity that differs between the LASSO

and random forest approaches. Note that in this analysis, the scaled SC procedure divides

the dataset into two halves, consequently computing the necessary residuals and quantile

based on only m/2 = 68 data points.

Finally, to determine which method performs the best in this particular data application,

an 8-fold cross-validation study is conducted. The 136 sampled EAs are divided into 8 rural

EAs and 128 urban EAs. Hence, in this 8-fold cross-validation study, 17 EAs are removed

from the sample at a time (1 rural and 16 urban EAs), the four methods are fitted on the

remaining 119 EAs and predictions are obtained for the 17 removed ones. The four methods

are compared in terms of mean absolute bias, MSE, coverages and proper scores of the 50%,

80% and 95% prediction intervals in Table 5.1. These performance measures are computed as

described in Section 5.3.2, with the number of replicates R corresponding to the 8 folds and

the total number of areas M becoming the number of sampled EAs. The Bayesian shrinkage

approach performs the best among the four methods we consider, yielding the smallest bias,

MSE and interval scores and reaching the right coverage rates of the prediction intervals.

On the other hand, the prediction intervals obtained for the forward selection approach lead

to significant undercoverage. A cross-validation study was also conducted where the four

methods were fitted without forcing the inclusion of the urban indicator. The results are not

shown in this paper as the performance of the four methods in terms of bias, MSE, coverage
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Figure 5.5: Estimated mean log equivalised consumption in the GAMA EAs (Left) and
widths of the corresponding 95% prediction intervals (Right) obtained from each modelling
method. RF: Random forest.
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Figure 5.6: Pairwise comparison of the areal estimates obtained from each of the four meth-
ods: forward selection, LASSO, Bayesian shrinkage and random forest.
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Figure 5.7: Pairwise comparison of the areal prediction interval widths obtained from each
of the four methods: forward selection, LASSO, Bayesian shrinkage and random forest.

and proper score of the prediction intervals were similar to the ones shown in Table 5.1,

obtained including the urban indicator, for each modelling method. The Bayesian shrinkage

method considered in this paper consists in applying the horseshoe prior to the regression

coefficients. Other priors could have been considered, such as a Bayesian ridge prior. A cross-

validation study was conducted with the Bayesian ridge approach for the GAMA sample.

Because the results were similar to the ones shown in Table 5.1, obtained with the horseshoe

prior, in terms of bias, MSE, coverage and proper score of the prediction intervals, they are

not presented in this paper.

In the original scale, on average, we find that the Bayesian shrinkage consumption estimates

among the richest 10% are 2.3 times bigger than the ones among the poorest 10%. We also

find that the 92% urban EAs are not uniformly distributed across the estimated consumption

deciles: there are only 79% urban EAs among the poorest 10%, versus 91% among the richest
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Absolute MSE PI Coverage Proper interval score
Bias 95% 80% 50% 95% 80% 50%

Bayesian shrinkage 0.244 0.086 94.1 80.9 48.5 1.33 1.91 3.86
Forward selection 0.975 0.168 72.1 52.2 28.7 3.55 5.35 8.03
LASSO 0.965 0.133 91.9 76.5 49.3 1.75 2.48 4.65
Random forest 0.516 0.097 91.9 79.4 50.0 1.61 2.08 4.16

Table 5.1: Mean absolute bias, MSE, coverages and proper scores of the 50%, 80% and 95%
prediction intervals, obtained for each method in the 8-fold cross-validation study on the
GAMA sample.

10%. Following Dong and Wakefield (2021), to identify the EAs where interventions should

be prioritised, we rank the EAs from poorest to richest, based on the Bayesian shrinkage

point estimates. In particular, in this Bayesian framework, we obtain each EAs posterior

ranking distribution, by ranking the point estimates at each MCMC iteration. Figure 5.8

shows the posterior ranking distributions for 5 of the 10% poorest EAs and 5 of the 10%

richest EAs. Additionally, the right-hand side of Figure 5.8 maps the 10% poorest and richest

EAs. We find that the Greater Accra South district, which corresponds to the western EAs

in Figure 5.8, gathers most of the poorest EAs, while the Accra Metropolitan Area district,

which corresponds to the southern EAs in Figure 5.8, is the richest. Figure 5.8 further shows

that the 500 poorest EAs’ ranking distributions overlap, which seems to indicate that there

is a need to intervene in the poorest 500 EAs.

5.5 Discussion

In this paper, approaches based on random forests and the LASSO are compared with a fre-

quentist forward variable selection procedure and a Bayesian shrinkage method to estimate

area-level means of a variable of interest when abundant auxiliary variables are available.

Throughout, the areas correspond to the sampling clusters. The methods are area-level

model-based small area prediction procedures used to obtain areal estimates and their un-

certainties. First, a random forest approach models the outcome values. By construction,

auxiliary variables are selected when partitioning the response values through covariate splits.
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125th poorest EA 375th richest EA

Poorest EA 500th richest EA

0 2000 4000 0 2000 4000

0km 10km 20km

Figure 5.8: Left: Histograms of the posterior ranking distributions of 5 of the 10% poorest
EA’s (left column, red) and 5 of the 10% richest EA’s (right column, green), as estimated
from the MCMC samples obtained for the Bayesian shrinkage approach. Right: Map of the
Greater Accra Metropolitan Area highlighting the 500 poorest EA’s (red) and the 500 richest
EA’s (green). There are a total of 5019 EAs in the study region.

Then, in the frequentist framework, a LASSO method selects covariates by shrinking irrel-

evant regression coefficients towards 0. To measure the uncertainty of estimates obtained

from random forests and the LASSO methods, a modification of the split conformal (SC)

procedure is proposed. The SC algorithm (Lei et al., 2018) estimates prediction intervals

with no specific distribution assumption for the data. However, the data are assumed to be

exchangeable. The proposed scaled SC procedure relaxes the assumption that the data are

exchangeable. Specifically, the proposed algorithm allows the data points to have variances

of different scales. This proposed scaled SC procedure allows inference to be conducted for

the random forest and the LASSO estimates.

A first simulation study assesses the performance of the proposed scaled SC method com-

pared to the original SC procedure. It is found that when the data points are exchangeable,

both procedures perform similarly, regardless of the modelling method. In the simulation

scenarios where the number of sampled units is not equal to the number of non-sampled
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units (nc ̸= Nc − nc), the variances are scaled differently, σ2/nc ̸= σ2/(Nc − nc). Hence,

the SC procedure does not yield the appropriate coverage rates for the prediction intervals

in these scenarios. The proposed scaled SC method corrects the under-coverage in all the

simulation scenarios that were considered.

The random forest and LASSO approaches are compared with the frequentist forward se-

lection and Bayesian shrinkage methods in an additional simulation study. When data are

generated from a linear model, the methods that assume normality yield smaller biases and

MSEs than the random forest approach. All modelling methods, however, lead to adequate

prediction interval coverages. The random forest method performs better in terms of MSE

when the data are generated from a non-linear model. All methods yield under-coverage

when few units are selected within the sampled areas in this complex population.

In the sixth Ghana Living Standards Survey, from 2012–2013, the log equivalised consump-

tion is measured at the household level in a small fraction of the areas (EAs) within the

Greater Accra Metropolitan Area (GAMA), alongside 174 auxiliary variables. The same

auxiliary information is recorded for all the GAMA EAs in the 2010 Ghanaian census. Us-

ing both datasets and the four EA-level method-based approaches, areal estimates of the

mean log equivalised consumption are computed for all EAs in the GAMA. Additionally,

prediction intervals are computed for all EA estimates to measure their uncertainties. The

LASSO and forward variable selection methods select more than 10% of the auxiliary vari-

ables, while the Bayesian horseshoe model yields posterior credible intervals that do not

include 0 for only one coefficient. The random forest procedure estimates a smoother map

of the mean log consumption than the other three approaches. A cross-validation study

conducted on the sample data shows that the Bayesian shrinkage method performs the best,

among the four methods considered, on this particular dataset.

Finally, in this paper, before fitting random forests to the different datasets, cross-validation

studies were run to help set the hyperparameters. These hyperparameters are the number
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of regression trees included in the forest, the number of variables considered at each step

when growing the trees, and the final node sizes. This step remains to be improved: as

other hyperparameters could have led to better performing random forests. For further

discussion on the selection of random forest hyperparameters; see e.g., McConville and Toth

(2019); Dagdoug et al. (2023). On the other hand, the proposed scaled SC procedure used

to compute prediction intervals for the random forest and LASSO estimates relies on an

equal split of the data points to grow a forest and compute prediction errors. In the data

application of this paper, this implies that the prediction interval limits are based on 68 data

points. This partition, suggested by Lei et al. (2018) for the original SC algorithm, could be

revisited to attempt to narrow down the resulting intervals.

Appendices

Supplementary material is available in Appendix C:

• C.1: Proof of the proposed scaled split conformal prediction interval coverage

• C.2: Forward approach

• C.3: Random Forest algorithm

• C.4: R code: proposed scaled split conformal procedure

• C.5: Design-based simulation study: scaled split conformal procedure

• C.6: Design-based simulation study: prediction methods comparison

• C.7: Extra design-based simulation study: prediction methods comparison

• C.8: Model-based simulation study using the Ghanaian data

• C.9: Detailed results for the model-based simulation study summarised in Section 5.3.2
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Chapter 6

Conclusion

The three manuscripts of this thesis developed methods to analyse areal data under three

different settings: purely spatial disease mapping, spatio-temporal disease mapping, and

SAE. This thesis has contributed to the literature on disease mapping, small area estimation,

and machine learning.

Chapter 3 introduced a novel disease mapping model to identify potentially outlying areas

with respect to the disease risk, after accounting for the effect of covariates. Two different

prior specifications were investigated for the scaling mixture components. I discussed the

differences between the proposed heavy-tailed BYM2 model and the prior introduced by

Congdon (2017). In particular, I showed how we expect the proposed model to perform better

in identifying outliers, compared to Congdon’s prior, when the outlying areas are neighbours,

while we expect both models to perform similarly when outliers are distant. The simulation

studies summarised in this manuscript confirmed this theoretical comparison. Further, the

analysis of Zika cases recorded in 2015-2016 across the neighbourhoods of Rio de Janeiro

led to the identification of potential outliers. This data analysis showed how the proposed

model may be useful to better understand the spread of the disease, identify potential issues

in the recording of cases, and prioritise interventions.
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In Chapter 4, I proposed a new spatio-temporal disease mapping model that aims to identify

potentially outlying areas regarding the evolution of the disease risk, after accounting for

covariates. The proposed model is a scaling mixture extension of the spatio-temporal model

proposed by Rushworth et al. (2014). Two prior specifications for the scaling components

were discussed, where we expect the proposed model to perform better in identifying po-

tential neighbouring outliers when the scaling parameters are spatially structured. This was

confirmed through simulation studies. Finally, two data applications showed that the pro-

posed model may be useful, for example in the midst of a pandemic, to prioritise interventions

and implement localised policies.

Chapter 5 was motivated by Ghanaian survey data, where the goal was to estimate the

average household log consumption at the EA level, using two datasets with many covariates:

a survey, where the outcome was measured for 3% of all EAs in the GAMA, and a census,

where the outcome was not measured. Hence, this manuscript focused on SAE when few

areas are sampled and abundant auxiliary information is available. In this manuscript, I

compared four area-level model-based approaches in the frequentist, Bayesian and machine

learning frameworks. Further, I proposed a new procedure to measure the uncertainty of

complex point estimates, such as ones computed through the LASSO and random forest

methods. The proposed procedure is an extension of the SC method proposed by Lei et al.

(2018), where the assumption of exchangeable data is relaxed as it is a strong assumption

in the context of SAE. I proved that the proposed procedure yields prediction intervals of

the right coverage. This result was confirmed through simulation studies. Further, the four

modelling approaches were compared through simulation studies that aimed to mimic SAE

data, and the household log consumption was estimated for all EAs in the GAMA.

124



6.1 Avenues for future research

This thesis provides advancements of various methods to analyse areal data. There are

interesting extensions that can be explored in the future.

