
 
 

TECHNO-FUNCTIONAL, THERMAL AND RHEOLOGICAL PROPERTIES OF PEA 

PROTEIN PRODUCTS  

 

 

ABODUNRIN TOLULOPE OYINBOOLA 

 

Department of Bioresource Engineering 

McGill University, Montréal, Canada 

AUGUST 2023 

A thesis submitted to McGill University in partial fulfilment of the requirements of 

the degree of Master of Science 

 

 

 

 

 

© TolulopeOyinboolaAbodunrin, 2023 

 



 
 

ii 
 

DEDICATION 

I dedicate this thesis to the almighty God. He alone made this work a huge success. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

iii 
 

ABSTRACT 

Pea protein products, which are popular due to their nutritional and functional properties, were 

the focus of this study. The study aimed to investigate the techno-functional, thermal, and 

rheological properties of pea protein products from different varieties of peas and predict these 

properties using a machine learning artificial neural network algorithm. The effect of the pea 

protein product's composition on these properties was evaluated, and data analysis was 

performed using Pareto charts, principal component analysis and cluster analysis. The study 

found that the techno-functional properties of the pea protein products, water absorption 

capacity, water solubility index, water absorption index, oil absorption index, protein solubility, 

emulsifying capacity, forming capacity, and forming stability, varied from 40.32% to 87.15% for 

protein solubility, 49.71% to 69.90% for water absorption capacity, 48.70% to 75.33% for water 

solubility index, 0.12% to 2.57% for water absorption index, 65.07% to 86.02% for oil 

absorption index, 23.07% to 49.11% for emulsifying capacity, 2.50% to 15.00% for forming 

capacity, and 1.00% to 5.00% for forming stability. The onset temperature ranged from 93.3°C 

to 166.19°C, peak temperature ranged from 128.97°C to 180.74°C, and gelatinization enthalpy 

ranged from 89.04 J/g to 280.42 J/g. The results showed that protein content had the most 

significant influence on water absorption capacity, oil absorption index, forming capacity, peak 

temperature, and enthalpy. The oil content showed the most significant influence on forming 

stability and onset temperature, while the interaction of oil content and protein content 

influenced water solubility index, water absorption index, and protein solubility the most. 

Principal component analysis and cluster analysis were used to identify unique varieties based on 

the cluster of techno-functional and thermal properties of the pea protein products. The 

rheological results showed that increasing the protein content led to a significant rise in storage 

modulus, loss modulus, and loss factor, while the complex viscosity decreased. An increase in oil 

content caused a decrease in storage modulus, loss factor, and complex viscosity. A rise in starch 

content led to a significant increase in the complex viscosity of pea protein products. Principal 

component analysis and cluster analysis were used to establish unique varieties based on the 

cluster of the rheological properties of the pea protein products. The machine learning artificial 

neural network algorithm results showed variations in the optimal number of neurons (100-200), 

iterations (10000-25000), and hidden layers (2-4) for different properties, as well as differences 

in Mean Absolute Error, coefficient of determination, Mean-Squared Error, and RMSE for 
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training and test datasets. These findings provide valuable insights into the potential of machine 

learning algorithms for predicting the properties of pea protein products. In conclusion, this 

study provides valuable information for identifying key composition factors that affect the 

techno-functional, thermal, and rheological properties of pea protein products. It also assists in 

the selection of the most suitable pea protein product for use in product development and 

formulation and provides insights into the processing behavior and quality control of pea protein 

products. 
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      RÉSUMÉ  

Les produits à base de protéines de pois, qui sont populaires en raison de leurs propriétés 

nutritionnelles et fonctionnelles, ont été au centre de cette étude. L'étude visait à étudier les 

propriétés techno-fonctionnelles, thermiques et rhéologiques des produits à base de protéines de 

pois provenant de différentes variétés de pois, et à prédire ces propriétés à l'aide d'un algorithme 

de réseau neuronal artificiel d'apprentissage automatique. L'effet de la composition des produits à 

base de protéines de pois sur ces propriétés a été évalué, et l'analyse des données a été réalisée à 

l'aide de diagrammes de Pareto, d'une analyse en composantes principales et d'une analyse de 

regroupement. L'étude a révélé que les propriétés techno-fonctionnelles des produits à base de 

protéines de pois, telles que la capacité d'absorption d'eau, l'indice de solubilité dans l'eau, 

l'indice d'absorption d'eau, l'indice d'absorption d'huile, la solubilité des protéines, la capacité 

émulsifiante, la capacité de formation et la stabilité de formation, variaient de 40,32 % à 87,15 % 

pour la solubilité des protéines, de 49,71 % à 69,90 % pour la capacité d'absorption d'eau, de 

48,70 % à 75,33 % pour l'indice de solubilité dans l'eau, de 0,12 % à 2,57 % pour l'indice 

d'absorption d'eau, de 65,07 % à 86,02 % pour l'indice d'absorption d'huile, de 23,07 % à 49,11 

% pour la capacité émulsifiante, de 2,50 % à 15,00 % pour la capacité de formation, et de 1,00 % 

à 5,00 % pour la stabilité de formation. La température de début variait de 93,3°C à 166,19°C, la 

température de pic variait de 128,97°C à 180,74°C, et l'enthalpie de gélatinisation variait de 

89,04 J/g à 280,42 J/g. Les résultats ont montré que la teneur en protéines avait la plus grande 

influence sur la capacité d'absorption d'eau, l'indice d'absorption d'huile, la capacité de 

formation, la température de pic et l'enthalpie. La teneur en huile a montré la plus grande 

influence sur la stabilité de formation et la température de début, tandis que l'interaction entre la 

teneur en huile et la teneur en protéines a eu le plus d'influence sur l'indice de solubilité dans 

l'eau, l'indice d'absorption d'eau et la solubilité des protéines. 

L'analyse en composantes principales et l'analyse de regroupement ont été utilisées pour 

identifier des variétés uniques basées sur le regroupement des propriétés techno-fonctionnelles et 

thermiques des produits à base de protéines de pois. Les résultats rhéologiques ont montré qu'une 

augmentation de la teneur en protéines entraînait une augmentation significative du module de 

stockage, du module de perte et du facteur de perte, tandis que la viscosité complexe diminuait. 

Une augmentation de la teneur en huile entraînait une diminution du module de stockage, du 
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facteur de perte et de la viscosité complexe. Une augmentation de la teneur en amidon entraînait 

une augmentation significative de la viscosité complexe des produits à base de protéines de pois. 

L'analyse en composantes principales et l'analyse de regroupement ont été utilisées pour établir 

des variétés uniques basées sur le regroupement des propriétés rhéologiques des produits à base 

de protéines de pois. Les résultats de l'algorithme de réseau neuronal artificiel d'apprentissage 

automatique ont montré des variations dans le nombre optimal de neurones (100-200), les 

itérations (10 000-25 000) et les couches cachées (2-4) pour différentes propriétés, ainsi que des 

différences dans l'erreur absolue moyenne, le coefficient de détermination, l'erreur quadratique 

moyenne et le RMSE pour les ensembles de données d'entraînement et de test. Ces résultats 

fournissent des informations précieuses sur le potentiel des algorithmes d'apprentissage 

automatique pour prédire les propriétés des produits à base de protéines de pois. En conclusion, 

cette étude fournit des informations précieuses pour identifier les facteurs de composition clés 

qui affectent les propriétés techno-fonctionnelles, thermiques et rhéologiques des produits à base 

de protéines de pois. Elle aide également à la sélection du produit à base de protéines de pois le 

plus approprié pour le développement et la formulation de produits, et fournit des informations 

sur le comportement de transformation et le contrôle de la qualité des produits à base de 

protéines de pois. 
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CHAPTER ONE 

1. GENERAL INTRODUCTION 

1.1 Background 

There is a growing demand for protein-based foods, and it is expected to increase rapidly in the 

coming years due to the increasing world population and societal prosperity (Lang, 2020). Thus, 

there is a need to create a more sustainable food system. Peas are generally identified as green or 

yellow annual cotyledon diversities that belong to the leguminous family called Fabaceae. Peas 

have garnered substantial interest due to their associated nutritional significance and promising 

healthcare benefits, including reducing LDL-cholesterol, weight control, prevention of 

deficiency-related diseases of selenium and folate, minimizing the occurrence of type-II diabetes 

mellitus and colon cancer (Abeysekara et al., 2012; Dahl et al., 2012). Peas are also relatively 

non-allergenic. Peas are rich in carbohydrates, low in fat, and consist of nine key essential amino 

acids (Oliete et al., 2018; Qamar et al., 2019). Peas are high in antioxidants (Zhang et al., 2013; 

Qamar et al., 2019) and nutritionally significant in phytochemicals, minerals, and vitamins (Boye 

et al., 2010; Jiang et al., 2010). 

Proteins derived from peas are typically processed into isolates, concentrates, and flour, 

collectively referred to as pea protein products. In food production, these products have been 

utilized in the creation of novel food items, such as food paste, meat analogues, sausages, and 

soups, due to their emulsification capacity, water and fat binding capacity, gelation, foaming, and 

solubility (Pelgrom et al., 2013). The meat and sausage industry often substitutes pea protein 

concentrate (PPC) for meat due to its unique water and fat binding capacity, protein solubility, 

gelation, emulsification, and foaming capacity profiles. Pea protein isolate (PPI), on the other 

hand, is typically used to enhance the nutritional and functional qualities of products, such as 

pasta (Pelgrom et al., 2013). Ferawati et al. (2021) produced meat analogues using yellow pea 

and faba bean protein isolates and concentrate. However, the global food industry faces an 

ongoing challenge of discovering unique protein-based ingredients from various plant varieties 

that will significantly influence the desired techno-functional, thermal and rheological properties 

to meet the evolving preferences of consumers. 
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Generally, the types of ingredients, variety, extraction technique, processing conditions, and 

composition of foods significantly influence peas techno-functional properties (Pazmiño et al., 

2018; Arteaga et al., 2021). Various essential techno-functional properties, such as protein 

solubility, water absorption capacity, water solubility, water absorption index, oil absorption 

index, emulsifying capacity, forming property, and forming stability of protein products, play a 

crucial role in determining the characteristics of final food products (Barać et al., 2015). In order 

to achieve optimal performance during food processing, it is important for proteins to exhibit 

good solubility, which influences other properties such as emulsification, foaming, and gelation 

(Barac et al., 2010). Typically, pea protein products exhibit high protein solubility owing to their 

abundant protein content, surface composition, and hydrophobicity of the protein molecules 

(Lam et al., 2018; Bogahawaththa et al., 2019). During the preparation or extraction process, pea 

protein products are subjected to heat treatment, necessitating the study of their thermal 

properties, which can be assessed using onset temperature, peak or denaturation temperature, and 

gelatinization enthalpy (Branch & Maria, 2017). The rheological property is a key parameter that 

is commonly used to evaluate the quality of raw materials and products and to anticipate their 

performance during storage and processing (Dasa & Binh, 2019; Zhang et al., 2020; Mir et al., 

2021). It also aids in predicting the way proteins, starch, and fats behave in certain food systems 

under external forces by enabling predictions of their flow and deformation (Wang et al., 2019). 

Peas are known to have different varieties with distinct components such as protein, oil and 

starch content which could influence their functional properties such as techno-functional, 

rheological, and thermal properties. Machine learning presents the chance to examine data and 

possesses an edge over calculations performed by humans since machine learning algorithms are 

better equipped to recognize unconventional patterns within extensive data sets (Kim et al., 

2018). At present, one of the prevalent techniques in machine learning for recognizing risk 

factors that can forecast the development of complications is polynomial regression. On the other 

hand, artificial neural networks (ANNs) are a different type of machine learning that is nonlinear 

and highly adaptable, unlike polynomial regression (Sanusi & Akinoso, 2021). This 

characteristic could enable the detection of nonlinear patterns, leading to more accurate 

predictions (Sanusi & Akinoso, 2022). Therefore, it is important to predict the techno-functional, 

thermal and rheological properties of pea protein products with artificial neural network machine 

learning because these properties have a significant impact on the performance of the final food 
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product during processing, storage, and consumption. Techno-functional properties such as 

protein solubility, water absorption capacity, and emulsifying capacity play a crucial role in 

determining the characteristics of the final food product, such as texture, appearance, and 

stability. Thermal properties such as onset temperature, peak temperature, and gelatinization 

enthalpy can indicate the suitability of pea protein products for various food processing 

applications. Rheological properties can aid in predicting how pea protein products will behave 

in certain food systems under external forces, such as during mixing, shearing, or pumping. By 

accurately predicting these properties with artificial neural network machine learning, 

manufacturers can optimize their processes to produce high-quality, consistent products that 

meet consumer expectations. Despite the tremendous works reported on the effect of 

composition on the different legume proteins, literature is spare on the evaluation of the effect of 

composition on the techno-techno-functional, rheological, and thermal properties of pea protein 

products. Therefore, based on the information available on the compositional effect, it would be 

worthy to study the effect of this composition, namely protein, oil, and starch content on the 

techno-functional, rheological and thermal of pea protein products. 

1.2 Hypothesis  

The composition of pea protein products (flour, concentrate and isolate), including protein 

content, starch content, and oil content, could significantly influences their techno-functional, 

thermal, and rheological properties. Limited understanding of these relationships is evident due 

to the scarcity of available literature. Conventional methods for evaluating these properties are 

resource-intensive, expensive, time-consuming, and inflexible. By utilizing modern data 

analytical tools such as pareto, principal component analysis, and artificial neural network 

machine learning algorithms, researchers can effectively interpret and predict results, identifying 

trends, patterns, and correlations. This approach could facilitate informed decision-making and 

meaningful conclusions. Through a comprehensive study of the influence of composition on the 

techno-functional, thermal, and rheological behavior of pea protein products, valuable insights 

can be obtained regarding their potential applications in the food industry. 
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1.3 Research Objectives 

The overall objective of this research was to evaluate the techno-functional, thermal, and 

rheological properties of pea protein products using pareto, principal component analysis, and 

artificial neural network.  

The specific objectives are to:  

1. determine relationships between the composition of pea protein products and their 

techno-functional and thermal properties using pareto analysis, 

2. determine relationships between the composition of pea protein products and their 

rheological properties using pareto analysis and, 

3. evaluate the techno-functional, thermal and rheological properties for pea protein 

products using artificial neural network machine learning algorithm.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Pea protein products  

Pea is one of the legume crops that has been an important part of the diet for thousands of years 

(Jiang et al., 2017). It is commonly regarded as the seed or the peapod of either field pea or 

garden pea (Pisum sativum). However, peas are sometimes quoted as a word describing further 

plant seeds such as pigeon pea, chicken pea, cowpea, and grass pea. Peas are often identified as 

the green or yellow annual cotyledon diversities that belong to the leguminous family called 

Fabacea. Pea protein are protein components extracted from pea seeds and are widely used as 

functional ingredients in various food systems due to their exclusive nutritional, techno-

functional, rheological and thermal properties (Jiang, 2015). Pea proteins are typically processed 

into pea flour, pea protein concentrate and pea protein isolate, which are generally referred to as 

pea protein products as shown in Figure 2.1. Pea flours are typically made from dehusked and 

milled beans. Pea protein concentrations (PPC) are made by air-classification of the pea flours 

(attained through the milling beans), a mechanical drying technique or solvent-based process that 

separates protein from other non-protein components of the pea such as fibre and starch granules. 

Protein concentration in concentrates is about 50-80%, with the remaining components being 

carbohydrate, fats and minerals. Instead, a further processing of the protein concentrate through 

ultrafiltration or other separation methods by separating and concentrating the concentrates 

produces pea protein isolates (PPI). Alkaline or acidic conditions can also be used for protein 

isolate extraction (Sandberg, 2011). Protein isolate usually contains around 90% protein and has 

a lower content of carbohydrates, fats, and minerals compared to protein concentrate.  
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Figure 2.1. From pea seeds to pea protein ingredients. A. Wet extraction; B. Dry fractionation; C. 

Mild fractionation (Reinkensmeier et al., 2015). 
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The successful incorporation of pea proteins into the human diet primarily relies on consumers' 

preferences (Jiang et al., 2017). A few numbers of literature have focused on the potential 

utilization of pea protein products (isolate, concentrate and flour) in various food products, as 

they function as a supplement or substitute to grain flour (such as in pasta or bread) or to meat 

products (such as in patties, and hamburgers), as well as in texturized products, ready-to-eat 

snacks, and as milk substitutes (Baugreet et al., 2016; Chao et al., 2018). The inclusion of pea 

protein products chiefly influences product texture, mouthfeel, and cooking duration of the 

product. Intrinsically, alterations of the pea protein products are relatively required for the 

acceptability of the organoleptic characteristics of the food products processed from the pea 

products. For instance, pea protein concentrate (PPC) has a unique application in the 

development of non-fat-dry milk alternatives in the baking industry. A non-milk icy dessert was 

produced due to the high organoleptic properties of pea protein isolate. Pea protein isolates 

possess high water, and fat binding capability, protein solubility, foaming, and emulsifying 

capacity which helps to ensure high stability and texture of the targeted product (Sandberg, 

2011). Pea protein has also a great application in fish and meat products, pastry and biscuits 

making, soups, desserts, sauces, and baby food, as shown in Table 2.1.  

2.2 Techno-functional Properties of Pea Proteins 

The techno-functional properties of foods are associated with its physical and functional 

properties specifically the behavior of food during processing, preparation, storage, and overall 

consumption (Pazmiño et al., 2018). In addition, the techno-functional characteristics of foods 

are essential parameters with ultimate significant influence during their cooking (Bishnoi and 

Khetarpaul, 1993). The techno-functional property of foods depends on the various functional 

properties  such as organoleptic (color, odor, flavor), rheological/textural (chewiness, 

aggregation, elasticity, adhesiveness, cohesiveness, dough formation, network formation, 

extrudability, texturizability), kinesthetic (texture, mouthfeel, smoothness, grittiness), hydration 

(solubility, gelation, swelling, water absorption, gelling, syneresis, thickening, wettability, 

viscosity), and surface (emulsification, film formation, foaming) which are usually possessed by 

food proteins.   
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Table 2.1: Pea protein-based products  

Products Ingredients References 

Beef patties Pea protein isolate (PPI), rice protein (RP), and 

lentil flour (LF) 

Baugreet et al. (2016) 

Salad dressing Lentil, pea protein isolates, and chickpea Ma et al. (2016) 

Noodles Yellow field pea protein isolate (PPI) and 

semolina 

Chao et al. (2018) 

Gluten-free muffins Field pea, kidney bean, and amaranth protein 

isolate 

Shevkani & Singh, 

(2014) 

Pea protein-based yoghurt Pea protein and yoghurt starter culture Yang et al. (2021) 

Grass pea flour Ground grass pea  Romano et al. (2019) 

Pea protein flour Nutralys F85M (R1), Nutralys S85F (R2), 

PURIS Pea 870 (C1), Vitessence Pulse 1550 

Protein (I1), and Pea Protein 85 (G1) 

Burger et al. (2022) 
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Major functional properties of pea protein in terms of the techno-functional properties are protein 

solubility, emulsification, foaming capacity, foaming stability, water absorption capacity, water 

absorption index, water solubility index, swelling index, and amino acid sequence (Wijaya et al., 

2015). The techno-functional requirements of pea protein products vary depending on how it will 

be used in particular food and food system applications. A protein's techno-functional properties 

are often influenced by various elements, which are classified into two categories, including the 

intrinsic and extrinsic influences. The amino acid sequence and composition, size, shape, 

hydrophobicity/hydrophilicity ratio, conformation, and reactivity are the intrinsic factors. The 

ionic strength, pH, temperature, conformation, the fraction of hydrophobicity to hydrophilicity, 

and the extraction method are extrinsic factors that might influence the techno-functional 

properties of pure pea protein. Understanding the various techno-functional properties of pea 

protein is important for developing high-quality food products that meet consumer demand for 

sustainable plant-based ingredients with desirable sensory and nutritional qualities. Some major 

techno-functional properties of pea protein are well-defined and highlighted in Table 2.2. 

2.2.1 The solubility properties of pea protein products 

The protein solubility is a dependent factor on the ratio and organization of hydrophobic and 

hydrophilic groups on the surface of a molecule of protein and the protein solubility is 

consequently determined by several intrinsic factors. These include such as amino acid 

distribution and composition, charge, isoelectric point, molecular flexibility. The extrinsic factors 

include temperature, ionic strength, and pH) (Lam, 2016). In order to achieve optimal 

performance in food processing applications, it is important for proteins to exhibit good 

solubility. (Barac et al., 2010). The solubility of pea proteins affects other functional qualities 

like emulsification, foaming, and gelation (Burger & Zhang, 2019). The solubility of protein 

differs based on the quantity of polar and a-polar groups and how they are arranged within the 

molecule (Barac et al., 2012). Protein solubility changes with ionic strengths, and pH. However, 

the literature on protein products processing showed that both ionic strength and pH have a 

significant impact on their solubility properties (Boye et al., 2010b; Barac et al., 2014). The 

proportion of the major proteins may have an impact on the solubility of the protein product 

(Barac et al., 2010; Barac et al., 2012; Barac et al., 2014).  
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Table 2.2. Definition of Techno-functional Properties of Pea Proteins 

Property Definition References 

Protein Solubility Describes the ability of pea protein to dissolve in water or other solvents under 

specific conditions (temperature, pH, ionic strength, and protein concentration). 

At neutral or slightly alkaline pH values, pea protein is highly soluble between 

80-90%, but can be reduced at low or high pH values, where the protein may 

undergo denaturation or aggregation. Also, an important protein requirement for 

industrial use as emulsion, foams, and gels. 

Jiag et al. (2015); 

Wijaya et al. 

(2015) 

Foaming Capacity Ability of pea protein to form stable foam as air is introduced into an aqueous 

solution of the protein. It is also a protein adsorption mechanism enabling the 

creation of new interfaces due to a reduction in surface tension. Foaming 

capacity is essential in several food applications including whipped toppings, 

meringues, and aerated foods to create desirable textures and mouthfeel in the 

products. 

Wijaya et al. 

(2015) 

Foaming Stability Refers to the ability of pea protein to maintain the volume and structure of a 

foam over time or the ability of protein to stabilize a two-phase system 

involving air cells, that is detached by a continuous thin layer of liquid, against 

mechanical and gravitational stresses. This depends on strength of protein layer 

and its gas permeability. It also depends on the temperature, protein 

concentration, and pH.  

Wijaya et al. 

(2015) 

Water Absorption 

Capacity 

Ability of pea protein to uphold its particular and extra water as it experiences 

force, centrifugation, heat or pressing. Water absorption capacity is an essential 

functional property that can influence pea protein product processing, texture, 

and shelf life stability. 

Wijaya et al. 

(2015) 

Cruz-Solorio et al. 

(2018) 

Water Solubility 

Index 

The water solubility index (WSI) of pea protein describes a measure of the 

quantity of protein that can dissolve in water. Pea proteins have good water 

solubility, which is an important functional property for their use in a variety of 

food applications where a smooth and creamy texture is desired. 

Chandra et al. 

