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Abstract

Program analysis is a process of estimating properties of a program statically.

Program anaiyses have many applications, induding compiler optimizations,

software maintenance and testing, and program verification. In this dissertation

we present a new framework for efficient program analysis. At the heart of

our approach is a new program representation called the DJ Graph. Using DJ
graphs we present severa! new algorithms for solving problems encountered in

program analysis. The problems that we have solved range from a simple loop

identification problem to sophisticated exhaustive and incremental data flow

analysis, including the construction of SparseEvaluation Graphs. The algorithms

presented. here are simple, more general, and/or more efficient than existing

methods for solvi.'gsimilarproblems. Tostudy the effectivenessofouralgorithms

on real programs we implemented. many of them, and experimented on a number

of FORTRAN procedures taken from standard benchmark suites. Our results

indicate that the algorithms presented. here perform well in practice.
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Résumé

L'analyse de programmes est un processus utilisé pour déterminer de façon sta

tique les propriétés d'un programme. Les analyses de programmes ont de nom

breusesapplications, e.g., optimisations dans un compilateur, entretien et tests des

logiciels, vérification de programmes. etc. Dans cette thèse, nous présentons une

nouvelle approche pour obtenir des analyses de programmes performantes. Au

coeur de notre approche est l'utilisation d'une nouvelle représentation des pro

grammes appelée Graphes DJ. Nous présentons plusieurs nouveaux algorithmes

utilisant les graphes DJ et permettant de résoudre d~ nombreux problèmes ren

contrés dans le cadre d'analyses de programmes. Les problèmes que nous avons

résolus vont d'un simple problème d'identification des boucles au problème plus

complexe d'analyse incrémentale du flux des données, y compris la construc

tion de graphes creux d'évaluation (Sparse Evaluation Graphs). Les algorithmes

présentés sont simples, plus généraux et/ou plus efficaces que les méthodes

généralement utilisées pour résoudre des problèmes similaires. Dans le but

d'étudier l'efficacité de nos algorithm€'S sur des programmes réels, plusieurs

d'entre eux ont été mis en oeuvre et exécutés sur un ensemble de procédures

FORTRAN provenant de programmes tests standards. Nos résultats indiquent

que les algorithmes présentés, en pratique, fonctionnent efficacement.
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Contributions

Each work has to pass througll tllese stages- ridicule, opposition, and

then acceptance.

-Swami Vivekananda

The major contributions of this dissertation are as follows:

• We introduce a new representation called the DJ graph for efficient program

analysis. We aIso explore sorne of the properties of DJ graphs that simplify

many proofs (Chapter 3).

• Wepresent simple linear time algorithms for computingdominance frontiers

and related sets (Chapter 4).

• We present an efficient and a low polynomial time algorithm for computing

the multiple node immediate dominance relation for an arbitrary flowgraph

(Chapter 5).

• We present a simple and an efficient algorithm for detecting both reduaole

and irreduaole loops in a flowgraph (Chapter 6).

• We presenta simplelineartime algorithm for computing iterateddominance

frontiers (Chapter 7).

• We present a simple and an efficient algorithm for incrementally updat

ing the dominator tree of an arbitrary flowgraph, when the flowgraph ie;

subjected arbitra..-y incremental changes, including those that introduce ir

reduaoility (Chapter 8).

• We present a simple and an efficient algorithm for incrementally updating

the dominance frontier relation of an arbitrary flowgraph, when the flow

graph is subjected to arbitrary incremental changes, including those that
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introduce irreducibility(Chapter 9).

• We present a new framework for elimin:ltion-based cl:l!;l H,>w analvsis.

Within l'lis framework we present two methods for d~1ta tl,>w analvsis:

(1) an eager e1imination method, and (2) il delayed e1imination ml'lhod.

The two methods pre-;ented are simple, efficient, :lnd C:ln h:lndle :lrbitr<lry

flowgraphs (Chapter 10).

• We present a simple and an efficient algorithm for im:rementally upd:lting

data flow solutions, when the corresponding flowgraph is subjected to incrL~

mental changes, including those that introduce irreducibility (Chapter 11).

• Finally, to demonstrate the effectiveness of our algorithms we implemented

most of them, and tested them on real programs. We present cmpirical

results of our experiments and give their analysis.
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Chapterl

Introduction

Great spirits have alwaysfound violent oppositionfrom mediocrities. The

latter cannot understand it when a man does not thoughtlessly submit to

hereditary prejudices but honestly and courageously uSes his intelligence.

-Albert Einstein

Mygrandfather once told me that there are two kinds ofpeople: those who

work and those who take the credit. He told me to try to be in thefirst group;

there was less competition there.

-Indira Gandhi

This dissertation is about ejJicient program analysis using a new representation

cal1ed the DJ graph. Using DJ graphs we have solved a number of problems

encountered in program analysis. Our solution methods are simple, efficient,

and!or more general (ie., can handle both redua"ble and irredua"ble flowgraphs)

than existing methods. We begin the dissertation by introducing the concept

of program analysis in Section 1.1. Then, in Section 1.2, we briefty introduce

DJ graphs. A morethorough presentation on DJ graphs is given in Chapter 3.

In Section 1.3, we highlight the major contributions of the dissertation, and also
briefly discuss some of the related work. Finally, in Section 1.4, we give the

overall organization of the dissertation.

1
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CHAPTER 1. INTRODUCTION

1.1 Program Analysis

1.1.1 Motivation

.,

Program analysis is a process of estimating properties of programs at each pro

gram point [ASU86]. The information provided by a program analysis is useful

in compiler optimization, code generation, program verification, testing and de

bugging, and parallelization [ASU86]. To understand the concept of program

analysis consider the following program written in a Pascallike language.

Program FOO();

var
i, X, Y, z, w: integer ;

sum: array[0 .. 1001 of integer;

•

•

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17 :

18:

19:

begin
read(y, z) ;

x := 2 ;

if y> 0 then

begin

i := 1 ;

while (i < 100) do

begin

if«i mod 2) = 2)

sum[il:= (z div y) + w ;

else

sum[il .- (z div y) - 2 ;

i : = i + 1 ;

end
write('sum initialized') ;

end

else
write1n ( 'Program E=or: y should be

writeln( 'Program terminated') ;

end.

> 0') ;
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In the above program Wè can observe the following:

3

•

•

1. The variable wat statement 9 is used before being defined. This may cause a

run-time error. This problem can easily be detected at compile time using a

cIassical program analysis technique, called the reaching defirùtions analy

sis [ASU86j:l In this analysis, ail variables at the beginning of a program are

initialized to an 'undefined' value. Then we check whether an undefined

value of a variable reaches its use. If it does, then it is an error. For the above

program, we see that an undefined value reaches the use of w at statement

9, and therefore is an error.

2. In statement 2, the definition of the variable x is never used by any other

statement. In the literature statement2 is called a dead statement, and should

beeliminated at compile-time. Byeliminatingdead statements (a la dead-eode

elimination [ASU86J), we can speed up the overail execution of a program.

3. The expression z div y is computed each time inside the loop. The value

of this expression does not change as the while loop iterates, and 50 is

invariant inside the loop. Hoisting invariant expressions outside a loop

decreases the execution time of the prograrn. In the literature thiS is called

loop-invariant removal [ASU86j.

4. In the above program, the value of the predicate pO at statement 3 will
determine whether statements from 5 to 14 will be subsequently executed

or not. ln other words, these statements are said to be "control dependent"

on the condition at statement 3 [FOW87]. The control dependence relation

can again be derived at compile-time via program analysis.

In each of above cases we are interested in certain properties of the given

program. These properties are useful in program optimization, testing and de

bugging, code generation, etc. In generaI, program analysis can be divided into

two types: (1) controlflirw analysis, and (2) dataflo-cD analysis [ASU86j. Control flow

analysis is concerned with estimating properties related to program or control

flow structure, for example, computing the control dependence relation. On the

other band, data flow analysis is concerned with estimating properties related

lAdeftnition in a program is a statement oran instruction that assigns ormay assigna valut: to
a variable (ormemory location) [A5U86].



to program data or variables, for example, computing reaching definitions set or

removing loop-invariants.•
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1.1.2 Frogram Representation, Analysis Methods, and Solution

Techniques

Both control flow analysis and data flow analysis are usually performed on a

graph representation of a program called the Control Flow Graph (CFG).~ The

nodes in a CFG represent basic blocks or statements, while edges of the graph

represent flow of control from one basic block to another.3 Figure 1.1 illustrates

the CFG for the prograrn FOO ( ) •

In the literature, control flow problems are typically solved using concepts

from graph theory, whereas data flow problems are typically solved using con

cepts from set theory (or more precisely, lattice theory) [ASU86]. An example of a

control flow analysis is computing the dominance relation. Given a CFG, anode

Ris said to dominate another node 5 if all paths from START to node 5 always pass

through node R One classical approach for computing the dominance relation

is due to Lengauer and Tarjan [LT79]. Their algorithm is based on a depth first

search of the CFG. The algorithm computes the dominance relation by searching

for the nearest common ancestor of aU the predecessor nodes of a node in the

depth-first spanning tree of the given CFG [Lm].

An example of a data flow analysis is the reaching definitions problem. In

reaching definitions the probiem is to determine which definitions in a program

reach a given point. The first step in solving the problem is to represent each

definition as an element of a set S.4 At the beginning of the program the set S

is empty, meaning that no definitions reach the start of the program. This set is
passed through every statement (or basic block) in the program, and whenever

we pass through a definition d we first remove (kill) aIl previous definitions of

the same variable from the set S, and then add the new definition d to the set. We

2Forstruc:tured programs one canperfonn data analysis on the AbstIactSyntaxTree represen
talion of the program. [ASUS6}.

3Many modern optimizing compilets analyze programs at two levels: (1) within a proce
dure, called the intraproœdural œuzlysis; and (2) aaoss procedures, called the inlDproadunzl œuzl
ysis [ASU86}. CFGs are used for represenling statements (or basic blocks) and flow of control
within a single proc:ed:lre, whezeas caU graphs are used for represenling procedure calling se
quence. Whenever we use the tenn flowgraph of a program. we mean flowgraph of a procedure.

4More precise1y as an elementof a !attire.



rcpcat this process until no more definitions are added or removed from the set.

We also store a copy of the set S at each program point as we propagate through

them. The set S is generally called as the data fIow infonnation, and the effect of a

statement (or basic block) on S is called as the data fIow junetion.

We can generalize the above discussion and represent any data flow problem

within a framework called the data fIow framework, first proposed by Kildal!, and

subsequently extended by others [KiI73, Hec77, Mar89]. Within this framework

we represent data flow information as elements of a lattice, and the effect of a

node (a statement or a basic block) as a data flow function. The input-output

effect of anode can be represented as a data flow equation, and so we can set up

a system of data flow equations, one equation per node, whose consistent solution

gives the desired estimate of the program property [Kil73, Hec77, Mar89].

The methods for solving the system of equations can be broadly classified into

three categories [ASU86]: (1) iteration methods, (2) elimination methods, and

(3) syntax-directed methods. Iteration methods are very general and are applica

ble to al! types CFG structure [ASU86, KU76, Kil73]. In iteration methods, we first

initialize the flow information at each node to sorne safe value (i.e., a safe initial

guess [Mar89], page 29), and then iterate through each node, applying the flow

functïon, until a fixed-point is reached. This me::hod for solving the system of

equations is not very efficient, but is simple to implement. Elimination methods,

first proposed by J\llen and Cocke [AC76], are derived from the Gaussianelimina

tion method for solving simultaneous equations. The key idea in aIl elimination

methods is to reduce the system ofequations te a "reduced" system of equations,

and then solve the reduced system ofequations. Elimination methods are asymp
totica11y faster than iteration methods, but are more complex te implement than

iteration methods. Finally, syntax-directed methods are applicable te programs

that contain no arbitrary goto statements.s Beth elimination based methods

and iteration based methods use CFGs for propagating data flow information,

whereas syntax-directed me~odsuse Abstraet Syntax Tree for propagating data

flow information [ASU86].

Each of the abovesolution methodscanalsobecharacterizedas (1) exhaustive,

. (2) incremental, or (3) demand-driven [MR90a, Mar89]. In exhaustive methods,

sIf the source program contains goto statements, they shouldbe eliminated [Amm92, Ero9S]•

•

•

•
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Figure 1.1: The control flow graph representation for the program FOC 1)•
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the data flow information is computed from 'scratch' each time there is an incre

mental change in the program (either during program development or during

optimization). In incremental methods, the data flow information is recomputed

(ideally) only for those parts of the program that are affected because of an in

cremental change. Typically, information from other unaffected parts is used to

recompute information in the affected parts. It is important to note that ail incre

mental algorithms depend on having correct information or solutions at ail points

prior to incremental changes.6

In the de:nand-driven approach, flow information is computed on de

mand [DGS95). That is, if a certain property needs to be verified or derived

at a program point, a demand-driven 'engine' is invoked to do that job.

Finally, to improve the efficiency of certain classes of data flow problerns,

sparse evaluation techniques have been proposed in the literature [CFR+91,

CCF91). These techniques rely on constructing what are called Sparse Evalu

ation Graphs, on which data flow problerns are solved. Intuitively, a sparse

evaluation graph, for a particu1ar data flow problem, is nothing but a subgraph

of the control flow graph that contains only nodes that affect the information that

is propagating through it [CCF91).

In this dissertation, we propose solutions to data flow problerns that are based

on iteration and elimination methods, and also based on exhaustive and incre

mental analysis.7 We also give a new algorithm for constructing sparse evaluation

graphs that is simple and efficient.

•

•
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1.2 DJ Graphs: A New Representation for Solving Old

Problems

At the heart of our work is a new representation ca1led the DJ Graph. AIl other

contnbutions revolve around this representation. What are DJ graphs? As mo

tivation. consider the example program FOO ( ). Its CFG is shown in Figure 1.I.

In the figure, we can see that nodes such as 3, 7, and la, contain more than one

61t is important to note that:'::ontrol flow properties of a program can also be inaementally
updated.

7We will not be conœmed with syntax-direc:ted approaches or demand-driven approaches in
this dissertation.



predecessor. Such nodes are called jain nodes, since they 'join' flo\\' of control

coming from different control paths. Now consider the incoming edges of one

of these join nodes, for example, join node 3. The incoming edges to node 3 are

2-3 and 7-3. Consider the incoming edge 2 - 3, we can see that the source

node 2 of the edge "strictly" dominates destination node 3, meaning that ail paths

from STAKI' of the CFG to node 3 always pass through node 2. Therefore the

edge 2-3 is calied as a daminatar edge.s Now consider the incoming edge 7-3.

Here the source node 7 does not strictly dominate node 3, meaning that there is

an alternative path (STAKI' _ 1 _ 2 _ 3) from STAKI' to node 3 that does not

pass through 7. If this is the case we cali the edge 7-3 a jain edge. In general, an

edge x - y in a CFG is a join edge if there exists an alternative path from START

to y that does not "pass through" the edge x-y. ADJ graph is a graph that

represents both dominator edges and join edges in a single representltion.9 In

this dissertation, we will demonstrate how this simple representation helps us in

solving a number of program analysis problems very efficiently. The problems

that we will address in this dissertation range from a simple problem of identify

ing loops to sophisticated data flow analysis based on elimination methods and

incremental methods, including construction of sparse evaluation graphs.

•

•
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1.3 Major Contributions of the Dissertation

In this section, we outline the major contributions of the dissertation, and discuss

theirimportance incompileroptimizationsand otherprogramdevelopment tools.

We will also dis-."USS some of the re1ated work along the way.

1.3.1 DJ Graphs and Their Properties

We introduce a new representation called the DJ Graph (Chapter 3). ADJ graph

is nothing but the dominator tree of a program augmented with joïn edges.l0 An

edge ïn a control flow graph is a joïn edge if the source node of the edge does

not "strietly dominate" the destination node of the edge. Derived from a control

8More prec:isely we introduce a dominator edge between two nodes X and Y if X strietly
dominates~ and there is no othernode Z not equaI X strietly dominating Y (see Chapter 3).

9We will give a fomtal treatment of0] graphs and their properties in Chapter 3.
IOWe have given thê relevant background material and notation in Chapter 2.



flow graph, a DJ graph can be viewed as a refinement representing explicitly and

precisely both the dominance relation between nodes and the potential program

points where the flow information may be merged. Throughout this dissertation

we will demonstrate how this simple representation enables us to design simpler

and / or more efficient algorithms for performing sophisticated program analysis,

including incremental analysis and sparse evaluations.

•
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Contribution 1 We introduce a new and asimple representation, called the DJ Graph,

for solving program analysis problems. We also explore some oftheproperties ofDJgraphs
that will simplify many proofs in later chapters.

1.3.2 Computing Dominance Frontiers and Related Sets

Dominance frontiers, control dependences, regions ofcontrol dependence etc., are

control flow relations that are useful in many oplimizing compilers [CFS90a]. In

this dissertation, we will show how to efficiently compute some of these relations

using DJ graphs (Chapter 4).

We will also show how to compute the Top node of a setof dominance frontier

intervals in linear time (Chapter 4).11 Our algorithm is very simple and does not

require auxiliary data structures for keeping trackof the intervalsorannotating the

dominator tree [CFS90b]; aDJ graph completely captures the interval information

through join edges. The Top nodes are used in our elimination based data flow

analysis (Chapter 10).

Contribution 2 We propose new algorithms for computing dominance frontiers and

re1ated sets in linear time.

1.3.3 A Fast Algorithm for Computing Multiple Node Immediate

Dominators

Gupta introduced the notion of multiple-node immediate dominators for per
forming certain optimizations, like loop invariant removal and array bound

checking, very aggressively [Gup92]. Intuitively, in a multiple-node dominance

UTIle dominance &ontier interval is same as the control dependenœ interval on the reveISe
control flow graph [pB95, CFS9Ob].



relation a group of nodes dominate anode such that no subset of the group of

nodes dominate the node [Gup92].

Gupta proposed a nvo-step process for computing the multiple-node dom

inance relation. In the first step, multiple-node immcdiatc dominator nodes

are computed, using which the complete dominance relation is computed. In

multiple-node immediate dominators a group of predecessors of anode dominate

the node. Gupta's algorithrn for computing multiple-node immediate dominator

has worst-case exponential rime complexity of O(iNIP), where INI is the number

of flowgraph nodes and p is the maximum number of predecessors of a node. In

this dissertation, we propose a new algoritlul1 for computing the same set in time

O(iEn where lEI is the number of edges in the DJ graph (Chapter 5).

•
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Contribution 3 We present asimple algorithm for computing multiple node immediate
dominators in time O(IEI2), aconsiderable improvement compared to Gupta's algorithm,

which is O(INn

1.3.4 Identifying Nested Reducible and Irreducible Loops

Loop identification is a necessary step in loop transformations for high

performance architectures [WoI89]. Tarjan's intervals are single-entry, strongly

connected subgraphs, 50 they closely reflect the loop structure of a pro

gram [Tar74]. They have been used for loop identification. The basic idea be..'lind

Tarjan's method is to repeatedly collapse each natural loop into a single node

inside-out until the whole graph reduces to one node. This idea will work if

the flowgraph is reducible. In this dissertation, we generalize the coUapsability

to irreduc"ble loops (Chapter 6). We propose a new algorithrn that works on

a DJ graph in a bottom-up fashion. Using our algorithm we can easily detect

irreduc"ble portions and coUapse them immediately using Tarjan's strongly con

nected componentalgorithm, and thencontinue to do abottom-up reduction. Our

method can be considered as a generalization of Tarjan's reduc"bility algorithm.

A nove! aspect ofour approach is that, in the presence of irreduc"ble flowgraphs,

our method can detect reduc"ble loops within irreducible loops of the flowgraph.

Contribution4 We propose a new and a simple algorithm for identi.fying nested re
ducible and irreducible loops. OUT algorithm can be considered as a generalization of
Tarjan's reducibüity algorithm.



Contribution 5 We present asimple linear time algorithmfor computing iterated dom

inancefrontiers for aset ofnodes ofan arbitrary flowgraph.

1.3.5 Computing Iterated Dominance Frontiers in LinearTime

Data flow analysis frameworks based on Static Single Assignment (SSA)

form and Sparse Evaluation Graphs (SEGs) demand fast computation of pro

gram points where data flow information must be merged, the so-called ,p

nodes (CFR+91, CF93, CCF91]. To determine where to place ,p-nodes requires

the knowledge of itcrated dominance frontiers (CFR+91, CF93, CCF91]. Iterated

dominance frontiers have other applications such as computing guards [Wei92]

and incremental analysis (Chapter 8). We present a surprisingly simple algorithm

for computing iterated dominance frontiers for a (sub-)set of nodes of arbitrary

flowgraphs (reducible or irreducible) that runs in linear lime (Chapter 11). To the

bestofour knowledge, this is the first linear lime algorithm for computing iterated

dominance frontiers (at the lime it was first published (SG94, SG95bJ). A novel

aspect of our algorithm is that it can easily be adapted on other representations,

like APT [PB95]. Previous algorithms for this problem were either not linear (for

example, the algorithm of Cytron and Ferrante (CFR+91, CF93, CCF91]) or not

general (for example, the algorithm of Johnson and Pingali is restrieted to SSA

forros [JP93J).

•
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1.3.6 Incremental Computation of Dominator Trees

Data flow analysis based on an incremental approach may require !hat the dom

inator tree be correctly maintained at all limes (Chapter 10). Previous solutions

to the problem of incremèI\tally maintaining dominator trees were restrieted to

reduClble flowgraphs [RR94, CR88]. In this dissertation, we present a new algo

rithm for incrementa11y maintaining the dominator treeofan arbitrary flowgraph,

either reduClble or irreduClble (Chapter 8). For the case where anedge is inserted,

our algorithm is also faster !han previous ,!pproaches (in the worst case). For

the deletion case, our algorithm is likely to run fast on the average cases. Unlike

the previous methods we use properties of DJ graphs a'ld iterated dominance

frontiers for updating do~atortreœ.

Contribution 6 We present a new incremental algorithm for updating the dominator

tree ofajlowgraph.
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1.3.7 IncrementaI Computéltion of Dominance Frontiers

12
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We present a simple algorithm for incrementally updating the dominance frontier

relation of a flowgraph (Chapter 9). We an:' not aware of any published work for

solvbg this problem. Our algorithm relies on having the incremental computation

of c· 'lminator trees. Since dominance frontiers are same as control dependences on

the reverse flowgraph, our algorithm can also be used for incrementally updating

the control dependence relation. Finally, incrcmental computation of dominance

frontiers is useful in incremental data flow analysis (Chapter 10).

Contribution 7 We present asimple incremental aIgorithmfor updating the dominance

frontier relation ofaflowgraph.

1.3.8 A New Framework for Eliminaticn-Based Data Flow AnaIy

sis: Exhaustive Analysis

Despite much ground research work that has been done in elimination methods,

many researchers and practitioners prefe: to use iterative methods for the fol

lowing two reasons: (1) it is simple and easy to implement, and (2) can handle

arbitrary flowgraphs, including irreducible flowgraphs. Elimination methods,

on the other hand, are more efficient than iterative methods, but are more com

plex to implement. Also, sorne e1imination methods cannot handIe irreducible

flowgraphs, and even if they do, they are not very efficient

In this dissertation we propose a new framework for data flow analysis based

on elimination methods. We will demonstrate that our approach is simple, easy

to implement, practically efficient, able to handIe irreduoble flowgraphs, and

amenable to incremental analysis. At the heart of our approach is the DJ graph

representation. Within our framework we propose two algorithms for exhaus

tive data flow analysis, and one algorithm for inaemental data flow analysis

(Section 1.3.9).

We propose two variations of our approach for exhaustive data flow analysis:

(1) the eager elimination method, whose worst case time complexity is O(lEI x

IN!), where INI and lEI are nodes and edges in the flowgraph, respectively;

and (2) the delayed elimination method, whose worst case time complexity isè



O(\EI x log(INlll (Chapter 10).J2 Rather than reducing a DJ graph into a single

node, we only eliminate J edges from the DJ graph, and in the process we also

perform variable substitution along D edges when necessary, in either an eager

or a delayed fashion. At the end of the bottom-up elimination phase, ail the J
edges will be eliminated. Meanwhile the equation at every node is expressed

only in terms of its parent node in the (maybe compressed) dominator tree. Once

we determine the solution for the root node, we propagate this information in

a top-down fashion on the (maybe compressed) dominator tree to compute the

solution for every other node.

Although the time complexity of both eager and delayed eliminations are

worse than linear, we will demonstrate that the two methods are expected to be

haves linearly in practice. Another novel aspect of our approach (both eager and

delayed eliminations) is that it can easily identify and handle irreducibiIity grace
fully in the bottom-up reduction process. Our approach to handling irreducibility

does not perform fixed-point iteration over ail the nodes in an irreduoble region.

Instead, we apply our elimination method to every reduoble region contained in

an irreducible region. andperform Iterationonly overnodeswithin the irreducible

region that are at the same level (of the dominator tree).

•
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Contribution 8 Wepropose anewjrameworkfor dataflow analysis based on elimination

methods. We propose two variations ofour approach for exhaustive data flow analysis:

(1) the eager elimination method, and (2) the delayed elimination method. A novel aspect

ofour approach is that it can handle irreducible loops very efficiently. Although the time

complexity ofeager and delayed eliminations are worse than linear, we will demonstrate

that they are expeded to behave linearly in practice.

1.3.9 A New Framework for Elimination-Based Data Flow Analy

sis: IncrementaI Analysis

In this dissertation we present a new method for incremental data flow analysis

basedoneliminiltion methods (Chapter 11). Ourmethod isbasedon incremental

izing our eager elimination method. Unlike previous approaches [Bur90, CR8e,;

UHereweassumefast data f10w problemswhen disc:ussingcomplexity, althoughourapproach
is applicable to more generalmonotone data f10w problems [Btu90, 1lu81, RosSO, Ros82. Mar89]•
Please seeAppendix Afor relevant background on data f10w iramework.



RP88J, our method can handle arbitrary non-structural and structural program

changes, including irreducibility. Also, our method is novel in the sense that

we use properties of dominance frontiers and iterated dominance frontiers for

updating the data flow information.

•
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Contribution 9 We propose a new incremental data flow analysis based on elimination

methods that can handle arbitrary incrementai program changes, inclllding irredllcibility.

1.3.10 Experiments and Empirical Results

In this dissertation, we have proposed a number of algorithms for solving prob

lems encountered in program analysis. To demonstrate the effectiveness of our

algorithms we implemented many of them using flowgraphs generated from the

Parafrase2 compiler [pGH+91], and experimented on real FORTRAN procedures

taken from SPEC92, LAPACK, GATOR, and RiCEPs. In Chapter 3 we give our

experimental framework, and within each relevant chapters we provide the ex

perimental results. This is the last contribution of the dissertation.

Contribution 10 To demonstTate the eJJectiveness of our algorithms we implemented

many of them using flowgraphs obtained from reai FORTRAN programs. We used

the Parafrase2 compüer for generatingJ1owgraphs. We provide empirical results ofour

experiments, and give their analysis.

1.4 Organization of the Dissertation

This dissertation is organized into a numberofê:hapters. Figure12shows a "Road

Map" of the major chapters in the dissertation, the edges in the figure represent

dependences among the chapters. InChapter 2, we give the relevant background

materïal and notation that are neœssary for understanding of the dissertation. In

Chapter 3, we introduce DJ graphs and discuss some of their properties. Here

we also give our experimental framework, and within each relevant chapter we

provide experimental results. In Chapter 4, we give algorithms for computing

dominance frontiers and related sets. In Chapter S, we present a new algorithm

for computing the multiple-node immediate dominance relation. In Chapter 6,

we present a new algorithm for identifying reduc"ble and irreduc"ble loops. In



Chapter 7, we present a simple linear lime algorithm for computing iterated

dominance frontiers. In Chapter 8, we present a new incremental algorithm for

updating the dominator tree of a flowgraph subjected to incremental changes. In

Chapter 9, we present a new incremental algorithm for updating the dominance

frontier set of a flowgraph subjected to incremental changes. In Chapter 10, we

propose a new approach for elimination based data flow analysis. This chapter

requires sorne knowledge on data flow frameworks. We refer readers to Ap

pendix A for this background. In Chapter 11, we present anew incremental

data flow analysis based on elimination methods. Finally, we will conclude in

Chapter 12, projecting possible future work.

•
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Chapter 2

Background and Notation

The past was great no doubt, but l sincerely believe that thefuture will be

more glorious
-Swami Vivekananda

In fuis chapter we introduce the relevant background material and notation used

in this dissertation. (More notation and terminology will be introduced in later

chapters where they are used.)

Consider the program FOO () given in Chapter 1. The corresponding Control

Flow Graph (CFG) is shown in Figure 2.1(a). Recall that a CFG is a basic structure

on which the data flow information is propagated. Depending on the data flow

problem, the information can be propagated either in the "forward" direction

(from anode to aIl its successor nodes), or the "backward" direction (from anode

to aIl its predeœssor nodes). An example of a forward propagation problem is~e

reaching definitionsproblem, and anexampleofabackwardpropagationproblem

is live variable analysis.1 For solving forward problems we use "forward" control

flow graphs, and for solving backward problems we use "reverse" control flow

graphs. In a reve:-.,e control flowgraph we reverse the orientation of the control

flowedges.

In this dissertation we will use the term flowgraph to uniformly represent

eitherthe forward control flow graphorthe reverse controlflowgraph, depending

on the direction of the problem. We formally define a flowgraph as follows:

'section 10.2 in Chapter 10 and Appendix A gives abrief to inb:oduction data flow analysis.

17



Definition 2.1 A flowgraph is a rooted directed grapll ç = (N. E. Root), wlzere N is

the set ofnodes, E is the set ofedges, and Root E N is a distinguislzed root node witllllO

incoming edges.•
CHAPTER 2. BACKGROUND Al\,1J NOTATION 18

•

•

For forward control flow graphs the Rootnode is the STARTnode of the control

flow graph, and for reverse control flow graphs the Root node is the END node

of the control flow graph. Throughout this dissertation we will mostly deal with

forward control flow graphs, and therefore we will use the notation START to

denote the root of a flowgraph (unless otherwise explicitly specified that END is

Root).

If x --+ y E E, then x is caUed the source node and y is caUed the destination

node of the edge; and sometimes we will say that y is a successor of x, and x is a

predecessor of y. The set of aU SUCCe5."Ors of a node xE N is denoted by Suee(x),

while the set of a11 predecessors of x is denoted by Pred(x}.

A path of length n is a sequence of edges (xo --+ Xl --+ '" --+ xn), where each

Xi --+ Xi+l E E. We will use the notation P : Xo ..:. X n to represent a path of length

zero or more, and P : Xo .±. X n to represent a path of length one or more. Given

the flowgraph of a program, we define the reachable subgraph REACH(Root) to

be a subgraph of G such that aU nodes in REACH(Root) are reachable from Root.

Clarification 2.1

A flowgraph need not be connected, that is, sorne nodes may not

be reachable from the root node. This is possible during program

optimization, such as dead-code eIimination, where a partof the flow

graph (the dead-eode) is eIiminated; orduringprogram deve1opment,

wherea partof the flowgraph can betemporarilydisconnected. In this

dissertation we will assume that aIl program properties, such as the

dominance relation, reaching definjtions, etc., are defined only for the

reachable subgraph REACH(Root). Therefore, whenever we use the

phrase "a flowgraph and ils dominator tree," we are referringto "the

reachable subgraph REACH(Root) and ils dominator tree"; or when

a node x dominates anotheinode y, we impIidtly assume that both x

and y are in REACH(Root). This convention appIies to otherproper

ties as weIl; ifa propertyis defined with respect to a node x oran edge

x --+ y, we will impIidtly assume that:z: and y are in REACH(Root).



Let S be a set, we will use the notation 15\ to denote the number of elements

in thE: set.

Next we introduce the dominance relation.•
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Definition 2.2 In a flowgraph, a node x dominates another node y if! aIl paths from

srART to y always pass through x.

We write x dom y to indicate that x dominates y, and write x !dom y if x does

not dominate y. If x dom y and x # y, then x strictly dominates y. We write

x stdom y te indicate that x strictly dominates Y.. and write x !stdom y if x does

not strictly dominate y. A node x is said to immediately dominate another node y,

denoted as x = idom(y), if x stdom y and there is no other node =# x and =# y

such that x stdom =stdom y. The dominance relation is reflexive and transitive,

and can be represented by a tree, cailed the dominator tree. x ..... y is an edge

in the dominator tree of a flowgraph jff x = idom(y). Given a node x in the

dominator tree, we define 5ubTree(x) to be the dominator sub-tree rooted at x.

Note that the nodes in 5ubTree(x) are simply the set of ail nodes dominated by x.

For each node in the dominator tree we associate a IeveI number that is the depth

of the node from the root of the tree. We write x.level to indicate the level number

ofanodex.

Example2.1

Figure 2.l(b) shows the dominator tree for the fiowgraph shown in

Figure 2.l(a). In the figure, we can see that node 3 dominates each

node in {3,4, 5, 6, 7, 8l. and node 3 strictly dominates each node in

{4,5,6,7,8}. Also, in the same figure, idom(4) = 3, and the nodes

in Subtree(4) = {4,5,6,7}. Finally, the levels of the nodes are:

srARI'.Ievel = 0, l.level = l, 2.leveI = 2, etc.

A number of 2lgorithms have been proposed for computing the dominance

relation [ASU86]. Lengauer and Tarjan proposed an algorithm that is almost

linear,O(lEI x a(lNI, IED), where aO is the slowly-growing inverse Ackermann

function [LT79]. More reœntly, Harel has given a linear algorithm for computing

the dominator tree of a fiowgraph [Har85]. We are not aware of any practica1

implementation ofHarel's algorithm. Inour researchworkwe haveimplemented

Lengauer and Tarjan's algorithm to construct DJ graphs (See Chapter 3).
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•
Figure 2.1: The flowgraph for program FOO () and its dominator tree.

Another concept that is important in this dissertation is the dominance frontier

relation [CFR+91].

Definition 2.3 The dominance frontier DF(x) ofa node x is the set ofall z such that

x dominates a predecessor ofz, without strictly dominating z.

•

Intuitively, one can visualize the dominance frontier of a node x as follows: to

compute the dominance frontier of x, shine a light at STARr, and put a shade at all

the output edges of node x, 50 that the light does not pass through them.2 This

partitions the flowgraph into dark and light regions. Consider all the dark edges

that are incident on light nodes. The destination nodes of these edges form the

dominance frontier of x.3

Sometimes it is convenient to think of dominance frontiers as a set of edges

rather than as a set of nodes. If this is the case we will use the notation DF.(x) to

denote this set, and define DF.(x) as follows:

2TIùnk ofnodes to be Iikeaystal ba1ls and eclges as NdirectedNoptic fibezs.
3The above intuition is due to Batry Rosen [Ros94].



Definition 2.4 The dominance frontier DF, (x) ofa Ilode T is Ille set ofedges y --> :;

such that x dominates y, without strictly dominating =.•
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s:
Wc next extend the definition of dominance frontier J) F( S) to a set of nodes

DF(S) = U DF(x)
rES

(2.1)

Finally, we define the iterated dominance frontier 1DF(S) for a set of nodes

S as the limit of the increasing sequence:

•

•

1DF1(S) = DF(S),

1DF'+l(S) = DF(S l' 1DF.(S))

Example2.2

Consider the flowgraph shown in Figure 2.l(a). The dominance fron

tier for node 3 is DF(3) = {3,10}. To see this, consider node 3 in

DF(3). We can see that node 3 dominates a predecessor of 3 (which

is 7) and a predecessor of 10 (which is 8). But in both cases 3 does

not si:ric+.ly dominate nodes 3 and 10. Therefore, nodes 3 and 10 are in

DF(3).

Now let us compute 1DF(3). Using Equation (2.3) the iterated domi

nance frontiers is computed as follows:

1DF1(3) = {3, 10}

IDF2(3) = DF(3 U {~,10}) = {3,10,END}

1DF3(3)=DF(3U{',,10,END})={3,10,END}. We find no more changes

in the iteration, and 50 1DF(3) = {3,10,END}.

(22)

(2.3)
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Chapter3

DJ Graphs and Their Properties

If1can't picture it, 1can't understand it.

-Albert Einstein

Asfar as the Iaws ofmathematics refer to reaIity, they are not certain, aild

as far as they are certain, they do not refer to reality.

-Albert Einstein

<

At the heart of this dissertation is a new representation called the DJ Graph.

