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Abstract 

Canonical correlation analysis (CCA) is a multivariate technique designed to 

maximize the correlation between variable sets from two domains of 

measurement. CCA was first introduced in 1936, but it is more 

computationally expensive than other common analysis methods and as 

such has only become popular in recent years due to increases in 

computational power. One of the key advantages of CCA is that it can be 

used to evaluate two different sets of variables without assuming 

directionality or precedence. For example, with CCA it is possible to analyze 

a set of brain measurements derived from neuroimaging with respect to a 

set of behavioral measurements and identify sources of common variation. 

CCA is most likely to produce stable results when the number of 

observations (subjects in the case of neuroimaging) is greater than the 

number of features (from the imaging data and subject-specific variables) 

from both modalities. This is often not fulfilled in neuroscience, in which case 

CCA will produce results that are likely to be overfit to the dataset making 

them non-generalizable. As such, the variables typically undergo some form 

of data reduction and then are used as input for CCA. However, there are no 

current guidelines or recommendations for best practices regarding which 

data reduction technique to use or on the downstream effects of choosing 

different techniques on results and generalizability. The primary objective of 

this thesis is to design, test, and validate CCA techniques and the effect of 

different data reduction methods for neuroimaging studies. This project 

applies these techniques to study how risk factors for Alzheimer’s disease 

(AD) may impact brain structure in individuals >40 years of age from the UK 

Biobank. Twelve AD-relevant modifiable risk factors have been identified 

which offer potential for disease prevention as well as opportunity for further 

investigation in the context of AD etiology and prevention. We use CCA to 

evaluate the relationship between these risk factors and cortical thickness - 



5 

 

a brain measure derived from magnetic resonance imaging. Four different 

methods of data reduction are applied and compared: single subject mean 

cortical thickness values derived from an anatomical parcellation, a spatially 

derived cortical surface atlas, principal component analysis, and independent 

component analysis. We found that these different data reduction methods 

revealed different relationships between brain areas and the risk factors. 

Additionally, we examined the impact of reducing the number of participants 

used for CCA. We found that the results using all reduction techniques were 

consistent even with fewer participants, however the significance became 

inflated as the sample size decreased. 
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Résumé 

L’analyse des corrélations canoniques (ACC) est une technique statistique 

multivariée conçue pour maximiser la corrélation entre des ensembles de 

variables de deux types de mesure. L’ACC a été introduite pour la première 

fois en 1936, mais elle est plus coûteuse computationnellement que les 

autres méthodes d'analyse courantes et, en conséquence, n'est devenue 

populaire que ces dernières années en raison de l'augmentation de la 

puissance de calcul des ordinateurs. L'un des principaux avantages de l’ACC 

est qu'elle peut être utilisée pour évaluer deux ensembles différents de 

variables sans supposer de directionnalité ou de priorité. Par exemple, avec 

l’ACC, il est possible d'analyser un ensemble de mesures cérébrales dérivées 

de la neuroimagerie par rapport à un ensemble de mesures 

comportementales et d'identifier les sources de variation communes. L’ACC 

est plus susceptible de produire des résultats stables lorsque le nombre 

d'observations (participants dans le cas de la neuroimagerie) est supérieur 

au nombre de caractéristiques (à partir des données d'imagerie et des 

variables spécifiques au sujet) des deux modalités. Cette condition est 

rarement remplie en neurosciences, auquel cas l’ACC produira des résultats 

susceptibles d'être sur-ajustés à l’échantillon, ce qui les rendra non 

généralisables. Comme solution, plusieurs procèdent à une réduction de la 

dimensionnalité des variables, puis sont utilisées comme données d'entrée 

pour l’ACC. Cependant, il n'existe pas actuellement de lignes directrices ou 

de recommandations sur les meilleures pratiques concernant quelle 

technique de réduction des données à utiliser ou sur les effets en aval du 

choix de différentes techniques sur les résultats et la généralisabilité. 

L'objectif principal de cette thèse est de concevoir, tester et valider les 

techniques de l’ACC et l'effet de différentes méthodes de réduction de 

données pour les études de neuroimagerie. Ce projet applique ces 

techniques pour étudier comment les facteurs de risque de la maladie 
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d'Alzheimer (MA) peuvent avoir un impact sur la structure cérébrale chez les 

personnes de plus de 40 ans de la cohorte UK Biobank. Nous avons identifié 

douze facteurs de risque modifiables pertinents pour la MA qui offrent un 

potentiel de prévention de la maladie ainsi qu'une possibilité d'investigation 

plus approfondie dans le contexte de l'étiologie et de la prévention de la MA. 

Nous utilisons l’ACC pour évaluer la relation entre ces facteurs de risque et 

l'épaisseur corticale - une mesure cérébrale dérivée de l'imagerie par 

résonance magnétique. Quatre méthodes différentes de réduction des 

données sont appliquées et comparées: les valeurs d'épaisseur corticale 

moyennes d'un seul sujet dérivées d'une parcellation anatomique, un atlas 

de surface cortical dérivé spatialement, une analyse en composantes 

principales et une analyse en composantes indépendantes. Nous avons 

constaté que ces différentes méthodes de réduction des données révélaient 

des relations différentes entre les zones cérébrales et les facteurs de risque. 

De plus, nous avons examiné l'impact de la réduction du nombre de 

participants utilisés pour l’ACC. Nous avons constaté que les résultats 

utilisant toutes les techniques de réduction étaient cohérents même avec 

moins de participants, mais la signification statistique devenait gonflée à 

mesure que la taille de l'échantillon diminuait. 
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Chapter 1: Background   

Alzheimer's disease (AD) is the most common form of dementia and affects 

memory, thinking, behaviour, and judgement. AD is not a normal part of 

aging, and its symptoms eventually grow severe enough to interfere with 

daily living. First described in 1906 by Dr. Alois Alzheimer, AD is now at the 

forefront of biomedical research, which has shed light on its progression, 

effects, and biological underpinnings. Ongoing research has found that 

approximately 40% of overall AD-related risk is attributable to a combination 

of twelve factors which offer potential for disease prevention. However, 

much remains to be discovered about how AD diverges from the healthy 

aging process and the role these risk factors play. Technological and 

computational advances provide the opportunity for these discoveries. 

Magnetic resonance imaging (MRI) allows researchers to study complex 

changes in the brain, noninvasively. Advanced computational power allows 

for complex statistical analyses of increasingly large datasets. Nevertheless, 

as advances occur, it is important to ensure these tools are being used and 

interpreted with regard to proper scientific principles and practices. The 

remainder of this chapter discusses the current state of research 

surrounding aging, dementias, the impacts of these risk factors, and how 

one particularly promising methodology – canonical correlation analysis - is 

currently being used in neuroimaging research.  

 

1.1 Aging and Alzheimer’s Disease  

1.1.1 Aging 

Aging is a complex and inevitable process associated with readily identifiable 

and characteristic changes in the brain’s appearance and function. Healthy 

aging is defined as the development and maintenance of functional ability 

that enables mental and physical wellbeing in late life. Healthy aging can 

occur even for those who experience neuroanatomical changes associated 
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with age. Unfortunately, many adults do not experience healthy aging and 

disease-free brains among older populations may be rare (Y. Hou et al., 

2019). While brain volume decreases overall with age, the frontal lobe and 

hippocampus tend to shrink more than other areas (Wyss-Coray, 2016). The 

cerebral cortex also thins with age, often following a pattern similar to 

volume loss. Additionally, molecular studies have revealed that brain tissue 

from older individuals contains abnormal deposits of aggregated proteins 

associated with neurodegenerative diseases (Elobeid, Libard, Leino, Popova, 

& Alafuzoff, 2016).  

Aging is the primary risk factor for most neurodegenerative diseases. 

Additionally, beyond being a risk factor, aging also increases the severity of 

disease. How and when dementia diverges from healthy aging remains 

poorly understood and is the focus of ongoing research (Irwin, Sexton, 

Daniel, Lawlor, & Naci, 2018; Mortamais et al., 2017; Ritchie, Ritchie, Jaffe, 

Skoog, & Scarmeas, 2015). Although aging is known to be the primary risk 

factor for neurodegenerative diseases, the exact mechanisms underlying this 

association have not yet been identified.  

In this thesis, we examine participants aged 40 years and older who 

have no dementia diagnosis to see how risk factors for Alzheimer’s disease 

may impact brain structure in cognitively healthy individuals. Like aging, the 

mechanisms underlying these risk factors are not fully understood, and how 

they interact with one another is unclear and only beginning to be studied. 

 

1.1.2 Alzheimer’s Disease  

Dementia is a devastating family of neurodegenerative disorders which 

involves the deterioration of memory, thinking, behaviour, judgement, and 

activities of day-to-day living. Alzheimer's disease (AD) is the most common 

form of dementia, making up 60–70% of all cases. In 2019, approximately 

50 million people were living with dementia worldwide and this number is 



14 

 

projected to reach 82 million by 2030 (World Health Organization, 2021). AD 

pathology is characterized by the accumulation of hyperphosphorylated tau 

protein – which form intracellular neurofibrillary tangles – and extracellular 

β-amyloid plaques in addition to extensive neuronal death (atrophy) and 

synaptic loss within the brain. Given the ever-increasing prevalence of AD 

due to ageing demographics around the world and no cures, dementia is 

likely to become a public health crisis (Dementia: A STRATEGY FOR 

CANADA, 2019; Livingston et al., 2020; Macklin, 2021).  Furthermore, AD 

has a physical, psychological, social, and monetary impact not only on those 

diagnosed, but on their caregivers and families, and on healthcare systems 

as a whole (Dementia: A STRATEGY FOR CANADA, 2019; Livingston et al., 

2020). People suffering from AD experience symptoms in many domains and 

often experience complex issues as the disease progresses such as problems 

with speech and memory, increasing confusion and disorientation, difficulty 

performing simple tasks, and changes in weight and mood. As such, 

interventions, support, and treatment must be provided in a context which 

considers the person as a whole and meets their medical, cognitive, and 

psychological needs alongside their environmental, cultural, and social 

needs. Unfortunately, this is not currently the case. Often those in pursuit of 

dementia care end up in acute hospital settings either due to limited 

knowledge of or lack of affordable services, and as such their needs go 

unmet (Martin, O’Connor, & Jackson, 2020). These acute hospital settings 

may not have the necessary skillsets or environments to provide the multi-

dimensional care required. It is estimated that the combined health care 

system and out-of-pocket caregiver costs totaled $10.4 billion in Canada in 

2016 (Alzheimer Society of Canada, 2016). This staggering figure is 

expected to rise substantially in the coming years.  

There has been continued failure of drug trials to cure or modify 

disease progression. There are many possible causes for the continued 
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failure of drug trials. One is that trials are occurring too late in the disease 

process when irreversible neurodegeneration has already occurred in 

participants (Aisen, Vellas, & Hampel, 2013). Clinical symptoms may only 

emerge after decades of AD pathology progression. Therefore, a strong 

consensus is emerging which suggests that preventative measures and 

delaying symptom onset are particularly important to prevent disease 

progression (Barnes & Yaffe, 2011; Livingston et al., 2020). Another 

explanation for the lack of demonstrated drug efficacy could be due to 

heterogeneity within clinical AD populations. There are multiple subtypes of 

AD and an individual’s risk and disease progression depends on a variety of 

factors including genetics, environment, and behaviour (S. Evans et al., 

2019; Livingston et al., 2020). The following section describes these 

modifiable risk factors and the way in which they influence dementia onset 

progression in life-course order beginning with early life (<45 years), then 

progressing through midlife (45-65 years) and late-life (65+ years). 

 

1.1.3 AD Lifestyle Risk Factors 

Approximately 40% of overall AD-related disease risk is attributable to a 

combination of twelve potentially modifiable risk factors: education, 

hypertension, obesity, hearing loss, traumatic brain injury, alcohol misuse, 

smoking, depression, physical inactivity, social isolation, diabetes, and air 

pollution (Livingston et al., 2020). The 12 modifiable risk factors account for 

around 35% of the population attributable fraction of worldwide dementias. 

The population attributable fraction is the proportional reduction in 

population disease which would occur if a risk factor were eliminated or 

reduced to ideal levels. There is high potential for prevention, especially in 

low-income and middle-income countries where more dementias occur 

(Livingston et al., 2020). These risk factors span across all ages, suggesting 

it’s never too early or late to make changes to help prevent dementia. Listed 
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below are the risk factors for each stage of life which can be influenced 

through modifying lifestyle and behaviour, impacting dementia prevalence 

and onset. 

Early Life (< 45 yrs) 

Only one modifiable risk factor has been identified before the age of 45 and 

that is amount of education received. Lower levels of educational attainment 

in early life are associated with increased dementia risk and has a high 

population attributable factor due to the lack of access to education 

worldwide. It has been theorized that education results in higher cognitive 

reserve and overall cognitive ability in early life, reaching a plateau in late 

adolescence (Kremen et al., 2019). Cognitive reserve enables flexible use of 

brain resources which allows people to maintain function despite brain 

pathology. However, separating the specific effects of education from the 

effect of cognitive activity and overall cognitive ability is challenging (Blacker 

& Weuve, 2018; Kremen et al., 2019). It is also difficult to separate the 

impact of educational attainment from the impacts of socioeconomic status 

(Mehta et al., 2022; J. D. Petersen et al., 2021; Russ et al., 2013).  

Midlife (45-65 yrs) 

Between the ages of 45 and 65, five modifiable risk factors have been 

identified. All of these have the potential to impact AD onset and progression 

before the neurodegeneration associated with aging begins. Of all the 

potentially modifiable risk factors identified in a well-known Lancet review of 

dementia, prevention, intervention, and care, hearing loss is the single 

largest preventable contributing factor to dementia  worldwide (Livingston et 

al., 2020). Despite being included as a midlife factor, hearing loss continues 

to increase dementia risk in later life. A meta-analysis of 36 epidemiologic 

studies from 12 countries found an increased risk of dementia for each 10 

dB of decline of hearing loss (Loughrey, Kelly, Kelley, Brennan, & Lawlor, 

2018). Hearing was measured using audiometry at baseline and the long 
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follow-up times (9–17 years) make reverse causation unlikely. One theory is 

that hearing loss may result in cognitive decline due to decreased cognitive 

stimulation. However, studies suggest that using hearing aids can mitigate 

this risk (Amieva, Ouvrard, Meillon, Rullier, & Dartigues, 2018; Maharani et 

al., 2018; Ray, Popli, & Fell, 2018).  

