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A phase-field model of eutectic growth is proposed in terms of a free erfErgyhich is a functional of a
liquid-solid order parametey;, and a conserved concentration fieldThe model is shown to recover the
important features of a eutectic phase diagram and to reduce to the standard sharp-interface formulation of
nonequilibrium growth. It is successfully applied to the study of directional solidification when the solid phase
is a single or two phase state. The crystallization of a eutectic compound under isothermal conditions is also
considered. For that process, the transformed volume fractionyafield structure factor, both measured
during numerical simulations, closely match theoretical predictions. Three possible growth mechanisms are
also identified: diffusion-limited growth, lamellar growth, and spinodal decomposition.

PACS numbse(s): 64.70.Dv, 05.70.Fh, 82.20.Mj, 05.70.Ln

[. INTRODUCTION such as the existence of both liquid and solid phases, as well
as their relative thermal and mechanical stability. The free
The ability to generate forms or patterns is a remarkableenergy functional is coupled to one or more diffusionlike
property of macroscopic systems. Understanding the prinequations, which govern the release and transport of latent
ciples at the origin of these patterns represents a formidableeat and/or chemical species. The model thus consists of a
task to which numerous efforts have been devoted. Over thgmall number of differential equations that are easily solved
last 30 years considerable progress has been made mairlmerically.
through the study of simple problems involving fluid flow or ~ This paper contains a detailed analysis of a recently intro-
solidification processes. Classic examples of pattern formaduced[15—17 phase-field model describing eutectic behav-
tion in those fields include the onset of convective rolls inior. Examples of eutectic compounds include simple binary
Rayleigh-Bmard cells[1—4] and the dendritic instability of ~alloys such as Pb-Sii8] and Mg-Al[19] and complex or-
solidification fronts[5—9]. Various models have been pro- ganic — materials such as carbon tetrabromide-
posed to describe these phenomena, while experiments ha@xachloroethang20]. All have similar phase diagrams, the
helped determine the precise conditions under which thegomplexity of which allows for a number of different solidi-
take place. fication processes. Results from our study of some of these
For processes involving liquid-solid transitions the sim-Processes are presented in this paper, which is structured as
plest theoretical description is provided by the so-calledfollows. The free energy functiondt central to the model is
minimal model of solidificatior{6,10]. It consists of one or introduced and analyzed using mean-field theory in Sec. II.
several diffusion equations governing the transport of latentn Sec. Ill, the phase-field model is shown to reduce to the
heat and/or chemical species through the system. Boundagjassical formulation of the problem in the sharp-interface
conditions at the sharp liquid-solid interface and at infinitylimit [15,21-28. The process of lamellar eutectic growth is
complete the model. Hydrodynamic and elastic effects ar@nalyzed in Sec. IV, with the emphasis on the wavelength
not considered. The apparent simplicity of the approach iselection problem and the various instabilities observed. The
somewhat deceptive as exact solutions have been found Rellular instability characteristic of directional solidification
only a few special casds.g., when the solidification front is IS also recovered. Results from a numerical study of isother-
planar or spherical6]). Furthermore, extensive numerical mal eutectic growth are presented in Sec. V. The process
work has been hampered by the difficulties involved in tracknvolves constant nucleation and growth rates, allowing the-
ing the position of the interfacel 1,17. oretical predictions for the transformed volume fraction and
These difficulties have lead to the formulation of the ¥-field structure factor. The various growth mechanisms
phase-field approadii3,14), in which information about the governing compositional segregation are also identified.
position of the interface is contained in the spatial depenSome technical details are given in Appendices A and B.
dence of some order parametgrwhich assumes different
values in the liquid and solid phases. The interfacial region Il. MODEL
over which ¢ changes from one value to the other has a
thickness of the order of an equilibrium correlation length. The mesoscopic model is formulated in terms of a
The equation obeyed by the order parameter is presented {Binzburg-Landau free enerdy which is a functional of two
terms of a mesoscopic free energy functiotfal This de-  coupled order parameters: a nonconserved liquid-solid order
scribes the basic thermodynamics involved in the procesparameterys and a conserved concentration fietdC
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' ' thec field phase separategt0) or not (¥<0). With these
considerations, the general form Bfcan be written

0.3 (s) 1 (s) -
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Note thatF{c,¢} is an effective free energy describing the
- 3 . system on a coarse-grained scale. Processes on smaller
length scales have already been averaged over and incorpo-
rated into parameters such msnda. The local part of the
| . | l | free energy functiondlinvolves the positive parametersa,

A — 0 05 a, B, w, andb, wherew<2g, and the excess temperature
AT=T-T,, whereT,, is the melting temperature @&=0

FIG. 1. Mean-field phase diagram in the,AT) plane corre-  (not the eutectic temperatufig:). Mean-field theory will be
sponding to f(i,c) with the parameter setr(a,b,w,a,B) used below to relate these parameters to thermodynamic

=(1,1,1,0,0.15,0.15). Solid lines separate the various regions of thgyantities. The termK¢|§¢| 212 anch|€C|2/2 are included

phase diagranl (liquid), 2 (solid-liquid coexistence 3 (solid- jn order to account for the energetic cost associated with the
solid coexistence and 4 (single phase solid The dashed lines hresence of interfaces in the system. Note also that for the
represent metastable extensions of these boundé8es. the soli-  e5oscopic model to be well defined it is implicit that there

dus and(L) the liquidus.(E) denotes the eutectic point. be an ultraviolet cutoff in integrals over space. That is, inte-

—Cg, whereCg is the eutectic composition. The thermody- grals overx are restricted tdx|>1o, wherelg is a small
namic properties to be accounted for are summarized in thength scalef27], which may be thought of as the lattice
eutectic phase diagram displayed in Fig. 1. At high temperaconstant.
tures, (region 1 the equilibrium state of the system consists  The dynamics used in this paper are the simplest possible
of a liquid of uniform composition. Coexistence between adissipative dynamics which drives the system toward ther-
liquid and a solid is possible inside the two sidearms corremodynamic equilibrium, subject to external constraints, such
sponding to region 2. Each arm is delimited by liquiduy  as some specified temperature distribution, and which re-
and solidus(S) curves. The two liquidus lines meet at the SPects the conservation of The effects of flows in the high
eutectic point E), where three-phase coexistence is posiemperature liquid phase are not considered. Inclusion of
sible: a liquid of eutectic composition coexists with two sol- these requires an additional field describing the momentum
ids rich in either componerftienotedA andB, respectively. ~ density of the liquid in the free energf, a dynamical
At that point the free energies associated with the thredlavier Stokes equation for its dynamics, and various mode
phases are all equal. As temperature is lowered the liquigoupling terms in the dynamics fgr andc. The dynamics of
becomes metastable and eventually solidifies. Depending ofi andc are given by the Langevin equations
the average composition of the sample, the liquid either
transforms into a mixture of the two solidsegion 3 or Y oF
becomes a solid of uniform compositidregion 4. From E:_FAI/E/,“L My
these features we can anticipate the appropriate form for the
free energyF. and