In this chapter we formally introduce DJ graphs (Section 3.1) and discuss sorne

of the properties of DJ graphs that are relevant for our work (Section 3.2).

To demonstrate the effectiveness of the algorithms based on DJ graphs, we

have implemented them using flowgraphs generated from the Parafrase2 com
piler [pGH+91]. In Section 3.3 we presentour experimental framework based on

DJ graphs. Here we also present sorne experimental results on the characteristics

of DJ graphs for real programs. Finally, in Section 3.4, we discuss the related

work.

3.1 The DJ Graph

In Chapter 1 we informally introduced DJ graphs. Recall that central to DJ graphs

is the notion of join edges (J edges) and dominator edges (D edges). We defined an

edge:z: _ y in a flowgraph to be a join edge if there is an alternative path from

STARr te Ythat does not pass through the edge :z: - y. More formally, we define

Jedges as follows:

22



Definition 3.1 (Joïn Edge) An edge x -> y in Il flowgraplt is named a join edge (J

edge) if x # idom(y). Furtltermore, we will cali y as a join node.•
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Now if x = idom(y) then there is an edge from x -> y in the dominator tree,

called the dominatoredge (or D edge). It is trivial to see that anode is a join node

if it has more than one incoming edges; and that join edges are a subset of the

incoming edges of a join node. Given the notion of D and J edges we define DJ

graphs as follows:

Definition 3.2 (DJ Graph) A DJ graph gd = (Nd, Ed,Root.l) is a rooted direded

graplt tltat consists of the same set of nodes as in its flowgraph, and two types ofedges

called D edges and J edges. D edges are dominator tree edges, and Jedges are the join
edges in the flowgraph.

•
To construct the OJ graph of a flowgraph, we first construct the dominator tree

of the given flowgraph, and then we insert the J edges into the dominator tree.

The complete algorithm is give below.

Algorithm 3.1 The following algorithm constructs the DJgraph ofajIowgraph.

Compute the inlmediate dominance relation using Lengauer and TaIjan's

algorithm.

Construct the dominator tree using the immediate dominance relation.

foreach edge x -+ y in the flowgraph do

if x -+ y is not an edge in the dominator tree then

Insert an edge from x to y in the dominator tree and mark it as Jedge

else

Mark the corresponding edge x -+ y in the dominator tree as 0 edge.

endif

2:

3:

4:

5:
6:

7::
8:

}

MainOJGO

{

1:

•
Ifwe ignore the time complexity of Lengauer and Tarjan's algorithm (step ID,

we cansee that the time complexity of the above algorithm is O(\EJ\ + \NJIV

lIfweuseliarel'salgorithmforcoIllputingimmediatedominancereIation, thetimecomplexity
ofstepmwouldbeOClEII+ INII)·



Given a DJ graph we distinguish between two types of J edges: Back J (BJ)

edges and Cross J (CJ) edges. A J edge x -- y is a BJ edge if y dom x, otherwise it

isaq edge.
•
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Example3.1

To see how a join edge is inserted in the dominator tree, consider the

join node 3 of the example flowgraph shown in Figur~2.1. It has two

incorning edges 7--3 and 2--3. Of the two edgesonly 7--3 is aJ edge,

and 2--3 is not a J edge since 2--3 is an edge in the dominator tree. We

therefore insert the J edge 7--3 in the dorninator tree. We can similarly

insert other J edges. Figure 3.1 shows the complete DJ graph of the

flowgraph. Throughout this dissertation we will use solid dark edges

for representing J edges, and dash-and-dotied edges for representing

D edges. Finally, an example of a BJ edge is 7.....3 and an example of

q edge is 6.....7.

LewIS

LewIS

Lewll

LewID

3

Swt l
,.'

~' lb
/ ..,.~

•

•
Figure 3.1: The DJ graph for the flowgraph shown in Figure 2.1 .
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Clarification 3.1

Since a flowgraph and its Df graph contain the same set of nodes,

whenever we use the term node x, the node x may belong to either

the flowgraph or the Df graph, unless explicitly specified by using

subscript notation with f for flowgraph and d for Df graph. We will

use the notation SuccJ(x) (PredJ(x)) to be the set ofsuccessor (prede

cessor) nodes on flowgraphs, while SUCCd(X) (Predd(x)) to be the set

ofsuccessor (predecessor) nodes on Dfgraphs.

Also, a Dfgraph is made up of dominator tree edg~ and join edges.

Therefore, whenever we use the term dominator tree, we a150 mean a

Dfgraph withoutf edges, and vice vers'!.

Finally; Df graphs are de1ined (constructed) ,.n1y for reachable sub

graphs offlowgraphs.

25

• 3.2 Properties of DJ Graphs

In this section we discuss some of the properties of DJ graphs that are relevant

to our discussion. We will subsequently use these properties for proving the

correctness and analyzing the complexity of some of the major results in this

dissertation. The first property gives us an upper bound on the size of a DJ graph

with respect b the size of its flowgraph.

Theorem3.1 Let gJ - (Nj,Ej,SfAF:fJ) he

let gd = (Nd, Ed, SfAF:fd) he the corresponding DT graph.

IEdl < (INJl+ IEJ\).

a flowgraph, and

Then, INdl = INJI and

•

Proof:

The proof is based on the following observation: a DJ graph bas the

same set ofnodes asits flowgraph,hence INJI = INdl·

Now, the number of edges in the dominator tIee of gJ is INJI-1i

thus the numberofD edges in tb.2 corresponding DJ graph is INJI-1.

The number of J edges that we introduce in the DJ graph can be no

more than thenumber ofedges in the corresponding flowgraph, hence

IEdl < (INJI + IEJ\). •
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From the above theorem we can easily derive the following corollary.
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Corollary 3.1 The size ofa DJ graph is lïllear Witll respect to the si:c of its flowgraph.

This is interesting because from now on we will argue the time complexity of

our algorithms using either DJ graphs or flowgraphs.

Next we will discuss structural properties of DJ graphs. For every edge

xJ ..... YJ in a flowgraph, there is a corresponding edge ~:d ..... Yd in the DJ graph.

But the reverse may not be true; that is, the DJ graph can have more edges than

its flowgraph does. For example, consider the flowgraph given in Chapter 2

(Rgure 2.1), whose DJ graph is shown in Figure 3.1. We can see that there is no

edge from node 4 to 7 in the flowgraph, but there is an edge from 4 to 7 in the

corresponding DJ graph.

Next we can see that for every path PJ : XJ ..:. YJ in a flowgraph there is a

corresponding path Pd : Xd ..:. Yd in the DJ graph, and vice versa. This immediately

follows from the construction of the DJ graph. Note that the nodes in the two

paths may not be exactly the same. In other words, given any two nodes x and

y, y is reachable from x in a flowgraph if and only if y is reachable from x in the

corresponding DJ graph.2

Also recall that there is exactly one path from START to SOrne node in the

dominator tree of a flowgraph. Due to the presence ofJ edges, there may be more

than one path from START to any other node in a DJ graph. How are J edges

and D edges related? D edges and J edges are related in many ways. One such

relation is given in the following lemma.

Lemma 3.1 Let x -+ y be aJedge, then idom(y) stdom x.

Proof:

Let z = idom(y), and assume that z !stdom x. We can immediately

see that there is a path from STAR!' to y that does not go through z,

contradicting our initial assumption that z immediately dominates y•

•
Another relationbetweenD andJ edges is in terms oflevels of the nodes in the

dominator tree of the DJ graph. The following lemma establishes this relation.

2Another view of the DJ S--aph may give a better intuiaon behind these observations: ADJ
gtaph can also be construeted by adding evcry missing immtdiate dlllllinanœ edge z - 11 into ils
flowgtaph if the edge is not aheady present in the flowgtaph.
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Lemma 3.2 Let x -, y be a Jedge in a Dl graplz, tlzen x./eucl ~ y./euC!.

Proof:

Suppose x./cvC! < y./euC!. There are two cases:

1. There is a path from x to y in the dominator tree. This is impossible

by definition (because x will dominate y).

2. There is no path from x to y in the dominator tree. Let:: be a

node such that ::./et,ei = x.leuc!, and:: dom y (actually, :: strictly

dominates y). Since x -+ !I is in the DJ graph, there is a path

from STARf to x to y in the CFG that does not pass through :: (a

contradiction, because we have assumed :: dom y).

1
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Next let us see how D edges and J edges are related to the dominance frontier

relation. Using the definition of dominance frontiers (Definition 2.3) we can easily

see that, if x -+ y is a J edge, then y E DF(x). But in Lemma 3.2 we showed that

if x -+ y is aJ edge then x.leuC! ~ y.leuC!. We can generalize the above lemma as

follows:

Theorem 3.2 Let x beanode in aDIgraph, and let DF(x) be thedominancefrontier ofx.

Then, x.levc!2= y.leuelforeach y E DF(x), and x.leuel2= y.levelforeach y E 1DF(x).

Praof:

Let Y E DF(x) and let u = idom(y). We will first show that u will

strietly dominate x. Then using this result we will prove the validity

of the theorem. Assume that u does not strietly dominate x. Then

there is a path from STAR!' ta x that does not pass through u. 5ince

y E DF(x), there must be a predeeessor node z strietly dominated

by x. From this we can immediately see that there is a path from

STAR!' .. , -+ x... -+ ••. Z -+ y in the DJ graph that does not pass

through u, contradicting the assumption that u =idom(y). Therefore

u stdom x. From this we can easily see that

u.leuel < x.level
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Again since tL = idom(y), tL.Levcl = ,II.Lt't'cl- 1. Substituting this in the

above inequality, we get

y.Leve! - 1 < x .Leve/

or

y.Leve! :s; x.Leve!

Hence the result.

The property x.Leve!2;: y.Leve! for each y E 1DF(x), inductively fol

lows from the definition of iterated dominance frontier and the prop

erty x.Level2;: y.Leve! for each y E DF(x). •
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Intuitively, Theorem 32 implies that given a node x, to determine its Jomi

nance frontier (or iterated dominance frontier) we only need to look at those nodes

at the same level as x or above it, in the corresponding DJ graph. Nodes whose

level number is greater than the level number of x in the dominator tree will never

be in the dominance frontier of x. We will use this property in Chapter 4 and

propose a new algorithm for computing the dominance frontier of anode. We

will again use this result in Chapter 7, where we present a linear time algorithm

for computing iterated dominance frontiers.

3.3 Experimental Framework and Empirical Evalua

tion

We implemented many of the algorithms presented in this dissertation using

flowgraphs generated from theParafrase2compiler [PGH+91].3 We implemented

the I.engauer-Tarjan (LT) almost linear time algorithm for finding immediate

dominators.4 Usingthe immediatedominatorinfoimationwenextconstructedDJ
graphs. Using DJ graphs as the basis we implemented our algorithms. We chose

a set of 40 FORTRAN procedures from SPEC92, LAPACK, GATOR. and RiCEP

3paIairase2 is a reseaICh tool developed at the Center for 5upe=mputing Rese.uch and De
velopment, University of Dlinois at Urbana.CJwnpaign.

'Due ta the complex nature of Harel's linear time algorithm. we did not implement that
algorithm.



programs.5 We looked for programs that has larger control flow structure, some

of them have complex flow of control and some them havesimpler flow of control.

Table 3.1 lists ail the procedures used for our experiments in alphabetical order.

Throughout this dissertation we will use these 40 procedures to quantitatively

study characteristics of our algorithms. Within each relevant chapter we provide

our experimental results and their analysis conceming that chapter.

In the remaining portion of this section we will study some interesting charac

teristics of flowgraphs, dominator trees, and DJ graphs for our testprocedures. We

will first summariz" the main observations of our experiments for the procedures

we tested.

•
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• The number offlowgraph edges is approximately42% morethan thenumber

of flowgraph nodes. This suggests that flowgraphs for practical programs

are sparse [ASU86].

• The dominator tree structures are generally fiat. The average depth (aver

aged over the depth of al! the nodes) range from 9.0 te 90.0, whereas the

maximum depths of dominator trees range from 14 te 179. This suggests

that dominater trees are generally fiat, when compared te the number of

nodes in the corresponding flowgraphs.

• We measured the diffeience IEdl -IE!I, which gives the number of "extra"
D edges that are in the dominater treebut not in the flowgraph. On average

we found that thenumber ofextraD edges tebe17, which is5.4% more than

the number of flowgraph edges. This suggests that llie size of a DJ graph is

very close te the size of its flowgraph.

• The average depth ofJedges (measured as the differencebetweenthe depth

ofsource and destination nodes ofJ edges, andaveraged overall al!J edges),

range from 0.5 te 6.3, whereas the maximum depth of J edges range from 1

te 39. These two results suggest thatJ edges are generally fiat.

• The average time for computing immediate dominance relation is 89 mïl
1iseconds. Now given the immediate dominance relation. the average time

SSPEc (Standard Pedon:nanœ Evaluation Corporation) is a standard suite ofbendunark pro
grams!rom SPEC Associates. LAPAO< is a Iinear algebra package from Argonne National Lab.
GATOR is a Gas, Aerosol Transport, and Radiation Model from Univemty of CaIifomia at Los
Angele. Fmally, RiCEP is a benchmark suite from Riœ Univemty.



for constructing DJ graphs is 1.2 milliseconds. This suggests that construct

ing DJ graphs is very fast in practice.•
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We will further elaborate on these results in the rest of this section. Table 3.1

and Table 3.2 gives a summary of our results. The notations used in Table 3.1

and Table 3.2 are given below:

Notation used in Table 3.1 and Table 3.2

INI

LT(ms)

DJG(ms)

Procedure names.

Number of lines parsed (excluding comments).

Number of flowgraph nodes (where nodes are basic

blocks).

Number of flowgraph edges.

Number of DJ graph edges.

Maximum depth of dominator trees

Average depth of dominator trees (averaged over the

depth of an nodes in the tree)

Maximum depth ofJedges

Average depth of} edges (averaged over the depth of an
}edges)

Frontend(s) Execution time for front-end parsing (in seconds)

FG(ms) Execution time for constructing flowgraphs (in

milliseconds)

Executiontime forcomputing immediate dominatorsus

ing the LT algorithm (in milliseconds)

Execution time for constructing DJ graphs given the im
mediate dominator information (in milliseconds)

Name

Lines

•

•

The second column of Table 3.1 gives the number of lines (Lines) of code,

as computed by the Parafrase compiler, within each procedure. This does not

include comments. The total number of lines of code for the 40 procedures is

20,599, and the average number of lines of code is 515. The third and the fourth

columns ofTable 3.1 give the number of flowgraph nodes INI and the number of

flowgraph edges lE!1, respectively. For our test procedures, the average number

of flowgraph nodes is 219, and the average number of flowgraph edges is 312.

From the table we can also see that the number of flowgraph edges is not much



iarger than the number of flowgraph nodes, suggesting that the number of edges

are linear with respect to the number of nodes.

We next measured depth (or depths) of dominator trees. From the table we

can see that maximum depth Lmar of dominator trees ranges from 14 to 179, and

the average depth of dominator trees Lave range from 9.0 to 90.0. We notice that

for many procedures, the average and the maximum depth is small compared to

number of flowgraph nodes, suggesting that dominator trees are generally flat

for many programs. An exception to this is the dominator tree of the procedure

iniset. For this procedure the average and the maximum depth are 90.0 and

179, respectively. A careful examination of this procedure reveals that it consists

of 154 simple DO loops for initializing array varibles.

Next we measured the number of edges in DJ graphs (D edges + J edges).

This is shown ID the column IEdl. The difference IEdl-jEfl gives the number

of "extra" D edges that are not in the corresponding flowgraph. We can see that

the number of extra D edges range from 0 to 39, with 17 being the average. This

suggests that the size ofaDJ graph is almost the same as the size of its flowgraph.

Nextwemeasured "depth" ofJ edges. WedefinethedepthofaJ edgex ..... y to

be x.level-y.level. The columns Jmar and J••• give the maximum and the average

depth of J edges, respectively. For our test procedures, maximum depth range

from 1 to 39, and average depth of J edges ranges from 0.46 to 628. From these

two results we can conclude thatJ edges are also quite fiat for practical programs.

Finally, we measured execution times for front-end parsing (Frontend), for

generating flowgraphs (FG), for computing immediate dominators using the LT

algorithm (LT), and for constructing DJ graphs given the immediate dominator

information (DJG). These measurements are given in Table 3.2. From the table

we can see that the time for constructing DJ graphs is much smaller than the time

for computing the immediate dominance relation using the LT algorithm.

•

•
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3.4 Discussion and Re1ated Work

In this chapter we ~troduceda new program representation called the DJ graph.

Derived from a flowgraph, a DJ graph canbe viewed as a refinementrepresenting

explicitly and precisely both the dominance relationbetweennodes (via D edges)

and thepotentialprogrampointswheredifferentcontrolpathsmerge(viaJedges).
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1 Average ~ S15 1 219 1 312 1 329 1 24 Qg] 14~:

1Name Lin~s INI IEll IEdl Lmer Lo"t' Jmcr J4"~
aerset 768 329 460 467 39 215 15 1.7
aqset 512 189 258 263 38 22.3 9 1.7
bjt 394 135 187 213 21 9.0 14 1.7
card 201 150 216 235 23 10.8 14 2.7
chemset 633 229 320 330 28 21.0 28 1.9
c."geqz 342 174 248 268 36 16.8 13 2.1
c1atxs 408 214 308 337 21 13.3 5 1.2
coef 243 95 137 154 21 11.9 7 1.4
eomlr 135 69 91 97 19 9.6 10 1.7
dbdsqr S42 228 327 343 31 18.7 15 2.4
dedcmp 211 137 187 205 22 9.0 13 2.5
deop 441 186 261 298 23 13.0 12 1.6
dctran 508 326 458 493 36 15.9 26 3.4
deseco 473 175 236 259 28 14.0 9 1.6
dges:v 290 160 232 246 34 19.1 18 2.3
dgesvd 1142 321 470 499 19 115 10 2.3
dhgeqz 631 285 408 433 39 22.3 25 2.2
disto 382 133 191 211 17 9.7 5 1.3
dlatbs 317 167 238 259 18 10.4 6 1.4
dtgeve 555 321 459 485 36 20.4 13 1.7
dtreve 467 248 353 373 25 15.6 7 15
elpmt 296 162 227 245 24 10.0 9 1.2
equilset 782 327 451 467 58 32.3 9 15
errchk 462 346 482 515 45 24.6 37 2.1
iniset 4S6 333 486 486 179 90.0 1 1.0
init 265 122 175 176 23 13.9 10 1.3
initgas 511 189 263 267 34 17.9 21 1.6
jsparse 724 281 403 408 34 17.6 8 1.4
modchk 444 306 419 45S 34 16.9 28 1.6
mosea2 348 161 217 246 22 10.6 12 2.1
mosfet 562 214 295 333 22 10.8 12 2.5
noise 310 115 160 184 14 8.2 4 1.1
out 1178 403 590 597 45 16.9 18 1.7
reader 697 182 235 242 67 30.4 5 0.5
readin 677 406 611 637 44 21.4 36 6.3
setupgeo 673 188 275 278 45 20.7 9 1.4
setuprad 698 195 286 290 34 21.3 18 1.3
smvgear 576 212 310 316 46 27.0 39 3.4
solveq S56 196 289 298 23 10.6 7 1.6
twldrv 759 168 243 258 53 1$:7 18 2.1

•

•
Table 3.1: Structural characteristics of DJ graphs and flowgraphs f~r the test
procedures. ~
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aerset 1.8 34.2 12.2 1.6
aqset 1.4 20.1 7.7 0.9
bjt 0.7 17.0 5.7 1.3
carel 0.3 14.0 6.2 0.8
chemset 1.6 25.9 9.1 1.1
chgeqz 05 18.3 7.1 0.9
clatrs 05 23.2 8.2 1.4
coef 0.4 10.8 4.6 05
comlr 0.2 6.9 4.1 0.3
dbdSCIr 0.8 29.2 9.2 1.2
dcdcmp 0.3 13.0 5.7 0.7
deop 0.9 19.4 7.7 1.1
dctran 0.8 30.2 11.8 2.0
deseco 0.9 18.0 7.4 0.9
d~el:V 0.4 29.8 7.1 0.9
dgesvd 2.5 41.1 19.1. 1.8
dhgeqz 1.0 30.2 11.4 15
disto 0.7 14.8 5.3 1.3
dlatbs 0.4 17.6 7.2 0.9
dt~evc 0.7 32.5 12.0 2.3
dtrevc 0.8 25.3 9.3 1.3
elpmt 05 21.9 6.7 0.9
equilset 1.7 33.5 12.9 1.7
errchk 0.7 33.0 12.0 2.4
iniset 0.6 28.3 12.7 1.6
init 0.4 13.3 5.5 0.7
initgas 1.4 19.7 7.6 1.3
jsparse 1.7 30.5 11.0 1.3
modchk 0.9 27.2 11.0 1.7
mOSCQ2 0.5 15.7 7.0 0.9
masfet 1.1 22.2 8.5 1.3
noise 0.6 11.8 5.1 0.7
out 2.3 43.7 15.1 2.0
reader 1.6 20:7 7.8 0.8
readin 1.1 39.3 15.1 2.3
setupgeo 1.7 25.1 7.8 0.9
setuprad 2.2 21.3 7.8 0.9
smvgear 1.5 22.1 8.6 1.2
solveq 1.6 20.2 7.8 1.0
twlclrv 1.2 33.4 7.3 1.4

1 Name U Frontend(s) 1 FG(ms) 1 LT(ms) 1 DJG(ms) U

•

1Average n,--_~l..;;....O1 23.91 8.9 1,--_;:;;:l.2::.JD

•
Table 3.2: Execution time for front-end parsing, for constructing flowgraphs, for
computing immediator dominators using the LT algorithm, and for constructing
DJ graphs.
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Previously relations sirnilar to J edges have bcen proposed to indirectly capturl'

control flow properties of a flowgraph. For example, the DF,,,,,.,, relation of Cytron

et al. (CFR+91] are equivalent to Jedges. Cytron et al. define D1'/"""I(X) to be the

set of aU successor nodes 11 of x such that ,1" does not strictly dominate p. From

this definition we can see that an edge x - 11 is a join edge iff 11 E D 1'/""01 (J'). ln

the DJ graph we explicitly represent the DF,..,,,, relation as join edgcs.

In this chapter we aIso gave our experimental framework and quantitative1y

studied the structural characteristics of DJ graphs. From our study we can sce tha t

the size of DJ graphs is only about 5.4% more than the size of the corresponding

flowgraph. We aIso noticed that DJ graphs are fiat structures.
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Chapter4

Computing Dominance Frontiers and

Related Sets

A 'No' uttered from deepest conviction is better and greater than a 'Yes'

merely uttered to please, or what is worse, to avoid trouble.

-Mahatma Gandhi

In this chapter we propose new algorithms for computing dominance frontiers

and related sets using DJ graphs. We will show how DJ graphs can concisely

capture some of these relations via D and J edges. Since dominance frontiers

are related to control dependences [CFR+91J, our algorithms can also be used

for computing the control dependence relation. In Section 4.1, we give a simple

algorithm for computing dominance frontiers of anode using DJ graphs. In

Section 4.2, we show how to compute dominance frontiers for a set of nodes in

linear time. In Section 4.3, we will show to compute the full dominance frontier

relation using DJ graphs. In Section 4.4, we show how to compute dominance

frontier intervals in linear time using DJ graphs. Finally, we will compare our

work with other related work in Section 4.5.

4.1 Computing Dominance Frontiers for a Node

In this section we give a simple algorithm for computing DF(x) ofa node x using

properties of DJ graphs. In the next section, we will extend this algorithm for

computing dominance frontiers for a setofnodes in linear time. The key intuition

35



behind our algorithm is based on Theorem 32. From this theorcm wc know that

the level number of ail nodes in DF(x) are less than or equal to the level number

of node x. Now, is it possi"le to compute the dominance fronticr of a nodc using

level information? The ,mswer is yeso The following lemma establishes a relation

between nodes in the dominance frontier of a node x and their levels.

•
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Lemma4.1 Anodez E DF(x)ijft/lereexistsay E SltbTrec(x)witlzy -> zasa]edge

and z.level ::; x.level.

Proof:

The l'if" part Herewehave toshow that if y E SubTrce(x) and y -> z

is a J edge such that z.level::; x.levcl, then z is in the set DF(x).

There are two cases:

Case 1: z is in SubTree(x). 5ince z.level ::; x.level, z must be x

itself. Also, since y -> Z is a J edge, y must be a predecessor

of z in the corresponding flow graph. Furthermore, y is in

SubTree(x),hence z must be in DF(x) (from thedefinition of

dominance frontier).

Case 2: ~ is not in SubTree(x). In this case x does not dominate

(andhencedoesnotstrictlydominate)z. Nowsincey -> zisa

Jedge, y is a predeœssorof z in the corresponding flowgraph,

from the definition of dominance frontier z is in DF(x).

The "only if" part 5ince z is in DF(x), by definition of dominance

frontier, x does not strictly dominate z, and also there must be a

node y that is a predeœssor of z in the corresponding flowgraph

such that x dom y. 5ince x dom y, we have y E SubTree(x).

Also, by definition, y -> Z is a Jedge. Now, using Theorem 32 , it

is easy to see that z.level ::; x.level.

•
Using Lemma 4.1 we can easily devise a simple algorithm for computing the

dominance frontier of a node as follows:



Algorithm 4.1 The following a/gorithm computes dominance frontier DF(x) ofa /Iode

x usin:;{ DJgraphs.•
CHAPTER 4. DOMINANCE FRONTIERS AND RELATED SETS

DomFrontier(x)

{

9: DFr =0
la: foreach y E SubTrcc(x) do

11: if(y -> z == Jedge)

12: if(z./eve/ ~ x./eveI)

13: DF", = DFr U z

}

37

Notice that the time complexity of the above algorithm is O(INI + lEI), in the

worst-case. This is because, to compute dominance frontiers for a node x we will

potentially visit aU the nodes and edges CD edges +Jedges) in the SubTree(x).l

•
5Wl

.',.'
,...--.......

_._.~ Dedge

3

!.MIO

!.Mil

LmIS

•
Figure 4.1: Figure 3.1 reproduced.

'Sometimes, for convenienee. we will overload the notation SubTree(.,) 10 represenl the sub
graph ofa OJ graph rooted al., thal indudes aU the 0 edges and J edges induced by the nodes in
the SubTree(.,)•
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Example4.1

Consider the DI graph shown in Rgure 4.1. Let us compute DF(3). To

compute this, we simply walk down the DI graph along D edges and

look for I edges whose destination nodes are at levels 3./evel or less.

For the example DI graph we can see that I edges 7 --+ 3 and 8 --+ 10

satisfies the level condition. Therefore, DF(3) = {3,10}.

38
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Given the above result next we will next show how to compute dominance

frontiers for a set of nodes in linear tirne.

4.2 Computing Dominance Frontiers for a Set of Nodes

In the last section, we gave a simple linear tirne algorithm for computing the

dominance frontier of a node. One way of computing dominance frontiers for

a set S of nodes is to precompute the dominance frontier for every node in the

flowgraph, and then use Equation (2.1) to compute dominance frontiers for the

set S. This could give rise to a worst-ease quadratic tirne behavior [CFR+91]. To

illustrate this, consider the computation of DF({2, 4}) (Rgure 3.1). From Equa

tion (2.1), we know DF({2,4}) = DF(2) U DF(4). Let us therefore precompute

DF(2) and DF(4). Using Aigorithm 4.1 we get DF(2) = {10} and DF(4) ={3}.

50, DF({2,4}) = {3,10V Notice in the above example that we visit the nodes

in the SubTree(4) twice-once during the computation of DF(2), and once again

during the computation of DF(4). How can we avoid fuis redundant traversa!

of the nodes in the SubTree(4)? We can avoid this by first computing DF(4) and

marking node 4 as being processed. Now during the computation of DF(2) we

avoid visiting anynode in SubTree(4) (since node 4 is already processed, and is 50

marked) thereby avoiding red.undant traversal Notice here that we never need

te precompute DF(2) and DF(4) in order te compute DF({2,4}). Therefore, te

compute DF({2,4}), we first compute the DF(4) using Aigorithm 4.1, and also

mark node 4 as being processeci. Any candidate node that is generated on-the-fly

is then added te the set DF({2,4}). Now during the computation of DF(2) we

2Cytron et al. have proposed a simple formula for computing the dominance frontie%s for aU
nodes that is more efficient than our redundant traversaI method. Wewill discuss this method in
Section 4.5.



avoid visiting the nodes in SubTree(4). Again we add any candidate node that is

generated on-the-fly to DF({2,4}). Based on this observation we cansee that the

ordering of nodes in the dominator tree is important to avoid redundant traversaI

of nodes during the computation of dominance frontiers. The complete aigorithm

for computing dominance for a set of node is given below

•
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Aigorithm 4.2 Given aset S ofnodes, the following algorithm computes DF(S).

DFs=0
foreach x E S in a bottom-up fashion do

Mark x as Visited.

Walk down the SubTree(x) while avoiding nodes that have been previ-

ously marked Visited.

Identify J edges y -+ Z such that z./eve/ $ :deve1. Include ail such z's

inDFs.

endfor

.,. Input: DJ graph and the set S of nodes.

.,. Output: DFs, the dominance frontier for a set S of nodes.

.,. Initialization: arder the nodes in S by their Ievel nu:nbers.

DFSet(S)

{

14:

15:

16:

17:

19:

}

18:•
We cansee thatthe time complexity of the above algorithm isagain O(lNI+lE\).

In Chapter 7 (Section 7.4) we will establish the correctness and complexity of a

much stronger result, that of computing iterated dominance frontiers, which

subsumes the correctness and the complexity of the above algorithm.

4.3 Computing the Full Dominance Frontier Relation

•
In previous sections we gave algorithms for computing dominance frontiers of a

node and set of nodes, without precomputing the (full) dominance frontier rela

tion for ail the nodes in a flowgraph. In this section we will show how te compute

the full dominance frontier relation using DJ graphs. Our method for computing

the full dominance frontier relation is equivalent te the one proposed by Cytron

et al [CFR+91], except that we use level information instead of the dominance



relation. In this section we will also briefly discuss the recent result due to Pingali

and Bilardi on the representation of the dominance frontier relation [PB95].

In [CFR+91], Cytron et al. gave a simple formula for precomputing dominance

frontiers for all nodes [CFR+91]. The formula consists of two parts:

•
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DFlocal(X) = {y E SuccJ(x)\x !stdom y},

and

DFup (=) = {y E DF(=)!idom(=) !stdom y}.

Now if y E SuccJ(x) and x !stdom y then x -> y is a J edge (follows from the

definition of DJ graph). Also if y E DF(=) and idom(=) !stdom y then y.lcvcl ::;

idom(z).level (follows from Theorem 32). Therefore we can rewrite the above

formulas using level information.

DFlocal(X) = {ylx -> y isaJ edge} ,

and

DFup(z) = {y E DF(z)jy.level:S idom(z).Ievel} .

Using Dfiocal and DFup Cytron et al. proposed the following formula for com

puting dominance frontiers for each node x.

•

DF(x) =DF1oca1(X) U U DFup(z).
=eChildren(:z:)

Example4.2

Consider the DJ graph shown in Figure 3.1. Assume that the dom

inance frontier for nodes 5, 6, and 7 have been computed (i.e.,

DF(5) = {7}, DF(6) = {7}, and DF(7) = {3}). We will show how

te compute DF(4) using the above recursive formula. First notice

that Dfi"""l = 0 (since there are no J edges coming out of node 4).

The set DF(4) = DF1oca/(4) U DFup(5) U DFup(6) U DFup(7). Using

the above formula we can see that DFup(5) = DFup(6) = 0, whereas

DFup(7) ={3}. ThereforeDF(4) ={3}.

(4.1)



Once the full dominance frontier relation is computed the next concem is

how to store or represent it. This problem is generally called as the factorization

problem [CF590b). As motivation, let us first see how to factorize the dominance

relation.

The dominance relation can be represented in two ways: (1) at each node store

a pointer to its immediate dominatar node (except for the Root node where we

store a pointer to itself), (2) at each node x store a list of ail the nodes that strict1y

dominate x. Using either representation we can query the dominator of anode

in time proportional to the size of its dominator set. But, the first factorization (or

representation) is better since it occupies only linear space, whereas the second

factorization occupies quadratic space.

Given the above intuition for the factorization problem, Cytron et al, in

[CF590b), posed the following open problem. Is there a factorization (or a repre

sentation scheme) for dominance frontiers that can be constructed in linear time,

occupies linear space, and each query DF(x) takes time proportional to the size

of x's dominance frontier set In that paper, the authors conjectured that it may

not be possible to come up with such a factorization. Notice that the full dom

inance frontier relation, in the worst-case, occupies quadratic space (e.g., nested

repeat-untilloops), but querying takes time prcportional to the size of the

set.

•

•
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DJ graphs can alsobeconsidered as a factorization for representing dominance

frontiers. We canconstructDJgraphs inlinear time (Algorithm 3.1),itssizeisagain

linear with respect to the sizeof its flowgraph (Theorem 3.1), but querying the

dominance frontier of anode takes O(IEI} using Aigorithm 4.1. Notice that our

DJ graph has space optimality (since it occupies linear space) but not query

time optimality (since it takes O(\EI) for a query), whereas the full dominance

frontier relationhas query-time optimality (since it takes O(IDF(:c) 1) for querying

the dominance frontier of node :cl, but not space opt:!mality (since it occupies

quadratic space, in the worst case).

Recently, Pingali and Bilardi solved this problem using a representation called

.Arr (PB95]. To motivate the .Arr representation consider the DJ graph shown

in Figure 4.1. Assume that we wa.,t to compute DF(2). Using A1gorithm 4.1, we

would simply walk down the DJ graph along 0 edges looking for J edges whose

destination node is at levels less than or equal ta the level of node 2. We can see



t.'lat only 8 -+ 10 satisfies this level condition. Now rather than walking down

the DJ subgraph root at 2 each time we query DF(2) we can caclze the J edge

8 -+ 10 at node 2. By doing 50 we improve the query time of DF(2). Now the

key question to ask is when and where to cache such J edges? Recently Pingali

and Bilardi solved this problem in their APT representation. ln a preprocessing

step they show how to cache such Jedges at certain nodes called bOllndary nodes.

One can view the APT representation to be a cadzed DJ graph, where J edges are

cached to improve query time. Pingali and Bilardi showed how to used a "tuner"

to control how much caching is really needed 50 that space and time optimality

of the representation is not sacrificed. One can think of APT to be a spectrum

of dominance frontier faetorizations with our DJ graph being at one end (with

no caching) and the full dominance frontier representation being at the other end

(with full caching).

•
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4.4 Dominance Frontier Interval

In this section we give a simple algorithm for computing the dominance frontier

interval in lînear time using DJ graphs [CFS90b, PB95]. We define dominance

interval as follows:

Definition 4.1 Let y -+ Z be aJedge and let w = idom(z).

• The half-open dominance frontier interval [y, w) ofthe Jedge y -+ Z is the set
ofaIl the nodes on the reverse dominator tree pathJrom y ta w, including w.

• The closed dominance frontier interval [y, z1 ofthe Jedge y -+ Z is the set of

all the nodes on the half-open dominance interval [y, w) but not includingw.

Given the above definition, we call y as Bottomnode of the interval, w is called

the Top node cf the half-open interva1, andz is called the Top node of the closed

interval. Determini."lgthe set ofnodes in [y,w) or [y,z1 requires a simple treewalk

on the reverse dominator tree path from 11 to w or z.

Our interest inthis dissertation is in theTop node ofa dominance frontier inter

val (see Chapter 10). Fora half-open interva1, computingTop node is trivial-the

Top node of a Jedge y -+ Z is nothing but the immediate dominator of z. What

about the Top node ofa closed interva1? Anaive algorithm would requirewalking



up the reverse dominator tree path from y to w = idom(::) and find the ilnmediate

dominee x of won this path. The complexity of this would be O(IN\) for a single

J edge, and 50 for ail J edges this would require 0UEI x IN\). We will next show

how to compute the same set in time O(IE\) using DJ graphs.3

Aigorithm 4.3 below computes the Top nodes for ail J edges. The algorithm

works on the DJ graph. We will use the following notation and data structure to

simplify the presentation.

•
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• C hildren(u) denotes the children of u on the dominator tree.

• Each node in the DJ graph has the following attributes:

- curChild /* Current child node visited in the depth first

traversal */

Algorithm 4.3 The foliowing algorithm determines cTop nodes fOT ali Jegdes.

foreach c E Children(srARr)

srARr.curChild = c

TopDFS(c).

endfor

•
- cand /* Candidate Top node for this Bottom node in the

closed interval [thisbottom, cand]. * /

oTt Input: The DJ graph.