Another risk factor for AD is mild traumatic brain injury (TBI). TBI is 

defined as a concussion and severe traumatic brain injury is defined as skull 

fracture, oedema, or brain injury and bleeding. In both humans and mouse 

models, a single severe TBI is associated with widespread 

hyperphosphorylated tau pathology. One nationwide Danish cohort study of 

almost 3 million people over 50 years of age found dementia and AD risk 

increased for each incidence of TBI and was highest in the 6 months 

subsequent to the TBI (Fann et al., 2018). Likewise, a nationwide Swedish 

cohort study of over 3 million people of the same age range found increased 

dementia risk 1 year after TBI, and slightly increased risk up to 30 years 

after TBI. This study also found that more severe TBI and multiple TBIs 

increased the risk (Nordström & Nordström, 2018). 

Additionally, alcohol misuse has been identified as a risk factor for 

dementia and cognitive impairment and heavy drinking can lead to brain 

changes. One French longitudinal study of over 32 million people who had 

been admitted to hospital found that those diagnosed with harmful alcohol 

use or alcohol dependence (as defined by the International Classification of 

Diseases) were at higher risk of developing dementia over a 5-year period 

(Schwarzinger et al., 2018). This relationship was especially prevalent when 

looking at those with earlier onset dementia (younger than 65 years), over 

half of whom had an alcohol use disorder. However, light to moderate 

alcohol consumption has been associated with a decreased risk of cognitive 

impairment and dementia. It can be particularly challenging to understand 
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these relationships due to the complex associations between alcohol and 

cultural, social, and other health-related factors. 

Ongoing midlife hypertension is associated with increased risk of a late 

life dementia, however there’s conflicting evidence for whether this trend 

continues into late life (Abell et al., 2018; McGrath et al., 2017). In one UK 

cohort study, a single measure of high systolic blood pressure (130 mm Hg 

or higher) between 50-60 years was associated with increased risk of 

dementia and persistent high systolic blood pressure, was associated with 

increased dementia risk even in those without cardiovascular disease (Abell 

et al., 2018). A separate study suggests a possible mechanism: 

hypertension starting at age 40 is associated with increased white matter 

hyperintensity volume and reduced total brain volume (Lane et al., 2019). 

Despite being associated with hypertension, obesity has been 

identified as a separate risk factor in midlife. Obesity is linked to pre-

diabetes and metabolic syndrome. One review of longitudinal studies with a 

total of almost 600,000 participants between 35-65 years found that obesity 

(BMI >30) is associated with late life dementia but being overweight (BMI 

25-30) is not (Albanese et al., 2017). A separate meta-analysis of 

overweight and obese adults without dementia determined that losing at 

least 2 kg was associated with significant improvements in memory and 

attention with follow-up times from 8 weeks to 1 year (Veronese et al., 

2017). 

Later Life (>65 yrs) 

Late life is often when targeted dementia interventions are considered and 

implemented. Ideally, strategies for preventing and delaying AD should take 

into account the late life risk factors described below. One risk factor which 

has been identified and is easily targetable for intervention is smoking.  

Smoking in later life is associated with cognitive impairment and 

increased risk for all forms of dementia. This has been attributed to both the 
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link between smoking and cardiovascular health and the presence of 

neurotoxins in cigarette smoke (Durazzo, Mattsson, & Weiner, 2014; Swan & 

Lessov-Schlaggar, 2007). Exposure to second hand smoke is also a risk. One 

study found that second-hand smoke exposure was associated with 

increased memory deterioration in woman aged 55-64 years, and risk 

increased with exposure duration (Pan, Luo, & Roberts, 2018). Even at an 

older age reducing or stopping smoking can decrease the risk of developing 

dementia. A nationwide Korean cohort study found that among 50,000 men 

above the age of 60, stopping smoking for at least 4 years substantially 

reduced dementia risk for the next 8 years when compared to those who 

continued smoking (D. Choi, Choi, & Park, 2018). 

Additionally, depression is both associated with increased dementia 

risk and is a symptom of the prodrome and early stages of dementia. It is 

important to note that depressive symptoms may result from dementia 

pathology years before clinical dementia onset, however this does not 

exclude depression from increasing dementia incidence through a variety of 

possible psychological or physiological mechanisms (Livingston et al., 2020). 

A meta-analysis of 32 studies with over 60,000 participants from high 

income countries found even a single depressive episode was a risk factor 

for dementia (Prince, Albanese, Guerchet, & Prina, 2014). In the UK 

Whitehall study of 10,189 people, which had follow-up times of 11-28 years, 

late life depression symptoms increased dementia risk but symptoms in 

midlife did not, even when those symptoms were chronic (Singh-Manoux et 

al., 2017). There is conflicting evidence as to whether antidepressant 

treatment may reduce dementia risk and most studies considering 

depression as a risk factor don’t differentiate between treated and untreated 

depression (Livingston et al., 2020). 

Similar to depression, a lack of physical activity can be both a 

consequence and risk factor of dementia. It can also result from prodromal 



20 

 

dementia. Inactivity is linked to both hypertension and obesity, and 

potentially poses a greater risk for those with cardiovascular morbidity. Two 

meta-analyses of longitudinal studies and systematic reviews found exercise 

was associated with reduced risk of dementia and may be protective against 

clinically diagnosed AD (Hersi et al., 2017; Livingston et al., 2017). The 

HUNT study of over 28,000 participants found that weekly moderate-to-

vigorous physical activity (defined as breaking a sweat) lowered dementia 

risk over a 25-year period (Zotcheva et al., 2018). In contrast, the Whitehall 

study of over 10,000 participants found that at least 2.5 hours a week of 

moderate-to-vigorous physical activity was associated with reduced 

dementia risk over 10 years but was not protective after that period (Sabia 

et al., 2017). 

Social contact is a protective factor for dementia and several studies 

have shown that social isolation increases the risk of dementia. Social 

contact is thought to enhance cognitive reserve and potentially encourage 

beneficial behaviours for dementia prevention. One meta-analysis of 51 

longitudinal cohort studies examining social isolation and cognition included 

over 100,000 participants aged 50 years or older with follow-up times 

between 2 and 21 years (I. E. M. Evans, Martyr, Collins, Brayne, & Clare, 

2019). This review found that one or both of high social activity and large 

social network was associated with improved late-life cognitive function. 

Both a UK longitudinal study and a Japanese longitudinal study, with over 

10,000 participants each, found higher social contact to be associated with a 

reduction in dementia risk (Saito, Murata, Saito, Takeda, & Kondo, 2018; 

Sommerlad, Sabia, Singh-Manoux, Lewis, & Livingston, 2019). Despite 

sociocultural variation in the definition and perception of social isolation, 

findings of the protective effects of social contact are consistent across 

global studies and meta-analyses (I. E. M. Evans et al., 2019; Kelly et al., 

2017). 
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Another risk factor for AD is diabetes. Diabetes is a metabolic disease 

which is characterised by insulin resistance and a high concentration of 

peripheral insulin. One meta-analyses of 14 cohort studies with over 2 

million total subjects, found that dementia risk increased with duration and 

severity of type 2 diabetes mellitus (T2DM) (Chatterjee et al., 2016). It has 

been shown in both human and animal models that insulin plays a role in 

clearing amyloid from the brain. The peripheral insulin anomalies associated 

with diabetes may cause a decrease in brain insulin production, suggesting a 

possible mechanism by which diabetes impairs cognition (Luchsinger & 

Gustafson, 2009; Milene, Philippe, & Frédéric, 2015). Additionally, diabetes 

can result in inflammation and high blood glucose concentrations which 

could be a potential mechanism relating diabetes to increased AD risk (Yaffe, 

2007). Furthermore, T2DM is intrinsically connected with other 

cardiovascular risk factors: hypertension and obesity.   

Finally, exposure to air pollution in later life is another factor which can 

impact AD. Air pollution has long been associated with a variety of diseases 

and poor health outcomes. Animal models have been used to demonstrate 

particulate pollutants accelerating neurodegeneration via a multitude of 

processes. These processes include beta-amyloid deposition, amyloid 

precursor protein processing, and cerebrovascular and cardiovascular 

disease (Fonken et al., 2011; Power, Adar, Yanosky, & Weuve, 2016; 

Sirivelu, MohanKumar, Wagner, Harkema, & MohanKumar, 2006). One 

review of longitudinal studies investigating air pollutant exposure and 

incident dementia found that exposure to fine ambient particulate matter 

(PM), nitrogen dioxide (NO2), and carbon monoxide (CO) were all associated 

with increased dementia risk. PM and NO2 are often produced by traffic, and 

it can be difficult to separate their effects (Carey et al., 2018; Chen et al., 

2017; Oudin et al., 2016). In addition, multiple studies have found additive 
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effects of different pollutants (Carey et al., 2018; Chen et al., 2017; Oudin 

et al., 2016; Oudin, Segersson, Adolfsson, & Forsberg, 2018). 

 

1.2 Magnetic Resonance Imaging of AD 

1.2.1 Magnetic Resonance Imaging 

Magnetic Resonance Imaging (MRI) is a non-invasive technique that permits 

imaging of the soft tissue of the body. It uses non-ionizing radiation, which 

is safe for humans, and has no known negative side effects even after repeat 

exposures. Additionally, MRI allows for the collection of high-resolution, 3D 

images. As a result, MRI is a popular tool in neuroimaging both clinically and 

for research.  

Within atomic nuclei, all protons and neutrons precess about their own 

axis. Atoms with an odd number of protons or neutrons thus possess an 

angular momentum, referred to as spin, which creates a microscopic 

magnetic moment. MRI takes advantage of the properties of nuclei with an 

odd number of protons.  When placed in a strong magnetic field, they will 

exhibit a slight net magnetization in one direction. Of particular importance 

to MRI signal are hydrogen nuclei, each of which is a single proton, and are 

the most abundant source of protons in the body and the brain (McRobbie, 

Moore, Graves, & Prince, 2006). The spin of protons not exposed to any 

external magnetic field is random, resulting in a net magnetization of zero. 

In an MRI scanner, a homogenous magnetic field (B0) is generated from the 

main magnet.  When B0 is applied, each proton will assume one of two 

possible spin states, either aligned with the direction of B0 or aligned 

opposed to the direction of B0. Spins precess at a characteristic frequency 

(Larmor frequency) which is proportional to B0. A small fraction  of protons 

will align parallel to B0, resulting in a bulk magnetization M in the direction of 

B0. The ratio of parallel to anti-parallel spins is governed by the Boltzmann 

equation. 
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MRI scanners also contain a radio frequency (RF) coil which generates 

a RF pulse tuned to the Larmor frequency (Currie, Hoggard, Craven, 

Hadjivassiliou, & Wilkinson, 2013; Lerch et al., 2017). This pulse is used to 

manipulate M in order to generate measurable MRI signal. Typically, B0 is 

denoted as being in the z-axis. A perpendicular pulse (Bxy), tuned to the 

Larmor frequency, creates an M component in the xy plane. The “creation” 

of this transverse component was first observed in 1946 by Bloch and Purcell 

(Bloch, 1946; Purcell, Torrey, & Pound, 1946). When Bxy is removed, M 

precesses about the z-axis and eventually realigns with B0. The creation of 

this magnetic flux results in a signal oscillating at the Larmor frequency 

which can be measured using Faraday induction.   

The realignment of M with the net magnetization is referred to as 

relaxation. Two types of relaxation govern this process: spin-lattice (T1) 

relaxation and spin-spin (T2) relaxation (Currie et al., 2013; Lerch et al., 

2017). In T1 relaxation, the protons exchange energy with their 

environment - referred to as a lattice - and slowly return to their original 

state, re-aligning with B0 and restoring the longitudinal magnetisation. The 

T1 relaxation time refers to the time it takes for the magnetisation Mz to 

return to its equilibrium state of M0. T1 is dependant on tissue type, 

resulting in differences in signal intensity which can be manipulated to 

provide contrast between tissue types in an MRI image. In T2 relaxation, or 

transverse relaxation, the protons interact with each other and lose 

coherence. Spins lose coherence when they are near each other and their 

frequency is altered. This alteration is temporary and will revert once spins 

move away from each other, however, consistent interactions lead to an 

accumulation of dephasing which reduces transverse magnetization. 

Additionally, inhomogeneities in B0 are inevitable, such that spins in different 

locations will experience slightly different field strengths and thus have 

different precession frequencies. Similar to T1, T2 relaxation time is 
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dependent on tissue type due to the different tumbling properties of 

molecules.  

After the removal of the RF pulse, the signal emitted by the proton 

relaxation is spatially localised using additional linear gradient magnetic 

fields (Currie et al., 2013; Lerch et al., 2017; McRobbie et al., 2006). These 

create a gradient of field strength in one dimension without changing the net 

magnetisation. At the same time as the RF pulse, a slice selection gradient is 

applied which alters the strength of B0 in a chosen direction. This changes 

the Larmor frequency of the protons along the gradient. A certain section of 

the brain in two dimensions (slice) can then be excited by an RF pulse 

applied only to the protons within a specified frequency range. In another 

direction, a phase encoding gradient is applied which alters the phase of 

protons depending on their position along the gradient. This allows for 

differentiation in one direction due to the varying spin phases within the 

gradient without any change in the frequency of the protons. In the third 

direction, a frequency encoding gradient is applied. These gradients allow for 

the localization of MR signals in image reconstruction. The spatially localised 

signal is recorded in k-space: a raw data matrix in which data points 

represent specific spatial frequencies. Fourier transformations are then used 

to transform the k-space data into an MR image. 

