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ABSTRACT 

 

Water quality degradation in surface water bodies is a pressing environmental issue, notably 

exacerbated by phosphorus (P) pollution originating from agricultural lands. Such pollution, 

manifesting either as dissolved P in water or P attached to suspended sediments, poses significant 

risks to aquatic ecosystems and public health. Addressing this challenge necessitates advanced 

strategies for managing P losses, for which hydrological and nutrient transport models have 

emerged as indispensable tools. Recent advancements have led to the integration of detailed P 

components into well-established models, such as RZWQM2 and DRAINMOD, evolving into 

their enhanced versions: RZWQM2-P and DRAINMOD-P. These models, specifically engineered 

to simulate the intricate fate and transport dynamics of P within soil-water-plant continuum, 

particularly in tile-drained agricultural settings, represent a significant leap forward to address P-

related water quality issues. However, the efficacy of these models is contingent upon rigorous 

evaluation against observed data and continuous refinement. Such evaluations are crucial not only 

for validating the models’ predictive accuracy but also for identifying areas requiring 

improvement, thereby ensuring that the models remain robust tools in the ongoing effort to 

safeguard water quality. Therefore, the objectives of this study were to compare RZWQM2-P and 

DRAINMOD-P in simulating P dynamics; to identify subroutines within RZWQM2-P that warrant 

further improvement; and evaluate the impact of management practices on P loss, subsequent to 

the successful validation of the model.       

         RZWQM2-P and DRAINMOD-P were assessed using five years of observed data from a 

field in Paulding County, Ohio. The results revealed that the performance of RZWQM2-P was 

satisfactory in predicting daily tile drainage over a five-year period, achieving a daily NSE of 0.56, 

R2 of 0.61, and IOA of 0.88. However, the performance of DRAINMOD-P was found to be 

unsatisfactory, with a daily R2 value of 0.56 for the same period, though it achieved a higher NSE 

value of 0.50 and an IOA of 0.85. Both models satisfactorily predicted monthly tile drainage losses, 

with NSE values greater than 0.50, R2 values greater than 0.60, and IOA values greater than 0.75. 

However, both models exhibited limitations in predicting daily dissolved reactive P (DRP) losses, 

while they were satisfactory in predicting both daily and monthly total P (TP) losses. RZWQM2-

P marginally outperformed in predicting monthly DRP losses (NSE > 0.35, R2 > 0.40, IOA > 0.75). 

A separate study focusing solely on RZWQM2-P used four years of data from another Ohio field 



ii | P a g e  
 

in Hardin County for model calibration and validation. The model satisfactorily simulated DRP 

loss from tile drainage on daily and monthly bases (NSE = 0.50, R2 = 0.52, IOA = 0.84 for daily; 

NSE = 0.73, R2 = 0.78, IOA = 0.94 for monthly) and monthly TP loss (NSE = 0.64, R2 = 0.65, IOA 

= 0.88), but was less accurate for daily TP simulation (NSE = 0.30, R2 = 0.30, IOA = 0.59). The 

model was also used to assess the effectiveness of controlled drainage and winter cover crops in 

reducing P losses. Simulations indicated that winter rye cover crops reduced DRP and TP from 

runoff and drainage by 16% and 4%, respectively, compared to the base scenario. In contrast, 

controlled drainage resulted in a significant increase in DRP losses (ranging from 60% to 129%) 

and TP losses (ranging from 5% to 17%) through runoff and drainage across three tested outlet 

elevations, compared to free drainage. 

         Overall, while RZWMQ2-P satisfactorily simulates P dynamics, it struggles to accurately 

capture changes in P concentration in subsurface drainage, leading to an underestimation of P 

loading during high-load events in both studies. This shortcoming is primarily attributed to the 

RZWQM2-P's subroutines, which employ a linear groundwater reservoir approach to compute the 

daily P mass balance in subsurface drainage. Future research should concentrate on incorporating 

spatial discretization and cell-level mass balance equations into the RZWQM2-P framework. Such 

enhancements will enable a more thorough representation of local variability and transient states, 

significantly improving the model's accuracy and reliability. 

 

 

 

 

 

 

 

 

 

 

 



iii | P a g e  
 

RÉSUMÉ 

 

Notamment exacerbé par la pollution par le phosphore (P) provenant des terres agricoles, la 

dégradation de la qualité de l’eau en surface constitue un problème environnemental urgent,. Une 

telle pollution, qui se manifeste soit par du P dissous dans l'eau, soit par du P lié aux sédiments en 

suspension, présente des risques importants pour les écosystèmes aquatiques et la santé publique. 

Relever ce défi nécessite des stratégies avancées de gestion des pertes de P, pour lesquelles les 

modèles hydrologiques et de transport de nutriments sont devenus des outils indispensables. De 

récents progrès ont conduit à l'intégration de composants détaillés du phosphore dans des modèles 

bien établis, tels que RZWQM2 et DRAINMOD, évoluant vers leurs versions améliorées : 

RZWQM2-P et DRAINMOD-P. Ces modèles, spécialement conçus pour simuler le devenir 

complexe et la dynamique du transport du phosphore dans le continuum sol-eau-plantes, en 

particulier dans les milieux agricoles équipés de drains souterrains, représente un formidable saut 

en avant quant à résoudre les problèmes de qualité de l'eau liés au phosphore. Cependant, 

l’efficacité de ces modèles dépend d’une évaluation rigoureuse des données observées ainsi qu’un 

affinement continu. De telles évaluations sont cruciales non seulement pour valider l’exactitude 

prédictive des modèles, mais également pour identifier les domaines nécessitant des améliorations, 

garantissant ainsi que les modèles restent des outils robustes dans l’effort continu de sauvegarde 

de la qualité de l’eau. Par conséquent, les objectifs de cette étude étaient de comparer RZWQM2-

P avec DRAINMOD-P dans la simulation de la dynamique du P ; identifier les sous-programmes 

au sein de RZWQM2-P qui justifient des améliorations supplémentaires ; et évaluer l'impact des 

pratiques de gestion sur la perte de P, suite à la validation réussie du modèle. 

              RZWQM2-P et DRAINMOD-P furent évalués à l'aide de cinq années de données 

observées dans un champ du comté de Paulding, dans le nord-ouest de l'Ohio. Les résultats 

révélèrent que les performances du RZWQM2-P satisfirent ces critères reliés à la prédiction su 

drainage souterrain quotidien sur une période de cinq ans, atteignant un NSE quotidien de 0,56, un 

R2 de 0,61 et un IOA de 0,88. Cependant, les performances de DRAINMOD-P se révélèrent 

insatisfaisantes, avec une valeur R2 quotidienne de 0,56 pour la même période, bien qu'il ait atteint 

une valeur NSE plus élevée de 0,50 et un IOA de 0,85. Les deux modèles prédirent de manière 

satisfaisante les pertes mensuelles par voie de drainage souterrain, avec des valeurs de NSE 

supérieures à 0,50, des valeurs R2 supérieures à 0,60 et des valeurs de IOA supérieures à 0,75. 
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Cependant, les deux modèles présentèrent des limites dans la prévision des pertes quotidiennes de 

phosphore réactif dissous (DRP), alors qu'ils étaient satisfaisants dans la prévision des pertes 

quotidiennes et mensuelles totales de phosphore (TP). RZWQM2-P a légèrement surperformé dans 

la prévision des pertes mensuelles de DRP (NSE > 0,35, R2 > 0,40, IOA > 0,75). Une étude distincte 

portant uniquement sur RZWQM2-P et tirant sur quatre années de données provenant d'un autre 

champ de l'Ohio dans le comté de Hardin pour l'étalonnage et la validation du modèle. Le modèle 

a simulé de manière satisfaisante la perte de DRP due au drainage souterrain sur des bases 

quotidiennes et mensuelles (NSE = 0,50, R2 = 0,52, IOA = 0,84 pour le quotidien ; NSE = 0,73, R2 

= 0,78, IOA = 0,94 pour le mensuel) et la perte mensuelle de TP (NSE = 0,64, R2 = 0,65, IOA = 

0,88), mais était moins précis pour la simulation de perte de TP quotidienne (NSE = 0,30, R2 = 

0,30, IOA = 0,59). Le modèle a également servi à évaluer l’efficacité du drainage contrôlé et des 

cultures couvre-sol hivernales pour réduire les pertes de P. Les simulations ont indiqué que les 

cultures couvre-sol de seigle d'hiver réduisaient le DRP et le TP dus au ruissellement et au drainage 

de 16 % et 4 %, respectivement, par rapport au scénario de base. En revanche, le drainage contrôlé 

a entraîné une augmentation significative des pertes de DRP (allant de 60 % à 129 %) et des pertes 

de TP (allant de 5 % à 17 %) par ruissellement et drainage sur trois élévations de débouchés testées, 

par rapport au drainage libre. 

              Dans l'ensemble, bien que RZWMQ2-P simule de manière satisfaisante la dynamique du 

P, il a du mal à capter avec précision les changements de concentration en P dans le drainage 

souterrain, ce qui conduit, dans les deux études, à une sous-estimation de la charge en P lors 

d'événements à charge élevée. Cette lacune est principalement attribuée aux sous-programmes du 

RZWQM2-P, qui utilisent une approche linéaire de réservoir d'eau souterraine pour calculer le 

bilan massique quotidien de P dans le drainage souterrain. Dans l’avenir, les recherches devraient 

se concentrer sur l’intégration des équations de discrétisation spatiale et de bilan de masse au 

niveau cellulaire dans le cadre RZWQM2-P. De telles améliorations permettront une 

représentation plus approfondie de la variabilité locale et des états transitoires, améliorant ainsi 

considérablement la précision et la fiabilité du modèle. 
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CHAPTER I 

INTRODUCTION 

 

1.1. Background 

 

Freshwater resources are one of the vital components of the hydrological cycle of the Earth and 

play an important role in sustenance of ecosystems, nurturing agricultural practices, and fulfilling 

human needs (Ingrao et al., 2023). The projections by Mazzucato et al. (2023) suggest that by 

2030, due to mismanagement of freshwater resources, the world may face a shortfall in meeting 

its freshwater needs by as much as 40% compared to the available supply. Historically, the North 

American region, specifically Canada and the United States, has been in a much better position 

regarding freshwater availability, as the Great Lakes, which are shared by both countries, alone 

constitute 20% of the world's surface freshwater reserves (Cable et al., 2017; Steinman et al., 

2017). Given that approximately 45 million basin inhabitants rely on the Great Lakes for their 

drinking water and other purposes (Maghrebi et al., 2015), prioritizing the protection of these vast 

water bodies ecological integrity is crucial. However, since the 1960s, the quality of these 

invaluable resources has increasingly been threatened by various forms of pollution (Bilder, 1972). 

This includes nutrient enrichment from point sources like sewage and industrial waste, as well as 

from non-point or diffuse sources, such as agricultural activities (Jordan, 1971; Rockwell et al., 

2005).  

         Within the Great Lakes, Lake Erie is notably facing a significant rise in non-point source 

pollution from agricultural activities (Environment and Climate Change Canada, 2023), rapidly 

surpassing point sources as the key driver of nutrient enrichment (Kleinman et al., 2011a). 

Historically, nitrate-nitrogen loading has been associated with algae blooms and the creation of 

dead zones in water bodies (Breitburg et al., 2009; Scavia et al., 2003). However, recent studies 

indicate that phosphorus (P) also plays a critical role (Dodds, 2006; King et al., 2015). In aquatic 

systems, P is naturally limited and often restricts algal growth, but excessive P loading from 

agricultural fields disrupts this balance, leading to unchecked algal and cyanobacteria proliferation 

(Kleinman et al., 2011b). Such blooms can be detrimental, producing toxins, reducing oxygen 
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levels in the water, disrupting aquatic life, and leading to the formation of dead zones where most 

aquatic organisms cannot survive. A notable example of the impact of these blooms occurred in 

2014 in the city of Toledo, Ohio (Steffen et al., 2017). There, half a million residents were unable 

to drink or use tap water for two days due to excessive algae blooms in the western basin of Lake 

Erie, underscoring the serious ramifications of nutrient pollution (Jetoo et al., 2015). Therefore, 

considering these severe impacts, there is an urgent need to mitigate the impact of agricultural P 

loading on the freshwater surface bodies to preserve both environmental health and public safety 

(Mohamed et al., 2019; Sharpley et al., 2013). 

          Traditionally, long-term field-scale experiments are required to evaluate the effects of 

different management practices on P loading (Johnston, 2008; McCollum, 1991; Morel et al., 

2014). For instance, Uusitalo et al. (2018) assessed the impact of no-tillage and autumn plowing 

on P losses in subsurface drainage and surface runoff over nine years in Finland. In southern 

Ontario, Tan and Zhang (2011) studied the impact of controlled drainage versus free drainage on 

P loading for five years. Over eleven years in central Iowa, Tomer et al. (2016) investigated the 

effect of manure application on P loading during storm events. All such experiments are crucial in 

identifying effective strategies to minimize P losses from agricultural fields. However, the 

applicability of these studies is limited to areas with similar soil conditions, management practices, 

geographical locations, and climatic factors. Therefore, using field experiments to identify 

management practices that accommodate spatial and temporal variations is often time-consuming 

and not economically viable (Thorp et al., 2007). An alternative approach is field-scale modeling 

(Singh et al., 2022). Advanced models can simulate various management scenarios, allowing for 

the assessment of their impacts on P loading without extensive physical experimentation (Shokrana 

et al., 2022). This approach is more time- and cost-effective, enabling quicker and broader 

evaluations of potential strategies. Additionally, modeling can incorporate factors such as climate 

change (Wang et al., 2016), which significantly affects agricultural practices and aid in developing 

resilient strategies for nutrient management. 

          Over the years, field-scale P modeling has evolved significantly. Historically, runoff was 

primarily considered the main pathway for the transport of dissolved reactive phosphorus (DRP) 

and particulate phosphorus (PP), while subsurface drainage often neglected due to the belief that 

P transport through subsurface pathway was "negligible" because of the subsoil's capacity to bind 
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P (King et al., 2015). However, a landmark review by Sims et al. (1998) in the late 1990s 

highlighted the critical role of subsurface drainage in P loading. Similarly, many process-based 

field-scale models have shown shortcomings in addressing the fate and transport of DRP, PP, or 

both, especially in predicting their movement through soil matrix and macropore flow. The reviews 

conducted by Radcliffe et al. (2015), which examined nine models, and by Qi and Qi (2017), who 

reviewed fifteen models, both revealed that, up to that point, only the ICECREAM model was 

capable of predicting both dissolved and particulate P transport through the soil matrix and 

macropores. However, they also identified weaknesses in the ICECREAM model, notably its 

simplistic tile drainage simulation, lacking a water-table-based component and relying on simple 

water storage routing concept for tile flow simulation. 

           A holistic and robust model should include a strong hydrology component to simulate water 

and associated P load through surface runoff, soil matrix, and preferential flow (Radcliffe et al., 

2015). It should also predict crop yields to estimate plant P uptake and the various P 

transformations in the soil, while also being capable of simulating comprehensive management 

practices (Shokrana et al., 2022). With the recent addition of the P component to the RZWQM2 

(Ahuja et al., 2000) and DRAINMOD (Skaggs, 1978), these well-tested models have been 

modified to become more versatile [RZWQM2-P (Sadhukhan et al., 2019) and DRAINMOD-P 

(Askar et al., 2021)], with added P simulation capabilities. Currently, only these two models cover 

all the outlined points for the transportation of P through various pathways in an agricultural 

setting. As these models have only recently been upgraded with the P component, they are scarcely 

tested on a daily and monthly basis for their P loss predictions. Furthermore, there is no 

comparative study of both models that differentiates the processes in each model used and 

evaluates their performance in predicting P losses. 

          Therefore, it is crucial to assess the performance of the newly integrated P component within 

these models. The development of new models or the addition of new components to established 

ones requires comprehensive testing to obtain valuable insights into their strengths, weaknesses, 

and limitations (Thorp et al., 2009). This process is vital for advancing the field of modeling and 

enhancing model credibility through meticulous validation. Moreover, by evaluating the models' 

performance, users can choose the one that best suits their needs based on its effectiveness for the 

intended application. This approach will significantly aid in making informed decisions in 
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agricultural water management, utilizing well-tested models to devise customized management 

practices and address the challenge of P loading. 

 

1.2. Objectives 

 

The primary aim of this research was to assess the performance of the newly developed phosphorus 

component within the RZWQM2-P model, specifically in its ability to predict daily dissolved 

reactive phosphorus (DRP) and total phosphorus (TP) losses via subsurface drainage, and to 

suggest recommendations for further improving the model's subroutines. Only one previous study, 

conducted by Shokrana et al. (2022), has used daily P loss data and concluded that the RZWQM2-

P model performed unsatisfactorily in predicting daily DRP losses through subsurface drainage. 

The specific objectives to achieve the general objective were as follows: 

i. To thoroughly evaluate the RZWQM2-P model's performance in predicting daily P losses, 

including both DRP and TP, through subsurface drainage, utilizing daily P loss data from 

two experimental fields in Ohio. 

ii. To compare the methodologies and performance of the RZWQM2-P model and the 

DRAINMOD-P model in predicting daily P losses through subsurface drainage. This 

comparison aims to identify the strengths and limitations of each model and explore how 

they can be improved by integrating their respective advantages. 

iii. To identify the subroutines/processes in the RZWQM2-P model that require further 

improvements for satisfactory prediction of P loss through subsurface drainage, especially 

during high-load (peak) events of the simulation. 

iv. To evaluate the model's applicability in predicting management practices for P loss 

reduction. This involves assessing the effectiveness of two specific management 

practices—cover cropping with rye and controlled drainage—in reducing P loading from 

fields with subsurface drainage, using a validated model. 

 

 



5 | P a g e  
 

1.3. Thesis outline 

 

This thesis adheres to the guidelines established by McGill University's Graduate and Postdoctoral 

Studies and is presented in a 'manuscript' format. It consists of six chapters, preceded by a title 

page, table of contents, abstract, acknowledgments, preface, and a section detailing author 

contributions. The first chapter introduces the research topic, emphasizing its significance, and 

outlines the study's objectives. The second chapter offers a concise review of the relevant literature. 

The third chapter provides a comparative analysis of the RZWQM2-P and DRAINMOD-P models 

in predicting daily phosphorus loss through subsurface drainage. The fourth chapter evaluates the 

phosphorus component of the RZWQM2-P model using daily P loss data from the second 

experimental field in Ohio and examines the impact of cover crop rye and controlled drainage on 

P loss management. Additionally, chapters three and four identify specific subroutines in the 

RZWQM2-P model that require modifications. The fifth chapter offers an overarching discussion 

that integrates the findings from all chapters of the thesis. The final chapter summarizes the thesis 

and concludes the study. Connecting text throughout the chapters is provided to link the research. 

References are compiled at the end of the thesis. 
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CHAPTER II 

LITERATURE REVIEW 

 

2.1. Phosphorus use in agriculture: Impacts on freshwater ecosystems 

 

Phosphorus (P) is critical for high agricultural productivity (Mardamootoo et al., 2021). P, an 

essential and irreplaceable nutrient, plays a pivotal role in promoting cell division, stimulating root 

development, bolstering plant strength, and enhancing the formation of flowers and seeds (Liu, 

2021; Malhotra et al., 2018). Given its vital role in supporting agricultural productivity, the 

efficient utilization of P has emerged as a crucial concern over the years for a variety of reasons. 

Firstly, P is commonly applied to cropland in the form of phosphate fertilizers, derived from 

phosphate rocks. These rocks are a non-renewable resource, and predictions suggest that, given 

the current rate of extraction and use, they will be depleted within 60-100 years (Johnston et al., 

2014). Secondly, various studies and field experiments indicate that only 10-15% of the applied 

fertilizer P is utilized by crops (Johnston et al., 2014). The remainder becomes fixed in the soil 

through biotic and abiotic processes, rendering it unavailable to plants, and this accumulation of P 

persists in the soil as old soil P pool also known as legacy P (Doydora et al., 2020; Osterholz et al., 

2023). Various studies have indicated that legacy P significantly contributes to nutrient loads in 

freshwater bodies, notably Lake Erie (Jarvie et al., 2013; King et al., 2017; Motew et al., 2017; 

Muenich et al., 2016). This leads to a third issue: excessive leaching of P from agricultural fields 

into freshwater bodies, resulting in eutrophication by increasing the total P load of the water body 

(Baker et al., 2014; Han et al., 2012). For instance, 40% of US lakes contain excess P, which 

deteriorates their quality (Doydora et al., 2020). The P leached from the fields is available in both 

a dissolved reactive form (DRP), immediately accessible to algae, and as particulate P (PP) bound 

to soil particles (Nazari et al., 2020).  

          Given this context, the dynamics of P mobility, from its application on croplands to its 

eventual accumulation in freshwater ecosystems, highlight a complex environmental challenge 

(King et al., 2015a). Recognizing the pathways through which P reaches aquatic environments, 

and the resultant eutrophication, underscores the need for integrated management strategies (Singh 
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et al., 2020). These strategies must aim to optimize P use in agriculture, minimizing its loss to 

water bodies, and thereby safeguarding both agricultural productivity and aquatic ecosystem 

integrity (Sharpley et al., 2015). 

 

2.2.  Phosphorus loading in Lake Erie 

 

As discussed in the previous section, Lake Erie has been significantly impacted in terms of its 

water quality due to P loading. The water quality of Lake Erie has been deteriorating since the 

1950s (Davis, 1964). Documented instances of algal blooms, directly attributed to P influx from 

adjacent territories, underscore the gravity of the situation (Dolan & McGunagle, 2005; Schelske, 

1979; Zhang et al., 2016).  

          The topography of Lake Erie plays a crucial role in eutrophication events and significantly 

influences P dynamics and water quality. The western basin, being the shallowest among the basins 

with an average depth of 7.4 meters compared to 18.3 meters and 24 meters in the central and 

eastern basins respectively, has received approximately 61 percent of the total P load entering Lake 

Erie since 1994 (EPA, 2015). Consequently, the water quality in the western basin has become the 

most compromised compared to other regions (Berry et al., 2017; Environment and Climate 

Change Canada, 2023; Sayers et al., 2019).  

          Figure 2.1 reveals that, from 2013 to 2022, the western basin of Lake Erie has received an 

average annual P load of approximately 3,328 tonnes (Environment and Climate Change Canada, 

2023). Notably, 90% of this load originates from non-point sources, predominantly agricultural 

lands, with a considerably smaller contribution from urban stormwater runoff. Meanwhile, the 

central and eastern basins have predominantly been affected by non-point source pollution as well, 

accounting for 77% and 86% of their P loads, respectively (Environment and Climate Change 

Canada, 2023). Further analysis, as presented in Figure 2.2, focuses exclusively on the Canadian 

side, revealing that non-point sources overwhelmingly dominate total P loading. The proportion 

from non-point sources fluctuated, dropping to a low of 47% in 2010 and peaking at 81% in both 

2014 and 2019 (Environment and Climate Change Canada, 2023). This highlights the substantial 

influence of agricultural practices in the Midwest of the United States and southern Ontario on 

Lake Erie's water quality. In response to these challenges, the United States and Canada, under the 
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Great Lakes Water Quality Agreement (GLWQA), have pledged to reduce the total P load entering 

the western and central basins of Lake Erie by 40% compared to the 2008 levels (EPA, 2015). 

 

Figure 2. 1 Ten-year annual average (2013-2022) of phosphorus loading to Lake Erie from various 

sources, with arrow thickness indicating load intensity by basin. 

[adapted from Environment and Climate Change Canada (2023)] 

 

Despite pledges from both countries to reduce total P loading by 40%, data from Environment and 

Climate Change Canada (2023) underscore the significant disparity between commitments and 

actual results. Figure 2.3 illustrates the trends in total P loading to the Lake Erie basin from 2008 

to 2022, indicating no discernible trend over these 14 years. Notably, in 2022, the total P load from 

the Canadian side exceeded the 2008 levels, despite representing only 22% of the combined load 

from both Canada and the US. This underscores the necessity for both nations to achieve 

reductions. The peak combined total P load was approximately 13,533 tonnes in 2019, with the 

lowest at 5,672 tonnes in 2010 (Environment and Climate Change Canada, 2023). The failure to 
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meet the reduction targets set by the GLWQA, coupled with ongoing high nutrient concentrations 

and persistent algal blooms, has led the State of the Great Lakes report by the EPA (2022) to 

classify Lake Erie’s water quality as poor and unchanged. 