The free energy is the sum of local parts which interact
via, for example, a square-gradient term. Since it is a meso- Jc SF
scopic model, there are no nonanalytic pieces; any such de- — =T V>—+ 7. 4
pendence can only arise in the thermodynamic free energy
—kgTIn=, e %87, wherekg is Boltzmann’s constant, and - .
T is temperature. First must allow two-phase coexistence. 'I_'he mobilitiesT',, , are constanﬁ2_8], W.h'le. th?””a' f'“Ct“?"
A convenient form is the double-well potentialf—wz t|onse obey the fluc'iuatlon—dlssman?n relations
+y*+ vy, This form reflects the existence of both liquid 74(X.t) 7,(0,0)) =2,k T5(x) 5(t) and (7c(x,t) 7¢(0,0))
and solid phases, with the coefficientdetermining their =2I"_k,TV28(x)4(t). In this paper, analysis is limited to
relative stability. As a convention, a positiieegative value  cases in which the temperatukd is fixed externally. This is
of ¢ is identified with the solidliquid) phase. Thug must  an excellent approximation for two-dimensional films, met-
be positive at high temperatures and negative otherwise. Thads, and metalloids where concentration diffusion is orders of
free energy must also account for the fact that the concentranagnitude slower than heat diffusion. Results obtained using
tion is homogeneous in the liquid phase and can separate ammodified eutectic model which includes latent heat genera-
the solid phase. This is accomplished by adding the formion at the interface and subsequent diffusion through the
f.=—yc?+c?, in which the sign ofy determines whether system can be found in Ref17].
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Phase diagram

The phase diagram shown in Fig. 1 was derived from a
mean-field analysis of the model

—kgTIn % e FkaT~ mean fieldh )

where Frean fieldiS the free energy functional evaluated at the
extrema ofc and . It was obtained by first minimizing the
bulk free energyf(c,y) with respect toy. Provided|aAT

— Bc?|/2a<(r/3a)%? , the solutions ta?f (y,c)/dy=0 are

12

r 2
— 5 (aAT—pc?) (6)

a

for the liquid phase, and

12

r 2
— 5 (aAT—pc?), (7)

~+
s a

for the solid phase.

Substitutingy, and 5 into f(¢,c¢) defines two functions
of ¢, f (c) andfg(c) [see Fig. 2a)]. The equilibrium state of
the system is then specified by imposing a uniform chemical
potential (w= 6F/5c= uy). The various lines on the phase
diagram are recovered by assuming this equilibrium state
consists of two phases of respective compositiprandc,,
separated by a planar interfacezat0. Lettingc=c(z), the
condition wo=6F/5c becomes K d?c/dZ?= af (¢,¢)/ dc
— - This simplifies by integrating both sides overand
noting that the left-hand side identically vanishes. Hence

C2 of
jc dC(%—Mo) =f(cy)—f(c1)—(ca—C1)po=0, (8)

with f7f/f90|cl,cz=ﬂo- Equation(8) is Maxwell's equal-area-
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construction rule, which determinesg, c,, andu [see Fig.
2(b)] The entire phase diagram is recovered by probing a FIG. 2. (a) The Compositional dependence fofor either the
wide range of temperatures. Metastable extensions of the Iliquid or solid phase. The equilibrium compositions can be deter-
quidus and solidus lineéincluded in Fig. 1 are associated mlned using the common tangent constructi@r. One can also
with the existence of a second set of solutions to @y  find the valueu, such that the integral ofdf/dc)mi, betweenc,
Near the eutectic point it is possible to obtain analytic ex-2"dC2 vanishes. The example shown iE$=0.15, with the other
pressions for many important quantities such as the conceR2"ameters assuming the values given at the bottom of Fig. 1 .
tration on the coexistence lines, the eutectic temperature, the
chemical potential, and the slopes of the liquidus and solidus

lines. These are given below. The preceding mean-field treatment indicates that the free
Note that the symmetry of the phase diagram reflects thenergy accounts for the various regions characteristic of a
invariance of the particular form dfunderc— —c. Other  eutectic phase diagram. This is one of the useful features of
forms of f can be chosen which are not symmetric. Thethis approach involving the Ginzburg-Landau free energy:
present convenient choice highlights generic features of euvean-field theory is simple and transparent. The validity of
tectic growth. It should also be noted that the liquidus andhe phase-field model can be further established by showing
solidus lines can be made to convergecat=1, corre- that it reduces to the classical sharp-interface formulation of
sponding to a puré\ or pureB sample, through the use of eutectic growth. This will again be done by mean-field
an alternate form of f, such as f(y,c)=—ry?/2 theory.
+ay?la+ (aAT — Bc?) Y+ wc?/2+ (3b/2)[(1 — ¢)In(1—c¢) However, some caution should be used to avoid overin-
+(1+c)In(l+c)—c?. Finally, as shown by Kobayashi terpreting this mean-field limit. It is well known that the
[29], for the study of dendritic instabilities it can be of use to actual values of the parameters in the Ginzburg-Landau free
break the =i symmetry with the alternate termaQT  energy functional can have little direct physical meaning.
—BcA)W (), where W(+y¢)==+W¥ is chosen such that Formally, observables such as the correlation length, specific
dW/dileq=0. heat, diffusion coefficients, and so on are particular limits of

