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Phase-field modeling of eutectic growth
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A phase-field model of eutectic growth is proposed in terms of a free energyF, which is a functional of a
liquid-solid order parameterc, and a conserved concentration fieldc. The model is shown to recover the
important features of a eutectic phase diagram and to reduce to the standard sharp-interface formulation of
nonequilibrium growth. It is successfully applied to the study of directional solidification when the solid phase
is a single or two phase state. The crystallization of a eutectic compound under isothermal conditions is also
considered. For that process, the transformed volume fraction andc-field structure factor, both measured
during numerical simulations, closely match theoretical predictions. Three possible growth mechanisms are
also identified: diffusion-limited growth, lamellar growth, and spinodal decomposition.

PACS number~s!: 64.70.Dv, 05.70.Fh, 82.20.Mj, 05.70.Ln
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I. INTRODUCTION

The ability to generate forms or patterns is a remarka
property of macroscopic systems. Understanding the p
ciples at the origin of these patterns represents a formid
task to which numerous efforts have been devoted. Over
last 30 years considerable progress has been made m
through the study of simple problems involving fluid flow
solidification processes. Classic examples of pattern for
tion in those fields include the onset of convective rolls
Rayleigh-Bénard cells@1–4# and the dendritic instability of
solidification fronts@5–9#. Various models have been pro
posed to describe these phenomena, while experiments
helped determine the precise conditions under which t
take place.

For processes involving liquid-solid transitions the si
plest theoretical description is provided by the so-cal
minimal model of solidification@6,10#. It consists of one or
several diffusion equations governing the transport of lat
heat and/or chemical species through the system. Boun
conditions at the sharp liquid-solid interface and at infin
complete the model. Hydrodynamic and elastic effects
not considered. The apparent simplicity of the approach
somewhat deceptive as exact solutions have been foun
only a few special cases~e.g., when the solidification front is
planar or spherical@6#!. Furthermore, extensive numeric
work has been hampered by the difficulties involved in tra
ing the position of the interface@11,12#.

These difficulties have lead to the formulation of t
phase-field approach@13,14#, in which information about the
position of the interface is contained in the spatial dep
dence of some order parameterc which assumes differen
values in the liquid and solid phases. The interfacial reg
over which c changes from one value to the other has
thickness of the order of an equilibrium correlation leng
The equation obeyed by the order parameter is presente
terms of a mesoscopic free energy functionalF. This de-
scribes the basic thermodynamics involved in the proc
PRE 611063-651X/2000/61~6!/6705~16!/$15.00
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such as the existence of both liquid and solid phases, as
as their relative thermal and mechanical stability. The f
energy functional is coupled to one or more diffusionli
equations, which govern the release and transport of la
heat and/or chemical species. The model thus consists
small number of differential equations that are easily solv
numerically.

This paper contains a detailed analysis of a recently in
duced@15–17# phase-field model describing eutectic beha
ior. Examples of eutectic compounds include simple bin
alloys such as Pb-Sn@18# and Mg-Al @19# and complex or-
ganic materials such as carbon tetrabromid
hexachloroethane@20#. All have similar phase diagrams, th
complexity of which allows for a number of different solid
fication processes. Results from our study of some of th
processes are presented in this paper, which is structure
follows. The free energy functionalF central to the model is
introduced and analyzed using mean-field theory in Sec
In Sec. III, the phase-field model is shown to reduce to
classical formulation of the problem in the sharp-interfa
limit @15,21–26#. The process of lamellar eutectic growth
analyzed in Sec. IV, with the emphasis on the wavelen
selection problem and the various instabilities observed.
cellular instability characteristic of directional solidificatio
is also recovered. Results from a numerical study of isoth
mal eutectic growth are presented in Sec. V. The proc
involves constant nucleation and growth rates, allowing t
oretical predictions for the transformed volume fraction a
c-field structure factor. The various growth mechanis
governing compositional segregation are also identifi
Some technical details are given in Appendices A and B

II. MODEL

The mesoscopic model is formulated in terms of
Ginzburg-Landau free energyF which is a functional of two
coupled order parameters: a nonconserved liquid-solid o
parameterc and a conserved concentration fieldc}C
6705 ©2000 The American Physical Society
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6706 PRE 61DROLET, ELDER, GRANT, AND KOSTERLITZ
2CE , whereCE is the eutectic composition. The thermod
namic properties to be accounted for are summarized in
eutectic phase diagram displayed in Fig. 1. At high tempe
tures,~region 1! the equilibrium state of the system consis
of a liquid of uniform composition. Coexistence between
liquid and a solid is possible inside the two sidearms co
sponding to region 2. Each arm is delimited by liquidus~L!
and solidus~S! curves. The two liquidus lines meet at th
eutectic point (E), where three-phase coexistence is p
sible: a liquid of eutectic composition coexists with two so
ids rich in either component~denotedA andB, respectively!.
At that point the free energies associated with the th
phases are all equal. As temperature is lowered the liq
becomes metastable and eventually solidifies. Dependin
the average composition of the sample, the liquid eit
transforms into a mixture of the two solids~region 3! or
becomes a solid of uniform composition~region 4!. From
these features we can anticipate the appropriate form for
free energyF.

The free energy is the sum of local parts which inter
via, for example, a square-gradient term. Since it is a me
scopic model, there are no nonanalytic pieces; any such
pendence can only arise in the thermodynamic free ene
2kBT ln (c,ce

2F/kBT, wherekB is Boltzmann’s constant, an
T is temperature. FirstF must allow two-phase coexistenc
A convenient form is the double-well potentialf c52c2

1c41nc. This form reflects the existence of both liqu
and solid phases, with the coefficientn determining their
relative stability. As a convention, a positive~negative! value
of c is identified with the solid~liquid! phase. Thusn must
be positive at high temperatures and negative otherwise.
free energy must also account for the fact that the concen
tion is homogeneous in the liquid phase and can separa
the solid phase. This is accomplished by adding the fo
f c52cc21c4, in which the sign ofc determines whethe

FIG. 1. Mean-field phase diagram in the (c,DT) plane corre-
sponding to f (c,c) with the parameter set (r ,a,b,w,a,b)
5(1,1,1,0,0.15,0.15). Solid lines separate the various regions o
phase diagram@1 ~liquid!, 2 ~solid-liquid coexistence!, 3 ~solid-
solid coexistence!, and 4 ~single phase solid!#. The dashed lines
represent metastable extensions of these boundaries.~S! is the soli-
dus and~L! the liquidus.~E! denotes the eutectic point.
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thec field phase separates (c.0) or not (c,0). With these
considerations, the general form ofF can be written

F$c,c%5E dxW F f ~c,c!1
Kc

2
u¹W cu21

Kc

2
u¹W cu2G , ~1!

where

f 52
r

2
c21

a

4
c41~aDT2bc2!c1

w

2
c21

b

4
c4. ~2!

Note thatF$c,c% is an effective free energy describing th
system on a coarse-grained scale. Processes on sm
length scales have already been averaged over and inco
rated into parameters such asr anda. The local part of the
free energy functionalf involves the positive parametersr, a,
a, b, w, andb, wherew,2b, and the excess temperatu
DT5T2Tm , whereTm is the melting temperature atb50
~not the eutectic temperatureTE). Mean-field theory will be
used below to relate these parameters to thermodyna
quantities. The termsKcu¹W cu2/2 andKcu¹W cu2/2 are included
in order to account for the energetic cost associated with
presence of interfaces in the system. Note also that for
mesoscopic model to be well defined it is implicit that the
be an ultraviolet cutoff in integrals over space. That is, in
grals overxW are restricted touxW u. l 0, where l 0 is a small
length scale@27#, which may be thought of as the lattic
constant.