I.t Output: The Top node x of the closed interval [y, x], stored in y.cand.

MainTopO

{
20:

21:

22:

23:

foreach outgoingJedge y -+ Z do

y.cand = idom(z).curChild;

endfor

}
TopDFS(y)

{
24:

25:

26:

3Althoughthealgorithmisverysimple,wearenotawareofanyliteratw:ethatgivesacomplete
algorithm for detemùning the Top node of closed intervals. Pingali and BiIaJ:di briefly mention
this in their paper without plOviding a complete algorithm [PB95). Subsequently, Pingali also
plOposed another algorithm for computing the same set (Pin95).•
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27: foreach c E ChiIdrcn(y)

28: y .curChiId = c / * a Top node of sorne closed interval * /

29: TopDFS(c).

30: endfor

}

Figure 4.2: The DJ graph of Figure 3.1 annotated with cTop nodes.

Example4.3

Consider the DJ graph shown in Figure 3.1. We will illustrate Algo

rithm 4.3 for tlùs DJ graph. The DJ graph annotated with cTop nodes

is shown in Figure 42. The top nodes are denoted in the figure as

< x >. We perform a top-down depth-first search on the DJ graph via

D edges looking for Jedges. During the depth-first traversal (step1221
and step 129 Pwe store a referenœ to the current child (through which

visitthenodesinsub-treerootedat the currentchild) intheparentnode

(step 1211and step 128 p. Subsequently, when we probe a Jedge x -+ y,

the ixnmediate dominator of y will contain the cTop,,_v (step \25 b.

44
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Consider for example the Jedge 7 --+ 3, the immediate dominator of 3

is 2. The only dominator tree path from 2 to 7 is via node 3, and a ref

erence to node 3 was previously stored in 2.curChi/do 50 the CTOP7_:'>

is 3.

Theorem 4.1 Aigorithm 4.3 correctly computes cTop nodesfor ail Jedges.
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Proof:

At step1221and step 129\TopDFS(c) is invoked with the current child c.

Prior to callingTopDFS(c), referenceto the currentchild cisstored in its

parentnode. 5ince thepathbetweenany two nodes in a dominator tree

is unique, when a Jedge y --+ Z is processed at step 125 ~ w = idom(z)

will contain the reference to child node through which node y was

previously visited from node w. This child is the cTop for y --+ z. This
is because there is a unique path between w and y on the dominater

tree, and this path must pass through cTopy_= •

Finally, one can easily show that the time complexity of the above algorithm

is O(lEdJ).

4.5 Discussion and Related Work

ln this chapter we gave algorithms for computing dominance frontiers of anode

:>.nd dominance frontiers for a set ofnodes without precomputing the dominance

frontiers for all nodes. We also gave an algorithm for computing the full dom

inance frontier 'relation that uses level information. One main contribution in

this chapter is determining dominance frontiers using level information. This is

important for us because it allowed us te devise a simple linear time algorithm

for computing dominance frontiers for a set of nodes (Chapter 7).

ln [CFR+91] Cytron et al, gave a simple formula for precomputing the domi

nance frontiers for all nodes. Cytron et al proposed a factorization for storing the

dominance frontiers for all nodes. This factorization occupies quadratic space,

but querying the dominance frontier of anode takes time propo~onaltothe size

of its dominance frontier set. We can also think of DJ graphs te:Ce a factorization

of dominance frontiers. Inour case we can construct a DJ graphin linear fune and



linear space, but querying the dominance frontier of anode using Aigorithm 4.1

could take O(INI) time. Recently, Pingali and Bilardi proposed a representation

called APT for factorizing the dominance frontier relation. One can think of

APT to be a spectrum of dominance frontier factorizations with our DJ graph

being at one end and the complete dominance frontier representation being at the

otherend.

In this chapter, we also gave a simple algorithm for computing Top node of

both dosed and open dominance frontier intervals for ail Jedges. Although this

algorithrn is very simple, we have not seen any literature giving a description of

an algorithrn for this problem. We will use the concept of top nodes in Chapter 10.

•

•

•
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Chapter 5

Computing Multiple Node

Immediate Dominators

Consciously or unconsciously, every one of us does rentier sorne service
or other. Ifwe cultivate the habit ofdoing this service deliberately, our desire
for service will steadily grow stronger, and will rnake, not only our own
happiness, but that ofthe world at large.

-Mahatma Gandhi

Recently, Gupta introduced the concept of multiple-node immediate dominators

for solving certain data flow problems such as array bound checking and loop

invariant remova!s more aggressively than exiting methods [Gup92]. In bis pa

per Gupta gave an O(INIP) algorithm for computing multiple-node immediate

dominators (where INI is the number of flowgraph nodes and p is ihe maximum

number of pred-"'CeSSOrs of a node). In this chapter we present an O(lEI2) algo

rithm for computing thesame result (where lEI is thenumberofflowgraph edges)

using DJ graphs. In the next section we introduce the concept of multiple node

dominators, and also discuss one application in compiler optimization. In Sec

tion 5.2, wep~tour algorithm for computing the multiple-node immediate

dominance relation using DJ graphs. In Section 5.3,weuse an example to further

illustrate our algorithm. In Section 5.4, we show the correctness and complexity

of our algorithm. Finally, in Section 5.5, we discuss some related work and give

our concluding remarks.
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CHAPTER 5. MULTIPLE NODE IMMEDIATE DOMINATORS

S.l Introduction and Motivation

Recently, Gupta introduced a relation called multiple-node immediate dominators

of anode [Gup92]. This relation can be used in automatic generation of compact

test suites forprogram testing. It is also useful in program analysis and optimiza

tion. Using multiple-node immediate dominators, he showed how to perform

loop-invariant removals and array bound checking more aggressively than exist

ing methods [ASU86]. More recently, Gupta [Gup95], Bodik and Gupta [BG95],

Appelbe et al. [AHM:+95] have shown other applications of multiple-node domi

nance relation.

To illustrate one application of multiple node dominance relation, consider

the flowgraph shown in Figure 5.1.1 Ifone uses the traditional algorithm for loop

invariant removal, it is impossible to move the expressions i +1 (node 3 and node

4 in Figure 5.1) from the loop. This is because, single-node dominance relation

prohibits such opt:imizations [ASU86]. To overcome fuis, Gupta introduced the

notion of multiple-node dominance relation. Intuitively, in a multiple-node dom

inance relation a group of nodes dominate a single node such that no subset of

the nodes dominates the node. For example, in Figure 5.1 nodes 3 and 4 together

dominate node 5, but nodes 2 and 3 together do not dominate node 5 (there exists

a subsetof {2, 3}, i.e., {2}, that dominates node 5).

Gupta proposed a two-step process for computing multiple-node dominance

relation. In the first step multiple-nodeimmediate dominator nodes are computed, us

ing which, in the second step, the multiple-node dominance relation is computed.

Gupta's algorithm for computing the multiple-node immediate dominance rela

tion hasa worst-easetime complexity ofO(iNn wherep is themaximum number

of predecessors of anode. We have improved the worst-ease time complexity of

the algorithm to O(\EI2).

Next we will formally introduce multiple-node dominance relation. The tra

ditional defiIùtion of the dominance relation is called the single-node dominance

relation, meaning every node exœpt for the STARl" node has exaetly one immedi

ate dominator. The generalized dominance relation captures both the single-node

and the multiple-node dominance relation in a unified way. Gupta defines the

generalized dominance relation as follows:

1This example is taken from [Gup92].
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• 1:

(a)

3:

i=min
1: (:;+1

(b)
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Figure 5.1: An example of loop invariants removal.

Definition 5.1 A set ofnodes S dorninates node x ifand only if:
(1) aIL paths frorn START to x contain sorne node y E S; anà

(2) for each y E S, there is at least one pathfrorn START to x which contains y but
does not contain any other node in S.

Example5.1

Consider the flowgraph shown in Figure 52. Let S - {2, 5, 6}. We can

see that S dorninates node 15. This is because ..n paths from START

te 15 contain at least one node in S, thus S satisfies the first condition

of Definition 5.1. Also, we can see that for each node y E S, there is

at least one path from START to 15 that passes through y, but not any

other node in S, and 50 S a1so satisfies the second condition.

Now letT ={4,8, 12}. We can seethat T doesnot dorninate node 15.

This is because a subset of T, i.e., {4, 14}, dominates node 15. Thus T

violates the second condition of Definition 5.1.
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Figure 52: Another example of a flowgraph.

50
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Gupta prescnted a two-step process for computing multiple-node dominance

relation. First, multiple-node immediate dominator set is computed, using which

the multiple-node dominance relation is computed. Gupta defines the multiple

node immediate dominance relation as follows. (Note that Predf(x) represents

the predecessor nodes of x in a flowgraph.)

Definition 5.2 A muItiple-node immediate dominator set midom(x) of a node x is

defined to be a subset of Predf(x) which dominates x.

Example 5.2

Consider the flowgraph shown in Figure 52. Let us compute

midom(13). First notice that Predf(13) = {9, 11, 14}. Using Defini

tion 52, we can immediately see thatmidom(13) = {9,14}.

ln this chapter we will distinguish betweP.n single node immediate dominator

(sidom) and multiple-node immediate dominator (midom) set. Every node has

exactly one sidom (except the START node which has none). The midom-set of a

node, although unique, canbeempty. The midom-setofanode is emptywhenever

the node satisfies the following property:

Lemma 5.1 The midom-set ofa node x (x ::f START) is empty ifand only if there is a

j/owgraph edgefrom sidom(x) to x.

Proof:

Easily follows from Definition 5.2.

Therefore, we will compute the midom-set only for those nodes x such that

sièom(x) ..... x is not a flowgraph edge. We will use MX'DOM to denote the

relevant set of nodes whose midom-sets are not empty.

ln this chapterwe givea simple algorithm for computing multiple-node imme

diate dominator with a better worst-case lime complexity of O(\EI2). To compute

the multiple-node immediate dominance relation we made the following key

observation:

Observation 5.1 A predecessor, y, (lf a node x in aj/owgraph is in midom(x) if! there .

exists at least one path from sidom(x) to Y that does not contain rmy other nodes in

Pt'edf(x) (excludingy itseIft.



This key observation fol1ows from the definition of generalized dominator

(Definition 5.1) and the restriction that midom(x} must be a subset of Pmlf(J·).

Therefore,in order to compute midom(x) wecheck foreachy E Predf(J') whether

there is a path from sidom(x) to y that does not contain any other nodes in

Predf(x). Ifsuch a path exists then we add y to midom(x). Thus, in our approach,

westart offwith an empty midom(x), and add nodes from PrcdJ(x) to 111id0111(X)

if they satisfy the aforementioned property. This is in contrast to Gupta's method,

where the midom(x) set is initial1y assumed to be Predf(x), and then nodes

are removed from midom(x) until the set satisfies certain properties (Lemma 2

in [Gup92]). Based on this observation, in the next section, we give a simple

algorithrn for computing the set of nodes in midom(x).

•
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5.2 Our Algorithm

In this section we present our algorithrn for computing multiple-node immediate

dominators. In the previous section we made the following key observation for

computing multiple-node immediate dominators: If a node y is in midorn(x), then

there is at least one path from sidom(x) to y that does not contain any other nodes

in PredJ(x) (excluding y itself). Therefore, in order to compute midorn(x) we

check for each y E PredJ(x) whether there is a path from sidom(x) to y that does

not contain any other nodes in PredJ(x).

In order to check if the above mentioned path exists, we do the following:

For each nocle y E PredJ(x) (assuming that we are computing midom(x», we

'outblock' all the nodes in PredJ(x) except y. By 'outblock' we mean that ail

the outgoing edges from the node are conceptually eut. Next we check if x is

reachable from sidom(x). If 50, we have found a path from sidom(x) to :c that

does not pass through any other node except y in PredJ(x). This means that

y E midom(x). We do the above process"for all nodes in PredJ(x). The complete

algorithrn for computing midom(x) for every node x E MI1)OM is given below.

To simplify the presentation of our algorithrn and proofof correctness, we use

the following notation and data structures:

• NumLevel is the total number of levels in the dominator tree

embedded in the DJ graph.

• Each node x E N has the following attnbutes:
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.,trlLct N odeStructure{

proe = {Processcd, Not Processed}

instack = {inStack, NotInStack}

outblocked = {OutBlocked, NotOutBlocked}

level = {O .•. NumLevcl-l}

}

• PushNode(x) inserts x into a sttlck. PopNodeO retrieves anode

from the stack. ClearStackO clears the stack.

53
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The fjrst step in the algorithm is to mark ail the predecessor nodes PredJ(x)

of x as Out B /ocked in the DJ graph (for loop at step 132 D. Then select one of the

'un-processed' nodes that is marked OutB/ocked and =.block it (step 137 D. Next

cali the function VisitedX(sidom(x), x) (step 138D. This function retums True if a

path exists from sorne node in SuccJ(sidom(x» to x that does not pass through

any of the outblocked nodes; otherwise, it retums Fa/se (step~.Add y to M",

(step 140 Dif the function VisitedXO retumed True. At step1431we again outblock

the current node. This process is repeated for ail un-processed nodes in PredJ(x)•

When the procedure terminates the midom-set for node x is stored in M",. The for

loop at step 1461 un-blocks ail outblocked nodes.

Algorithm 5.1 The fo//owing a/gorithm computes the midom-set M", for any x E

MX1JOM.

• Input: ADJ graph g = (N,E,SfART,END) and the set of relevant nodes

MX1JOM

• Output: The set M"" the multiple-node immediate dominators for anode

x EMX1JOM.

• Initialization:

't/x EN (x.proc =NotProcessed;

x.instack = NotlnStack;

x.outb/ocked =NotOutB/ocked;

/ *Compute the level numbers */
x.leve/ = Leve/(x);

• The Algorithm:
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Procedure MidomSet(x)

{

31: M" = 0
32: foreach y E PredJ(x)

33: y.outblocked = OutB/ocked

34: endfor

35: foreach y E PredJ(x)

36: if(y.proc! = Processed) / * get next un-processed node */

37: y.outblocked = NotOutBlocked

38: status =VisitedX(sidom(x), x)

39: if(status==True)/* found a path */

40: M" = M" Uy / * insert in M" */
41: endif

42: y.proc =Processed/ * mark processed* /

43: y.outblocked = OutBlocked

44: endif

45: endfor

46: foreachy E PredJ(x)

47: y.proc = NotProcessed /* recover the DJ graph* /

48: y.outblocked = NotOutBlocked

49: endfor

}
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The function VlSitedX() in conjunction with another function VlSit() searches

through the nodes below sidom(x) te see if it can reach x from some node w

in SuccJ(sidom(x)) without passing through any of the outblocked nodes. The

procedure VlSitedX() returns True if such a path exists. Remember that we

have unblocked on1y one predecessor of x, say y, and outblocked the rest. 50

if VlSitedX() returns true, we have found a path from sidom(x) to x that passes

through y without passing through any other predecessors of x. Therefore, from

our previous discussion y should be added to the set mdiom(x).

The first step in function VlSitedX() is to insert into a stack aU the nodes in

SuccJ(sidom(x)) that are at the same level as x and are not marked OutBlocked

(for loop at step Iso D. Then it picks anode z from the stack (step @ and calls



another function Visit(z,x) (step @. The function VisitO returns True if the

node x was visited during the invocation of Visit( z. x); otherwise, it returns False

(step @. When the True value is retumed, further search through any remain

ing nodes in stack is aborted and the Tr11e value is propagated back to the main

procedure MidomSetO (step @. Otherwise, it picks another node from the

stack and continues with the search until there are no more nodes in the stack.

Whenever VisitO returns True, the function VisitedXO c1ears the stack (by calling

the procedure ClearStackO at step @ before propagating the True value back

to the main proceuure.

•
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Function VisitedX(w, x)

{

50: foreach z E SuccJ(w)

51: if«z.level == x.level) and

(z.outblocked! = OutBlocked))

52: PushNode( z) / * Push onto stack */

• 53: z.instack = InStack

54: endif

55: endfor

56: while«z = PopNode())! = NULL)

57: status = Visit(z,x)

58: if(status == True)

59: OearStackO

60: retum True / * found a path */

61: endif

62: endwhile

63: retum False /* not found a path */

}

•
The funetion VlSit(z,x) basically walks down SubTree(z) through D edges

(step @ and checks if there is a J edge from some node v E SubTree(z) te .

x (where z was previously put on the stack). If such a Jedge is found (step \72 b,
further search down the subtree is aborted and the funetion retums True back

te funetion VisitedXO (step 173 b. Otherwïse, the funetion visits aIl the nodes in



S1.bTrcc(::) through D edges. Note that the function VisitO never walks down an

outblocked node (step@. Whenever it finds a successor node to be outblocked,

it avoids searching further down the tree through the outblocked node.

As it walks down the subtree, if it finds a Jedge whose destination node, say

u, is at the same level as x, and u was not previously put on the stack, it pushes Il

onto the stack (step 177 D. Note that it never pushes an outblocked node onto the

stack.

•
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foreach u E SUCCd(::)

if(u.outb/ocked! =OutB/ocked)

if(z --+ u == Dedge) /* walk down D edge * /

status = Visit(u,x)

if(status == True)

retum True /* found a path, so stop searching

further */

70: endif

71: else/ * Jedge * /
72: if(u == x) /* found path to x * /

73: retum True

74: endif

75: if(u./evei == x.Ievel) /* same level as x? * /

76: if(u.instack! = l nStack)

77: PushNode (u)

78: u.instack = InStack

79: endif

80: endif

81: endif

82: endif

83: endfor

84: retum Fa/se

}

Visit(::,x)

{

64:

65:

66:

67:

68:

69:

•

•
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5.3 An Example

57

Let us illustrate the working of Aigorithm 5.1 for the flowgraph given in Fig

ure 5.2(a). Ils corresponding DJ graph is shown in Figure 5.3. Assume that we

wantto compute midom(13), themultiple-node immediate dominator set for node

13. The first step is to outblock aIl the nodes in PredJ(13) = {9, 11, 14} in the DJ

graph (for loop at step 132 D. The resulting DJ graph is shown in Figure 5.4(a). In

the figure aIl outblocked nodes are shaded and not shadowed. Next we unblock

one of the previously blocked node, say 11. The resulting DJ graph is shown in

Figure 5.4(b). Then we call the function VisitedX(4, 13) (step 1E\l.

Levels

•
\

1ïl
,'~ ...... .., , ...

o

1

2

3

4

5

•
Figure 5.3: The DJ graph of the example flowgraph shown in Figure 5.2.
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(a) Ail predecessor
nodes are outblocked

ISTARlJJ,.-.
b.,"~:"".

. -" .' \ ' ......
_~.....;;:::::t<...... ....---....

(c) Only 14 and 11 are
outblocked

(b) Only 9 and 14 are
outblocked

1STAAT b,.
,.b." .

-~~...~~.' \ '.~'_.--

(d) Only 9 and 11 are
outbtocked

•
Figure 5.4: Various stages of the DJ graph during the computation of midom(13).
Outblocked nodes are shaded and not shadowed.



VisitedX(4,13) first inserts into a stack ail the nodes in SUCCj(4) that are at the

same level as node 13 and are not marked OuiBlocked (for loop at step~. In

this case only node 8 is pushed ante the stack, since node 9 is marked OuiBlocked.

Then we cali Visit(8, 13). This function will in tum visit aIl the nodes in SubTree(8)

(step /64 D, which ::ontains only node 8. There are two Jedges from 8: 8 -> 10 and

8 -> 15. The level number of node 15 is less than that of 13, so we do nothing.

Node 10 is not outblocked, is at the same level as node 13, and was not previously

put on the stack. 50 we push node 10 on the stack (step 177 D. Since we have

not yet reached our goal (of getting to node 13), VisitO returns False back to its

calling function VisitedXO (step 157 D. Since node 10 is on the stack, at step 156\
we pop the node and call Visit(10, 13) at step 1571. The only successor of node 10

is 14, and 14 is marked outblocked (step [§]l. 50 Visit(10, 13) returns False, and

50 does VisitedX(4,13) to the main procedure (since there are no more nodes on

the stack). Consequently, we do not add node 11 to M13.

Next, in the main procedure MidomSetO, we outblock node 11 and un-block

node 9 (see Figure 5.4(c». We again caIl the function VisitedX(4, 13). As before,

VisitedX(4,13) first pushed nodes 8 and 9 cnte the stack (note that this time we

have un-blocked node 9). Assume that node 9 was pushed earlier than node

8. At step 1571 we call Visit(8, 13). The only successors of 8 are nodes 10 and

14. The scenario is the same as before-from node 10 we visit node 14 which is

outblocked (the level number of node 14 is less than that of 13.) Therefore, we

return with False back to VlSitedX(). Next the function VlSitedX() picks node

9 from the stack (step 156band invokes VlSit(9,13). There are three successor

nodes to node 9: nodes 11, 10, and 13. Nede 11 is outblocked and node 10 was

previously pûton the stack. 50wevisitnode 13,which is our goal state. Therefore

we immediately return with True (step 173b. This means we have found a path

from 9, a node in Succj(sidom(13», to node 13 that avoids any of the outblocked

nodes. Consequently, we add node 9 to Mo (step 140 b.
The only remaining un-processed node is 14. We un-block it and call the

function VlSitedX(4, 13) (see Figure 5.4(d». Performingthe computation proœss

as before, we will see that this function returns True; therefore, we include node

14 in Mo. Thus, we eventual1y have Mo = {9,14}.

•

•
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5.4 Correctness and Complexit'j
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ln order to prove that Algorithm 5.1 correctly computes the midom-set for any

node x E MI'DOM, we must show that, when the algorithm terminates, the set

J'vI", (at step 140 Dsatisfies the definition of midom-set (Definition 5.2). In other

words, we have to show that M", satisfies the following conditions:

1. M", is a subset of PredJ(x).

2. Ali paths from srART to x contain sorne node y E M"" and for each y E M""
there is at least one path from srAIn to x which contains y but does not

contain any other node in Mr •

Notice that these two conditions follows from our key observation presented

in Section 5.1 (Observation 5.1). Although we do not explicitly prove the key

observation we will show that the above two conditions are indeed satisfied by

our algorithm.

First of all notice that all paths from srART to x must pass through .sidom(x).

Also, ail paths from srART to any node y in PredJ(x) must again pass through

sidom(x) [PM72]. Therefore, it is sufficient for us to consider paths from sidom(x)

(rather than fromsrART) te x when arguing that M", indeed satisfies Definition52

Before proceeding, we define a special set of nodes with respect to a node x:

Definition 5.3 (S", set) Given a node x, we dejine S'" to be asubset ofSuccJ(sidom(x))

such thatJor every y E SuccJ(sidom(x)), y.Level == x.LeveL.

In order to show that M", indeed satisfies the definition of midom-set, we will

first examine what nodes are added te M", when our algorithm termînates. A

node is added te M", at step 140 1only if VisitedXQ returns True. When does

VlSitedXQ retu.--n True? In Lemma S5 we will show that VisitedQ returns True

iff there exists a path from some node y E S", to x in the DJ graph that does not

pass through any outblocked node. What this means is that for a node y te be in

M"" there must exist a path from sidom(x) te x that does not pass through any

othernode in PredJ(x).

We will use Theorem5.1 te formally validate the correctness of our algorithm.

The proof of the theorem is based on Lemm.a 55, whose proof in turn needs the

resuIts from the next three lemmas.



Lemma 5.2 Let :r and y be any Iwo nodes sllch thal y.lcvel < x.lcvel. Then trvery path

from 11 to x mllst pass throllgh sidom.(x).•
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Proof:

Easily follows from properties of the DJ graph. •
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In the following discussions, we assume that x is in the relevant set MI'DOM.

Lemma 5.3 shows that, in order to search for an outblock-free path from sidom(x)

to x, it is sufficient to start th~ search from nodes in Sr, thus reducing the search

space.

Lemma 5.3 Ali simple paths (in thef/owgraph) jrom sidom(x) ta x must contai;! sorne

nodey E Sr'

Proof:

Assume P is a simple path (in the flowgraph) from sidom(x) to x

that does not contain any node in Sr' Notice that an paths from

sidom(x) to x must contain sorne node in SuccJ(sidom(x)). Let U E

SuccJ(sidom(x)) be sorne node such that U is in th"! path P. First of

ail observe that u./eve/ can never be greater than x.leve/. Now let us

assume that u.level is strictly less than x.leve/. But, from Lemma 5.2,

ail paths from tL to x must pass through sidom(x), and so does P. If

this is the case, then P is no longer a sim?le path-a contradiction. 50

it must be the case that u.leve/ =x.level, that is, u E Sr' •

In an atternpt to search for a path from sidom(x) ta x, we use Lemma 5.2 to

guarantee that it is safe not ta search any nodes whose levels are less than x.leve/.

In other words, we can limit the search for such a path ta only nodes below

sidom(x). Lemma 5.3 specifies exactly which subset of nodes of SuccJ(idom(x))

one needs to consider when determining if node x can be reached from sidom(x).

The needed nodes in SuccJ(idom(x)) are those at the same level as x. The next

lemma specifies which nodes need to be pushed onta the stad< (at step 1521 and

step 177 b. Those nodes are at the same level as x and are reachable through a

outblock-free path from some node in SuccJ(idom(x)).

Lemma 5.4 Anode =is pushed onto the stack (at step 1521 and step 177Ponly if there is
a outblock-.free path ta =from sorne node in Sr, =is not outblocked, and z.level = x.level.
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Proof:

Nodes are put on the stack only at t'ovo places: step \521 and step \771.
At step 1521 only nodes in Sr that are not outblocked are pushed onto

the stack. At step 1771 nodes are put on the stack when they are

not outblocked, are siblings of x, and are reachable from sorne node

u E SubTrce(w), where 10 was previously put on the stack and is

reachable from sorne node in Sr'

•
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Lemma 5.5 specifies that the function VisitedX(sidom(x), x) does indeed find

a path from sorne node in Sr to X that does not pass through any outblocked

nodes, whenever such a path exists.

Lemma 5.5 Thefunction VisitedX(sidom(x), x) retl/ms Truc ifalld ollly iftlzcre exists

a path from sorne node y E Sr to X in tlze Dl graplz that does not pass tlzrol/glz allY

ol/tblocked node.

Proof:

The "if" part Wefirstshow that ifVisitedX(sidom(x) , x) returnsTruc,

then there is outblock-free path from sorne node y E Sr to x. Note

that we never visit any successor of an outblocked node in the

process (step @. From Lemma 5.4 we know that anode is put

on the stackoruy if it is not outblocked and there is a outblock-free

path from sorne node y in Sr te this node. At step \731 we retum

Truc only if X is visited through some Jedge z -+ X (step lnb.
Node z was previously put on the stack and is reachable from y.

Therefore, if VlSitedXO retums Truc, then there is an outblock

free path from y to x.

The "onlyif" part Wenextshowthatifthereisaoutblock-freepathP

from y E Sr to x, then VisitedX(sidom(x),x) returns Truc. Note

that our algorithm outblocks ail the nodes in Prcd,(x) except one

node, say node z. 50 if P is a outblock-free path, then Pmust

contain z, and so it is obvious to see that VlSitedX(sidom(x),x)

will retum true.



•
CHAnER5.MULTIPLENODEIMMEDMTEDOMh~ATO~

•
63

•

•

Final1y, we prove our main result in Theorem 5.1. In Lernrna 5.5 we have

established that VisitedXO retums Truc iff there is an outblocked-free path from

sorne node in S'" to x. In Algorithrn 5.1, â. node is added to the set M", only if

Visi tedXO retums Truc, rneaning only if there is an outblock-free path frorn sorne

node in S'" to x in the DJ graph. We will show in Theorern 5.1 that the set M""

when the algorithrn terminates, indeed satisfies the Definition 5.2.

Thecrem 5.1 A/gorit/lm 5.1 correctly computes midom(x) for any x E MIVOM.

Proof:

First of aIl it is straightforward to see that M", is a subset of Predf(x).

This is because each node y that is added to M", belongs to Predf(x)

(step ŒB and also M", is initialized with the empty set at step 131 p.
Next we will show that aU paths from sidom(x) to x (in the flowgraph)

contain some node in M",. The proof is again easy. Anode is added

to M", only if VisitedXO retums True. From Lemma 5.5 it is clear

that VisitedXO retums True if x is reachable from some node in S""

Therefore aU paths from sidom(x) to x (in the flowgraph) contain some

nodein M",.

Next we will show that for each y E M", there is at least one path from

sidom(x) (in the flowgraph) that contains y but does not contain any

other nodes in Predf(x). Again the proof foUows from Lemma 5.5.

Whatwe do in Algorithm 5.1 is to outblock an the nodes in Predf(x)

except node y, and then check if there is a outblock-free from some

node in S"" From Lemma 5.5 we know that VisiteciXO returns True if

such a path is found. Also this path should contain y (since an other

nodes in Predf(x) are outblocked). Hence the result.

•
Next we analyze the worsL."a5e lime complexity of computing the midom-sets

for an the nodes in MI1>OM. We first give the time complexity of Algo"ithm 5.1,

which computes midom(x) for any xe MIVOM.



Theorem 5.2 Thc worst-casc tÎmc comp/cxity ofA/gont/mIS.l is O(1El x l'), ,l'hal'I El
is the number of edges in the Of graph, and p is bcunded by thc maXimll7'1 mmlbcr of

predccessor nodcs ofa node in the corresponding fIowgrapll.
•
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Proof:

For each node y in Prcdj(x) weessentially traverse the DJ graphbelow

sidom(x) looking for a path to y that does not pass through any other

nodes in Predj(x) - {y}. Also, we put a node on the stack only

once (step [ID. Finally, we only visit the nodes and edges of the DJ

subgraph rooted at nodes that was previously put on the stack, at most

once. AIso, we perform the above process for each node in Prcdj(x).

With P being the maximum number of predecessors anode can have,

the result easily iollows. 1

Let xl,x2, ... ,xk be the set oi nodes in MI1XJM. The time complexity of

computing the midom for k nodes is then bounded by O(IEdl x (Pzl + pz2 . .. +
Pzk»' 5ince the size k of the set MI1)OM can be O(IN\), the time complexity

of computing the midom for al! is bounded by O(IEdl x IEj\) => O(lEj I2) (since

Pzl +pz2'" + pzk = IEjl, for k = INI).

5.5 Discussion and Related Work

We have shown how to use the DJ graph to facilitate computing the immediate

multiple-node dominator of anode. Compared to Gupta's algorithm, ours has a

better worst-ease time complexity for computing the same set. We are currently

not aware of any other work on generalized dominators. Final!y, we notice that

generalized dominators are related to the vertex eut-set problem. But computing

midom-sets is different from general eut-set problemin the foIlowing ways. In the

vertex (node) eut-set problem we are given an undirected graph, and the problem

is to find a subset (usual!y a minimal subset) of nodes whose removal (along with

aIl the edges incident on these nodes) will split the graph into two disconnected

subgraphs. One could use any of the network flow algorithms to compute what is

termed as min-eut set that will split the graph into two disconnected components

by assuming al! edges have the flow capacity of one. But in the midom-set

problem for a flowgraph, our objective is to find a minimum subset of nodes from



l'l'ulf(":) whuse removal (along with all the edges incident on these nodes) will

separate $idom(x) and x. This does not necessarily separate the whole graph into

disconnccted components.•

•

•
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Chapter 6

Identifying Irreducible Loops

FORTRAN is not afIower but a weed - it is hardy, occasionally bloo1l/s,
and grows in every computer.

- A.l. Perlis

Loop identification is a necessary step in loop transformations for high

performance architectures. Sorne compilers detect loop structures using syntactic

constructs (e.g., for, while, etc.), while others detect loops using flowgraphs.

The latter approach is more general in that it can detect loops in programs that

even use goto statements or that are represented in low-Ievel intermediate lan

guages. In this chapter we follow this approach. One classical technique for

detecting loops is using Tarjan's interval algorithm [Tar74]. The Tarjan intervals

are single entry, strongly connected subgraphs [Tar74]. However, Tarjan's inter

val finding algorithm does not directly handle flowgraphs containing loops with

more than one entry, i.e., loops with multiple entries. Such loops will be called as

irredudble loops in this dissertation, whereas loops with single entry will be called

redudble loops [Hec77]. There are extensions to Tarjan's algorithms that are listed

in Section 6.3.

In this chapter we give a simple algorithm for identifying both reduciblc and

irreduoble loops using DJ graphs. As we will show in this chapter, our method

can be considered as a generalization of Tarjan's interval algorithm (since we can

identify nested loop intervals even in presence of irreduobility). Furthermore,

we use level information in the DJ graph to detect finer irreduoble regions, thus

confining the effect of iÏTeduobility to small regions.
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We begin the chapter by motivating the notion of reducible and irreducible

loops. Then, in Section 6.2, we give a simple algorithm for identifying loops in

a flowgraph. Finally, in Section 6.3, we compare our work with other related

work.
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6.1 Introduction and Motivation

In the literature there are two kinds of flowgraphs: reàucible flowgraphs, and

irreducible flowgraphs (see Figure 6.1). Hecht and Ullman gave the following

definition for reducibility of graphs [HU74, A5U86].

Definition 6.1 A graph G is reducible if and only if we can partition the edges into

two disjoint groups, caUed the forward edges and back edges, with the foUowing two

properties:

1. The fOTWard edges form an acyclic graph in which every node can be reached from

the initial node ofG.

2. The back edges consists only ofedges whose destination nodes dominate their source

nodes.

The above definition of reduClbility applies equally to both DJ graphs and flow

graphs. In other words, we can easily see that a DJ graph is reduClble if and only

if the correspond\i\g flowgraph is also reduClble.

In a reduClble flowgraph the destination node h of a back edge :z: ..... h is

called the loop header or loop entry node. ReduClbility of flowgraphs are related

to reducibility of loops. If Lisa loop with Lh as the entry node of the loop,

then Lh will dominate every node in the loop. One of the classica1 approach for

identifying loops is based on Tarjan's interval algorithm.

Tarjan's intervals are single-entry, strongly connected subgraphs, and they

closely refJ.ect the loop structures in programs [Tar74]. The basic idea behind

Tarjan's method is to repeatedly coIIapse each loop into a single node inside-out

until the whole graph reduces to one ncde. This idea will work if the flowgraph

is reducible. Recall that anode h is a loop header if :z: ..... h is a back edge and h

dominates:z:. Now as the reduction process proceeds in Tarjan's method, if we

come across a backedge :z: ..... 9 such that9 does not dominate n, further reduction
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(b) irreducible flo'Ngraph

(a) reduClble flowgraph
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Figure 6.1: An example of a reducible flowgraph and an irreducible flowgraph

of the graph cannot be continued. This is because 9 is not a unique loop header

node. A number of actions can be taken at this point; one is to split the head:.lr

node, transforming the graph to a reducible graph; another action is to abandon

the reduction process and warn the programmer that the graph is not reducible;

yet another action would be to identify a single entry region which encloses the

irreduClble portion and collapse the single entry region as or,,,node, and continue

with the reduction.

In this chapter we take a different approach for reduction. Our approach

uses DJ graphs. Translating the notion of reduClbility on DJ graph, we can easily

observe the following property.

Lemma 6.1 A j10wgraph is irreducible ifand only if there exists asimple cycle in its DT
graph that does not contain a BT edge (that is, the cycle is made ofonly D edges and CT
edges).

Proof:

Follows from the definition ofDJ graphs and Definiton 6.1. •

The inteœsting aspect of this lemma is that if we perform a depth-first search

on such a DJ graph, we can always find a potential sp-back edge that is also a



q edge, and 50 every sp-back edge is not a BJ edge.! Using this key intuition,

we can now perform depth-first search on the DJ graph, and identify ail back

edges, called sp-back edges. Once we identify the sp-back edges we can identify

loops in a bottom-up fashion on the DJ graph. The complete algorithm is given

in Algorithm 6.1.
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Example 6.1

Consider the flowgraph shown in Figure 52 whose corresponding DJ

graph shown in Figure 5.3 (Chapter 5). The flowgraph is irreduClble

because of a multiple-entry loop that has two entry nodes 3 and 5. The

DJ graph contains a simple cycle 3 -; 6 ..... 7 ..... 12 ..... 3, in which there

are no BJ edges.

Before presenting the complete algorithm we will introduce another key con

cept that is useful for understanding the algorithm. The following lemma states

that ail the "entry nodes" of an irreducible loop have the same immediate domi

nator.