(2015) 
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Oil Absorption 

Capacity 

Describes the quantity of oil absorbed per unit gram of protein. It is an 

important techno-functional property that influences products mouthfeel, 

product yield, flavor, and texture. The hydrophobic and hydrophilic regions of 

pea proteins allow them to interact with both water and oil which help to 

stabilize emulsions and improve the overall stability of food products. 

Wang et al. (2020) 

Emulsifying 

Capacity 

Measures the activities of pea proteins to form and stabilize an emulsion over 

time. It describes its ability to interact with oil and water phases in an emulsion. 

This is largely influenced by product surface properties such as hydrophobicity 

and charge. 

do Carmo et al.  

(2020) ; Pedrosa et 

al. (2020) 
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Major pea proteins are globulins, which are most soluble above and least soluble below the point 

of isoelectric (pH 4.5), respectively (Barac et al., 2010; Barac et al., 2014). However, in general, 

proteins tend to have higher solubility at pH values that are close to their isoelectric point (pI), 

where the net charge of the protein is zero. At pH values away from the pI, the protein carries a 

net charge, which can affect its solubility. As a result, natural pea proteins and the products made 

from them have a U-shaped pH-solubility dependence, as is also true of some legume proteins 

(Barac et al., 2014). According to Jiang et al. (2017), the protein solubility content of a 

commercially controlled pea protein isolate (PPI) was affirmed to be 2.07 mg/mL, and a 

solubility of 8.17% by pH Shifting method, which is relatively lower compared to most reported 

studies (Barac et al., 2010; Adebiyi and Aluko, 2011). The reason for the reduced solubility 

levels in commercially available pea protein products was attributed to the heat-induced 

alteration (Shand et al., 2007). The variation in values may be triggered by the various PPI 

method of treatment reported in the literature. Comparably, the salt-extraction method of protein 

was recorded to show a unique solubility to alkali or acid precipitation method of extraction 

(Jiang et al., 2017). Also, the solubility of four pea protein (PP) powder was analyzed. The 

solubility of R1, R2, G1, and C1 varied between 35.9 and 50.6 g kg−1 at pH 4.0, 110.7–199.5 g 

kg−1 at pH 2.0, and 89.5 and 124.5 g kg−1 at pH 9.0. The protein solubility changes as the pH 

are driven away from the point of isoelectric (pH of 4.0–5.0), which was comparatively small. 

Achieving an ideal emulsifying property in a food protein necessitates a greater degree of 

solubility, which facilitate the movement of proteins towards the oil/water interface (Barac et al., 

2010; Karaca et al., 2011). 

2.2.2 The emulsifying property 

When creating food systems, proteins can be extensively exploited as emulsifying agents 

because they are surface-active and amphiphilic substances. Proteins' emulsifying abilities or 

activities and emulsion stability are typically used to describe their emulsifying capabilities. 

Emulsion activity measures the amount of oil that a protein can emulsify per unit of each protein, 

while emulsion stability measures how stable an emulsion is over a specific period (Boye et al., 

2010a). Emulsion suitability of an ideal protein and protein isolate is a dependent factor on the 

degree of proteins diffusion into the interface, and on the deformability of its conformation under 

the effect of surface denaturation (interfacial tension). For a protein to function as an effective 
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emulsifying agent in an oil-in-water emulsion, it should possess certain characteristics such as 

low molecular weight, a balanced composition of charged amino acids, high water solubility, 

residues that are both polar and non-polar, a stable conformation, and well-established surface 

hydrophobicity (Barac et al., 2014).  

Several methods have been employed in the literature to determine the emulsifying properties of 

foods, for instance, turbidimetric methods, droplet size measurements, and conductivity (Burgera 

& Zhanga, 2019). The two major turbidimetric methods of measuring emulsification are 

emulsifying stability index (ESI) and emulsifying activity index (EAI). Emulsifying activity 

index determines the protein's degree of adsorption toward the boundary, whereas emulsifying 

stability index is a determination of the layer absorption stability over a specified period (Boye et 

al., 2010; Stone et al., 2015a). The measure of the quantity of oil needed to reverse an 

emulsification state of oil-in-water emulsion into a water-in-oil emulsion is the emulsion 

capacity (EC) (Stone et al., 2015). Taherian et al. (2011) defined emulsion stability as the 

measure of the quantity of creaming per the time specified. Another common technique is the 

emulsion particle size or diameter of particle droplet, which is assessed using dynamic light 

scattering. Often, particle droplet of smaller sizes having a narrower size distribution shows 

greater emulsifying properties (Kimura et al., 2008). The droplet size distribution is usually 

measured in water or buffer systems. 

Emulsifying capacity is a critical functional attribute within the food industry. Proteins are 

responsible for forming colloidal systems known as oil-in-water emulsions, which could 

transport various substances such as functional lipids and nutritional supplements (Jiang et al., 

2015). Pea protein exhibits excellent emulsifying properties, making it well-suited to produce 

oil-in-water emulsions (Lu et al., 2019). Pea protein isolate are identified to usually have greater 

emulsifying properties at pH 3.0 than at some pH values, although most proteins showed the 

weakest blending properties at pH 5.0 (Lam et al., 2018). Pea proteins' alkaline treatment alters 

the structural makeup of pea protein and improves their capacity to prevent emulsions oxidation 

(Jiang et al., 2015). Emulsions are immiscible liquid dispersion. Chemicals (binding agents) that 

form interface films and stop the disperse phases from mixing stabilize them. 
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2.2.3 Foaming properties of pea 

In food systems, proteins serve as foam-forming and stabilizing components (including baked 

goods, and desserts sweets). In similarity to how proteins have various emulsifying qualities, 

different proteins have different capacities for forming and stabilizing foams. This is a result of 

the varying physicochemical characteristics of the proteins (Barac et al., 2010; Barac et al., 

2014). Good solubility, strong surface hydrophobicity, low molecular weight, a small net charge 

(meal pH), and simple denaturability are the characteristics of the perfect foam foaming and 

stabilizing protein (Barac et al., 2012). 

Foaming stability (FS) and foaming capacity (FC) are typically used for the description of the 

foaming capabilities of proteins. Lam et al. (2017) defined foaming stability (FS) as the ability of 

protein molecule to maintain a stable foam (a two-phase system involving air cells that is 

detached by a continuous thin layer of liquid), against mechanical and gravitational stresses, and 

often ruled by film thickness, cohesiveness, and flexible deformation from stress. Generally, pea 

protein isolates are usually a good source of foaming stability. Several writers investigated the 

pea protein isolates' foam characteristics (Barac et al., 2010). These studies show that the 

foaming characteristics of pea protein isolates vary in pH and concentration. The study by Lam 

et al. (2017) on pea isolates produced from three pea genotypes recorded an FS value of between 

68.0 and 69.6%. Nevertheless, Shevkani et al. (2015) established a higher FS value (94.0 to 

96.0% after 30 minutes) for pea protein isolates produced from four pea cultivars. Agreeing to 

the study of Wierenga and Gruppen (2010), foaming stability showed a significant correlation to 

foaming capacity at r=0.63 and P <0.001. 

2.2.4 Gelling properties of pea 

The denaturation of proteins influences the gelation temperature of pea protein. Gelation 

qualities also heavily depend on protein content. Firmer gels are typically produced by higher 

concentrations of protein. The gelling point, however, does not depend on concentration. The 

characteristics of pea protein that cause gelation are only slightly affected by heating and cooling 

rates (Sun & Arntfield, 2010). The gelling point was affected by the heating rate in such a way 

that slower gelling was caused by higher heating rates (higher gelling temperatures). The 

elasticity of the gel was weakened as a result of faster heating and cooling rates (Barac et al., 

2014). Wani et al. (2010) evaluated the gel property of starch obtained from three kidney beans 
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genotypes (Phaseolus vulgaris L. cv. Master Bean, Contendor, French Yellow). French Yellow 

gels exhibited the highest hardness (201.4 g) while the gel from Contender starch displayed the 

lowest content (153.8 g). The gel hardness was established to have a relationship between the 

amylose content as well as the viscosity. Additionally, gel produced from starches of different 

kidney beans recorded some values of cohesiveness ranging between 0.28 and 0.4, gumminess 

(43.1 and 89.4), and springiness (0.5 and 0.94). The French Yellow was observed to have the 

maximum gumminess content (89.4) while Master Bean had the lowest value of springiness (0.5) 

and gumminess (43.1), as the other three genotypes displayed the same values of springiness. 

Furthermore, adhesiveness and chewiness of kidney bean starch gels were affirmed to vary 

between 183.1 and 273.8 g.s and 23.9 and 81.6 g, respectively (Wani et al., 2010).  The gel from 

Master Bean starch was observed to have the minimum chewiness and maximum adhesiveness 

while French Yellow had the maximum value of chewiness, where the maximum adhesiveness 

was observed at Local Red gels. According to Biliaderis (1997), the difference in the textural 

characteristics of starch gels could be an influence of the rheological properties of the amylose 

matrix, the relationship between the gel's continuous and dispersed phase, as well as the 

phosphorus content. These factors are consequently recorded to depend on the amylopectin 

structure, and amylose content (Yamin et al., 1999). In addition, the techno-functional properties 

of the pea protein products were well summarized in Table 2.2. The table highlighted the various 

studies on the techno-functional properties of protein ingredients (flour, concentrate and isolate) 

from different varieties of pea and focused on the major discoveries or result from the studies.  

2.3 Thermal Properties of Legume Protein 

The thermal property of food reflects the behavior of a food material when it is heated in a 

programmed heating rate of a differential scanning calorimeter (DSC) to assess the thermal 

transition. It is associated with enthalpy involved during food processing. Thermal transition 

refers to the changes that occur in a material's properties as it is heated or cooled, which can be 

characterized by changes in temperature, energy, or other physical properties, such as viscosity 

or thermal conductivity. It can provide insights into the material's composition, structure, and 

behavior (Ahmed & Rahman, 2014). Most legumes such as peas exhibit distinct thermal 

transitions, including starch gelatinization, protein denaturation, and other thermal peaks related  
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Table 2.2: Summary of studies on Techno-functional Properties of Pea 

Pea Techno-

functional 

Properties 

Major discoveries on the techno-functional 

properties 

Additional comments References 

Pigeon 

pea 

Protein 

solubility (PS) 

The solubility capability of Pigeon protein 

concentrates of mature seeds, and green seeds 

(MPPPC and GPPPC) was presented to increase at 

higher pH of 12.0 with solubility 62.77±0.35% 

and 59±2.12% for MPPPC and GPPPC, 

respectively. 

While a decrease was observed at pH 4.0 with 

solubility of 6.98±0.25% and 3.29±0.39% for 

GPPPC and MPPPC, respectively. 

The decreased solubility could be 

an outcome of pigeon pea pH near 

the isoelectric protein point. 

 

Pazmiño et al., 

(2018) 

 Foaming 

capacity 

(FC) 

Mature and green pigeon pea PC showed a 

significant difference in the functional properties 

as MPPPC was recorded to have FC value of 

68.50% while the GPPPC recorded a FC value of 

27.30%. 

The variation in the values 

obtained are attributed to protein 

changes in at various phases of 

development, including 

composition, structure, charges, 

hydrophobicity, and concentration. 

Pazmiño et al. 

(2018) 
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 Foaming 

stability 

(FS) 

GPPPC and MPPPC showed a higher value of FS 

of between 27.88% - 71.15% and 66.02% - 

96.03%, respectively. 

The incubation period was 

described to have a negative 

correlation with FSAA 

Pazmiño et al. 

(2018) 

Pigeon 

pea 

Protein 

solubility 

Pea protein isolate (PPI) treated using pH shifting 

and ultrasonication combination method where the 

solubility content pea protein s was 2.07 mg/mL 

and considered comparably low. 

This is due to the treatment method 

of the PPI applied in different 

literature. However, salt-extracted 

method showed an improved 

solubility over the acid or alkaline 

treatment. 

Jiang et al. (2017) 

Field pea Water 

Absorption 

Capacity 

(WAC) 

The swift water uptake during preliminary soaking 

determines the water absorption capacity of peas, 

until it reaches a saturation level. 

Long soaking duration for 16h 

cause hydration of the seed coat as 

the pea reaches the level of 

saturation.               

Wang et al. 

(2010) 

Kidney 

Beans 

Water 

Absorption 

Capacity 

The intermolecular rate of unification between 

complex starches due to force of association such 

as covalent and hydrogen bonding, influences the 

WAC. 

Water absorption capacity varies 

(1.9–2.1 g ⁄ g) for different kidney 

pea cultivars. 

Wani et al. 

(2010) 

 Pasting 

Characteristics 

The starch granules of peas of larger sizes (for 

instance Sturt) showed to present pasting 

appearances of moderately greater viscosities and 

The genotype environment of peas 

had a substantial influence for all 

starch-pasting appearances. 

Maharjan et al. 

(2019) 
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inferior temperatures. 

Grass Pea Water holding 

capacity 

(WHC) 

Using the method of D’Appollonia, WHC of pea 

flour was presented to be 176%. 

WHC of pea is significantly 

specific to product characteristics, 

including retrogradation of starch, 

product staling and moistness. 

Romano et al. 

(2019) 

Pea 

Protein 

Protein 

composition 

Major bands of pea protein were spotted which are 

the 8S globulin, legumin, vicilin, and convicilin 

subunits. 

Variation in the composition of pea 

protein could be ascribed to the gel 

structure and strength for an 

unchanged condition of processing.  

Yang et al. 

(2021) 
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to amylose-lipid or protein-lipid complexes. The thermal transition is mostly associated with 

three temperatures: onset (To), peak (Tp), and enthalpy or conclusion (Tc), following the concept 

of glass transition. The midpoint of the transition is considered during the first scan due to the 

irreversible transition of legume starch/protein. Protein and starch undergo thermal transitions 

that are influenced by the available moisture content that fluctuates during processing (Ahmed et 

al., 2021). 

2.3.1 Peak temperature/ Gelatinization 

When protein samples are isolated in aqueous dispersions, they experience a phase transition and 

exhibit a sharp melting peak at a specific temperature, known as gelatinization. This process is 

irreversible and causes the native semicrystalline structure of the starch granule to transform into 

a polymer solution in the rubbery state. The gelatinization temperature is influenced by the glass 

transition of the amorphous fraction of the starch and the type of starch present. In the case of 

legumes, which possess a C-type structure comprising an inner B-polymorph surrounded by an 

A-type polymorph, the gelatinization of pulse starch starts from the central hilum region. The B-

type polymorphs melt at a lower temperature than the A-type polymorphs due to their loose 

packing (Dong & Vasanthan, 2020). Table 2.3 provides an overview of the thermal transition 

temperatures of starch from various legume sources. The thermal properties such as enthalpy 

(ΔHgel) of starch are influenced by factors such as legume source, isolation method, moisture 

content, and other factors. The gelatinization enthalpy is indicative of the order-disorder 

transition of starch granules, particularly the breakdown of amylopectin crystallites. ΔHgel 

quantifies the loss of molecular order and crystallinity within the starch granule (Cooke & 

Gidley, 1992). The melting of amylopectin crystallites is determined by the crystal type and 

architecture within the grain, and the processing conditions, such as heat/pressure severity. The 

range of enthalpy for starch gelatinization is wide, typically between 4 to 18 Jg-1 (Chávez-

Murillo et al., 2018; Do et al., 2019). However, these values are not fixed and depend on several 

factors. A higher enthalpy value is associated with a more ordered structure that demands higher 

energy, indicating higher granular resistance to gelatinization (Barichello et al., 1990). Li et al. 

(2011) conducted an evaluation of the thermal properties of starches from ten mung bean 

cultivars and reported that To, Tp, and Tc values varied from 57.3°C to 62.4°C, 66.5°C to 66.8°C,  
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Table 2.3: An overview of the thermal properties of starch from various legume sources 

Legumes  To (C)  Tp(C)  Tc(C)  References 

Pigeon pea  70.04  80.74  93.03  Olagunju et al. (2020) 

Pea starch  54  62.6  69  Hoover & Manuel (1996) 

Pea starch  57.3  65.3  72  Guo et al.(2020) 

Chickpea  59.6  64.5  70.5  Do et al.(2019) 

Chickpea flour  68.43  69.14  70.28  Chávez-Murillo et al.(2018) 

Field pea starch  60  66.1  77.8  Dong & Vasanthan (2020) 

Lima bean  68.4  76.5  85.2  Do et al. (2019) 

Mung bean starch  59.6  71.6  75.4  Guo et al. (2020) 

Faba bean starch  61.4  66.4  77.1  Dong and Vasanthan (2020) 

Adzuki bean  58.8  66.7  75.1  Do et al. (2019) 

Black bean starch  62.5  71  82  Hoover & Manuel(1996) 

Red bean starch  60.4  69.4  78  Guo et al. (2020) 

Black bean flour  67.36  70.26  72.41  Chávez-Murillo et al. (2018) 

Lentil starch  56  62.4  69  Hoover & Manuel (1996) 

Lentil starch  55.71  63.72  68.78  Ahmed et al. (2016) 

Lentil starch  54.4  59.7  68.4  Do et al. (2019) 

To is onset gelatinization temperature; Tp is peak gelatinization temperature; and Tc is 

enthalpy or conclusion gelatinization temperature. 
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and 73.3°C to 75.7°C, respectively. The lowest and highest enthalpy values were recorded from 

8.2 to 16.4 J g-1, respectively, with an average of 12.2 J g-1. 

2.3.2 Protein denaturation 

Legume protein denaturation can be identified by a distinct thermal peak using DSC, and Table 

2.4 summarizes the thermal denaturation temperatures of legume proteins. The denaturation 

temperature (Td) indicates the thermal stability of the protein, with higher Td values indicating 

higher thermal stability for globular proteins. For various bean proteins, Td values ranged 

between 84°C and 91°C, with adzuki and kidney beans having the highest Td values of 90.1°C 

and 90.2°C, respectively (Tang, 2008; Yousif et al., 2003). Legume protein isolates (PIs) showed 

only one major endothermic peak with denaturation attributed to 7S or 8S vicilin fractions. The 

thermal stability of legume proteins is believed to be associated with the disulfide bond within 

the subunits of vicilin. Rui et al. (2011) reported Td values for a series of bean PIs and observed a 

single endothermic peak likely corresponding to the denaturation of 7S vicilin. Cranberry and 

light red kidney bean PIs have lower thermal stabilities than other bean types. For kidney bean 

PI, three distinct peaks were recorded, corresponding to peak I (57.12–62.16°C; enthalpy 3.36–

4.5 Jg-1), peak II (88.78–101.46°C; enthalpy: 1.42–2.97 Jg-1), and peak III (110–115.71°C; 

enthalpy: 300–500 Jg-1) (Ahmed et al., 2018). The third peak was relatively broad with an 

abruptly higher enthalpy value, and these salt-soluble proteins are believed to be globulins, with 

Td likely corresponding to the denaturation of vicilin (7S) and legumin (11S). A high Td value 

indicates a more compact tertiary conformation of the polypeptides (Tang & Sun, 2011). 

2.4 Thermal Properties of Pea Protein  

The thermal properties of food ingredients are frequently altered by heat treatment. Stabilized 

emulsions of protein are frequently exposed to thermal treatment methods like sterilization and 

pasteurization (Cui et al., 2021). Usually, partial unfolding and subsequent protein aggregation 

are caused by heat processes exceeding the temperature of denaturation (Wang et al., 2012). 

Protein subunits in solutions of pea protein become dissociated when heated, and the temperature 

of heating affects how proteins assemble. Temperature is a key factor in the heat-related protein 

aggregation process (Cui et al., 2021). During the preparation or extraction of pea protein 

products, heat treatment is applied, which necessitates the examination of their thermal 

properties. These properties can include the onset temperature, peak temperature, and  
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Table 2.4: Thermal denaturation temperatures of legume proteins 

Legumes Moisture 

Content 

(%) 

To (°C)  Td(ºC)  Tc(°C)  References 

Pea protein isolate 7.3  58.10  76.20  94.40  Philipp et al. (2017) 

 9.8  34.70  51.50  68.30  

 12  32.0  40.30  48.70  

Kidney bean protein isolate  62.16  62.89  65.32  Ahmed et al. (2018) 

  85.30  90.20  —  Tang (2008) 

Pink bean  84.70  89.55  —  Rui et al. (2011) 

White bean  85.33  90.58  —  Rui et al. (2011) 

Black bean  84.18  88.97   Rui et al. (2011) 

Red bean  79.50  87.10   Tang (2008) 

Red kidney bean  85.30  90.20   Tang (2008) 

Mung bean  77.30  84.60   Tang (2008) 

Dark red kidney bean  85.77  91.14   Rui et al. (2011) 

Light red kidney bean  77.13  82.14   Rui et al. (2011) 

Note: where To is the onset temperature, Td is the denaturation temperature, enthalpy or 

conclusion gelatinization temperature and – means not reported.  
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denaturation temperature, as well as gelatinization enthalpy. The onset temperature signifies the 

temperature at which protein start to lose their functional properties due to denaturation. This 

property can vary significantly depending on factors such as the type of protein used, treatment 

methods, and formulation. This was noted by Liang et al. (2013), who emphasized the 

importance of understanding onset temperature for an effective application of pea protein in 

different products. The denaturation temperature provides an indication of a protein's thermal 

stability, with a high denaturation temperature typically indicating high thermal stability in 

globular proteins. The gelatinization enthalpy measures the proportion of undenatured proteins 

and the level of protein structural organization. According to Shevkani et al. (2015), these 

properties need to be studied to assess the suitability of pea protein for different applications. 

Emkani et al. (2021) suggest that variations in thermal properties are influenced by the product's 

protein conformation, amino acid composition, and structure. For example, compared to pea 

isolates, kidney bean isolates exhibit a higher denaturation temperature value. Thus, 

understanding the thermal properties of pea protein is critical for the development of new 

products and the improvement of existing ones. 

2.5 Rheological properties of plant proteins 

Rheology is the study of material flow and distortion. The field of physics known as rheology 

focuses on how materials behave when forces or stresses are applied, leading to deformation or 

flow (Fischer et al., 2009). The study of the deformation and flow of raw materials, intermediate 

products, and end products of the food, is described as food rheology. In a food system, the 

rheological characteristics depend on the ingredient system and composition.  Due to its intimate 

connection to the structure and behavior of food materials, it is a science that is very important to 

the food industry (Joyner, 2018). Rheological properties are attributes of a material that control 

how precisely these deformation or flow behaviors take place. Continuous deformation over time 

is a definition of flowing. Viscosity, flow, deformation, yield stress, relaxation times, and 

compliance are the widely known rheological characteristics. Viscosity is an important 

characteristic of rheology that describes the amount of fluid resistance required for the gradual 

deformation caused by tension or shear. Apparently, viscosity defines the flow resistivity of a 

fluid. (Fischer et al., 2009).  



