
Perspectives to Promote Modularity, Reusability, and Consistency in

Multi-Language Systems

Hyacinth Chijioke Ali

A thesis submitted to McGill University in partial

fulfillment of the requirements of the degree of

Doctor of Philosophy

Department of Electrical & Computer Engineering
McGill University

Montréal, Québec, Canada

September 23, 2022

© Hyacinth Chijioke Ali 2022



i

Abstract

In modern software systems, software modellers often use different modelling languages and

multiple views to describe the characteristics of a complex system. This multi-language

system allows modellers to express a specific system characteristic with the most

appropriate modelling languages and notations. With the proliferation of independently

developed and continually evolving modelling languages, it becomes more challenging to

reuse or combine multiple languages in a multi-language modelling environment. Whenever

models are collectively used to describe a system from different points of view, it is

essential to keep the related models consistent. However, maintaining consistency across

models is a difficult task, and in particular while supporting the independent evolution of

the used modelling languages. Moreover, in a multi-view system, a modeller needs to

navigate from one model element to another one in a related model in order to understand

and modify the system under development. However, providing such navigation without

dedicated support from the modelling environment is a daunting task.

In this doctoral thesis, we present a framework for the specification and development of

multi-language systems based on perspectives to promote modularity in language reuse, inter-

language consistency, combination of languages, and generic navigation of model artefacts.

A perspective groups different languages for a modelling purpose, defines the role of each
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participating language, and specifies a generic navigation mechanism to traverse different

related model elements. Furthermore, a perspective defines composite actions for building a

consistent multi-model system and maintaining the links between different model elements.

The aim of this framework is to streamline the combination of multiple languages for a

given purpose by providing a domain-specific language that a perspective designer can use

to specify a perspective. The framework then employs a generative approach to generate

tool support for the perspective, in particular to ensure appropriate language registration,

model consistency (across language boundaries) when editing models, and generic navigation

of model elements. The perspective designer only needs to focus on specifying relationships

between different languages. Hence, a designer is freed from the full complexity as well as

the error-prone implementation of consistency and navigation mechanisms.

We evaluate our approach with a perspective (Fondue Requirement) aimed at

requirements elicitation and specification that combines five different languages. This

perspective illustrates how a perspective designer can leverage our framework to register

languages, specify perspectives, and then generate the implementation of the perspective.

In addition, we analyse language actions for the five languages to demonstrate the benefits

of perspective actions. To ensure the completeness and correctness of our approach, we

further evaluate our framework with two notable multi-language modelling environments:

the User Requirements Notation and the Palladio Component Model. Here, we focus on the

relationships between different languages in each perspective and then show how our

approach handles them.
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Abrégé

Dans les systèmes logiciels modernes, les modélisateurs de logiciels utilisent souvent différents

langages de modélisation et plusieurs vues pour décrire les caractéristiques d’un système

complexe. Ce système multilingue permet aux modélisateurs d’exprimer une caractéristique

spécifique du système avec le langage de modélisation le plus approprié. Les outils développés

pour la modélisation et langages de modélisation eux-mêmes sont en constante évolution, et

il devient par conséquent plus difficile de réutiliser ou de combiner plusieurs langues dans un

environnement de modélisation multilingue. De plus, quand differents modèles sont utilisés

en combinaison pour décrire un système, il est essentiel de garder les modèles cohérents.

Malheureusement il est difficile de maintenir la cohérence entre les modèles tout en gérant

l’évolution indépendante des langages de modélisation. De plus, le modélisateur doit pouvoir

naviguer à partir des éléments d’un modèle vers d’autres éléments dans d’autres modèles

qui y sont reliés pour bien comprendre et pour pouvoir modifier le système en cours de

développement. Cependant, la navigation générique est difficile à réaliser sans support dédié

de l’environnement de modélisation.

Dans cette thèse de doctorat, nous présentons un cadre pour la spécification et le

développement de systèmes multilingues basés sur la notion de perspective. Une

perspective favorise la modularité dans la réutilisation des langues de modélisation, la



Abrégé iv

cohérence inter-langues, la combinaison de langues et la navigation générique de modèles.

Une perspective regroupe différents langages pour aboutir à un but de modélisation précis.

La perspective définit le rôle que chaque langue participante prends dans la perspective et

spécifie un mécanisme de navigation générique qui permet l’utilisateur de traverser les liens

de cohérance d’un modèle à un autre. Par ailleurs, une perspective définit des actions

composites pour la construction un système multi-modèle cohérent et maintient

automatiquement les liens entre les différents éléments de modèles qui sont logiquement

reliés.

L’objectif de ce cadre de developpement est de faciliter la combinaison de plusieurs

langues de modélisation dans un but précis et de permettre au concepteur de perspective

de se concentrer uniquement sur la spécification des relations entre les différentes langues.

Une approche générative assure alors un enregistrement automatique des langues utilisées,

une gestion automatique de la cohérence des modèles et la navigation entre les éléments

des modèles.

Nous évaluons notre approche en concevant une perspective (Fondue Requirements

Perspective) visant à l’élicitation et la spécification des exigences. Cette perspective

combine cinq langages différents et illustre ainsi comme un concepteur de perspective peut

tirer profit de notre cadre pour enregistrer les langues, spécifier la perspective, et

finalement générer l’implémentation de la perspective. De plus, nous analysons les actions

pour les cinq langues afin de démontrer les avantages des actions générées pour la

perspective. Afin d’assurer l’exhaustivité et l’exactitude de notre approche, nous évaluons

notre cadre avec deux environnements de modélisation multilingues supplémentaires

connus: la notation des besoins de l’utilisateur (User Requirements Notation) et le modèle

de composants Palladio (Palladio Component Model). Ici, nous nous concentrons sur la
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relations entre les différentes langues dans chaque perspective, puis nous démontrons

comment notre approche les gère.



Dedicated to the memory of my father, Ali Omeh, who played

a crucial role in my career. You are gone, but your decision

that I have to attend primary school has led to this Ph.D.

You did not have anything to back up your decision, but your

insistence completely changed my career.



vii

Acknowledgements

It was a challenging and rewarding experience to see that this doctorate work culminates in

a conclusion. I did not do it alone. Therefore, I would like to express my profound gratitude

to all those who contributed directly or indirectly to the success of this thesis.

First, I would especially like to thank my primary advisor Gunter Mussbacher for his

guidance, support, patience, and understanding throughout my doctoral research work. In

addition, I salute his courage for accepting me as his student, even when he understands that

I had a more specialized background in electrical engineering, with little or no specialized

knowledge in software engineering. At last, I am happy that we managed to complete the

task successfully with some remarkable achievements. Also, I express my warm gratitude

to my co-supervisor Jörg Kienzle for his support, understanding, and guidance throughout

this doctoral research. I truly appreciate my supervisors for giving me the privilege and

the necessary support to work with the TouchCORE tool, which helped me gain a lot of

practical software engineering skills.

I wish to express my sincere appreciation to the rest of my supervisory committee

members, Daniel Varro and Sebastien Mosser, for their valuable feedback throughout this

research work. Thank you also for accepting to review my thesis.

I also want to thank the Arbour Foundation, McGill Engineering Student Center, McGill



Acknowledgements viii

Scholarships & Aid, Gunter Mussbacher (advisor), Jörg Kienzle (advisor), and Christian

Ejike Ali (brother) for their funding throughout my doctoral research work.

During these years, I was fortunate to be part of the Software Engineering Lab at McGill.

I worked with several amazing research students who also contributed significantly to the

success of this research work. I express my deepest gratitude to Keheliya Gallaba for his

friendship and cooperation, especially at the beginning of my program. Also, I especially

want to thank Matthias Schöttle who equally offered detailed guidance, especially, on how

to navigate the TouchCORE tool. I would like to thank Aprajita, Marton Bur, Ruchika

Kumar, Rijul Saini, Omar Alam, Yanis Hattab, Rohit Verma, and many more for their

valuable feedback, friendship, and for welcoming me to their respective laboratories.

I would like to express my deep gratitude to my friends and family for their love, support,

endurance, and understanding. I especially thank my elder brother Christian Ejike Ali, who

oversees most of the funding, especially at the beginning of this program.

In addition, I would like to deeply appreciate my wife, who bore a lot of burden because

of this program. During this program, my wife was alone in Nigeria taking care of our

children for more than two years. I also thank my children for their patience, especially for

my inability to be with them as required due to this program.

And finally, I want to thank my mother for her support, patience, and understanding

throughout my education. She is a small businesswoman, but she often offers great financial

support for my pursuit of education.



ix

Contents

1 Introduction 1

1.1 Context of the Research Work . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Publications and Presentations . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Background 18

2.1 Building Software Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Model-Driven Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Software Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Software Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Software Language Engineering . . . . . . . . . . . . . . . . . . . . . 23

2.3 Metamodelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Metamodelling Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



Contents x

2.4.1 Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Eclipse Modelling Framework . . . . . . . . . . . . . . . . . . . . . . 29

2.4.3 Ecore Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Multi-Language Modelling Environment (CORE) . . . . . . . . . . . . . . . 33

2.5.1 Concern-Oriented Reuse . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 CORE Metamodel (excerpt) . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.3 TouchCORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Motivation 40

3.1 Single-Language Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Metamodelling Perspective . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Multi-Language Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Roles in a Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Perspective with Single-Role . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.2 Perspective with Multi-Role . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 PML Framework 54

4.1 Levels in the PML Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 Language Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.2 Perspective Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.3 Model Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 PML Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 PML Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



Contents xi

4.3.1 Perspective, Language, and Mappings . . . . . . . . . . . . . . . . . . 65

4.3.2 Perspective Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.3 Action Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.4 Derived Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.5 Integration of the PML Metamodel with the CORE Metamodel . . . 75

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 PML Generic Language Navigation 81

5.1 Single-Model Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Multi-Model Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Software Product Line Navigation . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Navigation of Reusable Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Filtering of Model Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6 Navigation Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Mappings and Generic Templates in Multi-Language Perspectives 104

6.1 Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Generic Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Generic Template Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Template Workflow Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Advanced Perspectives 120

7.1 An Overview of Perspectives with Set Role and Conditional LEM s . . . . . . 121

7.1.1 Perspectives with Set Roles . . . . . . . . . . . . . . . . . . . . . . . 121



Contents xii

7.1.2 Perspective with Conditional LEMs . . . . . . . . . . . . . . . . . . . 124

7.2 Set Role and Conditional LEM Features . . . . . . . . . . . . . . . . . . . . 125

7.2.1 Language Role Multiplicity . . . . . . . . . . . . . . . . . . . . . . . 125

7.2.2 Model Multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2.3 Conditional LEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3 Implementations with OCL . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3.1 Set Role Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.3.2 PML with Model Multiplicity . . . . . . . . . . . . . . . . . . . . . . 132

7.3.3 Conditional Equivalency . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 DSL for Languages and Perspectives 139

8.1 Xtext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.1.1 Terminal Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.1.2 Type Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.1.3 Enumeration Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.2 Xtend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.3 Definition of PML DSLs and the Code Generators . . . . . . . . . . . . . . . 145

8.3.1 DSL Definition for Language Registration . . . . . . . . . . . . . . . 145

8.3.2 Code Generator for Language Registration . . . . . . . . . . . . . . . 147

8.3.3 DSL Definition for Perspectives . . . . . . . . . . . . . . . . . . . . . 147

8.3.4 Code Generator for Perspective Implementation . . . . . . . . . . . . 151

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9 PML Validation 155



Contents xiii

9.1 Fondue Requirement Perspective . . . . . . . . . . . . . . . . . . . . . . . . 156

9.1.1 Purpose of Fondue Requirement Perspective . . . . . . . . . . . . . . 157

9.1.2 Language Registration . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.1.3 Specification of the Perspective . . . . . . . . . . . . . . . . . . . . . 161

9.1.4 Instantiation of the Perspective . . . . . . . . . . . . . . . . . . . . . 167

9.1.5 Discussion of the Perspective Actions . . . . . . . . . . . . . . . . . . 169

9.2 Palladio Component Model Perspective . . . . . . . . . . . . . . . . . . . . . 174

9.2.1 PCM Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.2.2 Purpose of the PCM Perspective . . . . . . . . . . . . . . . . . . . . 178

9.3 User Requirements Notation Perspective . . . . . . . . . . . . . . . . . . . . 179

9.3.1 Overview of the URN Perspective Languages . . . . . . . . . . . . . . 180

9.3.2 Purpose of URN Perspective . . . . . . . . . . . . . . . . . . . . . . . 180

9.4 PML Navigation Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.4.1 ArgoUML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.4.2 StarUML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

9.4.3 MagicDraw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.4.4 Visual Paradigm Enterprise . . . . . . . . . . . . . . . . . . . . . . . 188

9.4.5 Papyrus: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.4.6 TouchCORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

10 Comparison With Related Work 196

10.1 Single Underlying Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

10.2 Virtual Single Underlying Model . . . . . . . . . . . . . . . . . . . . . . . . . 198

10.2.1 Traceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199



Contents xiv

10.2.2 Query-Driven Soft Links . . . . . . . . . . . . . . . . . . . . . . . . . 199

10.2.3 Vitruvius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

10.2.4 View-Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

10.3 Other Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

10.4 Navigation Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

10.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

11 Conclusion and Future Work 210

11.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

11.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

A Generic Templates 228

A.1 Update Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

A.1.1 Update Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

A.1.2 Update Other Elements . . . . . . . . . . . . . . . . . . . . . . . . . 234

A.1.3 Handle Secondary Effects . . . . . . . . . . . . . . . . . . . . . . . . 234

A.1.4 Generating the Perspective Actions from the Template . . . . . . . . 236

A.2 Delete Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

A.3 Create Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

A.3.1 CREATE (C2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

A.3.2 CREATE_AT_LEAST_ONE (C4) . . . . . . . . . . . . . . . . . . . 247

A.3.3 CAN_CREATE_OR_USE (C5) . . . . . . . . . . . . . . . . . . . . 247

A.3.4 CREATE_OR_USE_NON_MAPPED (C10) . . . . . . . . . . . . . 248

B Definition of Perspective DSL Grammar 250



xv

C Fondue Requirement Perspective Language Registration Models 255

D Complete Specification of the Fondue Requirement Perspective 259



xvi

List of Figures

2.1 System, Model, and Formalism . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Class Diagram Metamodel (excerpt) and an Instance of the Metamodel . . . 27

2.3 The Relationship Between Metamodel, Model, and Language . . . . . . . . . 28

2.4 EMF Links Java Code, Java Interface, XML, and UML . . . . . . . . . . . . 30

2.5 Ecore Metametamodel (excerpt) . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 MDA Four-Layer Standard Modelling Stack . . . . . . . . . . . . . . . . . . 32

2.7 Basic Structure of a Concern . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Bank Domain Model with Supported Actions . . . . . . . . . . . . . . . . . 44

3.2 Bank Design Model with Supported Actions . . . . . . . . . . . . . . . . . . 45

3.3 Debit Operation Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Class Diagram Metamodel (excerpt) and Some Language Actions . . . . . . 48

3.5 Sequence Diagram Metamodel (excerpt) and Some Language Actions . . . . 48

4.1 Generic Architecture of PML . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Environment Model Metamodel (excerpt) and Some Language Actions . . . 56

4.3 Operation Model Metamodel (excerpt) and Some Language Actions . . . . . 56

4.4 Use Case Model Metamodel (excerpt) and Some Language Actions . . . . . . 57



List of Figures xvii

4.5 Use Case Map Metamodel (excerpt) and Some Language Actions . . . . . . 58

4.6 Definition and Execution of a Perspective . . . . . . . . . . . . . . . . . . . 64

4.7 PML Metamodel (excluding navigation mechanism) . . . . . . . . . . . . . . 66

4.8 Examples of LEMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.9 Adaptation of PML to CORE . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Bank Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Class Diagram Metamodel (excerpt) . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Operation to Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Sequence Diagram of Debit Operation . . . . . . . . . . . . . . . . . . . . . 87

5.5 Feature Diagram Metamodel (excerpt) . . . . . . . . . . . . . . . . . . . . . 89

5.6 Feature Diagram of a Bank System . . . . . . . . . . . . . . . . . . . . . . . 89

5.7 Account Class Diagram in CheckingFeature . . . . . . . . . . . . . . . . . . 91

5.8 Account Class Diagram in SavingsFeature . . . . . . . . . . . . . . . . . . . 92

5.9 Reuse of Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.10 Authentication Reuse Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.11 Reuse Metamodel (excerpt) . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.12 Bank Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.13 Navigation Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 Redefined Perspective Action Workflow . . . . . . . . . . . . . . . . . . . . . 108

6.2 Redefined Create Class Action . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Facade Action for Create Class Action . . . . . . . . . . . . . . . . . . . . . 111

6.4 Workflow Example of a Redefined Create Perspective Action . . . . . . . . . 115

7.1 Examples of LEMs in a Perspective with Set Role . . . . . . . . . . . . . . . 122



List of Figures xviii

7.2 Examples of LEMs with Set Role and Conditional LEMs . . . . . . . . . . . 127

7.3 Invariant Constraint (root model exist) . . . . . . . . . . . . . . . . . . . . . 130

7.4 Set Role Constraints Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.5 Set Role Constraints (missing compulsory mapping) . . . . . . . . . . . . . . 133

8.1 Examples of Xtext Terminal Rules . . . . . . . . . . . . . . . . . . . . . . . 141

8.2 Class Diagram Sample Grammar (excerpt) . . . . . . . . . . . . . . . . . . . 142

8.3 Generated Class Diagram Metamodel . . . . . . . . . . . . . . . . . . . . . . 142

8.4 Class Diagram Sample Code Generator . . . . . . . . . . . . . . . . . . . . . 144

8.5 Class Diagram Sample Model . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.6 Grammar Definition for Language Registration . . . . . . . . . . . . . . . . . 146

8.7 Part of the Perspective DSL Grammar . . . . . . . . . . . . . . . . . . . . . 149

9.1 Annotated Environment Model Language DSL Model . . . . . . . . . . . . . 160

9.2 Fondue Requirement Perspective . . . . . . . . . . . . . . . . . . . . . . . . 162

9.3 LEMs in a Fondue Requirement Perspective . . . . . . . . . . . . . . . . . . 167

9.4 Distribution of Perspective Action in the Languages . . . . . . . . . . . . . . 170

9.5 Distribution of Generic Templates Based on the Reused Language . . . . . . 173

9.6 PCM Component Repository Metamodel (excerpt) . . . . . . . . . . . . . . 176

9.7 PCM Architecture Metamodel (excerpt) . . . . . . . . . . . . . . . . . . . . 176

9.8 PCM Resource Metamodel (excerpt) . . . . . . . . . . . . . . . . . . . . . . 177

9.9 PCM Usage Metamodel (excerpt) . . . . . . . . . . . . . . . . . . . . . . . . 177

9.10 LEMs in a PCM Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.11 GRL Metamodel (excerpt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9.12 LEMs in a User Requirements Notation Perspective . . . . . . . . . . . . . . 181



xix

C.1 Environment Model Language DSL Model . . . . . . . . . . . . . . . . . . . 256

C.2 Class Diagram Language DSL Model . . . . . . . . . . . . . . . . . . . . . . 256

C.3 Use Case Diagram Language DSL Model . . . . . . . . . . . . . . . . . . . . 257

C.4 Operation Model Language DSL Model . . . . . . . . . . . . . . . . . . . . . 257

C.5 Use Case Map Language DSL Model . . . . . . . . . . . . . . . . . . . . . . 258



xx

List of Tables

5.1 Class Diagram Intra-language Mappings . . . . . . . . . . . . . . . . . . . . 84

5.2 Class Diagram Intra-language Filtering . . . . . . . . . . . . . . . . . . . . . 97

6.1 Mapping Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1 Regular Multiplicity and Model Multiplicity . . . . . . . . . . . . . . . . . . 134

9.1 Navigation Support of UML Tools . . . . . . . . . . . . . . . . . . . . . . . . 193

A.1 Definition of Important Template Methods . . . . . . . . . . . . . . . . . . 230

A.2 Definition of Helper Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 231

A.3 Types of Create Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243



xxi

List of Acronyms

AI artificial intelligence.

ALM application lifecycle management.

API application programming interface.

COLD Concern-Oriented Language Development.

CORE concern-oriented reuse.

DSL domain-specific language.

EMF eclipse modelling framework.

GPL general-purpose language.

IDE integrated development environment.

IoT internet of things.

LEM language element mapping.

MDA model-driven architecture.

MDE model-driven engineering.

MEM model element mapping.

MLDE multi-language development environment.

MOF meta-object facility.

OCL object constraint language.



List of Acronyms xxii

OMG object management group.

OSM Orthographic Software Modelling.

PCM palladio component model.

PML perspectives for multi-language systems.

SLE software language engineering.

SPL software product line.

sum single-underlying model.

SysML system modelling language.

UML unified modelling language.

URN user requirements notation.

VCU variation, customization, and usage interfaces.

VSUM virtual single underlying model.



1

Chapter 1

Introduction

In this chapter, we summarise the context of this research work and then provide a brief

motivation for the study with a review of the existing approaches’ deficiencies.

Furthermore, we present the research problems and then the methodology we follow to

address the challenges. And finally, we outline the contributions as well as the publications

based on this research and then present the structural content of the thesis.

1.1 Context of the Research Work

The development of some software systems seems easy and straightforward, especially when

the system is small, for example, a basic software program to implement a simple calculator

with addition, multiplication, division, and subtraction operators. This type of software

system can be accomplished after a few days of basic training. On the other hand, it

is a daunting task to write a complex program for a large system. Practically, it is almost

impossible for software developers to write a bug-free program for large and complex systems.

In principle, writing a 100,000-line program is much more difficult than 1000 times the
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effort of writing a 100-line program [1]. Hence, the complexity of a software system grows

exponentially with the size of the system. Nonetheless, these challenges can be reduced if

the program can be broken down into smaller sizes.

These problems of building software systems are significantly aggravating due to the

increasing and varying demands of software users. In addition, the advent of data-driven

software systems has particularly compounded the complexity of modern software systems.

Consequently, software systems are now developed with various software technologies, such as

Artificial Intelligence (AI), Machine Learning, and Internet of Things (IoT), to accommodate

different dimensional requirements of the system. Software complexities can be categorised

as follows:

• Inherent Complexity: This kind of complexity is related to the nature of the

system. While some systems may be easy to understand even with a fairly large size,

others may be more complicated due to the relationships within and across the

system. Software engineers often follow a systematic approach to reason about such

an inherently complex system.

• Size Complexity: These problems can be caused by the complex nature of the

business domain or the efforts required to deal with different technologies to develop

such a system. Software engineers usually address this kind of complexity by splitting

the program into smaller sets of programs and then focusing on the essential parts of

the system, instead of the entire system.

• Uncertainty Complexity: This kind of problem is mostly caused due to the business

requirements or legal rules. The requirements of a program are often collected first

before the design of the system and then the implementation. Although engineers often
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adopt a systematic approach to gather program requirements, these requirements are

bound to change, and then the changes need to be propagated through all the stages

of the software development life cycle to ensure that the expected behavior of the

system is always maintained. This continuous modification of a system requirement

implies that software systems are bound to evolve over time. On the other hand,

uncertainty in assumptions about the world often complicates the software program.

Software practitioners often make both rough assumptions and implicit assumptions,

which generally do not take into account all corner cases.

In summary, software systems are often complex and will evolve over time. This

continuous evolution of software systems needs to be systematically considered during the

inception of the system.

Software engineering, similar to other engineering disciplines, aims to adopt systematic

approaches to reduce software complexities, both during the development and operation

stages. Software engineering fosters software development environments that promote the

production of software systems that are reliable, usable, and maintainable [2]. During the

development of a software system, a software engineer applies software engineering

principles to elicit requirements, design, implement, test, deploy, and then maintain the

software system. These different stages of a software development life cycle often require

different expertise as well as different technologies, including software languages. This

segregation of technologies within a software development environment is especially

evidenced in complex systems, e.g., Auto Flight Control System, 5G Network, and

Self-Adaptive Systems, to name a few.

Furthermore, most modern software systems are highly dependent on data to provide

business insight. The integration of data and the use of several technologies during the
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software development raise several complexities that are difficult to deal with. Some of

these challenges include maintaining consistent information at different levels as well as at

different points of view of the software under development. Also, preserving traceability

from the requirement level through to the deployment stage is a challenging endeavour. On

the other hand, the size of systems often grows quickly, which presents a more challenging

environment for working with such systems. These issues have been in existence for decades;

however, the recent emergence of several modern technologies and the desire to combine

them in a modular fashion further complicate the entire software development process.

To address these challenges, software engineering advocates modularity [3] during

software development. The modularity approach decomposes a complex system into

manageable and loosely coupled smaller systems so that software engineers can reason

about and then work with a specific smaller module at a time. One of the state-of-the-art

modular principles is the separation of concerns [4], which divides a complex system into a

distinct section that addresses a particular concern. To promote the modularity paradigm

in software engineering, several technologies, including modelling languages1 and Model

Based System Engineering, have emerged aiming to reduce the difficulties that are

associated with the development of complex systems. Additionally, these technologies

improve usability, speed, security, understanding, resilience, and time to market, to name a

few, of software systems. This proliferation of software technologies, motivated by the

separation of concerns, relies on the use of specialised technologies at different stages or

view points of a software system to promote a more robust and reliable production of

software systems. This modular approach has many benefits; however, it is challenging to
1e.g., Unified Modelling Language (UML), Systems Modelling Language (SysML), User Requirements

Notation (URN), Palladio Component Model (PCM), and i* Framework for Goal-Oriented Modelling, to
name a few.
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combine different technologies while developing a software product. These challenges

include consistency management between different software technologies; compatibility

between the underlying framework of each technology; reuse of software artefacts;

coordination between different software technologies; and generic navigation across

different artefacts potentially from different technologies. These complexities have

increased in the software engineering community and require a dedicated and systematic

approach to address the complicated nature of software development processes. The

modular approach, as well as the separation of concerns and other related approaches, such

as Software Product Lines [5], is widely applied in Model-Driven Engineering (MDE) [6] to

reduce complexities during software development and then promote production of more

user-friendly and reliable systems.

Model-Driven Engineering advocates the use of software models, e.g., UML class

diagram and URN goal model, to facilitate software development throughout the

development life cycle. Also, MDE promotes a better understanding of the system, better

documentation, code generation, better analyzability, communication between team

members, and communication between stakeholders. A modelling language defines the

conceptual relationship, representation, and semantics of models that conform to the

language. To simplify the complexities of modern software systems, MDE employs

separation of concerns by using multi-language modelling environment2 to develop a

specific system. This approach allows a more specialised language to be used for a

dedicated part or level of the system under development. In addition, some models are so

large that it becomes more difficult to work with them. Consequently, MDE introduced

Multi-View Modelling [7] to address this challenge, i.e., the representation of a single model
2i.e., a modelling environment that supports the combination of two or more modelling languages during

the development of a software system.



1. Introduction 6

with several views to narrow the focus of a software developer. In all, these measures aim

to facilitate the separation of concerns, which helps to deal with complex systems and, as

well, promote a better understanding of the system.

1.2 Motivation

In model-driven engineering (MDE), modellers often use different modelling languages to

capture the requirements; describe the characteristics; and then prescribe the structure, as

well as the behaviour, of a system under development [8, 9]. This is also the case in Model-

Based System Engineering, where modellers often combine different SysML diagrams (e.g.,

block definition diagram, internal block diagram, and requirement diagram) to model the

system under development. At each level of abstraction or viewpoint of a complex system,

specialised modelling languages are required to express the characteristics of the system

in the most appropriate way. For example, a UML use case model is often used during

requirement elicitation, while a UML state diagram is predominantly used during software

design. When a general-purpose modelling language is inappropriate or difficult to use in a

given context, domain-specific languages can be defined to handle the development concerns

of the application domain.

In any case, when multiple languages, as well as, multiple views are used to describe a

system, special care is required to ensure that the different views collectively and coherently

describe the system. Sustaining the consistency between different models, especially when

languages/models are added dynamically to the system, is a very hard and costly endeavour.

This requires a systematic approach to combine different languages and then preserve the

consistency between different models conforming to the languages. In addition, navigation
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support within and across models has received only limited attention. This is the case even

though studies show the importance of good visualization and navigation mechanisms in

both software usage and during development [10–12].

Existing approaches to preserve consistency in a multi-language modelling environment

include those that rely on a single underlying model (SUM) [13–15] that captures all the

conceptual relationships and consistency rules of a system based on a single metamodel.

However, modifying this single metamodel to support new languages or update consistency

rules may be rather complicated, because the modeller must simultaneously deal with the

full combined complexity of the embedded languages. Other approaches retain separate

metamodels for the languages and establish consistency conditions between language

elements across language boundaries. However, these approaches react to inconsistencies

after they occur, instead of preventing them. Vitruvius [9], for example, uses reactive

model transformations to fix inconsistencies across model and language boundaries after

one of the involved models is updated.

1.3 Statement of the Problem

To address the above concerns, we formulate the problem statement in terms of a research

gap, which needs to be improved or new concepts introduced to promote the multi-language

modelling environment.

• Modular combination of languages to promote software evolution.

Software languages are often grouped to describe a software system. These languages

are expected to collectively and coherently describe the system under development.
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On the other hand, these languages often exist independently, and combining them

requires a systematic approach.

To uphold a coordinated collaboration between the languages, some researchers favour

integration of the metamodels of the languages as a single metamodel, which contain

all the consistencies that are required to be maintained during modelling time. This

approach addresses the challenge of consistency to a greater degree. However, this

integration approach complicates both the maintenance and the evolution of the tool

containing the languages. This is the case since a single change in any part of the

single metamodel can potentially affect the whole system.

Alternatively, languages can be loosely coupled with a virtual model approach, which

externally establishes the required consistencies between different languages. This

approach keeps each language separate as a module in the system, i.e., modular

combination. Unlike the tightly coupled integration approach, the modular approach

allows each language to evolve independently, hence promoting modularity and

evolution of the system. However, the modular combination of the languages is a

non-trivial task because the software engineer has to face the consistency challenges,

which need to be established external to the metamodel of each language.

• Composite reuse of languages (i.e., reusing a language with its abstract syntax, concrete

syntax, and semantics as a whole).

Software reuse is a powerful software engineering principle that allows a system under

development to reuse existing software artefacts, instead of building them from scratch.

This methodology accelerates the product-to-market process and promotes software

quality.
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Software languages are software, too. Hence, software languages can be reused just

like other software artefacts. However, it may require more effort to reuse a software

language because it comprises some building blocks, including abstract syntax, concrete

syntax, and semantics. Hence, it is essential to reuse a language as a composite software

artefact, which then provides the full potential of a language in the reused context.

This composite reuse methodology is a non-trivial task that requires dedicated support

from the software engineering community.

• Consistency management between language artefacts.

Multi-language environment often comprises several model artefacts from different

languages, which are collectively used to describe the system under development. In

this situation, some model information are often scattered across software artefacts,

which represent the same entity in the system. This scattered information that refers

to the same entity is required to be consistent.

However, this is often challenging in an environment that promotes the separation of

concerns. When we keep the languages separate as well as their models, these related

artefacts can evolve independently. Hence, managing the consistency is not an easy

task, especially in a modular multi-language modelling environment.

• generic navigation mechanism across model elements potentially from different

modelling languages.

Navigation is an important mechanism in a modelling tool, but it often receives less

attention from the software engineering community. Navigation support allows

modeller to traverse related model elements within and across models, potentially

from multiple languages. Some tools implement a navigation mechanism with a fixed
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set of languages.

However, with the proliferation of domain-specific modeling languages (DSMLs), it

cannot be assumed that a fixed set of modelling languages is used to develop complex

software systems. Rather, a flexible modelling environment needs to be provided that

allows sets of languages to be integrated as the needs arise. Consequently, the

corresponding set of models needs to be navigated in a generic way.

1.4 Methodology

To address the above problems, we adapted some MDE paradigms, which include

metamodelling, template-based code generation, and proof-of-concept implementation. We

provide a metamodel which allows perspective designers to combine

independently-developed modelling languages in a software tool. To instantiate the

metamodel, we implement two domain-specific languages which aim to simplify the

composition of the reused languages (DSLs). In addition, the DSLs provide code

generators that generate the implementation of the consistency management as well as the

generic navigation mechanism across different models that conform to the reused modelling

languages. As a proof-of-concept, we implement different perspectives with the

TouchCORE [16] tool.

1.5 Thesis Contributions

Our work defines Perspectives for Multi-Language Systems (PML), a framework for

assembling multi-language systems based on existing, independent languages. We support

a novel, proactive approach for preventing the occurrence of inconsistencies by monitoring
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and augmenting the language actions that a modeller uses to create and update a model.

PML maintains consistency conditions including equivalency, equality, and multiplicity

constraints across different model elements from different languages. PML promotes

modular combination of languages and facilitates the consistency and reuse of an existing

language across other languages and software systems. Additionally, PML provides a

navigation mechanism to traverse different model elements potentially from different

languages.

The main contributions of this doctoral research are as follows:

• PML Framework: The PML framework provides an architecture and approach for

defining perspectives and then maintaining consistencies between different languages.

• PML Metamodel: We present a metamodel that combines independently existing

modelling languages (with their language actions). The metamodel specifically targets

languages defined with Ecore [17]. However, it can be applied to modelling languages

based on other metamodelling environments with slight modifications.

• Generic Templates: We present generic templates that cover relationships between

two or more metaclasses and dictate the sequence of actions that can prevent and,

as well, maintain model consistencies. These templates handle cyclic dependencies

and support complex language actions, i.e., actions that affect more than one language

element, for which consistency needs to be ensured with one or more language elements

in other models.

• PML Domain Specific Languages: We present two DSLs that assist a

perspective designer to combine different languages, specify perspective actions, and

encode the relationships between different language elements, including navigation
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relationships. From the perspective definition expressed in the provided DSLs and

the generic templates, we generate perspective actions that can then subsequently be

used by the modeller to execute consistent model changes on the set of models

governed by the perspective instead of the original language actions. This generative

approach allows the perspective designer to focus on these key relationships and frees

them from the error-prone implementation of perspective actions.

• PML Generic Navigation Mechanism: We present a generic navigation

mechanism that allows a perspective designer to specify navigable links between

different model elements in a perspective. This navigation mechanism handles

navigation within model elements as well as elements across different models from

different languages. Additionally, we use a generative approach to implement the

navigation for each perspective; hence, perspective designers are freed from the

manual implementation of each navigation in a perspective.

• Comparison of PML Navigation with Notable UML Tools Navigation: We

analyse the navigation facilities of several popular modelling tools and then show how

our navigation approach can support the discovered navigation facilities. On the

other hand, no tool offers complete support for all navigation features provided by

our navigation mechanism.

As proof-of-concept, we implement our approach in the TouchCORE tool [16], and

illustrate our approach by combining five different modelling languages (class diagrams, use

case diagrams, collaboration diagrams, use case maps, and a domain-specific modelling

language) for the purpose of requirement elicitation. This case study shows (i) that all

proposed perspective actions are needed to maintain consistency conditions in a
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multi-language modelling environment, (ii) that all templates are needed (one for update

actions, three for delete actions, and twelve for create actions), and (iii) that only a small

percentage of perspective actions involve complex language actions requiring a larger

specification effort. Furthermore, we evaluate our framework with two notable

multi-language modelling environments: User Requirements Notation and Palladio

Component Model. Here, we focus on the relationships between different languages in each

perspective and then show how the PML framework can be applied to specify those

relationships and then preserve the consistencies during the modelling time.

1.6 Publications and Presentations
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below in order of publication or presentation.
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Additionally, the doctoral candidate contributed significantly to the publication 7 (tool

demo paper). The candidate implemented most of the several multi-language modelling

features present in the paper and then presented the demo paper during the 2021 ACM/IEEE
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Also, the candidate actively participated in the writing of the manuscript. Other authors

contributed some features and the writing of the manuscript.
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1.7 Thesis Outline

In the remainder of this thesis, we first provide the background of the research work in

Chapter 2 and then motivate perspectives with some examples in Chapter 3. Furthermore,

we explain the architecture of the PML framework in Chapter 4 and then present the PML

navigation mechanisms in Chapter 5. Chapter 6 presents generic templates and the

template workflow for the relationships between different language elements, which govern

the automatic generation of the augmented language actions. In Chapter 7, we show how
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PML handles advanced features of a perspective, which promote the reuse of a language

that can have multiple models in a perspective, as well as conditional LEMs. In Chapter 8,

we present the DSLs for languages, perspectives, and navigation facilities, while Chapter 9

validates our approach by building a complex perspective that combines class diagrams, use

case diagrams, collaboration diagrams (environment model), a domain-specific model

(operation model), and use case maps. Also, we illustrate how the PML framework can

handle relationships in other notable multi-language modelling environments. We compare

the PML framework to other contemporary multi-language systems in Chapter 10, while

Chapter 11 summarizes our contributions and presents future work. Appendix A presents

the details of all the generic templates, while we present the definition of our PML DSL in

Appendix B. In Appendix C, we present sample models of our DSL, which details how we

register languages in a software tool, and finally, Appendix D presents a complete

perspective specification (with our DSL) for the Fondue Requirement perspective.
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Chapter 2

Background

In this chapter, we present an overview of Model-Driven Engineering (MDE) and then the

related fundamental concepts that are used in the subsequent chapters of this thesis. First,

we explain what models are in the context of MDE. Second, we introduce software languages

and then software language engineering, which stipulates the best engineering practices for

building languages. Finally, we provide fundamental concepts about the generic navigation

mechanism and its roles in MDE.

2.1 Building Software Challenges

It has never been easy to develop a complex software system. System requirements are

often gathered at the beginning of a software production, which encompasses interactions

between the domain experts and the software practitioners, e.g., IT administrators and

software engineers. The elicitation of requirements can be challenging, especially in a very

complex business domain, which requires software practitioners to succinctly and precisely

represent business requirements in the context that can facilitate software development. The
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difficulties of understanding a very complex business domain are usually compounded with all

the efforts to manage large software teams over multiple stages of a project that spans many

months or years. Furthermore, incessant demands from clients as well as the time-to-market

pressures are inherent to many of the modern software products, which also complicates the

software development challenges. In addition, with the emergence of data-driven software

systems, several systems are inherently complex and seriously demanding to develop, for

example, Auto Flight Control System, 5G Network, and IoT, to name a few.

In addition to these complexities, which are related to the system or business domain,

there are also great complexities of the software technologies on which the software systems

are based. Most software companies rely heavily on complex infrastructure technologies,

which have evolved over many years and consist of various software packages that are

purchased from many vendors. Often, these packages are not maintained or lack proper

documentation. Depending on how tightly coupled the technologies are in a software tool

or a system, it may present a significant challenge when some of the associated packages for

each technology cannot be maintained. This is especially the case when other technologies

depend on the outdated package to support the life cycle of the system in question.

In addition, the requirements of a software system are often continuously modified to

keep the system on par with the demands of clients. These inevitable changes in software

requirements are extremely challenging to propagate to software systems that are developed

with different technologies because modifying a part of a system can make it inconsistent with

other technologies. These problems might be more complicated if the underlying technologies

are combined together as a single software artefact, instead of separating them into software

modules to promote independent evolution.

Similar to other engineering fields, the building of software applications requires a
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systematic approach to eliminate or reduce the associated challenges, which aim to help

software engineers evolve their solutions in flexible ways while reusing existing software

artefacts [18].

2.2 Model-Driven Engineering

Model-Driven Engineering is a software engineering methodology that advocates the use of

models for all software development tasks, including documentation, requirement gathering,

design, and implementation of the software system. MDE aims to foster greater flexibility

in the development as well as maintenance of software solutions. A software model improves

reasoning and understanding of the system as well as promotes communication between

software developers and other stakeholders.

With the concept of model transformation [19, 20], software models are often used to

automate several processes during software development. This automation paradigm can

lead to several goals, including faster development, better software quality, and greater

productivity [21]. There are various concepts and software tools to facilitate the automation

and other benefits of models during software development.

However, the increasing challenges of software development outlined above require a more

streamlined approach to foster modern software development. One of the prominent MDE

approaches is Model-Driven Architecture (MDA) [18] which is defined as the realization of

MDE principles around a set of Object Management Group (OMG) [22] standards, which

include, but are not limited to, the Unified Modelling Language (UML), the Meta-Object

Facility (MOF), and the Object Constraint Language (OCL). UML is a popular modelling

language that can be used to create models of software systems. MOF is a modelling language
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that is used for the definition of other modelling languages. OCL is a precise textual language

for expressing constraints that cannot be shown diagrammatically in UML models. In the

following subsections, we explain the concept of software models, software languages, and

the principles for building software languages.

2.2.1 Software Models

To streamline the development process of a software system, software engineers embrace

many methods to address development challenges. One of the notable approaches is the use of

models and modelling [23,24]. Models provide abstractions of software systems, which allow

software engineers to reason about these systems by ignoring extraneous details and focusing

on the relevant aspects of the system. Software engineers rely on models to understand

complex real-world software systems. Models provide essential benefits, including, but not

limited to, predicting system qualities, reasoning about specific properties when aspects

of the system are changed, and communicating key system characteristics to its various

stakeholders [23]. Models are often used as a base for the implementation of software systems,

or derived from an existing system or developed system to help understand the system’s

behaviour.

Figure 2.1 shows the general architecture of a modelling environment, each model is based

on a formalism (or language), which precisely defines the concrete syntax (or notation), the

abstract syntax, and the semantics of the model. The concrete syntax specifies the view or

notation of the model; the abstract syntax defines the structural relationships between the

conceptual states of the model; and the semantics defines the meaning of the model. In the

following sections, we provide more information about the formalism and then present some

MDE principles for building the software languages.
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Figure 2.1: System, Model, and Formalism

2.2.2 Software Language

Software languages play essential roles in software engineering and computer science. There

are several types of software languages, including modelling languages, programming

languages, markup languages, and formal languages [25]. In general terms, there are two

major categories of software languages: General-Purpose Languages (GPLs) and

Domain-Specific Languages (DSLs) [26].