 

1.2.2 Structural MRI 

There are multiple MR imaging types which utilize the method described 

above to measure different properties of the brain. The one relevant to this 

thesis is structural MRI. Structural MRI is commonly used in neuroimaging to 

obtain anatomical information which provides exceptional contrast between 

tissue types in the brain (Currie et al., 2013; Lerch et al., 2017; McRobbie et 

al., 2006). The main tissue contrast is between white and grey matter, 
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however structural MR images also contain finer details such as contrast 

between smaller regions and substructures in the brain. 

The two primary types of structural MRI are T1-weighed (T1w) and T2-

weighted (T2w) imaging. In a T1w image, the signal intensity in a given 

voxel is proportional to the tissue’s T1 properties (Currie et al., 2013; Lerch 

et al., 2017; McRobbie et al., 2006). Similarly, in a T2w image, the signal 

intensity in a given voxel highlights differences in T2 properties of the tissue 

(Currie et al., 2013; Lerch et al., 2017; McRobbie et al., 2006).  

Two properties of structural MRI are the repetition time (TR) which 

refers to the time between two RF pulses, and echo time (TE) which refers to 

the time between initial RF pulse and the readout of signal. The TR and TE 

are typically shorter in T1-weighted images than T2-weighted images in 

order to maximize the difference in signal obtained from different tissue 

types (Currie et al., 2013). The manipulation of MRI settings to differentiate 

brain regions and neuroanatomy enables important neuroanatomical work 

including the automated extraction of biological measurements of individual 

brain regions (Chakravarty et al., 2013; Lerch et al., 2017; Pipitone et al., 

2014; Raznahan et al., 2014). 

 

1.2.3 MR Image Processing 

1.2.3.1 Image Registration 

To fully utilize MR images and derive meaningful biological measurements, 

the images must be processed after acquisition. Spatial normalization is 

foundational to image processing for all MRI data. Spatial normalization, also 

known as image registration, is the process of spatially aligning two images 

via transformation into a common coordinate space (Collins, Neelin, Peters, 

& Evans, 1994; Friston et al., 1995; Maintz & Viergever, 1998; Oliveira & 

Tavares, 2014). Image registration enables point-to-point comparisons 

across images, facilitating comparison of MRI data across different subjects, 
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datasets, and studies (Collins et al., 1994; Friston et al., 1995; Maintz & 

Viergever, 1998; Oliveira & Tavares, 2014; Toga & Thompson, 2001).  

Registration can be described as either linear or nonlinear, both of which are 

essential to any MR image processing pipeline. In linear registration, images 

are mapped to one another using translations, rotations, scales, and shears. 

After a linear transformation is applied, parallel lines will always remain 

parallel to each other (Maintz & Viergever, 1998). In addition to linear 

registration, nonlinear registration methods can be used to account for 

localized spatial differences between images (Maintz & Viergever, 1998; 

Toga & Thompson, 2001). In nonlinear registration local differences in 

morphology are mapped to one another using spatially varying 

deformations. Unlike linear transformations which must be applied globally, 

nonlinear transformations may vary as a function of location.  

1.2.3.2 Bias field correction 

Magnetic field inhomogeneities, referred to as a bias field, occur because 

MRI scanners cannot achieve perfect uniformity when applying the main 

magnetic field and RF pulses. A bias field can lead to low-frequency spatial 

variations in image intensity which do not represent true neuroanatomical 

differences (Belaroussi, Milles, Carme, Zhu, & Benoit-Cattin, 2006; Deoni, 

2011; Z. Hou, 2006). Bias field correction is essential to represent the 

underlying tissue using voxel intensity. Many methods for performing this 

correction exist and one of the most commonly used is the N4ITK algorithm, 

commonly referred to as N4 correction (Tustison et al., 2010). This method 

employs an iterative multiresolution approach based on b-spline fitting which 

assumes a simple parametric model and does not require any tissue 

classification. 

1.2.3.3 Tissue Classification 

Tissue classification is a prerequisite for many widely used MRI processing 

pipelines. Classification is performed by assigning a label to every voxel in 
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an MR image based on intensity. This is typically performed at a high level 

by differentiating grey matter (GM), white matter (WM), and cerebrospinal 

fluid (CSF).  

The majority of tissue classification algorithms use T1w images, 

however some multi-contrast options exist which can enhance accuracy (U. 

S. Choi, Kawaguchi, Matsuoka, Kober, & Kida, 2019; Tohka, Zijdenbos, & 

Evans, 2004). One of the primary technical concerns with tissue 

classification is partial volume effects (PVE). PVE can occur because, due to 

the resolution of MRI voxels, each voxel may contain a distribution of tissues 

as opposed to a single tissue (U. S. Choi et al., 2019; Tohka et al., 2004). A 

number of methods exist to address the issue of PVE, the majority of which 

consider the intensity of a voxel as weighted sum of partial volume 

coefficients (Ahmed, Yamany, Mohamed, Farag, & Moriarty, 2002; Tohka et 

al., 2004; Van Leemput, Maes, Vandermeulen, & Suetens, 2003; Y. Zhang, 

Brady, & Smith, 2001). One commonly used method for tissue classification 

is the trimmed minimum covariant method (Tohka et al., 2004). Each voxel 

in this methodology is labelled based on its most dominant tissue type. 

Then, the morphological characteristics of the voxels are examined to 

determine which are susceptible to PVE. These voxels are removed, and 

ellipsoid estimators are used to find partial volume coefficients based on the 

remaining data. Another common method classifies voxels based on 

intensity with an added Markov random field component which considers 

voxels neighbours to improve performance (Y. Zhang et al., 2001). This 

method estimates partial volume coefficients using an expectation-

maximization framework. 

1.2.3.4 Brain Extraction 

Non-brain tissues such as skull, fat, and neck can interfere with intensity-

based image processing. As such, they are typically removed from MR 

images to aid in image registration and cortical surface reconstruction 
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(Eskildsen et al., 2012; Ségonne et al., 2004; van der Kouwe, Benner, Salat, 

& Fischl, 2008). Brain extraction involves the creation of a binary mask, 

typically referred to as a brain mask, which indicates all voxels belonging to 

GM, WM, or CSF.  This mask can then be multiplied with the original MR 

images to remove non-brain tissue. Additionally, the brain mask itself can be 

used to extract brain volume measurements. Most brain extraction methods 

require only a T1w image for operation. Two common methods for brain 

extraction include the Brain Extraction Tool (BET) developed by Smith 

(Smith, 2002) and the Brain Extraction based on non-local Segmentation 

Technique (BEaST) tool developed by Eskildsen  et al. (Eskildsen et al., 

2012). The BEaST tool assigns each voxel a class by comparing the 

neighbouring voxels with data from a library of 80 previously labelled 

samples (Eskildsen et al., 2012). Alternatively, BET uses a deformable model 

that is able to match the surface of the brain (Smith, 2002). The first step in 

BET uses an image intensity histogram to identify the intensity thresholds of 

brain voxels. Next, the centre of gravity of the image is identified. The 

centre of gravity is then used as a starting point of a spherical mesh surface 

which is deformed until it fits the shape of the brain to a suitable degree 

(Smith, 2002). 

 

1.2.4 Cortical Thickness 

1.2.4.1 Interpreting Cortical Thickness 

Cortical thickness (CT) and surface area (SA) are common metrics for 

examining neuroanatomy in MR images. Both measures reflect 

neurobiological processes and environmental influences (Rakic, 1988; Strike 

et al., 2019). 

In the cerebral cortex, neurons are organized into columnar units 

(Mountcastle, 1997). Surface area reflects the number of these columns and 

cortical thickness reflects the number of cells within columns (Chenn & 
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Walsh, 2002) Cortical thickness is also affected by the amount and density 

of synapses as well as dendrite pruning and ramification (Huttenlocher, 

1990; Schüz & Palm, 1989). Cortical thickness measures can be potentially 

confounded by the dura mater and blood vessels (Schüz & Palm, 1989).  

Both cortical thickness and surface area can provide important 

information about neuroanatomical changes during aging in addition to 

information about neuroanatomical correlates of numerous neuropsychiatric 

conditions and diseases. For this thesis, I will focus on investigating cortical 

thickness, as it has been shown to vary throughout the healthy aging 

process in a regionally specific manner (Salat et al., 2004; Thambisetty et 

al., 2010) and changes in cortical thickness have been related to the effects 

of dementia (Avants, Cook, Ungar, Gee, & Grossman, 2010; Hartikainen et 

al., 2012; Hersi et al., 2017) and dementia risk factors (Apostolova et al., 

2006; Armstrong et al., 2019; Ha et al., 2020; Karama et al., 2015; 

Mohamed, Nestor, Cumming, & Nasrallah, 2022; Verbaten, 2009; Vuorinen 

et al., 2013).  

1.2.4.2 Measuring Cortical Thickness 

Surface-based computational methods investigating the cerebral cortex aim 

to construct a mesh of vertices and connecting edges representing geometry 

of the cortical surface, from which morphological measures of each vertex 

can be analysed (Dale, Fischl, & Sereno, 1999; Fischl, Sereno, & Dale, 1999; 

Lerch & Evans, 2005). This process is challenging due to the highly complex 

and variable folding pattern of the cerebral cortex which makes it ill-suited 

for analysis in a volumetric space.  

Initially, input images are linearly registered to a template space and 

segmented into GM, WM, and CSF. Surface meshes are then created to 

represent the GM-WM surface and pial (GM-CSF) surface. Two pipelines 

which are commonly used to perform surface-based analysis are CIVET (Ad-

Dab’bagh et al., 2006; June et al., 2005a; Lerch & Evans, 2005; Zijdenbos, 
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Forghani, & Evans, 2002) and Freesurfer (Dale et al., 1999; Fischl et al., 

1999). CIVET and Freesurfer both follow the same general preprocessing 

steps described above but differ in how they create the cortical surface 

meshes. The CIVET algorithm first estimates the GM-WM surface and then 

expands that surface to the area between GM and CSF in order to create the 

pial surface (June et al., 2005a). Conversely, the Freesurfer algorithm 

deforms a mesh to match the boundary of interest while optimising the 

greatest shift in image intensity (Dale et al., 1999; Fischl et al., 1999). 

Additionally, the CIVET cortical surface meshes permit direct vertex-to-

vertex comparisons, due to its surface being topologically equivalent to a 

sphere, whereas Freesurfer surface meshes must be resampled to achieve 

this. In both pipelines, morphological measurements, - including CT and SA - 

can then be computed at each vertex of the modelled cortical surface. The 

CT value is calculated based on the length of the trajectory from the GM-WM 

surface to the pial surface.  

 

1.2.5 Cortical Thickness and AD 

In addition to providing information about the disease, MRI-derived patterns 

of cortical thickness changes have been used to track AD disease 

progression (Apostolova et al., 2007; Dickerson et al., 2009; Frisoni et al., 

2009; Lerch et al., 2005; Prestia et al., 2010; Singh et al., 2006; Thompson 

et al., 2003) and distinguish AD subtypes (Murray et al., 2011; Noh et al., 

2014; Park et al., 2017; B. Zhang, Lin, Liu, Shen, & Wu, 2022; B. Zhang, 

Lin, Wu, & Al‐masqari, 2021). The AD cortical signature is approximately 

comprised of generally agreed upon regions: the medial temporal lobe, 

temporal pole, inferior temporal gyrus, supramarginal gyrus, superior 

parietal lobule, precuneus, middle frontal gyrus, and superior frontal gyrus 

(Ashraf, 2019; Busovaca et al., 2016; Huang, 2020). This 

neurodegeneration is a staged process which occurs throughout disease 
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progression, as seen in Figure 1.1. Early on, cortical atrophy is typically 

observed in the medial temporal lobe (hippocampal formations, 

parahippocampal gyrus, and entorhinal cortex) and moves on to the 

remainder of the cortex shortly after, progressing along a temporal-parietal-

frontal trajectory, with the motor areas generally being unaffected until late 

AD progression (Ashraf, 2019; Huang, 2020; Y. Li et al., 2012). This 

progression correlates with the appearance of clinical symptoms and 

different cognitive profiles have markedly different patterns of 

neurodegeneration. Early stages of the disease – when degeneration is 

typically limited to the medial temporal lobe - are characterized by memory 

deficits. Progression from mild cognitive impairment (MCI) and mild AD is 

characterized by the appearance of non-memory related cognitive deficits 

including language and visio-spatial functions (Brooks & Loewenstein, 2010; 

R. C. Petersen, 2004). Finally, in the late stages of the disease, atrophy is 

seen in the sensorimotor and visual cortices, whose functions have been 

clinically observed to be relatively preserved until late stages of the disease. 

There is also research which has shown cortical atrophy closely 

recapitulating the patterns of Braak (neurofibrillary tangle) staging (Braak & 

Braak, 1996) and distinct patterns of neurofibrillary tangle deposition in 

early-stage Alzheimer’s disease dementia versus late-stage Alzheimer’s 

disease (Elobeid et al., 2016; Kovacs, 2018; Lowe et al., 2018; Okamura et 

al., 2014). 
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Figure 1.2.  AD Cortical Thinning. Cortical thinning patterns in cognitively 
normal (NC) and Alzheimer’s disease (AD) subjects. The fourth row shows the 
location where significant (p< 0.05) cortical thinning occurs. The Thinning Ratio is 

computed by comparing the CT at each follow-up time-point with CT at baseline. 
Subjects had an average baseline age of 74 yrs. Figure from Y. Li et al. (2012). 
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1.2.6 Cortical Thickness and Lifestyle Risk Factors 

Work has been done to investigate the mechanisms behind each of the 

above risk factors, and this work has included investigations using MRI-

derived CT as an outcome to measure brain atrophy. 