 
 

24 
 

Rheological characteristics of food control how food behaves when they experience mechanical 

loading. The distinct shape of a solid structure undergoes stress and deformation when exposed 

to a mechanical load. On the other hand, in the case of liquid without a distinct shape, only 

experience a change in the atomic position and does not undergo stress and deformation 

(Álvarez-Castillo et al., 2021). The changes in the atomic position of liquid are referred to as 

creep. Several forms of mechanical stress are applicable to materials such as shear or torsional, 

and these stresses are withstood by substances based on stress variation (Sternet al., 2001). 

Structuring and understanding the rheology properties of food enable food researchers to control 

the textural characteristics of food through instrumental measurements. However, it is often 

difficult to evaluate these properties, as a result of complexity in the structure and composition of 

food, and due to poor establishment of causes of food changes that occur during processing 

(Yang et al., 2018). It is noteworthy to understand the challenges of rheological study 

(rheometry) as an indication of the textural properties of food. Principal rheological tests of food 

are restricted to some food materials that are isotropic and homogeneous. Food materials of 

larger particles possess an anisotropic structure such as in meat and mozzarella, and rapidly 

become separated which causes difficulty in the attainment of an accurate analysis (Oppen et al., 

2022). Also, the rheological tests often demand several rheological analyses to obtain enough 

data for the prediction of textural behavior.  

The tests are also not suitable for a measure of temporal changes, as they function best for first-

bite textural attributes. Notwithstanding, the study of rheological behavior remains an auspicious 

tool to understand those parameters that have a significant impact on the textural behavior of 

food, since deformation, flows, fractures, and food breakdown are important elements of textural 

sensations (Joyner, 2018).  Various devices have been employed for the measurement of 

rheological properties of food, including rheometers, dynamic oscillators, and farinographs 

(Mirsaeedghazi et al., 2008; Wang and Hirai, 2011). A rheometer and farinograph was used to 

evaluate the suitability of different rice doughs to make rice bread by studying their rheological 

characteristics (Sivaramakrishnan et al., 2004). Also, the dynamic rheological characteristics of 

an extruded pastes from flaxseed-maize was investigated by creep-recovery and dynamic 

oscillation tests (Wu et al., 2010). Substantial attention and efforts have been focused to evaluate 

the rheological behaviors, and properties in relation to sensory texture characteristics of foods, as 

summarized in Table 2.5.  
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Table 2.5: Rheological Properties of Foods 

Rheological 

properties 

Products Major characteristics References 

Linear viscoelastic 

range (LVR) 

Dough The test of frequency sweep was done within LVR to determine the mechanical 

spectra of the dough formulation. Addition of PPP (porcine plasma protein) was 

observed to cause a steady rise in both storage moduli (G’), and loss moduli 

(G’’).  

Álvarez-Castillo et al. 

(2021) 

Viscoelastic Mayonnaise Mayonnaises upholds a viscoelastic property which can be assessed by yield 

value. Nonlinear relationships were revealed between the apparent viscosity and 

yield. However, correlation was established between the sensory properties of 

mayonnaise and apparent viscosity, where otherwise was established for yield 

value.  

Sternet al. (2001) 

Viscosity Chocolate At a steady temperature of between 32 and 40oC, and pressure of between 3.5 

and 7.0 Pa, the viscosities of chocolate were nearly remained constant. There is 

difficulty in the shaping of chocolate at extreme temperatures, and pressures.  

Hao et al. (2010) 

Storage and loss 

moduli 

Dough  The flour, butter, and sucrose contents steadily and greatly increase the G’ and 

G’’ value 

Yang et al. (2018) 

Shear stress Milk powder mixed 

with starch and 

The yield stress of the paste after 3D printing was associated with the stability of 

paste shape. A constant value of plateau was observed to be continuous at small 

value of stress by G’ during stress sweep measurements. Also, the structure of 

Lille et al. (2018) 
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cellulose nanofibre  the samples showed to be gel-like, and elasticity-dominated 

Hardness Gelatin  The gelatin with an exclusive of additives exhibits low self-support profiles 

where the samples possess higher fracturability and hardness, and result in 

sample flaws. 

Kim et al. (2018) 

Pseudoplastic 

characteristics 

Dough  The dough was simply extruded due to the pseudoplastic characteristics as the 

shear rate increases with decrease in the viscosity.  

Yang et al. (2018) 

Apparent viscosity Gum (carbohydrate)  The addition of gum as an additive increases the raw material apparent viscosity, 

which gives a hard structure to the extruded products. 

Israr et al. (2018) 

 

Plasticity and 

Extensibility 

Expanded wheat 

flour mixed with 

dough  

The plasticity of the dough increases with the flour while it decreases with the 

dough extensibility. This is suitable in forming of 3D printed objects of sharping 

geometric   

Martiınez et al. (2013) 

Storage modulus  Pea protein isolate 

(PPI) 

The storage modulus (G’) value of PPIn with an exclusive of the enzymatic 

crosslinking stayed constant throughout the heat treatment between 20oC and 

71oC, where the (G’) was observed to rise after 71oC 

Shand et al. (2008) 
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2.6 Machine Learning (ML) 

Machine learning uses artificial intelligence to improve the execution of tasks that are guided by 

existing data, without the use of explicit programming (Schleder et al., 2019). Due to the 

increased use of big data in numerous industrial and scientific fields, machine learning has 

grown in prominence in recent years (Jordan et al., 2015). Machine learning (ML) is currently 

used to create predictions and recommendations based on mathematically derived models as 

cutting-edge powerful technology (Ongsulee, 2017). Many efforts have been made to apply 

machine learning in other scientific domains outside of computer science. Particularly, it has 

been widely used in biomedical fields to detect disorders and enhance diagnostic accuracy 

(Nilashi et al., 2017: Vayena et al., 2018). 

Furthermore, the prediction of industrial accidents, early earthquake warnings by discrimination 

of seismic waves, and inferring weather forecast uncertainty, ML applications are rooting for 

more multiplicity and complexity. Principal component regression (PC-R), artificial neural 

network, least square regression (OLS-R), partial least square regression (PLS-R), stepwise 

linear regression (SL-R), boosted logistic regression (BLR), k-nearest neighbors' regression 

(kNN-R), support vector regression (SVM-R), and random forest regression (RF-R) are the 

various techniques of ML. ML has a wide range of applications in food processing as it has 

assisted in minimizing the cost of food sensory evaluation, in the making of a decision, as well as 

improving the business tactics (Lu et al., 2020). Erban et al. (2019) employed ML technology to 

investigate food identity markers through metabolomics, while the analytical evaluation of food 

quality and authenticity by machine learning was recently reviewed (Jimenez-carvelo et al., 

2019). In addition, an artificial recurrent neural network (such as long short-term memory 

(LSTM)) has been applied for pH detection during the fermentation process of cheese (Li et al., 

2020). Furthermore, machine learning has been affirmed with the potentiality of sales trend 

prediction in the food industry (Tsoumakas, 2019). ML was also utilized to forecast the 

generation of food waste and present an intuition to the production system (Garre et al., 2020). 

Also, in the UK, machine learning has proven to be helpful as it was used for the prediction of 

food insecurity (Parnell et al., 2020). 
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2.7 Machine Learning Techniques 

To achieve accurate predictions of future data or trends, machine-learning techniques or 

approaches rely on training samples to discover patterns (Alpaydin, 2020). However, as data 

analysis becomes more complex and the scale and difficulty of data increases, traditional 

machine learning methods have become inadequate. The different machine-learning approaches 

can be seen in Figure 2.2. In the following subsections, traditional machine learning methods 

will be introduced separately, along with their algorithms and their applications in food 

processing. 

 

Figure 2.2: Mapping of different machine learning (ML) techniques (Kler et al., 2022) 

2.7.1 Traditional Machine Learning Methods 

In traditional machine learning, small sample sets are manually analyzed to extract features. This 

approach balances the validity of the learning results with the interpretability of the learning 

model and provides a framework for solving learning problems when limited samples are 
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available. Traditional machine learning is categorized into supervised learning, unsupervised 

learning, and reinforcement learning based on the training method and whether the training data 

have labels or not. The theoretical foundation of traditional machine learning is statistics, and its 

primary analysis includes pattern classification, regression analysis, probability density 

estimation, and other similar analyses. Some common algorithms used in traditional machine 

learning include Support Vector Machine, Logistic Regression, K-nearest neighbors, K-means, 

Bayesian Network, Fuzzy C-means, and Decision Tree.  

Support Vector Machine (SVM): SVM is a supervised learning method that classifies data by 

identifying a hyperplane that meets the classification requirements and maximizes the interval 

between the hyperplane and the samples in the training set, as explained by Cortes et al. (1995). 

To achieve this, a convex quadratic programming problem is formulated and solved by 

minimizing a regularized hinge loss function. However, the data may not always be linearly 

separable, making it difficult to find a hyperplane that satisfies the condition. In such cases, a 

kernel function is used to map the input from the low-dimensional space to the high-dimensional 

space. In the high-dimensional space, the optimal separating hyperplane is created to classify the 

nonlinear data. 

Logistic Regression (LR): Logistic Regression is a machine learning technique utilized to solve 

binary classification problems (i.e., 0 or 1) and estimate the probability of a particular outcome, 

as explained by Kleinbaum et al. (2002). However, the output of logistic regression is not a 

probability value in the mathematical sense and cannot be directly used as such. Instead, the 

output is the odds ratio between the probability of the predicted category occurring and not 

occurring. This enables the classification of the category, which is useful in tasks that utilize 

probability for decision-making. For instance, it can be applied to predict whether a specific 

customer will purchase a particular product or not. 

K-Nearest Neighbors (KNN): KNN is a classification method that operates by measuring the 

distance between different feature values. The basic concept is that if the majority of the K 

nearest neighbors in the feature space belong to a specific category, then the sample being 

evaluated also belongs to that category. Generally, K is a positive integer no greater than 20, as 

described by Altman (1992). In the KNN algorithm, the chosen neighbors are all the objects that 

have been correctly classified. This technique makes a category determination based solely on 



 
 

30 
 

the category of the nearest sample or samples in the classification decision. The distance between 

objects is calculated as a non-similarity index to avoid the matching problem between objects. 

Typically, the distance metric used is the Euclidean or Manhattan distance.  

K-means: K-means is a widely used unsupervised learning technique for clustering. The purpose 

of clustering is to automatically group a set of unlabeled data into several categories, ensuring 

that the data within the same category share similar characteristics. However, this method can 

only be applied to continuous data and requires the user to manually specify the number of 

categories before clustering. The similarity between data can be evaluated using Euclidean 

distance, which is a crucial assumption of the K-means algorithm (Likas et al., 2003).  

Bayesian Network (BN): A Bayesian network is a model that uses the Bayesian method to 

reason causally under uncertainty. In mathematical terms, it is represented by a directed acyclic 

graph (DAG) G = (I, E), where I is the set of nodes in the graph and E is the set of directed edges 

connecting them. Each node i in the DAG represents a random variable Xi (Friedman et al., 

1997). 

Decision Tree: A decision tree is a hierarchical structure, in which each non-leaf node indicates a 

test on a specific attribute, each edge represents the outcome of that test, and each leaf node 

denotes a final classification or decision (Safavian et al., 1991). 

Random Forest: Random Forest (RF) is an ensemble learning technique that utilizes multiple 

decision trees, each of which works independently of the others. In a classification task, when a 

new sample is introduced, each decision tree in the forest independently generates a decision. 

The classification result that appears most frequently among all the trees is then considered the 

final result. This method of combining multiple decision trees with no correlation between them 

is known as Random Forests (Breiman, 2001). 

Fuzzy C-means (FCM): In contrast to the K-means algorithm that assigns a label to each sample 

and clusters them into a certain class, Fuzzy C-means (FCM) assigns a probability vector to each 

sample, indicating the likelihood of it belonging to each category, rather than just one (Ghosh et 

al., 2013). FCM is an unsupervised fuzzy clustering method, and its goal is to optimize the 

objective function. 
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Dimensionality reduction methods: When the number of features in practical applications 

exceeds a certain threshold, the performance of the classifier often decreases, which is 

commonly referred to as the "curse of dimensionality." The curse of dimensionality makes 

pattern recognition for high-dimensional data difficult. Therefore, it is necessary to reduce the 

dimensionality of the feature vector first. Principal Components Analysis (PCA) and Linear 

Discriminant Analysis (LDA) are popular methods for feature selection and dimensionality 

reduction. Although PCA and LDA have many similarities, they have different mapping goals. 

Both methods reduce the dimensionality of the sample space, but PCA maximizes the divergence 

of the mapped sample, while LDA maximizes the classification performance of the mapped 

samples. As a result, PCA is an unsupervised dimensionality reduction method, whereas LDA is 

a supervised dimensionality reduction method (Van Der Maaten et al., 2009). 

2.8 Application of Machine Learning in Food Processing 

Table 2.6 shows some of the applications of machine learning in food industries. Food 

processing is the conversion of raw materials into new edible materials with improved properties 

(Fellows, 2009). Food processing is categorized as primary and deep processing, depending on 

the degree of processing (Zhu et al., 2021). Primary processing involves simple procedures to 

keep the original nutrients of the product and meet transportation, storage, and reprocessing 

requirements, while deep processing involves elaborate procedures to further improve the 

characteristics of the products. Examples of primary processing include drying, shelling, milling 

of grains, slaughtering of live animals and poultry, and freezing processing of meat, eggs, and fis 

(Fellows, 2009; Zhu et al., 2021). Deep processing involves processing grains into different 

foods like bread, noodles, biscuits, vermicelli, or soy sauce, which is an important way to 

increase the economic value of agricultural products (Fellows, 2009). Traditional food 

processing methods are labor-intensive and do not allow for the optimization of resources, 

leading to high labor costs and waste of raw materials. With the increase in the human 

population and diversification of consumer demands, there is pressure on the food industry to 

reduce costs and increase efficiency while maintaining high-quality standards. Although 

traditional methods still play an important role in food processing, industry practitioners and 

researchers are working on innovative and emerging techniques to enhance the quality of food, 

reduce costs, and improve processing efficiency (Van Der Goot et al., 2016).  



 
 

32 
 

Table 2.6: Application of machine learning in food industries 

Application ML methods Important result References 

Apple  

 

Linear discriminant analysis, 

adaptive boosting 

Accurate classification of apples at 100% rate 

using the collected acoustic emission signals 

Li et al. (2018) 

Artichoke  Multilayer Perceptron (MLP), 

Random Forest (RF), 

Bayesian Linear Regression 

(BLR) 

Ionic patterns properties which were prepared 

for induvial enzyme having above 95% 

prediction rate  

Sabater et al. 

(2019) 

Beer  

 

Artificial Neural Network 

(ANN) 

 

The chemical composition of beer was 

classified using ANN model having 95% total 

accuracy  

Claudia-Gonzalez 

et al. (2017) 

Biscuits  Convolutional neural network The developed model was able to classify and 

evaluate the quality of different types of 

biscuits with an accuracy up to 99% 

De Sousa Silva et 

al. (2020) 

Cheese  

 

Long Short-Term Memory 

(LSTM) 

The application of LSTM and mechanistic 

modeling techniques aid in the description of 

the change in the lactose, and lactic acid 

content, as well as biomass 

A developed model of ML has also help to 

predict the pH of cheese during fermentation  

Li et al. (2020) 

Citrus limetta 

(Mosambi 

peel)  

SVM-ANN, SVM-Gaussian 

process regression (SVM-

GPR) 

-Prediction and classification of results 

obtained for lime powder taste which has been 

prepared using salt having 1.0 accuracy 

- ML tool helps to optimize to maintain the 

taste and uphold the lime polyphenol content 

Younis et al. (2019) 

Fruits (Arbutus RF, SVM, ANN Determine the stability of the fruit extracts in Astray et al. (2020) 
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unedo L. 

fruits)  

the Arbutus unedo L. in aqueous and powder 

systems by the ML methods having total 

coefficient ranging from 0.9128 to 0.9912 for 

the top models selected 

Milk  

 

Support Vector Regression 

(SVM) 

Evaluation of the presence and level of 

antibiotics cow milk by SVM classifiers having 

more than 83% accuracy rate and bigger 

sensitivity compared to the typical metrics 

Gutiérrez et al. 

(2020) 

Wine  

 

SVM, RF, MLP Evaluation of wine quality by comparing three 

algorithms, where the best result was gotten 

using the RF method having a mean accuracy 

of 81.96%, while others showed a low 

accuracy value.  

Shaw et al. (2020) 

Lamb meat  SVM  Accuracy classification of fat from lamb meat 

increased from 89.70 to 93.89%  

Alaiz-Rodriguez 

and Parnell (2020) 

Mangoes  

Attributes 

Naive Bayes, SVM Maturity detection of mangoes on the basis of 

their quality 

Pise and Upadhye 

(2018) 
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Advanced technology can be implemented in various stages of the food supply chain, ranging 

from farms to factories to consumers. The use of modern technology, such as Machine Learning 

(ML), can be integrated into food processing procedures, including freezing, drying, and 

canning, to enhance the preservation period of food. Additionally, ML can be utilized in 

packaging and foreign object detection to increase the shelf-life of food (Zhu et al., 2021). 

Furthermore, the use of ML procedures is necessary to identify high-quality and sub-standard 

foods during the processing of raw food materials. These procedures include food safety and 

quality evaluation, food processing monitoring and packaging, and foreign object detection. 

Image processing techniques are desirable for acquiring information about the appearance, 

texture, and components of food, and can be used to determine the next steps in food processing. 

Therefore, the use of ML in food processing is justified, with a focus on its application in food 

safety and quality evaluation, food process monitoring and packaging, and foreign object 

detection. 

2.8.1 Machine learning (ML) in food safety and quality evaluation 

Leiva and Valenzuela (2013) introduced MVSs as a means of detecting defects in blueberries 

automatically. The process involved utilizing a pattern recognition algorithm to distinguish 

between the stem and calyx while also identifying blueberries afflicted with diseases and their 

orientation. The authors then tested different models including LDA, Mahalanobis distance (a 

measure of data covariance distance), KNN (with a fixed K value of 5), and SVM to determine 

the best classifier. Nandi (2016) utilized Multi-attribute Decision Making (MADM) to grade 

mangoes and successfully predicted the optimal time for shipping the harvested fruits to the 

market by utilizing Support Vector Regression (SVR). Furthermore, the authors employed a 

fuzzy incremental learning algorithm to assess the mangoes' grade based on SVR and MADM. 

MADM refers to decision-making in a limited (infinite) set of solutions that conflict with each 

other and cannot be shared. Also, Amatya (2015) developed an MVS-based application for 

automated cherry harvesting that predicted partially covered branches using a Bayesian 

classifier, which achieved an accuracy of 89.6% in branch pixel classification. 

Keresztes (2016) presented a system for detecting early apple bruises that consisted of a SWIR 

illumination unit and a line scan camera. The study utilized thirty Jonagold apples to showcase 

the effectiveness of the detection system in identifying fresh bruises. The image pixels were 
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divided into three subcategories: bruised, unbruised, and glare, revealing significant differences 

in reflectance values between the classes. The most effective classifier for image pre-processing 

was the partial least squares discriminant analysis (PLS-DA) classifier, which can alleviate the 

impact of multicollinearity between variables. The post-processing method used was physically 

based rendering (PBR), which can achieve physical reality throughout the entire rendering 

process, with mean centering as the reluctance calibration. The prediction of bruised apples 

achieved 98% accuracy, and the processing time for the three increasing speeds of 0.1, 0.2, and 

0.3 m/s was 400, 300, and 200 milliseconds (ms), respectively, rapid enough for real-time 

conveyor apple sorting. 

Zhang (2014) proposed a system for detecting defects on apples using automatic lightness 

correction and a weighted relevance vector machine (RVM), which achieved an overall 

prediction accuracy of 95.63%. Extreme Learning Machines (ELM) use random numbers and the 

law of large numbers to solve problems. Iraji (2018) developed a novel grading system for 

tomatoes, named Multi-layer Architecture of a SUB-Adaptive Neuro-Fuzzy Inference System, 

which combined multiple input features, neural networks, regression, and ELM, as well as Deep 

Stacked Sparse Auto-Encoders (DSSAEs). The authors used the full tomato images to grade 

tomatoes, achieving an accuracy of 95.5%. Noordam (2000) used an MVS that included a 3-

CCD line-scan camera and mirrors to capture a full view of potatoes. The author applied a 

method that combined LDA and a Mahalanobis distance classifier to segment pixels in the 

images, to detect the appearance defects of potatoes. The study also used a Fourier-based shape 

classification method to detect misshapen potatoes. The proposed MVS effectively graded and 

inspected the quality of either red or yellow skin-colored potatoes, with a processing capacity of 

about 50 potatoes per second. Su (2018) demonstrated another grading technique based on depth 

images, using a depth camera to obtain 3D features of potatoes such as bumps, divots, and bent 

shapes. The information was used to calculate the volume and mass of the potatoes and finally 

grade them. The system integrated 2D and 3D surface data to detect the irregular shape, hump, 

and hollow defect of potatoes, achieving an appearance grading accuracy of 88%. The acquired 

information was also used to rebuild a virtual reality potato model, which could be useful for 

food packaging research. 
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2.8.2 Machine learning in process monitoring 

Aghbashlo (2014) suggested the use of intelligent systems for the purpose of monitoring and 

regulating the speed of food drying, to enhance the quality of the resulting dried food. The 

proposed system involved examining the food's texture, colour, size, and shape by applying 

techniques such as co-occurrence, Fourier transform, wavelet transform, thresholding, and 

masking to the input images. This was followed by the utilization of PCA and FCM to manage 

the moisture levels during the drying process, resulting in an optimal degree of dryness. On the 

other hand, Liu (2016) developed a new approach to address the issue of local uniform 

fragmentation or patches in complex grain images. One approach involved utilizing Gaussian 

Derivative Filtering (GDF) at multiple scales and orientations, along with a Sparse Multikernel-

Least Squares Support Vector Machine (SMK-LSSVM) classifier. The authors demonstrated that 

their method was suitable for use in an assembly line. Another method, developed by 

Zareiforoush (2016), employed machine vision and fuzzy logic techniques to manage the rice 

whitening process. The system analyzed the degree of milling and the percentage of broken 

kernels to regulate the process, with the fuzzy logic algorithm producing the whitening pressure 

level as the output for process monitoring. The authors found that the system was 31.3% more 

effective than human labor and had an 89.2% accuracy rate. Meanwhile, Zhu et al. (2021), 

reported a segmentation technique to calculate the ratio of the browned parts to the entire cookie, 

which was useful for monitoring the baking process and assessing the quality of baked goods. 

This method also had potential applications in the evaluation of potato chip safety, as the 

browning ratio of potato chips had a strong linear correlation (R2> 0.88) with acrylamide 

concentration. 