Ill. SHARP-INTERFACE LIMIT
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space and time dependent response functions. In particular,
the interface between two phadéguid-solid or solid-solid
involves a thicknesg which can be a complicated function

of all the parameters of the underlying microscopic theory.
Roughening of an interface and critical phenomena are two QT

examples of this behavigR7]. As mentioned above, for the | :
Ginzburg-Landau description to be valid on all length scales, /\/\_I—/\/\/_\
one must incorporate an ultraviolet cutdff which is a mi- |

croscopic length scale of order of the interparticle distance. L
To give one example, above the roughening transition, a
three-dimensional surface has a contribution to its width, in A B A
addition to intrinsic width, due to roughening, which is pro-
portional toIn(L/ly), whereL is the edge length of the sys-
tem. The “sharp-interface” limit corresponds to the well-
ordered set of limitst,—0*, &/1,—o, andé/R<1, where

R is a macroscopic length scale. An advantage of the present
method is thaté can be appreciable so long &sis kept
significantly larger, with¢/R<1 satisfied. This is humeri-
cally convenient, since this can be satisfied to a less stringent
tolerance than experimental systems, where one can ha
¢/R~10"8. In addition, note that the naive limits 6§=0,

warm

i
~
8]
13}

FIG. 3. Steady-state lamellar eutectic growth. The lamellae
ow upwards with a velocity equal in magnitude to the pulling
velocity v. The configuration shown was obtained from the phase-

. . field model at an average compositiog=0.4. Vertical lines cor-

+
with §/R—0" accomplished by —0 are well known to be respond to locations where=0, while the liquid-solid interface

pOtem'a”y,mconS'Stem and unphysmal. . consists of points wherg=0. Dashed lines show the portion of
A consistent method to obtain the macroscopic SharpI'|quid-solid interface with small local curvature.

interface limit is given in Appendix B below, where an ex-
pansion around a stationary planar interf486] is given. o )
The equations recovered afi¢ the diffusion equation gov- tion, one can recover explicit forms for the various param-

erning changes in composition in the bulk, eters entering into that description, in terms of the
parameters of the underlying theory, such as the surface ten-
Jc sion.
E:DL,SVZQ 9
whereD|_ g is the diffusion constant in the liquid.) or solid IV. DIRECTIONAL GROWTH

(S phaseyii) the Gibbs-Thomson condition describing how
local curvature affects the composition on both sides of an In this section the eutectic phase-field model is used to

interface, study directional solidification when the emerging solid con-
tains two phases of different concentratit®ec. IV A) or
oc ¢ one phaséSec. IV A). Both processes involve pulling a lig-
——=dgk+ —+B,v,, (10 . . .
ACnis I+ uid at some constant velocity through a temperature gradi-

ent, leading to the formation of a solidification front perpen-
whereAc;s is the miscibility gapd is the capillary length,  gjcular to the pulling direction.
« is the curvaturelt is the thermal length{ is the shortest
distance between the liquid-solid interface and the eutectic
temperature, and the last term on the right-hand side, involv- A. Two phase directional solidification
ing the kinetic coefficien{8, and the normal velocity,,,
gives the kinetic undercoolingiii) the conservation law re-
lating the flow ofc across an interface to the local velocity o
that interface;

For two solid phases to emerge the system is pulled
f through a temperature gradieh = Gz at a constant veloc-
ity, such that the average composition of the system lies
inside the solid-solid coexistence region of the phase dia-
gram at low temperatures. The system reacts to the tempera-
' (1)) ture gradient by forming lamellar or rodlike structures of the
S A-rich andB-rich phase$31] in the solid region. The steady-
and (iv) the condition of mechanical equilibrium which de- state configuration shovyn in Fig) cqnsistin_g of alternating
termines the various angles between interfaces when tHgmelIae of A~ and B-rich phases is typical of Iame_IIar
three phases meet grovvth. These Iamellge grow at a constant speatjual in
magnitude but opposite in direction to the external pulling
6= sin" Y oapl20.s), (12)  velocity. The average composition of the liquid determines
their relative width.
whereo,g and o g are the surface tension at a solid-solid  Configurations such as this one were obtained using a
and liquid-solid interface, respectively. discrete map of Eq43). Explicitly, in a frame of reference
Of course, the analysis does more than permit one to removing at speed in the z direction (along indexj in the
cover the macroscopic sharp-interface description. In addidiscretized equation

Jc
UnAC:DL%

D Jc
—Dg—
L ou
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a)lll

Y (n+1) =i j(M)+T At r () —ay?;(n)

+(Be ()= aAT) + K L j(n) s f
}06
U(¢i,j+l_‘//i,j)} S
+— (13
Ax o.2?
and 0 i

Cij(n+ 1):Ci,j(n)+FcAt1C[WCi,j(n)_Z,BCi,j(n)l//i,j(n) oF

+hcj(n)—KcLei j(n)]+

v(Cij+1—Ci;) 60l
Ax ’

(14
207
where the spatial operatd is the discrete equivalent of a i
Laplacian. In all simulations this operator was determined by 0(;‘ ; ‘0'2' : '0'4‘ : -0‘6' -
consideration of nearest neighbors only, for example on a ' v '
square lattice L j=(¢ivajthijr1tdio1jtdij-1

N . FIG. 4. (a) and(b) verify the Jackson and Hunt relationships for
—Ay 2
4‘//'vl)/AX - The indicesnh and (,j) can be used to recover the dependence of lamellar spacing and average interfacial under-

Epac? anfl time units, through the relationsftipsAt and cooling on pulling velocity in steady-state directional eutectic

x=(ix+jz)Ax. growth. In (c), the tilt angled is shown as a function of pulling
Steady-state configurations were obtained by iteratingelocityv. In (d), the solid-solid interface positions just behind the

Egs.(13) and(14) starting from initial conditions of the form liquid-solid front are shown as a function of time. Several “tilt

Jij=€ jandc; j=cot € j, Wheree; ; are independent ran- waves” are apparent,=0 for all simulations shown here.