A GPL is a software language that targets much larger domains and hence provides a

potentially suboptimal solution. Examples of prominent GPLs include popular programming

languages, e.g., Java, C#, C, and modelling languages (e.g., UML class diagram). The

expressiveness and notation of GPL are not tailored to a particular domain. Although a

GPL can be used to develop any kind of software, domain experts may find it difficult to
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understand its concepts. This poses challenges for software developers, since it becomes more

difficult to bridge the gap between problem space (domain experts) and the solution space

(software developers). Therefore, the use of GPL limits the involvement of domain experts

during the generation, specification, and implementation of a software system.

On the other hand, a DSL is a language whose expressiveness and notations are tailored

to a particular domain of application [27,28]. It provides a more specific and efficient solution

in a given domain. However, a DSL is not suitable for implementing any kind of software

application across several domains. The main objective of a DSL is to bridge the gap

between the problem space, i.e., where the domain specialists work, and the solution space,

i.e., where the software developers work. Therefore, a DSL promotes the participation of

domain experts during the life cycle of a software application. Hence, domain experts can

create and manipulate models and other notations of a DSL [26]. Models developed by using

a DSL are easier to understand and maintain [29] by stakeholders. Recently, DSLs have been

adopted in a variety of domains including cyber-physical systems, computational sciences,

and high-performance computing.

2.2.3 Software Language Engineering

The development of a software language is inherently a difficult endeavour [30, 31]. A

software language is software, too [32]. Thus, it inherits all the complexities associated

with the development of a software system, as well as its own specificities and

implementation techniques [33,34].

The building of a single DSL already faces many challenges, including maintainability,

evolution, reuse, consistency, and user experience [30,35]. In a multi-language system, several

DSLs are composed to prescribe and describe the characteristics of the system, which makes
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the aforementioned challenges even more difficult to deal with.

Since a DSL focuses on a small group of stakeholders, it is important that the benefits

of a DSL offset the efforts required to build and maintain it. Therefore, it makes sense to

apply software engineering techniques during the specification, implementation, use, and

maintenance of a DSL. This notion led to the emergence of Software Language Engineering

(SLE), which is defined as “the application of systematic, disciplined, and measurable

approaches to the development, use, deployment, and maintenance of software

languages” [25].

Similar to GPL, constructing a DSL involves the creation of three main building blocks

of a language: abstract syntax, concrete syntax, and semantics. In the following subsections,

we briefly describe these constituents in the context of SLE.

Abstract Syntax:

The abstract syntax represents the key constituents of a language. It captures the concepts

that exist in a language domain and establishes the structural relationship that exists between

the concepts. There are two major ways of specifying the abstract syntax of a DSL: Context-

Free Grammars (e.g., Backus-Naur Form [36]) and Metamodelling (e.g., Ecore and Meta-

Object Facility (MOF) [37]). In this work, we focus on metamodelling where all the aspects

of a language’s abstract syntax are based on its metamodel. Models of a DSL must conform

to the structural relationship captured in the abstract syntax (metamodel).

Concrete Syntax:

The concrete syntax defines the visual representation of a language. This constitutes a larger

part of a user interface of a language. Concrete syntax can be represented textually, i.e., the
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use of characters to write programs that conform to a language, and graphically, i.e., the use

of nodes and edges to establish models that conform to a language. In both cases, software

developers use the visual representation of a language to create, modify, or delete instances

of a language. Most of the programming languages (e.g., Java, C, Python) employ textual

representation, while modelling languages (e.g., UML) are manipulated via the graphical

representation. In either way, there are correspondences between the abstract syntax and

concrete syntax elements.

Semantics:

The semantic of a language defines the meaning of its concepts. It promotes reasoning

about the properties and runtime behaviour of the models or programs that conform to the

language [30]. Furthermore, it facilitates the communication of one’s understanding of a

language to someone else. Here, we briefly present some categories of language semantics,

which include the operational, denotational, extensional, and translational semantics:

• Operational Semantics: Operational semantics describes the operational behaviour

of the concepts in a language (e.g., state transition system)

• Denotational Semantic: Denotational semantics associates mathematical concepts

with the constructs of a language.

• Extensional Semantics: Extensional semantics expresses the semantics of a language

based on the semantics of the super-language (e.g., UML Profiling)

• Translational Semantics: Translational semantics expresses the semantics of a

language in another language with more precise semantics representation (e.g., Petri

Nets mapping to Java)



2. Background 26

2.3 Metamodelling

In this section, we focus on the definition of language abstract syntax in the form of a

graphical model (metamodel). Metamodelling refers to the specification of the structural

relationships between different types of element in a modelling language, i.e., the creation of

a metamodel. Hence, a metamodel defines the structural rules as well as the relationships

between different elements (metaclasses) of the modelling language. Then instance models

are built on the bases of the modelling language’s elements specified in the metamodel in

order to abstract a concrete software system. Thus, metamodels serve as a blueprint that

specifies elements and rules for creating and editing instance models.

To illustrate the relationships between a metamodel and its instance model, Figure 2.2

shows an excerpt of a UML Class Diagram metamodel and an instance of the class diagram

elaborated based on the structural relationships and other rules of the metamodel. In

addition, the figure defines some vital terms that are used in this thesis: Language

Element, Root Language Element, Nested Language Element, and Model Element.

There are two main levels in this diagram: Model level and Metamodel level. At the

metamodel level, we have a UML Class Diagram metamodel (excerpt), which comprises

some metaclasses and their attributes. The metaclass ClassDiagram is the root metaclass -

an instance of the root metaclass contains all the model elements, directly or indirectly, that

are allowed to be defined by the metamodel. Each of the metaclasses, Class, Attribute,

and Operation, is referred to as a language element. A language element can have zero or

more attributes, which we define as a nested language element. For example, each of the

name attributes in Operation, Class, and Attribute is a nested language element.

At the model level, we define a Class Diagram model (Bank), which captures very basic

features of a bank and conforms to the specifications of the Class Diagram metamodel. The
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Figure 2.2: Class Diagram Metamodel (excerpt) and an Instance of the Metamodel

diagram elaborates a bank model, named Bank, that offers bank services to its clients. Each

bank account should have an account number (acctNumber), which is an instance of the

language element Attribute at the metamodel level. Furthermore, the bank allows their

clients to deposit money into their account (credit operation), which is an instance of the

Operation language element. The Bank element as well as the BankAccount element are

called Model Element. Also, the Bank model element is an instance of the root language

element (ClassDiagram), which we refer to as the owner or container of the instance model,

and the BankAccount model element is an instance of the Class language element.

The metamodel is regarded as the type of class diagram model, and this relationship

is not transitive. For example, an instance of the class diagram model, e.g., runtime user

objects, is not an instance of the metamodel. Hence, the class diagram is the model of the

runtime user objects, while the metamodel is the model of the class diagram. Figure 2.3
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Figure 2.3: The Relationship Between Metamodel, Model, and Language

summarizes the relationship between a metamodel, a model, and a language. The metamodel

represents the language as the formalism for which systems can be described or prescribed

with the language in the form of a model [38].

2.4 Metamodelling Languages

A modelling language defines the abstract syntax that forms the rules that govern the

creation of a model, which is based on the metamodel of the language. Similarly, a

metamodelling language defines the formalism of a modelling language, i.e., a modelling

language conforms to a metamodelling language. The model of a metamodelling language

is referred to as metametamodel. In the following section, we briefly present Eclipse and

then Eclipse Modelling Framework (EMF), which is a famous modelling framework for

both definition and elaboration of instance models.
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2.4.1 Eclipse

Eclipse is a large open source software, which is used for development and as a plug-in

for software applications. Eclipse is designed to provide a highly integrated software tool

platform, providing a forum for individuals and organisations that have the same interest to

work on open source software [39]. Eclipse projects comprise generic frameworks, tools, and

runtimes for building, deploying, and managing software across the software development

processes. It is an Integrated Development Environment (IDE) for different programming

languages which includes C, C++, Python, and Java. In this work, we use Eclipse and an

Eclipse plug-in language workbench to develop two domain-specific languages and their code

generators.

2.4.2 Eclipse Modelling Framework

Eclipse Modelling Framework (EMF) is a framework and code generation facility used by

developers to accelerate software development in Model-Driven Engineering(MDE). EMF is

an Eclipse plug-in and thus takes advantage of the resources provided by Eclipse. It is used

to define the software domain model and then generate classes, code, and HTML page of

a structured software data [40, 41]. Several software artefacts are required for a complete

representation of a software model which includes Ecore class diagrams, software interface,

and XML schema. In software modelling, developers would like to increase their productivity

by limiting the manual production of all these artefacts. In this regard, EMF is a viable tool

that can be used extensively to transform the software model from one form to another. For

example, if a model is produced by using the specifications described in the XML schema,

EMF provides tools and runtime supports that can produce a set of java interfaces that

enable viewing and command-based editing for the model and a basic editor, along with
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Figure 2.4: EMF Links Java Code, Java Interface, XML, and UML

the Ecore class diagram for the model. EMF also generates Java classes to implement the

model. On the other hand, given a model in the Ecore class diagram, EMF can be leveraged

to produce other software artefacts for the model. The EMF binding algorithm is shown in

Figure 2.4. Thus, developers can design any model that matches their perspective or skills,

and EMF will produce and link other models as well as the implementation code.

2.4.3 Ecore Metamodel

Ecore is an EMF core framework that is used to describe EMF models and runtime

support for models [40]. The supports and description provided by the ecore model for

EMF models include, but are not limited to, change notification, XMI serialisation, and an

API for communicating with EMF objects. Ecore models provide detailed information on

the packages, classes, and attributes of the domain model.

EMF modelling technique uses an ecore file which describes the metamodel of the EMF

model. Ecore is a metamodel of itself, and thus it is a metametamodel [42]. Software

applications that use the EMF model have .ecore extension files, which are represented in

an XML schema.



2. Background 31

An excerpt of the ecore metametamodel is shown in Figure 2.5, which captures some

metaclasses that are essential for this work. Ecore is predominantly used to define the

metamodel of modelling languages, including domain-specific modelling languages. In

ecore, all elements are instances of the EObject model element. The EPackage allows

language designers to retrieve an object representation of each language element, which can

be used to implement the behavioural semantics of the language in question. Metaclasses

of languages that conform to ecore metamodel are instances of the EClassifier, e.g.,

Class, Attribute, and Operation language elements in Class Diagram metamodel (see

Figure 2.2) are instances of the EClass. The properties of metaclasses defined with ecore

are called structural features (EStructuralFeature). Features that are typed using a

primitive type or using an enumeration are called attributes (EAttribute), while features

that are typed using a metaclass are called references (EReference). For example, the

nested language element name in Operation metaclass (see Figure 2.2) conforms to the

EAttribute metaclass. In this thesis, we use ecore to define the metamodel of the PML

framework.

Figure 2.6 summarizes the MDA model hierarchy. The metametamodel is at the highest

level (M3 ), which comprises models that define metalanguages, e.g., Ecore and MOF.

Metametamodel conforms to itself. At M2, language is defined with metamodels that

conform to the metametamodel at M3, e.g., UML class diagram language. These languages

are then used at M1 to prescribe or describe the real world system at M1, e.g., a bank

UML class diagram model. And finally, at M0, we have runtime instances that conform to

the models at M1. Levels M3 to M1 are referred to as the modelling world while M0 is

called the real world [43].
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Figure 2.5: Ecore Metametamodel (excerpt)

Figure 2.6: MDA Four-Layer Standard Modelling Stack
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2.5 Multi-Language Modelling Environment (CORE)

This section presents a notable multi-language modelling paradigm in the software

engineering community, Concern-Orientated Reuse (CORE) [44, 45]. A Multi-Language

Modelling Environment supports the use of two or more modelling languages to perform all

the required tasks to develop a software system. CORE applies the Separation of Concerns

principle to facilitate software reuse in a multi-language modelling environment.

2.5.1 Concern-Oriented Reuse

Concern-Oriented Reuse (CORE) is a software reuse paradigm that promotes the use of a unit

of modularization called concern as its main artefact during software development. A concern

is a generic unit of reuse that groups related models (e.g., class diagrams, sequence diagrams,

state machines) that cut across a software application [44]. These related artefacts, similar

to what happens in Software Product Line development [5], deal with the commonalities

and variabilities of the problem and solution space that the concern focuses on. Examples of

concerns are Authentication, Authorization, and Logging, the realizations of which are often

scattered and tangled in the models and implementation artefacts of a given system. During

software reuse, different concern models are woven/composed to produce a specific artefact

required for a given context or domain.

Each concern provides three interfaces to facilitate reuse: the variation, customization,

and usage interfaces (VCU) [44].



2. Background 34

Variation Interface:

The variation interface specifies the variabilities and commonalities in a family of software

artefacts that a concern provides and the impact of each selection on system qualities. This

helps a software designer to tailor a given concern to her specific needs via selection of

different artifacts.

Customization Interface:

The customization interface allows adapting a chosen variation of the concern to a specific

reuse context. For example, a concept Authenticatable, in an Authentication concern is

adapted or customized as a User in a bank application.

Usage Interface:

The usage interface defines how a customized concern may eventually be used [45]. It specifies

the design structure (structural language), behaviour (behavioural language), and intentions

(intentional language) that the concern provides to the reusing application. For example, in

a class diagram, the usage interface is the set of all public class properties, i.e., the attributes

and the operations that are visible and accessible from the rest of the application.

The current mechanism in CORE combines different individual languages, e.g., class

diagram, sequence diagram, state machine, by combining their metamodels. As a result, the

combined languages have one metamodel to enforce consistency and coordination between

different models that are instances of the individual languages. Although the reuse paradigm

of CORE is very powerful, it currently requires a lot of work to add another language to the

existing ones, because this requires modification of the one metamodel to include the new

language. This has several drawbacks. First, modifications to the one metamodel could break
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backwards compatibility with already existing models. Second, updating the metamodel

requires thinking about interactions and consistency constraints between the new language

and all other languages, which is very tedious and error-prone work. This limitation (among

others) motivates this PhD research work. Hence, PML aims to fill the gap by providing

a robust mechanism for adding independent languages to CORE. Furthermore, PML aims

to facilitate coordination and consistency management between different models that are

instances of different languages.

2.5.2 CORE Metamodel (excerpt)

The basic structure of a concern is shown in the excerpt of the CORE metamodel in Figure

2.7. A concern (COREConcern) groups related models (COREModel) together, with at least

one model by default. A COREModel is an abstract class that is defined concretely through

subclassing. Several models including class diagram, sequence diagram, and state machine

can be corified, i.e., making them to behave like concern models (COREModel). A concern is

composed of one feature model (COREFeatureModel), which is a subclass of the

COREModel. A feature model groups the commonality and variations of a family of software

products such as authentication, logging, and authorization. Each software artefact in a

family is represented as a COREFeature. A feature is realized by one or more instances of

the COREModel; conversely, an instance of a COREModel can realize one or more features.

The classes with a pink background in Figure 2.7 depict the structure through which

concern models are reused.

A concern can reuse another concern as indicated by COREReuse. A COREConcern

contains a set of COREReuse (reuses) and each COREReuse references another concern

(reusedConcern). The reference from COREConcern, through COREReuse, to COREConcern
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Figure 2.7: Basic Structure of a Concern

represents a cross-boundary relationship between two concerns, the reusing and the reused

concerns. In addition, a concern model can extend another concern model via the

metaclass, COREModelExtension.

With this mechanism, CORE models, which could be implemented via subclassing of

COREModel, e.g., class diagram, will have the essential features of CORE including the

variation, customization, and usage interfaces (not shown in the metamodel for simplicity)

and can easily be reused or reuse other models. This CORE structure has some limitations

that also motivate this doctoral research.

• Single Metamodel (P1): A metamodel, which represents all languages supported

in CORE, is a subclass of COREModel. The aim of using a single metamodel, i.e., single

underlying model, is to facilitate consistency as well as coordination between instances
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of the languages. Although the subclassing approach is required to corify the languages,

it is more challenging to evolve the metamodel because the developer has to face all

the complexities of the tightly coupled single metamodel. Also, adding and removing

of languages, as well as maintaining the consistencies, will be extremely complicated,

as these processes have to be implemented manually. Moreover, modifications to the

one metamodel could break backwards compatibility with already existing models.

• Language Models Contain the CORE Reuses (P2): CORE provides the

framework to facilitate the reuse of software artefacts. However, instances of such

reuses are contained in the instances of the supported languages; hence, complicating

the idea of separation of concerns. Since CORE provides the reuse mechanism, the

instances of the reuses should be maintained in the COREConcern, instead of

language models such as class diagrams and state machines.

• Tightly Coupled CORE Metamodel and Language Metamodel (P3): The

language metamodel is tightly coupled with the CORE metamodel by subclassing the

COREModel metaclass. One of the biggest drawbacks of this is that in order to codify

a language, one has to modify its metamodel (so that it subclasses COREModel, for

example). Metamodel modifications are undesirable, because all existing models and

tools become incompatible.

To promote modularity as well as separation of concerns, the current way of dealing with

languages in CORE had to be improved to support a modular multi-language modelling

environment, which led to the creation of the PML framework. Although these CORE

challenges motivate our research work, our approach can be applied in other multi-language

modelling environments that are based on metamodels.
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2.5.3 TouchCORE

TouchCORE is a multitouch-enabled software tool used for software design modelling [16].

Its main objectives include, but are not limited to, developing flexible and reusable

software design models [46]. It supports the three interfaces of concerns: variation,

customization, and usage interfaces. TouchCORE also provides the engine for combining

different software models – so-called weaving [46, 47] – during the reuse process. All

proof-of-concept implementations for the research work presented in this thesis are carried

out within the TouchCORE tool.

2.6 Summary

This chapter presents the background concepts that are used for the rest of this thesis. First,

we introduce Model-Driven Engineering (MDE), a software engineering methodology that

advocates the use of models for all software development tasks. A software model improves

reasoning and understanding of the system under development. Furthermore, it facilitates

communication between software developers and other stakeholders. Also, software models

are used to automate several processes during software development, including the automatic

generation of source code and other implementations.

To express models of a system, software engineers create languages, which can be either

general-purpose languages (GPL) or domain-specific languages (DSL). A GPL is a software

language that targets much larger domains and hence provides a potentially suboptimal way

of expressing a specific problem at hand. On the other hand, a DSL is a language whose

expressiveness and notations are tailored to a particular domain of application. It provides

a more specific and efficient solution in a given domain. A language plays an important role
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in software engineering because it outlines the infrastructure for creating models.

The creation of models as well as building of software languages is a difficult task. The

task becomes even more difficult in multi-language environments when the underlying

technologies or languages are combined together as within a single software artefact or

metamodel. In this case, it is more challenging to evolve the metamodel of the combined

languages because the software engineer has to face all the complexities of a tightly coupled

single metamodel. We present a notable multi-language modelling environment

(Concern-Oriented Reuse), which supports different tightly coupled modelling languages.

We present the challenges of this architecture and then explain how it motivates this

research work.

The next chapter provides further motivation for this research work with some real-life

perspective examples. We demonstrate some of the key features of a perspective, including

perspective actions and mappings between different language elements, as well as between

model elements.
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Chapter 3

Motivation

In this section, we first motivate perspectives by using a single language and then with

multiple languages, each with a simple example. We demonstrate the features of perspective

including perspective actions and potential mappings (i.e., links) between different language

elements. We target software languages that are defined using a metamodel-based approach.

Our assumption is that each modelling language (i.e., its metamodel and its language actions)

exists independently, without prior links or constraint conditions with other languages.

Definition 3.0.1 (Perspective). A perspective combines different languages for a

modelling purpose; defines the role of each participating language as well as composite

actions for building a consistent multi-model system and maintaining the links between

different model elements.

Definition 3.0.2 (Software Language). A software language is a software system

that provides an infrastructure for building other software systems, which conforms to

the language in question. A software language comprises three main building blocks:
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abstract syntax (e.g., metamodel), concrete syntax, and semantics.

Definition 3.0.3 (Language Element). A language element is a concept that

participates in the definition of the abstract syntax of a software language. In a

metamodel-based abstract syntax, metaclasses and attributes of metaclasses are

examples of language elements.

Definition 3.0.4 (Language Action). A language action is a function in the API of

the language that provides editing steps for constructing models that are instances of

the concerned language metamodel.

In each perspective, the metamodels of different languages are combined with mappings

between the language elements to produce a modular underlying model where a module

represents a participating language.

Example 3.0.1. ITU goal and scenario models and UML class diagrams may be

combined to describe a system by establishing mappings between actors in goal models

and classes, as well as steps in scenario models and operations.

This modular combination aims to reduce the complexity associated with a single

underlying model during software evolution. It also means that the language actions of

each metamodel have to be manipulated to provide the most appropriate actions for

building and then maintaining the relationships between different language elements as

specified by the mappings in the perspective. For example, if a language action creates a

new actor in a goal model, it now also needs to create a class in a class diagram given the
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mapping between these two language elements. A perspective can redefine a language

action or simply re-expose or hide it. Furthermore, it can add new actions that cannot be

achieved with existing language actions. Collectively, these actions are referred to as

perspective actions, which comprise the individual actions of each language, e.g., create

class, add operation, or modify parameter, and the new actions, e.g., map x to y, where x

and y refer to different language elements.

Definition 3.0.5 (Perspective Action). A perspective action re-exposes or

augments an existing language action to enforce consistency rules defined in the

perspective mappings.

All perspective actions are used to construct a model instance conforming to the languages

in the perspective. However, a perspective action proactively prevents an inconsistency,

instead of fixing a broken consistency. Hence, PML fosters proactive actions, i.e., actions

that prevent inconsistencies from occurring.

3.1 Single-Language Perspective

A software language is used to capture the characteristics of a software system. Software

systems exhibit different features that include, but are not limited to, structural, behavioural,

and intentional characteristics. These characteristics often spread across different levels of

abstraction; e.g., a class diagram language can be used to specify the domain model of a

system during the requirement stage. A class diagram can also be used to describe the

complete system structure at the design stage. Moreover, a class diagram may be used to

define the metamodel of a language based on MOF. For each of these uses, different language
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features of class diagrams are applicable. Hence, the level of the abstraction determines the

required construction semantics and view of a language.

Definition 3.1.1 (Construction Semantics). Construction semantics define the

editing steps for building and maintaining models that conform to the concerned

language.

In this section, we illustrate different use cases of a class diagram language, each use

case representing a single language perspective. Each perspective that reuses a class

diagram for a modelling purpose, e.g., domain modelling, design modelling, or

metamodelling purpose, augments the construction semantics and views of the class

diagram to reflect the corresponding purpose of the language in the perspective.

Domain Model Perspective

A domain model is a class diagram, which describes a system’s structural conceptual

relationships. It uses classes, attributes, associations, compositions, and generalisation to

describe the entities of the system. An example is shown in Figure 3.1, which depicts the

structural relationships that exist for a simple bank account.

The model view depicts classes and their attributes, as well as relationships between

pairs of classes. Right clicking on a class reveals the supported language actions in a domain

model, e.g., create attribute or delete class, as shown in Figure 3.1. Since a domain model

is a class diagram, these actions are re-exposed from the class diagram language. Similarly,

a modeller can specify a relationship between a pair of classes by drawing a line from one to

the other and selecting the desired relationship. The corresponding language actions are also

re-exposed from the class diagram language. Operations are not shown, because a domain
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Figure 3.1: Bank Domain Model with Supported Actions

model does not support operations. Hence, the language actions associated with operations

such as create/delete operation and update operation parameter are hidden in the domain

model perspective.

Design Model Perspective

Another single-language perspective is a class diagram that is used to describe a complete

system structure. In this case, a design model is composed of all design classes including

their attributes, relationships, and operations.

The design model perspective supports a view that provides the language actions that are

required for the specification and maintenance of a design model. Unlike the domain model

perspective, the design model perspective allows a modeller to add or delete operations and

other related design model actions, as illustrated in Figure 3.2. In this case, all language

actions of the class diagram language are supported and hence re-exposed by the perspective.



3. Motivation 45

Figure 3.2: Bank Design Model with Supported Actions

3.1.1 Metamodelling Perspective

A perspective can also exist at the metamodelling level. For example, the Meta Object

Facility (MOF) is a metamodelling language which is used to define modelling languages.

MOF is a single-language perspective, which provides key concepts, such as types (e.g.,

classes and enumerations), attributes, operations, generalisation, and associations, for the

definition of languages. These concepts also exist in the class diagram language. However,

MOF restricts some concepts from class diagrams, which include association classes,

interfaces, n-ary associations, and dependencies. Thus, the metamodelling perspective

derives the MOF language from the class diagram language by hiding the language actions

that are associated with the restricted concepts and re-exposing all others.

3.2 Multi-Language Perspective

In this section, we illustrate perspectives that use more than one language. In a multi-

language perspective [48], two or more languages are combined for a given purpose. To

support the co-evolution of models conforming to different languages, several mappings,

consistency constraints, and perspective actions are specified between different language
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elements. A mapping captures a relationship between two language elements, each from a

separate language. Furthermore, the mappings are supported with consistency constraints to

ensure that the values of the mapped elements are always consistent, especially at modelling-

time.

Furthermore, perspective actions are defined that are used by the modeller instead of

the original language actions whenever changes to the models are made. In addition to the

re-expose and hidden actions used for single-language perspectives, existing language actions

now may have to be redefined to suit the aims of the perspective. A perspective action

may prevent an inconsistency from occurring or may be triggered to fix broken consistencies

which may arise from an update or other activities that change a value of either mapped

language element.

Consider that a modeller is working on a software design for a bank application. First,

the modeller decides to use a class diagram language to capture the design structure of the

system, as shown in Figure 3.2. Also, the modeller defines the operational behaviour of the

system with a sequence diagram language. For example, Figure 3.3 shows the behaviour of

the debit operation defined in the class diagram model with a sequence diagram. Since these

two languages are used to elaborate a single system, it is essential that these models are

consistent with each other. The consistency requirements of the bank system are:

• C1: Each sequence diagram model must describe the behaviour of a corresponding

operation in the class diagram model.

• C2: Each lifeline in the sequence diagram model must be typed by a class in the class

diagram model.

• C3: The behaviour of each operation in the class diagram model can be described with
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Figure 3.3: Debit Operation Sequence Diagram

a corresponding sequence diagram model.

• C4: Each class in the class diagram can be a type of several lifelines in the sequence

diagram model.

Ensuring consistency is challenging especially when the modeller has to deal with it manually.

In PML, we provide a perspective that groups together different modelling languages for a

specific modelling purpose, and then ensures that the desired consistencies are automatically

maintained across the models built with the languages.

Class Diagram and Sequence Diagram Perspective

A typical example of a multi-language perspective that would be useful for our bank design

example is the Software Design Perspective, i.e., a perspective which combines a class diagram

language and a sequence diagram language, assuming that both languages have been defined

independently. Figures 3.4 and 3.5 show the metamodels of the class diagram language and
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Figure 3.4: Class Diagram Metamodel (excerpt) and Some Language Actions

Figure 3.5: Sequence Diagram Metamodel (excerpt) and Some Language Actions
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the sequence diagram language, as well as their language actions, respectively1. Hence, for

both languages to collaborate as a perspective, the mappings and consistency conditions

between class and lifeline as well as operation and sequence diagram need to be established,

as outlined above.

Furthermore, the perspective provides actions to support the collaboration of the two

languages. Some of the original language actions are re-exposed, e.g., create attribute in a

class diagram and create statement in a sequence diagram. Such actions only affect model

elements of one language, and do not influence the model elements of the other language.

On the other hand, an action that affects a model element with a consistency mapping may

influence other linked language elements, and hence has to be redefined.

Example 3.2.1. Actions that need to be redefined for our perspective would include

create lifeline, create message in a sequence diagram, and create operation in a class

diagram).

In an independent sequence diagram, i.e., a sequence diagram which is not linked with

any other language, creating a lifeline or message requires only the basic actions of a sequence

diagram. However, in a Software Design Perspective, a lifeline that is not linked to a class

constitutes a violation of the mapping between the two model elements and its associated

constraint condition. Proactively, this violation can be avoided by redefining the create

lifeline action to include mapping the new lifeline to an existing class or creating a new class

and linking it with the lifeline. Thus, the redefine action ensures one of the consistency

objectives of the perspective, i.e., a lifeline must represent an object of an existing class in
1Although the official UML diagram language has one metamodel for all the UML diagrams, we keep the

metamodel of each UML diagram separate to promote modularity as well as the evolution of multi-language
software systems. Hence, we treat each UML diagram as a separate modelling language
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the associated class diagram (C2). Another example of a redefine action is updating the

name of an operation in a class diagram. In this case, the action also updates the name in

the mapped sequence diagram (C1).

A multi-language perspective may also offer new actions not supported by any existing

language action, e.g., an action that creates a mapping between two model elements. A

modeller may want to change the class linked to an existing lifeline. In this case, the

mapping action allows the modeller to update the mapping information of the lifeline, i.e.,

by replacing the linked class with another class from the class diagram.

These examples of single-language and multi-language perspectives demonstrate how

our proposed PML framework aims to manipulate existing languages to provide language

designers or modellers with relevant views and language actions.

3.3 Roles in a Perspective

In this section, we introduce other categories of perspectives: perspective with single-role

and perspective with multi-role.

3.3.1 Perspective with Single-Role

A software language can be used at different levels of abstraction to specify or describe the

characteristics of a software system. A class diagram language, for example, can be used to

specify the domain model of a system during the requirement stage and also to describe the

complete system structure at the design stage, and as well, to create metamodels (in the form

of MOF) at metamodelling level. For each of these uses (i.e., class diagram language roles),

different language features of class diagrams are applicable. A perspective with single-role
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reuses exactly one language at a particular level of abstraction, where the reused language

plays a specific role.

Example 3.3.1. Perspectives with single-role include domain model perspective, design

model perspective, and metamodelling perspective (see Section 3.1).

Every perspective with single-role is a single-language perspective, but the reverse is not

the case.

3.3.2 Perspective with Multi-Role

In a perspective with multi-role, two or more language roles are combined for a given purpose.

These roles can emanate from a single language, i.e., the language plays multiple roles in

the perspective. Alternatively, different languages can play different roles in a perspective

with multi-role. In addition to the re-expose and hidden actions used for perspectives with

single-role, existing language actions now may have to be redefined to suit the aims of the

perspective, i.e., enforce relationships between language roles in perspectives. To support the

co-evolution of models based on different roles, several mappings, consistency constraints,

and perspective actions are specified between language elements.

Every multi-language perspective is a perspective with multi-role, but the reverse is not

the case. A typical example of a multi-role perspective is the combination of a class diagram

language (structural role) and a sequence diagram language (behaviour role). Hence, for

both languages to collaborate as a perspective, the necessary relationships between language

elements, e.g., a mapping between a Class metaclass and a Lifeline metaclass, and constraint

conditions need to be established.

Another example of a multi-role perspective is domain and design model perspective, i.e.,
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a perspective that reuses a class diagram (a single-language perspective) for both domain

modelling (domain role) as well as design modelling (design role). This type of perspective

often implements equivalency constraints between elements across models from different

language roles. For example, a class in a domain model is required to be mapped with

at least one implementation class in the design model; whereas each design class needs to

be mapped with exactly one domain class. This equivalency constraint does not enforce

consistent information, e.g., that the names of the domain model class and mapped design

model class are the same. However, the equivalency constraint ensures that these mappings

exist, which helps to ascertain when the domain model is fully implemented in the form of

a design model.

3.4 Summary

This section motivates perspective with some (and simple) perspectives. We show how a

perspective reuses a single language (class diagram language) for a domain modelling, design

modelling, and metamodelling purposes. A single-language perspective can re-expose, as well

as hide some language actions to support only the required language actions based on the

role of the language. Also, we present a multi-language perspective that combines a class

diagram and sequence diagram languages for requirement elicitation purpose. In addition

to re-expose and hidden actions, a multi-language perspective redefines language actions to

suit the aims of the perspective. Finally, we introduce other features of a perspective, which

include perspectives with single-role and perspectives with multi-role.

Following the motivation of perspectives by using a single language and multiple

languages, the next chapter presents the general overview of the PML framework. We
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discuss the PML architecture, workflow, and then its metamodel.
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Chapter 4

PML Framework

This chapter presents the general overview of the Perspectives for Multi-Language Systems

(PML) framework. First, we discuss the principal modelling levels in the PML framework.

Second, we present the PML workflow and then its metamodel. We further illustrate how

we apply the PML framework to address some of the multi-language challenges outlined in

Chapter 2.

4.1 Levels in the PML Framework

To specify, prescribe, describe, and develop software systems using several languages, the

PML approach incorporates three levels, the language level, the perspective level, and the

model level, as shown in Figure 4.1.

4.1.1 Language Level

The language level contains the collection of different modelling languages (i.e., L1, L2, L3)

that are being used in a software system. At this level, the framework focuses on two main
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Figure 4.1: Generic Architecture of PML
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Figure 4.2: Environment Model Metamodel (excerpt) and Some Language Actions

Figure 4.3: Operation Model Metamodel (excerpt) and Some Language Actions
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Figure 4.4: Use Case Model Metamodel (excerpt) and Some Language Actions
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Figure 4.5: Use Case Map Metamodel (excerpt) and Some Language Actions

building blocks of a modelling language: the abstract syntax or metamodel (e.g., MM1 for

L1) and the language actions (e.g., LA1 for L1).

The language actions define the construction semantics for the metamodel. These actions

encapsulate complete editing steps that are used by the modeller when elaborating a model

using the language. Internally, the actions can create, read, update, and delete instances of

the language metaclasses. Language actions are at a higher abstraction level than CRUD

operations, and one language action may in fact perform several CRUD operations.

Example 4.1.1. In a class diagram language, creating an instance of the metaclass

operation and then adding the instance to the list of operations of a class is a single

language action ( create operation) shown in Figure 3.4.

Hence, the language actions constitute the API for building models with the language.
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As shown in Figure 4.1, there is no direct link between any of the languages used in PML, i.e.,

the languages are independent. Figures 3.4 to 3.5 and Figures 4.2 to 4.5 show a collection of

six different independent language metamodel excerpts. For each language, a subset of the

offered language actions are also listed. Most of the examples in the rest of the thesis are

based on these languages.

4.1.2 Perspective Level

The perspective level defines perspectives, which reuse and group one or several languages

for a specific modelling purpose. In a perspective, a language plays one or more roles,

which collectively address the purpose of the perspective. A perspective also holds the

conceptual relationships between language elements of the involved languages, which

contains the consistency conditions as well as the navigation mechanisms that need to be

established and then maintained between the languages to foster their collaboration.

Consistency conditions discussed in this work are equivalency, equality, and multiplicity

constraints. The equivalency, equality, and multiplicity constraints are explained in more

detail below.

Definition 4.1.1 (Consistency). Consistency establishes a correspondence between a

pair of model elements based on equivalency, equality, or multiplicity constraints.

Definition 4.1.2 (Equivalency Constraint). An equivalency constraint dictates an

existence of a correspondence between a pair of model elements that refer to the same

entity or concept in the software under development.
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Definition 4.1.3 (Equality Constraint). An equality constraint dictates an existence

of a synchronized value between a pair of attributes, each from a pair of corresponding

model elements.

Definition 4.1.4 (Multiplicity Constraint). A multiplicity constraint dictates the

number of allowable instances of a language element that can correspond to an instance

of a related language element.

A single-language perspective [48] (P1 in Figure 4.1) reuses exactly one language and then

defines perspective actions that reuse the actions of the reused language. Such a perspective

allows a language to be tailored to a specific purpose.

Example 4.1.2. P1 could reuse a class diagram language (L1 with MM1) to allow a

modeller to build domain models.

In this case, the modeller does not need to be able to create operations. To this aim,

a domain modelling perspective can exclude the create operation language action from the

actions available to the modeller.

In addition, a single-language perspective provides a navigation mechanism that allows

a modeller to quickly view the structural relationships of the elements in a model. This

navigation mechanism is handy, especially when the modeller is working with a large number

of elements.

Example 4.1.3. In a class diagram model, a modeller can use the navigation feature to

list all the classes that are contained in the model and then navigate to his desired class.
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Locating such a class would be more challenging, without the navigation, because the

modeller would need to scan the whole model, which might be a daunting task, especially

with a very large model.

On the other hand, in a multi-language perspective [48], two or more languages are

combined for a given purpose. Hence, a multi-language perspective (P2 in Figure 4.1) defines

not only perspective actions, but also relationships between language elements, which include

the consistency conditions and the navigation mechanisms across language boundaries.

Example 4.1.4. P2 could be a multi-language perspective that combines a class diagram

language (L1 with MM1) and sequence diagram language (L2 with MM2), the purpose

of which is to build design models specifying both design structure and design behaviour.

In this case, a multiplicity constraint that should be enforced by the perspective could

be that a public operation in the class diagram may be mapped to a sequence diagram that

specifies the operation’s behaviour. To this aim, a Language Element Mapping (LEM) with

an Optional (0..1) cardinality would be specified in the perspective that keeps track of which

operation is associated with which sequence diagram. Similarly, an inter-language navigation

mapping can be specified in the perspective that establishes a link between mapped operation

and sequence diagram.

Similar to language actions, the perspective actions define the construction semantics for

models elaborated using the perspective. These perspective actions can:

1. re-expose language actions, i.e., offer (reuse) language actions as perspective actions

without any modification,

2. redefine language actions, i.e., augment existing language actions to suit the purpose

of the perspective, or
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3. define new perspective actions that perform tasks not specific to any of the involved

languages, e.g., actions that establish links between model elements from different

models.

4.1.3 Model Level

The model level shows models conforming to different languages and built according to a

perspective.

Example 4.1.5. In a multi-language perspective that combines a class diagram language

and sequence diagram language (see Figures 3.2 and 3.3), Figure 3.2 (M2 in Figure 4.1)

is a model built according to the perspective (P2) and an instance of the class diagram

language metamodel (Figure 3.4, i.e., MM1). Similarly, Figure 3.3 (M3) is a model

built according to the perspective (P2) and an instance of the sequence diagram language

metamodel (Figure 3.5, i.e., MM2).

Another important feature at this level are the mappings (i.e., links) which establish

correspondences between different model elements (i.e., model element mappings (MEM)).

Figure 4.1 shows a mapping between two model elements, E2 from M2, and E3 from M3

(e.g., a mapping between a class and a lifeline type, see Figure 3.2 and Figure 3.3). Creating

a mapping is a new perspective action, because this edit operation is not directly linked to

any action of the involved languages. Each mapping is typed by a LEM at the perspective

level, which specifies the consistency conditions, such as multiplicity constraints, to ensure

the consistent co-evolution of the mapped model elements.
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4.2 PML Workflow

The basic workflow of the PML process is shown in Figure 4.6. At the language level,

the language designer defines software languages, and focuses on their building blocks which

include the abstract syntax (encoded with a metamodel), the concrete syntax, and semantics,

which are encoded in language actions (at least the construction semantics).

At the perspective level, a perspective designer is responsible for the definition of a

perspective including the selection of languages as well as the specification of the language

element mappings (LEMs) and the perspective actions. To create a perspective, a

perspective designer, first, decides on the set of model types and languages that are needed

for a modelling purpose. Considering the Software Design Perspective, the model types are

the class diagram design model (e.g., Figure 3.2) and sequence diagram behavioural model

(e.g., Figure 3.3). Also, the set of languages are the class diagram language (Figure 3.4)

and the sequence diagram language (Figure 3.5). Then, the designer defines a perspective

to combine the different languages of those model types for a given purpose, in our case

software design. This definition includes the LEMs as shown in Figure 4.6 (for example, a

language element mapping between the Operation metaclass in the class diagram

metamodel and the SequenceDiagram metaclass in the sequence diagram language, which

ensures that each instance of the SequenceDiagram metaclass must be mapped to a

corresponding instance of the Operation metaclass). Furthermore, the perspective designer

specifies which language actions are to be re-exposed or redefined as perspective actions.

Then, the designer generates the implementation of the perspective including the specified

LEMs as well as the perspective actions.

At the modelling level, a modeller can use a perspective to create sets of models

conforming to one or multiple software languages within the purview of a perspective (see
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Figure 4.6: Definition and Execution of a Perspective

Figure 4.6). A modeller interacts with the model view, which triggers a perspective action,

which in turn calls the respective language action(s) to create, update, or delete the desired

model element(s) while ensuring model consistency. To maintain the consistencies between

different models, the perspective actions use the consistency conditions encoded in the

LEMs to ensure that the models are always consistent. Perspective actions may create or

delete MEMs (i.e., maintain MEMs) while ensuring that the perspective models are

consistent.

Example 4.2.1. In a Software Design Perspective, a perspective action may replace an

existing MEM between a lifeline type and a class with a new MEM between the lifeline

type and a different class.
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4.3 PML Metamodel

This section presents details of the PML metamodel, which provides the structure to

combine different languages and then specify consistency conditions between different

language elements, potentially across language boundaries. First, we discuss how to

combine different languages as well as their mappings. Second, we present the perspective

actions and explain how they maintain consistency across different language elements.

Third and finally, we discuss the advanced features of perspective actions, including action

effects and derived parameter.

4.3.1 Perspective, Language, and Mappings

To combine different languages for a modelling purpose, a perspective reuses different

languages, with each language accomplishing a specific role. Hence, the Perspective

metaclass contains a set of languages (LanguageMap) which establishes correspondences,

each between a language role (i.e., key in the LanguageMap metaclass) and the

corresponding Language. A Language can either be an existing Perspective or an

ExternalLanguage; hence, a perspective can reuse other perspectives as well as existing

languages. In this doctoral research work, we focus on how a perspective reuses/combines

existing languages (e.g., class diagram, use cases, and sequence diagram languages), while

the reuse of a perspective in another perspective needs to be addressed in future work. A

perspective may have a default language role which gives the corresponding model a higher

priority during navigation, i.e., in a multi-language perspective system [48, 49], a model

corresponding to the default language role is presented first. However, the user can

navigate to other models from the default model.
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Figure 4.7: PML Metamodel (excluding navigation mechanism)

As explained in Section 4.1, each language has its own standalone metamodel. In PML,

an external language is represented by the metaclass ExternalLanguage, which captures the

details of the language (nsURI, resourceFactory, adapterFactory, and fileExtension) which

are used to register the language in the software system. Since the prototype implementation

of our work focuses on EMF defined modelling languages, these language information details

are pertinent to EMF languages. nsURI represents the unique name space identifier for

the language metamodel package; resourceFactory designates the factory which is associated

with serialization as well as deserialization of the language models; adapterFactory refers

to the factory which provides the needed interfaces and notifications support for the model

views; and the fileExtension represents the file extension of each language model.

