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Abstract

Program analysis is a process of estimating properties of a program statically.
Program anaiyses have many applications, including compiler optimizations,
software maintenance and testing, and program verification. In this dissertation
we present a new framework for efficient program analysis. At the heart of
our approach is a new program representation called the DJ Graph. Using DJ
graphs we present several new algorithms for solving problems encountered in
program analysis. The problems that we have solved range from a simple loop
identification problem to sophisticated exhaustive and incremental data flow
analysis, including the construction of Sparse Evaluation Graphs. The algorithms
presented here are simple, more general, and/or more efficient than existing
methods for solving similar problems. Tostudy the effectiveness of our algorithms
on real programs we implemented many of them, and experimented on a number
of FORTRAN procedures taken from standard benchmark suites. Our results
indicate that the algorithms presented here perform well in practice.



Résumé

L'analyse de programmes est un processus utilisé pour déterminer de fagon sta-
tique les propriétés d"un programme. Les analyses de programmes ont de nom-
breuses applications, e.g., optimisations dans un compilateur, entretien et tests des
logiciels, vérification de programmes. etc. Dans cette thése, nous présentons une
nouvelle approche pour obtenir des analyses de programmes performantes. Au
coeur de notre approche est I'utilisation d’une nouvelle représentation des pro-
grammes appelée Graphes DJ. Nous présentons plusieurs nouveaux algorithmes
utilisant les graphes DJ et permettant de résoudre de nombreux probl2mes ren-
contrés dans le cadre d'analyses de programmes. Les problémes que nous avons
résolus vont d"un simple probléme d‘identification des boucles au problkme plus
complexe d'analyse incrémentale du flux des données, y compris la construc-
tion de graphes creux d'évaluation (Sparse Evaluation Graphs). Les algorithmes
présentés sont simples, plus généraux et/ou plus efficaces que les méthodes
généralement utilisées pour résoudre des problémes similaires. Dans le but
d'étudier l'efficacité de nos algorithmes sur des programmes réels, plusieurs
d’entre eux ont &€ mis en ceuvre et exécutés sur un ensemble de procédures
FORTRAN provenant de programmes tests standards. Nos résultats indiquent
que les algorithmes présentés, en pratique, fonctionnent efficacement.
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Contributions

Each work has to pass through these stages— ridicule, opposition, and
then acceptance.

—Swami Vivekananda
The major contributions of this dissertation are as follows:

¢ Weintroduce a new representation called the DJ graph for efficient program
analysis. We also explore some of the properties of DJ graphs that simplify
many proofs (Chapter 3).

¢ Wepresentsimple linear time algorithms for computing dominance frontiers
and related sets (Chapter 4).

o We present an efficient and a low polynomial time algorithm for computing
the multiple node immediate dominance relation for an arbitrary flowgraph
(Chapter 5).

¢ We present a simple and an efficient algorithm for detecting both reducible
and irreducible loops in a flowgraph (Chapter 6).

¢ Wepresentasimple linear time algorithm for computing iterated dominance
frontiers (Chapter 7). :

¢ We present a simple and an efficient algorithm for incrementally updat-
ing the dominator tree of an arbitrary flowgraph, when the flowgraph is
subjected arbitrary incremental changes, including those that introduce ir-
reducibility (Chapter 8).

¢ We present a simple and an efficient algorithm for incrementally updating
the dominance frontier relation of an arbitrary flowgraph, when the flow-
graph is subjected to arbitrary incremental changes, including those that

ses



introduce irreducibility(Chapter 9).

We present a new framework for climination-based data flow analysis.
Within this framework we present two methods for data tflow analysis:
(1) an eager elimination method, and (2) a delayed climination method.
The two methods presented are simple, efficient, and can handle arbitrary
flowgraphs (Chapter 10).

We present a simple and an efficient algorithm for incrementally updating,
data flow solutions, when the corresponding flowgraph is subjected to incre-
mental changes, including those that introduce irreducibility (Chapter 11).

Finally, to demonstrate the effectiveness of our algorithms we implemented
most of them, and tested them on real programs. We present empirical
results of our experiments and give their analysis.
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Chapter 1
Introduction

Great spirits have always found violent opposition from mediocrities. The
latter cannot understand it when a man does not thoughtlessly submit to
hereditary prejudices but honestly and courageously uses his intelligence.

—Albert Einstein

My grandfather once told me that there are two kinds of people: those who
work and those who take the credit. He told me to try to be in the first group;
there was less competition there.

—Indira Gandhi

This dissertation is about efficient program analysis using a new representation
called the DJ graph. Using DJ graphs we have solved a number of problems
encountered in program analysis. Our solution methods are simple, efficient,
and/or more general (i.e., can handle both reducible and irreducible flowgraphs)
than existing methods. We begin the dissertation by introducing the concept
of program analysis in Section 1.1. Then, in Section 1.2, we briefly introduce
DJ graphs. A more thorough presentation on DJ graphs is given in Chapter 3.
In Section 1.3, we highlight the major contributions of the dissertation, and also
briefly discuss some of the related work. Finally, in Section 1.4, we give the
overall organization of the dissertation.
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1.1 Program Analysis

1.1.1 Motivation

Program analysis is a process of estimating properties of programs at each pro-
gram point [ASU86]. The information provided by a program analysis is useful
in compiler optimization, code generation, program verification, testing and de-
bugging, and parallelization {ASU86]. To understand the concept of program
analysis consider the following program written in a Pascal like language.

Program FOO();
var
i, %, ¥y, 2z, w: integer ;
sum: arrayf[0..100] of integer;

0: begin

1l: read(y, 2) ;

2 X = 2 ;

3 if v > 0 then

4: begin

5: i:=1;

6 while (i < 100) do

7 begin

8: if((i mod 2) = 2)

9: sumfi] := (z div ¥y} + w ;

10: else

11: sumli] := (z div y) - 2 ;

12: i:=1+1;

13: end

14: write(*sum initialized‘} ;

15: end -
16: else

17: writeln(‘Program Error: y should be > 0%) ;

18: writeln(‘Program terminated‘) ;
19: end.
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w

In the above program we can observe the following:

1. The variable w at statement 9 is used before being defined. This may causea
run-time error. This problem can easily be detected at compile time using a
classical program analysis technique, called the reaching defiritions analy-
sis [ASUS6] 1 Inthis analysis, all variables at the beginning of a program are
initialized to an ‘undefined’ value. Then we check whether an undefined
value of a variable reaches its use. If it does, then it is an error. For the above
prograrm, we see that an undefined value reaches the use of w at statement
9, and therefore is an: error.

2. In statement 2, the definition of the variable x is never used by any other
statement. In the literature statement 2 is called a dead statement, and should
be eliminated at compile-time. By eliminating dead statements (d la dead-code
elimination [ASU86]), we can speed up the overall execution of a program.

3. The expression z div yis computed each time inside the loop. The value
of this expression does not change as the while loop iterates, and so is
invariant inside the loop. Hoisting invariant expressions outside a loop
decreases the execution time of the program. In the literature this is called
loop-invariant removal {ASUS86). :

4. In the above program, the value of the predicate y>0 at statement 3 will
determine whether statements from 5 to 14 will be subsequently executed
or not. In other words, these statements are said to be “control dependent”
on the condition at statement 3 [FOW87]. The control dependence relation
can again be derived at compile-time via program analysis.

In each of above cases we are interested in certain properties of the given
program. These properties are useful in program optimization, testing and de-
bugging, code generation, etc. In general, program analysis can be divided into
two types: (1) control flow analysis, and (2) data flow analysis [ASU86]. Control flow
analysis is concerned with estimating properties related to program or control
flow structure, for example, computing the control dependence relation. On the
other hand, data flow analysis is concerned with estimating properties related

A definition in a program is a statement or an instruction that assigns or may assign a value to
a variable (or memory location) {ASUS6].
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to program data or variables, for example, computing reaching definitions set or
removing loop-invariants.

1.1.2 Frogram Representation, Analysis Methods, and Solution

Techniques

Both control flow analysis and data flow analysis are usually performed on a
graph representation of a program called the Control Flow Graph (CFG).* The
nodes in a CFG represent basic blocks or statements, while edges of the graph
represent flow of control from one basic block to another® Figure 1.1 illustrates
the CFG for the program FOO ().

In the literature, control flow problems are typically solved using concepts
from graph theory, whereas data flow problems are typically solved using con-
cepts from set theory (or more precisely, lattice theory) [ASU86]. An exampleofa
control flow analysis is computing the dominance relation. Given a CFG, a node
R is said to dominate another node Sif all paths from START to node S always pass
through node R. One classical approach for computing the dominance relation
is due to Lengauer and Tarjan [LT79]. Their algorithm is based on a depth first
search of the CFG. The algorithm computes the dominance relation by searching
for the nearest common ancestor of all the predecessor nodes of a node in the
depth-first spanning tree of the given CFG [LT79].

An example of a data flow analysis is the reaching definitions problem. In
reaching definitions the probiem is to determine which definitions in a program
reach a given point. The first step in solving the problem is to represent each
definition as an element of a set S.* At the beginning of the program the set §
is empty, meaning that no definitions reach the start of the program. This set is
passed through every statement (or basic block) in the program, and whenever
we pass through a definition d we first remove (kill) 2ll previous definitions of
the same variable from the set S, and then add the new definition d to the set. We

ZFor structured programs one can perform data analysis on the Abstract Syntax Tree represen-
tation of the program [ASUS6].

3Many modermn optimizing compilers analyze programs at two levels: (1) within a proce-
dure, called the intraprocedural analysis; and (2) across procedures, called the interprocedural anal-
ysis [ASU86]. CFGs are used for representing statements (or basic blocks) and fiow of control
within a single procedare, whereas call graphs are used for representing procedure calling se-
quence. Whenever we use the term flowgraph of a program we mean flowgraph of a procedure.

4More precisely as an element of a lattice.
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repeat this process until no more definitions are added or removed from the set.
We also store a copy of the set S at each program point as we propagate through
them. The set S is generally called as the data flow information, and the effect of a
statement (or basic block) on S is called as the data flow function.

We can generalize the above discussion and represent any data flow problem
within a framework called the data flow framework, first proposed by Kildall, and
subsequently extended by others [Kil73, Hec77, Mar89]. Within this framework
we represent data flow information as elements of a lattice, and the effect of a
node (a statement or a basic block) as a data flow function. The input-output
effect of a node can be represented as a data flow equation, and so we can set up
a system of data flow equations, one equation per node, whose consistent solution
gives the desired estimate of the program property [Kil73, Hec77, Mar89].

The methods for solving the system of equations can be broadly classified into
three categories [ASU86]: (1) iteration methods, (2) elimination methods, and
(3) syntax-directed methods. Iteration methods are very general and are applica-
ble to all types CFG structure [ASU86, KU76, Kil73]. In iteration methods, we first
initialize the flow information at each node to some safe value (i.e., a safe initial
guess [Mar89], page 29), and then iterate through each node, applying the flow
function, until a fixed-point is reached. This method for solving the system of
equations is not very efficient, but is simple to implement. Elimination methods,
first proposed by Allen and Cocke [AC76), are derived from the Gaussian elimina-
tion method for solving simultaneous equations. The key idea in all elimination
methods is to reduce the system of equations to a “reduced” system of equations,
and then solve the reduced system of equations. Elimination methods are asymp-
totically faster than iteration methods, but are more complex to implement than
iteration methods. Finally, syntax-directed methods are applicable to programs
that contain no arbitrary goto statements’® Both elimination based methods
and iteration based methods use CFGs for propagating data flow information,
whereas syntax-directed methods use Abstract Syntax Tree for propagating data
flow information [ASUS86]. . '

Each of the above solution methods can also be characterized as (1) exhaustive,

" (2} incremental, or (3) demand-driven [MR90a, Mar89]. In exhaustive methods,

SIf the source program contains goto statements, they should be eliminated [Amm$92, Ero95].
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Figure 1.1: The control flow graph representation for the program FOO ().
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the data flow information is computed from ‘scratch’ each time there is an incre-
mental change in the program (either during program development or during
optimization). In incremental methods, the data flow information is recomputed
(ideally) only for those parts of the program that are affected because of an in-
cremental change. Typically, information from other unaffected parts is used to
recompute information in the affected parts. It is important to note that all incre-
mental algorithms depend on having correct information or solutions at all points
prior to incremental changes$

In the demand-driven approach, flow information is computed on de-
mand [DGS95]. That is, if a certain property needs to be verified or derived
at a2 program point, a demand-driven ‘engine’ is invoked to do that job.

Finally, to improve the efficiency of certain classes of data flow problems,
sparse evaluation techniques have been proposed in the literature [CFR*91,
CCF91]. These techniques rely on constructing what are called Sparse Evalu-
ation Graphs, on which data flow problems are solved. Intuitively, a sparse
evaluation graph, for a particular data flow problem, is nothing but a subgraph
of the control flow graph that contains only nodes that affect the information that
is propagating through it [CCF91].

In this dissertation, we propose solutions to data flow problems that are based
on iteration and elimination methods, and also based on exhaustive and incre-
mental analysis.” We also give a new algorithm for constructing sparse evaluation
graphs that is simple and efficient.

1.2 DJ Graphs: A New Representation for Solving Old

Problems

At the heart of our work is a new representation called the Dj Graph. All other
contributions revolve around this representation. What are DJ graphs? As mo-
tivation, consider the example program F00(}. Its CFG is shown in Figure 1.1.
In the figure, we can see that nodes such as 3, 7, and 10, contain more than one

SIt is important to note that:ontrol flow properties of a program can also be incrementally
updated. :
7We will not be concemned with syntax-directed approaches or demand-driven approaches in
* this dissertation.
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predecessor. Such nodes are called join nodes, since they ‘join’ flow of control
coming from different control paths. Now consider the incoming edges of one
of these join nodes, for example, join node 3. The incoming edges to node 3 are
2—3 and 7—3. Consider the incoming edge 2 — 3, we can see that the source
node 2 of the edge “strictly” dominates destination node 3, meaning that all paths
from START of the CFG to node 3 always pass through node 2. Therefore the
edge 2—73 is called as a dominator edgeS Now consider the incoming edge 7—3.
Here the source node 7 does not strictly dominate node 3, meaning that there is
an alternative path (START — 1 — 2 — 3) from START to node 3 that does not
pass through 7. If this is the case we call the edge 7—3 a join edge. In general, an
edge z — y in a CFG is a join edge if there exists an alternative path from START
to y that does not “pass through” the edge z — y. A DJ graph is a graph that
represents both dominator edges and join edges in a single representation.’ In
this dissertation, we will demonstrate how this simple representation helps us in
solving a number of program analysis problems very efficiently. The problems
that we will address in this dissertation range from a simple problem of identify-
ing loops to sophisticated data flow analysis based on elimination methods and
incremental methods, including construction of sparse evaluation graphs.

1.3 Major Contributions of the Dissertation
In this section, we outline the major contributions of the dissertation, and discuss

their importance in compiler optimizations and other program development tools.
We will also discuss some of the related work along the way.

1.3.1 DJ Graphs and Their Properties

~ We introduce a new representation cailed the DJ Graph (Chapter 3). A DJ graph

is nothing but the dominator tree of a program augmented with join edges.’® An
edge in a control flow graph is a join edge if the source node of the edge does
not “strictly dominate” the destination node of the edge. Derived from a control

8More precisely we introduce a dominator edge between two nodes X and Y if X strictly
dominates Y, and there is no other node Z not equal X strictly dominating Y (see Chapter 3).

9We will give a formal treatment of DJ graphs and their properties in Chapter 3.

1%We have given the relevant background material and notation in Chapter 2.
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flow graph, a DJ graph can be viewed as a refinement representing explicitly and
precisely both the dominance relation between nodes and the potential program
points where the flow information may be merged. Throughout this dissertation
we will demonstrate how this simple representation enables us to design simpler
and/or more efficient algorithms for performing sophisticated program analysis,
including incremental analysis and sparse evaluations.

Contribution 1 We introduce a new and a simple representation, called the D] Graph,
for solving program analysis problems. We also explore some of the properties of D] graphs
that will simplify many proofs in later chapters.

1.3.2 Computing Dominance Frontiers and Related Sets

Dominance frontiers, control dependences, regions of control dependence etc., are
control flow relations that are useful in many optimizing compilers [CFS90a]. In
this dissertation, we will show how to efficiently compute some of these relations
using DJ graphs (Chapter 4).

We will also show how to compute the Top node of a set of dominance frontier
intervals in linear time (Chapter 4).1! Our algorithm is very simple and does not
require auxiliary data structures for keeping track of the intervals or annotating the
dominator tree [CFS90b}; a D] graph completely captures the interval information
through join edges. The Top nodes are used in our elimination based data flow
analysis (Chapter 10).

Contribution 2 We propose new algorithms for computing dominance frontiers and
related sets in linear time.

1.3.3 A Fast Algorithm for Computing Multiple Node Immediate
Dominators

Gupta introduced the notion of multiple-node immediate dominators for per-

forming certain optimizations, like loop invariant removal and array bound

checking, very aggressively [Gup92]. Intuitively, in 2 multiple-node dominance

1The dominance frontier interval is same as the control dependence interval on the reverse
control flow graph [PB95, CFS30b].
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relation a group of nodes dominate a nede such that no subset of the group of
nodes dominate the node [Gup92].

Gupta proposed a two-step process for computing the multiple-node dom-
inance relation. In the first step, multiple-node immediate dominator nodes
are computed, using which the complete dominance relation is computed. In
multiple-node immediate dominators a group of predecessors of a node dominate
the node. Gupta’s algorithm for computing multiple-node immediate dominator
has worst-case exponential time complexity of O(JN|"), where |N| is the number
of flowgraph nodes and p is the maximum number of predecessors of a node. In
this dissertation, we propose a new algorithin for computing the same set in time
O(IE]?), where | E| is the number of edges in the DJ graph (Chapter 5).

Contribution 3 We present a simple algorithm for computing multiple node immediate

dominators in time O(| E|?), a considerable improvement compared to Gupta’s algorithm,
which is O(|N|P).

1.3.4 Identifying Nested Reducible and Irreducible Loops

Loop identification is a necessary step in loop transformations for high-
performance architectures {Wol89]. Tarjan’s intervals are single-entry, strongly
connected subgraphs, so they closely reflect the loop structure of a pro-
gram [Tar74]. They have been used for loop identification. The basic idea behind
Tarjan's method is to repeatedly collapse each natural loop into a single node
inside-out until the whole graph reduces to one node. This idea will work if
the flowgraph is reducible. In this dissertation, we generalize the collapsability
to irredudble loops (Chapter 6). We propose a new algorithm that works on
a DJ graph in a bottom-up fashion. Using our algorithm we can easily detect
irreducible portions and collapse them immediately using Tarjan’s strongly con-
nected componentalgorithm, and then continue to do abottom-up reduction. Our
method can be considered as a generalization of Tarjan’s reducibility algorithm.
A novel aspect of our approach is that, in the presence of irreducible flowgraphs,
our method can detect reducible loops within irreducible loops of the flowgraph.

Contribution 4 We propose a new and a simple algorithm for identifying nested re-
ducible and irreducible loops. Our algorithm can be considered as a generalization of
Tarjan’s reducibility algorithm.
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1.3.5 Computing Iterated Dominance Frontiers in Linear Time

Data flow analysis frameworks based on Static Single Assignment (SSA)
form and Sparse Evaluation Graphs (SEGs) demand fast computation of pro-
gram points where data flow information must be merged, the so-called ¢~
nodes [CFR*91, CF93, CCF91]. To determine where to place ¢-nodes requires
the knowledge of iterated dominance frontiers [CFR*91, CF93, CCF91]. Iterated
dominance frontiers have other applications such as computing guards [Wei92]
and incremental analysis (Chapter 8). We present a surprisingly simple algorithm
for computing iterated dominance frontiers for a (sub-)set of nodes of arbitrary
flowgraphs (reducible or irreducible) that runs in linear ime (Chapter 11). To the
best of our knowledge, this is the first linear time algorithm for computing iterated
dominance frontiers (at the time it was first published [SG94, SG95b]). A novel
aspect of our algorithm is that it can easily be adapted on other representations,
like APT [PB95]. Previous algorithms for this problem were either not linear (for
example, the algorithm of Cytron and Ferrante [CFR*91, CF93, CCF91}) or not
general (for example, the algorithm of Johnson and Pingali is restricted to SSA
forms [JP93)).

Contribution 5 We present a simple linear time algorithm for computing iterated dom-
inance frontiers for a set of nodes of an arbitrary flowgraph.

1.3.6 Incremental Computation of Dominator Trees

Data flow analysis based on an incremental approach may require that the dom-
inator tree be correctly maintained at all times (Chapter 10). Previous solutions
to the problem of incrementally maintaining dominator trees were restricted to
reducible flowgraphs [RR94, CR88]. In this dissertation, we present a new algo-
rithm for incrementally maintaining the dominator tree of an arbitrary flowgraph,
either reducible or irreducible (Chapter 8). For the case where an edge is inserted,
our algorithm is also faster than previous approaches (in the worst case). For
the deletion case, our algorithm is likely to run fast on the average cases. Unlike
the previous methods we use properties of DJ graphs and iterated dominance
frontiers for updating dominator trees.

Contribution 6 We present a new incremental algorithm for updating the dominator
tree of a flowgraph. ' '
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1.3.7 Incremental Computation of Dominance Frontiers

We present a simple algorithm for incrementally updating the dominance frontier
relation of a flowgraph (Chapter 9). We are not aware of any published work for
solviag this problem. Our algorithm relies on having the incremental computation
of Cominator trees. Since dominance frontiers are same as control dependences on
the reverse flowgraph, our algorithm can also be used for incrementally updating
the control dependence relation. Finally, incremental computation of dominance
frontiers is useful in incremental data flow analysis (Chapter 10).

Contribution 7 We present a simple incremental algorithm for updating the dominance
frontier relation of a flowgraph.

1.3.8 A New Framework for Eliminaticn-Based Data Flow Analy-
sis: Exhaustive Analysis

Despite much ground research work that has been done in elimination methods,
many researchers and practitioners prefer to use iterative methods for the fol-
lowing two reasons: (1) it is simple and easy to implement, and (2) can handle
arbitrary flowgraphs, including irreducible flowgraphs. Elimination methods,
on the other hand, are more efficient than iterative methods, but are more com-
plex to implement. Also, some elimination methods cannot handle irreducible
flowgraphs, and even if they do, they are not very efficient.

In this dissertation we propose a new framework for data flow analysis based
on elimination methods. We will demonstrate that our approach is simple, easy
to implement, practically efficient, able to handle irreducible flowgraphs, and
amenable to incremental analysis. At the heart of our approach is the DJ graph
representation. Within our framework we propose two algorithms for exhaus-
tive data flow analysis, and one algorithm for incremental data flow analysis

(Section 1.3.9).

We propose two variations of our approach for exhaustive data flow analysis:
(1) the eager elimination method, whose worst case time complexity is O(| E| x
|N]), where |N| and |E| are nodes and edges in the flowgraph, respectively;
and (2) the delayed elimination method, whose worst case time complexity is:
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O(|E| x log(]N])) (Chapter 10).}2 Rather than reducing a D] graph into a single
node, we only eliminate ] edges from the D] graph, and in the process we also
perform variable substitution along D edges when necessary, in either an eager
or a delayed fashion. At the end of the bottom-up elimination phase, all the ]
edges will be eliminated. Meanwhile the equation at every node is expressed
only in terms of its parent node in the (maybe compressed) dominator tree. Once
we determine the solution for the root node, we propagate this information in
a top-down fashion on the (maybe compressed) dominator tree to compute the
solution for every other node.

Although the time complexity of both eager and delayed eliminations are
worse than linear, we will demonstrate that the two methods are expected to be-
haves linearly in practice. Another novel aspect of our approach (both eager and
delayed eliminations) is that it can easily identify and handle irreducibility grace-
fully in the bottom-up reduction process. Our approach to handling irreducibility
does not perform fixed-point iteration over all the nodes in an irreducible region.
Instead, we apply our elimination method to every reducible region contained in
an irreducible region, and perform iteration only over nodes within the irreducible
region that are at the same level (of the dominator tree).

Contribution 8 We propose a new framework for data flow analysis based on elimination
methods. We propose two variations of our approach for exhaustive data flow analysis:
(1) the eager elimination method, and (2) the delayed elimination method. A novel aspect
of our approach is that it can handle irreducible loops very efficiently. Although the time
complexity of eager and delayed eliminations are worse than linear, we will demonstrate
that they are expected to behave linearly in practice.

1.3.9 A New Framework for Elimination-Based Data Flow Analy-
sis: Incremental Analysis
In this dissertation we present a new method for incremental data flow analysis

based on elimination methods (Chapter 11). Our method is based on incremental-
izing our eager elimination method. Unlike previous approaches [Bur90, CR8¢,

2Here we assume fast data flow problems when discussing complexity, although our approach
is applicable to more general monotone data flow problems [Bur90, Tar81, Ros80, Ros82, Mar89].
Please see Appendix A for relevant background on data flow framework.
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RP88], our method can handle arbitrary non-structural and structural program
changes, including irreducibility. Also, our method is novel in the sense that

we use properties of dominance frontiers and iterated dominance frontiers for
updating the data flow information.

Contribution 9 We propose a new incremental data flow analysis based on elimination
methods that can handle arbitrary incremental program changes, including irreducibility.

1.3.10 Experiments and Empirical Results

In this dissertation, we have proposed a number of algorithms for solving prob-
lems encountered in program analysis. To demonstrate the effectiveness of our
algorithms we implemented many of them using flowgraphs generated from the
Parafrase2 compiler [PGH*91), and experimented on real FORTRAN procedures
taken from SPEC92, LAPACK, GATOR, and RiCEPs. In Chapter 3 we give our
experimental framework, and within each relevant chapters we provide the ex-
perimental results. This is the last contribution of the dissertation.

Contribution 10 To demonstrate the effectiveness of our algorithms we implemented
many of them using flowgraphs obtained from real FORTRAN programs. We used
the Parafrase2 compiler for generating flowgraphs. We provide empirical results of our
experiments, and give their analysis.

1.4 Organization of the Dissertation

This dissertation is organized into a number of chapters. Figure 1.2 shows a “Road
Map” of the major chapters in the dissertation, the edges in the figure represent
dependences among the chapters. In Chapter 2, we give the relevant background
material and notation that are necessary for understanding of the dissertation. In
Chapter 3, we introduce DJ graphs and discuss some of their properties. Here
we also give our experimental framework, and within each relevant chapter we
provide experimental results. In Chapter 4, we give algorithms for computing
dominance frontiers and related sets. In Chapter 5, we present a new algorithm
for computing the multiple-node immediate dominance relation. In Chapter 6,
we present a new algorithm for identifying reducible and irreducible loops. In
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Chapter 7, we present a simple linear time algorithm for computing iterated
dominance frontiers. In Chapter 8, we present a new incremental algorithm for
updating the dominator tree of a flowgraph subjected to incremental changes. In
Chapter 9, we present a new incremental algorithm for updating the dominance
frontier set of a flowgraph subjected to incremental changes. In Chapter 10, we
propose a new approach for elimination based data flow analysis. This chapter
requires some knowledge on data flow frameworks. We refer readers to Ap-
pendix A for this background. In Chapter 11, we present a new incremental
data flow analysis based on elimination methods. Finally, we will conclude in
Chapter 12, projecting possible future work.
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Chapter 2
Background and Notation

The past was great no doubt, but I sincerely believe that the future will be
more glorious
—Swami Vivekananda

In this chapter we introduce the relevant background material and notation used
in this dissertation. (More notation and terminology will be introduced in later
chapters where they are used.)

Consider the program FOQ () given in Chapter 1. The corresponding Control
Flow Graph (CFG) is shown in Figure 2.1(a). Recall that a CFG is a basic structure
on which the data flow information is propagated. Depending on the data flow
problem, the information can be propagated either in the “forward” direction
(from a node to all its successor nodes), or the “backward” direction (from a node
to all its predecessor nodes). An example of a forward propagation problem is the
reaching definitions problem, and an example of abackward propagation problém
is live variable analysis.! For solving forward problems we use “forward” control
flow graphs, and for solving backward problems we use “reverse” control flow
graphs. In a reverse control fiowgraph we reverse the orientation of the control
flow edges.

In this dissertation we will use the term flowgraph to uniformly represent
either the forward control flow graph or the reverse control flow graph, depending
on the direction of the problem. We formally define a flowgraph as follows:

ISection 10.2 in Chapter 10 and Appendix A gives a brief to introduction data flow analysis.

17
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Definition 2.1 A flowgraph is a rooted directed grapht G = (N, E, Root), where N is

the set of nodes, E is the set of edges, and Root € N is a distinguished root node with no
incoming edges.

For forward control flow graphs the Root node is the START node of the control
flow graph, and for reverse control flow graphs the Root node is the END node
of the control flow graph. Throughout this dissertation we will mostly deal with
forward control flow graphs, and therefore we will use the notation START to
denote the root of a flowgraph (unless otherwise explicitly specified that END is
Root).

If z — y € E, then z is called the source node and y is called the destination
node of the edge; and sometimes we will say that y is a successor of z, and z is a
predecessor of y. The set of all successors of a node z € N is denoted by Suce(z),
while the set of all predecessors of z is denoted by Pred(z).

A path of lergth n is a sequence of edges (zg — z1 — ... — ), where each
z; — ;41 € E. We will use the notation P : g9 — z,, to represent a path of length
zero or more, and P : zq & z, to represent a path of length one or more. Given
the flowgraph of a program, we define the reachable subgraph REACH(Root) to
be a subgraph of G such that all nodes in REACH{Root) are reachable from Root.

Clarification 2.1

A flowgraph need not be connected, that is, some nodes may not
be reachable from the root node. This is possible during program
optimization, such as dead-code elimination, where a part of the flow-
graph (the dead-code) is eliminated; or during program development,
where a part of the flowgraph can be temporarily disconnected. In this
dissertation we will assume that all program properties, such as the
deminance relation, reaching definitions, etc., are defined only for the
reachable subgraph REACH(Root). Therefore, whenever we use the
phrase “a flowgraph and its dominator tree,” we are referring to “the
reachable subgraph REACH(Root) and its dominator tree”; or when
a node z dominates another node y, we implicitly assume that both =
and y are in REACH(Root). This convention applies to other proper-
ties as well; if a property is defined with respect to a node z or an edge
z — y, we will implicitly assume that z and y are in REACH(Root).
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Let S be a set, we will use the notation |S| to denote the number of elements
in the set.

Next we introduce the dominance relation.

Definition 2.2 In a flowgraph, a node z dominates another node y iff all paths from
START to y always pass through r.

We write z dom y to indicate that z dominates y, and write 2 !dom y if x does
not dominate y. If z domy and z # y, then z strictly dominates y. We write
z stdom y to indicate that z strictly dominates y. and write z !stdom y if x does
not strictly dominate y. A node z is said to immediately dominate another node y,
denoted as r = idom(y), if £ stdom y and thereisno othernode s £ zand z # y
such that z stdom = stdom y. The dominance relation is reflexive and transitive,
and can be represented by a tree, called the dominator tree. z — y is an edge
in the dominator tree of a flowgraph iff z = idom(y). Given a node z in the
dominator tree, we define SubTree(z) to be the dominator sub-tree rooted at z.
Note that the nodes in SubTree(z) are simply the set of all nodes dominated by z.
For each node in the dominator tree we associate a level number that is the depth
of the node from the root of the tree. We write z.level to indicate the level number
of anode z.

Example 2.1

Figure 2.1(b) shows the dominator tree for the flowgraph shown in
Figure 2.i(a). In the figure, we can see that node 3 dominates each
node in {3,4,5,6,7,8}, and node 3 strictly dominates each node in
{4,5,6,7,8}. Also, in the same figure, idom(4) = 3, and the nodes
in Subtree(4) = {4,5,6,7}. Finally, the levels of the nodes are:
START.level =0, Llevel =1, 2level = 2, etc.

- A number of 2lgorithms have been proposed for computing the dominance
relation [ASU86]. Lengauer and Tarjan proposed an algorithm that is almost
linear, O(|E| x «(|N|,|El)), where a() is the slowly-growing inverse Ackermann
function [LT79]. More recently, Harel has given a linear algorithm for computing
the dominator tree of a flowgraph [Har85]. We are not aware of any practical
implementation of Harel's algorithm. Inour research work we have implemented
Lengauer and Tarjan’s algorithm to construct DJ graphs (See Chapter 3).



CHAPTER 2. BACKGROUND AND NOTATION 20

Level 0

Level 1

Level2

Level 3

Level 4

Level s

(@)

Figure 2.1: The flowgraph for program FOO () and its dominator tree.

Another concept that is important in this dissertation is the dominance frontier
relation [CFR*91].

Definition 2.3 The dominance frontier DF(z) of a node z is the set of all = such that
x dominates a predecessor of z, without strictly dominating z.

Intuitively, one can visualize the dominance frontier of a node z as follows: to
compute the dominance frontier of z, shine a light at START, and put a shade at all
the output edges of node z, so that the light does not pass through them.2 This
partitions the flowgraph into dark and light regions. Consider all the dark edges
that are incident on light nodes. The destination nodes of these edges form the
dominance frontier of z.3

Sometimes it is convenient to think of dominance frontiers as a set of edges
rather than as a set of nodes. If this is the case we will use the notation DF,(z) to
denote this set, and define DF,(z) as follows:

2Think of nodes to be like crystal balls and edges as “directed” optic fibers.
3The above intuition is due to Barry Rosen [Ros94].
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Definition 2.4 The dominance frontier D F,(x) of a node r is the set of edges y — =
such that = dominates y, without strictly dominating =.

We next extend the definition of dominance frontier D F'(S) to a set of nodes

DF(8) = |J DF(x) (2.1)

€S

Finally, we define the iterated dominance frontier / D[F'(S) for a set of nodes
S as the limit of the increasing sequence:

IDR(S) = DF(S), (22)
IDF.(S) = DF(SUIDF(S)) (2.3)

Example 2.2

Consider the flowgraph shown in Figure 2.1(a). The dominance fron-
tier for node 3 is DF(3) = {3,10}. To see this, consider node 3 in
DF(3). We can see that node 3 dominates a predecessor of 3 (which
is 7) and a predecessor of 10 (which is 8). But in both cases 3 does
not sitictly dominate nodes 3 and 10. Therefore, nodes 3 and 10 are in
DF(3).

Now let us compute I.DF(3). Using Equation (2.3) the iterated domi-
nance frontiers is computed as follows:

IDF(3)={3,10}

IDF>(3)= DF(3 U {3,10}) = {3,10,END}

IDF(3)=DF(3uU {,10,END})={3,10,END}. We find no more changes
in the iteration, and so IDF(3) = {3,10,END}.



Chapter 3

DJ Graphs and Their Properties

If I can’t picture it, I can’t understand it.

—Albert Einstein

As far as the laws of mathematics refer to reality, they are not certain, and
as far as they are certain, they do not refer to reality.

—Albert Einstein

¢
At the heart of this dissertation is a new representation called the DJ Graph.

In this chapter we formally introduce DJ graphs (Section 3.1) and discuss some
of the properties of DJ graphs that are relevant for our work (Section 3.2).
To demonstrate the effectiveness of the algorithms based on Dy graphs, we
have implemented them using flowgraphs generated from the Parafrase2 com-
piler [PGH*91]. In Section 3.3 we present our experimental framework based on
DJ graphs. Here we also present some experimental results on the characteristics

of DJ graphs for real programs. Finaily, in Section 3.4, we discuss the related
work.

3.1 The DJ Graph

In Chapter 1 we informally introduced DJ graphs. Recall that central to DJ graphs
is the notion of join edges (J edges) and dominator edges (D edges). We defined an
edge z — y in a flowgraph to be a join edge if there is an alternative path from
START to y that does not pass through the edge = — y. More formally, we define
J edges as follows:

2
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Definition 3.1 (Join Edge) An edge = — y in a flowgraph is named a join edge (J
edge) if z # idom(y). Furthermore, we will call y as a join node.

Now if z = idom(y) then there is an edge from z — y in the dominator tree,
called the dominator edge (or D edge). It is trivial to see that a node is a join node
if it has more than one incoming edges; and that join edges are a subset of the
incoming edges of a join node. Given the notion of D and J edges we define DJ
graphs as follows:

Definition 32 (DJ Graph) A DJj graph Gs = (N, E4, Roots) is a rooted directed
graph that consists of the same set of nodes as in its flowgraph, and two types of edges
called D edges and J edges. D edges are dominator tree edges, and ] edges are the join
edges in the flowgraph.

To construct the DJ graph of a flowgraph, we first construct the dominator tree
of the given flowgraph, and then we insert the ] edges into the domirator tree.
The complete algorithin is give below.

Algorithm 3.1 The following algorithm constructs the DJ graph of a flowgraph.

MainDJGO

{

1: Compute the immediate dominance relation using Lengauer and Tarjan's
algorithm.

2 Construct the dominator tree using the immediate dominance relation.

3: foreach edge z — y in the flowgraph do

4 if  — y isnot an edge in the dominator tree then

5 Insert an edge from z to y in the dominator tree and markit as J edge

6: else .

72 Mark the corresponding edge = — y in the dominator tree as D edge.

8: endif
}

If we ignore the time complexity of Lengauer and Tarjan’s algorithm (step ,
we can see that the time complexity of the above algorithm is O(|Ey| + [Nj!).2

If weuse Harel's algorithm forcomputmg immediate dominance relation, the time complexity
of step[1] would be O(|E] + |Ny}).
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Given a DJ graph we distinguish between two types of ] edges: Back J (B])
edges and Cross J (C]) edges. AJedge r — y is a B] edge if y dom «, otherwise it
is a CJ edge.

Example 3.1

To see how a join edge is inserted in the dominator tree, consider the
join node 3 of the example flowgraph shown in Figure 2.1. It has two
incoming edges 7—3 and 2—3. Of the two edges only 7—3 is a J edge,
and 2—3 is not aJ edge since 2—3 is an edge in the dominator tree. We
therefore insert the J edge 7—3 in the dominator tree. We can similarly
insert other J edges. Figure 3.1 shows the complete D] graph of the
flowgraph. Throughout this dissertation we will use solid dark edges
for representing J edges, and dash-and-dotted edges for representing
D edges. Finally, an example of a B] edge is 7—3 and an example of
CJ edge is 6—7.

Level1

Level2

Level 4

Level 5

Figure 3.1: The DJ graph for the flowgraph shown in Figure 2.1.
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Clarification 3.1

Since a flowgraph and its DJ graph contain the same set of nodes,
whenever we use the term node z, the node z may belong to either
the flowgraph or the DJ graph, unless explicitly specified by using
subscript notation with f for flowgraph and d for D] graph. We will
use the notation Suces(z) (Predy(z)) to be the set of successor (prede-
cessor) nodes on flowgraphs, while Succs(z) (Preds(z)) to be the set
of successor (predecessor) nodes on DJ graphs.

Also, a DJ graph is made up of dominator tree edges and join edges.
Therefore, whenever we use the terrn dominator tree, we also mean a
DJ graph without ] edges, and vice versa.

Finally, DJ graphs are defined (constructed) vnly for reachable sub-
graphs of flowgraphs.

3.2 Properties of DJ Graphs

In this section we discuss some of the properties of D graphs that are relevant
to our discussion. We will subsequently use these properties for proving the
correctness and analyzing the complexity of some of the major results in this
dissertation. The first property gives us an upper bound on the size of a D] graph
with respect to the size of its flowgraph.

Theorem 3.1 Let Gy =  (N;,E;START;) be a flowgraph, and

- let Ga = (N, E4,START.) be the corresponding DJ graph. Then, [N4| = |Ny| and

1Za| < (INf! + | Ef])-

Proof:
The proof is based on the following observation: a DJ graph has the
same set of nodes as its flowgraph, hence [Ny| = |Ng4].

Now, the number of edges in the dominator tree of Gy is |[Ny| — 1;
thus the number of D edges in the corresponding DJ graph is [Ny| — 1.
The number of J edges that we introduce in the DJ graph can be no
more than the number of edges in the corresponding flowgraph, hence
1B} < (N7l + | Exl)- 1
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From the above theorem we can easily derive the following corollary.
Corollary 3.1 The size of a D] graph is linear with respect to the size of its flowgraph.

This is interesting because from now on we will argue the time complexity of
our algorithms using either DJ graphs or flowgraphs.

Next we will discuss structural properties of D] graphs. For every edge
xy — yy in a flowgraph, there is a corresponding edge x4 — ya in the DJ graph.
But the reverse may not be true; that is, the DJ graph can have more edges than
its flowgraph does. For example, consider the flowgraph given in Chapter 2
(Figure 2.1), whose DJ graph is shown in Figure 3.1. We can see that there is no
edge from node 4 to 7 in the flowgraph, but there is an edge from 4 to 7 in the
correspending DJ graph.

Next we can see that for every path Py : z; — ys in a flowgraph there is a
corresponding path P : z4 — yq in the D] graph, and vice versa. Thisimmediately
follows from the construction of the D] graph. Note that the nodes in the two
paths may not be exactly the same. In other words, given any two nodes = and
y, y is reachatle from z in a flowgraph if and only if y is reachable from = in the
corresponding DJ graph.?

Also recall that there is exactly one path from START to some node in the
dominator tree of a flowgraph. Due to the presence of ] edges, there may be more
than one path from START to any other node in a DJ graph. How are J edges
and D edges related? D edges and ] edges are related in many ways. One such
relation is given in the following lemma.

Lemma 3.1 Let z — y be a ] edge, then idom(y) stdom z.
Proof:
Let z = idom(y), and assume that z !stdom z. We can immediately
see that there is a path from START to y that does not go through =,
contradicting our initial assumption that z immediately dominates y.
|

Another relation between D and ] edges is in terms of levels of the nodes in the
dominator tree of the DJ graph. The following lerma establishes this relation.

2Another view of the Dj graph may give a better intuiiior behind these observations: A D
graph can also be constructed by adding every missing immediate dominance edge = — y into its
flowgraph if the edge is not already present in the flowgraph.
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Lemma 3.2 Let = — y be a | edge in a D] graph, then z.level 2 y.level.

Proof:

Suppose z.level < y.level. There are two cases:

1. Thereisa path from z to y in the dominator tree. This is impossible
by definition (because z will dominate y).

2. There is no path from z to y in the dominator tree. Let = be a
node such that z.level = z.level, and z dom y (actually, = strictly
dominates y). Since z — y is in the DJ graph, there is a path
from START to z to y in the CFG that does not pass through = (a
contradiction, because we have assumed = dom y).

Next let us see how D edges and ] edges are related to the dominance frontier
relation. Using the definition of dominance frontiers (Definition 2.3) we can easily
see that, if z — y is a ] edge, then y € DF(z). But in Lemma 3.2 we showed that
if z — y is aJ edge then z.level > y.level. We can generalize the above lemma as
follows:

Theorem 3.2 Let z beanodeina Dj graph, and let D F(z) be the dominance frontier of z.
Then, z.level > y.levelforeachy € DF(z),and z.level 2 y.levelforeachy € IDF(x).

Proof:

Let y € DF(z) and let v = tdom(y). We will first show that v will
strictly dominate z. Then using this result we will prove the validity
of the theorem. Assume that u does not strictly dominate z. Then
there is a path from START to z that does not pass through «. Since
y € DF(z), there must be a predecessor node z strictly dominated
by z. From this we can immediately see that there is a path from
START... = z... = ...z = y in the DJ graph that does not pass
through u, contradicting the assumption that u = idom(y). Therefore
u stdom z. From this we can easily see that

ulevel < z.level
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Again since u = idom(y), u.level = y.level — 1. Substituting this in the
above inequality, we get

ylevel =1 < zlervel

or
ylevel < z.level

Hence the result.

The property z.level > y.level for each y € [DF(z), inductively fol-
lows from the definition of iterated dominance frontier and the prop-
erty z.level 2 y.level for each y € DF(z). |

Intuitively, Theorem 3.2 implies that given a node =, to determine its Jomi-
nance frontier (or iterated dominance frontier) we only need to look at those nodes
at the same level as z or above it, in the corresponding DJ graph. Nodes whose
level number is greater than the level number of z in the dominator tree will never
be in the dominance frontier of z. We will use this property in Chapter 4 and
propose a new algorithm for computing the dominance frontier of a node. We
will again use this result in Chapter 7, where we present a linear time algorithm
for computing iterated dominance frontiers.

3.3 Experimental Framework and Empirical Evalua-
tion

We implemented many of the algorithms presented in this dissertation using
flowgraphs generated from the Parafrase2 compiler [PGH*91]2 We implemented
the Lengauer-Tarjan (LT) almost linear time algorithm for finding immediate
dominators.! Using the immediate dominator information we next constructed DJ
graphs. Using DJ graphs as the basis we implemented our algorithms. We chose
a set of 40 FORTRAN procedures from SPEC92, LAPACK, GATOR, and RiCEP

3Parafrase? is a research tool developed at the Center for Supercomputing Research and De-
velopment, University of Illinois at Urbana-Champaign.

“Due to the complex nature of Harel’s linear time algorithm, we did not implement that
algorithm.




CHAPTER 3. D] GRAPHS AND THEIR PROPERTIES 29

. programs.® We looked for programs that has larger control flow structure, some
of them have complex flow of control and some them have simpler flow of control.
Table 3.1 lists all the procedures used for our experiments in alphabetical order.
Throughout this dissertation we will use these 40 procedures to quantitatively
study characteristics of our algorithms. Within each relevant chapter we provide
our experimental results and their analysis concerning that chapter.

In the remaining portion of this section we will study some interesting charac-
teristics of flowgraphs, dominator trees, and DJ graphs for our test procedures, We
will first summariz~ the main observations of our experiments for the procedures
we tested.

o Thenumber of flowgraph edges is approximately 42% more than the number
of flowgraph nodes. This suggests that flowgraphs for practical programs
are sparse [ ASUS86].

¢ The dominator tree structures are generally flat. The average depth (aver-
aged over the depth of all the nodes) range from 9.0 to 90.0, whereas the
. maximum depths of dominator trees range from 14 to 179. This suggests
that dominator trees are generally flat, when compared to the number of
nodes in the corresponding flowgraphs.

o We measured the difference | E4| — | Ey|, which gives the number of “extra”
D edges that are in the dominator tree but not in the flowgraph. On average
we found that the number of extra D edges to be 17, which is 5.4% more than
the number of flowgraph edges. This suggests that the size of a DJ graph is
very close to the size of its flowgraph.

o The average depth of ] edges (measured as the difference between the depth
of source and destination nodes of ] edges, and averaged overall all J edges),
range from 0.5 to 6.3, whereas the maximum depth of ] edges range from 1
to 39. These two results suggest that J edges are generally flat. -

o The average time for computing immediate dominance relation is 8.9 mil-
liseconds. Now given the immediate dominance relation, the average time

. SSPEC (Standard Performance Evaluation Corporation) is a standard suite of benchmark pro-

; : grams from SPEC Associates. LAPACK is a linear algebra package from Argonne National Lab.

. GATOR is a Gas, Aerosol Transport, and Radiation Model from University of California at Los
Angele. Finally, RICEP is a benchmark suite from Rice University.
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for constructing DJ graphs is 1.2 milliseconds. This suggests that construct-
ing DJ graphs is very fast in practice.