The dynamics used in this paper are the simplest poss
dissipative dynamics which drives the system toward th
modynamic equilibrium, subject to external constraints, su
as some specified temperature distribution, and which
spects the conservation ofc. The effects of flows in the high
temperature liquid phase are not considered. Inclusion
these requires an additional field describing the momen
density of the liquid in the free energyF, a dynamical
Navier Stokes equation for its dynamics, and various mo
coupling terms in the dynamics forc andc. The dynamics of
c andc are given by the Langevin equations

]c

]t
52Gc

dF
dc

1hc ~3!

and

]c

]t
5Gc¹

2
dF
dc

1hc . ~4!

The mobilitiesGc,c are constant@28#, while thermal fluctua-
tions obey the fluctuation-dissipation relation

^hc(xW ,t)hc(0,0)&52GckbTd(xW )d(t) and ^hc(xW ,t)hc(0,0)&
52GckbT¹2d(xW )d(t). In this paper, analysis is limited to
cases in which the temperatureDT is fixed externally. This is
an excellent approximation for two-dimensional films, me
als, and metalloids where concentration diffusion is orders
magnitude slower than heat diffusion. Results obtained us
a modified eutectic model which includes latent heat gene
tion at the interface and subsequent diffusion through
system can be found in Ref.@17#.
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PRE 61 6707PHASE-FIELD MODELING OF EUTECTIC GROWTH
Phase diagram

The phase diagram shown in Fig. 1 was derived from
mean-field analysis of the model

2kBT ln (
c,c

e2F/kBT'Fmean field, ~5!

whereFmean fieldis the free energy functional evaluated at t
extrema ofc andc. It was obtained by first minimizing the
bulk free energyf (c,c) with respect toc. ProvideduaDT
2bc2u/2a!(r /3a)3/2 , the solutions to] f (c,c)/]c50 are

cL'2S r

aD 1/2

2
1

2r
~aDT2bc2! ~6!

for the liquid phase, and

cS'1S r

aD 1/2

2
1

2r
~aDT2bc2!, ~7!

for the solid phase.
SubstitutingcL andcS into f (c,c) defines two functions

of c, f L(c) and f S(c) @see Fig. 2~a!#. The equilibrium state of
the system is then specified by imposing a uniform chem
potential (m[dF/dc5m0). The various lines on the phas
diagram are recovered by assuming this equilibrium s
consists of two phases of respective compositionc1 andc2,
separated by a planar interface atz50. Lettingc[c(z), the
condition m05dF/dc becomes Kcd

2c/dz25] f (c,c)/]c
2m0. This simplifies by integrating both sides overc and
noting that the left-hand side identically vanishes. Hence

E
c1

c2
dcS ] f

]c
2m0D5 f ~c2!2 f ~c1!2~c22c1!m050, ~8!

with ] f /]cuc1 ,c2
5m0. Equation~8! is Maxwell’s equal-area-

construction rule, which determinesc1 , c2, andm0 @see Fig.
2~b!#. The entire phase diagram is recovered by probin
wide range of temperatures. Metastable extensions of th
quidus and solidus lines~included in Fig. 1! are associated
with the existence of a second set of solutions to Eq.~8!.
Near the eutectic point it is possible to obtain analytic e
pressions for many important quantities such as the con
tration on the coexistence lines, the eutectic temperature
chemical potential, and the slopes of the liquidus and soli
lines. These are given below.

Note that the symmetry of the phase diagram reflects
invariance of the particular form off underc→2c. Other
forms of f can be chosen which are not symmetric. T
present convenient choice highlights generic features of
tectic growth. It should also be noted that the liquidus a
solidus lines can be made to converge atc561, corre-
sponding to a pureA or pureB sample, through the use o
an alternate form of f, such as f (c,c)52rc2/2
1ac4/41(aDT2 bc2)c1vc2/21(3b/2)@(12 c)ln(12c)
1(11c)ln(11c)2c2]. Finally, as shown by Kobayash
@29#, for the study of dendritic instabilities it can be of use
break the 6c symmetry with the alternate term (aDT
2bc2)C(c), where C~6c!56C is chosen such tha
dC/dcueq50.
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III. SHARP-INTERFACE LIMIT

The preceding mean-field treatment indicates that the
energy accounts for the various regions characteristic o
eutectic phase diagram. This is one of the useful feature
this approach involving the Ginzburg-Landau free ener
Mean-field theory is simple and transparent. The validity
the phase-field model can be further established by show
that it reduces to the classical sharp-interface formulation
eutectic growth. This will again be done by mean-fie
theory.

However, some caution should be used to avoid ove
terpreting this mean-field limit. It is well known that th
actual values of the parameters in the Ginzburg-Landau
energy functional can have little direct physical meanin
Formally, observables such as the correlation length, spe
heat, diffusion coefficients, and so on are particular limits

FIG. 2. ~a! The compositional dependence off for either the
liquid or solid phase. The equilibrium compositions can be de
mined using the common tangent construction.~b! One can also
find the valuem0 such that the integral of (] f /]c)min betweenc1

andc2 vanishes. The example shown hasDT50.15, with the other
parameters assuming the values given at the bottom of Fig. 1
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6708 PRE 61DROLET, ELDER, GRANT, AND KOSTERLITZ
space and time dependent response functions. In partic
the interface between two phases~liquid-solid or solid-solid!
involves a thicknessj which can be a complicated functio
of all the parameters of the underlying microscopic theo
Roughening of an interface and critical phenomena are
examples of this behavior@27#. As mentioned above, for th
Ginzburg-Landau description to be valid on all length sca
one must incorporate an ultraviolet cutoffl 0, which is a mi-
croscopic length scale of order of the interparticle distan
To give one example, above the roughening transition
three-dimensional surface has a contribution to its width
addition to intrinsic width, due to roughening, which is pr
portional toAln(L/l0), whereL is the edge length of the sys
tem. The ‘‘sharp-interface’’ limit corresponds to the we
ordered set of limits:l 0→01, j/ l 0→`, andj/R!1, where
R is a macroscopic length scale. An advantage of the pre
method is thatj can be appreciable so long asR is kept
significantly larger, withj/R!1 satisfied. This is numeri
cally convenient, since this can be satisfied to a less strin
tolerance than experimental systems, where one can
j/R;1028. In addition, note that the naive limits ofl 050,
with j/R→01 accomplished byj→0 are well known to be
potentially inconsistent and unphysical.

A consistent method to obtain the macroscopic sha
interface limit is given in Appendix B below, where an e
pansion around a stationary planar interface@30# is given.
The equations recovered are~i! the diffusion equation gov-
erning changes in composition in the bulk,

]c

]t
5DL,S¹2c, ~9!

whereDL,S is the diffusion constant in the liquid~L! or solid
~S! phase;~ii ! the Gibbs-Thomson condition describing ho
local curvature affects the composition on both sides of
interface,

dc

Dcmis
5d0k1

z

l T
1bvvn , ~10!

whereDcmis is the miscibility gap,d0 is the capillary length,
k is the curvature,l T is the thermal length,z is the shortest
distance between the liquid-solid interface and the eute
temperature, and the last term on the right-hand side, inv
ing the kinetic coefficientbv and the normal velocityvn ,
gives the kinetic undercooling,~iii ! the conservation law re
lating the flow ofc across an interface to the local velocity
that interface;

vnDc5DL

]c

]u U
L

2DS

]c

]uU
S

, ~11!

and ~iv! the condition of mechanical equilibrium which de
termines the various angles between interfaces when
three phases meet

u5 sin21~sAB/2sLS!, ~12!

wheresAB and sLS are the surface tension at a solid-so
and liquid-solid interface, respectively.