dom variables uniformly distributed between1/2 and

+1/2. Various system sizes were used, with the lehgtbf  equation[32,33. During spinodal decomposition, there is a
the simulation box in the direction chosen according to the dominant time-dependent length, to which other lengths
average composition and pulling velocity. Liquids of off- scale, which obey& ~t2 [34—37. If one imposes a weak
eutectic composition require larger valued gf as a bound- temperature gradient on the Cahn-Hilliard equation, and
ary layer then forms in front of the interface. Periodic bound-pulls with velocityv, a lamellar structure of wavelengthis
ary conditions were used i while the derivatives of both eventually formed. Since the dominant length during the for-
fields were set to zero at the top and bottom of the simulatiomnation of the lamellae follows the scaling of spinodal de-
box. At a given average composition the selected wavelengtbomposition, one obtains\?v =const, from dimensional
A (corresponding to the total width of two neighboring analysis, which is the same criterion as the Jackson-Hunt
lamellag was found to be a decreasing function of the pull-result. The connection of spinodal decomposition to eutec-
ing velocity v. This is a well-known result that reflects the tics, in an imposed velocity-dependent temperature gradient,
fact that the faster the growth velocity the less time atomss that the present phase-field model of eutectics reduces for-
have to diffuse and thus, the closer neighboring lamellagnally to the Cahn-Hilliard model of spinodal decomposition
must be. A quantitative understanding of the relationship bein that particular case. In addition, this suggests a simple
tweenv andA is due to Jackson and Huf1], who solved  crossover from an early time behavior dominated by domain
the steady-state diffusion equation and boundary conditiongrowth to a regime of steady-state lamellar growth. Dimen-
(see Sec. I, by perturbing around a planar interface. Forsional analysis implies the equivalent scaling forms
any given pulling velocity they found an infinite number of ~(t¥3)~2f(I) or v~\"2g(l), with I=\/t*® and g(l)
solutions, each one corresponding to a different lamellae=12f(l). Providedf(l—»)=1 andg(l—0)=1, these two
spacing. To remove this ambiguity, which is not present exforms describe a crossover from Ostwald ripening for early
perimentally, Jackson and Hunt formulated the so-calledimes or large\ to a regime in which\?v=const for late
minimum undercooling hypothesis in which the selectedtimes or small\.
wavelength at a given velocity is assumed to minimize the ~ To determine quantitatively the relationship between
undercooling so that growth takes place at an extremumandu using the phase-field approach, a second set of simu-
They obtained the well-establishefd8,19 results N> lations were performed in which the minimum undercooling
=const and AT—ATg)?/v=const, whereAT is the aver- hypothesis was used as a selection mechanism. In these
age undercooling of the interface. A rigorous derivation orsimulations, done at eutectic compositicg=0, the system
fundamental understanding of these two results is still lackwas prepared in a lamellar structure of varying wavelength.
ing. Equationg13) and(14) were iterated until a steady state was
It is interesting to note that the phase-field approach illusteached. The shape of the interface separating the lamellae
trates transparently a relationship betweew =const and  from the liquid was then found and the average undercooling
spinodal decomposition, as described by the Cahn-Hilliarctalculated. The lamellar spacing with the lowest average un-



6710 DROLET, ELDER, GRANT, AND KOSTERLITZ PRE 61
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a) 142,67
74
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32— — N
A B A 0
~57.33
L | L | L |
| . | 0.3 o6 0.9
300 20 40
FIG. 6. Schematic representation of directional solidification.
34 . . T The profile in compositiore(z) (thin solid ling was obtained from
b) a one-dimensional simulation of the procéasth v =0.05 andc,

=0.75). The liquidus and solidus linéghick solid lines are those

of the phase diagram displayed in Fig. 1. Constitutional supercool-
ing is present when the profile in composition lies inside the liquid-
solid coexistence regio(e.g., betweez=0 andz=Az in the fig-

ure). At a given composition, the distance between the actual
e e temperature and that on the liquidus gives the size of the supercool-
ing (e.g.,,AT* atc=0.58).

tions displayed were obtained from that of Fig. 3 by progres-
A A A sively increasing the velocity from=0.05 to 0.08, where
Co=0.4. The wider phase reacts to the increase by forming a
pocket that progressively drops back as the growth proceeds.
The interface eventually becomes unstable, leading to the
appearance of a new lamella of the opposite phase. The net
result of the event is a large local reduction of the lamellar
spacing. This mechanism is expected to play an important
305 2‘0 ' 410 role when both the jump in velocity, and the difference in
width between the two phases are sufficiently large. The
FIG. 5. Shape instability in lamellar growth. The configuration simulations also show the occasional occurrence of tilt do-
displayed in Fig. 3 was used as an initial condition. The velocitymains in which lamellae grow at an anglevith the vertical.
was increased frono =0.05 tov=0.08 over a periodr=5. The  This parity-breaking instability, predicted by Karrf#4]| and
two configurations shown correspondtte 87.5 () andt=122.5  Kassner and Misbati26] was observed in the lamellar
(b). Again, the liquid-solid profile consists of points whete=0,  growth of the transparent alloy CBC,Clg by Faivre and
while the other lines correspond to zeros of thigeld. co-workers[38,39.

) ) B ) ) In the simulations of the phase-field model, tilted lamellae
dercooling was identified with the selected wavelength. Figo,1d be stimulated by a rapid increase in the velocity or by
ure 4a) shows the dependence of the selected Iam_ezllar SPafcluding thermal fluctuations in the dynamics. As in experi-
ing on the pulling velocityv. As expected, the\"“>v  menis the instability either gives rise to solitary tilt waves
relat.lon_shlp was fognq to hold for a Wlde range of ve_I00|t|es[38,39] which drift sideways through the systdifig. 4(d)],
confirming the predictions of the minimum undercooling hy- o results in a homogeneous tilt of the entire lamellar struc-
pothesis. The equivalent formAT—ATg)%<v was also  ture. This transition from an untilted to a tilted state has been
verified[Fig. 4(b)]. Interestingly, different branches of solu- described as a tilt bifurcatiof25,26], in which the tilt angle
tions were obtained using different initial conditions such asises sharply from zero at some finite threshold velogity
different positions of the interface &t 0. Kassner and Mis-  Results from simulations, performed without thermal fluc-

bah[25] found similar results using a boundary integral for- tyations, are consistent with this interpretat[@iig. 4(c)].
mulation of the process.