For instance, the spatio-temporal disease mapping model proposed in Chapter 4 extends that

of Rushworth et al. (2014) to accommodate and identify outlying areas. The prior introduced

by Rushworth et al. (2014) is itself an extension of Leroux et al. (1999) to the temporal

framework. However, Riebler et al. (2016) discuss how latent effects that follow the Leroux

model cannot be scaled such that the model parameters lie in the marginal distribution

and do not depend on the spatial structure under study. Therefore, the parameters in the

spatio-temporal model proposed in Chapter 4 lie in the conditional distribution and do

depend on the spatial structure under study, which means that interpretation should be

done with care. Hence, it would be interesting to extend the model proposed in Chapter

3 to the spatio-temporal framework. One may think of two directions: first, to allow the

unstructured and spatially structured effects to evolve through time, or, second, to allow the

variance and mixing parameters to vary with time. This second case would be along the lines

of what was proposed by Nobre et al. (2005); Napier et al. (2016). In both cases, however,

there might be identifiability issues that should be investigated. Another potential research

avenue regarding the proposal in the second manuscript, is to allow the scaling parameters

to vary across space and time, similar to what Fonseca et al. (2023) proposed in a dynamic

linear model setting. Therefore, in this case, an area would be identified as a potential outlier

for a particular time point.

The work conducted in Chapter 5 was motivated by the available Ghanaian data, where the

EAs sampled in the GLSS are anonymised. Therefore, we did not know which of the EAs

in the GAMA were the observed 3%. With this information, one might extend the differ-

ent modelling approaches considered to include random effects, and, in particular, spatially

structured random effects. In the Bayesian framework, this would be similar to what was
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done by Wakefield et al. (2020). Then, it would be interesting to compare this Bayesian

approach to a machine learning method with spatially structured latent effects. For in-

stance, Krennmair and Schmid (2022) propose a random forest method for SAE data that

allows for random effects, and one may borrow ideas to include spatially structured random

effects. Further, Krennmair and Schmid (2022) propose a bootstrap procedure to measure

the uncertainty of their areal estimates of non-exchangeable data. It would be interesting to

investigate how the SC procedure might be altered to allow for areal random effects. Note

that although Dunn et al. (2018) propose various conformal prediction procedures for models

with random effects, the authors assume the random effects to be independent, which would

not be the case were they spatially structured. Further investigation is needed in this setting

of random forests with spatially structured latent effects.
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APPENDIX A

Appendix to Manuscript 1

A.1 Stan code for the proposed model

The stan code used to fit the proposed BYM2-Gamma model in the simulation studies

(section 3.3.1, Appendices A.3, A.4, A.5, A.6 and A.7) and in the analysis of the Zika

epidemic in Rio de Janeiro (section 3.3.2) is presented below.

Listing A.1: Stan code for the BYM2-Gamma proposed model

1 data {

2 int<lower=1> N; //Number or areas

3 int<lower=1> N_edges; // Total number of neighbours in the region

4 int<lower=1> p; // General case where there are p covariates, excluding the intercept

5 matrix[N,p] X;

6 int<lower=1, upper=N> node1[N_edges]; // vectors of neighbourhood

7 int<lower=1, upper=N> node2[N_edges]; // structure

8 int<lower=0> y[N]; // Zika counts

9 vector<lower=0>[N] log_E; // offset

10 real<lower=0> scaling_factor; // to scale the variance of the latent effects
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11 }

12

13 parameters {

14 real beta0; // intercept

15 vector[p] beta; // Fixed effects

16 real<lower=0> sigma; // marginal standard deviation

17 real<lower=0, upper=1> lambda; // mixing parameter

18 vector[N] theta; // unstructured components

19 vector[N] s; // spatially structured components

20 vector<lower=0>[N] kappa; // outlier indicator

21 real<lower=0> nu; // parameter included in the prior for each kappa_i

22 }

23

24 transformed parameters {

25 vector[N] convolved_re; // complete latent effect

26 for(i in 1:N){ convolved_re[i] = sqrt(1 − lambda) ∗ theta[i] +

sqrt(lambda/scaling_factor) ∗ s[i]; }

27 }

28

29 model {

30 for(i in 1:N)

31 y[i] ~ poisson_log(log_E[i] + beta0 + X[i,]∗beta + convolved_re[i] ∗

(sigma/sqrt(kappa[i])) );

32

33 target += −0.5 ∗ dot_self(s[node1] − s[node2]); // Prior for the spatially structured

components

34 sum(s) ~ normal(0, 0.001 ∗ N); // Soft sum−to−zero constraint to be able to have an
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intercept

35

36 for(j in 1:p){

37 beta[j] ~ normal(0.0, 10.0);

38 }

39

40 beta0 ~ normal(0.0, 10.0);

41 theta ~ normal(0.0, 1.0);

42 sigma ~ normal(0.0, 1.0);

43 lambda ~ uniform(0.0, 1.0);

44 kappa ~ gamma(nu/2.0,nu/2.0);

45 nu ~ exponential(1.0/4.0);

46 }

47

48 generated quantities {

49 vector[N] mu_log;

50 vector[N] lik;

51 for(i in 1:N){

52 mu_log[i]=log_E[i] + beta0 + X[i,]∗beta + sigma∗convolved_re[i]/sqrt(kappa[i]);

53 lik[i] = exp(poisson_log_lpmf(y[i] | mu_log[i])); // likelihood to compute the WAIC

54 }

55 }

A.2 Convergence diagnostics for the proposed model

In this section, we present the trace plots, effective sample sizes and ˆ︁R statistics for a few

selected parameters of the two parametrisations of the proposed model, when fitted to the
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data application in Section 3.3.2. For the mixture components, κ’s, we select the ones that

produced the best and the worst convergence diagnostics.

BYM-Gamma BYM2-logCAR
ESS ˆ︁R ESS ˆ︁R

κ92 1305 1.000 1614 0.999
κ13 2000 0.999 2838 0.999
λ 1958 1.009 1211 1.007
ν 2000 1.000 1817 1.000
σ 1912 1.001 1987 1.004

Table A.1: Effective sample sizes (ESS) and ˆ︁R statistics for some parameters when fitting
the two parametrisations of the proposed model to the Zika data. κ13 and κ92 were chosen
because they produced the best and the worst convergence diagnostics.
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Figure A.1: Trace plots for some parameters when fitting the two parametrisations of the
proposed model to the Zika data. κ13 and κ92 were chosen because they produced the best
and the worst convergence diagnostics.
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A.3 Simulation study: generating data from the pro-

posed BYM2-Gamma model

To assess the proposed BYM2-Gamma model’s ability to recover the truth, a simulation

study is conducted wherein data are generated from the proposed BYM2-Gamma model for

100 replicates. The n = 160 districts of Rio de Janeiro and their neighbourhood structure

are used. The latent effects’ unstructured and scaled spatially structured components are

generated as follows:

θ ∼ N (0, I), and u⋆ ∼ N (0,Q−
⋆ ),

where Q⋆ = h(D −W ), with h, the scaling factor, entirely defined by the spatial structure

of Rio de Janeiro. An algorithm to generate from the ICAR prior is presented in Chapter 2

of Rue and Held (2005). The mixing components that induce the marginal heavier tails, κ,

are independently generated from a Gamma(ν/2, ν/2), with ν fixed at 4 to allow for fairly

heavy tails. The latent effects are then computed as

bi =
[︂√

1− λθi +
√
λu⋆

i

]︂
× σ/

√
κi, i = 1, . . . , n,

where λ = 0.8 and σ = 0.3. Finally, a population of size n = 160 is generated from the

Poisson model

Yi ∼ P (Ei exp [β0 + bi]) ,

with β0 = −0.1 and the offsets, [E1, . . . , En]
⊤, taken from the analysis of the Zika counts.

Then, models BYM2-Gamma and Congdon are fitted to each of the 100 replicates, using

the same inference procedure as in section 3.3.1. The goal is to check if we recover the true

values used to generate the data, and to check if the WAIC is able to distinguish between

the proposed model and Congdon’s.

Figure A.2 shows that the WAIC is able to always choose the model that generated the data,
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namely the BYM2-Gamma model. Figure A.3 presents the posterior summaries obtained

from the BYM2-Gamma model across the 100 replicates for the intercept, β0, the mixing

parameter, λ, the hyperparameter, ν, and the overall standard deviation, σ. For all samples,

the 95% posterior credible intervals of all parameters contain the true values used to generate

the data. The interest lies particularly on the main parameters of the model, such as the

outlier indicators, κ. Figure A.4 plots the posterior summaries, for one replicate, of the

κ’s across all districts in Rio de Janeiro. Most of the 95% posterior credible intervals for

κ contain the true value used to generate the data. Moreover, for those neighbourhoods

that have outlying observations, the estimate for κ is quite concentrated around its true

value. This suggests that the model is able to point out the neighbourhoods with outlying

observations. Similarly, the true latent effects, b, are shown to be recovered by the 95%

posterior credible intervals in Figure A.5.
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0 25 50 75 100
Replicate
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IC

BYM2−Gamma Congdon

Figure A.2: WAIC across the 100 replicates for the proposed BYM2-Gamma model and
Congdon’s regarding the simulated data from the proposed BYM2-Gamma model. Dashed
lines: mean WAIC for each model

133



−0.20

−0.15

−0.10

−0.05

0 25 50 75 100
Replicate

β 0

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Replicate

λ

5

10

15

20

0 25 50 75 100
Replicate

ν

0.2

0.3

0.4

0 25 50 75 100
Replicate

σ

Figure A.3: Posterior summaries of the parameters for the proposed BYM2-Gamma model
across the 100 replicates regarding the simulated data from the proposed BYM2-Gamma
model.
Solid circle: posterior mean; Vertical lines: 95% posterior credible interval; Solid horizontal
line: true value.

0

1

2

3

4

A
B

O
LI

C
A

O
A

C
A

R
I

A
G

U
A

 S
A

N
TA

A
LT

O
 D

A
 B

O
A

 V
IS

TA
A

N
C

H
IE

TA
A

N
D

A
R

A
I

A
N

IL
B

A
N

C
A

R
IO

S
B

A
N

G
U

B
A

R
R

A
 D

A
 T

IJ
U

C
A

B
A

R
R

A
 D

E
 G

U
A

R
AT

IB
A

B
A

R
R

O
S

 F
IL

H
O

B
E

N
F

IC
A

B
E

N
TO

 R
IB

E
IR

O
B

O
N

S
U

C
E

S
S

O
B

O
TA

F
O

G
O

B
R

A
S

 D
E

 P
IN

A
C

A
C

H
A

M
B

I
C

A
C

U
IA

C
A

JU
C

A
M

O
R

IM
C

A
M

P
IN

H
O

C
A

M
P

O
 D

O
S

 A
F

O
N

S
O

S
C

A
M

P
O

 G
R

A
N

D
E

C
A

S
C

A
D

U
R

A
C

AT
E

T
E

C
AT

U
M

B
I

C
A

V
A

LC
A

N
T

I
C

E
N

T
R

O
C

ID
A

D
E

 D
E

 D
E

U
S

C
ID

A
D

E
 N

O
V

A
C

ID
A

D
E

 U
N

IV
E

R
S

IT
A

R
IA

C
O

C
O

TA
C

O
E

LH
O

 N
E

TO
C

O
LE

G
IO

C
O

M
P

LE
X

O
 D

O
 A

LE
M

A
O

C
O

PA
C

A
B

A
N

A
C

O
R

D
O

V
IL

C
O

S
M

E
 V

E
LH

O
C

O
S

M
O

S
C

O
S

TA
 B

A
R

R
O

S
C

U
R

IC
IC

A
D

E
L 

C
A

S
T

IL
H

O
D

E
O

D
O

R
O

E
N

C
A

N
TA

D
O

E
N

G
E

N
H

E
IR

O
 L

E
A

L
E

N
G

E
N

H
O

 D
A

 R
A

IN
H

A
E

N
G

E
N

H
O

 D
E

 D
E

N
T

R
O

E
N

G
E

N
H

O
 N

O
V

O
E

S
TA

C
IO

F
LA

M
E

N
G

O
F

R
E

G
U

E
S

IA
F

R
E

G
U

E
S

IA
 (

JA
C

A
R

E
PA

G
U

A
)