 

Figure 2. 2 Phosphorus load estimates to Lake Erie by source in Canada, from 2008 to 2022  

[data retrieved from Environment and Climate Change Canada (2023)] 

 

 

Figure 2. 3 Estimated total phosphorus loading to Lake Erie from 2008 to 2022  

[data retrieved from Environment and Climate Change Canada (2023)]. TP, total phosphorus. 
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2.3. Pathways of phosphorus transport from croplands to surface water bodies 

 

The previous section highlighted that non-point sources, primarily agricultural croplands, pose a 

significant threat to the quality of freshwater lakes, particularly Lake Erie. Consequently, 

mitigating these losses through effective management practices is crucial. To effectively tailor 

these practices, understanding the pathways of P transport from agricultural fields is essential. 

 

2.3.1. Historic perspective on phosphorus transport 
 

Phosphorus transport from agricultural fields primarily occurs through two pathways: surface 

runoff and subsurface drainage. Twentieth-century research predominantly focused on surface 

runoff as the principal means of P transfer from croplands to surface water bodies. For a 

considerable period, there was a strong belief in the minimal P concentrations present in tile 

drainage (King et al., 2015b). Numerous studies, such as that by  Baker et al. (1975), found that P 

concentrations in tile drainage were negligible compared to those in surface runoff in central Iowa. 

Similarly, research by Logan et al. (1980) across Iowa, Minnesota, and Ohio concluded that P 

losses via tiles were insignificant and primarily in a non-bioavailable, or non-reactive, form. As a 

result, initial efforts to manage P levels focused on reducing soil erosion caused by surface runoff, 

employing various management practices. These findings significantly influenced early models 

developed to recommend practices for mitigating P losses from fields. For instance, the Erosion-

Productivity Impact Calculator (EPIC) model's P subroutine (Jones et al., 1984; Sharpley et al., 

1984), a precursor to later P models, lacked routines to simulate the non-reactive form of P, such 

as particulate phosphorus, from subsurface drainage. The P indices developed by Dr. Sharpley and 

colleagues (Osmond et al., 2023) primarily targeted P losses from surface runoff and erosion, 

suggesting various management practices based on the index to reduce losses through that 

pathway. 

 
2.3.2. Perspective on phosphorus transport from the late 1990s onwards 
 

The prevailing view underwent a significant shift in the late 1990s, following a study by Sims et 

al. (1998) conducted in Delaware, Indiana, and Quebec. This research evaluated the role of 
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artificial drainage in P transport and revealed that subsurface drainage plays a critical role in P 

loading, necessitating equal consideration in management practices alongside surface runoff to 

address non-point source P pollution effectively. Following this study, numerous investigations in 

both the US and Canada have echoed Sims et al. (1998)’s findings (Table 2.1). 

 

2.3.3. Extent, significance, and contribution of subsurface drainage to phosphorus    

transport 

Subsurface drainage, in use for over 150 years (King et al., 2015b), plays a crucial role in 

agricultural productivity by effectively removing excess water from fields (Fausey, 2005). This 

practice grants farmers enhanced control over their field operations, leading to numerous benefits 

such as improved trafficability, the opportunity for earlier planting, a wider variety of crop choices, 

reduced vulnerability of crops to pests and diseases, and ultimately, an increase in crop production 

(Atherton, 1999; Ghane, 2018; Kornecki & Fouss, 2001; Strock et al., 2011). Research has shown 

that the implementation of subsurface drainage can potentially boost annual crop yields by 5 to 

25% (Eidman, 1997).  

 

          The recent census conducted by the USDA National Agricultural Statistics Service (NASS) 

in 2017 provided detailed insights into the extent of tile drainage in the US. It is estimated that 

22.48 million hectares of land in the US are equipped with tile drainage, of which 18.79 million 

hectares—constituting approximately 83.8%—are located in six Midwestern States alone 

(Valayamkunnath et al., 2020). In Canada, it is estimated that around 8 million hectares of land are 

tile-drained, with this figure expected to rise (King et al., 2015b). Further analysis suggests that in 

the US and Canada, roughly 43 million and 16 million hectares of land, respectively, either 

necessitate or could significantly benefit from subsurface drainage (Skaggs et al., 1994). 

Consequently, subsurface drainage is poised to continue playing a crucial role in the coming 

decades. Moreover, with climate change projected to increase precipitation (Easterling et al., 2017; 

Picard et al., 2023), croplands are expected to derive even greater benefits from subsurface 

drainage. 

          The incorporation of tile drains into fields notably modifies the overall water yield, 

increasing it by 10 to 25% (King et al., 2015b; Tomer et al., 2005). Although tile drainage elevates 

the total water yield, it concurrently leads to a substantial reduction in surface runoff and sediment 
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yield (Dolezal et al., 2001). The implementation of subsurface drainage systems is thus associated 

with decreased P losses from surface runoff by reducing runoff volume (Bengtson et al., 1995). 

However, numerous findings have highlighted tile drains as a notable contributor of P within 

agricultural watersheds, with instances where they release equal or even greater amounts of 

phosphorus compared to surface runoff, as various studies detailed in Table 2.1. Therefore, 

managing P transport through both tile drainage and surface runoff is absolutely critical to meeting 

the 40% reduction goal set by the Great Lakes Water Quality Agreement (Smith et al., 2015). 

 

Table 2. 1 Overview of studies on phosphorus losses linked to tile drainage and its 

contribution to total phosphorus load. 
 

Location and site 

information 

Summary of P load/concentration associated 

with tile drainage 
Reference 

Quebec: The field site 

was located in the Pike 

River watershed 

The study aimed to assess the P load during the 

snowmelt event and discovered that subsurface 

drainage contributed to 37.1% of the total P 

load, establishing it as a significant pathway. 

(Jamieson et al., 

2003) 

Ontario: Tile drained 

field under free drainage 

and controlled drainage 

in southern Ontario 

The five-year study revealed that subsurface 

drainage accounted for approximately 95 to 

97% of the total P loss with free drainage, and 

65 to 71% with controlled drainage. 

Additionally, the total P concentration in tile 

drainage, at 0.48 mg L-1, exceeded the province 

of Ontario's upper limit of 0.03 mg L-1. 

(Tan & Zhang, 

2011) 

Nova Scotia: 39 tile-

drained fields from four 

different counties 

 

The 20-month study of 39 fields concluded that 

the mean total P concentration from tile 

drainage exceeded 0.10 mg L-1 in 82% of the 

fields, and periodically concentrations were 

occasionally more than 50 times higher than the 

guidelines.  

(Kinley et al., 2007) 
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Location and site 

information 

Summary of P load/concentration associated 

with tile drainage 
Reference 

Wisconsin: Four tile-

drained fields in three 

different counties 

The four-year study concluded that tile drainage 

was responsible for 16-58% of the total 

dissolved reactive phosphorus (DRP) leaving 

the field and 17-41% of the cumulative total P 

load. 

(Ruark et al., 2012) 

Ontario: Tile drained 

field under manure 

application 

The eight-year study revealed that tile drainage 

is the major pathway for DRP load, accounting 

for 63% of the losses through this pathway. For 

particulate phosphorus (PP) load, both tile 

drainage and surface runoff contribute almost 

equally to the total P load. 

(Sadhukhan et al., 

2019b) 

Ohio: Six tile drains 

within the Upper Big 

Walnut Creek watershed 

in central Ohio 

An eight-year study revealed that tile drainage 

accounted for 48% of the DRP and 40% of the 

TP load. Additionally, more than 90% of the 

samples in tile drainage exceeded the 

recommended level of 0.03 mg L-1 P 

concentration. 

(King et al., 2015a) 

Ohio: 38 edge-of-field 

sites spread across 

various counties in the 

state 

The four-year field experiments concluded that 

approximately 71% ± 26% (mean ± one 

standard deviation) of the annual DRP load and 

69% ± 27% of the annual TP load were 

accounted via subsurface drainage. 

(Pease et al., 2018) 

Indiana: Four fields in 

the St. Joseph River 

Watershed 

Field experiments demonstrated that subsurface 

drainage is a significant pathway for P transport, 

accounting for 49% of the DRP and 48% of the 

TP load. 

(Smith et al., 2015) 

P, phosphorus; TP; total phosphorus 
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2.4.  Modeling phosphorus losses  

 

Given the significant concern for the water quality of surface water bodies, relying solely on field 

experiments to implement management practices across various spatial and temporal scales is 

insufficient (Thorp et al., 2007). Modeling presents a more effective approach for predicting 

management practices tailored to specific cropping systems, soil types, and regional climates 

(Singh et al., 2022). However, for a modeling technique to be deemed comprehensive and reliable, 

it is essential to account for the full spectrum of dynamics occurring within the field. The review 

by Radcliffe et al. (2015) outlines the prerequisites for a P model to be considered comprehensive 

in simulating P dynamics (Figure 2.4). According to them, the model should 

i. Partition the water into runoff, soil matrix, and preferential flow. 

ii. Represent phosphorus movement across all three water flow pathways. 

iii. Simulate processes like sorption and desorption of dissolved reactive phosphorus, as well 

as the filtering of particulate phosphorus. 

iv. Offer an extensive list of management scenarios. 

 

Figure 2. 4 Representation of water and phosphorus dynamics in tile-drained fields  

[adapted from Radcliffe et al. (2015)]. DP, dissolved reactive phosphorus; PP, particulate phosphorus. 
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            Sharpley et al. (1984) provided an early representation of P dynamics modeling in soil, 

proposing five different P pools to accurately reflect actual field conditions, which were 

incorporated into the EPIC model. They distinguished the P pools based on labile, inorganic and 

organic categories: labile, active and stable for inorganic pools, and fresh and stable for organic 

pools (Jones et al., 1984; Sharpley et al., 1984). The EPIC model's approach to P pools was among 

the first to represent actual field conditions, allowing for the continuous movement among different 

P pools through processes such as mineralization, immobilization, absorption, and desorption 

(Sadhukhan, 2021). Although many later models adopted the EPIC model’s P routines (Table 2.2), 

Vadas et al. (2013) concluded that these routines do not meet the need for reliable predictions, 

noting that they have not been updated in the last 25 years (Qi & Qi, 2017). Vadas et al. (2006); 

Vadas and White (2010) identified an underestimation of desorption flow and total P in the soil 

due to the original P subroutines based on Sharpley et al. (1984), leading to modifications in the 

adsorption factor constant and phosphorus sorption (Qi & Qi, 2017). Furthermore, the hydrology 

component of the EPIC model does not account for macropore flow, which is crucial for a model 

to be considered comprehensive for P modeling and to accurately represent actual field conditions.       

             Subsequent field-scale models, including APEX [Agricultural Policy/ Environmental 

eXtender (Williams et al., 2006)], ADAPT [Agricultural Drainage and Pesticide Transport (Chung 

et al., 1992)], ANIMO [Agricultural Nutrient Model (Kroes & Roelsma, 1998)], PLEASE 

[Phosphorus LEAching from Soils to the Environment (Schoumans et al., 2013)], HYDRUS 

(Simunek et al., 2005; Šimůnek et al., 2006), and SurPhos [Surface Phosphorus and Runoff Model 

(Vadas, 2014)], have shown proficiency in particular aspects of either hydrology simulation or P 

predictions. However, none fully encapsulates all dimensions of the comprehensive P model 

previously outlined, as described in Table 2.2. 

            HYDRUS, for instance, offers a sophisticated module for simulating the hydrology 

component, complete with advanced macropore flow subroutines across three modeling options. 

Despite this capability, the lack of specialized P subroutines means HYDRUS can only 

approximate P loss through tile drainage using its solute transport equations. To the best of our 

knowledge, HYDRUS was only tested once in Canada for simulating P losses through tile drainage 

fields by Qiao (2014), who found it provided satisfactory results on a weekly scale. However, the 

absence of P routines for runoff flow and a lack of comprehensive agricultural management options 
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led Radcliffe et al. (2015) to conclude that HYDRUS is unlikely to be adopted for modeling P in 

tile-drained fields.  

             SurPhos, on the other hand, features some of the most sophisticated P subroutines designed 

to predict dissolved P losses through surface runoff. It incorporates four P pools for an accurate 

representation of manure application and two P pools for fertilizer application, enhancing these 

with the addition of three P pools from the EPIC model (Vadas, 2014). Furthermore, SurPhos 

introduces an innovative functionality that dynamically adjusts absorption/desorption rates, 

addressing the limitations present in the EPIC model's P routines. Despite these advanced features, 

SurPhos does not serve as a comprehensive model either, as it lacks the ability to independently 

simulate hydrological processes and omits consideration of P losses through the subsurface 

pathway (Sadhukhan, 2021). 

             ICECREAM (Tattari et al., 2001) has long been recognized as a comprehensive tool for 

predicting P losses from artificially drained fields. Reviews by Qi and Qi (2017); Radcliffe et al. 

(2015) highlight ICECREAM as a reliable tool for P predictions in fields with tile drainage, noting 

its capability to encompass all major pathways of P transport—including surface runoff, soil 

matrix, and macropore flow—and to predict both dissolved and particle-bound P transport. 

Developed specifically for Nordic conditions, the ICECREAM model has been extensively tested 

in Sweden (Liu et al., 2012; Rosberg & Arheimer, 2007), proving effective in predicting P 

dynamics in these regions. However, its application outside the Nordic countries, specifically by 

Qi et al. (2018) in Canada, revealed challenges in predicting PP loss through tile drainage.  

            Sadhukhan (2021) commented that despite ICECREAM's comprehensive P module, 

capable of predicting P transport across all mediums, its subsurface drainage component is 

relatively weak. It relies solely on storage routing concepts without incorporating a water table-

based component. To enhance its predictive accuracy, particularly for tile drainage and water 

redistribution, it's suggested that the model could benefit from integrating more sophisticated 

equations, such as Hooghoudt’s equation and Richards’ equation. These improvements could 

significantly refine ICECREAM’s ability to simulate the complex dynamics of P transport and 

water movement in agricultural landscapes. 
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2.5.  Recent advances in phosphorus modeling 

 

Over the past decade, several studies (Kleinman et al., 2015; Qi & Qi, 2017; Radcliffe et al., 2015) 

have underscored the necessity for a comprehensive agricultural management model-based tool 

capable of accurately predicting P dynamics in tile-drained agricultural fields. The existing models 

of that time, as discussed in the previous section and presented in Table 2.2, fall short in one or 

more components. These limitations restrict their effectiveness in aiding scientists and farmers to 

directly rely on model predictions for efficiently managing P losses. 

             In response to these challenges, researchers recently developed two models: the Root Zone 

Water Quality Model version 2 – Phosphorus [RZWQM2-P (Sadhukhan et al., 2019a)], and the 

DRAINMOD-P model (Askar et al., 2021). Both models incorporate the latest scientific 

understanding of P transport from agricultural fields, aiming to overcome the limitations identified 

in earlier models by providing more accurate and reliable predictions of P dynamics.  

             The RZWQM2 model possesses a robust hydrology component, complemented by 

macropore and erosion modules, which are essential for accurately predicting P losses. These 

elements are essential as particle-bound P cannot be predicted accurately by models in their 

absence. Sadhukhan et al. (2019a) enhanced the model by integrating a P component, by 

incorporating P modules from the EPIC model and integrating advanced features from the SurPhos 

model, such as separate P pools for manure and fertilizer applications, into the RZWQM2 model. 

DRAINMOD, initially lacking the macropore and erosion modules necessary for the inclusion of 

a P module, underwent significant enhancement by work of  Askar et al. (2021); Askar et al. (2020). 

They developed both the macropore component and an erosion module along with a new P 

component, culminating in the DRAINMOD-P. This version of DRAINMOD now adeptly 

simulates the dynamics of P through artificially drained fields, marking a significant leap in 

modeling capabilities. 

            The next chapter (Chapter 3) of this thesis will provide a comprehensive overview of both 

models, detailing their processes, subroutines, and other relevant features, offering an in-depth 

look at their contributions to agricultural water management and P loss prediction.
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Table 2. 2 Comparative analysis of field-scale models for addressing phosphorus loss through subsurface drainage. 

Model 

[reference(s)] 

Process vs 

Empirical 

approach 

Infiltration/ 

Runoff 

Subsurface drainage 
Management 

practices 

Subsurface P 

routines Soil P pools/ 

representation 
Comments  

Soil matrix 
Macropore 

flow 
DRP PP 

ADAPT 

[Agricultural 

Drainage and 

Pesticide 

Transport] 

(Chung et al., 

1992) 

Mixed  

Soil 

Conservation 

Service (SCS) 

curve  

number 

method 

Hooghoudt’s 

steady state 

(Bouwer & Van 

Schilfgaarde, 

1963) and 

Kirkham’s 

equation 

(Kirkham, 

1957) 

Simplistic 

approach based 

on the function 

of clay content 

and the number 

of dry days 

(based on PET 

demand) 

Limited 

management 

scenarios 

✓  

Based on the 

nutrient 

component of 

the EPIC 

model 

ADAPT model lacks the 

capability to simulate PP 

loss through both surface 

runoff and tile drainage. 

Radcliffe et al. (2015) 

stated that it is unlikely 

to predict the P losses 

from fields with tile 

drainage. 

ANIMO 

[Agricultural 

Nutrient 

Model] 

(Kroes & 

Roelsma, 1998) 

Process     Extensive ✓  

Linearized 

solute 

transport 

equations 

ANIMO model is unable 

to simulate hydrology 

and requires input from 

external hydrological 

models to simulate 

nutrient dynamics 

(McGechan & Hooda, 

2010). 

APEX 

[Agricultural 

Policy/ 

Environmental 

eXtender] 

(Williams et al., 

2006) 

Mixed 

SCS curve 

number or 

Green Ampt 

equation 

(Green & 

Ampt, 1911) 

Cascade 

approach 
 

Extensive 

options 
✓  

Drawing from 

the five P 

pools utilized 

by the EPIC 

model. 

Review of the APEX 

model by (Francesconi et 

al., 2016; Radcliffe et al., 

2015) underscores its 

shortcomings, including 

the P partitioning 

processes and the 

inability to simulate 

macropore flow. 
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Model 

[reference(s)] 

Process 

vs 

Empirical 

approach 

Infiltration/ 

Runoff 

Subsurface drainage 
Management 

practices 

Subsurface 

P routines Soil P pools/ 

representation 
Comments  

Soil matrix 
Macropore 

flow 
DRP PP 

DRAINMOD 

-P 

(Askar et al., 

2021) 

Process 

Green-Ampt 

equation for 

infiltration 

(Green & 

Ampt, 1911) 

 

Hooghoudt’s 

steady state  

and Kirkham’s 

equation 

(Kirkham, 

1957)  

Hagen-

Poiseuille 

law (Sutera 

& Skalak, 

1993) 

Extensive 

management 

scenarios 

✓ ✓ 

Inorganic P 

pools are based 

on the EPIC 

model, and 

organic P pools 

on the 

CENTURY 

model 

DRAINMOD has recently been 

upgraded with a P component, 

making it one of the few models 

capable of simulating both DRP 

and PP transport through surface 

runoff, macropore flow and 

subsurface drainage, supported by 

a robust hydrology component.  

EPIC 

[Erosion-

Productivity 

Impact 

Calculator] 

(Gassman et 

al., 2004; 

Jones et al., 

1984) 

Process 

Modified 

SCS curve 

number 

Storage routing 

technique  Extensive  ✓  

Five 

interchangeable 

P pools 

proposed by 

Sharpley et al. 

(1984) 

P subroutines in the EPIC model 

serve as the foundation for 

subsequent P models, yet they 

exhibit specific limitations.  

While capable of simulating PP 

transport through runoff, they fail 

to address PP transport through 

tile drainage.  Additionally, EPIC 

lack a macropore flow 

component, which is critical for 

accurate P transport simulation. 

HYDRUS 

(Simunek et 

al., 2005; 

Šimůnek et 

al., 2006) 

Process 

Richard’s 

equation 

(Richards, 

1931) 

Hooghoudt’s  

steady state 

equation and 

Ernst’s 

equation 

(Ernst, 1962) 

Three 

modeling 

options: One 

dual-

porosity 

model and 

two dual-

permeability 

models 

Limited 

agricultural 

management 

scenarios 

  

Simulated 

using solute 

transfer 

equations 

HYDRUS lacks specific P 

subroutines; however, it can 

simulate P transport through tile 

drainage using its sorption and 

solute transfer equations. Yet, it 

cannot predict P losses bound to 

surface runoff due to the absence 

of an erosion simulation 

component. 
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Model 

[reference(s)] 

Process 

vs 

Empirical 

approach 

Runoff 

     Subsurface drainage 
Management 

practices 

Subsurface 

P routines Soil P pools/ 

representation 
Comments  

Soil matrix 
Macropore 

flow 
DRP PP 

ICECREAM 

(Tattari et al., 

2001) 

Mixed  

SCS 

curve  

number 

method 

Storage 

routing 

technique 

Dual 

porosity 

approach 

(Larsson et 

al., 2007) 

Extensive ✓ ✓ 
Based on the five P 

pools of the EPIC 

model 

ICECREAM model predicts DRP and 

PP losses via runoff, macropore, and 

matrix flow. Review by Qi and Qi 

(2017); Radcliffe et al. (2015)  label it 

the most adept field-scale P model, 

yet it lacks a water table drainage 

component. Its efficacy outside 

Nordic countries, tested once by Qi et 

al. (2018), shows limited capacity for 

PP loss prediction through tile 

drainage. 

PLEASE 

[Phosphorus 

LEAching 

from Soils to 

the 

Environment] 

(Schoumans et 

al., 2013) 

Mixed  

Groundwater

-drainage-

relationship 

(Van Bakel, 

1986) 

 Limited ✓  

P conc. calculations 

are based on the 

Langmuir equation 

(Van der Zee & Bolt, 

1991)  and empirical 

exponential 

equations (Chardon 

et al., 2007) 

PLEASE model simulates P losses 

only through tile drainage, lacking a 

surface runoff component. It operates 

on an annual basis, making it 

unsuitable for higher resolution 

applications. 

SurPhos 

[Surface 

Phosphorus 

and Runoff 

Model] 

(Vadas, 2014) 

Empirical    Limited   

Basic structure 

follows the EPIC 

model's subroutines, 

with the addition of 

four subroutines for 

manure and two for 

fertilizer simulation. 

SurPhos model is designed for 

integration with other models to 

simulate DRP losses through runoff, 

featuring advanced, dynamically 

changing daily absorption/desorption 

rates among P pools. However, it does 

not account for soil-bound P from 

runoff and cannot simulate P losses 

through tile drainage. 
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✓, model can simulate the process; , model cannot simulate the process; conc., concentration; DRP, dissolved reactive 

phosphorus; P, phosphorus; PP, particulate phosphorus; PET, potential evapotranspiration. 

 

 

 

 

 

Model 

[reference(s)] 

Process 

vs 

Empirical 

approach 

Infiltration/ 

Runoff 

Subsurface drainage 
Management 

practices 

Subsurface 

P routines Soil P pools/ 

representation 
Comments  

Soil matrix 
Macropore 

flow 
DRP PP 

RZWQM2-P 

 [Root Zone 

Water 

Quality 

Model 

version2 – 

Phosphorus] 

 

(Sadhukhan et 

al., 2019a) 

Process 

Green-Ampt 

equation for 

infiltration 

and  

Richards’ 

equation for 

water 

distribution  

Hooghoudt’s 

steady state 

equation 

Hagen-

Poiseuille 

law  

Extensive 

management 

scenarios 

✓ ✓ 

Based on the five 

P pools of the 

EPIC model, with 

the addition of 

four pools for 

manure 

application and 

two pools for 

fertilizer 

application, 

adopted from the 

SurPhos model. 