One study investigating healthy older adults and adults with MCI from 

the ADNI dataset were categorized into those with high (>17 years) and low 

(<14 years) education (Pillai et al., 2012). Higher education was associated 

with thinner cortices in right lateral occipital and right middle temporal 

areas, but one-year atrophy rates in these areas did not significantly differ. 

Some studies found that higher education was associated with lower average 

CT (Apostolova et al., 2006; Jung et al., 2018); others found it was 

associated with higher average CT (Kim et al., 2015; Liu et al., 2012; Solé-

Padullés et al., 2009). Multiple studies found that that the relationship 

between education and CT was dependant on brain area, age, and AD stage 

(Habeck, Gazes, Razlighi, & Stern, 2020; Steffener, 2021). These differences 

may be attributable to sample size, differing methodology, and interactions 

with age, sex, and other variables. 

There is a well-established relationship between acquired hearing loss 

and the macroscopic structure of the auditory cortex (Eckert, Cute, Vaden, 

Kuchinsky, & Dubno, 2012; Neuschwander, Hänggi, Zekveld, & Meyer, 

2019; Peelle, Troiani, Grossman, & Wingfield, 2011; Profant et al., 2014). 

However, this is unlikely to be a mechanism for increased dementia risk as 

dementia pathology typically manifests in multimodal cortices (Griffiths et 

al., 2020). A further association with dementia is suggested in a study which 

found that hearing loss in midlife is associated with late-life temporal lobe 

volume loss, in both the hippocampus and entorhinal cortex (Armstrong et 

al., 2019). Additionally, women with late-life hearing loss showed mild 

cortical thinning in the bilateral frontal, bilateral occipital, and right temporal 

areas compared to the normal hearing group (Ha et al., 2020). 
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One study of American veterans found that individuals with mild TBI 

and high genetic AD risk showed reduced CT in AD-vulnerable regions, 

suggesting that TBI may moderate the relationship between genetic risk and 

CT (Hayes et al., 2017). Similar studies have shown that subjects with mild 

to severe TBI have smaller average CT and reduced CT in AD-vulnerable 

regions compared to non-TBI subjects (Mohamed et al., 2022; Rostowsky & 

Irimia, 2021; M. L. Wang et al., 2017). 

A systematic review concluded that a negative association was 

observed between the volume of alcohol consumed and overall brain volume 

and CT (Verbaten, 2009). The Whitehall study, which measured alcohol use 

every 5 years found that alcohol use, even at light or moderate levels, was 

associated with hippocampal atrophy (Topiwala et al., 2017). 

Hypertension is associated with reduced brain volume (Gianaros, 

Greer, Ryan, & Jennings, 2006; Korf, Scheltens, Barkhof, & De Leeuw, 2005; 

Raz & Rodrigue, 2006) and cortical thinning (Gonzalez, Pacheco, Beason-

Held, & Resnick, 2015; Leritz et al., 2011). Midlife hypertension can also 

predict regional cortical thinning in late life (Vuorinen et al., 2013) and may 

moderate the relationship between genetic risk and CT (Rast et al., 2018). A 

meta-analysis of hypertension and brain atrophy concluded that there are 

some inconsistencies between studies, however, most found consistent 

shrinking in the bilateral frontal gray matter and the hippocampus (Beauchet 

et al., 2013).  A study looking at the combined effects of T2DM and 

hypertension found that patients with T2DM but not hypertension had 

reduced CT in the bilateral paracentral lobule and those who also had 

hypertension showed reductions in the left inferior parietal lobe, left 

posterior cingulate gyrus, and right precuneus (Shi et al., 2019). 

One meta-analysis of 21 studies investigating links between BMI and 

CT found consistent negative associations between obesity-related variables 

and lower grey matter volume in areas including the medial prefrontal 
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cortex, bilateral cerebellum, and left temporal lobe. They also found brain 

volume decreased with BMI in all regions except the cerebellum (García-

García et al., 2018). A separate meta-analysis published in the same year 

found negative associations between obesity-related variables and the 

bilateral frontal gyrus, left middle temporal cortex, left precentral gyrus, and 

the cerebellum. Additionally, they found positive associations between 

obesity and the left cuneus, left middle frontal gyrus, left inferior occipital 

gyrus, and corpus callosum (Herrmann, Tesar, Beier, Berg, & Warrings, 

2019). 

Cigarette smoking has been associated with reduced cortical volume in 

a few cortical regions, including some of those associated with AD such as 

the bilateral frontal cortex, bilateral precuneus, and right thalamus (Almeida 

et al., 2008; Brody et al., 2004; Gazdzinski et al., 2005). As well, a study 

done using the ADNI dataset found that cognitively healthy elderly subjects 

with a history of smoking had a significantly higher rate of atrophy over 2 

years in multiple brain regions associated with the early stages of AD when 

compared with non-smokers (Durazzo et al., 2014). A study of 500 elderly 

subjects showed that the number of packs per day is negatively correlated 

with CT however, partial cortical recovery occurred within a year of quitting 

and complete cortical recovery occurred within a 25 year period after 

quitting (Karama et al., 2015). 

Studies investigating links between depression and CT have had 

variable results. One meta-analysis summarized that some studies have 

reported increased regional CT in patients with major depressive disorder 

while others have reported decreased CT in separate and overlapping 

regions (Q. Li et al., 2019). A separate meta-analysis also highlighted 

potential differences in CT due to differences in medicated and unmedicated 

participants (Suh et al., 2019). A preliminary study with 50 participants was 

done to investigate the possibility of cigarette smoking as an explanation for 
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inconsistencies in the CT and depression literature (Zorlu et al., 2017). 

Cigarette smoking is highly prevalent in major depressive disorders and this 

study found similar cortical thinning to that seen in smokers without major 

depressive disorder, including decreased CT in the left temporal cortex, right 

insular cortex, and left pre-and postcentral gyrus. 

Studies have found increased cortical thickness after the introduction 

of an aerobic fitness regime in elderly participants with cognitive decline and 

healthy controls (Bae et al., 2020; Reiter et al., 2015) but not AD and 

healthy controls (Frederiksen et al., 2018; Jonasson et al., 2017). These 

differences may be related to the fitness regime and its duration, follow-up 

times, and interactions with other factors. One such factor is education: a 

study of 1,842 cognitively healthy individuals found that a combination of 

increased education length and increased exercise level showed greater 

global and frontal mean CT than either factor alone (Lee et al., 2016). 

However, even within this study they note the prevalence of diabetes among 

low-exercise groups as a potential confounding factor. 

Recently, work has been done to investigate the direct impact of social 

contact on cortical thickness. One study examining the effect of social 

network size in older adults found CT was not impacted by social network, 

marital status, number of children, number of other relatives, or number of 

friends (Sharifian et al., 2022). However, they did find that lower mean CT 

was associated with worse global cognition among individuals with smaller 

friend networks, but not among individuals with larger friend networks. 

Certain areas in the AD prodrome are important in regulating complex social 

interactions and are an important component of the social perception system 

so this may also have an effect (Rankin et al., 2006; Seo et al., 2010). 

Researchers have investigated signatures of loneliness in grey matter 

morphology, intrinsic functional coupling, and fiber tract microstructure 

(Spreng et al., 2020). They found that lonely individuals display stronger 
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functional communication in the default network, and greater microstructural 

integrity of its fornix pathway. 

T2DM has a pronounced negative effect on grey matter in the temporal 

lobe and hippocampal region. As well, total CT, and mean CT for both 

hemispheres are consistently lower in those with T2DM (Brundel, Van Den 

Heuvel, De Bresser, Kappelle, & Biessels, 2010). One study compared three 

groups: one group of healthy controls and two groups with T2DM, one with 

MCI and one who was cognitively healthy (Brundel et al., 2010). Compared 

with the healthy controls, the cognitively healthy T2DM group showed 

significant reduction in the CT of the left posterior cingulate gyrus, right 

isthmus cingulate gyrus, middle temporal gyrus, paracentral lobule, and 

transverse temporal gyrus. However, CT alterations in the T2DM with MCI 

group were bidirectional when compared with the cognitively healthy group. 

The study found increased CT in the left parahippocampal gyrus and the 

right isthmus cingulate gyrus and decreased CT in the left pars triangularis 

and the right pars opercularis. 

Investigations into the effects of late life exposure to air pollution are a 

relatively recent phenomenon. One 2020 study found that increased 

exposure to PM is associated with globally reduced thicknesses in the frontal, 

parietal, insular, and temporal lobes (Cho et al., 2020). This study also 

evaluated the interactive effects of education, diabetes, cardiovascular 

diseases, smoking, and alcohol consumption. A separate study from the 

same year also found that NO2 and PM exposure was associated with lower 

cortical thickness in brain regions known to be affected by AD (Crous-Bou et 

al., 2020). 

Many of the studies mentioned above do not look exclusively at those 

with AD. Instead, they use a healthy population to investigate the 

neurological impacts of each risk factor. This work has shown that these risk 

factors have an effect on brain structure and function which can be seen in 
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healthy participants. Similarly, this thesis looks at healthy individuals who do 

not have Alzheimer’s disease. Many people who have these risk factors do 

not go on to develop AD or any form of dementia. The reasoning behind why 

certain people who have one or more of these risk factors develop AD and 

others do not is unclear. Additionally, despite the many studies discussed 

above which have investigated the associations between CT and AD risk 

factors, there is a major limitation in the current research: the majority of 

this work focuses on one or a limited number of risk factors and doesn’t 

examine the effect of all the risk factors as a whole. This has resulted in 

fragmented understanding of the impacts of and the mechanisms behind 

these risk factors. This thesis aims to address this gap using a multivariate 

technique which investigates relationships both between and within datasets. 

This technique is discussed in detail in the following section.  

 

1.3 Canonical Correlation Analysis 

1.3.1 Overview of Canonical Correlation Analysis 

Canonical correlation analysis (CCA) is a multivariate method which is used 

to uncover joint multivariate effects. CCA was first introduced in 1936 

(Hotelling, 1936), however, it is more computationally expensive than other 

common analysis methods and as such, has become popular in recent years 

due to increases in computational power. CCA re-expresses data into high-

dimensional linear representations, referred to as canonical variates. Each 

canonical variate is computed from the weighted sum of the original variable 

as indicated by the canonical vector. 

One of the key advantages of CCA is that it can be used to evaluate 

two different sets of variables, without assuming any form of directionality or 

precedence. For example, with CCA it is possible to simultaneously analyze a 

data matrix of brain measurements with respect to a second data matrix of 

behavioral measurements and identify sources of common variation. 
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Moreover, CCA allows the identification of patterns describing many-to-many 

relations between two variable sets. Another important property of CCA is 

that it can produce multiple modes (unique pairs of canonical variates), 

which describe unique patterns of variation in the input sets. Each CCA mode 

consists of one canonical variate associated with the left variable set and a 

second canonical variate associated with the right variable set. The first 

mode calculated using CCA describes the largest variation in the observed 

data. The next mode consists of the pair of latent dimensions whose 

variation between both sets is not accounted for by the first mode. As a 

result, all CCA modes are orthogonal, since every new mode is calculated 

from the remaining variation in the input sets.  

 

1.3.2 Mathematical Notions 

CCA is designed to maximize the correlation between variable sets from two 

domains of measurement. Given two variable sets 𝑋 and 𝑌 from the same 

set of 𝑛 observations suppose there are 𝑝 variables in set 𝑋 and 𝑞 variables 

in set 𝑌.  

𝑋 =  (

𝑋1

𝑋2

⋮
𝑋𝑝

)  𝑌 =  (

𝑌1

𝑌2

⋮
𝑌𝑞

) 

The first CCA mode is defined as a set of linear combinations named 𝑈 and 

𝑉.  𝑈 corresponds to a linear combination of the variables in 𝑋. 

𝑈 = 𝑎𝑇𝑋, 𝑎 ∈  𝑅𝑛 

𝑉 corresponds to a linear combination of the variables in 𝑌. 

𝑉 = 𝑏𝑇𝑌, 𝑏 ∈ 𝑅𝑛 
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Each member of 𝑈 is paired with a member of 𝑉 defining canonical variate 

pairs denoted as: (Ui, Vi). In this primer, 𝑎 and 𝑏 are referred to as the 

canonical vectors, 𝑈 and 𝑉 as the canonical variates, and each (𝑈, 𝑉) pair as 

a mode. 