We will further elaborate on these results in the rest of this section. Table 3.1

and Table 3.2 gives a summary of our results. The notations used in Table 3.1
and Table 3.2 are given below:

Notation used in Table 3.1 and Table 3.2

Name Procedure names.
Lines Number of lines parsed {excluding comments).
|N| Number of flowgraph nodes (where nodes are basic
blocks).
[Es Number of flowgraph edges.
[ Bl Number of DJ graph edges.
Loz Maximum depth of dominator trees
Leye Average depth of dominator trees (averaged over the
depth of all nodes in the tree)
Jmasz Maximum depth of J edges
Jave Average depth of ] edges (averaged over the depth of all
J edges)
Frontend(s) | Execution time for front-end parsing (in seconds)
L FG(ms) Execution time for constructing flowgraphs (in
ﬂ milliseconds)
LT(ms) Execution time for computing immediate dominators us-
' ing the LT algorithm (in millisecords)
DJG(ms) | Execution time for constructing DJ graphs given the im-
mediate dominator information (in milliseconds)

The second column of Table 3.1 gives the number of lines (Lires) of code,
as computed by the Parafrase compiler, within each procedure. This does not
include comments. The total number of lines of code for the 40 procedures is
20,599, and the average number of lines of code is 515. The third and the fourth
columns of Table 3.1 give the number of flowgraph nodes |N] and the number of
flowgraph edges | Ey|, respectively. For our test procedures, the average number
of flowgraph nodes is 219, and the average number of flowgraph edges is 312.
From the table we can also see that the number of flowgraph edges is not much

‘'
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larger than the number of flowgraph nodes, suggesting that the number of edges
are linear with respect to the number of nodes.

We next measured depth (or depths) of dominator trees. From the table we
can see that maximum depth L...- of dominator trees ranges from 14 to 179, and
the average depth of dominator trees L,,. range from 9.0 to 90.0. We notice that
for many procedures, the average and the maximum depth is small compared to
number of flowgraph nodes, suggesting that dominator trees are generally flat
for many programs. An exception to this is the dominator tree of the procedure
iniset. For this procedure the average and the maximum depth are 90.0 and
179, respectively. A careful examination of this procedure reveals that it consists
of 154 simple DO loops for initializing array varibles.

Next we measured the number of edges in DJ graphs (D edges + ] edges).
This is shown in the column |E;y|. The difference |Ey| — |E;| gives the number
of “extra” D edges that are not in the corresponding flowgraph. We can see that
the number of extra D edges range from 0 to 39, with 17 being the average. This
suggests that the size of a DJ graph is almost the same as the size of its flowgraph.

Next we measured “depth” of ] edges. We define thedepthof aJedgez — y to
be z.level —y.level. The columns Jpm,» and J,.. give the maximum and the average
depth of ] edges, respectively. For our test procedures, maximum depth range
from 1 to 39, and average depth of ] edges ranges from 0.46 to 6.28. From these
two results we can conclude that ] edges are also quite flat for practical programs.

Finally, we measured execution times for front-end parsing (Frontend), for
generating flowgraphs (FG), for computing immediate dominators using the LT
algorithm (LT), and for constructing DJ graphs given the immediate dominator
information (DJG). These measurements are given in Table 3.2. From the table
‘we can see that the time for constructing DJ graphs is much smaller than the time
for computing the immediate dominance relation using the LT algorithm.

3.4 Discussion and Related Wo}:k

In this chapter we introduced a new program representation called the DJ graph.
Derived froma flowgraph, a DJ graph can be viewed as a refinement representing
explicitly and precisely both the dominance relation between nodes (via D edges)
and the potential program points where different control paths merge (viaJ edges).
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Name ” mesT['\’l rEjl I !Edl ]_Lmax | ave ! Jmc: | Jﬁl'c l

aerset 768 1329 | 460 | 467 39 ] 215

agset 512 | 189 | 258 | 263 38| 223 9 1.7
bit 394 1135 | 187 | 213 21§ 90 141 17
card 201 { 150 | 216 | 235 231 108 14! 27
chemset 633 | 229 | 320 | 330 28 | 210 28| 19
chgeqz 3421174 | 248 | 268 36| 168 13| 21
clatrs 408 [ 214 | 208 | 337 21 [ 133 5| 12
coef 243 | 95| 137 | 154 21| 119 7! 14
comlr 135! 69 9] 97 19] 96 10| 17

dbdsqr 542 (228 | 327 | 33| 31| 187] 15| 24
dedamp || 211|137 | 187 | 205 | 22| 90| 13| 25

deop 441 1186 | 261 298( 23| 130( 12| 16
detran 508 1326) 458 493 | 36| 159| 26| 34
deseco 473|175 | 236 | 259 | 28| 14.0 9| 16
dgegv 290 160§ 232 | 246| 34| 191 18] 23

dgesvd || 1142 (321 | 470 { 499 | 19| 115| 10| 23
dhgeqz 631 |285) 408 4335 | 39| 23| 25| 22

disto 382133 191 | 211 17| 97 5( 13
dlatbs 317 | 167 | 238 | 259 18 | 104 6| 14
dtgeve 555 | 321 | 459 [ 485 36 | 204 134 17
dtreve 467 [248 ] 353 | 373 | 25| 156 71 15|
elpmt 296 ) 162 | 227 | 245 24 | 100 9| 12
equilset 782 | 327 | 451 | 467 58 | 323 9| 15
errchk 462 | 346 | 482 | 515 45 24671 37| 21
iniset 456 | 333 | 486 | 486 | 179 | 90.0 1| 10
int 265112217175 | 176 | 23| 139 | 10| 13
initgas 511 189 | 263 | 267 34| 179 21| 16
jsparse 724 | 281 | 403 | 408 34| 176 8| 14
modchk 444 | 306 | 419 | 455 34169, 287 16
moseq2 348 | 161 | 217 | 246 2] 106} 12| 21
mostet 562 | 214 | 295 | 333 72 | 108 12| 25
i 115 | 160 | 184 14| 82 4| 11
403 | 590 | 597! 45| 169 18| 17

182 | 235{ 242 67 | 304 5{ 05

406 | 611} 637 4| 214 36| 63

573 | 188 | 275 | 278 45 | 207 9 14

195 | 286 | 290 34| 213 18| 13

212 | 310 316 6270 39| 34

196 | 289 | 298 23| 106 7] 16

168 | 243 | 258 53} 207 18] 21

Average ]| 515|219 | 312 329 | 24l 187 14| 19

Table 3.1: Structural characteristics of DJ graphs and flowgraphs for the test
procedures.
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[ Name || Frontend(s) | FG(ms) | LT(ms) | DJIG(ms) ||
18] 242 6

aerset . 122 1.
agset 14 20.1 77 0.9
bit 0.7 17.0 57 13
card 03 14.0 62 0.8
chemset 1.6 25.9 9.1 11
chgeqz 0.5 183 7.1 0.9
clatrs 05 232 32 1.4
coef 04 10.8 46 05
comlr 02 69 4.1 03
dbdsgr 0.8 29.2 92 12|
dedemp 03 130 57 0.7
dcop 09 194 77 1.1
detran 0.8 302 11.8 20
deseco 09 18.0 74 09
dgegv 04 29.8 71 09
dgesvd 25 411 191 18
dhgeqz 1.0 302 114 15
disto 07 14.8 53 13
dlatbs 04 176 72 09
dtgeve 0.7 32.5 12.0 23
dtreve 0.8 253 9.3 13
elpmt 05 21.9 6.7 0.9
equilset 1.7 335 129 17
errchk Q0.7 33.0 12.0 24
iniset 0.6 283 127 1.6
init 0.4 133 55 0.7 |
initgas 14 19.7 76 13
jsparse 1.7 305 11.0 13
modchk 0.9 272 11.0 17
moseq2 05 15.7 7.0 0.9
mosfet 1.1 222 85 1.3
noise 0.6 118 5.1 0.7
out 23 43.7 151 20
reader 16 207 7.8 0.8
readin 11 393 151 23
setupgeo 17 25.1 783 0.9
setuprad 22 213 78 0.9
smvgear 15 2.1 8.6 12
solveq 1.6 202 7.8 10
- twldrv 12 334 73 14
Average 1.0 239 8.9 12

Table 3.2: Execution time for front-end parsing, for constructing flowgraphs, for
computing immediator dominators using the LT algorithm, and for constructing
DJ graphs.

=~
~
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Previously relations similar to J edges have been proposed to indirectly capture
control flow properties of a flowgraph. For example, the D Fi,..; relation of Cytron
et al. [CFR*91] are equivalent to ] edges. Cytron et al. define D) Fy,ar(r) to be the
set of all successor nodes y of = such that . does not strictly dominate . From
this definition we can see that an edge r — y is ajoin edge iff ¥ € DFioeu{r). In
the DJ graph we explicitly represent the D [, relation as join edges.

In this chapter we also gave our experimental framework and quantitatively
studied the structural characteristics of D] graphs. From our study we can see that
the size of DJ graphs is only about 5.4% more than the size of the corresponding
flowgraph. We also noticed that DJ graphs are flat structures.



Chapter 4

Computing Dominance Frontiers and
Related Sets

A ‘No’ uttered from deepest conviction is better and greater than a “Yes’
merely uttered to please, or what is worse, to avoid trouble.
—Mahatma Gandhi

In this chapter we propose new algorithms for computing dominance frontiers
and related sets using DJ graphs. We will show how DJ graphs can condisely
capture some of these relations via D and ] edges. Since dominance fronters
are related to control dependences [CFR*91], our algorithms can also be used
for computing the control dependence relation. In Section 4.1, we give a simple
algorithm for computing dominance frontiers of a node using DJ graphs. In
Section 4.2, we show how to compute dominance frontiers for a set of nodes in
linear time. In Section 4.3, we will show to compute the full dominance frontier
relation using DJ graphs. In Section 4.4, we show how to compute dominance
frontier intervals in linear fime using DJ graphs. Finally, we will compare our
work with other related work in Section 4.5.

4.1 Computing Dominance Frontiers for a Node

In this section we give a simple algorithm for computing D F(z) of anode z using
properties of DJ graphs. In the next section, we will extend this algorithm for
computing dominance frontiers for a set of nodes in linear time. The key intuition

35
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behind our algorithm is based on Theorem 3.2. From this theorem we know that
the level number of all nodes in DF(z) are less than or equal to the level number
of node z. Now, is it possiole to compute the dominance frontier of a node using
level information? The answer is yes. The following lemma establishes a relation
between nodes in the dominance frontier of a node x and their levels.

Lemma 4.1 Anode: € DF(z) iffthereexists ay € SubTrec(x)withy — zasa]edge
and z.level < z.level.

Proof:

The “if” part Here we have to show thatif y € SubTree(z}andy — =
is a J edge such that z.level < z.level, then = is in the set DF(z).
There are two cases:

Case 1: z is in SubTree(x). Since z.level < z.level, z must be z
itself. Also, sincey — = is a] edge, y must be a predecessor
of z in the corresponding flow graph. Furthermore, y is in
SubTree(z), hence z must be in DF(z) (from the definition of
dominance frontier).

Case 2: z is not in SubT'ree(z). In this case z does not domninate
(and hence doesnotstrictly dominate) z. Now sincey — zisa
Jedge, y is a predecessor of z in the corresponding flowgraph,
from the definition of dominance frontier z is in DF(z).

The “only if” part Since z is in DF(z), by definition of dominance
frontier, z does not strictly dominate z, and also there must be a
node y that is a predecessor of z in the corresponding flowgraph
such that z dom y. Since z dom y, we have y € SubTree(z).
Also, by definition, y — zis aJ edge. Now, using Theorem 3.2, it
is easy to see that z.level < z.level.

Using Lemma 4.1 we can easily devise a simple algorithm for computing the
dominance frontier of a node as follows:



CHAPTER 4. DOMINANCE FRONTIERS AND RELATED SETS 37

. Algorithm 4.1 The following algorithm computes dominance frontier DF (z) of a node
x using DJ graphs.
DomFrontier(z)
{
9: DF. =9
10:  foreach y € SubTree(z) do
11: if(y — =z == Jedge)
12: if(z.level < z.level)
13: DF,=DF.U:
}

Notice that the time complexity of the above algorithm is O(|N] + | E]), in the
worst-case. This is because, to compute dominance frontiers for a node r we will
potentially visit all the nodes and edges (D edges + ] edges) in the SubT'ree(z).!

Level

Level 1

Level2

Level3

Leveld4

Level 5

Figure 4.1: Figure 3.1 reproduced.

1Sometimes, for convenience, we will overload the notation SubTree(z) to represent the sub-
graph of a D] graph rooted at z that includes all the D edges and J edges induced by the nodes in

. the SubTree(z).
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Example 4.1

Consider the DJ graph shown in Figure 4.1. Let us compute DF(3). To
compute this, we simply walk down the DJ graph along D edges and
look for ] edges whose destination nodes are at levels 3.level or less.
For the example DJ graph we can see that ] edges 7 — 3 and § — 10
satisfies the level condition. Therefore, DF(3) = {3,10}.

Given the above result next we will next show how to compute dominance
frontiers for a set of nodes in linear time.

4.2 Computing Dominance Frontiers fora Setof Nodes

In the last section, we gave a simple linear time algorithm for computing the
dominance frontier of a node. One way of computing dominance frontiers for
a set S of nodes is to precompute the dominance frontier for every node in the
flowgraph, and then use Equation (2.1) to compute dorminance frontiers for the
set S. This could give rise to a worst-case quadratic time behavior [CFR*91]. To
illustrate this, consider the computation of DF({2,4}) (Figure 3.1). From Equa-
tion (2.1), we know DF({2,4}) = DF(2) U DF(4). Let us therefore precompute
DF(2) and DF(4). Using Algorithm 4.1 we get DF(2) = {10} and DF{4) = {3}.
So, DF({2,4}) = {3,10}.2 Notice in the above example that we visit the nodes
in the SubT'ree(4) twice—once during the computation of DF(2), and once again
during the computation of DF(4). How can we avoid this redundant traversal
of the nodes in the SubT'ree(4)? We can avoid this by first computing DF(4) and
marking node 4 as being processed. Now during the computation of DF(2) we
avoid visiting any node in SubT'ree(4) (since node 4 is already processed, and is so
marked) thereby avoiding redundant traversal. Notice here that we never need
to precompute DF(2) and DF(4) in order to compute DF({2,4}). Therefore, to
compute DF({2,4}), we first compute the DF(4) using Algorithm 4.1, and also
mark node 4 as being processed. Any candidate node that is generated on-the-fly
is then added to the set DF({2,4}). Now during the computation of DF(2) we

2Cytron et al. have proposed a simple formula for computing the dominance frontiers for all
nodes that is more efficient than our redundant traversal method. We will discuss this method in
Section 4.5.
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avoid visiting the nodes in SubTree(4). Again we add any candidate node that is
generated on-the-fly to DF({2,4}). Based on this observation we can see that the
ordering of nodes in the dominator tree is important to avoid redundant traversal
of nodes during the computation of dominance frontiers. The complete algorithm
for computing dominance for a set of node is given below

Algorithm 4.2 Given a set S of nodes, the following algorithm computes DF(S).

& Input: DJ graph and the set S of nodes.

& Output: DFs, the dominance frontier for a set S of nodes.

& Initialization: Order the nodes in S by their level numbers.

DFSet(S)

{

14: DFs=10

15:  foreach z € S in a bottom-up fashion do

16: Mark z as Visited.

17: Walk down the SubTree(z) while avoiding nodes that have been previ-

ously marked Visited.
18: Identify J edgesy — = sucl.1 that z.level < z.level. Include all such z’s
in DFs.
19: endfor

}
We can see that the time complexity of the above algorithm is again O(| N|+| E|).

In Chapter 7 (Section 7.4) we will establish the correctness and complexity of a
much stronger result, that of computing iterated dominance frontiers, which
subsumes the correctness and the complexity of the above algorithm.

4.3 Computing the Full Dominance Frontier Relation

In previous sections we gave algorithms for computing dominance frontiers of a
node and set of nodes, without precomputing the (full) dominance frontiex rela-
tion for all the nodes ina flowgraph. In this section we will show how to compute
the full dominance frontier relation using DJ graphs. Our method for computing
the full dominance frontier relation is equivalent to the one proposed by Cytron
et al. [CFR*91], except that we use level information instead of the dominance
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relation. In this section we will also briefly discuss the recent resuit due to Pingali
and Bilardi on the representation of the dominance frontier relation [PB95].

In [CFR*91], Cytron etal. gave a simple formula for precomputing dominance
frontiers for all nodes [CFR*91]. The formula consists of two parts:

DFyca{z) = {y € Succy(z)|z stdom y},

and
DF,,(z) = {y € DF(z)|idom(=) !stdom y}.

Now if y € Succy(z) and z Istdom y then x — y is a ] edge (follows from the
definition of DJ graph). Also if y € DF(z) and idom(z) !stdom y then y.level <
1dom(z).level (follows from Theorem 3.2). Therefore we can rewrite the above
formulas using level information.

DFigea(z) = {y]z — y is aJ edge},

and

DF,,(z) = {y € DF(2)[y.level < idom(z).level}.

Using D Fiocat and DF,, Cytron et al. proposed the following formula for com-
puting dominance frontiers for each node z.

DF(z) = DFioat(z)V  |J  DFul(2). 4.1)

zEChildren(z)

Example 4.2

Consider the DJ graph shown in Figure 3.1. Assume that the dom-
inance frontier for nodes 5, 6, and 7 have been computed (ie.,
DF(5) = {7}, DF(6) = {7}, and DF(7) = {3}). We will show how
to compute DF(4) using the above recursive formula. First notice
that DFja = @ (since there are no J edges coming out of node 4).
The set DF(4) = DFioeat(4) U DF,,(5) U DF;(6) U DF,;(7). Using
the above formula we can see that DF,,(5) = DF,;(6) = 0, whereas
DF,,(7) = {3}. Therefore DF(4) = {3}.
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Once the full dominance frontier relation is computed the next concern is
how to store or represent it. This problem is generally called as the factorization
problem [CFS90b]. As motivation, let us first see how to factorize the dominance
relation.

The dominance relation can be represented in two ways: (1) ateach node store
a pointer to its immediate dominator node (except for the Root node where we
store a pointer to itself), (2) at each node z store a list of all the nodes that strictly
dominate z. Using either representation we can query the dominator of a node
in time proportional to the size of its dominator set. But, the first factorization (or
representation) is better since it occupies only linear space, whereas the second
factorization occupies quadratic space.

Given the above intuition for the factorization problem, Cytron et al, in
[CFS90Db], posed the following open problem. Is there a factorization (or a repre-
sentation scheme) for dominance frontiers that can be constructed in linear time,
occupies linear space, and each query DF(z) takes time proportional to the size
of z's dominance frontier set. In that paper, the authors conjectured that it may
not be possible to come up with such a factorization. Notice that the full dom-
inance frontier relation, in the worst-case, occupies quadratic space (e.g., nested
repeat-until loops), but querying takes time prcportional to the size of the
set.

DJ graphs can also be considered as a factorization for representing dominance
frontiers. We can construct DJ graphs in linear time (Algorithm 3.1), its size is again
linear with respect to the size of its flowgraph (Theorem 3.1), but querying the
dominance frontier of a node takes O(]E|) using Algorithm 4.1. Notice that our
DJ graph has space optimality (since it occupies linear space) but not query-
time optimality (since it takes O(|E|) for a query), whereas the full dominance
frontier relation has query-time optimality (since it takes O(| DF(z)|) for querying
the dominance frontier of node z), but not space optimality (since it occupies
quadratic space, in the worst case).

Recently, Pingali and Bilardi solved this problem using a representation called
APT [PB95]. To motivate the APT representation consider the DJ graph shown
in Figure 4.1. Assume that we want to compute DF(2). Using Algorithm 4.1, we
would simply waik down the DJ graph along D edges looking for ] edges whose
destination node is at levels less than or equal to the level of node 2. We can see
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that only 8 — 10 satisfies this level condition. Now rather than walking down
the DJ subgraph root at 2 each time we query DF(2) we can cache the ] edge
8 — 10 at node 2. By doing so we improve the query time of DF(2). Now the
key question to ask is when and where to cache such J edges? Recently Pingali
and Bilardi solved this problem in their AP7 representation. In a preprocessing
step they show how to cache such ] edges at certain nodes called boundary nodes.
One can view the APT representation to be a cached DJ graph, where ] edges are
cached to improve query time. Pingali and Bilardi showed how to used a “tuner”
to control how much caching is really needed so that space and time optimality
of the representation is not sacrificed. One can think of APT to be a spectrum
of dominance frontier factorizations with our DJ graph being at one end (with
no caching) and the full dominance frontier representation being at the other end
(with full caching).

4.4 Dominance Frontier Interval

In this section we give a simple algorithm for computing the dominance frontier

interval in linear time using DJ graphs [CFS90b, PB95]. We define dominance
interval as follows:

Definition 4.1 Let y — =z be a J edge and let w = tdom(z).

¢ The half-open dominance frontier interval [y, w) of the Jedge y — = is the set
of all the nodes on the reverse dominator tree path from y to w, including w.

o The closed dominance frontier interval [y,z] of the ] edge y — z is the set of
all the nodes on the half-open dominance interval [y, w) but not including w.

Given the above definition, we call y as Bottom node of the interval, w is calied
the Top node cf the half-open interval, and z is called the Top node of the closed
interval. Determining the set of nodes in [y, w) or [y, ] requires a simple tree walk
on the reverse dominator tree path from ¥ to w or z.

Our interest in this dissertation is in the Top node of a dominance frontier inter-
val (see Chapter 10). For a half-open interval, computing Top node is trivial—the
Top node of a] edge y — z is nothing but the immediate dominator of z. What
about the Top node of a closed interval? A naive algorithm would require walking
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up the reverse dominator tree path from y to w = idorn(z) and find the immediate
dominee z of w on this path. The complexity of this would be O(|N|) for a single
J edge, and so for all ] edges this would require G(|£] x |N|). We will next show
how to compute the same set in time O(| E) using DJ graphs.®

Algorithm 4.3 below computes the Top nodes for all J edges. The algorithm
works on the D] graph. We will use the following notation and data structure to
simplify the presentation.

o Children(u) denotes the children of u on the dominator tree.

» Each node in the DJ graph has the following attributes:

-~ curChild /* Current child node visited in the depth first

traversal */

— cand /* Candidate Top node for this Bottom node in the
closed interval [thisbottom,cand]. */

Algorithm 4.3 The following algorithm determines cTop nodes for all | egdes.

& Input: The DJ graph.

& Output: The Top node z of the closed interval [y, z], stored in y.cend.
MainTop()

{

20:  foreach ¢ € Children(START)

21: START.curChild= ¢

22: TopDFES(c).

23:; endfor
}

TopDFS(y)

{

24:  foreach outgoingJ edgey — = do
25: y.cand = tdom(z).curChild ;
26:  endfor

3Although the algorithm is very simple, we are not aware of any literature that gives acomplete
algorithm for determining the Top node of closed intervals. Pingali and Bilardi briefly mention
this in their paper without providing a complete algorithm [PB95]. Subsequently, Pingali also
proposed another algorithm for computing the same set [Pin95].
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27:  foreach c € Children(y)
28: y.curChild=c /* a Top node of some closed interval */
29: TopDFES(c).
30: endfor
}

Figure 4.2: The DJ graph of Figure 3.1 annotated with ¢Top nodes.
Example 4.3

Consider the DJ graph shown in Figure 3.1. We will illustrate Algo-
rithm 4.3 for this DJ graph. The DJ graph annotated with ¢Top nodes
is shown in Figure 42. The top nodes are denoted in the figure as
< z >. We perform a top-down depth-first search on the DJ gralﬁh via
D edges looking for ] edges. During the depth-first traversal (step [22]
and step we store a reference to the current child (through which
visit the nodes in sub-tree rooted at the current child) in the parentnode

(step [21]and step [28]). Subsequently, when we probeaJedge z — v,
the immediate dominator of y will contain the cTop,._, (step [25)).
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Consider for example the J edge 7 — 3, the immediate dominator of 3
is 2. The only dominator tree path from 2 to 7 is via node 3, and a ref-
erence to node 3 was previously stored in 2.curChild. So the cTop;._.;
is 3.

Theorem 4.1 Algorithm 4.3 correctly computes cTop nodes for all | edges.

Proof:
Atstep[22]and step[29]| TopDFS(c) is invoked with the current child ¢.
Prior to calling TopDFS(c), reference to the current child cis stored in its
parentnode. Since the pathbetween any twonodesina dominator tree
is unique, when a J edge y — = is processed at step @ w = idomn(z)
will contain the reference to child node through which node y was
previously visited from node w. This child is the cTop fory — z. This
is because there is 2 unique path between w and y on the dominator
tree, and this path must pass through cTop,__. |

Finaily, one can easily show that the time complexity of the above algdrithm
is O(| E])-

4.5 Discussion and Related Work

In this chapter we gave algorithms for computing dominance frontiers of a node
and dominance frontiers for a set of nodes without precomputing the dominance
frontiers for all nodes. We also gave an algorithm for computing the full dom-
inance frontier relation that uses level information. One main contribution in
this chapter is determining dominance frontiers using level information. This is
important for us because it allowed us to devise a simple linear time algorithm
for computing dominance frontiers for a set of nodes (Chapter 7). :

In [CFR+91] Cytron et al., gave a simple formula for precomputing the domi-
nance frontiers for all nodes. Cytron etal. proposed a factorization for storing the
dominance frontiers for all nodes. This factorization occupies quadratic space,
but querying the dominance frontier of a node takes time proportional to the size
of its dominance frontier set. We can also think of Dj graphs to be a factorization
of dominance frontiers. In our case we can constructa DJ graphin linear time and
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linear space, but querying the dominance frontier of a node using Algorithm 4.1
could take O(|N|) time. Recently, Pingali and Bilardi proposed a representation
called APT for factorizing the dominance frontier relation. One can think of
APT to be a spectrum of dominance frontier factorizations with our DJ graph
being at one end and the complete dominance frontier representation being at the
other end.

In this chapter, we also gave a simple algorithm for computing Top node of
both closed and open dominance frontier intervals for all ] edges. Although this
algorithm is very simple, we have not seen any literature giving a description of
an algorithm for this problem. We will use the concept of top nodes in Chapter 10.



Chapter 5

Compuiing Multiple Node

Immediate Dominators

Consciously or unconsciously, every one of us does render some service
or other. If we cultivate the habit of doing this service deliberately, our desire
for service will steadily grow stronger, and will make, not only our own
happiness, but that of the world at large.

—Mahatma Gandhi

Recently, Gupta introduced the concept of multiple-node immediate dominators
for solving certain data flow problems such as array bound checking and loop
invariant removals more aggressively than exiting methods [Gup92]. In his pa-
per Gupta gave an O(|N?) algorithm for computing multiple-node immediate
dominators (where | N| is the number of flowgraph nodes and p is the maximum
number of predecessors of a node). In this chapter we present an O(|E[?) algo-
rithm for computing the same result (where | E| is the number of flowgraph edges)
using DJ graphs. In the next section we introduce the concept of multiple node
dominators, and also discuss one application in compiler optimization. In Sec-
tion 5.2, we present our algorithm for computing the multiple-node immediate
dominance relation using DJ graphs. In Section 5.3, we use an example to further
illustrate our algorithm. In Section 5.4, we show the correctness and complexity
of our algorithm. Finally, in Section 5.5, we discuss some related work and give
our concluding remarks.

47
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5.1 Introduction and Motivation

Recently, Gupta introduced a relation called multiple-node immediate dominators
of a node [Gup92]. This relation can be used in automatic generation of compact
test suites for program testing. It is also useful in program analysis and optimiza-
tion. Using multiple-node immediate dominators, he showed how to perform
loop-invariant removals and array bound checking more aggressively than exist-
ing methods [ASU86]. More recently, Gupta [Gup95], Bodik and Gupta [BG95],
Appelbe et al. [AHM*95] have shown other applications of multiple-node domi-
nance relation.

To illustrate one application of multiple node dominance relation, consider
the flowgraph shown in Figure 5.1.! If one uses the traditional algorithm for loop
invariant removal, it is impossible to move the expressions i+1 (node 3 and node
4 in Figure 5.1) from the loop. This is because, single-node dominance relation
prohibits such optimizations [ASU86]. To overcome this, Gupta introduced the
notion of multiple-node dominance relation. Intuitively, in a multiple-node dom-
inance relation a group of nodes dorinate a single node such that no subset of
the nodes dominates the node. For example, in Figure 5.1 nodes 3 and 4 together
dominate node 5, but nodes 2 and 3 together do not dominate node 5 (there exists
a subset of {2, 3}, i.e., {2}, that dominates node 5).

Gupta proposed a two-step process for computing multiple-node dominance
relation. In the first step multiple-node immediate dominator nodes are computed, us-
ing which, in the second step, the multiple-node dominance relation is computed.
Gupta’s algorithm for computing the multiple-node immediate dominance rela-
tion hasa worst-case time complexity of O(| N |P), where p is the maximum number
of predecessors of a node. We have improved the worst-case time complexity of
the algorithm to O(| E|?).

Next we will formally introduce multiple-node dominance relation. The tra-
ditional definition of the dominance relation is called the single-node dominance
relation, meaning every node except for the START node has exactly one immedi-
ate dominator. The generalized dominance relation captures both the single-node
and the multiple-node dominance relation in a unified way. Gupta defines the
generalized dominance relation as follows:

This example is taken from [Gup92].
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Figure 5.1: An example of loop invariants removal.

Definition 5.1 A set of nodes S dominates node z if and only if:

(1) all paths from START to x contain some nodey € S; and

(2) for each y € S, there is at least one path from START to z which contains y but
does not contain any other node in S.

Example 5.1

Consider the flowgraph shown in Figure 5.2. Let S = {2,5,6}. We can
see that S dominates node 15. This is because all paths from START
to 15 contain at least one node in S, thus S satisfies the first condition
of Definition 5.1. Also, we can see that for eachnode y € S, there is
at least one path from START to 15 that passes through y, but not any
other node in S, and so S also satisfies the second condition.

Now let T’ = {4, 8,12}. We can see that T does not dominate node 15.
This is because a subset of T, i.e., {4,12}, dominates node 15. Thus T
violates the second condition of Definition 5.1.
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Figure 52: Another example of a flowgraph.
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Gupta presented a two-step process for computing muitiple-node dominance
relation. First, multiple-node immediate dominator set is computed, using which
the multiple-node dominance relation is computed. Gupta defines the multiple-
node immediate dominance relation as follows. (Note that Pred;(z) represents
the predecessor nodes of z in a flowgraph.)

Definition 5.2 A multiple-node immediate dominator set midom(zx) of a node z is
defined to be a subset of Pred(z) which dominates z.

Example 5.2

Consider the flowgraph shown in Figure 52. Let us compute
midom(13). First notice that Pred;(13) = {9,11,14}. Using Defini-
tion 5.2, we can immediately see that midom(13) = {9, 14}.

In this chapter we will distinguish between single node immediate dominator
(sidom) and multiple-node immediate dominator (midom) set. Every node has
exactly one stdom (except the START node which has none). The midom-set of a
node, although unique, can be empty. The midom-setofa node isempty whenever
the node satisfies the following property:

Lemma 5.1 The midom-set of a node z (z # START) is empty if and only if there is a
flowgraph edge from sidom(z) to z.
Proof:
Easily follows from Definition 52. i

Therefore, we will compute the midom-set only for those nodes = such that
sidom(r) — z is not a flowgraph edge. We will use MIDOM to denote the
relevant set of nodes whose midom-sets are not empty.

In this chapter we give a simple algorithm for computing multiple-node imme-
diate dominator with a better worst-case time complexity of O(|E[?). To compute
the multiple-node immediate dominance relation we made the following key
observation:

Observation 5.1 A predecessor, y, of a node z in a flowgrapk is in midom(z) iff there
exists at least one path from sidom(z) to y that does not contain any other nodes in
Predy(x) (excluding y itself). '
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This key observation follows from the definition of generalized dominator
(Definition 5.1) and the restriction that midom(z) must be a subset of Pred;(r).
Therefore, in order to compute midom(x) we check foreach y € Pred {x) whether
there is a path from sidom(z) to y that does nct contain any other nodes in
Predg(z). If such a path exists then we add y to midemn(x). Thus, in our approach,
we start off with an empty midom(z), and add nodes from Pred;(x) to midom{r)
if they satisfy the aforementioned property. This is in contrast to Gupta’s method,
where the midom(x) set is initially assumed to be Preds(x), and then nodes
are removed from midom(z) until the set satisfies certain properties (Lemma 2
in [Gup92]). Based on this observation, in the next section, we give a simple
algorithm for computing the set of nodes in midom(z).

5.2 Our Algorithm

In this section we present our algorithm for computing multiple-node immediate
dominators. In the previous section we made the following key observation for
computing multiple-node immediate dominators: If anode y is in midom(z), then
there is at least one path from sidom(z) to y that does not contain any other nodes
in Predg(z) (excluding y itself). Therefore, in order to compute midom(z) we
check for each y € Pred;(z) whether there is a path from sidom(z) to y that does
not contain any other nodes in Predy{z).

In order to check if the above mentioned path exists, we do the following:
For each node y € Preds(z) (assuming that we are computing midom(z)), we
‘outblock’ all the nodes in Pred;(z) except y. By ‘outblock’ we mean that all
the outgoing edges from the node are conceptuailly cut. Next we check if z is
reachable from sidom(z). If so, we have found a path from sidom(z) to x that
does not pass through any other node except y in Pred;(z). This means that
y € midom(z). We do the above process for all nodes in Predy(z). The complete
algorithm for computing midom(z) for every node z € MIDOM is given below.

To simplify the presentation of our algorithm and proof of correctness, we use
the following notation and data structures:

e NumlLevel is the total number of levels in the dominator tree
embedded in the DJ graph.

e Each node z € N has the following attributes:
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struct NodeStructured
proc = { Processed, Not Processed}
instack = {InStack, NotInStack}
outblocked = {Out Blocked, NotQut Blocked}
level = {0... NumLevel — 1}

}

¢ PushNode(z) inserts z into a stuck. PopNode() retrieves a node
from the stack. ClearStack() clears the stack.

The first step in the algorithm is to mark all the predecessor nodes Pred;(z)
of z as Qul Blocked in the DJ graph (for loop at step @ Then select one of the
‘un-processed’ nodes that is marked Out Blocked and un-Glock it (step . Next
call the function VisitedX(sidom(z), z) (step[38). This function returns True if a
path exists from some node in Succs(sidom(z)) to z that does not pass through
any of the outblocked nodes; otherwise, it returns False (step [38]). Add y to M,
(step if the function VisitedX() returned T'rue. Atstep @we again outblock
the current node. This process is repeated for all un-processed nodes in Pred;(z).
When the procedure terminates the midom-set for node z is stored in M.. The for
loop at step | 46 | un-blocks all outblocked nodes.

Algorithm 5.1 The following algorithm computes the midom-set M; for any = €
MIDOM.

& Input: A DJ graph G = (N, E,START,END) and the set of relevant nodes
MIDOM
& Output: The set M;, the multiple-node immediate dominators for a node
z € MIDOM.
& Initialization:
Vz € N (z.proc = NotProcessed ;
z.instack = NotInStack ;
z.outblocked = NotQutBlocked ;

/ * Compute the level numbers * /

z.level = Level(z);

& The Algorithm:
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Procedure MidomSet(z)

{

31: M.=0

32:  foreachy € Preds(z)

33; y.outblocked = Qut Blocked

34:  endfor

35:  foreachy € Pred;(z)

36: if(y.proc! = Processed) /* get next un-processed node */
37: y.outblocked = NotQut Blocked

38: status = VisitedX(sidom(z), z)

39; if(status == True) /* found a path */
40; M.=M,Uy /* insert in M, */

41: endif

42: y.proc = Processed/* mark processed*/
43: y.outblocked = QutBlocked

44: endif

45:  endfor

46:  foreachy € Pred;(z)

47: y.proc = NotProcessed /* recover the DJ graph*/
48: y.outblocked = NotQOut Blocked

49:  endfor

}

The function VisitedX() in conjunction with another function Visit() searches
through the nodes below sidom(z) to see if it can reach = from some node w
in Succs(sidom(z)) without passing through any of the outblocked nodes. The
procedure VisitedX() returns True if such a path exists. Remember that we
have unblocked only one predecessor of z, say y, and outblocked the rest. So
if VisitedX() returns true, we have found a path from sidom(z) to z that passes
through y without passing through any other predecessors of x. Therefore, from
our previous discussion y should be added to the set mdiom(z).

The first step in function VisitedX() is to insert into a stack all the nodes in
Sucey(sidom(z)) that are at the same level as = and are not marked Out Blocked
(for loop at step [50)). Then it picks a node z from the stack (step and calls
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another function Visit(z, r) (step . The function Visit() returns True if the
node z was visited during the invocation of Visit(z. ); otherwise, it returns False
(step[57]). When the True value is returned, further search through any remain-
ing nodes in stack is aborted and the T'rue value is propagated back to the main
procedure MidomSet() (step . Otherwise, it picks another node from the
stack and continues with the search until there are no more nodes in the stack.
Whenever Visit() returns True, the function VisitedX() clears the stack (by calling
the procedure ClearStack() at step before propagating the T'rue value back
to the main procedure.

Function VisitedX(w, z)

{

50:  foreach = € Suces(w)

51: if((z.level == z.level) and
(z.outblocked! = Qut Blocked))

52: PushNode(z) /* Push onto stack */

53: z.instack = InStack

54: endif

55:  endfor

56:  while((z = PopNode(})! = NULL)

57: status = Visit(z, z)

58: if(status == True)

59: ClearStack()

60: return T'rue /* found a path */

61: endif

62: endwhile
63: return False /* not found a path */

The function Visit(z, z) basically walks down SubTree(z) through D edges
(step and checks if there is a J edge from some node v € SubTree(z) to -
x (where = was previously put on the stack). If such aJ edge is found (step ,
further search down the subtree is aborted and the function returns True back
to function VisitedX() (step [73]). Otherwise, the function visits all the nodes in
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SubT'ree(z) through D edges. Note that the function Visit() never walks down an
outblocked node (step[65)). Whenever it finds a successor node to be outblocked,
it avoids searching further down the tree through the outblocked node.

As it walks down the subtree, if it finds a ] edge whose destination node, say
u, is at the same level as z, and u was not previously put on the stack, it pushes v

onto the stack (step . Note that it never pushes an outblocked node onto the
stack.

Visit(z, z)

{

64:  foreach u € Succy(z)

65: if(u.outblocked! = Qut Blocked)

66: if(z — u == Dedge) /* walk down D edge */

67: status = Visit(u, z)

68: if(status == True)

69: return True /* found a path, so stop searching
further */

70: endif

71: else/* Jedge */

72 if(u ==z) /* found path to z */

73: return True '

74: endif

75: if(u.level == z.level) /* same level as x? */

76: if(u.instack! = InStack)

77: PushNode (u)

78: u.instack = InStack

79: endif

80: endif

81: endif

82: endif

83:  endfor

84: return False
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5.3 An Example

Let us illustrate the working of Algorithm 5.1 for the flowgraph given in Fig-
ure 5.2(a). Its corresponding DJ graph is shown in Figure 5.3. Assume that we
want to compute midorn(13), the multiple-node immediate dominator set for node
13. The first step is to outblock all the nodes in Pred;(13) = {9,11,14} in the DJ
graph (for loop at step . The resuiting DJ graph is shown in Figure 5.4(a). In
the figure all outblocked nodes are shaded and not shadowed. Next we unblock
one of the previously blocked node, say 11. The resulting DJj graph is shown in
Figure 5.4(b). Then we call the function VisitedX(4, 13) (step .

Levels

Figure 5.3: The DJ graph of the example flowgraph shown in Figure 5.2.
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(2) All predecessor {b} Only 9 and 14 are
nodes are outblocked oulblocked

(¢) Only 14 and 11 are {d) Onty S and 11 are
outblocked outblpcked

Figure 5.4: Various stages of the DJ graph during the computation of midom(13).
Outblocked nodes are shaded and not shadowed.
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VisitedX(4, 13) first inserts into a stack all the nodes in Succ;(4) that are at the
same level as node 13 and are not marked Out Blocked (for loop at step . In
this case only node 8 is pushed onto the stack, since node 9 is marked Out Blocked.
Thenwe call Visit(8, 13). This function will in turn visit all the nodes in SubT ree(8)
(step @, which contains only node 8. There are two J edges from 8: 8 — 10 and
§ — 15. The level number of node 15 is less than that of 13, so we do nothing.
Node 10is not outblocked, is at the same level as node 13, and was not previously
put on the stack. So we push node 10 on the stack (step . Since we have
not yet reached our goal (of getting to node 13), Visit() returns False back to its
calling function VisitedX() (step . Since node 10 is on the stack, at step
we pop the node and call Visit(10, 13) at step @ The only successor of node 10
is 14, and 14 is marked outblocked (step [65). So Visit(10,13) returns False, and
so does VisitedX(4, 13) to the main procedure (since there are no more nodes on
the stack). Consequently, we do not add node 11 to M.

Next, in the main procedure MidomSet(), we outblock node 11 and un-block
node 9 (see Figure 5.4(c)). We again call the function VisitedX(4, 13). As before,
VisitedX(4, 13) first pushed nodes 8 and 9 onto the stack (note that this time we
have un-blocked node 9). Assume that node 9 was pushed earlier than node
8. Atstep we call Visit(8, 13). The only successors of § are nodes 10 and
14. The scenario is the same as before—from node 10 we visit node 14 which is
outblocked (the level number of node 14 is less than that of 13.) Therefore, we
return with False back to VisitedX(). Next the function VisitedX() picks node
9 from the stack (step [56)) and invokes Visit(9,13). There are three successor
nodes to node 9: nodes 11, 10, and 13. Nede 11 is outblocked and node 10 was
previously put on the stack. So we visitnode 13, which is our goal state. Therefore
we immediately return with T'rue (step @ This means we have found a path
from 9, a node in Sucey(sidom(13)), to node 13 that avoids any of the outblocked
nodes. Consequently, we add node 9 to My3 (step .

The only remaining un-processed node is 14. We un-block it and call the
function VisitedX(4, 13) (see Figure 5.4(d)). Performing the computation process
as before, we will see that this function returns True; therefore, we include node
14 in Mys. Thus, we eventually have M3 = {9, 14}.
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54 Correctness and Complexity

In order to prove that Algorithm 5.1 correctly computes the midom-set for any
node x € MIDOM, we must show that, when the algorithm terminates, the set
M. (at step @ satisfies the definition of midom-set (Definition 5.2). In other
words, we have to show that M. satisfies the following conditions:

1. M. is a subset of Pred(z).

2. All paths from START to x contain some node y € M., and for each y € M.,
there is at least one path from STAKT to = which contains y but does not
contain any other node in M.

Notice that these two conditions follows from our key observation presented
in Section 5.1 (Observation 5.1). Although we do not explicitly prove the key
observation we will show that the above two conditions are indeed satisfied by
our algorithm.

First of all notice that all paths from START to z must pass through sidom(z).
Also, all paths from START to any node y in Pred,(z) must again pass through
sidom(z) [PM72]. Therefore, it is sufficient for us to consider paths from sidom(z)
(rather than from START) to  when arguing that M. indeed satisfies Definition 5.2.
Before proceeding, we define a special set of nodes with respect to a node z:

Definition 5.3 (S set) Given a node z, we define S to be a subset of Succy(sidom(z))
such that for every y € Succy(sidom(z)), y.level == z.level.

In order to show that M. indeed satisfies the definition of midom-set, we will
first examine what nodes are added to M. when our algorithm terminates. A
node is added to M. at step [40] only if VisitedX() returns True. When does
VisitedX() retwrn True? In Lemma 5.5 we will show that Visited() returns True
iff there exists a path from some node y € S to z in the DJ graph that does not
pass through any outblocked node. What this means is that for a node y to be in

- M, there must exist a path from sidom(z) to = that does not pass through any
other node in Pred;(z).

We will use Theorem 5.1 to formally validate the correctness of our algorithm.
The proof of the theorem is based on Lemma 5.5, whose proof in turn needs the
results from the next three lemmas.
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Lemma 5.2 Let x and y be any two nodes such that y.lcvel < z.lcvel, Then every path
from y to x must pass through sidom(z).

Proof:
Easily follows from properties of the D] graph. |

In the following discussions, we assume that z is in the relevant set MIDOM.
Lemma 5.3 shows that, in order to search for an outblock-free path from sidem(z)
to z, it is sufficient to start th2 search from nodes in S, thus reducing the search
space.

Lemma 5.3 All simple paths (in the flowgraph) from sidom(z) to x must contai some
nodey € S..

Proof:
Assume P is a simple path (in the flowgraph) from sidom(z) to z
that does not confain any node in S;. Notice that all paths from
stdom{z) to £ must contain some node in Succy(sidorn(z)). Letu €
Sucep(sidom(z)) be some node such that u is in the path P. First of
all observe that u.level can never be greater than z.level. Now let us
assume that u.level is strictly less than z.level. But, from Lemma 5.2,
all paths from u to x must pass through sidom(z), and so does P. If
this is the case, then P isno longér a simple path—a contradiction. So
it must be the case that u.level = z.level, thatis, u € ;. [ |

In an attempt to search for a path from sidom(z) to z, we use Lemma 52 to
guarantee that it is safe not to search any nodes whose levels are less than z.level.
In other words, we can limit the search for such a path to only nodes below
sidom(z). Lemma 5.3 specifies exactly which subset of nodes of Succy(idomn(z})
one needs to consider when determining if node z can be reached from sidom(z).
The needed nodes in Succy(idom(z)) are those at the same level as z. The next
lemma specifies which nodes need to be pushed onto the stack (at step [52] and
step [77). Those nodes are at the same level as z and are reachable through a
outblock-free path from some node in Succs(idom(z)).

Lemma 5.4 A node = is pushed onto the stack (at step [52] and step only if there is
a outblock-free path to = from some node in S, = is not outblocked, and z.level = z.level.
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Proof:

Nodes are put on the stack only at two places: step and step .
At step only nodes in S: that are not outblocked are pushed onto
the stack. At step nodes are put on the stack when they are
not outblocked, are siblings of x, and are reachable from some node

u € SubTree(w), where w was previously put on the stack and is
reachable from some node in S,.

Lemma 5.5 specifies that the function VisitedX(sidom(z), z) does indeed find
a path from some node in S. to z that does not pass through any outblocked
nodes, whenever such a path exists.

Lemuma 5.5 The function VisitedX(sidom(z), z) returns Trucifand only if there exists

a path from some node y € S; to z in the D] graph that does not pass through any
outblocked node.

Proof:

The “if” part We firstshow that if VisitedX(sidom(z), z) returns True,
then there is outblock-free path from some node y € S; to x. Note
that we never visit any successor of an outblocked node in the
process (step . From Lemma 5.4 we know that a node is put
on the stack only if it is not outblocked and there is a outblock-free
path from some node y in S; to this node. At step [73] we return
True only if z is visited through some J edge = — = (step [72)).
Node z was previously put on the stack and is reachable from y.
Therefore, if VisitedX() returns True, then there is an outblock-
free path from y to z.

The “only if” part Wenext show that if thereis a outblock-free path P
from y € S: to z, then VisitedX(sidom(z), z) returns T'rue. Note
that our algorithm outblocks all the nodes in Pred;(z) except one
node, say node z. So if P is a outblock-free path, then P must
contain z, and so it is obvious to see that VisitedX(sidom(z), z)
will return true.
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Finally, we prove our main result in Theorem 5.1. In Lemma 5.5 we have
established that VisitedX() returns True iff there is an outblocked-free path frecm
some node in S: to z. In Algorithm 5.1, a node is added to the set M: only if
VisitedX() returns True, meaning only if there is an outblock-free path from some
node in S; to z in the DJ graph. We will show in Theorem 5.1 that the set M.,
when the algorithm terminates, indeed satisfies the Definition 5.2.

Thecrem 5.1 Algorithm 5.1 correctly computes midom(z) for any x € MIDOM.

Proof:
First of all it is straightforward to see that M is a subset of Pred(z).
This is because each node y that is added to M; belongs to Pred;(x)
(step[35} and also M. is initialized with the empty set at step [31)).

Next we will show that all paths from sidom(z} to z (in the flowgraph)
contain some node in M;. The proof is again easy. A node is added
to M. only if VisitedX() returns True. From Lemma 5.5 it is clear
that VisitedX() returns True if z is reachable from some node in &;.
Therefore all paths from sidom(z) to z (in the flowgraph) contain some
node in M..