2.8.3 Machine learning in foreign object detection 

Lorente (2015) utilized a laser-light backscattering imaging system to identify citrus fruit decay 

caused by fungi, with a maximum overall classification accuracy of 93.4% achieved through the 

use of a Gaussian-Lorentzian cross-product distribution function. Meanwhile, Coelho employed 

a binary decision tree and transillumination technique to examine and categorize clam images, 

allowing the detection of parasites and flattening of clam thickness. Parasites were classified, 

located, and their shapes determined via a self-generated spatial reference system. Einarsdottir 

and colleagues proposed a grating-based X-ray imaging method that offers three modalities to 
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detect objects with textures that cannot be discerned using the classic X-ray method, successfully 

evaluating images of seven different food products containing foreign objects. Einarsson 

introduced the Sparse Linear Discriminant Analysis (SDA) for foreign object detection, which is 

a sparse version of the LDA. Finally, Dutta suggested a non-destructive technique to identify 

acrylamide in potato chips using statistical features extracted from images in the spatial domain 

and an SVM classifier, resulting in a 94% accuracy and 96% sensitivity.  
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CONNECTING TEXT TO CHAPTER THREE 

Chapter two of the thesis is a literature review that provides an overview of recent research on 

the techno-functional properties, thermal, and rheological aspects of legumes, with a specific 

focus on pea protein. The literature review examines the effects of various processing conditions, 

such as ionic strength, pH, temperature, conformation, fraction of hydrophobicity to 

hydrophilicity, and extraction method on the techno-functional and thermal properties of pea 

protein. 

The chapter highlights that there has been extensive research conducted on the impact of 

processing conditions on the techno-functional and thermal properties of pea protein. However, 

there is limited information available on the influence of composition (starch, oil, and protein) on 

the techno-functional properties and thermal properties of pea protein products. Therefore, 

chapter three of the thesis aims to fill this gap by focusing on the impact of composition on the 

techno-functional properties and thermal properties of pea protein. 

The literature review presented in chapter two has been prepared in manuscript format and is 

ready for publication. All the sources cited in this chapter are listed in the reference section of the 

thesis. Overall, the chapter serves as a valuable resource for researchers and industry 

professionals interested in the techno-functional and thermal properties of legumes, specifically 

pea protein. 
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CHAPTER THREE 

3. TECHNO-FUNCTIONAL AND THERMAL PROPERTIES OF PEA PROTEIN 

PRODUCTS 

Abstract 

Techno-functional and thermal properties of pea protein products (PPP), namely pea flour, pea 

protein concentrate, and pea protein isolate, from different varieties of peas, were studied. The 

effect of the composition (protein, starch, and oil contents) of the PPP on the techno-functional 

properties (water absorption capacity, water solubility index, water absorption index, oil 

absorption index, protein solubility, emulsifying capacity, forming capacity, forming stability) 

and thermal properties (onset temperature, peak temperature, and gelatinization enthalpies) was 

evaluated. Principal component analysis (PCA) and cluster analysis (CA) were also used to 

analyze the techno-functional and thermal properties of pea protein products. The techno-

functional properties ranged from 40.32 to 87.15% for protein solubility (PS), 49.71 to 69.90% 

for water absorption capacity (WAC), 48.70 to 75.33% for water solubility index (WSI), 0.12 to 

2.57% for water absorption index (WAI), 65.07 to 86.02% for oil absorption index (OAI), 23.07 

to 49.11% for emulsifying capacity (EC), 2.50 to 15.00% for forming capacity (FC), and 1.00 to 

5.00% for forming stability (FS). The onset temperature of the pea protein products ranged from 

93.3 to 166.19ºC, with peak temperature ranging from 128.97 to 180.74ºC and gelatinization 

enthalpy ranging from 89.04 to 280.42 J/g. The biplot of principal components 1 and 2 explained 

54.09%, 52.37%, and 64.42% of the total variability of techno-functional and thermal properties 

of pea flours, pea protein concentrates, and pea protein isolates. The most unique variety based 

on the cluster of the techno-functional and thermal properties of the pea protein products was 

established. The protein content of the pea protein products was noticed to have the most 

significant influence on the WAC, OAI, FC, peak temperature, and enthalpy. The oil content 

showed the most significant influence on FS and onset temperature while the interaction of oil 

and protein contents influenced the WSI, WAI, and PS the most. The results of this study can be 

valuable in identifying the key composition factors that affect the techno-functional and thermal 
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properties of pea protein products. Additionally, it can assist in the selection of the most suitable 

pea protein product for use in product development and formulation.  

3.1 Introduction 

Demand for novel, healthy food ingredients and products has been accelerating in the last 

decade. In 2020, the global market for plant-based protein was estimated to be US$10.3 billion, 

and it is expected to rise to US$14.5 billion in 2025 at an annual increment of 7.1% (Mondor and 

Hernández-Álvarez, 2022). The nutritional advantages and functional properties of plant-based 

protein products such as flour (with 20-25% protein), concentrate (with 50-85% protein), and 

isolate (with over 90% protein) are causing them to be more frequently incorporated into a 

diverse selection of commercial food items. Pea (Pisum sativum) proteins are evolving as 

potential alternatives to conventional proteins (derived from soy and animal) in numerous food 

applications. They are characterized by their elevated protein content with unique functionality, 

availability, sustainability, less allergenicity and affordability. They also contain all essential 

amino acids except for methionine, interesting functional attributes (e.g., solubility, foaming and 

emulsification capacity) and high antioxidant and bioactive compounds (de Oliveira et al., 2020; 

Boukid et al., 2021). Pea protein products (flour, concentrates, and isolates) are employed as 

novel food ingredients with unique processing characteristics. Pea flour has been used as a base 

material for extruded products (Luo and Koksel, 2020). Pea protein concentrate (PPC) is utilized 

in the meat and sausage industry as a substitute due to its favorable water and fat binding 

capacity, protein solubility, gelation, emulsification, and foaming capacity profiles. While pea 

protein isolate (PPI) is used to enhance the nutritional and functional characteristics of products, 

such as pasta (Pelgrom et al., 2013). The global food industry is continually challenged with the 

task of finding unique protein-based ingredients from different plant varieties that will impact 

desired techno-functional and thermal properties of products to meet evolving consumers' 

preferences. 

In general, the techno-functional properties of foods are influenced by their ingredients, variety, 

extraction technique, processing conditions, and structure (Pazmiño et al., 2018; Arteaga et al., 

2021). Important techno-functional properties such as protein solubility, water absorption 

capacity, water solubility, water absorption index, oil absorption index, emulsifying capacity, 

forming property, and forming stability of ingredients are key determinants of the characteristics 
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of the resulting final food products (Barać et al., 2015). Pea protein products with good protein 

solubility are desirable in most food processing applications. Other properties, such as oil 

absorption, foaming, and emulsification, depend on protein solubility (Boukid et al., 2021). Pea 

protein products undergo heat treatment during preparation or extraction processes, resulting in a 

need to study their thermal properties, which could be assessed by onset temperature, peak or 

denaturation temperature, and gelatinization enthalpy. The denaturation temperature is an 

estimate of the thermal stability of a protein. A high denaturation temperature value is mostly 

related to a globular protein with high thermal stability. The gelatinization enthalpy describes the 

percentage of undenatured proteins and the degree of protein structural organization (Shevkani et 

al., 2015). According to Emkani et al. (2021), variations in thermal properties are largely 

dependent on the product's protein conformation and structures as well as its amino acid 

composition. For instance, kidney bean isolates showed higher denaturation temperature values 

than corresponding pea isolates. 

Plant protein contents are significantly influenced by the genotypic variation that determines 

quality characteristics of plant proteins (Barac et al., 2010). High-quality protein products with 

suitable techno-functional and thermal properties are targeted for industrial applications 

(Chimphepo et al., 2021). Several studies have been reported on functional properties of different 

plant proteins. Barac et al. (2010) examined the techno-functional properties of pea (Pisum 

sativum) isolates from six different genotypes. The genotypic variation significantly influences 

the functionalities of the pea isolates. Karaman et al. (2021) comparatively studied the techno-

functional properties of common bean concentrates, and the variation in the techno-functional 

was attributed to the influence of genotype characteristics, processing conditions, and 

environmental conditions. Similarly, Dasa and Binh (2019) investigated the functional properties 

of flour from different varieties. The study reported that the flour from the Tesema variety had 

the highest water absorption capacity, protein solubility, and water adsorption index.  

Various techniques such as principal component analysis (PCA) and cluster analysis (CA) have 

been employed to evaluate the variations with a sample group (El-Hashash et al., 2016; Manish 

and Pandit, 2018). PCA can be used to extract the most important features or variables that 

contribute to the variance in the dataset. In contrast, cluster analysis enables the grouping of 

individuals into clusters to maximize the similarity within a group and display the dissimilarity 
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among other groups (El-Hashash et al., 2016). Despite the various advantages of developing 

exclusive plant protein-based ingredients from different varieties, information on comparable 

techno-functional and thermal properties of pea flour, pea concentrate, and pea isolate produced 

from different pea varieties is sparse. Furthermore, the use of principal component analysis and 

cluster analysis to assess the effect of intrinsic parameters (such as varieties and composition) on 

techno-functional and thermal properties of pea protein products is scant and inadequate. 

However, this information would aid in the identification and selection of the most suitable 

product for processing formulations based on their techno-functional and thermal properties. 

Therefore, this study aimed to evaluate the effect of proximate compositions (starch, oil content, 

and protein content) of PPP on techno-functional and thermal properties, namely protein 

solubility, water absorption capacity, water solubility index, water absorption index, oil 

absorption index, emulsifying capacity, forming capacity, forming stability, onset temperature, 

peak temperature, and gelatinization enthalpy. 

3.2. Materials and Methods 

Thirty-six (36) varieties of pea products were selected and used for this study to elicit samples of 

different proximate compositions. The samples include 12 varieties of pea protein flour (labelled: 

NRC_CT_001, Homecraft Pulse 1135, Belle Pulse Pea, NRC_CT_002, Fiesta Pea Flour, SC 

111-22, SC 107-22, SC 108-22, SC 109-22, SC 110-22, SC 112-22 and SC 113-2); 12 varieties 

of pea protein concentrate (Labelled: NRC_CT_003, NRC_CT_014, Prestige Pea Protein 

Concentrate, SC108-F, SC109-F1, SC109-F2, SC110-F1, SC110-F2, SC111-F1, SC111-F2, 

SC112-F1 and SC112-F2); and 12 varieties of pea isolate (labelled: Homecraft Pulse 1135, 

PISANE B9, PISANE M9, PISANE C9, Nutralys F85F, Nutralys F85M, Nutralys S85F, 

Nutralys B85F, Pea 870H, 870MV, Vitessence Pulse 1803 Pea Protein, and Isolate Vitessence 

Pulse 1853 Pea Protein). These varieties were selected based on their different compositions and 

obtained from the National Research Council of Canada through a material transfer agreement. 

3.3 Techno-Functional Properties 

The response surface design in Minitab software version 20 was used to study the effect of 

compositions (starch, oil content, and protein content) of PPP on their techno-functional and 

thermal properties. The low and high values of the experimental factors namely starch, oil 

content and protein content (labelled C, B, and A, respectively) of samples used in the study 
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were 0.05 and 64.65, 0.60 and 3.36, 11.46 and 81.55, respectively. Pareto chart was used to 

determine the significant composition while contour plots were used to study the influence and 

interactions of the compositions on the techno-thermal properties of PPP.  

3.3.1 Water absorption capacity (WAC) 

WAC was determined following the procedure of Deriu et al. (2022). Two (2) grams of each 

sample were dispersed in 20 mL distilled water inside a 50 ml centrifuge tube. The dispersions 

were kept at room temperature (25oC) for 30 min, vortexed for 30 s, and allowed to rest for 10 

mins. Afterward, the tube was centrifuged at 6000 rpm for 25 min. The sediment was weighed 

after the removal of the supernatant. The water absorption capacity was expressed as the amount 

of water absorbed by the material relative to its dry weight. The results were expressed as g/H20 

retained/g of sample dry matter.  

3.3.2 Water solubility index  

The water solubility index was determined using the approach described by Abebe et al. (2015). 

Two (2) grams of each sample were weighed into a centrifuge tube (Wo) and dispersed in 30 mL 

of distilled water. The dispersions were cooked for 15 min in a 90°C water bath and the formed 

gel was cooled for 1 h at room temperature. The gel was centrifugated at 6000 rpm for 10 min 

using a centrifuge. The solid content of the resulting supernatant was determined by evaporation 

at 110oC. The water solubility index (WSI) was calculated by dividing the amount of dissolved 

substance by the original amount of substance and multiplying by 100. 

3.3.3 Oil absorption capacity  

Two (2) gram of each sample was added to 20 mL of oil in a 50 mL centrifuge tube. The 

dispersions were vortexed for 30 s, rotated every 5 mins for 30 mins, and allowed to relax for 10 

mins. After this procedure, the tube was centrifuged at 2000 rpm for 15 mins. The weight of the 

sediment was determined after removing the supernatant. Oil absorption capacity was 

determined by subtracting the weight of the original substance from the weight of the mixture, 

and then dividing it by the weight of the original substance (Wang et al., 2020). The results were 

expressed as the content of oil absorbed per gram of sample. 
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3.3.4 Emulsifying Capacity 

The emulsifying capacity was determined using the method described by Arteaga et al. (2020). 

Two (2) g of each sample was weighed and dispersed in distilled water of 30 mL in a centrifuge 

tube. Twenty (20) mL of olive oil was added to the mixture in a blender and blended for 120 s at 

1600 rpm to form an emulsion. The emulsion was poured into a calibrated centrifuge tube where 

the height of the liquid (HT) was taken.  The emulsion was heated inside a water bath at 80oC for 

30 mins and cooled for 15 mins under running water. The cooled sample was centrifuged at 2000 

rpm for 15 min in a centrifuge. The height of the emulsifier layer (HI) was recorded. Emulsifying 

capacity (EC) was determined by dividing the height the of emulsifier layer by height of the 

liquid. 

3.3.5 Foaming capacity (FC)  

Foaming stability was determined by using the approach described by Abebe et al. (2015). Two 

gram (2 g) of each sample was mixed with 40 mL of distilled water using a blender at 30°C in a 

100 mL measuring cylinder. The suspension was stirred at 600 rpm for 15 min to produce foam. 

The volume of foam was measured after 0 min (FV0) and 60 min (FV60). The foaming capacity 

was established directly as FV0. 

3.3.6 Foaming stability (FS) 

Foaming stability (FS) was determined as described by Abebe et al. (2015). This was evaluated 

as the percent ratio of the volume of the foam after 60 min (FV60?) and the volume of the foam 

before 60 min (FV0??).  

3.3.7 Protein Solubility 

The dispersion for each sample was stirred for 30 mins and adjusted to either pH 4.5 or 7.0 using 

either 0.1M HCl or NaOH solution. The suspension was shaken for 1 h and centrifugated at 

10000 rpm for 10 mins using the approach described by Morr and German (1985). The soluble 

protein content was analyzed photometrically at 550 nm using bovine serum albumin (BSA) as 

the calibration standard in the Biuret method of AACC Method 46-15.01. The soluble protein 

content was expressed as the %protein content present in the sample.  
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3.4 Thermal Measurement  

Ho and Aziah (2013) modified approach for thermal measurement was adopted for this study. 

Differential scanning calorimeter (DSC, TAQ 100, TA Instruments, Delaware, USA) was 

calibrated with pure indium as a standard. Each sample was mixed with distilled water in a ratio 

of 1:2 at 25oC. Two (2) mg of each ingredient was placed in T0 aluminium pans and 10 μL of 

deionized water was added to the sample in the DSC using a micro-syringe, and hermetically 

sealed. The sealed pans were allowed to equilibrate in desiccators for 1 h before being subjected 

to analyses. An empty T0 pan was used as a reference. Pans were heated from 30°C to 150°C at a 

rate of 2°C/min with a liquified nitrogen gas flow of 50 ml/min. The values for the onset 

temperature (T0), denaturation temperature (Tdn), and gelatinization enthalpy (ΔHg), of the 

samples, were obtained directly from the analysis by the Nanoanalyze software; TA Instruments 

Advantage Software Universal Analysis 2000 version 2.6.362. 

3.5 Statistical analysis  

Data were collected in duplicate and analyzed statistically at a 95% confidence level using the 

Duncan multiple range test of ANOVA in the Statistical package for social science (IBM SPSS 

Statistics 2019 Version 26). The principal component analysis (PCA) and cluster analysis were 

carried out using Origin Pro, 2022, Version 9. 

3.6. Results and Discussion 

3.7 Techno-functional Properties of Pea Protein Products 

3.7.1 Water absorption capacity (WAC) 

WAC of pea protein products ranged from 49.7 to 69.9% for all the samples used in the study. 

There was significant effect (at p<0.05) of composition (protein, oil and starch contents) on the 

WAC of the different PPP. Comparably, Ge et al. (2020) reported lower WAC of 2.7 g/g from 

pea protein isolate while Zhao et al. (2020) reported WAC of 3.38 and 5.16 g/g from 

commercially produced pea protein and soy protein products, respectively. Du et al. (2014) 

reported variations of 11.2 to 18.9% in the WAC of different legume flours. The disparities in 

WAC of the pea protein products compared to the literature may be due to several factors such as 

the type of pea protein, particle size, chemical composition, and preparation conditions 
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(Gharsallaoui et al., 2010; Shanthakumar et al., 2022). Pareto analysis indicated that oil and 

protein contents had the most significant influence on WAC of the pea protein products (Figure 

3.1).  

 

Figure 3.1. Effect of protein, total starch, and oil contents on the WAC properties of pea protein 

products. Standardized effects are shown in (a); interaction effects of protein and oil in (b); 

interaction effects of total starch and oil in (c). 
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Products with higher oil content tended to have lower WAC whereas increasing protein content 

increased WAC of the products. This is attributed to oil interference with water and protein 

interaction, which decreased the quantity of water absorbed and held by the protein (Chou et al., 

1979). The structural arrangement of the protein matrix such as the pore size could also 

significantly influence the relationship between protein and WAC. This can be further explained 

as the WAC occurs through a combination of ion-dipole, dipole-dipole, dipole-induced dipole, 

and hydrophobic interactions of protein (Lam et al., 2018). In addition, oil could cover the 

surface of protein particles making them less soluble (Damodaran, 2005). Lam et al. (2018) 

found that, the protein profile (e.g., amino acid composition) plays a key role the in influencing 

the WAC. Highly charged proteins tend to have a stronger electrostatic attraction to water. Hall 

et al. (1996) also reported a positive linear correlation between the water absorption and protein. 

Furthermore, the negative influence of oil content on the WAC could be due to the ability of oil 

to binds to the hydrophobic groups of the protein chains, thereby reducing protein’s ability to 

bind and hold large water molecules (Mandliya et al., 2022). Starch content had positive linear 

influence on WAC of the pea protein products (Figure 1c). This aligns with Cruz-Solorio et al. 

(2014) who reported a linear correlation between carbohydrate content and WAC in legumes 

flours. Pea protein products with higher WAC have greater suitability as novel ingredients in 

several food applications, including bakery products, plant-based meat analogues, protein bars, 

and dairy alternatives.  

3.7.2 Water Solubility Index (WSI)  

The WSI of pea protein products ranged from 48.7 to 75.3%. The interactions of oil and protein 

contents showed the most significant influence on the WSI of the pea protein products (Figure 

3.2). Apparently, increasing protein content or total starch content tended to lower WSI for 

products with lower oil contents. However, reversed effects of protein and starch were observed 

at higher oil content as indicated by the Pareto analysis.  
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Figure 3.2. Effect of protein, total starch, and oil contents on the WSI properties of pea protein 

products.  (a) Pareto chart of WSI, (b) Influence of protein and oil contents on WSI, (c) Influence 

of total starch and oil contents on WSI 
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The decrease in WSI with increasing starch content could be due to high solubility properties of 

starch (Akalu et al., 1998). For instance, some sugars, such as glucose, have a high water 

solubility index but a low water absorption capacity due to presence of a number of polar 

hydroxyl groups which can form hydrogen-bond with water molecules. This means that they 

dissolve easily in water but do not absorb much of it (Zakrzewska et al., 2010). Pea protein 

products with increased protein content have a higher solubility due to their low proportion of 

non-protein components, such as fats, fiber, and starch, which interfere less with non-protein 

components (Jiang et al., 2017). The oil content of pea protein products significantly affects their 

WSI by hindering the water and protein interaction, resulting in a lower quantity of absorbed 

water by the protein (Lam et al., 2018). The relationship between oil content and pea products 

can be influenced by the chemical and physical characteristics of the oils present (Krause et al., 

2022). Pea protein products with a lower oil content tend to have a higher WSI, and the same 

trend is observed with total starch content, as an increase in starch content reduces the WSI due 

to the formation of a semi-crystalline structure and disruption of the starch granules (Saeid et al., 

2015). The complexity of protein-starch and amylose-lipid interactions during heat treatment 

may also contribute to the variation in WSI of pea protein products (Aditi and Arivuchudar, 

2018). 

3.7.3 Oil Absorption Capacity (OAC)  

The OAC of the PPP ranged from 65.1 to 86%. There was significant effect (at p<0.05) of 

composition on the OAC of the pea protein products.  The oil absorption capacity of the pea 

protein increased under the influenced under the influence of compositions (protein, oil, and 

starch contents). These OAC values was lower than the OAC of 130 to 156% reported by 

Chandra et al. (2015) from different composite flours while Ika et al. (2020) obtained a lower 

OAC of 0.27 to 2.86% from cowpea concentrates. The OAC value of commercial pea protein 

isolate and soybean isolates were reported to be 1.59 and 1.23 g/g, respectively (Fuhrmeister and 

Meuser, 2003). The high OAC observed in the PPP could be the consequence of the high degree 

of oil entrapment by the pea protein products due to the hydrophobicity of the pea protein 

products (Wang et al., 2020). Additionally, the structure of the protein matrix, the form of lipids, 

as well as the organization and stability of the lipids could influence the OAC (Zhao et al., 2020). 
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Pareto analysis displayed that the protein content showed the most dominant influence on the 

OAC of pea protein products (Figure 3.3).  

 

Figure 3.3. Effect of protein, total starch, and oil contents on the OAC properties of pea protein 

products.  (a) Pareto chart of OAC, (b) Influence of protein and oil contents on OAC, (c) 

Influence of starch and oil contents on OAC.  
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This may be due to the hydrophilic and hydrophobic regions of proteins that enable them to 

interact with oil and water. Thus, pea protein products with high OAC indicate that there are 

larger protein molecules available in the pea product to interact with oil, thus increasing the OAC 

(Withana‐Gamage et al., 2011). Products with higher protein and oil content showed higher OAC 

of the pea products. The effect of oil content with OAC of pea products could be due to the 

interaction of proteins with oils interact through the binding of the aliphatic chains of lipid to the 

nonpolar side chains of amino acids. Thus, proteins with the higher protein hydrophobic regions 

are likely to have a greater capability to hold oils. through the release of oil-protein complexes 

(Sanjeewa, 2008; Withana‐Gamage et al., 2011). In addition, the OAC of pea protein products 

can also be influenced by arrangement of proteins within a matrix, the specific lipid variety that 

is present, and the way in which lipids are distributed and maintained (Lam et al., 2018). The pea 

protein ingredient with high OAC could be employed in food applications where better 

palatability, shelf stability, and flavor retention are required, such as in the bakery and meat 

industry. 