G
A

LE
A

O
G

A
M

B
O

A
G

A
R

D
E

N
IA

 A
Z

U
L

G
A

V
E

A
G

E
R

IC
IN

O
G

LO
R

IA
G

R
A

JA
U

G
R

U
M

A
R

I
G

U
A

D
A

LU
P

E
G

U
A

R
AT

IB
A

H
IG

IE
N

O
P

O
LI

S
H

O
N

O
R

IO
 G

U
R

G
E

L
H

U
M

A
IT

A
IN

H
A

U
M

A
IN

H
O

A
IB

A
IP

A
N

E
M

A
IR

A
JA

IT
A

N
H

A
N

G
A

JA
C

A
R

E
JA

C
A

R
E

PA
G

U
A

JA
C

A
R

E
Z

IN
H

O
JA

R
D

IM
 A

M
E

R
IC

A
JA

R
D

IM
 B

O
TA

N
IC

O
JA

R
D

IM
 C

A
R

IO
C

A
JA

R
D

IM
 G

U
A

N
A

B
A

R
A

JA
R

D
IM

 S
U

LA
C

A
P

JO
A

LA
G

O
A

LA
R

A
N

JE
IR

A
S

LE
B

LO
N

LE
M

E
LI

N
S

 D
E

 V
A

S
C

O
N

C
E

LO
S

M
A

D
U

R
E

IR
A

M
A

G
A

LH
A

E
S

 B
A

S
TO

S
M

A
N

G
U

E
IR

A
M

A
N

G
U

IN
H

O
S

M
A

R
A

C
A

N
A

M
A

R
E

M
A

R
E

C
H

A
L 

H
E

R
M

E
S

M
A

R
IA

 D
A

 G
R

A
C

A
M

E
IE

R
M

O
N

E
R

O
O

LA
R

IA
O

S
V

A
LD

O
 C

R
U

Z
PA

C
IE

N
C

IA
PA

D
R

E
 M

IG
U

E
L

PA
Q

U
E

TA
PA

R
A

D
A

 D
E

 L
U

C
A

S
PA

R
Q

U
E

 A
N

C
H

IE
TA

PA
R

Q
U

E
 C

O
LU

M
B

IA
PA

V
U

N
A

P
E

C
H

IN
C

H
A

P
E

D
R

A
 D

E
 G

U
A

R
AT

IB
A

P
E

N
H

A
P

E
N

H
A

 C
IR

C
U

LA
R

P
IE

D
A

D
E

P
IL

A
R

E
S

P
IT

A
N

G
U

E
IR

A
S

P
O

R
T

U
G

U
E

S
A

P
R

A
C

A
 D

A
 B

A
N

D
E

IR
A

P
R

A
C

A
 S

E
C

A
P

R
A

IA
 D

A
 B

A
N

D
E

IR
A

Q
U

IN
T

IN
O

 B
O

C
A

IU
V

A
R

A
M

O
S

R
E

A
LE

N
G

O
R

E
C

R
E

IO
 D

O
S

 B
A

N
D

E
IR

A
N

T
E

S
R

IA
C

H
U

E
LO

R
IB

E
IR

A
R

IC
A

R
D

O
 D

E
 A

LB
U

Q
U

E
R

Q
U

E
R

IO
 C

O
M

P
R

ID
O

R
O

C
H

A
R

O
C

H
A

 M
IR

A
N

D
A

R
O

C
IN

H
A

S
A

M
PA

IO
S

A
N

TA
 C

R
U

Z
S

A
N

TA
 T

E
R

E
S

A
S

A
N

T
IS

S
IM

O
S

A
N

TO
 C

R
IS

TO
S

A
O

 C
O

N
R

A
D

O
S

A
O

 C
R

IS
TO

V
A

O
S

A
O

 F
R

A
N

C
IS

C
O

 X
A

V
IE

R
S

A
U

D
E

S
E

N
A

D
O

R
 C

A
M

A
R

A
S

E
N

A
D

O
R

 V
A

S
C

O
N

C
E

LO
S

S
E

P
E

T
IB

A
TA

N
Q

U
E

TA
Q

U
A

R
A

TA
U

A
T

IJ
U

C
A

TO
D

O
S

 O
S

 S
A

N
TO

S
TO

M
A

S
 C

O
E

LH
O

T
U

R
IA

C
U

U
R

C
A

V
A

R
G

E
M

 G
R

A
N

D
E

V
A

R
G

E
M

 P
E

Q
U

E
N

A
V

A
S

C
O

 D
A

 G
A

M
A

V
A

Z
 L

O
B

O
V

IC
E

N
T

E
 D

E
 C

A
R

V
A

LH
O

V
ID

IG
A

L
V

IG
A

R
IO

 G
E

R
A

L
V

IL
A

 D
A

 P
E

N
H

A
V

IL
A

 IS
A

B
E

L
V

IL
A

 K
O

S
M

O
S

V
IL

A
 M

IL
IT

A
R

V
IL

A
 V

A
LQ

U
E

IR
E

V
IS

TA
 A

LE
G

R
E

Z
U

M
B

I

κ

Figure A.4: Posterior summaries (mean and 95% credible interval) of the κ parameters across
all the districts of Rio de Janeiro for one replicate when fitting the BYM2-Gamma model.
The stars correspond to the true generated κ’s and the red horizontal lines correspond to
the prior summary (solid line: prior mean, dashed lines: prior 95% credible interval).
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Figure A.5: Posterior summaries (mean and 95% credible interval) of the latent effects across
all the districts of Rio de Janeiro for one replicate when fitting the BYM2-Gamma model.
The stars correspond to the true generated latent effects.
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A.4 Simulation study: generating data from the pro-

posed BYM2-logCAR model

We now assess the proposed BYM2-logCAR model’s ability to recover the truth. Similar to

Appendix A.3, a simulation study is conducted wherein 100 replicated datasets are generated

from the proposed BYM2-logCAR model using the n = 160 districts of Rio de Janeiro. The

unstructured and spatially structured components, θ and u⋆ respectively, are independently

generated, like in Appendix A.3. The scaling mixture components, κ, are generated using

the spatial structure as follows:

z | νκ ∼ N
(︁
0, νκQ

−1
α,⋆

)︁
and κi = exp

(︂
−νκ

2
+ zi

)︂
, i = 1, . . . , n,

where Qα,⋆ = hQα = hα[D − αW ] is again the valid precision matrix that is scaled by hα,

which is computed based on D−αW . We impose α = 0.99 and define an arbitrary νκ = 0.3

to allow the κ’s to depart from 1. Like in Appendix A.3, the latent effects are then computed

as bi =
[︂√

1− λθi +
√
λu⋆

i

]︂
× σ/

√
κi, i = 1, . . . , n, where λ = 0.8 and σ = 0.3. Finally, the

population of size n = 160 is generated from the Poisson model, Yi ∼ P (Ei exp [β0 + bi]) ,

with β0 = −0.1 and the offsets, [E1, . . . , En]
⊤, taken from the analysis of the Zika counts.

The proposed BYM2-logCAR model and Congdon’s are both fitted on the 100 replicated

datasets using the same inference procedure as in section 3.3.1.

Figure A.6 shows that the WAIC always favours the proposed BYM2-logCAR model, which

generated the data. Figure A.7 shows how well the proposed BYM2-logCAR model is able to

recover the true values of the model parameters through the posterior summaries across the

100 replicates for the intercept, β0, the mixing parameter, λ, the hyperparameter, νκ, and

the overall standard deviation, σ. Across the 100 replicates, the proposed BYM2-logCAR

model always captures the truth, as the posterior 95% credible intervals (vertical lines)

always cover the true values of the parameters (solid horizontal lines). Regarding the scaling
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mixture components, κ, Figure A.8 shows the posterior summaries for one replicate and

generated values, across all districts. The κ’s generated following this structured prior seem

to vary less than the ones generated from the independent gamma priors in Appendix A.3.

Therefore, the posterior credible intervals are narrower than the ones from the simulation

study presented in Appendix A.3. Regardless, the posterior 95% credible intervals almost

always cover the true mixture components. Similarly, the generated latent effects plotted in

Figure A.9 are recovered by the posterior 95% credible intervals.
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1340

0 25 50 75 100
Replicate

W
A

IC

BYM2−logCAR Congdon

Figure A.6: WAIC across the 100 replicates for the proposed BYM2-logCAR model and
Congdon’s regarding the simulated data from the proposed BYM2-logCAR model. Dashed
lines: mean WAIC for each model
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Figure A.7: Posterior summaries of the parameters for the proposed BYM2-logCAR model
across the 100 replicates regarding the simulated data from the proposed BYM2-logCAR
model.
Solid circle: posterior mean; Vertical lines: 95% posterior credible interval; Solid horizontal
line: true value.
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Figure A.8: Posterior summaries (mean and 95% credible interval) of the κ parameters across
all the districts of Rio de Janeiro for one replicate when fitting the BYM2-logCAR model.
The stars correspond to the true generated κ’s and the red horizontal lines correspond to
the prior summary (solid line: prior mean, dashed lines: prior 95% credible interval).
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Figure A.9: Posterior summaries (mean and 95% credible interval) of the latent effects across
all the districts of Rio de Janeiro for one replicate when fitting the BYM2-logCAR model.
The stars correspond to the true generated latent effects.
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A.5 Simulation study: no outlying areas

To confirm that the proposed model does not detect outliers when unnecessary, a simulation

study is again conducted on the map of Rio de Janeiro without contaminating any district.

Data are generated 100 times as follows:

Yi ∼ P (Ei exp[β0 + bi]) , i = 1, . . . , n,

with n = 160, β0 = −0.1, E = [E1, . . . , En]
⊤ taken from the Zika data analysis. The latent

effects, b = [b1, . . . , bn]
⊤, are simulated once from a PCAR distribution:

b ∼ N
(︁
0, σ2

b [D − αW ]−1)︁ ,
with σb =

√
0.2 and α = 0.7. Figure A.10 shows the map of the 50th replicate of the

simulated dataset, where no district seems to be an outlier with respect to the whole city.

Again, the two parametrisations of the proposed model are compared to Congdon’s, using

the same prior distributions as described in section 3.3.1.

In terms of WAIC, the proposed models seem to perform best, as shown in Figure A.11. For

this simulation study, the interest lies particularly in comparing the outliers detections from

the two versions of the proposed model and Congdon’s. Figure A.12 presents the districts

that are found to be outliers by the BYM2-Gamma proposed model (a), the BYM2-logCAR

proposed model (b) and Congdon’s (c). The BYM2-Gamma model only identifies one dis-

trict, Freguesia, to be a potential outlier in 2% of the replicates. The BYM2-logCAR and

Congdon’s models on the other hand detect Freguesia up to 8% of the times, showing more

sensitivity to the neighbourhood structure. Congdon’s model further identifies 5 districts as

potential outliers although no district was contaminated.
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Figure A.10: Standardised morbidity ratio for the 50th simulation without outliers.
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Figure A.11: WAIC across the 100 replicates for the proposed models and Congdon’s for the
simulation without outliers. Dashed lines: mean WAIC for each model
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Figure A.12: Maps of the percentages of outliers as indicated by κur < 1 across the r =
1, . . . , 100 replicates, where κur is the upper bound of the posterior 95% credible interval of
κ in the rth replicate of the simulated dataset without outliers. a) BYM2-Gamma model;
b) BYM2-logCAR model; c) Congdon’s model.

A.6 Simulation study: distant outliers in France

In this simulation study, 20 distant French departments are contaminated such that outliers

are created. Similar to the simulation study presented in Section 3.3.1, there are no covariates

in this analysis, and all areas are first imposed a relative risk of 1, µi = 1. The same five offset

categories are defined. Based on these categories, we select 20 non-neighbouring departments

to be outliers. Four departments are chosen from each offset category. That is, there are 4

outliers within the smallest offset group, 4 within the second-to-smallest offset group, and

so on. Then, within each group of four departments, the relative risks are contaminated
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into outliers by setting the relative risks to be equal to µi′ = 0.25, µi′′ = 0.5, µi′′′ = 1.5 and

µi′′′ = 2. The resulting outliers are mapped in Figure A.13, highlighting the offset sizes and

imposed relative risks. Again, R = 100 populations of size n = 96 are created by generating

the number of cases Yi ∼ P (Eiµi). The same four models with priors defined in section

3.3.1 are fitted through rstan. After 20,000 iterations with a burn-in period of 10,000 and a

thinning factor of 10, the 2 MCMC chains attained convergence as assessed by trace plots,

effective sample sizes and ˆ︁R statistics.

Offset category Small Medium low Medium Medium high High

Relative risk 0.25 0.5 1.5 2

Figure A.13: French departments arbitrary chosen to be outliers in the simulation study with
distant outliers. Colours depict the offset category based on the empirical offset quantiles.
The points represent the relative risk set to each outlying district.

In terms of WAIC (Watanabe and Opper, 2010), for which smaller values are preferred, the

proposed BYM2-Gamma model performs similarly to Congdon’s, as shown in Figure A.14.