Of course, the analysis does more than permit one to
cover the macroscopic sharp-interface description. In a
ar,
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tion, one can recover explicit forms for the various para
eters entering into that description, in terms of t
parameters of the underlying theory, such as the surface
sion.

IV. DIRECTIONAL GROWTH

In this section the eutectic phase-field model is used
study directional solidification when the emerging solid co
tains two phases of different concentration~Sec. IV A! or
one phase~Sec. IV A!. Both processes involve pulling a liq
uid at some constant velocityv through a temperature grad
ent, leading to the formation of a solidification front perpe
dicular to the pulling direction.

A. Two phase directional solidification

For two solid phases to emerge the system is pu
through a temperature gradientDT5Gz at a constant veloc-
ity, such that the average composition of the system
inside the solid-solid coexistence region of the phase d
gram at low temperatures. The system reacts to the temp
ture gradient by forming lamellar or rodlike structures of t
A-rich andB-rich phases@31# in the solid region. The steady
state configuration shown in Fig.~3! consisting of alternating
lamellae of A- and B-rich phases is typical of lamella
growth. These lamellae grow at a constant speedv equal in
magnitude but opposite in direction to the external pulli
velocity. The average composition of the liquid determin
their relative width.

Configurations such as this one were obtained usin
discrete map of Eqs.~3!. Explicitly, in a frame of reference
moving at speedv in the z direction ~along indexj in the
discretized equation!,

FIG. 3. Steady-state lamellar eutectic growth. The lamel
grow upwards with a velocity equal in magnitude to the pulli
velocity v. The configuration shown was obtained from the pha
field model at an average compositionc050.4. Vertical lines cor-
respond to locations wherec50, while the liquid-solid interface
consists of points wherec50. Dashed lines show the portion o
liquid-solid interface with small local curvature.
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PRE 61 6709PHASE-FIELD MODELING OF EUTECTIC GROWTH
c i , j~n11!5c i , j~n!1GcDtF rc i , j~n!2ac i , j
3 ~n!

1~bci , j
2 ~n!2aDTj !1KcLc i , j~n!

1
v~c i , j 112c i , j !

Dx G ~13!

and

ci , j~n11!5ci , j~n!1GcDtHL@wci , j~n!22bci , j~n!c i , j~n!

1bci , j
3 ~n!2KcLci , j~n!#1

v~ci , j 112ci , j !

Dx J ,

~14!

where the spatial operatorL is the discrete equivalent of
Laplacian. In all simulations this operator was determined
consideration of nearest neighbors only, for example o
square lattice Lc i , j[(c i 11,j1c i , j 111c i 21,j1c i , j 21
24c i , j )/Dx2. The indicesn and (i , j ) can be used to recove
space and time units, through the relationshipst5nDt and
xW5( i x̂1 j ẑ)Dx.

Steady-state configurations were obtained by itera
Eqs.~13! and~14! starting from initial conditions of the form
c i , j5e i , j andci , j5c01e i , j , wheree i , j are independent ran
dom variables uniformly distributed between21/2 and
11/2. Various system sizes were used, with the lengthLz of
the simulation box in theẑ direction chosen according to th
average composition and pulling velocity. Liquids of of
eutectic composition require larger values ofLz , as a bound-
ary layer then forms in front of the interface. Periodic boun
ary conditions were used inx, while the derivatives of both
fields were set to zero at the top and bottom of the simula
box. At a given average composition the selected wavelen
l ~corresponding to the total width of two neighborin
lamellae! was found to be a decreasing function of the pu
ing velocity v. This is a well-known result that reflects th
fact that the faster the growth velocity the less time ato
have to diffuse and thus, the closer neighboring lame
must be. A quantitative understanding of the relationship
tweenv andl is due to Jackson and Hunt@21#, who solved
the steady-state diffusion equation and boundary condit
~see Sec. III!, by perturbing around a planar interface. F
any given pulling velocity they found an infinite number
solutions, each one corresponding to a different lame
spacing. To remove this ambiguity, which is not present
perimentally, Jackson and Hunt formulated the so-ca
minimum undercooling hypothesis in which the selec
wavelength at a given velocityv is assumed to minimize th
undercooling so that growth takes place at an extrem
They obtained the well-established@18,19# results l2v
5const and (DT2DTE)2/v5const, whereDT is the aver-
age undercooling of the interface. A rigorous derivation
fundamental understanding of these two results is still la
ing.

It is interesting to note that the phase-field approach ill
trates transparently a relationship betweenl2v5const and
spinodal decomposition, as described by the Cahn-Hilli
y
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equation@32,33#. During spinodal decomposition, there is
dominant time-dependent length, to which other leng
scale, which obeysL;t1/3 @34–37#. If one imposes a weak
temperature gradient on the Cahn-Hilliard equation, a
pulls with velocityv, a lamellar structure of wavelengthl is
eventually formed. Since the dominant length during the f
mation of the lamellae follows the scaling of spinodal d
composition, one obtainsl2v5const, from dimensiona
analysis, which is the same criterion as the Jackson-H
result. The connection of spinodal decomposition to eut
tics, in an imposed velocity-dependent temperature gradi
is that the present phase-field model of eutectics reduces
mally to the Cahn-Hilliard model of spinodal decompositio
in that particular case. In addition, this suggests a sim
crossover from an early time behavior dominated by dom
growth to a regime of steady-state lamellar growth. Dime
sional analysis implies the equivalent scaling formsv
;(t1/3)22f ( l ) or v;l22g( l ), with l[l/t1/3 and g( l )
5 l 2f ( l ). Providedf ( l→`)51 andg( l→0)51, these two
forms describe a crossover from Ostwald ripening for ea
times or largel to a regime in whichl2v5const for late
times or smalll.

To determine quantitatively the relationship betweenl
andv using the phase-field approach, a second set of si
lations were performed in which the minimum undercooli
hypothesis was used as a selection mechanism. In t
simulations, done at eutectic compositionc050, the system
was prepared in a lamellar structure of varying waveleng
Equations~13! and~14! were iterated until a steady state w
reached. The shape of the interface separating the lam
from the liquid was then found and the average undercoo
calculated. The lamellar spacing with the lowest average

FIG. 4. ~a! and~b! verify the Jackson and Hunt relationships f
the dependence of lamellar spacing and average interfacial un
cooling on pulling velocity in steady-state directional eutec
growth. In ~c!, the tilt angleu is shown as a function of pulling
velocity v. In ~d!, the solid-solid interface positions just behind th
liquid-solid front are shown as a function of time. Several ‘‘t
waves’’ are apparent.c050 for all simulations shown here.
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dercooling was identified with the selected wavelength. F
ure 4~a! shows the dependence of the selected lamellar s
ing on the pulling velocityv. As expected, thel22}v
relationship was found to hold for a wide range of velocit
confirming the predictions of the minimum undercooling h
pothesis. The equivalent form (DT2DTE)2}v was also
verified @Fig. 4~b!#. Interestingly, different branches of solu
tions were obtained using different initial conditions such
different positions of the interface att50. Kassner and Mis-
bah@25# found similar results using a boundary integral fo
mulation of the process.