Two different instabilities characteristic of lamellar eutec-
tic growth were also observed in numerical simulations of
our model. The first instability, present mainly at off-eutectic  In this case, the average compositiofiis such that, at
compositionscy#0, is illustrated in Fig. 5. The configura- low temperature, the equilibrium phase is a homogeneous

B. One phase directional solidification
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0 100 200
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FIG. 7. Tip-splitting instability in directional solidification. The
solidification front at the bottom of the figure corresponds to a
steady-state profile with ¢,=1.08, ©v=0.15, and
(Te.,Ly Ky Ke,r,a,b,w,e,8)=(0.5,1,1,1,1,1,1,0,1,0.5). Follow-
ing a gradual increase in velocity from=0.15 to 0.55, each cell
changes shape and eventually divides. A

FIG. 8. Gray-scale representations of the liquid-solid order pa-

solid outside th? two—phasg.coemst.ence feg'o_”- Figure @ameten// (left column and the concentration field(right column
shows the resulting composition profile perpendicular to thgy, co=0.0. The configurations shown are at tinies1350, 2700,
solidification front. The pI‘Ofile, obtained from a one- and 4050. |n(a)_(c)’ regions Wheraﬂ>0 are in white and corre-
dimensional simulation, corresponds to a steady state witBpond to the solid phase. (d)—(f), black and white regions corre-
liquid and solid phases fixed at each end of the sample, botépond respectively to a solid rich i (c~—0.55) or inB (c~
of identical compositiorty=0.75. The interface between the +0.55).

two is in thermodynamic equilibrium with the points

(cL,ATin) @nd (€s,ATiqy) lying, respectively, on the liqui- |owest nontrivial order inc=c—co. In Fig. 7, we show a

dus and on the solidus lines which are also included in theip-splitting instability caused by an increase in velocity.
figure. The solute-rich boundary layer in the liquid forms

during the initial transient and is at the origin of the cellular V. ISOTHERMAL EUTECTIC GROWTH

instability observed at large pulling velocities or small tem- ) ] ] ) o
perature gradier. The driving force behind this instability Th|§ section deals with the isothermal solidification of '
is the so-called constitutional supercooli#®,41 present if ~ €Utectic compounds. The study presented focuses on cases in
the actual temperature of the liquid is below the equilibriumWho'Igh "’ll liquid ?]f gompcl)smonco and ttznfg)eratl;lr&hT Iﬁ
liquidus temperaturd T, . In the example displayed in Fig. suddenly quenched to a lower tempera such that the

R : = point (co,AT") lies inside the solid-solid coexistence region
S&);Tiigl;qelgga'ﬂstzzp_l)_e*m;c::lidoogg rarande, with the super of the phase diagram. The phase-field approach leads to an

. analysis of this problem in terms of two concurrent pro-
e . %esses:(i) the nucleation and subsequent growth of solid
constitutionally - supercooled which occurs WheB/v  yrqpiets inside the metastable liquid; afiid the segregation
<m(co—c.)/D . This instability is observed in both trans- f the two components inside the solid, leading to the two
parent organic materialgt2] and metallic system43]. In equilibrium concentrationgthe A- and B-rich solid9 ex-
either case the initially flat interface reacts to sudden change&ected from the phase diagram. These processes are de-
in temperature gradient or pulling velocity by transforming scribed by the Langevin equations presented earlier. The
into a cellular structure. The characteristic size of this strucmain results presented here are from extensive numerical
ture can be predicted by a stability analysis of the unpersimulations performed at a variety of average compositions
turbed planar front. A linear stability analysis of the sharpc,=0.0, 0.08, 0.12, and 0.16. All simulations were done on
interface equations of Sec. Il was performed by Mullins anda two-dimensional 256 256 lattice using periodic boundary
Sekerkag 44]. conditions. A hexagonal lattice was chosen to minimize an-
Note that a phase-field model specifically designed to deisotropy effects. Equation8) were integrated in the nearest-
scribe directional solidification has been propok#sl. That  neighbor approximation using a mesh six&=1.3 and a
model can be obtained by expanding E¢b—(4) to the time stepAt=0.05. The temperature was setAd = —0.4
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2000 4000 6000
t

f)
’1 ~ FIG. 10. Time dependence of the solid volume fractift)
\ with c,=0.12. The solid line passing through the data points is a fit
to the Kolmogorov formEq. (15)]. The fit yielded the values,
“ =276.9 and ¢/3)1p2=1.29<10 1L
® ﬁ A. Transformed volume fraction

-J The time dependence of the fraction of the liquid that has

FIG. 9. Gray-scale representations of the liquid-solid order pa-so,l'd'f"?d can be pbtalned from .purely geometric consider-
rametery (Ieft column and the concentration fielt(right column ~ ations if several simple assumptions are made. For homoge-
with c,=0.08. The configurations shown are at times2250, Neous nucleation, with constant nucleation fated droplet
4500, and 6750. Irfa)—(c), regions wheray>0 are in white and  Vvelocity v, the solid volume fractiorX(t) can be written
correspond to the solid phase. (d)—(f), black and white regions

correspond respectively to a solid rich M (c~—0.55) or inB a1 _ aq drp o nd+1
(c~+0.55). X()=1-exp — g7 1v%(t—to) (15)

while the various parameters entering the model assumed the

values  K,,K¢r.a,bwa,B)=(1/8111100.150.15). iy g gimensions, wher@,=, as=4/3, andt, is the

d for by includi h Ll ) ¢ itud ((}V/aiting time [47-49. It should be noted that this neglects
counted for by including thermal fluctuations of magnitude o g q| dependence of the the droplet’s growth velocity on
0.26 (0.29 for thecy=0.0 casgin the equation fory. The T _

y : o : é:urvature, and any initial time dependence of the nucleation

simulations started from an undercooled liquid state an . . X
were terminated when the system was approximately 95(%ate. Numerically, the solid volume fraction was measured

crystallized. The initial state was characterized by the fieIcPy periodically evaluating the fraction .Of lattice sites with
valuesy; ;= —1+€; andc; ;= e;;, wheree, ; is an uncor- >0. The process was repeated during each run and the

related random number witfe; | <0.1. averaged transformed volume fractiof{t) was fit to Eg.
Figures 8 €,=0.0) and 9 CO": 0.08) show configurations (15). Eigure 10 shows both the data points and the fitted
of both they field (left column, showing the nucleation and CUrve in the casey,=0.12. Slmllar agreement was observed
subsequent growth of solid droplets in the liquid, and the at all four average compositions. The agreement between
field (right column, showing the existence of both and  Simulation results and predictions from E(L5) is quite
B-rich solids inside the droplets at various instants during &0od considering the above mentioned approximations. The
typical run. It is clear from the right column of Fig. 9 that a fitting procedure provided an estimate for the waiting time
liguid rich in B always nucleates thg-rich solid first[46]. A t,~150—400 as well as for the constant nucleation iate
quantitative analysis was made possible by monitoring the-10"7. The growth velocityv ~0.015 was measured di-
solid volume fractionX(t) and the spherically averaged rectly from the various configurations saved during each run.