RZWQM2 model has recently 

been upgraded with P 

subroutines. It can simulate 

losses of both DRP and PP 

through surface runoff, matrix 

flow, and macropore flow. The 

model also features advanced 

capabilities, such as 

dynamically changing rates for 

absorption/desorption and 

additional pools for fertilizer 

and manure application. Given 

its recent development, it 

requires further testing. To 

date, it has been tested outside 

of Canada only once, by 

Shokrana et al. (2022).  
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2.6.  Evaluation and testing of the RZWQM2-P model 
 

The RZWQM2-P model has been evaluated by its developers for its ability to predict P loss 

resulting from both fertilizer (Sadhukhan et al., 2019a) and manure applications (Sadhukhan et al., 

2019b). In these studies, the model satisfactorily predicted DRP and PP losses via surface runoff 

and subsurface drainage. However, these evaluations utilized aggregated field data over periods 

rather than daily P loss data. When Shokrana et al. (2022) applied the model in Michigan—marking 

its first use outside of Canada with daily P loss data—the model's performance in predicting DRP 

losses was found to be unsatisfactory (NSE<0.35), and while its predictions for TP losses were 

satisfactory (NSE<0.50), it overestimated P losses, indicated by an unsatisfactory PBIAS. 

               Given these findings, it is imperative to further test the RZWQM2-P model using daily P 

loss data to accurately assess its performance in predicting P losses. Accurate daily predictions are 

crucial for applications such as assessing the impact of storm events on P loading, which typically 

last only a few days. Hence, simulating with higher temporal resolution is greatly appreciated and 

seen as a major benefit, particularly when the model is capable of precisely forecasting specific 

events.  
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FOREWORD TO CHAPTER III 

 

Chapter II offers an in-depth analysis of the critical role of phosphorus (P) in agriculture and the 

issue of eutrophication in freshwater bodies, with a particular focus on Lake Erie. The previous 

chapter also reviews existing field-scale P models and their significance in reducing P losses from 

agricultural lands. As discussed, the RZWQM2-P and DRAINMOD-P models have been recently 

developed to address the shortcomings of previous P models. However, they have not been 

compared with each other in terms of their subroutines, capabilities, and effectiveness in predicting 

P losses from artificially drained fields. Chapter III presents the first-ever comparison of these 

models, which were evaluated using data from a tile-drained field in the watershed of the western 

Lake Erie basin. The chapter concludes with recommendations for enhancing these models. 

          Part of the manuscript was presented at the annual meeting of the Canadian Society for 

Bioengineering in July 2023 in Lethbridge, Alberta. The complete chapter is intended for 

submission to a peer-reviewed journal for publication. 
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Abstract 
 

Phosphorus (P) losses from agricultural soils in Canada and the United States, whether dissolved 

in water or attached to suspended sediment, are a significant source of P pollution in surface water 

bodies. Hydrological and nutrient transport models are instrumental in developing better 

management practices to mitigate P losses from agricultural soils. This study represents the first 

effort to compare the accuracy of two recently developed field-scale models, RZWQM2-P and 

DRAINMOD-P, in simulating dissolved reactive P (DRP) and total P (TP) losses in subsurface 

drainage. The models' accuracy was assessed using a five-year observed data set from a 

subsurface-drained field in northwest Ohio. The performance of the RZWQM2-P and 

DRAINMOD-P models in predicting P losses was compared using efficiency criteria including the 

Nash-Sutcliffe Model Efficiency (NSE), Coefficient of Determination (R2), Index of Agreement 

(IOA), and Percent Bias (PBIAS). Both models predicted subsurface drainage satisfactorily over 

the five-year period. However, DRAINMOD-P significantly overpredicted surface runoff 
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compared to observed data, while RZWQM2-P also overpredicted, but to a lesser extent and closer 

to the observed data. With an NSE greater than 0.35, an R2 exceeding 0.40, and an IOA above 0.75, 

the calibrated RZWQM2-P model demonstrated a better ability to predict monthly DRP losses 

with satisfactory performance compared to DRAINMOD-P. Nonetheless, both models performed 

unsatisfactorily in predicting daily DRP losses. In contrast, both models yielded satisfactory to 

good predictions for daily and monthly TP losses, with NSE values over 0.35, R2 greater than 0.40, 

and IOA values above 0.75. A primary reason for RZWQM2-P's poor performance in predicting 

daily DRP loss through subsurface drainage was its failure to modulate changes in DRP 

concentration. Future modifications to the model's subroutines, particularly those related to the 

linear groundwater reservoir, are necessary to enhance its reliability in capturing high load peak 

events in subsurface drainage. 

Keywords: Dissolved Reactive Phosphorus (DRP), DRAINMOD-P, Lake Erie, Management 

Practices, Phosphorus (P) loss, Root Zone Water Quality Model version 2-Phosphorus 

(RZWQM2-P), Subsurface Drainage, Total Phosphorus (TP) 
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3.1.  Introduction 
 

Fueled by the direct impact of phosphorus (P) on water quality in freshwater ecosystems, global 

concern over P losses from agricultural fields has increased considerably in recent years (Hanrahan 

et al., 2019). One of the key nutrients applied to fields as a fertilizer is P and it often ends up 

leaching into nearby water bodies, causing a cascade of environmental problems. The most 

prominent and alarming manifestation of P loss is observed in freshwater lakes, where excessive 

P concentrations can lead to eutrophication (Wurtsbaugh et al., 2019). Lake Erie, for instance, has 

been a prominent victim of P-induced eutrophication, experiencing harmful algal blooms that have 

not only disrupted aquatic life but also posed a threat to human health (Askar et al., 2023; Jetoo et 

al., 2015; Smith et al., 2015). According to recent estimates, non-point sources, such as agricultural 

fields, contribute to nearly 71 to 90 % of the total P load entering Lake Erie’s western basin 

(Environment and Climate Change Canada, 2023; Scavia et al., 2016). Such losses are 

predominantly due to complex interactions between farming practices, hydrological processes, and 

soil P dynamics (Daloğlu et al., 2012). The occurrence of large-scale eutrophication events, as 

witnessed in Lake Erie in 2014 (Jetoo et al., 2015), has brought the issue to the forefront of 

environmental policy, necessitating a critical evaluation of the factors influencing P losses from 

tile-drained agricultural fields. In a concerted effort to enhance the water quality of Lake Erie and 

mitigate the accompanying health hazards, the governments of the United States and Canada have 

jointly resolved to curtail by 40% the overall annual P and dissolved reactive P loads originating 

from the Lake Erie basin (Baker et al., 2019). The severity of the problem accentuates the need for 

precise modeling and management strategies to understand and mitigate P losses, thus 

safeguarding our valuable freshwater resources. 

             Modeling P losses from tile-drained agricultural fields present a complex challenge due to 

the multitude of factors involved, including soil characteristics, hydrological processes, climate 

conditions, and management practices. Predicting and managing these losses requires detailed and 

accurate modeling and simulations that capture the underlying dynamics (Sadhukhan et al., 

2019b). Various hydrological and nutrient transport models [e.g., ADAPT (O. Chung et al., 1992),  

APEX (Francesconi & Co, 2016), EPIC (Sharpley, 1990), HYDRUS (Boivin et al., 2006), 

ICECREAM (Tattari et al., 2001), SurPhos (Vadas, 2014), PLEASE (Dupas & van der Salm, 

2010), SWAP (van Dam, 2000) have been employed to predict P transport through soil to tile 
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drainage. While each of these models offers specific insights into different aspects of P transport 

(e.g., hydrological processes, soil-P interactions, and plant uptake); however, their application to 

real-world scenarios is often limited by certain shortcomings (Qi & Qi, 2017; Sadhukhan et al., 

2017), incapacitating them from reliably predicting P losses from tile-drained fields. An effective 

model must represent not just the physical flow of water but also the chemical reactions, biological 

processes, and human interventions that govern P transport (Sadhukhan et al., 2019b). This 

complexity necessitates the development of more precise and tailored models to understand the 

dynamic interactions of hydrology, soil, and crop management. 

             In recent years, the field of field-scale P modelling has seen significant advancements, 

particularly with the refinement of the P components in established models such as RZWQM2 

(Ahuja et al., 2000) and DRAINMOD (Skaggs, 1985). Widely employed to simulate agricultural 

management practices such as drainage, irrigation, fertilization, water table depth monitoring, and 

tillage, both RZWQM2 and DRAINMOD can serve to assess the impact of climate change on the 

hydrology, water quality, and crop yield (Cordeiro & Ranjan, 2015; Gillette et al., 2018; Qi et al., 

2013; Skaggs et al., 2012; Wang et al., 2023; Youssef et al., 2021). With the integration of P 

components, these models have undergone significant enhancements, reflected in the meticulous 

design of the P component in RZWQM2-P (Sadhukhan et al., 2019a), and in DRAINMOD-P 

(Askar et al. (2021). The P components in both the RZWQM2 and DRAINMOD models 

exclusively deal with P dynamics. However, the overall models serve as a fundamental platform, 

simulating a wide range of complex physical, biological, chemical, and hydrological processes 

that impact P behavior. These processes include, but are not limited to, crop growth, runoff, 

drainage, sediment yield, macropore flow, residue decomposition, and various agricultural 

management practices (Askar et al., 2021; Sadhukhan et al., 2019b). The meticulous design of the 

P components that has enhanced the ability of these models to simulate P cycling and transport in 

tile-drained agricultural lands, encompasses critical processes including organic and inorganic 

fertilizer applications, manure applications, plant P uptake, sediment-bound and dissolved P loss 

in both surface runoff and subsurface drainage, tillage practices, P adsorption and desorption, and 

P mineralization and immobilization (Askar et al., 2021; Sadhukhan et al., 2019a). By embedding 

these intricate processes within the models, a more detailed and precise representation of P 

dynamics is achieved. Hence, these advancements signify a critical milestone in understanding 



28 | P a g e  
 

and managing P-related environmental concerns in tile-drained agricultural lands, paving the way 

for informed decision-making and sustainable agricultural practices. 

              When new models are developed or when two existing models are combined to form an 

integrated framework, the importance of thorough testing and evaluation becomes crucial (Ale et 

al., 2013; Du et al., 2017). An in-depth examination of existing or newly formulated models, such 

as RZWQM2-P and DRAINMOD-P, enriches our understanding of their strengths and 

shortcomings, paving the way for further enhancements and supporting future research and 

trustworthiness. By comparing the efficacy of field-scale models, we can determine their 

dependability in predicting realistic outcomes that are valuable to agricultural management 

strategies (Thorp et al., 2009). Since RZWQM2-P and DRAINMOD-P have been developed 

recently, there are no existing comparative studies that evaluate their performance in predicting 

the daily losses of dissolved reactive phosphorus (DRP) and total phosphorus (TP) from tile-

drained fields. The side-by-side assessment not only illustrates the distinct advantages and 

disadvantages of each model but also fosters improvements in computational methods (Thorp et 

al., 2009), assisting practitioners in choosing the model best suited for their specific objectives in 

simulating P losses in tile-drained agricultural fields. Therefore, this study takes an essential step 

in thoroughly assessing the daily performance of both models in predicting P losses from 

subsurface-drained field, clearly highlighting their respective strengths and weaknesses. 

 

3.2. Materials and Methods  

 

 3.2.1. Site description 

 

Data collected from 2013 to 2017 at a field site in Paulding County, Ohio, (Figure 3.1) were utilized 

to evaluate the RZWQM2-P and DRAINMOD-P models regarding their capability to predict P 

losses from a subsurface-drained field. This field is a part of the Edge-of-Field network, which is 

operated by the USDA-ARS in Columbus, Ohio (Williams et al., 2016). The dominant soil types 

are Paulding clay and Roselms silty clay, both of which are known for being poorly drained and 

low saturated hydraulic conductivity. These soils are high in clay content and tend to swell under 

wet conditions and crack during dry periods (Askar et al., 2021). Prior research and field 

investigations conducted on this site have established that preferential flow is a significant factor 
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at this field, with cracks ranging from 2 to 5 cm in width (Askar et al., 2020) commonly observed 

during the summer months (Figure 3.2). The field features a gentle slope of approximately 2%, a 

tile depth of about 60 cm (2 feet), and a tile spacing of nearly 1220 cm (40 feet). The field contains 

two separate measuring points, one dedicated to assessing surface runoff and the other to 

subsurface drainage. This leads to a disparity in the contributing areas, with the surface runoff 

being measured from an area of 8.7 hectares and the subsurface drainage from an area of 10.5 

hectares. The experimental field followed a rotational planting scheme with corn (Zea mays L.), 

soybean [Glycine max (L.) Merr.], and wheat (Triticum æstivum L.). In the first year, oat (Avena 

sativa L.), serving as a cover crop, was planted following the harvest of the winter wheat. The 

producer also applied inorganic fertilizers periodically to maintain soil fertility. Periodic tilling 

was carried out using a chisel plough. Soil sample analysis revealed that the average soil test 

phosphorus (STP) concentration, using the Mehlich-3 P method, was 18.2 mg kg-1 for the upper 

15 cm layer of soil at this site (Askar et al., 2021). Detailed information of the site management 

and cropping data can be found in Table 3.1. 

 

3.2.2. Water quality sampling and analysis 

 

Precipitation at the study site was recorded in ten-minute intervals using a tipping bucket rain 

gauge (Teledyne Isco, Lincoln, NE). For other necessary weather parameters required to initialize 

the models, data were acquired from the OARDC weather station located in Hoytville, Wood 

County, which is about 45 miles distant from the research site. Detailed methodologies for 

measuring hydrology, water quality, and conducting laboratory analyses have been 

comprehensively documented in earlier studies (Ford et al., 2017; King et al., 2015; Pease et al., 

2018). In brief, stage data were recorded using the ISCO 4230 Bubbler Flow meters within a 

specified control volume. This involved the use of an H-flume for surface runoff and a compound 

weir for tile drainage, with the application of established stage-discharge relationships. 

Additionally, the ISCO 2150 Area-Velocity Sensor was placed in the tile drainage outlet pipe, 

ensuring accurate discharge measurements, especially under conditions when the sensors were 

submerged. For the quantification of surface runoff, the study adopted a flow-proportional 

sampling method. In this approach, every 1 mm increase in volumetric water depth from the 8.7 
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ha field area channeled through the H-flume resulted in the collection of a 200 mL sample. These 

samples were then aggregated, with ten aliquots forming a single composite sample. Conversely, 

tile drainage analysis employed a time-proportional sampling technique, gathering 100 mL 

samples every six hours. These samples were pooled into a single bottle to create a comprehensive 

two-day composite. This routine was complemented by additional sampling during specific events, 

identified based on the rate of change in the stage data.  

            Subsequent laboratory analysis involved the filtration of all collected samples using a 0.45 

μm vacuum filter. The DRP load in these samples was determined using the colorimetric method, 

as outlined by Murphy and Riley (1962). For TP assessment, unfiltered samples were analyzed 

using the alkaline persulfate oxidation method. The procedures for the first two years followed 

those detailed by Koroleff (1983), while in subsequent years, the methodology described by Patton 

and Kryskalla (2003) was used.  

 

 

Figure 3. 1 Location and layout of the monitored tile drained field in Paulding County, Ohio. 
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Figure 3. 2 Significant presence of wide-open soil cracks between corn rows observed in July 2018  

[Credit to Dr. Manal H. Askar (Askar, 2019)] 

 

3.2.3. Model description 
 

3.2.3.1.  RZWQM2-P  

 

The RZWQM2-P is a one-dimensional field scale model that simulates crop growth, hydrological 

cycles, and the fate and transport of nutrients and pesticides while considering various agronomic 

management practices and climate patterns (Ahuja et al., 2000). It integrates well-established 

equations such as the Green-Ampt equation (Green & Ampt, 1911) for water infiltration, the 

Richards' equation (Richards, 1931) for water redistribution, the Hooghoudt equation (Bouwer & 

Van Schilfgaarde, 1963) for drainage flux, and the Shuttle-Wallace equation (Shuttleworth & 

Wallace, 1985) for potential evapotranspiration. The model simulates preferential flow using 

Poiseuille’s law. Crop growth simulation is facilitated through one of three options: the integrated 

DSSAT 4.0 model  (Jones et al., 2003), a generic crop production model (Hanson, 2000), or the 

HERMES crop model (Malone et al., 2017). The original RZWQM2 model, typical of most field-
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scale models of its era, had limited capacity to simulate P dynamics. However, the RZWQM2-P 

iteration offers improved functionality in this regard. Traditional models mainly focused on surface 

runoff-bound P losses, neglecting the dynamics of P arising from fertilizer or manure applications, 

as well as the role of macropores and tile drainage (Sadhukhan et al., 2019a). The RZWQM2-P 

model addresses these limitations, providing a more comprehensive understanding of P dynamics 

in the environment. Recently developed phosphorus subroutines have been incorporated into the 

RZWQM2 model to enhance its functionality (Sadhukhan et al., 2019a).  

3.2.3.2.  DRAINMOD-P 

 

DRAINMOD is a field scale model for simulating the hydrology of artificially drained fields with 

shallow water tables (Skaggs, 1978; Skaggs et al., 2012). The model employs two simple water 

balance equations to simulate hydrology both at the soil surface and for a section of the soil profile 

located midway between two adjacent drains (Skaggs, 1985; Skaggs, 1978; Skaggs et al., 2012). 

DRAINMOD accounts for surface water storage, defined by the user as depressional storage, and 

initiates surface runoff once this storage reaches its maximum capacity. The model calculates 

infiltration using the Green-Ampt equation (Green & Ampt, 1911). Two different equations are 

used for drainage flux calculation, depending on the field's ponding conditions: the Kirkham 

equation (Kirkham, 1957) is used when surface ponding exceeds the user-defined Kirkham's depth, 

otherwise, the steady-state Hooghoudt equation (Bouwer & Van Schilfgaarde, 1963) is used. The 

model simulates potential evapotranspiration using the Thornthwaite (1948) method. For crop 

yield simulation, DRAINMOD employs a simple yield reduction approach (relative yield) by 

assessing soil moisture dynamics and their impact on plant growth, focusing primarily on the 

effects of water stress (Singh & Helmers, 2008). Recently, DRAINMOD-P has been developed to 

simulate P dynamics and transport in agricultural settings. Other enhancements include macropore 

flow computation, which is based on Hagen-Poiseuille’s law, and a soil erosion component. 

Preferential flow occurs when ponding depth is greater than Kirkham’s depth, facilitating free 

movement to the drains (Askar et al., 2020). The new P component predicts P losses through runoff 

and tile drainage both in the dissolved and particulate forms (Askar et al., 2021). However, 

macropores are the only pathway through which particulate P (PP) can reach subsurface drains.  
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3.2.3.3.  RZWQM2-P and DRAINMOD-P comparison     

 

Although RZWQM2-P and DRAINMOD-P are both utilized for simulating hydrology and 

phosphorus dynamics at the field scale, they exhibit distinct approaches in their simulation 

methodologies for both hydrology and phosphorus dynamics. In terms of hydrology, the primary 

differences lie in aspects such as surface storage, soil water distribution, tile drainage flux, 

preferential flow, and ET computations (Singh et al., 2022). RZWQM2-P does not consider surface 

water storage, leading to runoff when precipitation exceeds soil infiltration rate. However, 

DRAINMOD-P accounts for surface water storage and runoff occurs only after reaching the 

maximum storage capacity. Furthermore, RZWQM2-P exclusively uses the Hooghoudt equation 

(Bouwer & Van Schilfgaarde, 1963) for drainage flux calculations, whereas DRAINMOD-P 

utilizes both the Kirkham (Kirkham, 1957) and Hooghoudt equations, adapting to field ponding 

conditions. For soil water distribution, a notable distinction is that RZWQM2-P applies the 

numerical solution of Richards (1931) equation, which DRAINMOD-P does not incorporate. 

Regarding preferential flow, both models use Hagen-Poiseuille’s law; however, RZWQM2-P 

accounts for dead-end macropores (Li et al., 2023), whereas DRAINMOD-P focuses solely on 

macropores directly connected to subsurface drains, assuming that the effect of dead-end 

macropores can be represented by increasing effective soil layer hydraulic conductivity (Askar et 

al., 2020). In calculating potential evapotranspiration, RZWQM2-P employs the Shuttle-Wallace 

equation (Shuttleworth & Wallace, 1985), while DRAINMOD-P uses the temperature-based 

Thornthwaite (1948) equation.  

            Both models are designed to simulate P dynamics based on the framework of the soil P 

pools identified by Sharpley et al. (1984) and Jones et al. (1984). In DRAINMOD-P, the organic 

P pools are derived from the CENTURY model (Parton et al., 1993), while RZWQM2-P bases all 

five P pools on the EPIC model. A key feature in both models is the labile P pool, noted as the 

most dynamic and the sole source for plant P uptake. However, the models differ in their simulation 

of plant P uptake. In DRAINMOD-P, the approach for simulating plant P uptake is similar to the 

method used for nitrogen (N) uptake in DRAINMOD-NII (Youssef et al., 2005). The model 

calculates yield as a function of both relative yield and potential yield, the latter being defined by 

the user based on observed yields. However, in the current model version relative yield is 
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considered to be 100% to set predicted yield equal to actual yields and eliminate uncertainty in P 

predictions arising from yield predictions. Plant P uptake in DRAINMOD-P is then estimated using 

predicted yield and nutrient availability along with other user-defined plant characteristics, such 

as root-to-shoot ratio, harvest index, and P content in each of the crop constituents (i.e., root, shoot, 

and grain). On the other hand, RZWQM2-P utilizes the DSSAT model (Jones et al., 2003) to 

perform more nuanced crop yield simulations. This model accounts for a range of factors, 

including weather variability and nutrient dynamics like N and P, which influence plant growth. 

For plant P uptake, RZWQM2-P integrates subroutines from the SWAT model Neitsch et al. 

(2011). These subroutines are centered around key user-defined parameters, including the biomass 

P fraction at various stages of plant development — emergence, 50% maturity, and full maturity. 

These parameters are flexible and can be adjusted during the model calibration process. Another 

notable distinction between the models lies in their computation of P dynamics within the soil 

matrix. DRAINMOD-P uses a one-dimensional advection-dispersion-reaction (ADR) equation, 

similar to that in DRAINMOD-NII, for simulating P dynamics through the soil profile (Askar et 

al., 2021). Conversely, RZWQM2-P adopts a linear groundwater reservoir-based approach, as 

suggested by Steenhuis et al. (1997). Additionally, a unique feature about DRAINMOD-P is that 

it enables sedimentation and release of soil-bound P in the tile drainage system based on the 

drainage intensity. Although the models exhibit these differences, they both simulate the 

movement of DRP to tile drains via two pathways: through the soil matrix and through macropores. 

In contrast, the transport of PP occurs exclusively through macropores in both models. A 

comprehensive comparison of the critical subroutines/processes used for simulating P dynamics 

in each model can be found in Table 3.2. 
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Table 3. 1  Cropping and management information for the field from 2012 to 2017. 

 

Crop Date 
Management 

Practice 
Notes 

Wheat 

14 Oct. 2012 Planting  

14 Oct. 2012 N and P application 23.59 kg N ha-1 + 24.33 kg P ha-1 

18 Feb 2013 N application 53.76 kg N ha-1 

22 March 2013 N application 69.30 kg N ha-1 

12 July 2013 Harvesting 83.6 bu acre-1 (5,622.2 kg ha-1) 

Oats (cover 

crop) 
13 Aug. 2013 Planting  

Corn 

9 May 2014 Planting  

9 May 2014 N and P application 38.94 kg N ha-1 + 15.58 kg P ha-1 

31 May 2014 N application 196.76 kg N ha-1 

04 Oct. 2014 Harvesting 193 bu acre-1 (12,114.2 kg ha-1) 

Soybeans 

14 Oct. 2014 Tillage Chisel plough 

21 May 2015 Tillage Chisel plough 

25 May 2015 Planting  

06 Oct. 2015 Harvesting 49.5 bu acre-1 (3,328.9 kg ha-1) 

Corn 

20 Oct. 2015 Tillage Chisel plough 

19 Apr. 2016 Planting  

19 Apr. 2016 N and P application 38.8 kg N ha-1 + 15.52 kg P ha-1 

25 May 2016 N application 168.32 kg N ha-1 

19 Oct. 2016 Harvesting 141 bu acre-1 (8,850.2 kg ha-1) 

Soybeans 

25 Oct. 2016 Tillage Chisel plough 

05 June 2017 Planting  

25 Sep. 2017 Harvesting 43 bu acre-1 (2,891.8 kg ha-1) 

Wheat 

25 Sep. 2017 Tillage Chisel plough 

25 Sep. 2017 Planting  

25 Sep. 2017 N and P application 33.35 kg N ha-1 + 17.46 kg P ha-1 
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Table 3. 2 Comprehensive overview of essential subroutines and processes in RZWQM2-P and DRAINMOD-P for simulating 

phosphorus dynamics. 