3.7.4 Emulsifying Capacity (EC)  

The pea protein products have a varied range of EC between 23.7 and 49.1%. The effect of 

composition on the EC of pea protein products were observed to be significantly at p<0.05. 

Pareto analysis showed that the interaction oil content and total starch content had the most 

significant effect on the EC of pea protein product. The starch content of pea protein does form 

complexes with proteins, which affects the structure and functionality of proteins due to their 

interaction. This leads to a change in the protein’s surface properties and the ability of the protein 

to interact with other components in the emulsion (Ouyang et al., 2022). Pea protein products 

that contained more oil had a tendency to exhibit a lower EC, while higher levels of starch 

tended to result in an increased EC (Figure 3.4). The presence of oils can diminish the degree of 

interaction between water and the surface of a protein, achieved by reducing the interfacial 

tension that exists between the oil and water phases, which allows proteins to absorb onto the 

interface (Alzagtat and Alli, 2002). In addition, a higher oil content can result in the formation of 

larger oil droplets, making it hard for the pea protein product to stabilize the emulsion. 
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Figure 3.4. Effect of protein, total starch, and oil contents on the EC properties of pea protein 

products. (a) Pareto chart of EC, (b) Influence of protein and oil contents on EC, (c) Influence of 

starch and oil contents on EC 
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However, an increase in protein content result into an increased EC of the pea protein products. 

Asides the effect of composition, EC can be largely influenced by protein concentration, protein 

structure, and protein-oil-water contact time (McCarthy et al., 2016). This aligns with the 

conclusion of Chen et al. (2019) that an increase in protein concentration increases the EC of pea 

proteins. According to Sahin and Sumnu (2006), a high quantity of hydrophobic surface area 

leads to more flexibility in protein structure, which improves the emulsion stability through 

interfacial action. Scientists have reported that the preparation method and extraction method of 

pea protein products could also significantly influence the emulsion capacity (Ivanova et al., 

2014; Adenekan et al., 2017; Cruz-solorio et al., 2018). In comparison to the EC in the study, Du 

et al. (2014) reported EC values ranging from 61.14% to 92.20% for ten legume flours. Ivanova 

et al. (2014) reported EC between 45.85% and 60.88% for the protein isolate of different 

Sunflower meals. The disparity in the EC values to the literature is owned to different protein 

types, compositions, treatment method and extraction technique (Barac et al., 2010; Karamanet 

al., 2021; Mir et al., 2021). Pea protein products with high emulsion capacity exhibit high 

emulsion stability and great fat-binding properties.  

3.7.5 Foaming Capacity (FC) 

Pea protein products are known to have good foaming capacity, which makes them unique 

ingredients in food products such as bakery goods, whipped toppings, and meringues (Zhao et 

al., 2020). The FC of pea protein products ranged from 2.5 to 15%. The compositions (protein, 

oil, and starch contents) showed significant effect (at p<0.05) on the FC of pea protein products. 

Adenekan et al. (2017) reported a higher FC of 25.30% from pigeon pea flour and varied FC of 

33.23–35.37% in pigeon pea isolates, while Ika et al. (2020) reported varied FC of soybean 

concentrates between 18 and 45.33%. Cruz-Solorio et al. (2018) reported that P. tuber-region 

sclerotia flours had higher FC than their concentrates. The protein content had the most 

significant effect on the FC of pea protein products, as shown in Pareto analysis. The starch 

content also had a similarly significant influence on the FC of pea protein products. Sreerama et 

al. (2012) stated that other non-protein components such as carbohydrates also influence the 

foaming capacity of pea proteins. Apparently, the FC of the pea products tend to increase with 

increase in protein and starch contents (Figure 3.5).  



 
 

54 
 

 

Figure 3.5. Effect of protein, total starch, and oil contents on the FC properties of pea protein 

products. (a) Pareto chart of FC, (b) Influence of protein and oil contents on FC, (c) Influence of 

starch and oil contents on FC 
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The increased FC of the pea products with protein content could be due to the surface-active 

property of protein molecules that allow them to stabilize air bubbles in a foam. Thus, a higher 

concentration of protein indicates that larger protein molecules are available to form a steady 

interface between liquid and air (Dickinson, 1999). In addition, Toews and Wang (2013) 

conveyed that products with high protein content tend to increase the foaming capacity, by 

supporting the interaction between protein-protein to create foam collapses. The positive 

influence of starch content on the FC of pea protein products could be due to the type of starch 

and quantity of starch used (Awuchi et al., 2019).For instance, literature has reported that the 

addition of a specific type of starch, e.g., modified tapioca starch, can enhance the FC of pea 

protein product through the formation of a network structure that helps to stabilize the foam 

structure (Awuchi et al., 2019). The differences in the FC of pea protein products indicate that 

the ability of the protein to dissolve in water and absorb water may differ depending on the 

particular type and variation of pea products being considered. However, the FC of pea products 

can be partly modified by other factors such as the protein concentration and treatment 

conditions (Barać et al., 2011). 

3.7.6 Foaming Stability (FS)  

The foaming stability (FS) of the pea protein products ranged between 1 and 5% (Figure 3.6). To 

achieve good foaming stability, the pea proteins should possess a high solubility in the water 

phase, which allow the proteins to decrease the interfacial tension and form strong elastic films 

containing the dispersed air bubbles (Murray, 2007). Zhao et al. (2020) reported an estimated FS 

of 68.03, 82.44, 89.74 and 50.00% for wheat, soybean, pea, and rice proteins, respectively. It is 

important to understand the differences in the FS values obtained compared to the literature may 

be attributed to the variations in protein products, their compositions, and processing methods 

used in different studies as reported by researchers (Barac et al., 2010; Karaman et al., 2021; Mir 

et al., 2021). From Pareto analysis, the oil content has the most impactful influence on the FS of 

pea protein products. Lipids could hinder the formed network of protein at the air-liquid interface 

and result in destabilized foams (Lam et al., 2014). The FS of the pea protein products tend to 

decrease at high oil and starch contents whereas an increase in protein content favors the FS of 

the pea products. The increased FS with increasing protein concentration indicates a longer foam 

half-life time and longer gravity drainage time (Bao, 2022). 
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Figure 3.6. Effect of protein, total starch, and oil contents on the FS properties of pea protein 

products. (a) Pareto chart of FS, (b) Influence of protein and oil contents on FS, (c) Influence of 

starch and oil contents on FS. 
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The decrease in foaming stability with the oil content may be because the oils can compete with 

proteins for absorption into the air-liquid interface during whipping resulting in a decrease in the 

amount of protein molecules available to stabilize the foam (Branch and Maria, 2017). Branch 

and Maria (2017) reported a higher foaming stability value of 50.40% and 53.66% from mung 

beans and soybean protein products. The variation was stated to be due to protein denaturation. 

This is similarly reported by Fidantsi and Doxastakis (2001). In addition, the ability of foam to 

remain stable is primarily dependent on how well the protein film functions and its capacity to 

allow gases to pass through it. The reason behind the high foaming stability reported, could be 

attributed to the production of a cohesive film with high elasticity that is viscous and gel-like in 

nature, formed by proteins. Also, proteins that exhibit optimal intermolecular interactions and 

create a cohesive, unbroken network have the potential to generate stable foams at the interface 

between air and liquid, as per research by Nakai and Modler (1996). Contrarily, Zhao et al. 

(2020) reported that the fat contents in four proteins (wheat, soybean, pea, and rice) showed little 

influence on the forming stability due to low their fat contents. However, it is important to note 

that the effect of oil on FS can be influenced by the type of oil and quantity of oil used. For 

instance, the use of a small quantity of a specific oil type, e.g., soybean oil or sunflower oil, can 

enhance the FS of pea protein products through a reduction in the degree of liquid drainage and 

enhancing the coalescence resistance of the foam bubbles (Nesterenko et al., 2013). The 

differences observed in the FS of pea protein products could be attributed to protein 

denaturation, as stated by Branch and Maria (2017). Specifically, the ability of a protein film to 

effectively maintain foam stability and allow gases to permeate depends on the protein's ability 

to form a cohesive, viscous, and gel-like film with high elasticity. Additionally, proteins that 

demonstrate ideal intermolecular interactions and produce a cohesive, continuous network have 

the potential to create stable foams at the air-liquid interface, as noted by Nakai and Modler 

(1996). 

3.7.7 Protein Solubility (PS)  

The PS of the PPP ranged between 40.32 and 87.15%. The protein solubility of PPP can be 

significantly affected (at p<0.05) by the composition, namely; protein, oil, and starch contents. 

Pareto analysis displayed that the interaction of protein and oil contents were observed to have 

the most significant influence on the protein solubility of pea protein products (Figure 3.7).  
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Figure 3.7. Effect of protein, total starch, and oil contents on the PS properties of pea protein 

products.  (a) Pareto chart of PS, (b) Influence of protein and oil contents on PS, (c) Influence of 

starch and oil contents on PS. 
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Generally, PPP are usually high in protein solubility due to their great protein content (Lam et 

al., 2018; Bogahawaththa et al., 2019). The increased PS of pea products could be due to the 

hydrophobicity and surface composition of protein molecules of the different pea products. 

Kouakou et al. (2013) and Shanthakumar et al. (2022) reported a similar phenomenon of the 

dependency of protein solubility on the hydrophobic stability of protein molecules, protein 

treatment, conformation, and surface composition of polar or non-polar amino acids. These 

factors influence the interaction of protein-to-protein and protein-to-solvent thermodynamics 

during the extraction process. Additionally, it is important to understand that protein products 

with high protein solubility can be associated to good protein products with good emulsifying 

and foaming properties (Branch and Maria, 2017; Ma et al., 2022). The contour analysis above 

showed that the PS of the pea protein products tend to increase with an increase in the protein 

and oil contents. This supports the observation by Karaca et al. (2011) that assessed the PS from 

faba bean and soybean protein products and discovered that the protein solubility of the pea 

products was high. Also, Adenekan et al. (2017) observed a similar phenomenon and reported a 

protein solubility (PS) of 12.1% from pigeon pea flour and varied PS from 90.7% to 97.13% 

from pigeon pea isolates. 

3.8 Thermal Properties of Pea Protein Products 

3.8.1 Onset Temperature (T0) 

The thermogram showed the mean values of the onset temperature (T0) of the PPP that ranged 

from 93.3 to 166.19°C. The T0 of pea protein products describes the temperature at which the 

PPP starts to denature and lose its functional properties. Significant effect (p<0.05) of 

composition were observed on the T0 of the pea protein products. Wong et al. (2021) reported 

variations in T0 attained from three flour starches with values that ranged from 59.8 - 81.7oC. 

Similarly, Branch and Maria reported an onset temperature of 155.54oC, which supports the 

values of this study. Other than that, findings retrieved from Kornet et al. (2021) established a 

low T0 between 59.3 and 81.8oC from pea fractions, while Guimarães et al. (2012) reported a 

lower T0 of 30oC from defatted Baru flour. In contrast, Chakravartula et al. (2019) reported 

higher values of onset temperature from edible films ranging from 175 to 225oC. The 

dissimilarities observed between the obtained T0 values with literature could be attributed to the 

diversity in the thermal stability of proteins, which are stabilized by polar bonds (such as 
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hydrogen bonds) and nonpolar interactions (such as hydrophobic bonds) (Branch and Maria, 

2017).  

 

Figure 3.8. Effect of protein, total starch, and oil contents on the T0 of pea protein products.  (a) 

Pareto chart of T0, (b) Influence of protein and oil contents on T0, (c) Influence of starch and oil 

contents on T0 
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The oil content in PPP had the most significant influence on their T0 (Figure 3.8). Additionally, 

Figure 3.8b shows that the T0 of the PPP increases as the protein content increases. This is 

because the increase in protein content has a positive correlation with the high hydrophobicity of 

protein. Whereas pea protein products with high oil content exhibited lower T0. The lower T0 

observed of the PPP could be due to the lower boiling point of oil than water, which is a major 

component of the PPP. Consequently, the presence of oil can reduce the energy required to 

initiate boiling, thereby lowering the T0 of the PPP (De Angelis et al., 2020). However, the effect 

of oil content may vary among different PPP depending on the type and concentration oil present 

in the pea products. For instance, a typical pea protein concentrate contains fat content that 

ranged from 5-8% while pea protein isolate may contains less than 1% (Lu et al., 2020). The 

high T0 found in the pea protein products explains the high purity of products with fewer non-

protein components (such as fiber, starch, and oils) which can contribute to rapid protein 

denaturation (Osen et al., 2014; Geerts et al., 2017). In addition, Liang et al. (2013) reported that 

T0 of pea products can be influenced by factors such as the type of pea protein, treatment 

methods, and formulation. 

3.8.2 Peak Temperature (Tdn) of Pea Protein Products 

Peak temperature (Tdn) defines the thermal stability of protein and is the temperature at which the 

three-dimensional form of protein undergoes an irreversible change (da Silva et al., 2021). The 

Tdn is an important property for specific food applications, including the production of meat 

alternatives, as the protein gel can deliver a meat-like texture. The Tdn obtained varied from 

128.97 to 180.74oC. Branch and Maria (2017) reported a close Tdn value of 158.38oC. He further 

stated that the Tdn indicates the higher thermal stability of the protein products which could be 

due to the disulfide bonds within the protein molecules. The Pareto analysis showed that protein 

content of the pea protein products has the most dominant factor influencing the Tdn.  A positive 

linear effect was observed between protein content and Tdn of the PPP, implying that the Tdn of 

the pea products increased with protein content (Figure 3.9b).  
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Figure 3.9. Effect of protein, total starch, and oil contents on the Tdn of pea protein products.  (a) 

Pareto chart of Tdn, (b) Influence of protein and oil contents on Tdn, (c) Influence of starch and oil 

contents on Tdn 
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These results explain that the Tdn of pea protein products is favored by the induced denaturation 

temperature of processing that led to the isolation/extraction of protein products. This is because 

the pea products have tightly packed protein molecules that are difficult for them to unfold and 

denature. This aligns with the findings by da Silva et al. (2021). The high thermal denaturation 

temperature (Tdn) observed in pea products can be attributed to the presence of a greater number 

of globular proteins in the pea protein products. These proteins are soluble in water and have a 

highly folded three-dimensional structure, contributing to their increased thermal stability. 

Furthermore, Proteins with largely ordered structures tend to show a good thermal stability 

(higher Tdn), as described by Shevkani et al. (2015). However, from a technological standpoint, 

pea protein products with lower denaturation temperatures tend to consume less energy needed 

to change the protein conformation to form a gel, and consequently have a cheaper processing 

cost (de Silva et al., 2021). 

3.9 Gelatinisation Enthalpy (ΔHg) of Pea Protein Products 

The gelatinization enthalpy (ΔHg) of PPP ranges from 89.04 to 280.42 J/g. In PPP, the 

gelatinization enthalpy indicates the quantity of energy needed to collapse the crystalline 

structure of the pea products, allowing them to form a gel (Shevkani et al., 2015; Asen and 

Aluko, 2022). The protein content had the most significant influence on the ΔHg of the pea 

protein products, as shown in Figure 3.10. Also, linear correlation was observed between protein, 

starch contents and ΔHg, where the increase in protein and starch contents increase the ΔHg of 

the pea protein products (Figure 3.10b and c).  
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Figure 3.10. Effect of protein, total starch, and oil contents on the ΔHg of pea protein products.  

(a) Pareto chart of ΔHg, (b) Influence of protein and oil contents on ΔHg, (c) Influence of starch 

and oil contents on ΔHg.  
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The high ΔHg values achieved in the different pea protein products explains the high starch 

content of pea products, which enables them to withstand higher temperatures before the change 

in the starch granules. This also indicates the well-ordered protein structure of the pea protein 

products and their tendency to form a stable gel during food applications, such as the preparation 

of meat alternatives. This result supports the observations by Emkani et al. (2021). The high ΔHg 

also indicates the presence of hydrophobic interactions in a large network of protein (Asen and 

Aluko, 2022). Branch and Maria (2017) reported a lower ΔHg of 41.64 Jg-1 and 50.20 Jg-1 from 

mung beans and soybean protein isolates respectively. The low ΔHg in proteins products 

signifies that the proportion of proteins in the product was thermally held together by the non-

covalent hydrophobic bonds, and these results corroborate with the findings of Guimarães et al. 

(2012).  

3.10 Principal Component Analysis of the Composition  

The principal component analysis (PCA) was performed to identify and evaluate the variation in 

the composition of pea protein products. The PCA of the composition showed that there are two 

principal components at eigenvalues ≥1. The eigenvalues of the composition of the pea protein 

products produced two components with values of at least 1. These components account for 

76.36% of the total variation in principal component 1 while the second component represents 

22.1%. Among the pea protein products (in Figure 3.11), protein and oil were the dominant 

variables with the optimum positive value on PC1 and PC2. Total starch was loaded positively 

on the PC2. The PC1 and PC2 are considered to describe the variation in data when 

multidimensional data is predictable in the form a single-dimensional data (Lee et al., 2017).  

3.11 Principal Component Analysis ofthe techno-functional and thermal properties of pea protein 

products 

The principal component analysis (PCA) was performed to identify and evaluate the variation in 

the techno-functional properties of PPP. The PCA of the PPP showed that there are four principal 

components at eigenvalues ≥1. The eigenvalues of the pea protein products produced four 

components with values of at least 1. These components account for 79.24% of the total 

variation for pea flours, with PC1, PC2, PC3, and PC4 representing 32.45%, 21.64%, 13.11%, 

and 12.04%, respectively.  
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Figure 3.11. PCA analysis based on the composition of pea protein products 

For pea protein concentrates, the four components explain 79.02% of the total variation, with 

PC1, PC2, PC3, and PC4 accounting for 29.50%, 22.87%, 15.20%, and 11.45%, respectively. 

The first four components of the pea isolates (with eigenvalues ≥ 1) explain 89.09% of the total 

variation, with PC1, PC2, PC3, and PC4 representing 36.17%, 28.25%, 15.23%, and 9.44%, 

respectively. The relationship between the pea protein products, techno-functional, and thermal 

properties are presented in the biplots of Figures 8. The biplots signify the variety and properties 

that have the largest contributor to the total variation on every dimension (Sharma et al., 1998). 

In addition, the curves that are nearer to each other on the bipolar are positively correlated, 

whereas those in reverse directions are negatively correlated (Singh et al., 2008). Among the 

techno-functional and thermal properties (in Figure 3.12), peak temperature, onset temperature, 

foaming stability, and enthalpy were the dominant variables with the optimum positive value on 

PC1 and PC2. WAI and WAC were loaded negatively on PC1 but positively on PC2, while WSI 
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has a negative score on PC1 and PC2. PS, EC, and FC all had a positive score on PC1 but a 

negative on PC2. The positive sample score along the PC1 is high for pea flour samples from 

Belle Pulse pea flour, Home=craft pulse 1101, SS 111-22, NRC_CT_002, and SC 110-22.  

They were observed to have a positive value along PC1 and PC2. Flour 28, SC 109-22, and SC 

110-22 were loaded positively on PC2 but negatively on PC1. SC 112-22 and SC 108-22 were 

both in the negative direction of PC1 and PC2. The biplot in Figure 8, based on PC1 and PC2, 

shows the genetic variation, techno-functional, and thermal properties of the twelve pea protein 

concentrates. The dispersion in genotypes shown in the biplot indicates an acceptable amount of 

genetic variation among the pea concentrates. PC1 and PC2 accounted for 29.50% and 22.87% 

of the total variability, respectively. The most significant variables of pea protein concentrates 

are emulsifying capacity, foaming stability, oil absorption capacity, water solubility index, and 

water absorption index, which have positive values on PC1 and PC2. Water absorption capacity, 

foaming capacity, denaturation temperature, and peak temperature are negatively loaded on PC1 

but positively on PC2, while protein solubility is positively loaded on PC1 but negatively on 

PC2.However, enthalpy had a negative value along PC1 and PC2. Among the pea concentrate 

samples, samples 34, 31, 32, 35, and 38 were positively correlated with PC1 and PC2, while 

samples 19 and 18 were negatively correlated. 
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Figure 3.12. PCA analysis based on the techno-functional and thermal properties of pea protein 

products from 12 varieties for each of the protein products. Biplot for pea flour (a), Biplot for 

pea protein concentrate (b) Biplot for pea protein isolates (c). 

where is the protein solubility (PS); water absorption capacity (WAC); water solubility index 

(WSI); water absorption index (WAI); oil absorption index (OAI); emulsifying capacity (EC); 

forming capacity (FC); and forming stability (FS), onset temperature (T0), peak/denaturation 

temperature (Tdn), and gelatinization enthalpy (ΔHg) 
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The biplot of pea protein isolates based on PC1 and PC2 is presented in Figure 8c. The biplot, 

based on PC1 and PC2, shows the genetic variation, techno-functional, and thermal properties of 

the twelve pea protein isolates. The dispersion in genotypes shown in the biplot indicates an 

acceptable amount of genetic variation among the pea protein isolates. PC1 and PC2 accounted 

for 36.17% and 28.25% of the total variability, respectively. The dominant properties in PC1 and 

PC2 of pea protein isolates are denaturation/peak temperature, onset temperature, forming 

capacity, oil absorption capacity, water absorption index, and water solubility index. The PC1 

and PC2 were primarily correlated with positive scores for pea protein isolate genotypes: 

samples 8 and 12 due to the closeness of their coefficients to unity. According to Poudel et al. 

(2017), the variables (genotype and quality parameters) with the largest absolute or coefficient 

values closer to 1 within the first and second principal components have the most influence on 

the clustering (eigenvectors) more than those with lower absolute values closer to zero, as the 

cluster is complemented with PCA. 

3.12 Cluster Analysis of Pea Protein Products 

To compare and assess the relationships between different genotype varieties of the pea protein 

products, a hierarchical cluster analysis was performed based on techno-functional and thermal 

properties. As shown in Figure 3.13, the dendrogram consisted of two main groups for each of 

the pea protein products and was further divided into multiple clusters. In Figure 9, the two 

major clusters of groups of pea flour further divide into five clusters. The first cluster contains 

the largest genotypes, consisting of six genotypes that are distributed between four sub-clusters 

which are NRC_CT_001, SC 110-22, Homecraft 1101, Fiesta pea flour, SC 108-22, SC 112-22 

of pea flour. The second contains one genotype (Flour 28), the third contains one genotype 

(NRC_CT_002), the fourth cluster contains three genotypes with two sub-clusters (SC 111-22, 

SC 109-22, SC 107-22), and the fifth cluster has one genotype (Belle Pulse Pea). However, the 

most represented cluster observation was in 1 Flour (NRC_CT_001) while the least was in 20 

Flour (NRC_CT_002). The dendrogram of the pea protein concentrates in Figure 9 presented 

three clusters. The first cluster has three genotypes which include NRC_CT_003, SC 111-F2, 

and SC 112-F2.  
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Figure 3.13. Dendrogram of twelve pea protein products Barley accessions using the 

Hierarchical Ward’s clustering method based on eleven measured traits. Dendrogram for pea 

flour (a), Dendrogram for pea protein concentrate (b) Dendrogram for pea protein isolates (c).  
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The second cluster contains four genotypes, which include Prestige pea protein, SC110-F1, SC 

109-F2, and SC 112-F1 while the third cluster contains the highest genotypes comprising five 

genotypes distributed between three sub-clusters which are NRC_CT_104, SC 108-F, SC110-F2, 

SC 109-F1, and SC 111-F1. However, the most represented cluster observation was in sample 30 

(Concentrate SC108-F) while the least was in sample 31 (Concentrate SC109-F1). Similarly, the 

dendrogram chart for pea protein isolates has four clusters (Figure 5C). The first cluster contains 

three genotypes (Homecraft pulse 1135, PISANE C9, Nutralys B85F). The second cluster has the 

largest, comprising six genotypes, which are PISANE B9, Pea 870H, Vitessence pulse 1803 pea 

protein, Vitessence pulse 1853 pea protein, PISANE M9, and Nutralys F85F. The third cluster 

contains Nutralys F85M, Nutralys S85F, and Pea 870MV. The most represented cluster 

observation was in sample 11 (Isolate Pea 870H) while the least was in sample 12 (Isolate Pea 

870MV). These results describe that the pea flour, pea concentrates, and isolates from different 

genotypes showed variations in the techno-functional and thermal properties, which align with 

the results of the principal component analysis. 