Two different instabilities characteristic of lamellar eute
tic growth were also observed in numerical simulations
our model. The first instability, present mainly at off-eutec
compositionsc0Þ0, is illustrated in Fig. 5. The configura

FIG. 5. Shape instability in lamellar growth. The configurati
displayed in Fig. 3 was used as an initial condition. The veloc
was increased fromv50.05 to v50.08 over a periodt55. The
two configurations shown correspond tot587.5 ~a! and t5122.5
~b!. Again, the liquid-solid profile consists of points wherec50,
while the other lines correspond to zeros of thec-field.
-
c-

s

f

tions displayed were obtained from that of Fig. 3 by progr
sively increasing the velocity fromv50.05 to 0.08, where
c050.4. The wider phase reacts to the increase by formin
pocket that progressively drops back as the growth proce
The interface eventually becomes unstable, leading to
appearance of a new lamella of the opposite phase. The
result of the event is a large local reduction of the lame
spacing. This mechanism is expected to play an impor
role when both the jump in velocity, and the difference
width between the two phases are sufficiently large. T
simulations also show the occasional occurrence of tilt
mains in which lamellae grow at an angleu with the vertical.
This parity-breaking instability, predicted by Karma@24# and
Kassner and Misbah@26# was observed in the lamella
growth of the transparent alloy CBr4-C2Cl6 by Faivre and
co-workers@38,39#.

In the simulations of the phase-field model, tilted lamell
could be stimulated by a rapid increase in the velocity or
including thermal fluctuations in the dynamics. As in expe
ments, the instability either gives rise to solitary tilt wav
@38,39# which drift sideways through the system@Fig. 4~d!#,
or results in a homogeneous tilt of the entire lamellar str
ture. This transition from an untilted to a tilted state has be
described as a tilt bifurcation@25,26#, in which the tilt angle
rises sharply from zero at some finite threshold velocityv t .
Results from simulations, performed without thermal flu
tuations, are consistent with this interpretation@Fig. 4~c!#.

B. One phase directional solidification

In this case, the average compositionc0 is such that, at
low temperature, the equilibrium phase is a homogene

y

FIG. 6. Schematic representation of directional solidificatio
The profile in compositionc(z) ~thin solid line! was obtained from
a one-dimensional simulation of the process~with v50.05 andc0

50.75). The liquidus and solidus lines~thick solid lines! are those
of the phase diagram displayed in Fig. 1. Constitutional superc
ing is present when the profile in composition lies inside the liqu
solid coexistence region~e.g., betweenz50 andz5Dz in the fig-
ure!. At a given composition, the distance between the act
temperature and that on the liquidus gives the size of the superc
ing ~e.g.,DT* at c50.58).
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PRE 61 6711PHASE-FIELD MODELING OF EUTECTIC GROWTH
solid outside the two-phase coexistence region. Figur
shows the resulting composition profile perpendicular to
solidification front. The profile, obtained from a on
dimensional simulation, corresponds to a steady state
liquid and solid phases fixed at each end of the sample, b
of identical compositionc050.75. The interface between th
two is in thermodynamic equilibrium with the point
(cL ,DTint) and (cS ,DTint) lying, respectively, on the liqui-
dus and on the solidus lines which are also included in
figure. The solute-rich boundary layer in the liquid form
during the initial transient and is at the origin of the cellu
instability observed at large pulling velocities or small te
perature gradientG. The driving force behind this instability
is the so-called constitutional supercooling@40,41# present if
the actual temperature of the liquid is below the equilibriu
liquidus temperatureDTL . In the example displayed in Fig
6, the liquid is supercooled over a rangeDz, with the super-
cooling equal toDT* at c50.58.

A planar interface becomes unstable when the fron
constitutionally supercooled which occurs whenG/v
,mL(c02cL)/DL . This instability is observed in both trans
parent organic materials@42# and metallic systems@43#. In
either case the initially flat interface reacts to sudden chan
in temperature gradient or pulling velocity by transformi
into a cellular structure. The characteristic size of this str
ture can be predicted by a stability analysis of the unp
turbed planar front. A linear stability analysis of the sha
interface equations of Sec. III was performed by Mullins a
Sekerka@44#.

Note that a phase-field model specifically designed to
scribe directional solidification has been proposed@45#. That
model can be obtained by expanding Eqs.~1!–~4! to the

FIG. 7. Tip-splitting instability in directional solidification. The
solidification front at the bottom of the figure corresponds to
steady-state profile with c051.08, v50.15, and
(Gc ,Gc ,Kc ,Kc ,r ,a,b,w,a,b)5(0.5,1,1,1,1,1,1,0,1,0.5). Follow
ing a gradual increase in velocity fromv50.15 to 0.55, each cel
changes shape and eventually divides.
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lowest nontrivial order inc̃5c2c0. In Fig. 7, we show a
tip-splitting instability caused by an increase in velocity.

V. ISOTHERMAL EUTECTIC GROWTH

This section deals with the isothermal solidification
eutectic compounds. The study presented focuses on cas
which a liquid of compositionc0 and temperatureDT is
suddenly quenched to a lower temperatureDT8 such that the
point (c0 ,DT8) lies inside the solid-solid coexistence regio
of the phase diagram. The phase-field approach leads t
analysis of this problem in terms of two concurrent pr
cesses:~i! the nucleation and subsequent growth of so
droplets inside the metastable liquid; and~ii ! the segregation
of the two components inside the solid, leading to the t
equilibrium concentrations~the A- and B-rich solids! ex-
pected from the phase diagram. These processes are
scribed by the Langevin equations presented earlier.
main results presented here are from extensive nume
simulations performed at a variety of average compositi
c050.0, 0.08, 0.12, and 0.16. All simulations were done
a two-dimensional 2563256 lattice using periodic boundar
conditions. A hexagonal lattice was chosen to minimize
isotropy effects. Equations~3! were integrated in the neares
neighbor approximation using a mesh sizeDx51.3 and a
time stepDt50.05. The temperature was set toDT520.4

FIG. 8. Gray-scale representations of the liquid-solid order
rameterc ~left column! and the concentration fieldc ~right column!
with c050.0. The configurations shown are at timest51350, 2700,
and 4050. In~a!–~c!, regions wherec.0 are in white and corre-
spond to the solid phase. In~d!–~f!, black and white regions corre
spond respectively to a solid rich inA (c'20.55) or in B (c'
10.55).
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6712 PRE 61DROLET, ELDER, GRANT, AND KOSTERLITZ
while the various parameters entering the model assumed
values (Kc ,Kc ,r ,a,b,w,a,b)5(1/8,1,1,1,1,0,0.15,0.15)
The stochastic nature of the nucleation process was
counted for by including thermal fluctuations of magnitu
0.26 ~0.29 for thec050.0 case! in the equation forc. The
simulations started from an undercooled liquid state a
were terminated when the system was approximately 9
crystallized. The initial state was characterized by the fi
valuesc i , j5211e i , j andci , j5e i , j , wheree i , j is an uncor-
related random number withue i , j u<0.1.