Processes 
RZWQM2-P modeling 

method 

DRAINMOD-P modeling 

method 
Comments 

Infiltration   and 

water redistribution 

Green-Ampt equation for 

infiltration (Green & Ampt, 

1911) 

Richards’ equation for 

water distribution 

(Richards, 1931) 

Green-Ampt equation for 

infiltration (Green & Ampt, 

1911) 

Simplified approach for soil 

water distribution 

DRAINMOD-P distinguishes two key zones: the ‘wet zone,’ starting at the water table and 

possibly reaching the surface, and the ‘dry zone,’ where ET surpasses the available water supply. 

The model dynamically calculates water distribution between these zones at each time step of 

simulation. It utilizes the soil water characteristic curve to accurately determine the moisture 

content and movement within these zones (Skaggs et al., 2012). Whereas, RZWQM2-P uses the 

iterative finite difference method to solve the Richards equation for water distribution (Ma et al., 

2012). 

Tile drainage 

Steady state Hooghoudt 

equation (Bouwer & Van 

Schilfgaarde, 1963) 

Kirkham equation 

(Kirkham, 1957) 

Steady state Hooghoudt 

equation (Bouwer & Van 

Schilfgaarde, 1963) 

Parameters such as drain depth, drain spacing, soil texture, radius of drains, hydraulic conductivity, 

and bulk density play a crucial role in both models. In DRAINMOD-P, surface storage is also 

considered; therefore, parameters such as the drainage coefficient, maximum surface storage, and 

Kirkham’s depth for flow to drains play an important role. In RZWQM2-P, bubbling pressure is 

an important parameter, in addition to other soil parameters, which affects the subsurface drainage. 

Preferential flow 

 

 

Hagen-Poiseuille law 

(Sutera & Skalak, 1993) 

Hagen-Poiseuille law 

(Sutera & Skalak, 1993) 

In RZWQM2-P, the model assumes cylindrical macropores in the topsoil layers and planar cracks 

in the lower soil horizons. Additionally, it is presumed that continuous macropores extend 

vertically through the soils, with a portion of them being blocked within the soil matrix, forming 

dead-end macropores. Parameters such as macroporosity, width, radius, length, and depth of cracks 

play a crucial role in RZWQM2-P. In contrast, DRAINMOD-P does not account for dead-end 

macropores. A notable feature of this model is that it allows for changes in crack width over time, 

influenced by user defined dryness and wetness coefficients during wet and dry periods in the 

simulations. Unlike RZWQM2-P, which considers both cylindrical pores and planar cracks, 

DRAINMOD-P simulates macropore flow exclusively through either cylindrical pores or planar 

cracks. 
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Processes 
RZWM2-P modeling 

method 

DRAINMOD-P modeling 

method 
Comments 

Soil Erosion 

Integrated GLEAMS 

model  (Leonard et al., 

1987) 

RUSLE equation (Renard et 

al., 1991) 

Soil erosion is a significant factor in the transport of particulate phosphorus (PP). RZWQM2-P 

uses the integrated GLEAMS model for predicting soil erosion. Whereas, DRAINMOD has been 

modified by Askar et al. (2021) to include the RUSLE equation. 

Plant growth 
Integrated DSSAT Crop 

model (Jones et al., 2003) 

Empirical yield model 

(relative yield) 

DSSAT is a more versatile model that considers the effects of weather parameters, such as solar 

radiation and air temperature, as well as nutrient impacts, including nitrogen (N) and phosphorus 

(P) stresses. RZWQM2-P with integrated DSSAT model can simulate 28 different crops. 

Plant P uptake 

Subroutines have been 

adopted from the 

approaches used by 

Neitsch et al. (2011) in the 

SWAT model. 

Subroutines have been 

adopted from the 

approaches used by Youssef 

et al. (2005) in the 

DRAINMOD-NII model. 

In both models, P uptake is dependent on the availability of P in the labile P pool. Consequently, 

the critical factors influencing P uptake, aside from the labile P pool and crop yield, include user-

defined parameters such as the biomass P fraction at various stages of plant growth in RZWQM2-

P, and the P content of different plant parts, root to shoot ratio, and harvest index in the 

DRAINMOD-P model. 

P pools 

 

EPIC model (Jones et al. 

1984) 

EPIC model (Jones et al. 

1984) 

CENTURY model (Parton 

et al., 1993) 

RZWQM2-P is structured around five soil phosphorus (P) pools: labile P (LabP), active inorganic 

P (ActIP), stable inorganic P (StabIP), fresh organic P (FresOP), and stable organic P (StabOP). These 

pools are all adopted from the EPIC model's P pools. DRAINMOD-P has the same three inorganic 

pools (i.e., Lab, Act, and Stab), while the organic P pools are based on the CENTURY model. 

Stable and active 

inorganic P ratio 

User defined ratio for each 

soil layer (Pan et al., 

2023b) 

EPIC model (Jones et al. 

1984) 

In DRAINMOD-P, there is a fixed ratio of four (StabIP = 4.0 x ActIP) based on the recommendations 

of Sharpley et al. (1984). However, RZWQM2-P has recently been modified, allowing users to 

define the ratio for each soil layer. 

DRP loss (surface 

runoff) 

Approaches suggested by 

Neitsch et al. (2011) 

Function of labile P 

concentration (Askar et al., 

2021) 

 

In both models, the losses of DRP through surface runoff are highly sensitive to the availability of 

the LabP pool that interacts with overland flow. DRAINMOD-P assumes that overland flow 

interacts with the top 2.5 cm while in RZWQM2-P surface runoff interacts with the top 1.0 cm.  

Apart from the LabP pool, RZWQM2-P DRP losses also depend on two fertilizer-specific pools 

and two water-extractable manure P pools (explained in detail in the fertilizer and manure P 

dynamics sections). 
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Processes 
RZWQM2-P modeling 

method 

DRAINMOD-P modeling 

method 
Comments 

PP loss (surface 

runoff) 

Approaches suggested by 

McElroy (1976) 

Function of eroded soil 

particles and enrichment 

ratio (Askar et al., 2021) 

In both models, the transport of PP through runoff is significantly influenced by eroded soil 

particles and enrichment ratios. A notable distinction between the two models is their assumption 

of PP origin depth: RZWQM2-P assumes PP originates from the top 1 cm of the soil profile, while 

DRAINMOD-P considers PP to originate from a depth of 2.5 cm. 

DRP loss (tile 

drainage) 

Linear groundwater 

reservoir-based approach 

by Steenhuis et al. (1997); 

Steenhuis et al. (1994), and 

the approaches suggested 

by  Francesconi et al. 

(2016) 

One-dimensional advection-

dispersion-reaction (ADR) 

equation based on 

DRAINMOD-NII (Youssef 

et al., 2005) 

In both models, the soil matrix and macropores act as conduits for DRP transport. In DRAINMOD-

P, the transport of P through the soil matrix is calculated using the ADR equation, while its 

movement through macropores is determined by a separate equation that depends on the 

concentration of labile P in top layer and macropore flow. In contrast, RZWQM2-P calculates DRP 

leaching through the soil matrix based on the approach proposed by  Francesconi et al. (2016), and 

for macropore flow, it employs the methodology developed by Steenhuis et al. (1994). 

PP loss (tile 

drainage) 

 

Linear groundwater 

reservoir-based approach 

by Steenhuis et al. (1997)  

and Colloidal particle 

transport approach (Jarvis 

et al., 1999; Larsson et al., 

2007) 

Sediment accumulation-

based approach (Askar et 

al., 2021) 

In both models, PP transport to drains occurs exclusively through macropores. DRAINMOD-P has 

a dedicated pool for PP entering through macropores that represents sediment-bound P 

accumulation and release from tile drains. It calculates daily PP loss based on the amount 

accumulated in this pool and drainage intensity. This approach enables DRAINMOD-P to simulate 

PP loss even on days without macropore flow, as long as PP remains accumulated in tile drains. In 

RZWQM2-P, PP transport through tiles follows the colloidal particle transport approach (Jarvis et 

al., 1999; Larsson et al., 2007). Initially, PP contributes to the groundwater reservoir, and then, 

following daily mass balance calculations, it is lost through tile drainage. 

Fertilizer P 

dynamics 

Two fertilizer-specific P 

pools, based on the 

approaches suggested by 

Vadas (2014) 

Soluble fertilizer dissolution 

approach (Askar et al., 

2021) 

In RZWQM2-P, upon fertilizer application, 75% of the amount is allocated to the available 

fertilizer P pool (ferPav) and 25% to the residual fertilizer P pool (ferPres). During the first rainfall 

after application, all of ferPav is released. In the second rainfall, 40% of ferPres is released, and in 

the third and subsequent rainfalls, 7.5% of the phosphorus from ferPres is released until it is 

completely depleted. In DRAINMOD-P, fertilizer is added to the labile pool after dissolution using 

a dissolution rate determined by the user. 
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Processes 
RZWQM2-P modeling 

method 

DRAINMOD-P modeling 

method 
Comments 

Manure P dynamics 

Four manure-specific P 

pools, based on the 

approaches suggested by 

Vadas (2014) 

 

Organic and inorganic 

partitioning approach 

(Askar et al., 2021) 

In the RZWQM2-P model, upon manure application, the manure P is divided into four distinct 

pools: the manure water-extractable inorganic P pool (manPH
2

O
inorg), the manure water-extractable 

organic P pool (manPH
2

O
org), the manure stable inorganic P pool (manPstbl

inorg), and the manure 

stable organic P pool (manPstbl
org). This division is based on the total P content, the type of 

application (surface or subsurface), and the manure type (liquid or solid). The water-extractable 

pools represent P that can be released by rain, while the stable pools represent P that is released 

slowly as the manure decomposes. The model has a comprehensive database comprising fourteen 

distinct types of manure, each with four different application methods. For further details on how 

the model divides and defines the size of each pool, please refer to Sadhukhan and Qi (2018).  

In DRAINMOD-P, rather than dividing manure into four pools, it simply categorizes the manure 

into inorganic and organic portions based on user-defined input. The inorganic portion, entered by 

the user, is treated as a fertilizer application. This represents the immediate availability of inorganic 

phosphorus for plant uptake or potential leaching. Meanwhile, the organic portion is processed as 

an organic animal waste application, undergoing decomposition processes before becoming 

available for plant uptake (Askar et al., 2021). 

Tillage effect 

P pools integration and 

redistribution based on 

tillage parameters (Pan et 

al., 2023a) 

Based on the approaches 

used in DRAINMOD-NII 

(Youssef et al., 2005) 

In both models, tillage incorporates surface-available P into soil P pools, influenced by the tillage 

intensity and depth of tillage operation. A notable feature of the RZWQM2-P model is that the user 

can define the P mixing efficiency as an input, rather than having it calculated by simply 

subtracting 1.0 from the tillage intensity (Pan et al., 2023a). 

ActIP, active inorganic P; ferPav, available fertilizer P pool; ferPres, residual fertilizer P pool; FresOP, fresh organic P; LabP, labile P; manPH
2
O

inorg, manure water-

extractable inorganic P pool;  manPH
2

O
org, manure water-extractable organic P pool; manPstbl

inorg, manure stable inorganic P pool; manPstbl
org, manure stable organic 

P pool;  StabIP, stable inorganic P;  StabOP, stable organic P
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3.2.4. Models’ parameterization and initialization 
 

In this study, we utilized the calibrated DRAINMOD-P, initially calibrated by (Askar, 2019) to 

evaluate the efficiency of the P module. Since that time, some of the observed data has been 

modified or changed during the quality check process. To incorporate these changes, we 

recalibrated DRAINMOD-P, making slight adjustments to some parameters to enhance hydrology 

predictions. These minor modifications were made to the vertical and horizontal seepage 

parameters, while all other parameters remained unchanged. To evaluate DRAINMOD-P, initial 

soil series data were sourced from the literature or the SSURGO database, as most parameters were 

not measured in the field. 

            The RZWQM2-P model requires several sets of input parameters, including soil data, 

weather data, management practice information, and soil test phosphorus (STP) values, to simulate 

hydrological and phosphorus dynamics. For this study, we primarily adopted the initial soil data 

values from Askar's (2019) previous study, which were utilized to initialize DRAINMOD-P. 

Similarly, RZWQM2-P was initially set up using the same hydraulic conductivity values as 

DRAINMOD-P, but these were later adjusted during the calibration process. However, the number 

of soil layers were different from those represented in Askar (2019) as DRAINMOD-P allows the 

users to have a maximum of five-layers for the soil profile. In this study, RZWQM2-P utilized 

seven soil layers by subdividing the soil layers with similar properties (Table 3.3). Similar 

approaches have been used in previous studies comparing DRAINMOD and RZWQM2. For 

example, Thorp et al. (2009) implemented ten layers simulation in RZWQM2, and Singh et al. 

(2022) used seven layers, whereas DRAINMOD was limited to five layers. In RZWQM2-P, crop 

planting and harvesting dates, along with other parameters like fertilizer rate and tillage operations, 

were set according to actual field practices. For the depth and intensity of tillage operations, we 

utilized the exact values used in the DRAINMOD-P calibration (depth = 20 cm for chisel plow 

and intensity of tillage = 0.60). For weather data, onsite measured hourly precipitation was used 

in both models. In a previous study, Askar (2019) used daily minimum and maximum temperature 

values from the OARDC weather station. We utilized the same data in the RZWQM2-P model. 

Additionally, RZWQM2-P required daily values for solar radiation, relative humidity, and wind 

speed, which were obtained from the same weather station for the duration of this study. 
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Both models require input data to initialize the phosphorus module. The initial value of Mehlich-

3 STP was measured in the field as 18.2 mg kg-1 for the top 15 cm. In their study, Askar (2019) 

calibrated the values for the deeper layers in the DRAINMOD-P model. We adopted similar 

Mehlich-3 P values in the RZWQM2-P model to initialize the labile P pool. Furthermore, the 

RZWQM2-P was initiated with a residue amount of 5000 kg ha-1 which was also the value used in 

DRAINMOD-P (Askar, 2019). In the RZWQM2-P model, user can modulate the stable and active 

inorganic phosphorus ratio for each soil layer. However, DRAINMOD-P, following the guidelines 

set by Sharpley et al. (1984), maintains a fixed ratio of four. To ensure consistency between the 

two models, we also applied this fixed ratio of four to all layers in the RZWQM2-P model. 

 

 

Table 3. 3  Initial soil properties and soil test phosphorus (STP) levels used for initializing 

both DRAINMOD-P and RZWQM2-P. 

 

Soil 

Layer 

Depth ρ 
Particle size distribution 

ϴs ϴr* 
Mehlich-3 

STP 
Sand Silt clay 

cm g cm-3 ------------------%------------------ -----cm3 cm-3----- mg kg-1 

1 0-1 1.45 0.17 0.38 0.45 0.45 0.09 42.6 

2 1-15 1.45 0.17 0.38 0.45 0.45 0.09 18.2 

3 15-23 1.48 0.16 0.37 0.47 0.44 0.09 13.2 

4 23-76 1.48 0.16 0.37 0.47 0.44 0.09 7.1 

5 76-122 1.50 0.16 0.37 0.47 0.42 0.09 1.0 

6 122-170 1.50 0.20 0.35 0.45 0.39 0.09 0.01 

7 170-200 1.50 0.20 0.35 0.45 0.39 0.09 0.01 

ρ, bulk density; Sand, soil sand content; Silt, soil silt content; Clay, soil clay content; ϴs, saturated 

water content; ϴr, residual water content; * data source-RZWMQ2 parameterization guide 
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3.2.5. Models’ calibration 
 

Both models were subjected to a five-year simulation period (2013 to 2017). Within this 

timeframe, the initial three years (2013 to 2015) served in calibrating the models, while the 

subsequent two-year period (2016 to 2017) served in validating the calibrated model. In this study, 

as previously noted, only the horizontal (lateral) and vertical (deep) seepage parameters were 

modified from the calibrated DRAINMOD-P scenario used by Askar (2019) for evaluating the P 

module. Therefore, we activated horizontal seepage, which was not included in the original setup. 

Adjustments were also made to deep seepage parameters, such as the piezometric head of the 

aquifer and the conductivity of the restricting layer, to enhance deep seepage. Table 3.4 presents 

the adjusted hydrology parameters employed in the current study. Askar (2019) provides a detailed 

explanation of the procedure followed for calibrating both the hydrological and phosphorus 

parameters, including their specific values.  

              During the calibration phase, RZWQM2-P was initially calibrated for hydrology, 

specifically focusing on tile drainage and runoff, as P losses are inherently tied to these 

hydrological processes. The calibration process for tile drainage in RZWQM2-P involved careful 

adjustment of several key parameters, including saturated hydraulic conductivity, lateral hydraulic 

conductivity, surface soil resistance, bubbling pressure, and the pore size distribution index. These 

adjustments were made iteratively, using a trial-and-error method, until the model outputs aligned 

closely with the observed data. For DRAINMOD-P, a high hydraulic conductivity value (3 cm hr-

1) was set for the first soil layer. Initially, RZWQM2-P was configured with similar values for the 

top layers but was later modified to better match observed data. The rationale behind 

DRAINMOD-P's high conductivity values is to simulate the fraction of dead-end macropores by 

enhancing the soil matrix's conductivity. In contrast, RZWQM2-P distinctly represents dead-end 

macropores within its macropore component; therefore, it does not require such high values of 

hydraulic conductivity for poorly drained soil. The field under study is characterized by a 

significant presence of macropores, as depicted in Figure 3.2, and an estimation of the macropore 

width was provided by Askar et al. (2020). We adopted these width measurements in the 

RZWQM2-P model to accurately represent the macropores. Additionally, the macropore 

component in RZWQM2-P necessitates the input of various parameters, including the fraction of 

dead-end macropores, macropore radius, and the depth and length of cracks. We calibrated these 
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parameters to ensure that the macropore flow in RZWQM2-P aligns with the flow previously 

simulated by DRAINMOD-P in an earlier assessment. Additionally, during the calibration of the 

bubbling pressure for the bottom layers, it was intentionally set close to zero (-8 cm for the last 

layer compared to -21 cm for the first layer), as shown in Table 3.5. This adjustment aimed to 

enhance the layers' conductivity, thereby facilitating deep seepage flow through the restricting 

layer, a critical factor for accurately calibrating tile drainage flow in this field. The albedo of both 

soil and crops was a key factor in the accuracy of evapotranspiration (ET) predictions. 

Furthermore, parameters such as surface soil resistance and minimum soil resistance played a 

critical role in fine-tuning these ET predictions.  

              After aligning hydrology predictions, the calibration of dissolved reactive phosphorus 

(DRP) and particulate phosphorus (PP) parameters was carried out. Earlier, during the hydrology 

calibration phase, DSSAT parameters were adjusted to align with observed crop yields. Crop yields 

significantly influence plant phosphorus uptake and play a vital role in calibrating DRP losses in 

both runoff and subsurface drainage. The distribution of plant P uptake and the biomass P fraction 

at all growth stages was calibrated to match observed DRP levels. Additionally, the phosphorus 

extraction coefficient was further refined to align with observed DRP runoff values. The calibration 

of soil erosion parameters was crucial for accurately estimating PP losses in runoff. The values for 

field slope and length, sourced from the DRAINMOD-P study and based on observed data, were 

not recalibrated. Specifically, Manning’s n (NFACT) was adjusted to more accurately reflect PP 

losses. Additionally, the initial levels of DRP and PP in the groundwater reservoir had a critical 

impact on the losses of DRP and PP through subsurface drainage. Parameters such as the 

replenishment rate coefficient, detachability coefficient, and filtration coefficient were further 

refined to match observed P loadings in subsurface drainage. All the parameters calibrated for 

RZWQM2-P are presented in Tables 3.5 to 3.8. 
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Table 3. 4 Recalibrated hydrologic parameters in the DRAINMOD-P model. 

 

Parameters Calibrated values 

Deep 

seepage 

Piezometric head of aquifer (cm) 100 

Thickness of restrictive layer (cm) 100 

Vertical conductivity of restricting layer (cm hr-1) 0.00042 

Lateral 

Seepage 

Thickness of transmissive layer (cm) 50 

Hydraulic head of receiving waters (cm) 150 

Distance to receiving waters (cm) 1500 

Horizontal hydraulic conductivity of transmissive 

zone (cm hr-1) 
0.1 

 

 

Table 3. 5 Calibrated soil properties in the RZWQM2-P model. 

 

Soil Layer 
Depth Ksat Lksat Pb Pcb λ 

cm -----------cm h-1----------- -------------cm-------------- - 

1 0-1 0.77 3.7 -21.7 -44.2 0.130 

2 1-15 0.46 3.7 -21.2 -44.2 0.125 

3 15-23 0.30 3.0 -10.7 -6.7 0.125 

4 23-76 0.29 4.6 -10.7 -6.7 0.125 

5 76-122 0.20 3.5 -7.5 -7.5 0.125 

6 122-170 0.01 3.4 -8.0 -7.9 0.125 

7 170-200 0.01 3.6 -8.0 -7.9 0.125 

Ksat, saturated conductivity; Lksat, lateral saturated conductivity; Pb, soil bubbling pressure; Pcb, 

conductivity curve bubbling pressure; λ, pore size distribution index 
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Table 3. 6 Overview of calibrated hydrological and macropore parameters with their 

calibrated values and default values in the RZWQM2-P model. 

 

Parameters Units 
Calibrated 

values 
Default values 

Hydraulic 

parameters 

Lateral hydraulic gradient (dh dl-1) 0.0000008 0.0001 

Crust conductivity (cm hr-1) 0.1 0.4 

Water table leakage rate (cm hr-1) 0 - 

ET 

parameters 

Albedo of crop at maturity 

(unitless) 

0.2 0.43 

Albedo of fresh residue 0.04 0.4 

Albedo of wet soil 0.03 0.2 

Albedo of dry soil 0.03 0.3 

Surface soil resistance  (s m-1) 150 37 

Macropore 

parameters 

Total microporosity (cm3 cm-3) 0.07 0.01 

Fraction dead-end 

macropores 
(unitless) 0.8 0.5 

Radius of cylindrical pores 

(cm) 

0.5 0.1 

Width of cracks 0.5 0.05 

Length of cracks 10 10 

Depth of cracks 10 10 
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Table 3. 7  Overview of calibrated phosphorus parameters with their calibrated values and 

default values in the RZWQM2-P model 

 

Input Parameters Units 
Calibrated 

values 
Default values 

Soil P 

parameters 

Initial DRP in groundwater (GW) 

reservoir 
kg ha-1 

7 25 

Initial PP in groundwater (GW) 

reservoir 
25 25 

Replenishment rate coefficient g m-2 d-1 2 1 

Detachability coefficient g J-1 mm-1 2 1 

Filtration coefficient m-1 0.0001 1 

P Extraction coefficient unitless 0.66 1 

Corn P 

parameters 

P uptake distribution parameter 

unitless 

15 10 

Biomass P fraction at emergence 0.024 0.024 

Biomass P fraction at 50% 

maturity 
0.016 0.016 

Biomass P fraction at maturity 0.001  0.0008 

Soybean P 

parameters 

P uptake distribution parameter 

unitless 

15 10 

Biomass P fraction at emergence 0.024 0.024 

Biomass P fraction at 50% 

maturity 
0.006 0.016 

Biomass P fraction at maturity 0.0008  0.0008 

Wheat P 

parameters 

P uptake distribution parameter 

unitless 

15 10 

Biomass P fraction at emergence 0.024 0.024 

Biomass P fraction at 50% 

maturity 
0.016 0.016 

Biomass P fraction at maturity 0.0009 0.0008 
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Table 3. 8  Calibrated DSSAT parameters for simulating crop yields in the RZWQM2-P model. 

DD8 = degree days above a base temperature of 8℃; DD = degree days; PD = photothermal days 
 [a]Cultivar IB1 068 Dekalb 521; [b] Cultivar 990002 M Group 2; [c] Cultivar 990003 Winter‐US; *In the actual field study, oats were planted as a 

cover crop on August 13, 2013. However, since the DSSAT model does not support oats, we substituted them with the winter wheat cultivar to 

simulate phosphorus uptake. The simulated oats plantation was terminated on November 13, 2013, following the termination date reported in 

Askar's (2019) scenario.