3.13. Conclusions 

This study has presented valuable information on the effect of composition (protein, starch, and 

oil contents) on the techno-functional and thermal properties of pea protein products (pea flours, 

concentrates, and isolates) from different varieties. There was a significant difference at p<0.05 

in the techno-functional (water absorption capacity, water solubility index, water absorption 

index, oil absorption index, protein solubility, emulsifying capacity, forming capacity, forming 

stability) and thermal properties (onset temperature, peak temperature, and gelatinization 

enthalpies) of the pea protein products under the influence of composition. The onset 

temperature of the pea protein products ranged from 93.3ºC to 166.19ºC, with peak temperature 

ranging from 128.97ºC to 180.74ºC and gelatinization enthalpy ranging from 89.04 J/g to 280.42 

J/g. The biplot of principal components 1 and 2 explained 54.09%, 52.37%, and 64.42% of the 

total variability of techno-functional and thermal properties of pea flours, pea protein 

concentrates, and pea protein isolates. The most unique variety based on the cluster of the 

techno-functional and thermal properties of the pea protein products was established. The protein 

content of the pea protein products was noticed to have the most significant influence on the 

water absorption index, oil absorption index, foaming capacity, peak temperature, and enthalpy. 
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The oil content showed the most significant influence on FS and onset temperature while the 

interaction of oil and protein contents influenced the water solubility index, water absorption 

index, and protein solubility the most. The outcome of this study would be useful in selecting the 

best pea flour, pea concentrate, and pea isolate based on desired techno-functional and thermal 

properties of the varieties under consideration. 
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CONNECTING TEXT TO CHAPTER FOUR  

The preceding chapter of the thesis investigated the influence of the composition of pea protein 

products, specifically the protein, oil, and total starch content, on their techno-functional and 

thermal properties. These properties are important indicators of the quality and potential 

applications of the products. However, there is still a need to investigate how these composition 

factors affect some rheological properties of the pea protein products, specifically their storage 

modulus, loss modulus, loss factor, and complex viscosity. 

Rheological properties refer to how materials behave under stress and strain, and they are 

important for understanding the flow behavior of food products during processing and storage. 

The rheological properties of the pea protein products, specifically the storage modulus, loss 

modulus, loss factor, and complex viscosity, are important indicators of the products' texture, 

mouthfeel, and stability. 

The third chapter of the thesis has been drafted based on the format of the Industrial Crops and 

Products journal, which is a peer-reviewed scientific journal that publishes original research 

articles. The chapter is currently at the submission stage, which means that it has been written 

and is being prepared for submission to a scientific journal for peer review and publication. The 

next chapter presents the results of the investigation of the rheological properties of pea protein 

products and their relationship with the composition factors. 
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CHAPTER FOUR 

RHEOLOGICAL PROPERTIES OF PEA PROTEIN PRODUCTS  

Abstract 

In efforts to develop protein-based products with optimal functional and textural characteristics, 

the investigation of the effect of composition on the rheological properties of pea protein 

products (PPP) is required. Therefore, this study aimed to explore the diversity in effect of 

composition (protein, oil, and starch) on the rheological properties (storage modulus (G'), loss 

modulus (G"), loss factor (tan δ) and complex viscosity (tan δ)) of PPP. The relationship between 

rheological properties and varieties of PPP was analyzed by principal component analysis (PCA) 

and cluster analysis (CA). The rheological properties of PPP are significantly influenced by their 

composition. Increasing the protein concentration led to a significant rise in storage modulus, 

loss modulus, and loss factor, while the complex viscosity decreased. Conversely, an increase in 

oil caused a decrease in storage modulus, loss factor, and complex viscosity. Furthermore, a rise 

in starch content led to a significant increase in the complex viscosity of pea protein products. 

The first two principal components, PC1 and PC2 of the biplots explained 98.68%, 87.94%, and 

77.77% of the total variability of rheological properties of pea protein products. The unique 

varieties based on the cluster analysis among the pea protein products were established. This 

study outcome would be valuable in predicting the processing behavior of PPP and in controlling 

the quality of its final products.  

4.1 Introduction 

The utilization of protein-enriched ingredients in food applications has become progressively 

crucial in the last few years. This results from food insecurity, malnutrition, increasing 

population, the elevated cost of animal-based foods, limitations caused by allergies, and dietary 

preferences. These necessitate the utilization and incorporation of novel protein products to 

augment conventional food formulations and meet diverse consumer choices (Pazmiño et al., 

2018; Boukid et al., 2021). Food proteins' ability to form heat-induced gels offers significant 

rheological properties to foods and is essential in product development. Pea (Pisum sativum) 

proteins are recognized as auspicious and novel raw materials owned to their unique and high 
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protein compositions, non-allergenicity, low cost, and potential health benefits (Arteaga et al., 

2020). They also exhibit unique nutritional and functional properties, such as solubility, foaming, 

emulsifying, and gelling characteristics, which govern their performance and behaviour during 

processing (Lamsal et al., 2007; Boukid et al., 2021). Pea protein products such as flour, 

concentrate, and isolate can be employed to develop numerous functional foods. These include 

high-protein meat substitutes, gluten-free products (snacks, bread, pasta), ready-to-eat cereals, 

and heat-induced gels that exhibit unique and acceptable attributes (Pedrosa et al., 2020). 

However, it is worthwhile to understand their rheological properties to efficiently utilize pea 

protein products as functional raw materials in the food matrix. 

Rheological property is an essential physicochemical characteristic of food. The rheological 

property indicates the complex interaction between the composition, molecular conformation, 

and structure of the food components (Dasa & Binh, 2019). It is a central index often employed 

for assessing raw materials and product quality and predicting its behaviour during processing 

and storage (Dasa & Binh, 2019; Zhang et al., 2020; Mir et al., 2021). It also assists in predicting 

the flow and deformation of protein, starch, and fats in specific food systems under external 

forces (Wang et al., 2019). Furthermore, the rheological properties of protein pastes or gels are a 

function of the frequency. Rheology is often measured through oscillatory mechanical 

spectroscopy (Sonawane et al., 2020). Rheological or viscoelastic properties such as storage 

modulus (G'), loss modulus (G"), loss factor, and complex/apparent viscosity control the 

physicochemical characteristic of protein products and products by indicating their elastic and 

viscous behaviour. Generally, the G' value defines the strength and stability of a gel network, 

whereas the G" value defines the elastic nature of the gel (Wang et al., 2019). The rheological 

property of paste protein products largely depends on their composition, protein-to-starch 

gelatinization, degradation degree, and swelling power. Also, the nature of the continuous phase, 

the interaction between the dispersed and continuous phase, and the volume occupied in the 

dispersed phase of gel similarly influence its rheological properties (Guha & Ali, 2011).  

The pea is known to have different varieties with distinct genetic makeup, which can 

consequently influence the gelation properties of its protein products during food application 

(Maharjan et al., 2019). Understanding the genotypic variation in the rheological properties of 

pea protein products is significant in optimization and textural assessment and maximizes flow 



 
 

76 
 

processes. It is also crucial in measuring processing and storage stability and evaluating the 

change in the conformation of pea protein products (Dasa & Binh, 2019). It can also be 

employed to develop highly suitable pea protein products in food applications such as 3D 

printing (Zhang et al., 2020). According to Maharjan et al. (2019), the protein composition of 

paste, its average size of starch granules, and the dynamic rheological properties are significantly 

influenced by the variation in variety. Romero and Zhang (2019) investigated the rheological 

behaviour of four varieties of bean flour to develop gluten-free pasta. The rheological properties 

of the studied bean flour differ among different flour varieties. Also, the genetic variation in 

different grass pea flour examined by Bala et al. (2020) showed that the compositional effect 

(such as protein and starch) significantly influence the rheological properties of the dough 

samples prepared from the flour samples. Also, the G' and G" of the different dough samples 

increase with the frequency, which reflects a robust elastic response or gels; however, G' had a 

higher value than G" in the frequency sweep owned to the different particle sizes of the different 

grass pea flour.  

Similarly, Katyal et al. (2019) studied the difference in rheological properties of composite flour 

from different varieties of wheat flour. The wheat flour varieties demonstrated different 

rheological behaviour due to variations in their protein content, which are influenced by the 

different varieties. Flours with higher protein content exhibited improved rheological properties 

and vice versa. In efforts to compare and evaluate the relationships of different varieties of the 

pea protein products, cluster analysis is often applied to amplify the similarity or discrepancy 

within the cluster groups based on the rheological properties of the pea protein products (El-

Hashash et al., 2016). The literature has mainly focused on the rheological properties of flour 

from different varieties of beans (Katyal et al., 2019; Romero & Zhang, 2019; Bala et al., 2020; 

Zhang & Zhai, 2020; Zhang et al., 2022). However, there is sparse information on effect of 

composition on the rheological properties of pastes of pea protein products from different pea 

varieties. 

Furthermore, the use of cluster analysis to assess the effect of variation in varieties on the 

comparable rheological properties of pea protein products is lacking. Thus, this information 

would aid in identifying and selecting the most suitable varieties of pea protein products based 

on their rheological properties. The studied rheological properties are storage modulus, loss 
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modulus, loss factor, and complex viscosity. Therefore, this study aimed to evaluate the effect of 

composition (protein, oil, and starch) on the rheological properties of pea protein products. 

4.2. Materials and Methods 

Thirty-six (36) varieties of pea products were selected and used for this study to elicit samples of 

different proximate compositions. The samples include 12 varieties of pea protein flour (labelled: 

NRC_CT_001, Homecraft Pulse 1135, Belle Pulse Pea, NRC_CT_002, Fiesta Pea Flour, SC 

111-22, SC 107-22, SC 108-22, SC 109-22, SC 110-22, SC 112-22 and SC 113-2); 12 varieties 

of pea protein concentrate (Labelled: NRC_CT_003, NRC_CT_014, Prestige Pea Protein 

Concentrate, SC108-F, SC109-F1, SC109-F2, SC110-F1, SC110-F2, SC111-F1, SC111-F2, 

SC112-F1 and SC112-F2); and 12 varieties of pea isolate (labelled: Homecraft Pulse 1135, 

PISANE B9, PISANE M9, PISANE C9, Nutralys F85F, Nutralys F85M, Nutralys S85F, 

Nutralys B85F, Pea 870H, 870MV, Vitessence Pulse 1803 Pea Protein, and Isolate Vitessence 

Pulse 1853 Pea Protein). These varieties were selected based on their different compositions and 

obtained from the National Research Council of Canada through a material transfer agreement. 

4.3 Dynamic Rheological Properties of Pea Protein Products 

The response surface design in Minitab software version 20 was used to study the effect of 

compositions (starch, oil content, and protein content) of pea products on their rheological 

properties. The low and high values of the experimental factors namely protein content, oil 

content and starch content (labelled A, B, and C, respectively) of samples used in the study were 

0.05 and 64.65, 0.60 and 3.36, 11.46 and 81.55, respectively. Pareto chart was used to determine 

the significant composition while contour plots were used to study the influence and interactions 

of the compositions on the rheological properties of pea protein products.  

4.3.1 Rheological measurements 

A modified approach by Arntfield et al. (1989) was adopted to determine the rheological 

characteristics of the pea flour, pea protein concentrate, and pea protein isolate pastes. 4 g pea 

protein isolate samples were dispersed in 20 ml of water. The dispersions were stirred/mixed at 

900 rev/min for 2 hours. After then, stored in the refrigerator for 4oC. The samples were loaded 

on the rheometer plate of 40mm diameter (Model: MCR 302 Antin Paar). The rheometer gap 

was adjusted to 1000mm or 2000mm depending on the viscosity of the samples. The samples 
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were allowed to stabilize ad equilibrate for 2 minutes in the rheometer. For steady shear, the 

shear rate was adjusted to 1-100s-1 at 25ºC. For the frequency sweep test, the temperature was left 

at 25°C with an angular frequency that ranged between 0.1-100rad/s. For the temperature sweep 

test, the temperature was set to 25-95ºC at a speed of 5°C/min. After this procedure, the samples 

were held and heated at 95°C for 2 minutes. The samples were cooled at 25ºC at 5oC /min. The 

G’ and G’’ and loss modulus were evaluated and recorded. Also, the loss factor and complex 

viscosity were also determined.  

4.4 Statistical analysis 

The data were duplicated and analysed statistically at a 95% confidence level using the 

OriginPro version 9, 2022 for the analysis of variance and multivariate analysis in terms of 

principal component analysis and hierarchical analysis.   

4.5 Results and Discussion 

4.5.1 Storage Modulus (G') of Pea Protein Products 

The G' of the PPP showed less frequency-dependent properties and a clear difference in G' 

among the different PPP was observed during the frequency sweep. According to the Doublier 

(1995), if the storage modulus (G′) of protein is independent of frequency, this suggests the 

presence of a strong paste network with sturdy junction zones that won't break during the 

experiment. Conversely, if G′ shows a strong dependence on frequency, this suggests weaker 

molecular interaction. Storage modulus describes the energy stored in the elastic structure of a 

food, which will be released after mechanical stress or deformation (Amiri et al., 2018; 

Sonawane et al., 2020). This energy results from the conformational modification of the protein 

chains (Zhang et al., 2022). Significant influence (p<0.05) of composition was observed on all 

the PPP. Pareto analysis indicates that the fat contents have the most significant influence on the 

G' of the PPP. The interaction of protein and starch had an equal significant effect on the G' 

(Figure 4.1a). The contour plots show that the storage modulus of the PPP tend to increase with 

an increase in protein content and decrease in oil and starch contents (Figure 4.1b and c).   
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Figure 4.1. Effect of protein, total starch, and oil contents on the G' properties of pea protein 

products.(a) Pareto chart of G', (b) Influence of protein and oil contents on G', (c) Influence of 

starch and oil contents on G' 
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These observations align with the results of Saha et al. (2011) who examined the effect of 

composition on rheological characteristics of biscuit dough. The difference in the rheological 

properties of the dough was reported to be due to oil content along with protein and starch 

contents. Sudha et al. (2007) described that fat covers the surface of the flour particles which 

impeded the creation of the gluten proteins. Also, Menjivar and Faridi (1994) reported that the 

free fat can disrupt the gluten network of the developed dough causing softer cracker and cookie 

doughs. Higher storage modulus of the pea protein product specifies a greater ability of the paste 

to recover its shape after disruption, i.e., exhibit high elastic or strong solid characteristics. Pea 

protein product with high G' could be recommended to food manufacturers owned to their high 

G' as the basic ingredient in different food applications such as sausage, comminuted meats, and 

3D printed pea proteins. 

4.5.2 Loss Modulus (G") of Pea Protein Products 

The G" of the PPP depends on the angular frequency and are significant difference among the 

different pea protein products. The increase in frequency with G" enhances the distribution of 

viscous components to the viscoelastic properties of the pea protein pastes. These results follow 

a similar pattern to Tangsrianugul et al. (2019) that the loss modulus properties of rice gels 

increased with angular frequency among the different varieties. The large G" observed in pea 

protein products reflects the ability of the pea pastes to resist flow with high viscous properties 

(Zhang et al., 2022). In contrast, a low G" value in pea protein paste indicates the stiffness and 

rigidity of the paste (Kulamarva et al., 2009). As presented in Pareto analysis, the fat content has 

the most significant influence on the G" of the PPP. This is equally influenced by the interaction 

of protein and starch contents (4.2a). This could be ascribed to an intertwined network between 

macromolecules such as protein, fat, and starch. This is equally stated by Zhang et al. (2022) 

from the rheological properties of starches isolated from common bean (Phaseolus vulgaris L.) 

varieties, where the G" was reported to differ in the common bean varieties. The increase in 

protein content of the pea protein paste tends to increase their loss modulus (Figure 4.2b). But 

the increase in oil and starch contents had a negative correlation with loss modulus (Figure 4.2c). 

This can be affirmed in the contour plots.  
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Figure 4.2. Effect of protein, total starch, and oil contents on the G" properties of pea protein 

products.(a) Pareto chart of G", (b) Influence of protein and oil contents on G", (c) Influence of 

starch and oil contents on G" 
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The effect of protein content on the G" of pea protein doughs was established by Ziobro et al. 

(2013) and Klost and Drusch (2019). Significant changes were observed in the rheological 

properties of the bread dough with increase in protein content (Ziobro et al., 2013). For instance, 

addition of lupine protein resulted into a significant increase in the loss modulus. This is because 

proteins are important structural components of the material and contribute to the viscoelastic 

properties of the paste (Ziobro et al., 2013). Contrary to this, a decrease in the slope of G" of pea 

gel was observed which was correlated to the protein content of the fermented pea gels (Klost 

and Drusch, 2019). This dissimarities in the literature can be justified that, the relationship 

between protein content and loss modulus is not always linear and can depend on other factors. 

These include protein concentration, starch composition, paste structure, binding energy, and the 

degree of protein chains' interactions in the paste sample (Ahmed et al., 2016; Zhu et al., 2016; 

Amiri et al., 2018). 

Furthermore, the decrease in loss modulus with starch content might be due to the relatively rigid 

component of starch, and as the starch content increases, the paste becomes more rigid and less 

able to dissipate energy, thereby lowering the loss modulus. For instance, amylose content was 

described to have a negative relationship with loss modulus, as pastes with higher G" exhibit low 

amylose content. Similarly, the flow of starch paste is influenced by external mechanical forces, 

which consequently change the paste conformation. This corroborates Zhang and Zhai (2020) on 

the rheological properties of varieties of red adzuki bean starch. 

4.5.3 Loss Factor (tan δ) of Pea Protein Products 

Loss factor, otherwise known as loss angle or phase angle, describes the amount of energy 

dissipation when a food material is vibrated to the maximum potential energy stored in the food 

material (Franck & Germany, 1993). It indicates the degree of elastic or viscous components of 

the viscoelastic characteristics of the food (Zhang et al., 2022). The loss factor for all pea protein 

products was less than 1 (unity). This supports the study of Atudorei et al. (2021) on the 

rheological properties of wheat-bean composite flour, where all the analyzed samples had loss 

factor values of less than 1. Pastes from pea protein products with a high loss factor demonstrate 

the high viscous behaviour of the pea pastes, while the low loss factor demonstrates elastic-

dominant pastes. The variation in the loss factor among the pea protein products could be 

attributed to difference in varieties of pea protein products. This support Haddarah et al. (2014) 
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that the loss factor (phase angle) of bean gum depends on the varieties of the carob bean 

varieties. Furthermore, the tan δ of the pea protein products is largely influenced by the pea 

protein composition where the protein content had the most significant influence on the tan δ. 

Also the starch content also affect the degree of elastic and viscous components of the 

viscoelastic characteristics of the pea pastes. This can be seen in the Pareto analysis (4.3a). In 

addition, the protein content had a positive linear relationship with the tan δ, where the tan δ of 

the pea protein pastes increased with an increase protein content (4.3c). This increase can be 

influenced by the high thermal treatment of the pea products resulting to highly purified and 

processed products. This tends to lower the loss factors and results in a higher concentration of 

protein and a lower amount of non-protein components. The tan δ of the pea protein products is 

also influenced by the starch content and type of starch. For instance, high amylose content in a 

paste could result in a lower loss factor, exhibiting a negative correlation with amylose content 

(Tangsrianugu et al., 2019). However, this may differ among different types of starch present in 

the pea products.  

4.5.4 Complex viscosity (|η*|) of Pea Protein Products 

Complex viscosity (|η*|), also known as apparent viscosity, describes the changes in the 

intermolecular forces of food protein at a steady shear test (Wang et al., 2019). Non-newtonian 

fluids such as pastes are fluids with viscosity that remains constant regardless of the applied 

shear rate at constant temperature (Yahia et al., 2016). The pea protein products, therefore, 

displayed non-newtonian fluid behavior since their viscosities did not vary linearly with the 

shear rate. All the pea products exhibited a shear-thinning phenomenon, decreasing in viscosity 

as the shear rate increased. This phenomenon is consistent with the flow curve of pea protein 

dispersions reported by Chen et al. (2021) and Xia et al. (2022) and is attributable to Newtonian 

fluids. Pareto analysis showed that, the oil content had the most dominating influence on the 

complex viscosity of the pea protein products (Figure 4.4a). Similarly, contour plot indicated that 

the η* of the pea protein protein tends to increase with decrease in oil content (Figure 4.4b).  
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Figure 4.3. Effect of protein, total starch, and oil contents on the tan δ properties of pea protein 

products. (a) Pareto chart of tan δ, (b) Influence of protein and oil contents on tan δ, (c) Influence 

of starch and oil contents on tan δ. 
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Figure 4.4 Effect of protein, total starch, and oil contents on the tan δ properties of pea protein 

products.(a) Pareto chart of η*, (b) Influence of protein and oil contents on η*, (c) Influence of 

starch and oil contents on η* 
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This occurrence increase in the complex viscosity with decrease in oil content is referred to the 

resistance of a fluid to flow under deformation. This is due to the ability of oil to act as a 

lubricant, reducing the interactions between the protein molecules and leading to a more fluid-

like consistency. This is could equally be due to the intermolecular (repulsive and attractive 

interaction) between the oil and proteins of the pea protein products, which could affect their 

complex viscosity (Krentz et al., 2022). The increase in starch content and decrease in protein 

content resulted into pea protein products with high η* (Figure 4.4b). Bala et al. (2020) reported 

a similar increase in η* with lower amount of protein and high amount of starch. Higher complex 

viscosity value specifies an increase in the molecular interactions and strengthening of dough 

structure. The increased complex viscosity observed explains an intensification in the molecular 

interaction and firmness of the paste structure. This phenomenon was also reported by Bala et al. 

(2020) on the rheological properties of grass pea (Lathyrus sativus L.) flour, where high η* 

describes the increase in the strength and molecular interaction of the dough.  