Lemma 6.2 Ali theentry Ilodes ofan irreducible loop have the same immediate dominator.

Praof:

Let Xl, X2, •.• Xn be the set of loop entry nodes of an irreduClble loop.

By definition ofloop, thereexists a cycle C,such that Xl, X2, ••• Xn are in

C. Let y = idom(Xi) and let z = idom(xj), forsome i '" jE {1,2, ...n}.

We want to show y = z. Suppose that y #- z. Then there is a path from

START .;. z .:t. Xj .:t. Xi that does not pass througl:t y, contradicting

y = idorn(xi). Therefore, y must be the same as z. •

What the above lemma implies is that when we are looking for candidate

nodes that belong te a loop, look only at nodes that are at the same level as

loop entry nodes and below it (i.e., whose level numbers are greater than the

loop header's level). This is obvious for a reduClble loop, since its unique entry

node, the loop header, strictly dominates (orhas a smaller level number than) any
other nodes in the loop. For an irreduClble loop ail the entry nodes of the loop

1We say '" - y is an sp-back edge iff y is '" or is an ancestorof '" in a depth-first spanning tree.



are at the same level (follows from Lemma 6.2). Thercfore, we can identify an

irreducible loop with entry nodes at a certain level by deterrnining the Strongly

Connected Component(SCC) while consiàering only nodes whose level number

is equal to or greater than the current level. Once we find such a SCC, collapse

the whole component into one node. It is also important to emphasize that using

fuis technique we can identify reducible loops nested inside an irreducible loop.

•
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6.2 Our Algorithm

The complete algorithm for identifying loops is given below.

Algorithm 6.1 The jollowing algorithm identifies both reducible and irreducible loops

endfor

endfol

}

if(Irreducible) / .. there exists an irreducible loop .. /

Identify SCCS for the subgraphs induced bynodes at level i andbelow;

Collapse each non-trivial sec to a single node.

endif

endfor

Perforrn a dept.l-t-first searcil on the DJ graph and identify sp-back edges;

forei = N umLevel - 1 d{\wnto 0) r visit nodes in a bottom-up fashion */

Irreducible = False;

foreach node n with n.leveZ = i do

foreachedge m ..... n do

if m ..... n is both a CI edge and an sp-back edge then

Irreducible '" True; / .. n is in an irreducible loop .. /

endif

if n is a destination node of a BJ edge then

Find ReachUnder(n) for all the BJ edges ml ..... n, ... ,mk ..... n

Collapse the loop consisting of nodes {n} U ReachUnder(n);

endif

MainLoopO

{

85:

86:

87:

88:

89:

90:

91:

92:

93:

94:

95:

96:

97:

98:

99:

100:

101:

102:

103:•
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The algorithm visits ail the nodes level by level in a bottom-up fashion. At

every level, when there is a reducible loop whose header is at this level, we identify

it by checking to see if that node is the destination node of any sp-back edge. If

yes, we know a potential reducible loop is found. The algorithm goes to find the

loop body with that node being the loop header, and collapses the loop - between

step \931 and step ŒB2 The procedure RcachUndcr(n) will find ail the nodes

that can reach the source nodes of sp-back edges incident on the loop header n,

without going through n. We collapse the nodes in {n} U RcachUnder(n) using

Tarjan's set-union data structure, and these nodes form the body of the loop.

Note that ail the sp-back edges with the same destination node are sp-back

edges for the same loop. The algorithm also checks to see if that node could

be an entry node of an irreducible loop. If yes, tums on the Irreducible flag at

step Œ!]-indicating there are some irreducible locps that need to be handled

later from step 1991 to step 1102 ~ Once we are done with the above process for

every node at the level, we check to see if there is any irreducible loop with its

entry nodes at this level at step IEJ. Notice that the flag Irreducible is set at

step 1911 te true if irreducibility is detected. If yt:s, we use SCCs to identify the

locp body for an irreducible locp and collapse it. AIso note that at this point any

reducible loop whose header is at this level or below, has been "collapsed", so has

any irreduClble locp whose entry nodes are below this leveL

For a loop nest consisting of LI, L2, L3 and L4, where Ll and L3 are reducible

while L2 and L4 are irreduClble, we can identify the locp body for aIl four loops.

However, when Ll and L4 are reducible while L2 and L3 are irreduClble, we

will only identify three locps by merging L2 and L3 into one larger irreduClble

locp. That is, immediately nested irreduClble locps will not be distinguished. The

advantage of our method is to be able to identify the bodies of nested (reduClble

and irreducible) locps, with the restriction that a sequence ofconsecutively nested

irreducibleloopswillbecoIlapsedinasingleSCCregion. Itcanexposemaximally,

in a locp nest, the nesting structure of each portion which is reduClble separated

by irreducible regions.

•
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2By -collapse- we mean that a loop body is condensee! and becomes a single node. Any edge

incoming into the loop from outside the loop willbecomeanedge incoming into the representative
node. Any edge outgoing from the loop to outside the loop will become an edge outgoing from
the representativf' node.
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Figure 6.2: An irreducible flowgraph with two irreducible loops

Also, the level information allows us to detect finer irreducible regions. This

is illustrated in Figure 62. For example, using our algorithm we can detect two

irreducible loops instead of one for the flowgraph shown in Figure 6.2. The two

loopsare: L1 = {e,f},andL2= {b,e,d,L1}.

Next we will prove the correctness of our algorithm.

Lemma 6.3 Algorithm 6.1 correctly identifies both reducible and irreducible loops in a

program.

Proof:

The proof is based on·induction on levels of nodes in the DJ graph.

Base case: The leve! number is the maximum. It is trivial if sp-back

edges are also BJ edges. But if the sp-back edge is also a q edge

then Irreducible as true, and the nodes in a sec will be collapsed at

stepll0l~

Induction: Assume that the assertion is true for level k + 1. We will
then show that the lemma is true for level k. At level k when we

detect irre:lucibility (i.e., sp-back edge is the same as q edge), we

mark Irreducible is True. The procedure for ReaehUnder(n) will find

ail nodes that can reach the source node of BJ edges incident on node



6.3 Discussion and Related Work

TL, without going through node TL. Atstepl9S!wewill collapse ail such

nodes. If lrrcduciblc is true then Tarjan's sec algorithm will collapse

nodes in the Sec. In both cases, bodies of loops whose headers are at

level k are collapsed. Hence the result. •

Finally we analyze the complexity of the algorithrn. When a flowgraph is

reducible, our algorithm has the same time complexity O(IEI x Q(lEI, IN!)) as

Tarjan's approach [Tar81). The complexity of Tarjan's algorithrn is dominated

by the time taken to collapse the nodes of a loop. Tarjan uses balanced path

compression to maintain the set of nodes in a collapsed loop, and this takes

O(IEI x Q(IEI, IN!)), where QO is the inverse Ackermann function.

For irreducible flowgraphs, the worst-case time complexity of the algorithrn

occurs when it needs to find irreducible loops at every level. Assumoo k is the

number of levels in the DJ graph. Then the time complexity of the algorithm is

O(IEI x Q(lEI, IN!) +k x lE!), since finding strongly connected components needs

O(IE\) time. We anticipate in practice, k is a constant, so the algorithm is almost

linear.

•

•

CHAPTER 6. lDENTIFYING IRREDUClBLE LOOPS 73

•

Identifying loops has been a classical exercise in control flow analysis. We have

shown how to use DJ graphs for identifying both reduoble and irreduoble loops

by extending Tarjan's approach [Tar74]. One feature ofour algorithm for identify

ing irreducible loops is thatitutilizes level informationii,DJ graphste discoverthe

body ofirreduobleloops. InChapter 10 weproposeanew t'limination-based data

flow analysis that uses DJ graphs for reduction and variable elimination. Gener

ally, elimination-based methods are applicable only te reduoble flowgraphs. In

Chapter 10 we have used sorne of the key results presented in this chapter for

handling irreduoble flowgraphs during the reduction and elimination process.

Many methods have been proposed in the context of eliminatio.t based data

flow analysis for handling irreduobility such as node splitting [Hec77), identify

ing single-entry region that encloses the irreduoble region [Bur90, 5579], etc.

ln a technical report, Steensgaard proposed a method for identifying nested

loops, both reduoble and irreduoble (Ste93]. His method consists of first apply

ing Tarjan's sec algorithm te the whole graph and identifying each non-trivial



sec (Ste93]. He then identifies, for each non-trivial component, what he calls as

generalized entry nodes. A node y in a sec S is a generalized entry node of S if,

in the original flowgraph, there is an edge from ;r -> il such that;r t1. :3. Now if

z -> y is an edge in the original 110wgraph such that z E S, then the calls z -> y

as a generalized back edge. Once he identifies generalized back edges in an sec, he

eliminates them from the sec and applies Tarjan's sec algorithm once again on

the sec and identifies "inner" secs. This way he identifies loops in an outside-in

fashion of loop nests.

In our method, we apply Tarjan's sec algorithm in an inside-out fashion of

loop nests-our bottom-up reduction order will conform to this inside-out order

of loop nests. AIso, we will apply Tarjan's sec algorithm only if we detect that

there is an irreducible loop at a particular level. Therefore, the time complexity of

our approach is expected tobebetter thanSteensgaard's approach. The worst-case

time of Steensgaard's algoritlnn can be quadratic in terms of the loop nesting.

•

•

•
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Chapter 7

Computing Iterated Dominance

Frontiers in Linear Time

l don 't know thekey to SIICCesS, bllt the key tofailure is to please everybody.

-BillCosby

l'd rather be afailure at something l like than a success at something l

hate.

- George Burns

The first requisite for success is the ability to apply your physical and

mental energies to one problem incessantly without growing weary.

-Thomas Edison

In this chapter we present a simple linear time algorithm for computing the

lterated Dominance Frontier (lOF) for a set of nodes using DJ graphs. A novel

aspect of our algorithm is that it can be also used in conjunction with APT for

computing iterated dominance frontiers [PB95]. Recall, from Chapter 4, that APT

is a spectrum of dominance frontier representations, in which the DJ graph is at

one end with no caching, and the full dominance relation is at the other end with

full caching. In this chapter we will illustrate ouralgori1:hIr.. on DJ graphs (SG95b].

lterated dominance frontiers have many applications, such as for placing 4>
nodes for ai-bitrarySparseEvaluationGraphs (SEGs) andStaticSingleAssignment

SSA form (CFR+91, CCF91], computing guards [Wei92], incremental computation

of dominator trees (Chapter 8), and incremental data flow analysis (Chapter 11).
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We begin the chai'ter by introducing and motivating the problem of computing

IDF. Then, in Section 7.2, we give the complete algorithm and in Section 7.3 we

give an example illustrating the algorithm. In Sectior: 7.4, we proye ils correctness

and analyze its lime complexity. In Section 7.5 we give our experimental resulls.

Finally, in Section 7.6, we discuss the related work, and give our conclusion.

7.1 Introduction and Motivation

ThestaticSingle A<;signment(ssA) form [CFR+S9,CFR+91) and therelated sparse

Evaluation Graphs (sEGs) [CCF91], have been successfully used for efficient data

flow analyses and program transformations [CLZ86, RWZ88, AWZB'ô, WZB5,

WCES94, Bri92, CBC93]. The algorithrrls for constructing these two intermcdi

ate representations have one common intermediate step-computing program

points where data flow information are potentially "merged", the 50 called t/>

nodes [CFR+91, CCF91]. Given a flowgraph, the original algorithm forcomputing

,p-nodes for an sEG consists of the following steps [CFR+91, CCF91]:

1. Precompute the dominance frontier DF(x) for eachnode x (Chapter 4).

2. Determine the initial set of 'sparse' nodes N" that represent l''on-identity

transference in a data flow framework. For ssA, such nodes contain defini

tions of variables [CFR+91].

3. Compute the iterated dominance frontier l DF(N,,) for the initial set N".

Cytron et al. have shown that the desired set of t/>-nodes for an sEG is same

as the iterated dominance frontier l DF(N,,) of the initial set [CFR+91].

The most time consuming step in tète above algorithm is computing l DF(N,,),

the iterated dominance frontier of the initial set of sparse nodes N". The tiIr.;::

complexity of computing IDF(N,,) depends on the size of the dominanc frontier

relation. Although the size of the dominance frontier is linear for many prograrns

(as was noted by Cytron et aL), there are cases in which the size of dominance

frontiers is quadratic in terms of the number of nodes in a flowgraph, for exam

pIe, nested repeat-untilloops [CFR+91]. Note that, even though the size of

the dominance frontier may be quadratic in terms of the number of nodes in the
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flowgraph, the number of o-nodes that is needed remains linear (inr " pa,IÏl:u

lar SEG) [CFR"91). As Cytron and Ferrante pointed out: "Sinee one reasnn (nr

introducing o-nod~s is to eliminate potentially quadratic beh;)\"inr wl1l'n sl,h·in~

actual data flow problems, such worst case behavior during SEG or SSA construc

tion could be problematic. Clearly, avoiding such behavior neccs..~itates placing

q,-nodes without computing or using dominance frontiers" [CF93).

To overcome the potential quadratic behavior of computing ô-nodes using

dominance frontiers, Cytron and Ferrante proposed a neV>' algorithm th;)t has

a better complexity than the original algorithm (CF93). Instead of first pre

computing the full dominance frontier relation i\nd then using this relation for

computing 4>-nodes, Cytron and Ferrante use Tarjan's balanced patf; compression

algorithm (Tar79), and combined with other properf.es that relate dominance re

lation and depth-first numbering of the flowgraph, gave an algorithm that has a

time complexity of OlE x alE)), where 00 is the slowly growing inverse Acker

maIù"l function.

In this chapter, we present a simple /inear lime algorithm for computing the

ct>-nodes for a set of nodes without precomputing dominance frontiers for ail the

nodes. Given a set of initial nodes No., to compute the relevant set cf if>-nodes,

we made one key observation: Consider any two nodes x and y, where y is an

ancestor of x in the dominator tree. If the dominance frontier of x, DF(x), has

been computed, then to compute the dominance frontier of y, DF(y), we nœd

not recompute DF(x) (sec Chapter 4). However, the reverse may not be true.

Therefore, we order the nodes in the dominator tree in such a way that when

the computation of DF(y) is performed, the dominance frontier DF(x) of any

descendant node x, if it is essential for computing the desired set of ct>-nodes for

No., has already been computed and is so marked. As a result for any such x,

the computation of DF(y) do not require the traversaI of the dominator sub-tree

rooted at x. Recall that we used a similar trick for computing domi."l.ance frontiers

of a set of nodes in linear timè (sec Chapter 4, Section 4.2). The algorithm

presented here is an extension of that algorithm.

To perform the proper node ordering and marking, our algorithm uses

DJ graphs. The levels of the nodes in the dominator trce are used to order

the computation of dominance frontiers of those nodes, x, which are essential

to compute the final set of ct>-nodes, in a bottom-up fashion. Meanwhile, during
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each computation of UF(x), the descendant nodes of x in the dominator sub

tree rooted at x are visited in a top-down fashion guided by the D edges, ""hile

avoiding nodes which have already beC''"! marked. During this top-down visit,

J edges arc used to identify the candidate nodes that should be added into the

final set of ,p-nodes, and recursively explcred further. Il is important to observe

(yet another key observation!) that each new candidate node that is ge~~rated

on-the-fly always has a level number no greater than that of the node currently be

ing processed (assuming that the nodes in the dominator tree are numbered such

that ail nodes have a level number equal to the depth of the node from the root

of the tree). Therefore, a data structure, called the Ordc,·edBuckcts (Section 72),

is used to keep the candidate nodes in the order of their respective levels, and

no nodes are inserted into the OrdcrcdBuckcts more !han once. We show that

our algorithm vi$its each edge in the DJ graph al most once, and therefore the

complexity is linear.'

7.2 Our Aigorithm

In this section, we present our algorithm for computing iterated dominance fron

tiers. Let N", be the initial set of sparse nodes, and let IDF be the desired of

IDF for N",. Reca11 that one way of computing IDF is to first precompute the

dominance frontiers for a11 nodes and then use the inductive definition of IDF

(Equation (2.3» to compute the 1DF for the set of nodes N",. Cytron et al. have

shown that this can lead to a quadratic timeèomplexity [CFR+91]. Rather than

precomputing the dominance frontiers for ail nodes, our linear time algorithm is

based on two key observations:

1. Let y be an ancester node of a node x on the dominator tree. If DF(x) has

already been computed before the computation of DF(y), DF(x) need not

be reromputed when computing DF(y). However, the reverse may not be

true; therefore the order of the computation is crucial

2. When computing DF(x) we only need te examine J edges y ..... z, where y

is a node in the dominater S11b-tree rooted at x and z is anode whose level

'Recall!rom Theorem 3.1, thenumber of edges in the DJ graph is no more than IN/I + IE/I,
where INIl is the number of flowgraph nodes, and lEI1is the number of flowgraph edges.
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is no greater than the lev€'l of;1". Recall that we have previously made this

observation in Lemma 4.1.

We use a data structure called the O,.dc,.nIB"ckcl~ to keep the candidate nodes

in the order of their respective levels.2 Based on the above observations, levels

of the nodes in the dominator tree will be used in a bottom-up fashicn to orcier

the computation of dominator frontiers of those nodes, ;1", which ale essentiallo

compute the final set JDF. Meanwhile, during each computation of DF(.r), the

nodes in the SubTree(x) are visited in a top-clown fashion guided by D edges,

while avoiding nodes which have already been marked. During this top-down

visit, J edges are used to identify the candidate nodes which should be added to

the set JDF, and those to be recursively explored further. Note that each new

candidate generated oncthe-fly always has a level number no greater than that of

the node currently being processed, and we ensure that no nodes are inserted into

the OrderedBuckets more than once. Therefore, intuitively, we visit each edge in

the DJ graph at most once. This, and the structure of the OrderedBuckets, are the

basis of the time linearity of our algorithm.

The OrderedBuckets is an array of list of nodes, with index (or bucket) i

storing nodes of level i (See Figure 72). Associated with the OrderedBuckets are

two procedures: InsertNodeO and GetNodeO. InsertNodeO inserts a node in

the OrderedBuckets at the index corresponding to the level number of the node.

GetNodeO returns anode whose level number is the maximum of ail nodes

currently stored in the OrderedBuckets. We first insert the initial set of nodes No

into the OrderedBuckets. Then, we iteratively compute the dominance frontier

of the nodes in the OrderedBuckets in the order that GetNodeO returns them to

obtain the iterated dominance frontier of the initial setofnodes No. It is important

to note that anode is inserted into t:.'1.e OrderedBuckets if it is either in No or is in

the iterated dominance frontier of some node in No.

To simplify the presentation of the algorithm, we use the foilowing notation

and data structures:

• NumLevel is the total number of leve\s in the dominator tree
.::o-~

embedèed in the DJ graph. ~

2previously we used the te= PiggyBank for OrderedBuckets [SG95b]. OrderedBuekets an
be considered as a connotation for an ind=d set ofbuckds, with indices corresponding to Icvels in
the DJ graph.
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• Each node ;r '" IV has the following attributes:

... f7"ur! :V()(j,;S'l.rud7l7"':{

vi.,ilcd = {I!i.'ilu/. :Vollï.,ilcd}

a[l'ha={ ..lll'!ur,:Vol ..ll['!Ill} /* in No or not */

i71idJ = {lnIDF,.iI'ollnIDF} /* in IDF or not */

lcvd= {0 ... N717llLcl'd-l} /* levels of nodes */

}

• Each edge x ..... y E E has an attribute that specifies the type of

the edge: {Dedgc, .Jcdge}.

• OrderedBuekels is an array oflistof nodes. Its structure is defined

as follows:

siruei OrderedBuekeisSirueture{

NodeStrueture *node

OrderedBueketsSirueture *next

/* list of nodes at the same level */

} *OrderedBuekets[NumLeve4

• CurrentLevel is initially NumLevel-l, and subsequently has a

value corresponding to the level number of the node that GetN

odeO retums.

• CurrentRoot always points to the node that GetNode() retums.

CurrentRoot is equivalent to root of the SubTreeO whose domi

nance frontier is currently being computed.

The fust step in the algorithm is to insert al! the nodes in Na into the

OrderedBuekets (steps 11041 to \1070. We mark the nodes that are initially in

serted into the OrderedBuekets as Alpha to indicate that they belong to the initial

set Na. This is needed to avoid re-inserting them into the OrderedBuckets again

in the future (a condition that we check in the procedure VisitO, at step1119 O, We

then iteratively invoke the procedure VISitO on the nodes that GetNodeO retums

to compute the iterated dominance frontier set 1DF. At step \109 ~ we assign the

variable CurrentRoot to point to the node x that GetNodeO retums in order to

keep track of the current root of SubTree(x). Before VISit(x) is invoked at step

1111 ~ the node x is marked Visited at step 1110 1. This marking is crucial because
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"le never visit anode that has been markcd \ 1.<iI, ,1. Wc d1C,k lor this ,ondition

in the procedure VisitO at step 1125 !.

A1gorithm 7.1 The jollowilzg algoritlmz COlllplltes 1/) F(.y'.).

~ Input: ADJ graph DJ = (N. E), and the initial sct N.• ç N of sparsc nodcs.

~ Output: The set IDF = IDF(N,,).

~ 1nitia1ization:

eIDF={}

e '<Ix EN (x.visited =NotVisited;

x.inidf = NotlnI DF;

x.alpha = NotAlpha;

x.leveI = LeveI(x)) /* compute level numbers * /

e CurrentLeveI = NumLeveI - 1

~ The A1gorithm:

Main()

{

104: foreach xE N" do

105: x.alpha = Alpha

lOG: lnsertNode(x) /* Insert the nodes in the OrdcrcdBuckcts * /

107: endfor

lOS: while«x =GetNode()) ! = NULL)

109: CurrentRoot = x

110: x.visited =Visited

111: Visit(x) /* Find the dominance frontier of x * /

112: endwhile

}
The procedure VlSit() called with CurrentRoot essentially traverses the

SubTree(CurrentRoot) in a top-down fashion marking the nodes in the sub-tree

as V isitedif the nodes are not already marked Visited (a condition checked at step

1125p. Notice that the nodes in the dominator sub-tree are connected through 0

edges. As it walks down the sub-tree, the procedure Visit() also "peeks" at the

destination node of Jedges, without marking it as V isited. Whenever it notices

that the 1evel number of anode (that it peeked through a Jedge) is 1ess than or
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equal to the level number of C"rrU/IRool, it adds the node into the set 1DF, if

the node is not already in the set (a condition checked at step 1116 [). It also marks

the node as Inl Dl'" whenever the node is added to the set 1DF. This marking

is neccssary to avoid adding the node again into 1DF whenever it may peek at

this node through some other Jedge in the future. It also inserts the node into the

OrtlcrctlBtlckcl$ if the node is not in the set No (a condition checked at step 1119 b.
Procedure Visit(,:)

{

113:

114:

115:

116:

117:

118:

119:

• 120:

121:

122:

123:

124:

125:

126:

127:

128:

129:

130:

}

foreach y E Succ(x)

if(x -+ y == Jedge)

if(y./evcl :::; CurrentRoot.leve/)

if(y.inidf! = InIDF) /* Check if y already in IDF */

y.inidf=lnIDF/* yinlDF */

IDF = IDFU {y} /* Compute the set IDF */

/* Check if x is already OrderedBuckets * /

if(y.a/pha! = A/pha)

/* Put it in OrderedBuckets for future search */

InsertNode(y)

endif

endif

endif

else /* x - y is Dedge */

if(y.visited! = Visited) /* Avoid redundant visit * /

y.visited =Visited

Visit(y)

endif

endif

endfor

•
GetNodeO returns anode whose level number is the m2XÎInum of all the

nodes currently in the OrderedBuckets. GetNodeO also removes fuis node from

the OrderedBuckets, and adjusts the CurrentLevei accordingly. CurrentLevel

keeps track of the level number of the node that GetNodeO returns. Note that

a node will never be inserted in OrderedBuckets at a level number greater than
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CurrentLcvel. As a result, CurrentLet'cl monotonically decreases through the

level numbers. That is, the calls to Visit(x) at step 11111 is performed in a bottom

up fashion, in contrast, with each such call, the traversai of the dominator su\:>-tree

rooted at x is performed in a top-down fashion. The marking of the nodes prevents

any nodes from being processed more than once Îl". th" algorithm. This is e'5sential

to ensure the time linearity of the algorithm.

Procedure InsertNode(x)

{

131: x.next = OrderedBuckets[x.level]

132: OrderedBuckets[x.levefj = x

while(CurrentLeveI > 0)

if(OrderedBuckets[CurrentLevel] == NU LL)

CurrentLevel = CurrentLevel- 1

else

x = OrderedBuckets[CurrentLeveI]

/ * Delete x from OrderedBuckets * /

}
Function GetNode()

{

133:

134:

135:

136:

137:•
138: OrderedBuckets[CurrentLevel] = x.next

139: return x.node

140: endif

141: endwhile

142: return NULL

}

7.3 An Example

•
Next we illustrate Algorithm 7.1 through an example. Consider the flowgraph

andits DJ graphshownin Figure 7.1. Let Na ={S, 13}. The firststep is to deposit

the nodes 5 and 13 into the OrderedBuckets, and also mark them as Alpha. After

the for loop at step 1104 ~ the OrderedBuckets would look like Figure 7.2(a). At

step 1108 ~ the function GetNode() returns node 13. GetNode() also removes 13
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Figure 7.1: Another example of a flowgraph and its DJ graph.

•

•

(a) flowgraph
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from the OrderedBuckeis. At step [l@ C"rrml Rooi is set to node 13. To find

the dominance fronti.er of node 13 we cali Visit(13) at step 11111. Prior to this, \w

also mark node 13 as Visited at st!::p 1110 f

In the procedure Visit(), at step 11131 we find that the successor nodes of 13 to

be :'Iodes 3, 15, and 14. Of these, 13 -; 15 and 13 -; 3 are J edges, and 13 -; 14

is a D edge. 5ince 15. level = 2 and 3.level = 2 are less than CurrcntRoot.lcvel =

13.level =5, nodes 3 and 15 are adàed to ID F (since they are not already in 1DF).

Also, neither 3 nor 15 is marked Alpha (and hence not in N~), both the nodes are

inserted into the OrdcredBuckets (step 1120 p. Figure 7.2(b) shows the new state

of the OrderedBuckets.

Next, since the edge 13 -; 14 is a D edge, and node 14 is not yet visited, we

cali Visit(14) at step 1127 ~ Again, before calling Visit(14), we mark node 14 as

Visited (step 1126 p. The only successor of 14 is node 12, and 12.level = 4 is less

than CurrentRoot.level = 13.level = 5. Also, node 12 is neither in 1DF nor in

N~, and so is added to l DF and inserted into the OrdcredBucket.< (step 11181 and

1120 ~ respectively). The cali to Visit(13) terminates and retums at step 11111.
Now the function GetNode() is executed at step 11081 and it retums node 12.

Visit(12) is calied at step 1111 ~ and CurrentRoot is set to node 12. The only

successor of 12 is node 13, and 12 -; 13 is a D edge. 5ince node 13 is already

marked Visited, the cali to Visit(12) terminates and retums at step 1111 ~

GetNode() is calied again, and this time it retums node 5. Visit(5) is called at

step 11111 and the process continues. Figure 72 shows the complete trace of the

OrderedBuckets for the example.

7.4 Correctness and Complexity

In this section, we first give a proof of correctness (Theorem 7.1), and then analyze

the complexity of the algorithm (Theorem 72).

7.4.1 Correctness

The main theorem which establishes the correctness of Algorithm 7.1 is Theo

rem 7.1. The theorem states that the algorithm computes the iterated dominance
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Figure 7.2: A trace ofthe iterated dominance frontier algorithm.
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frontier of the set N". The inductive proof of the thecrem is based on a ma

jor lemma, Lemma 7.4, which establishes the fact that when the algorithm calls

Visit(x) at step 11111 and the cali terminates, all nodes in the dominance frontiers

DF(x) are already a:ided into the set l DF (a fact used both in the induction basis

and induction steps). Let x be the current root of the dominator sub-tree visited

by Visit(x) at step 1111f Let:: be in DF(x). Lemma 4.1, introduced eariier in

Chapter 4, guarantees that there must exist a oode y in SubTree(x) such that

y --+ :: is a J edge and leve/.:: :::; level.x. Another lemma, Lemma 7.3, states that

y will a1ready have been marked Visited when Visit(-r) retums. There are two

cases in the algorithm where <'. node can be marked Visited: 1. at step 1126 ~ and

2. at step 1110 ~ The validity of Lemma 7.4 for case 1 is straightforward. For

case 2, y must be marked Visitedby an earlier calI of Visit(v) for sorne node v in

SubTree(x). This fact is made possible because of the OrdererlBuckels structure

and we formalize this in Lemma 7.1 and Lemma 7.2. We then make an inductive

argument on the decreasing level of the nodes to demonstrate that all nodes in

DF(v) should already be inserted into IDF by this time. The node:: should

also be in l DF according to Lemma 4.1. From this the validity of Theorem 7.1 is

established.

In our chain of proofs, we begin with Lemma 7.1.

Lemma 7.1 Anode is never inserted in the OrderedBuckets at an index that is greater

than CurrentLevel.

Proof:

There are only two places (in the algorithm) that anode can be inserted

in the OrderedBuckets: at step 11061 and at step [1201. 5ince the initial

value of CurrentLevel is NumLevel-1, the level number of any node

that iS insert at step \1061 can never be greater than N umLevel - 1.

At step 1120 ~ a node y is inserted in the OrdcredBuckets only if it is

visited through a Jedge and if y.level :::; CurrentLcvel. Therefore y is

never inserted in the OrderedBuckets at an index that is greater than

CurrentLevel. •

Lemma 7.2 gives an order (based on the level number of nodes) in which calls

to VisitO, at step 1111 ~ can be performed. The ordering of nodes is controlled
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by calls to GetNode{) "t step [0"8]. Recall that GetNode{) always retums a

node whose level number is the maximum of ail nodes currently stored in the

OrderedBuekels structure.

Lemma 7.2 Let x and y be any two nodes that are inserted in the OrderedBuckets and

iater removed (and returned) from the OrderedBuckets by GetNodeO at step 1108 f If
y.leve! > x.leve!, thm Visit(y) will be cal/ed earlier than Visit(x) at step 1111 f
Proof:

Firstofailobserve that VisitO,at step \111 ~ is always called on the node

that GetNodeO retums at step 1108 f Also, we know that GetNode{)

always retums anode whose level number is the maximum of ail

the nodes currently in the OrderedBuckets. Also, we know from

Lemma 7.1 that a node will never be inserted in OrderedBvckets at an

index greater than CurrentLeveI. From this we prove the validlty of

the lemma as follows: There are two cases:

Case 1 Before GetNodeO retums either of the two nodes, both nodes

x and y are in the OrderedBuckets. Naturally y will be retumed

earlier to x (since GetNodeO always retums anode whose level

number is the maximum).

Case 2 Before GetNod~() retums either of the two nodes, only one

of the two nodes is in the OrderedBuckets. Let x be in the

OrderedBuckets. This means that either y was already inserted

and removed from the OrderedBuckets, even before x was in

serted into the OrderedBuckets, in which case the validlty of the

lemma is true, or y will be inserted in future. The latter situa

tion is impossible since, from Lemma 7.1, y should be inserted

into the OrderedBuckets at a level number that is less than or

equal to the level number of x. (Recall that we have assumed

y.level> x.leve/). We can make a similar argument by assuming

that y is in the OrderedBuckets.

•
The next lemma establishes an important fact that when a node x is visited by

a cali of Visit(x) from step 11111 and retumed, that ail nodes in SubTree(x) have
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been marked Visited. Inhlitively, this means that whcn such a visit rcturns, none

of the nodes in the S"bTree(x) have been overlooked.

Lemma 7.3 W/zen Visit(x) rell/ms al slep 1111 ~ ail /Iodes il! 811I>"I',·"e( ... ) are marked

Visited.

Proof:

Using Lemma 72 and induction on the levels of nodes, we can easily

prove the lemma. The base case is when the node x has the maximum

level; the validity ot the lemma is straightforward. Assume that the

lemma is true for ail Visit(x) retumed at step \1111 with x.levc/ ~ k for

some k. Now, assume we examine Visi~{x) with x./cvc/ = k - 1. From

our observation above, a top down traversai of nodes in SubTrcc(x)

will be performed during the execution of Visit(x). Assume y is the

next node to be probed at step 11251. One of the following two cases

will be encountered:

Case 1: The next node y is not marked Visited. Then the program will

continue to mark it Visited via a recursive cali to VisitO at step

1127~

Case 2: Y is already marked Visited. y could only have been marked

Visited by sorne earlier cail to Visit(y), and this cali must have

been invoked at step 1111 ~ and not at step [1271 (since the nodes

are visited in a top-down fashion and there can be only one D

edge). But since y.level ~ x.level (i.e. y.level ~ k), by induction

on k, we know Visit(y) has marked y and ail descendants of y.

(This is because Visit(y) was cailed at step!111 Iprior to Visit(x)).

•
Itiseasytosee from Lemma 72 and Lemma 73, thatcalls to VisitO atstep!111 !

are made in a bottom-up fashion and while each recursive caU at step 1127l the

recursive procedure VisitO visits the nodes in the dominator tree in a top-down

fashion.

Lemma 7.4 is the main lemma which shows how the procedure VisitO captures

the dominance frontier of a node in the set IDF. We will use this lemma in the

main theorem (Theorem7.1) to inductively argue the correctness of Aigorithm 7.1.
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Lemma 7.4 When Visit(x) is called with x as the CurrentRoot and retllrned at step

1111 ~ aIl the nodes in DF(x) are a/so in the set l DF.

Proof:

Let x be the current root of the SubTree(x) visited by a cali to Visit(x)

atstep/l11 ~ and terminated. AIso letz bein DF(x). From Lemma4.1

there must exist a node y in SubTree(x) such that y -; z is a J edge

and z./evel ~ x./evel. 5ince y is in SubTree(x), from Lemma 7.3, y is

marked Visited. As in the preof of Lemma 7.3 , there are two cases:

Case 1: y is marked Visited by the current Visit(x) invoked at step

1111 ~ Then, a reeursive cali at step 11271 will cause its children

(in the domiIlator tree) to be explored subsequently at step 11131.

5ince y -; z is a Jedge, z will be included in IDF at step i118 ~

Case 2: y is not marked Visited by the current Visit(x) invoked at step

ll11 ~ 5incenodes in SubTree(x) are visited in a top-down fashion,

there must be anode u such that x stdom u and u dom y, and u

is not marked Visited by the current cali to Visit(x) (invoked at

SteP ll11D. Thatis, u is marked Visitedby a prior cali of Visit(u)

also invoked at step !1111. If u = y, z will be added to the set

l DF, since y -; z is a Jedge and z./eve1 < u./eveI.If u 1= y, then

y must be visited at step 11251 via a D edge. A subsequent cali
of Visit(y) will add z to the set IDF, since y -; z is a Jedge and

z./eve/ < u./cvel.

•
Notice that the above lemma only says that Visit(x), when it returns at step

1111~ will have added the entire dominance frontier of x to IDF. It does not

specify which of the nodes in the set l DF belong te DF(x). Notice that the set

l DF can contain nodes that are not in the set DF(x). In the other words, Visit()

does not exp/icit/y compute the dominance frontier of anode.

There is an important subtle point in the proof of Case 2 of Lernma 7.4. Note

that we have argued that "u is marked Visited by a cali of Visit(u) at step 1111 t',
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the reader may wonder how we can be sure such a u does exist. Is it possible

for ail the nodes from y up to x in the SubTree(x) to have been marked Fisited

by sorne previous cail of VisitO via a D edge at step 1127 p. The answer is no!

This is because we visit nodes in the Subtree(x) in a top-down fashion and pass

through anode by an explicit check at step 11251 to see if it is not yet marked

Visited. This fact is ;mportant, as u is now assured to have been cailed earlier

from step 11111 afresh from OrderedBuckets. With u at the root of such an earlier

cali Visit(u), ail the nodes in DF(u) must have been examined and put intI>

the set IDF. And our OrderedBuckets ensures Visit(u) happens before Visit(x)

(Lemma 7.1). Otherwise, the algorithm may fail- we will come back to this issue

again in Section 7.4.3.

Finally, we prove the main theorem.

Theorem 7.1 Algorithm 7.1 correctly computes l DF(Na).