The BYM2-Gamma and original Congdon models always perform better than the mod-

els that include spatially structured scaling mixture components. On average, the BYM2-

logCAR and Congdon-logCAR models yield a criterion of 983, while the BYM2-Gamma and
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Congdon models present a WAIC of 958 and 959, respectively.
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Figure A.14: WAIC across the 100 replicates for the proposed models and Congdon’s, in the
simulation study with distant outliers. Dashed lines: mean WAIC for each model.

The models’ performances are also compared in terms of MSE, as shown in Figure A.15.

As expected, all models result in MSEs that are smaller in the areas with large offsets, and

MSEs that are larger in the areas with small offsets. Additionally, all models tend to better

fit the data in non-outlying areas, that is in the areas with a relative risk of 1. Regarding

the outlying areas only, the largest MSEs are observed for extreme risks of 2 whereas the

smallest correspond to extreme risks of 0.5. On average over the 100 replicated datasets and

across all areas, the MSEs are of 0.0010 for the BYM2-Gamma and Congdon models, and

0.0011 for both log-CAR parametrisations.
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Figure A.15: MSE over the 100 replicates for the proposed models and Congdon’s according
to the true relative risk and the offset size, in the simulation study with distant outliers.

Regarding the detection of outliers, which is the main focus of this simulation study, Table

A.2 shows how often each model accurately detects districts as outliers (sensitivity) and

non-outliers (specificity), depending on the offset category. Additionally, Figure A.16 shows

how often each district is detected as a potential outlier by the four models, while indicating

the offset sizes. Recall, area i is detected as an outlier when κu,i < 1, where κu,i is the upper

bound of the 95% posterior credible interval of κi. Overall, all models are able to find all

of the contaminated districts. Additionally, except for Congdon’s model with the logCAR

parametrisation, none of the models tend to point out as potential outliers too many of the

non-contaminated areas (specificity greater than 99%).
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Offset category BYM2-Gamma BYM2-logCAR Congdon Congdon-logCAR

Sensitivity

Small 100.0 100.0 100.0 100.0
Medium low 100.0 100.0 100.0 100.0

Medium 100.0 100.0 100.0 100.0
Medium high 100.0 100.0 100.0 100.0

High 100.0 100.0 100.0 100.0
Overall 100.0 100.0 100.0 100.0

Specificity

Small 99.9 99.2 100.0 88.1
Medium low 99.9 100.0 99.9 84.0

Medium 99.8 100.0 99.9 88.7
Medium high 99.9 99.8 99.9 79.5

High 99.9 99.8 100.0 87.1
Overall 99.9 99.7 99.9 85.5

Table A.2: Sensitivity and specificity of the outlier detection for each model depending on
the offset size, in the simulation study with distant outliers.

BYM2−Gamma BYM2−logCAR Congdon Congdon−logCAR

0 50 100
Outlier detected (%)

Figure A.16: Percentage of times among 100 replicates that the outliers were identified by
each model, in the simulation study with distant outliers. The outliers are pointed out when
κu < 1, where κu is the upper bound of the posterior 95% credible interval of κ.

A.7 Simulation studies on the map of Rio de Janeiro

In this section, we present the results from simulation studies conducted using the map of Rio

de Janeiro wherein some arbitrary areas are contaminated into outlying areas, to assess the

performance of the proposed model in comparison to the one proposed by Congdon (2017).

Similar to Section 3.3.1, the design of the simulation studies is inspired by Richardson et al.

144



(2004). The n = 160 districts of Rio de Janeiro and their neighbourhood structure are used

as the region of study. In the first simulation study (section A.7.1), areas that are far from

each other are contaminated into outliers. In the second simulation study (section A.7.2),

neighbouring areas are contaminated into outliers. In the third simulation study (section

A.7.3), neighbouring areas are contaminated and we include a covariate. In all simulation

studies, the goal is to identify the correct districts as outliers.

A.7.1 Distant outliers in Rio

In the first simulation study, 20 districts are arbitrarily chosen to be outliers. The goal is

for our proposed model to accurately identify the outliers. Out of simplicity, there are no

covariates included in the generating process nor when fitting the models. First, all n = 160

latent effects, which correspond to log relative risks in this covariate-free simulation study,

are set to 0: bi = 0, i = 1, . . . , n. Then, the offsets [E1, . . . , En]
⊤ are taken from the real data

application to Zika counts that is presented in section 3.3.2. We define five offset categories

based on the empirical offset quantiles. The first category corresponds to the smallest offsets

and the fifth category, to the largest ones. The categories are termed "Small" for E ≤ 59.1,

"Medium low" for E ∈ (59.1, 112.4], "Medium" for E ∈ (112.4, 177.2], "Medium high" for

E ∈ (177.2, 267.2) and "High" for E > 267.2. Based on these categories, we select 20

districts to be outliers. Four districts are chosen from each offset category. That is, there

are 4 outliers within the smallest offset group, 4 within the second-to-smallest offset group,

and so on. Then, within each group of four districts, the relative risks are contaminated

into outliers by setting the log relative risks to be equal to bi′ = ln(0.25), bi′′ = ln(0.5),

bi′′′ = ln(1.5) and bi′′′′ = ln(2). Figure A.17 maps the 160 districts of Rio de Janeiro, showing

which areas are outliers based on the offset category and the contaminated relative risk.

Again, all the white areas have a relative risk of 1. Finally, R = 100 populations of size

n = 160 are created according to a hierarchical Poisson model. That is, Yi ∼ P (Ei exp[bi]).

The only source of randomness across the 100 replicates comes from the repeated sampling
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from a Poisson distribution.

Offset category Small Medium low Medium Medium high High

Relative risk 0.25 0.5 1.5 2

Figure A.17: Districts of Rio de Janeiro city arbitrary chosen to be outliers in the simulation
study with distant outliers. Colors depict the offset category based on the empirical offset
quantiles. The points represent the relative risk set to each outlying district.

Using the two scale mixtures described in section 3.2.1, the Congdon model is compared to

the proposed model. The first version of the proposed model is denoted BYM2-Gamma and

the second, BYM2-logCAR. The original Congdon model is termed Congdon, whereas the

one with spatially structured scale mixture components is denoted Congdon-logCAR. For

the four models, the intercept is given a quite vague prior: β0 ∼ N (0, 102) and the mixing

parameter, λ, is assigned a uniform, U(0, 1), prior distribution. The same N+(0, 1) prior

is considered for σ, which is a marginal standard deviation in the proposed model, while

it is a conditional standard deviation in Congdon’s. Finally, in the BYM2-Gamma and

Congdon models, the prior distribution for the κ’s is described in (3.5) with ν ∼ Exp(1/4).

For the BYM2-logCAR and Congdon-logCAR parametrisations, the κ’s follow a priori the

distribution in (3.6) and we set ν ∼ Exp(1/0.3).

146



The models are fitted through the R package rstan (Stan Development Team, 2020). For

each dataset, the MCMC procedure consists of 2 chains of 20,000 iterations with a 10,000

burn-in period and a thinning factor of 10. Convergence of the chains is assessed through

trace plots, effective sample sizes and the ˆ︁R statistic (Gelman and Rubin, 1992; Vehtari

et al., 2021).

In terms of WAIC (Watanabe and Opper, 2010), the proposed BYM2-Gamma model per-

forms better than Congdon’s, on average, as shown in Figure A.18. The BYM2-Gamma and

original Congdon models always perform better than the models that include spatially struc-

tured scaling mixture components. On average, the BYM2-logCAR model yields a criterion

of 1289.5 versus 1288.6 for the Congdon-logCAR model, while the BYM2-Gamma model

presents a WAIC of 1260.9, versus 1263.9 for Congdon’s.
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Figure A.18: WAIC across the 100 replicates for the proposed models and Congdon’s in the
simulation study with distant outliers in Rio de Janeiro. Dashed lines: mean WAIC for each
model.

The models’ performances are also compared in terms of MSE, as shown in Figure A.19.

Again, as expected, all models yield smaller MSEs in areas with larger offsets. Additionally,

all models tend to better fit the data in areas that are not outliers, that is in the areas with a

relative risk of 1. On average over the 100 replicated datasets and across all areas, the MSEs
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are of 0.005 for the BYM2-Gamma model, 0.006 for Congdon and 0.008 for both log-CAR

parametrisations.
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Figure A.19: MSE over the 100 replicates for the proposed models and Congdon’s according
to the true relative risk and the offset size in the simulation study with distant outliers in
Rio de Janeiro.

Regarding the detection of outliers, which is the main focus of this simulation study, Table

A.3 shows how often each model accurately detects districts as outliers (sensitivity) and non-

outliers (specificity), depending on the offset category. Additionally, Figure A.20 shows how

often each district is detected as a potential outlier by the four models, while indicating the

offset sizes. Area i is detected as an outlier when κu,i < 1, where κu,i is the upper bound of

the 95% posterior credible interval of κi. Overall, all models are able to find the contaminated

districts in the four upper offset categories. When the offsets are the smallest, all models

detect the outliers only half of the time, with a slight advantage for the proposed models (e.g.

sensitivity of 55.5 for BYM2-Gamma versus 50.25 for Congdon). In this simulation study

where outliers are distant, the parametrisations with spatially structured scaling mixture

components tend to identify slightly more outliers than are truly present in the data (e.g.

specificities of 95.4 versus 90.2 for BYM2-logCAR and Congdon-logCAR, respectively).
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Offset category BYM2-Gamma BYM2-logCAR Congdon Congdon-logCAR

Sensitivity

Small 55.50 54.00 50.25 49.50
Medium low 94.25 94.75 91.50 94.75

Medium 99.50 94.75 98.50 95.00
Medium high 100.00 99.00 100.00 99.50

High 100.00 100.00 100.00 98.50
Overall 89.85 88.50 88.05 87.45

Specificity

Small 99.93 97.82 99.93 95.04
Medium low 100.00 95.39 100.00 90.21

Medium 100.00 99.64 100.00 98.93
Medium high 99.93 99.57 99.93 98.11

High 99.96 99.89 99.96 99.25
Overall 99.96 98.46 99.96 96.31

Table A.3: Sensitivity and specificity of the outlier detection for each model depending on
the offset size in the simulation study with distant outliers in Rio de Janeiro.

Congdon Congdon−logCAR

BYM2−Gamma BYM2−logCAR

0 50 100
Outlier detected (%)

Figure A.20: Percentage of times among 100 replicates that the outliers were identified by
each model, in the simulation study with distant outliers in Rio de Janeiro. The outliers are
pointed out when κu < 1, where κu is the upper bound of the posterior 95% credible interval
of κ.
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A.7.2 Neighbouring outliers in Rio

In this second simulation study using the map of Rio de Janeiro, 20 districts are contaminated

such that 2 groups of 10 neighbouring outliers are created. Once again, there are no covariates

in this analysis and all areas are first imposed a relative risk of 1. Similarly to section A.6,

the offsets [E1, . . . , En]
⊤ are taken from the Zika data analysis from section 3.3.2. Hence,

the same five offset categories are defined. Then, 20 districts are selected to be outliers,

such that each group of 10 neighbouring outliers contains 2 areas of each offset category.

Within each such pair of districts, the relative risks are contaminated into outliers by setting

bi = ln(0.5) and bi′ = ln(1.5). The resulting outliers are mapped in Figure A.21, highlighting

the offset sizes and imposed relative risks. Again, R = 100 populations of size n = 160 are

created by generating the number of cases Yi ∼ P (Ei exp[bi]). The same four models with

priors defined in section A.6 are fitted through rstan. After 20,000 iterations with a burn-in

period of 10,000 and a thinning factor of 10, the 2 MCMC chains attained convergence as

assessed by trace plots, effective sample sizes and ˆ︁R statistics.
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Offset category Small Medium low Medium Medium high High

Relative risk 0.5 1.5

Figure A.21: Districts of Rio de Janeiro city arbitrary chosen to be outliers in the simulation
study with neighbouring outliers. Colors depict the offset category based on the empirical
offset quantiles. The points represent the relative risk set to each outlying district.

In terms of WAIC, as shown in Figure A.22, Congdon performs slightly worse than the

other three models, with an average value of 1275, versus 1270 for Congdon-logCAR the two

proposals.
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Figure A.22: WAIC across the 100 replicates for the proposed models and Congdon’s in the
simulation study with neighbouring outliers in Rio de Janeiro. Dashed lines: mean WAIC
for each model.

In terms of MSE, as expected, all models fit better the data in areas with higher offsets than

in areas with smaller offsets, as shown in Figure A.23. Again, all models better fit the data

in areas that are not outliers, areas with a relative risk of 1. Over the 100 replicates and all

areas, the four models perform similarly, with an average MSE of 0.004.
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Figure A.23: MSE over the 100 replicates for the proposed models and Congdon’s according
to the true relative risk and the offset size, in the simulation study with neighbouring outliers
in Rio de Janeiro.
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Regarding the detection of outliers, the results are summarised in Table A.4 and Figure A.24.