Component Parameters 
Calibrated 

values 
Default values 

Corn[a]    

P1 Thermal time from seedling emergence to the end of the juvenile phase (DD8) 230 215 

P2 Delay in development for each hour that day length is above 12.5 hours (0-1) 0.2 0.4 

P5 Thermal time from silking to physiological maturity (DD8) 1090 795 

G2 Maximum possible number of kernels per plant 800 890 

G3 Kernel filling rate during the linear grain filling stage and under optimal conditions (mg day-1) 13 8 

SR Minimum leaf stomatal resistance (s m-1) 130 200 

PHINT Phylochron interval between successive leaf tip appearances (DD) 62 48 

Soybean[b]    

SD-PM Time between first seed and physiological maturity (PD) 43.4 32.4 

LFMAX Maximum leaf photosynthesis rate at 30℃, 350 vpm CO2, and high light (mg CO2 m-2 s-1) 1.02 1.03 

SLAVAR Specific leaf area of cultivar under standard growth conditions (cm2 g-1) 395 375 

WTPSD Maximum weight per seed (g) 0.2 0.19 

SFDUR Seed filling duration for pod cohort at standard growth conditions (PD) 20 23 

SR Minimum leaf stomatal resistance (s m-1) 180 200 

PODUR Time required for cultivar to reach final pod load under optimal conditions (PD) 15 15 

Wheat[c]*    

P1V Days at optimum vernalizing temperature required to complete vernalization 60 40 

G1 Kernel number per unit canopy weight at anthesis (# g-1) 40 25 

G2 Standard kernel size under optimum conditions (mg) 50 30 

G3 Standard non-stressed dry weight (total including grain) of a single tiller at maturity (g) 1.8 1.5 

PHINT Interval between successive leaf tip appearances (DD) 100 80 

SR Minimum leaf stomatal resistance (s m-1) 125 200 

PECM Emergence phase duration (°C d cm cm-1) 5 10 
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3.2.6. Evaluation criteria 

 

In assessing our model's effectiveness, we employed four metrics: Nash-Sutcliffe efficiency 

(NSE), Coefficient of Determination (R2), Index of Agreement (IOA), and percent bias (PBIAS), 

following the guidelines set by Moriasi et al. (2007); Moriasi et al. (2015). Model components 

were individually examined and classified into one of four categories: very good, good, 

satisfactory, or unsatisfactory. To evaluate the goodness-of-fit between predicted and measured 

drainage discharge, the following criteria on monthly time step basis were used (‘very good’ for 

NSE > 0.75, R² > 0.75, IOA > 0.90, and |PBIAS| < ±10%; ‘good’ for 0.65 < NSE ≤ 0.75, 0.70 < 

R² ≤ 0.75, 0.85 < IOA ≤ 0.90, and ±10% < |PBIAS| < ±15%; and ‘satisfactory’ for 0.50 < NSE ≤ 

0.65, 0.60 < R² < 0.70, 0.75 < IOA ≤ 0.85, and ±15% < |PBIAS| <  ±25%) (Moriasi et al., 2007). 

In the context of DRP and TP simulations, a ‘very good’ rating was assigned for NSE > 0.65, R² > 

0.80, IOA > 0.90, and |PBIAS| <  ±15%; ‘good’ for 0.50 < NSE ≤ 0.65, 0.60 ≤ R² ≤ 0.80, 0.85 < 

IOA ≤ 0.90, and ±15% < |PBIAS| < ±20%; and ‘satisfactory’ for 0.35 < NSE ≤ 0.50, R² > 0.40, 

0.75 < IOA ≤ 0.85, and ±20% < |PBIAS| <  ±30% (Moriasi et al., 2007; Moriasi et al., 2015).  

                NSE (Nash & Sutcliffe, 1970) gauges the accuracy of a model by comparing how closely 

the observed and simulated data points align with a 1:1 line, as further explained by Moriasi et al. 

(2007). On the other hand, R2 quantifies the level of correlation between measured and simulated 

data. Notably, both NSE and R² are influenced by extreme values, or outliers (Krause et al., 2005). 

However, R² can still be useful in determining correlations in scenarios where the model 

underestimates or overestimates (Askar, 2019). IOA (Willmott, 1981) provides a standardized 

metric for assessing the extent of prediction error in a model. PBIAS (Gupta et al., 1999) measures 

the average tendency of simulated values to be larger or smaller than observed data. Positive values 

indicate a model underestimation bias, while negative values indicate a model overestimation bias. 

Additionally, beyond statistical methods, a graphical approach was used, comparing observed and 

simulated values using daily time series and scatter plots. Such a technique proves beneficial in 

assessing the model's performance, identifying any biases, and evaluating the magnitude of peak 

flows in the simulated values (ASCE, 1993). 
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3.3. Results and discussion 

 

3.3.1. Hydrology  
 

Different components of the hydrologic cycle predicted by the models were investigated. 

Precipitation levels in the field fluctuated significantly, ranging from 81.6 cm in 2014 to 116.6 cm 

in 2017. On average, the field received 97.2 cm of annual precipitation, surpassing the 30-year 

average of 94 cm recorded by NOAA for the years 1990-2020 at this location (Figure 3.3). Notably, 

the years 2015 and 2017 experienced precipitation levels that exceeded NOAA's average by more 

than 12 cm and 22 cm, respectively. 

           The annual water budget, as simulated by both models, and model performance evaluation 

parameters, are detailed in Table 3.9. During the five-year period of model calibration and 

validation from 2013 to 2017, the RZWQM2-P model in general satisfactorily simulated 

subsurface drainage discharge on both a daily and monthly basis. The model achieved a daily NSE 

of 0.56, R² of 0.61, an IOA of 0.88, and a PBIAS of 6%. Monthly, it exhibited a similar 

performance, with an NSE of 0.55, R² of 0.63, IOA of 0.88, and PBIAS of 6%. However, during 

the validation period, the model overestimated tile drainage flow, as indicated by an unsatisfactory 

PBIAS of -32%. Despite satisfactory performance in both calibration and validation phases for 

monthly subsurface drainage simulations, as shown in Table 3.9 and Figure 3.4, the model's daily 

performance was unsatisfactory during the calibration process, with an R² of 0.56, but a high NSE 

of 0.52 and an IOA of 0.85. The DRAINMOD-P model also demonstrated satisfactory to good 

performance in simulating monthly subsurface drainage discharge over the same period (2013-

2017), with NSE, R², IOA, and PBIAS values of 0.55, 0.66, 0.89, and 9%, respectively. However, 

its daily performance did not meet satisfactory criteria, with a low R² of 0.56 but high NSE of 0.50 

and IOA of 0.85. Like RZWQM2-P, DRAINMOD-P performed well during the calibration period 

for monthly drainage discharge, achieving an NSE of 0.56, R² of 0.66, IOA of 0.89, and a PBIAS 

of 22%. However, its performance during the validation period was unsatisfactory, with low NSE 

of 0.40, yet a high R² of 0.81, an IOA of 0.90, and a PBIAS of -16%. Upon evaluating the 

cumulative values over the five-year period, the simulations demonstrate that both the RZWQM2-

P and DRAINMOD-P models predicted tile drainage very good. The observed cumulative tile 

drainage was 75.8 cm, while the predictions by RZWQM2-P and DRAINMOD-P were 71 cm and 
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68.9 cm, respectively. Both models achieved NSE values of 0.85, illustrating a close 

correspondence with the observed data, as depicted in Figure 3.5B.  

           The primary differences between the two models lie in their simulations of runoff and 

seepage. In terms of runoff, RZWQM2-P's five-year annual average was 10.9 cm, whereas 

DRAINMOD-P predicted a significantly higher value of 18.3 cm, exceeding the observed annual 

average of 6.5 cm. Although both models predicted higher runoff values, RZWQM2-P's estimates 

were closer to the observed data, as it accounted for additional water in deep seepage. RZWQM2-

P estimated the average deep seepage at 11.3 cm, compared to DRAINMOD-P's average of 5.3 

cm. Moreover, lateral seepage accounted for an average of 3.1 cm of water over a five-year period 

for DRAINMOD-P, as opposed to 2.8 cm for RZWQM2-P. During the calibration of the 

DRAINMOD-P model, significant emphasis was placed on accounting for additional water 

through seepage to make the runoff predictions closer to the observed data, similar to the approach 

taken for RZWQM2-P predictions. However, further increasing the seepage values resulted in the 

deterioration of our NSE values for drainage. Therefore, we gradually reduced the runoff until the 

drainage predictions remained close to the observed data. However, our findings are in line with 

previous comparative studies of DRAINMOD and RZWQM2, including those by Singh et al. 

(2022), Thorp et al. (2009), and Youssef et al. (2018). These studies consistently reported that 

RZWQM2 predicted higher seepage values and lower average runoff compared to DRAINMOD. 

For example, Singh et al. (2022) reported that RZWQM2 predicted an average seepage and runoff 

of approximately 14.2 cm and 9.1 cm, respectively, as opposed to DRAINMOD's 8.1 cm and 13.7 

cm, with an average precipitation of 95.7 cm in central Illinois. The differences between the models 

may arise from their distinct methodologies, such as the surface storage component in 

DRAINMOD and the Richards equation in the RZWQM2-P model, which affect soil matrix flux 

simulations and soil moisture. These factors influence infiltration rates. Moreover, with the recent 

incorporation of a macropore component in DRAINMOD-P, both models now differ in their 

treatment of dead-end macropores, which could also affect the infiltration rates in the soil matrix. 

The RZWQM2-P model effectively predicted annual runoff for four years, except for 2017. In that 

year, while the model generally accounted for increased water through seepage, it overestimated 

runoff by more than double. DRAINMOD-P, on the other hand, overestimated runoff by threefold 

in 2017. Notably, 2017 was the wettest year in the simulation, yet it recorded only 12.7 cm of water 

through subsurface drainage and 12.5 cm through runoff, leading to a substantial water budget 
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imbalance of approximately 30 cm. Askar et al. (2021) suggested that this discrepancy might arise 

from inconsistencies in the observed runoff data or inaccuracies in delineating the area contributing 

to surface runoff, as there are challenges associated with routing surface runoff from this area to a 

specific outlet.  

             Regarding ET, a key component of the water budget, the RZWQM2-P model simulated a 

five-year annual average of 56.4 cm, while DRAINMOD-P estimated it to be around 56.8 cm. 

Both values represent approximately 58% of the average annual precipitation, which is 97.2 cm 

(Table 3.9). These figures fall within the range of earlier modeling studies, such as those conducted 

by Youssef et al. (2018), which studied seven locations across Ohio, documented ET values 

ranging from 48.4 to 59.3 cm. 

 

 

Figure 3. 3  Monthly precipitation and 30-year (1990-2020) NOAA averages for the 5-year 

simulation period for the test field site in Northwestern Ohio.
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Table 3. 9  Annual water budget balance and model performance metrics for daily and monthly tile flow during the simulation 

period.  

 P, precipitation; TD, tile drainage; RO, runoff; ET, evapotranspiration; LS, lateral seepage; DS, deep seepage

Period Year 

-------Observed------ -------------------RZWQM2-P------------------ --------------------DRAINMOD-P----------------- 

P (cm) 
TD 

(cm) 

RO 

(cm) 

ET 

(cm) 

LS 

(cm) 

DS 

(cm) 
TD (cm) RO (cm) 

ET 

(cm) 

LS 

(cm) 

DS 

(cm) 
TD (cm) RO (cm) 

Calibration 

period 

2013 91.5 17.2 3.3 52.5 3.2 13.3 14 8 52.8 3.7 5.6 13.2 16.2 

2014 81.6 13.9 1.8 63 2.2 5.7 7.6 1.9 55.9 2.8 5.1 9.5 7.1 

2015 106.3 19.3 13 51.6 2.9 17.9 16 14.5 57 2.8 5.1 16.6 24.1 

Sum 279.4 50.4 18.1 167.1 8.3 36.9 37.6 24.4 165.7 9.3 15.7 39.4 47.4 

Average 93.1 16.8 6 55.7 2.8 12.3 12.5 8.1 55.2 3.1 5.2 13.1 15.8 

NSEdaily NSEmonthly       0.52 0.55 -0.76 0.09    0.51 0.59 -2.39 -1.74 

R2
daily R2

monthly       0.56 0.63   0.41 0.51    0.56 0.66   0.68 0.67 

IOAdaily IOAmonthly       0.85 0.86   0.71 0.81    0.85 0.89   0.71 0.72 

PBIAS       25% -35%    22% -162% 

Validation 

period 

2016 89.7 12.7 1.9 60 2.9 7.2 16.7 1.6 62.6 2.6 5 12.3 7.2 

2017 116.6 12.7 12.5 54.9 3.0 12.5 16.8 28.3 55.9 3.6 5.6 17.2 36.7 

Sum 228.2 25.4 14.4 114.9 5.9 19.7 33.4 29.9 118.5 6.3 10.6 29.6 43.9 

Average 114.1 12.7 7.2 57.5 2.9 9.8 16.7 14.9 59.2 3.1 5.3 14.8 22 

NSEdaily NSEmonthly       0.64 0.50 -1.68 -1.51    0.47 0.40 -3.26 -4.83 

R2
daily R2

monthly       0.72 0.91  0.78  0.87    0.57 0.81   0.85 0.95 

IOAdaily IOAmonthly       0.91 0.92  0.76  0.78    0.86 0.90   0.72 0.67 

PBIAS       -32% -107%    -16% -205% 

All period 

Sum 485.8 75.8 32.5 282 14.2 56.6 71 54.3 284.2 15.5 26.3 68.9 91.4 

Average 97.2 15.2 6.5 56.4 2.8 11.3 14.2 10.9 56.8 3.1 5.3 13.8 18.3 

NSEdaily NSEmonthly       0.56 0.55 -1.24 -0.45    0.50 0.55 -2.84 -2.78 

R2
daily R2

monthly       0.61 0.63   0.60  0.62    0.56 0.66   0.76 0.76 

IOAdaily IOAmonthly       0.88 0.88   0.75  0.79    0.85 0.89   0.72 0.70 

PBIAS       6% -67%    9% -181% 
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Figure 3. 4 The daily time series of both observed and predicted daily drainage discharge by both 

models for A) calibration period (2013-2015); B) validation period (2016-2107)
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Figure 3. 5 A) Comparative analysis of observed and predicted monthly tile drainage 

discharge for the simulation period (2013-2017), B) five-year cumulative drainage discharge 

predicted by both models, accompanied by their respective NSE values, and C) Box-and-

whisker plots for monthly observed and simulated drainage flow, where the cross sign 

represents mean markers, and the dash indicates the median. 

 
 

3.3.2. Phosphorus dynamics  
 

Annual phosphorus losses, both observed and as simulated by the model, along with performance 

metrics for these losses on a daily and monthly basis in subsurface drainage, are detailed in Table 

3.10. In the evaluation of subsurface drainage DRP load, the first two months of 2013 (January 

and February) were excluded because they accounted for approximately 127 g ha-1 of DRP load, 

which is disproportionately high. In contrast, the combined DRP load through subsurface drainage 
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for the subsequent four years (2014-2017) totaled around 167 g ha-1. The decision to exclude this 

unusually high load from the early 2013 data arise from the potential for unforeseen issues during 

data collection, such as obstructions caused by dead animals in the tile outlet, which could lead to 

elevated concentration readings. Given that these elevated concentrations are not reflective of 

typical field losses, they were deemed outliers and thus excluded from the analysis. 

          Overall, over a five-year simulation period, the RZWQM2-P model shows unsatisfactory 

performance in predicting daily tile DRP loads but satisfactory performance in predicting monthly 

DRP loads through subsurface drainage. The daily performance metrics demonstrated a NSE of 

0.36, R² of 0.36, IOA of 0.70, and a PBIAS of 9%. In contrast, the monthly performance metrics 

were slightly better with a NSE of 0.48, R² of 0.50, IOA of 0.82, and a PBIAS of 9%. Similarly, 

the model performed satisfactorily in both the calibration and validation periods while predicting 

the monthly drainage DRP load, as detailed in Table 3.10. In contrast, DRAINMOD-P performed 

unsatisfactorily for both daily and monthly DRP predictions through subsurface drainage, 

exhibiting a daily NSE of 0.22, R² of 0.38, IOA of 0.76, and a PBIAS of -14%. On a monthly basis, 

it shows a low NSE of 0.25 but a higher R² of 0.50 and an IOA of 0.82. However, both models 

performed very good in predicting the cumulative DRP load throughout the five-year simulation 

period, as shown in Figure 3.8. DRAINMOD-P outperforms RZWQM2-P, with a higher NSE of 

0.97, compared to 0.76 for RZWQM2-P (Figure 3.8). The primary reason for the RZWQM2-P 

model's poor performance in predicting daily DRP load through subsurface drainage appears to be 

its inability to accurately forecast high load (peak) events, as shown in Figures 3.6 and 3.7. For 

instance, in both 2013 and 2016, which featured one or more peak events in the daily time series 

data (April, August, and December of 2013, and May of 2016), the RZWQM2-P model 

consistently failed to predict these high load events. Consequently, this led to an underestimation 

of the DRP, especially for 2013, as depicted in Figures 3.6, despite successfully predicting the 

respective drainage events (Figure 3.4). These observations align with the findings of Shokrana et 

al. (2022), who noted that the model failed to predict all major high load events, leading to an 

unsatisfactory prediction of daily DRP load through subsurface drainage. However, regarding 

DRAINMOD-P, the cause of its poor performance in predicting DRP load appears to be an 

overestimation of the load. For instance, it significantly overestimated the DRP load in 2014 and 

2017. Specifically in 2017, this overestimation may be attributed to DRAINMOD-P's significant 
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overestimation of subsurface drainage discharge, which in turn increases its corresponding DRP 

losses.  

            For subsurface drainage TP load predictions, both models perform satisfactorily on a daily 

basis and well on a monthly basis, as shown in Table 3.10. Over the five-year period, RZWQM2-

P predicted the monthly TP load with good accuracy, achieving NSE of 0.72, R² of 0.73, IOA of 

0.90, and a PBIAS of 3%. The calibration and validation periods yielded NSE, R², IOA, and PBIAS 

values of 0.66, 0.67, 0.87, and -1%, and 0.77, 0.77, 0.93, and 6%, respectively. Similarly, 

DRAINMOD-P predicted the monthly TP load over the same period with NSE, R², IOA, and 

PBIAS values of 0.74, 0.75, 0.92, and 10%, respectively. For the calibration period, these values 

were 0.82, 0.82, 0.95, and 6%, and for the validation period, they were 0.63, 0.67, 0.90, and 15%. 

In terms of daily TP predictions (Figure 3.9 and 3.10), both models also achieved satisfactory 

results, with detailed performance metrics for the calibration, validation, and overall periods 

provided in Table 3.10. Over the five-year average, RZWQM2-P predicted a TP load through 

subsurface drainage of 560.1 g ha-1, closely aligning with the observed average of 575.9 g ha-1. In 

comparison, DRAINMOD-P predicted an average of 516.6 g ha-1. These predictions demonstrate 

the models' close resemblance in predicting TP load, with very high NSE values for five-year 

cumulative load predictions: 0.99 for RZWQM2-P and 0.96 for DRAINMOD-P, as illustrated in 

Figure 3.11. 

             In terms of surface runoff P losses, DRAINMOD-P significantly overpredicted the surface 

runoff flow, and consequently, it also overestimated the associated runoff P loading for both DRP 

and TP. RZWQM2-P, while also overestimating the P load, demonstrated greater consistency with 

the observed data. Its runoff predictions were closer to the observed values, as indicated in Table 

3. 11. Specifically, RZWQM2-P predicted a five-year annual average runoff DRP loss of 55.3 g 

ha-1, which is closer to the observed average of 49.5 g ha-1. In contrast, DRAINMOD-P's five-year 

average was significantly higher, around 130 g ha-1, primarily due to greater runoff flow. Regarding 

total phosphorus loading, the observed five-year average was approximately 486.9 g ha-1. The 

RZWQM2-P model predicted around 764.4 g ha-1, whereas DRAINMOD-P estimated it to be 

much higher, at about 2428 g ha-1. This overprediction of phosphorus loading is consistent with 

the overestimated surface runoff flow. We employed the R² metric to determine the correlation 

between observed and predicted values, alongside the 1:1 line, as depicted in Figures 3.13 and 
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3.14. Despite the overprediction in total P loading by both models, Figures 3.13 and 3.14 

demonstrate that both models exhibit a similar pattern in predicting phosphorus losses, with 

acceptable R² values of 0.85 for DRAINMOD-P and 0.62 for RZWQM2-P for monthly TP 

predictions over the five-year simulation period. For DRP loading, both models show a reasonable 

correlation, with R² values of 0.71 for DRAINMOD-P and 0.51 for RZWQM2-P. The higher R² 

value for DRAINMOD-P indicates that it accounts for a larger portion of the variance in the data. 

In contrast, the closer alignment of RZWQM2-P's predictions to the 1:1 line suggests better 

accuracy in terms of how closely the predicted values match the actual values. All scatter plots for 

the calibration and validation periods, including the 1:1 line, are presented in Figures 3.13 and 

3.14. Overall, in terms of total phosphorus load (runoff + drainage), the observed five-year total 

load is 5.3 kg ha-1, whereas RZWQM2-P and DRAINMOD-P predicted it to be 6.6 kg ha-1 and 

14.7 kg ha-1, respectively. 

            Another important parameter is plant P uptake from the field. DRAINMOD-P predicted the 

five-year average annual plant P uptake to be about 30.1 kg ha-1, while RZWQM2-P estimated it 

at approximately 35.9 kg ha-1. The annual plant P uptake for DRAINMOD-P ranged from 43.4 kg 

ha-1 in 2013 to 16.7 kg ha-1 in 2015. In contrast, for RZWQM2-P, it was around 50.1 kg ha-1 in 

2013 and 19.78 kg ha-1 in 2015. Additionally, DRAINMOD-P predicted an average annual P 

mineralization of 15.9 kg ha-1 over five years. This process is one of the main pathways through 

which P is added to the system, apart from fertilizer/manure application. Similarly, RZWQM2-P 

simulated a five-year average of 17.5 kg ha-1 of mineralized P added to the soil from plant residue 

and soil humus. Moreover, DRAINMOD-P can simulate atmospheric deposition, a process that 

RZWQM2-P cannot simulate.
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Table 3. 10 Annual observed and model-simulated phosphorus losses and model 

performance metrics for daily and monthly subsurface drainage P losses during the 

simulation period. 

* For DRP load, data from March to December 2013 were considered

Period Year 

Observed RZWQM2-P DRAINMOD-P 

DRPtile TPtile DRPtile TPtile DRPtile
 TPtile 

--------------------------------------g ha-1-------------------------------------- 

Calibration 

period 

  2013* 87 365.6 47.1 429.1 75 343.9 

2014 29.8 170.1 29.9 270.6 42.9 188 

2015 51.1 849.5 56.5 694.7 48.7 776.5 

Sum 167.8 1385.1 133.6 1394.4 166.7 1308.4 

Average 55.9 461.7 44.5 464.8 55.6 436.1 

NSEdaily NSEmonthly   0.38 0.50 0.52 0.66 0.29 0.33 0.58 0.82 

R2
daily R2

monthly   0.38 0.54 0.53 0.67 0.44 0.53 0.63 0.82 

IOAdaily IOAmonthly   0.71 0.82 0.84 0.87 0.80 0.84 0.81 0.95 

PBIAS   20% -1% 1% 6% 

 

Validation 

period 

2016 48.8 584.6 49.5 703 54.4 476.7 

2017 35.2 909.8 46 703.1 67.1 798.1 

Sum 84 1494.4 95.5 1406.1 121.6 1274.8 

Average 42 747.2 47.8 703 60.8 637.4 

NSEdaily NSEmonthly   0.32 0.38 0.54 0.77 0.09 0.00 0.45 0.63 

R2
daily R2

monthly   0.32 0.48 0.55 0.77 0.28 0.47 0.46 0.67 

IOAdaily IOAmonthly   0.67 0.82 0.81 0.93 0.69 0.78 0.79 0.90 

PBIAS   -14% 6% -45% 15% 

All period 

Sum 251.8 2879.6 229.1 2800.5 288.3 2583.2 

Average 50.4 575.9 45.8 560.1 57.7 516.6 

NSEdaily NSEmonthly   0.36 0.48 0.53 0.72 0.22 0.25 0.50 0.74 

R2
daily R2

monthly   0.36 0.50 0.54 0.73 0.38 0.50 0.52 0.75 

IOAdaily IOAmonthly   0.70 0.82 0.82 0.90 0.76 0.82 0.80 0.92 

PBIAS   9% 3% -14% 10% 
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Figure 3. 6 Measured and predicted daily and cumulative DRP losses through drainage discharge 

for the three-year calibration period (2013-2015) 

The shaded area represents the growing season, and the triangles indicate fertilizer application events.
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Figure 3. 7 Measured and predicted daily and cumulative DRP losses through drainage discharge 

for the two-year validation period (2016-2017) 

The shaded area represents the growing season, and the triangles indicate fertilizer application events. 