(U1, V1) is the first canonical mode. The goal is to find linear combinations 

that maximize the correlations between the members of each canonical 

variate pair in a mode. This correlation can be expressed as: 

𝜌 = 𝑐𝑜𝑟𝑟(𝑈, 𝑉) = 𝑐𝑜𝑟𝑟(𝑎𝑇𝑋, 𝑏𝑇𝑌) 

The canonical correlation for the ith canonical variate pair is simply the 

correlation between Ui and Vi. This is the quantity to maximize: 

𝜌𝑖 =
𝑐𝑜𝑣(𝑈𝑖, 𝑉𝑖)

√𝑣𝑎𝑟(𝑈𝑖)𝑣𝑎𝑟(𝑉𝑖)
 

This can be subdivided into its component equations. The variance of Ui and 

Vi can be computed using the following equations: 

𝑣𝑎𝑟(𝑈𝑖) = ∑ ∑ 𝑎𝑖𝑘𝑎𝑖𝑙𝑐𝑜𝑣(𝑋𝑘, 𝑋𝑙)

𝑝

𝑙=1

𝑝

𝑘=1

 

𝑣𝑎𝑟(𝑉𝑗) = ∑ ∑ 𝑏𝑗𝑘𝑏𝑗𝑙𝑐𝑜𝑣(𝑌𝑘, 𝑌𝑙)

𝑞

𝑙=1

𝑝

𝑘=1

 

The covariance between Ui and Vi is defined as: 

𝑐𝑜𝑣(𝑈𝑖, 𝑉𝑗) = ∑ ∑ 𝑎𝑖𝑘𝑏𝑗𝑙𝑐𝑜𝑣(𝑋𝑘, 𝑋𝑙)

𝑞

𝑙=1

𝑝

𝑘=1

 

First mode (U1,V1): The canonical vectors 𝑎1 and 𝑏1 are calculated to 

maximize the canonical correlation 𝜌1 of the first canonical variate pair. This 

is subject to the constraint that the variances of both canonical variates are 

equal to one: 

𝑣𝑎𝑟(𝑈1) = 𝑣𝑎𝑟(𝑉1) = 1 
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Second mode (U2,V2): Similarly, the canonical vectors 𝑎2 and 𝑏2 are 

calculated to maximize the canonical correlation 𝜌2 of the first canonical 

variate pair. Again, this is subject to the constraint that the variances of 

both canonical variates are equal to one. Additionally, the second canonical 

variate pair must be uncorrelated with the first canonical variate pair. The 

constraints can be expressed as:  

𝑣𝑎𝑟(𝑈2) = 𝑣𝑎𝑟(𝑉2) = 1, 

𝑐𝑜𝑣(𝑈1, 𝑈2) = 𝑐𝑜𝑣(𝑉1, 𝑉2) = 0,   𝑐𝑜𝑣(𝑈1, 𝑉2) = 𝑐𝑜𝑣(𝑈2, 𝑉1) = 0. 

ith mode (Ui,Vi):  The canonical vectors 𝑎𝑖 and 𝑏𝑖 are calculated to maximize 

the canonical correlation 𝜌𝑖 of the first canonical variate pair. This process 

may be continued up to 𝑚𝑖𝑛(𝑝, 𝑞) times given the constraints: 

𝑣𝑎𝑟(𝑈𝑖) = 𝑣𝑎𝑟(𝑉𝑖) = 1, 

𝑐𝑜𝑣(𝑈1, 𝑈𝑖) = 𝑐𝑜𝑣(𝑉1, 𝑉𝑖) = 0,   𝑐𝑜𝑣(𝑈1, 𝑉𝑖) = 𝑐𝑜𝑣(𝑈𝑖, 𝑉1) = 0, 

𝑐𝑜𝑣(𝑈2, 𝑈𝑖) = 𝑐𝑜𝑣(𝑉2, 𝑉𝑖) = 0,   𝑐𝑜𝑣(𝑈2, 𝑉𝑖) = 𝑐𝑜𝑣(𝑈𝑖, 𝑉2) = 0, 

⋮      ⋮ 

𝑐𝑜𝑣(𝑈𝑖−1, 𝑈𝑖) = 𝑐𝑜𝑣(𝑉𝑖−1, 𝑉𝑖) = 0, 𝑐𝑜𝑣(𝑈𝑖−1, 𝑉𝑖) = 𝑐𝑜𝑣(𝑈𝑖, 𝑉𝑖−1) = 0, 

 

This can also be expressed as a change of basis. Let ∑𝑋𝑌  be the cross-

covaraiance matrix 𝑐𝑜𝑣(𝑋, 𝑌) for any pair of random variables 𝑋 and 𝑌. A 

solution denoting the canonical correlation coefficient 𝜌 of the canonical 

variates can be expressed as follows: 

𝜌 =
𝑎𝑇 ∑ 𝑏𝑋𝑌

√𝑎𝑇 ∑ 𝑎𝑋𝑋 √𝑏𝑇 ∑ 𝑏𝑌𝑌

 

A change of basis can then be defined: 

𝑐 =  ∑ 𝑎
1/2

𝑋𝑋
 

𝑑 =  ∑ 𝑏
1/2

𝑌𝑌
 

𝜌 =
𝑐𝑇 ∑ ∑ ∑ 𝑑

−1/2
𝑌𝑌𝑋𝑌

−1/2
𝑋𝑋

√𝑐𝑇𝑐√𝑑𝑇𝑑
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The canonical variates can thus also be expressed as: 

𝑈 = 𝑐𝑇 ∑ 𝑋 = 𝑎𝑇𝑋
−1/2

𝑋𝑋
 

𝑉 = 𝑑𝑇 ∑ 𝑌 = 𝑏𝑇𝑌
−1/2

𝑌𝑌
 

 

An alternative understanding of CCA is it provides the best way to rotate the 

two original variable sets (𝑋 and 𝑌) from their original measurement spaces 

to new spaces in a way that maximizes their linear correlation. The canonical 

vectors (𝑎 and 𝑏) define a transformation from the original measurement 

coordinate system to the new latent space and the canonical variates (𝑈 and 

𝑉) encode the embedding of each data point in that new space.  For detailed 

mathematical proof, see A Tutorial on Canonical Correlation Methods (Uurtio 

et al., 2017). 

 

1.3.3 Use in Neuroscience  

Often in neuroscience, a single measure is selected from multiple modalities 

and a one-to-one univariate association is analyzed. To ensure these results 

are statistically meaningful, multiple comparisons correction is performed. 

These one-to-one associations are limited as they overlook possible 

multivariate joint relationships among multiple measures. They are also 

limited because highly correlated noise in brain imaging data can decrease 

the sensitivity and effectiveness of mass-univariate voxel-wise analysis and 

it’s possible for different multiple correction methods to lead to different 

statistically meaningful results (Cremers, Wager, & Yarkoni, 2017; Marek et 

al., 2022; Zhuang et al., 2017). In contrast, multivariate analyses do not 

require multiple correction steps and are able to find covarying associations 

between multiple modalities. They also often can reduce dimensionality, 

removing unnecessary information and noise and improving interpretability 

of data.  
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CCA produces stable results when the number of observations is 

greater than the number of features from both modalities, and some 

previous work suggests that there must be at least three times the number 

of observations. This is often not fulfilled in neuroscience as brain voxels are 

considered individual features. In this case CCA will still produce results, 

however, the results are likely to be overfitted and unstable. As such, data 

reduction techniques are typically applied before CCA. Principal component 

analysis (PCA) is the most commonly used data reduction technique and 

must be applied to the two datasets separately. Other techniques include 

independent component analysis (ICA), features selection based on 

statistical dispersion (e.g., mean or median absolute deviation), and 

traditional brain atlases.  

Multiple studies of cognitively normal, healthy subjects have used CCA 

to investigate healthy aging and the relationship between imaging-derived 

features and non-imaging measurements (Irimia & Van Horn, 2013; Kuo, 

Kutch, & Fisher, 2019; Tsvetanov et al., 2016; Zarnani et al., 2019). Other 

studies have used CCA to determine these relationships in dementia and AD 

(Brier et al., 2016; Liao et al., 2010; McCrory & Ford, 1991; Zhu et al., 

2016). 

One study done by Smith et al. investigated the relationship between 

behavioral and demographic measures and functional connectomes using 

CCA (Smith et al., 2015a). Group-ICA was performed on the brain imaging 

data and then the resulting parcels and demographic data were further 

reduced using PCA. They identified one strong “positive-negative” mode of 

population co-variation linking positive personal qualities, cognitive ability, 

and intrinsic brain connectivity. Similarly, a Danish prospective study used 

CCA to identify markers of healthy aging by examining the relationship 

between structural brain-imaging derived measures and cognitive ability, 

health, lifestyle, and demographic factors (Zarnani et al., 2019). They 
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separately reduced the dimensionality of each dataset using PCA and 

determined significance of the resulting modes using permutation testing. 

They also found a single “positive-negative” mode of population co-variation 

linking higher cognitive performance, positive early-life social factors, and 

mental health to a larger brain volume of several brain structures, overall 

volume, and microstructural properties of some white matter tracts.  

Other studies have investigated the links between imaging-derived 

features and cognition socio-behavioural correlates of psychotic disorders. 

The majority of these have chosen to use atlases to parcellate their data as 

opposed to matrix-based reduction techniques. Often regions of interest 

(ROIs) are selected from the atlases to further reduce the input size. For 

example, one study examining imaging variables and speech fluency in 

children with autism chose to focus on two language/speech-motor ROIs 

(Chenausky, Kernbach, Norton, & Schlaug, 2017). Another study examining 

patterns of cognitive deficits and functional network connectivity in patients 

with schizophrenia and healthy controls created resting‐state network 

templates based on the probabilistic ROIs from the BrainMap activation 

database and a resting‐state fMRI dataset (Adhikari et al., 2019). 

Despite atlases and matrix factorizing methods being the most 

popular, other studies have chosen to use different parcellation methods. For 

example, a 2019 study used CCA to relate variation in insular cortex to 

clinical symptoms of schizophrenia in schizophrenic and healthy control 

individuals (Tian, Zalesky, Bousman, Everall, & Pantelis, 2019). The fMRI 

data used in this study was parcellated based on cluster analysis: insula 

voxels were grouped according to similarity in connectional profiles. 

 

1.4 Matrix Decomposition 

Within neuroimaging, techniques such as principal component analysis (PCA) 

and independent component analysis (ICA) are common choices for 
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dimensionality reduction (Arbabshirani, Plis, Sui, & Calhoun, 2017; Mwangi, 

Tian, & Soares, 2014; H. T. Wang et al., 2020). Typically, these matrix 

decomposition techniques are applied in an exploratory, data-driven fashion 

to identify dominant modes of variance in a single dataset (Hansen et al., 

1999). One of the strengths of these decomposition methods is that they can 

produce a simplified description of the original dataset by re-expressing the 

variables using few dimensional representations. This reduction is often 

beneficial for human interpretation in addition to computational and 

statistical usability. Figure 1.2 provides visual intuition for the differences 

between PCA and ICA. 

 

1.4.1 Principal Component Analysis 

Principal Component Analysis (PCA) performs an orthogonal linear 

transformation which projects a dataset to a new coordinate system such 

that the greatest variance of the data is defined on the first coordinate (first 

principal component), the second greatest variance on the second 

coordinate, and so on. In other words, PCA extracts a set of latent 

dimensions as a linear approximation of the main components of variation 

inherent in a dataset. These components of variation are not always directly 

observable in the original dataset. CCA can be thought of as an extension of 

PCA which maximizes the linear correspondence between two sets of 

variables. Whereas PCA defines a new orthogonal coordinate system that 

optimally describes variance in a single dataset, CCA defines coordinate 

systems that optimally describe the cross-covariance between two datasets. 

 

1.4.2 Independent Components Analysis 

Analogous to PCA and CCA, independent component analysis (ICA) extracts 

dimensions of hidden variation from high-dimensional variable sets. ICA 

performs a transformation which projects a dataset to a maximally 
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independent set such that all components are statistically independent and 

non-gaussian. To rephrase, ICA extracts a set of additive latent dimensions 

which underlie the original dataset. ICA can be considered as an extension of 

PCA, however, whereas PCA optimizes the covariance matrix (second-order 

statistics) of the data, while ICA optimizes higher-order statistics such as 

kurtosis. This results in PCA identifying uncorrelated components and ICA 

identifying independent components. Additionally, the components of ICA 

are not naturally ordered. All ICA vectors have equal importance whereas 

different PCA vectors explain different amounts of variance within the data 

based on eigenvalues.  
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Chapter 2: Research Statement 

The primary objective of this thesis is to examine the effect of different data 

reduction methods for neuroimaging studies in the context of CCA. This is 

done in the context of investigating how risk factors for AD may impact brain 

structure in individuals. Properly understanding the risk factors which 

contribute to AD will require an investigation into how they interact with 

each other as well as their relationship with neurodegeneration. Attempts 

thus far have been unable to uncover the reasoning behind why certain 

people who have these risk factors develop AD and others do not. These 

studies have been limited by small sample sizes and restricted scope which 

considers only one or a few risk factors at a time. In this work, I address 

these limitations by using CCA, a jointly multivariate approach to investigate 

relationships within a set of risk factor related measures and between this 

set and measures of cortical thickness. I analysed a population of 25,043 

adults aged 40 years and older using 52 behavioural measures chosen to be 

representative of the 12 known AD risk factors and cortical thickness values 

parcellated into regions of interest using 4 separate parcellation methods. 

This project design simultaneously addresses the methodological 

limitations of CCA. In spite of the increasing use of CCA in neuroimaging 

studies, particularly those investigating relationships between human brain 

and behaviours, little investigation has been done to investigate the impacts 

of data processing decisions in the CCA pipeline. Using a large, state-of-the-

art dataset, I am sufficiently equipped to investigate the effects of 

parcellation methods and dataset size on interpretability of CCA results in a 

neuroimaging context. I do so by performing permutation testing and 

random subsampling in order to compare the effects on the correlation 

values measured between behaviours and CT as well the effects on the 

contribution of individual variables. 
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Chapter 3: Materials and Methods 

Canonical correlation analysis (CCA) was run on behavioural and cortical 

thickness values from over 25,000 participants. These participants were 

aged 40–69 years at recruitment and all data is available through the UK 

Biobank, a large-scale biomedical database. Behavioural variables were 

chosen from this database to correspond with Alzheimer’s disease (AD) risk 

factors. Cortical thickness (CT) values were derived using an automated 

image-processing pipeline. Dimensionality reduction of the CT values for 

each participant was performed using four different methods: principal 

component analysis, independent component analysis, spectral clustering, 

and anatomical parcellation. The reduced CT dimensions were then used as 

input into CCA along with the behavioural variables. The effect of each 

reduction technique, as well as the overall significance and loadings for the 

resulting canonical modes were examined. Additionally, random subsamples 

of the population were selected and used as input into CCA, in order to 

examine the effects of sample size on the significance and loading of 

canonical modes. The details of these steps are explained below. 