Similarly to the previous simulation study with distant outliers, both models with spatially

structured κ’s tend to identify more outliers than truly present in the data (e.g. overall

specificities of 97% and 96.5% for BYM2-logCAR and Congdon-logCAR, respectively, versus

99.9% for both BYM2-Gamma and Congdon). In the smallest offset category, all models

often miss the outliers, with a clear advantage for the models with spatially structured

κ’s (e.g. sensitivity of about 30% for BYM2-Gamma and Congdon versus 64% for BYM2-

logCAR and Congdon-logCAR). Regardless of the offset size, the BYM2-Gamma model

performs better than Congdon’s in terms of detected outliers. In particular, in the third

offset category, the BYM2-Gamma model misses outliers only 1.5% of the time versus 18.75%

for Congdon’s model.

Offset category BYM2-Gamma BYM2-logCAR Congdon Congdon-logCAR

Sensitivity

Small 35.25 64.25 30.50 64.00
Medium low 80.25 93.00 64.25 89.00

Medium 98.50 100.00 81.25 96.25
Medium high 100.00 100.00 91.00 100.00

High 100.00 100.00 93.75 97.75
Overall 82.80 91.45 72.15 89.40

Specificity

Small 100.00 100.00 99.93 100.00
Medium low 99.96 98.07 99.96 98.00

Medium 99.89 93.79 99.93 92.50
Medium high 99.96 96.50 100.00 95.79

High 99.96 96.36 99.71 96.21
Overall 99.96 96.96 99.91 96.51

Table A.4: Sensitivity and specificity of the outlier detection for each model depending on
the offset size in the simulation study with neighbouring outliers in Rio de Janeiro.

153



Congdon Congdon−logCAR

BYM2−Gamma BYM2−logCAR

0 50 100
Outlier detected (%)

Figure A.24: Percentage of times among 100 replicates that the outliers were identified by
each model, in the simulation study with neighbouring outliers in Rio de Janeiro. The
outliers are pointed out when κu < 1, where κu is the upper bound of the posterior 95%
credible interval of κ.

A.7.3 Neighbouring outliers with a covariate in Rio

In this third simulation study using the map of Rio de Janeiro, the same offset categories

and 2 groups of 10 neighbouring outliers as in section A.7.2 are chosen. Again, the goal

is to identify the outlying areas. First, all n = 160 latent effects are generated following

a proper CAR (PCAR) distribution: b ∼ N
(︁
0, σ2 [D − αW ]−1)︁ , where the matrices W

and D are computed as defined in Section 3.1.1, using the neighbourhood structure of Rio

de Janeiro. We set σ2 = 0.1 and α = 0.99 such that the proper spatial distribution is

close to an ICAR distribution. Following Section A.7.2, four districts are chosen from each

offset category and their generated latent effects are contaminated as bcontami = bi + ei,

with ei ∼ U
(︁
2max(|b(1)|, |b(n)|), 3max(|b(1)|, |b(n)|)

)︁
, where b(1) and b(n) denote the minimum

and maximum generated latent effects, respectively. Figure A.25 (a) maps the resulting
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160 latent effects, showing which areas are outliers based on the offset category. Finally,

R = 100 populations of size n = 160 are created according to the hierarchical Poisson

model Yi ∼ P (Ei exp[β0 + βxi + bi]), where β0 = 2.5, β = −3.5 and the covariate x is the

development index taken from the real data application to Zika counts presented in Section

3.3.2. The resulting relative risks are mapped in Figure A.25 (b), showing the outlying areas

based on the offset category. Once again, the same four models are fitted through rstan

and convergence of the 2 MCMC chains was attained after 20,000 iterations with a burn-in

period of 10,000 and a thinning factor of 10.

Offset Small Medium low Medium Medium high High

−1 0 1
Latent effect

(a)

Offset Small Medium low Medium Medium high High

2 4 6 8
Relative risk

(b)

Figure A.25: Rio de Janeiro maps of the latent effects (a) and relative risks (b) after contam-
ination, in the simulation study with a covariate and neighbouring outliers. The coloured
points depict the offset category based on the empirical offset quantiles.

In terms of WAIC, the proposed BYM2-Gamma model performed the best, with a mean

WAIC of 1383 over the 100 replicates. As shown in Figure A.26, the other three models’

performances are similar to each other, with average values of 1389 (Congdon), 1390 (BYM2-

logCAR) and 1388 (Congdon-logCAR).
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Figure A.26: WAIC across the 100 replicates for the proposed models and Congdon’s, in the
simulation study with a covariate and neighbouring outliers in Rio de Janeiro. Dashed lines:
mean WAIC for each model.

Figure A.27 shows each model’s MSE for every districts across the different offset categories.

The four models yield again smaller MSEs in districts with relative risks closer to 1, regardless

of the offset size. Additionally, regardless of the relative risk size, all models reach smaller

MSEs values for larger offset values. Overall, the proposed BYM2-Gamma model performed

better with a mean MSE of 0.0189, versus 0.0212, 0.0204 and 0.0202, for the proposed

BYM2-logCAR, Congdon and Congdon-logCAR models, respectively.
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Figure A.27: MSE over the 100 replicates for the proposed models and Congdon’s according
to the true relative risk and the offset size, in the simulation study with a covariate and
neighbouring outliers in Rio de Janeiro.

Table A.5 shows the sensitivities and specificities of outlier identification produced by each

model across the five offset categories. The proposed BYM2-Gamma model performs better

in both identifying the correct outliers, and not pointing out the non-contaminated areas.

Overall, Congdon’s model misses some outlying districts 8% of the time, and up to 19% of the

time, in the fourth offset category. The proposed spatially structured prior for the mixture

components improved Congdon’s model performance, where Congdon-logCAR only misses

2% of the contaminated areas, overall. Additionally, Congdon’s model tends to capture more

outliers than were contaminated, like the western and eastern non-contaminated districts

that are detected 75% of the time, as shown in Figure A.28.
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Offset category BYM2-Gamma BYM2-logCAR Congdon Congdon-logCAR

Sensitivity

Small 98.5 96.0 99.2 97.0
Medium low 100.0 99.2 90.4 99.0

Medium 100.0 99.8 90.9 99.0
Medium high 100.0 99.5 81.8 99.5

High 100.0 99.8 100.0 99.0
Overall 99.7 98.8 92.5 98.7

Specificity

Small 99.3 99.9 99.1 99.9
Medium low 98.4 99.5 96.9 98.5

Medium 99.4 98.2 95.6 96.8
Medium high 99.8 99.9 99.4 99.9

High 98.3 96.3 97.9 96.3
Overall 99.0 98.8 97.8 98.3

Table A.5: Sensitivity and specificity of the outlier detection for each model depending on
the offset size, in the simulation study with a covariate and neighbouring outliers in Rio de
Janeiro.
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Figure A.28: Percentage of times among 100 replicates that the outliers were identified by
each model, in the simulation study with a covariate and neighbouring outliers in Rio de
Janeiro. The outliers are pointed out when κu < 1, where κu is the upper bound of the
posterior 95% credible interval of κ.
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A.8 Comparison with the model proposed by Corpas-

Burgos and Martinez-Beneito (2020)

Table A.6 compares the definitions of the proposed model, and the ones proposed by Cong-

don (2017) and Corpas-Burgos and Martinez-Beneito (2020) (CB-MB). Further, Table A.6

provides a comparison of the models depending on the spatial dependence parameter, λ.

Model definitions
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1− λθi +

√︁
λ/hui

)︂
λ = 0 λ = 1

Congdon bi
i.i.d.∼ N (0, σ2/κi) bi | b(−i) ∼ N

⎛⎜⎜⎜⎜⎜⎜⎝
1⎛⎝ n∑︂

j=1

wij

⎞⎠
n∑︂

j=1

wijκjbj ,
σ2

κi

⎛⎝ n∑︂
j=1

wij

⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎠

CB-MB bi
i.i.d.∼ N

(︁
0, σ2/

√
ci
)︁

bi | b(−i) ∼ N

⎛⎜⎜⎜⎜⎜⎜⎝
1⎛⎝ n∑︂

j=1

wij
√
cj

⎞⎠
n∑︂

j=1

wij
√
cjbj ,

σ2

√
ci

⎛⎝ n∑︂
j=1

wij
√
cj

⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎠

Our Proposal bi
i.i.d.∼ N (0, σ2/κi) bi | b(−i) ∼ N

⎛⎜⎜⎜⎜⎜⎜⎝
1⎛⎝ n∑︂

j=1

wij

⎞⎠
n∑︂

j=1

wij

√︃
κj

κi
bj ,

σ2/h

κi

⎛⎝ n∑︂
j=1

wij

⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎠
Table A.6: Comparison of the models introduced by Congdon (2017), Corpas-Burgos and
Martinez-Beneito (2020) (CB-MB), and the heavy-tailed BYM2 proposal. In our proposal,
the unstructured component θi is independent of the spatially structured component ui.
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Appendix to Manuscript 2

B.1 Stan code for the proposed Heavy Rushworth model

Listing B.1: Stan code for the Heavy Rushworth proposed model

1 data {

2 int<lower=1> N; // number of areas

3 int<lower=1> TT; // number of time points

4 int<lower=1> NT; // number of areas ∗ number of time points

5 vector<lower=1, upper=N>[N] d; // vector of the number of neighbours for each area

6 matrix<lower=0, upper=1>[N,N] W; // matrix of spatial weights

7 vector[N] zeros;

8 int<lower=0> y[NT]; // long vector of cases ordered by time: (y_11, ..., y_n1, ...,

y_1T, ..., y_nT)

9 vector[NT] log_E; // Offset in the log scale

10 vector[NT] X; // vector of covariates

11 }

12
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13 parameters {

14 real beta0; // intercept

15 real beta; // regression parameter

16 real<lower=0> sigma; // conditional std deviation

17 real<lower=0, upper=1> lambda; // spatial dependence parameter

18 real<lower=−1, upper=1> alpha; // temporal dependence parameter

19 vector<lower=0>[N] kappa; // outlier indicator

20 real<lower=0> nu; // hyperparameter for kappa

21 vector[NT] s; // spatial effects

22 }

23

24 transformed parameters {

25 matrix[N,N] PrecMat; // Precision matrix for the proposed model

26 PrecMat = (1/sigma^2)∗(diag_matrix(kappa .∗ (1−lambda + lambda∗d)) − lambda ∗ W

.∗ (kappa∗(kappa')));

27 }

28

29 model {

30 y ~ poisson_log(log_E + beta0 + X∗beta + s);

31

32 // Prior for the latent effects at time 1

33 s[1:N] ~ multi_normal_prec(zeros, PrecMat);

34 // soft sum−to−zero constraint to avoid identifiability issues with the intercept:

35 sum(s[1:N]) ~ normal(0, 0.001 ∗ N);

36 for(t in 2:TT){

37 // Prior for the latent effects at time 2, ..., T
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38 s[((t−1)∗N+1):((t−1)∗N+N)] ~

multi_normal_prec(alpha∗s[((t−2)∗N+1):((t−2)∗N+N)], PrecMat);

39 }

40

41 beta0 ~ normal(0.0, 1.0);

42 beta ~ normal(0.0, 1.0);

43 nu ~ exponential(1.0/4.0);

44 sigma ~ normal(0.0,0.1);

45 lambda ~ uniform(0.0,1.0);

46 kappa ~ gamma(nu/2.0, nu/2.0);

47 alpha ~ uniform(−1.0,1.0);

48 }

B.2 Simulation study: data generated from the proposed

model

In this section, we present the results from a simulation study where 100 replicated datasets

are generated from the proposed model. The aim is to verify that the proposal is able to

recover the true values of all the model parameters. Similar to Section 4.3.1, the n = 33

boroughs of Montreal are considered over T = 52 time points. The overall log risk is set to

β0 = −1 and the offsets are taken from a Poisson distribution, Ei ∼ Pois(40), i = 1, . . . , n.

To generate the n× T latent effects bit, the scaling mixture components κ1, . . . , κn are first

generated from a Gamma(ν/2, ν/2) distribution, with ν = 4. Then, the latent effects are

generated from the proposed model (4.3), with λ = 0.9, σ = 0.1, and α = 1. Finally, the

datasets are created such that Yit ∼ Pois (Ei exp (β0 + bit)) , i = 1, . . . , n, t = 1, . . . , T.