 

 

Figure 3. 8 Comparative analysis of observed and predicted monthly drainage DRP load for the 

simulation period (2013-2017), B) five-year cumulative drainage DRP load predicted by both 

models, with their respective NSE values
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Figure 3. 9 Measured and predicted daily and cumulative TP losses through drainage discharge for 

the three-year calibration period (2013-2015)  

The shaded area represents the growing season, and the triangles indicate fertilizer application events. 
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Figure 3. 10 Measured and predicted daily and cumulative TP losses through drainage discharge 

for the two-year validation period (2016-2017). 

The shaded area represents the growing season, and the triangles indicate fertilizer application events. 

 

 

Figure 3. 11 Comparative analysis of observed and predicted monthly drainage TP load for the 

simulation period (2013-2017), B) five-year cumulative drainage TP load predicted by both models, 

with their respective NSE values
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Figure 3. 12 Box-and-whisker plots for monthly observed and simulated drainage of A) DRP and B) 

TP load, where the cross sign represents the mean markers, and the dash indicates the median. 
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Table 3. 11 Annual observed and model-simulated phosphorus losses and model 

performance metrics for daily and monthly surface runoff P losses during the simulation 

period. 

 

Obs., Observed; RZ., RZWQM2-P; DM.; DRAINMOD-P

Period Year 

--------------DRP (runoff)------------- -----------------TP (runoff)----------------- 

Obs. RZ. DM. Obs. RZ. DM. 

------------------------------------------------g ha-1-------------------------------------------------- 

Calibration 

period 

2013 76.9 76.7 203.8 118.8 887.4 733.7 

2014 11.8 21.3 47.6 55.1 157.1 307.3 

2015 59.3 38.1 111.6 758 1232.9 4943.4 

Sum 148 136.1 363 931.9 2277.4 5984.4 

Average 49.3 45.4 121 310.6 759.1 1994.8 

NSEdaily NSEmonthly  0.13 0.28 -1.45 -2.74  -5.86 -1.03 -44.89 -31.28 

R2
daily R2

monthly  0.59 0.57 0.71 0.67  0.34 0.57 0.74 0.96 

IOAdaily IOAmonthly  0.84 0.84 0.76 0.69  0.51 0.74 0.36 0.44 

PBIAS  8% -145%  -144% -542% 

Validation 

period 

2016 15.6 15.3 74 186.8 94.8 877.4 

2017 83.8 125.4 216.4 1316 1449.5 5278 

Sum 99.4 140.7 290.4 1502.8 1544.3 6155.4 

Average 49.7 70.3 145.2 751.4 772.2 3077.7 

NSEdaily NSEmonthly  -1.55 -0.88 -3.55 -4.71  -0.70 0.55 -14.16 -12.39 

R2
daily R2

monthly  0.55 0.51 0.75 0.82  0.33 0.75 0.70 0.83 

IOAdaily IOAmonthly  0.72 0.74 0.69 0.65  0.68 0.90 0.51 0.53 

PBIAS  -41% -192%  -3% -310% 

All period 

Sum 247.4 276.7 653.4 2434.7 3821.8 12139.8 

Average 49.5 55.3 130.7 486.9 764.4 2428 

NSEdaily NSEmonthly  -0.43 -0.08 -2.15 -3.35  -1.77 -0.01 -20.53 -18.82 

R2
daily R2

monthly   0.55 0.52 0.71 0.71  0.30 0.62 0.68 0.85 

IOAdaily IOAmonthly   0.78 0.80 0.73 0.67  0.61 0.83 0.45 0.48 

PBIAS  -12% -164%  -57% -399% 
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Figure 3. 13 Scatter diagram showing observed and predicted monthly DRP losses through surface runoff by both models, with R² values 

and 1:1 line during A) the calibration period, B) the validation period, and C) the all period. 

 

 

Figure 3. 14 Scatter diagram showing observed and predicted monthly TP losses through surface runoff by both models, with R² values 

and 1:1 line during A) the calibration period, B) the validation period, and C) the all period. 
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3.3.3. Future work 
 

Throughout the simulation period, the RZWQM2-P model was unable to accurately predict daily 

high (peak) load P events. This limitation aligns with the findings presented by Shokrana et al. 

(2022) in their daily evaluation of the model. The model's failure to predict these peak events can 

be attributed to its consistent prediction of DRP concentration within a narrow range. As illustrated 

in Figure 3.15 A, the RZWQM2-P model's predictions predominantly ranged between 0.03 to 0.05 

mg L-1, in contrast to the significant variations observed in both the actual data and the predictions 

made by DRAINMOD-P over the same period. We further investigate to identify limitations within 

the subroutines that contribute to the model's inability to accommodate fluctuations. The primary 

limitation in RZWQM2-P appears to stem from the methods employed to calculate the daily mass 

balance of DRP exiting through subsurface drainage. This process is modeled using a linear 

groundwater reservoir approach. Initially, the model assumes that DRP losses through the soil 

matrix and macropores are transported to the groundwater reservoir. Upon reaching this reservoir, 

the new DRP mass is computed using the following mass balance equation: 

𝑑𝑦

𝑑𝑡
= 𝐼𝑑𝑟𝑝 −

𝑦(𝑡)

𝑆𝑔𝑤
𝑑𝑟𝑎𝑖𝑛 

Where y(t) is the mass of DRP at any time t in the groundwater reservoir, Idrp is the incoming DRP 

mass, Sgw is the storage volume of the groundwater reservoir, and drain is the outflow volume i.e. 

the tile drainage amount. The solution to this differential equation is given by: 

𝑦(𝑡) =
𝑆𝑔𝑤 ∗ 𝐼𝑑𝑟𝑝

𝑑𝑟𝑎𝑖𝑛
+ (𝑦0 −

𝑆𝑔𝑤∗𝐼𝑑𝑟𝑝

𝑑𝑟𝑎𝑖𝑛
) ∗ exp⁡(−

𝑑𝑟𝑎𝑖𝑛

𝑆𝑔𝑤
∗ 𝑡) 

Where y0 is the initial DRP mass in the reservoir. Based on these calculations, the model then 

determines the average DRP concentration in the groundwater reservoir using the equation: 

𝐶𝑑𝑟𝑝,𝑔𝑤 =
𝑦0 + 𝑦(1)

2 ∗ 𝑆𝑔𝑤
 

Where, Cdrp,gw = Concentration of DRP in groundwater reservoir.  

This equation computes the average concentration of DRP by considering the initial mass y0 and 

the mass at the end of the day [y(1)], divided by twice the reservoir storage volume (Sgw). 
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              The limitation of this approach becomes evident when considering scenarios where Sgw  

(the storage volume of the groundwater reservoir) and y0 (the initial DRP mass in the reservoir) are 

relatively large compared to drain (the outflow volume) and Idrp (the incoming DRP mass). In such 

cases, the system exhibits a high degree of stability, with minimal day-to-day variations in 

concentration (Cdrp,gw). This stability arises from the significant storage capacity of a large 

groundwater reservoir combined with a substantial initial mass, which together mitigate the impact 

of daily inflows and outflows on the overall phosphorus balance. Consequently, the model tends 

to predict a stable and relatively unchanging DRP concentration, potentially failing to capture the 

natural variability and dynamic behavior observed in real-world P transport through drainage 

systems. To evaluate our hypothesis, we adjusted the depth of the restricting layer in our model 

from 200 cm to 100 cm. This modification was intended to decrease the storage capacity of the 

groundwater reservoir. As illustrated in Figure 3.15B, this change resulted in the model simulating 

more variability in P concentration. Although the observed changes in concentration were not as 

extensive as desired, they were notably more pronounced than those produced under conditions of 

greater storage capacity.  

 

 

Figure 3. 15 Temporal trends in observed versus simulated DRP concentration ranging from 0 to 

0.1 mg/L by both models for the simulation period (2013-2017), with A) the restricting layer at 200 

cm and B) the restricting layer at 100 cm for the RZWQM2-P model. 
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To achieve a more realistic representation of P dynamics, modifications to the existing subroutine 

of RZWQM2-P are necessary, or alternatively, adopting the modeling approach of DRAINMOD-

P could be considered. DRAINMOD-P incorporates detailed spatial discretization and cell-level 

mass balance equations, providing a more comprehensive account of local variations and transient 

conditions, as evidenced by its ability to show changes in concentration over time. However, the 

validity of the methods used in DRAINMOD-P to predict DRP remains uncertain, as it has not 

satisfactorily predicted the DRP load throughout the simulation period. This may be due to factors 

such as the overestimation of drainage flow observed in 2017. Since DRAINMOD-P has only been 

tested once, it requires further evaluation, similar to the extensive testing undergone by RZWQM2-

P, before any definitive conclusions can be drawn. 

             DRAINMOD-P could benefit from adopting approaches like the incorporation of dead-

end macropores, as utilized in RZWQM2-P, to simulate hydrology more accurately. Increasing the 

hydraulic conductivity in the soil profile to high values, representing dead-end macropores, might 

however compromise the model's performance in predicting subsurface drainage and may not 

accurately reflect actual soil properties. Therefore, including a dead-end fraction can aid the model 

in better predicting hydrology and infiltration computations, which in turn can lead to more 

accurate predictions of phosphorus (P) losses. Additionally, DRAINMOD-P could benefit from 

adopting the methods used in RZWQM2-P for predicting crop yield and plant P uptake, utilizing 

the DSSAT model. While DRAINMOD-P already predicts plant P uptake reasonably well 

throughout the simulation, considering the DSSAT model for crop yield prediction could be 

advantageous. DSSAT, is a versatile crop growth model, takes into account the effects of nutrients 

on crop yields, including phosphorus stress in plant growth. This approach offers a more 

representative view of actual field conditions compared to the empirical yield approach currently 

employed in DRAINMOD-P. Since DRAINMOD-DSSAT is already available, integrating it with 

DRAINMOD-P could enhance the model's comprehensiveness. 
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3.4. Summary and conclusions 
 

This study represents the first effort to compare the performance of the newly developed 

phosphorus (P) components within the RZWQM2-P and DRAINMOD-P models. Both models 

were tested using five years of high-resolution daily P loss data from a test field in Ohio. They 

were calibrated for the period 2013-2015 and validated for 2016-2017. The test field is 

characterized by significant wide-open cracks, facilitating high preferential flow. The models were 

compared and evaluated for their ability to predict hydrology and phosphorus components. 

Statistical measures indicated that RZWQM2-P performed satisfactorily on both a daily and 

monthly basis in predicting subsurface drainage over the five-year period, achieving metrics of 

NSE > 0.50, R2 > 0.60, and IOA > 0.75. In contrast, DRAINMOD-P's performance was satisfactory 

only on a monthly basis and unsatisfactory on a daily basis, with a low R2 of 0.56, yet high NSE 

(0.50) and IOA (0.85). Moreover, DRAINMOD-P significantly overpredicted surface runoff 

compared to observed data, while RZWQM2-P also overpredicted, although to a lesser extent and 

closer to the observed data. The discrepancies in runoff predictions between the two models might 

be attributed to their differing methodologies, such as the handling of surface storage components 

and the dead-end macropore component. 

              Both models failed to accurately predict daily dissolved reactive phosphorus (DRP) losses 

through subsurface drainage. While the RZWQM2-P model satisfactorily predicted monthly DRP 

loss, DRAINMOD-P's performance was unsatisfactory. However, both models performed in a 

“good” manner in predicting total phosphorus (TP) losses through the same pathway. They also 

demonstrated very good performance in predicting the cumulative DRP and TP load through 

subsurface drainage. Both models overestimated runoff-bound TP losses due to an overestimation 

of runoff flow, yet they showed a strong correlation between observed and predicted values. 

              A potential explanation for the suboptimal performance of the RZWQM2-P model in 

predicting daily DRP losses is its inability to accurately reflect fluctuations in the P concentration 

in subsurface drainage. This limitation arises from the model's reliance on approaches such as the 

linear groundwater reservoir to compute the DRP mass balance leaving the system, which heavily 

depends on the storage volume of the groundwater reservoir. This aspect of the model requires 

modifications to effectively simulate high load peak events. 
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FOREWORD TO CHAPTER IV 

 

Chapter III presents the first-ever comparison between the newly developed RZWQM2-P and 

DRAINMOD-P models. Neither model provided satisfactory predictions for daily dissolved 

reactive phosphorus (DRP) losses. However, RZWQM2-P outperformed DRAINMOD-P, despite 

its inability to accurately predict peak loads during high-load events. Recommendations for 

improving this aspect of the model were provided for future development.  

          Chapter IV progresses the evaluation of the RZWQM2-P model by utilizing daily P loss data 

from a field in a different Ohio county, distinctively situated within the western Lake Erie basin 

watershed. The key objective is to highlight that this chapter used data from a field with soil 

characteristics entirely different from those presented in Chapter III. This approach underscores 

the importance of a comprehensive model assessment, necessitating the examination of the model 

against varied datasets. By doing so, Chapter IV not only broadens the scope of the evaluation but 

also explores the model's applicability in assessing the effects of winter cover crops, like rye, and 

controlled drainage on P loading in tile-drained agricultural fields, thereby enhancing the 

understanding of its performance across diverse agricultural environments. 

          Part of the manuscript was presented at the annual meeting of the Conservation Drainage 

Network 2023, Maryland, USA. The full chapter has been submitted to the special issue of Journal 

of Environmental Quality and is currently under review. 
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CHAPTER IV 

 

 USING RZWQM2-P TO CAPTURE TILE DRAINAGE PHOSPHORUS 

DYNAMICS IN OHIO 

 

Harmanpreet Singh Grewal1; Zhiming Qi1; Vinayak Shedekar2; Kevin King3  

1: Department of Bioresource Engineering, McGill University, Sainte-Anne-De-Bellevue, Québec, 

H9X 3V9, Canada 

2: Department of Food, Agricultural and Biological Engineering, The Ohio State University, 

Columbus, Ohio, 43210, USA 

3: USDA-ARS, Soil Drainage Research Unit, Columbus, Ohio, 43210, USA 

 

Abstract 
 

Phosphorus (P) loading from tile-drained agricultural lands is linked to water quality and aquatic 

ecosystem degradation. Extending Dr. Andrew Sharpley and colleagues’ foundational work on 

environmental risk assessment tools like EPIC and SurPhos, the RZWQM-P model was developed 

to simulate the fate and transport of P in soil-water-plant systems, especially in tile-drained 

croplands. Comprehensive evaluation and application of RZWQM2-P, however, remains limited. 

This study evaluates RZWQM2-P in simulating P dynamics using extensive data and assesses the 

potential of management practices for mitigating P losses. Subsurface drainage and surface runoff 

flows were monitored at a tile-drained site from 2017 to 2020 in Ohio, and the water flow and P 

loss data were summarized on a daily basis. RZWQM2-P was calibrated and validated using those 

observed data and was subsequently used to assess the effectiveness of controlled drainage and 

winter cover crops in reducing P losses. The model satisfactorily simulated dissolved reactive P 

(DRP) loss from tile drainage on daily and monthly bases (NSE = 0.50, R2 = 0.52, IOA = 0.84 for 

daily; NSE = 0.73, R2 = 0.78, IOA = 0.94 for monthly) and total P (TP) loss on a monthly basis 

(NSE = 0.64, R2 = 0.65, IOA = 0.88), but the daily TP simulation was less accurate (NSE = 0.30, 

R2 = 0.30, IOA = 0.59). Simulations showed that winter rye cover crops reduced DRP by 16% and 
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TP by 4% compared to the base scenario, whereas controlled drainage increased DRP (60%-129%) 

and TP (5%-17%) losses at three tested outlet elevations compared to free drainage. RZWQM2-P 

can capture P dynamics in tile-drained cropland and is a promising tool for effective P 

management. 

Keywords: CD, Controlled Drainage; CC, Cover Crop; DRP, dissolved reactive phosphorus; EOF, 

Edge-of-field; ET, Evapotranspiration; IoA, Index of Agreement; NSE, Nash-Sutcliffe Efficiency; 

PBIAS, Percent Bias; PP, Particulate Phosphorus; R², Coefficient of Determination; STP, Soil Test 

Phosphorus; TP, Total Phosphorus; USLE, Universal Soil Loss Equation. 
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4.1.  Introduction 
 

Phosphorus (P) is a vital macronutrient for plants, playing a crucial role in biological processes 

such as Adenosine Triphosphate (ATP)-mediated energy transfer, root development, nutrient 

absorption, and photosynthesis (Khan et al., 2023; Mitran et al., 2018). Consequently, it is widely 

used in agriculture to increase crop yields (Sharpley et al., 2001). Indeed, between 1961 and 2013 

there was a fivefold growth in worldwide agricultural P consumption with a significant transition 

from farm-produced waste to industrially produced P fertilizers, indicating a marked change in P 

usage patterns (Chen & Graedel, 2016). Despite its necessity in agricultural crop production, P 

misuse or overapplication has environmental consequences (Sharpley et al., 2000; Sharpley et al., 

2015). The use of artificial tile drainage systems further exacerbates the downstream water quality 

issues associated with P loss. For example, P loading via subsurface pathways in the Lake Erie 

Basin watershed have been tied to the reoccurrence of algal blooms in Lake Erie (Smith et al., 

2015), particularly the ‘bioavailable’ fraction which is primarily dissolved P (Macrae et al., 2021). 

Tile drainage has been reported to contribute upwards of 50% of the P load in some poorly drained 

watersheds (King et al., 2015; Smith et al., 2015). Thus, addressing both surface and subsurface 

agricultural P load is necessary to meet water quality goals (Algoazany et al., 2007; Sims et al., 

1998). Sharpley et al. (2006) emphasized the need for a consolidated, scientific approach to 

identifying and evaluating management practices for reducing P loss.  

            Identifying and evaluating P focused management practices that can address surface and/or 

subsurface losses can be accomplished through extensive long-term experiments at the plot and 

field scale or through rigorous modeling assessments (Morel et al., 2014; Sadhukhan, 2021). 

However, lengthy field experiments are often both time-consuming and financially demanding, 

often limiting their practicality (Shokrana et al., 2022; Thorp et al., 2007; Youssef & Skaggs, 2006). 

Field-scale models offer a robust alternative (Singh et al., 2022), serving as an invaluable tool for 

the expeditious and cost-effective assessment of management practices. Modeling tools can inform 

farmers and policymakers, enabling tailored selection of management practices that are 

economically viable and congruent with specific soil types and field conditions (Pan et al., 2023b).  

           P modeling in agriculture has evolved from the foundational P-index concept, a simple but 

effective tool for assessing P loss risk from runoff, extensively explored in Sharpley et al.’s work 
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(Sharpley, 1995; Sharpley et al., 2012; Sharpley et al., 1993; Sharpley et al., 2003). Notable 

advancements in the field began with the development of process-based simulation models in the 

early 1980s, exemplified by the Erosion Prediction Impact Calculator [EPIC (Williams et al., 

1984)], which stood as a pioneering effort in field-scale P modeling (Jones et al., 1984; Sharpley 

et al., 1984). These efforts laid the groundwork for more advanced and process-based models that 

capture the complexity of P dynamics in agricultural systems. The latest models account for 

various pathways, including surface runoff, tile drainage, and macropore flow, and P forms such 

as dissolved reactive phosphorus (DRP) and particulate phosphorus (PP). They also consider P 

uptake by plants and soil P transformations, as discussed in recent works by Sadhukhan et al. 

(2019a) and Askar et al., (2021a). The culmination of this evolution is seen in sophisticated models 

like RZWQM2-P (Sadhukhan et al., 2019a) and DRAINMOD-P (Askar et al., 2021a), which 

integrates all the above outlined aspects, representing the depth required for effective P 

management in contemporary agricultural systems. 

           In this study, we focus exclusively on testing and application of the newly developed 

RZWQM2-P model. Although, RZWQM2-P was tested and validated by its developers 

(Sadhukhan et al., 2019a; Sadhukhan et al., 2019b), comprehensive evaluation with daily P loss 

data, as well as assessment of management practices on P loss, remain limited. Only two previous 

studies have assessed this model using daily P data, and it found that the model inadequately 

predicted daily DRP losses via tile drainage. Therefore, the objectives of this study are: 1) to test 

the RZWQM2-P model in simulating both daily and monthly DRP and TP loss using daily P loss 

data; and 2) to evaluate the impact of various management practices following successful model 

validation. 

 

4.2. Materials and Methods  
 

4.2.1. Overview of RZWQM2-P model 

 

The advanced, one-dimensional RZWQM2 model (version 4.3) is capable of simulating a 

comprehensive range of processes at the field scale, including hydrology; fate and transport of 

nutrients, pesticides, and ions; soil heat flux; soil erosion and crop growth under various 
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management practices (Ahuja et al., 2000). The recently built P module, which upgraded the model 

to RZWQM2-P, can predict both DRP and PP losses associated with surface runoff, tile drainage, 

and macropores, as well as P transformations within the soil matrix, and the dynamics of soil P 

resulting from fertilizer or manure applications (Sadhukhan et al., 2019a).  

            The P module is constructed based on the framework of the EPIC model (Jones et al., 1984; 

Sharpley et al., 1984), which identifies five distinct soil P pools: Labile P (LabP), Stable Inorganic 

P (StabIP), Active Inorganic P (ActIP), Fresh Organic P (FresOP), and Stable Organic P (StabOP) 

(Sadhukhan et al., 2019a). The model incorporates absorption and desorption processes between 

inorganic P pools to maintain equilibrium, as well as decomposition and mineralization processes 

for organic P pools. A key enhancement in the RZWQM2-P model is the inclusion of additional P 

pools specifically designed for management practices. These consist of two surface pools for 

fertilizer-derived phosphorus and four pools for manure-derived phosphorus which were adopted 

from Surphos (Vadas et al., 2007; Vadas, 2014), thereby augmenting the model’s predictive 

capacity for phosphorus dynamics following the application of either fertilizer or manure. Such 

refinements are crucial, as significant research has emphasized the importance of distinguishing 

between different P sources, as their behavior and transport pathways can vary significantly 

(Kleinman et al., 2002; Sharpley et al., 1998; Sharpley et al., 2011). The model simulates 

phosphorus dynamics in agricultural fields more accurately by considering leaching and 

decomposition from these pools. The model’s predictive accuracy for P loss via soil matrix is 

enhanced by incorporating recommendations derived from various studies (Francesconi et al., 

2016; Jarvis et al., 1999; Larsson et al., 2007). Also, to simulate P loss via subsurface drainage, 

the model adopts a linear groundwater reservoir-based approach (Steenhuis et al., 1997), which 

calculates a daily mass balance while considering both matrix and macropore flow processes for 

DRP, and only macropore flow for PP. Additionally, recent updates to the RZWQM2-P model have 

modified both the soil P partitioning and the tillage effect on P mixing (Pan et al., 2023a; 2023b). 

 

4.2.2. Site description 
 

Four years (2017 through 2020) of surface and subsurface data were secured from a privately 

owned field located in Hardin County, Ohio (Figure 4.1). The field site is part of the USDA-ARS 
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Edge-of-field (EOF) research network designed to quantify the role of agriculture in P loss and 

transport as well as identify management practices that minimize that loss (Williams et al., 2016). 

The dominant soil type at this site is Blount silt loam, characterized as a somewhat poorly drained 

soil. The field features a gentle slope of approximately 2%, with a tile spacing of ~900 cm (30 

feet) and an average tile depth of ~90 cm (3 feet). The site contains distinct measurement points 

for subsurface drainage and surface runoff, resulting in different total contributing areas for 

subsurface drainage (13.5 ha) and surface runoff (7.1 ha). The experimental field was planted with 

corn (Zea mays L.) in 2017, followed by three consecutive years of soybean [Glycine max (L.) 