Next we will show that for eachy € M, there is at least one path from
sidom(z) (in the flowgraph) that contains y but does not contain any
other nodes in Preds(z). Again the proof follows from Lemma 5.5.
What we do in Algorithm 5.1 is to outblock all the nodes in Pred;(z)
except node y, and then check if there is a outblock-free from some
node in §:. From Lemma 5.5 we know that VisiteaX() returns T'rue if
such a path is found. Also this path should contain y (since all other
nodes in Pred;(z) are outblocked). Hence the result.

i
Next we analyze the worst: >ase time complexity of computing the midom-sets

for all the nodes in MZTDOM. We first give the time complexity of Algo-ithm 5.1,
which computes midom(z) for any z € MIDOM. '
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Theorem 5.2 The worst-case time complexity of Algorithm 5.1 is O(| E| x p), where | E|
1s the number of edges in the DJ graph, and p is beunded by the maximum number of
predecessor nodes of a node in the corresponding flowgraph.

Proof:

Foreachnodey in Pred(x) weessentially traverse the DJ graph below
sidom(x) looking for a path to y that does not pass through any other
nodes in Preds(z) — {y}. Also, we put a node on the stack only
once (step [76)). Finally, we only visit the nodes and edges of the D]
subgraph rooted at nodes that was previously put on the stack, at most
once. Also, we perform the above process for each node in Pred,(x).

With p being the maximum number of predecessors a node can have,
the result easily tollows. |

Let z1,22,...,zk be the set of nodes in MIDOM. The time complexity of
computing the midom for k nodes is then bounded by O{|Ea| X (pz1 + pr2... +
Pzx)). Since the size k of the set MIDOM can be O(|NV|), the time complexity
of computing the midom for all is bounded by O(|E;| x |Ef|) = O(1E;[*) (since
Pr1+ pz2. ..+ pzi = | Egl, for k= |N|).

5.5 Discussion and Related Work

We have shown how to use the DJ graph to facilitate computing the immediate
multiple-node dominator of a node. Compared to Gupta’s algorithm, ours has a
better worst-case time complexity for computing the same set. We are currently
not aware of any other work on generalized dominators. Finally, we notice that
generalized dominators are related to the vertex cut-set problem. But computing
midom-sets is different from general cut-set problem in the following ways. In the
vertex (node) cut-set problem we are given an undirected graph, and the problem
is to find a subset (usually a minimal subset) of nodes whose removal (along with
all the edges incident on these nodes) will split the graph into two disconnected
subgraphs. One could use any of the network flow algorithms to compute whatis
termed as min-cut set that will split the graph into two disconnected components
by assuming all edges have the flow capacity of one. But in the midom-set
problem for a flowgraph, our objective is to find 2 minimum subset of nodes from
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Preds{z) whose removal (along with all the edges incident on these nodes) will
separate sidom(z) and z. This does not necessarily separate the whole graph into
disconnected components.



Chapter 6

Identifying Irreducible Loops

FORTRAN s not a flower but a weed ~ it is hardy, occasionally blooms,
and grows in every computer.

— AJ. Perlis

Loop identification is a necessary step in loop transformations for high-
performance architectures. Some compilers detect loop structures using syntactic
constructs (e.g., for, while, etc.), while others detect loops using flowgraphs.
The latter approach is more general in that it can detect loops in programs that
even use goto statements or that are represented in low-level intermediate lan-
guages. In this chapter we follow this approach. One classical technique for
detecting loops is using Tarjan’s interval algorithm [Tar74]. The Tarjan intervals
are single entry, strongly connected subgraphs [Tar74]. However, Tarjan’s inter-
val finding algorithm does not directly handle flowgraphs containing loops with
more than one entry, i.e., loops with multiple entries. Such loops will be called as
irreducible loops in this dissertation, whereas loops with single entry will be called
reducible loops [Hec77). There are extensions to Tarjan’s algorithms that are listed
in Section 6.3.

In this chapter we give a simple algorithm for identifying both reducible and
irreducible loops using DJ graphs. As we will show in this chapter, our method
can be considered as a generalization of Tarjan’s interval algorithm {since we can
identify nested loop intervals even in presence of irreducibility). Furthermore,
we use level information in the DJ graph to detect finer irreducible regions, thus
confining the effect of irreducibility to small regions.

66
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We begin the chapter by motivating the notion of reducible and irreducible
loops. Then, in Section 6.2, we give a simple algorithm for identifying loops in
a flowgraph. Finally, in Section 6.3, we compare our work with other related
work.

6.1 Introduction and Motivation

In the literature there are two kinds of flowgraphs: reducible flowgraphs, and
irreducible flowgraphs (see Figure 6.1). Hecht and Ullman gave the following
definition for reducibility of graphs [HU74, ASU86].

Definition 6.1 A graph G is reducible if and only if we can partition the edges into
two disjoint groups, called the forward edges and back edges, with the following two
properties:

1. The forward edges form an acyclic graph in which every node can be reached from
the initial node of G.

2. The back edges consists only of edges whose destination nodes dominate their source
nodes.

The above definition of reducibility applies equally to both DJ graphs and flow-
graphs. In other words, we can easily see that a D] graph is reducible if and only
if the corresponding flowgraph is also reducible.

In a reducible flowgraph the destination node % of a back edge z — & is
called the loop header or loop entry node. Reducibility of flowgraphs are related
to reducibility of loops. If L is a loop with L; as the entry node of the loop,
then L, will dominate every node in the loop. One of the classical approach for
identifying loops is based on Tarjan’s interval algorithm.

Tarjan’s intervals are single-entry, strongly connected subgraphs, and they
closely reflect the loop structures in programs [Tar74]. The basic idea behind
Tarjan’s method is to repeatedly collapse each loop into a single node inside-out
until the whole graph reduces to one ncde. This idea will work if the flowgraph
is reducible. Recall that a node k is a loop header if z — h is a back edge and &
dominates z. Now as the reduction process proceeds in Tarjan’s method, if we
come across a backedge z — g such that g does not dominate », further reduction
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Figure 6.1: An example of a reducible flowgraph and an irreducible flowgraph

of the graph cannot be continued. This is because g is not a unique loop header
node. A number of actions can be taken at this point; one is to split the headzr
node, transforming the graph to a reducible graph; another action is to abandon
the reduction process and warn the programmer that the graph is not reducible;
yet another action would be to identify a single entry region which encloses the
irreducible portion and collapse the single entry region as oriz node, and continue
with the reduction.

In this chapter we take a different approach for reduction. Our approach
uses DJ graphs. Translating the notion of reducibility on DJ graph, we can easily
observe the following property.

Lemma 6.1 A flowgraph is irreducible if and only if there exists a simple cycle in its DJ
graph that does not contain a B] edge (that is, the cycle is made of only D edges and C]
edges).
Proof:
Follows from the definition of DJ graphs and Definiton 6.1. |

The interesting aspect of this lemma is that if we perform a depth-first search
on such a DJ graph, we can always find a potential sp-back edge that is also a
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CJ edge, and so every sp-back edge is not a B edge.! Using this key intuition,
we can now perform depth-first search on the DJ graph, and identify all back
edges, called sp-back edges. Once we identify the sp-back edges we can identify
loops in a bottom-up fashion on the Dj graph. The complete algorithm is given
in Algorithm 6.1.

Example 6.1

Consider the flowgraph shown in Figure 5.2 whose corresponding DJ
graph shown in Figure 5.3 (Chapter 5). The flowgraph is irreducible
because of a multiple-entry loop that has two entry nodes 3 and 5. The
DJ graph contains a simple cycle3 — 6 — 7 — 12 — 3, in which there
are no BJ edges.

Before presenting the complete algorithm we will introduce another key con-
cept that is useful for understanding the algorithm. The following lemma states
that all the “entry nodes” of an irreducible loop have the same immediate domi-
nator.

Lemma 6.2 All theentry nodes of an irreducible loop have the same immediate dominator.

Proof:
Let z,2,,...z, be the set of loop entry nodes of an irreducible loop.
By definition of loop, there exists acycle C, such that z,, 22, ...z, arein
C. Lety = idom(z;) and let z = idom(z;), forsome: # j € {1,2,...n}.
We want to show y = z. Suppose that y # z. Then there is a path from
START = z = z; 5 z; that does not pass through y, contradicting
y = tdom(z;). Therefore, y must be the same as z. |

What the above lemma implies is that when we are looking for candidate
nodes that belong to a loop, look only at nodes that are at the same level as
loop entry nodes and below it (ie., whose level numbers are greater than the
loop header’s level). This is obvious for a reducible loop, since its unique entry
node, the loop header, strictly dominates (or has a smaller level number than) any
other nodes in the loop. For an irreducible loop all the entry nodes of the loop

We say z — y is an sp-back edge iff y is  or is an ancestor of z in a depth-first spanning tree.
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are at the same level (follows from Lemma 6.2). Therefore, we can identify an
irreducible loop with entry nodes at a certain level by determining the Strongly
Connected Component(SCC) while considering only nodes whose level number
is equal to or greater than the current level. Once we find such a SCC, collapse
the whole component into one node. It is also important to emphasize that using
this technique we can identify reducible loops nested inside an irreducible loop.

6.2 Our Algorithm

The complete algorithm for idenrtifying loops is given below.

Algorithm 6.1 The following algorithm identifies both reducible and irreducible loops

MainLoop()
{
85:  Perform a depth-first search on the DJ graph and identify sp-back edges;

86:  for(i = NumLevel — 1 dewnto 0) /* visit nodes in a bottom-up fashion */
87: Irreducible = False;

88: foreach node n with n.level = i do

89: foreachedge m — n do

90: if m — n is both a (] edge and an sp-back edge then

91: Irreducible = True; /* n is in an irreducible loop */
92: endif

93: if n is a destination node of a B] edge then

94: Find ReachUnder(rn) for all the B] edges m1 — n,...,mi —n
95: Collapse the loop consisting of nodes {n} U ReachUnder(n);

96: endif

97: endfor

98: endfor

99: if(Irreducible) /* there exists an irreducible loop */
100: Identify SCCs for the subgraphsinduced by nodes at level i and below;
101: Collapse each non-trivial SCC to a single node.

102: endif

103: endfor
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The algorithm visits all the nodes level by level in a bottom-up fashion. At
every level, when there is a reducible loop whose header is at this level, we identify
it by checking to see if that node is the destination node of any sp-back edge. If
yes, we know a potential reducible loop is found. The algorithm goes to find the
loop body with that node being the loop header, and collapses the loop —between
step and step [96]* The procedure ReachUnder(n) will find all the nodes
that can reach the source nodes of sp-back edges incident on the loop header n,
without going through n. We collapse the nodes in {n} U ReachUnder(n) using
Tarjan’s set-union data structure, and these nodes form the body of the loop.

Note that all the sp-back edges with the same destination node are sp-back
edges for the same loop. The algorithm also checks to see if that node could
be an entry node of an irreducible loop. If yes, turns on the Irreducible flag at
step indicating there are some irreducible loops that need to be handled
later from step to step Once we are done with the above process for
every node at the level, we check to see if there is any irreducible loop with its
entry nodes at this level at step Notice that the flag Irreducible is set at
step to true if irreducibility is detected. If yes, we use SCC'’s to identify the
loop body for an irreducible loop and collapse it. Also note that at this point any
reducible loop whose header is at this level or below, has been “collapsed”, so has
any irreducible loop whose entry nodes are below this level.

For a loop nest consisting of L1, Lz, L3 and Ls, where L and L3 are reducible
while L, and Ly are irreducible, we can identify the loop body for all four loops.
However, when L; and L; are reducible while [» and L3 are irreducible, we
will only identify three loops by merging L; and L3 into one larger irreducible
loop. That is, immediately nested irreducible loops will not be distinguished. The
advantage of our rnethod is to be able to identify the bodies of nested (reducible
and irreducible) loops, with the restriction that a sequence of consecutively nested
irreducible loops will be collapsed in a single SCC region. It canexpose maximally,
in a loop nest, the nesting structure of each portion which is reducible separated'
by irreducible regions.

*By “collapse” we mean that a loop body is condensed and becomes a single node. Any edge
incoming into theloop from outside the loop will become an edge incoming into the representative
node. Any edge outgoing from the loop to outside the loop will become an edge outgoing from
the representative node.
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Figure 6.2: An irreducible flowgraph with two irreducible loops

Also, the level information allows us to detect finer irreducible regions. This
is illustrated in Figure 6.2. For example, using our algorithm we can deiect two
irreducible loops instead of one for the flowgraph shown in Figure 6.2. The two
loops are: L1 = {e, f},and L2 = {b,¢,d, L1}.

Next we will prove the correctness of our algorithm.

Lemma 6.3 Algorithm 6.1 correctly identifies both reducible and irreducible loops in a
program.
Proof:
The proof is based on-induction on levels of nodes in the D] graph.

Base case: The level number is the maximum. It is trivial if sp-back
edges are also B edges. But if the sp-back edge is also a CJ edge
then Irreducible as true, and the nodes in a SCC will be collapsed at
step

Induction: Assume that the assertion is true for level k& + 1. We will
then show that the lemma is true for level k. At level £ when we
detect irreducibility (ie., sp-back edge is the same as CJ edge), we
mark Irreducible is True. The procedure for ReachUnder(n) will find
all nodes that can reach the source node of B] edges incident on node
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n, without going through node n. Atstep |95} we will collapse all such
nodes. If Irreducible is true then Tarjan’s SCC algorithm will collapse
nodes in the SCC. In both cases, bodies of loops whose headers are at
level k are collapsed. Hence the result. |

Finally we analyze the complexity of the algorithin. When a flowgraph is
reducible, our algorithm has the same time complexity O{|E| x «(|E|,|N])) as
Tarjan’s approach [Tar81). The complexity of Tarjan’s algorithm is dominated
by the time taken to collapse the nodes of a loop. Tarjan uses balanced path
compression to maintain the set of nodes in a collapsed loop, and this takes
O(E| x «(|E|, V1)), where o() is the inverse Ackermann function.

For irreducible flowgraphs, the worst-case time complexity of the algorithm
occurs when it needs to find irreducible loops at every level. Assume k is the
number of levels in the DJ graph. Then the time complexity of the algorithm is
O(|E] x af| E, | N]) + & x | E|), since finding strongly connected components needs
O(|E]) time. We anticipate in practice, k is a constant, so the algorithm is almost
linear.

6.3 Discussion and Related Work

Identifying loops has been a classical exercise in control flow analysis. We have
shown how to use DJ graphs for identifying both reducible and irreducible loops
by extending Tarjan’s approach [Tar74]. One feature of our algorithm for identify-
ing irreducible loops is that it utilizes level information iti DJ graphs to discover the
body of irreducible loops. In Chapter 10 we propose a new elimination-based data
flow analysis that uses D] graphs for reduction and variable elimination. Gener-
ally, elimination-based methods are applicable only to reducible flowgraphs. In
Chapter 10 we have used some of the key results presented in this chapter for
handling irreducible flowgraphs during the reduction and elimination process.
Many methods have been proposed in the context of eliminatio.. based data
flow analysis for handling irreducibility such as node splitting [Hec77], identify-
ing single-entry region that encloses the irreducible region [Bur90, S579], etc.
In a technical report, Steensgaard proposed a method for identifying nested
loops, both reducible and irreducible [Ste93]. His method consists of first apply-
ing Tarjan’s SCC algorithm to the whole graph and identifying each non-trivial
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SCC [Ste93]. He then identifies, for each non-trivial component, what he calls as
generalized entry nodes. A node y in a SCC S is a generalized entry node of & if,
in the original flowgraph, there is an edge from r — y such thatr & 5. Now if
= — y is an edge in the original flowgraph such that = € S, thenthe calls = — y
as a generalized back edge. Once he identifies generalized back edges in an SCC, he
eliminates them from the SCC and applies Tarjan’s SCC algorithm once again on
the SCC and identifies “inner” SCCs. This way he identifies loops in an outside-in
fashion of loop nests.

In our method, we apply Tarjan’s SCC algorithm in an inside-out fashion of
loop nests—our bottom-up reduction order will conform to this inside-out order
of loop nests. Also, we will apply Tarjan’s SCC algorithm only if we detect that
there is an irreducible loop at a particular level. Therefore, the time complexity of
our approach is expected tobe better than Steensgaard’s approach. The worst-case
time of Steensgaard’s algorithm can be quadratic in terms of the loop nesting.



Chapter 7

Computing Iterated Dominance

Frontiers in Linear Time

Idon’t know the key to success, but the key to failure is to please everybody.
—Bill Cosby

I'd rather be a failure at something I like than a success at something I
hate.

— George Burns

The first requisite for success is the ability to apply your physical and
mental energies to one problem incessantly without growing weary.
—Thomas Edison

In this chapter we present a simple linear time algorithm for computing the
Iterated Dominance Frontier (TDF) for a set of nodes using DJ graphs. A novel
aspect of our algorithm is that it can be also used in conjunction with APT for
computing iterated dominance frontiers [PB95]. Recall, from Chapter 4, that APT
is a spectrum of dominance frontier representations, in which the DJ graph is at
one end with no caching, and the full dominance relation is at the other end with
full caching. In this chapter we will illustrate our algorithe: on DJ graphs [SG95b].

Iterated dominance frentiers have many applications, such as for placing ¢-
nodes for arbitrary Sparse Evaluation Graphs (SEGs) and Static Single Assignment
SSA form [CFR*91, CCF91], computing guards [Wei92], incremental computation
of dominator trees (Chapter 8), and incremental data flow analysis (Chapter 11).

75
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We begin the chapter by introducing and motivating the problem of computing,
IDF. Then, in Section 7.2, we give the complete algorithm and in Section 7.3 we
give an example illustrating the algorithm. In Sectior: 7.4, we prove its correctness
and analyze its time complexity. In Section 7.5 we give our experimental results.
Finally, in Section 7.6, we discuss the related work, and give our conclusion.

7.1 Introduction and Motivation

The Static Single Assignment (SSA) form [CFR*89, CFR*91] and the related Sparse
Evaluation Graphs (SEGs) [CCF91], have been successfully used for efficient data
flow analyses and program transformations {CLZ86, RWZ8S, AWZ88, WZS5,
WCES94, Bri92, CBC93]. The algorithms for constructing these two intermedi-
ate representations have one common intermediate step—computing program
points where data flow information are potentially “merged”, the so called ¢-
nodes [CFR*91, CCF91]. Givena flowgraph, the original algorithm for computing
¢-nodes for an SEG consists of the following steps [CFR*91, CCF91):

1. Precompute the dominance frontier D F(z) for each node = (Chapter 4).

2. Determine the initial set of ‘sparse’ nodes N, that represent ron-identity
transference in a data flow framework. For SSA, such nodes contain defini-
tions of variables [CFR*91].

3. Compute the iterated dominance frontier /DF(N,) for the initial set N,.
Cytron et al. have shown that the desired set of ¢-nodes for an SEG is same
as the iterated dominance frontier I DF(N,,) of the initial set [CFR*91].

The most time consuming step in the above algorithm is computing I DF(N,),
the iterated dominance frontier of the initial set of sparse nodes N,. The timz
complexity of computing I DF(N,) depends on the size of the dominancz frontier -
relation. Although the size of the dominance frontier is linear for many programs
{as was noted by Cytron et al.), there are cases in which the size of dominance

frontiers is quadratic in terms of the number of nodes in a flowgraph, for exam-
~ ple, nested repeat-until loops [CFR*91]. Note that, even though the size of
the dominance frontier may be quadratic in terms of the number of nodes in the
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flowgraph, the number of é-nodes that is needed remains lincar (for a pasticu-
lar SEG) [CFR*91]. As Cytron and Ferrante pointed out: “Since onc reason for
introducing ¢-nodes is to eliminate potentially quadratic behavior when solving
actual data flow problems, such worst case behavior during SEG or SSA construc-
tion could be problematic. Clearly, avoiding such behavior necessitates placing
#-nodes without computing or using dominance frontiers” [CF93].

To overcome the potential quadratic behavior of computing é-nodes using,
dominance frontiers, Cytron and Ferrante proposed a new algorithm that has
a better complexity than the original algorithm [CF93]. Instead of first pre-
computing the full dominance frontier relation and then using this relation for
computing ¢-nodes, Cytron and Ferrante use Tarjan’s balanced path. compression
algorithm [Tar79], and combined with other properties that relate dominance re-
lation and depth-first numbering of the flowgraph, gave an algorithm that has a
time complexity of O(E x a(E)), where af) is the slowly growing inverse Acker-
mann function.

In this chapter, we present a simple linear time algorithm for computing the
¢-nodes for a set of nodes without precomputing dominance frontiers for all the
nodes. Given a set of initial nodes N, to compute the relevant set of ¢-nodes,
we made one key observation: Consider any two nodes z and y, where y is an
ancestor of z in the dominator tree. If the dominance frontier of z, DF(z), has
been computed, then to compute the dominance frontier of y, DF(y), we need
not recompute DF(z) (see Chapter 4). However, the reverse may not be true.
Therefore, we order the nodes in the dominator tree in such a way that when
the computation of DF(y) is performed, the dominance frontier DF(z) of any
descendant node =, if it is essential for computing the desired set of ¢-nodes for
N,, has already been computed and is so marked. As a result for any such z,
the computation of D F(y) do not require the traversal of the dominator sub-tree
rooted at z. Recall that we used a similar trick for computing dominance frontiers
of a set of nodes in linear time (see Chapter 4, Section 4.2). The algorithm
presented here i an extension of that algorithm.

To perform the proper node ordering and marking, our algorithm uses
DJ graphs. The levels of the nodes in the dominator tree are used to order
the computation of dominance frontiers of those nodes, z, which are essential
to compute the final set of ¢-nodes, in a bottom-up fashion. Meanwhile, during
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. cach computation of /(x), the descendant nodes of x in the dominator sub-
tree rooted at x are visited in a top-down fashion guided by the D edges, while
avoiding nodes which have already becn marked. During this top-down visit,
J edges are used to identify the candidate nodes that should be added into the
final set of ¢-nodes, and recursively explcred further. It is important to observe
(yet another key observation!) that each new candidate node that is gererated
on-the-fly always has a level number no greater than that of the node currently be-
ing processed (assuming that the nodes in the dominator tree are numbered such
that all nodes have a level number equal to the depth of the node from the root
of the tree). Therefore, a data structure, called the Ordered Buckets (Section 7.2),
is used to keep the candidate nodes in the order of their respective levels, and
no nodes are inserted into the Ordered Buckets more than once. We show that
our algorithm visits each edge in the DJ graph at most once, and therefore the
complexity is linear.!

7.2 Our Algorithm

. In this section, we present our algorithm for computing iterated dominance fron-
tiers. Let N, be the initial set of sparse nodes, and let /DF be the desired of
IDF for N,. Recall that one way of computing IDF is to first precompute the
dominance frontiers for all nodes and then use the inductive definition of IDF
{Equation (2.3)) to compute the IDF for the set of nodes N,. Cytron et al. have
shown that this can lead to a quadratic time complexity [CFR*91]. Rather than
precomputing the dominance frontiers for all nodes, our linear time algorithm is
based on two key observations:

1. Let y be an ancestor node of a node z on the dominator tree. If DF(z) has
already been computed before the computation of DF(y), DF(z) need not
be recomputed when computing DF(y). However, the reverse may not be
true; therefore the order of the computation is crucial.

2. When computing DF(z) we only need to examine J edges y — z, where y
is a node in the dominator sub-tree rooted at z and z is a node whose level

'Recall from Theorem 3.1, the number of edges in the DJ graph is no more than [Ny 4 |Eyl,
. where | Ny | is the number of flowgraph nodes, and | Ey| is the number of flowgraph edges.
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is no greater than the level of r. Recall that we have previously made this
observation in Lemma 4.1.

We use a data structure called the Ordered Buckets to keep the candidate nodes
in the order of their respective levels.> Based on the above observations, levels
of the nodes in the dominator tree will be used in a bottom-up fashicn to order
the computation of dominator frontiers of those nodes, x, which are essential to
compute the final set / DF. Meanwhile, during each computation of DF(.r), the
nodes in the SubTree(z) are visited in a top-down fashion guided by D edges,
while avoiding nodes which have already been marked. During this top-down
visit, ] edges are used to identify the candidate nodes which should be added to
the set /DF, and those to be recursively explored further. Note that each new
candidate generated on-the-fly always has a level number no greater than that of
the node currently being processed, and we ensure that no nodes are inserted into
the Ordered Buckets more than once. Therefore, intuitively, we visit each edge in
the DJ graph at most once. This, and the structure of the Ordered Buckets, are the
basis of the time linearity of our algorithm.

The OrderedBuckets is an array of list of nodes, with index (or bucket) ¢
storing nodes of level i (See Figure 7.2). Associated with the Ordered Buckets are
two procedures: InsertNode() and GetNode(). InsertNode() inserts a node in
the OrderedBuckets at the index corresponding to the level number of the node.
GetNodz() returns a node whose level number is the maximum of all nodes
currently stored in the Ordered Buckets. We first insert the initial set of nodes N,
into the OrderedBuckets. Then, we iteratively compute the dominance frontier
of the nodes in the Ordered Buckets in the order that GetNode() returns them to
obtain the iterated dominance frontier of the initial set of nodes N,,. Itis important
to note that a node is inserted into the Ordered Buckets if it is either in N, or is in
the iterated dominance frontier of some node in N,.

To simplify the presentation of the aléorithm, we use the following notation
and data structures:

o NumlLevel is the total number of levels in the domirator tree
embedded in the DJ graph. o

ZPreviously we used the term PiggyBank for OrderedBuckets [SG95b). Ordered Buckets can

be considered as a connotation for an indexed set of buckets, with indices corresponding to levels in
the DJ graph.
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¢ Each node . £ A has the following attributes:

struet NodeStructure
visited = {Visited, NotVisited)
alpha = {Alpha. Not Alpha} 7+ in ¥, or not ~/
inidf = {InIDF,NotInIDF} /= in IDF or not =/
lcvel = {0... NumlLecrel— 1} /* levels of nodes */

}

e Each edge z — y € E has an attribute that specifies the type of
the edge: { Dedge, Jedge}.

o OrderedBucketsisanarray of listof nodes. Itsstructureis defined
as follows:

struct Ordered BucketsStructure{
NodeStruciure xnodc
Ordered Buckel sStructure snext

/* 1list of nodes at the same level */
} *Ordered Buckets[Num Level]

o CurrentLevel is initially NumLevel — 1, and subsequently has a
value corresponding to the level number of the node that GetN-
ode() returns.

e CurrentRoot always points to the node that GetNode() returns.
Current Root is equivalent to root of the SubT'ree() whose domi-
nance frontier is currently being computed.

The first step in the algorithm is to insert all the nodes in N, into the
OrderedBuckets (steps to . We mark the nodes that are initially in-
serted into the Ordered Buckets as Alpha to indicate that they belong to the initial
set N,. This is needed to avoid re-inserting them into the Ordered Buckets again
in the future (a condition that we check in the procedure Visit(), at step [119]). We
then iteratively invoke the procedure Visit() on the nodes that GetNode() returns
to compute the iterated dominance frontier set IDF. At step we assign the
variable CurreniRoot to point to the node z that GetNode() returns in order to
keep track of the current root of SubT'ree(z). Before Visit(z) is invoked at step
the node z is marked Visited at step [110]. This marking is crucial because
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we never visit a node that has been marked \isited. We check for this condition
in the procedure Visit() at step ] 125 }

Algorithm 7.1 The following algorithm computes I DI(N,).
& Input: A DJ graph D.J = (N, ), and the initial set N, € N of sparse nodes.
& Qutput: Theset IDF = [ DF(N,).

& Initialization:

e IDF ={}
o Vr € N (z.visited = NotVisited;
z.inidf = NotinlDF ;
z.alpha = NotAlpha ;
zlevel = Level(z)) /* compute level numbers */

e CurrentLevel = NumLevel — 1

& The Algorithm:

Main()

{

104: foreachz € N, do

105: z.alpha = Alpha

106: InsertNode(z) /* Insert the nodes in the OrderedBuckets */
107: endfor

108: while((z = GetNode()) != NULL)

109: CurrentRool =z

110: z.visited = Visited

111: Visit(zx) /* Find the dominance frontier of z */
112: endwhile
}

The procedure Visit() called with CurrentRoot essentially traverses the
SubTree(CurrentRoot) in a top-down fashion marking the nodes in the sub-tree
as Visitedif the nodes are not already marked Visited (a condition checked at step
[125]). Notice that the nodes in the dominator sub-tree are connected through D
edges. As it walks down the sub-tree, the procedure Visit() also “peeks” at the
destination node of J edges, without marking it as Visited. Whenever it notices
that the level number of a node (that it peeked through a J edge) is less than or
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cqual to the level number of Current Root, it adds the node into the set /1 DF, if
the node is not already in the set (a condition checked at step ). It also marks
the node as In/ D[ whenever the node is added to the set /0. This marking
is necessary to avoid adding the node again into /DF whenever it may peek at
this node through some other ] edge in the future. It also inserts the node into the
Ordered Buckets if the node is not in the set V, (a condition checked at step .
Procedure Visit(z)

{

113: foreach y € Succ(z)

114: iflx — y == Jedge)

115: if(y.level < CurrentRoot.level)
116: if(y.anidf ' = InIDF) /* Check if y already in IDF */
117: yanidf = InIDF /* y in IDF »/
118: IDF =IDFU{y} /* Compute the set IDF =/
/* Check if z is already OrderedBuckets */
119: if(y.alpha ! = Alpha)
/* Put it in OrderedBuckets for future search */
120: InsertNode(y)
121: endif
122: endif
123: endif
124: else /* z—y is Dedge */
125: if(y.visited! = Visited) /* Avoid redundant visit */
126: y.visited = Visited
127: Visit(y)
128: endif
129: endif
130: endfor
}

GetNode() returns a node whose level number is the maximum of all the
nodes currently in the Ordered Buckets. GetNode() also removes this node from
the OrderedBuckets, and adjusts the CurrentLevel accordingly. CurrentLevel
keeps track of the level number of the node that GetNode() returns. Note that
a node will never be inserted in OrderedBuckets at a level number greater than
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CurrentLevel. As a result, CurrentLevel monotonically decreases through the
level numbers. That is, the calls to Visit(z) at step is performed in a bottom-
up fashion, in contrast, with each such call, the traversal of the dominator sub-tree
rooted at z is performed in a top-down fashion. The marking of the nodes prevents
any nodes from being processed more than once in the algorithm. This is essential
to ensure the time linearity of the algorithm.

Procedure InsertNode(z)

{

131:  z.next = Ordered Bucketsz.level]

132:  OrderedBuckets[z.levelj=z

}
Function GetNode()

{
133: while(CurrentLevel > 0)

134: if(Ordered Buckets[CurrentLevel] == NULL)

135: CurrentLevel = CurrentLevel — 1
136: else
137: z = OrderedBuckets[Current Level)

/* Delete z from OrderedBuckets */
138: OrderedBuckets[CurrentLevel] = z.next
139: return z.node
140: endif

141: endwhile
142: ryeturn NULL

}

7.3 An Example

Next we illustrate Aigorithm 7.1 through an example. Consider the flowgraph
and its DJ graph shown in Figure 7.1. Let N,, = {5, 13}. The first step is to deposit
the nodes 5 and 13 into the Ordered Buckets, and also mark them as Alpha. After
the for loop at step the OrderedBuckets would look like Figure 7.2(a). At
step the function GetNode() returns node 13. GetNode() also removes 13
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(a) flowgraph
Level 0

Level 1

Level 2

Level 3
Level 4

Level 5

b) D]’ graph I 14 ' Level 6

Figure 7.1: Another example of a flowgraph and its DJ graph.
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from the OrderedBuckets. At step @ Current Root is set to node 13. To find
the dominance frontier of node 13 we call Visit(13} at step . Prior to this, we
also mark node 13 as Visited at step {110

In the procedure Visit(), at step we find that the successor nodes of 13 to
be nodes 3, 15, and i4. Of these, 13 — 15 and 13 — 3 are J edges, and 13 — 14
is a D edge. Since 15.level = 2 and 3.level = 2 are less than CurrentRoot.level =
13.level = 5,nodes 3 and 15 are added to / D F (since they are not already in D F).
Also, neither 3 nor 15 is marked Alpha (and hence not in ¥,), both the nodes are
inserted into the Ordered Buckets (step . Figure 7.2(b) shows the new state
of the OrderedBuckets.

Next, since the edge 13 — 14 is a D edge, and node 14 is not yet visited, we
call Visit(14) at step Again, before calling Visit(14), we mark node 14 as
Visited (step [126]). The only successor of 14 is node 12, and 12.level = 4 is less
thant CurrentRoot.level = 13.level = 5. Also, node 12 is neither in /DF nor in
Na, and so is added to I DF and inserted into the Ordered Buckets (step and
respectively). The call to Visit(13) terminates and returns at step [111}

Now the function GetNode() is executed at step and it returns node 12.
Visit(12) is called at step and CurrentRoot is set to node 12. The only
successor of 12 is node 13, and 12 — 13 is a D edge. Since node 13 is already
marked Visited, the call to Visit(12) terminates and returns at step

GetNode() is called again, and this time it returns node 5. Visit(5) is called at

step and the process continues. Figure 7.2 shows the complete trace of the
Ordered Buckets for the example.

7.4 Correctness and Complexity

In this section, we first give a proof of correctness (Theorem 7.1), and then analyze
the complexity of the algorithm (Thecrem 7.2).
741 Correctness

The main theorem which establishes the correctness of Algorithm 7.1 is Theo-
rem 7.1. The theorem states that the algorithm computes the iterated dominance
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frontier of the set N,. The inductive proof of the thecrem is based on a ma-
jor lemma, Lemma 7.4, which establishes the fact that when the algorithm calls
Visit(z) at step and the call terminates, all nodes in the dominance {rontiers
DF(z) are already added into the set /D F (a fact used both in the induction basis
and induction steps). Let x be the current root of the dominator sub-tree visited
by Visit(z) at step Let = be in DF(z). Lemma 4.1, introduced earlier in
Chapter 4, guarantees that there must exist a node y in SubTree(z) such that
y — cis a ] edge and level.z £ level.z. Another lemma, Lemma 7.3, states that
y will already have been marked Visited when Visit(z) returns. There are two
cases in the algorithm where a2 node can be marked Visited: 1. at step and
2. atstep The validity of Lemma 74 for case 1 is straightforward. For
case 2, y must be marked Visited by an earlier call of Visit(v) for some node v in
SubTree(z). This fact is made possible because of the OrderedBuckels structure
and we formalize this in Lemma 7.1 and Lemma 7.2. We then make an inductive
argument on the decreasing level of the nodes to demonstrate that all nodes in
DF(v) should already be inserted into IDF by this time. The node = should
also be in / DF according to Lemma 4.1. From this the validity of Theorem 7.1 is
established.
In our chain of proofs, we begin with Lemma 7.1.

Lemma 7.1 A node is never inserted in the Ordered Buckets at an index that is greater
than Current Level.

Proof:

There are only two places (in the algorithm) that a node ¢an be inserted
in the Ordered Buckets: at step and at step @ Since the initial
value of Current Level is NumLevel — 1, the level number of any node
that is insert at step can never be greater than NumLevel — 1.

At step anode y is inserted in the Ordered Buckets only if it is
visited through a J edge and if y.level < Current Level. Therefore y is
never inserted in the OrderedBuckets at an index that is greater than
CurrentLevel. : ]

Lemma 7.2 gives an order (based on thé level number of nodes) in whiclg calls
to Visit(), at step can be performed. The ordering of nodes is controlled
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by calls to GetNode() at step [108] Recall that GetNode() always returns a
node whose level number is the maximum of all nodes currently stored in the
Ordered Buckets structure.

Lemma 7.2 Let z and y be any two nodes that are inserted in the OrderedBuckets and
iater removed (and returned) from the Ordered Buckets by GetNode() at step If
y.level > z.level, then Visit(y) will be called earlier than Visit(z) at step

Proof:

Firstof all observe that Visit(), at step isalways called on thenode
that GetNode() returns at step Also, we know that GetNode()
always returns a node whose level number is the maximum of all
the nodes currently in the OrderedBuckets. Also, we know from
Lemma 7.1 that a node will never be inserted in OrderedBuckets atan
index greater than CurrentLevel. From this we prove the validity of
the lemma as follows: There are two cases:

Case 1 Before GetNode() returns either of the two nodes, both nodes
z and y are in the Ordered Buckets. Naturally y will be returned
earlier to z (since GetNode() always returns a node whose level
number is the maximum).

Case 2 Before GetNode() returns either of the two nodes, only one
of the two nodes is in the OrderedBuckets. Let ¢ be in the
OrderedBuckets. This means that either y was already inserted
and removed from the OrderedBuckets, even before z was in-
serted into the Ordered Buckets, in which case the validity of the
lemma is true, or y will be inserted in future. The latter situa-
tion is impossible since, from Lemma 7.1, y should be inserted
into the OrderedBuckets at a level number that is less than or
equal to the level number of z. (Recall that we have assumed
y.level > z.level). We can make a similar argument by assuming
that y 1s In the OrderedBuckets.

The next lemma establishes an important fact that when a node = is visited by
a call of Visit(z) from step and returned, that all nodes in SubTree(z) have
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been marked Vis:ited. Intuitively, this means that when such a visit returns, none
of the nodes in the SubTree(z) have been overlooked.

Lemma 7.3 When Visit(z) returns at step all nodes in SubTree(r) are marked
Visited

Proof:
Using Lemma 7.2 and induction on the levels of nodes, we can easily
prove the lemma. The base case is when the node = has the maximum
level; the validity ot the lemma is straightforward. Assume that the
lemma is true for all Visit(x) returned at step with z.level > k for
some k. Now, assume we examine Visit{z) with z.level = k — 1. From
our observation above, a top down traversal of nodes in SubTree(r)
will be performed during the execution of Visit(z). Assume y is the

next node to be probed at step [125] One of the following two cases
will be encountered:

Case 1: The nextnodey is not marked Visiied. Then the program will

continue to mark it Visited via a recursive call to Visit() at step
127

Case 2: y is already marked Visited. y could only have been marked
Visited by some earlier call to Visit(y), and this call must have
been invoked at step and not at step [127] (since the nodes
are visited in a top-down fashion and there can be only one D
edge). But since y.level > z.level (i.e. y.level > k), by induction
on k, we know Visit(y) has marked y and all descendants of 3.
(This is because Visit(y) was called at step prior to Visit{z)).

Itis easy to see from Lemma 7.2 and Lemma 7.3, that calls to Visit() at step
are made in a bottom-up fashion and while each recursive call at step the
recursive procedure Visit() visits the nodes in the dominator tree in a top-down
fashion. _

Lemma 7.4 is the main lemma which shows how the procedure Visit() captures
the dominance frontier of a node in the set JDF. We will use this lemma in the
main theorem (Theorem 7.1) to inductively argue the correctness of Algorithm 7.1.
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' Lemma 7.4 When Visit(z) is called with z as the CurrentRool and returned at step
all the nodes in DF(x) are also in the set IDF.

Proof:

Let z be the current root of the SubTree(z) visited by a call to Visit(z)
atstep (111} and terminated. Also let z bein DF(z). From Lemma 4.1
there must exist a node y in SubTree(z) such thaty — zis aJ edge
and z.level £ z.level. Since y is in SubTree(z), from Lemma 7.3, y is
marked Visited. Asin the proof of Lemma 7.3, there are two cases:

Case 1: y is marked Visited by the current Visit(x) invoked at step
Then, a recursive call at step will cause its children
(in the dominator tree) to be explored subsequently at step .
Since y — = is aJ edge, = will be included in IDF at step @

Case 2: y isnotmarked Visited by the current Visit(z) invoked at step
Sincenodesin SubT'ree(z) are visited ina top-down fashion,
. there must be a node u such that z stdom u and » dom y, and u
is not marked Visited by the current call to Visit(z) (invoked at
step [111)). Thatis, u is marked Visited by a prior call of Visit(u)
also invoked at step [111} If u = y, = will be added to the set
IDF,sincey — z isaJ edge and z.level < u.level. If u # y, then
y must be visited at step via a D edge. A subsequent call
of Visit(y) will add = to the set IDF, sincey — z isaJ edge and
s.level < u.level.

Notice that the above lemma only says that Visit(z), when it returns at step
will have added the entire dominance frontier of = to IDF. It does not
specify which of the nodes in the set IDF belong to DF(z). Notice that the set
IDF can contain nodes that are not in the set DF(z). In the other words, Visit()
does not explicitly compute the dominance frontier of a node.

‘ There is an important subtle point in the proof of Case 2 of Lemma 7.4. Note
that we have argued that “u is marked Visited by a call of Visit(x) at step ',
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the reader may wonder how we can be sure such a u does exist. Is it possible
for all the nodes from y up to z in the SubTree(z) to have been marked Visited
by some previous call of Visit() via a D edge at step The answer is no!
This is because we visit nodes in the Subtree(z) in a top-down fashion and pass
through a node by an explicit check at step to see if it is not yet marked
Visited. This fact is important, as u is now assured to have been called earlier
from step afresh from Ordered Buckets. With u at the root of such an earlier
call Visit(u), 2ll the nodes in DF(u) must have been examined and put into
the set IDF. And our OrderedBuckets ensures Visit(u) happens before Visit(z)
(Lemma 7.1). Otherwise, the algorithm may fail- we will come back to this issue
again in Section 7.4.3.
Finally, we prove the main theorem.

Theorem: 7.1 Algorithm 7.1 correctly computes IDF(N,).
Proof:
We will show that, wher Algorithm 7.1 terminates, the set ] DF is same
as IDF(N,). From now on let § = N,. First of all it is obvious that

DF(S) € IDF (Lemma 7.4). Now we need to show thatif IDF{(S) €
IDF then IDF;1(S) € IDF, where

IDF:i1(S) = DF(SUIDF{(SY)
Rewrite the above equation as
IDFia(S) = DF(S)U DF(IDF(S))

We know DF(S) C IDF. So we are left to show DF(S’) is in IDF,
where §' = IDF(S). Let §' = {z;,...2;,...}. Since §' isin IDF
(assumption), z; is in IDF for all ¢. But the only way the node z;
can be added to IDF is at step of the algorithm. Therefore, z;
must also be inserted into the Ordered Buckets, at step Since the
algorithm eventually terminates, z; must be processed as the current
root at step by a call to Visit(z;). By Lemma 7.4, DF(z;) is in -
IDF when Visit(z;) returns at step And this is true for all nodes
z; € §. Therefore DF(S') is in IDF. Asaresult IDF:1(S)isin IDF,
and

IDF(N,) CTIDF — (7.1)
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We can easily see from Lemma 7.4 that a node is inserted in /DF if it is
in the dominance frontier of some node that was previously inserted
and retrieved from OrderedBuckets. Recall that a node is inserted
into Ordered Buckets only at two places: step and step A
node is inserted in OrderedBuckets at step ifitisin V., and a
node is inserted in Ordered Buckets at step if it is in the iterated
dominance frontier of N,,. Therefore,

IDF C IDF(N,) (72)

From Equation 7.1 and 7.2, we get

IDF(N,) = IDF (7.3)

7.4.2 Complexity

Next we will show that the time complexity of Algorithm 7.1 is O(] E|), where | E|
is the number of edges in the DJ graph. Recall that the number of edges in the
Dj graph is less than [Ny 4 | Ef| (Theorem 3.1). Therefore, the time complexity of
Algorithm 7.1 is O(|Ny| + | Ey]). Since |Ey| 2 [Ny| — 1, the time complexity of the
algorithm is O(] E¢|), which is linear with respect to the number of edges in the
flowgraph.

From the proof of the correctness of Algorithm 7.1, readers may have already
observed that for any node z in the DJ graph, the node may be processed by
a call of Visit(z) (which may happen at step or at most once. This
observation is a key to the proof of linearity of the algorithm, and is stated as the
following lemma. '

Lemma 7.5 When Algorithm 7.1 terminates, a node z € N may be processed by a call
to Visit(x) at most once.

Proof:
There are only two places 2 node can be processed by a call to Visit():
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case 1. at step and case 2. at . It is obvious that step
can only be reached by the traversal of an incoming D edge of z. Since
there is only one such D edge, = cannot not be processed more than
once in case 1. Furthermore, it cannot be processed through case 2

more than once either (since a node can be inserted into and deleted
from OrderedBucketsonly once).

Now we prove that it is not possible for z to be processed in both case
1 and case 2. Suppose the contrary is true. Then this is possible only
if case 2 happens after case 1. (The condition at step prevents the
opposite.) That means node z is already in the Ordered Buckets before
the current execution of Visit(v) for some vat step @ Thus, z.level >
v.level, since SubTree(v) is explored in a top-down fashion. On the
other hand, z.level < v.level, as any node in the Ordered Buckets must
have a level number no greater than that of the node currently being
processed (from Lemma 7.1). This implies z = v. But this is impossible
since z would been marked Visited twice from step . Hence the
lemma is true by contradiction. 1

From the above proof, it also true that a node can never be marked Visiled

more than once. We will use the above lemma in proving the complexity of the
algorithm.

Theorem 7.2 The time complexity of Algorithm 7.1 is O(| E|).

Proof:
According to Lemma 7.5, a2 node can be marked Visited at most once,
and there can be at most |/V| calls to Visit(). Also, at each node in
the procedure Visit(), we either visit (through a D edge) or “peek”
(through a J edge) all the successor nodes (step only once. This
means that we have effectively visited all the edges in the D] graph at
most once. Hence the complexity of the algorithm is O(| E]). |

An astute reader may ask the following question: What about the complexity
of inserting/deleting nodes into/from the OrderedBuckets structure? It is easy
to see that the complexity of inserting a node in the OrderedBuckets is O(1). As
for the complexity of getting a node from the OrderedBuckets, it is again easy
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to see that a node will never be inserted in Ordered Buckets at the index greater
than the Current Level (from Lemma 7.1}. Each call of GetNode() will execute the
while loop with a monotonically decreasing CurrentLevel from NumLevel — 1
down to 1 during successive calls for the entire duration of the algorithm (follows
from Lemma 7.1). Hence the overall time complexity of deleting all nodes from
the Ordered Buckets is, in the worst case, O(|V|).

7.4.3 Discussion

There are a number of key issues in our algorithm that we would like to summarize
in this section.

e First of all notice that the space complexity of our algorithm depends on
the size of DJ graphs. In Chapter 3 we established that the size of a DJ
graph is linear with respect to the size of its flowgraph. Therefore the space
complexity of our algorithm is linear.

¢ One key point that makes our new algorithm linear is the structure of the
Ordered Buckets. This structure can be considered as an implementation ofa
‘Restricted Priority Queue’ [CLR90]. One can also consider Ordered Buckets
to be an ordered set of buckets (although buckets in bucket sort are not
ordered as in our case) [CLR90]. The number of buckets that is needed is at
most equal to the maximum depth of the dominator tree.

If one were to use other structures such as a heap, a stack, or a queue, either
the proof of correctness would fail (if we still wish to continue to mark the
nodes as Visited using one color), or the complexity of the algorithm would
not be linear (we will need to mark nodes as Visited using more than one
color). The second situation is similar to finding the iterated dominance
frontier by iteratively applying Algorithm 4.1. We can easily show that the
complexity of this method will not be linear.

e Let us recall Theorem 32. Theorem 3.2 states that if y € DF(z), then
the level number of y will never be greater than the level number of z (ie.,
y.level < z.level). This property is very important in proving the correctness
and complexity of our algorithm. Recall that Lemma 4.1 gives a method for
computing the dominance frontier of a node from level information and j
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edges, and Lemma 7.1 guarantees that a node will never be inserted at an
index (in Ordered Buckets) greater than the value of CurrentLevel. Again,

an astute reader will immediately notice the relation between these two
lemmas and Theorem 3.2.

o Finally, the framework of our algorithm can easily be adapted to the APT
representation, introduced by Pingali and Bilardi [PB95]. In APT domi-
nance frontiers are cached at certain nodes, called the boundary nodes. The
only modification that is necessary in our algorithm is in the procedure
Visit(). At step before invoking the procedure Visit(y) we should
check whether y is a boundary node. If so, we avoid visiting the sub-tree
rooted at y, since all the candidate nodes to be included in IDF set will be
cached at this node. If not we invoke the procedure Visit(y).