Proof:

We will show that, wher. Aigorithm 7.1 terminates, the set IDFis same

as l DF(Na). From now on let S = Na. First of aU it is obvious that

DF(S) ~ IDF (Lemma 7.4). Nowweneed toshow thatif lDFi(S) ~

IDFthenIDFi+1(S) ~ IDF,where

l DFi+1(S) =DF(S U IDFi(S))

Rewrite the above equation as

IDFi+1(S) = DF(S) U DF(lDFi(S))

We know DF(S) ~ IDF. 50 we are left to show DF(S') is in IDF,

where S' = IDFi(S), Let S' = {Xl, ... Xi, ...}. Since S' is in IDF

(assumption), Xi is in IDF for aU i. But the orny way the node Xi

can be added to IDF is at step 11181 ôr the algorithm. Therefore, Xi

must also be inserted into the OrderedBuckets, at step 1120 ~ Sinœ the

algorithm eventually terminates, Xi must be processed as the current

root at step 1111\ by a cail to Visit(xi). By Lemma 7.4, DF(Xi)is in

IDF when VlSit(xi) returns at step 1111 ~ And this is true for ail nodes

x; ES'. ThereforeDF(S')isinIDF. As a result IDFi+1(S) isin IDF,

and• IDF(Na) ~IDF _ (7.1)
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We can easily see from Lemma 7.4 that anode is inserted in l DF if it is

in the dominance frontier of sorne node that was previously inserted

and retrieved from OrderedBuckets. Recall that anode is inserted

into OrderedBuckets only at two places: step 11061 and step 1UO ~ A

node is inserted in OrderedBuckets at step 11061 if it is in No, and a

node is inserted in OrderedBuckets at step 1UO 1if it is in the iterated

dominance frontier of No. Therefore,

(72)

From Equation 7.1 and 72, we get

(7.3)

•

•

•
7.4.2 Complexity

Next we will show that the time complexity of Aigorithm 7.1 is O(IE!), where lEI

is the number of edges in the DJ graph. RecalI that the number of edges in the

DJ graph is less than INII + IEII (Theorem 3.1). Therefore, the time complexity of

Algorithm 7.1 is O(iNII + lEI!). 5ince IEI\ ~ INII- l, the time complexity of the

algorithm is O(iEI\), which is linear with respect to the number of edges in the

flowgraph.

From the proof of the correctness of Algorithm 7.1, readers may have already

observed that for any node x in the DJ graph, the node may be processed by

a calI of Visit(x) (which may happen at step 11111 or 1127bat most once. This

observation is a key to the proof of linearity of the algorithm, and is stated as the

folIowing lemma.

Lemma 7.s When Algorithm 7.1 terminates, a node x E N may be processed by a cali
to Visit(x) at most once.

Proof:

There are only two places anode can be processed by a call to Visit():
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case 1. at step 11271 and case 2. at 11111. It is obvious that step 1127\

can only be reached by the traversaI of an incoming D edge of x. Since

there is only one such D edge, x cannot not be processed more than

once in case 1. Furthermore, it cannot be processed through case 2

more than once either (since anode can be ir.serted into and deleted

from OrderedBucketsonly once).

Now we prove that it is not possible for x to be processed in both case

1 and case 2. Suppose the contrary is true. Then this is possible only

if case 2 happens after case 1. (The condition at step 11251prevents the

opposite.) That means node x is already in the OrderedBuckets before

the currentexecutionofVisit(v) forsomevatstepl111 ~ Thus,x.Ievel2':

v./eve/, since SubTree(v) is explored in a top-down fashion. On the

other hand, x./evel :5 v./eve/, as any node in the OrderedBuckets must

have a level number no greater than that of the node CUlT"'..ntly being

processed (from Lemma 7.1). This implies x =v. But this is impossible

since x would been marked Visitcd twice from step 11111. Hence the

lemma is true by contradiction. •

From the above proof, it also true that anode can never be marked Visitcd

more than once. We will use the above lemma in proving the complexity of the

algorithm.

Theorem 7.2 The timecomp/exity ofAlgorithm 7.1 is O(IEi).

Proof:

According to Lemma 7.5, anode can be marked Visited at most once,

and there can be at most INI caIls te Visit(). Also, at each node in

the procedure Visit(), we either visit (through a D edge) or "peek"

(tlll"Ough a Jedge) all the successor nodes (step 1113 Donly once. This

means that we have effectively visited all the edges in the DJ graph at

most once. Hence the complexity of the algorithm is O(IE\). •

An astute reader may ask the following question: What about the complexity

of inserting/deleting nodes into/from the OrderedBuckets structure? It is easy

te see that the complexity of inserting a node in the OrdcredBuckets is 0(1). As

for the complexity of getting anode from the OrderedBuckets, it is again easy
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to see that a node will never be inserted in OrderedBuckds at the index greater

than the CurrentLevei (from Lemma 7.1). Each caU of GetNodeO will execute the

while loop with a monotonically decreasing CurrentLevel from NumLevei - 1

down to 1 during successive calls for the entire duration of the algorithm (follows

from Lemma 7.1). Hence the overall time complexity of deleting ail nodes from

the OrderedBuckets is, in the worst case, O(1ND.

7.4.3 Discussion

Thereare a number ofkey issues inouralgorithm that we would Iike to summarize

in this section.

• First of ail notice that the space complexity of our algorithm depends on

the size of DJ graphs. In Chapter 3 we established that the size of a DJ

graph is Iinear with respect to the size of its flowgraph. Therefore the space

complexity of our algorithm is Iinear.

• One key point that makes our new algorithm Iinear is the structure of the

OrderedBuckets. This structurecanbe considered as an implementation ofa

'Restrlcted Priority Queue' [CLR90]. One can aIso consider OrderedBuckets

to be an ordered set of buckets (although buckets in bucket sort are not

ordered as in our case) [CLR90]. The nurnber of buckets that is needeà is at

most equal te the maximum depth of the dominator tree.

Ifone were to use other structures such as a heap, a stack, or a queue, either

the proof of correctness would fail (if we still wish to continue to mark the

nodes as V isited using one color), or the complexity of the algorithm would

not be linear (we will need to mark nodes as Visited using more than one

color). The second situation is similar te finding the iterated dominance

frontier by iteratively applying Aigorithm 4.1. We can easily show that the

complexity of this method will not be Iinear.

• Let us recall Theorem 3.2. Theorem 3.2 states that if y E DF(x), then

the level number of y will never be greater than the level number of x (i.e.,

y.level ~ x.level). This property is very important in proving the correctness

and complexity of our algorithm. Reca!l that Lemma 4.1 gives a method for

computing the dominance frontier of anode from level information and J
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edges, and Lemma Î.l guarantees that a node will never be inserted at an

index (in OrdcredBuckets) greater than the value of CurrcntLcvd. Again,

an astute reader will immediately notice the relation between these two

lemmas and Theorem 32.

• Finally, the framework of our algorithm can easily be adapted to the APT

representation, introduced by Pingali and Bilardi [PB95]. In APT domi

nance frontiers are cached at certain nodes, called the boundary nodes. The

only modification that is necessary in our algorithm is in the procedure

VisitO. At step 1127~ before invoking the procedure Visit(y) we should

check whether y is a boundary node. If so, we avoid visiting the sub-tree

rooted at y, since all the candidate nodes to be included in l DF set will be

cached at this node. Ifnot we invoke the procedure Visit(y).

Now identifying boundary nodes requires the knowledge of filtered seareh

techniques, which is beyond the scope of this dissertation. For details please

see [PB95].

7.5 Experiments and Empirical Results

In this section we present our experimental results and give their analysis. We

implemented our linear time algorithm using flowgraphs generated from the

Parairase2 compiler and compared it with the original algorithm (due to Cytron

et al. [CFR+91]). We will fust summarize the major results of our experiments.

• The time complexity of Cytron et al:s algorithm depends only on the size

of the dominance frontier relation. Although, theoretically, the size of the

dominance frontier relation can be quadratic, its size appears to be linear in

practice. For our test procedures, we found that the size of the dominance

frontier relation to be about 0.8 times the size of the DJ graph.3

• Cytron et al:s original algorithm performs better than ours for our test

procedures (on average by a factor of 4.46).

3The size of a DJ graph is the number of edges in the graph (D edges + J edges); whereas the
size of dominance frontiers is the total number of nodes in the dominance frontier set of all the
nodes.
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• For graphs like ladder graphs and repeat-untilloops, where the size of

dominance frontiers can grow quadratically, our algorithm exlubits linear

behavior, whereas Cytron et al's algorithm exhibits quadratic behavior.

We will further elaborate on these results. TElbie 7.1 gives t.l-te summary of our

result. The notation used in the table is given below:

Notations used in Table 7.1

Name

IE.I
IDFnl

R

V(o)

Ven)

V

• T(o)

T(n)

S

Name of the procedure

Number of edges in DJ graphs (D edges + J edges)

5ize of the dominance frontier relation represented as a set

ofnodes

The ratio 'iFn
'El

A count of the number of nodes added and removed from

the worklist in original algorithm.

A count of the number of edges visited in our algorithm
The ratio VIol

VIn)

Execution time in milliseconds of the original algorithm

Execution time in milliseconds of our algorithm

Th . T(n)e ratio :i1oi

•

Tune measurements shownfor 1DF(df) and IDF(new) are for computing lOF

for a set ofrandomly chosen nodes (we chose 25 to 30% ofthe nodes to be No). The

time complexity l')f the original algorithm depends on the size of the dominance

frontier relation. From the table we can see that, except for 3 procedures, the "ize

of the dominance frontier relation is smaller than the size of the DJ graph. For

our test procedures we can see that the average ratio If:',' is 0.77. The value of

this ratio suggests that Cytron et a!.'s algorithm can, at worst, be about 1.29 times

faster than our algorithm. In reality Cytron et al.'s algorithm is much faster than

ours, as can be seen from speedup ratios given in the table.

We next measured the number edges visited Ven) in our algorithm (for a

particular choice of the initial set ofsparse nodes), and compared it to the number

of nodes added and removed V(0) from the worklist in Cytron et a!.'s algorithm.

The ratio ~!:! gives an accurate indicationofhowgood (orhow bad) our algorithm

will perform when compared to Cytron et a!.'s algorithm. The value of this ratio

ranges from 2.02 to 8.43, with the average value being 3.84. This suggests that
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1 Average ~ 3"0.95 1 259.67~ 315.65~ 1.04~

!Name ~ IEdl 1IDI' 1 c=EJ V(o) 1 V(n)~ T(n) CIln

aerset 467 323 0.69 113 463 4.10 0.3 1.9 6.33
aqset 263 184 0.70 58 232 4.00 0.2 0.9 4.50
bjt 213 177 0.83 66 212 3.21 0.2 0.7 3.50
card 23S 240 1.02 87 234 2.69 0.2 0.7 3.50
chemset 330 282 0.85 86 321 3.73 0.2 1.1 5.50
chgeqz 268 213 0.79 77 253 3.29 0.2 0.8 4.00
clatrs 337 225 0.67 57 319 5.60 0.2 0.9 4.50
coef 154 126 0.82 64 160 2.50 0.2 0.6 3.00
comlr 97 76 0.78 51 103 2.02 0.2 0.5 2.50
dbdsar 343 269 0.78 83 313 3.77 0.2 1.0 5.00
dcdanp 205 181 0.88 67 196 2.93 0.2 0.6 3.00
dcop 298 240 0.81 93 288 3.10 0.2 0.9 4.50
dctran 493 407 0.83 87 459 5.28 0.2 1.2 6.00
deseco 259 179 0.69 61 259 4.25 0.2 0.8 4.00
dlZei!V 246 164 0.67 54 234 4.33 0.2 0.8 4.00
dgesvd 499 314 0.63 58 480 8.28 0.2 1.2 6.00
c1hgeqz 433 362 0.84 97 365 3.76 0.2 1.0 5.00
disto 211 158 0.75 65 199 3.06 0.2 0.7 3.50
dlatbs 259 174 0.67 52 243 4.67 0.2 0.8 4.00
dtlZeVC 485 356 0.73 119 475 3.99 0.3 1.4 4.67
dtrevc 373 263 0.71 70 366 5.23 0.2 0.9 4.50
e1pmt 245 176 0.72 87 23S 2.70 0.2 1.0 5.00
equilset 467 334 0.72 119 464 3.90 0.3 1.7 5.67
errchk 515 406 0.79 149 498 3.34 0.4 2 5.00
iniset 456 308 0.68 56 472 8.43 0.2 1.4 7.00
init 176 li8 0.67 42 167 3.98 0.1 0.5 5.00
initgas 267 203 0.76 111 266 2.40 0.3 1.1 3.67
jsparse 408 307 0.75 138 407 2.95 0.4 1.5 3.75
modchk 455 341 0.75 100 453 4.53 0.3 1.4 4.67
m05eQ2 246 206 0.84 68 237 3.49 0.2 0.7 3.50
mosfet 333 323 0.97 85 332 3.91 0.2 0.9 4.50
noise 184 136 0.74 53 163 3.08 0.2 0.5 2.50-out 579 490 0.85 157 462 2.94 0.4 1.9 4.75 -
reader 242 89 0.37 38 249 6.55 0.2 1.0 5.00
reaclin 637 828 1.30 178 621 3.49 0.3 1.8 6.00
setupgeo 278 193 0.69 81 "06 3.41 0.2 1.0 5.00
setuprad 290 217 0.75 104 289 2.78 0.2 1.0 5.00
smvgear 316 337 1.07 161 315 1.96 0.3 1.1 3.67
solveq 298 260 0.87 143 296 2.07 0.3 1.0 3.33
twldrv 258 202 0.78 65 250 3.85 0.2 0.8 4.00

Table 7.1: A comparison of our algorithm with the original algorithm.

•

•
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Cytron et al.'s algorithm is about 3.84 times faster than ours. This can again be

confirmed with the speedup ratio given in Table 7.1. Another point to note is

that the value of V (0) is close to the number of edges in a DJ graph. This suggests

that in our algorithm we search almost the whole DJ graph for each query.

We next measured the actual execution time of the two algorithms. As can be

:;een from the table both algorithms are very fast in practice. The actual execution

time for our algorithm ranges from 0.5 milliseconds to 2.0 milliseconds, with the

average execution time being 1.04 milliseconds. For Cytron et al.'s algorithm the

execution time ranges from 0.1 milli~onds to 0.4 milliseconds, with the average

execution time being 0.23 milliseconds. The ratio ~\:; is given in column S. The

value of this ratio ranges from 2.5 to 7.0, with the average value being 4.46.

Rgure 7.5 gives the performance of the two algorithms plotted against the

number of DJ graph edges. As can be seen from the plot our algorithm has a

!inear time behavior whereas Cytron et al.'s has a constant time behavior. The

reason for is because the number of nodes added and deleted from the worklist in

Cytron et a!.'s algorithm is much smaller than the size of the dominance frontier

relation, and does not seern to depend on sizes of flowgraphs. Whereas in our

algorithm, we visit ail the edges of a DJ graph looking for candidate nodes to be

included in the iterated dominance frontier set.

For graphs like deeply nested repeat-untilloops and ladder graphs, our

algorithm performs better than the original algorithm. For these graphs, the

size of dominance frontiers grows quadratically with respect to the number of

nodes in the graph. Rgure 7.5 shows the performance of the two algorithms

for increasing taller repeat-untilloops of the form shown in Rgure 7.4. From the

execution profile we can see that our method is indeed !inear, whereas the original

algorithm is quadratic.

From our experiments we can see that even a quadratic time algorithm can

perform better than a !inear time algorithm for most practical programs. As we

mentioned in the introduction of this chapter, the framework of the algorithm

presented here can be adapted to other representations, like the APT [PB95].

When our algorithm is implemented on APT, the perfo~anceof the algorithm

is better than'Cytron et a!.'s original algorithm [pin95].

Next we will bring out some interesting and debatable issues conceming the

choice of DJ representation for dominance frontiers. One reason the size of the
"



•
CHAPTER 7. ITERATED DOMINANCE FRONTIERS IN LINEAR TIME 100

2

(a) (b)

•

•

Figure 7.4: A nested repeat-until flowgraph and its DJ graph.

dominance frontier relation is smaUer than the size of the corresponding DJ graph

is because we represent each basic block as a flowgraph node. Instead, if we

represent each statement (or worse, each 3-address instruction) as a flowgraph

node, then the size of the dominance frontier relation will dominate the size of

the corresponding DJ graph. Now why would any one represent each 3-address

instruction to be a flowgraph node? This is an engineering issue. One major

advantage of this representation is that it simplifies data flow analysis. Using

basic block representation, each data flow analysis has to be performed at two

levels: local analysis (that summarizes the effect of a basic block) and global

analysis. Also, once the global solution is determined we have to propagate this

information to instructions (or statements) within each basic block. This two

leve!.=analysis is not needed when each flowgraph node represent a 3-address

instruction. Tjiang and Hennessy give severa! drawbacks of representing each

basicblock to bea flowgraph node [TH92]. Based on their study they recommend

and advocate that each instruction be represented as a flowgraph node [TH92].

We will conclude this section with a final remark. As discussed in Chapter 4,

Arr optimizes both query time and space usage. In Arr dominance frontiers

of certain nodes are cached. Using a "tuner", called Ct in the paper [PB95],
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the authors show how to control the caching of dominance frontiers. The authors

also show how their representation can be considered as a spectrum of dominance

frontier representations, of which our DJ graph is at one end (with no caching)

and the full dominance frontier representatior>. of Cytron et al is at the opposite

end (with full caching). In our lOF algorithm we walk down a DJ (sub)graph

along D edges looking for candidate nodes via J edges to be included in the

set (of lOF). We can avoid walking aIl the way down the dominator tree if we

cached the dominance frontiers at certain nodes. Pingali and Bildari show how to

cleverly cache dominance frontiers at certain boundary nodes in a preprocessing

step. Once we have cached them, we can limit the top-down traversal upto these

boundarynodes. Anotherpoint to note is that, in APT, we neednotuse a worklist

mode! of Cytron et al. for computing the iterated dominance frontier relation

even with full caching. This actuaIly aIlowed them to detect a discrepancy in our

experimental results originaIly published in [SG95b]. In [SG95b] we reported that

our algorithm is, on average, faster than Cytron et al.'s algorithm by a factor 5.

This is because, in our original implementation of Cytron et al.'s algorithm, we

chose bit-vectors to represent the worklist used in the algorithm. This attributed

to the poor performance of our implementation of Cytron et al.'s algorithm. For

the implementation of the results reported in this chapter we used Sparse Set

representation of Briggs and Torczon to implement the worklist [BT93]. This

improved the performance of Cytron et al.'s ~gorithm over our algorithm, and

performs better than ours by a factor 5 on average.4

7.6 Discussion and Related Work

The sparse evaluation technique is becoming popular, especially for analyzing

large programs. To this end, many intermediate representations have been pro

posed in the literature for performing sparse evaluation [CFR+91, CCF91, JP93,

WCES94]. The algorithms for constructing these intermediate representations

have one common step-determining program points where data flow informa

tion must be merged, the 50 ca1led .p.-nodes. The notion of <t>-nodes dates back

to the work of Shapiro and Saint [5570] (as noted in [CFR+91]). Subsequently,

41 !han!< Prof. Keshav Pingali for pointing out this cliscrepancy in Our original publication.
which we corrected in this chapter.
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others have proposed sparse evaluation in one form or another that is related to

this prior work [RT82, CLZ86, CF87]. Rosen et al. proposed another approach for

constructing SSA form using depth-first search algorithm [RWZ88]. Their method

is restricted to reducible flowgraphs. Cytron et al. [CFR+89] gave an algorithm

for computing tP-nodes for arbitrary flowgraphs. This algorithm is original in the

sense that it is based on dominance frontiers and can handle arbitrary flowgraph

structure. The time complexity of this algorithm depended on the size of the

dominance frontier relation, which is O(INI2). But Cytron et al. have shown

that the size of the dominance relation is !inear in practice. Recently, Cytron and

Ferrante improved the quadratic behavior of computing tP-nodes to be almost

!inear time [CF93]. The time complexity of the new algorithm is O(lEI x o(!EI)),

where 00 is the inverse-Ackermann function [eF93]. More experimental studies

are needed to evaluate the performance of this algorithm when applied to real

programs.

Johnson and Pingali recently proposed an algorithm for constructing an SSA

like representation called the Dependence Flow Graph (DFG) [JP93]. To construct

DFG they first compute regions of control dependence. Using this information

they determine single-entry-single-exit regions. Then they perform, for each vari

able, an inside-out traversai of these regions, computing dependence information

and inserting switch and merge nodes, whenever dependences cross regions of

control dependenœ. The authors have shown that the running time of the algo

rithm for constructing DFG is O(lEI x IV\) (where IVI is the number of variables

in the program). One can easily construct the SSA forro from the DFG by simply

eliminating switch nodes in the DFG. Although, the method of Johnson and

Pingali can be used for constructing the SSA forro in time O(IEI x IV\) [JP93], it

has the same problem as the SSA forro, i.e. the DFG and the SSA forro cannot be

used for solving arbitrary data flow problems (for example, liveness analysis), as

noted in [CF93].

Our algorithm can be used to construct arbitrary SEGs. Compared to any of

the previous work, our algorithm reduces the time complexity of constructing a

single SEG to O(IE\). Also, we can use our algorithm to construct SSA forro or

DFG in time O(lEI x IV\).
There is much related work that uses SSA like representation, for example, the

Program DependenceWeb [BM090] and the Value DependenceGraph [WCES94],
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and our algorithm could improve the complexity of constructing these related

intermediate representations. Aiso there are many optimizations that use SSA

form for efficient implementation, for example, constant propagation [WZ85],

value numbering [RWZ88], register allocation [Bri92], code motion [CLZ86], etc.

Our algorithm could improve the overall running time of these optimizations.

We would like to bring some important concems regarding the applicability

our algorithm for constructing SSA forro. In [CFR+91], the authors write: "The

method presented here is O(R3) at worst, but Section 8 gives evidence that it

is O(R) in practice. The earlier O(R2) algorithm have no provision for running

faster in typical cases; they appear to be intrinsically quadratic."5 Our method

also is intrinsically quadratic in the above sense. The algorithm of Cytron et al

appears linear for typical cases is because they assume that the size of dominance

frontiers to be constant. As can be seen in their paper (Figure 20 in [CFR+91]),

the size of dominance frontier is small for smaller program sizes, but is propor

tional to the number of program statements for larger program sizes. Recall that

the framework of our algorithm can easily be adapted to the Arr representa

tion, introduced by Pingali and Bilardi [PB95]. In APT dominance frontiers are

cached at certain nodes, called the boundary nodes. As we demonstrated earlier

(Section 7.4.3), the only modification that is necessary in our algorithm is in the

procedure VisitO. Using the framework of our algorithm in conjunction with the

APT representation, one can speedup the overall construction of the SSA forro

andSEGs.

SWhCl'C R is the sizc of the program.
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Chapter 8

IncrementaI Computation of

Dominator Trees

Afanatic is one who can't chlll'lge his mind and won't change the subject.

-Wmston Churchill

They must often change, who would be constant in happiness or wisdom.

--Confucius

Dominator trees have many applications in compiler optimization and data flow

analysis. It is important that the dominator tree be correctly maintained through

out a multi-pass compiler. In this chapter we present a new framework for

incrementally maintaining the dominator tree of a flowgraph, when the flow

graph is !>-ubjected to incremental changes, such as insertion and deletion of an

edge. Unlike previous approaches our approach can handle arbitrary flowgraph

changes, including irreducibility. A novel aspect of our approach is that we use

simple properties of dominance frontiers and iterated dominance frontiers to up

date the dominator tree. Another interesting aspect of our approach is that we

update DJ graphs (rather than dominator trees) which subsumes the problem of

updating dominator trees.

We begin the chapter by introducing and motivating the problem. In Sec

tion 8.2 and Section 8.3 we present our update algorithm for edge insertion and

edge de1etion, respective1y. In Section 8.4 we give some experimental results,

comparing the running time of our incremental algorithm with the almost lin

ear Lengauer and Tarjan's exhaustive dominator algorithm [L179]. Finally, in

Section 8.5, we discuss related work, and give our concluding remarks.

105
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8.1 Introduction and Problem Definition

Dominator trees have many applic<:tions in compiler optimizatior. and data flow

analysis [A5U86]. For example, construction of the SSA form, or hoisting loop

invariants requires that the dominator cree be correctIy maintained at all times.

Now it is possible that the flowgraph structure may change during program op

timization (e.g.,loop transformation, dead-code elimination, etc.) It is important

that the dominator cree is correctIy updated during such flowgraph changes.

In this chapter we present a new algorithmic framework for incrementally

maintaining the dominator cree of an arbitrary flowgraph. For this problem

previous work most relevant to this chapter includes only the Carroll-Ryder al

gorithm [CR88] and the Ramalingam-Reps algorithm [RR94]. Both methods are

restrieted to reducôle flowgraphs. By contrast, our approach can hand1e irre

ducôle as weil as reducible flowgraphs. For the case where an edge is ïnserted,

our algorithm has an O(lEn time complexity, where lEI is the number of edges

in the DJ graph-better than previous approaches [ŒSS, RR94]. For the dele

tion case, our new incremental algorithm is also competitive in terms of running

time. It is expected to run faster on the average cases while not comprornising its

worst-case time complexity.

Updating dominator trees is a non-trivial problem. Carroll and Ryder pointed

out in [CR88]:

"The inherent difficu1ty in the dominator update problem lies in the

'non-Iocality' of domination, to wit, given two nodes x and y in the

flow graph, whether x dominatesy dependson thepresenceorabsence

of paths through nodes arbitrarily far from either x or y. Adding or

removing a single flow graph edge - an act which can add or remove

large numbers of paths - can thus affect domination between nodes

arbitrarily far from the altered edge."

Consider the flowgraph and its DJ graph shown in Figure 8.1(a) and (b),

respectively. Let us see what happens when a new edge 2 -+ 4 is inserted. With

this new edge, the dominance relation formany nodes is affected. Forexample, in

the newly modified flowgraph, node 3 will no longer dominate 4. Actually node

3 ceases to dominate 6 and 8 as weIL The reason for this is obvious: By inserting

2 -+ 4 we have createdaltemative paths from STARf to nodes 4, 6 and 8 that do
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Figure 8.1: Another example of a flowgraph and ils DJ graph.

•

not pass through node 3. Notice that the insertion of 2 ..... 4 has affected node 8

that is far from both nodes 2 and 4. The situation is also true (but opposite) when

an edge is deleted; this deletion can again affect nodes arbitrarily far away.

Also notice in the above ~mple, the flowgraph becomes irreducible after

2 ..... 4 is ïnserted. Previous approaches to this problem that we are aware of,

the Carroll-Ryder and the Ramalingam-Reps algorithms, cannot proœed further

when this happens. One of our important observations is that the dominator tree

alone is not sufficient to capture ail the path information in a flowgraph; it only

gives one type of path relationship among nodes in a flowgraph - meaning, "a

node x dominates another node y iff ail paths from srARr to y must pass through

x". By adding J edges to the dominator tree (Ii la DJ graph) we capture ail the

path information in a flowgraph. Thus in a DJ graph we capture both the path

information and the domination relation in a unified representation. This aIlows

us to easily compute the set of affected nodes when an edge is added or deleted.

Anode is called DomAffected iff its immediate dominator changes because of a

flowgraph update. Therefore, a key question to be answered in the rest of this
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chapter is: how can we efficiently compute the set of affected nodes no matter

how far away they may be from the updated edge?

To summarize, the problem we consider in the next two sections is the DJ graph

update problem: We want to maintain the DJ graph for the reachable subgraph

of a flowgraph in which changes are made one iit a time. This problem subsumes

the dominator tree update problem. The algorithms given in Section 8.2 and

Section 8.3 collectively form our incremental algorithm for maintaining the DJ
graph when a new edge is inserted and an existing edge is deleted, respectively.

These algorithms handle situations where x and y are reachable from STAR!'

both .. ~fore and after an update. We will handle other situations as special cases.

Also, to simplify the presentation and without loosing generality we will consider

only the following types of incremental changes to the flowgraph structure: (1)

insertion of a new edge, (2) deletion of an existing edge. One can implement other

more complex changes using a sequence of these two (primitive) changes [Mar89,

RR94, CR88].

8.2 Dominator Update: Insertion of an Edge

In thissection, we presenta simple algorithm for updating the DJ graph (and hence

the dominator tree) of a flowgraph in response to a flowgraph edge insertion.

Recall that when an edge xJ -+ YJ is inserted, it can affect nodes arbitrarily far

away. One of our key observations is that all the affected nodes must be in the set

{y} U IDF(y). The reason for this is as follows: By inserting the edge XJ -+ Yb

we may have created a path (in the flowgraph) from STAR!'J to a node, say UJ, in

{YJ} U IDF(YJ) such that thepath indudes XJ -+ YJ butbypasses the immediate

dominator of U J. However, not all thenodes in {y} UIDF(y) will be trulyaffected.

We will formally prove later that the affected nodes are only those additionally

satisfying certain level constraints.

Once we find the exact set of afiected nodes, we need to answer: What will

be their new immediate dominator after the edge insertion? First note that

nca(xd,Yd), the nearest common ancestor of noâes Xd and Yd on the dominator

tree, will definitely dominate all the affected nodes. Ramalingam and Reps gave

a stronger daim to answer this question: Not only does nca(Xd, Yd) dominate all

the affected nodes, but also it is actually their immediate dominator (RR94]. We
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will utilize this claim ir, our algorithm too.

Before presenting our algorithm for handling an edge insertion, we want

to clarify the following point We do not incrementally maintain the iterated

dominance frontiers (lOFs) for ail the nodes in our approach. There are two

reasons. First, we have a very efficient algorithm for computing iDF(y) in linear

time when we are told that XI -> YI is the newly inserted edge [SG95b]. Second,

ifwe were to update IDFs, we would need to pay extra space and time overhead.

The time required for updating IDFs for ail the nodes can be much longer than

that spentin computing IDF(y) for one nodey.

8.2.1 Insertion Algorithm

Let XI -> YI be the newly inserted flowgraph edge. Assume that both xJ and YI

are reachable from srART even before the insertion. Aigorithm 8.1 below gives a

procedure to restructure the DJ graph in response to changes in the dominance

relation when xI -> YI is inserted. There are two supporting functions used in the

algorithm: (1) link(Xd, Yd, J edge or Dedge) inserts into the DJ graph a new edge

Xd -> Yd of the appropriate type; and (2) cut(Xd, Yd) deletes Xd -> Yd.

In the algqrithm, we fust compute Zd = nca(Xd, Yd) (step 1143 b. Then we

compute, at step 1144~ the set of affected nodes DomAflected'(Yd) = {wdlwd E

({Yd} U IDF(Yd) and Wd.level > zd.level +1}. That is, there are two conditions

for anode to be in DomAfFected'(Yd): (1) it must be in {vd} U l DF(Yd), and (2) its

level number must be greater than nca(xd, Yd).level + 1. Using our linear time

algorithm for computing IDF(Yd) on-the-fly, we thus can avoid processing any

node whose level number is not greater than nca(Xd, Yd).level +1 (Chapter 7 and

[SG95b]).

Once we have computed DomAfFected'(Yd), we pull up each affected node Wd

and make Zd (i.e., nca(xd' Yd» its new immediate dominator (step 1153 p. We also

delete the D edge to every affected node from its (old) ïrnmediate dominator

(step 1149 p. If there is a flowgraph edge between these two nodes, we insert a

Jedge in place of the deleted D edge at step 11501. Finally, we update the level

number for all the descendànt nodes of every affected nodes at step 1156 ~ The

complete algorithm is given below.



•
CHAPTER 8. INCREMENTAL COMPUTATION OF DOMINATOR TREES 110

Al;;orithm 8.1 The foIItYWing algorithm updates the Of graph of a fltYWgraph when a

newfltYWgraph edge XI --. YI is inseriedo

Zd = nca(Xd, Yd)

DomAffectedl(Yd) = {wdlwd E ({Yd} u l DF(W)) and

Wdoleve! > zdolevel +1 }

if(Zd! =Xd)

link(xd,Yd,Jedge) /* if Zd=Xd then we should */

/* insert a D edge. See step 11531 */

foreach Wd E DomAffectedl(Yd),do

Ud = idom(Wd); /* tld is the (old) immediate dominator * /

cut(Ud,Wd) /* eut the old D edge */

if(ul --. wJ is aj10wgraph edge)

link(Ud, Wd, J edge) / * insert a J edge from tld to Wd * /

endif

link(Zd, Wd, Dedge) /* new D edge */

endfor

foreach Wd E DomAffectedl(Yd) do

UpdateLeve1Number(wd) /* Update the Ievel for nodes */

/* in the StlbTree(wd) * /

UpdatelnsertEdge(xd, Yd)

{

143:

144:

145:

146:

147:

148:

149:

150:

151:

• 152:

153:

154:

155:

156:

157: endfor

}

Example8.1

•

Consider our example flowgraph in Figure 8.1(a) and its DJ graph in

Figure 8.1(b). Let us insert a new edge 2 --.4 in the flowgraph. The

resulting flowgraph is shown in Figure 82(a). From the DJ graph (in

Figure8.1(b))wecanfindnca(2,4) =1 and compute DomAffected1(4) =
{4, 6, 8}. After this we pull up an the affected nodes and make node

l their new immediate do~ator. At the same time, we remove D

edges 3 -> 4, 3 --. 6 and 3 - 8. Since node 2 does not dominate 4, we

insert a new Jedge 2 --. 4. We also insertJedges 3 - 4 and 3 - 8 in
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START

(b)DJgnph

END

(a) flowgraph

Figure S.2: The flowgraph and its DJ graph after 2 ..... 4 is inserted.

the DJ graph, because their counterparn exist in the flowgraph. The

updated DJ graph is given in Figure S2(b).

8.2.2 Correctness and Complexity

In this subsection, we prove the correctness Algorithm 8.1 (Theorem S.l) and

analyze its complexity (Theorem S2). Without 1055 of generality, we assume that

XJ and YJ are both reachable beforeand after the insertion of XJ ..... YJ.

Theorem 8.1 is the main theorem that establishes the correctness of the algo

rithm. Its proof is based on Lemm"s S.l and 8.4. Lemma 8.1 daims that a unique

node Zd = nca(xd,Yd) will be the new immediate dominator of ail the affected

nodes. Lemma 8.4 gives a neœssary and sufficient condition to determine the

exact set of affected nodes. Its. validity is further based on two other lemmas,

Lemma 82 and Lemma 8.3. Lemma 82 daims that if u E IDF(y), then idom(u)

strictly dominates y. Lemma 8.3 establishes a relation between any two nodes u

and v when v !t IDF(u) and v is reachable from u.
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We will begin the proof chain by first defining the notion of DOmAffected when

an edge is updated in the corresponding flowgraph.

Definition 8.1 Anodeis said to DomAffected if!its immediate dominator node changes

because ofan update in its flowgraph.

Given the notion of D/Yl7lAffeeted, Lemma 8.1 claims that nca(xd,Yd), be

fore the DJ graph is updated, will be the new immediate dominator of aIl the

D/Yl7lAffeeted nodes (after the update). This was originally given by Rama

lingam and Reps in [RR94]. The lemma is one of the key result to support the

correctness of our algorithm. It also forms the basis for our second key result

(Lemma 8.4).

Lemma 8.1 Let xI -+ YI be a newly inserted edge and let Zd = nca(xd,!/d). Then Zd

must immediately dominate r:very D/Yl7lAffeeted node after the insertion.

Proof:

Let w be D/Yl7lAff ected after xI -+ YI is inserted. We will first show

that Z must dominate every affected node before and after the inser

tion of the edge XI -+ YI. Insertion of an edge can only reduce the

domination relation (pM72, ASU86], and therefore can only shrink the

height of the dominator tree. From this we can conclude that the new

immediate dominator of w must have dominated w even in the orig

inal flowgraph. But we know that after inserting the edge XI -+ YI,

u will no longer immeè.iately dominate w (since w is affected). From

this we can conclude that, after inserting the edge, there exists a path

P from srAlU to w that does Ilot pass through u. But this path should

contain the edge XI -+ Y, (sincc this was the only new edge inserted).

Ail nodes on this path must also contain Z (since Zd = nca(xd,Yd)).

Therefore,by definition of domin:;nce relation, Z must dominate every

node on the path P.

Next we will show that Z will be the new immediate dominator of

all the DomAffeeted nodes. Let v be the new immediate domi

nator of w after the insertion. Suppose that v were not z. Then

Z stdom v stdom w. Consider any path P: ZI ..-:. XI -+ YI ..-:. WI

in the new flowgraph. P must include VI since v = id/Yl7l(w). There

are two pOSSlbilities:
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1. Node VJ is in ZJ ..:. xJ. This implies that vJ is also on any path

from ZJ to xJbefore xJ ..... YJ is inserted. Therefore, v should have

been the nearest common ancestor of x and y. This contradicts

Zd =nca(xd, Yd).