4.6 Principal Component Analysis of Pea Protein Products 

In an effort to simplify the complexity of the rheological properties among the different varieties 

of pea protein products, the principal component analysis (PCA) was employed. At eigenvalues 

≥1, the PCA of the pea protein products exhibits three principal components. For pea protein 

flour, the principal component (PC) amounts to 98.68% of the total variation, whereas the PC1, 

PC2, and PC3 account for 75.30%, 23.08%, and 1.19%, respectively. In the pea protein 

concentrates, the PC presents 87.94 of the total variation (at eigenvalues ≥ 1) with 57.36%, 

30.58%, and 12.06% for PC1, PC2, and PC3, respectively. Likewise, the first three components 

(eigenvalues ≥ 1) of the pea isolates explain 99.84% of the variation, with 52.58%, 35.19%, and 

12.08% for PC1, PC2, and PC3, respectively. PC1 is considered to describe the most variation. 

In contrast, PC2 describes the second most variation in data when multidimensional data is 

predictable in the form of single-dimensional data, as described by Lee et al. (2017). The PC1 

and PC2 of the pea protein flour accounted for 75.30% and 23.38% of the total variability in the 

12 varieties of pea protein flour. The association between the different varieties of pea protein 

products and rheological properties are presented in Figures 4.5a - c of the biplots. The biplots 

display the pea variety and properties having the largest contributor to the total variation on 

every dimension (Sharma, 1998).  
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Figure 4.5. PCA analysis based on the rheological properties of pea protein products from 12 varieties for each of the protein 

ingredients. Biplot for pea flour (a), Biplot for pea protein concentrate (b) Biplot for pea protein isolates (c). 
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Singh et al. (2008) describes that the curves closer to each other on the bipolar are positively 

correlated, whereas those in reverse directions are negatively correlated. Thus, the loss factor had 

the leading variable with the positive peak value on the PC1 and PC2 (Figure 4.5a). The storage 

modulus, loss modulus, and complex viscosity were on the positive value of PC1 but negatively 

loaded on PC2. Similarly, PPF 20 had the dominant varieties among the pea protein flour, "PPC 

31" for pea protein concentrate and "PPI 12" for pea protein isolate, along the PC1 and PC2.     

4.7 Cluster Analysis of Pea Protein Products  

The hierarchical cluster on the rheological properties of pea protein products was done to 

differentiate and evaluate the relationships of different genotypes of the pea protein products. 

This is presented in Figures 4.6a - c of the dendrograms. The dendrogram comprised two main 

groups each for the pea flour, pea protein concentrates, and pea protein isolate, which was further 

distributed into multiple clusters. As apparent in Figure 6a, the two major clusters for pea flour 

are further divided into four clusters. The primary cluster contains the largest genotypes, 

comprising nine genotypes that are distributed between four sub-cluster, which are PPF1, PPF 2, 

PPF 24, PPF 21, PPF 27, PPF 16, PPF 22, PPF 28, and PPF 26 of pea flour, the second contains 

one genotype (PPF 23), the third contains one genotype (PPF 25), and the fourth cluster also has 

one genotype (PPF 20). However, the most represented cluster observation was in PPF 16, while 

the least represented was in PPF 20. Figure 4.6b represents the dendrogram of the pea protein 

concentrates, which demonstrated four clusters. The first cluster has the highest genotypes and 

contains six genotypes distributed between two sub-cluster types: PPC 17, PPC 30, PPC 36, PPC 

18, PPC 19, and PPC 32. The second cluster has three genotypes distributed between two sub-

cluster: PPC 34, PPC 35, and PPC 38. The third cluster contains PPC 33 and PPC 37. However, 

the most represented cluster observation was in PPC 35, while the least was in PPC 31. 

Likewise, the dendrogram chart for pea protein isolates has four clusters (Figure 4.6c). The first 

cluster contains the highest genotypes consisting of four distributed between two sub-cluster, 

which include PPI 3, PPI 4, PPI 5, and PPI 13. The second cluster has three genotypes 

distributed between two sub-cluster, PPI 8, PPI 14, and PPI 9, whereas the third cluster contains 

PPI 7 and PPI 11. The fourth cluster has three genotypes distributed between two sub-cluster, 

which are PPI 6, PPI 10, and PPI 12. The most represented cluster observation was in PPI 8, 

while the least was in PPI 12.  
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Figure 4.6. Dendrogram of twelve pea protein products Barley accessions using the Hierarchical Ward’s clustering method based on 

eleven measured traits. Dendrogram for pea flour (a), Dendrogram for pea protein concentrate (b), Dendrogram for pea protein 

isolates (c). 
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These results explain the variability of the rheological properties of pea protein products among 

the different pea varieties. Similarly, this also showed the linearity in hierarchical cluster and 

principal component analysis results. 

4.8 Conclusion 

Rheological assessments, namely storage modulus, loss modulus, loss factor, and complex 

viscosity, are rheological indices for examining the rheological behaviour of pea protein products 

from different varieties. The composition of pea protein products, including their protein, oil, and 

starch contents, showed significant influence (at p<0.05) on their rheological properties. A 

higher protein content leads to higher storage modulus, loss modulus, and loss factor, while the 

addition of oil can decrease the storage modulus, loss factor and complex viscosity. The presence 

of starch tends to favour complex viscosity of the pea protein products. The most and least 

dominant rheological properties among the pea protein products was recognized. The pea protein 

products with utmost cluster were also established. Understanding the impact of composition on 

rheological properties is critical in designing pea protein products with desired texture, stability, 

and functionality for various applications in the food industry. Thus, the outcome of this study 

would be useful in the characterization of the rheological properties of pea protein products to 

control and optimize product properties and qualities.  
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CONNECTING TEXT TO CHAPTER FIVE 

The preceding chapter investigated how different compositions of total starch, protein, and oil 

affected the rheological properties of pea products. Rheology is the study of how materials 

deform and flow, and in this case, it refers to the properties of how the pea products behave 

under different conditions. The study involved measuring the storage modulus, loss modulus, 

loss factor and complex viscosity of the pea products with different compositions. 

In chapter five, a different approach was taken to predict the properties of protein products. 

Instead of relying on traditional experimental methods, an artificial neural network machine 

learning algorithm was used. This type of algorithm is modeled after the way the human brain 

works and can learn patterns from data, allowing it to make predictions about new data. 

The machine learning algorithm was trained using data on the techno-functional, thermal, and 

rheological properties of protein products. The algorithm learned to recognize patterns in the data 

and make predictions about the properties of new protein products based on their composition. 

Overall, the study in chapter five used artificial intelligence to predict the properties of protein 

products, which could be useful for food manufacturers looking to optimize their products for 

specific uses or applications. This approach could also reduce the need for time-consuming and 

expensive experimental testing, making it a more efficient and cost-effective way to develop new 

products. 
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CHAPTER FIVE 

MACHINE LEARNING-BASED PREDICTION OF TECHNO-FUNCTIONAL, THERMAL 

AND RHEOLOGICAL PROPERTIES FOR PEA PROTEIN PRODUCTS 

Abstract  

This study aimed to predict the techno-functional, thermal, and rheological properties of pea 

protein products using a machine learning artificial neural network algorithm. The research 

revealed variations in the optimal number of neurons, iterations, and hidden layers for different 

properties such as water absorption capacity, water solubility index, oil absorption index, 

foaming capacity, protein solubility, emulsifying capacity, foaming stability, onset temperature, 

peak temperature, enthalpy, complex viscosity, storage modulus, loss modulus, and loss factor. 

Additionally, the study found differences in the Mean Absolute Error, coefficient of 

determination, Mean-Squared Error, and RMSE for the properties in both training and test 

datasets. These findings provide insights into the potential of machine learning algorithms for 

predicting the properties of pea protein products. 

5.1 Introduction 

Techno-functional, thermal and rheological properties of pea protein products are important for 

both product quality and process efficiency. Techno-functional properties of pea protein products 

describes those properties of the products except the nutritional ones, which affects their 

utilization in food systems. These include properties associated with protein hydration (such as 

protein solubility, water and oil absorption capacities) and protein surface characteristics 

(foaming capacity and stability, and emulsifying properties) (Zhao et al., 2020). The thermal 

properties of pea protein products, namely onset temperature, peak temperature, gelatinization 

enthalpy deals with their physical and chemical behaviors in response to temperature changes 

(Lu et al., 2019). These properties play significant role in the processing and utilization of pea 

protein-based foods, as they can affect the texture, stability, and overall quality of the final 

product (Ahmed et al., 2021). The rheological property on the other hand, is concerned with how 
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pea protein products behave and deform in response to an external force, which are important for 

ensuring product quality, sensory appeal, and formulation stability (Tarafdara et al., 2020).  

These functional properties such as techno-functional, rheological, and thermal properties enable 

a wide utilization of pea protein products in various food-related products including extruded 

foods, edible films and encapsulation for bioactive ingredients. They also help to develop and 

produce dairy analogue drinks, curd, and fermented products (Shanthakumar et al., 2020). 

However, peas have different varieties that contain distinct components like protein, oil, and 

starch, which can affect their functional properties. The interactions between the various 

components in pea products can be complex and non-linear, making it challenging to predict 

their functional properties accurately during food applications. In addition, there is a large 

amount of data that needs to be collected and analyzed to develop accurate predictive models to 

predict their functional properties. Thus, machine-learning techniques may be required to 

develop accurate predictive models. 

Machine learning offers an opportunity to analyze data and has an advanced advantage in 

performing “intelligence” tasks over calculations performed by humans since machine learning 

algorithms are better equipped to identify unconventional patterns in large data sets (Kim et al., 

2018). Polynomial regression is currently one of the prevalent machine learning techniques used 

to identify risk factors that can predict the development of complications. On the other hand, 

artificial neural networks (ANNs) are a different type of machine learning that is non-linear and 

highly adaptable, unlike polynomial regression (Sanusi and Akinoso, 2021).  

The artificial neural network (ANN) distinguishes itself from conventional programs due to its 

non-linear, multi-parameter coupling problems and ability to learn about a system without prior 

knowledge of the processing variables involved (Wang et al., 2019; Muhammed et al., 2022). 

Unlike traditional methods, a properly trained neural network can produce multiple outputs 

simultaneously. They can also be utilized to mimic human’s ability for pattern recognition (Naik 

et al., 2022). These networks, if appropriately trained, can be efficiently used to process data and 

establish correlations using multiple iterations without utilizing any prior association data. These 

networks can be used to simplify the overall pattern recognition of computational data and have 

been used to predict different functional properties of foods (Naik et al., 2019). Additionally, 

ANNs can be utilized in situations where an exact mathematical description of the process is not 
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available (Bhattacharya and Bhavesh, 2007). ANNs are made up of neurons, which are the basic 

units of the network. The ANN is composed of three types of layers: the input layer, which 

receives the input parameters, the hidden layers, which contain neurons that apply transfer 

functions between the inputs and outputs, and the output layer. The structure and parameters of 

the ANN, such as the number of neurons, weights, and biases, are crucial for the network's 

performance. To optimize these parameters, the network is trained using various algorithms to 

minimize the error. One such algorithm is Levenberg-Marquardt, a curve fitting algorithm that 

has proven effective in solving non-linear least-squares problems (Gowida et al., 2019). As a 

result, they gained significant recognition and are intriguing techniques for estimating, 

predicting, and controlling bioprocesses (Ajasa et al., 2014). 

In recent years, the use of ANNs in the field of food processing has a broad and comprehensive 

range of possibilities. It could transform electrophoretic focusing patterns as well as 

chromatographic and spectrum data into significant information that can be used to forecast 

different functional, physical, chemical, sensory, and rheological characteristics of various food 

products (Muhammed et al., 2022). They have also proven to be successful modeling tool in 

various food-processing applications include sensory analysis, quality control, classifications, 

microbiology, and drying applications (Kumar et al., 2019). Muhammed et al. (2022) used ANNs 

to forecast the quality characteristics of dates stored in cold conditions by analyzing their 

electrical properties; Wang et al. (2019) employed ANN to estimate the thermal conductivity of 

different nanofluids comprising ethylene glycol, while Rostami et al. (2020) utilized ANN to 

predict the thermal conductivity of a nano-fluid. In addition, the thermos-physical characteristics 

of deep-fat fried plantain chips (ipekere) was forecasted using artificial neural networks 

(Adeyanju et al., 2021), while Sanusi and Akinoso (2022) studied the energy consumption 

behavior in rice processing using Taguchi and artificial neural network methodologies. Abraham 

et al. (2020) evaluated the ability of ANNs to forecast time series data on Brazilian soybean 

production. Although there are numerous potentials to benefit from this method, particularly in 

complex systems, however, the application of artificial neural network for predicting the 

functional (techno-functional, rheological, and thermal) properties of pea protein products 

remains scarce up to the present date. Therefore, based on the information available in the 

literature, it would be worthy to adopt artificial neural network to accurately predict these 

functional properties, which would enable efficient optimization of food processes to produce 
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high-quality, consistent products that meet consumer expectations. Thus, this study aimed to 

predict the techno-functional, thermal and rheological properties of pea protein products using 

artificial neural network machine learning.  

5.2. Methodology 

Artificial Neural Network (ANN) is a machine learning technique that can be used to predict and 

model complex relationships between inputs and outputs. In this study, the Scikit-Learn Multi-

Layer Perceptron (MLP) Regressor in Python version 3.11.3 was used to build an ANN model to 

predict the techno-functional (water absorption capacity, water solubility index, oil absorption 

index, foaming capacity, protein solubility, emulsifying capacity, and foaming stability), thermal 

(onset temperature, peak temperature, and enthalpy) and rheological (complex viscosity, storage 

modulus, loss modulus, and loss factor) properties of pea protein products based on its protein, 

oil and total starch contents as shown in schematic diagram 5.1, 5.2 and 5.3. The data obtained 

from the techno-functional, thermal, and rheological properties were split into training and test 

sets, and the performance of the model was evaluated using mean absolute error, mean squared 

error, root-mean squared error, and coefficient of determination (R2) values. 

 

Figure 5.1. Schematic diagram of Artificial neural network (ANN) for prediction of techno-

functional properties of pea protein products 
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Figure 5.2. Schematic diagram of Artificial neural network (ANN) for prediction of thermal 

properties of pea protein products 
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Figure 5.3. Schematic diagram of Artificial neural network (ANN) for prediction of rheological 

properties of pea protein products 

5.3 Model Development Stages  

The following steps were taken in developing the model: 

Step 1: Importing the required libraries and data 

The first step was to import the required libraries and load the data into the Python environment. 

The Pandas library was used to read the data from a CSV file and convert it into a Pandas 

DataFrame. The Scikit-Learn library was used to split the data into training and test sets and was 

also used to build and evaluate the MLP regressor model. 

import pandas as pd  

from sklearn.neural_network import MLPRegressor  

from sklearn.model_selection import train_test_split 

data = pd.read_csv('technofunctional thermal rheological_properties.csv') 



 
 

98 
 

Step 2: Data preprocessing 

Before building the ANN model, the data were preprocessed to ensure that it is suitable for 

analysis. This involves removing any missing values, scaling the data, and splitting it into input 

and output features as shown in schematic diagrams 1, 2, and 3. 

Scale the input features 

from sklearn.preprocessing import StandardScaler scaler = StandardScaler()  

X = scaler.fit_transform (data[['Protein', 'Oil content', 'Total starch']]) 

Split the data into input and output features 

y = data [['Water Absorption Capacity', 'Water Solubility Index', 'Oil Absorption Index', 

'Foaming Capacity', 'Foaming stability', 'Protein solubility', 'Emulsifying capacity']] 

y = data [['Onset temperature', 'Peak temperature', 'Enthalpy']] 

y = data [['Complex Viscosity', 'Storage Modulus', 'Loss modulus', 'Loss factor']] 

Step 3: Splitting the data into training and test sets 

The data set wassplit into training and test sets in the ratio 80:20. This was allowed to train the 

model on a subset of the data and test its performance on the remaining data. 

Split the data into training and test sets 

X_train, X_test, y_train, y_test = train_test_split (X, y, test_size=0.2) 

Step 4: Building the MLP regressor model 

Based on this, the MLP regressor model was built using the Scikit-Learn library. The default 

parameters were used for the MLP regressor, but different numbers of layers and neurons was 

also experimented to find the best configuration. 

Build the MLP regressor model 

mlp = MLPRegressor (ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟_𝑠𝑖𝑧𝑒, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟) 

Train the model on the training set 
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mlp.fit(X_train, y_train) 

Step 5: Evaluating the performance of the model 

After training the model, the performance on the test set was evaluated using various metrics 

such as mean absolute error, mean squared error, root-mean squared error, and coefficient of 

determination (R2) valuesas described in Equations 5.1 to 5.4. 

Mean Absolute Error (MAE): Mean Absolute Error is a commonly used metric for evaluating the 

performance of regression models. It measures the average absolute difference between the 

actual and predicted values. 

𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑥𝑖|𝑛

𝐼=1

𝑛
        5.1 

where: n is number of observations yiis actual value of the ith observation xi is predicted value of 

the ith observation. 

Mean Squared Error (MSE): Mean Squared Error is another commonly used metric for 

evaluating the performance of regression models. It measures the average squared difference 

between the actual and predicted values. 

𝑀𝑆𝐸 =
∑ (𝑦𝑖−Ý𝑖)

2𝑛
𝑖=1

𝑛
        5.2  

where n is number of observations, yiis the actual value of the ith observation, ŷiis predicted value 

of the ith observation. 

Root Mean Squared Error (RMSE): Root Mean Squared Error is the square root of the Mean 

Squared Error. It is also a commonly used metric for evaluating the performance of regression 

models. It measures the average absolute difference between the actual and predicted values but 

penalizes larger differences more heavily than MAE. 

𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑖−Ý𝑖)
2𝑛

𝑖=1

𝑛
                                                                          5.3  

where: n = number of observations yi = actual value of the ith observation ŷi = predicted value of 

the ith observation 
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R-Squared (R²) Value: R-Squared, also known as the coefficient of determination, measures the 

proportion of the variation in the dependent variable that is explained by the independent 

variables in the regression model. 

𝑅2 = 1 − 
𝑅𝑆𝑆

𝑇𝑆𝑆
                                                                                      5.4 

where: RSS = sum of squared residuals (i.e., the sum of squared differences between the actual 

and predicted values) TSS = total sum of squares (i.e., the sum of squared differences between 

the actual values and the mean value of the dependent variable). R² takes values between 0 and 1, 

where 0 indicates that none of the variation in the dependent variable is explained by the model, 

and 1 indicates that all of the variation in the dependent variable is explained by the model. 

Evaluate the performance of the model on the test set 

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score 

y_pred = mlp.predict(X_test) 

mae = mean_absolute_error(y_test, y_pred) mse = mean_squared_error(y_test, y_pred) rmse = 

np.sqrt(mse) r2 = r2_score(y_test, y_pred) 

print("Mean Absolute Error:", mae) print("Mean Squared Error:", mse) print("Root Mean 

Squared Error:", rmse) print("R-Squared:", 

Predict the target features 

The trained MLP regressor was used to predict the target features (Water Absorption Capacity, 

Water Solubility Index, Oil Absorption Index, Foaming Capacity, Foaming stability, Protein 

solubility and Emulsifying capacity, Onset temperature, Peak temperature, Enthalpy, Complex 

Viscosity, Storage Modulus, Loss modulus, and Loss factor) for the test set. 

Visualize the results and save the model 

Matplotlib was used to plot the predicted values against the actual values for each of the targeted 

features. This was to allow the visual inspection to determine the accuracy of the predictions. 

Save the model: Finally, we save the trained MLP regressor using Scikit-Learn's "joblib.dump" 

function, which allows the load of the model later for prediction on new data. 
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5.3. Results and Discussion 

5.4 ANN for Regression analysis of Techno-functional properties of Pea protein products 

Table 5.1 shows the optimum ANN-machine learning parameters for the techno-functional 

properties of pea protein products.  

5.4.1 Water absorption capacity  

The model for water absorption capacity (WAC) has three hidden layers, each with 200 neurons. 

The model was trained using the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm 

(LBFGS) solver for 25000 iterations. The scores obtained for the training and test datasets are 

0.983 and 0.895, respectively. These scores indicate that the model has performed well on the 

training data, but slightly worse on the test data, suggesting that the model may have overfit the 

training data. However, the test score of 0.895 is still relatively high, indicating that the model is 

useful for predicting water absorption capacity. The Mean Absolute Error (MAE) of the model 

on the training dataset is 0.426, indicating that the average difference between the predicted and 

actual water absorption capacity values on the training set is around 0.426. The R2 value, which 

measures the goodness of fit of the model, is 0.983, indicating that the model explains 98.3% of 

the variance in the target variable. The Mean Squared Error (MSE) of the model on the training 

dataset is 0.612, which is the average of the squared differences between the predicted and actual 

values. The Root Mean Squared Error (RMSE) is 0.653, which is the square root of the MSE and 

represents the average deviation of the predicted values from the actual values. Finally, a plot of 

the predicted versus actual WAC values was generated for the training and testing dataset, which 

shows that the model's predictions are generally close to the actual values, although there are 

some outliers (Figure 5.4). Overall, these metrics indicate that the MLP neural network model 

has performed well in predicting the water absorption capacity.  
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Table 5.1: Optimum ANN-machine learning parameters for techno-functional properties 

Pea Protein 

Properties  

Neuron

s 

Iteration

s 

Hidde

n 

layers 

R2
t MSE

t 

MAEt RMSE

t 

R2
tr MSEtr MAEt

r 

RMSEtr 

WAC 200 25000 3 0.9

8 

0.61 0.43 0.65 0.8

9 

5.04 1.36 2.25 

WSI 200 10000 2 0.7

8 

8.45 1.69 2.91 0.7

5 

6.16 1.60 2.48 

OAC 200 10000 2 0.8

6 

3.41 1.33 1.85 0.8

0 

3.30 1.41 1.82 

FS 100 10000 3 0.8

9 

0.14 0.21 0.37 0.4

3 

0.54 0.50 0.73 

FC 200 10000 2 0.9

5 

0.33 0.32 0.58 0.8

1 

1.11 0.72 1.05 

PS 100 50000 4 0.9

5 

7.26 1.89 1.38 0.8

1 

28.63 4.46 5.35 

EC 100 50000 4 0.3

3 

5.13 1.71 1.31 0.3

1 

5.96 1.86 2.44 

 



 
 

103 
 

 

Figure 5.4. (a) Predicted values of WAC against actual values for training datasets (b) Predicted 

values of WAC against actual values for test datasets 

5.4.2 Water solubility Index  

The model for water solubility index (WSI) has two hidden layers, each containing 200 neurons, 

and was trained using the 'LBFGS’ solver for a maximum of 10,000 iterations. The model's 

performance was evaluated using two metrics, the R-squared value and the mean absolute error 

(MAE). The R2 value measures the proportion of the variance in the target variable (WSI) that is 

explained by the model. A value of 0.78 indicates that the model explains 78% of the variance in 

the target variable, which is a good result. The MAE is the average difference between the 

predicted values and the actual values, and a value of 1.69 suggests that the model's predictions 

are on average 1.69 units away from the actual values. Additionally, the mean squared error 

(MSE) was calculated, which is another measure of the model's accuracy, and its value was 8.45. 