In order to be able to create language element mappings, the PML framework must be

made aware of the metaclasses in the language whose instances can be mapped. Therefore

each language (ExternalLanguage) contains a set of language elements
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(LanguageElement), that each references the corresponding actual language element (e.g.,

metaclass) in the language metamodel. Furthermore, each Language is composed of actions

(Action), which is either a representation of an external language action

(LanguageAction) or a perspective action (PerspectiveAction). The external language

action captures the construction semantics defined for the corresponding language elements

(see Figures 3.4 to 4.5 and Figures 4.2 to 4.5 for examples). To re-expose or redefine an

external language action, the perspective needs to know the qualified name (qualifiedName)

as well as the main name (methodName) of the corresponding language action. Also, the

LanguageAction encodes the language action type, i.e., create, update, or delete, and as

well, contains a set of parameters which are required to call the language action.

4.3.2 Perspective Actions

The perspective action (PerspectiveAction) manipulates the construction semantics of

each language (i.e., language actions) to enforce consistency conditions between different

models of the participating languages. The PerspectiveAction class represents a set of

new actions (i.e., actions that act across language boundaries) and can propagate existing

language actions, either modified or re-exposed. The PerspectiveAction class has three

subclasses: CreateMapping, ReexposedAction, and RedefinedAction.

CreateMapping instantiates a ModelElementMapping (i.e., MEM ) between two model

elements (fromElement and toElement) and is typed by a particular

LanguageElementMapping (i.e., LEM ). Hence, CreateMapping is independent of any

LanguageAction, because it does not affect the model of the respective languages.

ReexposedAction, on the other hand, simply exposes a language action that is supported

by the perspective without any change.
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RedefinedAction, however, augments the construction semantic of an action

(redefinedAction) to comply with the specifications of the perspective. Furthermore,

RedefinedAction reuses other language actions (reusedActions) to effect the desired

consistency conditions being specified in the concerned LEM. For example, a perspective

designer may specify that creating a class in a class diagram model optionally requires the

creation of an actor in a use case model and the establishment of a MEM between the two

model elements. The language action (create class) is then being redefined by the

perspective to ensure that the multiplicity constraints as well as the equivalency constraint

between the class and the actor are maintained, while reusing the create actor language

action.

To foster collaboration between different language elements, e.g., between Operation in

a class diagram language and SequenceDiagram in a sequence diagram language, a

Perspective groups a set of language element mappings (LanguageElementMapping),

which comprises a pair of mapping-ends (MappingEnd), i.e., from and to mapping-ends.

Each MappingEnd defines the multiplicity, i,e., Cardinality, of the corresponding language

element. We cover four categories of the cardinality: Compulsory (1..1), Optional (0..1),

Optional-Multiple (0..*), and Compulsory-Multiple (1..*). Furthermore, each MappingEnd

refers to the LanguageElement which references the actual language element in the

language metamodel. Hence, in each language element mapping, each respective

mapping-end specifies the minimum and maximum allowable instances of the language

element which can be mapped.

Consider a language element mapping between a Class metaclass (cardinality of 1)

from a class diagram language and a LifeLineType (cardinality of 0..*) from a sequence

diagram language. This implies that a single instance of the LifeLineType cannot be
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mapped to more than one instance of the Class metaclass. This multiplicity constraint

also dictates that a LifeLineType instance cannot exist without being mapped with a

Class instance. Two model elements (fromElement and toElement; e.g., a Class instance

and a LifeLineType instance) are required to create a MEM based on a given instance of

the LanguageElementMapping (i.e., the MEM type).

To maintain consistencies of properties between two mapped model elements, we

introduce the nested mapping, i.e., synchronized mapping, (LanguageElementMapping)

which synchronizes a pair of language element attributes, each from a different language

element; e.g., the name attribute in a Class metaclass from a class diagram language and

the name attribute in an Actor metaclass from a use case model language. If such a

synchronized mapping between the name attributes is nested within the mapping between

the Class and Actor, then our framework ensures an equality constraint (i.e., the values of

the respective attributes are always kept in sync). The flag, matchMaker, designates the

properties of language elements that are used to automatically determine model elements

that should be matched for mappings.

Example 4.3.1. When the matchMaker of the nested mapping between name attributes

is set, then this means that the class name can be used to determine a corresponding

actor, i.e., an actor with the same name, that should be mapped to the class.

In this work, we focus on synchronization of related attributes, instead of model element

matching that requires complex constraints. This attribute synchronization approach allows

perspective designers to capture constraints with our DSLs and then automatically generate

the implementation of the perspective. This generative approach frees a perspective designer

from the manual implementation, which is tedious and error-prone. In addition, we are yet
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to observe a need for such complex constraints across languages in a multi-language systems.

While nestedMappings are used to enforce equality constraints between properties, the

parent mapping of nesting mappings enforces equivalency constraints between mapped

model elements (e.g., a Class and an Actor are equivalent, because they refer to the same

entity). On the other hand, the cardinality in each MappingEnd ensures the multiplicity

constraints between mapped model elements, i.e., to how many model elements a given

model element can or must be mapped. The multiplicity, equivalency, and equality

constraints, i.e., the consistency conditions, are taken into account in the perspective

actions to proactively prevent inconsistencies between mapped model elements in different

models.

4.3.3 Action Effects

A simple language action involves only one language element with one or more language

element mappings. For instance, in a class diagram, use case diagram, sequence diagram

perspective, the redefined perspective action, create class, which is based on a LEM between

the Class metaclass and Actor metaclass, creates a class in the class diagram model for a

corresponding actor in the use case diagram using existing language actions. Furthermore,

the actor is mapped to the class. The Class metaclass may also have another LEM with

another metaclass, e.g., a LifeLineType in a sequence diagram, which is handled the same

way by the redefined perspective action, create class.

A complex language action, on the other hand, affects more than one language element

with one or more language element mappings, and, hence, requires a more systematic

approach to enforce the consistency conditions between different instances of the language

elements.
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Definition 4.3.1 (Language Action Effect). Language action effects refer to the

change in a state of a model element resulting from the execution of a language action.

Consider the redefined perspective action to create a sequence diagram and two LEMs

(one between the Operation metaclass and SequenceDiagram metaclass (LEM_OSD) and

another between the Class metaclass and LifeLineType metaclass (LEM_CLLT)) as

shown in Figure 4.8. If the language action to create a sequence diagram also creates a

lifeline and lifeline type automatically, the corresponding redefined language action (create

sequence diagram) affects both LEM_OSD and LEM_CLLT. However, these LEMs are

associated with different language elements. We group the effects of a language action into

two categories: (1) the primary effect, e.g., creating the actual sequence diagram; (2) the

secondary effects, e.g., creating the lifeline type and then the lifeline. The relevant

secondary effect, however, is only the creation of the lifeline type in this case, because a

LEM is defined for LifeLineType and a change is required for the mapped element (the

Class in this case). The metamodel needs to capture only the relevant secondary effects of

a language action, which we will refer to simply as secondary effects from now on.

A relevant secondary effect is based on existing LEMs in a given perspective. Hence,

a given language action can have a primary effect, a secondary effect, or no effect in a

perspective. If the create lifeline type action is directly called from the model view, then the

effect of creating the lifeline type is the primary effect. Similarly, if there is no LEM that

concerns the LifeLineType metaclass in a perspective, then the act of creating a lifeline type

has no effect in the perspective. Hence, each perspective defines the effects of the language

actions it augments. On the other hand, the language designer is mainly responsible for

defining languages, which conform to our assumptions, i.e., languages that have metamodels
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Figure 4.8: Examples of LEMs

and language actions. How the languages are used in each perspective is handled by the

perspective designer.

To effectively propagate both the primary and secondary effects of each redefined

language action (e.g., create sequence diagram), the LanguageAction metaclass encodes

the primary effect, while the ActionEffect represents the secondary effects. The primary

effect of each LanguageAction is inferred from the referenced languageElement and the

attribute actionType. The propagation of the primary effect typically depends on the

LEM(s) between the referenced languageElement of the LanguageAction in question and

other language elements across language boundaries.

To handle the secondary effects of the redefined language action, each ActionEffect

captures the necessary details required to propagate those changes across other models in the

multi-language system. The CreateEffect encodes the details required to propagate changes

due to creating new model element(s) as the secondary effect, e.g., the effect of creating a

lifeline type in a create sequence diagram action. Hence, the CreateEffect references the
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type (LanguageElement) which is used to retrieve the new model element(s). For both

DeleteEffect and UpdateEffect (i.e., ExistingElementEffect), the element to delete or

update, respectively, should be directly or indirectly contained in the parameters of the

redefined language action (see the reference from ExistingElementEffect to Parameter).

An ExistingElementEffect is currently constrained to being directly or indirectly contained

in a parameter, because we have not observed the need to support more elaborate schemes to

identify the affected element of such secondary effects. When the parameterEffect is element,

the parameter is the affected model element. Otherwise, the parameter is an identifier that

can be used to retrieve the actual affected model element. Furthermore, each UpdateEffect

references the affected attribute (i.e., the updated attribute of the model element) since

a given model element can have more than one synchronized attribute. In general, these

details are used to generate the perspective actions (with the help of a generic template)

which enforce the consistency conditions between the concerned model elements.

The LanguageAction metaclass (see Figure 4.7) is a representation of an externally

defined language action. PML uses the details of this representation, such as the

classQualifiedName and methodName attributes, to generate the implementation of each

perspective action that references the LanguageAction in question. Generally, the PML

metamodel targets languages defined with Ecore. However, the metamodel can be applied

to modelling languages based on other metamodelling environments with slight

modification (e.g., by changing referenced EObject to Object for Java-based modelling

languages).
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4.3.4 Derived Parameter

A redefined perspective action reuses one or more language actions which are used to

propagate the primary effects of the language action in question. Considering the Software

Design Perspective, the redefined perspective action createOperation may be required to

create a sequence diagram after creating an operation. Consequently, creating a sequence

diagram may require to create a corresponding lifeline with a lifeline type according to the

specifications of the perspective. In this case, the redefined perspective action

createOperation reuses the createSequenceDiagram and createLifeLineType language

actions. To propagate these effects of creating an operation, i.e., the creation of the

sequence diagram (primary effect) as well as the lifeline type (secondary effect), the

redefined perspective action needs to derive the parameters for each of the reused language

actions from the original language action (i.e., the redefined language action). This

parameter derivation is based on the fact that the parameters of the original action are

known when it is called to create the model element, e.g., operation.

To support the parameter derivation in the PML framework, each instance of the

LanguageAction metaclass is composed of a set of instances of the DerivedParameter

metaclass. The DerivedParameter concept defines how to map a single parameter from

the redefined language action parameter to the corresponding reused language action

parameter, as shown in Figure 4.7. When the parameter of the reused language action

cannot be derived from the redefined language action, then the definition of the

DerivedParameter can assign a literal value (or default value) to the reused language

action parameter in question. Also, the definiton can ask a user to provide the needed

parameter value as the case may be.
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4.3.5 Integration of the PML Metamodel with the CORE

Metamodel

This section summarizes how we integrate the PML metamodel with the CORE metamodel

and then explains how this integration addresses the problems of the old way of dealing

with languages in CORE outlined in Section 2.5.2. Since CORE metamodel, which is also

the metamodel of the TouchCORE tool, is used for the proof-of-concept implementation

of this doctoral research work, we briefly explain how we integrate PML with the CORE

architecture. Figure 4.9 shows the integration of the PML metamodel with the CORE

metamodel. The changes are represented in green font colour for easier identification, and

the newly introduced metaclasses are shown in orange.

Compared to Figure 2.7, we modify the name of the metaclass COREModel to

COREArtefact and now it is contained in COREConcern, instead of being the root class of

the language model. This change of name, as well as the containment association, reflects

the idea that the concept (COREArtefact) can now be any software artefact supported by

CORE, including CORE models and other related artefacts, e.g., perspectives and

implementations of external languages.

In addition, we introduce a reference variable in COREModelELement, which contains

an EObject reference to the model element in the corresponding language model. Some

model elements in a model play special roles in a COREConcern, e.g., model elements

that participate in the customization interface or usage interface (see Section 2.5.1). This

reference approach decouples the actual language model elements from the CORE model,

thanks to EMF, which supports cross references between different EMF models.

To support these changes in the CORE metamodel, we then adapt the PML metamodel

(metaclasses in orange background) to fit into the CORE metamodel. Now, the Language
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Figure 4.9: Adaptation of PML to CORE

metaclass (abstract), which is either a perspective or an external language (see Section 4.7)

is a subclass of COREArtefact. This integration allows CORE to register perspectives and

external languages as software artefacts. However, the implementation of perspectives and

the language definitions do not depend on CORE. To manipulate the language models in

CORE, we introduce COREExternalArtefact, which represents an external model within

the concern, and which contains a reference to the root model element of an external model

expressed in one of the supported CORE languages.

This current status of the CORE metamodel promotes separation of concerns because

the CORE metamodel and the metamodels of the languages that can be used to elaborate

realization models for a concern are completely independent. The PML framework handles

coordination, as well as consistency, between models expressed with these languages. In

addition, integrating PML with CORE addresses some of the problems with the old way of



4. PML Framework 77

dealing with languages in CORE (see Section 2.5.2) as follows:

• Independent Language Metamodels - Addresses P1: Keeping each language

metamodel separate from other language metamodels promotes the independent

evolution of the languages. PML manages their relationships that would have been

expressed in the single metamodel.

• CORE Contains Model Reuses and Extensions - Addresses P2: The

COREConcern now contains both COREModelReuse and COREModelExtension since

the adaptation of the PML framework with CORE decouples languages from the

CORE infrastructure. However, the powerful CORE reuse methodology (i.e.,

COREModelReuse and COREModelExtension) is maintained with the support of PML,

which provides an architecture that allows CORE to reference external language

model elements, e.g., to designate customization interfaces for models, or to specify

mappings for the weaver.

• Decouples CORE Metamodel from Language Metamodels - Addresses P3:

As shown in Figure 4.9, modifying the CORE metmaodel does not affect the external

language definitions, including the language metamodel and language actions. Hence,

both CORE and the external languages can evolve independently, which improves the

modularity of CORE and the external languages.

4.4 Summary

In this chapter, we present the general overview of the PML framework. First, we discuss

three main levels in the PML framework, which include language level, perspective level,
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and model level. The language level contains a collection of different languages that are

used in a software system. The perspective level defines the perspectives, which reuse and

group one or several languages for a given modelling purpose. At the perspective level, a

perspective designer specifies the language element mappings, which encompasses the

consistency constraints and the navigation mechanism to ensure that the concerned models

can evolve consistently while supporting the modeller to interact and navigate the model

elements. At the model level, a modeller can elaborate models that conform to the reused

languages and are built according to the perspective. In addition, the modeller can create

or delete MEMs, which are typed by the respective LEMs at the perspective level.

Furthermore, we show the workflow of the PML process. There are three main roles

in the PML workflow process: language designer, perspective designer, and modeller roles.

A language designer defines software languages and focuses on their building blocks, which

include the abstract syntax, the concrete syntax, and the semantics. The perspective designer

is responsible for the definition of a perspective, including the selection of languages as well

as the specification of the language element mappings (LEMs) and the perspective actions. A

modeller uses the perspective to create sets of models conforming to one or multiple software

languages within the purview of a perspective.

In addition, we present the PML metamodel, which describes all the structural features

of the framework and how it can be used to specify perspectives. And finally, we show

how we adapt the PML metamodel with the CORE metamodel, and then explain how the

integration addresses some of the CORE specific problems as well as other multi-language

modelling challenges.
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In the next chapter, we present the PML generic navigation mechanism, which allows

modellers to traverse their model elements both within and across model elements,

potentially across language boundaries.
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Chapter 5

PML Generic Language Navigation

As part of the PML framework, in this chapter, we present the PML generic navigation

mechanism that aims to support software modellers in navigating their models, potentially

across language boundaries. Modern model-based software engineering almost always

requires the use of models expressed with different languages to capture the many different

characteristics of complex systems. This set of models needs to be navigated to understand

the system under development.

This navigation problem manifests particularly in the case of perspectives, where a

perspective designer often combines different languages for a modelling purpose. In that

case it is important that the modeller can navigate through the set of models in the

context of the purpose of the perspective to fully understand the whole system.

Most of the existing software tools have navigation facilities that are tailored to the

existing languages in the respective tools [50, 51]. However, the addition (or removal) of

languages to such a tool, including domain-specific languages, requires a manual update of

the existing navigation infrastructure to support the new languages. Instead of manually
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updating the navigation facilities to support a new language in a tool or a new perspective

with a tailored need for navigable links, which is tedious and error-prone, we provide a generic

navigation mechanism. This generic navigation mechanism can be tailored to the needs of

a perspective. With this approach, a perspective designer can encode the specification of

navigable links during the specification of a perspective, and our framework then generates

the implementation of the navigation mechanism.

In this section, we first motivate our generic navigation facility with the help of four

examples representing typical and common navigation situations. For each example, the

relevant features of the generic navigation bar are elaborated. We further demonstrate the

filtering of language elements using our generic navigation mechanism and then present the

navigation metamodel.

5.1 Single-Model Navigation

The first situation concerns the navigation of a single model as in the case of a single-language

perspective, i.e., intra-model (and hence also intra-language) navigation. A complex model

may consist of many model elements, and it is hence desirable to have a concise and easy-

to-use way to find important model elements. In this section, we illustrate intra-model

navigation using a class diagram. In this case, e.g., a modeler may want to browse through

all classes in the model, find operations, or navigate to superclasses. Figure 5.1 depicts a

class diagram of a bank system and our navigation bar that makes this navigation possible.

Clicking the drop-down arrow under BankClassDiagram in the navigation bar pops up the

Classes of the model, listed under the tab Classes. Clicking on a class reveals the operations

and superclasses of the class in the navigation bar. In this example, we navigate from the
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class diagram to the class, PensionAccount, and then to its superclass, Account. Once a

class is selected, the background of the class is highlighted in yellow in the model and centred

on the screen, if needed, for easier identification.

To realize this navigation in our generic navigation bar, several navigation mappings have

to be specified on the class diagram metamodel shown in Figure 5.2. The first navigation

occurs from a class diagram to its classes (Classifier), the second from classes to operations

(Operation), and the third from classes to its superclasses (Classifier). Consequently,

the first required navigation mapping has the ClassDiagram metaclass as its source and the

classes reference as its target. The second navigation mapping has the Classifier as its

source and the operations reference as its target, while the third also has the Classifier

as its source and the superTypes reference as its target. A reference is used as the target

instead of a metaclass, because one metaclass may have several relationships with another

metaclass.

These three navigation mappings each consist of one hop. However, it may also be

necessary to skip intermediate elements and, e.g., define a navigation that goes from a

class diagram directly to all the operations defined in the diagram without listing all the

classes first. This requires the definition of multiple hops, e.g., the first hop is from the

ClassDiagram to the classes reference and the second continues on with the operations

reference. Therefore, a navigation mapping within a language has one from element (source)

and one or several ordered hops (targets).

The navigation mapping from Classifier to superTypes is different compared to the

other mappings, because it is useful to not only show the direct superclass of a class, but

instead the complete hierarchy of superclasses. Therefore, the closure flag is set for this

mapping, i.e., the modeller desires to recursively navigate or view a relationship in the model.
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Figure 5.1: Bank Class Diagram

Table 5.1 summarizes the intra-model (and hence by default intra-language) mappings for a

class diagram, where the value in the name column corresponds to the name used to name

the tab in the navigation bar.

from hop name closure
1 ClassDiagram classes Classes false
2 Classifier superTypes Superclasses true
3 Classifier operations Operations false

Table 5.1: Class Diagram Intra-language Mappings
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Figure 5.2: Class Diagram Metamodel (excerpt)

5.2 Multi-Model Navigation

The second situation concerns the navigation of multiple models as is the case in multi-

view modeling, i.e., inter-model navigation. The navigation may involve models of the same

type, i.e., intra-language navigation, or models from different languages, i.e., inter-language

navigation.

Example 5.2.1. An example of inter-model, intra-language navigation is a sequence

diagram that defines the behaviour of an operation, which sends messages to invoke

other operations. In this case, one may want to navigate from the invocation message in

the first sequence diagram to another sequence diagram showing the detailed behaviour

of the invoked operation.

This navigation can be handled the same way as single model navigation, with the from
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element being the message and one hop to its sequence diagram reference. In this case,

though, the reference points to a model element in a different model.

Example 5.2.2. An example for inter-model, inter-language navigation is a class

diagram and sequence diagram navigation, where one may want to navigate from an

operation declaration to a sequence diagram defining the behaviour of the operation as

shown in Figures 5.3 and 5.4.

In this situation, the two languages – the class diagram language and the sequence

diagram language – are used together in a specific way for a modelling purpose, i.e., class

diagram and sequence diagram perspective.

Figure 5.3: Operation to Sequence Diagram
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Figure 5.4: Sequence Diagram of Debit Operation

In the navigation bar, this connection is visualized also as the "right" arrow, which opens a

drop-down list similar to intra-model navigation. When debit(amount) under the Operations

tab is clicked, a list of other linked models pops up as shown in Figure 5.3. Upon clicking the

DebitSequenceDiagram tab, as highlighted in the figure with a red box, the linked sequence

diagram is opened as shown in Figure 5.4. Because this navigation involves a different type

of model, the navigation bar is extended to display the class diagram model name as well as

the sequence diagram model name to the right.

Navigating back to the class diagram can then simply be achieved by directly clicking on

the class diagram name in the navigation bar. Furthermore, the sequence diagram has a "left"

arrow which also opens a drop-down box to navigate any incoming inter-model navigation

mappings in the opposite direction.

Example 5.2.3. A workflow model may establish a mapping from one of its steps to

the same sequence diagram. The "left" arrow then allows navigating from the sequence

diagram to the class diagram or the workflow model.

We also need to take into account that it is always possible to directly open any model
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using a file browser to view it. Even if the above sequence diagram is opened directly with a

file browser (and not through navigation starting with a class diagram), the navigation bar

should still show that the sequence diagram depicts behaviour that is best understood in

the context of the class diagram or workflow model. However, which model should be shown

to the left of the sequence diagram name in the navigation bar? To determine this, one

incoming inter-model navigation mapping may be designated as the default one by setting

its default tag.

The main difference to the intra-language navigation mappings is the fact that there exists

no prior link between the metamodel of the class diagram language and the metamodel of

the sequence diagram language (assuming that these two metamodels have been developed

independently). Consequently, an inter-language mapping involves a from model element as

is the case for intra-language mappings and a to model element instead of reference hops.

5.3 Software Product Line Navigation

The third situation is encountered during Software Product Line (SPL) development, which

groups related model artifacts with commonalities and variabilities for a given family of

products [5]. In SPL, a feature designates a user-relevant functionality or system quality

that can be present or not in a product. A feature diagram describes the relationships

among features, i.e., the set of feature configurations that produce valid products.

Figure 5.5 depicts a metamodel for feature diagrams. A FeatureDiagram basically has

a list of Features with a parent/children relationship among them. Some of these features

may be optional, while others are mandatory. A requires relationship exists when the

selection of a particular feature demands the selection of another feature, while the excludes
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Figure 5.5: Feature Diagram Metamodel (excerpt)

Figure 5.6: Feature Diagram of a Bank System

relationship ensures that two features are not simultaneously present in a given product.

Figure 5.6 shows a small example feature model for the bank system. It depicts features

that involve different kinds of bank accounts. The features SavingsFeature, CheckingFeature,

and MortgageFeature are in an OR relationship, meaning that at least one of them must be

selected in order to create a valid configuration.

In model-driven SPLs, the structural and behavioural properties of features are described

with models linked to these features. In additive variability, each feature is realized by one or

several models, and to derive a product the realization models corresponding to the chosen

features are composed with each other. In negative variability, a so-called 150% model

describes the system with all features enabled. Each feature is linked to model elements

related to the feature, and to derive a product the model elements that are not linked to any
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chosen features are removed from the model.

While negative variability requires a highlighting feature similar to what is shown in

Figure 5.1, positive variability requires navigation among models. To illustrate feature-

based navigation in SPLs, we split the bank account class diagram from Figure 5.1 into four

smaller class diagrams to realize the account features of the feature diagram in Figure 5.6.

Following the principle of positive variability, the class diagrams can then be composed (i.e.,

merged) to produce a bank model with the desired features.

Clicking on the "right" arrow under BankFeatureDiagram first shows the features (similar

to classes in a class diagram) and then the models realizing a feature (similar to the sequence

diagrams of operations). Selecting a feature highlights the feature in the feature diagram,

while selecting a model of a feature takes the modeler to the model associated with this

feature as illustrated in Figure 5.7.

Figure 5.7 shows the class diagram that contains the common structure used by all

bank account features. At this time, though, the developer is currently working on the

class diagram in the context of the CheckingFeature. This focus is depicted in the

navigation bar by displaying the name of the CheckingFeature in the navigation bar instead

of the BankFeatureDiagram. The "right" arrow under the CheckingFeature allows

navigating to the models associated with the feature, i.e., the shared

AccountsClassDiagram and the CheckingClassDiagram (which shows the generalization of

the CheckingAccount class). The "left" arrow under the AccountClassDiagram shows,

when clicked, a drop-down list with all other features that also use this class diagram.

Example 5.3.1. When the "SavingsFeature" is clicked, the name "CheckingFeature" in

the navigation bar is changed to "SavingsFeature", i.e., a context switch, and clicking
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Figure 5.7: Account Class Diagram in CheckingFeature

the arrow under the "SavingsFeature" shows the models associated with it as shown in

Figure 5.8.

In terms of required navigation mappings, feature-based navigation does not introduce

any new kind of mapping. The mappings between a feature diagram and its features are

intra-model mappings already discussed in Section 5.1. The mappings from features to

class diagrams are inter-model, inter-language mappings already discussed in Section 5.2.

However, since a feature is treated differently than other model element in terms of how it is

displayed in the navigation bar, a fromIsNavigationKey flag needs to be set in its navigation

mapping. This flag ensures that the corresponding feature of a model is displayed in the

navigation bar.

Example 5.3.2. When a modeller navigates from a class diagram to a class, to an

operation, and then to a sequence diagram that defines the behaviour of the operation.

At this juncture, the from element is the operation and the to element is the sequence

diagram. However, the navigation bar shows the class diagram and sequence diagram,

because the modeller switched from the class diagram to the sequence diagram through a

sequence of navigation links (see Figure 5.4). Considering the navigation from
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Figure 5.8: Account Class Diagram in SavingsFeature

operation to sequence diagram, fromIsNavigationKey is not set, because the operation

is not required to be shown in the navigation bar (i.e., the operation is not the

navigation key). On the other hand, navigating from a feature diagram to a feature,

and then to a model linked with the feature, as shown in Figure 5.7, displays the feature

and the model in the navigation bar because the feature is the navigation key. Hence,

the flag fromIsNavigationKey is set in this case to realize this context switch when the

from element of a navigation link is required to be displayed in the navigation bar when

a modeller traverses the link.

5.4 Navigation of Reusable Artifacts

The fourth and final situation discussed here concerns the use of reusable artifacts during

software development. As an example, consider the sequence diagram for debit(amount)

in Figure 5.9 and assume that a reusable artifact for authentication exists with a sequence

diagram as shown in Figure 5.10. When the debit(amount) sequence diagram reuses the

Authentication sequence diagram, the body of the reusing sequence diagram replaces the

box labeled with * in the reused sequence diagram. Consequently, the authentication check
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Figure 5.9: Reuse of Authentication

is performed before the body of the reusing sequence diagram. To specify this reuse, a

composition specification needs to be provided that links the debit(amount) sequence

diagram with the Authentication sequence diagram as defined in the metamodel for reuse

specifications (see Figure 5.11). The reuse metamodel captures the links between reused

elements and reusing elements with a mapping between reused and reusing elements,

respectively. In our example, a mapping is established between the instance of the

SequenceDiagram metaclass representing the debit sequence diagram to the

SequenceDiagram metaclass instance representing the authentication sequence diagram.

Once such a mapping in the reuse specification is established, it should be possible to

navigate this composition link from a sequence diagram to another sequence diagram in a

different reusable artifact with the help of the navigation bar.

To support this navigation, an "R" is displayed under the DebitSequenceDiagram in Figure

5.9. Clicking on it shows all reuses of this model (or individual model elements of the model).
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Figure 5.10: Authentication Reuse Hierarchy

CompositionSpecification Mapping

EClass

0..* mappings

1 reusing 1 reused

Figure 5.11: Reuse Metamodel (excerpt)
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Once a reuse is selected, the modeler is taken to the reusable artifact. This involves a context

switch, which results in the navigation bar showing the reused sequence diagram with its

default parent (i.e., its class diagram) and the default parent of the class diagram (i.e., its

feature). As shown in Figure 5.10, an "R" at the left of the navigation bar indicates the reuse

hierarchy that is currently explored (e.g., the reusable artifact Authentication and the Bank

that is reusing it). Clicking on an element in the reuse hierarchy results in direct navigation

to that level.

In terms of navigation mappings, an intra-language mapping needs to be established

(e.g., from the reusing sequence diagram to the reused sequence diagram). This navigation

mapping requires a from element. This can be a model (or model element) (e.g., a sequence

diagram in our example). Furthermore, two hops are required, which are references. The

first hop is identified by the reusing reference and the second hop is identified by the reused

reference. Note, however, that the reusing reference needs to be traversed in the reverse

direction, because the reference is at the side of the source element of the hop (i.e., the

reusing sequence diagram). Since reuse links are treated differently than other navigation

links (due to the required context switch from the reusing artifact to the reused artifact),

the reuse flag needs to be set for this navigation mapping.

5.5 Filtering of Model Elements

A complex model diagram may have a large number of model elements, which may be

overwhelming to show in the navigation bar. To streamline navigation, there is in this case a

need for filtering of model elements to allow modelers to focus on specific elements or groups

of elements at a given time. In this section, we demonstrate how our generic navigation
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approach can handle filtering of model elements using the running example. A modeler may

want to find all classes in a system and show only the public operations of each class. We

demonstrate this mechanism with the class diagram shown in Figure 5.12, which depicts a

bank system where the Account class has two public methods and one private method.

Similar to intra-language navigation in Section 5.1, clicking the drop-down arrow under

BankClassDiagram in the navigation bar pops up the Classes of the model. Clicking on

a class reveals the operations and superclasses of the class in the navigation bar. In this

example, we navigate from the class diagram to the class, Account, and then only to its

public operations, credit(amount) and debit(amount).

To realize this filtering mechanism in our generic navigation bar, a filtering condition

has to be encoded for the class diagram metamodel shown in Figure 5.2. We filter based on

an attribute value of the relevant model element. For example, the filtering condition could

be abstract classes, public classes, protected operations, or private operations to name a few.

In Figure 5.12, the result based on filtering of public operations is shown. To achieve this,

the filtering condition specifies the attribute of the metaclass that the filter should consider

(i.e., the visibility attribute of the Class metaclass), the comparison value (i.e., the

enumeration literal public), and a comparison operator (i.e., EqualTo). Table 5.2

demonstrates the filtering with two example conditions, each specified in a row.

To allow a modeler to dynamically configure which navigation mappings and associated

filters the navigation bar uses to populate its content, it is possible to activate and deactivate

navigation mappings at runtime through preference settings.
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Figure 5.12: Bank Class Diagram

condition operator element operand value
1 public operation EqualTo Operation visibility public
2 abstract class EqualTo Class abstract true

Table 5.2: Class Diagram Intra-language Filtering
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5.6 Navigation Metamodel

This section describes our navigation metamodel that the designer of a language or modelling

tool can use to define navigation mappings that configure our generic navigation bar. We

elaborate our metamodel in the context of the Eclipse Metamodelling Framework (EMF), in

which all metamodels are expressed using the metametamodelling language Ecore. As such,

any model element that is part of a language metamodel and could be selected as the source

of a navigation link is encoded as an instance of the class EClass.

Greater
GreaterEqualTo
EqualTo
NotEqualTo
LessEqualTo
Less

<<enumeration>>
ComparisonOperator

- default : EBoolean 
- fromIsNavigationKey : EBoolean

InterLanguageMapping

EClass

name : String
closure : EBoolean
reuse : EBoolean

IntraLanguageMapping

Perspective
active : EBoolean

Mapping0..* mappings

{ordered}

EReference Object

operator : ComparisonOperator 

Filter0..* filters

1 to1 from

1 from

1..* hops{ordered}

EAttribute
1 operand1 value

Navigation Metaclasses

Language Definitions

Figure 5.13: Navigation Metamodel

As explained with the examples above, for each Perspective there are two broad

categories of navigation, namely intra-language and inter-language navigation, which are

indicated by two metaclasses (IntraLanguageMapping and InterLanguageMapping)1, see

Figure 5.13. In intra-language, we navigate from a model or one of its model elements

(represented as EClass) to one or several elements of the same language by following
1Recall that a perspective represents a purpose for using models expressed in one or several modelling

languages during software development.
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references. In language metamodels defined with Ecore, these references are instances of

EReference. Since navigation might involve traversing several references, every

IntraLanguageMapping therefore defines an ordered collection of EReference called hops.

Example 5.6.1. When navigating from a class diagram to an operation of a class, the

from reference would refer to the EClass ClassDiagram, the first hop would refer to the

EReference classes, and the second hop to the EReference operations.

Furthermore, each intra-language mapping has three attributes: name, closure, and

reuse. The string attribute name allows the tool designer to specify the text that should

appear in the navigation bar for this navigation. The boolean closure attribute can be set

for any IntraLanguageMapping where the from EClass is identical to the model element

referred to by the last hop. In this case, the navigation bar will traverse this mapping

recursively and display all reached target model elements. In our example, closure is set

when navigating from a class to its superclasses in order to display the entire superclass

hierarchy in the navigation bar. The boolean reuse identifies an intra-language navigation

mapping that requires a context switch.

In inter-language mappings, the navigation involves models of different software

languages, e.g., navigating from an operation definition in a class diagram to the sequence

diagram specifying the behaviour of the operation. Hence, for InterLanguageMappings,

the from and to are always instances of EClass, and each mapping is a 1-to-1 relationship.

For InterLanguageMapping, the name of the to element is displayed in the navigation

bar. Finally, the default attribute specifies whether the source of an inter-language

navigation mapping identifies the default parent of a target model, and the

fromIsNavigationKey attribute identifies key model elements (e.g., a feature) that need to
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be shown in the navigation bar instead of their model name.

As part of the PML metamodel, the InterlanguageMapping metaclass corresponds to

the LanguageElementMapping metaclass (see Figure 4.7). For each instance of the

InterLanguageMapping, there must be a corresponding instance of the

LanguageElementMapping, where one of its two mapping-ends references a language

element, which is also being referenced (i.e., either from or to) by the instance of the

InterLanguageMapping. On the other hand, perspectives can have LEMs without

corresponding inter-language mappings since all LEMs may not be required to be

navigated. For example, a nested LEM does not require a navigation mapping since the

nested mapping is mainly used to enforce consistency between model elements that

participate in a MEM, which is typed by the parent LEM.

To support filtering of language elements, we attach a Filter to the Mapping

metaclass, which is the superclass of the InterLanguageMapping and

IntraLanguageMapping navigation mappings. This provides support for filtering within a

model and between models potentially across language boundaries. Filtering is always

applied on the to elements in the case of inter-language filtering, or to the elements

designated by the EClass referred to by the last hop in the case of intra-language filtering.

The operator attribute specifies the comparison operator for the filtering using pre-defined

enumeration values as shown in Figure 5.13. A filter then compares the attribute value of

the operand EAttribute with the value Object designated by the filter. E.g., the filtering

conditions public operations and abstract classes from Table 5.2 use the operator EqualTo,

the operands visibility of Operation and abstract of Class, and the values public and

true, respectively. When several filter conditions are specified for a mapping, they are

combined by an implicit logical AND.
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To promote the generation of the navigation implementation, we favour the filtering

approach against other notable model query languages (e.g., OCL). With the filtering

approach, a perspective designer basically provides attribute values of the concerned model

elements, and our framework then handles the implementation of the navigation

mechanism. On the other hand, OCL can be used, too, to establish more complex filtering

conditions, which can be used to generate the navigation implementation. However, the

perspective designer is then required to face the full complexity of OCL, instead of our

tailored generation approach.

Last but not least, the active attribute in the metaclass Mapping allows the navigation

bar to be customized at runtime. For example, a modeller can toggle the active attribute to

false if at some point he does not wish the operations of classes to show up in the navigation

bar.

An implementation of our navigation bar ensures that the navigation information in the

navigation bar is always up-to-date by registering as a listener to all model elements that are

instances of EClasses involved in navigation mappings. Whenever a model is changed, the

navigation bar is notified and the navigation links are adjusted according to the occurrences

of the mappings in the model.

5.7 Summary

Model-driven engineering is a conceptual development framework where models of the system

under development are created and manipulated using different formalisms at different levels

of abstraction. Separation of concerns is further promoted when working with multi-view

modelling, software product lines, and domain-specific modelling languages. While this
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separation into many interrelated models has many benefits, it also makes it harder for the

developer to determine the relevant context when looking at a model, and to navigate from

one model to related ones.

In this chapter, we present a metamodel that covers two categories of navigation, intra-

language and inter-language navigation. The metamodel allows the designer of a modelling

tool to generically capture the relevant navigation links between model elements in a set of

models manipulated for a given purpose. It is done by establishing inter-language and intra-

language mappings designating the relevant metaclasses and references in the metamodels

of the involved languages. We illustrated the effectiveness of our navigation metamodel

by examples that involved feature models, class diagrams, and sequence diagrams, but our

approach can be applied to any modelling language that is defined by a metamodel.

We furthermore show how this generic information can be used to visualize the current

context of a model with a navigation bar, and how to populate the navigation bar with

navigation links. When a navigation link is clicked, we either highlight the chosen model

element if that element is located in the current model, or we navigate to the model that

contains the model element and update the navigation bar to reflect the new context.

This chapter is based on the following publications:

1. Ali, H., Mussbacher, G., and Kienzle, J. (2019) Generic Navigation of Model-Based

Development Artefacts. 11th Workshop on Modelling in Software Engineering (MiSE

2019), Montreal, Canada, May 2019. IEEE CS, 35-38. DOI: 10.1109/MiSE.2019.00013.

2. Ali, H., Mussbacher, G., and Kienzle, J. (2019) Generic Graphical Navigation for

Modelling Tools. 11th System Analysis and Modeling Conference (SAM 2019), Munich,

Germany, September 2019. Fonseca i Casas, P., Sancho, M.R., and Sherratt, E. (Eds.),
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Chapter 6

Mappings and Generic Templates in

Multi-Language Perspectives

This chapter provides more in-depth details about LEMs which were introduced in

Section 4.3.1 and then presents the generic templates which are used to generate the

implementation of the perspective actions that maintain the consistency conditions in

LEMs.

6.1 Mappings

The specification of the LEMs and then the implementation of the perspective actions, as

well as the navigation mechanism, are non-trivial tasks. Hence, we have defined two

domain-specific languages (DSLs) which aim to assist a perspective designer specify the

perspective actions as well as the LEMs between different language elements. Each

relationship (i.e., LanguageElementMapping, see Figure 4.7) comprises two mapping-ends

(i.e., MappingEnd metaclass). The mapping-end refers to one side of the mapping which
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references the corresponding language element and defines its multiplicity constraint (i.e.,

the number of allowable instances of each corresponding language element). In this work,

we cover all four different multiplicity possibilities, which constrain the number of possible

MEMs for a set of models: (1) Optional (i.e., 0..1 multiplicity), (2) Compulsory (i.e., 1

multiplicity), (3) Optional-Multiple (i.e., 0..* multiplicity), and (4) Compulsory-Multiple

(i.e., 1..* multiplicity). Since each mapping-end can have one out of four possible

multiplicities, there are 16 possible combinations for one LEM.

Furthermore, the designer needs to ensure that these consistency conditions are

maintained at the model level by the perspective actions. The designer can manually

implement the perspective actions to enforce the consistency conditions, but this is

error-prone and tedious. Hence, we generate the perspective actions with the help of

generic templates. As a result, the perspective designer only needs to focus on specifying

the relationships between different language elements, and is not bothered with the

detailed implementation of the perspective actions. In PML, mappings (MEMs) are not

ordered, and hence our algorithm deals with them in some arbitrary order. Since the

language element mappings are all binary and involve different pairs of metaclasses, the

order of execution of our algorithm that deals with the primary effect has no influence on

the end result.

However, when dealing with a chain of mappings (i.e., the primary element is mapped

to other elements, which are mapped to yet other elements), there are two choices: traverse

these mappings in a depth-first manner or breadth-first manner. Both ways would lead to

consistent results, but the results would not necessarily be identical. In our implementation

we chose a depth-first traversal, because it allows us to avoid the complexities that are

associated with keeping track of all the traversed model elements to effectively propagate
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the chained changes when the element is selected during a subsequent iteration.

6.2 Generic Templates

In this section, we present the templates that maintain equivalency, equality, and multiplicity

constraints in a generic way in situations where the constraints are based on mappings

between model elements in the different models. A template covers a set of bidirectional

relationships, each between two language elements, and dictates a sequence of actions (which

include calls to respective language actions) to maintain model consistency. Considering

the LEM_OSD as shown in Figure 4.8, a corresponding template dictates the steps of a

redefined perspective action (create sequence diagram) that whenever a sequence diagram is

created, an existing operation must be mapped (i.e., MEM ) with the new sequence diagram

or the actual language action, createOperation, is called to create a new operation and then

establish a mapping (i.e., MEM ) with the new sequence diagram. We have considered n-ary

relationships but decided to not support them at this point, because we have not seen a need

and standard language engineering environments such as MOF also do not support n-ary

relationships for language elements. Our approach establishes the conceptual relationship

with a LEM, and then uses the corresponding template to generate the redefined perspective

actions. In a perspective, a language element can have multiple LEMs potentially across

several language boundaries.