2. Node VJ is not in YJ ..:. wJ. This implies that the insertion of

XJ ..... YJ should nothave DomAffeeted v. Therefore,v is already

w's immediate dominator before the edge insertion, 50 W should

not be DomAffeeted. This contradicts our assumption that w is

an DomAff ected noGe.

5ince neither possibility can be true, v must be the same as z; that is, Z

must be the immediate dominator of any DomA!f ected node. •

To prove our second key result (Lemma 8.4), we need the following two sup

porting lemmas. Lemma 8.2 establishes a relation between anode w and the

immediate dominator of anode u E 1DF(w). Recall that we proved a similar

result in Chapter 3 (Theorem 3.2). The proof of Lemma 8.2 follows from Theo

rem 3.2.

Lemma 8.2 IJu E IDF(w), then idom(u) stdom w.

Proof:

Follows from Theorem 3.2. •

•

The next supporting lemma establishes a relation between any two nodes u

and w such that u is reachable from w but is not in IDF(w). As illustration,

consider Figure 8.1(a), r.ode 7 is reachable from node 4, but is not in 1DF(4).

An astute reader can notice that node 6, which strictly dominates node 7, is in

IDF(4). The following lemma generalizes the above illustration. In other words,

letu bereachablefromanothernodew =f. u, and let u ~ 1DF(w). Then thereexists

anode s E w U IDF(w) such that s stdom u. This result is similar to Lemma 4

in [CFR+91].

Lemma 8.3 Let u be reachablefrom another node w =f. u, and let u ~ IDF(w). Then

thereexists anodes E wU IDF(w) such that s stdom u.
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Proof:

Assume w !stdom v (otherwise, the F~oof is trivial).

Since u is reachable from w, let P be a path from w to u. Let s be the

node on P such that sEIDF(w) and is dosest to u among aIl nodes

which are on P and are in l DF(w). Such a s must exists (e.g. in the

extreme w can be such as).

Now we daim that aIl nodes on P between s and u must be dominated

by s. We show this daim by contradiction. Assume that some of these

nodes are not dominated by s. Let t be one such node that is dosest to

s on P. Then by definition of dominance frontiers, t must be in DF(s).

This is because, tison the path P,but isnot dominated by s. Therefore,

there must be an edge r -> t such that s dom r. From Lemma 4.1 we

knowthattmustbeinDF(s). Nowsinœt E DF(s),tmustaIsobein

IDF(w). Butwe assumed that sis the lastnode in IDF(w) which lies

on P-a contradiction. Therefore, u must be strictly dominated by s.

•
Next we present Lemma 8.4. Using this lemma we can determine the exact

set of nodes that are indeed DomAffected when a flowgraph edge Xl -> YI is

ïnserted.

Lemma 8.4 Letxl -> YI bea newly inserted edge in thej/owgraph, and let z =nca(x,y).

Let DomAffectedl(y) ={vlv E ({y} U IDF(y)) and vd.level > zd.level +1}. Then a

node u is DomAff ected if!u E DomAffectedl(y).

Proof:

The Uif"part: We want to show that if u is in DomAffectedJ(Y), then

it is DomAffected. Let w = idom(u) before Xl -> YI is ïnserted.

Sinœ u is in DomAffectedJ(Y), ud.level > zd.level +1. This implies

wd.level = Ud.level- 1 > zd.level. Thus we first condude that Wd

cannot be the same as Zd.

Thefactofu E DomAffectedJ(Y) aIso implies u = Y oru E IDF(y).

If u = y, then w stdom y (by our assumption above). If u E
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IDF(y), then 10 = idom(u) stdom y by Lemma S.2. In summary,

10 must strictly dominate y. But 10 !stdom x because otherwise 10,

in place of =, would have been the nearest common ancestor of x

and y (since 1O.leveI > =.level).

Now consider the insertion of x f -+ yf in the flowgraph. Since 10

does not strictly dominate x, the edge insertion creates at least one

path srAiITf ..:.. Xf -+ Yf ..:.. Uf thatbypasses10f both when U = y

and when U E IDF(y). Consequently, U is truly DomA!feeted.

The "only if" part: Here we will show thatif Ud is DomAff eeted then

Ud is in DomAffeetedl(Yd).

First we will show that if Ud is DomAffeeted then ud.leveI >
=d.leveI+1. Theproofof this isbasedon the fol1owing observation:

From Lemma S.l we know that =d will immediately dominate

every DornAffeeted node after the update. Therefore, =d must

strictly dominate every DomAffeeted nodes. Hence tld.leveI >
=d.leveI +1.

Nextwewillshowthatud iseitherYd or is in l DF(Yd)' Itisobvious

to see that that if Ud is same as Yd, Ud is in DomAffeeted)(Yd).

Now assume thatu of: y. Wewill show thatu E l DF(y). AssUII;le

to the contrary that U is not in IDF(y). Since U is reachable from

y, either y strictly dominates U or there must be anode s that

strictly dominates U and s E IDF(y) (fol1ows from Lemma 83).

If y strictly dominates u, then u is not affected. Since there is a

node s as above, we have z dom idom(s) (by Lemma 8.2) which

strictly dominates s which strictly dominates u, w;-J.ch contradicts

the fact that z is the immediate dominator of u. Therefore u must

beinIDF(y).

•
Finally, we state our first main theorem that establishes the correctness of our

algorithm for handling an edge insertion.

Theorem 8.1 Aigorithm 8.1 correctly updates the DJgraph ofaflowgraph when a new

edge xf -+ Yf is inserled in theflowgraph.
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Proof:

From Lemma 8.1 we know nca(xd,Yd) must immediately dominate

al! the DurnAffeeted nodes. Now at step 11441 we use the result of

Lemma 8.4 to determine which nodes are indeed DurnAfj eeted. From

these we can easily see the validity of the theorem. •

Our second main theorem gives the worst-case time complexity of Algo

rithm 8.1

Theorem 8.2 Assume that both xI and YI are reachable before the insertion ofxI -> YI'

Then the worst-case time complexity ofAigorithm 8.1 is 00EI), where JEI is the number"

ofedges in the Dl subgraph induced by the nodes in SubTree(nca(Xd, Yd)).

Proof:

The dominating step in Aigorithm 8.1 is computing the set IDF(y).

Using the result of Chapter7wecan easily see that the time complexity

of Aigorithm 8.1 is OOEI). •

Using the result of Chapter7 we can compute the set IDF(y) in linear time. But

as we showed in that chapter, our linear time algorithm actuaIly performs worse

than the quadratic-time algorithm given by Cytron et al. [CFR+91]. Also, our

linear time algorithm potentially searches the whole DJ graph while computing

the iterated dominance frontier relation. In incremental analysis, it is important

thatwewant to limit the search only to smaIl portion of the graph. InChapter 9 we

will show how to improve the efficiency of the dominator tree update algorithm

by pruning search during the computation of IDF(y). This algorithm requires
that the dominance frontier relation be correctly maintained. In Chapter 9 we

will show how to incrementally maintain the dominance frontier relation.

8.2.3 Other Cases

Let XI -> YI be the newly inserted edge in the flowgraph. Here we will describe

how to handle other cases where the reachability of XI and YI from srARr, is

different from what we have assumed in the previous subsection. The first case

is where XI is not reachable, for which we do nothing because we maintain the

DJ graph only for the reachable subgraph REACH(srARr).
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In the second case, YJ becomes reachable only after the edge insertion. For

this we first build (using exhaustive algorithm) the DJ subgraph for the sub

flowgraph induced by nodes reachable from YJ but not reachable from STARTJ.

In constructing this DJ subgraph, we treat Yd as its root. 5ince x must dominate

y, we then insert a Dedge from Xd to Yd (to connect the newly built DJ subgraph

with the existing DJ graph). Finally, from the viewpoint of updating DJ graph,

we pretend each edge UJ -> VJ to be a newly inserted flowgraph edge, where UJ

becomes reachable only after x J -> yJ is inserted, and vJ is reachable even before

the edge insertion. This surprisingly corresponds to the case discussed in the

previous subsection. To complete the DJ graph update, we invoke Algorithm 8.1

once foreach UJ -> VJ.

For example, node 9 is unreachable in Figure S.l(a), but becomes reachable

after we insert 1 -> 9. Therefore, we first construct the DJ subgraph for the sub

flowgraph induced by nodes 9, 10, and 11. Then we insert a D edge from 1 to 9.

Finally, we use Algorithm 8.1 te update the DJ graph once for 10 -> 5 and once for

11 -> 7 as if they were newly inserted flowgraph edges.

8.3 Dominator Update: Deletion of an Edge

In this section, weshow how te update a DJ graphwhen a flowgraph edge xJ -> YJ

is deleted. The effectof deleting an edge is opposite and complementary te that of

insertingthesameedge. WheninsertingxJ -> YbZd =nca(xd,Yd) will bethe new

immediate dominater node for all the DomAffeeted nodes. Therefore, we pull

up all the DomAff eeted nodes in the DJ graph te the Ievel of nca(Xd, Yd)./evel+l.

AIso notice that the "oId" immediate dominaters of ail the affected nodes will be

different. On the contrary when an edge xJ -> YJ is deleted, ail the affected nodes

should be at the same Ievel as node y. Also, the new immediate dominaters

of all the affected nodes will be same as the "oId" immediate dominaters, as

mentioned above for the insertion case. For the deletion case, computing both

the exact set of affected and the corresponding new immediate dominators of

the nodes in the affected set is difficult. To overcome the first difficulty, we use a

conservative approximation for the setof DomAff eeted nodes. This setofpossib/y

DomAffeeted nodes is DomAifectedo(Yd) = {wdlwd E l DF(Yd) and wd./eve/ =
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Yd./eve/}.I 5ince this set is a safe approximation, not every node in the set will

be pulled down in response to a flowgraph edge deletion. To overcome the

second difficulty while avoiding an exhaustive algorithm, we observe that the

new immediate dominator of any DomAff eeted node must he a descendant of

idom(Yd)' Therefore, if any update on the DJ graph needs to happen, it will

only affect the nodes in SubTree(idom(Yd)). Based on these two observations,

we present an efficient ineremental algorithm for only computing the possibly

DomAffected nodes' new dominators, which are then used to compute their new

immediate dominators.

8.3.1 Deletion Algorhhm

As pointed out previously, our approach to updating a DJ graph in response

to a flowgraph edge deletion will be centered at an ineremental algorithm for

computing the new dominators for all the possibly DomAff eeted nodes. In the

following, we will explain how we transform the exhaustive Purdom-Moore algo

rithm into an incrementaI algorithm that will be much more efficient in practice.

For reference we have given the the originai PLL.-.:!.orn and Moore's exhaustive al

gorithm for computing the dominator set. Theversion ofthe algorithm is adapted

from [ASU86], where the subscript pm indicates that the set DomO is computed

using Purdom and Moore's algorithm.

Algorithm 8.2 (Finding Dominators.) The following is an iterative aIgorithm for

computing the dominator set.

158: Dompm(START) = {START}

159: foreach n E N - {START} do

160: Dompm(n) =N

/* end initialization */

161: while Changes to any Dompm(n) occur do

162: foreach n E N - {START} do

163: Dornpm(n) = {n} U nI'EP••d(n)Dornpm(p)

l'The set DomAffededo(Yd) can possibly be made more precise by not including any nocle Vd

idom(YJ) - vJ is a flowgraph edge, since Vd can never be pulled down. For simplidty, we use
only the two givè:"\ conditions to determine if a nocle is in DomAffeétedo(Yd).

'- .',,.
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Let Dom(v) denote the set of dominators fornode v. Our modifications te> the

exhaustive Purdom-Moore algorithm are the following: First, =d = idom(Yd) will

continue to dominate every possibly DomAIIeeted node in DomAffectedo (Yd) after

the update, although it may no longer be its immediate dominator. We, therefore,

can fecus on the nodes in SubTree(=d) while ignoring others. Consequently, we

will compute the DomO sets for all the possibly DomAl1ected nodes as if no

other nodes existed outside of SubTree(=d). Second, we will monitor the Changes

condition (step 11611 in Algorithm 8.2) only for the possibly DomAl1eeted nodes.

Third, whenever Dom(Wd) changes for anode Wd E DomAffectedO(Yd), the DomO

set also changes for every descendant Vd of Wd (this is true in Algorithm 8.2).

Therefore, we must also observe the Changes condition for any descendant of

every possibly DomAl1eeted node. But, fortunately, Dom(Vd) can be "partially

deduced" from Dom(Wd)' But before explaining this we need to introduce a few

concepts.

For our algorithm design, we will first partition ail the nodes in SubTree(=d)

into three classes:

1. PossiblyAffected: Thesetofnodes in thisclass is thesame as DomAffectedO(Yd)'

2. PseudoAffected: This set consists of any proper descendant of a PossiblyAf

fected node. Note that a PseudoAffected node's immediate dominator

does not change, but its dominators may change.

3. NotAffected: This set is defined to capture all the nodes not in the first two

classes. Neither does a NotAffected node's immediate dominator change,

nor do its dominators.

Example8.2

Consider deleting the edge 2 -> 4 from the flowgraph in Figure 8.2(a).

IDF(4) = {3, 6,8}. By examining the DJ graph in Figure 8.2(b), we

can see that (1) nodes 3, 4, 6 and 8 are PossiblyAffected nodes; (2)

nodes 5;;:nd 7 are PseudoAffected nodes; and (3) nodes 1 and2 are

NotAfi"ected nodes.

Next we partition Dom(vd) for each node Vd E SubTree(idom(Yd») into two

parts: the static part Dom,,(vd) and the dynamic part Domdv(vd)' The static part
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captures nodes that will continue to dominate Vd after the update. For example,

consider the DJ graph shown in Figure 82(b). Nodes 1 and 2 will dominate node

2 even after the edge deletion, 50 Dom.,(2) ~ {1,2}. By contrast, the dynamic

part of a DomO set normally will change during the fixed point iteration. We

are interested in Domdu0 for only the PossiblyAffected nodes because we want

to compute their immediate dominators. Therefore, we carefully initialize and

manipulate the DomO set in such a way that we update the DomO set only for

the PossiblyAffected nodes.

Let Zd =idom(Yd). The first step of our approach is to initialize the DomO set

for each node according to its class as follows.

Vd E PossiblyAffected. For each PossiblyAffected node Vd, Dom.,(Vd) = 0 and

Domdu(Vd) =ail the nodes in SubTree(zd)' We basically need to recompute

the dominators for each PossiblyAffected node. For instance, consider the

DJ graph in Figure 82(b). Node 4 is in PossiblyAffected and Domdy(4) =
{1, 2, 3, 4, 5, 6, 7, 8}.

Vd E PseudoAffected. Recall that the immediate dominator ofa PseudoAffected

node will not change, but its DomO set may. Let Vd be a PseudoAffected

node. By definition, there will be a unique node Wd E PossiblyAffected

that strictly dominates Vd. Here we will discuss how to initialize the static

part and compute the dynamic part of Dom(Vd).

Let S be the set ofnodes on the dominator tree path from Wd to Vd (excluding

Wd)' AlI the nodes in S will still dominate Vd even after the update, 50 they

are used to initialize Dom,,(Vd). For example, consider the DJ graph in

Figure 82(b) again. The set S for 5 is {S}, so Dom.,(S) = {S}. (Intuitively,

even node 3 can be included in Dom.,(S). We did not do that since it will

be included in the dynamic part). Now for the dynamic part, we can see
that the nodes in DomO that is not accounted for by the static part are

ail the nodes dominating Wd. This implies that Domdy(Vd) is the same as

Dom(wd)' Returning to our example; DomdY(S) = Dom(3) = Domdy(3) =
{1, 2, 3, 4,5, 6, 7, 8}. This is because, node 3 immediately dominates node 5,

and since node 3 is PossiblyAffected, but not 5, we include alI the elements

of Dom(3) in Ddy(S).
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Vd E NotAffected. For a NotAffected node "d.. neither its DomO set nor its im

mediate dominator will change. Therefore, we initialize Dom.'("d) to be all

the nodes dominating ô'd, and make its dynamic part empty. Again con

sider the DJ graph in Figure 82(b). Node 2 is a NotAffected node, and

Dom.,(2) ={1,2}.

Given the above initialization we next give the complete algorithm for updat

ing the DJ graph when XJ -> YJ is deleted from the flowgraph (Algorithm 8.3).

When Algorithm 8.3 terminates, the dominators for each PossiblyAffected node

Wd will be in Dom(Wd). Using fuis information, we can easily determine the im

mediate dominators for all the possibly DomA!!cetcd nodes. After fuis we can

update the DJ graph accordingly. The complete algorithm is given below.

Algorithm 8.3 The following aIgorithm updates the Df graph ofafIowgraph when an

existing edge is deIeted.

176:

177:

DomAffectedO(Yd) = {wdlwd E ({Yd} U IDF(Yd)) and

wd.IeveI = Yd.IeveI}

165: if(Xd! = idom(Yd)) /* do not eut if Xd - Yd is a D edge! * /

166: eut(Xd, Yd)

167: Zd = idom(Yd)

168: Partition all the nodes in SubTree(zd) into PossiblyAffected, PseudoAf-

fected, and NotAffected.

169: Initialize each node Wd E SubTree(Zd) as descnôed in the main text.

170: Change = True

171: while(Change == True) do

172: Change = FaIse

173: foreach Wd e PossiblyAffected do

174: DomTemp = SubTree(zd) /* temporary variable */

175: foreachPJ e Pred(wJ) do

/* PJ is an immediate predecessor in the flowgraph * /

if(Pd e PseudoAffected)

Domdr(Pd) = Dom(Ud], whereud E PossiblyAffected

and Ud stdom Pd

UpdateDomDel(x, y)

{

164:

•

•
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178: endif

179: DomTemp = DomTemp n (Dom,'(Pd) U DOmdy(Pd))

180: endfof

181: NewDom(wd) = {Wd} U DomTemp

182: endfof

183: if Dom(Wd) # NewDnrn(wd) then
184: Change = True

185: endif

186: Dom(Wd) = NewDom(wd)

187: endwhile

188: Compute the immediate dominators fOf ail the possibly DomAffecled

nodes.

189: Update the DJ graph accordingly.

}

In the above algorithm, after the completion of step 11751 foreach loop, the

variable DomTemp contains the intersection of the DomO sets from a node's

immediate predecessors. Thex:e are two key points to note in this algorithm: (1)

We check the Changes condition only for the nodes in PossiblyAffected; and

(2) If an immediate predecessor Pd at step 11761 belongs te PseudoAfi'ected, we

make Domdy(Pd) be Dom(Ud), where Ud E PossiblyAfi'ected and Ud stdom Pd.

We, therefore, do not explicitly recompute the dynamic part of Dom(Pd).

Example8.3

Consider the flowgraph and its DJ graph shown in Figure S.2. ~

sume that 2 ..... 4 is te be deleted from the flowgraph. To update

the DJ graph, we first incrementally compute the DomO set for every
possibly DomAffected node. 5ince DomAffe...-tedO(4) = {4,3, 6, S}, we
have PossiblyAffected = {3,4, 6, S}, PseudoAffected = {5,7}, and

NotAffected = {1,2}. Also idom(4) = 1. The initial values of the

DomO sets shown in Table 8.1.

Once DomO sets have been initialized we next perform fixed-point

computation as in the exhaustive Prudom-Moore algorithm. At

step 11691 we initialize, for each node, the static and the dynamic
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(a)

.
3 PossiblyAffected 0 F
4 PossiblyAffected 0 F
6 PossiblyAffected 0 F
8 PossiblyAffected 0 F
S PseudoAffected {S} Dom(3)
7 PseudoAffected {7} Dom (6)
1 NotAffected il} 0
2 NotAffected {1,2} 0

1 Node ~ Node Type 1 Dom..O 1 DomdvO 1

Node Pred! DomTemp- DomdyO -
n.ePred,Dom(p) DomTemp u Node

3 {1,7} {1} {3,1}
4 {3} {1,3} {1,3,4}
6 {4,S} {1,3} {1,3,6}
8 {3,7} {1,3} {1,3,8}

•
(b)

Table 8.1: (a) Initial and (b) Final values of DomO for the example. (In the above
tables F = {l, 2, 3, 4, S, 6, 7, S})

•
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part of DomO. These initializations are shown in Tabh:l 8.1 (a).

Next we iterate and compute the fixed-point of the DomO set for

each node in" PossiblyAffectedstep 11711. For our example, the set

PossiblyAffected = {3,4,6,S}. For each node w, in PossiblyAf

fected we fust compute the intersection of aIl the DomO set of its

predecessor node (steps [i75] to 1180 p. At step 11761 we check if a

predecessor node Pd of a node in PossiblyAffected is in PseudoAf

fected. If50, we make the dynamic part of its DomO set to be same as

Dom(Ud), where Ud E PossiblyAffected and Ud stdom Pd. For exam

pIe, consider node 3 in PossiblyAffected. The predecessors of node 3

are 1 and 7. Node 1 is in NotAffectedand 50 Dom(l) ={I}. But 7 is in

PseudoAffectecl. At step 11791 we make the dynamic part of node 7 to

besame as Dom(6), whichis {1,2,3,4,S,6, 7,S}. Thenwe compute the

intersection of Dom(l) and Dom(7). Once we compute the intersection

we then union the set with {3} (step 1181 p. We continue this process

until a fixed-point is reached. At step 11841 we check to see if a fixed

point is reached otherwise we set Change to True and continue the

iteration. The final fixed point values for the possibly DomAffected

nodes is shown in Table 8.1 (b).

Observe that when computing DomTemp at step 11791 we always select the

latest value of Dom(Pd)' In addition, whenever such a Pd is a PseudoAffected

node, we update its Domd~O set at step 1176 ~ In the actual implementation, we

do not need to update Domd~(Pd) for Pd E PseudoAffected. Using pointer data

structures we can easily point to the set Dom(ud), where Ud is an ancestor of Pd

and Ud E PossiblyAffeetecl.

Once we have computed the DomO sets, we can easily determine the new

immediate dominators for all the DomAffected nodes. In our example, node 1

is the new immediate dominator of 3, which is the new immediate dominator of

4, 6 and 8. With this information we can proceed to update the DJ graph. The

updated DJ graph is shown in Figure 82-

One key point to observe in the above algorithm is how we initialize the start

ing solutions for different types of nodes (i.e., the DomO sets). Ifwe were to start
the iteration from the old fixed point (i.e., DomO initialized to the old the domina

tors) we would get wrong result (this is hecause, during fixed-point iteration we
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can never increase the size of a DomO). For a comprehensive treatment on this

and other related problems of incremental iteration, please see [RMPSS, Mar89].

8.3.2 Correctness and Complexity

In order to find the new immediate dominatoTS for aU the possibly DomAJJcclcd

nodes, we use Aigorithm 8.3 to find their new dominatoTS instead. Consequently,

the correctness of our approach to handling an edge deletion relies on the cor

rectness of finding the dominators for every PossiblyAffected node. The foUow

ing lemma daims that when Algorithm 8.3 terminates, the dominators for every

PossiblyAffected node are correct1y found.

Lemma 8.5 Let xJ -; Yf be the deleted fIowgraph edge. Then when the Aigorithm 8.3

tenninates, Dom(Wd) containsexactly aIl the dominatoTS that are in SubTrcc(idom(Yd))

for any PossiblyAffected node Wd.

Praof:

First of aU notice that the set NewDom(Wd) computed at step 11811 is

always a subset of the current Dom(Wd) (thisbecauseofthe intersection

operation at step1179 p. Since Dom(Wd) cannotgetsmaUerindefinite1y,

we must eventuaUy terminate the while loop. Next we will show that,

after convergence, the set Dom(Wd) contains aU the dominators of Wd

that are in SubTree(idom(Yd)). For this we will have to show that if

anode Ud E SubTree(idom(Yd)) is in DomJ"l'(Wd) (i.e. dominates Wd)

then Ud will be induded in Dom(Wd) and vice versa.

Let p E Predf(w). We know that p is either in PossiblyAffected,

PseudoAffected, or NotAffected. We will show that for each category

that p may belong to, its Dom(p) set will be either a correctestimate or

an overestimate of the actual (final) Dom(p)

1. p E NotAffected. Itis obvious that Dom(p) is a correct one.

2. p EiPseudoAffected. HereDom(p) =Dom.I(P)UDOTnd~(P), The

nodes in the static part will always dominate p. At step 11771 we

assign the dynamic part to Dom(u), where is an ancestor node of
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p and U E AJJ. The union of the two will be an overestimate. In

other words, if anode s dominates p it will be in Dom(p).

3. p E PossiblyAffected. The DomO will be an overestimate.

From above we see that if anode Ud dominates p it will be in the set

Dom(p). Now if s dQminates aIl the predecessors p of W it will be in

the Durn(p) set of aIl the predecessors. Therefore Ud will also be in the

intersection of the Dom(p) set of aIl the predecessors, and 50 will be

included in Dom(Wd)'

Now let Ud be sorne node in Dom(Wd) when the algorithm terminates.

We will next show that Ud dominates Wd' If u~ = Wd, we are done.

Otherwise, the only way Ud was included in Dom(Wd) isbecause it was

included in the dominatorsetofall thepredeeessornodes p in PredJ (w)

in sorne previous iteration. This is possible only if Ud dominates all

the predeeessor nodes p. If Ud dominates all the predeeessors, it must

dominate Wd. Henœ the result.

•
In the worst case, the time complexity of Aigorithm 8.3 can be the same as the

Purdom-Moore algorithm. In practïœ, however, we expect our algorithm to be

much faster in the average case.

8.3.3 Other Cases

Let :&J -+ YJ be the edge to be deleted from the flowgraph. Here we will descnbe

how to handle other cases where the reachability of:&J and YJ from S'rAICfJ is

different from what we have assùmed. If:& is not reachable, then we do nothing

because we only intend te maintain the DJ graph for the reachable subgraph

REACH(START).
Now assume that :& is reachable and y becomes unreachable after deletion.

In this case, we remove from the DJ graph all the nodes in SubTree(ycl) and

their incident edges. This is because if removing:&1 -+ YJ makes YJ become

unreachable, then all the nodes strietly dominated by y will not be reachable

either. Next, we remove the D edge:&cl -+ Ycl. Fmally, we update the reachability

status for all the nodes that become unreachable due te the edge deletion.
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• 8.4 Experiments and Empirical Results

ln this section we prese.nt empirical results for our incremental dominator al

gorithm. We will first describe our experimental strategy, and then present the

results and their analysis.

8.4.1 Experimental Strategy

•

•

In [RLP90], Ryder et al. discuss sorne of the issues involved in experimentally

evaluating ineremental algorithms. One major problem in accurately evaluat

ing ineremental algorithms is selecting suitable test cases [Ram93, RLP90]. For

instance, Ryder et al. chose a set of randomly generated flowgraphs, as their

test suite, to evaluate their incremental dominator algorithm [RLP90]. They use

the following strategy in their evaluation: They first induce random ineremental

changes (such as insertion and/or deletion ofan edge) and measure the time taken

to update the dominator tree. To calcu1ate the speedup gained by their algorithm,

they then measure the time takenby the exhaustive Purdum-Moore algorithm for

computing the dominator information of the changed flowgraph. They repeat this

process for each incremental change. Using this evaluation strategy, they show

that their incremental algorithm performs better than the exhaustive algorithm.

In this chapter we take a different approach for evaluating our incremental

algorithm.

• Jnstead of using randomly generated flowgraphS, we use control flow

graphs generated from real FORI'RAN programs for our experiments.

• Instead of comparing our incremental algorithm with Purdom and Moore's

exhaustive algorithm (whose worst-ease time complexity is quadratic), we

compare our results with the almost linear time Lengauer-Tarjan (U') algo
rithm [L179].

• Jnstead of inducing random incremental changes to a flowgraph, wè incre

mentally construet the DJ graph of a flowgraphior real programs. In our

evaluation we then compare the time taken to construet (inerementally) the

complete DJ graph of the flowgraph with the time taken to compute (ex

haustively) the immediate dominator relation of thefituzI flowgraph using
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the LT algorithm. In other words, if T(ine) is the time take to incrementally

construct the DJ graph and T(LT) is the time taken to compute the imme

diate dominators of the final flowgraph, then the speedup in our case is
TU.T)
"r(ine) •

LI'\ our experiments we handle only edge insertions.2 We incrementally con

struct the DJ graph in the depth-first order of the nodes in the flowgraph.3 To

evaluate our algorithm, we performed the following measurements:

• For each aigorithm we maintain a count of the number of times we visit

nodes and edges in a flowgraph. In other words, for each algorithm, we

increment a counter whenever we visit a node or an edge. We will denote

the final value of the counter for the LT algorithm as P(LT), and for our

algorithm as P(ine).4

• We measured the execution time of both algorithms on our test procedures.

We will denote the execution time of the LT algorithm as T(LT), and the

execution time for incrementally constructing DJ graphs as T(inc) .

Given these measurement, we will next present the empirical results and their

analysis.

8.4.2 Empirical Results and Their Analysis

Table 8.2 gives a summary of our results. We will first give a summary of the

major results of our experiments.

• The value of P(LT) ranges from 322 to 2180, with the average value being

1071. Theratio !iJi ranges from3.26 to 3.65 with the averagebeing3.43. This

ratio suggests that the LT algorithm should, on average, make 3.43 passes

over a flowgraph during the computation of the immediate dominance

relation.s

2We did not implement ourdeletion algorithm to test il.
3Thedepth-fustorder isocly inàdentaI. sinœthenodes inaflowg<aph. inour implementation.

are numbered in the depth-fust order.
'Sinœ in our algorithm edges are inserted in the depth-fust order of their sowœ nodes, we

did not count the edges visited during the depth-fust nwnbering phase of the LT aIgorithm.
S'the values of P(LT) and P(ine) indieated in the table are only appl'Oximate values. ActuaI

analysis of the LT algorithm indieate that the algorithm makes appl'Oximately four passes over
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1 Average ll2EJ 1071 1 1593 1 1.00 1 3.43 1 5.31 n 8.71 1 14.37 1 0.74 1

Name IE/I P(LT) Peine) ;:;~ !:fP.rl ID! T(LT) TUne) 1 .~.( Int")Ine)

aerset 460 1590 710 2.24 3.46 1.54 12.2 10.1 1.21
aqset 258 911 468 1.95 353 1.81 7.7 6.2 1.24
bjt 187 641 2122 030 3.43 11.35 5.7 15.2 0.38
carel 216 iiO 1109 0.69 356 5.13 6.2 9.8 0.63
chemset 320 1091 800 1.36 3.41 2.50 9.1 9.0 1.01
chgeqz 248 858 1899 0.45 3.46 7.66 7.1 165 0.43
clatrs 308 1022 2290 0.45 332 7.44 8.2 17.7 0.46
coef 137 451 504 0.89 3.29 3.68 4.6 55 0.84
comlr 91 322 337 0.96 3.54 3.70 4.1 4.2 0.98
dbdsqr 327 1100 1853 059 336 5.67 9.2 15.2 0.61
dcdcmp 187 682 865 0.79 3.65 4.63 5.7 9.0 0.63
dcop 261 901 1997 0.45 3.45 7.65 7.7 14.7 052
dctran 458 1588 4958 032 3.47 10.83 11.8 40.8 0.29
deseco 236 850 1168 0.73 3.60 4.95 7.4 10.4 0.71
dltes:v 232 770 1ii6 0.43 332 7.66 7.1 14.1 050
dgesvd 470 1586 1827 0.87 337 3.89 12.1 17.8 0.68
dhgeqz 408 1395 3468 0.40 3.42 850 11.4 293 039
disto 191 622 1403 0.44 3.26 735 53 10.4 051
dlatbs 238 803 1490 0.54 337 6.26 7.2 11.7 0.62
dtœvc 459 1555 3148 0.49 339 6.86 12.0 26.6 0.45
dtrevc 353 1212 1305 0.93 3.43 3.70 93 133 0.70
elpmt 22i 788 1982 0.40 3.47 8.73 6.7 16.4 0.41
equilset 451 1584 1023 155 351 2.27 12.9 13.0 0.99
errchk 482 1722 345i osa 357 7.17 12.0 31.0 039
iniset 486 1657 486 3.41 3.41 1.00 12.7 95 134
init 175 572 245 233 3.27 1.40 55 '.6 153
initgas 263 896 678 132 3.41 258 7.6 7.8 0.97
jsparse 403 1355 742 1.83 336 1.84 11.0 9.6 1.15
modchk 419 1498 1167 1.28 358 2.79 11.0 14.1 0.78
mosea2 217 771 2i38 0.28 355 12.62 7.0 21.0 0.33
mosfet 295 1025 4903 0.21 3.47 16.62 8.5 33.8 0.25
noise 160 547 1143 0.48 3.42 7.14 5.1 8.4 0.61
out 590 1944 1357 1.43 3.29 2.30 15.1 16.5 0.92
reader 235 824 723 1.14 3.51 3.08 7.8 9.7 0.80
readin 611 2180 3513 0.62 357 5.75 15.1 28.1 0.54
setupgeo 275 918 718 1.28 334 2.61 7.8 8.4 0.93
setuprad 286 938 396 2.37 3.28 138 7.8 6.1 1.28
smvgear 310 1056 1415 0.75 3.41 4.56 8.6 13.1 0.66
solveq 289 960 518 1.85 3.32 1.79 7.8 7.4 1.05
twldrv 243 838 1025 0.82 3.45 4.22 7.3 10.1 0.72

•

•
Table 82: TlI1'IÏngs and speedups
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The value of P(inc) ranges from 245 to 4903, with the average value being

1593. The ratio ~~~';I) ranges from 1.00 to 16.62, with the average value being

5.1. This ratio indicates that our algorithm, on average, make 5.31 passes

over the entire flowgraph during the incremental construction its O} graph.

• The value of the ~[~:c~ ranges from 021 to 3.41, with the average value

being 1.00. The value of this ratio suggests that constructing O} graphs

incrementally, on average, takes about the same time as computing the

immediate dominance relation using the LT algorithm. But as can be seen

by the data reported in the table constructing O} graphs incrementally is

about 1.35 times slower than computing the immediate dominance relation.

• From the table we can see that the ratio H~~\, ranges from 025 to 1.53 with

the average value being 0.74. This suggests that constructing O} graphs

incrementally is, on average, about 1.35 times slower than computing the

immediate dominator relation using the LT algorithm. It is important to

note that the LT algorithm only computes the immediate dominance rela

tion, whereas using our incremental approach we construct complete the DJ

graphofflowgraph. InChapter3 we gave time measurements for construct

mgDJ graphs given the immediate dominance relation. If this is included in

the timing measurements of the LT algorithm, then the average performance

of our algorithm would improve. Figure 8.3 shows the performance graph

of the two algorithms on our test procedures. From the plot we can see that

the LT behaves linearly, whereas our algorithm exluôits a more complex (or

random) pattern.

In our experiments we inserted edges in the depth-first order of the source

nodes of the edges. We believe this ordering gives a better result for certain pro

cedures. For instance, consider the procedure iniset. This procedure consists

of the 154 simple 00 loops that irùtializes arrays. From the table we can see that

the ratio 1~::I) is 1.00 for this procedure, indicating that ~~-e never invoked the

procedure for computing DomAtfectedlO during insertion, and so we never had

to calculate the lOF set This is the reason why our algorithm performs better

a flowgraph during the computation of the immediate dominance relation lU79l. Since P(LT)
does not include passes made during depth-fust numbering, our measw:ements confinn to the
actual analysis.
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than the LT algorithm for this procedure. Remember that the LT algorithm makes

four passes over a flowgraph no matter what is the structure of the graph. 5ince

the value of the ratio ~~~I) is 1.00, our algorithm constructs the DJ graph for this

procedure is (asymptoticaIly) optimal time. In general, we suspect that if the

structure of the dominator tree is close to the structure of the depth-fust tree, then

constructing DJ graphs incrementally would be faster than the LT algorithm.

It is important to emphasize that in our experimental strategy we compute the

immediate dominance relation (using the LT algorithm) only once, and compared

its performance with the performance of the algorithm for computing DJ graphs

incrementaIly. To be fair we should actually compute the immediate dominance

relation after each lncremental change, as was done by Ryder et al. [RLP90]. Even

in our experimental strategy we can see that our incremental algorithm performs

very weIl, and so we can expect that ours will do a lot better if we use the

evaluation strategy of Ryder et al.