Now identifying boundary nodes requires the knowledge of filtered search
techniques, which is beyond the scope of this dissertation. For details please
see [PB95].

7.5 Experiments and Empirical Results

In this section we present our experimental results and give their analysis. We
implemented our linear time algorithm using flowgraphs generated from the
Parafrase2 compiler and compared it with the original algorithm (due to Cytron
et al. [CFR*91]). We will first summarize the major results of our experiments.

¢ The time complexity of Cytron et al.’s algorithm depends only on the size
of the dominance frontier relation. Although, theoretically, the size of the
dominance frontier relation can be quadratic, its size appears to be linear in
practice. For our test procedures, we found that the size of the dominance
frontier relation to be about 0.8 times the size of the DJ graph.?

e Cytron et al.’s original algorithm performs better than ours for our test
procedures (on average by a factor of 4.46).

3The size of a D graph is the number of edges in the graph (D edges + J edges); whereas the
size of dominance fronters is the total number of nodes in the dominance frontier set of all the
nodes.
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o For graphs like ladder graphs and repeat-until loops, where the size of
dominance frontiers can grow quadratically, our algorithm exhibits linear
behavior, whereas Cytron et al’s algorithm exhibits quadratic behavior.

We will further elaborate on these results. Table 7.1 gives the summary of our
result. The notation used in the table is given below:

Notations used in Table 7.1

Name | Name of the procedure
[Ea] | Number of edges in DJ graphs (D edges + J edges)
|DF,| { Size of the dominance frontier relation represented asa set

of nodes

R The ratio 172

V(o) 1} A countof the number of nodes added and removed from
the worklist in original algorithm.

V(n) | A countof the number of edges visited in our algorithm
Vv The ratio %f‘—‘}

T(0) | Execution time in milliseconds of the original algorithm
T(n) | Execution time in milliseconds of our algorithm

S The ratio 22}

T{o})

Time measurements shown for I DF(df ) and I D F(new) are for computing IDF
fora set of randomly chosen nodes (we chose 25 to 30% of the nodes to be N,.). The
time complexity of the original algorithm depends on the size of the dominance
frontier relation. From the table we can see that, except for 3 procedures, the size
of the dominance frontier relation is smaller than the size of the DJ graph. For
our test procedures we can see that the average ratio 1%1 is 0.77. The value of
this ratio suggests that Cytron et al.’s algorithm can, at worst, be about 1.29 times
faster than our algorithm. In reality Cytron et al.’s algorithm is much faster than
ours, as can be seen from speedup ratios given in the table.

We next measured the number edges visited V(n) in our algorithm (for a
particular choice of the initial set of sparse nodes), and compared it to the number
of nodes added and removed V(o) from the worklist in Cytron et al.’s algorithm.
Theratio ;{,‘% gives an accurate indication of how good (or how bad) our algorithm
will perform when compared to Cytron et al.’s algorithm. The value of this ratio
ranges from 2.02 to 843, with the average value being 3.84. This suggests that



CHAPTER 7. ITERATED DOMINANCE FRONTIERS IN LINEAR TIME 97

Name || |Eg] ] |DFa| I R V(o) | V(n[L Vv ]T(o) ]_T(n) I l

aerset 467 323 ] 069 ] 113 4,10 633 |
agset 263 184 | 0.70 58 ..32 4.00 0.2 09 4.50
bit 213 1771 083 ] 66 2121321 02] 07350
card 235 240 | 1.02| 87 2341 269| 02] 07350
chemset 330 2821085 86 3211373 02| 11}550
chgeqz 2681 213|079 | 77| 253(329| 02| 08400
clatrs 337 25067| 57 319 (560 02] 09450
coef 154 126 | 082 | 64 160|250 | 02| 06| 300
comlr 97 76 | 078 51 103 ({202 02| 05250
dbdsqr 343 269 | 078 | 83 3131377 | 02| 1.0}5.00
dedemp 205 181 [ 0.88 | 67 196 | 293 { 02 06 | 3.00
deop 298 240 | 081 | 93 2881310 02| 09]450
detran 493 407 {083 87 459 (5281 02{ 12600
deseco 259 179 | 069 | 61 2591425 02| 08| 4.00
dgegv 246 1641 067 | 54 234 (433 02| 08400
dgesvd 499 314 | 063 | 58 480 | 8281 021 12600
dhgeqz 433 3621084 97 365(376( 02| 10500
disto 211 158 [ 075 | 65 199 | 306! 02 07350
dlatbs 259 174 | 067 | 52 243 (467 | 02| 08 4.00
dtgeve 485 356 | 0.73 | 119 475|399 03| 14| 467
dtreve 373| 263[071[| 70 366 (523 02 09450
elpmt 245 176 | 072 | 87 2352701 02! 10500
equilset 467 | 334|072 119 464 {390 | 03| 17567
errchk 515 406 | 0.79 | 149 498 | 334! 04 2 | 5.00
iniset 456 308,068 | 56 472|843 | 02| 14700
init 176 | 118 | 067 | 42 167 | 398 | 01| 05500
initgas 267 2031076 | 111 266 | 240 03| 11367
jsparse 408 307|075 | 138 4071295| 04| 15|375
modchk 455 341 | 075 | 100 453453 | 03| 14| 467
moseq2 246 206 | 084 | 68 2371349 | 02| 07350
mosfet 333 323097 [ 8 332|391 021 09450
noise 184 136 | 0.74 | 53 163 [308| 02| 05250
out 579 490 | 085 | 157 4621294 041 194757,
reader 242 891037 ] 38 249)655| 02] 10]500) <
readin 637 828 | 130 | 178 621 349! 03] 18]6.00
setupgeo 278 | 193] 069 81 276 | 341 ) 02| 1.0]5.00
setuprad 290 217 | 075 | 104 289|278 02! 10| 5.00
smvgear 316 3371107 ] 161 315196 | 03] 11367
solveq 298 260 | 087 | 143 296 | 207! 03} 10333
twldrv 258 202078 65 250138 ) 02| 08] 400

Average || 327.95 | 255.67 | 0.77 | 875[31565[ 384 | 023 | 1.04 [ 4a.46

Table7.1: A comparison of our algorithm with the original algorithm.
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Cytron et al.’s algorithm is about 3.84 times faster than ours. This can again be
confirmed with the speedup ratio given in Table 7.1. Another point to note is
that the value of V(o) is close to the number of edges in a DJ graph. This suggests
that in our algorithm we search almost the whole DJ graph for each query.

We next measured the actual execution time of the two algorithms. As canbe
seen from the table both algorithms are very fast in practice. The actual execution
time for our algorithm ranges from 0.5 milliseconds to 2.0 milliseconds, with the
average execution ime being 1.04 milliseconds. For Cytron et al’s algorithm the
execution time ranges from 0.1 milliseconds to 0.4 milliseconds, with the average
execution time being 0.23 milliseconds. The ratio 75} is given in column S. The
value of this ratio ranges from 2.5 to 7.0, with the average value being 4.46.

Figure 7.5 gives the performance of the two algorithms plotted against the
number of DJ graph edges. As can be seen from the plot our algorithm has a
linear time behavior whereas Cytron et al.’s has a constant time behavior. The
reason for is because the number of nodes added and deleted from the worklist in
Cytron et al.’s algorithm is much smaller than the size of the dominance frontier
relation, and does not seem to depend on sizes of flowgraphs. Whereas in our
algorithm, we visit all the edges of a DJ graph looking for candidate nodes to be
included in the iterated dominance frontier set.

For graphs like deeply nested repeat-until loops and ladder graphs, our
algorithm performs better than the original algorithm. For these graphs, the
size of dominance frontiers grows quadratically with respect to the number of
nodes in the graph. Figure 7.5 shows the performance of the two algorithms
fur increasing taller repeat-until loops of the form shown in Figure 7.4. From the
execution profile we can see that our method is indeed linear, whereas the original
algorithm is quadratic.

From our experiments we can see that even a quadratic time algorithm can
perform better than a linear time algorithm for most practical programs. As we
mentioned in the introduction of this chapter, the framework of the algorithm
presentec here can be adapted to other representations, like the APT [PB95].
When our algorithm is implemented on .AP7T, the performance of the algorithm
is better than Cytron et al.’s original algorithm [Pin95].

Next we will bring out some interesting and debatable issues concerning the
choice of DJ representation for dominance frontiers. One reason the size of the
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Figure 7.4: A nested repeat-until flowgraph and its CJ graph.

dominance frontier relation is smaller than the size of the corresponding DJ graph
is because we represent each basic block as a flowgraph node. Instead, if we
represent each statement (or worse, each 3-address instruction) as a flowgraph
node, then the size of the dominance frontier relation will dominate the size of
the corresponding DJ graph. Now why would any one represent each 3-address
instruction to be a flowgraph node? This is an engineering issue. One major
advantage of this representation is that it simplifies data flow analysis. Using
basic block representation, each data flow analysis has to be performed at two
levels: local analysis (that summarizes the effect of a basic block) and global
analysis. Also, once the global solution is determined we have to propagate this
informaticn to instructions (or statements) within each basic block. This two-
level-analysis is not needed when each flowgraph node represent a 3-address
instruction. Tjiang and Hennessy give several drawbacks of representing each
basicblock to be a flowgraph node [TH92]. Based on their study they recommend
and advocate that each instruction be represented as a flowgraph node [TH92].
We will conclude this section with a final remark. As discussed in Chapter 4,
APT optimizes both query time and space usage. In APT dominance frontiers
of certain nodes are cached. Using a “tuner”, called « in the paper [PB95],
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the authors show how to control the caching of dominance frontiers. The authors
also show how their representation can be considered as a spectrum of dominance
frontier representations, of which our DJ graph is at one end (with no caching)
and the full dominance frontier representation of Cytron et al is at the opposite
end (with full caching). In our IDF algorithm we walk down a DJ (sub)graph
along D edges looking for candidate nodes via J edges to be included in the
set (of IDF). We can avoid walking all the way down the dominator tree if we
cached the dominance frontiers at certain nodes. Pingali and Bildari show how to
cleverly cache dominance frontiers at certain boundary nodes in a preprocessing
step. Once we have cached them, we can limit the top-down traversal upto these
boundary nodes. Another pointtonoteis that, in AP7, weneed notuse a worklist
model of Cytron et al. for computing the iterated dominance frontier relation
even with full caching. This actually allowed them to detect a discrepancy in our
experimental results originally published in [SG95b]. In [SG95b] we reported that
our algorithm is, on average, faster than Cytron et al.’s algorithm by a factor 5.
This is because, in our original implementation of Cytron et al.’s algorithm, we
chose bit-vectors to represent the worklist used in the algorithm. This attributed
to the poor performance of our implementation of Cytron et al.’s algorithm. For
the implementation of the results reported in this chapter we used Sparse Set
representation of Briggs and Torczon to implement the worklist [BT93]. This
improved the performance of Cytron et al.’s algorithm over our algorithm, and
performs better than ours by a factor 5 on average.*

7.6 Discussion and Related Work

The sparse evaluation technique is becoming popular, especially for analyzing
large programs. To this end, many intermediate representations have been pro-
posed in the literature for performing sparse evaluation [CFR*91, CCF91, JP93,
WCES94]. The algorithms for constructing these intermediate representations
have one common step—determining program points where data flow informa-
tion must be merged, the so called ¢-nodes. The notion of ¢-nodes dates back
to the work of Shapiro and Saint [SS70] (as noted in [CFR*91]). Subsequently,

%I thank Prof. Keshav Pingali for pointing out this discrepancy in our original publication,
which we corrected in this chapter.




CHAPTER 7. ITERATED DOMINANCE FRONTIERS IN LINEARTIME 103

others have proposed sparse evaluation in one form or another that is related to
this prior work [RT82, CLZ86, CF87]. Rosen et al. proposed another approach for
constructing SSA form using depth-first search algorithm [RWZ88). Their method
is restricted to reducible flowgraphs. Cytron et al. [CFR*89] gave an algorithm
for computing ¢-nodes for arbitrary flowgraphs. This algorithm is original in the
sense that it is based on dominance frontiers and can handle arbitrary flowgraph
structure. The time complexity of this algorithm depended on the size of the
dominance frontier relation, which is O(|N|?). But Cytron et al. have shown
that the size of the dominance relation is linear in practice. Recently, Cytron and
Ferrante improved the quadratic behavior of computing ¢-nodes to be almost
linear time [CF93]. The time complexity of the new algorithm is O(| E| x «(| E])),
where af)} is the inverse-Ackermann function [CF93]. More experimental studies
are needed to evaluate the performance of this algorithm when applied to real
programs.

johnson and Pingali recently proposed an algorithm for constructing an SSA-
like representation called the Dependence Flow Graph (DFG) [JP93]. To construct
DFG they first compute regions of control dependence. Using this information
they determine single-entry-single-exit regions. Then they perform, for each vari-
able, an inside-out traversal of these regions, computing dependence information
and inserting switch and merge nodes, whenever dependences cross regions of
control dependence. The authors have shown that the running time of the algo-
rithm for constructing DFG is O(| E| x |V|) (where |V| is the number of variables
in the program). One can easily construct the SSA form from the DFG by simply
eliminating switch nodes in the DFG. Although, the method of Johnson and
Pingali can be used for constructing the SSA form in time O(|E| x |V|) [JP93], it
has the same problem as the SSA form, i.e. the DFG and the SSA form cannot be
used for solving arbitrary data flow problems (for example, liveness analysis), as
noted in [CF93].

Our algorithm can be used to construct arbitrary SEGs. Compared to any of
the previous work, our algorithm reduces the time complexity of constructing a
single SEG to O(|E|). Also, we can use our algorithm to construct SSA form or
DFG in time O(]E| x V).

There is much related work that uses SSA like representation, for example, the
Program Dependence Web [BMO90] and the Value Dependence Graph [WCES94],
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and our algorithm could improve the complexity of constructing these related
intermediate representations. Also there are many optimizations that use SSA
form for efficient implementation, for example, constant propagation {WZ85],
value numbering [RWZ88), register allocation [Bri92], code motion [CLZ86], etc.
Our algorithm could improve the overall running time of these optimizations.

We would like to bring some important concerns regarding the applicability
our algorithm for constructing SSA form. In [CFR¥91), the authors write: “The
method presented here is O(R?) at worst, but Section 8 gives evidence that it
is O(R) in practice. The earlier O( R?) algorithm have no provision for running
faster in typical cases; they appear to be intrinsically quadratic.”® Our method
also is intrinsically quadratic in the above sense. The algorithm of Cytron et. al
appears linear for typical cases is because they assurme that the size of dominance
frontiers to be constant. As can be seen in their paper (Figure 20 in [CFR*91}),
the size of dominance frontier is small for smaller program sizes, but is propot-
tional to the number of program statements for larger program sizes. Recall that
the framework of our algorithm can easily be adapted to the APT representa-
tion, introduced by Pingali and Bilardi [PB95]. In APT dominance frontiers are
cached at certain nodes, called the boundary nodes. As we demonstrated earlier
(Section 7.4.3), the only modification that is necessary in our algorithm is in the
procedure Visit(). Using the framework of our algorithm in conjunction with the
APT representation, one can speedup the overall construction of the SSA form
and SEGs.

SWhere R is the size of the program.



Chapter 8

Incremental Computation of

Dominator Trees

A fanatic is one who can’t change his mind and won't change the subject.
—Winston Churchill

They must often change, who would be constant in happiness or wisdom.
—Confucius

Dominator trees have many applications in compiler optimization and data flow
analysis. It is important that the dominator tree be correctly maintained through-
out a multi-pass compiler. In this chapter we present a new framework for
incrementally maintaining the dominator tree of a flowgraph, when the flow-
graph is subjected to incremental changes, such as insertion and deletion of an
edge. Unlike previous approaches our approach can handle arbitrary flowgraph
changes, including irreducibility. A novel aspect of our approach is that we use
simple properties of dominance frontiers and iterated dominance frontiers to up-
date the dominator tree. Another interesting aspect of our approach is that we
update DJ graphs (rather than dominator trees) which subsumes the problem of
updating dominator trees.

We begin the chapter by introducing and motivating the problem. In Sec-
tion 8.2 and Section 8.3 we present our update algorithm for edge insertion and
edge deletion, respectively. In Section 8.4 we give some experimental results,
comparing the running time of our incremental algorithm with the almost lin-
ear Lengauer and Tarjan’s exhaustive dominator algorithm [LT79]. Finally, in
Section 8.5, we discuss related work, and give our concluding remarks.

105
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8.1 Introduction and Problem Definition

Dominator trees have many applications in compiler optimizatior: and data flow
analysis [ASU86]. For example, construction of the SSA form, or hoisting loop
invariants requires that the dominator tree be correctly maintained at all times.
Now it is possible that the flowgraph structure may change during program op-
timization (e.g., loop transformation, dead-code elimination, etc.) It is important
that the dominator tree is correctly updated during such flowgraph changes.

In this chapter we present a new algorithmic framework for incrementally
maintaining the dominator tree of an arbitrary flowgraph. For this problem
previous work most relevant to this chapter includes only the Carroll-Ryder al-
gorithm [CR88] and the Ramalingam-Reps algorithm [RR94]. Both methods are
restricted to reducible flowgraphs. By contrast, our approach can handle irre-
ducible as well as reducible flowgraphs. For the case where an edge is inserted,
our algorithm has an O(|E|) time complexity, where |E| is the number of edges
in the DJ graph—better than previous approaches [CR88, RR94]. For the dele-
tion case, our new incremental algorithm is also competitive in terms of running
time. Itis expected to run faster on the average cases while not compromising its
worst-case time complexity.

Updating dominator trees is a non-trivial problem. Carroll and Ryder pointed
out in [CR88]:

“The inherent difficulty in the dominator update problem lies in the
‘non-locality’ of domination, to wit, given two nodes z and y in the
flow graph, whether z dominates y depends on the presence or absence
of paths through nodes arbitrarily far from either z or y. Adding or
removing a single flow graph edge — an act which can add or remove
large numbers of paths — can thus affect domination between nodes
arbitrarily far from the altered edge.”

Consider the flowgraph and its DJ graph shown in Figure 8.1(a) and (b),
respectively. Let us see what happens when a new edge 2 — 4 is inserted. With
this new edge, the dominance relation for many nodes is affected. For example, in
the newly modified flowgraph, node 3 will no longer dominate 4. Actually node
3 ceases to dominate 6 and 8 as well. The reason for this is obvious: By inserting
2 — 4 we have created alternative paths from START to nodes 4, 6 and 8 that do
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{a) Flowgraph

Figure 8.1: Another example of a flowgraph and its DJ graph.

not pass through node 3. Notice that the insertion of 2 — 4 has affected node 8
that is far from both nodes 2 and 4. The situation is also true (but opposite) when
an edge is deleted; this deletion can again affect nodes arbitrarily far away.

Also notice in the above zxomple, the flowgraph becomes irreducible after
2 — 4is inserted. Previous appfbaches to this problem that we are aware of,
the Carroll-Ryder and the Ramalingam-Reps algorithms, cannot proceed further
when this happens. One of our important observations is that the dominator tree
alone is not sufficient to capture all the path information in a flowgraph; it only
gives one type of path relationship among nodes in a flowgraph -~ meaning, “a
node = dominates another node y iff all paths from START to y must pass through
z”. By adding J edges to the dominator tree (4 Iz DJ graph) we capture all the
path information in a flowgraph. Thus in a DJ graph we capture both the path ‘
information and the domination relation in a unified representation. This allows
us to easily compute the set of affected nodes when an edge is added or deleted.
A node is called DomAffected iff its immediate domirator changes because of a
flowgraph update. Therefore, a key question to be answered in the rest of this
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chapter is: how can we efficiently compute the set of affected nodes no matter
how far away they may be from the updated edge?

To summarize, the problem we consider in the next two sections is the D] graph
update problem: We want to maintain the DJ graph for the reachable subgraph
of a flowgraph in which changes are made one ata time. This problem subsumes
the dominator tree update problem. The algorithms given in Section 8.2 and
Section 8.3 collectively form our incremental algorithm for maintaining the DJ
graph when a new edge is inserted and an existing edge is deleted, respectively.
These algorithms handle situations where z and y are reachable from START
both * xfore and after an update. We will handle other situations as special cases.
Also, to simplify the presentation and without loosing generality we will consider
only the following types of incremental changes to the flowgraph structure: (1)
insertion of a new edge, (2) deletion of an existing edge. One can implement other
more complex changes using a sequence of these two (primitive) changes [Mar89,
RR94, CR88].

8.2 Dominator Update: Insertion of an Edge

In this section, we present a simple algorithm for updating the DJ graph (and hence
the dominator tree) of a flowgraph in response to a flowgraph edge insertion.
Recall that when an edge z; — y; is inserted, it can affect nodes arbitrarily far
away. One of our key observations is that all the affected nodes must be in the set
{y} U IDF(y). The reason for this is as follows: By inserting the edge z; — vy,
we may have created a path (in the flowgraph) from START; to a node, say uy, in
{ys} U IDF(ys) such that the path includes z; — y; but bypasses the immediate
dominator of uy. However, notall the nodes in {y} UI DF(y) will be truly affected.
We will formally prove later that the affected nodes are only those additionally
satisfying certain level constraints.

Once we find the exact set of affected nodes, we need to answer: What will
be their new immediate dominator after the edge insertion? First note that
nea(zq,y2), the nearest common ancestor of nodes z4 and ys2 on the dominator
tree, will definitely dominate all the affected nodes. Ramalingam and Reps gave
a stronger claim to answer this question: Not only does nca(z4,ys) dominate all
the affected nodes, but also it is actually their immediate dominator [RR94]. We
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will utilize this claim ir. sur algorithm too.

Before presenting our algorithm for handling an edge insertion, we want
to clarify the following point: We do not incrementally maintain the iterated
dominance frontiers (IDFs) for all the nodes in our approach. There are two
reasons. First, we have a very efficient algorithm for computing 7 DF(y) in linear
time when we are told that z; — y; is the newly inserted edge [SG95b]. Second,
if we were to update IDFs, we would need to pay extra space and time overhead.
The time required for updating IDFs for all the nodes can be much longer than
that spent in computing I DF(y) for one node y.

8.21 Insertion Algorithm

Let z; — y; be the newly inserted flowgraph edge. Assume that both z; and y;
are reachable from START even before the insertion. Aigorithm 8.1 below gives a
procedure to restructure the DJ graph in response to changes in the dominance
relation when z; — y; is inserted. There are two supporting functions used in the
algorithm: (1) link(z,,y4, Jedge or Dedge) inserts into the DJ graph a new edge
zg — yq Of the appropriate type; and (2) cui(zq, y2) deletes z4 — ya.

In the algorithm, we first compute 24 = nca(zs,ya) (step . Then we
compute, at step the set of affected nodes DomAfrected|(y4) = {walws €
({¥2} U IDF(ya2) and wy.level > zy.level + 1}. That is, there are two conditions
for a node to be in DomAffected|(y4): (1) it must be in {y4} U IDF(y,), and {2) its
level number must be greater than nca(zq,ys).level + 1. Using our linear time
algorithm for computing D F(ya) on-the-fly, we thus can avoid processing any
node whose level number is not greater than nca(z4, y4).level + 1 (Chapter 7 and
[SG95b]).

Once we have computed DomAffected|(y,), we pull up each affected node wq
and make 2, (L.e., nca(z4,y2)) its new immediate dominator (step . We also
delete the D edge to every affected node from its (old) immediate dominator
(step [149)). If there is a flowgraph edge between these two nodes, we insert a
J edge in place of the deleted D edge at step [150]. Finally, we update the level
number for all the descendant nodes of every affected nodes at step The
complete algorithm is given below.
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Algorithm 8.1 The following algorithm updates the DJ graph of a flowgraph when a
new flowgraph edge z; — y; is inserted.

UpdatelnsertEdge(za, y4)

{

143:  zg = nca(zq, yq4)

144: DomAffected;{ys) = {walwy € ({ya} U IDF(ya)) and
wq.level > zglevel +1}

145:  if(zq! = z4)

146: link(zg4,y4,Jedge) /* if zg4=z4 then we should */

/* insert a D edge. See step */
147: foreach w, € DomAffected;(ys) do

148: ug = tdom(wy) ; /* ug is the (old) immediate dominator */
149: cut(ug,wq) /* cut the old D edge */ ‘

150: if(uy — wy is a flowgraph edge)

151: link(ug,wq, Jedge) /* insert a J edge from ug to wg */
152: endif

153: link(z4,wq, Dedge) /* new D edge */

154: endfor

155: foreach wy € DomAffected;(yq) do
156: UpdateLevelNumber{wy) /* Update the level for nodes */
/* in the SubTree(wg) */

157: endfor
}
Example 8.1

Consider our example flowgraph in Figure 8.1(a) and its DJ graph in
Figure 8.1(b). Let us insert a new edge 2 — 4 in the flowgraph. The
resulting flowgraph is shown in Figure 82(a). From the DJ graph (in
Figure 8.1(b)) we can find nca(2,4) = 1 and compute DomAffected;(4) =
{4, 6,8}. After this we pull up all the affected nodes and make node
1 their new immediate dominator. At the same time, we remove D
edges 3 — 4,3 — 6and 3 — 8. Since node 2 does not dominate 4, we
insert a new J edge 2 — 4. We also insertJ edges 3 — 4and 3 — 8in
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(b) D graph

Figure 8.2: The flowgraph and its D] graph after 2 — 4 is inserted.

the DJ graph, because their counterparts exist in the flowgraph. The
updated DJ graph is given in Figure 8.2(b).

8.2.2 Correctness and Complexity

In this subsection, we prove the correctness Algorithm 8.1 (Theorem 8.1) and
analyze its complexity (Theorem 8.2). Without loss of generality, we assume that
zy and y; are both reachable before and after the insertion of zy — y;.

Theorem 8.1 is the main theorem that establishes the correctness of the algo-
rithm. Its proof is based on Lemms:s 8.1 and 8.4. Lemma 8.1 claims that a unique
node z; = nca(zg,ys) will be the new immediate dominator of all the affected
nodes. Lemma 8.4 gives a necessary and sufficient condition to determine the
exact set of affected nodes. Its validity is further based on two other lemmas,
Lemma 8.2 and Lemma 8.3. Lemma 82 claims that if u € IDF(y), then idom(u)
strictly dominates y. Lemma 8.3 establishes a relation between any two nodes u
and v when v € IDF(u) and v is reachable from u.
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We will begin the proof chain by first defining the notion of DomAffected when
an edge is updated in the corresponding flowgraph.

Definition 8.1 A node issaid to DomAffected iff its immediate dominator node changes
because of an update in its flowgraph.

Given the notion of DomAf fected, Lemma 8.1 claims that nca{zs, ya), be-
fore the DJ graph is updated, will be the new immediate dominator of all the
DomAf fected nodes (after the update). This was originally given by Rama-
lingam and Reps in [RR94]. The lemma is one of the key result to support the
correctness of our algorithm. It also forms the basis for our second key result
(Lemma 8.4).

Lemma 8.1 Let z; — y; be a newly inserted edge and let z4 = nca(zq,13). Then zq
must immediately dominate every Dom A f fected node after the insertion.
Proof:

Let w be DomAf fected after z; — y; is inserted. We will first show
that = must dominate every affected node before and after the inser-
tion of the edge z; — y;. Insertion of an edge can only reduce the
domination relation [PM72, ASU86], and therefore can only shrink the
height of the dominator tree. From this we can conclude that the new
immediate dominator of w must have dominated w even in the orig-
inal flowgraph. But we know that after inserting the edge z; — vy,
u will no longer immediately dominate w (since w is affected). From
this we can conclude that, after inserting the edge, there exists a path
P from START to w that does not pass through u. But this path should
contain the edge z; — y; (since this was the only new edge inserted).
All nodes on this path must also contain z (since z¢ = nca(zq, ya))-
Therefore, by definition of dominance relation, z must dominate every
node on the path P.

Next we will show that z will be the new immediate dominator of
all the DomAffected nodes. Let v be the new immediate domi-
nator of w after the insertion. Suppose that v were not z. Then
= stdom v stdom w. Consider any path P: z; — z; — y; = wy
in the new flowgraph. P must include vy since v = idom(w). There
are two possibilities:
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1. Node vy is in z; — z;. This implies that vy is also on any path
from z; to z; before z; — y, is inserted. Therefore, v should have
been the nearest common ancestor of z and y. This contradicts

2q = nea(zq, ya)-

2. Node vy is not in y; — wy. This implies that the insertion of
Ty — yy should not have DomAf fected v. Therefore, v is already
w’s immediate dominator before the edge insertion, so w should

not be DomAf fected. This contradicts our assumption that w is
an DomA f fected noce.

Since neither possibility can be true, v must be the same as z; that is, =
must be the immediate dominator of any DomAf fected node. | |

To prove our second key result (Lemma 8.4), we need the following two sup-
porting lemmas. Lemma §.2 establishes a relation between a node w and the
immediate dominator of a node u € IDF(w). Recall that we proved a similar

result in Chapter 3 (Theorem 3.2). The proof of Lemma 8.2 follows from Theo-
rem 3.2.

Lemma 8.2 Ifu € IDF(w), then idom(u) stdom w.

Proof:
Follows from Theorem 3.2. . |

The next supporting lemma establishes a relation between any two nodes u
and w such that u is reachable from w but is not in IDF(w). As illustration,
consider Figure 8.1(a), node 7 is reachable from node 4, but is not in /DF(4).
An astute reader can notice that node 6, which strictly dominates node 7, is in
IDF(4). The following lemma generalizes the above illustration. In other words,
let u be reachable from another node w # u, and let u € I DF(w). Then there exists

anode s € wU IDF(w) such that s stdom u. This result is similar to Lemma 4
in [CFR*91].

Lemma 8.3 Let u be reachable from another node w # v, and let u € IDF(w). Then
there exists a node s € w U IDF (w) such that s stdom u.
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. Proof:

Assume w 'stdom v {otherwise, the proof is trivial).

Since u is reachable from w, let P be a path from w to u. Let s be the
node on P such that s € IDF(w) and is closest to « among all nodes
which are on P and are in JDF(w). Such a s must exists (e.g. in the
extreme w can be such a s).

Now we claim that all nodes on P between s and « must be dominated
by s. We show this claim by contradiction. Assume that some of these
nodes are not dominated by s. Let ¢ be one such node that is closest to

s on P. Then by definition of dominance frontiers, ¢ must bein DF(s).
This is because, ¢ is on the path P, but is not dominated by s. Therefore,
there must be an edge r — t such that s dom r. From Lemma 4.1 we
know that t must be in DF(s). Now since t € DF(s), t must alsobein -
IDF(w). But we assumed that s is the last node in I DF(w) which lies
on P—a contradiction. Therefore, u must be strictly dominated by s.

|

Next we present Lemma 8.4. Using this lemma we can determine the exact
set of nodes that are indeed DomAf fected when a flowgraph edge z; — yy is
inserted.

Lemma 8.4 Letz; — y; beanewly inserted edge in theflowgraph, and let z = nea(z, y).
Let DomAffected|(y) = {v|v € ({y} UIDF(y)) and vg.level > z3.level + 1}. Thena
node u is Dom A f fected iff u € DomAffected:(y).

Proof:

The “if” part: We want to show that if u is in DomAffected;(y), then
it is DomAf fected. Let w = idom(u) before z; — y; is inserted.
Since u is in DomAffected|(y), ua.level > z4.level + 1. This implies
wy.level = ug.level — 1 > zy.level. Thus we first conclude that wy
cannot be the same as z,.
. The fact of u € DomAffected,(y) also implies u = y or u € IDF(y).
If u = y, then wstdomy (by our assumption above). If u €
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. IDF(y), then w = idom(u) stdom y by Lemma 8.2. In summary,
w must strictly dominate . But w !stdom z because otherwise w,
in place of =, would have been the nearest common ancestor of =
and y (since w.level > z.level).

Now consider the insertion of z; — y; in the flowgraph. Since w
does not strictly dominate z, the edge insertion creates at least one
path START; = z; — y; — uy that bypasses wy both whenu = y
and when u € IDF(y). Consequently, « is truly DomAf fected.
The “only if” part: Here we will show thatif usis DomAf fected then
uq is in DomAffected|(ya).
First we will show that if ug is DomAf fected then ug.level >
z¢.level+1. The proof of this is based on the following observation:
From Lemma 8.1 we know that zg will immediately dominate
every DomA f fected node after the update. Therefore, =y must
strictly dominate every DomAf fected nodes. Hence uq.level >
zg.level + 1.

‘ . Nextwe will show that u, is either yg orisin IDF (yq4). Itisobvious

to see that that if ug is same as yy, uq is in DomAffected)(y.).

Now assume that u # y. We will show thatu € /DF(y). Assume
to the contrary that « is not in IDF(y). Since u is reachable from
y, either y strictly dominates u or there must be a node s that
strictly dominates z and s € IDF(y) (follows from Lemma 8.3).
If y strictly dominates u, then u is not affected. Since there is a
node s as above, we have z dom idom(s) (by Lemma 8.2} which
strictly dominates s which strictly dominates u, wi.ich contradicts
the fact that z is the immediate dominator of «. Therefore « must
bein IDF(y).

Finally, we state our first main theorem that establishes the correctness of our
algorithm for handling an edge insertion.

. ' Theorem 8.1 Algorithm 8.1 correctly updates the D] graph of a flowgraph when a new
edge x; — y; is inserted in the flowgraph.
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Proof:
From Lemma 8.1 we know nca(zq,y¢) must immediately dominate
all the DomAf fected nodes. Now at step we use the result of
Lemma 8.4 to determine which nodes are indeed Dom A f fected. From
these we can easily see the validity of the theorem. |

Our second main theorem gives the worst-case time complexity of Algo-
rithm 8.1

Theorem 8.2 Assume that both x; and yy are reachable before the insertion of z; — y;.
Then the worst-case time complexity of Algorithm 8.1 is O(| E|), where | E| is the number’
of edges in the DJ subgraph induced by the nodes in SubTree(nca(z4, ya))-

Proof:
The dominating step in Algorithm 8.1 is computing the set IDF(y).
Using the result of Chapter 7 we can easily see that the time complexity
of Algorithm 8.1 is O(| E]). |

Using the result of Chapter 7 we can compute the set I.D F(y) in linear time. But
as we showed in that chapter, our linear time algorithm actually performs worse
than the quadratic-time algorithm given by Cytron et al. [CFR*91]. Also, our
linear time algorithm potentially searches the whole DJ graph while computing
the iterated dominance frontier relation. In incremental analysis, it is important
that wewant to limit the search only to small portion of the graph. In Chapter 9we
will show how to improve the efficiency of the dominator tree update algorithm
by pruning search during the computation of IDF(y). This algorithm requires
that the dominance frontier relation be correctly maintained. In Chapter 9 we
will show how to incrementally maintain the dominance frontier relation.

8.2.3 Other Cases

Let z; — y; be the newly inserted edge in the flowgraph. Here we will describe
how to handle other cases where the reachability of z; and ys from START; is
different from what we have assumed in the previous subsection. The first case
is where z; is not reachable, for which we do nothing because we maintain the
DJ graph only for the reachable subgraph REACH(START).
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In the second case, y; becomes reachable only after the edge insertion. For
this we first build (using exhaustive algorithm) the DJ subgraph for the sub-
flowgraph induced by nodes reachable from y; but not reachable from START;.
In constructing this DJ subgraph, we treat yy as its root. Since r must dominate
y, we then insert a D edge from z, to y4 (to connect the newly built D subgraph
with the existing DJ graph). Finally, from the viewpoint of updating DJ graph,
we pretend each edge u; -~ vy to be a newly inserted flowgraph edge, where u;
becomes reachable only after z; — y; is inserted, and v, is reachable even before
the edge insertion. This surprisingly corresponds to the case discussed in the
previous subsection. To complete the DJ graph update, we invoke Algorithm 8.1
once for each us — vy.

For example, node 9 is unreachable in Figure 8.1(a), but becomes reachable
after we insert 1 — 9. Therefore, we first construct the DJ subgraph for the sub-
flowgraph induced by nodes 9, 10, and 11. Then we insert a D edge from 1 to 9.
Finally, we use Algorithm 8.1 to update the Dj graph once for 10 — 5 and once for
11 — 7 as if they were newly inserted flowgraph edges.

8.3 Dominator Update: Deletion of an Edge

In this section, we show how to update a D] graph when a flowgraphedge z; — y;
is deleted. The effect of deleting an edge is opposite and complementary to that of
inserting the same edge. When inserting z; — yy, 24 = nca(z4, y¢) will be the new
immediate dominator node for all the DomAf fected nodes. Therefore, we pull
up all the DomA f fected nodes in the DJ graph to the level of nca(zq, ya).level + 1.
Also notice that the “old” immediate dominators of all the affected nodes will be
different. On the contrary when an edge z; — y; is deleted, all the affected nodes
should be at the same level as node y. Also, the new imunediate dominators
of all the affected nodes will be same as the “old” immediate dominators, as
mentioned above for the insertion case. For the deletion case, computing both
the exact set of affected and the corresponding new immediate dominators of
the nodes in the affected set is difficult. To overcome the first difficulty, we use a
conservative approximation for the set of DomA f fected nodes. This set of possibly
DomAf fected nodes is DomAffectedp(ys) = {walws € IDF(ya) and wg.level =
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ya.level}.! Since this set is a safe approximation, not every node in the set will
be pulled down in response to a flowgraph edge deletion. To overcome the
second difficulty while avoiding an exhaustive algorithm, we observe that the
new immediate dominator of any DomAf fected node must be a descendant of
idom(ys). Therefore, if any update on the DJ graph needs to happen, it will
only affect the nodes in SubTree(idom(ys)). Based on these two observations,
we present an efficient incremental algorithm for only computing the possibly
DomAf fected nodes’ new dominators, which are then used to compute their new
immediate dominators.

8.3.1 Deletion Algorithm

As pointed out previously, our approach to updating a DJ graph in response
to a flowgraph edge deletion will be centered at an incremental algorithm for
computing the new dominators for all the possibly DomAf fected nodes. In the
following, we will explain how we transform the exhaustive Purdom-Moore algo-
rithm into an incremental algorithm that will be much more efficient in practice.
For reference we have given the the originai Furdom and Moore's exhaustive al-
gorithm for computing the dominator set. The version of the algorithm is adapted
from [ASUS86], where the subscript pm indicates that the set Dom() is computed
using Purdom and Moore’s algorithm.

Algorithm 8.2 (Finding Dominators.) The following is an iterative algorithm for
computing the dominator set.

158: Domyn, (START) = {START}
159: foreachn € N — {START} do
160: Domym(n)=N
/* end initialization */

161: while Changes to any Dom,,,(n) occur do
162: foreach n € N — {START} do
163: Dompm(n) = {n} U Npepred(n) Dompm (p)

The set DomAffectedp(y4) can possibly be made more precise by not including any node vq

idom(ys) — vy is a flowgraph edge, since vz can never be pulled down. For simplicity, we use
only the two givén conditions to determine if a node is in DomAffectedp(va).

~
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Let Dom(v) denote the set of dominators for node ». Qur modifications to the
exhaustive Purdom-Moore algorithm are the following: First, z¢ = idom(y,) will
continue to dominate every possibly Dom A f fected node in DomAffectedp(yy) after
the update, although it may no longer be its immediate dominator. We, therefore,
can focus on the nodes in SubTree(z4) while ignoring others. Consequently, we
will compute the Dom() sets for all the possibly DomAf fected nodes as if no
other nodes existed outside of SubTree(z;). Second, we will monitor the Changes
condition (step in Algorithm 8.2) only for the possibly Dom A f fected nodes.
Third, whenever Dom(wq) changes for a node wq € DomAffectedp(ya), the Dom()
set also changes for every descendant vy of wy (this is true in Algorithm 8.2).
Therefore, we must also observe the Changes condition for any descendant of
every possibly DornAf fected node. But, fortunately, Dom(v;) can be “partially
deduced” from Dom{w.). But before explaining this we need to introduce a few
concepts.

For our algorithm design, we will first partition all the nodes in SubTree(z,)
into three classes:

1. PossiblyAffected: Thesetofnodes in this classis the same as DomAffectedp(ya).

2. PseudoAffected: This set consists of any proper descendant of a PossiblyAf-
fected node. Note that a PseudoAffected node’s immediate dominator
does not change, but its dominators may change.

3. NotAffected: This set is defined to capture all the nodes not in the first two
classes. Neither does a NotAffected node’s immediate dominator change,
nor do its dominators.

Example 8.2

Consider deleting the edge 2 — 4 from the flowgraph in Figure 8.2(a).
IDF(4) = {3,6,8}. By examining the DJ graph in Figure 8.2(b), we
can see that (1) nodes 3, 4, 6 and 8 are PossiblyAffected nodes; (2)
nodes 5 and 7 are PseudoAffected nodes; and (3) nodes 1 and 2 are
NotAffected nodes.

Next we partition Dom(v.) for each node va € SubTree(idom(ya)) into two
parts: the static part Dom,(vs) and the dynamic part Domagy,(va). The static part
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captures nodes that will continue to dominate vy after the update. For example,
consider the D] graph shown in Figure 8.2(b). Nodes 1 and 2 will dominate node
2 even after the edge deletion, so Dom,,(2) = {1,2}. By contrast, the dynamic
part of a Dom() set normally will change during the fixed point iteration. We
are interested in Domgy() for only the Possibly Affected nodes because we want
to compute their immediate dominators. Therefore, we carefully initialize and
manipulate the Dom() set in such a way that we update the Dom() set only for
the PossiblyAffected nodes.

Let z; = idom(ya). The first step of our approach is to initialize the Dom() set
for each node according to its class as follows.

vq € PossiblyAffected. For each PossiblyAffected node va, Domy(vs) = 0 and
Domy,(vs) = all the nodes in SubTree(zs). We basically need to recompute
the dominators for each PossiblyAffected node. For instance, consider the
DJ graph in Figure 82(b). Node 4 is in PossiblyAffected and Dorngy(4) =
{1,2,3,4,5,6,7,8}.

v € PseudoAffected. Recall that the immediate dominator of a PseudoAffected
node will not change, but its Dom/() set may. Let vs be a PseudoAffected
node. By definition, there will be a unique node ws € PossiblyAffected
that strictly dominates vs. Here we will discuss how to initialize the static
part and compute the dynamic part of Dom(vg).

Let S be the set of nodes on the dominator tree path from w; to v4 (excluding
wy). All the nodes in § will still dominate »; even after the update, so they
are used to initialize Dom,.(vs). For example, consider the DJ graph in
Figure 8.2(b) again. The set S for 5 is {5}, so Dom(5) = {5}. (Intuitively,
even node 3 can be included in Dom,(5). We did not do that since it will
be included in the dynamic part). Now for the dynamic part, we can see
that the nodes in Dom() that is not accounted for by the static part are
all the nodes dominating wy. This implies that Domg,(va) is the same as
Dom(wy). Returning to our example; Domg,(5) = Dom(3) = Domgy(3) =
{1,2,3,4,5,6,7,8}. This is because, node 3 immediately dominates node 5,
and since node 3 is PossiblyAffected, but not 5, we include all the elements
of Dom(3) in Day(5).
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vg € NotAffected. For a NotAffected node vy, neither its Dom() set nor its im-
mediate dominator will change. Therefore, we initialize Dom,.(va) to be all
the nodes dominating vy, and make its dynamic part empty. Again con-

sider the DJ graph in Figure 8.2(b). Node 2 is a NotAffected node, and
Domg(2) = {1,2}.

Given the above initialization we next give the complete algorithm for updat-
ing the DJ graph when z; — y; is deleted from the flowgraph (Algorithm 8.3).
When Algorithm 8.3 terminates, the dominators for each PossiblyAffected node
wq Will be in Dom(wy). Using this information, we can easily determine the im-
mediate dominators for all the possibly DomAf fected nodes. After this we can
update the DJ graph accordingly. The complete algorithm is given below.

Algorithm 8.3 The following algorithm updates the D] graph of a flowgraph when an
existing edge is deleted.

UpdateDombDel(z, y)
{
164: DomAffectedp(ya) = {we|ws € ({ya} U IDF(ys)) and
wq.level = yy.level}
165:  if(zq4! = idom(ys)) /* do not cut if zg—ys is a D edge! */
166: cut(zg, ya)
167:  zy = idom(yaq)
168: Partition all the nodes in SubT'ree(2q) into PossiblyAffected, PseudoAf-
fected, and NotAffected.
169: Initialize each node wy € SubT'ree(z,) as described in the main text.
170: Change = True
171: while(Change == T'rue)do
172: Change = False
173: foreach wy € PossiblyAffected do

174: DomTemp = SubTree(zs) /* temporary variable */
175: foreach p; € Pred(wy) do
/* psy is an immediate predecessor in the flowgraph */
176: if(ps € PseudoAffected)
177: Domy,(ps) = Dom(ug), where uz € PossiblyAffected

and u; stdom py
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178: endif

179: DomTemp = DomTemp N ( Domy,(pg) U Domay, (pe))
180: endfor

181: NewDom(wy) = {ws} U DomTemp

182: endfor

183: if Dom(wy) # NewDom(wy) then

184: Change = True

185: endif

186: Dom(wy) = NewDom(wy)

187: endwhile

188: Compute the immediate dominators for all the possibly DomAf fected
nodes.

189: Update the DJ graph accordingly.

}
In the above algorithm, after the completion of step foreach loop, the

variable DomTemp contains the intersection of the Dom() sets from a node’s
immediate predecessors. There are two key points to note in this algorithmn: (1)
We check the Changes condition only for the nodes in PossiblyAffected; and
(2) If an immediate predecessor py at step belongs to PseudoAffected, we
make Domgy(pe) be Dom(uy), where us € PossiblyAffected and ug stdom pq-
We, therefore, do not explicitly recompute the dynamic part of Dom(p).

Example 8.3

Consider the flowgraph and its DJ graph shown in Figure 82. As-
sume that 2 — 4 is to be deleted from the flowgraph. To update
the DJ graph, we first incrementally compute the Dom() set for every
possibly DomAf fected node. Since DomAffectedp(4) = {4,3,6,8}, we
have PossiblyAffected = {3,4,6,8}, PseudoAffected = {5,7}, and
NotAffected = {1,2}. Also idom(4) = 1. The initial values of the
Dom() sets shown in Table 8.1.

Once Dom() sets have been initialized we next perform fixed-point
computation as in the exhaustive Prudom-Moore algorithm. At
step we initialize, for each node, the static and the dynamic
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| Node ! Node Type | Domiye() ]fomd,,() |

Table 8.1: (a) Initial and (b) Final values of Dom() for the example. {In the above

3 [ PossiblyAffected | 0 F
4 | PossiblyAffected 0 F
6 | PossiblyAffected ) F
8 | PossiblyAffected 0 _F
5 PseudoAffected {5} Dom(3)
7 PseudoAffected {7} Dom(6)
1 NotAffected {1} 0
2 NotAffected {1,2} 0
(a)
Node [ Pred; | DomTemp = Domg, () =
Npepred, Dom(p) | DomTempU Node
3 {17} {1} {31}
4 | {3} {1,3} {1,3,4}
6 | {45} {1,3} {1,3,6}
8 1187} {1,3} {1,3,8}
(b)

tables F = {1,2,3,4,5,6,7,8))
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part of Dom(). These initializations are shown in Table 8.1(a).
Next we iterate and compute the fixed-point of the Dom() set for
each node in PossiblyAffectedstep [171]. For our example, the set
PossiblyAffected = {3,4,6,8}. For each node w; in PossiblyAf-
fected we first compute the intersection of all the Dom() set of its
predecessor node (steps [175] to [180)). At step we check if a
predecessor node p; of a node in PossiblyAffected is in PseudoAf-
fected. If so, we make the dynamic part of its Dom() set to be same as
Dom(uq), where u4 € PossiblyAffected and u4 stdom ps. For exam-
ple, consider node 3 in Possibly Affected. The predecessors of node 3
are 1 and 7. Node 1 is in NotAffectedand so Dom(1) = {1}. But7isin
PseudoAffected. Atstep we make the dynamic part of node 7 to
be same as Dom(6), whichis {1, 2, 3,4, 5, 6,7,8}. Then we compute the
intersection of Dom(1) and Dom(7). Once we compute the intersection
we then union the set with {3} (step [181]). We continue this process
until a fixed-point is reached. At step we check to see if a fixed
point is reached otherwise we set Change to True and continue the
iteration. The final fixed point values for the possibly DomAf fected
nodes is shown in Table 8.1(b).