Figures 8 (c050.0) and 9 (c050.08) show configurations
of both thec field ~left column!, showing the nucleation an
subsequent growth of solid droplets in the liquid, and thc
field ~right column!, showing the existence of bothA- and
B-rich solids inside the droplets at various instants durin
typical run. It is clear from the right column of Fig. 9 that
liquid rich in B always nucleates theB-rich solid first@46#. A
quantitative analysis was made possible by monitoring
solid volume fractionX(t) and the spherically average
structure factors of both fields:Sc(q,t)[^uc(qW ,t)u2& and
Sc(q,t)[^uc(qW ,t)u2&. These quantities were averaged ov
25 runs~33 in thec050.0 case!. Results pertaining to thec
field will be presented in Secs. V A and V B. The vario
growth mechanisms controlling the formation ofA- and
B-rich phases are discussed in Sec. V C, and correlated
changes in thec-field structure factor.

FIG. 9. Gray-scale representations of the liquid-solid order
rameterc ~left column! and the concentration fieldc ~right column!
with c050.08. The configurations shown are at timest52250,
4500, and 6750. In~a!–~c!, regions wherec.0 are in white and
correspond to the solid phase. In~d!–~f!, black and white regions
correspond respectively to a solid rich inA (c'20.55) or in B
(c'10.55).
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A. Transformed volume fraction

The time dependence of the fraction of the liquid that h
solidified can be obtained from purely geometric consid
ations if several simple assumptions are made. For homo
neous nucleation, with constant nucleation rateI and droplet
velocity v, the solid volume fractionX(t) can be written

X~ t !512expH 2
ad

d11
Ivd~ t2t0!d11J ~15!

in d dimensions, wherea25p, a354p/3, and t0 is the
waiting time @47–49#. It should be noted that this neglec
the small dependence of the the droplet’s growth velocity
curvature, and any initial time dependence of the nuclea
rate. Numerically, the solid volume fraction was measu
by periodically evaluating the fraction of lattice sites wi
c.0. The process was repeated during each run and
averaged transformed volume fractionX(t) was fit to Eq.
~15!. Figure 10 shows both the data points and the fit
curve in the casec050.12. Similar agreement was observ
at all four average compositions. The agreement betw
simulation results and predictions from Eq.~15! is quite
good considering the above mentioned approximations.
fitting procedure provided an estimate for the waiting tim
t0;150–400 as well as for the constant nucleation ratI
;1027. The growth velocityv;0.015 was measured di
rectly from the various configurations saved during each r

B. Structure factor

In his study of first-order phase transitions, Sekimoto@50#
derived an expression for then-point correlation function of
a system of growing droplets in a nonconserved system
his work, droplets of the solid phase are assumed to ap

-

FIG. 10. Time dependence of the solid volume fractionX(t)
with c050.12. The solid line passing through the data points is a
to the Kolmogorov form@Eq. ~15!#. The fit yielded the valuest0

5276.9 and (p/3)Iv251.29310211.
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FIG. 11. Wave-number dependence of thec-field structure factorS(q,t), as predicted by Sekimoto’s theory@~a! and ~c!#, and as
measured during simulations@~b! and ~d!#. Average compositionc050.16. Theoretical expression withv50.016, I 57.231028, and t0

5143.2. The power-law behavior at large wave numbers is in agreement with Porod’s law, as indicated by the straight line of slo23.
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randomly at the rateI and are allowed to grow independent
despite any overlap between them. The mathematical u
of all domains thus formed yields the actual shape of
solid-phase regions. Using this approach, Sekimoto arri
at the following expression for the dynamic structure fac
S(q,t)[^uc(qW ,t)u2&, wherec(qW ,t) is the Fourier transform
of c(xW ,t):

S~q,t !5
2p~2vt8!2

~Dc!2
e2 ~2/3! pIv2t83

3E
0

1

dy@eIv2t83C(y)21#yJ0~by!, ~16!

where b52vt8q, t85t2t0 , Dc5cS2cL , J0 is the ze-
roth order Bessel function of the first kind, andC is given by

C~y!5
2

3 Fcos21~y!22yA12y21y3 lnS 11A12y2

y D G
~17!
on
e
d
r

for 0,y,1, wherey[r /2vt8, andC50 otherwise. Using
the trapezoidal rule, the integral in Eq.~16! was evaluated
numerically for a variety of times and wave numbers. Bo
the predicted and measured structure factors are shown
log-log plot in Fig. 11. The linear regime observed at lar
q-values is in agreement with Porod’s law@51,52# which
states that, for systems in which the interface thicknes
much smaller than the average domain size,S(q);q2(d11)

for large q. This law is expected to break down both o
scales comparable to the average domain size at smallq and
also in the very early stages of growth when the interfa
thickness is comparable to the size of the droplets. The st
ture factorS(q,t) is also plotted againstt in Fig. 12. For all
wave numbers, the scenario is identical: the scattering in
sity slowly rises from zero as solid droplets start appearing
an otherwise uniform liquid and reaches a maximum arou
the half-crystallization timet1/2, defined byX(t1/2)51/2, be-
fore decreasing again and ultimately vanishing as the sys
evolves into a uniform solid. The oscillations observed
both the numerical data and the predicted curves corresp
to harmonics of the Bessel functionJ0(by) in Eq. ~16!. Since
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FIG. 12. Time dependence of thec-field structure factorS(q,t), as predicted by Sekimoto’s theory@~a! and~c!#, and as measured durin
simulations@~b! and ~d!#. Average compositionc050.08. Theoretical expression withv50.015, I 53.40831027, andt05238.8.
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the spherical droplets eventually coalesce to form domain
arbitrary shape, these oscillations disappear during the
stages of the solidification process.

In summary, the results presented above confirm
Sekimoto’s analysis of first-order phase transitions applie
the liquid-solid transformation involved in isothermal eute
tic growth. However, a good understanding of the proc
also requires a description of the changes in composi
taking place as the system solidifies. These changes ca
attributed to three different growth mechanisms which
now examined.

C. Growth mechanisms

The initial droplets formed are usually referred to as p
mary crystals which typically consist of the solid phase w
composition closest to that of the liquid. The initial grow
of these droplets is done at the expense of the surroun
liquid, leading to the formation of a boundary layer who
thickness increases with time. An example of such a dro
is shown in Fig. 13~a!. The growth of a primary crystal from
a B-rich liquid, for example, is limited by the transport ofB
of
te

at
to
-
s
n
be
e

-

ng

et

atoms from the melt to the interface. This diffusion-limite
process leads to the droplet radius growing ast1/2. Hence the
structure factor associated with the composition fie

Sc(q,t)[^uc(qW ,t)u2& must exhibit a peak at some wave num
ber qm}t21/2: the peak and its first harmonic can be seen
Fig. 13~a!. Eventually, the interface becomes unstable a
domains of the opposite phase simultaneously form along
interface. This event is associated with the appearance
second peak in the structure factor as in Fig. 13~b!. As the
wavelength of the lamellar pattern increases with the size
the droplet, this second peak moves to smallerq @Fig. 13~c!#.
Its motion eventually stops with new lamellae appearing
the droplet grows.