At each mapping-end, templates are applied to the corresponding create, update, and

delete language actions. Hence, there are six templates required for a mapping-end

combination, and potentially 96 templates to cover all 16 mappings, as shown in Table 6.1.

An update template traverses existing MEMs to update mapped model elements, regardless
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of how many model elements are mapped. Thus, the update template is not shown in

Table 6.1, because the same template can be applied to each mapping combination

regardless of its multiplicities. This reduces the number of potential templates to 65.

Similarly, an evaluation of all mappings for delete and create further reduces the number to

16. We include a description of the generic steps of the update, delete (D1-D3), and create

(C1-C12) templates in Appendix A. In the next sub-section, we present the generic

template workflow.

# LEM Mapping from mapping-end to mapping-end
Multiplicity Create Delete Multiplicity Create Delete

1 Compulsory Optional 1 C1 D1 0..1 C10 D2
2 Compulsory Compulsory 1 C2 D1 1 C2 D1
3 Compulsory Optional-Multiple 1 C3 D1 0..* C6 D2
4 Compulsory Compulsory-Multiple 1 C4 D1 1..* C6 D3
5 Optional Optional 0..1 C9 D2 0..1 C9 D2
6 Optional Compulsory 0..1 C10 D2 1 C1 D1
7 Optional Optional-Multiple 0..1 C11 D2 0..* C5 D2
8 Optional Compulsory-Multiple 0..1 C12 D2 1..* C5 D3
9 Compulsory-Multiple Optional 1..* C5 D3 0..1 C12 D2

10 Compulsory-Multiple Compulsory 1..* C6 D3 1 C4 D1
11 Compulsory-Multiple Optional-Multiple 1..* C8 D3 0..* C7 D2
12 Compulsory-Multiple Compulsory-Multiple 1..* C8 D3 1..* C8 D3
13 Optional-Multiple Optional 0..* C5 D2 0..1 C11 D2
14 Optional-Multiple Compulsory 0..* C6 D2 1 C3 D1
15 Optional-Multiple Optional-Multiple 0..* C7 D2 0..* C7 D2
16 Optional-Multiple Compulsory-Multiple 0..* C7 D2 1..* C8 D3

Table 6.1: Mapping Templates

6.3 Generic Template Workflow

This section presents an overview of the generic template workflow as shown in Figure 6.1.

The basic workflow of the template starts with a request to create (Redefined Create

Action), delete (Redefined Delete Action), or update (Redefined Update Action) a

model element, e.g., create an operation in a class diagram model. When an edit request

is made from a model editor, PML intercepts the language action call and then directs

it to the corresponding redefined perspective action, which ensures that the consistency

conditions, as specified in the corresponding LEMs, are maintained. In Figure 6.1, the blocks
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Figure 6.1: Redefined Perspective Action Workflow
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Redefined Create Action, Redefined Delete Action, and Redefined Update Action

represent a redefined perspective action (RedefinedAction) which references a language

action (LanguageAction) with a create, delete, and update action type, respectively, see

Figure 4.7.

For each redefined perspective action, PML follows three steps to ensure that the rules

of the perspective in the multi-language system are maintained. The first step is to call

the requested language action, i.e., original language action, to create, delete, or update the

model element.

Example 6.3.1. An example of an original language action (i.e., externally defined

language action) is the createOperation action in the class diagram language.

The externally defined language action is represented by the language action

(LanguageAction) in the PML metamodel (Figure 4.7). Since the execution of this

language action may require to create, delete, or update other model elements (as specified

in the corresponding LEM ), the second step calls the corresponding perspective recursive

action, i.e., Create Other Elements, Delete Other Elements, or Update Other

Elements, as shown in Figure 6.1. Create Other Elements, Delete Other Elements,

and Update Other Elements represent the implementation of the set reusedActions (see

Figure 4.7) which refer to language actions (LanguageAction) with a create, delete, and

update action type, respectively. The role of each perspective recursive action is to

propagate the primary effects of the language action.

Example 6.3.2. Creating an operation in a class diagram may require to create a

sequence diagram in a sequence diagram language and to recursively create a
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responsibility in a use case map language due to the creation of the sequence diagram.

On the other hand, the execution of the original language action can have secondary

ripple effects. For instance, when the create sequence diagram action is called to create a

sequence diagram in a sequence diagram language, the execution of this language action can

create a new lifeline type in the sequence diagram. This secondary ripple effect needs to

be handled by the perspective when the type(s) of the affected model element(s) participate

in another LEM (s), e.g., the LifeLineType metaclass is mapped with the Class metaclass

from a class diagram language. The causal effect of this complex language action is handled

by the block Handle Secondary Effects, i.e., the secondaryEffects of the LanguageAction

metaclass in Figure 4.7. Hence, the last step calls Handle Secondary Effects which takes

care of the changes due to secondary effects in a similar way as the primary ones were taken

care of to ensure that all the consistency conditions of the perspectives are maintained. An

excerpt of the Java code generated for the redefinedCreateClass action is shown in Figure 6.2,

while the pseudocode (generic template) for a redefined perspective action is contained in

Appendix A . Line 39 calls the original language action to create the class, while line 46 calls

the corresponding perspective recursive action. Note that the language action does not have

secondary effects, hence, there is no code related to secondary effects.

Create Other Elements first checks if the new element (i.e., primary element)

requires to be mapped (MEM ) with another model element (i.e., other element). If yes, the

template evaluates if this mapping can be established with an existing model element or

proactively creates a new element, with Create Facade Action, and then establishes the

MEM. Whenever a new mapping is established, the templates recursively checks if the

recently mapped other element requires another MEM. The recursion continues until the

recently mapped other element requires no MEM. An excerpt of the Java code generated 1

1The template used to generate this Java code is contained in Appendix A.
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Figure 6.2: Redefined Create Class Action

Figure 6.3: Facade Action for Create Class Action
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for the Create Facade Action (createOtherElementsForClass) is shown in Figure 6.3.

Lines 33, 39, 45, and 51 compare the corresponding language element whose instance needs

to be created with all the possible language elements in the LEMs. Considering the Actor

language element in the use case language, the facade action handles the parameter

mappings in lines 34-35 and then calls the original language action to create the actor at

line 36 .

Similarly, Delete Other Elements ensures that when a model element (i.e., primary

element) is deleted, then other mapped element may be required to be deleted. This is the

case especially when the other model element has a Compulsory multiplicity relationship

with the deleted element; hence, the other mapped element is not allowed to exist when the

primary element has been deleted. The Delete Other Elements block first checks if the

execution of the delete language action requires to delete another model element. If yes, the

template retrieves the other element that needs to be deleted and then deletes the element,

with Delete Facade Action. Furthermore, the template recursively checks if the recently

executed delete action of the other mapped element requires to delete another element. The

recursion, also, continues until the recently executed delete action does not require another

model element to be deleted.

Update Other Elements is the same as the Delete Other Elements, except that

the retrieved model element needs to be updated, instead of deleted. Moreover, the redefined

update action does not depend on the multiplicities of both mapping-ends; instead, it uses the

synchronized attributes of the model elements in question (i.e., nested mapping) to propagate

the update changes. In general, the redefined create and delete perspective actions ensure

that the multiplicity constraints are maintained between equivalent model elements, while

the redefined update perspective action enforces the equality constraints.
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As presented above, each of the Create Other Elements, Delete Other Elements,

or Update Other Elements blocks calls the Create Facade Action, Delete Facade

Action, or Update Facade Action to create, delete, or update a model element,

respectively. The primary aim of each facade action is to call different language actions to

create, delete, or update model elements. As shown in Figure 6.1, each facade action first

handles the derivation of parameters from the initial parameters (i.e., the parameters used

to call the redefined language action) to the parameters of each corresponding language

action. Then, the Create Facade Action, Delete Facade Action, or Update Facade

Action calls the corresponding language action to create, delete, or update, respectively,

the other model element. Similar to the redefined perspective action, each facade action

calls a language action which may have secondary effect(s). Hence, each facade action calls

Handle Secondary Effects to propagate the potential changes accordingly.

Each time Handle Secondary Effects is called, it first checks if the recently executed

language action created new secondary elements, other than the primary element in

question. For example, creating a sequence diagram can automatically create a lifeline

type; hence, the new element due to the secondary effect (in this case) is the lifeline type.

Note that the workflow only checks for new elements which affect a LEM in the

perspective. Furthermore, the workflow iterates over all the secondary elements, and then

successively calls Create Facade Other. Similar to other facade actions, Create Facade

Other derives the corresponding parameters of Create Other Elements from the initial

parameters, and finally, calls Create Other Elements to propagate the create changes

accordingly.

Further, Handle Secondary Effects iterates over all the deleted elements due to

secondary effects. For each deleted element, the workflow calls the Delete Facade Action
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which derives the parameters of the Delete Other Elements from the initial parameters,

and then calls the Delete Other Elements to propagate the delete changes accordingly.

Similarly, Handle Secondary Effects calls Update Facade Other for each updated

element due to secondary effects. Again, Update Facade Other derives the

corresponding parameters of the Update Other Elements from the initial parameters,

and then calls the Update Other Elements to propagate the update changes accordingly.

6.4 Template Workflow Example

In this example, we demonstrate the workflow of a redefined create operation language

action in a class diagram language. This example is based on the following LEMs as shown

in Figure 4.8: (1) Operation metaclass from the class diagram language (Compulsory

mapping-end) and Responsibility metaclass from the use case map language (Optional

mapping-end) - LEM_OR; (2) Operation metaclass from the class diagram language

(Compulsory mapping-end) and SequenceDiagram metaclass from the sequence diagram

language (Optional mapping-end) - LEM_OSD; and (3) Class metaclass from the class

diagram language (Compulsory mapping-end) and LifeLineType metaclass from the

sequence diagram language (Optional-Multiple mapping-end) - LEM_CLLT. Each of the

LEMs has a nested mapping (i.e., synchronized mapping) between the name attributes of

the metaclasses. The concrete workflow for this example is shown in Figure 6.4.

When the language action (create operation) is called from the editor of the class

diagram language, PML intercepts the call and then redirects it to the redefined

perspective action (createOperation), i.e., Redefined Create Action, as shown in

Figure 6.4. createOperation, first, calls the create operation language action to create the
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Figure 6.4: Workflow Example of a Redefined Create Perspective Action
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operation. Note that, by definition, the parameters of createOperation can be directly used

to call the create operation language action. Since the Operation metaclass participates in

both LEM_OR and LEM_OSD, createOperation further calls

createOtherElementsForOperation to Create Other Elements and also to establish

MEMs with the new operation, respectively. However, createOperation does not call

Handle Secondary Effects. While updating a class is a secondary effect of creating an

operation and a LEM with a lifeline type exists for the class (see Figure 4.8), the effect is

not a relevant effect. It is not a relevant effect, because the kind of update performed for

the class is adding the operation to the list of operations of the class. However, this update

does not require to create, update, or delete the other model element based on the LEM,

i.e., the lifeline type. Hence, a secondary effect is not defined for the create operation

language action.

createOtherElementsForOperation ensures that the consistency conditions of both

LEM_OR and LEM_OSD are maintained. Assuming that the user has requested the

system to create the corresponding elements, i.e., responsibility and sequence diagram, then

createOtherElementsForOperation calls Create Facade Action to create the responsibility

(first iteration, i.e., LEM_OR) and then the sequence diagram (second iteration, i.e.,

LEM_OSD). In the first iteration, responsibilityType is obtained from LEM_OR, and in

the second iteration sequenceDiagramType is obtained from LEM_OSD. Furthermore,

createOtherElementsForOperation creates MEMs between newOperation and

newResponsibility (first iteration) and then between newOperation and

newSsequenceDiagram (second iteration).

To create the responsibility, createFacadeAction calls the createResponsibility language

action (first condition), i.e., when the languageElement is the Responsibility metaclass. The
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parameters of the language action can be derived from the parameters of the facade action,

provided that the perspective designer provides the definitions on how to derive the

parameters in a perspective specification (see DerivedParameter in Figure 4.7). In this

method call, the operationOwner parameter is used to determine the required

responsibilityOwner. On the other hand, the name attribute is directly used to call the

createResponsibility language action. Since creating a responsibility does not require to

create, update, or delete another model element (see Figure 4.8), the facade action

(createFacadeAction) does not call Handle Secondary Effects during the first condition.

Similarly, considering the second condition, i.e., when the languageElement is the

SequenceDiagram metaclass, createFacadeAction calls the createSequenceDiagram language

action to create the sequence diagram, while the parameters lifeLineTypeName and name

of the language action can be derived from the parameters of the facade action. Unlike the

first condition, createFacadeAction handles a secondary effect during the second condition,

because creating a sequence diagram automatically creates a lifeline type which needs to be

mapped with a class in a class diagram language (LEM_CLLT ). Hence,

createFacadeAction calls handleSecondaryEffects to propagate the secondary effect of

creating a sequence diagram.

handleSecondaryEffects iterates through all secondaryEffects – in this case there is only

one – and first retrieves the affected language element, i.e., LifeLineType metaclass (see

PML metamodel in Figure 4.7). The affectedLanguageElement is used to retrieve the new

lifeline type instance by computing the difference between the list of existing lifeline types

before and after creating the new sequence diagram. Finally, handleSecondaryEffects calls

createFacadeOther, i.e., Create Facade Other. In createFacadeOther, the parameters are

derived based on the definition in the perspective specification and
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createOtherElementsForLifeLineType is called to propagate the effects of creating a lifeline

type. Finally, createOtherElementsForLifeLineType retrieves the existing class (i.e., the

container of the new operation) and then establishes a MEM between the class and the

new lifeline type. createOtherElementsForLifeLineType is not shown in Figure 6.4 since it

has the same basic structure as createOtherElementsForOperation, i.e., Create Other

Elements. Appendix A presents the details of the generic templates used by the workflow,

which include update templates, delete templates, and create templates.

6.5 Summary

This chapter presents more in-depth details about LEMs and then generic templates,

which are used to generate the implementation of the perspective actions that enforce the

consistency conditions in LEMs. Each LEM comprises two mapping-ends, whereas each

mapping-end refers to one side of the mapping which references the corresponding language

element and defines its multiplicity constraint. We cover all four different multiplicity

possibilities, which restrict the number of possible MEMs for a set of models. We apply

generic templates at each mapping-end to generate the corresponding perspective actions

that enforce the consistency conditions in LEM.

Furthermore, we cover one generic update template, three generic delete templates, and

twelve (12) generic create templates. In addition, we show a detailed generic template

workflow and then demonstrate the workflow of a redefined create operation language action

in a class diagram language.

This chapter is based on the following publications:

1. Ali, H., Mussbacher, G., and Kienzle, J. (2020) Action-Driven Consistency for
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Modular Multi-Language Systems with Perspectives. 12th System Analysis and

Modeling Conference (SAM 2020), Montreal, Canada, October 2020. ACM, 95-104

DOI: 10.1145/3419804.3420270. (Acceptance rate: 62)

2. Schiedermeier, M., Li, B., Languay, R., Freitag, G., Wu, Q., Kienzle, J., Ali, H.,

Gauthier, I., and Mussbacher, G. (2021) Multi-Language Support in TouchCORE.

2021 ACM/IEEE International Conference on Model Driven Engineering Languages

and Systems Companion (MODELS 2021), pp. 625-629, DOI: 10.1109/MODELS-

C53483.2021.00096

3. Ali, H., Mussbacher, G., and Kienzle, J. (2021) Perspectives to Promote Modularity,

Reusability, and Consistency in Multi-Language Systems. Innovations in Systems and

Software Engineering, Special issue on Software and Systems Reuse, DOI:

10.1007/s11334-021-00425-3

Following the in-depth presentation of more details about LEMs in the chapter, the next

chapter presents some advanced features of a perspective.
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Chapter 7

Advanced Perspectives

In this chapter, we present advanced features of a perspective, i.e., set roles and conditional

LEMs. A set role exists in a perspective when there can be zero to many language models

that play the same role. Here, we discuss perspectives with set role and then explain how

we improve the PML framework to support this new feature. Furthermore, we present

conditional LEM, i.e., a LEM that encompasses conditional equivalency. A conditional

equivalency applies the equivalence to a subset of model elements, which dictates the state

(active or inactive) of a LEM, provided that there is at least one model for each

corresponding language role. A perspective applies the constraints of active LEMs and

ignores the constraints of inactive LEMs. The conditional LEMs allow perspective

designers to specify perspectives with more tailored MEMs, instead of mapping all elements

that are instances of the referenced language elements, which can create an invalid MEM.
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7.1 An Overview of Perspectives with Set Role and

Conditional LEM s

This section provides an overview of a perspective with a set role, as well as the conditional

LEMs. Figure 7.1 shows a perspective (EM_OM perspective) that combines the

Environment Model language and the Operation Model language for a modelling purpose.

In addition, the perspective comprises three different language element mappings:

LEM_MTOS, LEM_MTM, and LEM_ATA. For a set of models built according to the

perspective, there is always one instance of the Environment Model role and zero to many

instances of the Operation Model role. Hence, the EM_OM perspective is a perspective

with a set role, because it comprises a language role (Operation Model role), which can

have zero to many instances. The following sections present some key challenges with

perspectives with set role as well as the conditional LEMs.

7.1.1 Perspectives with Set Roles

So far, we have assumed that each language role in a perspective always has exactly one

instance model that plays the role. However, this 1-to-1 relationship between a language role

and its instances is often not the case, especially in a perspective that comprises behavioural

languages, e.g., sequence diagram and operation model languages, to name a few. A class

diagram and sequence diagram perspective always has exactly one class diagram role model

and many sequence diagram role models, i.e., another example of a perspective with a set

role. This 1-to-many relationship between a language role and its instances raises further

challenges, including zero model and multi-model problems. A zero model simply means that

a language role in a perspective does not yet have any model. On the other hand, multi-model
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Figure 7.1: Examples of LEMs in a Perspective with Set Role

indicates that a language role has more than one model in a perspective. Furthermore, there

is an ambiguity of the mapping-end multiplicity (e.g., 1..* for Message in Figure 7.1) due to

set roles. In the following, we provide more details of these problems and then present how

we address the challenges.

Zero Model

PML manipulates model elements to ensure consistency between models built according to

a perspective. However, it makes no sense to try and interpret or enforce constraints that

involve set roles when the role has zero instances, i.e., there is no model corresponding to

the role (i.e., zero model). In our previous EM_OM perspective example this is potentially

the case: there is always one instance of the Environment Model role (one model), but the

Operation Model role might not have any instances at a given point in time (zero model).

It becomes therefore unrealistic to enforce the consistency constraints specified in the LEMs

(LEM_MTOS, LEM_MTM, and LEM_ATA). This situation requires perspectives to mark

the corresponding LEM as inactive, i.e., a LEM that references a language role without
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a model. For instance, the EM_OM perspective marks LEM_MTOS, LEM_MTM, and

LEM_ATA as inactive when there is zero instance of the Operation Model role.

Multi-Model

On the other hand, when a language role has more than one model, e.g., two Operation

Model role instances for the EM_OM perspective, it becomes ambiguous as to which model

should be proactively used for a specific MEM. For example, in the case where the Operation

Model set role has two models, creating a message type in an Environment Model requires to

create at least one corresponding message in one of the two Operation Model role instances,

i.e., LEM_MTM multiplicity constraints (1..*), and then establish a MEM between the two

elements. To prevent an inconsistency that might result from this action, the perspective

can randomly select one of the two models and then create the corresponding message in the

model. However, this random selection may not suit the need of the modeller.

Insufficient Mapping-End Multiplicity

Furthermore, since a perspective with a set role can have many instances of the language

role, the existing mapping-end multiplicity is not sufficient to handle the multiplicity

constraint conditions. The mapping-end multiplicities in Figure 7.1 indicate the minimum

and maximum allowable instances of the referenced language element that can be mapped

to a corresponding model element. For example, a message type can only be mapped with

one of the operation schemas across all models in the Operation Model role. Similarly, an

actor type can be mapped with 1 or many actors in all models in the Operation Model role.

Note that once an actor type is mapped with one of the actors in an instance of the

Operation Model role, the multiplicity constraint is satisfied.
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However, some multiplicity conditions may require the perspective to map a single

element from a language role model to a corresponding single element in each of the

corresponding language role models. For example, given that an instance of a MessageType

is required to be mapped with exactly one instance of the Message in each Operation

Model role instance, then the multiplicity (1..*) is not sufficient to handle the constraint

condition. Hence, the perspective requires to track multiplicity constraints between a set of

language role models as well as between a pair of models, each from a mapping-end in a

LEM.

7.1.2 Perspective with Conditional LEMs

Another special case in this EM_OM perspective is that a language element

(MessageType) from the Environment Model role is mapped to two different language

elements (OperationSchema and Message) from the Operation Model role. Often, a

language element is not expected to be mapped with different language elements from

another language role unless the language element in question has a distinguishing

property (or attribute) that dictates the condition for the corresponding MEMs.

Hence, a LEM can now depend on the properties of the referenced language elements

whose values dictate the model elements that participate in a particular MEM, i.e.,

conditional LEMs. For each conditional LEM, the perspective filters the potential model

elements, i.e., all instances of the referenced language role elements, to determine the

model elements that qualify to participate in a MEM based on the conditions of the LEM

in question.
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Example 7.1.1. LEM_MTOS and LEM_MTM LEMs are encoded with constraints

which dictate that only input message type is required to be mapped with an operation

schema, while an output message type is required to be mapped with messages in the

Operation Model role (see Figure 7.1).

Hence, each LEM may be active or inactive depending on whether an instance of the

MessageType is an input message type or an output message type. With an input message

type, LEM_MTOS is active while LEM_MTM is inactive. Conversely, with an output

MessageType, LEM_MTM is active, while LEM_MTOS is inactive. Note that a LEM can

have more than one constraint. Hence, such a LEM is active for a given model element if

all the constraints are true.

In the following sections, we explain how we address the challenges outlined above in our

PML implementation with MDE technologies, including OCL.

7.2 Set Role and Conditional LEM Features

To support perspectives with a set role and conditional LEM, we improve the PML framework

with the new features shown in Figure 7.2, which is an improved version of Figure 7.1

(EM_OM perspective).

7.2.1 Language Role Multiplicity

First, we introduce a language role multiplicity, i.e., a multiplicity constraint that dictates

the allowable number of language role models. For a set of models built according to the

perspective, there is exactly one instance of the Environment Model role and zero to many
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instances of the Operation Model role (set role), as indicated by the blue background text

at the top of each modelling language. In this chapter, we focus on set role since language

role with 1 multiplicity is the same as the language roles presented so far in this thesis.

7.2.2 Model Multiplicity

Second, we incorporate a mapping-end multiplicity between a pair of models, each from a

participating language role in the perspective, i.e., model multiplicity. The model multiplicity

can dictate, for example, that an instance of the MessageType (Environment Model role)

is required to be mapped with exactly one instance of the Message in each model of the

Operation Model role instances, i.e., 1-to-1 relationship between a pair of models.

To this end, we improve the PML framework with a new type of mapping-end multiplicity

(model multiplicity). An improved version of EM_OM perspective (Figure 7.1) is shown in

Figure 7.2, which shows the representations of both the regular mapping-end multiplicity

and the model mapping-end multiplicity.

7.2.3 Conditional LEM

Third and finally, we can now encode a LEM with constraints, which dictate allowable

model elements that can participate in a MEM. As shown in Figure 7.2, LEM_MTOS LEM

comprises a conditional equivalency that only allows an input message type to be mapped

with a corresponding operation schema in the Operation Model role. Similarly, LEM_MTM

LEM only allows an output message type to be mapped with the corresponding messages in

the Operation Model role.

This section introduces the three new features to support perspectives with a set role, as

well as conditional LEM. The first feature, language role multiplicity, restrains the
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Figure 7.2: Examples of LEMs with Set Role and Conditional LEMs

allowable number of language role models. The second feature, model multiplicity,

establishes multiplicity constraints between a pair of models, each from a language role,

while the third feature, conditional LEM, outlines conditions that qualify model elements

that can participate in a MEM based on the LEM in question. The following section

provides more details on how we use OCL to implement the new features.

7.3 Implementations with OCL

This section presents more details about the set role and conditional equivalency with

illustrations on how we implement the new features in PML framework.
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7.3.1 Set Role Constraints

To address the challenges discussed earlier in this chapter, i.e., zero model, multi-model,

and insufficient mapping-end multiplicity challenges, we now support perspectives with set

role constraints. The set role constraints are constraints that implement language role

multiplicity and model multiplicity. The implementation of the constraints is generic;

hence, each set role constraint can be applied to all perspectives. Hence, regardless of the

language role multiplicities and model multiplicities specified by a perspective designer for

a specific perspective, the generic set role constraints can enforce the designer’s

specifications.

Set Role Constraints that Address Zero Model Challenge

When a language role does not have a model in a perspective, it becomes non-deterministic

on how to maintain the consistencies of the LEMs that reference language elements that are

contained in the language role. In this case, the set role constraints can be leveraged to set

the concerned LEM inactive until the language role in question has at least one model. In

this section, we demonstrate how we use OCL to implement set role constraints that address

the zero model.

Taking into account the perspective shown in Figure 7.2, when a modeller is elaborating

an instance of the Environment Model role without a corresponding instance of the

Operation Model role, set role constraints can be used to mark LEM_MTOS, LEM_MTM,

and LEM_ATA inactive. Setting these LEMs inactive is essential because there is no

corresponding instance of the Operation Model role to compare with the instance of the

Environment Model role.

A snippet of a set role constraint with OCL, which evaluates whether there is a language



7. Advanced Perspectives 129

role model, is shown in Figure 7.3. The OCL constraint (modelsExist) at line 13 checks that

the language roles for both the current mapping-end (self ) and the corresponding mapping-

end (i.e., otherMappingEnd) have at least one model in a given perspective. Hence, other

constraints can be applied if this condition is true (line 17), i.e., activating the effects of

other LEMs constraints.

The set role constraint in Figure 7.3 uses two OCL helper functions (lines 3 - 11). The

function getOtherMappingEnd (lines 3 - 4) retrieves the corresponding mapping-end of the

mapping-end in question (self ). On the other hand, the modelExist(mappingEnd) function

(lines 6 - 11) checks if there is at least one model for the language role that contains the

referenced language element from the mappingEnd. This function uses another helper

function at line 7 (rootModelExist).

Recall that a perspective combines different languages for a modelling purpose. Hence,

some of the OCL constraints written for the PML framework (e.g., modelExist) are expected

to traverse the metamodels of the reused languages. However, to our knowledge, OCL does

not support constraints that traverse instances of metaclasses from different metamodels.

This OCL limitation implies that the function (rootModelExist), at line 7, cannot be defined

within the set role constraints.

The rootModelExist function determines (with the role name) whether a root model of

the concerned language role exists, and this operation requires access to the root metaclass of

each language to perform its task. This function, however, cannot be implemented within the

set role constraints because the language metamodels are separate from the PML metamodel.

To address this challenge, we define Java utility functions that are contained in the

PML metamodel. These functions call the constraints of each language role in question

and then return the result to the set role constraints. The set role constraints workflow is
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Figure 7.3: Invariant Constraint (root model exist)

Figure 7.4: Set Role Constraints Workflow
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shown in Figure 7.4. Set role constraints communicate with the Java functions, while the

Java functions communicate with the corresponding individual language role constraints to

evaluate the expected constraints. An example of a Java utility function is rootModelExist

(line 7), which is defined in the Perspective metaclass.

With this definition of the set role constraint, LEMs that reference language roles with

zero model are inactive. Hence, freeing the modeller from an unrealistic consistency

management situation.

Set Role Constraint that Address Multi-Model Challenge

With a multi-model challenge, a perspective can proactively propagate the effects of a

language action by randomly selecting one of the corresponding language role models.

However, this random selection may not represent the desire of the modeller. To this effect,

we proactively propagate the effects of a language action to corresponding language roles,

provided that each corresponding language role has exactly one model. This approach

implies that some constraint conditions in LEMs may be broken, e.g., creating a message

type in the Environment Model role (see Figure 7.2) does not create any corresponding

message if there is more than one Operation Model role instances in the perspective.

To accommodate the existence of broken consistencies in a perspective with a set role,

we apply the set role constraints to display warning messages to users when some LEMs

consistency rules are broken. With this warning approach, the user is required, for example,

to create a message in his desired Operation Model role instance, which then automatically

links with the existing message type and the broken consistency is resolved. Furthermore, this

warning approach allows modellers to focus on a model while PML maintains consistencies

in the background, especially with corresponding regular language roles, i.e., language roles
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that have exactly one model in a perspective.

A set role constraint that checks if an element is missing a compulsory mapping is

shown in Figure 7.5. Line 2 represents the helper functions that are depicted in Figure 7.3.

This snippet also demonstrates how we apply the set role constraint (modelsExist, see

Figure 7.3) at line 7 in Figure 7.5. Lines 9 and 10 check if the corresponding mapping-end

cardinality is compulsory (1) or compulsory-multiple (1..*), i.e., those mapping-ends that

require to create the corresponding model element. At line 10, the constraint ensures that

an instance of the referenced language element exists(elementExist) and it requires a MEM

(missingMapping). Assuming that the current LEM is the LEM_MTOS in Figure 7.1,

missingMapping returns true for each input message type, but returns false for each output

message type. Hence, no warning is displayed for an output message even when the

corresponding mapping-end multiplicity is compulsory. missingMapping is a Java utility

function defined in the MappingEnd metaclass. However, if the current LEM is the

LEM_MTM in Figure 7.1 and missingMapping returns true for an output message type,

then a warning is displayed for the output message.

With this warning approach, perspectives can proactively propagate effects of a language

action to the corresponding language role models. However, the perspective displays a

warning message for each element that does not have a required MEM, which arises because

the corresponding language plays a set role in the perspective.

7.3.2 PML with Model Multiplicity

In this section, we explain how we improve the PML framework to support the model

multiplicity. We make two changes in the existing PML framework to support the model

multiplicity as presented below.
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Figure 7.5: Set Role Constraints (missing compulsory mapping)

First, we incorporate an additional attribute (individualModelCardinality) in the

MappingEnd metaclass, see PML metamodel in Figure 4.7. This attribute allows a

perspective designer to specify both the regular multiplicity (cardinality) as well as the

model multiplicity (individualModelCardinality).

Second, we analyze the possible combinations between the regular multiplicity and the

model multiplicity for each mapping-end, see Table 7.1. We realize that three cases need

additional checks compared to the implementation of the regular multiplicity with the generic

templates, see Chapters 4 and 6. The table shows all the valid combinations of regular

multiplicity and model multiplicity per mapping-end. Note that a model multiplicity is

required to be a subset of the corresponding regular multiplicity, e.g., the combination of

regular multiplicity 0..1 and model multiplicity 1..* is an invalid mapping-end.

The three special cases that require additional checks for model multiplicity are shown

in rows 3, 4, and 6, in Table 7.1. For each case, we still apply the regular multiplicity, as

detailed in Chapter 6, but now require to ensure that the corresponding model multiplicity
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Regular Multiplicity Model Multiplicity Effective Multiplicity
1 0..1 0..1 regular
2 1 0..1 regular
3 0..* 0..1 regular but model max 1
4 1..* 0..1 regular but model max 1
5 1 1 regular
6 1..* 1 regular but model max 1
7 0..* 0..* regular
8 1..* 0..* regular
9 1..* 1..* regular

Table 7.1: Regular Multiplicity and Model Multiplicity

constraint is satisfied. The model multiplicity of each special case requires a maximum of 1,

i.e., model max 1 (see Table 7.1). On the other hand, rows 1 - 2, 5, and 7 - 9 do not require

additional checks for the model multiplicity, because satisfying the regular multiplicity also

(always) satisfies the model multiplicity.

Hence, to support model multiplicity in the PML framework, we apply the same

algorithm for the regular multiplicity, but perform additional checks for the model

multiplicity constraints when we have a mapping-end with the multiplicity combination

that corresponds to row 3, 4, or 6.

7.3.3 Conditional Equivalency

Conditional equivalency constraints dictate model elements that are qualified to participate

in a MEM based on a particular LEM, i.e., a model element can be used to establish a

MEM with another element if the element in question satisfies the conditional equivalency

constraints of the concerned LEM.
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Example 7.3.1. A MessageType with INPUT as the value of the messageDirection

attribute is required to be mapped with a corresponding OperationSchema in the

Operation Model role. On the other hand, an OUTPUT MessageType is required to be

mapped with at least one Message in the Operation Model role. Hence, a MessageType

can be qualified to be mapped with an OperationSchema or a Message in the Operation

Model role depending on the value of its messageDirection attribute.

Unlike the generic set role constraints, the conditional equivalency constraints are defined

for a given LEM in a perspective. Hence, they are defined together with each perspective and

are encapsulated within the PML LEM, see Figure 7.2, as well as the PML architecture in

Figure 4.1. Since we use a generative approach to implement perspectives, implementation

of these constraints is also generated. We use our domain-specific language to specify the

LEMs as well as the conditional equivalency constraints, and then our code generator is

applied to generate the implementation of the mappings and the conditional equivalency

constraints. In the following, we illustrate how we apply conditional equivalency constraints

to implement conditional LEMs.

Conditional LEMs

To address the conditional LEMs challenge, we use constraints to dictate the desired LEM

for a specific MEM, which is inferred from the properties of the participating model elements.

To demonstrate the constraint, we consider LEM_MTOS and LEM_MTM LEMs (see

Figure 7.2), an input message type is required to be mapped with an operation schema,

while an output message type is required to be mapped with at least one message in the

Operation Model role instances. This specification implies that an output message type may
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exist and is not mapped with an operation schema, although MessageType has a compulsory

mapping-end (i.e., 1 multiplicity) with the OperationSchema. Conceptually, this violates

the multiplicity constraints; however, an output message type does not need to be mapped

with an operation schema.

To accommodate the two conflicting scenarios, we supplement PML LEM with

constraints to determine whether a LEM is active or inactive for a given model element.

Since we generate the constraint together with the implementation of the host LEM, the

constraint dictates when the effects of a language action can be propagated based on the

attribute values of the concerned model elements. An implementation of LEM_MTOS and

LEM_MTM LEMS ensures that creating an input message type creates a corresponding

operation schema (and then establishes a MEM between the two new elements) and does

not create any corresponding message in the Operation Model role. On the other hand, the

implementation ensures that the corresponding perspective action creates a message in the

Operation Model role instance after creating an output message type and then creates a

MEM between the two new elements.

Note that the input or output message type is deduced from the Message attribute

(messageDirection) in the Environment Model (see Figure 4.2). Creating a message also

creates a message type as a secondary effect. Hence, the messageDirection value can be used

to determine if the new message type is an input or output message type.

While the constraints dictate which LEM to use to create a MEM between a pair of model

elements, the set role constraints issue a warning when an element is missing a compulsory

mapping.
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Example 7.3.2. Set role constraints display a warning message when an output message

type is not mapped to an operation schema because MessageType has a corresponding

compulsory mapping-end with the OperationSchema.

Since this warning is not needed, we introduce a Java function that calls the generated

implementation of the conditional equivalency constraint in question and then returns the

result to the corresponding set role constraint. In this case, the result informs the set role

constraint that a MEM is not required between an output message type and an operation

schema. Hence, the set role constraints do not display a warning message for a model

element when the concerned model elements do not satisfy the constraints, see Figure 7.5

and Section 7.3.1. The missingMapping function at line 11 is a Java function which calls the

implementation of the respective constraints to ascertain whether the concerned element is

truly missing a MEM.

7.4 Summary

This chapter presents advanced features of a perspective, which include set roles and

conditional LEMs. A language plays a role in a perspective which can be either a regular

role or set role. A regular language role indicates that there is exactly one instance of the

language role exists in the perspective. However, a set language role designates that zero to

many instances of the language role can exist in the perspective. On the other hand,

conditional LEM comprises conditional equivalency constraint. A conditional equivalency

applies the equivalence to a subset of model elements, which dictates the state (active or

inactive) of a LEM, provided that at least one model exists for each corresponding
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language role.

These new features introduce more challenges in the PML framework, which include

zero model, multi-model, and insufficient mapping-end multiplicity challenges, as well as

filtering of model elements that qualify for a particular MEM. We address these challenges

by introducing language role multiplicity, model multiplicity, and conditional LEM. The

language role multiplicity dictates the allowable number of language role models. Model

multiplicity establishes multiplicity constraints between a pair of models, each from a

language role. The conditional LEM ensures that the right model elements are selected for

a particular MEM

We implement the new features with OCL, which often communicates with a Java

source code to retrieve an invariant result from a language role specific constraint.

Conditional equivalency constraints are encapsulated within a LEM and a perspective

designer can leverage our DSL to specify the constraints in a respective LEM. Furthermore,

the designer can generate the implementation of the constraints, which frees the designer

from the tedious and error-prone implementations.

In the following chapter, we present our DSLs and code generators. The DSLs allow

perspective designers to register languages and then specify perspectives based on the

registered languages. In addition, the code generators generate the implementation of both

language registrations and perspective specifications.



139

Chapter 8

DSL for Languages and Perspectives

In this chapter, we describe the two PML DSLs, which allow perspective designers to register

languages and then specify perspectives based on the registered languages. In addition, we

present the code generator for each DSL, which is used to generate the implementation of

the language registration as well as the complete implementation of each perspective. In

the following, we provide a brief background of Xtext and Xtend, which are the language

frameworks for the development of both the DSLs and the code generators, respectively.

Furthermore, we explain how we use the two language frameworks to develop our DSL and

code generators.

8.1 Xtext

Xtext is an open source Eclipse framework for the development of textual programming

languages and domain-specific languages (DSLs) [52]. Xtext covers major aspects of a

language infrastructure, which include, but are not limited to, the parser, interpreter, code

markers, error description, syntax highlighting, and outline view. Xtext is a powerful tool
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that allows users to quickly define the grammar for their languages and automatically

generate editors for such languages. Similar to metamodelling, language grammar

represents the abstract syntax of the textual language. In the following subsections, we

briefly describe three Xtext grammar rules that are relevant to this doctoral research work:

terminal, type, and enumeration rules.

8.1.1 Terminal Rules

Terminal rule returns an atomic value, e.g., a string or an integer value. The terminal rule

is also referred to as token rules or lexer rules, and, by convention, its names are written in

uppercase after the keyword terminal. Xtext has some predefined terminal rules including ID,

STRING, INT, and URI. Examples of terminal rule specifications (ID, INT, and STRING)

are shown in Figure 8.1, which depend on the regular expressions to realize its values. We do

not define new terminal rules in this work; however, we use most of the predefined terminal

rules to implement our DSLs.

8.1.2 Type Rules

Similar to metamodelling, the type rule defines the concepts, as well as their relationships,

that are required to implement a DSL. The type rule follows the object-oriented paradigm,

and Xtext uses the type rule to derive metamodels as well as the modelling editors for the

DSL under development. Each type rule generates a corresponding class in the metamodel

of the language, and the name of the type rule corresponds to the name of the class. In

addition, a type rule can contain keywords, terminals, assignments (i.e., compositions), and

cross references (i.e., associations).

A type rule has two main categories of operators: abstract syntax operator and concrete
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Figure 8.1: Examples of Xtext Terminal Rules

syntax operator. The abstract syntax dictates the multiplicity relationship between two type

rules, which are += and =. The += operator allows zero, one, or many elements while =

allows zero or one element. On the other hand, concrete syntax operators include * (zero to

many), + (one to many), ? (zero or one), and a white space (one element).

Figure 8.2 shows a sample grammar (excerpt) for the implementation of the class

diagram language (see Figure 3.4). Lines 8 to 16 define a type rule (Class). A Class can

contain several attributes (line 11) and associations (line 13), as well as reference another

Class as a superType (line 9). From line 18 to 28, the grammar contains two additional

type rules (Attribute and AssociationEnd) and one enumeration rule DataType (see the

subsection below). The Attribute, AssociationEnd, and DataType rules are referenced from

the Class type rule. The generated metamodel (abstract syntax) from the gammar is

shown in Figure 8.3

8.1.3 Enumeration Rules

The enumeration rule allows language designers to derive enumeration literals from string

values. The Enumeration rule is commonly used to create data types with specific values.

Figure 8.2 (lines 22-24) shows an example of an enumeration rule.
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Figure 8.2: Class Diagram Sample Grammar (excerpt)

Figure 8.3: Generated Class Diagram Metamodel
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8.2 Xtend

Xtend is a statically typed textual programming language that compiles to the Java source

code [53]. Similar to Java, Xtend supports several programming features, including the

template-based code generator, extension methods, lambda expressions, generics,

annotations, and operator overloading. In this work, we focus on the template-based code

generator, which we use to generate the implementation of language registrations and

perspectives (including perspective actions).

Figure 8.4 shows an Xtend class, which contains the template specification for the

definition of a code generator for the class diagram language (see Figure 8.2). The Xtend

class contains the doGenerate method (similar to Java main method), which creates the file

that will contain the generated source code (lines 9 - 13)

Xtend template is enclosed with triple quotes (see Figure 8.4) and supports string

concatenation with white space. Dynamic values are injected with interpolation expression,

which is expressed with guillemets tags (see Figure 8.4). Expressions in an Xtend template

can span multiple lines and an expression can be contained in another expression. String

characters that are contained in a template but not in an expression are generated without

any modification.