Observe that when computing DomTemp at step we always select the
latest value of Dom(p;). In addition, whenever such a p; is a PseudoAffected
node, we update its Domg,() set at step In the actual implementation, we
do not need to update Domg,(pa) for ps € PseudoAffected. Using pointer data
structures we can easily point to the set Dom(ug), where u4 is an ancestor of py
and ug € PossiblyAffected.

Once we have computed the Dom() sets, we can easily determine the new
immediate dominators for all the DomAf fected nodes. In our example, node 1
is the new immediate dominator of 3, which is the new immediate dominator of
4, 6 and 8. With this information we can proceed to update the DJ graph. The
updated DJ graph is shown in Figure 8.2.

One key point to observe in the above algorithm is how we initialize the start-
ing solutions for different types of nodes (i.e., the Dom() sets). If we were to start
the iteration from the old fixed point (i.e., Dom() initialized to the old the domina-
tors) we would get wrong result (this is because, during fixed-point iteration we



CHAPTER 8. INCREMENTAL COMPUTATION OF DOMINATOR TREES 125

can never increase the size of a Dom()). For a comprehensive treatment on this
and other related problems of incremental iteration, please see [RMPSS, Mar89].

8.3.2 Correctness and Complexity

In order to find the new immediate dominators for all the possibly DomAf fected
nodes, we use Algorithm 8.3 to find their new dominators instead. Consequently,
the correctness of our approach to handling an edge deletion relies on the cor-
rectness of finding the dominators for every Possibly Affected node. The follow-
ing lemma claims that when Algorithm 8.3 terminates, the dominators for every
Possibly A ffected node are correctly found.

Lemma 8.5 Let zp — y; be the deleted flowgraph edge. Then when the Algorithm 8.3
terminates, Dom(wq) contains exactly all the dominators that are in SubTree(idom(ya))
for any PossiblyAffected node wy.

Proof:

First of all notice that the set NewDom(w,) computed at step is
always a subset of the current Dom(w.) (this because of the intersection
operation at step[179)). Since Dom(w,) cannot get smaller indefinitely,
we must eventually terminate the while loop. Next we will show that,
after convergence, the set Dom(w,) contains all the dominators of wq
that are in SubT'ree(idom(yq)). For this we will have to show that if
anode ug € SubTree(idom(yy)) is in Domym(wq) (Le. dominates wy)
then uq will be included in Dom(wq) and vice versa.

Let p € Pred;(w). We know that p is either in PossiblyAffected,
PseudoAffected, or NotAffected. We will show that for each category
that p may belong to, its Dom(p) set will be either a correct estimate or
an overestimate of the actual (final} Dom(p)

1. p € NotAffected. Itis obvious that Dom(p) is a correct one.

2. p 6 PseudoAffected. Here Dom(p) = Dom,(p)U Domgay(p)- The
nodes in the static part will always dominate p. At step we
assign the dynamic part to Dom(u), where is an ancestor node of
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panduz € Af f. The union of the two will be an overestimate. In
other words, if a2 node s dominates p it will be in Dom(p).

3. p € PossiblyAffected. The Dom() will be an overestimate.

From above we see that if a node uy dominates p it will be in the set
Dom(p). Now if s dominates all the predecessors p of w it will be in
the Domn(p) set of all the predecessors. Therefore ug will also be in the
intersection of the Dom(p) set of all the predecessors, and so will be
included in Dom(w;).

Now let u; be some node in Dom(wg) when the algorithm terminates.
We will next show that vy dominates wy. If us = wy, we are done.
Otherwise, the only way u, wasincluded in Dom(wq) is because it was
included in the dominator setof all the predecessornodes pin Pred (w)
in some previous iteration. This is possible only if u; dominates all
the predecessor nodes p. If u4 dominates all the predecessors, it must
dominate wq. Hence the result.

In the worst case, the time complexity of Algorithm 8.3 can be the same as the
Purdom-Moore algorithm. In practice, however, we expect our algorithm to be
much faster in the average case.

8.3.3 Other Cases

Let zy — y; be the edge to be deleted from the flowgraph. Here we will describe
how to handle other cases where the reachability of z; and y; from STARY; is
different from what we have assumed. If z is not reachable, then we do nothing
because we only intend to maintain the DJ graph for the reachable subgraph
REACH(START).

Now assume that z is reachable and y becomes unreachable after deletion.
In this case, we remove from the DJ graph all the nodes in SubTree(ys) and
their incident edges. This is because if removing z; — ys makes y; become
urnweachable, then all the nodes strictly dominated by y will not be reachable
either. Next, we remove the D edge z4 — ya. Finally, we update the reachability
status for all the nodes that become unreachable due to the edge deletion.



CHAPTER 8. INCREMENTAL COMPUTATION OF DC".IINATOR TREES 127

8.4 Experiments and Empirical Results

n this section we present empirical results for our incremental dominator al-

gorithm. We will first describe our experimental strategy, and then present the
results and their analysis.

8.4.1 Experimental Strategy

In {RLP90], Ryder et al. discuss some of the issues involved in experimentally
evaluating incremental algorithms. One major problem in accurately evaluat-
ing incremental algorithms is selecting suitable test cases [Ram93, RLP90]. For
instance, Ryder et al. chese a set of randomly generated flowgraphs, as their
test suite, to evaluate their incremental dominator algorithm [RLPS0]. They use
the following strategy in their evaluation: They first induce random incremental
changes (such as insertion and/or deletion of an edge) and measure the time taken
to update the dominator tree. To calculate the speedup gained by their algorithm,
they then measure the time taken by the exhaustive Purdum-Moore algorithm for
computing the dominator information of the changed flowgraph. They repeat this
process for each incremental change. Using this evaluation strategy, they show
that their incremental algorithm performs better than the exhaustive algorithm.

In this chapter we take a different approach for evaluating our incremental
algorithm.

o Instead of using randomly generated flowgraphs, we use control flow
graphs generated from real FORTRAN programs for our experiments.

o Instead of comparing our incremental algorithm with Purdom and Moore's
exhaustive algorithm (whose worst-case time complexity is quadratic), we
compare our results with the almost linear time Lengauer-Tarjan (LT) algo-
rithm [LT79].

e Instead of inducing random incremental changes to a flowgraph, we incre-
mentally construct the DJ graph of a flowgraph for real programs. In our
evaluation we then compare the time taken to construct (incrementally) the
complete DJ graph of the flowgraph with the time taken to compute (ex-
haustively) the immediate dominator relation of the final flowgraph using
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the LT algorithm. In other words, if T(inc) is the time take to incrementally
. construct the DJ graph and T(LT') is the time taken to compute the imme-
diate dominators of the final flowgraph, then the speedup in our case is

LT
T(ine) "

In our experiments we handle only edge insertions.? We incrementally con-
struct the DJ graph in the depth-first order of the nodes in the flowgraph.® To
evaluate our algorithm, we performed the following measurements:

o For each algorithm we maintain a count of the number of times we visit
nodes and edges in a flowgraph. In other words, for each algorithm, we
increment a counter whenever we visit a node or an edge. We will denote
the final value of the counter for the LT algorithm as P(LT), and for our
algorithm as P(inc).

o We measured the execution time of both algorithms on our test procedures.
We will denote the execution time of the LT algorithm as T(LT), and the
execution time for incrementally constructing DJ graphs as T'(inc).

. Given these measurement, we will next present the empirical results and their
analysis.

842 Empirical Results and Their Analysis

Table 8.2 gives a summary of our results. We will first give a summary of the
major results of our experiments.

¢ The value of P(LT') ranges from 322 to 2180, with the average value being
1071. Theratio {5 ranges from 3.26 to 3.65 with the average being 3.43. This
ratio suggests that the LT algorithm should, on average, make 3.43 passes
over a flowgraph during the computation of the immediate dominance
relation.®

2We did not implement our deletion algorithm to test it.
3The depth-firstorder is only incidental, since thenodes in a flowgraph, in our implementation,
are numbered in the depth-first order.
4Since in our algorithm edges are inserted in the depth-first order of their source nodes, we
did not count the edges visited during the depth-first numbering phase of the LT algorithm.
®The values of P(LT) and P(inc) indicated in the table are only approximate values. Actual
. analysis of the LT algorithm indicate that the algorithm makes approximately four passes over
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[Name _ TTETPUT) [ PG P [ BT EE Hé%‘r [ | e [T

aerset 460 1590 224 3 46 12.2 10.1 1.2]
aqset 258 911 468 1.95 353 1.81 7.7 6.2 1.24
bjt 187 641 2122 0.30 343 | 1135 57 152 0.3
card 216 770 1109 0.69 3.56 513 62 9.5 0.63
chemset 320 1091 800 1.36 341 2.50 9.1 9.0 1.01
chgeqz 248 858 1899 045 346 7.66 7.1 165 043
clatrs 308 1022 2290 045 332 744 82 17.7 0.46
coef 137 451 504 0.89 3.29 3.68 4.6 55 0.84
comlr 91 322 337 ) 09 354 3.70 4.1 42 0.98

dbdsqr 327 1100| 1853{ 059 | 336 567 9.2 152 | 061
dedemp || 187 632 865| 079 3.65| 463 5.7 90| 063
deop 261 901 1997 | 045| 345} 7.65 77 147} 0352
detran 458 | 1588 | 4958 | 032 347 | 1083 118 408 029
deseco 236 850 | 1168| 073} 360| 495 74 104 | o071
dgegv 232 770 | 1776 | 043 ( 332| 766 7.1 141 ] 050
dgesvd 470 | 1586 | 1827 ] 0871 337 389 1721 178 | 0.68
dhgeqz 4081 1395| 3468| 040| 342 850 114 2930 039
disto 191 622! 1403| 044} 326| 735 53 104 [ 051
dlatbs 238 803| 1490 054 337| 626 72| 11.7] 062
dtgeve 459 | 1555| 31481 049 | 339| 686 1201 266| 045
dtreve 353 | 12121 1305| 093 | 343| 370 93 133 070 |
elpmt 227 788 | 1982 040 347! 873 67| 164 | 041
equilset }) 451 | 1584 ] 1023| 155, 351 227 129 130 | 099
errchk 482 | 1722| 34571 050| 357| 717 1201 310} 039
iniset 486 | 1657 486 | 3411 341 1.00 127 95| 134
rat 175 572 245 2331 327 140 55 36| 153
initgas 263 896 6781 132 | 341 | 258 7.6 78| o097
jsparse 403 | 1355 742 183) 336| 184 110 96| 115
modchk (| 4191 1498 | 1167 128 358! 279 110 141| o078
moseq2 || 217 771 | 2738 028 | 355| 1262 70| 210| o033
mosfet 295 | 1025 4903 021 | 347 1662 85 338 | 025
noise 160 547 | 1143 048 342| 714 51 84{ 061
out 500 1944 1357 ] 143! 329| 230 15.1 165| 092
reader 235 824 7231 114| 351| 308 78 97| 080
readin 611 | 2180 3513| 062| 357| 575 15.1 281 054
setupgeo (" 275 918 718 | 128 334 261 78 84| 093
setuprad || 286 938 306 | 237 328 138 7.8 61| 128
smvgear || 310 1056 | 1415)| o075 341| 456 86 131 066
solveq 289 960 S18{ 185( 332 179 78 74| 105
twldrv 243 838! 1025) 082 345| 422 73 101| 072

Average 312 1071 1593 100| 343]| 531 8711 1437 074

Table 8.2: Timings and speedups
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Figure 8.3: Performance of the two algorithms on the test procedures.
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The value of P(inc) ranges from 245 to 4903, with the average value being
1593. The ratio fl-&f-'ﬁl ranges from 1.00 to 16.62, with the average value being
5.1. This ratio indicates that our algorithm, on average, make 5.31 passes

over the entire flowgraph during the incremental construction its DJ graph.

e The value of the %E% ranges from 0.21 to 3.41, with the average value
being 1.00. The value of this ratio suggests that constructing DJ graphs
incrementally, on average, takes about the same time as computing the
immediate dominance relation using the LT algorithm. But as can be seen
by the data reported in the table constructing DJ graphs incrementally is
about 1.35 times slower than computing the immediate dominance relation.

e From the table we can see that the ratio ;{-‘i’%, ranges from 0.25 to 1.53 with
the average value being 0.74. This suggests that constructing D] graphs
incrementally is, on average, about 1.35 times slower than computing the
immediate dominator relation using the LT algorithm. It is important to
note that the LT algorithm only computes the immediate dominance rela-
tion, whereas using our incremental approach we construct complete the DJ
graph of flowgraph. In Chapter 3 we gave time measurements for construct-
ing DJ graphs given the immediate dominance relation. If this is included in
the timing measurements of the LT algorithm, then the average performance
of our algorithm would improve. Figure 8.3 shows the performance graph
of the two algorithms on our test procedures. From the plot we can see that
the LT behaves linearly, whereas our algorithm exhibits a more complex (or
random) pattern.

In our experiments we inserted edges in the depth-first order of the source
nodes of the edges. We believe this ordering gives a better result for certain pro-
cedures. For instance, consider the procedure iniset. This procedure consists
of the 154 simple DO loops that initializes arrays. From the table we can see that
the ratio 55 i5 1.00 for this procedure, indicating that e never invoked the
procedure for computing DomAffected() during insertion, and so we never had
to calculate the IDF set. This is the reason why our algorithm performs better

a flowgraph during the computation of the immediate dominance relation [LT79]. Since P(LT")
does not include passes made during depth-first numbering, our measurements confirm to the
actual analysis.
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than the LT algorithm for this procedure. Remember that the LT algorithm makes
four passes over a flowgraph no matter what is the structure of the graph. Since
the value of the ratio fﬁ%"l is 1.00, our algorithm constructs the DJ graph for this
procedure is (asymptotically) optimal time. In general, we suspect that if the
structure of the dominator tree is close to the structure of the depth-first tree, then
constructing D] graphs incrementally would be faster than the LT algorithm.

It is important to emphasize that in our experimental strategy we compute the
immediate dominance relation (using the LT algorithm) only once, and compared
its performance with the performance of the algorithm for computing DJ graphs
incrementally. To be fair we should actually compute the immediate dominance
relation after each incremental change, as was done by Ryder et al. [RLP90]. Even
in our experimental strategy we can see that our incremental algorithm performs
very well, and so we can expect that ours will do a lot better if we use the
evaluation strategy of Ryder et al.

As a final remark, the dominating factor in our algorithm is computing the set
DomAffected;(). For our experiments we use the algorithm given in Chapter 7 for
computing IDF of a node. It would interesting to see how much improvement
we can obtain if we use Cytron et al.’s original algorithm. To use this algorithm
we should also incrementally maintain the dominance frontier relation. This is
the topic of the next chapter.

8.5 Discussion and Related Work

In this chapter we have presented an approach to the DJ graph update prob-
lem, which subsumes the problem of updating dominator trees. Previous work,
most relevant to our approach, for the dominator tree update problem includes
the Carroll-Ryder algorithm [CR88] and the Ramalingam-Reps algorithm [RR94].
Both these algorithms are restricted to the class of reducible flowgraphs. By con-
trast, our algorithm can handle irreducible as well as reducible flowgraphs.

We will first compare ours with Ramalingam and Reps’ approach, and then
compare with Carroll and Ryder’s approach.
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8.5.1 Ramalingam and Reps’s Approach

To simplify the preuentation, we will refer to Ramalingam and Rep’s algorithm as
the RR algorithm. Unlike the RR algorithm, ours can handle both reducible and
irreducible flowgraphs. The RR algorithm is based on the properties of pseudo-
circuit value problem [AHR*90], while we use properties of DJ graphs and IDFs
to update DJ graphs. They use a modified algorithm of Alpern et al. to update
priorities of nodes [AHR*90]. Priorities are equivalent to reverse topological
sorting of the nodes in the forward flowgraph® Priorities can be assigned to
nodes only if the forward flowgraph is a directed acydlic graph. This property is
only true for reducible flowgraphs. During the insertion of a new edge, if a cycle
is detected in the forward flowgraph, then their algorithm immediately signals
that this insertion has introduced irreducibility into the flowgraph. After that
they do not allow further insertions and deletions of edges, because priorities
cannot be assigned to nodes in the forward flowgraph containing cycles.

In the insertion case, our algorithm can begin with the exact set of affected
nodes (e.g. DomAffected;()), while the RR algorithm needs to begin with a
conservative set of possibly affected nodes. When an edge z; — y; is deleted,
Ramalingam and Reps make all the sibling nodes of y, as affected. Our set of
possibly affected nodes, although not exact, is always a subset of y4's sibling
nodes; therefore, it is a better approximation than theirs.

In the worst case, the time complexity of our algorithm for the insertion case
is O(|E]), while that of Ramalingam and Reps’ algorithm is O(|E| x log|N}).
Recall that, since we are handling updates of DJ graphs, it is crudial that we
update the levels of nodes too. This means that we definitely have to visit all the
descendants of the affected nodes to update their level numbers. This will also be
true for Ramalingam and Reps’ algorithm, if they too update the level information
in the dominator tree. Since the two algorithms are fundamentally different,
it is difficult to make precise statements on their timing comparisons without
substantal tests on real programs. In particular, it is generally very difficult
to analytically compare incremental algorithms [Mar89, Ram93]. Therefore, we
only make some qualitative observations. Our algorithm, for the insertion case,
begins by computing precisely the set of affectec nodes, at the expense of visiting

6Recall the definition of reducible flowgraphs in Chapter 6 (Definition 6.1). A forward flow-
graph is nothing but a reducible flowgraph with all ‘back edges’ removed.
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arguably more nodes compared to the RR algorithm. (This is true even for the
deletion case). On the other kand, the RR algorithm has a log(|V|) overhead factor
(in the worst case). Also the RR algorithm has to do priority-updating. One way
to compare the performance of the two algorithms is to implement and test them
on real benchmark programs.

8.5.2 Carroll and Ryder’s Approach

The Carroll-Ryder algorithm uses two local properties: niceness and deepness.
Niceness is a property for edges; deepness is a property for nodes. Non-nice
edges and non-deep nodes cannot exist in the dominator tree of a reducible
graph. Using these two local properties and the notion of representative edges, they
maintain the dominator tree of a reducible flowgraph. For every edge z — y in
the flowgraph, and for every node = that dominates = without strictly dominating
y, a representative edge z — y needs to be maintained. An astute reader can
immediately observe thatif z — y is a representative edge, the y € DF(z). Rather
than using properties of properties of dominance frontiers and iterated dominance
frontiers for updating the dominator tree they use “local rotation” operations that
moves a subtree up or down one level at a time in the dominator tree. This adds
to the complexity of their algorithm, which in the worst case could be quadratic in
terms of the number of flowgraph nodes. In contrast we use properties of iterated
dominance frontiers for determining the exact set of DomA f fected and move the
affected nodes in one-shot, once we compute the new immediate dominators.

8.5.3 Other related work

In a recent paper [JPP94], johnson et al. introduced the Program Tree Structure
(PST) for performing fast program analysis. The PST represents a program with a
hierarchy of single-entry, single-exit regions. Using the PST, Johnson in his thesis
proposed an algerithm for updating dominator trees [Joh94]. His approach is to
identify regions, corresponding to sub-flowgraphs, where the dominance relation
may no longer be correct because of an update. Once a region is identified, he
applies an exhaustive algorithm for all the nodes in this region. In the worst-case
there can be only one node in a PST, so that they must exhaustively recompute
the dominance relation for all the nodes in the flowgraph. In contrast, we update
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the dominance relation only for the (possibly) affected nodes. But again, one
should compare the two approaches on real benchmark programs and see their
performance.



Chapter 9

Incremental Computation of

Dominance Frontiers

Take up one idea. Make that one idea your life-think of it, dream of it, live
on that idea. Let the brain,muscles,nerves cvery part of your body, be full of
that idea, and just leave every other idea alone. This is the way to success. If
we really want to be blessed, and make others blessed, we must go deeper.

—Swami Vivekananda

In this chapter we present a simple incremental algorithm for updating the dom-
inance frontier relation of a flowgraph. Dominance frontiers have many applica-.
tions, including the construction of the SSA form [CS594] and incremental data
flow anaiysis (Chapter 11). We begin the chapter by introducing and motivating
the problem of updating dominance frontiers (Section 9.1). In Section 9.2 and
Section 9.3 we present our incremental dominance frontier algorithm for han-
dling edge insertions and edge deletions, respectively. In Section 9.4, we prove
the correctness and analyze the complexity of the algorithms. In Section 9.5,
we will use the result of this chapter to (potentially) speedup the incremental
dominator tree algorithm. Finally, in Section 9.6, we give our conclusion.

9.1 Inftroduction and Problem Statement

In this chapter we present a simple algorithm for updating the dominance frontier
relation of a fiowgraph. In Chapter 4 we discussed three ways of representing

136
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dominance frontiers: (1) the full dominance frontier representation, where for
each node z, we explicitly represent the set DF(x) as a list; (2) the DJ graph
representation, where, for each query, we compute the set D(z) on-the-fly by
walking down the dominator subtree rooted at r; and (3) the APT representation,
where dominance frontiers are cached at certain nodes, called the boundary nodes.
The space complexity of the first representation can potentially be quadratic,
but querying the dominance frontier of a node is time optimal {CFS90b, PB95].
Using DJ graphs, we can stcre the dominance frontier relation in linear space, but
querying the dominance frontier of a node is not time optimal (Chapter 4). The
APT representation occupies linear space and takes time proportional to size of
the set for each query [PB95]. In a pre-processing step they identify boundary
nodes where the dominance frontiers are cached [PB95]. Comparing APT with
the full representation and the DJ graphs, we can see that every node in the full
representation is a boundary node, whereas the source nodes of ] edges are the
boundary nodes in the DJ graph representation. In APT boundary nodes are
identified in a preprocessing step. Since identifying boundary nodes depends
on the input flowgraph (and is sensitive to flowgraph changes), we suspect it
may be harder to update APT than DJ graphs or the full dominance frontier
representation. In Chapter 8 we gave a simple algorithm for updating DJ graphs.
Once a DJ graph is updated, we can use Algorithm 4.1 given in Chapter 4 to
(re-)compute the dominance frontier of any node (Algorithm 4.1). In this chapter
we will present an algorithm for maintaining the the full dominance frontier
relation. We will use this result in Chapter 11 for updating arbitrary data flow
properties.

In the rest of this section we will set the stage for our incremental dominance
frontier algorithm. As in Chapter 8, we will allow only two types of updates:
{1) insertion of an edge, and (2) deletion of an edge. Recall that the solution
procedure for updating the dominator tree of a flowgraph consists of first iden-
tifying the set of nodes that are “affected” because of an update. A node is said
to be DomAffected if its immediate dominator changes because of an update. For
both the insertion case and the deletion case, we can determine the exact set of
affected nodes when = — y is updated, even prior to restructuring the DJ graph.
In this chapter we will use the notation DomAffected(y) to represent the (exact)
set of DomAffected nodes when z — 'y is updated (either inserted or deleted). In
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Chapter 8 we showed, when a new edge z — y is inserted, the new immediate
dominator of all the DomAffected nodes is nca(z, y), the nearest common ancestor
of r and y on the dominator tree. For the deletion case, a single node does not
immediately dominate all the affected nodes. But we can still determine the new
immediate dominators of the affected nodes prior to restructuring the DJ graph.

Given the set DomAffected(y) and nca(z,y) we will next show how to incre-
mentally update the dominance frontier of all the “affected” nodes. A node is
PossiblyDFAffected, if its dominance frontier set possibly changes because of an
update in the flowgraph. In the next two sections we give our algorithm for up-
dating the dominance frontier relation. Asin Chapter 8, we will initially assume
that both z and y are reachable from START; and then we will handle other cases
separately.

9.2 Updating Dominance Frontiers: Insertion of an
Edge

In this section we give a simple algorithm for updating dominance frontiers of
all nodes in DFAffected|(y) when an edge z — y is inserted in the flowgraph. The
key question to ask is: at which nodes the dominance frontier may change when
z — y is inserted into the flowgraph. Recall that a node w € DomAffected(y) will
move up in the dominator tree after the Dj graph is updated. When this happens,
the dominance frontier of all the nodes that dominate node w or z, prior to the
incremental change, will possibly be affected. Now let z = nca(z,y), and let
DFAffected|(y) = {ul|z stdom u and u dominates a node w € {z} U DomAffected(y)
prior to updating the D] graph}. We will claim that if a node is not in DFAffected)(y)
then its dominance frontier will not change. But if a node is in DFAffected;(y) we
cannot say for sure whether its dominance frontier will change or not. We will
formally prove our claim later in Section 9.4. Notice that we can easily compute
the set DFAffected|(y) by a simple bottom-up traversal of the (0ld) dominator tree
starting from nodes in w € {z} U DomAffected(y).

Once we determine the set of possibly affected nodes, next we recompute
the dominance frontier of these affected nodes. For this we will first update
the DJ graph using the algorithm given in Chapter 8. Next, for each node w €
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DFAffected(y), we will recompute D F () in a bottom-up fashion on the new D]
graphas follows: Let w beanodein DFAffected)(y) and assume that the dominance
frontiers of all the children nodes on w are correct. Let p € Children(w), then the
new D F{w) is given by the following formula (see Chapter 4).

DFeat(w) = {rlw—risa]edge}
DF,(p) = {qgl¢ € DF(p) and q.level £ idom(p).level}
DF(w) = DFea(w)U U  DF,( (9.1

pEChildren(w)

Notice that the above formula is exactly the same as given in Chapter 4 for
(exhaustively) computing the dominance frontier of all nodes. But, unlike in the
exhaustive case, we apply the formula only for the nodes in DFAffected(y), the set
of affected nodes. The complete algorithm is given below.

UpdateDFIns(z, y)

{

190: Insertz — y in the flowgraph

191:  z = nca(z,y)

192: Compute DomAffected(y) ;

193: Compute DFAffected)(y);

194: Update the DJ graph;

195: For each node w € DFAffected|(y) in a bottom-up fashion
(ordered by their levels) do

196: Compute DF(w) using the formula given in the main text.

197: endfor

}

Example 9.1

Consider the flowgraph and its DJ graph shown in Figure 9.1. Let us
insert an edge from node 2 to node 5. The resulting flowgraph and
the updated DJ graph is shown in Figure 92. Using the algorithm
given in Chapter 8 the set DomAffected(5) is {5,7}, and nca(2,5) =
1. Next we compute the DFAffected|(5). This set consists of all the
nodes that dominate the set of nodes in DomAffected(5) (Le., 5 and
7), and are strictly dominated by rca(2,5) (ie., 1). We compute the



CHAPTERS. INCREMENTAL COMPUTATION OF DOMINANCE FRONTIERS140

set DFAffected|(5) before updating the dominator tree. To compute
the set DFAffected)(5) we simply perform a bottom-up traversal of
the dominator starting from nodes in DomAffected(5) until we reach
nca(2,5). We include all the nodes, except nca(2,5), that are visited
during this bottom-up traversal into the set DFAffected;(5). By doing
this we get DFAffected,(5) = {2,4,5,7}.

The dominance frontiers of the nodes in DFAffected;(5), prior to 2dge
insertion are: DF(2) = {4,END}, DF(4) = {3,END}, DF(5) = {7},
and DF(7) = {3,4,END}. After inserting the edge the new dominance
frontiers for these nodes are: DF(2) = {4,5,END}, DF(4) = {5,7},
DF(5) = {7}, and DF(7) = {3,4,END} . Notice that the dominance
frontiers for nodes 5 and 7 did not change because of the update, but we
still have to recompute its dominance frontiers. In general, it is much
more difficult to determine the exact set of nodes whose dominance
frontiers will definitely change. Also, since computing the dominance
frontier relation using above formula is linear practice it may not be
worth the effort to determine the exact set of affected nodes.

Other Cases

Next we will extend the insertion algorithm for cases where both = and y are not
reachable. The first case is where z is not reachable, for which we do nothing
because we maintzain the DJ graph and dominance frontiers only for the reachable
sub-graph of the flowgraph. In the second case, y becomes reachable only after
the edge insertion. For this we first build, using the exhaustive algorithm, the DJ
sub-graph and the corresponding dominance frontier set for the sub-flowgraph
induced by nodes reachable from y but not reachable from START. In constructing
this DJ sub-graph and dominance frontiers, we treat y as its root. Since z must
dominate y, we then insert 2 D edge from z to y (to connect the newly built DJ
sub-graph with the existing DJ graph). Finally, from the viewpoint of updating
DJ graph and dominance frontiers, we pretend each edge u — v to be a newly
inserted flowgraph edge, where u becomes reachable only after z — y is inserted,
and v is reachable even before the edge insertion. This surprisingly corresponds
to the case that we discussed earlier.
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(@ (®)

Figure 9.1: An example flowgraph and its DJ graph

(a) Sowgraph (b) Dj graph

Figure 9.2: The flowgraph and its D] graph after inserting2 — 5
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9.3 Updating Dominance Frontiers: Deletion of an
Edge

In this section, we show how to update dominance frontiers when a flowgraph
edge ¢ — y is deleted. The effect of deleting an edge is opposite and comple-
mentary to that of inserting the same edge. Recall that when inserting an edge
z — y, we pull up every node whose immediate dominator node changes. By
contrast, when deleting the edge + — y, we pull down these affected nodes. So
we have recompute the dominance frontiers of all possibly affected nodes. Again
let = = nca(z,y), and let DFAffectedp(y) = {u|z stdom u and u dominates a node
w € {r} U DomAffected(y) after updating the DJ graph}. Now we claim that if a
node is not in DFAffectedp(y) then its dominance frow:tiers does not change.

In the deletion case we compute the set DFAffectedp(y) after updating the DJ
graph. Once the DFAffectedp(y) set is determined then we update the dominance
frontiers of the nodes in DFAffectedp(y) as in the insertion case. The complete
algorithm is given below.

UpdateDFDel(z, y)

{

198: Delete z — y in the flowgraph

199: z = nca(z,y)

200: Compute DomAffected(y) ;

201: Update the DJ graph;

2022 Compute DFAffectedp(y);

203: For each node s € DFAffectedp(y) in a bottom-up fashion
(ordered by their levels) do

204: Compute DF(s) using the formula given in the main text.

.205: endfor

Other Cases

Here we extend the deletion algorithin for cases where both z and y are not
reachable. Let z — y be the deleted edge in the flowgraph. If z is not reachable,
then we do nothing because we only maintain the Df graph'and the dominance
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frontier relation for the reachable subgraph. Now assume that z is reachable and
y becomes unreachable after deletion. In this case, we remove from the DJ graph
all the nodes in SubTree(y) and their incident edges. This is because if removing
z — y makes y become unreachable, then all the nodes strictly dominated by y
will not be reachable either. Next, we remove the D edge z — y. We update
the reachability status for all the nodes that become unreachable due to the edge
deletion. Finally, notice that we never need to update the dominance frontiers of
nodes that are reachable from the START node. This is because none of the nodes

in SubTree(y) will be in the dominance frontiers of any node that is reachable
from the START node.

9.4 Correctness and Complexity

In this section we prove the correctness (Theorem 9.1) and analyze the complexity
(Theorem 9.2) of both the insertion and the deletion algorithm. In the last two
sections we claimed that if a node is not in DFAffected;(y) (DFAffectedp(y)) then it
is not PosstblyDF A f fected. By possibly affected we mean its dominance frontier
may or may not change due to the insertion (deletion) of an edge z — y. In the
following lemma we will show the result for the insertion case, and in Lemma 9.2
we will show the result for the deletion case.
We will first formally define the concept of PossiblyDF A f fected.

Definition 9.1 A node is PossiblyDF Af fected if its dominance frontier relation pos-
sibly changes because of an update in the corresponding flowgraph.

Given the above definition, the next lemma shows that if a node w is not in
DFAffected)(y) then it is not PossiblyDF Af fected. We will prove the lemma by
case analysis.

Lemma 9.1 If a node w is not in Di"Affected|(y) then its dominance frontier does not
change due to the insertion of an edge z — y.

Proof:
Let z = nca(z,y). Itis obvious to see that if w is not in SubTree(z)
then none of the nodes in SubTree(z) — {2} will be in DF(w), and so
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. its dominance frontier will not be affected. So we will consider only
nodes within SubTree(z).

We can partition the set of nodes in SubTree(z) into three mutually
exclusive regions and totally exhaustive regions. The three regions are
as follows:

(1) Regionl consisting of the only node =.

(2) Region2 consisting of all nodes that dominate some node in {z} U
DomAffected(y), but is strictly dominated by =.

(3) Region3 consisting of the remaining nodes in the set SubTree(z).

Note that Region2 is same as the set DFAffected)(y). In the rest of
the lemma we will show that if 2 node is not either in Regionl or in
Region3, then it is not affected.

Case 1: w € Regionl. In this case again w will not be affected. This is

because w will strictly dominate all the nodes whose immediate
. dominator change.

Case 2: w € Region3 Let s € DF(w). So there must be a ] edge
t — s such that w dom t. Now if s ¢ DomAffected(y) then s will
not be DomAf fected and so s will still be in DF(w). Now if
s € DomAffected(y), then it will move up, and so its level number
never increases (follows from Lemma 8.1). Therefore s will still
be in DF(w) and so dominance frontier of w is not affected due to
s's movement. Therefore w is not in DFAffected(y) (follows from
Lemma 4.1).

Now consider the deletion case. In the next lemma we show that if a node is
affected then it is in DFAffectedp(y).

Lemma 9.2 Ifa node w is not in DFAffectedp(y) then its dominance frontiers does not
change due to the deletion of an edge = — y.
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. Proof:

We can use a similar argument as in Lemma 9.1 to prove this lemma.
|

Now we are ready to prove the main theorem.

Theorem 9.1 The procedures UpdateDFIns(x,y) (UpdateDFDel(x, y)) correctly up-
dates the dominance frontier relation when an edge = — y is inserted (deleted).

Proof:
Cytron et al. have shown that the Equation (9.1) correctly computes
the dominance frontiers for all nodes when the nodes are processed in
a bottom-up fashion. Using this result in conjunction with Lemma 9.1
(Lemma 9.2) we can easily see the procedures correctly update the
dominance frontiers of all the affected nodes when performed in a

bottom-up fashion. |
Theorem 9.2 The worst case time complexity of both the insertion algorithm and the
. deletion algorithm is O(|N|?).
Proof:

We can easily see that the time complexity of computing the sets
DFAffected|(y) and DFAffectedp(y) is linear. The time complexity in
both algorithms is dominated by the computation of the dominance
frontier relation using Equation (9.1), which in the worst case could
be quadratic. 1

9.5 Improving the Efficiency of the Dominator Update
Algorithm

In this section we will show how to potentially speed-up the incremental domi-
nator algorithm using the results of this chapter. Recall that one of the key step
in updating the DJ graphs is computing the set DomAffected(y) (assuming that
an edge z — y is updated). But DomAffected(y) is a subset of {y} U IDF(y).
. Therefore computing I DF(y) is a dominating step in the incremental dominator
tree algorithm. If we use the algorithm given in Chapter 7 to compute IDF(y)
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then we may potentially visit all nodes dominated by the set IDF(y). The time
complexity of this method, although linear in terms of the size of DJ graph, may
visit more nodes than is needed. In this section we will show how to potentially
improve the efficiency of computing / DF(y).

The key idea is to construct a graph called the DF graph. A DF graph is
nothing but the dominator tree of a flowgraph augmented with edges v — v,
called the DF edges, such that v € DF(u). Notice the relation between DJ graphs
and DF graphs. In DF graphs we capture the full dominance frontier relation via
DF edges. Figure 9.3 shows the DF graph for Figure 9.1. Now the problem of
incrementally updating DF graphs is isomorphic to incrementally updating the
dominance frontier relation, so we can use the results of this chapter to update
DF graphs.

o

Figure 9.3: The DF graph of the flowgraph shown in Figure 9.2.

Next we will show how to compute IDF(y) very fast. We can compute the
-set IDF(y) by visiting all the nodes that are reachable from y without visiting
any D edges. All such nodes will be in IDF(y). We can use a simple depth first
search on DF graph to compute I.D F(y), by restricting the search to only DF edges
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reachable from y.

Now let us analyze the time complexity of performing both the dominator
tree updates and the dominance frontier updates using the above method. The
dominating step, for the insertion case, is updating the dominance frontier rela-
tion. Since the size of the dominance frontier relation is linear for all practical

programs [CFR*91], we expect that updating both the dominance frontier and
the domination relation to be faster in practice.

9.6 Discussion

We are not aware of any previous work that gives an incremental dominance
frontier algorithm. We expect the result to be useful for work that depends on the
dominance frontier relation, like the SSA form and Program Dependence Graphs
(PDGs). Compilers that use these representation require that the dominance
frontier relation be correctly maintainied during the optimization phases. Recently
Choi et al. proposed an incrementai algorithm for updating the SSA form. Their
algorithm cannot handle arbitrary program changes. It would be interesting to
extend their algorithm for arbitrary program changes using the results of this
section. We will come back to this problem in Chapter 12. Finally, in Chapter 11,
we will show how to use the results of this chapter to incrementally update
arbitrary monotone data flow information.



Chapter 10

A New Framework for
Elimination-Based Data Flow

Analysis: Exhaustive Analysis

... when you have eliminated the impossible, that which remains, however
improbable, must be the truth.
—Sir Arthur Conan Doyle

In this and the next chapter we introduce a new framework for elimination-
based data flow analysis. In this chapter we will focus on exhaustive data flow
analysis, and in Chapter 11 we will focus on incremental data flow analysis. For
our exhaustive elimination-based data flow analysis we present two variations:
(1) eager elimination method, and (2) delayed elimination method. We begin
the chapter by introducing and motivating the problem. Then, in Section 10.2
(and Appendix A), we provide the necessary background material on data flow
analysis and also introduce some notation that will be useful for this and the
next chapter. Next, in Section 10.3, we outline the foundation of our approach.
In Section 10.4, we present our eager elimination method; and in Section 10.5,
we prove its correctness and analyze its complexity. In Section 10.6, we present
our delay elimination method; and in Section 10.7, we prove its correctness and
analyze its complexity. In Section 10.8, we will show how to handle irreducible
flowgraphs using our approach. In Section 10.9, we present our empirical results
and discuss our observation. Finally, in Section 10.10, we compare our work with
other related work, and also give our conclusion.

148
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10.1 Introduction and Motivation

Despite much ground research work that has been done in elimination meth-
ods, many researchers and practitioners prefer to use iterative methods for the
following two reasons: (1) they are simple and easy to implement, and (2) they
can handle arbitrary flowgraphs, including irreducible flowgraphs. Elimination
methods, on the other hand, are more efficient than iterative methods, but are
more complex to implement. Also, some elimination methods cannot handle
irreducible flowgraphs, and even if they do, they are not very efficient.

In this and the next chapter we propose a new framework for data flow anal-
ysis based on elimination methods. We will demonstrate that our approach is
simple, easy to implement, practically efficient, able to handle irreducible flow-
graphs, and amenable te incremental analysis. At the heart of our approach is
the DJ graph representation. Within our framework we propose two methods for
exhaustive data flow analysis, and one method for incremental data flow analysis.
In this chapter we present our approach for exhaustive data flow analysis, and in
Chapter 11 we present our approach for incremental data flow analysis.

Elimination-based data flow analysis have been studied by many au-
thors [ASU86, AC76, Ull73, Hec77, GW76, Tar81, Bur90, Ros80, Ros82, SS79].
An excellent survey can be found in [RP86]. Traditional elimination-based data
flow analysis techniques consist of three steps [RP86]: (1) reducing the flowgraph
to a single node, (2) eliminating variables in the data flow equations by substitu-
tion, and (3) once the solution to the single node is determined, propagating the
solution to other nodes to determine their respective solutions. In this chapter
we present our approach for exhaustive elimination-based date flow analysis that
uses DJ graphs as its main data structure. We propose two variations of our
approach: (1) eager elimination method, whose worst case time complexity is
O(|E| x |N|), where |N| and |E| are nodes and edges in the flowgraph, respec-
tively; and (2) delayed elimination method, whose worst case time complexity
is O{|E| x log(IN1)) |

Qur work is related to the four classical eliminadon methods (Allen-Cocke,

Here we assume fast data flow problems (see Appendix A} when discussing complexity,
although our approach is applicable to more general monotone data flow problems [Bur90, Tar81,
Ros80, Ros82).
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Hecht-Ullman, Graham-Wegiman, and Tarjan), but with a number of signifi-
cant differences. The Hecht-Ullman method uses a forest of height-balanced
2-3 tree to remember the common substitution sequences. Merging and bal-
ancing the forest of 2-3 trees complicates this method, but it can help achieve
the O(JE] x log{|N|)} time complexity. Tarjan proposes two variations of his ap-
proach: a simple O(|F| x log(|N|)) algorithm that uses path compression trees (for
remembering the common substitution sequences), anid an O(|E| x a(|E|, [N]))
algorithm that also balances the path compression tree (where «f() is the inverse
Ackermann’s function). Although his balanced path-compression tree method is
almost linear, Tarjan favors the simple O(|E| x log(]V|)) algorithm for practical
implementation [Tar81]. In the Graham-Wegman method, the common substitu-
tion sequences are remembered explicitly in the {reduced) flowgraph rather than
an auxiliary data structure. This method also uses a form of path compression,
but it is more complicated than Tarjan’s simple algorithm [GW76, Tar81]. Its time
complexity is again O(|E| x log(|N])).

In our approach we do not collapse a region into a node. Instead we maintain
the dominator tree (which may be compressed) of the flowgraph. One unique
feature of our approach is that graph reduction and variable substitution (or
elimination) are performed in a bottom-up fashion on the nod~s in the I graph.
Rather than reducing a DJ graph to a single node, we only eliminate J edges from
the DJ graph, and in the process we also perform variable substitution along D
edges when necessary, in either an eager or a delayed fashion. At the end of the
bottom-up elimination phase, all the J edges will be eliminated. Meanwhile the
equation at every node is expressed only in terms of its parent node in the (maybe
compressed) dominator tree. Once we determine the solution for the root node,
we propagate this information in a top-down fashion on the {maybe compressed)
dominator tree to compute the solution for every other node.

To achieve both efficiency and simplicity in our two methods, we exploited
several key concepts.

o We neither use any auxiliary data structure nor group nodes to form regions.
Instead, we manipulate (and delay) all the variable eliminations explicitly
on the DJ graph itself.

e In the delayed elimination method, we use a linear time pre-processing
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’ step to identify the exact level at which each delayed variable should be
eliminated. This can help avoid redundant inspection of J edges during the
reduction process to determine whether to eliminate a delayed variable or

not. In our pre-processing step we use structural properties of DJ graphs to
identify the levels.

e In the delayed elimination method, we perform simple path compressions
on the dominator tree (without balancing the tree) to evaluate and eliminate
delayed variables. Our path compression is similar to Tarjan’s simple path
compression, but performed on a static dominator tree.

o Qur approach does not require a ‘parse’ [HU72, Ull73, Tar74, Tar81] or ‘S-set
finding’ [(GW76] to determine the order in which J edges will be eliminated.
The J edges are eliminated from the DJ graph in a bottom-up manner.

¢ Another interesting feature of our approach is its relation to the concept
of dominance frontier and iterated dominance frontier. We will exploit
this relationship to establish that our elimination approach (both eager and
. delayed) should behave linearly in practice.

o Finally, another interesting feature of our approach is that it can easily iden-
tify and handle irreducibility gracefully in the bottom-up reduction process.
When irreducible loops exist, the worst case cost of our elimination methods
can be as good as (or as poor as) that of the iterative method. This happens
when the root node is the immediate dominator of all the other nodes,

~ and these nodes belong to the same irreducible region. We believe this to
be extremely unusual in practice. Qur approach to handling irreducibility
does not perform fixed-point iteration over all the nodes in an irreducible
region. Instead, we apply our elimination method to every reducible region
contained in an irreducible region, and perform iteration only over nodes

within the irreducible region that are at the same level (of the dominator
tree).

To study the effectiveness of our approach, we have implemented both the

eager and the delayed method for intraprocedural reaching definitions. Our im-

. plementation was built upon the Parafrase compiler [PGH*91]. To compare the
results, we also implemented the iterative method for reaching definitions that
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uses reverse postorder of nodes for iteration [HU77). Both the eager and the
delayed method perform better than the iteration method (on average we get a
speedup of 1.3 compared to the iteration method). Although, theoretically, our
delayed elimination method is superior to the eager elimination method, we ob-
served that for many procedures the eager method ran faster than the delayed
method did. As we will demonstrate in this chapter, the time complexity of our
eager elimination method is directly related to the size of the dominance frontiers,
suggesting that the time complexity of the eager method should be linear in prac-
tice (since the size of the dominance frontiers is linear in practice [CFR*91]). For
those cases where the eager method performed better than the delayed method,
we suspect that the overhead of path compressions may actually overshadow the
benefit of delaying variable eliminations. This can happen if there are not many
“overlapping paths” to take advantage of delayed variable eliminations. As we
will also demonstrate in this chapter, the number of overlapping paths is again
related to the size of dominance frontiers; the flowgraphs of real programs do not
contain many overlapping paths. Based on our observations, we recommend the
eager elimination method for practical implementation. Also, our eager method is
amenable to incremental data flow analysis, which we will discuss in Chapter 11.

10.2 Background and Notation on Data Flow Analysis

In this section we will introduce background material and notation for data fiow
analysis that are useful for this and the next chapter.

Data flow analysis is a process of estimating facts about a program statically.
These facts, or data flow iitformation, can be modeled by elements of a lattice L.
Associated with each node z is a flow function f: that maps input information to
output information [Kil73, Marg9].2

Let I. € £ be the information at the entry of a node z, and let O; € £ be
the information at the exit of the node. Then the input-output relation can be
expressed as

O:= f T (I:)

2For some problems, it is more convenient to associate flow functions with flowgraph edges
instead of nodes.
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We can rewrite this equation as follows:

O:=f(I:)=0L0P. UG, (10.1)

where P.,G. € £3 We can interpret the above equation as follows: The OQutput
flow information at a node’s exit is either (1) what is Generated within the nede or
(2) what arrives at its Input and is Preserved through the node. For convenience,
we will use the following notation instead of the notation in Equation (10.1).

Or = fx(I::) = P::I:.' <+ G:: (10-2)

where + is the union operation and juxtaposition is the intersection operation.

We need another set of equations to relate the output information at a node y
to the input information at z when an edge y — = exists. The input information
I is the merge of all the output information O, of nodes y in Pred;(z); ie.,

L= A 0O (10.3)
yEPred;(x)
A is usually a union or intersection operation, depending upon the data flow
problem being solved. Combining Equations (10.2) and (10.3), we obtain the
following equation, denoted H.., for each z € N.

H:: O: = f::( /\ Oy) (10.4)
yEPred!(:)

H.:0, = Pz( /\ Oy) + G: (10-5)
yEPred;(2)

Since there is one equation for each node, we have a total of | V| equations. Notice
that the above equation has two variations. The first variation (Equation (10.4))is
more general than the second (Equation (10.5)), since for some data flow problems
the information generated within a node z is not independent of I. [Mar89]. We
use the term output variable to name the variable O, that appears on the left-hand
side (LHS) of equation H:. Any variable appearing on the right-hand side (RHS)
of the equation is called an input variable. Furthermore, P; and G: are called the
parameters of the equation.