This is the lamellar growth regime illustrated in Fig. 1
Here thec-field configurations shown represent the time ev
lution of an initial solid seed growing in an environment
eutectic compositionc050. The temperature was set t
DT520.14 and thermal fluctuations suppressed. The st
ture emerging inside the growing solid consists of alternat
lamellae of theA- andB-rich phases extending radially from
the center of the droplet. As mentioned above, the width
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FIG. 13. Transition from diffusion-limited to lamellar growth, as seen from changes in either the system’s configuration~insets! or the
c-field structure factor. The parameter set (Kc ,a,b,w)5(1/8,0.15,0.15,0) was used. Thermal fluctuations of magnitude 0.22 were
included. Times are~a! t52000, ~b! t53000, and~c! t54500.
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the lamellae is expected to be time independent, with n
ones appearing as the length of the interface increases. H
the structure factor should exhibit a peak at some fixed w
numberqm with a rescaled heightSm[Sc(qm ,t)/^c2& pro-
portional to the size of the growing droplet. Since the liqu
solid interface moves at a constant speedv, Sm}t. As in
directional lamellar eutectic growth, the system adjusts t
sudden increase in the undercooling and thus in the gro
velocity v either by forming tilt-wave-like structures@Fig.
15~a!#, or by reducing its lamellar spacing@Fig. 15~b!#.

A final growth mechanism sets in as the solid volum
fraction X(t) approaches unity. This final regime corr
sponds experimentally to eutectoids, where the ‘‘liquid
phase of our model corresponds to a glass. Typically,
regime is not expected to be observable in binary alloy
tectics, due to the slow diffusion ofc in the solid phases. The
w
nce
e

-

a
th

is
-

c field becomes uniform and Eq.~4! reduces to the Cahn
Hilliard-Cook model@32,33# of spinodal decomposition. In
this limit, growth follows the Ostwald ripening law@34,35#.
Dimensional analysis requiresqm /w, wherew is the width
of the peak, andSmqm

d to be constant. When the averag
compositionc0 is very far from the eutectic valuec050, the
system consists of a number of droplets of the minority so
embedded in a matrix of the majority solid. Again the ave
age radius of the droplets is expected to grow ast1/3.

In the simulations presented above, only two of the th
growth mechanisms were observed as the droplets coale
before the onset of the lamellar growth regime. The tran
tion from diffusion-limited growth to spinodal decompos
tion is shown in Fig. 16 forc050.0, where the time evolu
tion of 1/qm and of @Smw/qm#1/2 clearly show a crossove
from one regime to the other. The measured late time ex
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nent is somewhat smaller than the expected 1/3 and is c
to 1/4, with a slight dependence on the fitting proced
used, a result that could be due to the configuration of
system when spinodal decomposition takes over. In
event, it is consistent with other numerical studies of
early stages of spinodal decomposition@36,53#. Furthermore,
the late-time plateau seen in theqm /w data indicates that the
system is in a scaling regime@54#. The steplike behavior o
qm /w for earlier times probably reflects the regular appe
ance of new phases or ‘‘lamellae’’ inside the solid drople
As seen in Fig. 13, this can lead to appreciable change
the structure factor, withqm increasing at the expense ofw.
A recent experiment performed on the eutectoid sys
(Fe3B)1(Fe) with 18.5% B@55# confirms the existence of
transition similar to that seen in Fig. 16. The experiment u
in situ methods to obtain time-resolved x-ray scattering p
terns at both large and small angles. It is thus sensitive
changes in both electron density from small angle meas
ments and crystal structure from large angle measureme
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APPENDIX A: PHASE DIAGRAM CALCULATIONS

The conditiond f (c,c)/dcuc1 ,c2
5m0 determines the bulk

composition of any phase present in equilibrium. Close
the eutectic composition, whencL'0, the concentration on
the liquidus line is

FIG. 14. The lamellar growth regime, as illustrated by t
growth of a solid seed in a liquid of eutectic composition. T
system size is 5123512 withDT520.14. The four configurations
displayed are at timest51000, 3000, 5000, and 7000@from ~a! to
~d!#.
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cL'
m0

w12b~r /a!1/21abDT/r
. ~A1!

For a solid, a similar procedure yields the roots

cS'6F2b~r /a!1/22w2abDT/r

b2b2/r
G 1/2

1
m0

2@2b~r /a!1/22w2abDT/r #
, ~A2!

which is valid provided w1abDT/r ,2b(r /a)1/2, b
2b2/r .0, and m0!1. These two expressions, togeth
with Eqs.~6!–~8! are sufficient to calculate the eutectic tem
peratureDTE and the chemical potentialm0. The local slope
of both the liquidus and solidus lines can also be evalua
The eutectic temperatureDTE is determined from
f (cL ,cL)5 f (cS ,cE50). The chemical potentialm0 appear-

FIG. 15. Changes in the lamellar growth regime following
temperature quench. The configuration displayed in Fig. 14~c! was
used as an initial condition.~a! DT520.3; new lamellae form at an
angle with the liquid-solid interface.~b! DT520.17; new lamellae
rapidly form in order to reduce the wavelength of the pattern~as
seen by comparing with the bottom-left configuration of Fig. 14!.
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ing in the expressions forcS andcL can be set to zero as Eq
~8! must be satisfied. LettingA5w1abDT/r , B
52b(r /a)1/2, and C5b2b2/r , and keeping terms up to
second order inDTE gives DTE5@2 f 2( f 224eg)1/2#/2a,
where e5a2b2/r 2, f 52@8aC(r /a)1/212ab(B2w)/r #,
and, g5(B2w)2. The parametersa, b, and w have been
assumed small. A much simpler expression is obtained
going to first order inDTE when

DTE'@2b~r /a!1/22w#2/8ab~r /a!1/2. ~A3!

Below the eutectic temperature,m0 must be identically zero
This follows from the fact thatf (c,c) is even inc so that
two coexisting solids of compositions6cS have the same
free energyf (cS ,6cS). Again, from Eq.~8!, this implies
m050. In the liquid-solid coexistence region, however, t
chemical potential is determined by the slope of the comm
tangent~see Fig. 2!. Analytically, again to second order,

m056F2~B22A2!

B23A GFB2A

C G1/2

3F12A11
B23A

4~B1A!
2

2aDT~B23A!C

~a/r !1/2~B1A!~B2A!2G .

~A4!

The sign ofm0 depends on the sidearm considered. Restr
ing the calculation to first order,

m0'6
2ab1/2~r /a!1/2

@2b~r /a!1/22w#1/2
~DT2DTE!. ~A5!

In the neighborhood of the eutectic temperature, the liqui
and solidus lines are given by Eqs.~A1! and ~A2!, respec-
tively. To first order inDT, their slopes are

FIG. 16. Transition from diffusion-limited growth to spinoda
decomposition.
y

n

t-

s

mL[
]cL

]~DT!
'

1

@2b~r /a!1/21w#

]m0

]DT

'6
2ab1/2~r /a!1/2

@2b~r /a!1/22w#1/2@2b~r /a!1/21w#
~A6!

and

mS[
]cS

]~DT!
'

1

2@2b~r /a!1/22w#

]m0

]~DT!

'6
ab1/2~r /a!1/2

@2b~r /a!1/22w#3/2
. ~A7!

APPENDIX B: SHARP-INTERFACE EQUATIONS

The sharp-interface equations can be obtained formally
expanding around a planar interface in equilibrium, as
scribed by the equationsdF/dc50 and dF/dc2meq50.
For concreteness, consider expanding around a liquid-s
interface at the eutectic temperature, with the liquid at
eutectic concentration and the solid at the coexistence c
centration. To address phenomena occuring when the in
face is gently curved, and when it moves due to a sm
degree of metastability in one of the phases, we need
make a perturbation expansion in curvaturek and velocityv,
respectively. Of course, these expansions must be in dim
sionless quantities, namely,kj, and jv/D, wherej is the
interface width, andD is a diffusion constant. As mentione
previously, one must not only require, for example,kj!1.
On general grounds, one must also havej/ l 0→`, where the
ultraviolet cutoffl 0→01, to obtain the sharp-interface equ
tions.