As a final remark, the dominating factor in our algorithm is computing the set

DomAffectedlO. For our experiments we use the algorithm given in Chapter 7 for

computing IDF of anode. It would interesting to see how much improvement

we can obtain if we use Cytron et al:s original algorithm. To use this algorithm

we should aIso incrementally maintain the dominance frontier relation. This is

the topie of the next chapter.

8.5 Discussion and Related Work

In this chapter we have presented an approach to the DJ graph update prob

lem, which subsumes the problem of updating dominator trees. Previous work,

most relevant to our approach, for the dominator tree update problem includes

the Carroll-Ryder algorithm [CR88] and the Ramalingam-Reps algorithm [RR94).

Both these algoritluns are restricted to the class of reducible flowgraphs. By con

trast, our algorithm can handle irnducible as well as reducible flowgraphs.

We will first compare ours with Ramalingam and Reps' approach, and then

compare with Carroll and Ryder's approach.
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8.5.1 Ramalingam and Reps's Approach

To sïmplify the p~:;entation,wewill refer to Ramalingam and Rep's algorithm as

the RR algorithm. Unlike the RR algorithm, ours can handle both re::luciblc and

irreducible flowgraphs. The RR algorithm is based on the propcrties of pseudo

circuit value problem [AHR.+90j, while we use properties of DJ graphs and IDFs

to update DJ graphs. They use a modified algorithm of Alpem et al. to update

priorities of nodes [AHR+90j. Priorities are equivalent ~o reverse topological

sorting of the nodes in the forward flowgraph.6 Priorities can be assigned to

nodes only if the forward flowgrapll is a directed acyclic graph. This property is

only true for reducible flowgraphs. During the insertion of a new edge, if a cycle

is detected in the forward flowgraph, then their algorithm immediately signals

that this insertion has introduced irreducibility into the flowgraph. After that

they do not a110w further insertions and deletions of edges, because priorities

cannot be assigned to nodes in the forward flowgraph containing cycles.

In the insertion case, our algorithm can begin with the exact set of affected

nodes (e.g. DomAfi"ectedl(», while the RR algorithm needs to begin with a

conservative set of possibly affected nodes. When an edge XI --+ YI is deleted,

Ramalingam and Reps make an the sibling nodes of Yd as affected. Our set of

possibly affected nodes, although not exact, is always a subset of yb sibling

nodes; therefore, it is a better approximation than theirs.

In the worst case, the time complexity of our algorithm for the insertion case
is O(lEI), while that of Ramalingam and Reps' algorithm is O(lEI x log INI).

Recall that, sinœ we are handling updates of DJ graphs, it is crucial that we

update the levels of nodes too. This means that we definitely have to visit a11 the

descendants of the affected nodes to update their level numbers. Thiswill also be

true for Ramalingam and Reps' algorithm, if they too update the level information

in the dominator tree. 5ince the two algorithms are fundamentally different,

it is difficult to make precise statements on their timing comparisons without

substantial tests on real programs. In particu1ar, it is generally very difficult

to analytically compare incremental algorithms [Mar89, Ram93). Therefore, we

only make some qualitative observations. Our algorithm, for the insertion case,
beginsby computing precisely the set of affecteè. nodes, at the expense of visiting

6Recall the definition of reducible f10wgraphs in Chapter 6 (Oelinition 6.1). A forward f1ow·
graph is nothing but a reducible f10wgraph with ail 'back edges' removec\.
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arguab!y more nodes compared to the RR algorithm. (This is true even for the

deletion case). On the other hand, the RRalgorithm has a [ag(lNI) overhead factor

(in the worst case). Also the RR algorithm has to do priority-updating. One way

to compare the performance of the two algorithms is to implement and test them

on real benchmark programs.

8.5.2 Carroll and Ryder's Approach

The Carroll-Ryder algorithm uses two local properties: niceness and deepness.
Niceness is a property for edges; deepness is a property for nodes. Non-nice

edges and non-deep nodes cannot exist in the dominator tree of a reduo"ble

graph. Using these two local properties and the notion of representative edges, they

maintain the dominator tree of a reduo"ble flowgraph. For every edge x -> y in

the flowgraph, and for every node z that dominates x without strictly dominating

y, a representative edge z -> y needs to be maintained. An astute reader can

immediately observe that ifx -> y is a representative edge, the y E DF(x). Rather

than usingpropertiesofpropertiesofdominance frontiers and iterateddominance

frontiers for updating the dominator tree they use "local rotation" operations that

moves a subtree up or down one level at a time in the dominator tree. This adds

to the complexity of their algorithm, which in the worst case could be quadratic in

terms of the number of flowgraph nodes. Incontrastwe use properties of iterated.

dominance frontiers for determining the exact set of DomAffected and move the

affected nodes in one-shot, once we compute the new immediate dominators.

8.5.3 Other related work

In a reœnt paper [JPP94), Johnson et al. introduced the Program Tree Structure

(PST) for performing fastprogram analysis. The PST represents a programwith a

hierarchy of single-entry, single-exit regions. Using the PST, Johnson in his thesis

proposed an algorithm for updating dominator trees [Joh94). His approach is to

identify regions, corresponding to sub-flowgraphs,wherethe dominance relation

may no longer be correct because of an update. Once a region is identified, he

applies an exhaustive algorithm for an the nodes in this region. In the worst-ease

there can be only one node in. a PST, 50 that they must exhaustively recompute

the dominance relation for an the nodes in the flowgraph. In contrast, we update
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the dominance relation only for the (possibly) affected nodes. But again, one

should compare the two approaches on real benchmark programs and see their

performance.
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Chapter9

IncrementaI Computation of

Dominance Frontiers

Take up one idea. Make that one idea your life-think ofit, dream ofit, live

on that idea. Let the brain,muscles,nerves,every part ofyour body, befull of

that idea, and just leave e:uery other idea alone. This is the way to success. If
we really want to be blessed, and make others blessed, we must go deeper.

-Swami Vivekananda

In this chapter we present a simple incremental algorithm for updating the dom

inance frontier relation of a flowgraph. Dominance frontiers have many applica-.

tions, including the construction of the SSA form (CSS94) and incremental data

flow anaiysis (Chapter 11). We begin the chapter by introducing and motivating

the problem of updating dominance frontiers (Section 9.1). In Section 9.2 and

Section 9.3 we present our incremental dominance frontier algorithm for han

dling ooge insertions and edge deletions, respectively. In Section 9.4, we prove

the correctness and analyze the complexity of the algorithms. In Section 9.5,

we will use the result of this chapter to (potentially) speedup the incremental

dominator tree algorithm. Finally, in Section 9.6, we give our conclusion.

9.1 Introduction and Problem Statement

In this chapter wepresent a simple algorithm for updating the dominance frontier

relation of a flowgraph. In Chapter 4 we discussed three ways of representing

136
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dominance frontiers: (1) the full dominance frontier representation, where for

each node x, we explidtly represent the set DF(x) as a list; (2) the DJ graph

representation, where, for each query, we compute the set DF(x) on-the-fly by

walking clown the dominator subtree rooted at x; and (3) the APT representation,

where dominance frontiers are cached at certain nodes, called the boundary nodes.

The space complexity of the first representation can potentially be quadratic,

but querying the dominance frontier of anode is time optimal [CfS90b, PB95].

Using DJ graphs, we can store the dominance frontier relation in linear space, but

querying the dominance frontier of anode is not time optimal (Chapter 4). The

APT representation occupies linear space and takes time proportional to size of

the set for each query [PB95]. In a pre-processing step they identify boundary

nodes where the dominance frontiers are cached [PB95]. Comparing APT with

the full representation and the DJ graphs, we can see that every node in the full

representation is a boundary node, whereas the source nodes of J edges are the

boundary nodes in the DJ graph representation. In APT boundary nodes are

identified in a preprocessing step. Since identifying boundary nodes depends

on the input flowgraph (and is sensitive to flowgraph changes), we suspect it

may be harder to update APT than DJ graphs or the full dominance frontier

representation. In Chapter 8 we gave a simple algorithm for updating DJ graphs.

Once a DJ graph is updated, we can use Algorithm 4.1 given in Chapter 4 to

(re-)compute the dominance frontier of any node (Algorithm 4.1). In this chapter

we will present an algorithm for maintaining the the full dominance frontier

relation. We will use this result in Chapter 11 for updating arbitrary data floW'

properties.

In the rest of this section we will set the stage for our incremental dominance

frontier algorithm. As in Chapter 8, we will allow only two types of updates:

(1) insertion of an edge, and (2) deletion of an edge. Recall that the solution

procedure for updating the dominator tree of a flowgraph consists of first iden

tifying the set of nodes that are "affected" because of an update. Anode is said

to be DomAffeded if its immediate dominator changes because of an update. For

both the insertion case and the deletion case, we can determine the exact set of

affected nodes when x ..... y is updated, even prior to restructuring the DJ graph.

In this chapter we will use the notation DomAffected(y) to represent the (exact)

set of DomAffeded nodes when x ......y is updated (either inserted or deleted). In
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Chapter 8 we showed, when a new edge x -+ y is inserted, the new immediate

dominator of ail the DomAffected nodes is nca(x,y), the nearest common ancestor

of x and y on the dominator tree. For the deletion case, a single node does not

immediately dominate ail the affected nodes. But we can still determine the new

immediate dominators of the affected nodes prior to restructuring the DJ graph.

Given the set DomAffected(y) and nca(x,y) we will next show how to incre

mentally update the dominance frontier of ail the "affected" nodes. Anode is

PossiblyDFAffected, if its dominance frontier set possibly changes because of an

update in the flowgraph. In the next two sections we give our algorithm for up

dating the dominance frontier relation. As in Chapter 8, we will initially assume

that both x and y are reachable from START; and then we will handle other cases

separately.

9.2 Updating Dominance Frontiers: Insertion of an

Edge

In this section we give a simple algorithm for updating dominance frontiers of

all nodes in DFAffectedt(y) when an edge x -+ y is inserted in the flowgraph. The

key question to ask is: at which nodes the dominance frontier may change when

x -+ y is inserted into the flowgraph. Recall that anode w E DomAffected(y) will

move up in the dominator tree after the DJ graph is updated. When this happens,

the dominance frontier of all the nodes that dominate node w or x, prior to the

incremental change, will possibly be affected.. Now let z = nca(x,y), and let

DFAffected,(y) = {u\z stdom u and u dominates anodew E {x} U DomAffected(y)

prior to updating the DJ graph}. We will claim that ifanode is not in DFAffected,(y)

then its dominance frontier will not change. But if anode is in DFAffectedl(y) we

cannot say for sure whether its dominance frontier will change or not. We will

formally prove our claim !ater in Section 9.4. Notice that we can easily compute

the set DFAffected\(y) by a simple bottom-up traversai of the (old) dominator tree

starting from nodes in w E {x} U DomAffected(y).

Once we determine the set of possibly affected nodes, next we recompute

the dominance frontier of these affected nodes. For this we will first update

the DJ graph using the algorithm given in Chapter 8. Next, for each node w E
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DFAffectedl(y), we will recompute DF(ll') in a bottom-up fashion on the ne\\' DJ

graph as follows: Let 10 be a node in DFAffectedl(Y) and assume that the dominance

frontiers of all the children nodes on IV are correct. Let l' E Child,'cn(u'), then the

new DF(IV) is given by the following formula (see Chapter 4),

DFioca/(w) = {rlIV - ,'is a J edge}

DF.p(p) = {qlq E DF(p) and q,lcllcl:S idom(p).lct'cl}

DF(w) - DF1oca/(IV) U U DFup(p) (9.1)
pEChildren('v)

Insert x -+ y in the flowgraph

z = nca(x,y)

Compute DomAffected(y);

Compute DFAffected,(y);

Update the DJ graph;

For each node 10 E DFAffected,(y) in a bottom-up fashion

(ordered by their levels) do

Compute DF(10) using the formula given in the main texl

endfor

196:

197:

}

Notice that the above formula is exactly the same as given in Chapter 4 for

(exhaustively) computing the dominance frontier of ail nodes. But, unlike in the

exhaustive case, we apply the formula only for the nodes in DFAffectedl(y), the set

of affected nodes. The complete algorithm is given below.

UpdateDFlns(x, y)

{

190:

191:

192:

193:

194:

195:

•

Example9.1

•

Consider the flowgraph and its DJ graph shown in Figure 9.1. Let us

insert an edge from node 2 to node 5. The resulting flowgraph and

the updated DJ graph is shown in Figure 9.2. Using the algorithm

given in Chapter 8 the set DomAffected(5) is {5,7}, and nca(2,5) =

1. Next we compute the DFAffectedt(5). This set consists of all the

nodes that dominate the set of nodes in DomAffected(5) (i.e., 5 and

7), and are strictly dominated by nca(2, 5) (Le., 1). We compute the
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set DFAffected l(5) before updating the dominator tree. To compute

the set DFAffectedl(5) we simply perform a bottom-up traversaI of

the dominator starting from nodes in DomAffected(5) untH we reach

nca(2,5). We include ail the nodes, except nca(2,5), that are visited

during this bottom-up traversaI into the set DFAffected1(5). By doing

thiswegetDFAffectedl(5) = {2,4,5,7}.

The domil"lance frontiers of the nodes in DFAffected,(5), prior to ~dge

insertion are: DF(2) = {4,END}, DF(4) = {3,END}, DF(5) = {7},

and DF(7) ={3, 4, END}. After inserting the edge the new dominance

frontiers for these nodes are: DF(2) = {4,5,END}, DF(4) = {5,7},

DF(5) = {7}, and DF(7) = {3,4,END}. Notice that the dominance

frontiers fornodes5 and 7 did not changebecause of the update, but we

still have to recompute its dominance frontiers. In general, it is much

mOre difficult to determine the exact set of nodes whose dominance

frontiers will definitely change. Also, since computing the dominance

frontier relation using above formula is linear praetice it may not be

worth the effort to determine the exact set of affected nodes.

OtherCases

Next we will extend the insertion algorithm for cases where both :z; and y are not

reachable. The first case is where :z; is not reachable, for which we do nothing

because we maintain the DJgraphand dominance frontiers only for the reachable

sub-graph of the flowgraph. In the second case, y becomes reachable only after

the edge insertion. For this we first build, using the exhaustive algorithm, the DJ
sub-graph and the corresponding dominance frontier set for the sub-flowgîclph

inducedbynodesreachablefromybutnotreachablefromSTARr. Inconstrueting

this DJ sub-graph and dominance frontiers, we treat y as its root. 5ince:z; must

dominate y, we then insert a 0 edge from:z; to Y (to conneet the newly built DJ
sub-graph with the existing DJ graph). Finally, from the viewpoint of updating

DJ graph and dominance frontïers, we pretend each edge u -> V to he a newly

inserted flowgraph edge, where u becomes reachable only after:z; -> y is inserted,

and v is reachable even before the edge insertion. This surprisingly corresponds

to the case that we discussed earlier.
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(a) (b)

•
Figure 9.1: An example flowgraph and its DJ graph

Figure 9.2: The flowgraph and its DJ graph after inserting 2 ..... 5•
(al fiowgr.lph (blDJ graph
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9.3 Updating Dominance Frontiers: Deletion of an

Edge

Delete x -> y in the flowgraph

z = nca(x,y)

Compute DomAffected(y);

Update the DJ graph;

Compute DFAffectedO(Y);

For each node S E DFAffectedO(Y) in a bottom-up fashion

(ordered by their levels) do

Compute DF(s) using the formula given in the main text.

endfor

204:

205:

}

In this section, we show how to update dominance frontiers when a flowgraph

edge x -> y is deleted. The effect of deleting an edge is opposite and comple

mentary to that of inserting the same edge. Recall that when inserting an edge

x -> y, we pull up every node whose immediate dominator node changes.' By

contrast, when deleting the edge x -> y, we pull down these affected nodes. 50

we have recompute the dominance frontiers of aIl possibly affected nodes. Again

let == nca(x,y), and let DFAffectedO(Y) = {u\= stdom u and u dominates anode

tu E {x} U DomAffected(y) after updating the DJ graph}. Now we daim that if a

node is not in DFAffectedo (y) then its dominance frol,tiers does not change.

In the deletion case we compute the set DFAffectedo(y) after updating the DJ

graph. Once the DFAffectedo(Y) set is determined then we update the dominance

frontiers of the nodes in DFAffectedo(y) as in the insertion case. The complete

algorithm is given below.

UpdateDFDeI(x, y)

{

198:

199:

200:

201:

202:

203:

•

OtherCases

•
Here we extend the deletion algorithm for cases where both x and y are not

reachable. Let x -> y be the deleted edge in the flowgraph. If :z: is not reachable,

then we do nothing because we only maintain the DJ graphand the dominance
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frontier relation for the reachable subgraph. Now assume that x is reachable and

y becomes unreachable after deletion. In this case, we remove from the DJ graph

ail the nodes in SubTree(y) and their incident edges. This is because if removing

x -+ y makes y become unreachable, then ail the nodes strictly dominated by y

will not be reachable either. Next, we remove the D edge x -+ y. We update

the reachability status for ail the nodes that become unreachable due to the edge

deletion. Finally, notice that we never need to update the dominance frontiers of

nodes that are reachable from the srART node. This is because none of the nodes

in SubTree(y) will be in the dominance frontiers of any node that is reachable

from the srART node.

9.4 Correctness and Complexity

In this section we prove the correctness (Theorem 9.1) and analyze the complexity

(Theorem 9.2) of both the insertion and the deletion algorithm. In the last two

sections we claimed that if anode is not in DFAffectedl(y) (DFAffectedo(Y)) then it

is net PossiblyDFAffected. By possibly affected we mean its dominance frontier

may or may not change due to the insertion (deletion) of an edge x -+ y. In the

following lemma we will show the result for the insertion case, and in Lemma 9.2

we will show the result for the deletion case.
We will first formally define the concept of PossiblyDFAffected.

Definition 9.1 A nodo! is PossiblyDFAffected if its dominance frontier relation pos

sibly changes because ofan update in the correspondingjlowgraph.

Given the above definition, the next lemma shows that if anode w is not in

DFAffectt'd\(y) then it is not PossiblyDFAffected. We will prove the lemma by

case analysis.

Lemma 9.1 Ifanode w is not in DFAffectedl(y) then its dominance frontier does not

change due to the insertion ofan edge x -+ y.

Proof:

Let z = nca(x,y). It is obvious to see that if w is not in SubTree(z)

then none of the nodes in SubTree(z) - {z} will be in DF(w), and sa
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ils dominance frontier will not be affected. 50 we will consider only

nodes within SubTree(z).

We can partition the set of nodes in SubTree( z) into three mutually

exclusive regions and totally exhaustive regions. The three regions are

as follows:

(1) Regionl consisting of the only node z.

(2) Region2 consisting of ail nodes that dorninate sorne node in {x} U

DomAffected(y), but is strictly dorninated by z.

(3) Region3 consisting of the remaining nodes in the set SubTree(z).

Note that Region2 is same as the set DFAffeeted,(y). In the rest of

the lemma we will show that if anode is not either in Regionl or in

Region3, then it is not affected.

Case 1: w E Regionl. In this case again w will not be affected. This is

becausew will strictly dorninate ail the nodes whose immediate

dorninator change.

Case2: w E Region3 Let s E DF(w). 50 there must be a J edge

t ..... s such that w dom t. Now if s ~ DomAffeeted(y) then s will

not be DomAffected and so s will still be in DF(w). Now if

s E DomAffected(y), then it will move up, and so its leve1 number

neV'~l increases (follows from Lemma 8.1). Therefore s will still

be in DF(w) and 50 dominance frontier of w is not affected due te

s's movement. Therefore w is not in DFAffeeted\(y) (follows from

Lemma4.1).

•
Now consider the de1etion case. In the next lemma we show that if anode is

affected then it is in DFAffe<:tedo(Y).

Lemma 9.2. Ifanode w is not in DFAffectedo(y) then its dominance frontiers does not
change due to the deletion ofan edge x ..... y.
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Proof:

We can use a similar argument as in Lemma 9.1 to prove this lemma.

•
Now we are ready to prove the main theorem.

Theorem 9.1 The procedures UpdateDFIns(x. y) (UpdateDFDel(x. y)) correctly up
dates the dominance frontier relation when an edgc x -> y is insertcd (de/etcd).

Proof:

Cytron et al. have shown that the Equation (9.1) correctly computes

the dominance frontiers for a11 nodes when the nodes are processed in

a bottom-up fashion. Using this result in conjunction with Lemma 9.1

(Lemma 9.2) we can easily see the procedures correctly update the

dominance frontiers of a11 the affected nodes when perforrned in a

bottom-up fashion. •

Theorem 9.2 The worst case time comp/exity of both the insertion a/gorithm and the

de/etion a/gorithm is O(iNI2) •

Proof:

We can easily see that the time complexity of computing the sets

DFAffectedl(Y) and DFAffectedO(Y) is linear. The time complexity in

both algorithms is dominated by the computation of the dominance

frontier relation using Equation (9.1), which in the worst case could

be quadratic. •

9.S Improving the Efficiency of the Dominator Update

Algorithm

In this section we will show how to potentially speed-up the inaemental domi

nator algorithm using the results of thischapter. Recall that one of the key step

in updating the DJ graphs is computing the set DomAffected(y) (assuming that

an edge x _ y is updated). But DomAffected(y) is a subset of {y} U IDF(y).

Therefore computing l DF(y) is a dominating step in the inaemental dominator

tree algorithm. If we use the algorithm given in Chapter 7 to compute l DF(y)
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then wc may potentially visit ail nodes dominated by the set ID F(y). The time

complexity of this method, although linear in terms of the size of OJ graph, may

visit more nodes than is needed. In this section we will show how to potentially

improve the efficiency of computing ID F(y).

The key idea is to construct a graph called the OF graph. A OF graph is

nothing but the dominator tree of a flowgraph augmented wit.1-t edges u -> v,

called the OF edges, such that v E DF(u). Notice the relation between OJ graphs

and OF graphs. In OF graphs we capture the full dominance frontier relation via

OF edges. Figure 9.3 shows the OF graph for Figure 9.1. Now the problem of

incrementally updating OF graphs is isomorphic to incrementally updating the

dominance frontier relation, 50 we can use the results of this chapter to update

OFgraphs.

(b)DFgraph

•

(a) F10wgraph

,

(START~
,.

,.,.

•

Figure 9.3: The DF graph of the flowgraph shown in Figure 9.2.

Next we will show how to compute l DF(y) very fast. We can compute the

set IDF(y) by visiting all the nodes that are reachable from y without visiting

anyO edges. AlI such nodes will bein IDF(y). We canuse a simple depthfirst

search on OF graph to compute IDF(y), by restricting the search to onlyOFedges
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reachable from y.

Now let us analyze the time complexity of performing both the dominator

tree updates and the dominance frontier updates using the a1:>ove mel:l'lOd. The

dominating step, for the insertion case, is updating the dominance frontier rela

tion. Since the size of the dominance frontier relation is linear for ail practical

prograrns [CFR+91], we expect that updating both the dominance frontier and

the domination relation lo be faster il'l practice.

9.6 Discussion

We are not aware of any previous work that gives an incremental dominance

frontier algorithm. We expect the result to be useful forwork that depends on the

dominance frontier relation, like the SSA form and Program Dependence Graphs

(pDGs). Compilers that~ these representation require that the dom:"'"1ance

frontierrelation becorrect1y maintained duringthe optimization phases. Recenlly

Choi et al. proposed an incrementai algorithm for updating the SSA form. Their

algorithm cannot handle arbitrary program changes. It would be interesting to

extend their algorithm for arbitrary program changes using the results of this

section. We will come back te this problem in Chapter 12. Finally, in Chapter 11,

we will show how te use the results of this chapter to incrementally update

arbitrary monotone data flow information.
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ChapterlO

A New Framework for

Elimination-Based Data Flow

Analysis: Exhaustive Analysis

... when you have eliminated the impossible, that which remains, however

improbable, must be the truth.
-Sir Arthur Conan Doyle

In this and the next chapter we introduce a new framework for elimination

based data flow analysis. In this chapter we will focus on exhaustive data flow

analysis, and in Chapter 11 we will fecus on incremental data flow analysis. For

our exhaustive elimination-based data flow analysis we present two variations:

(1) eager elimination method, and (2) delayed elimination method. We begin

the chapter by introducing and motivating the problem. Then, in Section 10.2

(and Appendix A), we provide the necessary background material on data flow

analysis and also introduce seme notation that will be useful for this and the

next chapter. Next, in Section 10.3, we outline the foundation of our approach.

In Section 10.4, we present oureager elimination method; and in Section ~0.5,

we prove its correctness and analyze its complexity. In Section 10.6, we present

our delay elimination method; and in Section 10.7, we prove its correctness and

analyze its complexity. In Section 10.8, we will show how te handIe irreducible

flowgraphs using our approach. InSection 10.9,we present our empirical results

and discuss ourobservation. Finally, in Section 10.10,we compareourworkwith

other related work, and also give our conclusion.

148
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10.1 Introduction and Motivation
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Despite much ground research work that has been done in elimination meth

ods, many researchers and practitioners prefer to use iterative methods for the

following two reasons: (1) they are simple and easy to implement, and (2) they

can handle arbitrary flowgraphs, including irreducible flowgraphs. Elimination

methods, on the other hand, are more efficient than iterative methods, but are

more ::omplex to implement. Also, sorne elimination methods cannot handie

irreducible flowgraphs, and even if they do, they are not very efficient.

In this and the next chapter we propose a new framework for data flow anal

ysis based on elimination methods. We will demonstrate that our approach is

simple, easy to implement, practically efficient, able to handle irreducible flow

graphs, and amenable to incremental analysis. At the heart of our approach is

the DJ graph representation. Within our framework we propose two methods for

exhaustive data flow analysis, and one method for ineremental data flow analysis.

In this chapter we present our approach for exhaustive data flow analysis, and in

Chapter 11 we present our approach for ineremental data flow analysis.

Elimination-based data flow analysis have been studied by many au

thors [ASU86, AC16, Ul1J"'3, Hec77, GW76, Tar81, Bur90, RosSO, RosS2, 5579].

An excellent survey can be found in [RP86]. Traditional elimination-based data

flow analysis techniques consist of three steps [RP86]: (1) reducing the flowgraph

te a single node, (2) eliminating variables in the data flow equations by substitu

tion, and (3) once the solution to the single node is determined, propagati.'1.g the

solution te other nodes te determine their :espective solutions. In this chapter

we presentour approach for exhaustive elimination-based data flow analysis that

uses DJ graphs as its main data structure. We propose two variations of our

approad1: (1) eager elimination method, whose worst case lime complexity is

O(\EI x IN\}, where 1NI and 1El are nodes and edges in the flowgraph, respec

tively; and (2) delayed elimination method, whose worst case mne complexity

is O(IEI x log(\N\}).l

Our work is related te the four classical elimination. methods (Allen-eocke,

IHere we assume fast data flow problems (see Appendix A) when discussing complexity,
although our o:.pproach is applicable to more general monotonedata flow problems (Bur90,Tar81,
RosSO, R0s82].



Hccht-Ullman, Graham-Wegman, and Tarjan), but with a number of signifi

cant differences. The Hecht-Ullman method uses a forest of height-balanced

2-3 tree to remember the common substitution sequences. Merging and bal

ancing the forest of 2-3 trees complicates this method, but it can help achieve

the O(IEI x log(INI)) time complexity. Tarjan proposes two variations of rus ap

proach: a simple O(IEI x log(INI)) algorithm that uses path compression trees (for

remembering the common substitution sequences), and an O(jEI x a{IEI, INI))

algorithm that also balances the path compression tree (where "0 is the inverse

Ackermann's function). Although rus balanced path-compression tree method is

almost linear, Tarjan favors the simple OOEI x log(INI)) algorithm for practical

implementation [Tar81]. In the Graham-Wegman method, the common substitu

tion sequences are remembered explicitly in thr. (reduced) flowgraph rather than

an auxiliary data structure. Tlùs method also uses a form of path comp~on,

but it is more complicated than Tarjan's simple algorithm [GW76, Tar81]. Its time

complcxity is again OOEI x log(IN\)).

In our approach we do not collapse a region into anode. Instead we maintain

the dominator tree (which may be compressed) of the flowgraph. One unique

feature of our approach is that graph reduction and variable substitution (or

elimination) are performed in a bottom-up fashion on the nod,.., in the DJ graph.

Rather than reducing a DJ graph to a single node, we only eliminate J edges from

the DJ graph, and in the process we also perform variable substitution along D

edges when necessary, in either an eager or a delayed fashion. At the end of the

bottom-up elimination phase, ail the Jedges will be eliminated. Meanwhile the

equation at every node is expressed only in terms ofits parent node in the (maybe

compressed) dominator tree. Once we determine the solution for the root node,

we propagate this information in a top-down fashion on the (maybe compressed)

dominator tree to compute the solution for every other node.

To achieve both efficiency and simplicity in our two methods, we exploited

severa! key concepts.

•

•
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•
• We neither use any auxiliary datastrueture nor group nodes to form regions.

Instead, we manipulate (and delay) ail the variable eliminations explicitly

on the DJ graph itself.

• In the delayed elimination method, we use a linear time pre-processing



step to identify the exact level at which each delayed variable should be

eliminated. This can help avoid redundant inspection of J edges during the

reduction process to determine whether to eliminate a delayed variable or

not In our pre-processing step we use structural properties of DJ graphs to

identify the levels.

•
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• In the delayed elimination method, we perform simple path compressions

on the dominator tree (without balancing the tree) to evaluate and eliminate

delayed variables. Our path compression is similar to Tarjan's simple path

compression, but performed on a static dominator tree.

• Ourapproachdoesnotrequirea 'parse' [HU72, U1173, Tar74, TarSl] or'5-set

finding' [(;W76] to determine the order in whichJ edges will be eliminated.

The J edges are eliminated from the DJ graph in a bottom-up manner.

• Another interesting feature of our approach is its relation to the concept

of dominance frontier and iterated dominance frontier. We will exploit

this relationship to establish that our elimination approach (both eager and

delayed) should behave linearly in practice.

• Finally, another interesting feature of our approach is that it can easily iden

tify and handle irreducibility gracefully in the bottom-up reduction process.

When irreducible loops exist, the worst case oost ofour elimination methods

can be as good as (or as poor as) that of the iterative method. This happens

when the root node is the immediate dominator of all the other nodes,

and these nodes belong to the same irreduable region. We believe this to

be extremely unusual in practice. Our approach to handling irreducibility

does not perform fixed-point iteration over all the nodes in an irreduable

region. Instead, we apply ourelimination method to every reduable region

oontained in an irreducible region, and perform iteration only over nodes

within the irreducible region that are at the same level (of the dominator

tree).

To study the effectiveness of our approach, we have implemented both the

eager and the delayed method for intraprocedural reaching definitions. Our im

plementation was built upon the Parafrase2 compiler [PGH+91]. To, compare the

results, we also implemented the iterative method for reaching definitions that



uses reverse postorder of nodes for iteration [HU77]. Both the eager and the

delayed method perform better than the iteration method (on average we get a

speedup of 1.3 compared to the iteration method). Although, theoretically, our

delayed elimination method is superior to the eager elimination method, we ob

served that for many procedures the eager method l'an faster than the delayed

method did. As we will demonstrate in this chapter, the time complexity of our

eager elimination method is directly related to the size of the dominance frontiers,

suggesting that the time complexity of the eager method should be linear in prac

tice (since Ûle size of the dominance frontiers is linear in practice [CFR+91]). For

those cases where the eager method performed better than the delayed method,

we suspect that the overhead of path compressions may actually overshadow the

benefit of delaying variable eliminations. This can happen if there are not many

"overlapping paths" to take advantage of delayed variable eliminations. As we

will also demonstrate in this chapter, the number of overlappbg paths is again

related to the size of dominance frontiers; the flowgraphs of real programs do not

contain many overlapping paths. Based on our observations, we recommend the

eagerelimination method for practica1 implementation. Also, oureagermethod is

amenable to incremental data flow analysis, which we will discuss in Chapter 11.

•

•
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10.2 Background and Notation on Data Flow Analysis

In this section we will introduce background material and notation for data L.OW

analysis that are useful for this and the next chapter.

Data flow analysis is a.process of estimating facts about a program statically.

These facts, or data flow information, can be modeled by elements of a lattice 1:,.

Associated with each node :1: is a flow function f,. that maps input information to

output information [Kil73, Mar89].2
Let I,. E 1:, be the information at the entry of anode :1:, and let 0,. E 1:, be

the information at the exit of the node. Then the input-output relation can be

expressed as

2For some problems, it is more convenient to associate flow functions with flowgraph edges
instead of nodes.
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We can rewrite this equation as follows:
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(10.1)

where P:, G: E 1:..3 We can interpret the above equation as follows: The Output

flow information at a node's exit is either (1) what is Generated within the node or

(2) what arrives at its 1nput and is Preserved through the node. For convenience,

we will use the following notation instead of the notation in Equation (10.1).

(102)

where + is the union operation and juxtaposition is the intersection operation.

We need another set of equations to relate the output information at a node y

to the input information at x when an edgc y -> X exists. The input information

1: is the merge ofall the output information Oy ofnodes y in Pred/(x); i.e.,

f\ is usually a union or intersection operation, depending upon the data flow

problem being solved. Combining Equations (10.2) and (10.3), we obtain the

following equation, denoted H:, for each x EN.

•
1: = 1\ Oy

yEPT.d,(:)

Hr : Or - Ir( 1\ Oy)
yEPT.d,(r)

Hr : Or - Pre 1\ Oy) +Gr
YEPT.d,(r)

(10.3)

(10.4)

(10.5)

•

Since there is one equation for each node, we have a total of INI equations. Notice

that the above equation has two variations. The first variation (Equation (10.4) is

more general than thesecond (Equation (1 0.5)),since for some data flow problems

the information generated within a node x is not independent of Ir [Mar89]. We

use the term outputvariable to name thevariable Or that appears on the left-hand

side (LBS) of equation Hr • Any variable appearing on the right-hand side (RHS)

of the equation is caI1ed an input variable. Furthermore, Pr and Gr are caI1ed the

parameters of the equation.

3In genera1 G: may not be a constant [Marll9]. It can aIso depend on 1:. That is, what
information is genented at anode depends on (1) the local data flow information at the node and
(2) the input data flow information ta the node.



Given any two equations Il. and Ily , we say that H. depends on Hy if the

output variable of JIy appearson the RHS of H•. Thatis, wewill need the solution

of Oy in order to compute the solution of O•. Also, if H. depends on Hy then there

is an edge from y to x in the corresponding flowgraph.

Now we will discuss the concept of variable elimination, which is fundamental

to al! elimination methods. For example, consider the following two equations:

•
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Hy:Oy = Py( 1\ O:)+Gy
:EPred/(y)

H. : O. - P.Oy +Gr

In this example, equation H", depends only on Hy • This also means that node x

has only one incoming edge y -+ x, in the corresponding flowgraph. To eliminate

the variable Oy from the RHS of H"" we can replace it with the RHS of Hv. The

resulting H", equation thus becomes:

H",: 0", = P",(Pv( 1\ 0:) +Gv)+G",
:EPred/(v)

Here we have eliminated the dependence of H", on Hv but introduced de

pendences from H: to H", for each predecessor of y. In the corresponding flow

graph we aIso eliminate the edge y -+ X and introduce an edge z -+ X for each

z E Predf(y).

For the more general variation in Equation (10.4), variable elimination cûrre

sponds to function composition. To illustrate this, let us consider the following

equations:

Hv : Ov - Jy( 1\ 0:)
rEPred/(v)

H",: 0", - fr(0v)

After eliminating Ov in H", we get

B", : 0", = f",(fv( 1\ Or»
=EPred/(v)

Finally, wewill define closure operation for reeursive equations. Ifat any node

y, the data flow equation is of the form

(10.6)



where ln and k are terms that do not contain 0., then the c10sure operation of this

equation is•
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(10.7)

0 10 00 09 P009+GO
1 il 0 1 OoAOs P1(00 AOs) + Gl

2 h O2 01A06 P2(01 A06) + Oz
3 fs 03 02 P30z+Ch.
4 l, 0, 03 P403+G,
5 15 Os 03 Ps03+Gs
6 16 06 O,AOs P6(0, AOs) + G6
7 h 07 06 1'-;06+ Ch
8 Is Os 02 PsOz+Gs

9 f9 09 (0, A07AOs) P9(0, A07AOs) + G9

Example 10.1

Consider the flowgraph shown in Figure 10.1 (a) (the corresponding

dominator tree and DJ graph is given in Figure 10.1(b) and Fig

ure 10.1(c), respectively. The data flow equation for each node is

surnmarized below.