3In general G, may not be a constant [Mar89]. It can also depend on I,. That is, what
information is generated at a node depends on (1) the local data low information at the node and
(2) the input data flow information to the node.
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Given any two equations /I, and H,, we say that H, depends on H, if the
output variable of {, appears on the RHS of H... Thatis, we will need the solution
of O, in order to compute the solution of 0. Also, if A depends on H, then there
is an edge from y to z in the corresponding flowgraph.

Now we will discuss the concept of variable eliminaticn, which is fundamental
to all elimination methods. For example, consider the following two equations:

Hy:0, = B( N\ 0:)+Gy

:ePred! (y)

H_-::O: = P_-;Oy-i-Gx

In this example, equation H. depends only on H,. This also means that node =
has only one incoming edge y — z, in the corresponding flowgraph. To eliminate
the variable O, from the RHS of H., we can replace it with the RHS of H,. The
resulting H. equation thus becomes:
H:: : O: = :(Py( /\ O:) + Gy) + G:r:
2€Preds(y)

Here we have eliminated the dependence of H. on H, but introduced de-
pendences from H; to H; for each predecessor of y. In the corresponding flow-
graph we also eliminate the edge y — z and introduce an edge 2 — z for each
z € Pred;(y).

For the more general variation in Equation (10.4), variable elimination corre-
sponds to function composition. To illustrate this, let us consider the following
equations:

H:0, = it A O:)_

2€Preds(y)

H::0: = f:(O,)

After eliminating O, in H. we get
H.:0, = f:(fy( A O:))

2€Pred,(y)

Finally, we will define closure operation for recursive equations. If at any node
y, the data flow equation is of the form

H,:0, = mO,+k=f(0,), (10.6)
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where m and k are terms that do not contain O,, then the closure operation of this
equation is

Hy:0, = ["(0y) (107)
where f° is a closure operator of the recursive equation. Such a closure exists if
the flow function associated with each node is monotone, and the lattice does not
contain infinite descending chains [Mar89, KU76, Kil73].

For many of the classical problems, such as Reaching Definitions and Available
Expreséions, f* can be computed very fast, essentially in constant time [Mar89].
Ryder and Paull call such closure operations the loop-breaking rules [RP86].
They show how to compute f* very fast for the classical bit-vector union and
intersection problems. Marlowe gives an in-depth treatment on the computational
complexity for various classes of functions and domains that can occur in data
flow analysis [Mar89]. Throughout our discussion we will assume a monotone
data flow framework in which all flow functions are monotone; i.e., for any flow
information @ and 8, a < f = f(a) < f(B) for any flow function f [Mar89, KU76,
Kil73]. Appendix A gives a brief introduction to the data flow analysis framework.

Example 10.1

Consider the flowgraph shown in Figure 10.1(a) (the corresponding
dominator tree and DJ graph is given in Figure 10.1(b) and Fig-
ure 10.1(c), respectively. The data flow equation for each node is

summarized below.

I z|fe l O: | I: = Ayeprea (:)O f:(Iz) O: =PI+ G:
ol fo 0, | RO +Go
11 A 01 Op AOg Pl(Oo A 03) + &G
21| 0: O1AOs P(O1 AOg)+ G2
31/3]0s 02 P0: + Gs
4] fai 04 O; P05 + G4
5|f)0s 2 P503 +Gs
6| fo | Os Oa A Os Fe(O4 A Os) + Gs
7| 1107 Os P06 + G7
8|fs|0s 0. P02+ Gs
9| f5|0s| (OsAO7AQs) | Po(O4AO7AOs)+ G
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10.3 Owur Approach

In the next several sections we present our approach for elimination-based data
flow analysis. In this section we highlight several features of our approach. First,
we use the DJ graph of a flowgraph rather than the flowgraph itself for performing
data flow analysis. Furthermore, we reduce a DJ graph to its dominator tree
instead of a single node.

We propose two methods for reducing a D] graph and solving the correspond-
ing system of data flow equations. Both methods perform the following actions:

1. Reduce the DJ graph in a bottom-up fashion by eliminating J edges.

2. Use &-rules with eager variable elimination, or use D-rules with delayed
variable elimination for reducing the system of data flow equations.

3. Propagate the final data flow solutions in a top-down manner on the domi-
nator tree (that may be compressed).

Thebottom-up graph reduction is important because it enables us to visit nodes in
such a way that when a node y is being processed, all J edges originating at a level
greater than y.level have been eliminated. Therefore we can systematically reduce
a DJ graph to its dominator tree by applying the reduction rules in a bottom-up
fashion. Furthermore, the bottom-up reduction simplifies the implementation of
our algorithm.

Our eager elimination method uses £-rules and eagerly eliminates variables
by substitution. An important aspect of this method is that after we reduce a DJ
graph to its dominator tree, the data flow equation at every node (except for the
root node) depends only on the output variabie of its immediate dominator. Con-
sequently, once we obtain the data flow solution at the root node, we can compute
the solution for any other node in a top-down manner. As we demonstrate in this
chaper, eager elimination method is very simple and easy to implement.

The main drawback with eager elimination is that theoretically it exhibits a
worst-case quadratic time complexity. To improve this we modify &-rules and
propose D-rules. Using D-rules with delayed variable elimination, called the
delayed elimination method, we can achieve O(|E| x log(|N])} time complex-
ity. Recall that all three other previous elimination methods improve over the
quadratic Allen-Cocke method by delaying substitution of variables [RP86). They
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Level 0

Level 1

Level 2

Level 3

Level 0

{a) Flowgraph

(¢) DJ Graph

Figure 10.1: Another example of a flowgraph, its dominator, and its DJ graph.
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perform this either explicitly as in the Graham-Wegman method, or implicitly
by using auxiliary data structures to keep track of the delayed variables (height-
balanced 2-3 trees in the Hecht-Ullman method [Ul173] or the balanced, binary
path compressed tree in Tarjan’s method [Tar81]). The time complexity of all
three methods is O(|E| x log(|/V|)), but Tarjan also gave a more complex and
almost linear method (of the complexity O(|E] x of|N|,|E]}) that uses balanced
compression trees [Tar81}.

Our delayed elimination method also delays variable substitution. It performs
variable substitutions along a path on the (maybe compressed) dominator tree
during the bottom-up graph reduction in order to eliminate “delayed variables”.
The path is compressed when delayed variable substitutions take place.

An important feature of our approach (including both eager and delayed
elimination) is that during the bottom-up reduction we can easily detect and
handle irreducibility in an efficient manner. There is irreducibility whenever we
cannot eliminate J edges at some level using our reduction rules. In this situation
we apply Tarjan’s Strongly Connected Components algorithm only over nodes
at that level. Every nontrivial strong component (with more than one node)
represents an irreducible region. Strong componernts are visited in topological
order. When an irreducible region is processed, fixed-point iteration is performed
over its nodes in order to eliminate interdependencies among the solutions at
these nodes. Consequently, we are able to represent the solution at each node
only in terms of the solution at its parent.

104 Eager Elimination Method

Our eager elimination method consists of three parts: (1) bottom-up reduction of
the DJ graph, (2) variable elimination, and (3) top-down propagation. The first
two are performed together in the elimination phase. In the propagation phase,
data flow information is propagated in a top-down manner on the dominator tree
after the solution of the root node is determined.

In this section we propose two rules, E1 and E2 rules (together called the £-
rules), for reducing a DJ graph in a bottom-up fashion. The £-rules are always
applied toa] edge y — z such thaty is a non-join node, and there isnoJ edge with
its source node at a level greater than y.level. Technically, 2 node in flowgraph



CHAPTER 10. EXHAUSTIVE DATA FLOW ANALYSIS 159

is a non-join node if it has only one predecessor (which strictly dominates it). In
this chapter we will adopt the following relaxed definition:

Definition 10.1 (non-join node) A node y is @ non-join node iff Pred;(y) contains
no other nodes than y and idom(y).

That is, a-self-loop y — y will not prevent y from being a non-join node.

In the next subsection we formally define the two E-rules. Each application of
E-rules transforms some reduced DJ graph G* to G*+! until the resulting DJ graph
“degenerates” into its dominator tree. We first focus only on the graph reduction,
and we will discuss variable elimination in Section 10.4.3.

10.4.1 The E-rules

The first of our two £-rules is the E1 rule, which eliminates a self-loop.

Definition 10.2 (E1 rule) Let G' = (N, E) be the ith reduced DJ graph. Let y be a

non-join node. If y contains a self-loop, i.e., if there is a | edge y — y, then we apply the
EI rule

El(< G\ N,E;ySy>) =<GHINE-{yDy}>.

An E2 rule is applied to a J edge y — z, if y is a non-join node and it does not
contain a self-loop. We distinguish between two types of E2 rules depending on
the levels of y and z. If y.level = z.level, then we apply an E2a rule; otherwise we
apply an E2b rule.

Definition 10.3 (E2 rules) Let G' = (N, E) be an ith reduced DJ graph. Let y bea
non-join node, let y — z be a ] edge, and let x = idom(y). There are two cases:

(E2arule) Ify.level = z.level then
E2a(< G N,E;y52>) =<G* N E—{y 2 z}>.
(E2b rule) Ify.level # z.level then

E2< G\ N,EyHz5) =<G* N (E—{y 2 :)U{z Dz} > 4
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y->2

' Figure 10.2: A graphical illustration of £-rules.
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Figure 10.2 graphically illustrates the two E-rules (where the dotted line from
w to z represents the dominator tree path from w to z). An important point to
note here is that when an E2 rule is applied to an edge y — =, we should ensure
that the self-loop at node y, if any, is eliminated first by applying the E1 rule. The
distinction between the two E2 rules is minor. An E2a rule is applied to an edge
y — z only if y.level = :.level; otherwise we apply an E2b rule. This distinction is
useful when we discuss delayed elimination method and in handling irreducible
flowgraphs.

10.4.2 Algorithm Description

The complete algorithm for DJ graph reduction is given below. To simplify its
presentation we use the following notation and data structures:

e NumlULevel is the total number of levels in the D] graph.
¢ Eachedgex — y € Ehasan attribute that specifies its type: { Dedge, Jedge}.

¢ Each node = € N has the following attributes:

struct NodeStructure {
int indegree ; /* indegree of the node. */
int level; /* level number of the node */

}

At each node we also maintain a linked list of outgoing edges such that the
self-loop edge at this node, if any, will be the first edge in the list.

o OrderedBuckets is an array of doubly linked list of nodes. First we will
define the linked list structure.

struct ListStructure{
struct NodeStructure "'node ; /* pointer to node structure */
struct ListStructure *next; /* next node in the list */
struct ListStructure *prev ; /* prev node in the list */

}

4We do not insert = — = in G**+1 if it is already present in G*.
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The structure of the Ordered Buckets is defined as follows:

struct OrderedBucketStructure {
struct ListStructure *head ; /* nodes at the same level */
} OrderedBucket[NumLevel] ; /* array of list of nodes */

We restrict the way in which nodes can appear in the Ordercd Buckets(i], at
each index i. At all times we ensure that non-join nodes, if any, appear at
the head end of the list.

Algorithm 10.1 (Eager Elimination Method) The algorithm MainElim() with £-
rules and eager elimination can be used for solving a system of data flow equations.

The first step in the algorithm is to insert all the nodes into the Ordered Buckets
at their respective levels. Then we call ReduceLevel() in a bottom-up fash-
ion. For reducible flowgraphs, the condition at step will fail. In other
words, after the call to ReduceLevel() terminates, for reducible flowgraphs, the
list OrderedBuckeisli], for the current level i, will be empty (step [208)); other-
wise, the flowgraph is irreducible. For an irreducible flowgraph we call Col-
lapselrreducible() to handle the irreducible portion. A complete description of
how to handle the irreducible portion is given in Section 10.8. The procedure
DomTDPropagate() is for propagating solutions down the dominator tree, and
is explained in Section 10.4.5.

& Input: A DJ graph G° and the corresponding system of initial flow equations.
& Output: Solution to a system of data flow equations.
& Initialization:

¢ Determine the level number of each node z, and stores its level
information in z.level.

e For all nodes z € G°, z.indegree is initialized to the number
of predecessor nodes of z (in the DJ graph). If (z.indegree =
1) or ((z.indegree = 2) and (z — z)) then z is a non-join node.

o Initially deposit all nodes in the OrderedBuckets, such that at each

index non-join nodes appear at the head of the list (i.e., before join
nodes).
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MainElim()
{

206: fori= NumlLcvel—1downtoldo /* bottom-up reduction */
207: Reducelevel(z) ;
208: if(Ordered Buckets[i].head # NULL) then

209: Collapselreducible(z) ;
210: endif

211: endfor

212: DomTDPropagate() ;

}

The procedure ReduceLevel(i) eliminates J edges whose source nodes are at
level i by applying the £-rules. We apply either E1 or E2 for each outgoing ] edge.
Notice that we do not process outgoing D edges (step . At step we
check if the non-join node y has a self-loop. If so we apply the E1 rule; otherwise
we apply an E2 rule. At step [220| we apply the E2a rule if idom(y) = idosiu(z);
otherwise we apply the E2b rule (step [222]). The order in which we apply the
rules ensures that there is no self-loop at node y when E2 rules are applied to
outgoing edges from y.

Procedure ReduceLevel(z)

{

213: while((y = GetNJINode(:)) # NULL) do

214: foreach z € Succ(y) do
/* if y—z is a self-loop edge then it is first */
/* in the list of edges at node y */

215; if(y — z == Jedge) then

216: if(z ==y) then /* self-loop */

217: Eagerl(y — y); /* apply El rule */
218: else

219: if(idom(y) == idom(z)) then

220: Bager2a(y — z);

221: else

222: Eager2b(y — 2);

223: endif

224 endif
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225: end:f
226: endfor
227: endwhile

}

The function GetNJNode(:) returns either a non-join node (if one exists at the
currentlevelz) (step or NULL (stepor step . When GetNJNode(i)
returns NULL from step we encounter irreducibility. This is because there
are still nodes in OrderedBuckets(i] at level i, but none of them are non-join
nodes. In Section 10.5 we will prove why this condition is sufficient to detect
irreducibility.

Function' GetNJNode(z)

{

228:  if(OrderedBuckets(i].head == NULL) then

229: return NULZL ;

230: endif

231:  if the firstnode at Ordered Buckets[i].head is non-join node then
232: Remove that node from the list and return it.

233:; endif

234: return NULL ;
235: endif

}

The procedures for the twd E-rules are given below. Each call to the procedure
Eagerl(y — y), deletes the self-loop y — y (back) edge. The operation within
g-- .3 is for variable elimination and will be explained in the next section.
Procedure Eagerl(y — y)

{

236: [ Compute the closure H, : 0, = f~(0;) ]
237:  z.andegree = z.indegree—1;

238: Delete the edge y Ly;

}

The procedures Eager2a(y — z)and Eager2b(y — z) implementE2a and E2b
rules, respectively. Again, the operation within g.. .5 is for variable elimination
and will be explained in the next section. The deletion of y — z can make z
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become 2 non-join node; if so we put = at the head of the Ordered Buckets{z.level

list (step [243). We do this to ensure constant time operation for the procedure
GetNJINode().

Prccedure Eager2a(y — =)

{

239:  [Eliminate O, in H. by replacing it with the RHS of H,.]

240: Delete theedgey 5 = ;

241: :z.ndegree = s.indegree —1;

242: if(z is anon-joinnode) then /* : becomes a non-join node */
243: Put = at the head of Ordered Buckets|z.level] list ;

244: endif

Unlike the procedure Eager2a(), the procedure Eager2b() decreases
z.indegree by one only if the edge z — = already exists. Notice the difference
between E2a and E2b rule. In E2a rule we never introduce a new edge from
z — z, since a D edge already exists from z to =.

Procedure Eager2b(y — z)

i

245:  [Eliminate O, in H. by replacing it with the RHS of H,.|

246: z =idom(y);

247: Delete theedgey > z;

248: if(z — z exists) then

249: zandegree = z.indegree — 1;

250: else

251: InsertanewJedgez 5 z;
/* If z—=z is a self-loop edge we ensure that this */
/* is the first edge in the list of edges at node z. */

252: endif

Next we will intuitively describe why the above algorithm always reduces a DJ
graph to its dominator tree (remember that we areassuming reducibie flowgraphs
for the moment). Later, in Section 10.5, we will give a formal proof for this. The
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reason is based on the following key property. Let G be a D] graph and let k be a
level in the dominator tree such that there are no J edges in G whose source nodes
are at levels greater than k. If G is reducible then there exists at least one non-join
node at level k. Therefore if we eliminate ] edges in a bottom-up fashion then
we can always find at least one candidate non-join node for applying the £-rules
rules.

In addition, we will intuitively argue the time complexity of the reduction
process. Notice that each application of E1 and E2a rules eliminates one edge.
Since there are at most | E| edges in the D] graph. We will apply El and E2a rules
at most || times. But how many times the E2b rule can be applied? A naive
argument shows that we may be applying this rule for O(|E| x |N|) times. We
will give a formal proof in Section 10.5

To illustrate our reduction method, consider the example flowgraph in Fig-
ure 10.1. Figure 10.3 gives a trace of the reduction process. In Section 10.4.4 we
will give a detailed explanation of the trace, after we discuss variable elimination.

10.4.3 Bottom-Up Variable Elimination

In this section we will show how to eagerly eliminate variables from data flow
equations for each application o: the E-rules. Prior to applying the El rule to a
node y, the flow equation at y will resemble

H,:0, = kO, +m, (10.8)

where k and m are terms or constants that do not contain the variable O,. Recall
that this recursive equation can be solved with fixed-point iteration, giving rise
to a closure operation. After El rule is applied, the equation for node y would
become:

H,:0, = f(0,). (10.9)

In the above closure operation, f*() does not contain the variable O,. Ryder and
Paull call this operation as the loop-breaking rule. In the procedure Eagerl(y —
y), the variable elimination is done at step | 236 -
Let z = idom(y). Prior to applying an E2 ruletoaJ edge y — =, the data flow
equation at = will resemble:

H.:0, = kOy+m,
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where the terms & and m do not contain the variable O,. Supposing the flow
equation at y is

Hy:0, = a0 +b

where a and b are terms that do not contain any O (or any other variable). After
applying E2 rule to y — z we eliminate O, on the RHS of H. by replacing it with
the RHS of H,. The resulting equation of H. is

H.:0.=k(aO;+ b +m.

In the procedure Eager2a(y — z) (Eager2b(y — z)), the variable elimination
is done at step (step . Notice that whenever we eliminate a variable O,
in H:, we also delete the ] edge y — = in the corresponding DJ graph reduction,
and vice-versa. In the E2a or the E2b rule, to eliminate O, in H. we substitute
the RHS of H,, in H, this introduces a new variable dependence of C. on O.. We
also ensure that an edge exists from node z to node z. In E1 rule, eliminating O,
in H, is done by fixed-point computation, and we correspondingly remove the
self-loop edge y — y.

In the eager elimination method, we eagerly replace every occurrence of vari-
able O, ir node :'s flow equation during £-rules. This could lead to poor per-
formance for deeply nested loops [RP86]. In Section 10.6 we will show how to
delay certain variable elimination so that we can speed up the overall algorithm.

1044 An Example

Let us assume a forward data flow problem, with union as the meet operation.
For such problems, the table below gives a partial trace of the variable elimination
corresponding to the trace of DJ graph reduction shown in Figure 10.3.

| IRulelyﬁzlgiTlG’f*‘T ot
[E2b [7-9]@ [ [ PsOs+ PsOs + PoPrOs+ FoGr +Go

Eb {4-9|®) | (@ || PPiOs+PsGs+PsOs+PaPrOs+ PoGr+Gy.
E2a [4—=6|(0) | (d) P PyO3 + PG + PsOs + Gg

E2a |5—6](d) | () (PsPs + PsP5)03 + PsGs + PsGs + G

E2b |69 |() | (® (PoPy + PyPrPyPy + PyPrPsPs)0s + Ps0g +
PGy + PyPr PGy + PoFrPsGs + PoPrGs +

RGr+Gy
-t Corresponding DJ graphs in Figure 10.3

(.ﬂ;waHl
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1. Recall that the DJ graph reduction and variable elimination are performed
in a bottom-up manner (the for loop at step .

2. Atstep GetNJNode(5) would return node 7, and we apply E2b rule
to the outgoing ] edge 7 — 9 by invoking Eager2b(7 — 9) (step[222]). This
transforms the DJ graph shown in Figure 10.3(a) to the DJ graph shown in
Figure 10.3(b}). This transformation also eliminates O7 in Hy, and the riew
equation at node 9 is

Hy: 0¢ = PsOy + PsOs + PoPr0¢ + PoG7 + Gy

3. When GetNJNode(4) is invoked at step there are two non-join nodes,
node 4 and node 5, at level 4. Assume that GetNJNode(4) returns node
4, and we apply E2b rule to the outgoing J edge 4 — 9 by invoking
Eager2b(7 — 9) (step [222)). This transforms the DJ graph shown in Fig-
ure 10.3(b) to the DJ graph shown in Figure 10.3(¢c). The corresponding
equation at node 9 is transformed to

Hg: Qg = PoPyO3 + PoGy + PyOs + PoPrO¢ + PsGr + Gy

4. Next GetNJNode(4) would return node 5, and we invoke rulead — 6.
This transforms the DJ graph shown in Figure 10.3(c) to Figure 10.3(d).
The corresponding equation of node 6 would be transformed to

He : Og = Py P03 4 PGy + PeOs + Gg

5. We can continue to eliminate variables as described above at other nodes.

10.4.5 Top-Down Propagation

When the for loop in the MainElim() procedure terminates, the original DJ graph
would be transformed to its dominator tree. At this point the data flow solution
at each node depends only on the solution of its immediate dominator, that is, the
only variable that can appear on the RHS of equation H;, is Oizomy). Consequently,
the call to DomTDPropagate() at step @ will complete the data flow solution
process. In the procedure DomTDPropagate(), we first solve the equation at the
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root node of the dorninator tree; we then propagate the solution to all other nodes
in a top-down fashion as given below.
DomTDPropagate()

{
253:  Solve the data flow equation of the START node.

254: Propagate the solution on the dominator tree in a top-down fashion,
using the solution at node = = idom(y) to substitute variable O,
on the RHS of equation O, = f(0:), to compute the solution at y.

10.5 Correctness and Complexity of Eager Elimination
Method |

In this section we prove the correctness of Algorithm 10.1 and analyze it time
complexity.

10.5.1 Correctness

The main theorem which establishes the correciness of Algorithm 10.1 is Theo-
rem 10.1. To prove the main theorem:

¢ we have to show that the £-rules when applied in a bottom-up fashion
reduce 2 reducible DJ graph to its dominator tree (Lemuma 10.4); and

¢ we have to show that variable elimination and top-down propagation are
correct (Lemma 10.5). '

We first define the reducibility of DJ graphs as well as flowgraphs [HU74].
Recall that we introduced the notion reducibility in Chapter 6 (Definition 6.1).
We have reproduced the definition below for convenience.

Definition 10.4 A DJ graph G is reducible if and only if we can partition the edges into
two disjoirt groups, called the forward edges and back edges, with the following two
properties:

1. The forward edges form an acyclic graph in which every node can be reached from
the START node of G.
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2. The back edges consist only of edges whose destination nodes dominate their source
nodes.

We can easily see that a DJ graph is reducible if and only if the corresponding
flowgraph is also reducible. This can be easily verified by the construction of DJ
graphs. The above definition has an important implication for verifying whether

"a DJ graph is reducible or not. If there is a simple cycle containing two distinct
nodes that are at the same level, then the DJ graph is irreducible (Chapter 6). This
1s easy to see, since for such graphs, we will have a “back” edge whose destination
node does not dominate its source node. We will use this key insight in proving
our firstlemma, Lemma 10.1. Given a D] graph G and a level k such that there are
no J edges whose source nodes are at levels greater than k, Lemma 10.1 establishes
that if G is reducible then there must be at least one non-join node at leve! k. This
is important for our approach, since we apply the reduction rules in a bottom-up
fashion.

In Lemma 10.2, we will show that the reduction rules preserve the reducibility
of a DJ graph. Given this and Lemma 10.1 we can easily see that at every stage
of the reduction process we can always find a non-join node for applying the
E-rules.

Next we show that our variable elimination is correct. For this we will first
show, in Lemma 10.3, that when ReduceLevel(;) is called at step and the
call terminates, every ] edge whose source node is at levels greater than or equal
to i is eliminated; also, the flow equation of each node y, whose level is greater
than or equal to ¢, will depend only on the output flow variable Oigom(y) Of its
immediate dominator node.

Finally we will prove the correctness of DomTDPropagate(). For this we will
first show, Lemma 10.5, that when the procedure DomTDPropagate() is called at
step the DJ graph has been reduced to its dominator tree. Given this we
will also shov, in Lemma 10.5, that when the DomTDPropagate() is invoked at
step the flow equation at each node depends only on the flow variable of its
immediate dominator, except the root node which depends on none.

We begin the proof chain by showing that if G is reducible, there always exists
at least one non-join node at the maximum level. ' R
Lemma 10.1 Let G be a DJ graph, and let k be a level number such that there are no |
edges originating at levels greater than k. If G is reducible then there exists at least one
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. non-join node at level k.

Proof:
Suppose to the contrary that there were no non-join nodes at level & of
the DJ graph. Let Af be the set of nodes at this level. Without loss of
generality we will remove all the self-loops in M.

We then show that there must exist a nontrivial cycle at level %, con-
cluding that the DJ graph is irreducible. Since every node in M is
a non-join node, it must have at least one incoming ] edge, and the
source node of this | edge must be at & level too, according to the
property of DJ graphs. (Remember that every node can have at most
one incoming D edge.) If this is the case we can traverse backwards
over the J edges and still stay at the same level. Since there are only
a finite number of nodes in M, we will eventually visit a node twice
by this backward traversal. This implies the existence of a simple cy-
cle consisting only of nodes from M. Notice that we have removed
self-loops. By Definition 10.4, the DJ graph is not reducible. But this
. contradicts the assumption that it is reducible. Therefore the lemma is
true and there must exist a non-join node at level . | |

The next lemma (Lemma 10.2) shows that applying &-rules preserves re-
ducibility of the DJ graph.

Lemma 10.2 Let G be a reducible DJ graph. Let one of E-rules be applied to G, resulting
in G1. Then G is also reducible.

Proof:

The proof of the lemma is based on the following observation. In the
three £-rules we delete an edge, but only in E2b rule we also insert an
edge.

First we consider the deletion case. From Definition 10.4 we know that
G is reducible we can partition the edges into two sets, called forward
edges and back edges. The source node of a back edge dominates its
. destination node. It is obvious to see that deleting an edge from G
does not violate the Definition 10.4, i.e., G! will still be reducible.
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Now for the insertion case we notice that a new edge is inserted only
when E2b rule is applied. By applying E2b rule we delete an edge
y — z and insert z — z, where r = idom(y). We will first show that if
y — zis a forward edgeso is r — 2, and if y — = is a back edge so is
z — z. Lety — : be a back edge. From Definition 10.4 we know that
s domy. Now since r = idom(y) and y.lcvel > z.level, = should also
dominate z. Therefore z — = is a back edge too.

We can similarly argue for the case when y — : is a forward edge. Let
y — = bea forward edge. From Definition 10.4 we know that = !dom .
Now since z = idom(y) and y.level > z.lcvel, = will also not dominate
z. Therefore r — = is also a forward edge.

Since by adding z — = we never violate the definition of reducibility,
G?! should also be reducible. N

Based on Lemmas 10.1 and 10.2, we can always apply E-rules when there
are still ] edges in the DJ graph. Furthermore, at each stage of the reduction the
rules preserve reducibility. Given these we will next show that our bottom-up
reduction will always reduce a reducible DJ graph to its dominator tree, and any
variable elimination performed during the reduction is correct. We state these
results in the following lemma.

Lemma 10.3 In eager elimination, when ReduceLevel(?) is calied at step and the
call terminates:

1. allthe ] edges whose source node are at levels greater than or equal to i are eliminated,
and

2. the RHS of the flow equation at each node y, whose level number is greater then or
equal to i, contains only the flow variable O;gom(y)-

Proof:

First of all observe that when one of £-rules is applied to a J edge
y — 2, theedge y — z is eliminated (and a new edge idom(y) — z is
possibly inserted). Also, in the procedure ReduceLevel(:) we apply
the &-rules for each outgoing edge ¢f the non-join node retumned by
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GetNJINode(r) (steps @ and @@]} Finally, when one of S-rules
is applied to the J edge y — =z, O, is eliminated in H., (either by
substitution, as in E2a rule and E2b rule, or by computing the closure,
as in E1 rule).

We will prove the rest of the lemma using induction on the loop index
t at step | 206 [

Base Case: Loop index (i = NumLevel — 1). When
ReduceLevel{NumLevel — 1) is called we apply the appropriate £-
rules for each J edge y — :z, such y is a non-join node at level
NumlLevel — 1 (step . Since &-rules eliminates | edges y — =,
and also eliminate: O, in H., the two assertions of the lemma are true
for the base case.

Induction hypothesis: Assume that the two assertions of the lemma
are true for some loop index i = k + 1 less than the maximum
level. This means that all ] edges whose source nodes at levels
greater than or equal to k + 1 are eliminated, and the flew equation
of each node y with y.level > k contains, on their RHS's, only the flow
variable O:'dom(y)-

Induction step: Given the hypethesis, we will show that the two
assertions of the lemma are true for loop index: = k. From Lemma 10.2
we know that &-rules preserve reducibility, and from Lemma 10.1
we know that there exists at least one non-join node at level k. Let
one of £-rules be applied to some G resulting in 1. Assume that
the maximum level of §* and G'*! are the same. Since G¥*1 is also
reducible, there exists a non-join node at the maximum level (according
to Lemma 10.1 again). Therefore, GetNJNode(k) when called at
- step with the current level k, will return a non-join node. The
procedure GetNJNode(k) will return NULL only when there are no
more non-join riodes at level k. Since the given DJ graph is assumed
to be reducible, this situation can happen only when all the outgoing

174

J edges from level k are eliminated. Hence when ReduceLevel(k)

terminates, all the outgoing J edges from level k are eliminated.
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. Next to see that variables are appropriately eliminated, we examine
each E-rules. We know that each E-rules, when applied toy — =
will eliminate O, from #. by substituting it with a linear function of
Oidam(y)- Therefore, when the procedure ReduceLevel(k) returns, two
assertions of the lemma will be true.

Lemma 10.4 When the Algorithm 10.1 begins at step all the | edges have beem
eliminated.

Proof:
From Lemma 10.3 we know that when the call to ReduceLevel(i) at
step terminates, all ] edges whose source ncdes are at level ¢ are
eliminated. Also, the foreach loop at step calls ReduceLevel(:)
in the decreasing order of 7. Therefore when the loop terminates, all
the ] edges have been eliminated. |

. In Lemma 10.5, we will argue that when the DomTDPropagate(} is invoked
at step the flow equation at each node depends only on the flow variabie of
its immediate dominator, except the root node which depends on none.

Lemma 105 When DomTDPropagate() is invoked at step the flow equation at
each node depends only on the flow variable of its immediate dominator.

Proof:
The procedure DomTDPropagate() is invoked at step only when
the call '5 ReduceLevel(1) is terminated. From Lemma 10.3 we know
that when the call to ReduceLevel(1) terminates the flow equation of
each node depends only on the output flow variable of its immediate
dominator node. From the the validity of the lemma follows. |

Finally, the main theorem for correctness.

Theorem 10.1 Algorithm 10.1 correctly computes the solutions to a set of data flow
equations for a reducible flowgraph.
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Proof:
From Lemma 10.4 we know that the £-rules, whenapplied in a bottom-
up fashion, reduces a DJ graph to its dominator tree. At this point,
from Lemma 10.5 we know that the equation at each node contains,
on its RHS, only the flow variable of the node’s immediate dominator,
while the equation at the START node depends on no one, meaning
that the RHS of the equation is constant. Therefore, we can propagate
the solution of the START node down the dominator tree to compute
the solutions at all other nodes. Recall that the flow equation at each
node depends on its immediate dominator. Therefore our top-down
propagation yields a correct solution at every node. i

10.5.2 Complexity

In this section we will establish the time complexity of the eager elimination
method. We will first show that the worst-case time complexity of eager elim-
ination is O(|E| x |N]). Then we will show how the time complexity of eager
elimination is related to the size of the dominance frontier relation. Since the size
of the dominance frontier relation is linear in practice, we expect the time com-
plexity of our eager elimination method to be linear for most practical programs.

It is easy to see that each time El and E2a rules are applied we eliminate
one edge, and when E2b rule is applied we merely transform an edge y — z to
idom(y) — z. From this we can see that E1 and E2a are applied at most O(|El)
times, whereas E2b rule can be applied as many as O(|E| x |N]) times. We state
this in the following lemma.

Lemma 10.6 The E1 and E2a rules will be applied at most O(|E|) times, and E2b rule
will be applied at most O(| E| x |N|) times.

Proof:
Each application of E1 and E2a rules removes one edge, and since none
of the £-rules increases the number of edges in the DJ graph, we can
apply these two rules at most O(| E) times.

Each application of E2b rule to an edge y — z removes this edge and
introduces idom(y) — z. Since there are at most O(|N|) levels, the
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derived edge of ¥ — = moves up at most O(|N|) times. Finally, since
there are only O(|/-|) edges, we can apply E2b rule at most O(| E{ x | N'|)
times. | |

Next it is also easy to see that for each application of E1 and E2 rules, we
eliminate nne flow variable. Since E2b rule isapplied G(| E| x| N), time complexity
of eager elimination is O] E| x |N|) function operations.

Theorem 10.2 The number of steps required to transform a D] graph G° to its dominator
tree GM using E-rules is bounded by O(|E} x | N} steps.
Proof:
Follows from Lemma 10.6 and Lemma 10.4. |

Although an eager elimination can exhibit the O(]E| x |N|) time complexity
in the worst case, we expect it to behave linearly in practice. The reason for this is
based on the following observation. Remember that it is E2b rule that potentially
makes eager elimination non-linear. In E2 rule we eliminate a ] edge y — = and
insert another | edge z — =, where z = idom(y). We can think of z — = as being
“derived” from y — z (see also the Section 10.6). Notice that = will be in the
dominance frontier of both z and y. An astute reader may observe that the total
number of times £-rules are applied is bounded by the size of the dominance
frontier relation. Empirical studies have shown that the size of the dominance
frontier relation is linear (with respect to the size of the original flowgraph) for
most practical programs [CFR*91] (see also Section 10.9). Therefore, our eagér
elimination method can be expected to be linear for most practical programs.

10.5.3 Discussion

In this section we highlight some of the interesting features of the reduction
process.

¢ Inour reduction process we apply £-rules ina bottom-up fashion. The order
in which we apply £-rules conforms to one of T1-T2 reduction sequences of
the Hecht-Ullman method. Our E1 rule is equivalent to the T1 rule, whereas
our E2 rule is equivalent to the T2 rule with one difference: Our E2 rule
eliminates outgoing edges of a non-join node one at a time, whereas the T2
rule eliminates ali the outgoing edges in one shot.
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o In this chapter we follow the equation model of Ryder and Paull to present
our framework. In their model, data flow problems are modeled using
GEN and PRESERVE sets. In a more general setting, equations at each
node are treated like functions and these functions are associated with the
outgoing edges. We can easily extend our framework to this more general
setting [Mar89, Tar81, Ros80].

¢ In proving the time complexity we ignored the time for GetNJNode().
During the initialization portion of the algorithm we ensure that non-joins
appear before join nodes in Ordercd Buckets[i] at each level. Also, during
the bottom-up reducdon (at step we ensure that if a node = becomes
a non-join node when the edge y — = is eliminated, we put the node at the

head of the list. This way, we can guarantee constant time operation for
GetNINode().

10.6 Delayed Elimination Method

All elimination methods, except for the Allen-Cocke, optimize certain variable
eliminations by delaying them (either implicitly as in the Hecht-Ullman and the
Tarjan method, or explicitly as in the Graham-Wegman method) [RP86). In pre-
vious sections we have shown how to eagerly eliminate variables in data flow
equations using DJ graphs. Eager elimination can exhibit a worst-case quadratic
complexity [RP86]. In this section we show how to “delay” some variable elimina-
tions so that we can improve the asymptotic time complexity to O(|E} x log(|N1))
function operations. For this we require some knowledge of dominance frontier
intervals introduced in Chapter 4. Before presenting our method, we will review
the concept of dominance frontier intervals in Section 10.6.1; and also introduce
the notion of “derived edges” of a J edge (Section 10.6.2), that will simplify our
presentation.

10.6.1 Dominance Frontier Interval Revisited

In Chapter 4 we introduced the concept of dominance frontier intervals. Lety — =z
be aJ edge in G, and let w = idom(z). By the definition of dominance frontiers
(Definition 2.4), we know thaty — z will be in the dominance frontiers of all nodes
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on the reverse dominator tree path 4 = 1w, excluding w (see also Chapter 4). In
Chapter 4 we called the path y 5 w the Dominance Frontier Interval path of the ]
edgey — =. Inthat chapter, we also gave a simple algorithm for computing cTop
for all the | edges in linear time. We will use these two concepts in this chapter.
(For example, in Figure 10.4, we have shown the ¢Top for each J edge as < r >,
for the example Dj graph shown in Figure 10.1.)

Figure 10.4: The DJ graph of Figure 10.1 annotated with cTop nodes.

10.6.2 Derived Edges

Next we introduce the concept of “derived edges”. Recall that when an E2b rule
is applied to an edge y — z in G*, we replace y — z by idom(y) — z in G*+1. Here
we “derive” the edge idom(y) — z from y — 2. More formally, the notion of
derived edge is given below.

Definition 10.5 (derived edge) Anedge in z — z in G* is called a derived edge of
anedgey — = in GO if either z = y or = — = is created in G' and = dom y in G°.
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For example, consider Figure 10.3. We can see that the edge 6 — 9 in Fig-
ure 10.3(b) is a derived edge of 7 — 9 in Figure 10.3(a). The edge 2 — 1 in
Figure 10.3(k) is again derived from the edge § — 1 in Figure 10.3()).

10.6.3 Worst-Case Quadratic Complexity of Eager Elimination
Method

In this section we will examine why eager elimination exhibits quadratic behavior.
First let us examine the &-rules. Each application of E1 or E2a rule eliminates one
edge from G to produce G*+'. Therefore we will apply these two rules at most
O(|E]) times. What about E2b rule? This rule, when applied to anedge y — =
in ¢, merely transforms y — = to its derived edge idom(y) — = in G'*'. This
can cause an efficiency problem, because for each edge y — = in G% we may
potentially create O(|N|) derived edges for y — = in the reduction sequence
g% = G* (for some k) before eliminating it. In total, the E2b rule can be applied
O(]E| x |N]) times. Thus we can see that the E2b rule is a bottle-neck that makes
eager elimination method to have worst-case quadratic time complexity. Ideally,
we want to be able to apply the E2b rule at most O(|E]) times, so that we can
reduce a DJ graph to a trivial node in O(| £]) reduction steps. We introduce a new
rule, the D2b rule, in place of the E2b rule, that will do the job for us. We will
show later that the D2b rule will be applied at most O(} E|) times.

With the D2b rule we must also modify how variables in flow equations are
eliminated. We will introduce the concept of delayed variable elimination that

enable us to solve a system of data flow equations in O(|E| x log(|N|) function
operations.

10.6.4 E-rules Revisited: The D-rules

Recall that when an E2b rule is applied to an edge y — z in §% we replace it
by idom(y) — z in G'. Therefore the derived edge of y — z moves up the DJ
graph until its source and destination nodes are at the same level. When this
(eventually) happens we will remove it by applying either E1 or E2a rule. An
astute reader will immediately observe that the source node z of the derived edge
of y — z {when the source and the destination node are at the same level) is the
same as cTop, ., for the closed interval [y, z] in G° Therefore, rather than moving
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up the derived edge of y — > one step at a time (by applying the E2b rule), we
will move it in one shot using the D2b rule. The complete definition of the D2b
rule is given below.

Definition 10.6 (D2b rule) LetG' = (N, E) be theith reduced D] graph. Let y beanon-
join node, let y — = be an outgoing edge, and let z = cTop,__ .. If idom(y) # idom(z)
then

D2b(< G\ N E,y D 2,2>) = <G N(E-{y D :Phuz D> 5

We will carry over the definition of E1 and E2a rules to our delayed elimination
method and call their corresponding rules as the D1 and the D2a rule. There is
no difference between D1 and El, and between D2a and E2a as far as the graph
reduction is concerned, but the two sets of rules are completely different for
variable elimination. In the rest of the chapter we will use D-rules to mean D1,
D2a, and D2b collectively. With the definition of D-rules, we will next focus on
variable elimination.

10.6.5 Delaying Variable Elimination

The key intuition behind delayed elimination is to delay the elimination of variable
O, in equation H. until the source and the destination node of the derived edge
of y — z are at the same level. Before presenting this method we need to describe
the concept of path compression on a dominator tree.

The path compression on a dominator tree is performed whenever we invoke
the procedure CompPath(z,y), where z and y are nodes on the (compmsed)
dominator tree such that = is an ancestor of y. CompPath(z,y) performs the
following operations on a dominator tree:

1. Delayed Substitution: For each node w on the (compressed) dominator path
z 35y, exduding z, express variable O, as a linear function of O, by
top-down traversal of the path.

2. Path Compression: Make all the nodes on the path z = y, the children of =.

5Again we will notinsert » — = in §**1 if it is already present in G*.
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These two operations are performed in the path order, that is for any two nodes
and v in the path, if « is an ancestor of v in the tree then we process u earlier than
v. It is important to note that when a node w on the path r & y is made a child
of z, all children of w except the one on the path, are still v’s children. In other
words, only one of w’s children (i.e,, the one on the path r & ) will change its
parent from w tc .

Procedure CompPath(z.y)

{

255:  foreach node w # r in the path from z & y and in the path order do

256: Express O, as a linear function of O,.

257: Make w a child of =.

258: endfor

}

Given the operation CompPath(), we will next discuss how to delay the
elimination of variables. The key point in delayed elimination is to eliminate
variables only when applying D1 or D2a rule, but not when applying D2b rule.
We will revise the NodeStructure of Algorithm 10.1 as follows:

struct NodeStructure {
intindegree; /* as defined in Algorithm 10.1 */
intlevel; /* as defined in Algorithm 10.1 */
struct ListStructure *jedges; /* List of J edges y — : for which
/* this node is the cTop. This list is initially empty */

}

This structure is the same as in Algorithm 10.1, but with an additional attribute
*jedges, which is nothing but a pointer to a list of ] edges. As we will show

shortly, this list is built during D2b rules and consumed during either D1 or D2a
rules.

Algorithm 10.2 The algorithm MainEHm() with D-rules and delayed elimination can
be used for solving a system of data flow equations.

In Algorithm 10.2 we will use the main procedure of Algorithm 10.1 for re-
ducing the DJ graph in a bottom-up fashion. The only difference between Al-
gorithm 10.1 and Algorithm 102 is that we call procedures Delayed1(y — y),

*/
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Delayed2aly — :) and Delayed2b(y — z), instead of Eagerl{y — y),
Eager2a(y — z) and Eager2b({y — =), respectively.

In the delayed elimination, variables are eliminated only when Delayed1(y —
y) and Delayed2a(y -~ z) are invoked. We do not eliminate variables when
Delayed2b{y — :z) is invoked. When Delayed2b(y — =) is invokod we keep
track of Bottom node y in z = cTop,_., in the list z->jedges (step [276)). In
Delayed2b(y — =) we also delete the edge y — = and insert z — = (if it does not
already exist). When Delayed1{z — z) or Delayed2a(z — z) is later invoked,
we first perform the path expression by invoking CompPath(z,y) (step or
step respectively). Asexplained earlier, for each node w on the (compressed)
dominator tree path = Xy, excluding z, this procedure first expresses variable
O. as a linear function of O, by going down the tree path. It also compresses
the path by making every w a child of x. We will illustrate the path compression
through an example later in Section 10.6.7.

In the procedure Delayedl(y — y), the function GetJedge(y) returns a ]
edge v — w from the list y->jedges (step [259)). For each such edge we invoke
CompPath(y, u) to perform path compression and delayed variable substitution
(step . Finally, we compute the closure of the recursive equation Hy to break
the loop (step [263)). At step [264] we eliminate the edge (as in Eager2a()). Itis
important to remember that the destination node w of the J edge » — w, returned
by GetJedge(y), will not necessarily be the same as y. This is because the y can
be a c¢Top node for many different J edges that were inserted in y->jedges by
some previous invocations of Delayed2b(). We will eliminate all such J edges
from y->jedges the first time the procedure Delayed1(y — y) is invoked on .
Procedure Delayedl(y — y)

{
259: while(((u — w = GetJedge(y)) # NULL)) do
/* Get the next J edge for which this rode is a top. */
260: CompPath(y,u) ; /* Replace node equations on the path */
/* yiu as a function of Oy */
261: Eliminate O, on the RHS of H, by replacing it
with a linear function of O, computed in the previous step.
262: endwhile
263: Compute f~(0,). /* Compute the closure. */
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Figure 10.5: A trace of the DJ graph reduction using D-rules.
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264:  Deletetheedgey —
f

The steps in Delayed2a() are similar to Delayed1{() except that we do not
compute closure (since there are no self-loops). The function GetJedge(y) returns
J edge u — w for which y is the ¢Top node. The function CompPath{y, u) then
performs delayed variable substitution and compress the path. At step we
replace O, in equation f/,, with the linear function of O, computed in step .
After the while loop, we replace O, in /1, by the RHS of H, (step [269). Again,
as in Delayed1(), the destination node w of the ] edge © — w will not necessarily
be the same as z. Finally, note that w can never be same as y, if it were then we
should have invoked Delayedl() prior to invoking Delayed2a().

The operations from step to step are the same as in Eager2a(), and
essentially perform a DJ graph reduction.

Procedure Delayed2a(y — =)
{
265: while({{z — w = GetJedge(y)) # NULL)) do
/* Get the next J edge for which this node is a top. */
266: CompPath(y,u) ; /* Express the node equations on the path
*/
/* y:u as a function of O, */
267: Eliminate O, on the RHS of H,, by replacing it
with the linear function of O, computed in the previous step.
268: endwhile
269: Finally eliminate O, in H. by replacing it with a linear function of O,
where z = parent(y) on the compressed dominator tree.
270: Deletetheedgey — =;
271:  :z.indegree = z.indegree—1;
272:  if(s.indegree < 1) then /* = becomes a non-join node */
273: Put z at the head of Ordered Buckets|z.level] list ;
274: endif
}

In the procedure Delayed2b(y — z) we do not eliminate variables. At
step we save theJ edgey — z in z->jedges, where r = cTop,_.. (step .
These J edges (returned by the function GetJedge()) will be processed later in
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the procedure for D1 and D2a rules at step [259]and step [Zb‘EL respectively. The

hed
|2
operations from step to step are the same as in Eager2by), and essen-
tially do DJ graph reduction. Again, notice that r can be a ¢Top node for many

different J edges, all such J edges were inserted in the list r->jedges when D2b

rule was applied to these edges. To ensure constant time operation for inserting,
we insert the J edge y — = at the head of the list »->jedges,
Procedure Delayed2b(y — =)

275: z=cTop,_.;

276: Insertnode y — : in the list x ->jedges.
277:  Delete theedgey — =

278:  if(x — z exists) then

279: z.indegrece = z.indegree — 1;

280: else

281: Inserta new Jedger — = ;
282: endif

}

The function GetJedge(w) removes the first ] edge from node w's ] edges list
w ->jedges (if one exists) and returns it. This function is invoked by Delayed1()
and Delayed2a(). For reasons explained later (Section 10.7.3), we will operate
the list w->jedges as a queue structure. Therefore we always return J edges from
the tail of the list.
Function GetJedge(w)
{
283:  if the list w->jedges is not empty then
284: Remove the first edge from the tail of list and return it.
285: else
286: return NULL
287: endif

}
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10.6.6 Top-Down Propagation

The top-down propagation phase in the delayed elimination method is simi-

lar to the propagation phase in the eager elimination method, except that we

propagate the data flow information on the compressed dominator tree. When

Algorithm 10.2 terminates, every node’s equatiun depends only on the flow vari-

able of its parent in the compressed dominator tree. In other words, the flow

equation at each node y is a linear function of O, where z = Parcnt(y) in the

compressed dominator tree. We will prove this formally later in Section 10.7.