An annotated template-based code generator for the class diagram language (see

Figure 8.2) is shown in Figure 8.4. The code generator generates a Java file for each class

defined in the class diagram language (lines 9 - 13). Lines 17 and 19 contain some string

literals, as well as variables such as the class name. Lines 20 to 22 iterate over all the

contained attributes of the class in question, and then generate an equivalent Java

definition for each attribute (line 21). Similarly, lines 23 to 25 iterate over all the

association ends from the current class to another referenced class, and then generate an



8. DSL for Languages and Perspectives 144

Figure 8.4: Class Diagram Sample Code Generator

Figure 8.5: Class Diagram Sample Model
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equivalent Java definition for each association end (line 24).

With the definition of both grammar and code generator for the class diagram

language, a software modeller can now use the language to define textual class diagram

models and then generate code from the instance model. The class diagram language

editor (see Figure 8.5) encompasses the textual model (instance of the DSL, see

Figure 8.2), the generated code (instance of the code generator, see Figure 8.4, and the

outline view. In the next section, we present our DSLs and code generators, which are

developed with Xtext and Xtend frameworks, respectively.

8.3 Definition of PML DSLs and the Code Generators

In this section, we explain how we apply the Xtext language workbench to define the

grammar for both language registration and perspective DSLs. In addition, we present the

code generators for both DSLs.

8.3.1 DSL Definition for Language Registration

To register languages in a tool that supports PML, e.g., TouchCORE, we use the Xtext

workbench, as detailed above, to develop the language registration DSL. The DSL allows

perspective designers to register languages so that their perspectives can reuse the registered

languages. Details of the DSL grammar are shown in Figure 8.6

The DSL grammar captures the details required to register languages in a

multi-language software tool. To register a language, the perspective designer is required to

instantiate part of the PML metamodel (Figure 4.7), which contains the desired concepts,

as well as their attributes for each language, i.e., ExternalLanguage and LanguageElement
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Figure 8.6: Grammar Definition for Language Registration

metaclasses and their attributes. Of course, the perspective designer can implement a

language registration manually; however, this approach is tedious and error-prone. To this

effect, the DSL aims to streamline this registration process with a textual programming

language that allows a perspective designer to provide language details which can be used

to generate the implementation of the language registration. As shown in Figure 8.6, we

define a type rule LanguageModel (lines 5 - 7), which contains a set of languages, since the

DSL can be used to capture several languages. For each language type rule (lines 9 - 24),

we define the attributes that are required to instantiate the concerned part of the PML

metamodel and generate the implementation of a language registration (lines 10 - 18). As

shown in the PML metamodel, an external language (or language here) contains a set of

language elements; this containment relationship is defined in the DSL grammar in lines 20

- 22. Furthermore, the referenced language element, i.e., a type rule, from the Language
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type rule, is defined in lines 26 - 30. And finally, a nested language element type rule is

defined in lines 32 - 34.

We believe that creating instances of this DSL grammar to register languages with an

automated code generator reduces the effort required to implement language registration

manually. Additionally, a code generator approach often produces more error-free

implementations compared to the manual approach. Several instances of the language

registration grammar are contained in Appendix C.

8.3.2 Code Generator for Language Registration

To generate the implementation of a language registration, i.e., to instantiate part of the

PML metamodel, which is related to the external languages, we use the Xtend framework

to define the code generator, which is based on the grammar of the language registration

DSL (see Figure 8.6). Hence, the code generator, i.e., a text-to-text model transformation,

accepts an instance of the DSL (source model) to produce a Java source code (target model)

for each language registration. The Java source code implements the language registration,

and the complete details of the code generator are available in the PML GitHub repository.

8.3.3 DSL Definition for Perspectives

The perspective DSL allows a perspective designer to reuse registered languages, specify

LEMs between different language elements from different languages, and generate the

corresponding perspective actions for each LEM. A perspective designer can manually

implement the perspectives, but it is prone to errors and a daunting task. On the other

hand, a perspective designer can leverage our DSL, which comes with a code generator, to

create perspectives. The code generator generates the complete implementation of a

https://github.com/Hyacinth-Ali/perspective-domain-specific-language
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perspective, including the redefined perspective actions. This DSL and the generative

approach aim to reduce perspective implementation efforts and potentially eliminate errors

in the generated code.

An excerpt of the grammar for the development of the perspective DSL, using the Xtext

language workbench, is shown in Figure 8.7. This grammar aims to capture all the details

to instantiate the perspective metamodel, which can be used to implement the perspective,

including the perspective actions that manage consistencies between model elements. An

instance of this DSL grammar can contain zero to many perspectives. Hence, we define a

type rule PerspectiveModel, which contains a set of perspectives that can be integrated into

a tool (lines 7 - 9).

Furthermore, we define the Perspective type rule (lines 11 - 43), which allows a

perspective designer to capture the details required to implement a perspective, including

reusing registered languages. To distinguish between different perspectives in a tool, we

require a perspective designer to specify a unique name for each perspective (line 13). A

perspective combines different languages, each playing one or more roles in the perspective.

A perspective designer can dedicate one of the language roles as a default role, e.g., the

class diagram being the default role for the class diagram and sequence diagram

perspective. A default role gives the corresponding model a higher priority during

navigation, i.e., in a multi-language perspective system, a model corresponding to the

default language role is presented first. However, the user can navigate to other models

from the default model. Hence, we define a default language role at line 14, which allows a

perspective designer to specify a default language role for his perspectives. This default role

name must be the same as one of the language roles; otherwise, the default role is invalid.

A perspective, as well as language models, often changes when a user is developing
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Figure 8.7: Part of the Perspective DSL Grammar
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language models. For example, creating a MEM modifies a perspective, while calling a

language action to create, delete, or update a model element modifies the corresponding

language model. Hence, to support persistence of perspectives and language models, we

encode two properties for the Perspective type rule, i.e., savePerspective and saveModel in

lines 16 - 17. These two optional attributes allow a perspective designer to provide API

calls that save the current perspective and the current model, respectively. In addition, for

a streamlined modelling workflow and communication between the modelling tool and the

perspectives, a multi-language modelling environment requires to uniquely identify current

perspective, i.e., the current perspective being used by a user, and the current model, i.e.,

the current model the user is elaborating on. Hence, a perspective designer is required to

encode two API calls that can be used to retrieve the current perspective and the current

model (lines 19 - 20), respectively. Note that a role name is used here to retrieve the

corresponding model that plays the role.

To manage the template workflow (see Figure 6.1) between a root model element and a

regular model element, i.e., model elements other than the root element, a perspective

designer is required to specify the facade actions (lines 22 - 23). Other facade actions, i.e.,

the facade actions between regular model elements, are contained in the corresponding

redefined perspective actions, which are presented in the complete grammar definition (see

Appendix B). Note that modelFacades (line 23) is not contained in the redefined

perspective actions, which are specified within the reused language, because generating the

implementation for creating and managing consistencies involving root model elements is

handled at the perspective level. This is the case since root model elements require

dedicated handling because creating each root model requires the tool to configure the

model persistence and then link the model with the corresponding language role in the



8. DSL for Languages and Perspectives 151

perspective. This is quite different from creating a regular model element with an existing

root model. The complete DSL grammar is shown in Appendix B, which contains the

model factory and facade details.

Furthermore, a perspective designer is required to define a set of role names (lines 26

- 28), each referencing a reused language (see Figure 4.7). Also, to support perspectives

with set role, the grammar allows a perspective designer to specify the model cardinalities

for each language; see the complete grammar in Appendix B to understand the definition

of the ModelCardinality type rule. And finally, a perspective designer can reuse registered

languages (lines 34 - 36) and then specify LEMs between language elements across language

boundaries (lines 38 - 40). Appendix B contains the full definition of all the type rules and

enumerations used in the grammar. In addition, an instance of the perspective DSL grammar

is contained in Appendix D, which details the definition of a perspective that combines five

different modelling languages.

8.3.4 Code Generator for Perspective Implementation

The perspective code generator generates the complete implementation of a perspective

based on an instance of the perspective DSL, see the previous subsection. The code

generator instantiates some parts of the PML metamodel including Perspective,

LanguageElementMapping, and MappingEnd. In addition, the code generator applies the

generic templates (see Chapter 6) to generate the implementation of perspective actions

(redefined create perspective actions and redefined delete perspective actions). Note that

we do not generate the update perspective action because the implementation does not

change across different perspectives.

For each perspective, we generate several Java classes depending on whether the
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perspective is a single-language or a multi-language perspective. The doGenerate method

for the implementation of perspectives is shown in Algorithm 1. The doGenerate method

iterates through all the perspectives that are specified in the perspective DSL, lines 1 - 11.

For each perspective, the code generator generates the perspective Java file, including the

LEMs, at line 3.

Algorithm 1: doGenerate(Resource resource)
1 for perspective : resource.perspectives do
2 // creates perspectives
3 generateFile(PerspectiveName.java, perspective.compile)
4 for language : perspective.languages do
5 if containsRedefinedAction(perspective, language) then
6 // creates redefined perspective action
7 generateFile(RedefinedPerspectiveAction.java,

RedefinedAction.compileActions(perspective, language)
8 // creates the corresponding facade action
9 generateFile(FacadeAction.java,

FacadeActionGen.compileFacadeActions(perspective, language)
10 // creates the model factory
11 generateFile(ModelFactory.java,

ModelFactory.compileCreateModel(perspective)

To implement perspective actions, our template-based code generator follows the

workflow of our generic templates shown in Figure 6.1. For each language (see lines 4 -9 in

Algorithm 1), we generate a Java file (line 7) that implements all the redefined perspective

actions for the language in question, and then we generate another Java file for the

corresponding facade actions (line 9). Both the redefined perspective actions and the

facade actions are generated for languages that have LEMs in a perspective. However, a

single-language perspective does not have any LEM ; therefore, neither redefined

perspective actions nor facade actions are required to implement a single-language
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perspective.

Furthermore, for both the single-language and multi-language perspectives, we generate

the model factory Java class (line 11), which is responsible for managing the creation of

root model elements for each reused language in a perspective. In addition, the model

factory factory maintains all the consistencies between the root model elements, as well as

the consistencies between the regular model elements and the root model elements. The

complete definition of the code generator, including the Java classes, is available in the PML

GitHub repository.

8.4 Summary

This chapter presents the two DSLs, which allow perspective designers to register languages

and then specify perspectives based on the registered languages. In addition, we present the

code generator for each DSL, which is used to generate the implementation of the language

registration, as well as the complete implementation of each perspective.

First, we provide a brief background of Xtext and Xtend, which are the language

frameworks for the development of both the DSLs and the code generators, respectively.

Xtext is a language workbench for the development of domain-specifc languages, which

allows users to quickly define language grammar and automatically generate the language

editors. On the other hand, the Xtend framework is a statically typed textual

programming language that compiles to Java source code. We leverage the Xtend

template-based feature to implement the code generators for our DSLs. And finally, we

explain how we use both the Xtext and Xtend to develop our DSLs and the code

generators.

https://github.com/Hyacinth-Ali/perspective-domain-specific-language
https://github.com/Hyacinth-Ali/perspective-domain-specific-language


8. DSL for Languages and Perspectives 154

In the following chapter, we present the evaluation of our study with different real-

life multi-language methodologies. Furthermore, we investigate the navigation facilities of

several popular modelling tools and compare them with the PML generic navigation based

on selected navigation features.
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Chapter 9

PML Validation

In this chapter, as a proof-of-concept, we carry-out different feasibility studies to ascertain the

possibility of using our framework to register languages, define perspectives, and build models

according to the respective perspectives. In this regard, we validate our framework with three

notable multi-language modelling methodologies. First, we present a Fondue Requirement

perspective, which combines five different modelling languages with the TouchCORE tool.

Second, we present a multi-language perspective that targets component modelling. Here,

we illustrate our approach with the Palladio Component Model (PCM), a group of four

modelling languages that specialize in performance prediction of distributed architectures.

Third and the last, we evaluate PML with another popular multi-language methodology, the

User Requirements Notation (URN), which combines three different modelling languages for

elicitation, specification, and analysis of software requirements.

Furthermore, we analyse the navigation facilities of several popular modelling tools and

evaluate whether our navigation mechanism can support the discovered navigation

facilities. In addition, we investigate selected modelling tools, including ArgoUML,
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StarUML, MagicDraw, Visual Paradigm, and Papyrus, to discern how PML navigation

stands out compared to other navigation mechanisms.

The following sections present the three different multi-language modelling environments

and then the navigation comparative study.

9.1 Fondue Requirement Perspective

In this section, we illustrate our framework with a real-world multi-language perspective

that oversees the consistency of requirements models that are built when using the

model-driven software development methodology Fondue [54]. Fondue is a further

development of the second-generation object-oriented software development methodology

called Fusion [55] developed and used by Hewlett Packard in the mid 90’s. Furthermore,

Fondue groups many languages with complex relationships based on UML models, which

showcase all the features that we cover in this research work. The perspective combines a

class diagram, a use case diagram, an environment model (communication diagram), a use

case maps model, and several operation models (descriptions of system behaviour) for the

purpose of requirement elicitation and specification. The modeller uses a class diagram

language to capture the concepts of the problem domain as well as their relationships, and

the expected interactions between the environment and the system with a use case

diagram. Furthermore, the environment model defines the system’s interface, i.e., the

boundaries of the system and the operations that can be performed on the system (in

messages called system operations) and the outputs produced by the system (out

messages). The use case maps model defines the allowable sequences of interactions that

the system may have with its environment over its lifetime, while the operation models
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describe the desired effect of each system operation on the conceptual state of the system.

Figures 3.4 and 4.2 to 4.5 show the metamodel excerpts for the modelling languages and

some of their corresponding language actions. It is important in this case that the five

different types of models (views) of the system are coherent. Also, to promote

maintainability and modularity, each language should be allowed to evolve independently,

i.e., without direct links to other languages in the modelling environment.

In this example, we demonstrate how a perspective designer can leverage our PML

framework to specify, capture, and then maintain the consistency conditions (equivalency,

equality, and multiplicity constraints) between different model elements in each model. A

perspective groups different languages for a modelling purpose. Hence, the first step is to

define the purpose of the perspective as shown in Section 9.1.1. With a well defined

purpose, the perspective designer then registers different languages, which will collaborate

to fulfil the purpose of the system as detailed in Subsection 9.1.2. In Subsection 9.1.3, we

briefly explain how the designer specifies the perspective, which combines the registered

languages to satisfy the aim of the system, while Subsection 9.1.4 details how to instantiate

the perspective and then integrate it with a software tool. Finally, Subsection 9.1.5

discusses the relevance of perspective actions in the multi-language perspective.

9.1.1 Purpose of Fondue Requirement Perspective

The first role of the perspective designer is to define the purpose of the perspective. A

perspective’s modelling purpose encompasses several consistency conditions which need to

be maintained in the modelling environment. In this example, the fondue requirement

perspective, the designer aims to maintain the following equivalency and multiplicity

constraints in the multi-language modelling environment. Furthermore, for each of the
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equivalency constraints, an equality constraint ensures that the names of the elements are

synchronized.

• R1: Each actor type from the environment model must have a corresponding actor

class outside the system boundary in the domain model, i.e., class diagram model.

• R2: Each input message in the environment model must have a corresponding

operation modelled by an operation schema in the operation model and vice versa.

• R3: Each output message in the environment model must have at least one

corresponding message that is generated from within one of the operation models.

• R4: An actor that appears in the operation model must be part of the environment

model and an actor type from the environment model must have at least one

corresponding actor in the operation model.

• R5: All classes used in the scope of the operation model must be part of the domain

model.

• R6: Every system operation must appear at least once in the use case maps.

• R7: Every input and output message in the environment model must appear at least

once in the use case maps as a responsibility reference and each responsibility reference

must have a corresponding message.

• R8: Every actor in the use case diagram must appear as an actor class outside the

system boundary in the domain model.
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9.1.2 Language Registration

The second step is then to register those modelling languages in the multi-language modelling

environment whose combination is capable of fulfilling the consistency conditions specified

above. This step is performed once for each language. Hence, registered languages can be

reused across different perspectives. An annotated sample language registration with our

DSL is shown in Figure 9.1, which captures the details of the environment model language

(lines 2 - 9) and its elements (lines 11 - 27).

The language definition encodes the packages for importing the language elements (line 2,

i.e., the metaclasses of the language metamodel). The package class (line 3, i.e., the container

of the language elements) allows the perspective to retrieve the object representation of each

language element from the corresponding metamodel. Also, the language details in lines 4

- 7 are primarily used to register the language metamodel and its resources in the multi-

language modelling environment. The language elements compartment shows the name of

each required language element and optional nested elements; e.g., the ActorType language

element has a name attribute as its nested element.

A nested language element can refer to an attribute, which is contained in another

language element, provided there is a navigable link from the language element in question

to the nested element. For example, the nested element of Message is the name attribute

contained in the MessageType. This is the case since a message is visualized to a user with

the name of its type. Figure 9.1 shows the correspondences between the language

registration specification and the metamodel of the language.

With this specification, a perspective designer can register the language in the desired

modelling environment tool, e.g., TouchCORE, and then reuse the registered languages

across several perspectives. This modular registration of the languages, i.e., each language is
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Figure 9.1: Annotated Environment Model Language DSL Model



9. PML Validation 161

registered independently of other languages, promotes the reusability as well as the evolution

of the languages, because each language can be updated without facing the complexities of

a combined metamodel. To reuse each language in a perspective, the perspective establishes

LEMs between language elements across language boundaries. Also, the perspective can then

re-expose, hide, or redefine the language actions, i.e., the externally defined language actions.

A perspective captures the details of these language actions (see LanguageAction metaclass

in Figure 4.7) so that the generic templates can be applied to generate the implementation

of the concerned perspective actions. A similar specification exists for the other languages

(i.e., the use case diagram, the class diagram, the use case maps, and the operation model).

Appendix C shows the complete language registration specifications.

9.1.3 Specification of the Perspective

This section demonstrates how a perspective designer employs our DSL to specify a

perspective with the registered languages. With a specified perspective, the perspective

actions are fully generated based on the generic templates (see Sections 6.2 and 8.3.4 ) and

the language specification (see Figure 9.1).

In Figure 9.2, the perspective designer provides information to define the perspective,

perspective actions, and language element mapping(s). In this example, the default language

role in the perspective is the domain model (line 2), which dictates the model to view by

default. To create a multi-language perspective, the perspective combines a class diagram,

a use case diagram, an environment model, use case maps, and operation models (lines

3 - 31). As an example, the specification shows how the perspective reuses the registered

environment model language. The specification of the other languages is similar, and the

complete definition of the perspective with our DSL is shown in Appendix D.
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Figure 9.2: Fondue Requirement Perspective
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For each language reuse, the perspective designer first defines the role of the language

in the perspective at line 5, e.g., the environment model plays the role of a communication

model. Furthermore, the designer specifies the model package class, i.e., the container of the

language elements, which is used to retrieve the corresponding object representation of the

language elements during the generation of the redefined perspective actions, (line 6), and

the root package (line 7). The otherPackage (lines 8) allows the redefined perspective action

(e.g., createMessage) to interact with other reused language actions in the perspective. Other

referred packages can be specified after line 8, see Appendix D for the complete definition

of the perspective. The specifications in lines 5 - 8 allow the perspective to access and then

reuse the corresponding registered language.

Next, the perspective designer explicitly specifies the redefined and re-exposed perspective

actions, as well as implicitly any hidden actions. As shown in Figure 9.2, lines 9 to 31 depict

a perspective action that redefines the createMessage language action in the environment

model language. For each redefined perspective action (line 10), the designer specifies the

type of an element that will contain the new element (line 11), the parameters with their

types, excluding the element container (line 12), the API for the language action (line 13),

and the method parameters, i.e., the parameters without their types (line 15). These details

are used to generate the redefined perspective action based on the generic template shown

in Figure 6.4 on page 115.

Each redefined action reuses at least one other language action (see reusedActions

association in Figure 4.7). We implement the reused actions as facade actions (lines 16 -

25). Hence, the redefined perspective action augments both the redefined language action,

e.g., createMessage in the environment model, and the other reused actions so that the

consistency conditions of the concerned language elements are maintained. In this example,
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the designer specifies that when a message is created in the environment model, at least

one responsibility reference, as specified in Section 9.1.1 (R7), is created and then mapped

(i.e., MEM ) with the message.

To fully generate the implementation of this redefined perspective action, the designer

further specifies the model package class (line 18), as well as the language element (line 19),

of the other element. At line 20, the perspective designer encodes the parameters of the other

element, i.e., deriving the parameters that are required to create the responsibility reference.

The parameters can be derived from the initial parameters of the createMessage action. The

derivedParameter accommodates any lines of string values which represent valid Java code.

The designer can provide other parameter values which cannot be derived from the original

parameters by using valid literal value(s) (lines 22 - 23) or asking the modeller to provide the

needed parameter value. And finally, for each reused action, the language action is called,

at line 24, to create the model element in question, e.g., responsibility reference. Similarly,

the details of other reused actions are shown in Appendix D.

Since the creation of a model element, e.g., creating a message in the environment model,

can have secondary effects, the designer provides the details of such effects in lines 26 - 31.

In our example, the secondary effects of creating a message includes creating a message type

in the environment model. To this end, similar to the reused actions, the designer specifies

the language element of the secondary element, i.e., MessageType at line 28. To effectively

propagate the effects of creating the secondary element, the recursive method (lines 29 - 30)

createOtherElementsForInputMessageType is called to propagate the changes accordingly

(see Create Other Elements in Figure 6.1).

To re-expose a language action, the structure of the redefined action is followed, but

excluding the facadeAction in lines 16 - 25 and with the reexpose keyword instead of the
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redefined keyword (see line 10). If a language action is not re-exposed or redefined it is

hidden from the user. This is the case, for example, for the createOperation action of the

class diagram language, since in our example class diagrams are used for the purpose of

domain modelling, which does not require operations.

To establish a LEM between the Class metaclass from the class diagram language and

the ActorType metaclass from the environment model, the designer creates a Compulsory

Optional mapping (lines 33 - 53). At line 33, the designer encodes the direction of the

navigation between the instances of the referenced language elements across language

boundaries, which can be either bi-directional or uni-directional navigation. Note that the

designer can ignore the requirement to specify the navigation, which means that a user will

not be provided with a navigation facility between the concerned model elements. Each

LEM comprises the from mapping-end (lines 34 - 40), to mapping-end (lines 41 - 47), and

optional nested mapping (lines 48 - 53).

For each mapping-end, the designer specifies the model package CdmPackage (line 35),

which is required to retrieve the object representation of the language element Class (line

39). Furthermore, the designer specifies whether the language element is a root element (line

36), since a root element is handled differently during the implementation of the perspective

actions. The multiplicity of the from mapping-end is 1 (i.e., Compulsory) for the Class

metaclass, while it is 0..1 (i.e., Optional) for the to mapping-end of the ActorType metaclass.

Further, the designer creates a nested mapping (lines 48 - 53) between the Class name and

the ActorType name which is contained in the LEM between the Class and the ActorType

metaclasses. This nested mapping ensures that the names of a mapped class and actor type

(i.e., a MEM exists) are always the same during run-time. Also, by setting the mapping as

matchMaker in line 50, the name of a given class can be used to find the corresponding actor
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type with the same name and vice versa.

This language element mapping implies that the create type of the applied template is C1

(Compulsory Optional) for the action to create a class, while it is C10 (Optional Compulsory)

for the action to create an actor type, see Table 6.1. On the other hand, the delete type

is DELETE_OTHERS for the action to delete a class, while it is JUST_DELETE for the

action to delete an actor type.

The complete LEMs that satisfies all the consistency conditions outlined in

Section 9.1.1 are shown in Figure 9.3. Each LEM is represented as a red link between the

concerned language elements, while the multiplicity of each mapping-end is shown at the

corresponding end of each LEM link. We include model multiplicity for models that play a

set role in the perspective, i.e., operation model with 0..* instance cardinalities (text on

blue background). As shown, each consistency condition (e.g., R1 ) corresponds to the link

with the label (e.g., R1 ). Each LEM establishes a nested mapping between name

attributes. The name attribute can be directly contained in the language element in

question, which is not shown for simplicity. Alternatively, the name attribute can be

contained in another language element, which is shown for clarity. For example, the name

attribute for the Message (R7) refers to the name attribute of the MessageType, as shown

in Figure 9.3.

Finally, based on the perspective specified with our DSL, the perspective actions are

fully generated with our code generator (see Section 8.3.4), which is based on the generic

templates (see Section 6.2) and the language specification (see Figure 9.1).
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Figure 9.3: LEMs in a Fondue Requirement Perspective

9.1.4 Instantiation of the Perspective

The final step is to instantiate the PML framework from an instance of the DSL (Figures 9.1

and 9.2) by applying a transformation based on the generic templates, and then integrating

the perspective including its perspective actions with a software tool. In this example, we

integrate the perspective actions with the TouchCORE software tool [16] by intercepting the

language action calls, e.g., create new class, with the corresponding redefined perspective

action.

Once the perspective actions are in place, when a user requests to create a domain model

class element (e.g., a customer in a bank application), the PML framework first calls the

class diagram language action, createClass) to create the Customer class and then asks the

user whether to create the optional corresponding element in the environment model (R1,

i.e., a customer actor type in the environment model). Hence, if the user selects yes, the

PML calls the respective language action to create the corresponding Customer actor type
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with the same name, and then establishes a MEM between the two instances. Since the

ActorType in the environment model is mapped to Actor in the operation model (R4 ) and

the operation model plays a set role, PML applies the set role constraints, i.e., ignores the

LEM (R4) if there is no operation model or displays a missing MEM warning to the user,

when there is at least one operation model exists. With the warning approach, the user can

request to create a Customer actor in the operation model, which automatically links to the

Customer actor type in the environment model.

Since the Class metaclass is mapped (i.e., LEM ) with two other language elements -

Actor in the use case diagram (R8 ) and Classifier in the operation models (R5 ), PML

also applies the corresponding create types (i.e., C1 (Compulsory Optional) for R8 and C3

(Compulsory Optional-Multiple) for R5 ).

As a second example, consider a user creating an actor (e.g., a Manager actor) in the use

case diagram. Then, the PML framework, first, searches for a corresponding domain model

class in the class diagram model. If the search returns a corresponding class which has the

same name as the name of the new actor, PML creates a MEM between the new actor and

the corresponding domain model class. Otherwise, PML proactively creates a corresponding

domain model class with the same name and a MEM (which will then trigger the same

change propagation as explained earlier).

As a final example, consider that a user creates a message in the environment model. In

that case, PML first creates the message and then some responsibility references in the use

case maps (based on the number specified by the user), and then successively establishes

MEMs between the new message and the corresponding new responsibility references. To

create these responsibility references, the language action (create responsibility reference)

may create a new responsibility as a secondary effect. The Responsibility metaclass has an
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Optional relationship with the OperationSchema in the operation models. If we assume that

the user decides not to create a corresponding operation schema, then the change propagation

stops here.

However, creating a message in an environment model may also require to create the type

of the message as a secondary effect. Hence, if an output message type is created, due to

the secondary effects, the corresponding messages are created in the operation model. On

the other hand, if the input message type is created, then, exactly one operation schema

is created in the operation model. Consequently, creating an operation schema requires to

create or use existing responsibilities in the use case maps model, depending on the number

specified by the user. The new and the retrieved existing responsibilities are then successively

mapped with the new operation schema. In the case of the existing responsibilities, each

responsibility name must be the same as the name of the operation schema which must be

the same as the name of the input message type, i.e., the responsibility that was created

while creating the message in the environment model as the secondary effect of creating the

corresponding responsibility reference has the same name as the operation schema and hence

is used to establish a MEM with the new operation schema.

In all of these examples, the perspective ensures that the equivalency, equality, and

multiplicity constraints between mapped model elements are maintained as they evolve.

9.1.5 Discussion of the Perspective Actions

To demonstrate the relevance of perspective actions in the multi-language perspective, we

analyse the language actions for the five languages of the perspective based on the LEMs

shown in Figure 9.3. This analysis aims to ascertain the impacts of perspective actions

on those language actions aiming to maintain consistency conditions in the requirement



9. PML Validation 170

Figure 9.4: Distribution of Perspective Action in the Languages

multi-language modelling environment. In this multi-language perspective, there are 11,

22, 43, 20, and 17 language actions for the environment model, use case diagrams, class

diagrams, use case maps, and operation model, respectively. The distribution of the types of

perspective action (re-exposed action, simple redefined action, complex redefined action, and

hidden action) across the five languages is shown in Figure 9.4. In this evaluation, we further

categorise redefined perspective actions into complex redefined and simple redefined actions.

In a complex redefined action, both the primary and secondary effects of the redefined

language action affect the consistency conditions of at least one LEM in Figure 9.3. In the

case of a simple redefined action, only the primary effect of the language action affects the

consistency conditions of at least one LEM of the perspective.

As shown in the figure, the class diagram language has the highest number of both

re-exposed and hidden actions, while the operation model has the highest number of simple

redefined actions and the environment model has the highest number of complex redefined

actions. Only the class diagram has hidden actions since the perspective reuses the class
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diagram for the purpose of domain modelling, which forbids the use of some language

actions, especially language actions related to the Operation language element. This

provides anecdotal evidence that hidden actions are particularly useful for languages with a

broad application domain that may address several purposes. For example, a class diagram

may be used for the purpose of metamodelling, domain modelling, and design modelling,

each of which requires a different set of language elements.

For three of the five languages, the number of re-exposed language actions is higher

than the number of all other language actions combined. For all five languages together,

68% of the perspective actions are re-exposed actions. This is followed by simple redefined

actions with 17%, hidden actions with 8%, and complex redefined actions with 7%. This

gives an indication that all types of perspective actions are needed and that the vast

majority of them are actions that are straightforward to handle during the specification of

a perspective, i.e., re-exposed and hidden actions. Simple and complex redefined actions

require the perspective designer to identify language actions that affect LEMs. Simple

redefined actions are also identified without much difficulty, because it is often clear from

the name and parameters of the language action which language element is affected. This

leaves only 7% of the actions that require a more detailed analysis to determine which

LEMs are affected because of secondary effects. In the requirement perspective, only the

environment model, operation model, and use case maps have complex redefined actions.

In general, the number of language elements with LEMs influences the number of redefined

actions (e.g., the number of redefined actions is higher for the environment model and

operation model, which also have a higher number of language elements with LEMs (see

Figure 9.3). Furthermore, a type-instance relationship (e.g., Message and MessageType in

the environment model or Responsibility and ResponsibilityRef in use case maps) or
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a container-part relationship (e.g., OperationSchema and Message in the operation model)

tends to lead to complex redefine actions, if both language elements are involved in a LEM.

We also investigate which generic templates are needed for this perspective. For each

redefined action, the perspective action applies some generic templates to ensure that the

consistency conditions of the concerned LEMs are maintained. In general, the update

template is used in 23% of the cases, while a delete template is used in 27% of the cases,

and a create template is used in 50% of the cases. The distribution of the types of applied

generic templates is shown in Figure 9.5. While all update and delete templates are

required by the perspective, only eight of the twelve create templates are needed. The C7

(Optional-Multiple Optional/Compulsory-Multiple), C8 (Compulsory-Multiple

Optional/Compulsory-Multiple), C9 (Optional Optional), and the C11 (Optional

Optional-Multiple) create types are not needed for this perspective. However, other

examples exist for these four create types. C7 may be needed for a perspective with

sequence diagrams and operation models, as the LifeLineTypes from several sequence

diagrams describe the same entity as the Classifiers from several operation model. C8

may be needed for a perspective with operation models and a goal model, because the

Actors from several operation models describe the same entity as the Actors in a goal

model and an actor in an operation model must be related to an actor in a goal model. C9

may be needed for a perspective with a class diagram and a goal model, as the Class in the

class diagram may or may not be related to an ActorType in the goal model (not all actor

types are classes, because some actor types model stakeholders that are not interacting

directly with the system; not all classes are actor types, because some classes are related to

domain concepts other than stakeholders). Finally, C11 may be needed for the same

perspective with a class diagram and a goal model, as the Class in the class diagram may
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Figure 9.5: Distribution of Generic Templates Based on the Reused Language

or may not be related to one or several Actor (instances of ActorType) in the goal model.

Furthermore, the case study helped discover a special case. The language action to

create an actor in the environment model does not have a LEM for its primary effect, but

only for its secondary effects (i.e., creating an actor type). This special case is still covered

by the proposed templates, because the redefined language action to create an actor still

calls the recursive perspective action createOtherElements and then

handleSecondaryEffects. However, since no LEM exists for the primary effect, nothing

happens in createOtherElements and the template moves immediately on to the secondary

effects.

This case study shows that the proposed perspective actions and their templates work to

augment language actions in a multi-language modelling environment to enforce consistency

conditions. To assist the perspective designer, the case study demonstrates how we apply

the templates to fully generate the perspective actions which are then used to maintain the

consistency conditions in the modelling environment. This generative approach frees the
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designer from a rigorous and error prone manual implementation of the perspective actions.

Hence, the designer can focus on the specification of the LEMs (see Figures 9.1-9.3).

9.2 Palladio Component Model Perspective

In this section, we provide an overview of the Palladio Component Model (PCM) [56,57], a

domain-specific language that predicts the fufillment of extra functional properties of a

software system, which include performance, maintainability, security, and reliability. PCM

targets component-based software architectures, where different developer roles can be

integrated to analyze and then predict the performance of an entire software system,

especially during the design stage. Software architects can leverage the results of PCM

analyses to revise their architecture as well as the design of the system. This early stage

detection of the extra functional requirements bottlenecks helps to prevent the redesign of

the whole system after production, which often involves a huge cost.

9.2.1 PCM Metamodel

The PCM metamodel comprises several independent domain-specific modelling languages,

which are aligned with different developer roles in Component-Based Software Engineering

(CBSE) [58]. CBSE fosters the development of complex systems by assembling basic software

components to reduce the complexity as well as promote software reuse. In this section, we

briefly explain some of the developer roles, i.e., component developer, software architect,

system deployer, and domain experts roles, and the corresponding metamodel.

Component developers oversee the specification and the implementation of software

components. In addition, they provide the description of each component extra-functional
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properties, which can be used by software architects to predict the performance of

assembled components before deployment. Furthermore, system deployers provide more

details about the performance of the architecture especially infrastructure/software of the

system, e.g., speed of a CPU. And finally, domain experts assist software architects with

the information to specify a usage model of the architecture.

The PCM metamodel provides a domain specific language for each developer role as

shown in Figures 9.6 - 9.9. Developers specify and then implement components that are

deposited in a repository with a DSL metamodel shown in Figure 9.6. Each BasicComponent

encapsulates its implementation and indicates the required and provided interfaces. The

software architects then use these components to build the architecture of the system with

a DSL metamodel shown in Figure 9.7. Furthermore, the system deployer uses a DSL (see

Figure 9.8) to creates the resource environment and then allocates individual components

to the resources. And finally, the business domain experts construct the usage scenario

and then connect it to the roles provided by the system with a DSL metamodel shown in

Figure 9.9.

Although these four metamodels are independent, the role at each level of an abstraction

depends on or influences other developer roles. Hence, it is essential that the DSLs coherently

describe the system under development. In the next section, we present some consistency

rules that govern the coherent development of a component-based system with PCM and

then show how PML can be leveraged to assist different developers at different levels of

abstraction to produce more consistent systems, while promoting the individual evolution of

the DSLs.
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Figure 9.6: PCM Component Repository Metamodel (excerpt)

Figure 9.7: PCM Architecture Metamodel (excerpt)
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Figure 9.8: PCM Resource Metamodel (excerpt)

Figure 9.9: PCM Usage Metamodel (excerpt)
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9.2.2 Purpose of the PCM Perspective

A PCM model comprises different individual models from different DSLs as presented

above. Since these models describe a system, a perspective designer is required to specify

the consistency conditions, i.e., purpose of the perspective, which need to be maintained in

the modelling environment. In this example, a PCM perspective designer aims to maintain

the following equivalency and multiplicity constraints in the multi-language modelling

environment. Furthermore, for each of the equivalency constraints, an equality constraint

ensures that the names of the elements are synchronized (if a name attribute exists).

• R1: Each basic component from the architecture model must have a corresponding

component in the component specification model.

• R2: Each provided role from the architecture model must have a corresponding

provided role in the component specification model.

• R3: Each required role from the architecture model must have a corresponding required

role in the component specification model.

• R4: Each allocation context from the resource model must have a corresponding

assembly context in the architecture model.

• R5: Each provided role from the usage model must have a corresponding provided role

in the architecture model. On the other hand, each provided role from the architecture

model must have at least one corresponding provided role in the usage model.

These rules are encoded in the LEMs for the PCM perspective as detailed in Figure 9.10.

Similar to the Fondue Requirement perspective, a perspective designer can use our DSLs to

register the languages and then specify the perspective. Furthermore, the designer can
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Figure 9.10: LEMs in a PCM Perspective

generate the perspective implementations and then integrate the perspective with a

software tool. This example demonstrates another important use case, where the PML

framework can foster a coherent development of a component-based software system. In

addition, our framework supports the individual evolution of each language, which

promotes the maintainability of the each system under development as well as the

modelling environment.

9.3 User Requirements Notation Perspective

The User Requirements Notation (URN) [56] is a popular multi-language paradigm aimed

at elicitation, specification, analysis, and validation of software system requirements. It

combines two modelling languages: the goal-oriented requirement (GRL) and the use case

maps (UCM). Here, we discuss URN extended with feature model (FM) language, because a

feature model does have several relationships with both GRL and UCM when used together

to describe the requirement of a system. For the rest of the thesis, we refer to URN as a
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multi-language modelling technology that combines these three languages. Therefore, the

URN perspective comprises the above three modelling languages, as well.

9.3.1 Overview of the URN Perspective Languages

This section provides a brief overview of the three reused languages in the URN perspective.

First, a GRL is a modelling language used for the specification of the intentions and business

goals of different stakeholders (see Figure 9.11, GRL metamodel). A modeller uses the GRL

language to capture and then analyze different intentions of stakeholders to ascertain how

they impact the goal of a system.

Second, as described in Fondue Requirement (see Section 9.1 on page 156), use case

maps model defines the allowable sequences of interactions that the system may have with

its environment over its lifetime (see Figure 4.5, UCM metamodel).

Third and finally, the feature model describes the relationships among features, i.e., the

set of feature configurations that produce valid products; see Section 5.3 (page 88) and

Figure 5.5 (FM metamodel) for more details about the feature model.

These three languages are collectively used to elicit, specify, analyze, and validate

system requirements. Hence, it is essential that the three different types of language

models coherently describe a system under development. Similar to the Fondue

Requirement and PCM perspectives, each language exists independently; which fosters

modularity and maintainability of the system.

9.3.2 Purpose of URN Perspective

Similar to the Fondue Requirement and PCM perspectives, the purpose of the URN

perspective is encoded with the LEMs shown in Figure 9.12. Each LEM captures the
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Figure 9.11: GRL Metamodel (excerpt)

Figure 9.12: LEMs in a User Requirements Notation Perspective
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equivalency constraints (including the equality constraints and the optional conditional

constraints) to ensure that the three different languages coherently define a system, even as

the software system evolves.

For example, the LEM between the IntentionalElementRef from the GRL language

and the Stub from the UCM language dictates that each intentional element reference, of

a type Task (i.e., conditional LEM ), from the GRL model can be mapped with many stubs

from the UCM model. Conversely, each stub can be mapped with many intentional element

references from a GRL model, provided that each intentional element references is a Task

type. The equality constraint of this LEM requires that a definition (IntentionalElement)

of an intentional element reference must have the same name as the name of the stub. The

encoded def.name in the IntentionalElementRef (see Figure 9.12) shows the navigable link to

the name of the referenced intentional element (i.e., defitnition), where def is the role name

of association from the IntentionalElementRef to the IntentionalElement and name is

the name attribute in the IntentionalElement.

Hence, the equality constraint can be captured with attributes within the language

element of interest or any other attribute contained in the language model, provided that

the attribute is navigable from the language element in question. Note that we do not show

the attribute used for the equality constraint if the attribute (e.g., named attribute) is

contained in the language element of concern. Hence, the Stub has no encoded name

attribute, although each stub is required to have the same as the corresponding intentional

element references. Similarly, a Stub and a Feature are mapped using the same name

attribute equality constraint. The same name attribute equality constraint also applies to a

Feature and a UseCaseMap, as well as an Actor (GRL) and an Actor (UCM).

With these LEMs, a perspective designer can then register the languages, if not registered
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in the tool, and then specify the perspective with our DSLs. The process of implementing

the perspective is the same as that of the Fondue Requirement perspective. Our aim here is

to show that the PML framework can be used to implement the URN perspective.

9.4 PML Navigation Evaluation

In this section, we analyse the navigation facilities of several popular modelling tools and

evaluate whether our navigation metamodel can support the discovered navigation

facilities. We performed a Google search for "most popular UML tools". From the obtained

list, based on the google search, we investigated the top 4, namely: StarUML (free),

ArgoUML (free), Visual Paradigm Enterprise (commercial), and MagicDraw (commercial).

We also selected Papyrus, as a representation of a popular modelling tool based on EMF,

and finally TouchCORE [16], as a representative of a UML modelling tool that explicitly

supports software product line modelling and model reuse. In each tool, we specified a

class diagram, and defined the behavior of some operations using sequence diagrams or

state machines. We then explored how the tools support navigation. We organized our

findings under the headings intra-language navigation, inter-language navigation, filtering,

element highlighting, navigation of inheritance hierarchy, feature-based navigation, and

navigation across reuse boundaries.

9.4.1 ArgoUML

ArgoUML is an open source tool which supports all UML 1.4 diagrams [51], including Class

Diagrams, Use Case Diagrams, and Sequence Diagrams. The basic navigation facilities of the

tool include a model explorer, which hierarchically lists models and its diagrams, and an edit
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toolbar, which allows software developers to use or define their own perspectives. Perspectives

in ArgoUML primarily define filtering conditions for model elements in the explorer.

• Intra-Language Navigation: ArgoUML supports navigation between model

elements within a diagram. For example, in an ArgoUML project, the model explorer

shows the list of diagrams and all the hierarchical elements. In a class diagram, a

click on a tab shows the related model elements such as associations, inheritance,

subclasses, and operations. This allows modelers to navigate between elements within

a model.