The analysis follows the standard method of Kawas
and Ohta@56#, which makes use of the projection operato
defined in terms of the one-dimensional planar solut
c0(u),

Pc~••• ![
1

DcE2`

1`

du
dc0

du
~••• !, ~B1!

whereu is the direction normal to the surface. This opera
projects the dynamics of the full phase-field model onto t
of the surface, in a way which is controlled order by order
the two small parameterskj and jv/D. It is convenient to
introduce an orthogonal curvilinear coordinate systemxW )
5(u,sW) such thatusWu is the arc length along the surface. It
also convenient to eliminate the Laplacian from the cons
vation law forc, through use of the Green function define
by ¹2G(xW ,0)5d(xW ).

After formally solving the conserved equation forc
through use of the Green function, and expanding all qu
tities in terms of the small parameters, where lowest or
terms corresponding to the one-dimensional planar solu
have a superscript ‘‘0,’’ the equations are acted on byPc and
Pc . To first order these calculations give what are oft
called the ‘‘inner solutions’’
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scvn

GcKc
5sck1E duS dc

dc0

du
2dc

dc0

du D ]2f

]c]c U
0

~B2!

and

m~u50!Dc1vn

g

Gc

52sck1E duS dc
dc0

du
2dc

dc0

du D ]2f

]c]c U
0

,

~B3!

where m(0) is the chemical potential at the surfac
Dc5cL2cS , sc[Kc*du(dc0/du)2, sc
[Kc*du(dc0/
du)2, and g5@*0

`du„c0(u)2c0(`)…21*2`
0 du„c0(u)2c0

(2`)…2#1Dc*0
`du„c0(`)2c0(u)…. In this calculation the

interface was chosen to be the Gibb’s surface such that
excess surface concentration is equal on both sides of
interface, i.e., *0

`du„c0(`)2c0(u)…5*2`
0 du„c0(u)2c0

(2`)…50.
In obtaining Eq.~B3!, the result

vnDc5DL

]c

]u U
L

2DS

]c

]uU
S

~B4!

was used, where the diffusion constant isD
5Gc(]

2f /]c2)uceq
which gives DL5Gc@w22bcL13bcL

2#

andDS5Gc@w22bcS13bcS
2# for the free energy discusse

in this paper. This result can be easily obtained by integ
ing over the equation of motion forc to lowest order in the
small parameters, i.e.,

vn

]c

]u
5Gc

]2m

]u2
~B5!

from the solid to liquid phase.
Subtracting Eq.~B3! from Eq. ~B2!, and expanding the

chemical potential to lowest order in concentration and te
perature, gives@57#

dc~0!

Dcmis
5d0k1

z

l T
1

d0vn

s S g

Gc
2

sc

GcKc
D , ~B6!

wherej is the distance between the interface and the eute
temperature, d052s/@(]m/]c)(Dcmis)

2#, l T
5mDcmis /G, m5]T/]c, ands5sc1sc .

The last element of the sharp-interface formulation is
condition of mechanical equilibrium imposed at the juncti
of the three phases. Specifically, the net force acting on
point of contact between the liquid and the two solidsA and
B must be zero in equilibrium. HencesLA cosu5sLB cosx
and sLA sinu1sLB sinx5sAB, where u and x are defined
defined in Fig. 17,sLA is the surface tension associated w
the interface between the liquid phase, and the solidA phase,
and so on. These conditions take a simpler form in
present case as the invariance ofF under c→2c implies
sLA5sLB[sLS . Thusu5x and

2sLS sinu5sAB . ~B7!
,

he
he

t-

-

tic

a

e

e

A general expression for the surface tensions can be
tained from the mean-field equilibrium conditionsdF/dc
50 anddF/dc5m0 wherem050 atT5TE . Assuming that
bothc andc depend only on the coordinateu locally normal
to the interface, the first condition gives] f (c,c)/]c
5Kcd2c/du2, or, on integrating,

f ~c,c!5
Kc

2 S dc

duD 2

1h~c!. ~B8!

The integration constanth(c) can be determined from mini
mizing with respect toc, giving h(c)5(Kc/2)(dc/du)2. Us-
ing this result forf givesF5(2*du f)*ds, from which the
surface tension can be identified as

s52E du f5sc1sc . ~B9!

Evaluation ofsc is possible for theA2B interface. As both
phases are solid,c is first replaced with its mean-field ex
pressioncS given in Eq.~7!. With this form, one obtains

Kc

d2c

du2
1F2bS r

aD 1/2

2
abDT

r
2wGc2S b2

b2

r D c350,

~B10!

the solution to which isc(u)5@(2b(r /a)1/22abDT/r
2w)/(b2b2/r )#1/2 tanh(u/j), where the interface thicknes
j[@2Kc /(2b(r /a)1/22abDT/r 2w)#1/2. Then one obtains
sc54AKc@2b(r /a)1/22abDT/r 2w#3/2/3A2(b2b2/r ).

These results were compared to numerical estimates f
simulations. For example, for the parameter
(Kc ,r ,a,b,w,a,b)5(1,1,1,1,0,0.30,0.30) at the eutect
temperatureDTE , sc50.465. As variations in thec field
are very small, their contribution to the surface tension c
be neglected. ThussAB'sc50.465. The remaining surfac
tensionsLS is obtained by simultaneously solving the equ
tions for ] f /]c and ] f /]c. This was done numerically in
one dimension, and, for a liquid of eutectic compositio
yielded the valuessc50.104 and sc51.018 or sLS

FIG. 17. Condition of mechanical equilibrium where the thr
phases meet. The equilibrium angleu511.4° was obtained using
the procedure described at the end of Appendix B. TheL-A and
L-B interfaces correspond to points wherec50, while theA-B
interface is associated with points wherec50.
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51.122. Finally, from Eq.~B7!, the equilibrium angle was
found to beu511.9°. This value was compared to a sim
lation estimate obtained by integrating Eqs.~3! on a 120
330 square lattice. The derivative of both fields in thez
direction was set to zero at the top and bottom of the sim
lation box~Fig. 17!. A constant angleg590°2u betweenthe
et

e

rs

all

s-

,

a-

s.

n

el
a

a
d

-

interfacesL-A and L-B and the walls of the system wa
imposed. Using the grid parametersDx51.0 and Dt
50.025, the procedure yielded the valueu511.4°, in good
agreement with the estimate above ofu511.9°. Note that
this good agreement involves a nonzero thickness of the
terface.
nt
nce
es

ree

n-
la-
in
ne

o-

Eu-
er

B

ski,

s,

,

tz,

ll.
@1# G. Ahlers, D. S. Cannell, and V. Steinberg, Phys. Rev. L
54, 1373~1985!.

@2# M. S. Heutmaker, P. N. Fraenkel, and J. P. Gollub, Phys. R
Lett. 54, 1369~1985!.

@3# S. W. Morris, E. Bodenshatz, D. S. Cannell, and G. Ahle
Phys. Rev. Lett.71, 2026~1993!.

@4# H. W. Xi, J. D. Gunton, and J. Vin˜als, Phys. Rev. Lett.71,
2030 ~1993!.

@5# M. E. Glicksman, R. J. Schaefer, and J. D. Ayers, Met
Trans. A7, 1747~1976!.