To propagate the data flow information on the compressed dominator tree, we

invoke cDomTDPropagate() at step instead of DomTDPropagate(). The

procedure cDomTDPropagate() is defined beiow:

cDomTDPropagate()

{

288:  Solve the data flow equation of the START node.

289: Propagate the solution on the compressed dominator tree in a top-down
fashion, using the solutior atnode x = Parent(y) to substitute variable O,
on the RHS of equation O, = f(O:), to compute the solution at y.

10.6.7 An Example

Hea.e weillustrate the delayed elimination method for our example DJ graph. The
complete DJ graph reduction process is shown in Figure 10.5.

1. For the DJ graph in Figure 10.5(a) we apply D2b rule, and so we invoke
Delayed2b(7 — 9). Since variables are not eliminated during D2b reduc-
tion, no flow equation changes in response to the graph reduction from
Figure 10.5(a) to Figure 10.5(c). But we insert the ] edge 7 — 9 in the list
3->jedges (since node 3 is the cTop of theJ edge 7 — 9). For the DJ graph in
Figure 10.5(b) we again apply D2b rule, invoking Delayed2b{4 — 9). Once
again we insert the J edge 4 — 9 in the list 3->jedges).

2. For the D) graph in Figure 105(c) we apply D2a rule, invoking
Delayed2a(4 — 6). At node 4, we have 4->jedges = §; therefore the
procedure GetJedge(4) would return NULL (step [265)). At step we
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i 7]

eliminate Oy on the RHS of H, by replacing it with a linear function of Os.
Once this is done, the flow equation at node 6 becomes

Oy = Po( P03+ G + Os) + G

3. For the DJ graph in Figure 10.5(d) we apply D2a rule, invoking
Delayed2a(5 — 6). At node 5, we again have 5->jcdges = §; therefore
the procedure GetJedge(5) would return NI/ LL (step . At step
we eliminate Os on the RHS of H by replacing it with a linear function of
Os. Once this is done, the flow equation at node 6 becomes

Os = Ps(PsOs+ Gy + PsOs+ Gs) + Ge
= (PP + BPsY0s + PsGs + FoGs + Gs

Notice that at this point O depends only on O3 (wherenodc 5 is a parent of
6 on the dominator tree).

4. Next we apply D2b rule to the edge 6 — 2, transforming the DJ graph of
Figure 10.5(e) to Figure 10.5(f). We invoke Delayed2b(6 — 2), in which we
store 6 — 2in 2->jedges (step .

5. Next we apply D2a rule to the edge 3 — 9, transforming the D] graph of
Fgure 10.5(f) to Figure 10.5(g). We invoke Delayed2a(3 — 9). At this point
3->jedges contains edges 4 — 9 and 7 — 9. So at step the procedure
GetJedge(y) returns these two edges, one after another. Let 4 — 9 be the
first edge returned, and so at step we invoke CompPath(3,4). In the
procedure CompPath() we express the flow equation at every node on the
path 3 & 4, excluding 3, as a function of 03. Since 4 is the only node on this
path, and its equation is already in the required form we return from the
procedure CompPath(3,4). At step [255] we replace O; on the RHS of Hs
as a linear function of Os. The resulting equation of node 9 is

Os = Py(PiO3+ Ga+ 07+ Os) + Gy

Next GetJedge{()y) would retwrn the ] edge 7 — 9 from the list 3->jedges.
Therefore we invoke CompPath(3, 7). Within the procedure CompPath()
we first express the flow equation of every node on the path 3 5 7, excluding
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3, as a function O in a top-down fashion. The path 3 = 7 contains nodes
6 and 7 (excluding 3). The equation at node 6 is already expressed as a
function of O3. But the equation at node 7 is expressed in terms of Os.
Therefore we replace Og in H7 by a linear function of 0;. By doing so the
new equation at node 7 becomes

0O; = P0¢+Gr
= P?((P6P4 + P(,P5)O3 + PGy + PeGs + Ge) + G5
= (PPePs+ PP Ps)Os + P PGy + P PeGs + PG + G

At step we also make node 7 a child of node 3, resulting in the com-
pressed dominator tree shown in Figure 10.5(g)-

Next, at step we eliminate O; on the RHS of Hs by replacing it with a
linear function Os. By doing so the new equation at node 9 becomes

Oy = P(PiOs+ Gi+ 07+ 0s) + G

= BPyPy03 + PsO7 + PQg + PoGy + Gy

= PRyPy0; + Po((PrPs Py + PrPsPs)Os + PrPsGy +

P;PsGs + PGg + G7) + ROg + PoGy + Gy

= PyPyO3 + (PoPrPePy + PsPs Py Ps)O3 + Py P PeGy +
PsP;PsGs + Po PsGg + PoG7 + PoOg + PoGy + Go
(PoFs+ P3Py PPy + Py PP Ps)03 + PsOg + Py Py PGy +
PsP7PsGs + By PyGe + PoG7 ++ PoGa + G

1l

Finally at step we eliminate O, on the RS of Hy by replacing it with a
linear function of O2. By doing so the equation at node 9 becomes

= (PP + PoPyPsPy+ PoPrPePs)( P30z + G3) + PoOs + PoPr PGy +
P3Py PsGs5 + Py PrGg + PoGy + PoGa + Gy

6. We can continue to eliminate variables as described above at other nodes.
We encourage interested readers to do so.
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10.7 Correctness and Complexity of Delayed Elimina-
tion Method

In this section we prove the correctness of Algorithm 10.2 and analyze its com-
plexity. We use some of the results of the eager elimination method.

10.7.1 Correctness

We prove the correctness of the delayed elimination method along the same line
as in the eager elimination method. We will focus on showing (1) that D-rules
when applied in a bottom-up fashion eliminate all the J edges (Lemma 10.10),
and (2) that variable elimination is properly performed in the bottom-up phase
(Lermma 10.11). First note that Lernma 10.1 also holds for the delayed elimination
method. Asin the eager elimination method we always apply D-rules to a non-
join node.

In the following lemma, we prove that the application of D-rules will not
introduce irreducibility into a reducible DJ graph.

Lemma 10.7 Let G bea reducible D] graph. Let one of D-rules be applied to G, resulting
in G1. Then G is also reducible.

Proof:
Recall that, in terms of graph reduction, the E2b rule is the only dif-
ference between E-rules and D-rules. When E2b rule is applied to
an edge y — z, we first delete y — z and then insert z — z, where
z = cTop,_... We use the results from Lemuma 102 and will only need
to prove that the insertion of z — z will not introduce irreducibility.
We complete our proof is by case analysis.

Casel: y — z is a back edge. So z will dominate y. By definition
of ¢Top, z dominates y and z.level = z.level. Therefore z is the
same as z, and = — z is a self-loop, which is a back edge.

Case2: y — zis a forward edge. By definition of cTop, £ dominates
y and z.level = z.level. But in this case z # z; otherwise, y — z
would be a back edge. Given the fact that y — z is a forward
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edge and z dominates y, we conclude that r — = is also a forward
edge.

To show that D-rules eliminate all the J edges in a bottom-up fashion, we will
first prove a result similar to Lemma 10.3.

Lemma 10.8 In delayed elimination,

1. at the time when ReduceLevel(?) is invoked at step all the [ edges whose
source nodes are at levels greater than i are either eliminated or properly deposited
in their corresponding cTop nodes.

2. at the time when the call to ReduceLevel(:) terminates, eliminated are all the |
edges whose source nodes are at level 1, and those that were previously deposited in
the corresponding cTop nodes at level <.

Proof:
We will prove this lemma by induction on the loop index ¢ at step

Base case: (: = NumlLevel — 1). The first assertion is trivial since
there are no nodes at level NumLevel or beyond. For the second
assertion, it is also obvious to see that Delayed2b() rule will properly
deposit ] edges in their corresponding cTop nodes, and the other two
procedures (Delayed1() and Delayed2a()) will properly eiiminate J
edges whose source and destination nodes both at level Num Level - 1.

Induction hypothesis: Assume that both assertions of the lemma are
truefori =k+ 1

Induction step: We will show that both assertions are true for ¢ = k.
The first assertion follows immediately from the induction hypothesis.
Now we are to show that the second assertion holds. Letebe aJ edge
with its source and/or destination node atlevel k. There are two cases:

Case 1: The source node of e is at this level. Then this edge will be
either deposited in its corresponding ¢Top node by applying D2b
rule, or eliminated by applying D1 or D2a rule.
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Case 2: The destination node of ¢ is at this level, and ¢ was previously
deposited in the corresponding cTop at this level. D1 or D2arule
will discard e and eliminate its derived edge.

Notice the difference between Lemma 10.3 and Lemma 10.8. In Lemma 10.5,
we do not claim the following: If the flow equation of any node at a level less
than ¢ contains, on its RHS, the flow variable of a node at level ;, this variable
will be eliminated and substituted by the flow variable of its parent (as we did in
Lemma 10.3). This is because we are delaying the substitution of some variables
in the delayed elimination method.

Next, we will prove the correctness of delayed variable elimination
(Lemma 10.9). First of all observe that variable eliminations are delayed only
by D2b rule. In other words, when D2b rule in applied to ¢ — w, the elimination
of variable O, in equation H, is delayed until D1 or D2a rule is applied to the
derived edge y — w, where y = ¢Top,_.,,. But we will apply the D1 or D2a rule
only when we are processing nodes at level w.level (i.e., loop index i = w.level in
the for loop at step [206 ).

Lemma 10.9 At the time when ReduceLevel(:) terminates, all ihe variables O, that
are associated with nodes u at level greater than i but still exist in the equation H,, for
nodes w at level i are eliminated. Furthermore, any of these equations H,, will become
dependent only on variable Oparent(w)-

Proof:
We prove this by induction on the loop index # of step

Base case: Loop index { = NumLevel — 1. Our claim is obviously
true in this case since there are no nodes at levels greater than
NumLevel — 1.

Induction hypothesis: Assume that the assertion is true for i = k + 1.

Induction step: Loop index{ = k. From our induction hypothesis we
know that for: > k, the assertion of the lemma is true. Thismeans
that all the variables O,, with u.level > k, that exists in equations
H, at levels ¢ > k are eliminated, and these equations become
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dependent only on the output variable of their parent node. Now
we have to show that the assertion of the lemma is true forz = .
Now let O, be a variable such that (1) it exists in equation f,,,
(2) udevel > k, and (3) w.level = k. Then Delayed2b() must
have deposited u — w in y->jedges. This edge will now be
processed by either Delayed1() or Delayed2a(). Ir either case,
CompPath(y,u) will be invoked. When CompPath(y,u) ter-
minates, the equation H. for every node = on the pathy 5 «
(excluding y) will depend only on variable ;. In particular, H,
now depends only on 0,. By substituting variable O, on the RHS
of equation H,, with the current RHS of H,, we eliminate O, from
H,, and so the RHS of H,, will contain O,. Now if w = y (ie,,
Delayed1() is invoked), a closure operation will be performed.
Otherwise (i.e., Delayed2a() is invoked), O, is further eliminated
from H, by substituting it with the RHS of H,. In either case,
equation H,, will now depend only on variable Oparentiw)- Flence
the validity of the lemma.

The next two lemmas state that at the end of the bottom-up eliznination phase,
(1) all the J edges are eliminated, and (2) the flow equation of every node (except
for the root) depends only on the variable associated with the node’s parent.
These two lemmas are corresponding to Lemmas 10.4 and 10.5, respectively.

Lemma 10.10 When Algorithm 10.2 begins at step [212] all the | edges have been
eliminated,

Proof:
This lemma follows from (1) Lemma 10.8 and (2) the fact that the call
to ReduceLevel(1) has completed before step [212] |

Lemma 10.11 When cDomTDPropagate() is invoked af step @ the flow equation
at each node depends only on the flow variable of its parent on the final compressed
dominator tree.
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. Proof:

Follows from Lemma 10.9 since cDomTDPropagate{) is invoked only
after ReduceLevel(0) has completed. |

Theorem 10.3 Algorithm 10.2 correctly computes the solutions to a set of data flow
equations for a reducible flowgraph.

Proof:
Follows from Lemrmas 10.7, 10.10, and 10.11. |

10.7.2 Complexity

In this section we will analyze the complexity of the delayed elimination method.
Recall that int the eager elimination method, E2b rule was the bottleneck. Here
we will first show that we can reduce the DJj graph to a compressed dominator

tree in linear time using D-rules. Next we will analyze the total cost of variable
elimination.

() Lemma 10.12 The D-rules wil! be applied at most O(|E]) times.

Proof:

First of all observe that each application of D1 or D2a rule will eliminate

one edge. Since thereare | E| edges, these two rules can applied at most
O(|E]) times.

Now when we apply D2b rule to an edge y — z we remove this edge
and introduce ¢ — z, where z is the ¢Top, .. of y — z. Once this is
done we will never apply D2b rule to the derived edge z — 2, since
idorn(z) = idom(z) and so we could only apply D1 or D2a rule for this
edge. Also, for every J edge there is a unique closed Top node. Since
there are | E| edges in the original DJ graph, we will apply D2b rule at
most O(|E|) times. | |

Even though it takes only linear time to reduce a DJ graph into a compressed
dominator tree, the total cost of variable elimination is worse than linear because
of path compressions performed during the invocation of procedures Delayed1()

. and Delayed2b(). First observe that the number of path compressions, denoted
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¢, performed in the entire elimination phase is equal to the number of D2b rules
applied. In the following we will show that the total cost for ¢ path compressions
is bounded by O(¢ x log|N|). We mainly use the results from Lucas [Luc$0] and
Tarjan and van Leeuwen {TvL84].

If a node = is a2 ¢cTop in a path compression, then z is called the roof of the
compression. We define a sequence of path compressions on an initial tree T = T°
to be a sequence (Cy,. .., C.), such that it transforms T into the final compressed
tree T (with C; transforming T;_ into T;). Lucas introduces the notion of Rising
Roots Condition as follows:

Definition 10.7 A sequence of path compressions {Ch,...,Cy,) satisfies the Rising
Roots Condition (RRC) if and only if for every node z, if = appears as a non-root
node iz any compression C;, then for every j > i, z appears as a non-root node in C; if
C; is a compression from y and y is a descendant of z in T3-1.

Lucas shows that a sequence of path compressions on a tree that satisfies the RRC
corresponds to some sequence of intermixed union and find operations used in the
disjoint set union problem; and conversely, a sequence of intermixed union and
find corresponds to some sequence of path compressions satisfying the RRC.

Tarjan and van Leeuwen, in a previous work [TvL84], showed that the time
complexity for a sequence of e intermixed union and find operations is O(e x
log(IN1)). Therefore, if we can show that the sequence of path compressions
does satisfy the RCC, it will immediately follow that the total cost of our e path
compressions is also O(e x log(|V])).

Lemma 10.13 The sequence of path compressions performed during our bottom-up re-
duction satisfies the RRC.,

Proof:
Our path compressions are ordered by the levels of their roots (i.e., the
cTop nodes). Therefore, once a node has been a non-root node in a
compression, it will never be a root node in any future compression. &

Theorem 10.4 The time complexity of the delayed elimination method is O(|E| x
log(1V]))-

Proof:
The number e of path compressions is bounded by | E|. |
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Buchsbaum et al. have recently established the lower bound &(c x log(n)) for
a sequence of ¢ (order-preserving) path compressions satisfying the RRC on an

initial tree of n nodes. For most flowgraphs, | E| = O(|¥]), so the above bound is
tight.

10.7.3 Discussion

Before closing this section, we want to point out some interesting features of our
delayed elimination method.

¢ Our D1 rule is similar to Hecht-Ullman’s T1 rule and Graham-Wegman's
T1' rule. Our D2a rule is similar to Hecht-Ullman’s T2 rule and Graham-
Wegman'’s T2' rule. However, our D2b rule is unique. We exploit the prop-
erties of DJ graphs during the preprocessing step to identify the cTop nodes.
We can think of the cTop nodes as marking points where the appropriate
delayed variables are to be eliminated.

¢ Although not detailed in cur algorithm descriptions, we will use a queue to
store the list of ] edges deposited in a cTop node. Consequently, when we
start a sequence of path compressions all with the node as the root, we will
compress longer paths before shorter ones. This does not change the time
complexity of our method, but it is a pragmatic choice.

o Another interesting property to note is that the number of dominance fron-
tier interval paths that can pass a node is less than or equal to the number
of edges in its dominance frontier set. Therefore the total length of the
dominance fronter interval paths can be no more than the size of the domi-
nance frontier relation. Cytron et al. have shown that the size of dominance
frontiers is linear in practice, and so we expect the time complexity of the
delayed elimination method also to be linear in practice. In Section 10.9 we
provide measurements which support this claim.

o We showed that the time complexity of our delayed approach is O(|E} x
log(|N}). An interesting open problem to pose here is: Is there a linear
time algorithm for data flow analysis? We conjecture that it is possible to
find a linear time algorithm for data flow analysis, at least for reducible
flowgraphs.
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10.8 Handling Irreducibility

In this section we will show how to handle irreducibility in flowgraphs with
delayed elimination.® Recall that a flowgraph is irreducible if we cannot partition
the edges into forward edges and back edges such that the destination nodes
of the back edges dominate the source nodes. Figure 10.6(a) gives an example
of an irreducible flowgraph, and its D] graph is given in Figure 10.6(b). In our
elimination method we detect irreducibility if during the bottom-up reduction
GetNJNode(i) returns NULL but there are more J edges to be processed at
this level. At step if OrderedBuckets[i].head is not NULL then there are
more nodes to be processed at this level, but none of them are non-join nodes.
This condition is sufficient to signal irreducibility, and we invoke the procedure
CollapselIrreducible(:) to handle irreducibility at level :.

The first step in handling irreducible graph is to apply D2b rule to all | edges
whose source nodes are at level ¢ and destination nodes are at levels less than :
(step [293)). This will eliminate all such J edges that leave level i. The next step
is to compress the dominator tree; for each node y at level ¢, and for each J edge
u ~ w in y->jedges we invoke CompPath(y, u) (step .

The next step is to evaluate the equations of all nodes in level z. For this we
first apply Tarjan’s Strongly Connected Component (SCC) algorithm on nodes at
level i (step[301). This will generate dag(s) of SCCs. It is important to remember
there can be more than one disjoint dag at level :. We process each SCC in each
dag in topological order (step . We compute closure of equations of all nodes
in S, if needed (step . We also express the flow equations at all nodes at level
1 in terms of flow variable of their immediate dominator node (step [304). Thisis
possible because we are eliminating the flow variables in the topological order of
the SCC. Finally, we eliminate al! the ] edges at level i {step [305)).
Procedure Collapselrreducible(z)

{ /* See also the description in the main text */
290: foreachnodey atlevelido
291: foreach z € Succ(y) do
292; if((y — z == Jedge) and (z.level < 7))
293: Delayed2b(y — z).
$We can similarly handle irreducibility with eager elimination.
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(2) Flowgraph (&) DJ Graph

Figure 10.6: An irreducible flowgraph and its DJ graph.
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294: endif
295: endfor
296:  while(((x — w = GetJedge(y)) # NULL)) do
297: CompPath(y,u) ;
298: Eliminate O, on the right-hand side of O,, by replacing it
with the function of O, computed in the previous step.
299: endwhile
300: endfor
301: Determine the SCCs of the nodes at level i, and construct dag(s) of SCCs;
302: Process each SCC S in each dag in the topological order as foliows:
303: If the nodes in § induces a cycle then compute the closure of all
equations of the nodes in the cycle. Also express the equation at
each node in terms of its immediate dominator node.
304: Ifanodes € Shasanedges — ttonodet € S then
replace O, on the right hand side of O, by the linear function
of the input to 0,. Remember that 0, is expressed in terms of only
the flow variable of its immediate dominator
/* After processing each SCC, the flow equation of */
/* each node at level i are expressed in terms of */
/* its immediate dominator. */

305: Finally removeall J edges at level i.

The complete trace of the DJ graph reduction for the irreducible DJ graph is
shown in Figure 10.7. During the reduction when we reach to the DJ graph shown
in Figure 10.7(g), we can notice that all nodes at level 2 are join nodes, and so we
cannot apply any of the D-rules. Atthis point we invoke Collapselrreducible(2).
In the procedure Collapselrreducible() we first apply D2b rule by invoking
Delayed2b(9 — 0). Next we compress the path 2 — 3 — 4, expressing the flow
equations at these nodes in terms of 2, and finally making all the nodes on this
path children of 2. .

Next we determine the SCC and process the nodes in the topological order.
The processing steps consists of computing the closure whenever we have cycles,
and expressing the flow equations of all the nodes in terms of their immediate
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dominator. Finally we will eliminate all the ] edges at this level. After the call to
Collapselrreducible(i) terminates we get the DJ graph shown in Figure 10.7(h).

10.9 Experiments and Empirical Results

In this section we present empirical results for both eager and delayed elimination
methods. To demonstrate the effectiveness of our approach, weimplemented both
the methods for solving the intraprocedural reaching definitions problem. For
the purpose of comparison, we also implemented the iterative method that uses
a reverse postorder for iteration. Hecht and Ullman show that this ordering can
be very efficient, especially for reducible flowgraphs, and can exhibit linear time
complexity in practice [HU771.

For efficient set manipulation we implemented the Briggs-Torczon sparse
sets [BT93]. We found that this representation to be more time efficient than
the bit-vector representation. For this chapter we carried out our experiments on
a SPARC-20 workstation.

We will first summarize the major results of our experiments.

o Of the 40 procedures we tested, five procedures have irreducible loops.
Three of these five procedures have only one irreducible loop.

¢ The maximum size of SCC, found when Tarjan’s SCC algorithm is applied
during Collapselrreducible(}, is 4 (found in procedure coef). This sug-

gests that our approach is indeed very efficient in practice for handling
irreducible loops.

e As discussed in Chapter 7 the size of the dominance frontier relation is
linear in practice. Using Definition 2.4 for dominance frontiers, we found
the average ratio L%’-.l = 1.09. This ratio suggests that the average size of
dominance frontiers (represented as a set of edges) is about 1E=1 = 8.23%
more than the size of the flowgraph. This confirms to the claim made by
Cytron et al. that size of dominance frontiers is proportional to the size of
the flowgraph.

¢ As expected, the number of £-rules rules applied is bounded by the size
of the dominance frontier relation. We found the avarage ratio ﬁ.—[ of the
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Irredudibility detected. Find dag of the
SCR, and process the nondey In the dag
order. The S5CRs are [2,5,6) and (9], Onee
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Figure 10.7: A trace of DJ graph reduction for the irreducible flowgraph.
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. number of £-rules applied n E to the size of dominance frontiers | D ;| to be

0.76. This suggests that eager elimination is expected to behave linearly in
practice.

o As expected the number of D-rules rules nD is less than the size of the

flowgraph |Ey|. The average ratio l-“é-j’—l = 0.52.

¢ We found that the average ratio of the total length of the dominance fron-
tier interval path without path compression C’ to the total length of the
dominance frontier interval path with path compression C to be 1.28 (i.e,
€ = 1.28). This ratio indicates that all the dominance frontier interval paths
have about 122218 = 21.8% of their edges overlapped.

e Thevalueof & = 1.28 also suggests that, in an ideal situation, delayed elimi-
nation method can be about 1.28 times faster than eager elimination method.
In practice, delayed method incurs overhead from bookkeeping and non-
profitable path compressions. This is evidenced by the data reported in
Table 10.2, where we can see that, on average, delayed elimination method
. is about 1.15 times faster than its eager counterpart.

o All three algorithms (iterative, eager, and delayed) are very efficient in
practice. The average number of iterations {performed during fixed-point
calculation) in iterative method is 4, suggesting that iterative method is
indeed very efficient (at least for solving reaching definitions problem}.

e We find that delayed elimination method is on average about 1.45 times
faster than iterative method, and eager elimination method is on average
1.27 times faster than iterative method.

o Finally, we find that eager elimination is almost as fast as the delayed elimi-
nation method. On average delayed method is only about 1.15 times faster
than the eager elimination method.

In the following subsections, we will further elaborate on these results in two
aspects: (1) the structural characteristics of our approach, and (2) the execution
performance of our approach. Table 10.1 and Table 10.2 give a summary of our

. empirical results. The notation used in these tables are given below:
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Notation used in Table 10.1 and Table 10.2

Name | Names of procedures.

[N Number of flowgraph nodes.

2 Number of flowgraph edges.

|G Size of GEN set (i.e., total number of downward exposed definitions)
Ir Number of times the procedure Collapselrreducible() is called

s Maximum size of SCCs detected during Collapselrreducible()

ED1 | Number of times E1 (or D1) rule applied

ED2a | Number of times E2a (or D2a) rule applied

E2b | Number of times E2b rule applied

nk Total number of £-rules applied

D2b | Number of times D2b rule applied

nD Total number of D-rules applied

c’ Total length of the dominance frontier interval paths w/o path compression
C Total length of the dominance frontier interval paths with path compression
< Ratio of ' to C

|DFe| | Size of dominance frontiers in the flowgraph

nl Number of iterations for the iterative method to converge
T Execution time in seconds for iterative method
T. Execution time in seconds for eager elimination method
T4 Execution time in seconds for delay elimination method
T‘
S:' fe ’)‘:
T.
Sigg | 7
S dfe '?r":_

10.9.1 Structural Characteristics

Table 10.1 shows the structural characteristics of our elimination methods for
our test procedures. The second and third columns give the number of nodes
(basic blocks) and the number of edges in the flowgraph for each procedure,
respectively. The column |G| gives the total number of downward exposed defi-
nitions in a procedure.”

The column Ir shows the number of times the procedure Collapselrreducible()
is invoked. Recall that Collapselrreducible() is invoked only if irreducibility is

“We only consider scalar variables in our experiments.
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Name |1 NI E|} |G SHED1|ED2a|E2 | nE]D26[nD || c'] ¢| <Tpry]
aerset 329 [ 460 '1'66' 41 79] 200[323| 51204 2137109 371
agset 189 | 258 | 74 24| 42 118|184| 48|114 107 116[1.09( 202

bt 135|187 (213 1 62| 114 (177 50113 132| 95[139( 211
card 150216 63 i1 43717012241 581112 230)165)1.39) 316

chemset }j 229 [320] 94
chgeqz {{ 174|248 | 115
clatrs 214 | 308 | 160
coef 9511371 117
comlr 69| 91 63
dbdsqr || 228|327 | 144
dedemp || 137 (187 75
deop 186 | 261 | 127
dctran 326458151
deseco 11752361240
dgegv 160 1232|108
dgesvd || 3211470 | 405
dhgeqz || 285 (408 | 261
disto 133)191 183
dlatbs 1671238 | 134
dtgeve || 3211459257
dtreve 248353148
elpmt 162227 138
equilset || 327451179
errchk 346 (4821154
iniset 333 [ 486 | 280

23] 68l 191)282] s57({148| 198|186|1.19) 300
13] 58| 142[213[ 61(132( 203|141 143 298
17| 79| 129(225( 76(172( 152{142[1.07( 276
111 32| 69(112) 32| 75| 82! 59)139) 142
11 137 47) 71} 20) 444 49| 495|100y 78
19| 74| 176}269} 75|168| 275|188}146( 391
14 35| 127|176| 50| 99| 176 [127(1391 245
10| 87[143{240| e69|166| 182|154/1.18 295
10] 119 278)407] 93|22| s77)273|211|| 745
18] 54| 107|179] 47|119| 135)114|118| 220
11| 51l 102|164 55|117| 200{120(167( 287
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Table 10.1: Structural characteristics.



CHAPTER 10. EXHAUSTIVE DATA FLOW ANALYSIS 205

detected at a particular level. The column S shows the maximum size of non-
trivial strongly connected components detected and processed by the procedure
Collapselrreducible(). This column quantifies the number of nodes whose data
flow equations are involved in fixed-point iteration. Our results indicate that the
maximum size of SCCs is 4 for one procedure (coef), 3 for two procedures (card
and comlr), and 2 for two procedures (dcdcmp and readin). This suggests that
our approach is very efficient in practice for handling irreducible flowgraphs.?
Previous approaches perform iteration over a normally much larger region when
anirreducible region is encountered [Bur90, $579]. One classical approach for han-
dling irreducible regions consists of identifying the smallest single entry strongly
connected region that encloses the irreducible region [SS579]. Using this method we
found the sizes of the single entry regions enclosing the irreducible regions to be
25 for coef, 33 for colmr 78 for card, and 28 for dedemp.’ In [Bur90] proposes
a method that is similar to Schwartz and Sharir’s method, except that the single
entry region need not be strongly connected. Burke’s method, although improves
upon Schwartz and Sharir’s method, still identifies a much larger region than our
method. We counted manually using Burke’s method for the procedure comlr
and found the size of the single entry region that encloses the irreducbile region
to be 31.

The columns ED1 and ED2e indicate the number of times E1 (D1) and E2a
(D2a) rules were invoked during the eager (the delayed) elimination method. The
number of E1 (D1) rules give the number of single-entry loops in a procedure.
The column E2b shows the number of E2b rules applied in eager elimination,
whereas D2b shows the number of D2b rules applied in delayed elimination. The
column nE represents the sum of the three columns ED1, £D2a, and E2b, and
nD represents the sum of ED1, ED2q, and D2b. Figure 10.8 and Figure 109,
respectively, gives a profile of the number of E-rules and D-rules applied during
the DJ graph reduction. We can see from these plots that the number of E2b rules
applied dominates in the eager elimination method, that the number of D2a and
D2b rules applied are not very different.

8For backward flow problems, such as live uses of variables, we expect ‘o see much more
irredudible regions, since the analysis is performed on the reverse lowgraph.

9These numbers were generated using Sparse compiler being developed at the Department
of Computer Science and Engineering, Oregon Graduate Institute of Science and Technology. 1
sincerely thank Priyadarshan Kolte for providing me with these results.
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Figure 10.8: A profile of the number of E-rules applied.
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The column C’ gives the total length of all the dominance frontier interval paths
when no path compressions are performed. In comparison, the column C gives
a similar number, but when path compressions are performed. Recall that the
length of a dominance frontier interval path can progressively decrease after its
overlapped paths are compressed. As we can see from the table that there is
not much difference between C’ and C. The ratio & gives an indication on how
much improvement delayed elimination can achieve over eager elimination. The
average ratio is 1.28, indicating that delayed elimination method should, ideally,
be faster than eager elimination by a factor of 1.28 (if we ignore the overhead of
bookkeeping and nonprofitable path compressions in delayed elimination).

In Figure 10.10 we plotted the size of dominance frontiers | D F| along with
C and C'. From the plot and the table we can that the length of the dominance
frontier interval without compression, C’, is less than the size of the dominance
frontier relation, |DF,|. In the plot we have also shown the sizes of dominance
frontiers |DF.|. As we can see from Table 10.1 and from the plot shown in
Figure 10.10, the lengths C and C’ are less than |DF,]. From this result we can
conclude that the time complexity of delayed elimination can be expected to be
linear in practice. Also, from the table we can see that the number of E-rules
applied (i.e., nE) is less than |DF,|. From this, we can again conclude that the
time complexity of eager elimination should also be linear in practice (since the
size of dominance frontier is linear in practice). Finally, as expected, we can
see that the total number of D-rules nD applied is bounded by the number of
flowgraph edges |Ey].

In delayed elimiration, although each D2b rule takes only constant time, the
cost of applying D1 or D2a rule includes the cost of the path compression incurred.
The total number of path compressions performed is equal to the number of D2b
rules applied, but each compression can take O(log(N)) time (in the worst case).
Therefore delayed elimination can suffer from the log(V) overhead factor due to
a path compression. For the benefit of path compressions to be fully exploited,
there must be enough overlapping paths, so that future path compfessions could
take less time. The number of dominance frontier interval paths passing through
a node is bounded by the number of nodes in its dominance frontier. In other
words, a node can participate in path compressions only as many times as the
size of its dominance frontier set, which is a small constant in practice (we can use
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use |DF.| and |E;| from Table 10.1 to calculate %%ﬁ as an estimate). Therefore,

we believe the benefit of path compressions will normally not be fully utilized for
real programs.

As a final remark, we want to emphasize that the above observations are
restricted to the context of intraprocedural analysis. We did not empirically

investigate our approach for interprocedural analysis to quantitatively argue its
behavior in practice.

10.9.2 Execution Performance

Table 10.2 gives the timins; data from our experiments. The columns T;, T, and Ty
give the execution times in seconds for the iterative method, the eager elimination
method, and the delayed elimination method, respectively. The columns S;/.
and Sjq gives the speedups of eager method over iterative method and delayed
method over iterative method, respectively.

For the data given in Table 16.2, we observed the following characteristics.

o Foriteration method we observed that the execution time is linearly propor-
tional to the product |E! x |G| x nl, where |E| is the number of flowgraph
edge, |G| is the total number of downward exposed definitions, and nl is

the number iteration required for convergence of the iteration algorithm
(Figure 10.11).

o For both eager and delayed elimination methods we observed that the exe-
cution time is linearly proportional to the product O(| E| x |G|} (Figure 10.12.

From the execution characteristics we can see that the eager elimination
method is competitive with the delayed elimination method. Eager elimina-
tion can even out perform delayed elimination in some cases. This is because
there are not many overlapping paths in our test programs for delayed method
to benefit from path compressions. Recall that each path compression takes time
proportional to the path length. This cost is unnecessarily spent if there are no
overlapping paths.

Theoretically, the eager elimination method is worse than the delayed elim-
ination method in terms of time complexity. However, our empirical results
demonstrate that eager method is very competitive when compared with delayed
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method. From a pragmatic point view, we thus recommend that one implement
the eager method. Not only is it simple and easy to implement, but also it is
amenable to incremental data flow analysis (Chapter 11 and [SG95a)).

We found several “outstanding” procedures when we examined the data re-
ported in Table 10.1 and 10.2. The first one is the procedure iniset: The sum
of its £D1 and ED2b numbers is equal to its |DF,| number. For this procedure
154 E1 (D1) rules were applied, suggesting that iniset contains 154 loops. We
examined the procedure and found this to be true: It consists of 154 simple DO
loops for initializing arrays. From Table 10.2, we can see that iterative method
takes only two iterations to converge. By contrast, both eager and delayed elim-
ination methods perform poorly for this procedure. Another interesting aspect
for this procedure is that the ratio & is one, suggesting that CompPath() is never
called for this procedure.

At the other extreme is procedure twldxv. This procedure is well-known for
its complex control flow (although it does not have irreducible loops). As we
can see, iterative method takes 9 iterations for solving the data flow equations.
Both eager and delayed elimination methods perform much better than iterative
method.

Another interesting procedure is readin. This procedure also has complex
control structure and, as expected, both eager and delayed elimination methods
perform better than iterative method. The size of dominance frontiers is quite
large compared to the number of flowgraph nodes or edges. The ratio & for
this procedure is the largest among all the procedure, suggesting that delayed
elimination method should perform better than eager elimination method. From
the speedup measure, we can see that this is indeed true.

10.10 Discussion and Related Work

In this section we compare our work with other related work. Our work is re-
lated to all of the four classical elimination methods (the Alten-Cocke method, the
Hecht-Ullman method, the Graham-Wegman method, and the Tarjan method),
but with a number of significant differences. In [RP86] Ryder and Paull present
a unified model to characterize a family of data flow analysis algorithms—
elimination methods. The model is based on systems of data flow equations.
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They compare and contrast the four elimination methods. We encourage readers
to consult this article for a comprehensive treatment of elimination methods.

Except for Graham-Wegman's analysis, these elimiration methods are appli-
cable only to reducible flow graphs. They mainly use two approaches to handle
irreducible flow graphs. One is node splitting, which replicates certain nodes in
a flow graph and generates an “equivalent,” reducible flow graph [Hec77]. The
other approach is to form improper regions to accommodate irreducibility and
use fixed-point iteration in those regions [Bur90]. Our elimination method takes
the second approach but can utilize the strength of elimination methods within
the reducible portions of an improper region. Consequently, fixed-point iteration
is performed on a normally much smaller set of equations.

Allen-Cocke’s interval analysis was the first elimination method [AC76]. The
Allen-Cocke method for forward data flow problems has two phases: elimination
and propagation. In the elimination phase, it partitions the flow graph into
intervals, summarizes data flow effects Jocal to each interval on the global data
flow solution, and collapses each interval into a single node.!® It repeats the
process until there is only one node left, and thén easily solves the data flow
problem on this node. In the propagation phase, it expands a node into an
interval, and propagates global data flow information from the head node to
internal nodes in the interval.

Any Allen-Cocke interval is a single-entry region; its head node dominates all
the internal nodes in the interval. Thus, the data flow solution at each internal
node can be expressed solely in terms of the solution at its head node. The worst-
case time complexity for the Allen-Cocke method can be quadratic, and so is our
eager substitution method.

In Tarjan’s interval analysis [Tar74], an interval is a single-entry, strongly
connected subgraph; by contrast, an Allen-Cocke interval need not be strongly
connected. The Tarjan intervals, therefore, can reflect the loop structure of a
program. His method carefully orders variable substitutions in a system of data
flow equations. It delays some substitutions until a later time when common
factors can be detected, calculated only once, and used. In [Tar81] Taxjan proposes
two implementations for his approach. An almost linear time algorithm needs to

%For backward data flow problems, the flow graph partitioning will be performed on the
reverse flow graph.
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use the balanced, path compressed trees. By contrast, our delayed substitution
method is linear and performs compression on the dominator tree.

Hecht-Ullman'’s T1-T2 analysis uses single-entry regions to direct its climina-
tion phase [Hec77]. Two transformations, T1 and T2, are repeatedly applied to a
reducible flow graph until it is collapsed into one single node. The sequence of T1
and T2 operations applied is called a parse of the flow graph. The Hecht-Ullman
method uses this parse to guide the elimination phase. Data flow information is
summarized in some region at each step of the parse. In the propagation phase,
the reverse order of the parse is used and data flow information is propagated
within some region.

Our D1 rule is exactly the same as T1; our D2 rules are similar to T2. However,
our D2b rule is equivalent to a sequence of T2 rules. To achieve the O(| E| log(|N1))
time bound, the Hecht-Ullman method uses a height-balanced 2-3 tree to assist
delayed substitutions of variables in data flow equations. This data structure is
more complicated than our compressed dominator tree. In addition, the Hecht-
Ullman method needs an explicit parse to guide its elimination and propagation.
By contrast, we do not need to keep track of the order in which our reduction
rules are applied, since our approach does its propagation on the domiiiator tree
(which may be compressed) in a top-down manner.

Graham-Wegman's analysis uses graph reduction rules similar to those in the
Hecht-Ullman method, whereas its groupings of data flow equations are similar
to those in Tarjan’s interval analysis [GW76]. It partitions the flow graph nodes
into non-disjoint sets called S-sets, which are analogous to the Tarjan intervals.
However, not all the nodes in an S-set are collapsed into the S-set entry node. The
variables representing solutions at the remaining nodes, therefore, still exist in a
reduced system of equations after the S-set is processed, thereby making explicit
the delayed substitutions of variables. These substitutions are remembered in a
reduced flow graph. Our path compression is comparable to that in Graham-
Wegman method. During their T2' rule they have to inspect which outgoing
edges of a node are within the current S-set (in Graham-Wegman method, the
S-set is a strongly connected region). Therefore the time complexity of their T2'
rule depends on the number of loop exit and so is non-linear. In our case, D2b
rule eliminates such edges so we never need to ‘inspect’ any J edges during
path compression (in Graham-Wegman method T2’ does path compression on
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the depth first spanning tree).

For reducible flow graphs, the Graham-Wegman method uses graph reduction
rules S1 and S2 to collapse nodes within an S-set. If necessary, 53 is used to reduce
the final graph to one node. S1 is the same as our D1; 52 is similar to our D2 rules;
and S3 is similar to our D3. These operations can be generalized to GSI, GS2,
and GS3 to handle irreducibility caused by multiple-entry regions. For reducible
flow graphs, the worst-case time complexity of Graham-Wegman’s analysis is
O(| £ log(1 £1)-

Elimination methods are general-purpose data flow solution procedures
{MarS9, Bur90, Ros81, Tar81]. All the above classical elimination methods are
formulated and discussed with fast problems. In [Bur90} Burke reformulates
Tarjan’s interval analysis so that it can be applied to any monotone data flow
problem. The loop-breaking rule used by Ryder and Paull in [RP86] is only valid
for fast problems. Burke proposes to use the closure of an interval in order to
summarize local data flow information for monotone problems. Inour approach,
we similarly define a closure operation for a recursive data flow equation.

In Section 5 of [Tar81], Tarjan defines a derived graph G’ of a flow graph G
in order to solve path problems on both reducible and irreducible graphs. Using
our terms, we observe that all the D edges in G also appear in G’. On the other
hand, for each J edge in G, the corresponding edge in G' is exactly the same as the
new J edge we would create in our D2'b rule. We suspect that this coincidence
may partially explain why our method can handle irreducibility gracefully.



Chapter 11

A New Framework for
Elimination-Based Data Flow

Analysis: Incremental Analysis

One of my favorite philosophical tenets is that people will agree with you
only if they already agree with you. You do not change people’s minds.
—Frank Vincent Zappa

In this chapter we present a new approach for incremental data flow analysis
based on elimination methods. Qur approach is based on incrementalizing our
eager elimination method (Chapter 10). Compared to previous elimination-based
incremental data flow analyses, our approach can handle arbitrary non-structural
and structural changes, including irreducibility. To incrementally update data
flow solutions we use properties of dominance frontiers and iterated dominance
frontiers, and these properties are valid for both reducible and irreducible flow-
graphs. In the next section we introduce and motivate the problem of incremen-
tal data flow analysis. In Section 11.2, we briefly review our eager elimination
method. In Section 11.3, we introduce the concept of initial and final data flow
equations, which are central to our approach. In Section 11.4and Section 11.5, we
give algorithms for updating the final flow equations for non-structural changes
and for structural changes, respectively. Once the final flow equations have been
updated, we next show how to update the final data flow solutions for both
structural and non-structural changes, in Section 11.6. In Section 11.7, we prove
the correctness of our approach and also analyze its time complexity. Finally, in

218
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Section 11.8, we compare our work with other related work.

11.1 Introduction and Motivation

There are two classical approaches to incremental data flow analysis: one
based on iteration methods [P$89], and ancther based on elimination meth-
ods [RP88, CR88]. Marlowe and others have extensively studied the rela-
tive merits of one approach over the other [Mar89, RMP88, MRS0b, BRO].
Marlowe has also proposed a hybrid scheme that combines the two ap-
proaches [MR90b, Mar89].

In this chapter we present a new approach for incremental data flow analysis
that is based on our eager elimination method. Compared to previous elimination-
based incremental data flow analyses, our approach can handle arbitrary non-
structural and structural program changes, including irreducibility. A novel
aspect of our approach is that we use simple properties of dominance frontiers and
iterated dominance frontiers for updating the data flow solutions. In Chapter 8
we showed how to use such properties in the context of incremental dominator
tree update problem. In this chapter we will go one step further and show how
to exploit them in the context of incremental data flow analysis.

In Chapter 10 we proposed a new approach for elimination-based data flow
analysis that uses DJ graphs for reduction and variable elimination. We proposed
two variations of our approach: (1) eager elimination method, and (2) delayed
elimination method. Both approaches perform reduction and variable elimina-
tion on DJ graphs in a bottom-up fashion, ordered by the levels of the nodes on
the dominator tree. Unlike the eager elimination method, the delayed elimina-
tion method also compresses the dominator tree to improve the worst-case time
complexity of the eager elimination method (Chapter 10 and see also {SGL95)).

In this chapter we show how to incrementalize our eager elimination method.
Incrementalizing the delayed elimination method involves incrementally main-
taining the compressed dominator tree, and doing this is a complex process and
may not be worth the effort. Ryder and Paull have similarly shown that in-
crementalizing other delayed approaches, such as the Hecht-Ullman algorithm,
also involves maintaining auxiliary structures (e.g., 2-3 tree) while updating the
data flow solutions. Maintaining such structures may out-weigh the benefits of
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.,_ incremental data flow analysis [RPSS].
The major features of our algorithm are as follows:

¢ Unlike many of the previous incremental elimination algorithms, our algo-

rithm can handle arbitrary non-structural and structural program changes,
including irreducibility.

+ We use simple properties of dominance frontiers and iterated dominance
frontiers for updating the data flow solutions. These properties were intro-
duced for constructing Static Single Assignment form and other other Sparse
Evaluation Graphs [CFR*91, CCF91]. In this chapter we will show how to
exploit such properties in the context of incremental data flow analysis.

11.2 Exhaustive Eager Elimination Method: An

Overview

. In this section we briefly review our exhaustive eager elimination method (Chap-

ter 10). Recall that our exhaustive eager elimination method consists of three
phases:

1. Reduce the DJ graph to its dominator tree in a bottom-up fashion using
E-rules.

2. Reduce the system of data flow equations by eliminating variables.

3. Propagate the final data flow solutions in a top-down manner on the domi-
nator tree.

Rather than reducing a DJ graph to a single node we only eliminate ] edges in
a bottom-up fashion, preserving the structure of the dominator tree for the entire
duration of the algorithm. During the bottom-up reduction we apply the £-rules
for eliminating flow variables and reducing the DJ graph to its dominator tree.
The E-rules are always applied to a J edge y — z such that y is a non-join node,
and there are no other ] edges whose source node is greater than y.level, the level
number of node y. Each application of £-rules transforms some reduced DJ graph
. G’ to G+, until the DJ graph reduces to its dominator tree.
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The E1 rule eliminates a self-loop, and computes closure of its recursive equa-
tion.

Definition 11.1 (El rule) Let G' = (N, E) be the ith reduced DJ graph. Let y be a
non-join node such that y contains a self-loop. Let H, : Oy = f(O,) be the flow equation
at node y. The E1 rule is given below:
e (1) Graph reduction:

EN< G N,E,yy>) =< G NE—-{ySy}>
e (2#) Variable eliminatior:

EY< H,:0, = f(0y) >) =<0, = f*(0,) >

E2 ruleis applied to aJedgey — =, if y is a non-join node and it do not contain
a self-loop. We distinguish between two types of E2 rules depending on the levels
of y and z. If y.level = z.level we apply E2a rule; otherwise we apply E2b.

Definition 11.2 (E2 rules) Let G' = (N, E) be theith reduced D] graph. Let y beanon-
join node such y do not contain a self-loop. Let y — = be a | edge, and let z = idom(y).
Let Hy : O, = kO: + m be the equation at node y, such that the parameters k and m
does not contain any variables. Finally, let H. : O, = aO, + b be the equation at node z,
where a and b does not contain the variable O,. There are two cases:
(E2a rule) If y.level = z.level then
¢ (¢) Graph reduction:

E2(< G N,E,y H2z>) =<G+* NE-{y >z} >
e (i) Variable elimination:

E2a(< H.:0,=60,+b>) =< H.:0.=a(kO: +m)+b>
(E2b rule) If y.level # z.level then
¢ (#) Graph reduction:

E2{< G N, E;y B z>) =< N(E-{y S Hufz Sz} >1?
e (3t)Variable elimination:

E2a(< H.:0;,=a0,4+b>) =< H.:0,=a(kO+m)+b>

The newly inserted edge idom(y) — z in E2b is called the derived edge of
y — 2. Animportant point to note here is that before an E2 rule is applied to an
edge y — z, we first eliminate the self-loop y — y, if it exists, using an E1 rule.