• Inter-Language Navigation: In the Diagram-Centric perspective, the model

explorer visualizes model elements under the diagrams in which they are used.

Clicking on them opens the corresponding diagram and highlights the selected model

element.

• Filtering: ArgoUML supports different kinds of filtering using their own notion of

perspective. Each perspective specifies the kind of model elements to be shown in the

explorer, e.g., Class-Centric, which configures the explorer to only display diagrams

and classes, Package-Centric, which displays only the contents of a package including

diagrams, classes, and associations. The tool allows modelers to define their own

perspectives using existing rules by combining existing filtering conditions in the

library.

• Element Highlighting: When a model element is selected in the model explorer, the

element is highlighted in blue in the editor. However, the highlighting is only visible if

the element is currently shown in the editor.
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• Inheritance Hierarchy: ArgoUML defines an Inheritance-Centric perspective, which

configures the model explorer to list all the model classes and their subclasses, hence

allowing the modeller to easily explore the inheritance hierarchy.

Our proposed generic navigation approach can support all the navigation facilities that

ArgoUML offers. The perspectives of ArgoUML can be represented as a filtering condition

in our generic mechanism. For example, the Class-Centric perspective lists only diagrams

and classes in the model explorer. With our approach, this can be done by setting the active

flag of Mapping for all instances of Class (see Figure 5.2 and 5.13), and deactivating all other

mappings. Our proposed navigation metamodel supports even finer-grained filtering based

on attribute values. This is currently not possible in ArgoUML.

9.4.2 StarUML

StarUML is a modelling tool which is compatible with the UML 2.x standard. The tool

supports 11 types of UML diagrams including Class Diagrams, Use Case Diagrams, Sequence

Diagrams, and State Diagrams [50]. Notable navigation features in StarUML include the

model explorer, the diagram list, and different categories of pallets, e.g., Classes (Basics),

which shows unique components for creating class diagrams, Instances, and Annotations.

• Intra-Language Navigation: The tool partially supports intra-language navigation.

The model explorer shows the definitions of the model elements as well as their contents.

For example, in a class diagram, a click on an arrow before a class reveals its operations,

attributes, and associations. To visualize an element in a diagram, a modeller needs

to right-click on the element and choose Select In Diagram. In the list of diagrams,

however, it is not possible to navigate to the model elements contained in the diagrams.
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• Inter-Language Navigation: The tool supports inter-language navigation using the

model explorer. Clicking on a class shows the contained operations. Clicking on the

operation displays the list of associated sequence diagrams, if any. To actually switch

to the sequence diagram view, the modeler has to choose Select In Diagram by right-

clicking the sequence diagram in the model explorer, or alternatively manually find

and then select the desired sequence diagram in the diagram list.

• Filtering: StarUML has no support for filtering.

• Element Highlighting: Each model element in the currently displayed diagram can

be highlighted in blue by selecting it in the model explorer. If the element is currently

not visible in the editor, the modeler needs to right-click the element and choose

Select In Diagram, which then switches the current view to the diagram containing the

selected element and highlights it.

• Inheritance Hierarchy: StarUML partially supports navigation of the inheritance

hierarchy in class diagrams. A modeler can navigate from a subclass to its parent class.

However, it is not possible in StarUML to visualize the complete inheritance hierarchy

of a given class.

Our proposed generic navigation approach can express all the navigation facilities that

StarUML provides. Additionally, our approach supports filtering and displaying of the

entire inheritance hierarchy.

9.4.3 MagicDraw

MagicDraw [59] supports all UML diagrams. The most significant navigation facilities of the

tool include the containment tree (a window with a hierarchical list of model elements) and
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the diagram tool window, which groups existing diagrams based on their language.

• Intra-Language Navigation: MagicDraw provides a structured containment tree

which facilitates navigation from a model element to its related elements. In the

containment tree, when a plus (+) tab before a class is clicked, its contained elements,

such as operation and attributes, are displayed. Clicking on a model element displays it

in the diagram editor, switching diagrams if necessary. However, just like in StarUML,

the containment tree in MagicDraw displays the model element definitions separately

from the diagrams in which they are used in.

• Inter-Language Navigation: MagicDraw provides full support for inter-language

navigation. A sequence diagram or activity diagram that is linked to an operation in a

class diagram can be navigated to, either directly from the model element in the model

editor or by choosing it in the model explorer containment tree. Such navigation opens

the target diagram in the diagram editor.

• Filtering: The tool has several filtering conditions under three different categories,

namely: List, Inheritance, and Structural. Each category has multiple options that can

be turned on or off, e.g., Class, Actor, or Association. When a filtering condition is

enabled, the corresponding model elements are hidden in the model explorer.

• Element Highlighting: MagicDraw highlights model elements selected in the model

explorer in bold. A modeler can right-click an element in the explorer, select Go To

and Usage In Diagram to switch the current view.

• Inheritance: Magic Draw supports immediate superclass navigation. In the

containment tree of the model explorer, a superclass can be navigated to by clicking a
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plus (+) tab before its subclass. However, such navigation is only visible within the

containment tree.

Our generic approach supports the navigation facilities of MagicDraw. The filtering in

MagicDraw is at the granularity of model element types, i.e., every model element of a given

type is either shown or not shown. Our generic mechanism supports this using the active

flag in Mapping (see Figure 5.13). Unlike our approach, MagicDraw does not support filtering

based on attribute values, e.g., to define a filter that displays only abstract classes.

9.4.4 Visual Paradigm Enterprise

Visual Paradigm supports UML 2 and SysML modelling [60]. The most notable navigation

facilities of the tool include the diagram backlog (a tab which opens a list of model diagrams),

property (a tab which opens editable properties of model elements), model explorer (a tab

which opens the containment tree of model elements within models with their diagrams),

and the diagram navigator (a tab which opens the list of supported diagrams).

• Intra-Language Navigation: Visual Paradigm fully supports intra-language

navigation. A click on the tab diagram navigator reveals all the supported diagrams

in a containment tree. In the containment tree, when a plus (+) tab before a diagram

icon is clicked, its contained diagrams are shown with their model elements. E.g., a

click on plus (+) before class diagram shows the class diagrams with their contained

model elements such as operations, associations, and attributes. However, the

navigation within the diagram navigator or model explorer does not automatically

visualize an element in the editor, unless, a modeler selects to open the diagram.

• Inter-Language Navigation: Visual Paradigm Enterprise provides excellent support
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for inter-language navigation. A sequence diagram or a state diagram that is linked

to an operation in a class diagram can be navigated to, either directly from the model

element in the model editor or by choosing it in the diagram navigator or model explorer

containment tree. The tool attaches an icon (which refers to the linked diagram) to a

class containing the operation in the editor and adds a tab (which also refers to the

linked diagram) under the class in the diagram navigator containment tree. Hence, a

modeler can directly navigate to the linked diagram by using either link.

• Filtering: Visual Paradigm does not support filtering.

• Element Highlighting: A modeler can right-click an element in the explorer or

diagram navigator and choose Select In Diagram. This takes the modeler to the

diagram containing the element with the element being highlighted in bold, switching

the current view if necessary.

• Inheritance: Visual Paradigm partially supports inheritance navigation. A modeler

can navigate from a class in the model explorer to any of its direct superclasses,

similar to navigating over association relationships. However, Visual Paradigm does

not support displaying and navigating the entire inheritance hierarchy.

Our proposed generic navigation approach covers all navigation features of Visual

Paradigm.

9.4.5 Papyrus:

Papyrus is a UML modelling tool based on EMF that supports many UML diagrams

including Activity Diagrams, Class Diagrams, and Communication Diagrams. Similar to



9. PML Validation 190

the above modeling tools, it supports navigation with a model explorer and from within the

diagram editor.

• Intra-Language Navigation: The tool supports navigation of elements within a

model, including traversing from a diagram to its elements. In the explorer, a modeler

can navigate from a model element to its contained elements, e.g., from a class to its

attributes and operations. A modeler can also navigate from elements in the editor to

their definition in the model explorer, and vice versa.

• Inter-Language Navigation: Papyrus uses hyperlinks to establish relationships

between two diagrams, e.g., between a class and an activity diagram or a state

diagram. The tool organizes the inter-language links under the corresponding model

elements in the model explorer. Hence, a modeler can use the model explorer to

traverse across language boundaries.

• Filtering: The model explorer has two main views, models or diagrams. For each

element shown in the diagram editor, its contents can be selectively hidden or shown

by enabling or disabling filter options. For example in a class diagram, classes can be

visualized with or without name, or with or without their attributes. Filtering based

on attribute values is not supported.

• Element Highlighting: Selected model elements in the model explorer, are

highlighted in the diagram editor. Navigating from the model explorer to an element

opens up the diagram containing the element in case it was not previously shown.

• Inheritance: Papyrus supports navigating from subclasses to direct superclasses. In

the model explorer, generalizations are also visualized under the subclass. A modeller
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can right-click the generalization, which shows up as a separate model element in the

model explorer, and from there select navigate, then, Go to target or Go to source to

highlight the superclass. Visalisation or navigation of the entire inheritance hierarchy

is not supported.

All navigation facilities of Papyrus are supported by our proposed generic navigation

approach.

9.4.6 TouchCORE

TouchCORE is a modelling tool for concern-oriented software design [16, 44], focussing

specifically on feature-driven modularisation as required in SPLs. It also has explicit

support for model reuse, and ships with a library of reusable models dealing with recurring

design concerns, i.e., security, fault tolerance, and design patterns. The tool supports

Feature Models, Goal Models, Class Diagrams, State Diagrams, and Sequence Diagrams.

Its significant navigation features include a model explorer and traceability-based

visualization capabilities.

• Intra-Language Navigation: When selected in the model explorer, model elements

in the current diagram are highlighted in orange.

• Inter-Language Navigation: The TouchCORE model explorer allows the modeller

to navigate between related diagrams, e.g. from an operation defined in a class diagram

to an attached sequence diagram.

• Element Highlighting: Elements selected in the model explorer are highlighted in

the current model in orange. Additionally, using traceability links, TouchCORE uses
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color highlighting to visualize feature and reuse information. When TouchCORE is

used to compose bigger models by combining models related to different features or

models from the reusable model library, the origin of model elements can be visualized

using a multi-colored highlighting scheme.

• Filtering: TouchCORE does not support filtering of model elements for navigation

purpose.

• Inheritance: TouchCORE does not support navigation of the inheritance hierarchy.

• Feature-Based Navigation: Since TouchCORE was designed to specifically support

SPL, there is excellent support for feature-based navigation, e.g., navigating from a

feature in a feature diagram to the associated realization model(s). Conversely, when

visualizing a model in the model editor, the associated features are displayed and can

be navigated to easily.

• Navigation Across Reuse Boundaries: The tool keeps track of reuse dependencies

of models. A modeler can navigate from a current model to the reused models via the

model explorer. A click on the reused tab of the tool shows the list of reused models

in the current model. Selecting a model from the list opens the diagram in the editor.

Our proposed generic navigation approach covers all navigation features of TouchCORE.

The summary of the navigation evaluation shown in Table 9.1 shows a summary of each

tool’s navigation capabilities. Each of the investigated tools has a model explorer, which

in our proposed generic approach corresponds to the navigation bar. Our proposed generic

mechanism covers all the navigation means provided by the surveyed tools. No tool offers

complete support for all navigation features provided by our proposed navigation mechanism.
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Only one tool supports the navigation of closures: ArgoUML supports the navigation of the

entire inheritance hierarchy in a class diagram. Attribute-based filtering is not supported

in any of the surveyed tools. However, we decided to include this feature in our proposed

metamodel, because many development environments for programming languages have the

ability to filter, e.g., by public elements. Of course, our proposed metamodel could also

easily be expanded by allowing an arbitrary query expression for a mapping. We decided to

not include this in the metamodel, as there does not seem to be a need for it according to

our analysis of popular UML modelling tools.

Tool Intra-Language Inter-Language Attribute Filtering Activation Filtering Element Highlighting Inheritance Hierarchy SPL Model Reuse
ArgoUML Yes Yes No Yes Yes Yes No No
StarUML Yes Yes No No Yes Partial No No

MagicDraw Yes Yes No Yes Yes Partial No No
Visual Paradigm Yes Yes No No Yes Partial No No

Papyrus Yes Yes No Yes Yes Partial No No
TouchCORE Yes Yes No No Yes No Yes Yes

Table 9.1: Navigation Support of UML Tools

9.5 Summary

This chapter presents the validation of the PML framework. First, we show how we fully

implement a real-world multi-language perspective (Fondue Requirement Perspective),

which combines five different modelling languages (a class diagram, a use case diagram, an

environment model, a use case maps model, and several operation models) for the purpose

of requirement elicitation and specification. Each language plays either a regular role or a

set role in the perspective. We outline the purpose of the perspective in terms of the

consistency conditions that are to be maintained in the multi-language modelling

environment. Based on the participating language and the consistency conditions, we show

how a perspective designer leverages our framework to register the languages (with our
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DSL) and then create the perspective (with our DSL) to maintain the consistency

conditions. Furthermore, we demonstrate how the perspective ensures that the consistency

conditions are maintained when a modeller modifies the language models built according to

the perspective.

Furthermore, we evaluate our framework with two additional multi-language modelling

methodologies: Palladio Component Model (PCM) and User Requirements Notation

(URN). PCM is a component-based software architecture that predicts the fulfilment of

extra functional properties of a software system, which include performance,

maintainability, security, and reliability. On the other hand, URN is a popular

multi-language paradigm aimed at elicitation, specification, analysis, and validation of

software system requirements. For each methodology, we present the purpose of the

perspective and then the LEMs, which include the consistency conditions. Here, we show

how our framework supports all the consistency conditions as contained in the LEMs.

On the other hand, we validate that our generic navigation approach covers the navigation

facilities provided by current modelling tools by conducting a survey of six popular UML

modelling tools.

Our navigation approach is not tool specific and can be applied to any language and

modelling environment that uses metamodels. The main benefit is that if a modelling

environment adopts our generic navigation approach, setting up navigation when adding a

new language to an environment becomes greatly simplified. In that case, language

designers do not have to implement intra-navigation support from scratch during language

design, but can customize the navigation bar simply by creating the appropriate

intra-language mappings. To link the new models with models expressed in other

languages already supported by the modelling environment, the corresponding
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inter-language mappings must be defined. With the increased adoption of Domain-Specific

Languages (DSLs), this approach gives language designers essential support to rapidly

define navigation within models expressed in the DSL as well as across model boundaries.

This chapter is based on the following publications:

1. Ali, H., Mussbacher, G., and Kienzle, J. (2020) Action-Driven Consistency for

Modular Multi-Language Systems with Perspectives. 12th System Analysis and

Modeling Conference (SAM 2020), Montreal, Canada, October 2020. ACM, 95-104

DOI: 10.1145/3419804.3420270. (Acceptance rate: 62

2. Schiedermeier, M., Li, B., Languay, R., Freitag, G., Wu, Q., Kienzle, J., Ali, H.,

Gauthier, I., and Mussbacher, G. (2021) Multi-Language Support in TouchCORE.

2021 ACM/IEEE International Conference on Model Driven Engineering Languages

and Systems Companion (MODELS 2021), pp. 625-629, DOI: 10.1109/MODELS-

C53483.2021.00096

3. Ali, H., Mussbacher, G., and Kienzle, J. (2021) Perspectives to Promote Modularity,

Reusability, and Consistency in Multi-Language Systems. Innovations in Systems and

Software Engineering, Special issue on Software and Systems Reuse, DOI:

10.1007/s11334-021-00425-3

The next chapter compares our research work with other contemporary work that targets

multi-language modelling environments.
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Chapter 10

Comparison With Related Work

In this chapter, we compare our approach with other contemporary works focusing on multi-

language systems and maintaining of their consistencies, as well as the navigation facilities

among popular modelling tools. Our main assumptions include that collaborating languages

in a multi-language environment exist independently and that language actions covering

construction semantics are defined for each language.

10.1 Single Underlying Model

Some studies favour a single underlying model (SUM) to describe a multi-language system

(e.g., Orthographic Software Modelling (OSM) by Atkinson et al. [13]) and then maintain

their consistencies. In SUM, a single metamodel captures the conceptual relationships

spanning across different language domains. The consistencies and invariant conditions are

defined within the single model. While this approach may seem straightforward, the

evolution of such systems may not be. Removing or adding a new language may require an

understanding of the whole system and all its languages and hence substantial manual
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efforts.

Meier et al. [61] compare OSM, MoConseMI, and Vitruvius [9]. MoConseMI is a SUM

approach that comes with a set of operators to transform initially separate metamodels into

a single metamodel. This integration of separate metamodels aims to establish the required

consistencies between different metaclasses across the metamodels. In the end, models are

co-evolved along with the integrated metamodels, i.e., SUM metamodel. Although this

approach recognizes the importance of separate metamodels in a multi-language modelling

environment, it combines the metamodels to enforce consistencies between different models.

This integration of metamodels does not promote the benefits of the separate metamodels,

including software evolution and maintainability.

On the other hand, our approach keeps the metamodels separate and then establishes

consistency relationships between different language elements, i.e., LEMs. The perspective

specification (including the LEMs) is then used generates perspective actions with the help

of our generic templates to maintain consistency across language boundaries while the

independent metamodels do not require models to be co-evolved. Also, Shah et al. [62]

present a framework where different model views can be generated from a common system

model. On the other hand, our approach keeps the metamodels separate and automatically

generates code to enforce consistency across different languages.

With Melange [63], a new DSL can be built by combining existing (legacy) DSLs.

Melange defines a configuration language that has operators to extend, restrict, and merge

existing languages. When using merging, the metamodels of the involved languages are

combined, resulting in one single metamodel containing all concepts. The merge

functionality of Melange can easily be used to create a SUM by combining several existing

languages. As such, the advantages and disadvantages of the approach are the ones
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discussed earlier. However, our approach customises (by using templates) existing language

actions (construction semantics) and automatically generates perspective actions with the

help of these template (based on mappings between language elements) to enforce

consistencies across different languages.

10.2 Virtual Single Underlying Model

The virtual single underlying model (VSUM) approach tries to address the challenges of

SUM. In a VSUM approach, on which Vitruvius and PML are also based, languages are

not directly combined. Instead, metamodels of different languages are kept separate and

consistency relationships between the metamodel elements are maintained externally. In

our work, the perspective maintains the consistency relationships and thus establishes the

virtual model. The main advantages of VSUM are: (i) removing a language from a system

does not affect all languages in the system; instead, the corresponding mappings and

consistencies need to be pruned, (ii) adding a new language basically involves establishing

the relationship between the new language elements with only those languages affected by

the new language, i.e., likely not all in the system. The challenges of this approach,

however, are the specification of the mapping and then maintaining the consistency

between different language elements, which is non-trivial.

Although we support VSUM, our work also focuses on the manipulation of each language’s

construction semantics, i.e., the language actions required for the construction of models

conforming to different languages, with the aim to add further flexibility in maintaining the

consistencies while working with models built using a perspective. Our main focus lies in

generating the perspective actions and then using them to prevent inconsistencies across
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different languages. Furthermore, our approach addresses multiplicity constraints (including

set role constraints) and conditional constraints based on the LEMs.

10.2.1 Traceability

Software traceability establishes correspondences across different levels of software

abstractions, e.g., requirement, design, and implementation levels of abstractions. In

addition, traceability establishes links between different artefacts which include models,

design specifications, and test cases [64]. Traceability offers several benefits such as

requirement validation and verification, impact analysis, and safety assurance, which are

often enforced by the regulatory bodies as a part of a software certification process [65,66].

Software traceability can be captured and then maintained manually. However, it often

requires a huge effort as well as high cost, and it is error-prone. Hence, researchers favour the

automated generation of traceability links [67,68], which includes Just in Time (Information

Retrieval) [68], Machine Learning [69], and Process Generated approaches. The process-

generated approach enforces link creation after software artefacts are created, which aligns

with the creation of MEM s after creating model elements. Although, MEM s are a kind of

traceability links which we create automatically, MEM s also ensure that the consistencies of

a system under development are maintained according to the purpose of the perspective.

10.2.2 Query-Driven Soft Links

In a multi-language modelling environment, independent language models are often persisted

in different directories, and related model elements are linked via regular associations that

span across model boundaries. However, these cross-references are persisted using URIs that

reference model elements across different storage locations.
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Hegedüs et al. [70] claim that connecting model fragments across different storage

locations with hard links is too rigid and error-prone. The authors present query-driven

soft traceability links for models, which aims to foster soft links between model elements,

instead of regular references. Software links are calculated on demand, based on a specified

query. Hence, soft links are derived after loading language models in a tool. Also, the work

issues a warning when a soft link is broken so that the user can fix it by creating or

modifying existing model element. With the derivation and incremental model query, these

soft links are not persisted; hence, avoiding the hard link between different models from

different resources.

This work mimics the architecture of a VSUM, where an instance of the query language

acts as a virtual model that oversees the relationships between language models. This work

addresses an essential problem, i.e., eliminating hard links between different model

elements at different resources. On the other hand, the PML framework offers the

equivalency consistency condition, which establishes links between model elements across

language models at different resources. Although we persist the links in the form of MEMs,

we offer additional features that are not supported by the query-driven soft links. (1) Our

framework proactively maintains consistency between models by

creating/deleting/updating model elements, i.e., equality constraints. (2) We support

multiplicity constraints, which restrain the number of allowable instances that can be

connected between language models. And finally, (3), we provide a DSL which provides a

1-to-1 mapping between language elements to capture the required links during modelling

time, instead of using a query language, which may require more effort to specify the query

used to maintain the soft links.
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10.2.3 Vitruvius

Vitruvius [9, 71, 72] presents a framework that supports flexible views [15] that may involve

multiple models conforming to different metamodels. The approach is aligned with the

Orthographic Software Modelling (OSM) approach by Atkinson et al. [13]. However,

Vitruvius supports the simultaneous use of models expressed using multiple metamodels.

Vitruvius provides several mechanisms for enforcing consistency at the metamodel level,

hence forming in some way a virtual single underlying model. The work further uses these

mechanisms to generate a model transformation which aims to restore consistency between

mapped model elements.

Vitruvius reacts to changes in models and then alters models accordingly. The reactions

work at the level of CRUD operations, i.e., atomic updates to the model. On the other

hand, our approach generates perspective actions which aim to prevent inconsistencies from

occurring. We further capture and then maintain the multiplicity constraints (including

language role multiplicity and model multiplicity) of each mapping which is not addressed

in Vitruvius.

10.2.4 View-Based

Another example of a VSUM approach is a view-based approach [73]. A view-based approach

promotes predefined viewpoints, each representing a particular context of the system aiming

to improve understanding of the system under development. Each viewpoint can contain

information from different separate models, potentially expressed with different modeling

languages. A recent survey was conducted on existing view-based approaches to identify

their differences as well as their limitations [74]. The result of the survey reveals that

existing view-based approaches lack flexibility, especially during the evolution of the system.
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Furthermore, the authors propose several research areas in this domain, which include the

view updating problem, incremental view maintenance, and concrete syntax generation, to

name a few.

Marussy et al. [75] present a view model synchronization between a target and source

models. This work employs model transformation (based on graph query pattern) to derive

a target model (view model) from the source model. The transformation engine responds

to aggregated changes in the source model observed in the graph query results (i.e., reactive

responds), then builds and maintains a partial model (which may be inconsistent) to keep

track of the changes. The target model is updated with the partial model once the partial

model represents a valid instance (i.e., a consistent model) of the target metamodel.

Furthermore, Bruneliere et al. [76] state that model scalability limits the full adoption

of view-based approaches in industry [77]. Hence, the work [76] promotes the creation of a

scalable model view in a multi-language modeling environment.

A view in view-based approaches and a perspective in PML are orthogonal concepts. While

a view-based approach combines fragments of different models into a view that addresses a

specific context, PML ensures consistency among models in a perspective. Hence, different

views could be created for the models within a perspective to highlight various context

situations, while benefiting from the consistency management of PML.

10.3 Other Related Works

Another popular work related to the PML framework is the megamodel [78]. Megamodel

describes MDE concepts (including models, languages, systems, and transformations) and

their relationships. These concise definitions as well as their relationships aim to assist
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software stakeholders in reasoning about a complex software engineering process without

entering into the details of the technological space involved. Technically, a megamodel is a

model of MDE concepts and their relationships. Favre et al. [78] believe that software

evolution can be modelled as a graph using the megamodel. This work is similar to the

PML framework because it provides the definitions as well as the relationships between

languages, metamodels, and models in a multi-language environment. However, PML

focuses on the reuse of independent languages; coordination between languages; and

maintenance of consistency between languages in a complex system that comprises multiple

languages. Moreover, PML targets relationships between languages using language

elements, while the megamodel defines relationships using an entire language, a model, a

metamodel, or a transformation.

Combemale et al. [79] claim that current workbenches used to build domain-specific

modelling languages (DSMLs) do not support coordination across different languages. Hence,

they proposed globalization of modelling languages, i.e., the use of multiple languages to

support a coordinated development of different aspects of a system. However, the authors

maintain that the main challenge is how to realize the core multi-language relationships:

interoperability, collaboration, and composition. In our approach, the redefine perspective

action fosters interoperability and collaboration between different languages while the PML

framework, in general, supports modular combination of independently existing languages.

Deantoni [80] advocates for explicit behavioural semantic definition for each language as

well as ones that cover coordination patterns that exist between different languages. This

approach is complementary to perspective actions in PML, which address the construction

semantics of the individual language as well as the combined languages instead of

behavioral semantics. Furthermore, PML supports modular reuse of languages as well as
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consistencies between different language elements. Steimann et al. propose a role based

modularisation approach [81] which covers both the abstract syntax and semantics of a

language, thereby promoting self-contained language components. Similarly, PML encodes

construction semantics with the abstract syntax of a language. However, PML addresses

consistency conditions between different language elements by the generation of perspective

actions from generic templates.

Kolovos et al. [82] classify different types of relationships that could potentially exist

between different language elements that collaborate in a software system and establish

types of inconsistency that affect a given relationship. These classifications are automatically

applied to detect and fix inconsistency between different language elements. Our approach

leverages some of the relationships (consistency types) presented by Kolovos et al. However,

similar to Vitruvius, the authors address inconsistency using a reactive approach while we

use perspective actions to proactively prevent inconsistencies.

Cicchetti et al. present a bidirectional model transformation language (JTL) [83], which

aims to support non-bijective model transformations and change propagation. JTL relies on

a universal metamodel which may lead to complex model management and evolution, while

PML does not use a single underlying model and instead groups different metamodels to

serve as a modular underlying model. Furthermore, we generate perspective actions with

the help of templates to maintain consistency across different language elements.

To support multi-language development environments (MLDEs), Pfeiffer and

Wasowski [84] present a generic framework which allows software developers to work on

different related models, potentially conforming to different languages. The authors

identify four main requirements of MLDEs: Visualization, Navigation, Static Checking, and

Refactoring, and demonstrate them by using TexMo. Similar to JTL [83], TexMo is built
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by using a single underlying approach. PML aims to address the identified requirements of

MLDEs as well. First, PML uses existing language editors for visualization as much as

possible. Second, our work on navigation (see Chapter 5) of both intra-language and

inter-language elements may be applied to single-language and multi-language perspectives.

Third, static checking could be based on the mappings and consistency conditions of a

perspective. Finally, perspective actions could be used to fulfil the refactoring requirement.

Combemale et al. [35] present Concern-Oriented Language Development (COLD),

which aims to promote modularity and reusability of language concerns. The COLD

approach customizes a given DSL to conform to the architecture of a language concern,

which includes three key interfaces: variability, customization, and usage interfaces. These

interfaces facilitate the use of a language concern across different multi-modelling

environment domains. The key difference between COLD and PML approaches is that

COLD aims to promote modularity and reusability, while PML, in addition, promotes

consistency between different language models. Also, COLD customizes a given language,

whereas PML does not alter existing languages. Instead, PML combines different

languages using the virtual single underlying model approach and then augments the

language actions to promote reusability, modularity, and consistency.

Furthermore, König and Diskin [85] present a framework as well as an algorithm to

check the consistency of inter-related models based on a specified constraint conditions. The

authors favour localization approach against the matching and merging approaches. The

localization focuses on the model elements that are affected by the concerned constraints,

unlike the matching and merging approaches, which evaluate the whole model to detect

sameness relationships/overlaps. This work focuses on model elements that are affected by

the established constraints in a multi-model system, which is similar to our approach that
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focuses on language actions and the concerned model elements to prevent inconsistencies.

However, the main difference between this work and PML is that we capture the constraints

and then ensure (proactively) that the related models are consistent, but the authors do

not enforce consistencies. Similarly, Leblebici et al. [86] present an approach for inter-model

consistency checking by combining Triple Graph Grammars [87] with linear optimization

techniques. However, unlike our approach, the work does not repair or prevent inconsistency.

To support the consistent evolution of models based on its metamodel as well as the

intra-model constraints, Burdusel et al. [88] present automatic consistency preserving search

operators based on Model-Driven Engineering and Search-Based Software Engineering [89]

methodologies. This work aims to generate mutation operators that can edit or repair model

elements with the aim of producing a model that satisfies the desired constraints. This work

focuses on maintaining intra-model consistency, unlike our approach that handles inter-model

consistency across language boundaries.

10.4 Navigation Related Work

This section compares PML navigation mechanism against contemporary navigation facilities

among popular modelling tools. Navigation is an important mechanism to traverse, search,

and retrieve information. Many studies have been done on how to improve navigation in

software applications and web sites.

Santos et al. [12] investigate the effects of different types of menus in web site navigation,

assessing the usability as well as performance of 8 different navigation mechanisms, each with

distinctive properties. The study concludes by putting forward a horizontal menu, which is

the base structure of the navigation bar presented in this thesis.
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Burrel and Sodan [90] analyze six different types of menus contained in web pages of

institutions. Considering the factors layout, ease of use, clarity of information, and ease of

learning, they determine that navigation consisting of tabs, side navigation bars at the top

and vertical menus on the left were the most favourite. We considered these insights when

developing the navigation bar proposed in this thesis.

Finally, Kitajima et al. [91] present CoLiDeS (Comprehension-based Linked model of

Deliberate Search), which is a model-based design methodology that website developers can

follow to design better navigation for webpages. The main objective is to improve the user’s

success rate while searching for information on typical web sites.

To the best of our knowledge, there has been no prior work specifically on generic

navigation for graphical modelling tools. Programming IDEs typically offer contextual

menus that allow a developer to navigate within and across source code modules, e.g., from

a method call to the method declaration. These relationships are typically inferred from

static source code analysis. The following work targets advanced navigation in

programming IDEs, and as such can also be applied for navigation in textual modelling

languages.

Mylyn is a task and application lifecycle management (ALM) framework for the Eclipse

IDE [39,92]. In Mylyn, a developer can define tasks and declare which tasks he is currently

working on. Mylyn then keeps track of code elements that are being looked at, created,

or modified for each task. The developer can then use this information for task-based

navigation.

Similarly, the FEAT plugin for Eclipse [93] allows the developer to define a high-level

conceptual unit called concern, e.g., a feature, a nonfunctional requirement, a design idiom,

or an implementation mechanism. When coding, a developer can deliberately associate code
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elements to the concern, slowly building up a concern graph that relates code elements that

are scattered throughout multiple source code modules. Subsequently, the developer can use

the concern graph for highlighting and navigation purposes.

10.5 Summary

This chapter compares the PML framework with contemporary multi-language modelling

approaches. We further investigate the position of our navigation mechanism against other

navigation facilities.

In all, our approach offers unique contributions to the software engineering community.

First, we manipulate language actions to enforce consistency between language models.

Second, we keep languages separate and then externally establish consistency relationships

between language elements across the language boundaries. The consistency relationships,

as well as other configurations, are encoded as a perspective with our DSLs. Furthermore,

we generate the implementation of each perspective with our code generator, which is

based on the generic template. The generated implementation oversees language

registrations, LEMs, as well as perspective actions, which maintain consistency during

modelling time.

Furthermore, our consistency rules cover multiplicity constraints, including language

role multiplicity and model multiplicity, as well as conditional LEM. These contributions

aim to promote consistency, reusability, and coordination in a multi-language modelling

environment. Furthermore, we keep the languages separate to promote maintainability and

evolution of both software systems and modelling tools.

In addition, we compare the PML navigation mechanism against contemporary
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navigation facilities among popular modelling tools. The comparison shows that navigation

is an important feature in a modelling tool and our approach supports most of the current

navigation facilities in a generic way. The next chapter presents the conclusion of this

doctoral research work as well as the future work.



210

Chapter 11

Conclusion and Future Work

In this chapter, we first summarize this doctoral research work in Section 11.1 and then

present the future work and research directions of this in Section 11.2.

11.1 Summary

Model-driven engineering is a conceptual development framework where models of the

system under development are created and manipulated using different languages at

different levels of abstraction. Separation of concerns is further promoted when working

with multi-view modelling and domain-specific modelling languages. While this separation

into many interrelated languages has many benefits, grouping the languages and then

maintaining consistent relationships among models conforming to these languages is a

non-trivial task.

In this doctoral research, we present Perspectives for Multi-Language Systems (PML)

for maintaining consistency conditions including equivalency, equality, and multiplicity

constraints across different model elements from different languages. PML is a framework
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that promotes modular combination of languages and facilitates consistency and reuse of

an existing language across other languages and software systems. To this end, we have

implemented two DSLs which can assist a perspective designer to combine different

languages, specify perspective actions, and encode the relationships between different

language elements with mappings, i.e., language element mappings (LEMs), even if cyclic

consistency relationships and complex language actions affecting several elements with

LEMs exist. For each LEM (which contains the two involved language elements,

multiplicities, potentially nested LEMs), and optional constraints, we generate different

perspective actions with the help of our code generator which is based on our generic

templates to prevent inconsistencies at run-time. This allows the perspective designers to

focus on these key relationships and frees them from the error-prone implementation of

perspective actions.

As proof-of-concept, we implement our approach in the TouchCORE tool, and illustrate

our approach by combining five different modelling languages (class diagrams, use case

diagrams, collaboration diagrams, use case maps, and a domain-specific modelling

language) for the purpose of requirement elicitation. This case study shows (i) that all

proposed perspective actions are needed to maintain consistency conditions in a

multi-language modelling environment, (ii) that all templates are needed (one for update,

three for delete, and twelve for create), and (iii) that only a small percentage of perspective

actions involve complex language actions requiring a larger specification effort.

Furthermore, we validate our approach with two notable multi-language modelling

technologies: User Requirements Notation and Palladio Component Model. Here, we focus

on the relationships between different languages in each perspective and then show how the

PML framework can be applied to specify those relationships and then preserve the
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consistencies during the modelling time. The two use cases show that our framework

supports their consistency rules, including advanced features such as conditional mapping

and language set roles.

Another important concept in a multi-language modelling environment is the

navigation of model elements. In this work, we propose a metamodel that covers two

categories of navigation, intra-language and inter-language navigation. The metamodel

allows the designer of a perspective or a modelling tool to generically capture the relevant

navigation links between model elements in a set of models manipulated for a given

purpose. It is done by establishing inter-language and intra-language mappings designating

the relevant metaclasses and references in the metamodels of the involved languages.

We illustrated the effectiveness of our navigation metamodel by examples that involved

feature models, class diagrams, and sequence diagrams, but our approach can be applied to

any modelling language that is defined by a metamodel. Furthermore, we validated that our

generic navigation approach covers the navigation facilities provided by current modelling

tools by conducting a survey of six popular UML modelling tools.

11.2 Future Work

In this section, we present the future work of this doctoral research work as follows:

• Our approach currently focuses on how a perspective reuses/combines existing

languages (e.g., class diagram, use cases, and sequence diagram languages). However,

a perspective is also a language, as shown in Figure 4.7 on page 66. This concept

aims to allow perspective to reuse another perspective, rather than always defining a

new perspective from scratch. However, this perspective reuse hierarchy has not yet
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been implemented in the PML framework. In future work, a reuse hierarchy can be

built on top of the existing PML infrastructure.

• In addition, as detailed in Chapter 3, a language metamodel can be configured to

create different single-language perspectives. For example, a class diagram language

metamodel can be configured to create a domain modelling, a design modelling, as well

as a metamodelling perspective. In future work, our aim is to define a configuration

language that accepts a language metamodel as input with the help of software product

line (SPL) [5] technology. In this case, each feature of the SPL represents a language

action, which can be re-exposed or hidden. This framework allows perspective designers

to select different features, i.e., configuration, which aligns with the language actions to

be re-exposed, and then generate the implementation of the configured single-language

perspective.

• Moreover, in future work, we plan to support languages that do not have metamodels,

provided that the language in question has language actions. With this approach, our

framework provides a mechanism for generating or manually implementing a

metamodel for the concerned language based on its language actions. This feature

aims to broaden the scope of the languages that are supported by this work.

• Furthermore, currently, our approach focuses on graphical modelling languages. In

future work, we plan to investigate how to apply the PML framework to support

textual languages, which are also models. Most of the textual languages may not

have metamodels. Hence, this feature builds on top of the support for non-metamodel

languages as mentioned in the previous paragraph.

• Additionally, in this doctoral research work, we cover four cardinalities, i.e., 1, 0..1,
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1..*, and 1..*. In future work, our aim is to improve the multiplicity constraints so

that perspective designers can specify any cardinalities of their choice. For example,

1..2, 0..5, 2..5, etc, will be supported.

• Furthermore, we plan to automatically detect the effects of language actions to further

streamline the specification of perspectives. With this automated detection of language

action effects, perspective designers will not be required to manually specify the effects

of language actions during the definition of a perspective.

• Additionally, a perspective designer can specify LEMs that cannot be handled with

our framework. Examples of such LEMs include complex mappings that can introduce

ambiguous circular dependencies. In future work, our aim is to detect such ambiguous

LEMs specifications during the definition of perspectives.

• Also, we aim to conduct an empirical user study to determine the effort required to

specify perspectives with our DSLs. Further avenues that could be investigated to

expand the support offered by PML to designers include assistance in identifying

potentially interacting language actions/effects during the specification of a

perspective.

• Although the results of the case studies (see Chapter 9) are promising, more studies

with additional related languages are needed to confirm our results. All the case

studies in this thesis are based on graphical modelling languages. In future, we aim

to incorporate textual modelling languages that satisfy our assumptions, i.e., each

language has a metamodel and language actions.

• Finally, considering the PML navigation, we plan to examine the navigation facilities

of non-UML modelling tools to ensure that our generic navigation approach can cover
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them. Finally, we will carry out an empirical user study to evaluate the usability of

the navigation facilities offered by our navigation bar.
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Appendix A

Generic Templates

In this appendix, we present the generic templates used by PML to generate the

implementation of a given a perspective. Section A.1 introduces the update template,

Section A.2 the delete templates, and Section A.3 the create templates. Brief definitions of

all methods and the helper functions in the templates are shown in Tables A.1 and A.2,

respectively.

A.1 Update Template

The update template aims to ensure that mapped model elements are always consistent.

Hence, when a model is modified, the update is propagated to both directly and indirectly

mapped model elements. For example, in the context of the perspective action, update

an operation, a direct mapping is the mapping between an operation in a class diagram

language and a sequence diagram. However, if the sequence diagram is also mapped to

a responsibility in a use case map language, then an indirect mapping exists between the

operation and the responsibility. When the operation is modified (e.g., change of name),
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the modification is propagated to the mapped sequence diagram and then recursively to the

corresponding responsibility in the use case map language. The generic update template

shown in Algorithm 2 is the same across all possible LEM mappings.

Algorithm 2: redefinedUpdateElement(element, attribute, value, p4, p5, ...)
1 updatedAttributes = new ArrayList<EObject>()
2 Map<EObject, List<EObject>> before = getExistingElements(secondaryEffects)
3 // call language action to update model element
4 update(element, attribute, value, p4, p5, ...)
5 Map<EObject, List<EObject>> after = getExistingElements(secondaryEffects)
6 // Call recursive action to handle the update of other mapped elements
7 updateOtherMappedElements(element, attribute, value, updatedAttributes, p4, p5,

...)
8 // handle secondary effects
9 handleSecondaryEffects(secondaryEffects, before, after, updatedAttributes, p4, p5,

...)