@6# J. S. Langer, Rev. Mod. Phys.52, 1 ~1980!.
@7# S. C. Huang and M. E. Glicksman, Acta Metall.29, 701

~1981!; 29, 717 ~1981!.
@8# M. E. Glicksman, Mater. Sci. Eng.65, 45 ~1984!.
@9# J. C. LaCombe, M. B. Koss, V. E. Fradkov, and M. E. Glick

man, Phys. Rev. E52, 2778~1995!.
@10# B. Caroli, C. Caroli and B. Roulet, inSolids Far From Equi-

librium, edited by G. Godre`che ~Cambridge University Press
Cambridge, 1992!.

@11# J. B. Smith, J. Comput. Phys.39, 112 ~1981!.
@12# R. Almgren, J. Comput. Phys.106, 337 ~1993!.
@13# G. J. Fix, in Free Boundary Problems: Theory and Applic

tions, edited by A. Fasano and M. Primicerio~Pitman, Boston,
1983!, Vol. II.

@14# J. B. Collins and H. Levine, Phys. Rev. B31, 6119~1985!.
@15# K. R. Elder, F. Drolet, J. M. Kosterlitz, and M. Grant, Phy

Rev. Lett.72, 677 ~1994!.
@16# See also related work by A. A. Wheeler, W. J. Boettinger, a

G. B. McFadden, Phys. Rev. A45, 7424 ~1992!; A. Karma,
Phys. Rev. E39, 2245~1994!; A. A. Wheeler, G. B. McFad-
den, and W. J. Boettinger, Proc. R. Soc. London, Ser. A452,
495 ~1996!; I. Steinbach, F. Pezzola, B. Nestler, M. Seess
berg, R. Prieler, G. J. Schmitz, and J. L. L. Rezende, Physic
94, 135 ~1996!.

@17# K. R. Elder, J. D. Gunton, and M. Grant, Phys. Rev. E54,
6476 ~1996!.

@18# J. P. Chilton and W. C. Winegard, J. Inst. Met.89, 162~1961!.
@19# A. S. Yue, Trans. Metall. Soc. AIME224, 1010~1962!.
@20# K. A. Jackson and J. D. Hunt, Trans. Metall. Soc. AIME236,

843 ~1966!.
@21# K. A. Jackson and J. D. Hunt, Trans. Metall. Soc. AIME236,

1129 ~1966!.
@22# J. S. Langer, Phys. Rev. Lett.44, 1023~1980!.
@23# V. Datye and J. S. Langer, Phys. Rev. B24, 4155~1981!.
@24# A. Karma, Phys. Rev. Lett.59, 71 ~1987!.
@25# K. Kassner and C. Misbah, Phys. Rev. Lett.66, 445 ~1991!;

Phys. Rev. A44, 6513~1991!.
@26# K. Kassner and C. Misbah, Phys. Rev. Lett.65, 1458~1990!;

Phys. Rev. A44, 6533~1991!.
@27# See, for example, the discussion of free energy function

given by N. Goldenfeld,Lectures on Phase Transitions an
t.

v.

,

.

d

-
D

ls

the Renormalization Group~Addison-Wesley, Reading, MA,
1992!.

@28# Note that the mobilities forc andc areGÞG(c,c). The dif-
fusivities in different phases can be different due to differe
susceptibilities in the phases, as shown in Appendix B. He
the degree to which transport is different in different phas
arises naturally from the mesoscopic Ginzburg-Landau f
energy, the identification of the dynamical variables (c andc
herein!, and the minimal dynamical Langevin equations co
sistent with conservation laws and fluctuation-dissipation re
tions. This is in contrast to imposing different transport
different phases: In particular, the conditions under which o

may take, for example,Gc¹
2→¹W •„Gc(c,c)¹W …, consistent

with fluctuation-dissipation relations, and the chosen therm
dynamic free energy2kBT ln (c,c exp2F/kBT, are not obvi-
ous.

@29# R. Kobayashi, Physica D63, 410 ~1993!.
@30# K. R. Elder, M. Grant, N. Provatas, and J. M. Kosterlitz~un-

published!.
@31# This assumes both phases have a low entropy of melting.

tectics for which this assumption does not hold form eith
irregular structures or crystalline facets@20#.

@32# J. W. Cahn and J. E. Hilliard, J. Chem. Phys.28, 258 ~1958!.
@33# H. E. Cook, Acta Metall.18, 297 ~1970!.
@34# I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids19, 35

~1961!.
@35# J. H. Yao, K. R. Elder, H. Guo, and M. Grant, Phys. Rev.

47, 14 110~1993!; Physica A204, 770 ~1994!.
@36# T. R. Rogers, K. R. Elder, and R. C. Desai, Phys. Rev. B37,

9638 ~1988!.
@37# A. J. Bray, Adv. Phys.43, 357 ~1994!.
@38# G. Faivre, S. De Cheveigne, C. Guthmann, and P. Kurow

Europhys. Lett.9, 779 ~1989!.
@39# G. Faivre and J. Mergy, Phys. Rev. A46, 963 ~1992!.
@40# J. W. Rutter and B. Chalmers, Can. J. Phys.31, 15 ~1953!.
@41# W. A. Tiller, K. A. Jackson, J. W. Rutter, and B. Chalmer

Acta Metall.1, 428 ~1953!.
@42# K. A. Jackson and J. D. Hunt, Acta Metall.13, 1212~1965!.
@43# D. Walton, W. A. Tiller, J. W. Rutter, and W. C. Winegard

Trans. AIME203, 1023~1955!.
@44# W. W. Mullins and R. F. Sekerka, J. Appl. Phys.34, 323

~1963!; 35, 44 ~1964!.
@45# B. Grossmann, K. R. Elder, M. Grant, and J. M. Kosterli

Phys. Rev. Lett.71, 3323~1993!.
@46# Of course, anA-rich liquid nucleates theA-rich solid first.
@47# A. N. Kolmogorov, Bull. Acad. Sci. USSR3, 335 ~1938!.
@48# W. A. Johnson and R. F. Mehl, Trans. Am. Inst. Min., Meta

Pet. Eng.135, 416 ~1939!.
@49# M. Avrami, J. Chem. Phys.7, 1103~1939!; 8, 212 ~1940!: 9,

177 ~1941!.
@50# K. Sekimoto, Physica A135, 328 ~1986!.



-

-

. E

6720 PRE 61DROLET, ELDER, GRANT, AND KOSTERLITZ
@51# G. Porod, Kolloid-Z.124, 83 ~1952!; 125, 125 ~1952!.
@52# G. Porod, inSmall Angle X-ray Scattering, edited by O. Glatter

and O. Kratky~Academic Press, New York, 1982!.
@53# Y. Oono and S. Puri, Phys. Rev. Lett.58, 836 ~1987!.
@54# The presence of a single relevant length scaleL implies that

both km and w, which scale asL21, have the same time de
pendence and that their ratio is constant.

@55# H. Fischer, S. Brauer, M. Sutton, J. Stro¨m-Olsen, B. Stephen
son, and U. Koster~private communication!.
@56# K. Kawasaki and T. Ohta, Prog. Theor. Phys.67, 147 ~1982!;

K. Kawasaki and T. Ohta,ibid. 68, 129 ~1982!; K. Kawasaki
and T. Ohta, Physica A118, 175 ~1983!.

@57# See also, for example, G. Caginalp and W. Xie, Phys. Rev
48, 1897 ~1993!; A. Karma and W.-J. Rappel,ibid. 57, 4323
~1998!.