 

3.1. Participants and Imaging 

3.1.1 UK Biobank Overview 

Data used in this project was obtained from the UK Biobank, a 

representative population-based prospective study with 500,000 participants 

from the United Kingdom (Sudlow et al., 2015). The primary goal of the UK 

Biobank is understanding the determinants of common life-threatening and 

disabling conditions via collection of extensive phenotypic and genotypic 

detail about its participants, including data from questionnaires, physical 

measures, sample assays, accelerometry, multimodal imaging, genotyping, 

and longitudinal follow-up. The UK Biobank began data collection in 2006. All 
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participants were aged 40–69 years at recruitment. The 500,000 participants 

were first assessed between 2006 and 2010. The assessment visit consisted 

of a self-completed touch-screen questionnaire, brief computer-assisted 

interview, and physical and cognitive testing. A subset of 100,000 

participants was selected for follow-up data collection at a later date from 

physical activity monitors and multi-modal imaging, including brain MRI. The 

participant demographics after participant selection and quality control can 

be seen in Table 3.1. Ethnicity was recorded by the participant as white (W), 

black (b), Asian (A), Chinese (C), mixed (M), or other (O). The Townsend 

Deprivation Index is a measure of material deprivation, where a higher score 

represents a higher level of deprivation. This index is an aggregate of 

measures of unemployment, car ownership, home ownership, and household 

overcrowding.  

 

Table 3.1. Participant Demographics. Participant demographic breakdown after 

quality control. These demographic measures are recorded during the first visit. 
Sex was recorded as male (M) or female (F). Ethnicity was self reported as white 
(W), black (B), Asian (A), Chinese (C), mixed (M), or other (O). 

 

 

 

Participants Age Sex 
Deprivation 

Index 
Ethnicity 

25043 

Mean: 64 

Stdev: 7.3 

Min: 44 

Max: 82 

M: 12576 

F: 12467 

Mean: -1.29 

Stdev:  3.09 

Min: -6.25 

Max:  11 

W: 23408 

B: 90 

A: 552 

C: 71 

M: 761 

O: 161 
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3.1.2 Behavioural Data Collection 

The participants were assessed in 22 centres throughout the UK, chosen to 

cover a variety of different settings and provide socioeconomic and ethnic 

heterogeneity and urban–rural mix. The UK Biobank baseline questions were 

chosen to allow a wide assessment of health-related outcomes to be 

conducted in the whole cohort. The questionnaire was administered in two 

parts during the assessment center visit: a touchscreen self-completed 

questionnaire followed by a computer-assisted personal interview.  

 

3.1.2.1 Cognitive Measures 

A selection of cognitive and educational attainment measures are shown in 

Table 3.2. Five cognitive tests were included in the UK Biobank study during 

the touch-screen assessment: the Numeric Memory Test, Fluid Intelligence 

Test, Reaction Time Test, Visual Memory Test, and Prospective Memory Test.  

The Numeric Memory Test consisted of showing a two-digit number to 

participants and asking them to recall it. The number of digits was then 

increased by one until the participant made an error, or they reached the 

maximum of twelve digits. The test of Fluid Intelligence consisted of thirteen 

logic/reasoning-type questions and a two-minute time limit where each 

question was worth one point. The Reaction Time Test consisted of a timed 

test of symbol matching. The Visual Memory Test required participants to 

memorize the positions of six card pairs, and then match them from 

memory. A higher score indicates more errors were made. The Prospective 

Memory Test asked to engage in a specific behaviour later in the assessment 

and then recorded whether they did so or not. 
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Table 3.2. Participant Cognitive Measures. Participant cognitive measures after 
quality control.  

 

 Mean (Standard Deviation) 

Age Completed Full-Time Education 17 (2.69) 

Numeric Memory Score 6.70 (1.34) 

Fluid Intelligence Score 5.99 (2.16) 

Median Reaction Time (ms) 546 (130) 

Visual Memory Errors 3 (3) 

Prospective Memory Test Pass: 23515, Fail: 1528 

 

 

3.1.3 Imaging Data Collection 

The full neuroimaging protocol is provided as part of the UK Biobank Brain 

Imaging Documentation (Smith, Alfaro-Almagro, & Miller, n.d.). The MR 

images were acquired at three separate sites with standardized equipment: 

Siemens Skyra 3T running VD13A SP4 with a standard Siemens 32-channel 

RF receive head coil. All released data used in this project was collected from 

three identical centers dedicated to UK Biobank imaging. The imaging 

protocol included T1-weighted 3D MPRAGE structural imaging with the 

following parameters: straight sagittal orientation, TR=3.15 ms, TE=1.37 

ms, TI=880 ms, field of view (FOV) = 208x256x256 matrix, resolution = 

1x1x1 mm, in-plane acceleration iPAT = 2, acquisition time of 5 minutes. 

These are the main neuroimaging focus for this thesis. The FOV for the T1 

and T2 images was automatically determined based on Siemens’ auto-align 

software, which aligns a scout scan to an atlas. All images acquired by the 

UK Biobank were defaced for subject anonymity before being released. 

 



52 

 

3.2 Data Processing 

3.2.1 Image Processing 

3.2.1.1 UKBB Preprocessing 

In addition to releasing the raw, defaced T1w structural images, the UKKB 

also releases processed imaging data, quality control metrics, and T1-

derived outputs. After defacing, the full FoV raw T1 image is cropped to 

reduce the amount of non-brain tissue (primarily tissues below the brain and 

blank space above the head) using BET (Smith, 2002). Gradient distortion 

correction is performed using FMRIB’s Linear Image Registration Tool 

(Jenkinson, Bannister, Brady, & Smith, 2002; Jenkinson & Smith, 2001) in 

conjunction with the MNI ICBM152 non-linear 6th generation symmetric 

Average Brain Stereotaxic Registration Model (Grabner et al., 2006). This 

data is then nonlinearly warped to MNI152 space using FMRIB’s Nonlinear 

Image Registration Tool (Andersson, Jenkinson, & Smith, 2007a, 2007b). 

Finally, brain-extraction is then performed by back-transforming a standard-

space brain mask into the space of the T1 and applying it to the image.  

Next, FAST: FMRIB's Automated Segmentation tool (Y. Zhang et al., 2001) is 

used to perform tissue-type segmentation. FAST estimates probabilistic 

segmentations for grey matter, white matter, and cerebrospinal fluid. This 

step also estimates intensity bias and is used to generate a fully bias-field-

corrected version of the brain-extracted T1. 

There are multiple quality assurance steps performed throughout the 

image processing pipeline. A fully automated Quality Control Tool is used to 

identify images with problems either in their acquisition or in later 

processing for example: measures of asymmetry and subcortical structure 

normalised intensities (Alfaro-Almagro et al., 2018). The Quality Control Tool 

consists of three types of classifiers developed to classify issues that may be 

found in T1 images. The selected classifiers all exhibited satisfactory 

classification individually and using multiple classifiers compensates for 
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possible overfitting of individual classifiers (Alfaro-Almagro et al., 2018). The 

full set of image analysis pipeline scripts is available at 

www.fmrib.ox.ac.uk/ukbiobank/. 

3.2.1.2 CIVET 

The preprocessed T1-weighted images were processed by CIVET (version 

2.1.1; Montreal Neurological Institute; Zijdenbos et al., 2002) using the 

NeuroHub infrastructure (Sherif et al., 2014) to estimate CT. CIVET is a fully 

automated image-processing pipeline for extracting cortical, morphometric, 

and volumetric data from MR images (Zijdenbos, Forghani, & Evans, 2002). 

Briefly, the image processing steps of CIVET are: linear registration to the 

MNI ICBM 152 average (Collins et al., 1994), non-uniformity correction 

(Sled, Zijdenbos, & Evans, 1998), brain extraction (Smith, 2002), tissue 

classification into white matter (WM), gray matter (GM) and cerebrospinal 

fluid (CSF) using priors derived from nonlinear registration and accounting 

for partial volume effects (Tohka et al., 2004), WM and pial surface 

extraction and registration (June et al., 2005b; Kabani, Le Goualher, 

Macdonald, & Evans, 2001; MacDonald, Kabani, Avis, & Evans, 2000), and 

estimation of cortical thickness at 81,924 vertices across the cortical mid-

surface (Lerch & Evans, 2005). The CT values are calculated based on the 

length of the trajectory from the GM-WM surface to the pial surface, then 

blurred using a 30 mm geodesic surface kernel. The blurred values are used 

as input into the data reduction techniques described in Chapter 3.2.3. 

3.2.1.3 Quality Control 

In addition to the CT values, CIVET automatically creates figures showing 

the GM and WM classifications as well as boundary delineations for quality 

control. Quality control was performed on all CIVET outputs to control for 

accuracy of the surface definition and the GM and WM classifications. 

Outputs were given a score of 0 (fail), 0.5 (warn), or 1 (pass); see Figure 

3.1 for examples. A passing score of 1 is given for outputs with accurate 
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classification and boundaries and no visible errors. A score of 0.5 is given for 

outputs which have minimal misclassification of GM or WM or slight errors in 

segmentation. This rating is given when these errors are minimal and 

localised to one or few parts of the cortex. A failing score of 0 is given for 

outputs with significant errors or numerous small errors. Data was excluded 

after quality control, and only outputs with a score of 1 were included in the 

analysis. The limited MR image slices shown in the automatically generated 

CIVET figures must be taken into account when assessing the accuracy of 

the ratings. The full quality control guidelines are made available by the 

CoBrA Lab at https://github.com/CoBrALab/documentation/wiki/CIVET-

Quality-Control-Guidelines.  
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Figure 3.1. CIVET Quality Control Examples. Examples of QC scores for CIVET 

outputs. Scores are either 0 (fail), 0.5 (warn), or 1 (pass). 
 

 

3.2.2 Reducing Behavioural Variables 

A subset of the epidemiological and cognitive variables was selected to be 

representative measures of the twelve potentially modifiable risk factors. 

Behavioural variables were excluded if more than 10% of the population had 

missing values. This resulted in the exclusion of 11 variables, however each 

AD risk factor had at least one representative variable which was not 
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excluded. Since blood pressure could be taken either manually or 

automatically, these columns were combined. The 52 chosen variables are 

listed in Table 3.3 (see https://biobank.ndph.ox.ac.uk/showcase/ for 

detailed descriptions of these measures). Participants who were missing 

more than 10% (5) of these variables were not included in the study. 
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Table 3.3. UKBB Variable Descriptions. Table containing the codes for each 

behavioural variable used in the thesis, the UKBB Data Field Description, and the 

corresponding risk factor associated with the variable. 

 

CODE DESCRIPTION CATEGORY 

845 Age completed full time education  Education 

864 Number of days/week walked 10+ minutes  Physical Activity 

874 Duration of walks  Physical Activity 

884 Number of days/week of moderate physical 

activity 10+ minutes 

Physical Activity 

894 Duration of moderate activity  Physical Activity 

904 Number of days/week of vigorous physical 

activity 10+ minutes  

Physical Activity 

914 Duration of vigorous activity Physical Activity 

943 Frequency of stair climbing in last 4 weeks  Physical Activity 

971 Frequency of walking for pleasure in last 4 weeks  Physical Activity 

981 Duration walking for pleasure  Physical Activity 

991 Frequency of strenuous sports in last 4 weeks Physical Activity 

1001 Duration of strenuous sports  Physical Activity 

1011 Frequency of light DIY in last 4 weeks  Physical Activity 

1021 Duration of light DIY  Physical Activity 

1031 Frequency of friend/family visits  Social Support 

https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=845
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=845
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=864
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=864
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=874
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=874
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=884
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=884
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=884
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=894
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=894
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=904
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=904
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=904
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=914
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=914
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=943
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=943
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=971
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=971
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=981
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=981
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=991
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=991
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1001
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1001
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1011
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1011
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1021
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1021
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1031
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1031
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1239 Current tobacco smoking  Smoking 

1249 Past tobacco smoking  Smoking 

1259 Smoking/smokers in household  Smoking 

1269 Exposure to tobacco smoke at home  Smoking 

1279 Exposure to tobacco smoke outside home  Smoking 

1558 Alcohol intake frequency.  Alcohol   

2050 Frequency of depressed mood in last 2 weeks Mental health   

2110 Able to confide  Social Support 

2247 Hearing difficulty/problems Hearing   

2443 Diabetes diagnosed by doctor Diabetes 

2624 Frequency of heavy DIY in last 4 weeks Physical Activity 

2634 Duration of heavy DIY Physical Activity 

2966 Age high blood pressure diagnosed Medical 

Conditions   

3456 Number of cigarettes currently smoked daily 

(current cigarette smokers) 

Smoking 

3637 Frequency of other exercises in last 4 weeks Physical Activity 

3647 Duration of other exercises Physical Activity 

4537 Work/job satisfaction Mental health   

4548 Health satisfaction Mental health   

https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1239
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1239
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1249
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1249
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1259
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1259
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1269
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1269
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1279
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1279
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1558
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1558
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100051
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=2050
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=2050
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100060
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=2110
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=2110
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=2247
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=2247
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100043
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=2624
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=2624
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=2634
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=2634
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=2966
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=2966
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100044
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100044
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=3456
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=3456
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=3456
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=3637
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=3637
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=3647
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=3647
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4537
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4537
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100060
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4548
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4548
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100060
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4559 Family relationship satisfaction Mental health   

4570 Friendships satisfaction Mental health   

4792 Cochlear implant Hearing   

4803 Tinnitus Hearing   

6160 Leisure/social activities Social Support 

20116 Smoking status Smoking 

20123 Single episode of probable major depression Mental Health   

20124 Probable recurrent major depression (moderate) Mental Health   

20125 Probable recurrent major depression (severe) Mental Health   

20126 Bipolar and major depression status Mental Health   

23104 Body mass index (BMI) BMI  

94 Diastolic blood pressure, manual reading Blood Pressure   

4079 Diastolic blood pressure, automated reading Blood Pressure   

 

 

3.2.3 Dimensionality Reduction 

3.2.3.1 Preprocessing  

Quality control was performed on all the images according to the procedures 

outlined in the previous section, Chapter 3.1.4.3. CT values for all 

participants were retrieved from NeuroHub using the CBrain portal (Sherif et 

al., 2014). Data decomposition was performed on these CT values using four 

different methods: the Automated Anatomical Labeling (AAL) atlas, a custom 

cortical surface atlas grouped via spatial proximity, and two matrix 

https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4559
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4559
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100060
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4570
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4570
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100060
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4792
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4792
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100043
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4803
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4803
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100043
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6160
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6160
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20116
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20116
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20123
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20123
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100060
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20124
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20124
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100060
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20125
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20125
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100060
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20126
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20126
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100060
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=23104
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=23104
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=94
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=94
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100011
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4079
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4079
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100011
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decomposition methods: principal component analysis (PCA) and 

independent component analysis (ICA). The resulting brain parcellations 

from these methods are described in detail below. Each of these parcellation 

methods was propagated to all participants to obtain CT samples per region 

of interest. Vertex-wise CIVET outputs contain CT estimates at 40,962 

vertices for each hemisphere of the brain. However, a portion of the vertices 

along the midline often contain unreliable estimates. These invalid vertices 

were removed using a mask, resulting in 38,561 vertices for each 

hemisphere. 