The model's performance was also evaluated on a separate test dataset, and it achieved an R2 

value of 0.75. This indicates that the model is not overfitting to the training data and is able to 

generalize well to new data. Finally, a plot of the predicted versus actual WSI values was 

generated for the training and test dataset, which shows that the model's predictions are generally 

close to the actual values, although there are some outliers (Figure 5.5). The RMSE for the 

training and testing were 2.91 and 2.48. Therefore, the MLP neural network model shows good 
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performance for predicting the water solubility index and has the potential to be useful in various 

applications where this property is important. 

 

Figure 5.5. (a) Predicted values of WSI against actual values for training datasets (b) Predicted 

values of WSI against actual values for test datasets 

5.4.3 Oil Absorption Capacity  

The result indicates the performance of a multi-layer perceptron (MLP) regressor model in 

predicting the oil absorption capacity of a material. The model for oil absorption capacity (OAC) 

was trained using 2 hidden layer architecture with 200 neurons and the solver used was 'LBFGS’ 

with a maximum iteration of 10,000. The scores of the model on the training and testing datasets 

were 0.86 and 0.80, respectively. The scores indicate that the model has good performance in 

predicting the oil absorption capacity of the material, with slightly better performance on the 

training dataset compared to the testing dataset. The Mean Absolute Error (MAE) of the model 

was 1.32, which means that the average difference between the predicted and actual values of oil 

absorption capacity is 1.32 units. The R2 value of the model was 0.86, indicating that the model 

can explain 86.3% of the variance in the data. This suggests that the MLP regressor model is a 

good fit for the data and can accurately predict the oil absorption capacity of pea protein 

products. The Mean-Squared Error (MSE) of the model was 3.41, indicating that the model has a 
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relatively low error rate in predicting the oil absorption capacity of pea protein products. The 

Root Mean Squared Error (RMSE) of the model was 1.85, which represents the standard 

deviation of the residuals between predicted and actual values for the training while 1.81 for the 

testing datasets (Figure 5.6). Overall, the result suggests that the MLP regressor model is an 

effective tool for predicting the oil absorption capacity of pea protein products.  

 

Figure 5.6. (a) Predicted values of OAI against actual values for training datasets (b) Predicted 

values of OAC against actual values for test datasets 

5.4.5 Foaming capacity  

The foaming capacity (FC) results suggested that the MLP Regressor model with 2 hidden layers 

of 200 neurons each and solver set to 'LBFGS’ performed well. The R2 value of 0.95 for the 

training data indicates that the model explains 95% of the variability in the data. The test score of 

0.81 is also reasonably high, suggesting that the model has good generalization performance.  

Additionally, the mean absolute error of 0.32 and root mean squared error of 0.58 indicate that 

the model's predictions are on average off by 0.32 units and the error standard deviation is 0.58 

units. These values are reasonably low, indicating that the model is making accurate predictions. 

Furthermore, the plot in Figure 5.7 (Train Datasets and Test Datasets of foaming capacity), 

predicted against actual is essential for understanding the model's performance. It shows the 

predicted foaming capacity values plotted against the actual values for the training dataset. If the 
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points on the plot are close to the line of best fit, it suggests that the model's predictions are 

accurate (Sanusi and Akinoso, 2022). It is worth noting that while the model has performed well. 

 

Figure 5.7. (a) Predicted values of FC against actual values for training datasets (b) Predicted 

values of FC against actual values for test datasets 

5.4.5. Foaming stability  

The result of foaming stability (FS) indicates that a multi-layer perceptron (MLP) regression 

model with three hidden layers, each with 100 neurons, was trained using the 'LBFGS’ solver 

with 10,000 maximum iterations to predict foaming stability. The model achieved a high R2 of 

0.898 for the training dataset, indicating that 89.8% of the variability in the data was explained 

by the model. However, the R2 value for the test dataset was low at 0.434, indicating that the 

model's generalization ability is poor, and it is overfitting to the training data. The mean absolute 

error (MAE) of the model was 0.212, indicating that the average difference between the 

predicted and actual values was 0.212, which is relatively low. The mean-squared error (MSE) 

was 0.138, indicating that the model's predictions were quite close to the actual values. The root 

mean squared error (RMSE) was 0.371, indicating that the model's predictions had a standard 

deviation of 0.371 from the actual values (Figure 5.8). Therefore, the model achieved good 

performance on the training data but poor generalization performance on the test data, suggesting 

that it may be overfitting to the training data. The MAE, MSE, and RMSE values indicate that 

the model's predictions were quite accurate.  
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Figure 5.8 (a) Predicted values of FS against actual values for training datasets (b) Predicted 

values of FS against actual values for test datasets 

5.4.6 Protein solubility  

The obtained result for protein solubility (PS) is related to the prediction of protein solubility 

using MLP regressor. The MLP regressor model used has four hidden layers, each with 100 

neurons, and the 'LBFGS’ solver is used for optimization. The model was trained for a maximum 

of 50,000 iterations. The result suggests that the MLP regressor model with the given parameters 

is able to predict the solubility of proteins with high accuracy. The R2 values for both training 

and test sets are 0.954 and 0.810, respectively, indicating that the model explains a high 

percentage of the variance in the data. The R2 value ranges from 0 to 1, with higher values 

indicating better fit (Muhammed et al., 2022). The mean absolute error (MAE) of the training set 

is 1.89, which means that on average, the model's predictions deviate from the actual solubility 

by 1.89 units. The test set MAE is 4.461, which is higher than the training set MAE, indicating 

that the model may be overfitting to the training data. However, the test set MAE is still 

relatively low, suggesting that the model is generalizing well to new data. The mean squared 

error (MSE) and root mean squared error (RMSE) are also provided. The MSE of the training set 

was 7.26, and the test set MSE was 28.63. The RMSE is the square root of MSE, which indicates 

the average difference between the predicted and actual solubility values. The RMSE for the 
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training set is 1.378, while the test set RMSE is 5.350 (Figure 5.9). Overall, the results suggest 

that the MLP regressor model is a highly accurate predictor of protein solubility.  

 

Figure 5.9: (a) Predicted values of PS against actual values for training datasets (b) Predicted 

values of PS against actual values for test datasets 

5.4.7 Emulsifying capacity  

The result obtained for emulsifying capacity (EC) shows the performance of a multi-layer 

perceptron (MLP) regression model in predicting the emulsifying capacity. The MLP regressor is 

a type of neural network that has 4 hidden layers, each having 100 neurons, and is trained with 

the 'LBFGS’ solver for a maximum of 50,000 iterations. The R2 values for the training and 

testing datasets are 0.333 and 0.313, respectively, indicating that the model explains 

approximately 33% of the variance in the training dataset and 31% of the variance in the testing 

dataset. Although the R2 values are not very high, they are still significant and indicate that the 

model has some predictive power. The MAE values for the training and testing datasets are 

1.705 and 1.859, respectively. The MAE measures the average magnitude of the errors in the 

predictions, and a lower MAE indicates better performance. The MAE values in this case are 

relatively high, suggesting that the model's predictions are not very accurate. The MSE values 

for the training and testing datasets are 5.133 and 5.958, respectively. The MSE measures the 

average of the squared errors in the predictions, and a lower MSE indicates better performance. 

The MSE values in this case are relatively high, suggesting that the model's predictions are not 
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very accurate. Finally, the RMSE values for the training and testing datasets are 1.306 and 2.441, 

respectively (Figure 5.10). The RMSE is the square root of the MSE, and a lower RMSE 

indicates better performance. The RMSE values, in this case, are also relatively high, indicating 

that the model's predictions are not very accurate. Therefore, the MLP regression model has 

moderate predictive power but is not very accurate in predicting the emulsifying capacity. 

Further model optimization may be required to improve its performance. 

 

Figure 5.10: (a) Predicted values of EC against actual values for training datasets (b) Predicted 

values of EC against actual values for test datasets 

5.5. ANN for Regression analysis of Thermal properties of Pea protein products 

Table 5.2 shows the optimum ANN-machine learning parameters for the thermal properties of 

pea protein products.  

5.5.1. Onset temperature (OS) 

The onset temperature (OS) model was developed using a Multi-Layer Perceptron (MLP) with 3 

hidden layers of 200 neurons each, trained using LBFGS and for a maximum of 25000 iterations. 

R2 values were obtained for the training and testing datasets respectively. The score for the 

training dataset is 0.8286, which indicates that the model explains 82.86% of the variance in the 

training data. The score for the testing dataset is 0.53, which suggests that the model generalizes 

less well to new data than to the data it was trained on.  
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Table 5.2: Optimum ANN-machine learning parameters for thermal properties  

Pea Protein 

Properties  

Neurons Iterations Hidden 

layers 

R2
t MSEt MA

Et 

RMSEt R2
tr MSEtr MAEt

r 

RMSEtr 

Onset temp 200 25000 3 0.82 107.57 7.24 10.37 0.5

3 

368.34 12.55 19.19 

Peak temp 200 50000 3 0.93 20.32 2.25 4.51 0.7

3 

86.99 6.37 9.32 

Enthalpy  200 10000 2 0.97 65.35 4.63 8.08 0.7

9 

591.27 16.73 24.31 
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Figure 5.11: (a) Predicted values of onset temperature (OS) against actual values for training 

datasets (b) Predicted values of onset temperature (OS) against actual values for test datasets 
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This could be due to overfitting, which occurs when the model becomes too complex and starts 

to fit the noise in the training data instead of the underlying patterns. The mean absolute error 

(MAE), mean-squared error (MSE), and root mean-squared error (RMSE) for both the training 

and testing datasets with lower values indicate better performance. For the training dataset, the 

MAE is 7.24, the MSE is 107.58, and the RMSE is 10.37. For the testing dataset, the MAE is 

12.55, the MSE is 368.34, and the RMSE is 19.19 (Figure 5.11). These values suggest that the 

model performs better on the training dataset than on the testing dataset, as the errors are smaller 

for the former. 

5.5.2 Peak temperature  

The MLP model for peak temperature created the neural network model with 3 hidden layers, 

each with 200 neurons, and the 'LBFGS' solver is used to optimize the weights of the neural 

network during training. The model is trained for a maximum of 50,000 iterations. The R2 

training score is 0.93, while the testing score is 0.73. The training score suggests that the model 

is performing well on the training dataset and is able to capture the patterns in the data. However, 

the testing score suggests that the model is not generalizing well to new data. The MAE for the 

training dataset is 2.25, while for the testing dataset, it is 6.38. The MSE for the training dataset 

is 20.33, while for the testing dataset, it is 87.00. Finally, the RMSE for the training dataset is 

4.51, while for the testing dataset, it is 9.33 (Figure 5.12). These evaluation metrics suggest that 

while the model is performing well on the training dataset, it is not generalizing well to new data. 

This could be due to overfitting, where the model is too complex and is fitting too closely to the 

noise in the training data.  
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Figure 5.12: (a) Predicted values of onset temperature (OS) against actual values for training 

datasets (b) Predicted values of onset temperature (OS) against actual values for test datasets 

5.5.3 Enthalpy  

The MLP model created for enthalpy has 2 hidden layers, each with 200 neurons, and the 

'LBFGS’ solver was used to optimize the weights of the neural network during training. The 

model was trained for a maximum of 10,000 iterations. The R2 training score is 0.97, while the 

testing score is 0.80. The training score suggests that the model is performing well on the 

training dataset and can capture the patterns in the data. The testing score also suggests that the 

model is performing well on the testing dataset and can generalize well to new data. The MAE 

for the training dataset is 4.64, while for the testing dataset, it is 16.73. The MSE for the training 

dataset is 65.35, while for the testing dataset, it is 591.27. Finally, the RMSE for the training 

dataset is 8.08, while for the testing dataset, it is 24.32 (Figure 5.13). These evaluation metrics 

suggest that the model is performing well on both the training and testing datasets. The R-

squared values are high, indicating that the model is able to explain a significant portion of the 

variance in the target variable. The MAE and RMSE values are also reasonable, indicating that 

the model is making reasonably accurate predictions. However, the testing MAE and RMSE 

values are significantly higher than the training MAE and RMSE values, suggesting that the 

model may be overfitting to the training data to some extent. 
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Figure 5.13. (a) Predicted values of onset temperature (OS) against actual values for training 

datasets (b) Predicted values of onset temperature (OS) against actual values for test datasets 

 

5.6 Building ANN for Regression analysis of Rheological Properties 

Table 5.3 shows the optimum ANN-machine learning parameters for the rheological properties 

of pea protein products.  

5.6.1 Storage modulus (SM) 

The MLP Regressor model with two hidden layer and 100 neurons, maximum iteration 10000, 

and solver'lbfgs' was used to predict the storage modulus values. The model achieved high 

accuracy on the training dataset, with an R2value of 0.99, indicating that 99.99% of the variance 

in the training data can be explained by the model. However, the model's performance on the test 

dataset was not as good as the training dataset, with an R2 value of 0.97. This indicates that 97% 

of the variance in the test data can be explained by the model, which is still a good result. The 

mean absolute error (MAE) for the training data was 17.53, which means that on average, the 

model's predictions were off by 17.54 units from the actual values in the training data. The root 

mean squared error (RMSE) was 30.32, which is the standard deviation of the residuals. A low 

RMSE indicates that the model's predictions are close to the actual values (Figure 5.14). On the 

test dataset, the model had a higher MAE of 218.29, which means that the model's predictions 

were off by 218.30 units on average. The RMSE for the test data was 707.29, which is higher 

than the training dataset's RMSE, indicating that the model's predictions were further from the  
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Table 5.3: Optimum ANN-machine learning parameters for rheological properties  

Pea 

Protein 

Properties  

Neurons Iterations Hidden 

layers 

R2
t MSE

t 

MAE

t 

RMSEt R2
tr MSEt

r 

MAEtr RMSEtr 

Storage 

modulus 

100 10000 2 0.99 919.

2 

17.53 30.32 0.96 5002

57.46 

218.29 707.28 

Loss 

modulus 

200 20000 2 0.99 160.

80 

7.17 12.68 0.97 2101

61.93 

114.49 458.43 

Complex 

viscosity 

200 25000 2 0.99 1734

1480

.29 

2339.

86 

4164.3

1 

0.96 9055

5118

974.6

7 

10651

2.69 

300923.

77 

Loss 

factor 

200 25000 2 0.95 0.00 0.02 0.031 0.43 0.01 0.07 0.09 
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Figure 5.14. (a) Predicted values of storage modulus against actual values for training datasets 

(b) Predicted values of storage modulus against actual values for test datasets 

 

actual values in the test dataset. The Mean-Squared Error (MSE) and Root Mean Squared Error 

(RMSE) values are higher in the test set than the training set, indicating that the model's 

predictions are less accurate in the test set. Overall, the model performed well on both the 

training and test datasets, with high accuracy and low error metrics.  

5.6.2 Complex Viscosity 

The given model is a Multilayer Perceptron (MLP) regressor with two hidden layers having 200 

neurons each, and a maximum iteration of 25000 using the LBFGS solver. The model is trained 

and evaluated on complex viscosity data using two sets of data, i.e., training and testing data. 

The model achieved an excellent performance score of 0.99 on the training dataset and 0.96 on 

the testing dataset, indicating that the model is very good at predicting the complex viscosity for 

unseen data. The Mean Absolute Error (MAE) for the training dataset is 2339.86, while for the 

testing dataset, it is 106512.70. 
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The high MAE on the testing dataset indicates that there is a considerable difference between the 

predicted and actual values of complex viscosity, which might suggest that the model is 

overfitting on the training dataset. 

The R2 value of the training dataset is very close to 1, indicating that the model can explain 

almost all the variance in the training dataset. On the other hand, the R2 value of the testing 

dataset is 0.96, which is still good but lower than that of the training dataset, indicating that the 

model is less effective at explaining the variance in the testing dataset. The MSE for the training 

dataset is 17341480.29, while for the testing dataset, it is 90555118974.67. The higher value of 

MSE on the testing dataset suggests that the model is not able to fit the testing dataset as well as 

the training dataset. The RMSE for the training dataset is 4164.31, while for the testing dataset, it 

is 300923.78 (Figure 5.15). The high value of RMSE on the testing dataset also indicates that the 

model might not generalize well on unseen data. Overall, the model seems to be overfitting on 

the training dataset, which might reduce its performance on new, unseen data.   

 

Figure 5.15 (a) Predicted values of complex viscosity (cv) against actual values for training 

datasets (b) Predicted values of complex viscosity against actual values for test datasets 
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5.6.3 Loss Modulus 

The result in Figure 5.16 shows the prediction of loss modulus using a Multilayer Perceptron 

Regressor model. The model is trained on a training dataset and then evaluated on a separate 

testing dataset. The training set results are very good, with a high R2 value of 0.99, indicating 

that the model explains 99.99% of the variability in the data. The Mean Absolute Error (MAE) is 

7.17, which indicates that on average, the model's prediction of the Loss Modulus is off by about 

7.17. The Root Mean Squared Error (RMSE) is 12.68, indicating that the model's predictions are 

off by an average of 12.68. These training set metrics suggest that the model has learned to fit the 

training data quite well. However, the testing set results are also as good as the training set 

results. The R2 value is 0.97, which is lower than the training set value, indicating that the 

model's predictive power is reduced on new data. The MAE is 114.49, which is quite large, 

indicating that on average, the model's prediction of the Loss Modulus is off by about 114.50. 

The RMSE is 458.43, which is also quite large, indicating that the model's predictions are off by 

an average of 458.43. Therefore, MLP regressor model with the given hyperparameters appears 

to perform well in predicting the loss modulus.  

 

Figure 5.16 (a) Predicted values of loss modulus against actual values for training datasets (b) 

Predicted values of loss modulus against actual values for test datasets 
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5.6.4 Loss factor 

The MLP model for predicting the loss factor has 2 hidden layers, each with 200 neurons, and 

the 'lbfgs' solver is used to optimize the weights of the neural network during training. The model 

is trained for a maximum of 25,000 iterations. The R2 for training score is 0.95, while the testing 

score is 0.43. The training score suggests that the model is performing well on the training 

dataset and can capture the patterns in the data. However, the testing score suggests that the 

model is not generalizing well to new data. The MAE for the training dataset is 0.02, while for 

the testing dataset, it is 0.07. The R-squared value for the training dataset is 0.95, while for the 

testing dataset, it is 0.43. The MSE for the training dataset is 0.001, while for the testing dataset, 

it is 0.008. Finally, the RMSE for the training dataset is 0.03, while for the testing dataset, it is 

0.09 (Figure 5.17). These evaluation metrics suggest that while the model is performing well on 

the training dataset, it is not generalizing well to new data. This could be due to overfitting, 

where the model is too complex and is fitting too closely to the noise in the training data. In such 

cases, reducing the complexity of the model or introducing regularization techniques may help to 

improve the model's generalization ability. Moreover, the low R2 value of the testing dataset 

indicates that the model is not able to explain the variance in the testing data accurately.  

 

 

Figure 5.17. (a) Predicted values of loss factor against actual values for training datasets (b) 

Predicted values of loss factor against actual values for test datasets 
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5.7. Conclusions 

The use of a machine learning artificial neural network algorithm to predict the techno-

functional, thermal, and rheological properties of PPP has shown promising results. However, 

there is a significant variation in the optimum neurons, iterations, and hidden layers required to 

predict different properties accurately. The mean absolute error, coefficient of determination, 

mean-squared error, and rmse values also vary for each property, indicating that the model's 

performance is dependent on the specific property being predicted. Additionally, the slight 

variation between the training and test data shows that the model's performance needs further 

improvement. Overall, this study provides valuable insights into the use of machine learning 

algorithms for predicting food properties, which could potentially have significant implications 

in the food industry. 
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CHAPTER SIX 

6. GENERAL SUMMARY, CONCLUSION AND FUTURE RESEARCH  

6.1 Summary and Conclusions  

This study provides valuable insights into the techno-functional, thermal, and rheological 

properties of pea protein products (flour, concentrate and isolate) from different varieties of peas. 

The results indicate that protein content has a significant influence on various properties such as 

water absorption capacity, oil absorption index, forming capacity, peak temperature, and 

enthalpy. Moreover, this study found that increasing the protein concentration led to a significant 

rise in storage modulus, loss modulus, and loss factor, while the complex viscosity decreased. 

Additionally, the machine learning artificial neural network algorithm results showed variations 

in the optimal number of neurons, iterations, and hidden layers for different properties, as well as 

differences in Mean Absolute Error, coefficient of determination, Mean-Squared Error, and 

RMSE for training and test datasets.  This study's findings can assist in the selection of the most 

suitable pea protein product for use in product development and formulation, identifying key 

composition factors that affect the properties of pea protein products. It also provides insights 

into the processing behavior and quality control of pea protein products. Moreover, the use of 

machine learning algorithms to predict the properties of pea protein products is a promising 

approach that can significantly reduce the time and cost required for product development and 

formulation. However, further studies are required to improve the accuracy and reliability of the 

predictions. In conclusion, the study provides essential information for the food industry, 

researchers, and developers on the techno-functional, thermal, and rheological properties of pea 

protein products. The findings can contribute to the development of innovative pea protein-based 

food products with improved functionality and nutritional value. Additionally, the study 

highlights the potential of machine learning algorithms in predicting the properties of pea protein 

products and opens up new avenues for future research. 

The following conclusions were drawn from this research: 

• Pea protein products exhibit a wide range of techno-functional, thermal, and rheological 

properties, which are affected by the composition of the product. 
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• Pareto analysis was successfully used to identify the most significant composition on the 

of techno-functional, thermal, and rheological properties of pea protein products. 

• Protein content has the most significant influence on water absorption capacity, oil 

absorption index, forming capacity, peak temperature, and enthalpy. 

• Oil content has the most significant influence on forming stability and onset temperature, 

while the interaction of oil and protein contents influences water solubility index, water 

absorption index, and protein solubility the most. 

• Principal component analysis and cluster analysis can be used to identify unique varieties 

based on the cluster of techno-functional and thermal properties of the pea protein 

products. 

• Increasing protein concentration leads to a rise in storage modulus, loss modulus, and 

loss factor, while complex viscosity decreases. 

• An increase in oil causes a decrease in storage modulus, loss factor, and complex 

viscosity, while a rise in starch content leads to a significant increase in the complex 

viscosity of the pea protein products. 

• The machine learning artificial neural network algorithm can predict the properties of pea 

protein products with variations in the optimal number of neurons, iterations, and hidden 

layers for different properties. 

• This study provides valuable information for identifying key composition factors that 

affect the techno-functional, thermal, and rheological properties of pea protein products 

and assists in product development and formulation. 

6.2 Recommendation for Future Studies 

1. A comparative study could be conducted to evaluate the techno-functional, thermal, and 

rheological properties of pea protein products with other plant-based proteins, such as 

soy, wheat, and rice. 

2. Future studies could explore the potential of using other machine learning algorithms to 

optimize the processing conditions and predict the properties of pea protein products. 
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3. Further investigation is needed to explore the potential of using pea protein products as a 

functional ingredient in food formulations to enhance their nutritional and functional 

properties. 
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