structure factors of both field§5¢(q,t)z<|z//(§,t)|2> and

Sc(q,t)E(|c((i,t)|2>. These quantities were averaged over
25 runs(33 in thecy=0.0 casg¢ Results pertaining to the
field will be presented in Secs. VA and VB. The various In his study of first-order phase transitions, Sekin{&o]
growth mechanisms controlling the formation 8¢ and derived an expression for threpoint correlation function of
B-rich phases are discussed in Sec. V C, and correlated with system of growing droplets in a nonconserved system. In
changes in the-field structure factor. his work, droplets of the solid phase are assumed to appear

B. Structure factor
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FIG. 11. Wave-number dependence of thdield structure factorS(q,t), as predicted by Sekimoto’s theof{a) and (c)], and as
measured during simulatiori¢b) and (d)]. Average compositior,=0.16. Theoretical expression with=0.016, |=7.2x10 8, andt,
=143.2. The power-law behavior at large wave numbers is in agreement with Porod’s law, as indicated by the straight line-&.slope

randomly at the ratéand are allowed to grow independently for 0<y<1, wherey=r/2vt’, andW¥ =0 otherwise. Using
despite any overlap between them. The mathematical uniotihe trapezoidal rule, the integral in EGL6) was evaluated

of all domains thus formed yields the actual shape of thenumerically for a variety of times and wave numbers. Both
solid-phase regions. Using this approach, Sekimoto arrivethe predicted and measured structure factors are shown on a
at the following expression for the dynamic structure factorlog-log plot in Fig. 11. The linear regime observed at large

S(q,t)z<|1//(a,t)|2>' where(q,t) is the Fourier transform d-values is in agreement with Porod’s 181,52 which

of w(; t): states that, for systems in which the interface thickness is
’ much smaller than the average domain sB(g)~q (@+%
27(20t")2 )s for large g. This law is expected to break down both on
S(g,t)= e (23 mvt scales comparable to the average domain size at spaait
(Ag)? also in the very early stages of growth when the interface

1 thickness is comparable to the size of the droplets. The struc-
xf dy[e'vzt's‘l’(y)—1]yJ0(by), (16)  ture factorS(q,t) is also plotted againstin Fig. 12. For all
0 wave numbers, the scenario is identical: the scattering inten-
_ sity slowly rises from zero as solid droplets start appearing in
whereb=2vt'q, t'=t—ty, Ay=is— ¢, Jo is the ze-  zn gtherwise uniform liquid and reaches a maximum around
roth order Bessel function of the first kind, addis given by  he half-crystallization time,,, defined byX(ty,) = 1/2, be-
> fore decreasing again and ultimately vanishing as the system
cos‘l(y)—Zy\/l——yz+y3In<l+ % ) evolves into a uniform solid. The oscillations observed in
y both the numerical data and the predicted curves correspond
to harmonics of the Bessel functidg(by) in Eq.(16). Since

2
‘I’(Y):g
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FIG. 12. Time dependence of thiefield structure factoB(q,t), as predicted by Sekimoto’s thedrg) and(c)], and as measured during
simulations[(b) and (d)]. Average compositiom,=0.08. Theoretical expression with=0.015, 1=3.408< 10 7, andt,=238.8.

the spherical droplets eventually coalesce to form domains aitoms from the melt to the interface. This diffusion-limited
arbitrary shape, these oscillations disappear during the laferocess leads to the droplet radius growing’&s Hence the
stages of the solidification process. structure factor associated with the composition field
Ir_l surr?mary, the re_sults presented aboye_ conflrm_ thaéc(q,t)5<|c(a,t)|2> must exhibit a peak at some wave num-
Sekimoto’s analysis of first-order phase transitions applies t%el’qut71/2: the peak and its first harmonic can be seen in

the liquid-solid transformation involved in isothermal eutec-Fig_ 13a). Eventually, the interface becomes unstable and

tic growth. However, a good understanding of the PrOCeSY omains of the opposite phase simultaneously form along the

also requires a description of the changes in composition . : . i

taking place as the system solidifies. These changes can ferface. Th's. event is associated W|th_the_appearance of a

attributed to three different growth mechanisms which aresecond peak in the structure facto_r as in F|g(b_J_3As th_e

now examined. wavelength of the lamellar pattern increases with the size of
the droplet, this second peak moves to smajlgffig. 13c)].

Its motion eventually stops with new lamellae appearing as
C. Growth mechanisms the drop]et grows.

The initial droplets formed are usually referred to as pri- This is the lamellar growth regime illustrated in Fig. 14.
mary crystals which typically consist of the solid phase withHere thec-field configurations shown represent the time evo-
composition closest to that of the liquid. The initial growth lution of an initial solid seed growing in an environment of
of these droplets is done at the expense of the surroundingutectic compositionco=0. The temperature was set to
liquid, leading to the formation of a boundary layer whoseAT= —0.14 and thermal fluctuations suppressed. The struc-
thickness increases with time. An example of such a dropleture emerging inside the growing solid consists of alternating
is shown in Fig. 18). The growth of a primary crystal from lamellae of theA- andB-rich phases extending radially from
a B-rich liquid, for example, is limited by the transport Bf  the center of the droplet. As mentioned above, the width of
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FIG. 13. Transition from diffusion-limited to lamellar growth, as seen from changes in either the system’s configimaétsor the
c-field structure factor. The parameter s&,( «,8,w)=(1/8,0.15,0.15,0) was used. Thermal fluctuations of magnitude 0.22 were also
included. Times aréa) t=2000, (b) t=3000, and(c) t=4500.