Again, similar to Section 4.3.1, the proposed model is fitted both assuming a uniform prior
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on α and fixing α = 1, denoted HR(α) and HR(1), respectively. The rstan R package is

used (Stan Development Team, 2020) and convergence of the two MCMC chains is attained

after 5,000 iterations with a burn-in period of 2,500 and a thinning factor of 5, as assessed

through trace plots, ˆ︁R statistics (Gelman and Rubin, 1992; Vehtari et al., 2021) and effective

sample sizes.

Figure B.1 shows that across the 100 replicates, the posterior summaries (mean and 95%

credible interval) obtained from fitting both versions of the proposed model cover the true

values of all the scalar parameters. It is worth mentioning that the prior for α is a uniform

distribution over the interval (-1,1). Since this prior does not include 1, the posterior 95%

credible intervals for α cannot not recover 1, although the estimation is close to the truth.

Interestingly, λ tends to be underestimated on average, with posterior means approximately

0.65. However, the posterior 95% credible intervals do recover the true values for this pa-

rameter. Figure B.2 shows the posterior summaries for the scaling mixture components

resulting from both parametrisations in the first simulation replicate. The results for the

other 99 replicates are similar to the ones presented here and across all the replicates and all

boroughs. For these κ parameters, the 95% posterior credible intervals’ coverage rates are

94.6% and 94.5% for HR(α) and HR(1), respectively. Further, the prior summaries (horizon-

tal solid line and dashed lines) help visualise that the proposal is able to differ from the prior

and learn from the data in order to identify potential outliers (e.g., Pierrefonds-Roxboro,

Rosemont-La-Petite-Patrie). Finally, Figure B.3 summarises the latent effects’ posterior dis-

tribution estimated over time by HR(1) and HR(α) across 5 different replicates (columns)

and for 5 different boroughs (rows). Through both models, the posterior means follow the

true trend of the latent effects and the credible intervals capture the true values 95.5% and

95.3% of the time, for HR(α) and HR(1), respectively.
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Figure B.1: Parameters’ posterior summaries obtained from both versions of the proposed
model across the 100 replicates in the simulation study where data are generated from the
proposed model. Circles: posterior means; Vertical lines: posterior 95% credible intervals;
Dashed lines: true parameter values.
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Figure B.2: Posterior summaries for the scaling mixture components obtained from both
versions of the proposed model in the first replicate of the simulation study where data are
generated from the proposed model. Circles: posterior means; Vertical lines: posterior 95%
credible intervals; Crosses: true values; Solid horizontal line: prior mean; Dashed horizontal
lines: prior 95% credible interval.
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Figure B.3: Posterior summaries for the latent effects obtained over time from both versions
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of the simulation study where data are generated from the proposed model. Solid coloured
lines: posterior means over time; Dashed coloured lines: 95% posterior credible intervals;
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B.3 Supplementary material for the simulation study shown

in Section 4.3.1

In this section, additional figures are presented to complete Section 4.3.1. Figure B.4 shows

the latent effects over time before (dashed gray line) and after (solid black line) contamination

for the 5 outliers in both simulation scenarios. As a comparison, the distribution of the

latent effects of a non-contaminated borough (Ahuntsic-Cartierville) is also shown over time

under both simulation scenarios. Figure B.5 summarises the WAIC and MSE obtained for

each model and each scenario. The WAIC values are shown for each replicate and the

MSEs are distinguished between the offset sizes. For each model and each replicate, let

Y = [Y11, . . . , Yn1, . . . , Y1T , . . . , YnT ]
⊤, and the WAIC is computed as follows: WAIC =

−2
∑︁

i,t ln (E [f (Yit | θ) | Y ]) + 2
∑︁

i,t V [ln (f (Yit | θ)) | Y ] , where f(· | θ) is the likelihood

that corresponds to a particular model with set of parameters, θ.
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Figure B.4: Generated latent effects over time for the five outliers of each simulation scenario
and Ahuntsic-Cartierville. Dashed gray line: latent effects generated from the Rushworth
model; Solid black line: latent effects after contamination. The periods where the two lines
overlap correspond to periods of non-contamination (rjt = 0).
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Figure B.5: Top row: WAIC across the 100 replicates for each model and each simulation scenario under
the different fitted models. Dashed lines: mean WAIC across the 100 replicates. Bottom row: Average
MSE over the 100 simulation replicates for each model, offset category and scenario. The results for the
contaminated boroughs are distinguished from the non-contaminated ones.

B.4 French regions

Figure B.6 below displays the French map where the departments are coloured according to

their region. To help discuss the results from the analysis of COVID-19 hospitalisations in

France during the second wave, the same colours are used here, in Figure B.6, and in Figure

4.5 in Section 4.3.3.
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Figure B.6: Map of the French regions.
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APPENDIX C

Appendix to Manuscript 3

C.1 Proof of the proposed scaled split conformal predic-

tion interval coverage

In this section, we prove that the proposed scaled split conformal procedure described in

Section 5.2.1 yields prediction intervals of the right coverage, when data come from a super

population model of the form (5.4). To ease the notation, let (xi, yi)
indep.∼ Px × Py|x,i, i =

1, . . . , n, new, where Py|x,i is such that E(yi | xi) = µ(xi) and V(yi | xi) = σ2/ci, with ci

known for all i = 1, . . . , n, new. The proposed procedure to compute the prediction interval

for ynew is as follows:

1. Randomly split {(yi, xi) , i = 1, . . . , n} into two equal sized datasets. Denote by S1

and S2 the resulting two sets of indices;

2. Train a model on {(yi, xi) , i ∈ S1} and predict {ˆ︁µ(xi), i ∈ S2};

3. Compute the scaled absolute residuals Ri =
√
ci × |yi − ˆ︁µ(xi)| , i ∈ S2;

4. Find dα, the kαth smallest residual R, for kα = ⌈(n/2 + 1)(1− α)⌉;
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5. Let the prediction interval for ynew be PI(1−α)% [ynew] = ˆ︁µ(xnew)± dα/
√
cnew.

The coverage of the proposed prediction interval is computed as follows:

P (ynew ∈ [ˆ︁µ(xnew)± dα/
√
cnew]) = P (

√
cnew |ynew − ˆ︁µ(xnew)| ≤ dα)

= P
(︁
Rnew ≤ R⌈(n/2+1)(1−α)⌉

)︁
,

where the Ri’s, i ∈ S2, and Rnew are i.i.d. (hence, exchangeable), and where R⌈(n/2+1)(1−α)⌉

denotes the ⌈(n/2 + 1)(1 − α)⌉th smallest R. Additionally, note that for anew and ordered

a1, . . . , an exchangeable, P(anew ≤ ak) = k/(n+ 1) (Angelopoulos and Bates, 2021). There-

fore,

P (ynew ∈ [ˆ︁µ(xnew)± dα/
√
cnew]) = P

(︁
Rnew ≤ R⌈(n/2+1)(1−α)⌉

)︁
= ⌈(n/2 + 1)(1− α)⌉/(n/2 + 1) ≥ 1− α. □

C.2 Forward approach

The forward approach can be described in the following steps:

1. Variable selection:

(a) Fit p simple linear models: y(s)c ∼ N
(︂
η
(0)
0 + x

(s)
cj η

(0)
1 , σ(0)2/nc

)︂
, c = 1, . . . ,m, j =

1, . . . , p, and compute the p corresponding AICs;

(b) Select xk which minimises the AIC;

(c) Fit p−1 linear models: y(s)c ∼ N
(︂
z
(s)⊤

(1)c η
(1), σ(1)2/nc

)︂
, z

(s)
(1) =

[︂
1, x

(s)
k , x

(s)
j

]︂⊤
, c =

1, . . . ,m, j = 1, . . . , p, j ̸= k, and compute the corresponding AIC;

(d) Select xk′ which minimises the AIC;

(e) Repeat steps (c) and (d) until the AIC is no longer minimised or while the number
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of selected variables, K < m.

2. Final model and prediction:

(a) Fit y(s)c ∼ N
(︂
z(s)⊤

c η, σ2/nc

)︂
, c = 1, . . . ,m to estimate ˆ︁η, ˆ︁V (ˆ︁η) and ˆ︁σ;

(b) Predict ˆ︁Y (ns)

c = z(ns)⊤

c ˆ︁η, c = 1, . . . ,M ;

(c) Estimate the prediction variance, ˆ︁V(︃ˆ︁Y (ns)

c

)︃
= z(ns)⊤

c
ˆ︁V (ˆ︁η) z(ns)

c +ˆ︁σ2/(Nc−nc), c =

1, . . . ,M .

C.3 Random Forest algorithm

A random forest procedure can be described through the following algorithm:

1. Draw a bootstrap dataset D(b) =
{︁(︁

y(s)(b)c ,x(s)(b)
c

)︁
, c = 1, . . . ,m

}︁
;

2. Train the bth tree T (b) using D(b) with hyperparameters mtry and nodesize:

(a) Let all responses gather in a single node, A;

(b) Randomly select mtry ≤ p covariates. Partition A into nodes A1 and A2 based

on xj ≤ c and xj > c, respectively, for xj one of the mtry selected covariates. The

covariate and splitting rule are chosen such that

2∑︂
a=1

∑︂
c∈Aa

(︄
y(s)(b)c −

(︄
(1/|Aa|)

∑︂
c′∈Aa

y
(s)(b)
c′

)︄)︄2

is minimised.

(c) Repeat step (b) until there are a maximum of nodesize responses in each final

node.

(d) For a new data point with covariate vector x, T (b) yields a point estimate equal to

the mean responses in the final node that corresponds to x: ˆ︁Y (b)

(x) =
∑︁m

c=1w
(b)
c (x)y(s)c ,
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where w
(b)
c , c = 1, . . . ,m, are weights associated to the outcome sampled means

based on the bth bootstrap dataset and tree.

3. Repeat steps 1. and 2. B times.

4. For a new data point with covariate vector x, the random forest yields a point estimate

equal to the average over the B point estimates obtained from the B trees: ˆ︁Y =

(1/B)
∑︁B

b=1
ˆ︁Y (b)

(x) =
∑︁m

c=1wc(x)y
(s)
c , where wc = (1/B)

∑︁B
b=1 w

(b)
c (x), c = 1, . . . ,m.

C.4 R code: proposed scaled split conformal procedure

Listing C.1: R code to obtain prediction intervals associated with random forest estimates

through the proposed scaled split conformal procedure

1 # Sample_data: {(xbar_c^s, ybar_c^s), c=1, ..., m}

2 # eas: sampled areas

3 # Pop_data: {(xbar_c^ns, ybar_c^s), c=1, ..., M}, with ybar_c^s=0 if c is not sampled

4

5 # Step 1: split sample data and organise dataset

6 selected_eas_half = sample(eas, length(eas)/2, replace = FALSE)

7

8 data_to_train = Sample_data %>% filter(ea %in% selected_eas_half)

9 data_to_get_residuals = Sample_data %>% filter((!ea %in% selected_eas_half))

10 data_to_get_final_estimates = Pop_data

11

12 Full_Data = bind_rows(data_to_train,

13 data_to_get_residuals,

14 data_to_get_final_estimates)

15

16 # Step 2: train a RF on S1 and predict on S2
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17 rf = ranger(y ~ ., data = Full_Data[1:nrow(data_to_train),],

18 mtry=2, min.node.size = 5, num.trees = 1000, keep.inbag = TRUE)

19

20 all_pred = predict(rf, data = Full_Data[(nrow(data_to_train)+1):nrow(Full_Data),])

21

22 # Step 3: Compute the scaled absolute residuals

23 residuals = Sample_data %>%

24 filter((!ea %in% selected_eas_half)) %>%

25 mutate(pred = (all_pred$predictions)[1:nrow(data_to_get_residuals)],

26 R_c_scaled = abs(y − pred)∗sqrt(n_c))

27

28 # Step 4: Find d_alpha, the relevant quantile for a (1−alpha)% level prediction interval

29 d_95 = sort(residuals$R_c_scaled)[ceiling((length(selected_eas_half) + 1)∗(1 − 0.05))]

30 d_80 = sort(residuals$R_c_scaled)[ceiling((length(selected_eas_half) + 1)∗(1 − 0.2))]

31 d_50 = sort(residuals$R_c_scaled)[ceiling((length(selected_eas_half) + 1)∗(1 − 0.5))]