Merr.] cultivation. The producer also applied inorganic fertilizers periodically to maintain soil 

fertility. During the autumn of 2017, a rye (Secale cereale L.) cover crop was sown via aerial 

application amidst the standing corn in the field. Periodic tilling was carried out using a chisel 

plough, followed by disking to smooth the ground. Soil sample analysis conducted in 2016 

revealed that the average soil test P (STP) concentration, using the Mehlich-3 method, was 30 mg 

kg-1 for the upper 5 cm layer of soil at this site. A comprehensive overview of the site management 

and cropping data can be found in Supplementary Table S4.1.  

             Hydrology, water quality and subsequent laboratory analysis were completed using 

methods previously outlined (Ford et al., 2017; King et al., 2015; Pease et al., 2018). Briefly, the 

volume of water discharged from surface runoff was estimated using ISCO 4230 Bubbler Flow 

meters to collect stage data within a control volume (H-flume for surface runoff and compound 

weir for tile drainage) and applying standard stage-discharge relationships. An ISCO 2150 Area-

Velocity Sensor was also installed in the tile drainage outlet pipe to facilitate discharge 

measurement under submerged conditions. For surface runoff, a flow-proportional sampling 

approach whereby a 200 mL aliquot was collected for every 1 mm of volumetric water depth from 

the 7.1 ha area flowing through the H-flume. Ten aliquots were combined into a single bottle. A 

time-proportional approach was used for tile-drainage, where 100 mL aliquots were collected 

every 6 hours, with eight samples combined into a single bottle forming a two-day composite. The 

2-day composite samples were supplemented with additional samples collected around events that 

were based on the rate of change in stage. All samples were vacuum filtered through a 0.45 μm 

filter and assessed for DRP via the colorimetric method described by Murphy and Riley (1962). 

Unfiltered samples were evaluated for TP following the alkaline persulfate oxidation and 

techniques detailed by Patton and Kryskalla (2003). 
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              Precipitation data was collected on-site at 10-minute intervals using a tipping bucket rain 

gauge (Teledyne Isco, Lincoln, NE). For all other weather information was obtained from the 

OARDC weather station in Hoytville, Wood County (~37 miles from the field). Soil information, 

specifically hydraulic conductivity, soil texture, soil bulk density, saturated water content, water 

content at field capacity were obtained from the SSURGO database (Table 4.1). 

 

 

 

 

Figure 4. 1  Layout of the monitored field within the Western Lake Erin Basin. 

 

 

 

 



78 | P a g e  
 

Table 4. 1 Observed and calibrated properties of the soils at the monitored field in Ohio. 

Soil 

Layer 

Depth 

-----------*Initial soil properties[a]---------- #Calibrated soil hydraulic 

properties 

------##Calibrated macropore parameters------ 

ρ Sand Silt Clay ϴr
[b] ϴs Pb λ Ksat Lksat M FM CP WC LC DC 

cm g cm-3 ------------%------------ ---cm3 cm-3--- cm - -----cm h-1----- - - ----------------cm----------------- 

0-5 1.45 23 56 21 0.015 0.45 -30 0.2 1.8 3 0.312 0 0.1 0 0 0 

5-15 1.45 23 56 21 0.015 0.45 -30 0.1 1.8 3 0.552 0.5 0 0.05 10 10 

15-30 1.45 23 56 21 0.015 0.45 -33 0.3 1.5 3 0.187 0.5 0 0.05 10 10 

30-60 1.55 18 43 39 0.075 0.42 -39 0.1 0.6 1.2 0.633 0.5 0 0.05 10 10 

60-90 1.80 21 40 39 0.075 0.32 -29.6 0.1 0.2 0.4 0.645 0.5 0 0.05 10 10 

90-150 1.90 24 43 33 0.075 0.28 -29.9 0.1 0.01 1.1 0.660 0.5 0 0.05 10 10 

150-200 1.90 24 43 33 0.075 0.28 -29 0.1 0.01 0.1 0.658 0.5 0 0.05 10 10 

*[a] data source-SSURGO database; ρ, Bulk Density; Sand, soil sand content; Silt, soil silt content; Clay, soil clay content; ϴr, Residual 

water content; [b] data source-RZWMQ2 parameterization guide; ϴs, Saturated water content. # Pb, Soil bubbling pressure; λ, Pore size 

distribution index; Ksat, Saturated conductivity; Lksat, Lateral saturated conductivity. ## M, Fraction Microporosity; FM; Fraction dead-

end macropores; CP, Average radius of cylindrical pores; WC, Width of cracks; LC, Length of cracks; DC, Depth of cracks.
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4.2.3. Model calibration  
 

Calibration using two years of data (2017 through 2018) was completed by initially adjusting 

parameters associated with tile drainage, runoff, ET, and crop yields, followed by fine-tuning P 

related parameters. With respect to hydrology, observed data were available for both surface runoff 

and tile drainage; however, the focus was given to tile drainage given the primary contribution 

from that pathway (Pease et al., 2018). 

              Soil hydraulic parameters such as soil bubbling pressure (Pb), air pore index (λ), saturated 

hydraulic conductivity (Ksat) and lateral hydraulic conductivity (Lksat) significantly influence tile 

drainage simulation. Initial values for Ksat were set layer-wise based on SSURGO database, and 

then fine-tuned to align with observed tile drainage. It should be noted that Ksat values in the upper 

soil layer also affect surface runoff simulation. For Pb, initial values were derived from guidelines 

provided by (Ma et al., 2011), and subsequently calibrated to increase soil infiltration rates. Our 

observations suggest that as the value of Pb becomes less negative, approaching zero, the rate of 

soil infiltration increases, which in turn reduces surface runoff and elevates tile drainage. 

Sensitivity analyses revealed that upper layer values of Pb have a greater impact than those in the 

lower layers. The albedo parameters were adjusted to ensure that the model’s annual estimates of 

ET corresponded with observed annual ET values for this region in Ohio, as documented in 

previous studies. A complete list of these calibrated parameters can be found in Tables 4.1 and 4.2. 

Crop-specific parameters were calibrated to ensure that simulated yields corresponded with 

observed yields (Supplementary Table S4.2). For rye, the field-measured seeding rate was 

unavailable. Therefore, a seeding rate of 3738000 seeds ha-1 was adopted, aligning closely with 

figures reported by Qi et al. (2011). This study also incorporated most of the calibrated parameters 

from Qi et al. (2011) to simulate rye yields. Comprehensive data on the calibrated parameters for 

soybean, corn, and rye can be found in Supplementary Table S4.2. 

              Following the successful alignment of simulated tile drainage and crop yields with 

observed data, and the matching of ET and surface runoff values with those reported in existing 

literature, the calibration of P parameters was undertaken. Initial level of DRP and PP in the 

groundwater reservoir were found to significantly influence the accurate simulation of phosphorus 

loss via tile drainage. Key P parameters such as the replenishment rate coefficient, detachability 

coefficient, filtration coefficient, and phosphorus extraction coefficient also played pivotal roles. 
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Initial values for these parameters were adopted from values provided by Sadhukhan et al., 

(2019a). It was observed that increasing the replenishment rate and detachability coefficients led 

to increased PP loss through tile drainage. Another critical factor in accurately predicting DRP and 

PP loads through tile drainage during high-peak events involves the adjustment of macropore   

parameters and the precise calibration of total microporosity. Sensitivity to the phosphorus 

extraction coefficient was specifically noted for DRP runoff, whereas erosion parameters affected 

PP loss through runoff. During the calibration process for P loading from runoff, the 

aforementioned parameters were fine-tuned to ensure that the model’s predicted cumulative P 

losses closely aligned with the observed data. Comprehensive details on calibrated P parameters 

are provided in Table 4.2. 

               In our model assessment, we used four key performance metrics: Nash-Sutcliffe 

Efficiency (NSE), Coefficient of Determination (R²), Index of Agreement (IOA), and Percent Bias 

(PBIAS). Model performance was categorized into four categories: “very good,” “good,” 

“satisfactory,” or “unsatisfactory” based on established guidelines by Moriasi et al. (2007; 2015). 

For detailed criteria of these categories, refer to the Supplementary Table S4.3. 

 

4.2.4. Model application  

 

Following the calibration of the RZWQM2-P model, it was employed to investigate the influence 

of two specific management practices on phosphorus (P) loss from the tile-drained field. The 

practices under consideration included Controlled Drainage (CD) and Winter Cover Crop Rye 

(CC). For comparative analysis, a base scenario (BS) was defined, corresponding to the calibrated 

and validated model settings that feature conventional tillage (chisel plough followed by disking) 

and incorporated broadcast fertilizer application, as practiced in the field under study. For the CC 

scenario, the model was configured to include rye as a cover crop for the years 2018, 2019, and 

2020, in addition to the year 2017 during which rye was actually grown in the field. Within the 

model, rye was planted in the fall following the harvest and terminated just prior to the subsequent 

summer’s crop planting. Lastly, in the CD scenario, three sub-scenarios were examined, each 

characterized by a distinct outlet elevation below the soil surface. The chosen outlet elevations 

were 30 cm, 45 cm, and 60 cm for non-growing seasons, and 70 cm for growing seasons. The 
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selection of these specific outlet elevations was guided by the recommendations of Youssef et al. 

(2023). Their study suggested that maintaining outlet elevations between 45 and 70 cm is 

conducive to optimal root zone aeration, which in turn has a direct impact on plant water uptake 

(Shokrana et al., 2023; Youssef et al., 2023). 

Table 4. 2 Detailed overview of calibrated hydrological and phosphorus loss parameters 

with their calibrated values and default values. 

                                  Input Parameter Calibrated Value Default Value 

    Hydraulic parameters 

      Lateral hydraulic gradient (dh dl-1) 0.00001 0.0001 

      Water table leakage rate (cm hr-1) 0 - 

    P parameters 

      Initial DRP in groundwater (GW) reservoir (Kg ha-1)  3.01 25 

      Initial PP in groundwater (GW) reservoir (Kg ha-1) 25 25 

      Replenishment rate coefficient (g m-2 d-1) 2 1 

      Detachability coefficient (g J-1 mm-1) 0.6 1 

      Filtration coefficient (m-1) 0.06 1 

      P Extraction coefficient (unitless) 21 1 

    Plant P uptake distribution parameter (unitless) 
  

      Corn 3 10 

      Soybean 3 10 

      Rye 10 10 

    Minimum Leaf Stomatal Resistance (s m-1) 
  

      Corn 130 200 

      Soybean 150 200 

      Rye 130 200 

    ET parameters 
  

      Albedo of crop at maturity (unitless) 0.47 0.43 

      Albedo of fresh residue (unitless) 0.35 0.4 

      Albedo of wet soil (unitless) 0.07 0.2 

      Albedo of dry soil (unitless) 0.07 0.3 

      Surface soil resistance for the S-W PET (s m-1) 200 37 

    USLE Coefficients 
  

     Contouring factor for overland flow profile segment (PFACT) 0.01 0.01 

     Soil loss ratio for overland flow profile segment (CFACT) 0.41 0.01 

     Manning’s n (NFACT) 0.19 0.01 
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4.3. Results  
 

4.3.1. Hydrology 
 

The model’s performance in predicting tile drainage was good, as indicated by a monthly NSE of 

0.70, R² of 0.80, IOA of 0.94, and a PBIAS of -6%. Daily assessments were also satisfactory, 

yielding an NSE of 0.57, R² of 0.63, IOA of 0.88 and PBIAS of -6%. A comparison of observed 

and model-predicted average annual water outflows from subsurface drainage over a four-year 

period — 27.6 cm and 29.2 cm, respectively —corroborates the good match. A thorough statistical 

evaluation, conducted on a daily and monthly basis for the calibration and validation phases, is 

presented in Table 4.3. Additionally, graphical representations of both observed and predicted daily 

tile drainage and monthly drainage discharge are presented in Figure 4.2. In this study, the 

RZWQM2-P model overpredicted runoff, yielding an average annual value of 6.5 cm, which is 

considerably higher than the observed values of 1.3 cm. Nevertheless, it is noteworthy that the 

model’s prediction is closer to the other modelling studying done in Ohio and Mid-West US 

(Shedekar, 2016; Youssef et al., 2018). The predicted ET (60.8 cm) accounts for approximately 

60% of the observed annual precipitation (102 cm). Additionally, the model estimates an annual 

average seepage of around 5 cm, constituting about 5% of the observed precipitation. These 

predictions for both ET and seepage align well with findings from previous studies conducted in 

the Midwestern US and Ohio specifically (Askar, 2019; Askar et al., 2021b; Shedekar, 2016; 

Youssef et al., 2018). 

 

4.3.2. Dissolved reactive and total phosphorus loss 
 

The RZWQM2-P model demonstrated very good performance in predicting monthly dissolved 

reactive phosphorus (DRPmonthly) as evidenced by an PBIAS = -3%, NSE = 0.73, R² = 0.78, and 

IOA = 0.94. The model also provided satisfactory results for daily DRP predictions (DRPdaily) with 

an NSE = 0.50, R² = 0.52, and IOA = 0.84, alongside a PBIAS of -3%. This study is particularly 

noteworthy as it marks only the third time where RZWQM2-P has undergone evaluation against 

daily P loss data, and it is the first study in which the model has yielded accurate predictions for 

DRPdaily (Figure 4.3A and Table 4.3). Turning to TP, the model exhibited good performance (Table 

4.3) in predicting monthly TP (TPmonthly), as indicated by an NSE of 0.64, R² of 0.65, IOA of 0.88, 

and a PBIAS of 9%. In contrast, the model’s ability to predict daily TP (TPdaily) (Figure 4.3B) was 
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unsatisfactory (with NSE = 0.30, R² = 0.30, and IOA = 0.59). Regarding cumulative DRP loading 

(Figure 4.3C), the model’s NSE values of 0.96 for drainage, 0.78 for runoff, and 0.94 for the 

combined total (runoff + drainage) underscore its very good performance. In cumulative TP 

loading (Figure 4.3D), the model performed well with an NSE of 0.96 for drainage and 0.91 for 

the combined total of runoff and drainage. However, its performance was unsatisfactory for runoff, 

with an NSE of 0.27. Given that our model overestimated runoff, this discrepancy also impacted 

our predictions for runoff P loading. Consequently, during calibration, our primary aim was to 

align the model’s total P loading predictions as closely as possible with the observed total P load 

from runoff. The model predicted a four-year total DRP from runoff of 71.9 g ha-1, compared to 

the observed value of 59.7 g ha-1. Similarly, the predicted total TP from runoff over the four-year 

period was 432.4 g ha-1, in contrast to the observed 387.3 g ha-1. It is also important to highlight 

that the model closely aligns with observed data in identifying tile drainage as the principal 

pathway for nutrient loss. Specifically, the model attributes 66% of total DRP and 76% of total TP 

losses through subsurface drainage, closely matching the observed values of 70% and 80%, 

respectively. 

4.3.3. Model application 
 

Among the two agricultural management practices examined winter cover cropping with rye (CC) 

reduced total DRP losses (runoff + drainage) and TP losses (runoff + drainage) by 16% and 4%, 

respectively. Importantly, these reductions were predominantly observed in P losses from surface 

runoff, rather than from tile drainage. For instance, surface runoff bound DRP declined by 31%, 

while DRP losses through tile drainage experienced a modest decrease of 8%. Further, CC had a 

minimal impact on TP losses via tile drainage, registering only a 3% reduction. Controlled drainage 

(CD) was assessed using three different outlet elevations. Our findings indicate an inverse 

relationship between outlet depth and P losses; deeper outlets corresponded with fewer losses. 

However, each elevation still showed increased P losses compared to the BS, largely due to 

elevated annual runoff volumes. For instance, the outlet elevation strategy of 30 cm in the growing 

season and 70 cm in the non-growing season led to a 17% rise in TP losses (runoff + drainage). In 

contrast, elevations of 45 cm and 60 cm during the growing season, while maintaining a 70 cm 

elevation during the non-growing season, led to comparatively restrained increases in TP losses 

(runoff + drainage): 8% and 5%, respectively. Notably, DRP losses were significantly higher than 
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TP losses, with the 30 cm elevation causing a 129% surge in DRP losses (from both runoff and 

drainage), in comparison to the increases of 90% and 60% for the 45 cm and 60 cm elevations, 

respectively. A detailed representation of the findings for both management scenarios is illustrated 

in Figure 4.4A and 4.4B. 

Table 4. 3 Comparative analysis of observed and predicted annual drainage discharge, 

DRP, and TP loads with model performance statistics across all years. 

Period Year 
Drainage 

Observed Predicted NSEdaily R2
daily IOAdaily NSEmon R2

mon IOAmon PBIAS 

  ------------cm-----------        

Calibration 2017 25.5 24.5 0.71 0.73 0.92 0.73 0.83 0.94 4% 

2018 31.4 33.5 0.51 0.58 0.87 0.46 0.65 0.88 -7% 

Validation 2019 28.2 32.9 0.57 0.67 0.89 0.82 0.91 0.96 -17% 

2020 25.4 25.8 0.49 0.55 0.85 0.76 0.81 0.94 -1% 

All Period 2017-

2020 
110.4 116.8 0.57 0.63 0.88 0.70 0.80 0.94 -6% 

Calibration 

Period 

2017-

2018 
56.8 58.0 0.60 0.64 0.89 0.59 0.74 0.91 -2% 

Validation 

Period 

2019-

2020 
53.6 58.8 0.53 0.61 0.87 0.79 0.86 0.95 -10% 

Period Year 
DRP load (drainage) 

Observed Predicted NSEdaily R2
daily IOAdaily NSEmon R2

mon IOAmon PBIAS 

  ----------g ha-1----------        

Calibration 2017 29.8 34.9 0.48 0.54 0.85 0.66 0.84 0.93 -17% 

2018 36.1 41.5 0.44 0.50 0.83 0.51 0.68 0.89 -15% 

Validation 2019 39.9 40.2 0.54 0.54 0.84 0.84 0.84 0.96 -1% 

2020 31.8 24.7 0.54 0.56 0.82 0.82 0.89 0.96 22% 

All Period 2017-

2020 
137.6 141.3 0.50 0.52 0.84 0.73 0.78 0.94 -3% 

Calibration 

Period 

2017-

2018 
65.9 76.4 0.46 0.52 0.84 0.59 0.76 0.91 -16% 

Validation 

Period 

2019-

2020 
71.7 64.9 0.54 0.54 0.83 0.84 0.85 0.96 9% 

Period Year 
TP load (drainage) 

Observed Predicted NSEdaily R2
daily IOAdaily NSEmon R2

mon IOAmon PBIAS 

  ----------g ha-1----------        

Calibration 2017 457.9 327.5 0.27 0.30 0.53 0.70 0.82 0.88 28% 

2018 383.6 427.9 0.43 0.44 0.73 0.66 0.69 0.90 -12% 

Validation 2019 302.7 388 0.41 0.42 0.76 0.64 0.77 0.92 -28% 

2020 405.2 263 0.20 0.24 0.44 0.47 0.60 0.81 35% 

All Period 2017-

2020 
1549.3 1406.4 0.30 0.30 0.59 0.64 0.65 0.88 9% 

Calibration 

Period 

2017-

2018 
841.5 755.4 0.32 0.34 0.61 0.69 0.71 0.89 10% 

Validation 

Period 

2019-

2020 
707.9 651 0.26 0.26 0.55 0.56 0.59 0.87 8% 

NSEdaily, Daily Nash-Sutcliffe Efficiency; R2
daily, Daily Coefficient of Determination; IOAdaily, Daily Index of 

Agreement; NSEmon, Monthly Nash-Sutcliffe Efficiency; R2
mon, Monthly Coefficient of Determination; IOAmon, 

Monthly Index of Agreement; PBIAS, Percent Bias.  
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Figure 4. 2 A) The daily time series for both observed and predicted daily drainage discharge over the simulation period 

(2017-2020) are depicted. B) Corresponding xy scatter plots illustrate the observed versus predicted drainage discharge, 

including a 1:1 line. C) A comparative analysis of observed and predicted monthly tile drainage discharge for the 

simulation period (2017-2020) is presented, where 2017 and 2018 serve as calibration years, and 2019 and 2020 as 

validation years.
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Figure 4. 3 A) Measured and predicted DRP losses through drainage discharge for the four-year simulation period 

(2017-2020). B) Measured and predicted daily and cumulative TP losses through drainage discharge for the same four-

year period. C) Measured and predicted cumulative DRP load from surface runoff, drainage discharge, and the 

combined total (runoff + drainage) with corresponding NSE values. D) Measured and predicted cumulative TP load 

from surface runoff, drainage discharge, and the combined total (runoff + drainage) with corresponding NSE values.
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Figure 4. 4 Comparative analysis of Winter Cover Crop (CC) and Controlled Drainage [(CD) at varying 

outlet elevations (30/70 cm, 45/70 cm, and 60/70 cm)] on A) DRP Load and B) TP load relative to base 

scenario
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4.4. Discussion 

 

The RZWQM2-P model demonstrated a satisfactory performance to simulate P dynamics 

originating from the tile-drained field, except that simulation in daily TP losses through tile 

drainage was suboptimal (NSE = 0.30). This unsatisfactory performance on daily TP simulation 

can be attributed to two primary factors. First, inaccurate simulation of even one or two significant 

events can substantially affect the overall model performance. For instance, the model’s failure to 

accurately predict two major TP events that occurred in January 2017 and November 2020 led to 

poor performance in these two years (Figure 4.3B and Table 4.3). However, in 2018 and 2019, the 

model successfully simulated all major events, achieving satisfactory daily NSE values of 0.43 

and 0.41, respectively. This study represents only the third time on which the model’s P component 

has been tested using daily P loss data. In the first study, Shokrana et al. (2022) postulated that the 

model’s poor performance in predicting daily P losses through tile drainage could arise from its 

insensitivity to fertilizer application. We tested this hypothesis to determine whether it also affects 

the model’s ability to simulate TP losses by modifying the fertilizer application rates in the model; 

specifically, we doubled the application amount (e.g., from 4.31 kg ha-1 to 8.62 kg ha-1 on April 

18, 2017, and similarly doubled it on three other occasions when P was actually applied in the 

field). We found that the model adequately adjusted the P pools (Figure 4.5A and 4.5B). However, 

further testing of Shokrana et al.’s hypothesis is needed under ponding conditions as their study 

indicated that the model struggled to predict daily DRP particularly under these conditions 

(Shokrana et al., 2022). 

           The primary limitation appears to be the model’s constant prediction of TP concentration 

over the four-year simulation period. The model predicted TP concentrations within a narrow range 

of 0.10 mg L-1 to 0.17 mg L-1, while observed TP concentrations fluctuated between 0 and 1 mg L-

1 and peaked at around 4 mg L-1 on specific occasions (Figure 4.5C). Given that the TP load in 

subsurface drainage is a product of water flow and TP concentration, the model's inability to 

capture changes in concentration led to an underestimation of P loading during high-load events. 

Consistent with our findings, Shokrana et al. (2022) also failed to capture the high peaks of TP 

load in their study. Thus, future research should prioritize refining this aspect of the model to 

enhance its predictive accuracy for P dynamics during high-flow and high-load events. 
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The implementation of winter cover cropping with rye (CC) emerged as a viable strategy for 

mitigating P losses in our agricultural management scenarios. While CC was notably effective in 

curtailing DRP levels in surface runoff, its influence on DRP and TP losses via tile drainage was 

less significant. These findings align with a recent study conducted within the EOF network, a 

research collective to which our study site also belongs, which reported negligible effects of cover 

cropping (mustard, in their case) on DRP and TP losses through tile drainage (Askar et al., 2023). 

In our simulations, however, we did observe some reductions in tile drainage P losses, amounting 

to 8% for DRP and 3% for TP over a four-year period. A potential explanatory factor for these 

reductions could be the lower initial soil test phosphorus (STP) levels in our field (30 mg kg-1) 

compared to the field in the aforementioned study (61 mg kg-1) (Askar et al., 2023), as various 

studies suggest that the initial P pool may modulate the effectiveness of management practices 

over time (Askar et al., 2023; Pease et al., 2018). Also, previous research has highlighted the 

substantial impact of rainfall on the effectiveness of cover crops in reducing TP losses; high rainfall 

can significantly affect the efficacy of cover crops (Askar et al., 2023; Neumann et al., 2012). 