the lamellae is expected to be time independent, with newy field becomes uniform and E@4) reduces to the Cahn-
ones appearing as the length of the interface increases. Henkldliard-Cook model[32,33 of spinodal decomposition. In
the structure factor should exhibit a peak at some fixed wavéhis limit, growth follows the Ostwald ripening lay84,35.
numberq,, with a rescaled heigh®,,=S.(qm,t)/(c?) pro- Dimensional analysis requireg,/w, wherew is the width
portional to the size of the growing droplet. Since the liquid-of the peak, andS,qd to be constant. When the average
solid interface moves at a constant speedS;,«t. As in  compositionc, is very far from the eutectic valug,=0, the
directional lamellar eutectic growth, the system adjusts to aystem consists of a number of droplets of the minority solid
sudden increase in the undercooling and thus in the growtmbedded in a matrix of the majority solid. Again the aver-
velocity v either by forming tilt-wave-like structurefFig.  age radius of the droplets is expected to grow'as
15(a)], or by reducing its lamellar spaciniig. 15b)]. In the simulations presented above, only two of the three
A final growth mechanism sets in as the solid volumegrowth mechanisms were observed as the droplets coalesced
fraction X(t) approaches unity. This final regime corre- before the onset of the lamellar growth regime. The transi-
sponds experimentally to eutectoids, where the “liquid” tion from diffusion-limited growth to spinodal decomposi-
phase of our model corresponds to a glass. Typically, thision is shown in Fig. 16 focy=0.0, where the time evolu-
regime is not expected to be observable in binary alloy eution of 1/q,,, and of[S,w/q,,]*? clearly show a crossover
tectics, due to the slow diffusion afin the solid phases. The from one regime to the other. The measured late time expo-
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FIG. 14. The lamellar growth regime, as illustrated by the
growth of a solid seed in a liquid of eutectic composition. The
system size is 512512 withAT= —0.14. The four configurations
displayed are at times=1000, 3000, 5000, and 70Q€@om (a) to
(d)].

nent is somewhat smaller than the expected 1/3 and is close
to 1/4, with a slight dependence on the fitting procedure
used, a result that could be due to the configuration of the
system when spinodal decomposition takes over. In any
event, it is consistent with other numerical studies of the
early stages of spinodal decomposit{@®,53. Furthermore,

the late-time plateau seen in thg/w data indicates that the
system is in a scaling regin&4]. The steplike behavior of
am/w for earlier times probably reflects the regular appear-
ance of new phases or “lamellae” inside the solid droplets.

As seen in Fig. 13, this can lead to appreciable changes in g 15, Changes in the lamellar growth regime following a
the structure factor, witlg,, increasing at the expense wf  temperature quench. The configuration displayed in Figc)Mas

A recent experiment performed on the eutectoid systenysed as an initial conditioria) AT= —0.3; new lamellae form at an
(Fe;B) + (Fe) with 18.5% B[55] confirms the existence of a angle with the liquid-solid interfacéb) AT=—0.17; new lamellae
transition similar to that seen in Fig. 16. The experiment usesapidly form in order to reduce the wavelength of the patte®

in situ methods to obtain time-resolved x-ray scattering patseen by comparing with the bottom-left configuration of Fig). 14
terns at both large and small angles. It is thus sensitive to

changes in both electron density from small angle measure- “o

ments and crystal structure from large angle measurements. CL~ " . (A1)
w+28(rla)”“+ aBATIr
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which is valid provided w+aBAT/r<2B(r/a)? b
APPENDIX A: PHASE DIAGRAM CALCULATIONS —pB%Ir>0, and uo<1. These two expressions, together
N ) with Egs.(6)—(8) are sufficient to calculate the eutectic tem-
The conditionsf (,¢)/ dclc, ¢, = uo determines the bulk  peratureA Tg and the chemical potentiady. The local slope
composition of any phase present in equilibrium. Close toof both the liquidus and solidus lines can also be evaluated.
the eutectic composition, when ~0, the concentration on The eutectic temperatureATg is determined from
the liquidus line is f(¢ ,c)=f(s,ce=0). The chemical potentigl, appear-

28(rla)Y2—w— aBATIF |
b— B2Ir

Ce~+

(A2)



PRE 61 PHASE-FIELD MODELING OF EUTECTIC GROWTH 6717

REr L I ac, 1 dpo
m = ~~
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18} o’ 7
o 0 © | © I[l/km] | 1 APPENDIX B: SHARP-INTERFACE EQUATIONS
6.5 v 1n7('t5) 8 & The sharp-interface equations can be obtained formally by

expanding around a planar interface in equilibrium, as de-
FIG. 16. Transition from diffusion-limited growth to spinodal scribed by the equation8F/5#=0 and 6/ 6C— peq=0.
decomposition. For concreteness, consider expanding around a liquid-solid
interface at the eutectic temperature, with the liquid at the
ing in the expressions farg andc, can be set to zero as Eq. eutectic concentration and the solid at the coexistence con-
(8) must be satisfied. LettingA=w+aBAT/r, B  centration. To address phenomena occuring when the inter-
=2B(r/a)*?, and C=b— B?/r, and keeping terms up to face is gently curved, and when it moves due to a small
second order iMTg gives ATg=[—f—(f2—4eq)*?]/2a,  degree of metastability in one of the phases, we need to
where e=a?B%/r?, f=—[8aC(r/a)¥?+2aB(B—w)/r],  make a perturbation expansion in curvaturand velocityv,
and,g=(B—w)?2. The parameters, 8, andw have been respectively. Of course, these expansions must be in dimen-
assumed small. A much simpler expression is obtained bgionless quantities, namely¢, and é&v/D, where¢ is the

going to first order iMTg when interface width, and is a diffusion constant. As mentioned
previously, one must not only require, for exampl€<1.
ATe~[2B8(rla)*?—w]?/8ab(r/a)'? (A3)  On general grounds, one must also hdllg— o, where the

ultraviolet cutoffl,—0*, to obtain the sharp-interface equa-
Below the eutectic temperaturg, must be identically zero. tions.
This follows from the fact thaf(y,c) is even inc so that The analysis follows the standard method of Kawasaki
two coexisting solids of compositions c5 have the same and Ohta[56], which makes use of the projection operator,
free energyf(ys,*Cg). Again, from Eq.(8), this implies defined in terms of the one-dimensional planar solution
ro=0. In the liquid-solid coexistence region, however, the°(u),
chemical potential is determined by the slope of the common L 40

. . . 4o

tangent(see Fig. 2. Analytically, again to second order, Pul--) dui(~ ), (B1)

12 Ay)-—.d

Mo=*

2(B°—A?|[B—A
B—3A C

whereu is the direction normal to the surface. This operator
projects the dynamics of the full phase-field model onto that

| 1 \/1+ B—-3A 2aAT(B—3A)C of the surface, in a way which is controlled order by order in
4B+A)  (alr)"3(B+A)(B—A)2| j[he two small parametergé an_q &v/D. ltis _convementﬁto
(Ad) introduce an orthogonal curvilinear coordinate systegh (

=(u,s) such thafs| is the arc length along the surface. It is
The sign ofuy depends on the sidearm considered. Restrictaljtiooﬁolnge?;fgt ttr?rgﬂmr:nféz tor}ethL:pé?gleann fgggigﬁe dce?irrlseiir-
ing the calculation to first order, ' 9

by V2G(x,0)= 5(X).