Unlike CCA which is scale-invariant, the PCA and ICA dimension-

reduction steps performed prior to CCA are influenced by the relative scaling 

of each variable. Thus, the vertex-wise CT values were normalised using z-

scoring by vertex over all subjects. The effects of sex were regressed out of 

the values. When CCA was run with sex included, it dominated the first 

mode of correlation and overshadowed all other relationships. 

3.2.3.2 Principal Component Analysis 

PCA, as described in detail in section 1.4.1, is a form of matrix 

decomposition which reduces the original data to new variables which are 

orthogonal linear functions of those in the original dataset. Each principal 

component corresponds to the direction with the greatest variance in data. 

The top 600 principal components (PCs) were selected as they accounted for 

over 80% of the explained variance in cortical thickness.  

3.2.3.3 Independent Component Analysis 

ICA, as described in detail in section 1.4.2, performs matrix decomposition 

similar to PCA, removing correlations between components. However, unlike 

PCA, ICA also removes higher order dependence, and the vectors are not 

orthogonal. The ICA approach used included a pre-whitening step: the data 

were first transformed using PCA, which leads to a diagonal covariance 

matrix, and then each dimension was normalized such that the covariance 
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matrix is equal to the identity matrix. All independent components (ICs) are 

equally important, and 600 components were selected for consistency with 

PCA. 

3.2.3.4 AAL Atlas 

The anatomical labeling atlas (AAL) is a popular brain atlas, and has been 

widely employed to identify kinds of psychological disorders in recent years 

(Long et al., 2018). The AAL atlas is derived from a spatially normalized 

single-subject high-resolution T1 volume provided by the Montreal 

Neurological Institute. The parcellations can be seen in Figure 3.2. The AAL 

template was originally defined on the MNI single brain Colin27 brain 

(Tzourio-Mazoyer et al., 2002) and registered to the ICBM surface model 

(Lyttelton, Boucher, Robbins, & Evans, 2007). The AAL atlas used, partitions 

the whole cerebral cortex into 90 regions (without cerebellum) which can be 

seen in Figure 3.2. There is a slight asymmetry in the AAL which 

corresponds to the natural asymmetry of typical brains. For this thesis, an 

asymmetric AAL labeling package specific to the resampled surfaces 

generated from the CIVET pipeline was used. 

3.2.3.5 Spatial Clustering 

To contrast the anatomical atlas, a spatially derived brain atlas was created 

without considering neuroanatomical boundaries using spectral clustering; 

see Figure 3.2. Spectral clustering allows for the creation of parcels with a 

similar number of vertices, which is beneficial as it allows for unbiased 

sampling of vertices to estimate cortical thickness (Bhagwat, Pipitone, 

Voineskos, & Chakravarty, 2019). Spectral clustering uses graph 

connectivity to identify data points (vertices) connected or immediately next 

to each other. The verticees are then mapped to a low-dimensional space 

that can be easily segregated to form clusters. An affinity matrix, degree 

matrix, and Laplacian matrix can be derived from the graph. Information 

from the eigenvalues of these matrices is used to create the clusters based 
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on distance between the verticees. Spectral clustering is flexible and makes 

no assumptions about the form of the clusters. 

The implementation of spectral clustering for this thesis was done in 

Python using scikit learn (version 1.1.1; Pedregosa et al., 2011). This 

implementation performs a low-dimension embedding of the affinity matrix 

followed by clustering. The affinity matrix is constructed using a radial basis 

function (RBF) kernel and the cluster labels are assigned using k-means 

clustering. A single brain mesh is taken as input and each brain vertex is 

assigned to a discrete parcel. The parcellation is then propagated to each 

individual subject. In order to ensure consistency with the AAL atlas, 90 

brain parcels were created. 
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3.3 Statistical Analysis 

3.3.1 Canonical Correlation 

CCA was performed to simultaneously co-analyse the matrix of brain 

variables along with the matrix of behavioural variables. These two matrices 

contained the data for all 25,043 participants. Each resulting mode identifies 

a linear combination that relates behavioural variables and CT components. 

This analysis was implemented in Python using scikit-learn (version 1.1.1; 

Pedregosa et al., 2011). The default values of 500 maximum iterations of 

the power method and a tolerance of 1e-06 for the convergence criteria 

were used.  

For this thesis, CCA was used to estimate 52 modes - the minimum 

size of the two input matrices. The first solution found by CCA represents the 

most strongly correlated mode. The canonical correlation for each mode 

(variate pair) was calculated. Canonical correlation between two canonical 

variates is a primary performance measure for CCA. This measure quantifies 

the linear correspondence between the two variable sets based on the 

Pearson’s correlation between their canonical variates. In other words, it 

measures how much the two variable sets can be brought near each other in 

the embedding space and can be thought of as a metric of successful joint 

information reduction. 

The traditional approach to interpreting canonical correlation analyses 

involves examining the magnitude and sign of the canonical weight assigned 

to each variable in its canonical variate. However, the use of canonical 

weights for interpretation or contribution of a variable is subject to criticism. 

A small weight may be interpreted as insignificant due its corresponding 

variable being irrelevant to the overall relationship, or that it has been 

partialed out of the relationship due to a high degree of multicollinearity. 

This is the same issue faced regarding the interpretation of beta weights in 

regression techniques. Furthermore, canonical weights are subject to 
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considerable instability across samples. These limitations suggest caution in 

using standardized canonical weights to interpret the results of a canonical 

analysis (Dattalo, 2014; Lambert & Durand, 1975). Consequently, canonical 

loadings have been increasingly used as a basis for interpretation. Canonical 

loadings measure the linear correlation between an original variable and the 

canonical variate or the set it belongs to. This measure reflects the variance 

that the observed variable shares with the canonical variate. Intuitively, the 

larger the magnitude of loading, the more important it is in deriving the 

canonical variate. In this analysis, canonical loadings were considered to 

avoid the limitations inherent in canonical weights and to ensure 

comparisons across different runs of CCA were accurately measured. 

 

3.3.2 Permutation Testing 

Permutation testing is an increasingly popular statistical tool for creating 

sampling distributions as a means of generating a null distribution by 

resampling. The data was shuffled by assigning different outcome variables 

to each set of observed variables without replacement. 

In this case, a permutation testing procedure was used to create a null 

distribution of canonical variate pairs. The behavioural data matrix was kept 

constant, while the rows of the cortical thickness matrix were shuffled so as 

to break the linkage between participants CT variables and their behavioural 

variables. The canonical variates resulting from these re-aligned datasets 

then serve as the null distribution against which the real correlations are 

compared. For each parcellation method, 5,000 permutations were created 

and input into CCA. 
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3.3.3 Random Sampling 

In order to evaluate the effects of participant sample size on the results, 

CCA was performed on randomly selected subsets of the data. Unlike 

permutation testing which includes all participants, random sampling 

includes only a subset of the participants and can be used to demonstrate 

consistency of results across reduced sample sizes. A random sample was 

taken of 75% (18,782 participants) of the participants – without 

replacement - and CCA was performed in an identical manner to the 

complete participant analyses. This was repeated 100 times. The individual 

brain and behavioural loadings and the order of the variables within the 

variates were compared across the repetitions. The first mode was also 

compared with the first mode found using all participants. This was done for 

all parcellation methods. 

Additionally, CCA was run with random samples of 50% (12,521 

participants), 25% (6,260 participants), and 10% (2,504 participants) of the 

data. This procedure was performed using the same procedure as running 

CCA for the full list of participants with all modes of parcellation. The 

canonical correlation for the first mode was calculated with the reduced 

sample size. This analysis was also repeated 100 times and averaged for 

comparison with the first mode from CCA performed on all participants. 
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Chapter 4: Results 

4.1 Canonical Correlates 

All four parcellation methods resulted in first modes with similar loading 

patterns. The behavioural variables with the strongest positive and negative 

loadings are consistent between the four methods, however the values of 

the loadings are not. Likewise, similar loading patterns emerge in certain 

brain areas for all four methods, but the values differ. These similarities are 

examined in more detail for the first modes in chapter 4.2. The resulting 

modes calculated using all parcellation methods were not statistically 

significant. As such, the relationships found between CT and behavioural 

variables can not be concluded to have any specific effect. F-approximations 

of Wilks’ Lambda are used as the test statistic. The first p-value is calculated 

including all canonical correlation coefficients, the second p-value is 

calculated including all except the first coefficients, the third p-value is 

calculated by excluding the first two coefficients etc., allowing assessment of 

the statistical significance of each individual correlation coefficient. The 

canonical correlation for the first mode of CCA using the PCA and ICA 

matrices is similar (PCA: cc=0.801, p-val=0.067; ICA: cc=.800, p-

val=0.066), while the canonical correlation for the first mode using the 

spectrally clustered matrix as input was lower (cc=0.733, p-val=0.23), and 

the canonical correlation for the first mode using the AAL matrix as input 

was the lowest (cc=0.669, p-val=0.36). The correlation values for all modes 

are shown in Figure 4.1.  
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4.2 First Canonical Mode 

The first canonical mode represents the most significant mode of population 

co-variation, for which individual subjects’ strength of involvement with this 

mode is highly similar for both a subset of the brain regions and a subset of 

the behavioural variables. Permutation testing using null distributions 

accounts for the fact that the first modes are expected to have higher 

correlations, and the nulls show that this is a small effect.  

 

4.2.1 Comparing Parcellation Methods 

The Hamming distance measures similarity by comparing the changes 

in the number of positions between the two lists of ordered behavioural 

variables. The normalized Hamming distance is the ratio of the Hamming 

distance to the length of the lists being compared, with a measure of 0 

representing two identical lists. This can be used to compare the variable 

ordering, without taking into account the strength of the loadings. The table 

of normalized Hamming distances for each parcellation methodology can be 

seen in Table 4.1. The loadings calculated using PCs and ICs are the most 

similar and both are equally dissimilar from the loadings found using AAL 

parcellations. Additionally, the distance between the ordered behavioural 

loadings was calculated for reduced lists. Table 4.2 shows the normalized 

Hamming distance between the top 5 positive loaded variables and bottom 5 

negative loaded variables. When taking into account only the variables with 

the strongest loadings, the normalized Hamming distance is always lower 

(the lists are more similar). The lists of behavioural loadings can be seen 

with text size according to their loadings in Figure 4.2. The behavioural 

variables being input remain the same, and thus the changes in their 

loadings reflect the changes in the relationships uncovered using CCA based 

on the parcellation method. 
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Table 4.1. Hamming Distance of Loadings. The normalized Hamming distance 

between the behavioural variables based on the canonical variate loading from CCA 
performed using each parcellation method (specified along the axis) as input. 

 
 PCA ICA Spectral AAL 

PCA 0 0.19 0.67 0.71 

ICA 0.19 0 0.69 0.71 

Spectral 0.67 0.69 0 0.54 

AAL 0.71 0.71 0.54 0 

 

 
Table 4.2. Hamming Distance of Top Loadings. The normalized Hamming 
distance between the top and bottom five behavioural variables based on the 
canonical variate loading from CCA performed using each parcellation method 

(specified along the axis) as input. 
 

 PCA ICA Spectral AAL 

PCA 0 0 0.3 0.3 

ICA 0 0 0.3 0.3 

Spectral 0.3 0.3 0 0 

AAL 0.3 0.3 0 0 

 

In addition to the normalized Hamming distance, which looks at the 

relative loadings within the first canonical variates; the correlation between 

the behavioural loadings themselves can be calculated. The correlations 

between the behavioural variable loadings calculated using CCA with all four 

parcellation methods can be seen in Table 4.3. The correlation values are all 

high, with the strongest correlations between ICA and PCA and the lowest 

correlations between ICA and spectral clustering. These correlations 

measure the strength of the linear relationship between the variate loadings. 

Large correlations suggest that the loadings are relatively stable across all 

implementations of CCA (Lambert & Durand, 1975). 
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Table 4.3. Correlation of Loadings. The correlation between the behavioural 
variables based on the canonical variate loadings from CCA performed using each 

parcellation method (specified along the axis) as input.  