Algorithm 3: updateOtherMappedElements(element, attribute, value,
updatedAttributes, p4, p5, ...)
1 updatedAttributes.add(attribute)
2 for mapping : getMappings(element) do
3 other = getOther(mapping, element)
4 nestedMapping = getNestedMapping(mapping, attribute)
5 otherAttribute = getOtherAttribute(nestedMapping, other)
6 // perspective recursive call
7 if !updatedAttributes.contains(otherAttribute) then
8 UPDATE(other, otherAttribute, value, p4, p5, ...)
9 updateOtherMappedElements(other, otherAttribute, value,

updatedAttributes, p4, p5, ...)
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Method Definition
canCreateOrUseElement(...) This method optionally creates a

corresponding element and then establishes
a MEM between the element and the
original element. Alternatively, the method
can use a corresponding existing element to
establish the MEM with the original element

create(...) This is the language action that creates the
element in question

CREATE(...) This is a facade action that calls the
corresponding create language actions to
create an element as a result of creating the
original element.

createAtLeastOneElement(...) This method creates at least one
corresponding element and then establishes
MEMs between the elements and the original
element

createElement(...) This method creates a corresponding
element and then establishes a MEM
between the element and the original
element.

createFacadeOther(...) This facade action calls the corresponding
createOtherRequiredElements method to
propagate the create secondary effects

createOrUseNonMappedElement(...) This method creates a corresponding
element and then establishes a MEM
between the element and the original
element. Alternatively, the method uses an
existing corresponding element, which is not
yet mapped (i.e., MEM) to establish the
mapping with the original element

createOtherRequiredElements(...) This method propagates the effects of
creating an element to keep the concerned
models consistent

delete(...) This is the language action that deletes the
element in question

DELETE(...) This is a facade action that calls the
corresponding delete language actions to
delete each mapped element with the
originally deleted element

deleteFacadeOther(...) This facade action calls the corresponding
deleteOtherMappedElements method to
propagate the delete secondary effects

deleteOtherMappedElements(...) This method propagates the effects of
deleting an element to all the other mapped
elements

handleSecondaryEffects(...) This method propagates the secondary
effects of creating/deleting/updating an
element to keep the concerned models
consistent

redefinedCreateElement(...) This is a create redefined perspective action
redefinedDeleteElement(...) This is a delete redefined perspective action
redefinedUpdateElement(...) This is an update redefined perspective action

update(...) This is the language action that updates the
element in question

UPDATE(...) This is a facade action that calls
corresponding update language actions
to update each mapped element with the
originally updated element

updateFacadeOther(...) This facade action calls the corresponding
updateOtherMappedElements method to
propagate the update secondary effects

updateOtherMappedElements(...) This method propagates the effects of
updating an element to all the other mapped
elements

Table A.1: Definition of Important Template Methods
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Helper Method Definition
askNumberOfMappingsAtLeastOne() Asks a user to provide the number of

mappings (at-least one) that need to be
established between the new element and
the other elements, either existing or to be
created

createMapping(type, element, other) Establishes MEM between the two elements
(element and other) based on the type

diff(...) Retrieves the new elements (instances of
the affectedLanguageeLement) due to the
secondary effects of the action in question.
Basically, the method finds the difference
(i.e., diff) between the existing element of
the affectedLanguageElement before and after
the execution of the action

findCorrespondingElement() Finds an existing element which can be
mapped with the new element

getAffectedElement(parameterEffect) Returns either the updated or deleted
element based on the parameterrEffect value.

getCreateType(type) Retrieves the create type based on the LEM
(i.e., type). The create type determines if
one or more other elements need to created
because of creating the current element.

getExistingElements(secondaryEffects) Retrieves all the existing model elements
for all the affected (secondary effects)
language elements (metaclasses) as well as
the elements of the metaclass in question

getMappings(element) Retrieves all the MEMs of the element,
irrespective of the mapping type.

getMappings(mappingType, other) Retrieves all the MEMs, each references the
other element and the type of the mapping
is mappingType

getMappingTypes(element) Similar to getMappings(element), this
method retrieves all the LEMs with a
mapping-end that references the language
element of the element.

getNestedMapping(mapping, attribute) Retrieves the nested MEM of a mapping
which references the attribute as one of the
mapped element

getNewElement(languageElement, before) Retrieves the newly created element of the
languageElement

getOther(mapping, element) Retrieves the other element which is mapped
(MEM) with the element

getOtherAttribute(nestedMapping, other) Similar to getOther(mapping, element), this
helper method retrieves the other attribute
which is mapped, i.e., nested MEM, with an
attribute of the current element.

getOtherMetaClass(type, element) Similar to getOther(mapping, element), this
method retrieves the other language element
which is mapped (LEM) with the element

isCreateMapping() Asks the user whether to create a mapping
(MEM) between the new element and other
element, either existing or to be created

Table A.2: Definition of Helper Methods
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A.1.1 Update Element

When a user initiates to modify a model element (e.g., change the name of an operation),

the redefined perspective action, redefinedUpdateElement (Algorithm 2), is called. The

redefinedUpdateElement (i.e., Redefined Update Action in Figure 6.1), first creates an

empty list, i.e., updatedAttributes, at line 1, to track the attributes of model elements that

have already been updated during the chain of the respective model element updates. For

instance, a class (model element) in a class diagram model can have attributes such as

visibility, name, and abstract. During the chains of updates, each updated element

attribute is added to the list (updatedAttributes) and thus prevents further update on the

same attribute during the recursion; hence, cyclic consistency relationships are properly

handled and the recursion stops eventually.

At line 2, the generic update template initializes the map variable before between a

language element (key) and its instances (value). The parameter, secondaryEffects,

represents the secondary effects of the update action (see PML metamodel in Figure 4.7).

This map keeps a record of the existing instances (value) of each affected language element

(key) before the update language action is called. This set of existing model elements

allows the generic template to retrieve the new elements after the execution of the language

action in question. This is needed, because an update action can have a create action as

secondary effect(s) which need to be handled to adequately maintain the consistency

conditions of the perspective.

At line 4, the update template calls the original language action to update the model

element with the parameters, which include element (the element in question), attribute (the

attribute of the element whose value needs to be updated, e.g., name attribute of a Class),

and value (the new value of the attribute, e.g., the new name of a class). Similar to the
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before map variable, at line 5, the template initializes another map variable (after) which, at

this juncture, references existing instances of each affected language element, including the

newly created element(s). The difference between the instances of each language element in

both before and after variable allows the template to retrieve the newly created element(s).

The execution of this update action may require the concerned perspective action to

update other model element(s), as specified in the LEMs of the perspective. Hence, the

update template calls updateOtherMappedElements (line 7) which handles the update of

both directly and indirectly mapped element with the primary model element (i.e., handling

the primary effect of the update action).

Also, the execution of this update action at line 4 can automatically trigger other

actions which impact additional LEMs and which need to be handled as the secondary

effects of the language action. For example, when an update operation is called to change

the visibility of the operation to public, this action may also require to change the visibility

of the containing class of the operation to public. However, the perspective may require

that whenever the visibility of a class is modified, the corresponding mapped elements with

the class need to be updated accordingly. These chained effects of a language action are

handled as the secondary effects, see Section 6.3. As redefinedUpdateElement redefines a

language action, the template has access to all the attributes of the redefined language

action (LanguageAction), including the secondaryEffects (see Figure 4.7). Hence, the

update template calls handleSecondaryEffects with the secondaryEffects parameter at line 9

to propagate the secondary effects of the update language action. before and after are

passed as parameters to allow handleSecondaryEffects to retrieve the newly created model

elements.
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A.1.2 Update Other Elements

In this section, we demonstrate how the generic update template recursively propagates the

effects of executing an update language action as shown in Algorithm 3. At line 1,

updateOtherMappedElements adds the recently updated attribute to the list of the updated

attributes. Furthermore, the template ensures that the corresponding mapped elements are

updated accordingly by iterating over all the MEMs of the element in question (lines 2-9).

For each mapping, we get the corresponding mapped element (line 3), and then retrieve its

nested mapping which references the updated attribute (line 4). Furthermore, the template

retrieves the attribute (otherAttribute) of the mapped element (line 5) and then checks if

the attribute has already been updated at line 7. Otherwise, the template calls an

UPDATE method (line 8) which acts as a facade to call the actual update language action

to update the corresponding model element. Finally, the template recursively calls

updateOtherMappedElements with the corresponding mapped model element (other), the

attribute of the corresponding mapped model element (attribute), and the new value (line

9). This iteration continues until all the mapped model elements (directly or indirectly)

with the primary element have been duly updated.

A.1.3 Handle Secondary Effects

The generic template (Algorithm 4) shows the steps for handling the secondary effects of a

complex language action. It is used for all three kinds of templates: update, delete, and

create. For create secondary effects (lines 2-7), the algorithm retrieves the new element(s)

for each affected language element by computing the difference between the list of elements

of the affected language element in before and after map variables (lines 3-4), and then

calls the corresponding createFacadeOther (lines 6-7), see Figure 6.1. The primary role of
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Algorithm 4: handleSecondaryEffects(secondaryEffects, before, after,
updatedAttributes, p4, p5, ...)
1 // secondary effects - create type
2 for secondaryEffect : secondaryEffects do
3 affectedLanguageElement = secondaryEffect.getLanguageElement()
4 newElements = diff(after.get(affectedLanguageElement),

before.get(affectedLanguageElement))
5 // Calls recursive action
6 for element : newElements do
7 // call facade other
8 createFacadeOther(element, p4, p5, ...)

9 // secondary effects - update and delete types
10 for secondaryEffect : secondaryEffects do
11 affectedElement = getAffectedElement(parameterEffect)
12 if secondaryEffect == UPDATE then
13 affectedAttribute = secondaryEffect.affectedAttribute
14 // call facade other
15 updateFacadeOther(affectedElement, affectedAttribute, value,

updatedAttributes, p4, p5, ...)
16 else if secondaryEffect == DELETE then
17 // call facade other
18 deleteFacadeOther(affectedElement, p4, p5, ...)
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createFacadeOther is to derive the corresponding createOtherRequiredElements arguments

from the parameters of handleSecondaryEffects, and then to call

createOtherRequiredElements to propagate the required changes as shown in Figure 6.1.

For the update and delete secondary effects (lines 9-17), the template first retrieves the

affected model element (line 10), i.e., the element that was deleted or updated. If the

secondary effect is update (line 11), the template further retrieves the affected attribute of

the element (line 12), and then calls the updateFacadeOther to propagate the update

changes. Similar to createFacadeOther, the updateFacadeOther derives the arguments of

the corresponding

updateOtherMappedElements from the parameters of handleSecondaryEffects. On the other

hand, if the secondary effect is delete (line 15), the template calls the corresponding

deleteFacadeOther (line 17) to propagate the effect(s) of the secondary delete action.

A.1.4 Generating the Perspective Actions from the Template

While the structure of the update generic template is the same for each perspective action

that redefines a language action that updates model elements, the parameters (element,

attribute, value, p4, p5, ...) (see Algorithm 2) differ from one language action to the next.

Hence, the redefined perspective method (Algorithm 2), the handleSecondaryEffects method

(Algorithm 4), the createFacadeOther (line 7 in Algorithm 4), the updateFacadeOther (line

14 in Algorithm 4), the deleteFacadeOther (line 17 in Algorithm 4), the recursive method

updateOtherMappedElements (Algorithm 3), and the UPDATE facade method (line 8 in

Algorithm 3) are generated for each update language action. Note that we choose to depict

the element, attribute, and value parameters as the first three parameters of the methods,

but they do not need to be the first three parameters and may appear anywhere in the
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list of parameters. The parameters, p4, p5, ..., represent other potential parameters that

can be part of the language action parameters. This approach allows the same template

to be applied across different language actions that may have a different set of parameters.

Generally, the unknown parameters are in light green font color in all the generic templates to

highlight variable parts of the template that are customized to a specific redefined perspective

action. Also, some method names are highlighted with light green color to indicate that they

are customized to a specific redefined perspective action.

The perspective designer specifies the parameters for each language action in the DSL

for PML in addition to the actual qualified name of the language action. The qualified

name and the parameters are then used in the facade methods. The methods

updateFacadeOther, deleteFacadeOther, and createFacadeOther derive the respective

parameters of updateOtherMappedElements, deleteOtherMappedElements, and

createOtherRequiredElements from the initial parameters. However, the UPDATE facade

method handles the parameter derivation to the corresponding language actions. At

run-time, the UPDATE method determines which actual language action to call based on

the parameter element. Our code generator fully generates updateFacadeOther,

deleteFacadeOther, createFacadeOther, and the UPDATE facade method. How to derive

the parameters has to be defined by the the perspective designer during the perspective

specification.

Consider that an operation model element is mapped to a sequence diagram element

and the sequence diagram is also mapped to a responsibility in a use case model language.

The redefined update perspective action of the operation directly calls the update operation

language action (line 4) in Algorithm 2 with the exact same parameters as the redefined

perspective action. The recursive method (Algorithm 3) calls the UPDATE facade method
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with the sequence diagram and responsibilty as the element parameter during the first and

second recursion, respectively. The possible types of the element parameter are known

from the defined LEMs. During the first recursion, the UPDATE facade method derives

the parameters of the update sequence diagram language action from the parameters of the

update operation language action and then calls that action. During the second recursion,

the UPDATE facade method derives the update responsibility language action parameters

from the parameters of the update operation action and then calls that action. The UPDATE

facade method can derive a parameter by requesting parameter values from the modeller as

needed for the language action, using default values for the respective parameters, or using

the parameters of the facade method. The derivation of parameters in updateFacadeOther,

deleteFacadeOther, and createFacadeOther follows a similar pattern.

A.2 Delete Template

To maintain the multiplicity constraints of a LEM at run-time, the generic delete templates

ensure that when a user deletes a model element, the corresponding mapped model elements,

as well as the element mappings, are deleted accordingly. To determine whether a mapped

element needs to be deleted, the template evaluates the number of instances for a mapping-

end based on the multiplicity constraints in the LEM.

There are three types of generic delete templates (D1 to D3 as shown in Table 6.1) across

all binary mappings:

• JUST_DELETE (D2): This type simply deletes the element of interest and its

model element mappings (i.e., its links with other mapped elements), because the

multiplicity constraints in the LEM allow the mapped elements to exist without the
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element of interest. For example, assume a Compulsory Optional mapping between a

Class metaclass in a class diagram language (Compulsory mapping-end) and an Actor

metaclass in a use case diagram language (Optional mapping-end). When a modeller

decides to delete an instance of an Actor metaclass, the delete template simply deletes

the actor element and does not need to delete the mapped class, because the actor is

Optional for the class and hence the multiplicity constraint between Class and Actor

is not violated.

• DELETE_OTHERS (D1): This type deletes the element of interest, its mappings,

and other mapped model elements, because the multiplicity constraints in the LEM

do not allow other mapped elements to exist without the element of interest. For

example, deleting an instance of a Class in a Compulsory Optional mapping between a

Class and an Actor, as shown above, requires that its mappings with the actor element

as well as the mapped actor element have to be deleted to maintain the multiplicity

constraint as specified in the LEM.

• DELETE_SINGLE_MAPPED (D3): This type deletes the model element of

interest and its mappings. It also deletes any other mapped model element, if the

removal of the mappings causes the mapped element to have no mappings left. For

example, consider a Compulsory Compulsory-Multiple mapping between an Operation

metaclass in a class diagram language (Compulsory mapping-end) and an Event

metaclass in a state machine language (Compulsory-Multiple mapping-end). When a

user requests to delete an event model element, the delete template deletes the event

model element and its mappings, and also the mapped operation element if the

operation has no other MEM left. This demonstrates that if all event occurrences

mapped to the operation have been removed in the state machine, then there is no
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need for the operation anymore.

Algorithm 5: redefinedDeleteElement(element, p2, p3, ...)
1 updatedAttributes = new ArrayList<EObject>()
2 Map<EObject, List<EObject>> before = getExistingElements(secondaryEffects)
3 // call language action to delete model element
4 delete(element, p2, p3, ...)
5 Map<EObject, List<EObject>> after = getExistingElements(secondaryEffects)
6 // Call recursive action to ensure that constraints are maintained
7 deleteOtherMappedElements(element, p2, p3, ...)
8 // handle secondary effects
9 handleSecondaryEffects(secondaryEffects, before, after, updatedAttributes, p2, p3,

...)

The three generic delete templates can be applied across all MEMs as detailed in the

following templates. In general, the delete template follows the same structure as the

update template (i.e., the language action call, the recursive call to handle primary effects,

and then handling of the secondary effects), except that there are three options in the

perspective recursive operation (Algorithm 6) instead of one. As for the update template,

the parts of the delete templates that are customized to a specific redefined action are

highlighted with green color. As shown in Algorithm 5, the redefined perspective action,

redefinedDeleteElement (i.e., Redefined Delete Action in Figure 6.1), is responsible for

calling the actual delete language action (line 4), and then requesting to propagate both

the primary effect (line 7) and the secondary effects (line 9) of the delete language action

with deleteOtherMappedElements (Algorithm 6) (i.e., recursive delete operation) and

handleSecondaryEffects (Algorithm 4), respectively. Hence, deleting of other model

elements, deleting of MEMs, and the constraint validations are handled by the recursive

operation deleteOtherMappedElements.

before and after maps (lines 2 and 5) are again used to determine any newly created
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Algorithm 6: deleteOtherMappedElements(element, p2, p3, ...)
1 for mapping : getMappings(element) do
2 other = getOther(mapping, element)
3 deleteType = getDeleteType(mapping)
4 mappingType = mapping.getMappingType()
5 mapping.delete()
6 switch deleteType do
7 case JUST_DELETE do
8 // do nothing, action already covered
9 case DELETE_OTHERS do

10 DELETE(other, p2, p3, ...)
11 deleteOtherMappedElements(other, p2, p3, ...)
12 case DELETE_SINGLE_MAPPED do
13 otherMappings = getMappings(mappingType, other)
14 if otherMappings.size() == 0 then
15 DELETE(other, p2, p3, ...)
16 deleteOtherMappedElements(other, p2, p3, ...);

elements for secondary effects. An example for a secondary effect is the deletion of a sequence

diagram in a sequence diagram language. The execution of this action can automatically

delete a lifeline as well as a lifeline type in the sequence diagram. However, the lifeline type

may have been mapped with the Class metaclass in the class diagram language and the

constraints of this relationship need to maintained by the perspective action. The secondary

effects template (Section A.1.3) handles the propagation of these secondary effects.

To effectively propagate the primary effects of the delete action across other models,

deleteOtherMappedElements (Algorithm 6)

iterates over all the MEMs of the element in question (line 1-16) to ascertain if any of

the other elements is to be deleted as well. For each mapping, the template retrieves the

corresponding mapped element (line 2), the type of delete based on the mapping-end of the
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element in question (line 3), the type of mapping (i.e., LEM ) at line 4, and then deletes

the MEM (line 5) since the element of interest has already been deleted. If the delete type

is JUST_DELETE, nothing needs to be done (lines 7-8) since the element and MEM have

previously been deleted.

On the other hand, if it is the DELETE_OTHERS type, the template calls the

DELETE method (line 10) which acts as a facade to call the actual delete language action,

and then recursively calls the operation, deleteOtherMappedElements, with the

corresponding mapped element and the required parameters (line 11). For the

DELETE_SINGLE_MAPPED type (lines 12-16), the template checks whether the

corresponding element has no MEM left, and if yes, the template calls the DELETE

method (line 15; same as line 10). Finally, deleteOtherMappedElements is called recursively.

This continues until all the elements, directly or indirectly mapped with the model element

of interest are evaluated as described above. Cyclic consistency relationships are not a

concern for the delete template, because the recursion continues only when mappings exist.

However, each mapping of a deleted element is duly deleted, which prevents the recursion

from considering the same mapping more than once when a cyclic relationship exists.

Again, the redefined perspective method (Algorithm 5), the handle secondary effects

method (Algorithm 4), the createFacadeOther (line 7 in Algorithm 4), the

updateFacadeOther (line 14 in Algorithm 4), the deleteFacadeOther (line 17 in

Algorithm 4), the recursive method (Algorithm 6), and the DELETE facade method (line

10 and 15 in Algorithm 6) are generated for each delete language action, because the

parameters differ for each language action. Similar to the update generic template,

createFacadeOther, deleteFacadeOther, updateFacadeOther, and the DELETE facade

method are fully generated with our code generator.



A. Generic Templates 243

Create Type primary Multiplicity other Multiplicity Corresponding Element
CAN_CREATE (C1) 1 0..1

Have to Use New ElementCREATE (C2) 1 1
CAN_CREATE_MANY (C3) 1 0..*

CREATE_AT_LEAST_ONE (C4) 1 1..*

CAN_CREATE_OR_USE (C5) 0..* 0..1

Can Use Any Existing Element

1..* 0..1

CREATE_OR_USE (C6) 0..* 1
1..* 1

CAN_CREATE_OR_USE_MANY (C7) 0..* 0..*
1..* 0..*

CREATE_OR_USE_AT_LEAST_ONE (C8) 0..* 1..*
1..* 1..*

CAN_CREATE_OR_USE_NON_MAPPED (C9) 0..1 0..1

Can Use Non-Mapped Existing ElementCREATE_OR_USE_NON_MAPPED (C10) 0..1 1
CAN_CREATE_OR_USE_NON_MAPPED_MANY (C11) 0..1 0..*

CREATE_OR_USE_NON_MAPPED_AT_LEAST_ONE (C12) 0..1 1..*

Table A.3: Types of Create Templates

A.3 Create Template

The generic create templates handle the creation of model elements as well as the multiplicity

constraints of their mappings. Proactively, these templates can prevent inconsistency by

creating an element being requested by a user as well as other model elements required to

maintain the multiplicity constraints of the LEM. There are twelve types of create templates

(C1 to C12 as shown in Tables 6.1 and A.3). For each template, the element in question

(i.e., primary element) is created, while creating or using existing corresponding elements to

establish MEMs is based on the multiplicities of the LEM.

In contrast to the delete templates, the create templates depend on more than one factor:

(a) how many of the other elements are required (i.e., the multiplicity of the corresponding

mapping-end) and (b) can existing other elements be mapped to the primary element, as

shown in Table A.3. For corresponding elements, a new element can always be created for

the 12 types. However, C9, C10, C11, and C12 can use existing elements which are not

mapped while C5, C6, C7, and C8 can use any existing element (either mapped or not

mapped). Each create type is represented as a case statement in the template shown in

Algorithm 8.
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The generic create template has the same basic structure as the update and delete

templates, i.e., the redefined perspective action (Algorithm 7) has a language action call

(line 4), a recursive call for primary effects (line 8), and handling of secondary effects (line

10). Again, the parts of the create templates that are customized to a specific redefined

action are highlighted with green color.

However, the list of LEMs instead of MEMs need to be retrieved in the recursive template

(Algorithm 8), because mappings have to be created according to the LEMs defined for the

element in question. before and after maps are again used to determine newly added model

elements (lines 2 and 6), including the new primary element (line 5). We use this approach

because some language actions may not support the return of the new primary element after

executing the create language action. Note that the redefinedCreateElement (Algorithm 7)

represents the Redefined Create Action in Figure 6.1.

To propagate the effects of the create language action, createOtherRequiredElements

(Algorithm 8) iterates over all the LEMs of the model element (lines 1-17). For each

mapping type, we get the mappings (MEMs) (line 2), the metaclass of the other element to

be created (line 3), and the corresponding create type of the model element (line 4). To

eventually stop the recursive operation and deal with cyclic consistency relationships, the

template ensures that the model element in question has no existing mappings (MEM ) of

the type in question (lines 5-6). Furthermore, the template calls the corresponding create

type algorithms (C1-C12, see Table A.3) which retrieve existing element(s) or create new

element(s), and then establish the MEM (lines 7-17).

As for the update and delete generic templates, an analogous set of complete methods is

generated for the create generic templates.

Out of the twelve types of generic create templates (C1 to C12) as shown in Table A.3,



A. Generic Templates 245

Algorithm 7: redefinedCreateElement(p1, p2, ...)
1 updatedAttributes = new ArrayList<EObject>()
2 Map<EObject, List<EObject>> before = getExistingElements(secondaryEffects)
3 // call the language action to create the model element
4 create(p1, p2, ...)
5 newElement = getNewElement(languageElement, before)
6 Map<EObject, List<EObject>> after = getExistingElements(secondaryEffects)
7 // Call recursive action to ensure that constraints are maintained
8 createOtherRequiredElements(newElement, p1, p2, ...)
9 // handle secondary effects

10 handleSecondaryEffects(secondaryEffects, before, after, updatedAttributes, p1, p2,
...)

Algorithm 8: createOtherRequiredElements(element, p1, p2, ...)
1 for type : getMappingTypes(element) do
2 mappings = getMappings(type, element)
3 metaclass = getOtherMetaClass(type, element)
4 createType = getCreateType(type)
5 if mappings.size() != 0 then
6 break
7 switch createType do
8 case CREATE do
9 createElement(element, type, metaclass, p1, p2, ...)

10 case CREATE_AT_LEAST_ONE do
11 createAtLeastOneElement(element, type, metaclass, p1, p2, ...)
12 case CAN_CREATE_OR_USE do
13 canCreateOrUseElement(element, type, metaclass, p1, p2, ...)
14 case CREATE_OR_USE_NON_MAPPED do
15 createOrUseNonMappedElement(element, type, metaclass, p1, p2, ...)
16 case ... do
17 ...
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we discuss four in more detail in the following sub-sections as they highlight the key issues

that need to be considered for all twelve types.

A.3.1 CREATE (C2)

This create type automatically creates one other model element after creating the primary

element, because the primary element requires to be mapped with the other element to

maintain the Compulsory Compulsory multiplicity constraints of the concerned LEM. For

example, creating an instance of an InputMessage (environment model language) based

on a Compulsory Compulsory LEM between an InputMessage and an OperationSchema

(operation model language) requires that an instance of the InputMessage be mapped with

an instance of an OperationSchema. Since this kind of LEM is a 1-to-1 relationship, a new

instance of the OperationSchema needs to be created, because an existing operation schema

cannot be used as it must already be mapped with an input message. Thus, this create type

ensures that the other element is proactively created, and then establishes a MEM with the

primary element.

Algorithm 9: createElement(element, type, metaclass, p1, p2, ...)
1 other = CREATE(metaclass, p1, p2, ...)
2 createMapping(type, element, other)
3 createOtherRequiredElements(other, p1, p2, ...)

Algorithm 9 shows the execution steps for the CREATE type template. Line 1 creates

the other element using a facade method as in the other generic templates, and line 2 then

establishes the MEM. Since the creation of the new element (other) can violate other LEM

constraint(s), the template recursively calls createOtherRequiredElements (Algorithm 8) with

the other model element (line 3).
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A.3.2 CREATE_AT_LEAST_ONE (C4)

This create type proactively creates at least one other model element (i.e.,

Compulsory-Multiple multiplicity). Type C4 is quite similar to type C2, except that it

creates at least one model element, while C2 creates only one element. Consequently, line 1

of the template (Algorithm 10) asks the user to provide the number of mappings or other

elements (at least one) which need to be mapped with the primary element and the

template then iterates over these number of mappings (lines 2-5). For example, creating an

instance of an ActorType (environment model language) in a Compulsory

Compulsory-Multiple LEM between the ActorType (Compulsory mapping-end) and an

Actor from operation model language (Compulsory-Multiple mapping-end) requires that at

least one instance of the Actor is created, and each of the instances is then mapped (i.e.,

MEM ) with the newly created instance of the ActorType.

Algorithm 10: createAtLeastOneElement(element, type, metaclass, p1, p2, ...)
1 int numberOfMappings = askNumberOfMappingsAtLeastOne()
2 for int count = 0; count < numberOfMappings; count++ do
3 other = CREATE(metaclass, p1, p2, ...)
4 createMapping(type, element, other)
5 createOtherRequiredElements(other, p1, p2, ...)

A.3.3 CAN_CREATE_OR_USE (C5)

In this create type, the template optionally creates one other model element or uses an

existing element to establish a MEM with the primary element. The main difference between

C5 and the previously discussed create types is that the user is asked whether to create a

MEM with the primary element (line 1 in Algorithm 11). The template proceeds only if
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the user agrees (lines 2-8). Furthermore, an existing model element can be used to establish

a MEM with the primary element. Hence, the template queries the existing model in an

attempt to retrieve a corresponding element (line 4). The matchMaker (see Section 4.3.2)

is used to find such an element. If it exists, it is used to establish the MEM. If not, a new

element is created with the facade method (lines 5-6) and subsequently used for the MEM.

Algorithm 11: canCreateOrUseElement(element, type, metaclass, p1, p2, ...)
1 boolean isCreateMapping = isCreateMapping()
2 if isCreateMapping then
3 // Check if a corresponding element exist, either mapped or not
4 other = findCorrespondingElement()
5 if other == null then
6 other = CREATE(metaclass, p1, p2, ...)
7 createMapping(type, element, other)
8 createOtherRequiredElements(other, p1, p2, ...)

Algorithm 12: createOrUseNonMappedElement(element, type, metaclass, p1, p2,
...)
1 other = findCorrespondingElement()
2 if other == null || getMappings(type, other).size() > 0 then
3 other = CREATE(metaclass, p1, p2, ...)
4 createMapping(type, element, other)
5 createOtherRequiredElements(other, p1, p2, ...)

A.3.4 CREATE_OR_USE_NON_MAPPED (C10)

This create type highlights the final issue that needs to be considered for these templates. As

for type C5, type C10 also attempts to find a corresponding element, and if it is not possible

a new element is created and used to establish the MEM. However, the corresponding element
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cannot be mapped, i.e., the element cannot participate in a MEM of the type of the LEM

in question, which is checked in line 2 of the template (Algorithm 12).
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Appendix B

Definition of Perspective DSL

Grammar

This appendix presents the complete definition of the perspective DSL grammar, which

defines the concepts, attributes, as well as the concrete syntax of the DSL. Details of the

grammar definition are shown below.
1 grammar ca. mcgill .sel. perspectivedsl .ca. mcgill .sel. PerspectiveDSL
2 with org. eclipse . xtext . common . Terminals
3 generate perspectiveDSL "http :// www. mcgill .ca/sel/ perspectivedsl /ca/

mcgill /sel/ PerspectiveDSL "
4
5 PerspectiveModel :
6 ( perspectives += Perspective )*
7 ;
8 Perspective :
9 'perspective ' '{'

10 'name '':' name = STRING ';'
11 # to dictate the model shown by default
12 ('default '':' isDefault = [ RoleName ]';')?
13
14 # language models and the perspective .
15 ('savePerspective '':' savePerspective = STRING ';')?
16 ('saveModel '':' saveModel = STRING ';')?
17
18 # current scene , and current role name
19 # when a redefined perspective action is called .
20 'currentPerspective ' ':' currentPerspective = STRING ';'
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21 'currentRoleName ' ':' currentRoleName = STRING ';'
22
23 ('model ' 'factory ' 'facade ' 'calls ' '{'
24 ( modelFacades += FacadeCall )*
25 '}')?
26
27 # define a set of role names for a given perspective
28 'role ' 'names ' '{'
29 ( roleNames += RoleName )*
30 '}'
31 # Outlines the model cardinality for each role name
32 'model ' 'cardinalities ' '{'
33 ( modelCardinalities += ModelCardinality )*
34 '}'
35 # Adding languages in a perspective
36 'languages ' '{'
37 ( languages += Language )*
38 '}'
39 ('mappings ' '{'
40 ( mappings += LanguageElementMapping )*
41 '}')?
42 '}'
43 ;
44 Language :
45 'existing ' 'language ' name = ID '{'
46 " roleName " roleName = [ RoleName ]';'
47 'modelPackage ' modelPackage = ID ';'
48 " rootPackage " rootPackage = STRING ';'
49 ( otherPackages += OtherPackage )*
50
51 ('actions ' '{'
52 ( actions += PerspectiveAction )*
53 '}')?
54
55 ('intraLanguage ' 'mappings ' '{'
56 ( mappings += IntraLanguageMapping )*
57 '}')?
58 '}'
59 ;
60 LanguageElementMapping :
61 ( biDirectional ?= 'bi - directional ')? ( uniDirectional ?= 'uni -

directional ')? 'mapping ' name = ID '{'
62
63 ('active ' ':' active = BooleanType ';')?
64 ('default ' ':' isDefault = BooleanType ';')?
65
66 ( fromOrigin ?= 'origin ')? ( fromDestination ?= 'destination ')?

'fromMappingEnd ' fromMappingEndName = ID '{'
67 'modelPackage ' ':' fromModelPackage = ID ';'
68 'isRootElement ' ':' fromIsRootElement = BooleanType ';'
69 'cardinality ' ':' fromCardinality = Cardinality ';'
70 'roleName ' ':' fromRoleName = [ RoleName ]';'
71 'languageElementName ' ':' fromLanguageElementName = ID';'
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72 '}'
73 ( toOrigin ?= 'origin ')? ( toDestination ?= 'destination ')?'

toMappingEnd ' toMappingEndName = ID '{'
74 'modelPackage ' ':' toModelPackage = ID ';'
75 'isRootElement ' ':' toIsRootElement = BooleanType ';'
76 'cardinality ' ':' toCardinality = Cardinality ';'
77 'roleName ' ':' toRoleName = [ RoleName ]';'
78 'languageElementName ' ':' toLanguageElementName = ID ';'
79 '}'
80 ('nested ' 'mappings ' '{'
81 ( nestedMappings += NestedMapping )*
82 '}')?
83 # constraints
84 ( constraints += Constraint )*
85 '}'
86 ;
87 NestedMapping :
88 'nested ' 'mapping ' name = ID '{'
89 'matchMaker ' ':' matchMaker = BooleanType ';'
90 'fromElement ' ':' fromElementName = STRING 'from '

fromRoleName = [ RoleName ]';'
91 'toElement ' ':' toElementName = STRING 'from ' toRoleName = [

RoleName ]';'
92 '}'
93 ;
94 PerspectiveAction :
95 RedefinedCreateAction | RedefinedDeleteAction | HiddenAction |

CreateMapping
96 ;
97 RedefinedCreateAction :
98 'redefined ' 'create ' 'action ' name = ID '{'
99 ('rootElement ' ':' rootElement = BooleanType ';')?

100 'ownerType ' ':' ownerType = ID';'
101 'otherTypeAndParameters ' ':' otherTypeParameters = STRING ';'
102 'methodCall ' ':' methodCall = STRING ';'
103 'methodParameters ' ':' methodParameter = STRING ';'
104 'languageElementName ' ':' languageElementName = ID ';'
105 ('doNotGenerateMain ' ':' doNotGenerate = BooleanType ';')?
106
107 # constraint condition for root model elements
108 ( constraints += Constraint )*
109 createFacadeAction = CreateFacadeAction
110 ('secondaryEffects ' '{'
111 ('create ' 'effects ' '{'
112 ( createEffects += CreateEffect )*
113 '}')?
114 ('delete ' 'effects ' '{'
115 ( deleteEffects += DeleteEffect )*
116 '}')?
117 '}')?
118 '}'
119 ;
120 RedefinedDeleteAction :
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121 'redefined ' 'delete ' 'action ' name = ID '{'
122 ( rootElement ?= 'rootElement '';')?
123 'methodCall ' ':' methodCall = STRING ';'
124 'languageElementName ' ':' languageElementName = ID ';'
125 ('doNotGenerateMain ' ':' doNotGenerate = BooleanType ';')?
126
127 # constraints for root model elements
128 ( constraints += Constraint )*
129 deleteFacadeAction = DeleteFacadeAction
130 ('secondaryEffects ' '{'
131 ('create ' 'effects ' '{'
132 ( createEffects += CreateEffect )*
133 '}')?
134 ('delete ' 'effects ' '{'
135 ( deleteEffects += DeleteEffect )*
136 '}')?
137 '}')?
138 '}'
139 ;
140 HiddenAction :
141 'hidden ' 'action ' name = ID';'
142 ;
143 CreateMapping :
144 'create ' 'mapping ' 'action ' name = ID';'
145 ;
146 CreateFacadeAction :
147 'facadeAction ' 'create ' name = ID '{'
148 'facade ' 'calls ' '{'
149 ( facadeCalls += FacadeCall )*
150 '}'
151 '}'
152 ;
153 DeleteFacadeAction :
154 'facadeAction ' 'create ' name = ID '{'
155 'facade ' 'calls ' '{'
156 ( facadeCalls += FacadeCall )+
157 '}'
158 '}'
159 ;
160 OtherPackage :
161 " otherPackage " otherPackage = STRING ';'
162 ;
163 FacadeCall :
164 'modelPackage ' ':' modelPackage = ID ';'
165 'languageElementName ' ':' languageElementName = ID ';'
166 # constraints
167 ( constraints += Constraint )*
168 ( mappings += ParameterMapping )*
169 'methodCall ' ':' methodCall = STRING ';'
170 ;
171 ParameterMapping :
172 'derivedParameter ' mapping = STRING ';'
173 ;
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174 CreateEffect :
175 'languageElementName ' ':' languageElementName = ID ';'
176 ( mappings += ParameterMapping )*
177 'methodCall ' ':' methodCall = STRING ';'
178 ;
179 DeleteEffect :
180 # The deleted element or elements
181 ('deletedElement ' ':' deletedElement = STRING ';')?
182 ('deletedElements ' ':' deletedElements = STRING ';')?
183 # The object representation of the deleted element
184 'languageElementName ' ':' languageElementName = ID ';'
185 ( mappings += ParameterMapping )*
186 'methodCall ' ':' methodCall = STRING ';'
187 ;
188 IntraLanguageMapping :
189 'mapping ' name = ID '{'
190 'active ' ':' active = BooleanType ';'
191 'closure ' ':' closure = BooleanType ';'
192 'reuse ' ':' reuse = BooleanType ';'
193 'increaseDepth ' ':' increaseDepth = BooleanType ';'
194 'changeModel ' ':' changeModel = BooleanType ';'
195 'from ' ':' from = STRING ';'
196 'hops ' '{'
197 (hops += Hop)*
198 '}'
199 '}'
200 ;
201 Hop:
202 'hop ' ':' hop = STRING ';'
203 ;
204 Constraint :
205 'constraint ' 'condition ' '{'
206 'attributeName ' ':' attributeName = ID';'
207 'value ' ':' value = STRING ';'
208 '}'
209 ;
210 ModelCardinality :
211 'roleName ' roleName = [ RoleName ]';'
212 'numberOfModel ' numberOfModel = Cardinality ';'
213 ;
214 RoleName :
215 'roleName ' ':' name = ID ';'
216 ;
217 enum Cardinality :
218 COMPULSORY = '1' | OPTIONAL ='0..1 ' | COMPULSORY_MULTIPLE ='1..* '

| OPTIONAL_MULTIPLE ='0..* '
219 ;
220 enum BooleanType :
221 FALSE = 'false ' | TRUE = 'true '
222 ;
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Appendix C

Fondue Requirement Perspective

Language Registration Models

This appendix presents the complete specification for the language registrations used in the

Fondue Requirement Perspective, which is shown in the following pages.



C. Fondue Requirement Perspective Language Registration Models 256

Figure C.1: Environment Model Language DSL Model

Figure C.2: Class Diagram Language DSL Model
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Figure C.3: Use Case Diagram Language DSL Model

Figure C.4: Operation Model Language DSL Model
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Figure C.5: Use Case Map Language DSL Model
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Appendix D

Complete Specification of the Fondue

Requirement Perspective

This appendix presents the complete specification of the Fondue Requirement Perspective,

which is detailed below.
1 perspective {
2
3 name : " Fondue Requirement ";
4 default : Domain_Model ;
5
6 savePerspective : " BasePerspectiveController . saveModel ( scene )";
7 saveModel : " BasicActionsUtils . saveModel ( EcoreUtil . getRootContainer (

newElement ), null)";
8
9 currentPerspective : " NavigationBar . getInstance ().

getCurrentPerspective ()";
10 currentRoleName : " NavigationBar . getInstance (). getCurrentLanguageRole ()"

;
11
12 model factory facade calls {
13 # creating an operation schema (root model) requires to create a

corresponding
14 # message type in environment model language
15 modelPackage : EmPackage ;
16 languageElementName : MessageType ;
17 methodCall : "

FondueRequirementRedefinedOperationSchemaLanguageAction .
createOtherElementsForOperationSchema ( perspective , mappingType , scene ,
currentRoleName , currentModel , null , name)";
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18
19 # Also , creating an operation schema (root model) requires to create a

corresponding responsibilities in use case map language
20 modelPackage : UCMPackage ;
21 languageElementName : Responsibility ;
22 methodCall : "

FondueRequirementRedefinedOperationSchemaLanguageAction .
createOtherElementsForOperationSchema ( perspective , mappingType , scene ,
currentRoleName , currentModel , null , name)";

23 }
24
25 role names {
26 roleName : Domain_Model ;
27 roleName : UseCase_Model ;
28 roleName : Communication_Model ;
29 roleName : Operation_Model ;
30 roleName : Scenario_Model ;
31 }
32
33 model cardinalities {
34 roleName Domain_Model ;
35 numberOfModel 1;
36
37 roleName UseCase_Model ;
38 numberOfModel 1;
39
40 roleName Communication_Model ;
41 numberOfModel 1;
42
43 roleName Operation_Model ;
44 numberOfModel 0..*;
45
46 roleName Scenario_Model ;
47 numberOfModel 0..*;
48 }
49
50 languages {
51 existing language ClassDiagramLanguage {
52 roleName Domain_Model ;
53 modelPackage CdmPackage ;
54 rootPackage "ca. mcgill .sel. classdiagram ";
55 otherPackage "ca. mcgill .sel. classdiagram . language . controller .*

";
56 otherPackage "ca. mcgill .sel. classdiagram . language . controller .

impl .*";
57 otherPackage "ca. mcgill .sel. usecases .*";
58 otherPackage "ca. mcgill .sel. environmentmodel .*";
59 otherPackage "ca. mcgill .sel.ucm .*";
60 otherPackage "ca. mcgill .sel. operationmodel .*";
61 otherPackage "ca. mcgill .sel. classdiagram . Classifier ";
62 otherPackage "ca. mcgill .sel. classdiagram . language . controller .

impl. ControllerFactory ";
63 otherPackage "ca. mcgill .sel.ram.ui. components . navigationbar .

NavigationBar ";
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64 otherPackage "ca. mcgill .sel. perspective . fonduerequirement .
UseCaseDiagramLanguageFacadeAction ";

65
66 actions {
67 hidden action createOperation ;
68 hidden action createImplementationClass ;
69 hidden action editAssociationDirection ;
70 hidden action editVisibility ;
71
72 # redefined create class action , because creating a class may

require to create other elements .
73 redefined create action createNewClass {
74 ownerType : ClassDiagram ;
75 otherTypeAndParameters : " String name , boolean dataType ,

boolean isInterface , float x, float y";
76 methodCall : " ControllerFactory . INSTANCE .

getClassDiagramController (). createNewClass (( ClassDiagram ) owner , name ,
dataType , isInterface , x, y)";

77 # owner is not included here , because its value changes
during the effects

78 # propagation of the language action .
79 # owner is dynamically handled in the generated recursive

method
80 methodParameters : "name , dataType , isInterface , x, y";
81 languageElementName : Class ;
82
83 facadeAction create createOtherElementsForClass {
84 facade calls {
85 # creating an actor type in the environment model

because a class was created .
86 modelPackage : EmPackage ;
87 languageElementName : ActorType ;
88 # Get the owner of the actor type to be created , since it

is required in the createNewActor () method parameters .
89 derivedParameter " EObject otherOwner = getOwner (

perspective , scene , owner , otherRoleName )";
90 derivedParameter " EnvironmentModel actorTypeOwner = (

EnvironmentModel ) otherOwner ";
91 methodCall : " EnvironmentModelLanguageFacadeAction .

createActorType ( perspective , scene , otherRoleName , actorTypeOwner , name
)";

92
93 # creating an actor in the use case diagram because a

class was created .
94 modelPackage : UcPackage ;
95 languageElementName : Actor ;
96 derivedParameter " EObject otherOwner = getOwner (

perspective , scene , owner , otherRoleName )";
97 derivedParameter " UseCaseModel actorOwner = ( UseCaseModel )

otherOwner ";
98 methodCall : " UseCaseDiagramLanguageFacadeAction .

createNewActor ( perspective , scene , otherRoleName , actorOwner , name , x,
y)";

99
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100 # creating an actor in the operation model due creating an
actor type.