Askar et al. (2023) suggested that the negligible impact of cover crops on TP losses in their study 

might be attributed to higher-than-average precipitation during the treatment years as opposed to 

years without cover crop treatment. In line with these findings, in our simulation, the final year 

(2020) experienced notably lower precipitation (89 cm) compared to the average (106 cm) of the 

preceding three years. This reduction in precipitation coincided with the only year where cover 

cropping decreased TP losses via tile drainage.  

            In the context of controlled drainage (CD), our simulations reveal an increase in P losses 

(runoff + drainage) at all tested outlet elevations, however at a lesser rate for deeper elevations. 

This finding is consistent with a prior modelling study conducted by Sadhukhan et al. (2019b), 

which observed a 13% rise in total P losses at a 46 cm outlet elevation for CD. On the other hand, 

research by Tan and Zhang (2011) reported a decrease in P losses with CD. It is important to note 

the difference in precipitation levels between these studies, which may account for the contrasting 

results: Tan and Zhang (2011) study area received 78 cm of rain, whereas Sadhukhan et al. (2019b) 

worked with 91 cm. Given this, Sadhukhan et al. (2019b) cautioned against using CD in areas with 

high precipitation. This guidance appears to be applicable to our simulations as well, which 

featured an average annual rainfall of 102 cm, thereby suggesting that frequent rainfall events can 

exacerbate runoff and associated P losses, ultimately elevating the total P load from the field. Our 
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results add that in high-rainfall areas, employing CD at deeper outlet elevations might mitigate this 

runoff increment. However, to substantiate this conclusion, further research is warranted across 

different soil types and varying levels of rainfall. 

 

 

Figure 4. 5 Comparative layered distribution of simulated labile P pools with A) standard fertilizer 

application rate; B) doubled fertilizer rates; C) Temporal trends in observed vs. simulated TP 

concentration for the simulation period (2017-2020).  

Obs. TP Conc., Observed TP concentration; RZ TP Conc., Model simulated TP Concentration. 
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4.5. Conclusion 

 

The RZWQM2-P model was evaluated using high-resolution daily data to assess its performance 

in simulating daily and monthly phosphorus (P) losses from a tile-drained field. This marks the 

first successful application of the model to accurately simulate daily dissolved reactive phosphorus 

(DRP) losses. The model also performed satisfactorily in estimating monthly DRP and total 

phosphorus (TP) losses through tile drainage. However, its performance was suboptimal in 

simulating daily TP loads. This limitation may be attributed to the model’s inability to effectively 

capture fluctuations in P concentrations in tile drainage over the course of the simulation. Future 

modifications to this component are warranted to improve the model’s prediction of high-load 

(peak) events. Additionally, our evaluation of two agricultural management practices revealed that 

winter cover cropping with rye effectively reduced P losses, while controlled drainage at all three 

simulation outlet elevation levels increased P losses from the field. 
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4.7. Supplementary data 

The supplementary Tables S4.1, S4.2, and S4.3 include detailed information on several key 

aspects. These tables cover the management and cropping data gathered from the field, the 
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calibration parameters applied to the crops in the model, and the criteria used for classifying the 

model's performance. 

Table S4. 1 Cropping and management information for the field from 2017 to 2020.  

 

Crop  Date  

Management 

Practice  Notes  

Corn  18 Apr. 2017  P application  4.31 kg ha-1 (inorganic)  

19 Apr. 2017  Tillage  Chisel plough followed by disking  

19 May 2017  Planting  84000 seeds ha-1  

19 May 2017  P application**  15.72 kg ha-1 (inorganic)  

02 June 2017  P application**  15.72 kg ha-1 (inorganic)  

27 Nov. 2017  Harvesting  9866 kg ha-1  

Rye (cover 

crop) *  25 Aug. 2017  Planting  3738000 seeds ha-1  

Soybean  08 May 2018  Planting  424840 seeds ha-1  

01 Oct. 2018  Harvesting  3759 kg ha-1  

Soybean  24 Oct. 2018  P application  3.33 kg ha-1 (inorganic)  

25 Oct. 2018  Tillage  Chisel plough followed by disking  

06 June 2019  Planting    

24 Oct. 2019  Harvesting  2805 kg ha-1  

Soybean  12 May 2020  Tillage  Chisel plough followed by disking  

12 May 2020  Planting    

02 Oct. 2020  Harvesting  3678 kg ha-1  

09 Nov. 2020  P application  33.34 kg ha-1 (inorganic)  

*Planting date for simulation 01 Dec. 2017 [On the actual field, rye was planted on 25th August 2017. 

However, to adhere to the limitations of our model simulation, which does not support concurrent crops, 

we incorporated rye as a cover crop only after the corn harvest. It was terminated on May 1, 2018, just prior 

to the soybean planting in the summer] **In the actual field, fertilizer was applied on two distinct dates - 

19th May 2017 for the northern half and 2nd June 2017 for the southern half. Yet, to simplify the model 

simulation, we set the fertilizer application date as 19th May 2017 for the entire field.  
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 Table S4. 2 Calibrated crop parameters and their values.  
 

Crop Parameter 
Calibrated 

Values 
Default 

Values 
Corn[a]  

   
G2 Maximum possible number of Kernels per plant 775 890 

G3 
Kernel filling rate during linear grain filling stage under optimum 

conditions (mg d-1) 
13.2 8 

PHINT Phylochron interval between successive leaf tip appearance 41 48 

Soybean[b]    

SD-PM Time between first seed and physiological maturity (photothermal days) 43.4 32.4 

LFMAX 
Maximum leaf photosynthesis rate at 30 C, 350 vpm CO2, and high light 

(mg CO2 m-2) 
0.8 1.03 

WTPSD Maximum weight per seed (g) 0.13 0.19 

SFDUR 
Seed filling duration for pod cohort at standard growth conditions 

(photothermal days) 
18 23 

SDPDV Average seed per pod under standard growing conditions (# pod-1) 1.1 2.2 

Rye[c]    

PECM Emergence phase duration (°C d cm cm-1) 
 

12 
 

10 

P1V 
Days at optimum vernalizing temperature required to complete 

vernalization 
5 
 

40 
 

P1D 
Relative amount that development is slowed when plants are grown in 

photoperiod 1 h shorter than optimum (d) 
12  50  

LAVS Area of standard vegetative phase leaf (cm2) 5 10 

P5 Grain filling (excluding lag) phase duration (°C day) 400 400 

PARUV PAR conversion to dm ratio, before last leaf stage (g MJ-1) 4.8 2.8 

PARUR PAR conversion to dm ratio, after last leaf stage (g MJ-1) 4.8 2.8 

PHINT Interval between successive lead tip appearances 100 80 

LT50S Lethal temp, 50% kill, unhardened seedling (°C) -16 -6 

LT50H Cold tolerance when fully hardened (°C) -40 -20 

[a] Cultivar IB1 068 Dekalb 521  

[b] Cultivar 990002 M Group 2  

[c] Cultivar 990003 Winter‐US  
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Table S4. 3 Model performance classification criteria on monthly basis.  
  

Performance Level Drainage Discharge Flow Criteria DRP and TP Fit Criteria 

Very Good 
NSE > 0.75, R² > 0.75, IOA > 0.90, 

|PBIAS| < ±10% 

NSE > 0.65, R² > 0.80, IOA > 

0.90, and |PBIAS| < ±15% 

Good 

0.65 < NSE ≤ 0.75, 0.70 < R² ≤ 0.75, 

0.85 < IOA ≤ 0.90, ±10% < |PBIAS| 

< ±15% 

0.50 < NSE ≤ 0.65, 0.60 ≤ R² ≤ 

0.80, 0.85 < IOA ≤ 0.90, ±15% < 

|PBIAS| < ±20% 

Satisfactory 

0.50 < NSE ≤ 0.65, 0.60 < R² < 0.70, 

0.75 < IOA ≤ 0.85, ±15% < |PBIAS| 

< ±25% 

0.35 < NSE ≤ 0.50, R² > 0.40, 

0.75 < IOA ≤ 0.85, ±20% < 

|PBIAS| < ±30% 

IoA, Index of Agreement; NSE, Nash-Sutcliffe Efficiency; PBIAS, Percent Bias; R², 

Coefficient of Determination 
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FOREWORD TO CHAPTER V 

 

Chapters III and IV assess the RZWQM2-P model's performance in predicting daily phosphorus 

(P) losses. In Chapter III, the model was unable to accurately forecast daily dissolved reactive 

phosphorus (DRP) losses. In contrast, Chapter IV demonstrates that although the model accurately 

predicted daily DRP losses, it did not successfully predict daily total phosphorus (TP) losses. 

Chapter V synthesizes the findings from Chapters III and IV, offering a general discussion on 

aspects not previously addressed.
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CHAPTER V 

GENERAL DISCUSSION 

 

The RZWQM2-P model has been evaluated for its ability to simulate P losses from artificially 

drained fields, utilizing data on daily P losses from two fields in northwest Ohio, both of which 

are situated within the watershed of the western Lake Erie basin. The primary aim of the research 

was to assess the model's efficiency in predicting daily P losses from tile-drained fields and to 

identify potential areas for improvement in subroutines through this evaluation. 

           In the first study, which involved evaluating the model's efficiency using five years of data 

and comparing it with DRAINMOD-P, the model's performance was satisfactory in predicting 

daily and monthly TP losses, as well as monthly DRP losses. However, it was found to be 

unsatisfactory in predicting daily DRP losses over the five-year period, as indicated by NSE of 

0.36, R² of 0.36, and IOA of 0.70. In contrast, the second study, which evaluated the model using 

four years of data, showed that it performed satisfactorily in predicting both daily and monthly 

DRP loads from the field, and the predictions for monthly TP loads were also good. Nevertheless, 

its performance in predicting daily TP loads for the four-year period was unsatisfactory, with NSE, 

R², and IOA values of 0.30, 0.30, and 0.59, respectively. 

           It is crucial to note that in both studies, the predicted concentrations of P losses, including 

both DRP and TP, remain nearly constant through subsurface drainage for the entire study period, 

as detailed in Chapters III and IV. The transport of dissolved P in the model within the soil profile 

occurs through both the soil matrix and macropores, while the transport of P attached to sediments 

is confined exclusively to macropores. The determination of dissolved P transport within the soil 

profile follows methodologies outlined by Francesconi et al. (2016). Conversely, the calculation 

of particulate P transport utilizes the colloidal particle transport approach, detailed by Jarvis et al. 

(1999) and Larsson et al. (2007). This differentiation emphasizes that the model adopts distinct 

methods for simulating the transport of dissolved and particulate P forms within the soil. Despite 

these differences, a similar aspect of the modeling approach for both P forms is the use of a linear 

groundwater-reservoir approach to compute the daily mass balance of both dissolved and 

particulate P concentrations. This method is used to estimate the amount of P leaving the tile 
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drainage system. Therefore, the main reason for the nearly constant predictions of P concentrations 

lies in the mass balance calculations, rather than in how P transport is modeled through the soil 

matrix and macropores. As elaborated in Chapter III, the implementation of the linear groundwater 

reservoir approach grants substantial stability to the system. This method involves the mixing of 

incoming P mass from the soil profile with the groundwater reservoir. The vast storage capacity 

and significant initial mass of this extensive reservoir serve to significantly cushion the effects of 

daily inflows, thereby ensuring the P balance remains steady. 

          Now, it is crucial to understand the distinctions between the two studies, despite both having 

constant P concentration predictions by the model across chapters. In Chapter IV, the model 

satisfactorily predicted the daily DRP load, whereas in Chapter III, the predictions were 

unsatisfactory. This discrepancy primarily arises from the variation in observed DRP load 

magnitudes over time in the respective fields. In Chapter III, the DRP load showed significant 

fluctuations over five years. For example, in 2013 and 2016, the peak P load exceeded 7 g ha-1, as 

recorded on the daily time series graph. In contrast, in 2014, 2015, and 2016, the maximum load 

reached only 3 g ha-1. Particularly in 2014, aside from one event peaking at 3 g ha-1, all other events 

rarely exceeded 1 g ha-1. Consequently, the field in Paulding County exhibited considerable 

variation in observed DRP load, in stark contrast to the field in Hardin County. The latter, analyzed 

in Chapter IV, showed minimal variation in observed DRP load over four years, with major events 

peaking at around 1.5 g ha-1 and an average load remaining at 1 g ha-1. 

            Given the model's constant predictions of P concentration and considering that P load is 

fundamentally the product of water flows through subsurface drainage and P concentration, the 

model satisfactorily predicted DRP load in Chapter IV, attributed to the lack of significant variation 

in the observed data. However, in Chapter III model encountered challenges due to extensive 

variation in the observed data, resulting in unsatisfactory model performance. This was because 

the model could not accommodate considerable changes in P load in the simulations compared to 

the observed data with constant P concentration. This is also partly because the NSE values are 

extremely sensitive to outliers, where missing even one or two major load events could severely 

affect performance. 

            The same issue applies to the unsatisfactory daily simulations of TP losses in Chapter IV, 

where the observed TP load varied substantially over four years. The model managed to predict 
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daily TP satisfactorily for 2018 and 2019, with no observed event exceeding a load of 25 g ha-1. 

However, in 2017 and 2020, the observed load exceeded 60 g ha-1 in January 2017 and November 

2020, respectively, though all other major events fell within the 2018 and 2019 range. These 

variations led to unsatisfactory performance in these two years, adversely affecting the overall 

daily TP prediction accuracy over the four-year period and rendering it unsatisfactory. 

          The potential solution involves achieving a more accurate representation of P dynamics in 

calculating the mass balance of P in the subsurface drainage, which requires further modifications 

to the existing subroutines of the model. The RZWQM2-P could benefit from adopting a modeling 

approach that incorporates detailed spatial discretization and cell-level mass balance equations, 

offering a more thorough account of local variations and transient conditions. Another solution 

might involve integrating the P module with the existing chemical transport routines of the 

RZWQM2 model, for instance, by treating P as a reactive pesticide. Therefore, further research 

and investigations are essential to enhance the model's reliability in predicting high load events 

through improvements in its mass balance calculation subroutines. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

6.1. General overview   

Historically, the United States and Canada have benefited from the vast freshwater reserves of the 

Great Lakes, which are vital to ecological integrity and potable water supply. However, water 

quality degradation, particularly from P pollution originating from agricultural lands, has 

increasingly threatened these water bodies. This pollution leads to eutrophication, a nutrient 

enrichment problem that endangers aquatic ecosystems and public health, with Lake Erie 

experiencing severe challenges. Although traditional field-scale experiments have been pivotal in 

understanding the impact of various management practices on phosphorus loading from croplands, 

their applicability is often limited by specific local conditions and the significant time and 

resources required. To address these limitations, field-scale modeling has emerged as a more 

efficient and flexible approach, enabling the rapid evaluation and implementation of nutrient 

management strategies that can accommodate a wide range of factors, including the impacts of 

climate change. However, the effectiveness of these hydrology and nutrient transport models 

depends on their thorough validation against observed data and continuous refinement. In this 

study, we conducted an in-depth assessment of the recently developed RZWQM2-P model's ability 

to predict phosphorus losses, comparing its performance with that of the DRAINMOD-P model. 

This study also explored the effectiveness of management practices in reducing phosphorus losses 

using the RZWQM2-P model. 

 

6.2. Conclusions   

Objective 1: To thoroughly evaluate the RZWQM2-P model's performance in predicting 

daily P losses, including both DRP and TP, through subsurface drainage, utilizing daily P loss 

data from two experimental fields in Ohio. 

In the first study, where the RZWQM2-P model was evaluated using five years of field data from 

Paulding County, Ohio, the model exhibited unsatisfactory performance in predicting daily DRP 

load but showed satisfactory performance in predicting monthly DRP load through subsurface 
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drainage over the five-year period. The daily performance metrics included a NSE of 0.36, R² of 

0.36, IOA of 0.70, and PBIAS of 9%. In contrast, the monthly performance metrics demonstrated 

improvement, with a NSE of 0.48, R² of 0.50, IOA of 0.82, and a PBIAS of 9%, indicating 

satisfactory values. For subsurface drainage TP load predictions, the model performed 

satisfactorily on a daily basis and well on a monthly basis. Over the five-year period, the 

RZWQM2-P model satisfactorily predicted the daily TP load with a NSE of 0.53, R² of 0.54, IOA 

of 0.82, and predicted the monthly TP load in a “good” manner with a NSE of 0.72, R² of 0.73, 

IOA of 0.90, and a PBIAS of 3%. In terms of cumulative P loads, the model predicted the total 

DRP load from subsurface drainage as 229.1 g ha-1, compared to the observed DRP load of 251.8 

g ha-1 over five years. During the same period, the model predicted the TP load from the same 

pathway as 2800.5 g ha-1, which closely aligns with the observed TP load of 2879.6 g ha-1. 

           In the second study, evaluating the RZWQM2-P model with four years of field data from 

Hardin County, Ohio, it achieved satisfactory results for daily DRP predictions for the first time, 

with NSE = 0.50, R² = 0.52, IOA = 0.84, and PBIAS = -3%. It also exhibited very good 

performance in predicting monthly DRP, evidenced by PBIAS = -3%, NSE = 0.73, R² = 0.78, and 

IOA = 0.94. Additionally, the model showed good performance in predicting monthly TP, indicated 

by NSE = 0.64, R² = 0.65, IOA = 0.88, and PBIAS = 9%. However, its ability to predict daily TP 

was unsatisfactory, with NSE = 0.30, R² = 0.30, and IOA = 0.59 in this study. Evaluations also 

emphasize that the model closely matches observed data in identifying tile drainage as the primary 

pathway for nutrient loss. Specifically, the model attributes 66% of total DRP and 76% of total TP 

losses to subsurface drainage, closely aligning with the observed values of 70% and 80%, 

respectively. 

Objective 2: To compare the methodologies and performance of the RZWQM2-P model and 

the DRAINMOD-P model in predicting daily P losses through subsurface drainage. This 

comparison aims to identify the strengths and limitations of each model and explore how 

they can be improved by integrating their respective advantages. 

For the purpose of this objective, a comprehensive comparison was conducted between the 

RZWQM2-P and DRAINMOD-P using field data that was gathered over a period of five years in 

Paulding County. While both models utilize the P structure (consisting of five P pools) of the EPIC 

model, DRAINMOD-P employs the organic P pools from the CENTURY model. In contrast, 
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RZWQM2-P strictly adheres to the organic P pools of the EPIC model. The primary distinctions 

between the two models are in the methods employed to compute subsurface DRP loads. 

DRAINMOD-P utilizes the one-dimensional advection-dispersion-reaction (ADR) equation, 

which was derived from DRAINMOD-NII. On the other hand, RZWQM2-P calculates the mass 

balance of the subsurface drainage system using a linear groundwater reservoir-based approach.         

         In terms of performance, both models were unable to satisfactorily predict daily DRP losses 

through subsurface drainage. While the RZWQM2-P model satisfactorily predicted monthly DRP 

loss, DRAINMOD-P's performance was unsatisfactory. However, both models exhibited good 

performance in predicting TP losses through the same pathway. They also demonstrated very good 

performance in predicting the cumulative DRP and TP load through subsurface drainage. 

Additionally, RZWQM2-P predicted a constant P concentration from tile drainage with minimal 

change over the five-year period, whereas DRAINMOD-P showed the necessary changes. 

           When evaluating strengths, the RZWQM2-P may benefit from incorporating the cell-level 

mass balance equations and detailed spatial discretization utilized by DRAINMOD-P, in contrast 

to the existing linear groundwater reservoir approach. DRAINMOD-P could potentially improve 

its hydrology prediction accuracy through the adoption of methodologies similar to the ones 

utilized in RZWQM2-P, such as the incorporation of dead-end macropores. Additionally, 

DRAINMOD-P can simulate crop yields using the more versatile DSSAT model utilized in 

RZWQM2-P, as opposed to the current empirical yield approach utilized in DRAINMOD-P, which 

assumes a 100% relative yield in the current version. 

Objective 3: To identify the subroutines/processes in the RZWQM2-P model that require 

further improvements for satisfactory prediction of P loss through subsurface drainage, 

especially during high-load (peak) events of the simulation. 

The linear groundwater reservoir approach is the primary reason that the RZWQM2-P model is 

incapable of capturing the high-load (peak) events of the simulation through the subsurface 

drainage. This is given that the vast storage capacity and significant initial mass of this extensive 

groundwater reservoir serve to significantly cushion the effects of daily inflows of phosphorus into 

the reservoir. As a result, the RZWQM2-P model predicts the phosphorus concentration leaving 

the system without any variation. 
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Objective 4: To evaluate the model's applicability in predicting management practices for P 

loss reduction. This involves assessing the effectiveness of two specific management 

practices—cover cropping with rye and controlled drainage—in reducing P loading from 

fields with subsurface drainage, using a validated model. 

Model simulations indicated that winter rye as a cover crop reduced total DRP losses (runoff + 

drainage) and TP losses (runoff + drainage) by 16% and 4%, respectively. DRP losses bound to 

surface runoff declined by 31%, while DRP losses through tile drainage saw a modest decrease of 

8%. Furthermore, the cover crop had a minimal impact on TP losses via tile drainage, with only a 

3% reduction. 

            Controlled drainage (CD) was assessed using three different outlet elevations, revealing an 

inverse relationship between outlet depth and P losses; deeper outlets corresponded with fewer 

losses. However, each elevation still exhibited increased P losses compared to free drainage, 

primarily due to elevated annual runoff volumes. Notably, the increase in DRP losses was 

significantly higher than TP losses under CD. For example, DRP losses increased from 60% to 

129% (runoff + drainage) [60% when outlet elevation was maintained at 70 cm during the non-

growing season compared to 129% when elevation was at 30 cm], as opposed to the TP loss 

increment of 5% to 17% (runoff + drainage) with the same outlet elevation setup described above.  

 

6.3. Future recommendations  

This study offers insights into the daily evaluation of the RZWQM2-P model in predicting P losses 

from tile-drained agricultural fields. It also compares the RZWQM2-P model with DRAINMOD-

P in terms of predicting daily P losses from subsurface drainage. Furthermore, the study proposes 

recommendations for modifying the RZWQM2-P subroutines to calculate the daily mass balance 

of P leaving the tile drainage, aiming to enhance its reliability as a tool for predicting P 

concentration through subsurface drainage. However, further research is necessary to expand the 

scope of the model's evaluation. The following suggestions are recommended for designing future 

studies: 

1) The RZWQM2-P model requires daily evaluations to predict P losses from fields treated 

with manure. While our study did perform daily evaluations of the model twice, these 
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assessments were limited to fields that received only fertilizer applications. Given the 

complexity introduced by manure application, including factors like water-extracted organic 

and inorganic P pools, there is a crucial need for further evaluations with manure 

application. Such assessments are necessary to establish the model's reliability in predicting 

daily P losses from fields treated with manure. 

2) Building on our recommendation to update the linear groundwater reservoir approach, 

future research should assess the model's ability to predict P concentrations from subsurface 

drainage, implementing the changes suggested by our study. 

3) In our study, we assessed the impact of management practices, specifically the use of rye as 

a winter crop and controlled drainage, over a period of just four years. Future evaluations 

should extend these model simulations over a significantly longer timeframe. Extended 

evaluations allow for the observation of long-term trends and the potential cumulative 

effects of management practices on P losses, which short-term studies may not fully reveal. 

Also, a longer timeframe offers the opportunity to assess the sustainability and efficacy of 

these practices over multiple growing seasons, contributing to more robust and reliable 

recommendations for agricultural management. 

4) Future studies should utilize the model to assess climate change impacts, offering insights 

into how changes in weather, temperature, and precipitation could influence P losses in 

agricultural fields. 

5) While the RZWQM2-P model incorporates the robust DSSAT model for simulating crop 

growth, future versions should expand the crop options to include varieties such as oats and 

winter rye, allowing users greater flexibility. In our study, we used winter wheat as a proxy 

for rye and oats, which might not accurately reflect actual field conditions. Expanding the 

crop selection to directly include these crops will enhance its applicability and precision in 

predicting field conditions. 

6) Lastly, we recommend that future evaluations of the model incorporate additional datasets, 

such as observed ET and water table depths. Evaluating the model with this information 

will improve hydrology predictions, which in turn will directly refine the accuracy of P loss 

predictions generated by the model.
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