1We do not insert = — z in G*11 if it is already presentin G'.
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Handling Irreducibility

In our exhaustive eager elimination method irreducibility is detected whenever
we cannot apply any of the £-rules, although there are ] edges that originate at the
current level. If this is the case, we apply Tarjan’s Strongly Connected Component
(SCC) algorithm and collapse every non-trivial component to a single node. In
applying the Tarjan’s algorithm to the reduced DJ graph, we visits only the nodes
via ] edges whose source and destination nodes are at the current level. This will
generate dag(s) of SCCs. It is important to remember there can be more than one
disjoint dag at level i. We process each SCC in each dag in topological order. We
compute closure of equations of all nodes in S, if needed. We also express the
flow equations at all nodes at level : in terms of flow variable of their immediate
dominator node. This is possible because we are eliminating the flow variables in
the topological order of the SCC. Next we eliminate all ] edges whose source and
destination nodes are at level . Finally we apply E2b rule to all ] edges whose
source nodes are at level ¢ and destination nodes are at levels less . Once this is
done, all the J edges whose source nodes are at this level are eliminated, and so
we can continue to apply E-rules to nodes at levels less than i.

11.3 Problem Formulation

In the next several sections we present our approach for incremental data flow
analysis. In this section we will set the stage for our approach. Specifically we
will introduce the concept of initial and final flow equations in Section 11.3.1,and
introduce the steps involved in the updating the final data flow solutions in Sec-
tion 11.3.2. We will also show how DF graphs, introduced in Chapter 9, is related
to the concept of “derived edges” introduced in Chapter 10 (Section 11.3.3). In
this chapter we will use DF graphs for updating data flow solutions.

11.3.1 Initial and Final Flow Equations

Our exhaustive eager elimination method consists of three steps: (1) reduce the
DJ graph to its dominator tree in a bottom-up fashion, (2) eliminate the variables
by substitution, and (3) propagate the solution of root node to all other nodes,
determining, their corresponding solution. In Chapter 10 we showed that at the
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end of elimination phase (step 2), the flow equation at each node depends only
on the output flow variable of its immediate dominator node. In other words,
let ¥ be a node and let z = idom(y), the flow equation at node y, at the end of
elimination phase, would resemble:

HE : f7(0:) =0y, = PFO: + G,, (11.1)

where P} and G¥ are final parameters of the equation at node y. We will call the
set of equations at the end of elimination phase as the final flow equations. In
contrast, we will call the set of flow equations prior to DJ graph reduction and
variable eliminatior: «.» the initial flow equations. We will denote the initial flow
equation at 2 node y as follows:

H:f(L)=0,=P)( N\ 0.)+G} (11.2)

2€Pred;(y)

where P and G are initial parameters of the initial flow equation at node y, A is
merge (union) operator, and Pred;(y) is a set of predecessors in the corresponding
flowgraph.

Example 11.1

Consider a forward data flow problem with union as the merge op-
eration (e.g., Reaching Definitions). The initial flow equation at each
node for the example flowgraph shown in Figure 11.1 is as follows:

Os = G

01 = POs+GY

0 = P2OL1+GS

03 = PJ(O1+0s) +G3

Oy = PNO:+03+07)+ G}
Os = P04+ G?

Os = P0s+ G2

O = PXOs+0¢)+GS

Os = PRO7+GY



CHAPTER 11. INCREMENTAL DATA FLOW ANALYSIS 224

Level §

= e
g oy -

PR
alg
é’j Level 4
(4

(b) dominator tree

Level 0
(a} flowgaph ¢
Level 1

Level2

Level3

Level 4

(c) D] graph

Figure 11.1: Another example of a flowgraph, its dominator tree, and its DJ graph.
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O = PXOs+ 02+ 0s) +G%

The corresponding final flow equation at each node would resemble:
HE - 05 G%
HF:00 = PPOs+ G
Hf:0, = PXO1+ G}
HY : 03 = PO, + (PAPJPIP2 + POPYP2PYO, + PIPS PAGY +
P)P{P{GS + PIF{G} + PIGy + G
HF :0, = P)PYOy+ (PPIPYPOPY + POPOPAPYPDYO, +
PPPYPIPOGE + PIPOPP PGS + PO POPYGY + PPPYGY +
PiG3+Gq
HY :0s = PlOs+ G}
HE:0s = P04 +GE
Hf :0; = (P{PJ+ P{F))0s+ PGS+ P}GY
HE:04 = P)O;+ G}

In the above system of equations, Hf and H} are mutually recursive,
and the final equations at nodes 3 and 4 is the closure of the two
equations. Once the closure is determined, the final flow equations at
these nodes are expressed in terms of their immediate dominator node
(see Chapter 10).

. 11.3.2 Basic Steps

Given the notion of initial and final flow equations we are ready to lay the foun-
dation of our approach for incremental data flow analysis. The problem of incre-
mental data flow analysis can be concisely stated as follows [PS89]:

Given a program and a correct solution to a data flow problem over
that program, update the affected parts of the current solution to re-
flect a change in the program without unnecessary reinitialization and
recalculation of the entire data flow solution.
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To simplify the presentation, we will consider only the following two types of
incremental changes:

o Non-structural change: The parameters of the initial flow equation H ata
node y are modified.

¢ Structural change: A flowgraph edge r — y is either inserted or deleted in
the flowgraph.

One can easily extend and implement other types of incremental changes using the
results of this chapter. It is important to remember that all incremental algorithms
rely on hav.ing correct solutions at all nodes prior to incremental changes. Once
an incremental change is effected, incremental algorithms will update (ideally)
only those solutions that are affected due to the incremental change [Mar89]. Let
us denote the data flow solution at each node y, prior to incremental change, as
of . We will call of as the final flow solution at a node y. Let z = idom(y), then
one can easily show the following input-output relation will hold at node y prior
to an incremental change.

H?:of = fF(af) = PFaf + GE (11.3)

The first step in our approach is to associate with each node y: (1) the initial flow
equation H,(2) the final flow equation HY, and (3) the final flow solution & . Now
supposing we induce an incremental change (such as updating the parameter of
the initial flow equations, inserting a new flowgraph edge, or deleting an existing

flowgraph edge), our incremental data flow analysis will update the data flow
solutions in two steps:

¢ Update the final data flow equations; and

e Update the final data flow solutions.

We will handle structural and non-structural changes separately. The complete
algorithm for incremental data flow analysis is given below:

Algorithm 11.1 The following algorithm updates the data flow solution when the corre-
sponding flowgraph is subjected to structural and non-structural incremental changes.
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MainIDFA()

{

306: if (IncrementalChange == Non-Structural) then

307: Update final flow equations for non-structural changes (Section 11.4)
308: else

309: Update final flow equations for structural changes (Section 11.5)
310: endif

311: Update final data flow solutions (Section 11.6).

}

To effectively handle the incremental changes we will use Dominance Frontier
(DF) graph introduced in Chapter 9 (Section 9.5). Recall that a DF graph is
nothing but the dominator tree of a flowgraph augmented with edges z — y such
that y € DF(z). We will use DF graph for updating the final flow equations.

11.3.3 DF Graphs Revisited

In our exhaustive eager elimination method when we apply the E2b rule to an
edge y — z, we eliminate y — z and insert z — z, where z = idom(y). In other
words we “derive” the edge z — z from y — z by applying the E2b rule, and
so we call z — z as a derived edge of y — z. Now if x.level > z.level, we will
(subsequently) apply E2b rule to z — = to derive another edge w — z, where
w = idomn(z). We will continue to apply E2b rule to the “derived edges” as long
as its source and destination nodes are at the same level, at which point we either
apply an E1 rule or an E2a rule, eliminating the derived edge.

An astute reader may observe the relation between derived edges and dom-
inance frontiers. To see this let y — z be the original J edge in the inittal DJ
graph, then ¢ — z will be a derived edge if z € DF(z). This is interesting
because given a dominator tree we can augment the dominator tree with edges
z — y such that y € DF(z). The resulting graph is the Dominance Frontier (DF)
graph. Figure 11.2(b) gives the DF graph for our example flowgraph shown in
Figure 11.1.
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Figure 11.2: A flowgraph and its DF graph.

114 Updating Final Data Flow Equations: Non-
Structural Changes

In this section we will show how to update the final data flow equations for a
non-structural change at anode y in a flowgraph. An example of a non-structural
change at a node y is addition or deletion of a new definition. Because of this
update, the reaching definition information at other nodes may be affected. By
adding or deleting a definition, we are essentially changing the parameters P?
and G? of the initial flow equation at node y.

Given an incremental change at a node y, the first step is to determine the set
of nodes whose final flow equations is affected. To determine the set of affected
nodes we made one key observation. Consider the final flow equation of node 7
of the example flowgraph shown in Figure 11.1.

H :07 = (PP} + PJP))0s+ PGS + PG}
= P7F04+Gg
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We notice that the final parameters 2 and Gf on the RHS of the equation are
made up of the initial parameters P2, G2, F¢, and G{ of nodes 5 and 6, respectively.
It is important to remember that the parameters of both the initial flow equation
and the final flow equation at a node are constant values. We will use the term
appears to mean that the parameters of the final flow equations are computed
from the parameters of initial flow equations during the reduction and variable
elimination phase of the eager elimination algorithm. Given this notion, the key
question to ask is: how are the parameters of the initial flow equations related
to the parameters of the final flow equations? We found a surprisingly simple
relation between the initial and the final parameters of flow equations.

Claim 11.1 Let PL and GE be the parameters of the final flow equations at node w. PP
and G? will appear in PE and GE if and only if either w = v or w € I DF(u).

We will prove this claim later in Section 11.7. The above claim has an im-
portant implication in our incremental algorithm. Supposing we make a non-
structural change to a node y, thereby affecting P? and GJ. From Claim 11.1 we
should update the final flow equation of all nodes that are in the IDF(y). Now
since we are changing PJ and GY, the final flow equation HY at node y should
also be updated. Let FEqAffected(y) be the set of all nodes whose final flow equa-
tion change due to 2 non-structural change at y (i.e., FEqAffected(y) is the set of
“affected” nodes). To determine the set nodes whose final flow equations have tc
be updated, we will use the following key result:

Claim 11.2 Let theparameters P,) and G, of the initial flow equation at node y be updated.
Then the final flow equation at a node w is affected (i.e., w is in FEqAffected(y)) if and
onlyifw € {y} UIDF(y).

Therefore, from the above key result, we can see that the first step in updating
the final flow equations is to compute the set IDF(y). Computing IDF(y) is
~ much simpler using DF graphs than DJ graphs. We can easily show thatanode w
is in IDF(y) if and only if there exists a path P from y to w in DF graph that does
not contain D edges. Therefore to compute the IDF(y) we determine all nodes
that are reachable from y without visiting any D edges.

Once we compute the D F(y), we next construct a Projection Graph Proj(y)
of the DF graph with respect to the nodes in {y} U IDF(y). The projection graph
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Proj(y) consists of nodes in set {y} U IDF(y), and we insert an edge p — ¢
between any two nodes in Proj(y) if and only if ¢ € DF(p) in DF graph.® For
example, let us construct the prujection graph Proj(5). First we compute /D £(5),
which consists of nodes {3,4,7,END}. The next step is to insert edges u — w
from the DF graph, such that w € DF(u) and both u and w are in Proj(5). The
resulting projection graph Proj(5) is shown in Figure 11.3(a).

() Proj(5) (b) DAG

Figure 11.3: The projection graph Proj(5) graph, and its dag.

Given the projection graph we will next show how to update the final flow
equations of the affected nodes. It is important to remember that a node w is

-affected (because of a non-structural change at node y) if and only if w is in

Proj(y). Itis also important to note that Proj{y) need not be acyclic. So the
first step is to apply Tarjan’s Strongly Connected Component (SCC) algorithm
and process each component in the topological order of the dag of SCCs. For
example, the Proj(5) in Figure 11.3(a) is not acyclic, and so we determine its dag
of SCCs, which is shown in Figure 11.3(b). Now if a SCC in the dag of Prej(y)
contains a cycle, we compute the closure of the equations of the nodes in the SCC
(as in the exhaustive case). We can easily show that if an SCC contains more
than one node, then all the nodes will be at the same level in the DF graph (see
Chapter 6). Now given the dag of SCCs of Proj(y), we process each SCC in the

2Note that the set DF(p) is same in both the original flowgraph and its DF graph.
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dag in topological order. 1t is important to remember that the only variable on the
RHS of the final flow equation at a node should be the output flow variable of its
immediate dominator. Given this we next show how to construct the final flow
equations of all the affected nodes. The projection graph Proj(y) helps provide an
ordering in which we can update the final flow equations at the affected nodes. As
discussed above, we first apply Tarjan’s Strongly Connected Component (SCC)
algorithm to the projection graph. Then we determine a topological ordering on
the strong components. Finally, we visit the strong components $ in topological
order to update their final flow equations. There are three cases to consider:

Case 1: 5 is a single node and has no self-loop. Let Pred;(S) be the set of pre-
decessor of node S in the corresponding flowgraph. Assume that the final
flow equation at every predecessor p € Pred(S) is correct (either previ-
ously updated or unaffected by the incremental change). To updated final
flow equation Hf at node S, we start with its initial flow equation. That is,
we first construct the following equation at node S:

Hs:0s=P§( A 0)+Gs, (11.4)
tEPreds(S)

Starting from this equation, we.eliminate variables from it in a bottom-up
fashion, as in our exhaustive eager elimination, until the only variable in Hg
is that of its immediate dominator node. Recall that during the elimination
process we create and delete derived edges. The topological ordering of the
SCCs ensures that the final equation at source nodes of these derived edges
are in its final form. At the end of the elimination process the equation
at node S will be in its final form. Notice that the above (incremental)
update is nothing but a “selective” exhaustive eager elimination process,
but restricted to the equation at node S.

. Case2: §is asingle node and has a self-loop. Here we assume that the final
; flow equation at every predecessor of node S, excluding § itself, is cor-
rect. We next perform a “selective” exhaustive variable elimination starting
from the initial flow equation Hs of node S. At the end of this selective vari-
able elimination, the only variable that will remain in Hs is Os and O;aom(s)-
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At this point we compute the closure of the recursive equation to break the

dependency of Os on itself (4 la E1 rule) and obtain the updated final flow
equation HE.

Case 3: § contains more than one node. In this case we have irreducibility, and

so we have to simultaneously determine the final flow equation of all nodes
in §. These nodes have the same immediate dominator. In this case we
will assume that the final flow equation at all nodes in N — S are correct
(where N is a set of all nodes in the DF graph). As before, we again perform
“selective” variable elimination, for each equation at w nodes in S, until
the only variables remaining in the system of equations are those of nodes
in S and the output variable their immediate dominator node. Finally we
perform fixed-point iterations over all the mutually recursive equation and
determine their closure.

The complete algorithm is given below.

UpdateFlowEq(y)
{
3122 Compute IDF(y)
313: Determine Proj(y)
314: Apply Tarjan’s SCC algorithm determine the SCCs in Proj(y)-
315: For each SCC S in topological order do
316: Switch (5)
317: Case 1: S is a single node and does not contain a self-loop.
Compute the final flow equation as described in the main text.
318: Case 2: § is a single node and contain a self-loop.
Compute the final flow equation as described in the main text.
319: _ Case 3: S contains more than one node.
Compute the final flow equation as described in the main text.
320: EndSwitch
}
Example 112

Consider the previous example where we induce a non-structural
change to node 5. The corresponding Proj(5) and its dag is shown in
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Figure 11.3. We will process the nodes in the dag order. So we will

first process node 5. Node 5 is a single node with no self-loop, and so

corresponds to case 1 (step | 317 ). The only predecessor of node 5 (on

the flowgraph) is node 4. The new final flow equation of node 5 is
H3F = PF%0; + G™,

where the superscript n means new equation {or parameters).

Next we process node 7, and this also corresponds to case 1 in the
algorithm (step . The two predecessor nodes of node 7 are 5 and
6. The initial flow equation of node 7 depends only on equations at
node 5 and node 6, and is given below:

O7 = P}(0s+ O) + G5
Note that the equation at node 6 is unaffected, butatnode S itis affected
(and updated). After eliminating Os and Os in above equation we get
the new final flow equation for node 7:
H;":07 = (FF°+ FF)0s+ FG3 + P7G
= PO+ G3°

Next we process the non-trivial SCC 3, which corresponds to case 3 in
the algorithm (step [319)). The SCC 3 consists of nodes 3 and 4. We
first set up the intial flow equations for these two nodes:

Os = PO+ 0g)+ G}

Os = PO+ 03407} +GY

Next we perform variable elimination, and reduce the equation to the
following form:

H}F :05 = PO+ (PIPOPPPM™ 4+ PPPPPPOYO, + PEPIPIGR +
PPy P;GY’ + P)P{GY + PGy + G3

H :04 = PJPO, + (PPPYPIPOPI® + PP POPIPOPYO, +
PiR{R{P)GY’ + PP P{P}G{ + PP} P{G} +
P{PjGs+ P{G3 + G|
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Notice that the only variables in the above two equations are those of
the nodes in the SCC 3 and their immediate dominator node. Next we
compute the closure of the two equations using fixed-point iterations,

and express them only in terms of O, the immediate dominator of the
nodes in SCC 3.

11.5 Updating Final Data Flow Equations: Structural
Changes

Next we will show how to update the final flow equations for structural changes
(i.e, insertion and deletion of a flowgraph edge). Our algorithm for structural
changes consists of the following steps:

¢ Update the dominator tree of the flowgraph.
¢ Update the dominance frontier relation of the flowgraph.

¢ Update the final flow equations.

In Chapter 8 we gave a simple algorithm for updating the dominator tree of a
flowgraph, and in Chapter 9 we gave a simple algorithm for updating dominance
frontiers of a flowgraph. We will use these two results in this chapter. Recall that
p — qis a DF edge in DF graph iff ¢ € DF(p). Therefore the problem of updating
DF graphs is isomorphic to the problem of updating dominance frontiers.

Once we have updated the dominance frontier relation, we will next show
how to update the final flow equations at all the ‘affected’ nodes. Again, let the
edge z — y be the structural update (either inserted or deleted). Now the key
question to ask is: at which nodes are the final data flow equations affected when
anew edge z — y is updated. The answer to the above question is given in the
following claim:

Claim 11.3 Let z — y be the edge that is updated in the flowgraph. The final data flow
equation at a node w is affected if and only ifw € {y} U IDF(y).

This is very interesting. Recall in Section 11.4 we made a similar claim
(Claim 11.2) for non-structural updates. This means that we can essentially use
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the same algorithm as given in Section 11.4 for updating the final data flow
equations even for structural changes. But rather than using the ‘old’ DF graph
we will have to use the updated DF graph, to compute the new set of final flow
equations. In other words we first compute the /DF(y) on the new DF graph
and, as before, construct the projected graph Proj(y). Once the projected graph
is constructed, we update the final flow equations at all nodes in Proj(y), using
the same strategy described in Section 11.4.

11.6 Updating Final Data Flow Solutions

In this section we will show how to update the final data flow solu+tions of, once
the final data flow equations have been updated. The first key question to ask is:
at which nodes the final data flow solutions are affected because of an incremental
change. As before let Proj{y) be the set of nodes where data flow equations have
been updated. Once the data flow equations have been updated at these nodes,
wemay have to update their final data flow solutions. Itis important to remember
that the final data flow equation at each node will depend only on the output flow
variable of its immediate dominator node.

Letwbeanode in Proj(y) whose new final data flow equation is fim(I,,). Let
of°! be the old final solution at this node (which may not be a correct solution).
Let v = idom(w) whose data flow solution of " is a ‘correct” solution.® If the
following relation holds at node w

a‘!:o!d — f‘ﬁnem(afoor)’

then we need not update the final solutions of the children nodes of w. Otherwise,
we have to compute o£®" and mark the immediate dominee of w (i.e., children
of w on the dominator tree) as potentially being affected, and repeat the process
for each child node. Since the flow equation at node w is depends only on its
immediate dominater node, and since the solution of its immediate dominator is
correct, we can compute the new correct firal solution at w as follows:

af" = fE (o)

3By correct solution we mean that either its original solution was unaffected because of the
incremental change, or some how has been correctly updated.
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It is important to observe that before we can update the final solution at a
node w, we have to ensure that the final solution of its immediate dominator node
is correct. Also, once (and if) we update w final solution we have to mark all
its children nodes to be potentially affected, and so their final solutions have to
be updated. Therefore we order the nodes in Proj(y) in terms of the levels of
the nodes on the dominator tree, and process the nodes in a top-down fashion.
We will use a data structure akin to OrderedBuckets to keep track nodes where
the final solutions are possibly affected. OrdercdBuckets is an array of buckets
ordered by levels of the nodes on the dominator tree. When a node z is inserted
in the bucket, it will be inserted at the bucket Ordered Buckets[z.level]. We will
initially insert all the nodes whose final flow equation was updated into the
OrderedBuckets. We then iterate by picking out one node at a time in a top-down
fashion and updating its solution. We check if the old solution at the node is
consistent with the final data flow equation at the node, if so we pick the next
node from the OrderedBuckets. Otherwise we compute the new final solution
and insert all its children nodes into the Ordered Buckets. The complete algorithm
is given below.

UpdateFlowSol()

{

321: Insert the set of nodes Proj(y) in the OrderedBuckets
322: foreachi=1to NumLevel—1do

323: while((u = IdfaGetNode(7)) # NULL) do

324: w = idom(u)

825: if(og? # I (af")) then

326: offeor = fEnes(gFar) |

327: Insert the children nodes of u in the Ordered Buckets.

328: else

329: afer = gf°ld /+ 01d solution is the correct solution */
330: endif

331: endwhile

332:  endfor

}

The function IdfaGetNode(i) returns a node z if one exists in the ith bucket,
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otherwise it returns NULL. Notice at step if the old solution is “cor-
rect” then the children nodes are not affected (unless they are already in the
Ordercd Buckels).

11.7 Correctness and Complexity

In this section we prove the correctness of our incremental algorithm and ana-
lyze its time complexity. The main theorem which establishes the correctness of
Algorithm 11.1 is Theorem 11.1. The proof of Theorem 11.1 relies on Lemma 11.6
and Lemma 11.5. Lemma 11.5 establishes the correctness of updating final flow
equations for both structural and non-structural changes. To update the final
flow equation of a node we must first know that it is affected. Lemma 11.3 and
Lemma 11.4 gives the necessary and sufficient condition to determine the exact
set of nodes whose final flow equations have to be updated for non-structural
and structural changes, respectively. The validity of these two lemmas is based
on another key lemma, Lemma 11.2, which establishes a relation between the pa-
rameters of initial flow equations and the parameters of the final flow equations.
To prove Lemma 11.2 we will use another lemma, Lemma 11.1, which relates the
concept of dominance frontiers and derived edges (see Definition 10.5).

The validity of Lemma 11.5 for structural changes relies on the correctness
of dominance frontier update algorithm (Theorem 9.1). Finally, Lemma 11.6
establishes the correctness of updating final flow solutions once the final flow
equations have been updated.

In our chain of proofs, we begin with Lemma 11.1, that relates the concept of
dominance frontiers and derived edges.

Lemma 11.1 In the exhaustive eager elimination method, a derived edge u — w will be
created and processed at some stage in the elimination phase iff w € DF(u).

Proof:

The “if” part: From Lemuna 4.1 weknow that if w € DF(u) then there
exists a J edge t — w such that u dom ¢ and w.level < u.level.
Now if ¢ = w is a ] edge then this edge will be processed during
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some stage in the elimination phase (i.e. one of &-rules will be
applied to this edge and the edge will be eliminated). Now if
t = u, then we are done (i.e, u — w is a derived edge). Otherwise
we will apply one or more E2b rules to the derived edgesof t — w
until the source node of the derived edge is at the same level as
the destination. Since v dom ¢, and w.level < u.level, eventually
a derived edge u — w will created and processed.

The “only if” part: If v — w is a derived edge then by Definition 10.5
u — w was created and processed at some stage during the eli-
mation phase. In other words, it was derived from some J edge
t — wsuchthatu dom ¢, and the level of u is greater than or equal
to the level of w. But from Lemma 4.1 we know thatift — wis
a ] edge such that u dom t and u.level 2 w.level, the w € DF ().
Hence the result.

Nextwe prove Lemma 11.2. This lemma is exactly the same as Claim 11.1. This
lemma states that the parameter P and G? in the initial flow equation of node u
will appearin PS and G¥, if and only if either w = uorw € IDF(u). Itis important
to remember that the parameters of both the initial flow equation and the final
flow equation at a node are constant values. We use the term appears to mean that
the parameters of the final flow equations are computed from the parameters of

the initial flow equations during the reduction and variable substitution phase of
the eager elimination algorithm.

Lemma 11.2 Let PF and GE be the parameters of the final flow equations at node w. P2
and G2 will appear in PL and GE if and only if either w = u or w € IDF(u).
Proof:
It is obvious to see that if w = u then P? and G% will appear in PZ and
GE, and vice versa. So let us assume that w # u.

The “if” part: We want to show that if w € IDF(u), then PJ and G?
will appear in P and GE.
Firstwe willshow thatifw € DF(x) then P? and G? willappearin
P and GE. Using Lemma 11.1 we can see that if w € DF(u) then
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u — w is a derived edge. When this edge is processed during the
elimination phase, we will eliminate O, in the flow equation H,
at node w, by substituting it with PFO, + GE, wherer = idom(u).
The parameters PF" and G¥ will contain P? ard G2 and so will
appear in H,, and hence #f, the final flow equation of node w.
Now to show that if w € I1DF(u), then P and G, will appear in
PF and GF, we can use inductive definition of iterative dominance
frontiers. Now, if w € IDF(u), then there exist nodes tg,...,1
such that w =g, u =y, and {; = DF(;41), where0 <i < k- 1.
We can use induction on i to show the result.

The “only if” part We want to show that if P{ and G? appear in PF
and GE, then w € IDF(u).
Now assume to the contrary that w ¢ JDF(u). Then either w is
notreachable from u or there exists anode s that strictly dominates
w and s € IDF(u). But if w is not reachable then P? and G? will
not appear in Pf and GE contradicting our assumption. Assume
that w is reachable from u but is not in I DF(u). Now we know
that there exists a node s closest to w that strictly dominates w and
s € IDF(u) (follows from Lemma 8.3). Therefore all paths from
u to w must pass through s. Now if s stdom w then a derived
edge will never be created between s and w (since s can never
be in DF(w)), and so P and GY will never propagate to w via
node s, and since all paths from u to w must pass through s, P2
and G? can never appear in PF and GZ, contradicting our initial
assumption. Therefore w must be in J DF(u).

Next we will prove Lemuma 11.3, which is same as the Claim 11.2.

Lemma 11.3 Let a non-structural change be induced at a node y. The final flow equation
at a node w is affected (i.e., w is in FEqAffected(y)) if and only if w € {y} U IDF(y).

Proof:
First of all observe that when we induce a non-structural change at
a node y, we are essentially changing the parameters P? and G of
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the initial flow equation at y. From Lemma 11.2 we know that if
w € IDF(y) then P? and G} will appear in PF and G, and vice-versa.
Therefore if P? and G are updated we have to update the parameters
PE and G of all final flow equations that appear in y U I DF(y). The
converse is also true i.e., if a node is in {y} U I DF () then its final flow
equation is affected. |

Next we will establish the correctness of Lemma 11.4, which which is same as
the Claim 11.3.

Lemma 114 Let x — y be the edge that is updated in the flowgraph. The final data flow
equation at a node w is affected if and only if w € y U IDF(y).

Proof:

First of all notice that insertion and/or deletion of an edge does not
affect the set of initial flow equations. Given this, the rest of the proof
is based on the following observation. When z — y is updated we are
essentially changing the input flow information of node y. Therefore
the parameters of the final flow equation at node y is affected. This
situation exactly corresponds to non-structural updates, except that
we do not change the parameters of the initial flow equation of node
y. The rest of the proof is exactly same as in the proof of Lemma 11.31

Recall that once we identify the set of nodes whose final flow equations are
affected we need to proceed to re-evaluate their new final flow equation. Next

we will show that steps to correctly re-evaluates the final flow equation
for both structural and non-structural changes.

Lemma 115 The steps ! 314]to correctly updates the final flow equations for both
structural and non-structural changes.

Proof:
From Lemmas 11.3 and 11.4 we know exactly at which nodes the final
flow equations are affected. For non-structural updates we do not
change the structure of the DF graph. For structural changes we first
update the DF graph, and then update the final flow equations. From
Theorem 9.1 we know that DF graph is correctly updated. Therefore
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in the rest of the lemma we will not distinguish between the two
incremental changes.

First of all observe that we are processing SCCs in topological order
of the dag obtained by collapsing the non-trivial SCCs in Proj(y)
(step . Therefore when processing an SCC S we are ensured that
final flow equations at all the nodes « such that « — w is an edge in
DF graph, v € S, and w € S are correct (either previously updated or
is unaffected). This topological order also ensures that the algorithm
will terminate in finite time.

Given this it is enough to show that the final flow equation at affected
node that is derived by eliminating variables from the corresponding
initial equation is the correct final flow equation. The derivation of the
final equation depends on the type of SCC S, and we will handle them
seperately.

Case 1: S is a single node and does not contain a self-loop. Its initial
equation is given by

H}:0s = PY A\ O:) + G, (11.5)
teT

where T = {t|t € Pred;(S)}. To eliminate variables from the
above equation we perform selective exhaustive eager elimina-
tion. Since we are processing the nodes in the topological order,
we are ensured that the final flow equation at the destination
node of every derived edge (generated and processed during the
selective eager elimination process) is correct (either updated or
unaffected). Since we showed the correctness of the exhaustive
eager elimination (Theorem 11.1), the correctness of the selective
elimination directly follows from it.

Case 2: § is a single node and contains a self-loop The only difference
between this case and Case 1 is that we also compute closure of
the recursive equation. In the E1 rule we also compute closure -
whenever there is a self-loop at a non-join node. Once the closure
is computed, the equation at node s is the final flow equation.
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. Case 3: S contains more than one node. In this case we first form a
set of mutually recursive equation by eliminating all output flow
variables O, such that p is not in s. This situation corresponds to
the irreducible case in our exhaustive elimination method. As in
the exhaustive case we determine the closure of all the mutually
dependent equations, and then express the final flow equation at
all nodes in s in terms of their immediate dominator.

In each case we have established the correctness of the derivation of
the final flow equations. 1

Next we will show that the algorithm for updating final flow solution is
correct. First of all observe that the data flow solutions at all nodes whose final
flow equation is updated is potentially affected. So we may have to update their
solution. Now let a"°/ be the old solution at a node u, i.e., solution of node u
prior to incremental change. Let w = idom(u), and assume that its solution afcr
is correct. If afod = fFnew(gfer)) then we need not update the solution at node u.
Otherwise we have to update its solution and mark the solutions of all its children

. node as being affected.

Lemma 11.6 The procedure UpdateFlowSol() correctly updates the final flow solutions
at all the nodes whose final solutions are incorrect.

Proof:

First of all notice that if a node u is returned by IdfaGetNode() then
it is possibly affected. A node u is returned by IdfaGetNode() if and
only if it was previously inserted in Ordered Buckets; and a node u is
inserted in OrderedBuckets if it either in Proj(y) (step or the
solution of its parent node was previously updated (step . Since
we are processing the nodes in a top-down manner we will eventually
update the final flow solutions at all the affected nodes.

Finally we prove the correctness of our incremental data fiow analysis.

. , Theorem 11.1 The Algorithm 11.1 correctly updates the data flow solutions for both
structural and non-structural changes to flowgraphs.
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Proof:
Follows from Theorem 9.1, Lemma 11.5, and Lemma 11.6. |

Next we will analyze the time complexity of our approach.

Theorem 11.2 The worst case time complexity of Algorithm 11.1 is O(|E] x |N).

Proof:
(1) For both structural and non-structural updates selective eager elim-
ination could, in the worst case, be performed over all nodes. And so
the worst case time complexity for selective elimination is O(| E| x |N)
(follows from Theorem 10.2).

(2) the worst case time complexity of updating both dominance fron-
tiers and dominator trees is bounded by O(|E] x |N|) (see Chapter 8
and Chapter 9).

(3) The worst-case time for updating the final solution is O(]N]), since
we are propagating the solution on the dominator tree.

Combining (1), (2), and (3) we can see that the worst case time com-
plexity of Algorithm 11.1 is O(|E| x |N1). n

For both non-structural changes and for insertion of an edge our algorithm is
expected to behave linearly in practice since the size of the dominance frontier
is linear in practice [CFR*91}. The cost for updating the data flow solution for
deletion case is dominated by the cost for updating the dominator tree. Since we
use Purdom and Moore algorithm for this step, the time complexity is quadratic
in the worst-case for the deletion.

11.8 Discussion and Related Work

In this chapter we proposed a new approach for incremental data flow analysis
based on elimination methods. Previous work most relevant to ours is due
to Carroll and Ryder [CR88]. We will first give a detailed comparison of our
approach with theirs, and then compare with other related work.

Carroll and Ryder’s algorithmn is based on the notion of reduce and borrow
concept for updating the data flow solutions [CR88]. They reduce a monotone



CHAPTER 11. INCREMENTAL DATA FLOW ANALYSIS 244

data flow problem to an attributed (dominator) tree problem, and then borrow
the well-known Reps’s attribute update algorithm for updating the data flow
solutions [Rep82, RTDS3]. They use Graham-Wegman elimination algorithm as
a starting point for mapping data flow problems to attributed dominator tree
problems [GW76]. They decorate each node in the dominator tree with its (1)
initial flow equation (2) final flow equation, and (3) the correct solution. These
decorations are treated as attributes of the dominator tree. Once they construct
an attributed dominator tree, they modify the well-known Reps’s algorithm for
updating the attributed dominator tree [RepS82, RTD83]. Reps’s original algo-
rithm can only handle updates to attributed parse tree, which are derived from
attributed grammars. Since dominator trees are not parse trees, Carroll and Ryder
generalize Reps’s algorithm for handling updates to arbitrary trees.

In an attributed parse tree problem, we associate with each node a semantic
function which defines the value of that attribute in terms of values of other
attributes [ASU86]. Given an attributed parse tree, if the attribute at node y uses
the value of attribute node at z, then we say that node (attribute) ¥ depends on
node (attribute) z. The dependency graph of a set of attributes A is a graph whose
nodes are the elements of 4, and there is an edge v — w if w depends on u. The
value of an attribute is consistent if it equals the value returned by the attribute’s
semantic function. A soiution to an attributed parse tree is a set of consistent
values for all its attributes [ASU86].

Reps’s original algorithm can handle updates only if the dependence graph
of the attributed tree is acyclic [Rep82, RTD83]. Carroll and Ryder show that if
the original flowgraph is reducible then the dependence graph of the attributed
dominator tree is also acyclic. Presence of irreducibility in the original flowgraph
introduces cycles in the dependence graph of the attributed dominator tree, and
so we cannot use Reps’s algorithm for updating such trees.

Reps’s algorithm basically consists of replacing the affected sub-parse tree
with a correct sub-parse tree and propagating the attribute values of the nevs sub-
tree to all other nodes that depend on it. To ensure optimality the attributes are
propagated on a projected graph of the dependence graph, called the sub-ordinate
and superior characteristic graph [Rep82, RTD83]. Carroll and Ryder show how to
construct these characteristic graphs for atiributed dominator problem, and use
them for updating and propagating final data flow solutions.
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The sub-parse tree replacement in Reps'’s algorithm corresponds to restructur-
ing of the dominator tree in Carroll and Ryder’s algorithm. Carroll and Ryder also
propose an algorithm for updating the dominator tree of the flowgraph. While
updating the dominator tree they compute, what they call as representative edges,
which are central to their update algorithm. These representative edges are then
used for updating both the dominator tree and the attributes of the dorminator
tree. Projection of these representative edges with respect to the oot of the af-
fected sub-tree corresponds to the characteristic graphs in Reps’s algorithm. For
reducible flow graphs the projection of the representative edges form a dag, and
so they can update the attributes of the dominator tree in the dag order of the
projection graph.

In our algorithm too we “reduce” the problem to an attributed tree problem
(since we are annotating the DJ graph with initial flow equation, final flow equa-
tion, and the final flow solution). But, unlike Carroll and Ryder’s approach, we
use simple properties of dominarce frontiers and iterated dominance frontiers
for updating the final data flow solution, and these properties are valid for both
reducible and irreducible flowgraphs.

Although we do not use Reps's update algorithm for updating data flow
solutions, we will show how the notion of dominance frontiers and iterated dom-
inance frontiers are tied to the notion of dependence graphs and characteristic
graphs used in Reps’s algorithm. As in Carroll and Ryder’s algorithm the dom-
inator tree in our algorithm corresponds to the parse tree in Reps’s algorithm.
The DF graph in our algorithm correspond to the dependence graph in Reps’s
algorithm. Interestingly enough, the representative edges used in Carroll and
Ryder’s algorithm are nothing but DF edges in our DF graph. The superior
characteristic graphs in Reps’s and Carroll and Ryder’s algorithm correspond
to the projection gr-ph Proj(y) in our algorithm, although Proj(y) can contain
cycles? Recall that Proj(y) is derived from IDF(y), the iterated dominance
frontiers of y. This suggests that the concept of iterated dominance frontiers is
deeply related to the concept of superior characteristic graphs used in Reps’s
algorithm. These two concepts were developed independently, and for different
problems—dependency graphs and the characteristic graphs were introduced in
the context of attributed grammars, whereas dominance frontiers and iterated

4 Assuming that a non-structural change is induced at node y or we update an edge z — y.
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dominance frontiers were introduced in the context of Static Single Assignment
form [CFR*91]. An interesting direction for future research wou'd be to further
explore the possiblé relation between these two concepts.

Burke proposes an algorithm for elimination-based incremental data flow
analysis that use interval graphs for updating and propagating data flow solu-
tions [Bur90]. His algorithm can only handle structural changes (to flowgraphs)
that does not change the depth-first spanning tree of the flowgraph. Marlowe and
Ryder propose a hybrid incremental algorithm that combines iteration and elim-
ination methods [MR90b]. They first identify strongly connected components in
the flowgraph, and they use iteration method within each component, but propa-
gate the solutions to other components using elimination-like method. Although
they can handle program arbitrary updates, their incremental algorithm is more
coarse-grained; they update and propagate solutions to a much larger set of nodes
than our algorithm or Carroll and Ryder’s algorithm.



Chapter 12
Conclusions and Future Work

One of the symptoms of an approaching nervous breakdown is the belief
that one's work is terribly important.
—Bertrand Russell

As stated in the introduction, the goal of this dissertation was to demonstrate
the effectiveness of using DJ graphs for program analysis. To this end, we have
presented a number of algorithms for solving simple problems such as loop
detection to sophisticated analysis techniques, such as exhaustive and incremental
analysis, including construction of sparse evaluation graphs. In this dissertation
we have demcnstrated that how a simple representation like DJ graphs can be
used for solving sophisticated problems. We have also demonstrated that our
solution methods are simple, efficdent, and general (ie., can handle arbitrary
program structures). We have provided empirical results for many algorithms
and compared them with existing ones for similar problems. Ourempirical results
show that the algorithms presented here are indeed efficient and practical, and
can be easily incorporated in a production compiler.

There are other interesting and important open problems that can be solved
using DJ graphs. Here we will highlight some of them.

Incremental Computation of Static Single Assignment Form and Sparse Eval-
uation Graphs

Static Single Assigrument (SSA) form and Sparse Evaluation Graphs (SEGs) are
intermediate representations that are well suited for solving many data flow and

247
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optimization problems [CLZ86, RWZSS, AWZES, WZ85, Bri92, CBC93]. In Chap-
ter 7 we gave a simple algorithm for constructing a single SEG in linear time.
Although we now have a linear time algorithm, maintaining correct SEGs and
SSA form can be expensive throughout 2 multi-pass compilation process. Ir a
recent report Choi et al. proposed an algorithm for incrementally maintaining the
correct SSA form for restricted types of program changes [C5594]. In particular
they do not allow arbitrary insertion and deletion of edges in the corresponding
flowgraph. In [CG93], Cytron and Garbshbein show how to efficiently accommo-
date may alias information in the SSA form. Their algorithm consists of iteratively
refining both the alias information and SSA form in a round robin fashion until
the two information are sufficiently accurate. The refinement process consists
of incrementally updating the SSA form and alias information. The incremental
algorithm proposed in the paper does not allow structural changes to flowgraphs.
In this dissertation we proposed efficient algorithms for maintaining domi-
nator trees and dominance frontiers, both of which are fundamental to the con-
struction of the SSA form and SEGs. An interesting and important future work
would be to come up with an incremental algorithm for maintaining these sparse
representations for arbitrary program changes. Based on our experience with D]
graphs, we believe that DJ graphs are well suited for solving this problem.

Improving the Dominator Update Algorithm for the Deletion of an Edge

In Chapter 8 we gave an algorithm for updating the dominator tree when the
corresponding flowgraph was subjected to incremental changes. Although our
algorithm for insertion of an edge achieves linear time complexity, the incremen-
tal algorithm for the deletion case is quadratic in the worst-case. For the deletion
case we modified the Purdom and Moore algorithm to first compute the domi-
nance relation for all (possibly) affected nodes, and then updated the dominator
tree using that information. The worst-case quadratic time complexity for the
deletion case is because of the quadratic time complexity of Purdom and Moore's
algorithm. Now the open question is: Can we compute the exact set of affected
nodes and the corresponding new immediate dominators in linear time, even for
the deletion case? '



CH{APTER 12, CONCLUSIONS AND FUTURE WORK 249

Empirical Study of Elimination Methods in the Context of Interprocedural Data
Flow Analysis

In this dissertation we gave empirical results of our elimination methods for
solving the intraprocedural reaching definition problem. An interesting fu-
ture work would to study our approach in the context of interprocedural
data flow analysis. Tarjan, Rosen, Burke, and others have shown that elim-
ination methods can be used for solving general monotone data flow prob-
lems [Tar81, Bur90, Ros80, Ros82, Mar89]. We are not aware of any empirical
results on how elimination methods perform compared to iteration methods on
real programs for interprocedural analysis. It would be an interesting and worth-
while exercise to implement elimination algorithms for solving interprocedural
data flow analysis and quantitatively study them on real benchmark programs.

Empirical Study of Incremental Algorithms in the Context of a Real Compiler

In this dissertation we proposed a number of algorithms for incremental analysis.
We are not aware of any published literature that quantitatively evaluates the
benefits of incremental analysis in the context of a real optimizing compiler. An
interesting and important direction for future work would be to empirically study
the benefits of incremental analysis in the context of an optimizing compiler. Most
optimizing compilers perform aggressive program transformation, and so it is
important that data flow information and other program properties are correctly
maintained throughout the entire compilation process. Current methods in most
optimizing compilers recompute the data flow information after every change
in the program, even within a single optimization phase of the compiler. We
expect that incremental analysis would speed-up the compilation process of an
aggressive optimizing compiler.

Parallel Data Flow Analysis Using DJ Graphs

In this dissertation we proposed two approaches for elimination based data flow
analysis using DJ graphs. An interesting direction for future research would be
to parallelize our elimination algorithm. Lee et al proposed a region partition
scheme for paraliel data flow analysis [LRF94]. Lee et al. define a region to a
connected subgraph of a flowgraph such that all the incoming edges from other
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parts of the flowgraph to the region enter into its head node. Incidentally, region
head nodes are join nodes in our DJ graphs. An interesting future work would
be to use their region partition algorithm to partition DJ graphs for parallelizing
our elimination algorithms.

Thy right is to work only; but never to its fruits; let not the fruit of action
be thy motive, nor let thy attachment be to inaction.
—Bhagavad Gita



Appendix A
A Data Flow Analysis Framework

Recall that algorithms for data flow analysis take a program and estimate proper-
ties of the program statically. The nature of these properties depends on the data
flow problem being solved. Most interesting data flow problems can be expressed
within a framework called the monotone data flow framework. In this appendix we
will briefly discuss this framework. This framework was first introduced by Kil-
dall, and subsequently revised and redefined by others [KU77, Tar81, Mar89].
Here we will essentially follow the notation given by Marlowe [Marg9].

The data flow information in a data flow problem is represented by elements
of a lattice £, having a commutative, associative, and idempotent meet operation
A. Intuitively, the operation | A m, for [,m € L, represents information common
to both ! and m. Given £, we can define a relation € on £ such that [ T m iff
I Am = [. In other words, C defines a partial order on elements of £. Intuitively,
the relation ! © m means that { contains less information than m. Dually, we
also define J relation; f I E mthenm 2 . ¥IE mand ! ## m thenl T m.
We can similarly define the dual 1 relation. Finally, the lattice also contains two
distinguished elements T and ., called the top and bottom elements, satisfying
the following relation:

INT =1
INL = L

Typically the A operation is used for merging information at join nodes. Let
X = {z1,72,...} beasubsetof L. We will use the notation A X tomean z; AzsA. . ..
We will impose another restriction on £ called the descending chain condition,
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in which every chain!
Lhabk3d...

is finite. Most data flow problems have this property.> An important consequence
of the descending chain condition is that every meet A X can be computed using
meet of a finite subset. Note that £ or X C £ need not be finite. In other words
even an infinjte lattice can have finite height. Throughout this dissertation we
will assume lattices that satisfy descending chain condition.

Next we will discuss the effects of a node (a sequence of instructions) on flow
information. These effects are modeled by flow functions ¥ C {f : £ — £}. For
most interesting data flow problems the flow functions are monotone? In this
dissertation we will assume flow functions to be monotone. A function f € F
is monotone if for any two elements /,m € £ such that [ C m, then f({) T f(m).
Let f and g be any two functions in F we will use the notation [ A ¢ to mean
(fAg)(1) = f(I) A g(1). We will also assume that F contains an identity function ..

Let f and g be any two functions in 7, we will use the notations f o g to denote
function composition, and f*(1) = {AZ, {F{1)|z 2 0}, the iterated composition of
f and f° = ¢, to denote the reflexive transitive closure of f(i).

One can define classes of data flow problems depending on the finiteness
properties of flow functions and lattices. We will define a few of them (for a
detailed discussion please see [Mar89j).

k-Boundedness: Let f*(1) 3 A{F (D0 <i <k} forall f € Fand | € £. In this
case, we can compute f* using only k — 1 meet iterations. An example of a
k-bounded problem is the Formal Bound Set problem.

Rapidity and Fastness: Many of the classical bit-vector problems have nicer func-
tion properties. Let f € F,if fof 3 f A« then f is fast. Notice that fzstness is
equivalent to 2-boundedness. An important consequence of fastness is that
we need at most two iterations for fixed-point computation in a loop. Also,
the notion of “loop breaking” in [RP86] is applicable only for fast problems.

ILe., a linear order

?Two classical examples that do not possess this property are pointer analysis for recursive
data structures and type checking {Mar89].

3There are practical data flow problems in which flow functions are not monotone; for example,
the Generalized Common Sub-Expression Elimination due to Fong [Fon77, Tar81]. Arother
example where flow functions are not monotone is alias analysis in the presence of dynamic data
structures that do not use k-limited graph for approximation [LH88].
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A function f € Fis rapid if f(I) 3 {Am A f(m) forall {m € L. One can
easily show that if a function is rapid it is also fast, but not the converse.
Another interesting property to observe is that rapidity implies separability.
An example of a data flow problem that is rapid is reaching definition. An
example of a problem that is fast but not rapid is constant propagation.

Distributive: A function f € F is distributive if f(I Am) = f(i) A f(m}. An
example of a problem that is distributive is copy constant propagation; and
example of a problem that is not distributive is constant propagation.

Given the previous background we are ready to define monotone data flow
Sframework. A data flow framework is a tuple (G, £, F, M), where

e G =< N, E,START > is a flowgraph,
e L=< 8§, L, T,C,A>isalattice,
o F C{f: L — L}isaset of monotone functions.

e M C{e— fle € E, fe F}isa set of functions mapping edges to flow
functions. Sometimes it is convenient to map nodes, rather than edges, to
flow functions.

Depending on the nature of 7 and £ we can define various classes of the
monotone data flow framework, such as bounded monotone framework, distribu-
tive framework, etc. [Mar89].
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