32

33 # Step 5: Compute the (1−alpha)% level prediction intervals

34 predictions = Pop_Data %>%

35 mutate(pred =

(all_pred$predictions)[(nrow(data_to_get_residuals)+1):length(Pop_Data)],

36 y_bar_hat = f_c∗y_bar_s + (1−f_c)∗pred,

37

38 CI_l_95 = f_c∗y_bar_s + (1−f_c)∗(pred − d_95/sqrt(N_c−n_c)),

39 CI_u_95 = f_c∗y_bar_s + (1−f_c)∗(pred + d_95/sqrt(N_c−n_c)),

40

41 CI_l_80 = f_c∗y_bar_s + (1−f_c)∗(pred − d_80/sqrt(N_c−n_c)),

42 CI_u_80 = f_c∗y_bar_s + (1−f_c)∗(pred + d_80/sqrt(N_c−n_c)),
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43

44 CI_l_50 = f_c∗y_bar_s + (1−f_c)∗(pred − d_50/sqrt(N_c−n_c)),

45 CI_u_50 = f_c∗y_bar_s + (1−f_c)∗(pred + d_50/sqrt(N_c−n_c)))

C.5 Design-based simulation study: scaled split confor-

mal procedure

In this section, we present the design-based equivalent of the simulation study from Section

5.3.1. We create a single finite population of M = 500 areas of sizes Nc, c = 1, . . . ,M, with

minc(Nc) = 50 and maxc(Nc) = 500. For c = 1, . . . ,M, and k = 1, . . . , Nc, the response

variable has distribution

yck
ind.∼ N (9.5 + x1,ck − x2,ck + 2x3,ck − x4,ck + 2x5,ck + x6,ck, 1),

with 6 unit-level covariates, x1, . . . , x6
i.i.d.∼ N (0, 1). From the finite population, R = 500

samples are drawn according to the same five sampling designs as in Section 5.3.1, which

constitute the simulation scenarios:

1. (Stratified) Select all m = M = 500 areas and within each area, sample nc = 0.5Nc, c =

1, . . . ,m units;

2. (Stratified) Select all m = M = 500 areas and within each area, sample nc = 0.7Nc, c =

1, . . . ,m units;

3. (One-stage) Sample m = M/2 areas and within each area, select all nc = Nc, c =

1, . . . ,m units;

4. (Two-stage) Sample m = M/2 areas and within each area, sample nc = 0.5Nc, c =

1, . . . ,m units;
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5. (Two-stage) Sample m = M/2 areas and within each area, sample nc = 0.7Nc, c =

1, . . . ,m units.

Again, for each simulation scenario and in each sample, the estimates described in equation

(5.2) are computed using the same four methods as in Section 5.3.1: a linear model that

includes the correct six covariates, a linear model that omits x4, x5 and x6, a random forest

method that considers all six covariates to grow the trees, and a linear LASSO model.

Finally, for each scenario, in each sample and for each modelling method, 50%, 80% and

95% prediction intervals (5.3) are computed following the SC procedure and the proposed

scaled SC procedure.

Figure C.1 summarises all the results obtained from this study. Similarly to the model-

based simulation study shown in Section 5.3.1, when nc and Nc − nc are equal, the data

are exchangeable and both SC procedures yield the right coverages. However, when nc ̸=

Nc−nc, the data are not exchangeable and the original SC intervals show undercoverage. The

proposed scaled SC procedure corrects this undercovage and produces prediction intervals of

the right rate.

C.6 Design-based simulation study: prediction methods

comparison

In this section, we present the design-based equivalent of the simulation study from Section

5.3.2. We create a single finite population of M = 1000 areas of sizes Nc with minc(Nc) = 50

and maxc(Nc) = 500, according to 3 different models:

A. yck ∼ N
(︁
20 + x⊤

ckβ, 0.5
2
)︁
, where the covariates are such that xck ∼ N100(0, I) and

with coefficients β⊤ = (1,−1, 2,−1, 2, 1, 2, 1,−1, 1, 0, . . . , 0);

B. yck ∼ N
(︁
20 + x⊤

ckβ, 0.5
2
)︁
, where the covariates are such that xck ∼ N100(0,Σx), with
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Figure C.1: Coverages and widths of the prediction intervals (PI) obtained from the proposed
scaled and original split conformal (SC) procedures for the four modelling methods and
across the five scenarios (1-5) in the design-based simulation study. Yes: coverages and
widths across the sampled areas; No: coverages and widths across the non-sampled areas.
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, and β⊤ = (1,−1, 2,−1, 2, 1, 2, 1,−1, 1, 0, . . . , 0)/10;

C. yck ∼ N
(︁
x2
1,ck + exp

(︁
x2
2,ck

)︁
, 0.3

)︁
, with covariates xj,c ∼ U(−1, 1), j = 1, . . . , 100.

From each finite population, R = 100 samples are drawn following the two sampling schemes:

1. (Stratified) Select all m = M = 500 areas and within each area, sample nc = 15, c =

1, . . . ,m units;

2. (Two-stage) Sample m = M/2 areas and within each area, sample nc = 15, c =

1, . . . ,m units.

Like in Section 5.3.2, for each scenario, the estimates and their prediction intervals are

computed as described in Section 5.2, assuming known and anonymised EAs..

Figure C.2 shows that the covariate selection pattern is similar to Section 5.3.2. For instance,
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the forward and LASSO approach always select the right covariates in Populations A and

B, while the random forest always select the correct ones in Population C. Finally, in this

design-based setting, the results regarding bias, MSE, coverage and proper interval score

of the prediction intervals are similar to the ones shown in Section 5.3.2, in the model-

based framework. All methods are virtually unbiased with mean absolute biases between

0 and 0.8, regardless of the population and sampling design. The LASSO, forward and

Bayesian approaches yield identical MSEs in all scenarios, while the random forest method

outperforms the three in population C. In scenarios A and B, all methods lead to prediction

intervals with the right coverage and equivalent proper interval scores. Finally, in population

C, all methods yielded under-coverage, the random forest leading to slightly higher rates and

smaller proper interval scores.
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Figure C.2: Covariate selection frequency for each method across the 6 simulation scenarios.
Left of the vertical dashed line: true covariates used in the generating models.

C.7 Extra design-based simulation scenarios: prediction

methods comparison

This section is a continuation of the design-based simulation study shown in Section C.6.

The same finite populations A, B and C are created and, from each, R = 100 samples are
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Figure C.3: Mean absolute bias, MSE, coverages and proper scores of the prediction intervals,
obtained for each method across the 6 simulation scenarios. RF: Random forest approach.
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drawn following the three sampling schemes:

1. (Stratified) Select all m = M = 500 areas (EAs) and within each area, sample nc =

0.5Nc, c = 1, . . . ,m units;

2. (One-stage) Sample m = M/2 areas and within each area, select all nc = Nc, c =

1, . . . ,m units;

3. (Two-stage) Sample m = M/2 areas and within each area, sample nc = 0.5Nc, c =

1, . . . ,m units.

Again, for each scenario, the estimates and their prediction intervals are computed as de-

scribed in Section 5.2, knowing and anonymising the EAs.

Figure C.4 presents the results (mean absolute bias, MSE, prediction interval coverage and

proper score) for each of the 9 simulation scenarios. Like the results in Section 5.3.2 and

Appendix C.6, all four modelling methods perform similarly in populations A and B, where

the association between the outcome and the covariates is linear. All four methods yield

virtually no bias and prediction intervals of the right coverage rate.

In population C, when the sampled EAs are anonymised, all four methods perform slightly

worse than when the sampling information is known: the MSE is multiplied by a factor

of 3 and the prediction intervals show under-coverage. When the EAs are anonymised, in

all three sampling schemes, the random forest approach leads to smaller MSE and proper

interval scores. In terms of MSE, regardless of the sampling design, the random forest

performs better than the other three modelling methods, knowing or ignoring which EAs

have been sampled.
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Figure C.4: Mean absolute bias, MSE, coverages and proper scores of the prediction intervals,
obtained for each method across the 9 simulation scenarios. Forward: forward selection
approach; Bayesian: Bayesian shrinkage approach; RF: Random forest approach
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C.8 Model-based simulation study using the Ghanaian

data

In this section, we present the results from a model-based simulation study that is similar to

the one shown in 5.3.2. The difference is that we make use of the available Ghanaian census

data from Section 5.4, in order to consider a realistic set of auxiliary variables. Recall that

there are M = 5019 EAs in the GAMA and p = 174 available variables. In this model-

based framework, R = 100 finite populations are created following two scenarios, which

correspond to a linear and a non-linear relationship between the outcome and covariates. In

the linear case, at the unit level (i.e., the household level), the response variable is distributed

according to yck
i.i.d.∼ N (9.3+x⊤

ckβ, 0.76
2), where the intercept and standard deviation values,

as well as the 9 variables with non-zero coefficients (summarised in Table C.1 below) were

fixed based on the results obtained in Section 5.4. In the non-linear case, we consider two

covariates x1k and x2k which are the number of rooms in the kth household dwelling and

the number of household members of native nationality, respectively. The response variable

is distributed at the unit level as yck
i.i.d.∼ N

(︁
4 + 1[x1k≤8](x1k/5)

2 + 1[x2k≤7](x2k/5)
2, 0.32

)︁
.

Then, within each finite population, the same set of households are sampled according to

the same stratified two-stage sampling design that lead to the GLSS dataset studied in

Section 5.4. The strata correspond to the urban and rural indicator and m = 136 EAs

are sampled with a proportional to size design, wherein 8 EAs are rural ones. Within the

sampled EAs, nc = 15 households are systematically sampled.
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Covariate Coefficient

Household head age -0.02
Nationality: native 0.04

Rooms 0.11
Interweb 0.12

Water: pipe-borne outside dwelling 0.08
Cooking: fuel, gas 0.29
Rubbish: collected 0.15

Floor: cement, concrete -0.24
Water: sachet, bottled 0.09

Table C.1: Ghanaian covariates and their corresponding coefficient for the model-based
simulation study with linear relationship.

Similarly to Section 5.3.2, for each scenario, the estimates and their prediction intervals are

computed as described in Section 5.2. Again, the modelling approaches are run knowing

and ignoring which EAs have been sampled. Figure C.5 summarises the performance mea-

sures obtained for each approach in both simulation scenarios. In terms of bias, similar to

Section 5.3.2, all methods were virtually unbiased with absolute mean biases smaller than

1. Interestingly, in terms of MSE, there was no difference between the linear and non-linear

populations: the Bayesian shrinkage approach always resulted in smaller MSEs than the

other three methods. Finally, regardless of the scenario, the forward selection approach re-

sulted in under-coverage for the prediction intervals, which was not the case for the other

three methods. This was also the case in the application shown in Section 5.4. We find it

noteworthy that even though they are based on m/2 = 68 data points, the prediction in-

tervals computed based on our proposed scaled split conformal approach resulted in correct

coverage rates.
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Figure C.5: Mean absolute bias, MSE, coverages and proper scores of the prediction intervals,
obtained for each method across the 2 simulation scenarios conducted using the Ghanaian
auxiliary information. RF: Random forest approach.
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C.9 Detailed results for the model-based simulation study

summarised in Section 5.3.2

Scenario EAs Forward Bayesian LASSO RFselection shrinkage

A Stratified EAs anonymised - Sampled 0.000 0.000 0.001 0.054

A Stratified EAs known - Sampled 0.000 0.000 0.001 0.039

A Two-stage EAs anonymised - Non sampled 0.000 0.000 0.004 0.064
A Two-stage EAs anonymised - Sampled 0.000 0.000 0.000 0.085

A Two-stage EAs known - Non sampled 0.000 0.000 0.004 0.061
A Two-stage EAs known - Sampled 0.000 0.000 0.000 0.069

B Stratified EAs anonymised - Sampled 0.000 0.000 0.000 0.005

B Stratified EAs known - Sampled 0.000 0.000 0.000 0.007

B Two-stage EAs anonymised - Non sampled 0.000 0.001 0.003 0.007
B Two-stage EAs anonymised - Sampled 0.000 0.001 0.004 0.008

B Two-stage EAs known - Non sampled 0.000 0.001 0.003 0.005
B Two-stage EAs known - Sampled 0.000 0.001 0.004 0.005

C Stratified EAs anonymised - Sampled 0.000 0.000 0.003 0.010

C Stratified EAs known - Sampled 0.003 0.003 0.005 0.005

C Two-stage EAs anonymised - Non sampled 0.020 0.036 0.037 0.019
C Two-stage EAs anonymised - Sampled 0.001 0.001 0.001 0.006