112 112 After formally solving the conserved equation far
2ab™4(r/a) ) .
~+ AT—AT-). A5 through use of the Green function, and expanding all quan-
Mo 1/2 1/2( E) ( ) . _
[2B8(r/a)*“—w] tities in terms of the small parameters, where lowest order

terms corresponding to the one-dimensional planar solution
In the neighborhood of the eutectic temperature, the liquidusave a superscript “0,” the equations are acted orPpyand
and solidus lines are given by Eq#1) and (A2), respec- P.. To first order these calculations give what are often
tively. To first order inAT, their slopes are called the “inner solutions”
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,u(u=O)Ac+vnF—
Cc
B Jd 5 dCO 5 dwO ﬂzf 0 X _|
BN R TR T T
A B
(B3) i i
where u(0) is the chemical potential at the surface, | |
Ac=c —cs, o,=K,fdu(dy®du)? o Oy 10 80 120
=K.JSdu(dc? x

du)?, and g=[fgdu(c®(u)—c°(=))*+ [ du(c(u)—c° FIG. 17. Condition of mechanical equilibrium where the three

(—))?]+Acfdu(c®() —c(u)). In this calculation the phases meet. The equilibrium angle=11.4° was obtained using

interface was chosen to be the Gibb’s surface such that th@e procedure described at the end of Appendix B. Th& and

excess surface concentration is equal on both sides of theB interfaces correspond to points whefe=0, while the A-B

interface, i.e., [5du(c®(c)—c®u))=/..du(c®(u)—c® interface is associated with points where 0.

—))=0.

( In)t))btaining Eq.(B3), the result A general expression for the surface tensions can be ob-
tained from the mean-field equilibrium conditiod&*/ Sy
=0 and6F/ 6c= pug whereuy=0 atT=Tg. Assuming that

(B4) both ¢y andc depend only on the coordinatdocally normal

s to the interface, the first condition givesf(,c)/dy

=K, d?y/du?, or, on integrating,

diy\?
E) +h(c). (B8)

was used, where the diffusion constant i®
=T o(¢*f/ac?)|,, which gives D, =T'Jw—28y +3bc?] K,
andDg=T [Jw—2Bys+ 3bcd] for the free energy discussed f(y.0)=—

in this paper. This result can be easily obtained by integrat- _ _ o
ing over the equation of motion farto lowest order in the The integration constarti(c) can be determined from mini-

small parameters, i.e., mizing with respect ta, giving h(c) = (K./2)(dc/du)?. Us-
ing this result forf gives 7= (2fduf)fds, from which the
dc e surface tension can be identified as
vy—=I—= (B5)
Ju auz
0'=2f duf=oy+o.. (B9)

from the solid to liquid phase.

Subtracting Eq(B3) from Eq. (B2), and expanding the g, .1 ation ofor
chemical potential to lowest order in concentration and tem v
perature, give$57]

is possible for theA— B interface. As both
phases are solidy is first replaced with its mean-field ex-
pressionisg given in Eq.(7). With this form, one obtains

oc(0 d
) _ " { ovn(g_ Ty ' (B6) d2c (\M2 oBAT B2
AcCpis Iy o \I'c TyK, Kc—+|28/=| - -w|c—|b——|c3=0,
du? a r r
where¢ is the distance between the interface and the eutectic (B10)
temperature, do=20/[(dul 9c)(ACnmio)?], |
:mzcmis/Gv m=aT/dc, aﬁdaz(££+“%_)( ms]. v the solution to which isc(u)=[(28(r/a)"*—aBATIr

The last element of the sharp-interface formulation is a_W)/(b_ler)]llzltgnh@‘/f)' where the interface thickness
condition of mechanical equilibrium imposed at the junctioné=[2K¢/(2B(r/a)"*~apBAT/r—w)]** Then one obtains
of the three phases. Specifically, the net force acting on thec=4VK[2B8(r/a)"*~ aBAT/r —w]¥43\2(b— gIr).
point of contact between the liquid and the two soldand _ The;e results were compared to numerical estimates from
B must be zero in equilibrium. Henae , cosf=o gcosy  Simulations. For example, for the parameter set
and O'LASin 0+0’LBSinX:0'AB, where 6 andX are defined (KC,r,a,b,W,a’,B):(1,1,1,1,0,0.30,0.-30.) at_ the e_UteCtIC
defined in Fig. 17¢ » is the surface tension associated with temperatureATe, o=0.465. As variations in the/ field
the interface between the liquid phase, and the sojidiase, are very small, their contribution to the surface tension can
and so on. These conditions take a simpler form in théd>e neglected. Thusap~0.=0.465. The remaining surface
present case as the invariance Bfunderc— —c implies  tensiono s is obtained by simultaneously solving the equa-
oa=0g=0.s. Thusf=y and tions for 9f/d¢ and df/dc. This was done numerically in

one dimension, and, for a liquid of eutectic composition,
20 5SiNO=0pg. (B7)  vyielded the valueso.=0.104 and o,=1.018 or o s
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=1.122. Finally, from Eq(B7), the equilibrium angle was
found to bef=11.9°. This value was compared to a simu-
lation estimate obtained by integrating Eq8) on a 120

X 30 square lattice. The derivative of both fields in the
direction was set to zero at the top and bottom of the simu
lation box(Fig. 17). A constant angle/=90°— # betweenthe

PHASE-FIELD MODELING OF EUTECTIC GROWTH
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interfacesL-A and L-B and the walls of the system was
imposed. Using the grid parametesx=1.0 and At
=0.025, the procedure yielded the valde 11.4°, in good
agreement with the estimate above @&f11.9°. Note that
this good agreement involves a nonzero thickness of the in-
terface.
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