 PCA ICA Spectral AAL 

PCA 1 0.99998 0.99909 0.99844 

ICA 0.99998 1 0.99908 0.99847 

Spectral 0.99909 0.99908 1 0.99919 

AAL 0.99844 0.99847 0.99919 1 

 

4.2.2 Loading Values 

The strongest loading for the spectral clustered results is on a parcel which 

is composed of bilateral areas from the inferior frontal gyrus, opercular part; 

precental gyrus; rolandic operculum; superior temporal gyrus; and temporal 

pole of the superior temporal gyrus (loading: -0.858) and can be seen in 

Figure 4.2 (bottom right). The strongest loadings for the AAL parcellated 

results occur bilaterally for the precentral gyrus (loading: -0.900), closely 

followed by the superior temporal gyrus (loading: -0.890), and postcentral 

gyrus (loading: -0.849) and can be seen alongside the behavioural loadings 

in Figure 4.2 (bottom left).   The three principal components with the 

strongest absolute loadings are shown in Figure 4.3. The fifth principal 

components had the highest absolute loading (loading: -0.437), closely 

followed by the second (loading: 0.320), and third components (loading: -

0.334). Of these three components, the fifth shows the most bilateral 

differences which can be seen clearly in Figure 4.3.  All three of these 

components have strong absolute loadings along the precentral gyrus and 

the temporal pole of the superior temporal gyrus. Component 2 has a 

progression of positive to negative loadings anteriorly to posteriorly 

throughout the cortex excepting the areas mentioned previously. Component 

3 has the inverse progression with positive loadings posteriorly transitioning 

to negative values anteriorly. Additionally, the combined weight of the top 
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5% of the loadings is shown in Figure 4.2 (top left). This was calculated to 

visualize the cumulative effect of the canonical loadings because visualizing 

the weight effects on all 600 components is intuitively challenging. This 

combined weighting results in a distinct bilateral, negatively weighted area 

along the postcentral gyrus. The most positively weighted areas are 

bilaterally spread across the inferior temporal gyrus, temporal pole of the 

superior temporal gyrus, and superior frontal gyrus. The three independent 

components with the largest absolute loadings are shown in Figure 4.4. The 

492th independent components has the highest absolute loading (loading: -

0.140), closely followed by the 249th (loading: -0.124), and 279th 

components (loading: -0.124). The 279th loading shows positive weighted 

area along the postcentral gyrus and inferior temporal gyrus. The other two 

components have areas of positive and negative loadings which do not 

correspond to specific functional areas. Additionally, the combined weight of 

the top 5% of the loadings is shown in Figure 4.2 (top right). The combined 

weighting results in a pattern of scattered areas of positive and negative 

loadings which do not correspond to easily identifiable anatomical or 

functional areas. 

The loadings on the behavioural variables in the first mode correlate 

with the loadings on the CT variables. For example, low work fulfillment had 

the strongest loading across all parcellation methods and was associated 

with the strong negative loadings (aka decreases in cortical thickness) in the 

areas mentioned above. Conversely the negative behavioural loadings can 

be interpreted as an inverse correlation. For example, high sport 

participation is negatively correlated with CT decreases. This interpretation 

can be simplified as high sport participation is correlated with increased 

cortical thickness in the specified areas. 
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Figure 4.2. Behavioural and CT Loadings. A visualization of the loadings from 

the first CCA mode for each parcellation method. Left: List of behavioural variables 
weighted based on their loadings from the first CCA mode. Right: Visualization of 
the spectrally clustered CT value loadings from the first CCA mode. The midline CT 

values which were not included in the analysis are set to the mean value for 
visualization purposes.  
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4.3 Sampling 

The evaluation of the 75% sample size canonical correlation results showed 

consistency across a smaller sample of population. The top 10 largest 

absolute value loadings for the behavioural matrix are shown in Figure 4.5. 

This figure demonstrates the stability of the loading values and their 

ordering over the random population subsamples for all parcellation 

methods.  

Smaller subsamples were also created and the canonical correlation of 

the first mode of each was recorded. The canonical correlation for the first 

mode of CCA found by averaging the results from 100 random subsamples 

of the population is visualized in Figure 4.6. This is shown for the four 

parcellation methods: PCA, ICA, AAL clustering, and spectral clustering. The 

corresponding p-values for each sample size are shown in Figure 4.6 in the 

table to the right. As the sample size decreased the p-value decreased for 

CCA with all four parcellation methods. The CCA run with principal 

components and independent components reach significance levels at a 

sample consisting of 25% of the population.  
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Figure 4.6. Correlation of 
Reduced Samples. Left: The 
average canonical correlation of 

the first mode found using a 
subsample of the population. 

Above: The average P-values 
corresponding to the correlations 

shown on the left. 
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Chapter 5: Discussion 

CCA has become an increasingly popular tool for neuroimaging studies - 

particularly those investigating relationships between human brain and 

behaviours. Despite this, little investigation has been done to evaluate how 

data processing decisions, and to a certain extent sample size 

considerations, impact CCA results. In this thesis, the results from CCA were 

compared using the same dataset parcellated using different methods. 

Additionally, the similarity of CCA results between subgroups of subjects 

randomly sampled from a large homogeneous data set were examined. 

 

5.1 Brain and Behavioural Loadings 

In this thesis, CCA was performed multiple times to capture relationships 

between brain and behavioural variables. None of the resulting modes from 

CCA produced significant results and thus making conclusions about these 

relationships based on the results would not be an accurate representation 

of the underlying ground truth. However, we can note that the areas on the 

brain with the strongest negative loadings generally correspond with areas 

which have previously been associated with risk factors for AD. This includes 

the temporal lobe, medial temporal pole, and frontal gyrus (Ashraf, 2019; 

Busovaca et al., 2016; Huang, 2020). Both the frontal gyrus and left 

precentral gyrus have been correlated with obesity-related and smoking-

related variables (Brody et al., 2004; Herrmann et al., 2019). There has 

been no consensus about cortical thickness changes linked to social contact 

in older age, something which we represent partially by work satisfaction: 

the behavioural variable with the strongest loading. However, one study 

found that gray matter volume changes in the default mode network (medial 

prefrontal cortex and posterior cingulate cortex), have been linked to 

perceived loneliness and social isolation (Spreng et al., 2020). This study - 

which was also performed using data from the UK Biobank - claims lonely 
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older individuals display decreased gray matter in the central operculum, 

dorsolateral prefrontal cortex and increased GM in the inferior temporal 

gyrus, posterior superior temporal sulcus, and temporoparietal junction. The 

complexity in the relationships underlying the examined behavioural 

variables and their links with neurodegeneration cannot be overstated. 

Despite the lack of significant results from these initial analyses, this work 

provides important information about the nuances of utilizing CCA in 

complex neuroscientific research and demonstrates both the benefits and 

limitation of this methodology. 

 

5.2 Parcellation Methods and CCA 

As stated above, none of the parcellation methods resulted in significant CCA 

results, and as such the relationships between the sets of behavioural 

variables and brain regions found should be interpreted with caution. The 

resulting modes from PCA and ICA were more significant than those found 

using the AAL and spectral clustering. This suggests that these results may 

provide more information and are thus a preferable data reduction technique 

for use with CCA. The nature of PCA is such that it extracts the most 

discriminative features, however using PCA can lead to difficulty in 

interpreting the results. This is likely why CCA papers have a lot of variation 

in their choice of parcellation methods (H. T. Wang et al., 2020; Zhuang, 

Yang, & Cordes, 2020).  

Other work has examined the effects of brain parcellation techniques 

for machine learning methods (Kalmady et al., 2019; Zang et al., 2021). 

Unlike machine learning methods, CCA identifies only linear relationships, 

however our finding that brain parcellation can greatly influence the end 

results corresponds with the findings from these papers. Additionally, work 

by Khundrakpam and colleagues suggests that increasing the spatial 

resolution of a cortical parcellation may improve predictive performance 
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(Khundrakpam et al., 2015). This should be taken into consideration when 

comparing results found using ICA and PCA (600 components) versus using 

the AAL atlas and spectral clustering (90 components). 

 

5.3 Correlation Values and Subsampled Data 

It has previously been suggested that interpretations of a given CCA mode 

are meaningless if the canonical correlations found are not statistically 

significant in a smaller validation subsample (Thorndike & Weiss, 1973).  

Our findings take this a step further and suggest that the canonical 

correlations of a given CCA mode are not a truthful measure of 

interpretability due to influences of sample size. As the sample size 

decreased, the loadings from the first mode remained consistent, however, 

the canonical correlation of the first mode increased. This demonstrates the 

discordance between the loadings and the correlation values, and thus the 

significance values. Although the canonical correlation between variates in a 

mode does measure the correlation between two sets of variables to some 

degree, the results show that the magnitude of the canonical correlation 

increased with the data dimensionality and should not be considered as a 

reliable measure without dataset context. Our results show that as the size 

of the random samples of participants decreased, the canonical correlation of 

the first mode increased. There was also more variation between the 

samples as the participant size decreased; shown through the increasing 

standard deviation values. These patterns occurred for all parcellation 

methods and suggests the canonical correlation of the modes from CCA is 

not an accurate measure of the correlation between the brain imaging data 

and behavioural data. 

This supports similar findings by Yang et al. and has been established 

theoretically (Q. Yang et al., 2021). The properties of CCA ensure that the 

first mode found is the maximal correlation of linear combinations of 
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variables between the two input sets. Therefore, the canonical correlation of 

the first mode approaches one as the number of variables approaches the 

number of subjects resulting in a full-rank space (Q. Yang et al., 2021). 

Thus, the canonical correlation value should not be interpreted in isolation 

and must be considered in the context of dataset dimensionality and 

subject-to-variable ratio. However, previous studies have overlooked this 

limitation when interpreting and reporting results (Kottaram et al., 2019; 

Smith et al., 2015b; Zarnani et al., 2019). This should be considered when 

comparing between different studies, and the number of participants as well 

as the number of variables should always be taken in account. 

 

5.4 Canonical Loadings of Subsampled Data 

In addition to examining the canonical correlation of the first mode for 

subsamples of the data, the loadings for the behavioural and brain variables 

were compared. This comparison showed that subsamples had loadings 

which were ordered similar to those found using the entire population, 

however the values of the loadings themselves differed. 

One paper examining loading stability in canonical correlates found 

that in scenarios where smaller samples of the dataset had different 

loadings, the relationships described by the full dataset were less reliable 

and the interpretations made from them were “hazardous” (Lambert & 

Durand, 1975). This paper suggests that interpretations which claim a direct 

influential relationship between two variables in the dataset are especially 

dubious. However, this study also notes that despite loading instability 

across samples, if similar variable ordering is present, interpretations can be 

warranted depending on the context. This corresponds to findings from 

previous work that canonical loadings may be subject to considerable 

variability between samples (Dattalo, 2014). The results found during our 

investigation support the cautious outlook on interpreting findings and 
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further confirm the importance of validation using subsampling methods. It 

is also important to note that the findings and recommendations from these 

two papers were made based on theoretical and behavioural studies and not 

in the context of neuroscientific or imaging research. Thus, the findings in 

this thesis provide valuable insight into the limitations and hazards of 

interpreting canonical loading values to represent truthful relationships 

between brain and behavioural variables. 

 

5.5 Limitations 

There are a few limitations of this work which should be considered. First, 

our assessment of the stability of CCA results was only focused on the first 

mode to avoid overly complicated analyses and because it is the most 

significant and most commonly reported result in CCA studies. Although it is 

expected that the same principles of CCA obtained from the first mode 

should also apply to other modes, confirmation is needed in future studies. 

Additionally, this thesis only focused on classical CCA, however 

modified versions of CCA such as sparse CCA and kernel CCA have been 

used in neuroimaging studies. Sparse CCA has been suggested to reduce 

high-dimensional inputs by imposing the L1-norm penalty to induce sparsity 

on the canonical coefficients (Witten, Tibshirani, & Hastie, 2009). It has been 

used as an alternative to classical CCA to deal with high dimensional inputs 

which contain a lot of noise including voxel-wise brain data and brain 

connectivity data (Duda, Detre, Kim, Gee, & Avants, 2013; Jang et al., 

2017; Kang, Kwak, Yoon, & Lee, 2018; Sintini et al., 2019) and genetic 

sequences (Du et al., 2017; Gossmann, Zille, Calhoun, & Wang, 2018; 

Grellmann et al., 2015; McMillan et al., 2014; Szefer, Lu, Nathoo, Beg, & 

Graham, 2017). A related version referred to as temporal constrained sparse 

CCA has also been used to investigate longitudinal gray matter density and 

genetic information in subjects with AD (Du et al., 2019). Kernel CCA has 
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been suggested to capture nonlinear relationships in the data by mapping 

the original feature space of the input through a predefined kernel function 

into a new feature space (Hardoon et al., 2004). It has been used to detect 

brain activation in response to functional MRI (fMRI) tasks (Hardoon, 

Mourão-Miranda, Brammer, & Shawe-Taylor, 2007; Z. Yang et al., 2018), 

and to investigate the nonlinear relationships between 

electroencephalography (EEG) and simultaneously collected fMRI and 

hemodynamic data (Murayama et al., 2010; B. Yang et al., 2018).  Future 

work is needed to investigate whether modified versions of CCA behave 

differently in terms of neuroimaging applications. 

As a consequence of its doubly multivariate nature, adding or 

removing a single variable in either one of the variable sets can lead to 

larger changes in the CCA solution (H. T. Wang et al., 2020; Witten, 

Tibshirani, & Hastie, 2009).  Similarly, canonical loadings, and thus the 

relationships ascribed to them, may be sample-specific, and caution must be 

used when interpreting them (Dattalo, 2014). Overall, care must be taken in 

assessing reliability and robustness of results and caution must be used 

when interpreting CCA and comparing between studies. Further work would 

need to be done to determine the impact of each brain region and 

behavioural variable. 

 

5.6 Future Work 

Future work should consider the limitations discussed previously to expand 

upon this thesis work. An exploration of different versions of CCA, or CCA 

run with different parameters may provide further insight into the usefulness 

of this methodology for neuroimaging. Additionally, future work 

demonstrating the limitations and usefulness of CCA would benefit from 

performing analyses and comparing across multiple datasets.  
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Chapter 6: Conclusion 

The study of AD and it’s known risk factors is hampered by complex 

relationships between factors, heterogeneity in disease progression, and an 

overall limited understanding of AD etiology. This thesis aimed to address 

these limitations using an increasingly popular multivariate approach while 

simultaneously exploring the capabilities and limitations of the same 

approach.  

The work done for this thesis demonstrated that although CCA is a 

promising multivariate approach which holds many advantages in exploring 

the relationship between the human brain and behavior, it cannot be used or 

interpreted without restriction. Importantly, canonical correlation values 

cannot be taken on their own as truthful measures of brain and behavioural 

relationships, and canonical loadings can be influenced by sample specific 

effects. This could have significant impact on the way future studies are 

conducted and older CCA studies are interpreted. 
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