C Two-stage EAs known - Non sampled 0.020 0.036 0.037 0.015
C Two-stage EAs known - Sampled 0.004 0.004 0.003 0.004

Table C.2: Mean absolute bias obtained for each method across the 6 model-based simu-
lation scenarios, knowing and ignoring which EAs have been sampled. RF: Random forest
approach.
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Scenario EAs Forward Bayesian LASSO RFselection shrinkage

A Stratified EAs anonymised - Sampled 0.001 0.001 0.002 0.045

A Stratified EAs known - Sampled 0.001 0.001 0.002 0.029

A Two-stage EAs anonymised - Non sampled 0.001 0.001 0.003 0.061
A Two-stage EAs anonymised - Sampled 0.002 0.001 0.003 0.066

A Two-stage EAs known - Non sampled 0.001 0.001 0.003 0.041
A Two-stage EAs known - Sampled 0.001 0.001 0.002 0.037

B Stratified EAs anonymised - Sampled 0.001 0.001 0.002 0.002

B Stratified EAs known - Sampled 0.001 0.001 0.001 0.002

B Two-stage EAs anonymised - Non sampled 0.001 0.001 0.002 0.002
B Two-stage EAs anonymised - Sampled 0.002 0.001 0.002 0.002

B Two-stage EAs known - Non sampled 0.001 0.001 0.002 0.002
B Two-stage EAs known - Sampled 0.001 0.001 0.002 0.002

C Stratified EAs anonymised - Sampled 0.308 0.323 0.326 0.038

C Stratified EAs known - Sampled 0.261 0.273 0.276 0.011

C Two-stage EAs anonymised - Non sampled 0.363 0.314 0.314 0.087
C Two-stage EAs anonymised - Sampled 0.305 0.333 0.340 0.060

C Two-stage EAs known - Non sampled 0.363 0.313 0.314 0.057
C Two-stage EAs known - Sampled 0.260 0.283 0.289 0.014

Table C.3: MSE obtained for each method across the 6 model-based simulation scenarios,
knowing and ignoring which EAs have been sampled. RF: Random forest approach.
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Scenario EAs Forward Bayesian LASSO RFselection shrinkage

A Stratified EAs anonymised - Sampled 48.2 49.9 48.5 45.7

A Stratified EAs known - Sampled 47.8 49.7 48.7 54.5

A Two-stage EAs anonymised - Non sampled 46.3 49.8 48.1 40.7
A Two-stage EAs anonymised - Sampled 46.3 50.0 48.3 40.3

A Two-stage EAs known - Non sampled 46.3 49.9 48.1 48.9
A Two-stage EAs known - Sampled 46.1 49.7 48.1 49.0

B Stratified EAs anonymised - Sampled 48.3 49.9 49.6 45.8

B Stratified EAs known - Sampled 48.1 49.8 49.5 47.3

B Two-stage EAs anonymised - Non sampled 46.6 50.0 48.7 43.8
B Two-stage EAs anonymised - Sampled 46.9 50.1 48.7 43.8

B Two-stage EAs known - Non sampled 46.6 50.1 48.7 46.2
B Two-stage EAs known - Sampled 46.4 49.6 48.4 46.3

C Stratified EAs anonymised - Sampled 14.8 13.3 14.0 22.8

C Stratified EAs known - Sampled 15.4 14.0 14.8 33.1

C Two-stage EAs anonymised - Non sampled 12.5 12.8 13.1 14.5
C Two-stage EAs anonymised - Sampled 17.3 15.2 15.2 23.4

C Two-stage EAs known - Non sampled 12.5 12.9 13.1 18.6
C Two-stage EAs known - Sampled 17.9 15.9 15.9 36.1

Table C.4: Coverages of the 50% prediction intervals obtained for each method across the
6 model-based simulation scenarios, knowing and ignoring which EAs have been sampled.
RF: Random forest approach.
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Scenario EAs Forward Bayesian LASSO RFselection shrinkage

A Stratified EAs anonymised - Sampled 78.3 80.0 78.6 74.1

A Stratified EAs known - Sampled 78.0 79.8 78.7 82.2

A Two-stage EAs anonymised - Non sampled 75.9 80.1 78.2 68.7
A Two-stage EAs anonymised - Sampled 76.3 80.1 77.5 68.1

A Two-stage EAs known - Non sampled 75.9 80.0 78.2 79.5
A Two-stage EAs known - Sampled 75.6 79.8 77.5 78.9

B Stratified EAs anonymised - Sampled 78.5 80.1 79.5 75.4

B Stratified EAs known - Sampled 78.3 80.0 79.5 77.4

B Two-stage EAs anonymised - Non sampled 76.3 80.1 78.6 72.8
B Two-stage EAs anonymised - Sampled 76.4 80.2 78.7 73.0

B Two-stage EAs known - Non sampled 76.3 80.1 78.6 75.9
B Two-stage EAs known - Sampled 75.6 79.7 78.4 76.1

C Stratified EAs anonymised - Sampled 27.5 24.6 22.9 40.5

C Stratified EAs known - Sampled 28.6 25.8 24.1 57.0

C Two-stage EAs anonymised - Non sampled 25.6 25.0 22.3 27.4
C Two-stage EAs anonymised - Sampled 32.6 26.6 23.9 41.2

C Two-stage EAs known - Non sampled 25.6 25.0 22.3 33.9
C Two-stage EAs known - Sampled 33.7 27.5 24.8 60.6

Table C.5: Coverages of the 80% prediction intervals obtained for each method across the
6 model-based simulation scenarios, knowing and ignoring which EAs have been sampled.
RF: Random forest approach.
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Scenario EAs Forward Bayesian LASSO RFselection shrinkage

A Stratified EAs anonymised - Sampled 94.1 95.0 94.2 92.0

A Stratified EAs known - Sampled 94.0 94.9 94.3 96.6

A Two-stage EAs anonymised - Non sampled 92.9 95.2 94.5 90.8
A Two-stage EAs anonymised - Sampled 93.0 95.2 94.3 89.8

A Two-stage EAs known - Non sampled 92.9 95.1 94.5 96.8
A Two-stage EAs known - Sampled 92.5 94.9 94.1 96.1

B Stratified EAs anonymised - Sampled 94.2 95.0 94.8 92.2

B Stratified EAs known - Sampled 94.1 95.0 94.8 93.5

B Two-stage EAs anonymised - Non sampled 93.0 95.1 94.8 90.9
B Two-stage EAs anonymised - Sampled 93.0 95.1 94.7 91.2

B Two-stage EAs known - Non sampled 93.0 95.1 94.8 93.0
B Two-stage EAs known - Sampled 92.7 94.9 94.6 93.0

C Stratified EAs anonymised - Sampled 41.0 37.5 34.4 58.5

C Stratified EAs known - Sampled 42.7 39.3 36.1 77.6

C Two-stage EAs anonymised - Non sampled 40.7 39.5 36.5 44.4
C Two-stage EAs anonymised - Sampled 48.8 38.8 35.8 60.3

C Two-stage EAs known - Non sampled 40.7 39.5 36.5 53.4
C Two-stage EAs known - Sampled 50.1 40.4 37.6 82.1

Table C.6: Coverages of the 95% prediction intervals obtained for each method across the
6 model-based simulation scenarios, knowing and ignoring which EAs have been sampled.
RF: Random forest approach.
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Scenario EAs Forward Bayesian LASSO RFselection shrinkage

A Stratified EAs anonymised - Sampled 0.178 0.170 0.209 0.925

A Stratified EAs known - Sampled 0.171 0.162 0.196 0.691

A Two-stage EAs anonymised - Non sampled 0.193 0.170 0.255 1.142
A Two-stage EAs anonymised - Sampled 0.198 0.174 0.254 1.153

A Two-stage EAs known - Non sampled 0.193 0.170 0.255 0.770
A Two-stage EAs known - Sampled 0.194 0.169 0.242 0.759

B Stratified EAs anonymised - Sampled 0.178 0.170 0.182 0.198

B Stratified EAs known - Sampled 0.171 0.162 0.173 0.170

B Two-stage EAs anonymised - Non sampled 0.190 0.176 0.205 0.213
B Two-stage EAs anonymised - Sampled 0.194 0.179 0.212 0.217

B Two-stage EAs known - Non sampled 0.190 0.176 0.205 0.197
B Two-stage EAs known - Sampled 0.190 0.174 0.204 0.190

C Stratified EAs anonymised - Sampled 6.844 7.347 7.701 2.049

C Stratified EAs known - Sampled 6.257 6.717 7.043 0.845

C Two-stage EAs anonymised - Non sampled 7.648 7.421 7.879 3.796
C Two-stage EAs anonymised - Sampled 6.301 7.345 7.863 2.540

C Two-stage EAs known - Non sampled 7.648 7.421 7.879 2.672
C Two-stage EAs known - Sampled 5.799 6.745 7.220 0.876

Table C.7: Proper interval scores of the 50% prediction intervals obtained for each method
across the 6 model-based simulation scenarios, knowing and ignoring which EAs have been
sampled. RF: Random forest approach.
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Scenario EAs Forward Bayesian LASSO RFselection shrinkage

A Stratified EAs anonymised - Sampled 0.178 0.170 0.209 0.925

A Stratified EAs known - Sampled 0.171 0.162 0.196 0.691

A Two-stage EAs anonymised - Non sampled 0.193 0.170 0.255 1.142
A Two-stage EAs anonymised - Sampled 0.198 0.174 0.254 1.153

A Two-stage EAs known - Non sampled 0.193 0.170 0.255 0.770
A Two-stage EAs known - Sampled 0.194 0.169 0.242 0.759

B Stratified EAs anonymised - Sampled 0.178 0.170 0.182 0.198

B Stratified EAs known - Sampled 0.171 0.162 0.173 0.170

B Two-stage EAs anonymised - Non sampled 0.190 0.176 0.205 0.213
B Two-stage EAs anonymised - Sampled 0.194 0.179 0.212 0.217

B Two-stage EAs known - Non sampled 0.190 0.176 0.205 0.197
B Two-stage EAs known - Sampled 0.190 0.174 0.204 0.190

C Stratified EAs anonymised - Sampled 6.844 7.347 7.701 2.049

C Stratified EAs known - Sampled 6.257 6.717 7.043 0.845

C Two-stage EAs anonymised - Non sampled 7.648 7.421 7.879 3.796
C Two-stage EAs anonymised - Sampled 6.301 7.345 7.863 2.540

C Two-stage EAs known - Non sampled 7.648 7.421 7.879 2.672
C Two-stage EAs known - Sampled 5.799 6.745 7.220 0.876

Table C.8: Proper interval scores of the 80% prediction intervals obtained for each method
across the 6 model-based simulation scenarios, knowing and ignoring which EAs have been
sampled. RF: Random forest approach.
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Scenario EAs Forward Bayesian LASSO RFselection shrinkage

A Stratified EAs anonymised - Sampled 0.166 0.162 0.198 1.002

A Stratified EAs known - Sampled 0.159 0.155 0.188 0.803

A Two-stage EAs anonymised - Non sampled 0.172 0.162 0.225 1.162
A Two-stage EAs anonymised - Sampled 0.177 0.167 0.234 1.245

A Two-stage EAs known - Non sampled 0.172 0.162 0.225 0.919
A Two-stage EAs known - Sampled 0.171 0.160 0.223 0.907

B Stratified EAs anonymised - Sampled 0.165 0.163 0.173 0.197

B Stratified EAs known - Sampled 0.158 0.155 0.165 0.178

B Two-stage EAs anonymised - Non sampled 0.172 0.164 0.181 0.212
B Two-stage EAs anonymised - Sampled 0.177 0.170 0.187 0.217

B Two-stage EAs known - Non sampled 0.172 0.164 0.181 0.195
B Two-stage EAs known - Sampled 0.171 0.163 0.179 0.190

C Stratified EAs anonymised - Sampled 8.427 9.212 9.887 2.331

C Stratified EAs known - Sampled 7.633 8.352 8.965 0.782

C Two-stage EAs anonymised - Non sampled 8.990 8.665 9.298 4.322
C Two-stage EAs anonymised - Sampled 7.605 9.040 9.842 2.910

C Two-stage EAs known - Non sampled 8.990 8.664 9.298 2.890
C Two-stage EAs known - Sampled 6.927 8.212 8.934 0.805

Table C.9: Proper interval scores of the 95% prediction intervals obtained for each method
across the 6 model-based simulation scenarios, knowing and ignoring which EAs have been
sampled. RF: Random forest approach.
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