101 # Note that the actor type was created because of creating a
class ,

102 # see above facade call
103 modelPackage : OmPackage ;
104 languageElementName : Actor ;
105 derivedParameter " EObject otherOwner = getOwner (

perspective , scene , owner , otherRoleName )";
106 derivedParameter " UseCaseMap actorOwner = ( UseCaseMap )

otherOwner ";
107 methodCall : " UseCaseMapLanguageFacadeAction . createActor (

perspective , scene , otherRoleName , actorOwner , name)";
108
109 # creating a classifier in the operation model because a

class was created .
110 modelPackage : OmPackage ;
111 languageElementName : Classifier ;
112 derivedParameter " EObject otherOwner = getOwner (

perspective , scene , owner , otherRoleName )";
113 derivedParameter " UseCaseMap classifierOwner = ( UseCaseMap )

otherOwner ";
114 methodCall : " UseCaseMapLanguageFacadeAction . createClass (

perspective , scene , otherRoleName , classifierOwner , name)";
115 }
116 }
117 }
118
119 redefined delete action removeClassifier {
120 methodCall : " ControllerFactory . INSTANCE .

getClassDiagramController ()
121 . removeClassifier (( Classifier ) currentElement )";
122 languageElementName : Classifier ;
123 facadeAction delete deleteModelElement {
124 facade calls {
125 modelPackage : UcPackage ;
126 languageElementName : Actor ;
127 methodCall : " UseCaseDiagramLanguageFacadeAction .

deleteActor ( perspective , scene , otherRoleName , otherElement )";
128
129 modelPackage : EmPackage ;
130 languageElementName : ActorType ;
131 methodCall : " EnvironmentModelLanguageFacadeAction .

deleteActorType ( perspective , scene , otherRoleName , otherElement )";
132
133 modelPackage : OmPackage ;
134 languageElementName : Actor ;
135 methodCall : " OperationSchemaLanguageFacadeAction .

deleteActor ( perspective , scene , otherRoleName , otherElement )";
136
137 modelPackage : OmPackage ;
138 languageElementName : Classifier ;
139 methodCall : " OperationSchemaLanguageFacadeAction .

deleteClass ( perspective , scene , otherRoleName , otherElement )";
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140 }
141 }
142 }
143 }
144 }
145 existing language UseCaseDiagramLanguage {
146 roleName UseCase_Model ;
147 modelPackage UcPackage ;
148 rootPackage "ca. mcgill .sel. usecases ";
149 otherPackage "ca. mcgill .sel. usecases . language . controller .impl

.*";
150 otherPackage "ca. mcgill .sel. classdiagram .*";
151 otherPackage "ca. mcgill .sel.ucm .*";
152 otherPackage "ca. mcgill .sel. operationmodel .*";
153 otherPackage "ca. mcgill .sel. environmentmodel .*";
154 otherPackage "ca. mcgill .sel. usecases .Actor";
155 otherPackage "ca. mcgill .sel.ram.ui. components . navigationbar .

NavigationBar ";
156 actions {
157 redefined create action createNewActor {
158 ownerType : UseCaseModel ;
159 otherTypeAndParameters : " String name , float x, float y";
160 methodCall : " UseCaseControllerFactory . INSTANCE .

getUseCaseDiagramController (). createNewActor (( UseCaseModel ) owner , name
, x, y)";

161 methodParameters : "name , x, y";
162 languageElementName : Actor ;
163
164 facadeAction create createOtherElementsForActor {
165 facade calls {
166 modelPackage : CdmPackage ;
167 languageElementName : Class ;
168 derivedParameter " EObject o = getOwner ( perspective , scene ,

owner , otherRoleName )";
169 derivedParameter " ClassDiagram otherOwner = ( ClassDiagram ) o

";
170 derivedParameter " boolean dataType = false ";
171 derivedParameter " boolean isInterface = false";
172 methodCall : " ClassDiagramLanguageFacadeAction .

createNewClass ( perspective , scene , otherRoleName , otherOwner , name ,
dataType , isInterface , x, y)";

173
174 modelPackage : EmPackage ;
175 languageElementName : ActorType ;
176 derivedParameter " EObject o = getOwner ( perspective , scene ,

owner , otherRoleName )";
177 derivedParameter " EnvironmentModel otherOwner = (

EnvironmentModel ) o";
178 methodCall : " EnvironmentModelLanguageFacadeAction .

createActorType ( perspective , scene , otherRoleName , otherOwner , name)";
179
180 modelPackage : OmPackage ;
181 languageElementName : Classifier ;
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182 derivedParameter " EObject o = getOwner ( perspective , scene ,
owner , otherRoleName )";

183 derivedParameter " OperationSchema otherOwner = (
OperationSchema ) o";

184 methodCall : " OperationSchemaLanguageFacadeAction .
createClass ( perspective , scene , otherRoleName , otherOwner , name)";

185
186 modelPackage : OmPackage ;
187 languageElementName : Actor ;
188 derivedParameter " EObject o = getOwner ( perspective , scene ,

owner , otherRoleName )";
189 derivedParameter " OperationSchema otherOwner = (

OperationSchema ) o";
190 methodCall : " OperationSchemaLanguageFacadeAction .

createActor ( perspective , scene , otherRoleName , otherOwner , name)";
191 }
192 }
193 }
194 redefined delete action deleteActor {
195 methodCall : " UseCaseControllerFactory . INSTANCE .

getUseCaseDiagramController (). removeActor (( Actor ) currentElement )";
196 languageElementName : Actor ;
197
198 facadeAction delete deleteOtherElements {
199 facade calls {
200 modelPackage : CdmPackage ;
201 languageElementName : Class ;
202 methodCall : " ClassDiagramLanguageFacadeAction .

removeClassifier ( perspective , scene , otherRoleName , otherElement )";
203
204 modelPackage : EmPackage ;
205 languageElementName : ActorType ;
206 methodCall : " EnvironmentModelLanguageFacadeAction .

deleteActorType ( perspective , scene , otherRoleName , otherElement )";
207
208 modelPackage : OmPackage ;
209 languageElementName : Actor ;
210 methodCall : " OperationSchemaLanguageFacadeAction .

deleteActor ( perspective , scene , otherRoleName , otherElement )";
211
212 modelPackage : OmPackage ;
213 languageElementName : Classifier ;
214 methodCall : " OperationSchemaLanguageFacadeAction .

deleteClass ( perspective , scene , otherRoleName , otherElement )";
215 }
216 }
217 }
218 }
219 }
220 existing language UseCaseMapLanguage {
221 roleName Scenario_Model ;
222 modelPackage UCMPackage ;
223 rootPackage "ca. mcgill .sel.ucm";
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224 otherPackage "ca. mcgill .sel.ucm. language . controller ";
225 otherPackage "ca. mcgill .sel. environmentmodel ";
226 otherPackage "ca. mcgill .sel. operationmodel ";
227 otherPackage "ca. mcgill .sel. classdiagram ";
228 otherPackage "ca. mcgill .sel. usecases ";
229 otherPackage "ca. mcgill .sel.ram.ui. perspective . controller ";
230 otherPackage "ca. mcgill .sel.ucm. language . controller .

ControllerFactory ";
231
232 actions {
233 redefined create action createResponsibilityRef {
234 ownerType : UseCaseMap ;
235 otherTypeAndParameters : " float x, float y, String name";
236 methodCall : "ca. mcgill .sel.ucm. language . controller .

ControllerFactory . INSTANCE . getResponsibilityController ().
createResponsibilityRef (( UseCaseMap ) owner , x, y, name)";

237 methodParameters : "x, y, name";
238 languageElementName : ResponsibilityRef ;
239
240 facadeAction create createOtherElementsForResponsibilityRef {
241 facade calls {
242 modelPackage : EmPackage ;
243 languageElementName : Message ;
244 derivedParameter " EObject o = getOwner ( perspective , scene ,

owner , otherRoleName )";
245 derivedParameter " EnvironmentModel em = ( EnvironmentModel ) o

";
246 derivedParameter " EObject otherOwner = getOwner ( perspective ,

scene , owner , otherRoleName )";
247 methodCall : " EnvironmentModelLanguageFacadeAction .

createMessage ( perspective , scene , otherRoleName , otherOwner , em , name ,
MessageDirection . INPUT)";

248 }
249 }
250 }
251 redefined create action createResponsibility {
252 ownerType : UseCaseMap ;
253 otherTypeAndParameters : " String name";
254 methodCall : "ca. mcgill .sel.ucm. language . controller .

ControllerFactory . INSTANCE . getResponsibilityController ().
createResponsibility (( UseCaseMap ) owner , name)";

255 methodParameters : "name";
256 languageElementName : Responsibility ;
257
258 facadeAction create createOtherElementsForResponsibility {
259 facade calls {
260 modelPackage : OmPackage ;
261 languageElementName : OperationSchema ;
262 methodCall : " ModelFactory . INSTANCE . createNewModel (

perspective , scene , otherRoleName , name)";
263
264 modelPackage : OmPackage ;
265 languageElementName : MessageType ;
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266 derivedParameter " EObject otherOwner = getOwner (
perspective , scene , owner , otherRoleName )";

267 methodCall : " EnvironmentModelLanguageFacadeAction .
createMessageType ( perspective , scene , otherRoleName , otherOwner , name)"
;

268 }
269 }
270 }
271
272 redefined delete action deleteResponsibility {
273 methodCall : " ControllerFactory . INSTANCE .

getResponsibilityController (). removeResponsibility (( Responsibility )
currentElement )";

274 languageElementName : Responsibility ;
275
276 facadeAction delete deleteOtherElements {
277 facade calls {
278 modelPackage : EmPackage ;
279 languageElementName : Message ;
280 methodCall : " EnvironmentModelLanguageFacadeAction .

deleteMessage ( perspective , scene , otherRoleName , otherElement )";
281
282 modelPackage : EmPackage ;
283 languageElementName : MessageType ;
284 methodCall : " EnvironmentModelLanguageFacadeAction .

deleteMessageType ( perspective , scene , otherRoleName , otherElement )";
285
286 modelPackage : OmPackage ;
287 languageElementName : Message ;
288 methodCall : " OperationSchemaLanguageFacadeAction .

deleteMessage ( perspective , scene , otherRoleName , otherElement )";
289
290 modelPackage : OmPackage ;
291 languageElementName : Classifier ;
292 methodCall : " OperationSchemaLanguageFacadeAction .

deleteClass ( perspective , scene , otherRoleName , otherElement )";
293 }
294 }
295 }
296 redefined delete action deleteResponsibilityRef {
297 methodCall : "ca. mcgill .sel.ucm. language . controller .

ControllerFactory . INSTANCE . getResponsibilityController ().
removeResponsibilityRef (( ResponsibilityRef ) currentElement )";

298 languageElementName : ResponsibilityRef ;
299
300 facadeAction delete deleteOtherElements {
301 facade calls {
302
303 modelPackage : EmPackage ;
304 languageElementName : Message ;
305 methodCall : " EnvironmentModelLanguageFacadeAction .

deleteMessage ( perspective , scene , otherRoleName , otherElement )";
306
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307 modelPackage : EmPackage ;
308 languageElementName : MessageType ;
309 methodCall : " EnvironmentModelLanguageFacadeAction .

deleteMessageType ( perspective , scene , otherRoleName , otherElement )";
310
311 modelPackage : OmPackage ;
312 languageElementName : Actor ;
313 methodCall : " OperationSchemaLanguageFacadeAction .

deleteActor ( perspective , scene , otherRoleName , otherElement )";
314
315 modelPackage : OmPackage ;
316 languageElementName : Message ;
317 methodCall : " OperationSchemaLanguageFacadeAction .

deleteMessage ( perspective , scene , otherRoleName , otherElement )";
318
319 modelPackage : OmPackage ;
320 languageElementName : Classifier ;
321 methodCall : " OperationSchemaLanguageFacadeAction .

deleteClass ( perspective , scene , otherRoleName , otherElement )";
322
323 }
324 }
325 }
326 }
327 }
328
329 existing language EnvironmentModelLanguage {
330 roleName Communication_Model ;
331 modelPackage EmPackage ;
332 rootPackage "ca. mcgill .sel. environmentmodel ";
333 otherPackage "ca. mcgill .sel. environmentmodel . language .

controller .impl .*";
334 otherPackage "ca. mcgill .sel. classdiagram .*";
335 otherPackage "ca. mcgill .sel.ucm .*";
336 otherPackage "ca. mcgill .sel. operationmodel .*";
337 otherPackage "ca. mcgill .sel. usecases .*";
338 otherPackage "ca. mcgill .sel.ram.ui. perspective . controller .*";
339 otherPackage "ca. mcgill .sel. environmentmodel .Actor ";
340 otherPackage "ca. mcgill .sel. environmentmodel . Message ";
341 otherPackage "ca. mcgill .sel.ram.ui. components . navigationbar .

NavigationBar ";
342
343 actions {
344
345 redefined create action createActorType {
346 ownerType : EnvironmentModel ;
347 otherTypeAndParameters : " String name";
348 methodCall : " EnvironmentModelControllerFactory . INSTANCE .

getEnvironmentModelController (). createActorType (( EnvironmentModel )
owner , name)";

349 methodParameters : "name";
350 languageElementName : ActorType ;
351
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352 facadeAction create createOtherElementsForActorType {
353 facade calls {
354 modelPackage : CdmPackage ;
355 languageElementName : Class ;
356 derivedParameter " EObject o = getOwner ( perspective , scene ,

owner , otherRoleName )";
357 derivedParameter " ClassDiagram otherOwner = ( ClassDiagram ) o

";
358 derivedParameter " boolean dataType = false ";
359 derivedParameter " boolean isInterface = false";
360 derivedParameter " float x = 0";
361 derivedParameter " float y = 0";
362 methodCall : " ClassDiagramLanguageFacadeAction .

createNewClass ( perspective , scene , otherRoleName , otherOwner , name ,
dataType , isInterface , x, y)";

363
364 modelPackage : OmPackage ;
365 languageElementName : Actor ;
366 derivedParameter " EObject o = getOwner ( perspective , scene ,

owner , otherRoleName )";
367 derivedParameter " OperationSchema otherOwner = (

OperationSchema ) o";
368 methodCall : " OperationSchemaLanguageFacadeAction .

createActor ( perspective , scene , otherRoleName , otherOwner , name)";
369
370 modelPackage : UcPackage ;
371 languageElementName : Actor ;
372 derivedParameter " EObject o = getOwner ( perspective , scene ,

owner , otherRoleName )";
373 derivedParameter " UseCaseModel otherOwner = ( UseCaseModel ) o

";
374 methodCall : " UseCaseDiagramLanguageFacadeAction .

createNewActor ( perspective , scene , otherRoleName , otherOwner , name , 0,
0)";

375
376 modelPackage : OmPackage ;
377 languageElementName : Classifier ;
378 derivedParameter " EObject o = getOwner ( perspective , scene ,

owner , otherRoleName )";
379 derivedParameter " OperationSchema otherOwner = (

OperationSchema ) o";
380 methodCall : " OperationSchemaLanguageFacadeAction .

createClass ( perspective , scene , otherRoleName , otherOwner , name)";
381 }
382 }
383 }
384
385 redefined create action createActor {
386 ownerType : EnvironmentModel ;
387 otherTypeAndParameters : " String actorTypeName , String name ,

float x, float y";
388 methodCall : " EnvironmentModelControllerFactory . INSTANCE .

getEnvironmentModelController (). createActor (( EnvironmentModel ) owner ,
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actorTypeName , name , x, y)";
389 methodParameters : " actorTypeName , name , x, y";
390 languageElementName : Actor ;
391
392 facadeAction create createOtherElementsForActorType {
393 facade calls {
394
395 }
396 }
397 secondaryEffects {
398 create effects {
399 languageElementName : ActorType ;
400 methodCall : "

FondueRequirementRedefinedEnvironmentModelLanguageAction .
createOtherElementsForActorType ( perspective , scene , currentRole ,
newElement , newElement . eContainer () , name)";

401 }
402 }
403 }
404 redefined create action createMessage {
405 ownerType : Actor ;
406 otherTypeAndParameters : " EnvironmentModel em , String name ,

MessageDirection messageDirection ";
407 methodCall : " EnvironmentModelControllerFactory . INSTANCE .

getEnvironmentModelController (). createMessage (( Actor) owner , em , name ,
messageDirection )";

408 methodParameters : "em , name , messageDirection ";
409 languageElementName : Message ;
410
411 facadeAction create createOtherElementsForMessage {
412 facade calls {
413 modelPackage : UCMPackage ;
414 languageElementName : ResponsibilityRef ;
415 derivedParameter " EObject otherOwner =

PerspectiveControllerFactory . INSTANCE . getBasePerspectiveController ().
getRootElement (scene , UCMPackage . eINSTANCE . getUseCaseMap ())";

416 derivedParameter " float x = 0";
417 derivedParameter " float y = 0";
418 methodCall : " UseCaseMapLanguageFacadeAction .

createResponsibilityRef ( perspective , scene , otherRoleName , otherOwner ,
x, y, name)";

419 }
420 }
421 secondaryEffects {
422 create effects {
423 languageElementName : MessageType ;
424 methodCall : "

FondueRequirementRedefinedEnvironmentModelLanguageAction .
createOtherElementsForMessageType ( perspective , scene , currentRole ,
newElement , newElement . eContainer () , name , messageDirection )";

425 }
426 }
427 }
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428 redefined create action createMessageType {
429 ownerType : EnvironmentModel ;
430 otherTypeAndParameters : " String name , MessageDirection

messageDirection ";
431 methodCall : " EnvironmentModelControllerFactory . INSTANCE .

getEnvironmentModelController (). createMessageType (( EnvironmentModel )
owner , name)";

432 methodParameters : "name , messageDirection ";
433 languageElementName : MessageType ;
434
435 facadeAction create createOtherElementsForMessageType {
436 facade calls {
437 modelPackage : OmPackage ;
438 languageElementName : Message ;
439 derivedParameter " EObject o = getOwner ( perspective , scene ,

owner , otherRoleName )";
440 derivedParameter " OperationSchema otherOwner = (

OperationSchema ) o";
441 methodCall : " OperationSchemaLanguageFacadeAction .

createMessage ( perspective , scene , otherRoleName , otherOwner , null , name
, true)";

442
443 modelPackage : OmPackage ;
444 languageElementName : OperationSchema ;
445 methodCall : " ModelFactory . INSTANCE . createNewModel (

perspective , scene , otherRoleName , name , false )";
446 }
447 }
448 }
449
450 redefined delete action deleteActorType {
451 methodCall : " EnvironmentModelControllerFactory . INSTANCE .

getEnvironmentModelController (). removeActorType (( ActorType )
currentElement )";

452 languageElementName : ActorType ;
453
454 facadeAction delete deleteOtherElements {
455 facade calls {
456 modelPackage : CdmPackage ;
457 languageElementName : Class ;
458 methodCall : " ClassDiagramLanguageFacadeAction .

removeClassifier ( perspective , scene , otherRoleName , otherElement )";
459
460 modelPackage : UcPackage ;
461 languageElementName : Actor ;
462 methodCall : " UseCaseDiagramLanguageFacadeAction .

deleteActor ( perspective , scene , otherRoleName , otherElement )";
463
464 modelPackage : OmPackage ;
465 languageElementName : Actor ;
466 methodCall : " OperationSchemaLanguageFacadeAction .

deleteActor ( perspective , scene , otherRoleName , otherElement )";
467
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468 modelPackage : OmPackage ;
469 languageElementName : Classifier ;
470 methodCall : " OperationSchemaLanguageFacadeAction .

deleteClass ( perspective , scene , otherRoleName , otherElement )";
471 }
472 }
473 }
474 redefined delete action deleteMessage {
475 methodCall : " EnvironmentModelControllerFactory . INSTANCE .

getActorController (). removeMessage (( Message ) currentElement )";
476 languageElementName : Message ;
477
478 facadeAction delete deleteOtherElements {
479 facade calls {
480
481 modelPackage : UCMPackage ;
482 languageElementName : Responsibility ;
483 methodCall : " UseCaseMapLanguageFacadeAction .

deleteResponsibility ( perspective , scene , otherRoleName , otherElement )";
484
485 modelPackage : UCMPackage ;
486 languageElementName : ResponsibilityRef ;
487 methodCall : " UseCaseMapLanguageFacadeAction .

deleteResponsibilityRef ( perspective , scene , otherRoleName , otherElement
)";

488
489 modelPackage : OmPackage ;
490 languageElementName : Message ;
491 methodCall : " OperationSchemaLanguageFacadeAction .

deleteMessage ( perspective , scene , otherRoleName , otherElement )";
492
493 }
494 }
495
496 }
497
498 redefined delete action deleteMessageType {
499 methodCall : " EnvironmentModelControllerFactory . INSTANCE .

getEnvironmentModelController (). removeMessageType (( MessageType )
currentElement )";

500 languageElementName : MessageType ;
501
502 facadeAction delete deleteOtherElements {
503 facade calls {
504
505 modelPackage : OmPackage ;
506 languageElementName : Message ;
507 methodCall : " OperationSchemaLanguageFacadeAction .

deleteMessage ( perspective , scene , otherRoleName , otherElement )";
508
509 modelPackage : OmPackage ;
510 languageElementName : Classifier ;
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511 methodCall : " OperationSchemaLanguageFacadeAction .
deleteClass ( perspective , scene , otherRoleName , otherElement )";

512 }
513 }
514 }
515 }
516 }
517
518 existing language OperationSchemaLanguage {
519 roleName Operation_Model ;
520 modelPackage OmPackage ;
521 rootPackage "ca. mcgill .sel. operationmodel ";
522 otherPackage "ca. mcgill .sel. operationmodel . language . controller

.*";
523 otherPackage "ca. mcgill .sel. classdiagram .*";
524 otherPackage "ca. mcgill .sel. environmentmodel .*";
525 otherPackage "ca. mcgill .sel.ucm .*";
526 otherPackage "ca. mcgill .sel. usecases .*";
527 otherPackage "ca. mcgill .sel.ram.ui. perspective . controller .*";
528 otherPackage "ca. mcgill .sel. operationmodel . Actor ";
529 otherPackage "ca. mcgill .sel. operationmodel . Message ";
530 otherPackage "ca. mcgill .sel. operationmodel . Classifier ";
531 otherPackage "ca. mcgill .sel.ram.ui. components . navigationbar .

NavigationBar ";
532
533 actions {
534 # This action is needed because of its create other elements

.
535 # Model factory handles the creation of all root model

elements
536 redefined create action createOperationSchema {
537 ownerType : OperationSchema ;
538 otherTypeAndParameters : " String name";
539 methodCall : " String doNotCreate = null";
540 methodParameters : "name";
541 languageElementName : OperationSchema ;
542
543 facadeAction create createOtherElementsForOperationSchema {
544 facade calls {
545
546 modelPackage : UCMPackage ;
547 languageElementName : Responsibility ;
548 derivedParameter " EObject ucm =

PerspectiveControllerFactory . INSTANCE . getBasePerspectiveController ().
getRootElement (scene , UCMPackage . eINSTANCE . getUseCaseMap ())";

549 methodCall : " UseCaseMapLanguageFacadeAction .
createResponsibility ( perspective , scene , otherRoleName , ucm , name)";

550
551 modelPackage : EmPackage ;
552 languageElementName : MessageType ;
553 derivedParameter " EObject o = getOwner ( perspective , scene ,

owner , otherRoleName )";
554 derivedParameter " EnvironmentModel em = ( EnvironmentModel )

o";
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555 methodCall : " EnvironmentModelLanguageFacadeAction .
createMessageType ( perspective , scene , otherRoleName , em , name ,
MessageDirection . INPUT)";

556 }
557 }
558 }
559 redefined create action createActor {
560 ownerType : OperationSchema ;
561 otherTypeAndParameters : " String name";
562 methodCall : " OperationModelControllerFactory . INSTANCE .

getOperationModelController (). createActor (( OperationSchema ) owner , name
)";

563 methodParameters : "name";
564 languageElementName : Actor ;
565
566 facadeAction create createOtherElementsForActor {
567 facade calls {
568
569 modelPackage : EmPackage ;
570 languageElementName : ActorType ;
571 derivedParameter " EObject o = getOwner ( perspective , scene ,

owner , otherRoleName )";
572 derivedParameter " EnvironmentModel em = ( EnvironmentModel ) o

";
573 methodCall : " EnvironmentModelLanguageFacadeAction .

createActorType ( perspective , scene , otherRoleName , em , name)";
574
575 modelPackage : CdmPackage ;
576 languageElementName : Class ;
577 derivedParameter " EObject o = getOwner ( perspective , scene ,

owner , otherRoleName )";
578 derivedParameter " ClassDiagram otherOwner = ( ClassDiagram ) o

";
579 methodCall : " ClassDiagramLanguageFacadeAction .

createNewClass ( perspective , scene , otherRoleName , otherOwner , name ,
false , false , 0, 0)";

580
581 modelPackage : OmPackage ;
582 languageElementName : Classifier ;
583 derivedParameter " EObject o = getOwner ( perspective , scene ,

owner , otherRoleName )";
584 derivedParameter " OperationSchema otherOwner = (

OperationSchema ) o";
585 methodCall : " OperationSchemaLanguageFacadeAction .

createClass ( perspective , scene , otherRoleName , otherOwner , name)";
586
587 modelPackage : UcPackage ;
588 languageElementName : Actor ;
589 derivedParameter " EObject o = getOwner ( perspective , scene ,

owner , otherRoleName )";
590 derivedParameter " UseCaseModel otherOwner = ( UseCaseModel ) o

";
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591 methodCall : " UseCaseDiagramLanguageFacadeAction .
createNewActor ( perspective , scene , otherRoleName , otherOwner , name , 0,
0)";

592
593 }
594 }
595 }
596 redefined create action createMessage {
597 ownerType : OperationSchema ;
598 otherTypeAndParameters : "ca. mcgill .sel. operationmodel .Actor

actor , String name , boolean inputMessage ";
599 methodCall : " OperationModelControllerFactory . INSTANCE .

getOperationModelController (). createMessage (( OperationSchema ) owner ,
actor , name , inputMessage )";

600 methodParameters : "actor , name , inputMessage ";
601 languageElementName : Message ;
602
603 facadeAction create createOtherElementsForMessage {
604 facade calls {
605
606 modelPackage : EmPackage ;
607 languageElementName : MessageType ;
608 derivedParameter " EObject o = getOwner ( perspective , scene ,

owner , otherRoleName )";
609 derivedParameter " EnvironmentModel em = ( EnvironmentModel ) o

";
610 methodCall : " EnvironmentModelLanguageFacadeAction .

createMessageType ( perspective , scene , otherRoleName , owner , name ,
MessageDirection . OUTPUT )";

611
612 modelPackage : OmPackage ;
613 languageElementName : OperationSchema ;
614 methodCall : " ModelFactory . INSTANCE . createNewModel (

perspective , scene , otherRoleName , name , false )";
615 }
616 }
617 }
618
619 redefined create action createClass {
620 ownerType : OperationSchema ;
621 otherTypeAndParameters : " String name";
622 methodCall : " OperationModelControllerFactory . INSTANCE .

getOperationModelController (). createClass (( OperationSchema ) owner , name
)";

623 methodParameters : "name";
624 languageElementName : Classifier ;
625
626 facadeAction create createOtherElementsForClassifier {
627 facade calls {
628 modelPackage : EmPackage ;
629 languageElementName : ActorType ;
630 derivedParameter " EObject o = getOwner ( perspective , scene ,

owner , otherRoleName )";
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631 derivedParameter " EnvironmentModel em = ( EnvironmentModel ) o
";

632 methodCall : " EnvironmentModelLanguageFacadeAction .
createActorType ( perspective , scene , otherRoleName , owner , name)";

633
634 modelPackage : CdmPackage ;
635 languageElementName : Class ;
636 derivedParameter " EObject o = getOwner ( perspective , scene ,

owner , otherRoleName )";
637 derivedParameter " ClassDiagram otherOwner = ( ClassDiagram ) o

";
638 methodCall : " ClassDiagramLanguageFacadeAction .

createNewClass ( perspective , scene , otherRoleName , otherOwner , name ,
false , false , 0, 0)";

639
640 modelPackage : UcPackage ;
641 languageElementName : Actor ;
642 derivedParameter " EObject o = getOwner ( perspective , scene ,

owner , otherRoleName )";
643 derivedParameter " UseCaseModel otherOwner = ( UseCaseModel ) o

";
644 methodCall : " UseCaseDiagramLanguageFacadeAction .

createNewActor (
645 perspective , scene , otherRoleName , otherOwner , name , 0, 0)";
646
647
648 modelPackage : OmPackage ;
649 languageElementName : Actor ;
650 derivedParameter " EObject o = getOwner ( perspective , scene ,

owner , otherRoleName )";
651 derivedParameter " OperationSchema otherOwner = (

OperationSchema ) o";
652 methodCall : " OperationSchemaLanguageFacadeAction .

createActor (
653 perspective , scene , otherRoleName , otherOwner , name)";
654
655 }
656 }
657 }
658
659 redefined delete action deleteActor {
660 methodCall : " OperationModelControllerFactory . INSTANCE .

getOperationModelController (). removeActor (( Actor ) currentElement )";
661 languageElementName : Actor ;
662
663 facadeAction delete deleteOtherElements {
664 facade calls {
665 modelPackage : CdmPackage ;
666 languageElementName : Class ;
667 methodCall : " ClassDiagramLanguageFacadeAction .

removeClassifier ( perspective , scene , otherRoleName , otherElement )";
668
669 modelPackage : UcPackage ;
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670 languageElementName : Actor ;
671 methodCall : " UseCaseDiagramLanguageFacadeAction .

deleteActor ( perspective , scene , otherRoleName , otherElement )";
672
673 modelPackage : EmPackage ;
674 languageElementName : ActorType ;
675 methodCall : " EnvironmentModelLanguageFacadeAction .

deleteActorType ( perspective , scene , otherRoleName , otherElement )";
676
677 modelPackage : OmPackage ;
678 languageElementName : Classifier ;
679 methodCall : " OperationSchemaLanguageFacadeAction .

deleteClass ( perspective , scene , otherRoleName , otherElement )";
680
681 }
682 }
683 }
684 redefined delete action deleteMessage {
685 methodCall : " OperationModelControllerFactory . INSTANCE .

getOperationModelController (). removeMessage (( Message ) currentElement )";
686 languageElementName : Message ;
687
688 facadeAction delete deleteOtherElements {
689 facade calls {
690
691 modelPackage : EmPackage ;
692 languageElementName : MessageType ;
693 methodCall : " EnvironmentModelLanguageFacadeAction .

deleteMessageType ( perspective , scene , otherRoleName , otherElement )";
694 }
695 }
696 }
697 redefined delete action deleteClass {
698 methodCall : " OperationModelControllerFactory . INSTANCE .

getOperationModelController (). removeClassifier (( Classifier )
currentElement )";

699 languageElementName : Classifier ;
700
701 facadeAction delete deleteOtherElements {
702 facade calls {
703 modelPackage : CdmPackage ;
704 languageElementName : Class ;
705 methodCall : " ClassDiagramLanguageFacadeAction .

removeClassifier ( perspective , scene , otherRoleName , otherElement )";
706
707 modelPackage : UcPackage ;
708 languageElementName : Actor ;
709 methodCall : " UseCaseDiagramLanguageFacadeAction .

deleteActor ( perspective , scene , otherRoleName , otherElement )";
710
711 modelPackage : EmPackage ;
712 languageElementName : ActorType ;
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713 methodCall : " EnvironmentModelLanguageFacadeAction .
deleteActorType ( perspective , scene , otherRoleName , otherElement )";

714
715 modelPackage : OmPackage ;
716 languageElementName : Actor ;
717 methodCall : " OperationSchemaLanguageFacadeAction .

deleteActor ( perspective , scene , otherRoleName , otherElement )";
718 }
719 }
720 }
721 }
722 }
723 }
724
725 # Language Element Mappings
726 mappings {
727 # languageElement mappings for root model elements
728 bi - directional mapping DM_UC {
729 fromMappingEnd DomainModelCompulsory {
730 modelPackage : CdmPackage ;
731 isRootElement : true;
732 cardinality : 1;
733 roleName : Domain_Model ;
734 languageElementName : ClassDiagram ;
735 }
736
737 toMappingEnd UseCaseCompulsory {
738 modelPackage : UcPackage ;
739 isRootElement : true;
740 cardinality : 1;
741 roleName : UseCase_Model ;
742 languageElement : UseCaseModel ;
743 }
744
745 }
746
747 bi - directional mapping DM_EM {
748 fromMappingEnd DomainModelCompulsory {
749 modelPackage : CdmPackage ;
750 isRootElement : true;
751 cardinality : 1;
752 roleName : Domain_Model ;
753 languageElementName : ClassDiagram ;
754 }
755 toMappingEnd EnvironmentModelCompulsory {
756 modelPackage : EmPackage ;
757 isRootElement : true;
758 cardinality : 1;
759 roleName : Communication_Model ;
760 languageElement : EnvironmentModel ;
761 }
762 }
763
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764 bi - directional mapping DM_OM {
765 fromMappingEnd DomainModelCompulsory {
766 modelPackage : CdmPackage ;
767 isRootElement : true;
768 cardinality : 1;
769 roleName : Domain_Model ;
770 languageElementName : ClassDiagram ;
771 }
772 toMappingEnd OperationModelOptionalMultiple {
773 modelPackage : OmPackage ;
774 isRootElement : true;
775 cardinality : 0..*;
776 roleName : Operation_Model ;
777 languageElement : OperationSchema ;
778 }
779 }
780
781 bi - directional mapping EM_UCM {
782 fromMappingEnd EnvironmentModelCompulsory {
783 modelPackage : EmPackage ;
784 isRootElement : true;
785 cardinality : 1;
786 roleName : Communication_Model ;
787 languageElementName : EnvironmentModel ;
788 }
789 toMappingEnd UseCaseMapMultiple {
790 modelPackage : UCMPackage ;
791 isRootElement : true;
792 cardinality : 0..*;
793 roleName : Scenario_Model ;
794 languageElement : UseCaseMap ;
795 }
796 }
797
798 bi - directional mapping UCM_OM {
799 fromMappingEnd UseCaseMapMultiple {
800 modelPackage : UCMPackage ;
801 isRootElement : true;
802 cardinality : 0..*;
803 roleName : Scenario_Model ;
804 languageElementName : UseCaseMap ;
805 }
806 toMappingEnd OperationModelOptionalMultiple {
807 modelPackage : OmPackage ;
808 isRootElement : true;
809 cardinality : 0..*;
810 roleName : Operation_Model ;
811 languageElement : OperationSchema ;
812 }
813 }
814
815 # Other language element mappings
816
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817 # R1
818 bi - directional mapping DMClass_EMActorType {
819 fromMappingEnd CdmClassCompulsory {
820 modelPackage : CdmPackage ;
821 isRootElement : false ;
822 cardinality : 1;
823 roleName : Domain_Model ;
824 languageElementName : Class ;
825 }
826 toMappingEnd EMActorTypeOptional {
827 modelPackage : EmPackage ;
828 isRootElement : false ;
829 cardinality : 0..1;
830 roleName : Communication_Model ;
831 languageElement : ActorType ;
832 }
833
834 nested mappings {
835 nested mapping ClassName_ActorName {
836 matchMaker : true;
837 fromElement : "name" from Domain_Model ;
838 toElement : "name" from Communication_Model ;
839 }
840
841 }
842 }
843
844 # R2
845 bi - directional mapping EMMessageType_OMOperationSchema {
846
847 fromMappingEnd EMMessageTypeCompulsory {
848 modelPackage : EmPackage ;
849 isRootElement : false ;
850 cardinality : 1;
851 roleName : Communication_Model ;
852 languageElementName : MessageType ;
853 }
854 toMappingEnd OperationModelCompulsory {
855 modelPackage : OmPackage ;
856 isRootElement : true;
857 cardinality : 1;
858 roleName : Operation_Model ;
859 languageElement : OperationSchema ;
860 }
861
862 nested mappings {
863 nested mapping MessageTypeName_OperationSchemaName {
864 matchMaker : true;
865 fromElement : "name" from Communication_Model ;
866 toElement : "name" from Operation_Model ;
867 }
868 }
869 constraint condition {
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870 attributeName : messageDirection ;
871 value: " MessageDirection . INPUT ";
872 }
873 }
874
875 # R3
876 bi - directional mapping EMMessageType_OMMessage {
877
878 fromMappingEnd EMMessageTypeOptional {
879 modelPackage : EmPackage ;
880 isRootElement : false ;
881 cardinality : 0..1;
882 roleName : Communication_Model ;
883 languageElementName : MessageType ;
884 }
885 toMappingEnd OMMessageCompulsoryMultiple {
886 modelPackage : OmPackage ;
887 isRootElement : false ;
888 cardinality : 1..*;
889 roleName : Operation_Model ;
890 languageElement : Message ;
891 }
892
893 nested mappings {
894 nested mapping MessageTypeName_MessageName {
895 matchMaker : true;
896 fromElement : "name" from Communication_Model ;
897 toElement : "name" from Operation_Model ;
898 }
899 }
900 constraint condition {
901 attributeName : messageDirection ;
902 value: " MessageDirection . OUTPUT ";
903 }
904 }
905
906 # R4
907 bi - directional mapping EMActorType_OMActor {
908 fromMappingEnd EMActorTypeCompulsory {
909 modelPackage : EmPackage ;
910 isRootElement : false ;
911 cardinality : 1;
912 roleName : Communication_Model ;
913 languageElementName : ActorType ;
914 }
915 toMappingEnd OMActorMultipleCompulsory {
916 modelPackage : OmPackage ;
917 isRootElement : false ;
918 cardinality : 1..*;
919 roleName : Operation_Model ;
920 languageElement : Actor;
921 }
922 nested mappings {
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923 nested mapping ActorTypeName_ActorName {
924 matchMaker : true;
925 fromElement : "name" from Communication_Model ;
926 toElement : "name" from Operation_Model ;
927 }
928 }
929 }
930
931 # R5
932 bi - directional mapping DMClass_OMClassifier {
933 fromMappingEnd CdmClassCompulsory {
934 modelPackage : CdmPackage ;
935 isRootElement : false ;
936 cardinality : 1;
937 roleName : Domain_Model ;
938 languageElementName : Class ;
939 }
940 toMappingEnd OMClassifierMultipleOptional {
941 modelPackage : OmPackage ;
942 isRootElement : false ;
943 cardinality : 0..*;
944 roleName : Operation_Model ;
945 languageElement : Classifier ;
946 }
947
948 nested mappings {
949 nested mapping ClassName_ClassifierName {
950 matchMaker : true;
951 fromElement : "name" from Domain_Model ;
952 toElement : "name" from Operation_Model ;
953 }
954 }
955 }
956
957 # R6
958 bi - directional mapping UCMResponsibility_OMOperationSchema {
959 fromMappingEnd UCMResponsibilityCompulsoryMultiple {
960 modelPackage : UCMPackage ;
961 isRootElement : false ;
962 cardinality : 1..*;
963 roleName : Scenario_Model ;
964 languageElementName : Responsibility ;
965 }
966 toMappingEnd OperationModelCompulsory {
967 modelPackage : OmPackage ;
968 isRootElement : true;
969 cardinality : 0..1;
970 roleName : Operation_Model ;
971 languageElement : OperationSchema ;
972 }
973
974 nested mappings {
975 nested mapping ResponsibilityName_OperationSchemaName {
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976 matchMaker : true;
977 fromElement : "name" from Scenario_Model ;
978 toElement : "name" from Operation_Model ;
979 }
980 }
981 }
982
983 # R7
984 bi - directional mapping EMessage_UCMResponsibilityRef {
985 fromMappingEnd EMMessageCompulsory {
986 modelPackage : EmPackage ;
987 isRootElement : false ;
988 cardinality : 1;
989 roleName : Communication_Model ;
990 languageElementName : Message ;
991 }
992 toMappingEnd UCMResponsibilityRefCompulsoryMultiple {
993 modelPackage : UCMPackage ;
994 isRootElement : false ;
995 cardinality : 1..*;
996 roleName : Scenario_Model ;
997 languageElement : ResponsibilityRef ;
998 }
999 nested mappings {

1000 nested mapping ActorTypeName_ActorName {
1001 matchMaker : true;
1002 fromElement : " messageType .name" from Communication_Model ;
1003 toElement : " responsibilityDef .name" from

Scenario_Model ;
1004 }
1005 }
1006
1007 }
1008
1009 # R8
1010 bi - directionalmapping DMClass_UCActor {
1011 fromMappingEnd CdmClassCompulsory {
1012 modelPackage : CdmPackage ;
1013 isRootElement : false ;
1014 cardinality : 1;
1015 roleName : Domain_Model ;
1016 languageElementName : Class ;
1017 }
1018 toMappingEnd UCActorOptional {
1019 modelPackage : UcPackage ;
1020 isRootElement : false ;
1021 cardinality : 0..1;
1022 roleName : UseCase_Model ;
1023 languageElement : Actor;
1024 }
1025
1026 nested mappings {
1027 nested mapping ClassName_ActorName {
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1028 matchMaker : true;
1029 fromElement : "name" from Domain_Model ;
1030 toElement : "name" from UseCase_Model ;
1031 }
1032 }
1033 }
1034
1035 }
1036 }
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