~ 1", = AyEP.ed/(",)Oy 11",(1",) =0", = P",I", -i- G", 1

where r is a c10sure operator of the recursive equation. Such a closure exists if

the flow function associated with each node is monotone, and the lattice does not

contain infinite descending chains [Mar89, KU76, Kil73].

For many of the classical problems, such as Reaching Definitions and Available

Expressions, f" can be computed very fast, essentially in constant time [Mar89].

Ryder and Paull call such closure operations the loop-breaking mIes [RP86].

They show how to compute r very fast for the classical bit-vector union and

intersection problems. Marlowe gives an in-depth treatmenton the computational

complexity for various classes of functions and domains that can occur in data

flow analysis [Mar89]. Throughout our discussion we will assume a monotone

data flow framework in which all flow functions are monotone; i.e., for any flow

inforrnationa and ,8, a < ,8 => I(a) < 1(,8) forany flow functionl [Mar89,KU76,

Kil73]. Appendix Agives a briefintroduction to the data flow analysis framework.

•

•



•
CHAPTER 10. EXHAUSTIVE DATA FLOW ANALYSIS

10.3 Our Approach
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ln the next several sections we present our approach for elimination-based data

flowanalysis. ln this section we highlight several features of our approach. First,

we use the DJ graph of a flowgraph rather than the flowgraph itself for performing

data flow analysis. Furthermore, we reduce a DJ graph to its dominator tree

instead of a single node.

We propose two methods for reducing a DJ graph and solving the correspond

ing system of data flow equations. Beth methods perform the following actions:

1. Reduce the DJ graph in a bottom-up fashion by eliminating J edges.

2. Use &-rules with eager variable elimination, or use V-rules with delayed

variable elimination for reducing the system of data flowequations.

3. Propagate the final data flow solutions in a top-down manner on the domi-

nator tree (that may be compressed).

Thebottom-up graph reduction is importantbecause it enables us to visit nodes in

such a way that when a node y isbeing processed, allJ edges originating at a level

greaterthan y.levelhavebeeneliminated. Thereforewe cansystematica1ly reduce

a DJ graph to its dominator tree by applying the reduction rules in a bottom-up

fashion. Furthermore, the bottom-up reduction simplifies the implementation of

our algorithm.

Our eager elimination method uses &-rules and eagerly eliminates variables

by substitution. An important aspect of fuis method is that after we reduce a DJ

graph to its dominator tree, the data flow equation at every node (except for the

root node) depends oruy on the output variable of its immediate dominator. Con

sequently, once we obtain the data flow solution at the root node, we can compute

the solution for any other node in a top-down manner. As we demonstrate in fuis

chaper, eager elimination method is very simple and easy to implement.

The main drawback with eager elimination is that theoretica1ly it exhibits a

worst-ease quadratic time complexity. To improve fuis we modify &-rules and

propose V-rules. Using V-rules with delayed variable elimination, ca1led the

delayed elimination method, we can achieve O(\EI x log(\N\)) time complex

ity. Reca1l that all three other previous elimination methods improve over the

quadratic Allen-eocke method by delaying substitutionof variables (RP86). They
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•
Figure 10.1: Another example of a flowgraph, its dominator, and its DJ graph.



perform this either explicitly as in the Graham-Wegman method, or implicitly

by using auxiliary data structures to keep track of the delayed variables (height

balanced 2-3 trees in the Hecht-Ullman method [U1l73) or the balanced, binary

path compressed tree in Tarjan's method [Tar81)). The time complexity of ail

three methods is O(IEI x 10g(lNI)), but Tarjan also gave a more complex and

almost linear method (of the complexity O(lEI x a(INI, lEI)) that uses balanced

compression trees [Tar81).

Our delayed elimination method also delays variable substitution. Itperforms

variable substitutions along a path on the (maybe compressed) dominator tree

during the bottom-up graph reduction in order to eliminate "delayed variables".

The path is compressed when delayed variable substitutions take place.

An important feature of our approach (including both eager and delayed

elimination) is that during the bottom-up reduction we can easily detect and

handle irreducibility in an efficient manner. There is irreduability whenever we

cannot eliminate Jedges at sorne leve1 using our reduction rules. In this situation

we apply Tarjan's Strongly Connected Components algorithm only over nodes

at that level. Every nontrivial strong component (with more than one node)

represents an irreducible region. Strong componer.ts are visited i11 topological

order. When an irreducible region is processed, fixed-point iteration is performed

over its nodes in order to eliminate interdependencies among the solutions at

these nodes. Consequently, we are able to represent the solution at each node

only in terms of the solution at its parent.

•

•
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10.4 Eager Elimination Method

Our eager elimination method consists of three parts: (1) bottom-up reduction of

the DJ graph, (2) variable elimination, and (3) top-down propagation. The first

two are performed together in the elimination phase. In the propagation phase,

data flow information is propagated ina top-down manner on the dominator tree

after the solution of the root node is determined.

In this section we propose two rules, El and E2 rules (together called the &

ru/es), for reducing a DJ graph in a bottom-up fashion. The &-ru/es are always

applied to a Jedge y -+ Z such that y is a non-join node, and there isnoJedge with

its source node at a leve1 greater than y.IeveI. Technically, a node in flowgraph



is a non-join node if it has only one predecessor (which strictly dominates it). In

this chapter we will adopt the following relaxed definition:•
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Definition 10.1 (non-join nodel A node y is a non-join node if! PrcdJ(y) contaills

no other nodes than y and idom(y).

That is, aself-Ioop y -+ y will not prevent y from being a non-join node.

In the next subsection we formally define the two &-rules. Each application of

&-rules transforms sorne reduced DJ graph gi to gi+l until the resulting DJ graph

"degenerates" into its dominator tree. We first fecus only on the graph reduction,

and we will discuss variable elimination in Section 10.4.3.

10.4.1 The &-rules

The first of our two &-rules is the El role, which eliminates a self-Ioop.

Definition 10.2 (El rulel Let gi = (N, E) be the ith reduced DJ graph. Let y be a

non-join node. If y contains a self-Ioop, i.e., if there is aJedge y -+ y, then we apply the

El rule
i J _ (i+1) J }El(< 9 , N, E, y -+ y » - < 9 , N, E - {y -+ y >.

An E2 rule is applied te a Jedge y -+ Z, if y is a non-join node and it does not

contain a self-loop. We distinguish between two types of E2 rules depending on

the levelsofy and z. Ify./evel = z.Level, then weapply anE2<l rule; otherwisewe

apply an E2b rule.

Definition 10.3 (E2 rulesl Let gi = (N, E) be an ith reduced DJ graph. Let y be a

non-joïn node, let y -+ Z be aJedge, and let x =idom(y). There are two cases:

(E2a rule) Ify.Zevel =z.leveZ then

. J i+l JE2a« 9"N,E,y -+ Z » =< 9 ,N,E - {y -t z} >.

(E2b rule) Ify./evel =f: z.leveZ then

. J . 1 J J 4
E2b« g"N,E,y -+ Z » = < g'+ ,N,(E - {y -+ z})u {z -+ z} >.



•
CHAPTER 10. EXHAUSTIVE DATA FLOW ANALYSIS 160

r-----,

~

•

•
Figure 10.2: A graphical illustration of E-rules.



Figure 102 graphically illustrates the two [-rlLle.< (where the dotted line from

w to x represents the dominator tree path from w to x). An important point to

note here is that when an E2 rule is applied to an edge y --+ ::, wc shouid ensurc

that the self-Ioop at node y, if any, is eliminated first by applying the El ruie. The

distinction between the two E2 rules is minor. An E2a rule is applied to an edgc

y --+ :: only if y.level = ::.level;otherwise we apply an E2b ruie. This distinction is

usefui when we discuss deIayed elimination method and in handling irreducibic

flowgraphs.

•
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10.4.2 Algorithm Description

The complete algorithm for DJ graph reduction is given below. To simplify its

presentation we use the following notation and data structures:

• N umLevel is the total number of levels in the DJ graph.

• Each edge x --+ y E E has an attribute that specifies its type: {Dedgc, J cdgc}.

• Each node x E N has the following attributes:

struct NodeStructure {

int indegree ; /.. indegree of the node. .. /

int level; /.. level number of the node .. /

}

At each node we also maintain a linked list of outgoing edges such that the

self-loop edge at this node, if any, will be the fust edge in the list-

• OrderedBuckets is an array of doubly linked list of nodes. First we will

define the linked list structure.

struct ListStructure{

struct NodeStructure "node; / .. pointer t<- node structure .. /

struct ListStructure "next; /.. next node in the list .. /

struct ListStructure "prev; /.. prev node in the list .. /

}

'Wc do not insert '" - :: in çi+l if it is already present in g;.
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The structure of the OrdcrcdBucl:cts is defined as follows:
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struct OrderedBuck~tStructure{

struct IistStructure 'head; /' nodes at the same level • /

} OrderedBucket[NumLevel]; /' array o! list of nodes • /

We restrict the way in which nodes can appear in the OrdcrcdBuckcts[i], at

each index i. At aIl times we ensure that non-join nodes, if any, appear at

the head end of the list.

Algorithm 10.1 (Eager Elimination Method) The algorithm MainElim() with &

rulcs and eager elimination can be used for solving a system ofdata flow equations.

The fust step in the algorithm is to insert aIl the nodes into the OrderedBuckets

at their respective levels. Then we call Redu.::eLevelO in a bottom-up fash

ion. For reducible flowgraphs, the condition at step 1208\ will fail. In other

words, after the caU to ReduceLevelO terminates, for reducible flowgraphs, the

list OrderedBuckets[i], for the current level i, will be empty (step 1208 D; other

wise, the flowgraph is irreducible. For an irreducible flowgraph we caU Col

lapseIrreducibleO to handle the irreducible portion. A complete description of

how to handle the irreducible portion is given in Section 10.8. The procedure

DomTDPropagate() is for propagating solutions down the dominator tree, and

is explained in Section 10.4.5.

• Input: ADJ graph gO iIDd the corresponding system of initial flow equations.

• Output: Solution to a system of data flowequations.

• Initialization:

• Determine the level number of each node x, and stores its level

information in x./evel.

• For all nodes x EgO, x.indegree is initialized to the number

of predecessor nodes of x (in the DJ graph). If (x.indegree 

1) or «x.indegree =2) and (x -> x» then x is a non-join node.

• Initially deposit all nodes in the OrderedBuckets, such that at each

index non-join nodes appear at the head of the list (i.e., before join

nodes).
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MainElimO

{

206: for i = N umLcveI - 1 downto 1 do /' bot tom-up reduction • /

207: ReduceLeveI(i) ;

208: if(OrdercdBuckets[i].hcad;6 NU LL) then

209: CollapseIrreducibIe(i) ;

210: endif

211: endfor

212: DomTDPropagateO ;

}
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if(idom(y) == idom(z» then

Eager2a(y -> z) ;

else

Eager2b(y -> z);

endif

endif

215:

216:

217:

218:

219:

220:

221:

222:

223:

224:

The procedure ReduceLevel(i) eliminates Jedges whose source nodes are at

Ievel i by applying the &-rules. We apply either El or E2 for each out!;;oing Jedge.

Notice that we do not process outgoing D edges (step \215 p. At step 12161 we

check if the non-join node y has a self-Ioop. If 50 we apply the El rule; otherwise

we apply an E2 rule. At step 12201 we apply the E2a rule if idom(y) = idoi"(::);

otherwise we apply the E2b rule (step '''22 p. The order in which we apply the

rules ensures that there is no self-Ioop at node y when E2 rules are applied to

outgoing edges from y.

Procedure ReduceLevel(i)

{

213: while«y =GetNJNode(i));6 NULL) do

214: foreach z e Succ(y) do

/* if Y -- z is a self-loop edge then it is first * /

/* in the list of edges at node y */

if(y -> z == Jedge) then

if(z == y) then /* self-loop * /

Eager1(y -> y); / * apply El rule * /

else

•

•
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• 225: end:f

226: endfor

227: endwhile

}
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if{OrderedBuckets[iJ.head== NULL) then

return NULL;

endif

if the firstnode at OrderedBuckets[i].head is non-joïn node then

Remove that node from the list and return it.

endif

return NULL;

endif

[Compu~ the closure H~ : O~ = f" (O~) ]
z.indegree = z.indegree - 1;

Delete the edge y !.. y ;

•

•

The function GetNJNode(i) returns eithér a non-joïn node (if one exists at the

current level i) (step /232Dor NU LL (step12291or step 1234 D. When GetNJNode(i)

retums NULL from step 1234~ we encounter irreducibility. This is because there

are still nodes ïn OrderedBuckets[i] at level i, but none of them are non-joïn

nodes. In Section 10.5 we will praye why this condition is sufficient to detect

irreduability.

FunctionoGetNJNode(i)

{

228:

229:

230:

231:

232:

233:

234:

235:

}

The procedures for the two &-rules are givenbelow. Each cali te the procedure

Eagerl(y -+ y), deletes the self-loop!i -+ y (back) edge. The operation within

( ••• J is for variable elimination and will be explained ïn the next section.

Procedure Eager1(y -+ y)

{
236:

237:

238:

}

TheproceduresEager2a(y -+ z) and Eager2b(y -+ z) implementE2aandE2b

rules, respectively. Again, the operation within (...D is for variable elimination

and will be explained ïn the next section. The deletion of y -+ Z can make z



become a non-join node; if 50 we put =at the head of the OnlcredBtlcJ..d.s[=.levd]

list (step 1243 D. We do this to ensure constant time operation for the procedure

GetNJNodeO·

Procedure Eager2a(y -; =)

{

239: [Eliminate Oy in Hz by replacing it with the RH5 of Hu. ~

240: Delete the edge y .:!.. z ;

241: =.indegree = =.indegree - 1 ;

242: if(z is a non-join node) then /* z becornes a non-join node * /

243: Put z at the head of OrderedBuckets[z.level] list ;

244: endif

•
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[Eliminate O. in Hz by replacing it with the RHS of H•• ~

x = idom(y);
JDelete the edge y -; z ;

if(x -; z exists) then

z.indegree = z.indegree - 1 ;

else

Insert a new }edge x .:!.. z ;

/* J:f x - z is a self-loop edge we ensure that this * /

/* is the first edge in the list of edges at node x. */

•

•

}

Unlike the procedure Eager2aO, the procedure Eager2bO decreases

z.indegree by one only if the edge x -; z already exists. Notice the difference

between E2a and E2b rule. In E2a rule we never introduce a new edge from

x -; z, since a D edge already exists from x to z.

Procedure Eager2b(y -; z)

{
245:

246:

247:

248:

249:

250:

251:

252: endif

}

Next we will intuitively descnbe why the above algorithm alwaysreduces aD}

graphto its dominator tree (rememberthatweareassuming reduClble flowgraphs

for the moment). Later, in Section 10.5, we will give a formal proof for this. The



10.4.3 Bottom-Up Variable Elimination

In this section we will show how to eagerly eliminate variables from data flow

equations for each application 0; the &-rules. Prior to applying the El rule to a

node y, the flow equation at y will resemble

reason is based on the following key property. Let ç be a DJ graph and let k be a

level in the dominator tree such that there are no J edges in ç whose source nodes

are at levels greater than k. If ç is reducible then there exists at least one non-join

node at level k. Therefore if we eliminate J edges in a bottom-up fashion then

we can always find at least one candidate non-join node for applying the &-rules

rules.

In addition, we will intuitively argue the time complexity of the reduction

process. Notice that each application of El and E2a rules eliminates one edge.

5ince there are at most lEI edges in the DJ graph. We will apply El and E2a rules

at most lEI times. But how many times the E2b rule can be applied? A naive

argument shows that we may be applying this rule for O(IEI x IN\) times. We

will give a formai proof in Section 10.5

To illustrate our reduction method, consider the example flowgraph in Fig

ure 10.1. Figure 10.3 gives a trace of the reduction process. In Section 10.4.4 we

will give a detailed explanation of the trace, after we discuss variable elimination.

•

•
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Hy : Oy = kOy +m,
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(10.8)

where k and m are terms or constants that do not contain the variable Oy. Recal1

that this recursive equation can be solved with fixed-point iteration, giving rise

te a closure operation. After El ru1e is applied, the equation for node y would

become:

Hy : Oy = 1"(Oy). (10.9)

•

In the above closure operation, ro does not contain the variable Ov. Ryder and

Paull call this operation as the loop-breaking rule. In the procedure Eagerl(y -+

y), the variable elimination is done at step 1236 ~

Let x = idom(y). Prior te applying anE2 rule te aJ edge y -+ z, the data flow

equation at :: will resemble:

H= : 0= - kOv +m,
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Figure 10.3: A trace of the DJ graph reduction using E-rules.



where the terms k and m do not contain the variable 0Y. Supposing the flow

equation at y is•
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Hy : Oy = aO", +b

where a and b are terms that do not contain any 0", (or any other variable). After

applying E2 rule to y --> Z we e1iminate Oy on the RHS of H= by replacing it with

the RHS of Hy • The resulting equation of H= is

•

H= : 0= = k(aO", + b) +m.

In the procedure Eager2a(y --> z) (Eager2b(y --> z», the variable elimination

is done at step 12391 (step 1245 D. Notice that whenever we elirninate a variable Oy

in H., we also delete the J edge y --> Z in the corresponding DJ graph reduction,

and vice-versa. In the E2a or the E2b rule, te e1iminate Oy in H= we substitute

the RHS of Hy in H., this introduces a new variable dependence of 0= on 0",. We

also ensure that an edge exists from node :z: te node z. In El rule, eliminating Oy

in Hy is done by fixed-point computation, and we correspondingly remove the

self-loop edge y --> y•

In the eager elimination method, we eagerly replace every occurrence of vari

able Oy in node z's flow equation during &-rules. This could lead te poor per

formance for deeply nested loops [RP86]. In Section 10.6 we will show how to

delay certain variable elimination 50 that we can speed up the overall algorithm.

10.4.4 An Example

t Conesponding DJ graphs ln Figure 10.3

=
1 E2b 7-9 (a) (b) P904+ P90S + l'91706 + l'9G7 +G9
2 E2b 4-9 (b) (c) P9P403+P9G4 +l'90s+P91706+l'9G7+G9 .
3 E2a 4-6 (c) (d) P6P403 +P6G4 +P60S +G6
4 E2a 5-6 (d) (e) (P6P4 + P6Ps)03 +P6G4 + P6GS +G6
5 E2b 6-9 (e) (f) (P9P4+ P9P;P6P4+ P9P;P6Ps)03 + P90S +

P9G4 + P9P;P6G4 + P9P;P6GS + P9P;G6 +
P9G7+G9. .

Let us assume a forward data flow problem, with urùon as the meet operation.

Forsuchproblems, the tablebelow gives a partial trace of the variable elimination

corresponding to the trace of DJ graph reduction shown in Figure 10.3.o Rule 1y - z 1git 1gi+1 t ~ OH1

•



1. Recail that the DJ graph reduction and variable eli.'11ination are performed

in a bottom-up manner (the for loop at step \206 p.•
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2. At step \213\ GetNJNode(5) would retum node 7, and we apply E2b rule

to the outgoing Jedge 7 -> 9 by invoking Eager2b(7 -> 9) (step 1222 p. This

transforms the DJ graph shown in Figure 10.3(a) to the DJ graph shown in

Figure 10.3(b). This transformation a150 eliminates 0 7 in H9, and the r.ew

equation at node 9 is

3. When GetNJNodet4) is invoked at step1213 ~ there are two non-join nodes,

node 4 and node 5, at level4. Assume that GetNJNode(4) retums node

4, and we apply E2b rule to the outgoing J edge 4 -> 9 by invoking

Eager2b(7 -> 9) (step 1222 p. This transforms the DJ graph shown in Fig

ure 10.3(b) to the DJ graph shown in Figure 10.3(c). The corresponding

equation at node 9 is transformed to

4. Next GetNJNode(4) would retum node 5, and we invoke rulea5 -> 6.

This transforms the DJ graph shown in Figure 10.3(c) to Figure 10.3(d).

The corresponding equation of node 6 would be transformed to

5. We can continue to eliminate variables as described above at other nodes.

10.4.5 Top-Down Propagation

When the for loop in the MainElimQ procedure terminates, the original DJ graph

would be transformed to its dominator tree. At this point the data flow solution

at eachnode depends only on the solution of its immediate dominator, that is, the

only variablethat can appearontheRHS ofequation Hv is Oid<>m(v)' Consequently,

the call to DomTDPropagateQ at step 12121 will complete the data flow solution

proœss. In the procedure DomTDPropagateQ, we first solve the equation at the
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Solve the data flow equation of the SfART node.

Propagate the solution on the dominator tree in a top-down fashion,

using the solution at node x = idom(y) to substitute variable Or

on the RHS of equation Oy = f(Or), to compute the solution aty.

CHAPTER 10. EXHAUSTIVE DATA FLOW ANALYSIS

root node of the dominator tree; we then propagate the solution to ail other nodes

in a top-down fashion as given below.

DomTDPropagate()

{

253:

254:

•

}

10.5 Correctness and Complexity of Eager Elimination

Method

•
In this section we prove the correctness of Aigorithm 10.1 and analyze it time

complexity.

10.5.1 Correctness

The main theorem which establishes the correciness of Algorithm 10.1 is Theo

rem 10.1. To prove the main theorem:

• we have to show that the E-ru/es when applied in a bottom-up fashion

reduce a reducible DJ graph to its domina!Or tree (Lemma 10.4); and

• we have to show that variable elimination and top-down propagation are

correct (Lemma 10.5).

We first define the reducibility of DJ graphs as well as flowgraphs [HU74).

Recall that we introduced the notion reducibility in Chélpter 6 (Definition 6.1).

We have reproduced the definition below for convenience.

•
Definition 10.4 A DJgraph Q is reducible ifand only ifwe can partition the edges into
two disjoir.t groups, calIed the forward edges and back edges, with the following two
properties:

1. The forward edges fimn an acyclic graph in which (!i)ery node can be reached from
the SfARl' node ofQ.



2. The back edges consist only ofcdges wlzosc destination nodes dominatc tlzeir source
nodes.•
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We can easily see that a DJ graph is reducible if and only if the corresponding

flowgraph is also reducible. This can be easily verified by the construction of DJ

graphs. The above definition has an important implication for verifying whether

.aDJ graph is reduoble or not. If there is a simple cycle containing two distinct

nodes that are at the same level, then the DJ graph is irreducible (Chapter 6). This

is easy to see, since for such graphs, we will have a "back" edge whose destination

node does not dominate its source node. We will use this key insight in proving

our first lemma, Lemma 10.1. Given a DJ graph g and a level k such that there are

no J edges whose source nodes are at levels greater than k, Lemma 10.1 establishes

that if g is reduoble then there must be at least one non-join node at level k. This

is important for our approach, since we apply the reduction rules in a bottom-up

fashion.

In Lemma 102, we will show that the reduction rules preserve the reducibility

of a DJ graph. Given this and Lemma 10.1 we can easily see that at every stage

of the reduction process we can always find a non-join node for applying the

&-rules.

Next we show that OUI variable elimination is correct. For this we will first

show, in Lemma 10.3, that when ReduceLevel(i) is called at step 12071 and the

call terminates, every J edge whose source node is at levels greater than or equal

to i is eliminated; aIso, the flow equation of each node y, whose level is greater

than or equal to i, will depend only on the output flow variable Oiclom(yl of its

immediate dominator node.

Finally we will prove the correetness of DomTDPropagateO. For this we will

firstshow, Lemma 10.5, thatwhen the procedure DomTDPropagateO is called at

step 1212 ~ the DJ graph has been reduced to its dominator tree. Given this we

will aIso shov.~ in Lemma 10.5, that when the DomTDPropagateO is invoked at

step 1212 ~ the flow equation at each node depends only on the flow variable of its

immediate dominator, except the roct node which depends on none.

We begin the procf chain by showing that ifg is reduoble, there al~yscxists

at least one non-join node at the maximum level.

Lemma 10.1 Let g be a DJ graph, and Let k be a lever number such that there IZTC no J

edges originating at Ievels greater than k. Ifg is reducible then there exists at lcast one
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non-jaÎllllade al Level k.

Proof:

Suppose to the contrary that there were no non-join nodes at level k of

the DJ graph. Let M be the set of nodes at this level. Without 1055 of

generality we will remove an the self-Ioops in M.

We then show that there must exist a nontrivial cycle at level k, con

cluding that the DJ graph is irreducible. Since every node in M is

a non-join node, it must have at least one incoming J edge, and the

source node of this J edge must be at k level too, according to the

property of DJ graphs. (Remember that every node can have at most

one incoming D edge.) If this is the case we can traverse backwards

over the J edges and stil1 stay at the same level. Since there are only

a finite number of nodes in M, we wil\ eventually visit anode twice

by this backward traversaI. This implies the existence of a simple cy

cle consisting only of nodes from M. Notice that we have removed

self-loops. By Definition 10.4, the DJ graph is not reducible. But this

contradicts the assumption that it is reducible. Therefore the lemma is

truc and there must exist a non-join node at level k. •

172
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The next lemma (Lemma 102) shows that applying E-rules preserves Te

duobility of the DJ graph.

Lemma 10.2 Let 9 be a reducible Dfgraph. Let one ofE-rules be applied ta g, resulting
in gl. Then gl is also reducible.

Praof:

The proof of the lemma is based on the following observation. In the

three E-rules we delete an edge, but only in E2b rule we also insert an

edge.

First we consider the deletion case. From Definition 10.4 we know that

i!gis reduoble wecmpartition the edges into two sets, called forward

edges and back edges. '!'he source node of a back edge dominates its

destination node. It is obvious to see that deleting an edge from 9
does not violate the Definition 10.4, i.e., gl wil\ stil1 be reduoble.
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Now for the insertion case we notice that a new l'âge is inst.'rtt.'d only

when E2b mie is applied. By applying E2b rule we deletl' an l'dgt.'

y -> :: and insert x -> ::, where x = idom(y). We will l'irst show ,hat if

y -> :: is a forward edge so is x -> ::, and if y -> :: is a back l'dge so is

x -> ::. Let y -> :: be a back edge. From Definition 10.4 we know that

:: dom y. Now since x = idom(y) and y.levd > ::./cl'd,:: should also

dominate x. Therefore x -> :: is a back edge too.

We can similarly argue for the case when y -> :: is a forward edge. Let

y -> :; bea forwardedge. From Definition 10.4 we know that:: !dom!J.

Now since x = idom(y) and y./evd > ::./cvcl,:: will also not domina te

x. Therefore x -> :; is also a forward edge.

5ince by adding x -> :; we never violate the definition of reducibility,

gl should also be reducibie. •

1ï3

•

•

Based on Lemmas 10.1 and 102, we can always apply &-ru/cs when there

are still J edges in the DJ graph. Furthermore, at each stage of the reduction the

rules preserve reducibility. Given these we will next show that our bottom-up

reduction will always reduce a reducible DJ graph to its dominator tree, and any

variable elimination performed during the reduction is correct. We state these

results in the following lemma.

Lemma 10.3 In eager elimination, when ReduceLevel(i) is calied at step 12071 and the

calI terminates:

1. all theJedges whose source nodeare at levels greater than orequal to i are eliminated,

and

2. the RHS oftheflow equation at each node y, whose leveZ number is greater t/wn or

equal to i, contains only the flow variable Oidome.).

Proof:

First of ail observe that when one of E-rules is applied to a J edge

y -+ z, the edge y -+ :; is eliminated (and a new edge idom(y) -+ Z is

possibly inserted). Also, in the procedure ReduceLevel(i) we apply

the E-rules for each outgoing edge cf the non-join node retu=ned by
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GetNJNodelii \steps 1213] and ~.'!J). Finally, when one of ~:-nd".<

is applied to the J edge il -> =, Oy is eliminated in li" (either by

substitution, as in Ba rule and Bb rule, or by computing the c1osure,

as in El rule).

We will prove the rest of the lemma using induction on the loop index

i at step 12G61
Base Case: Loop index (i = NU711Lc,'cl - 1). When

ReduceLevel(NumLcvel- 1) is called we apply the appropriate [

ru/es for eac.l). J edge y -> =, such y is a non-join node at level

NumLeve/ - 1 (step 1214p. 5ince [-ru/es eliminates J edges y -> =,
and also eliminatet Oy in H:, the two assertions of the lemma are true

for the base case.

Induction hypothesis: Assume that the two assertions of the lemma

are true for some loop index i = k + 1 less than the maxilnum

level. This means that ail J edges whose source nodes at levels

greater than or equal to k +1 are eliminated, and the flcw equation

ofeachnodey with y.leve/'=: k contains, on their RHS's, only the flow

variable Oidom(y).

Induction. step: Given the hypethesis, we will show that the two

assertions of the lemma are true forloop index i =k. FromLemma10.2

we know that [-ru les preserve reducibility, and from Lemma 10.1

we know that there exists at least one non-join node at level k. Let

one of [-rules be applied ta some gi resulting in gi+1. Assume that

the maximum level of gi and gi+l are the same. 5ince gi+1 is also

reduoble, thereexists a non-joinnode at the maximum level (according

to Lemma 10.1 again). Therefore, GetNJNode(k) when called at

step 12131 with the current \evel k, will retum a non-join nôde. The

procedure GetNJNode(k) will retum NULL only when there are no

more non-join nodes at \evel k. 5ince the given DJ graph is assumed

ta be reduoble, this situation can happen only when al! the outgoing

J edges from level k are e1iminated. Hence when ReduceLevel(k)

terminates, al! the outgoïng Jedges from level k are e1imïnated.

lï4
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Ncxt to sec that variables are appropriately eliminated, wc examine

each [-rul,,",. We know that each [-rules, when applied to y -; =
will eliminate 0, from If: by substituting it with a linear function of

O,d"m(,). Therefore, when the procedure ReduceLevel( k) retums, nvo

assertions of the lemma will be true.

•

liS

•

•

Lemma 10.4 When the Aigorithm 10.1 begins at step 1212 ~ ail the Jedges have be-nl
eliminated.

Proof:

From Lemma 10.3 we know that when the caU to ReduceLevel(i) at

step 12071 terminates, aU Jcdges whose source ncdes are at level i are

eliminated. AIso, the foreach loop at step 12061 caUs ReduceLevel(i)

in the decreasing order of i. Therefore when the loop terminates, aU

the Jedges have been eliminated. •

In Lemma 10.5, we will argue that when the DomTDPropagateO is invoked

at step 1212~ the flow equation at each node depends only on the flow variable of

its immediate dominator, except the root node which depends on none.

Lemma 10.5 When DomTDPropagateO is invoked at step 1212 ~ the flow equation at

each node depends only on theflow variable of its immediate dominator.

Proof:

The procedure DomTDPropagateO is invoked at step 1212/ only when

the caU ~:> ReduceLevel(l) is terminated. From Lemma 10.3 we know

that when the caU to ReduceLevel(l) terminates the flow equation of

each node depends only on the output flow variable of its immediate

dominator ncde. From the the validity of the lemma foUows. •

Finally, the main theorem for correctness.

Theorem 10.1 Algorithm 10.1 correctly computes the solutions to a set of data flow
equationsfor a reducibleflowgraph.
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Proof:

From Lemma 10.4 we know that the ~~-I"lll<,-" when applied in a bottom

up fashion, reduces a DJ graph to its dominator tree. At this point,

from Lemma 10.5 we know that the equation at each node contains,

on ils RH5, only the flow variable of the node's Immediate dominator,

while the equation at the START node depcnds on no one, meaning

that the RH5 of the equation is constant. Therefore, we can propagatc

the solution of the START node down the dominator tree to compute

the solutions at ail other nodes. Recall that the flow equation at each

node depends on ils immediate dominator. Therefore our top-down

propagation yields a correct solution at every node. •

10.5.2 Complexity

lïb

•

•

In this section we will establish the time complexity of the eager elimination

method. We will first show that the worst-case time complexity of eager elim

ination is O(IEI x INI). Then we will show how the time complexity of eager

elimination is related to the size of the dominance frontier relation. 5ince the size

of the dominance frontier relation is linear in practice, we expect the lime com

plexity of our eager elimination method to be linear for most practical programs.

It is easy to see that each lime El and E2a rules are applied we eliminate

one edge, and when E2b rule is applied we merely transform an edge y ..... z to

idom(y) ..... z. From fuis we can see that El and E2a are applied at most OUEI)

limes, whereas E2b rule can be applied as many as O(IEI x IN\) limes. We state

this in the following lemma.

Lemma 10.6 The El and E2a rules WIll be applied at most O(IE\) times, and E2b rule

will be applied at most O(IEI x INI) times.

Praof:
Each application ofEl and E2a rules removes oneedge, andsince none

of the &-rt.L1es increases the number of edges in the DJ graph, we can

apply these two rules at most O(\EI) limes.

Each application of E2b rule to an edge y ..... z removes fuis edge and

introduces idom(y) ..... z. 5ince there are at most O(INI) levels, the
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dcrivcd cdgc of!! - : moves up at most 0UNi) times. Finally, since

thereare only O(I/~I) edges, wecanapplyE2b rule atmostO(IEI x INi)

times. •

lii

•

•

Next it is also easy to see that for each application of El and E2 rules, we

eliminate nne flow variable. 5ince E2b rule is applied O(!EI x I.IVI), time complexity

of eager elimination is OU El x INI) function operations.

Theorem 10.2 The numbcrofsteps required ta transfoTm aDJgraph Ça ta its dominator

tree çM using [-rules is bOlmded by O(IEI x INI) steps.

Proof:

Follows from Lemma 10.6 and Lemma 10.4. •

Although an eager elimination can ex1ubit the O(IEI x IN\) time complexity

in the worst case, we expect it to behave linearly in practice. The reason for this is

based on the following observation. Remember that it is E2b rule that potentially

makes eager elirr.ination non-linear. In E2 rule we eliminate a Jedge y -+ Z and

insert another Jedge x -+ z, where x = idom(y). We can think of x -+ Z as being

"derived" from y -+ Z (see also the Section 10.6). Notice that z will be in the

dominance frontier of both x and y. An astute reader may observe that the total

number of times [-rules are applied is bounded by the size of the dominance

frontier relation. Empirical studies have shown that the size of the dominance

frontier relation is linear (with respect to the size of the original flowgraph) for

mast practical programs [CFR+91] (see also Section 10.9). Therefore, our eager

elimination method can be expected te be linear for mast practical programs.

10.5.3 Discussion

In this section we highlight some of the interesting features of the reduction

process.

• Inour reductionprocess we apply E-rules inabottom-up fashion. Theorder

in which we apply E-rules conforms te one ofTI-T2 reduction sequences of

the Hecht-l.J1]man method. OurEl ru1e is equivalent te the TI rule, whereas

our E2 rule is equivalent te the T2 rule with one difference: Our E2 rule

eliminates outgoing edges of a non-join node one at a time, whereas the T2

rule eliminates ail the outgoing edges in one shot.
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• In this chapter we follow the equation model of Ryder and Paull to present

our framework. In their model, data flow problems are modeled using

GEN and PRESERVE sets. In a more general setting, equations at Œch

node are treated like functions and these functions are associated with the

outgoing edges. We can easily extend our framework to this more general

setting [Mar89, Tar81, RosSO).

• In proving the time complexity we ignored the time for GetNJNode().

During the initialization portion of the algorithm we ensure that non-joins

appear before join nodes in OrdercdBucket.-[i] at each level. Also, during

the bottom-up reduccion (at step 1243Dwe ensure that if anode:; becomes

a non-join node when the edge y -> :; is eliminated, we put the node at the

head of the list. This way, we can guarantee constant time operation for

GetNJNodeO·

10.6 Delayed Elimination Method

AIl elimination methods, except for the Allen-Cocke, optimize certain variable

e1iminations by delaying them (either implicitly as in the Hecht-Ullman and the

Tarjan method, or explicitly as in the Graham-Wegman method) [RP86]. In pre

vious sections we have shown how te eagerly eliminate variables in data flow

equations using DJ graphs. Eager e1imination can exhibit a worst-ease quadratic

complexity [RP86]. In this section we show how to "delay" somevariableelimina

tions so that we can improve the asymptotic time complexity te 00EI x 10gON!))

function operations. For this we require some knowledge of dominance frontier

intervals introduœd in Chapter 4. Before presenting our method, we will review

the concept of dominance frontier intervals in Section 10.6.1; and also introduce

the notion of "derived edges" of a J edge (Section 10.6.2), that will simplify our

presentation.

10.G.l Dominance Frontier Interval Revisited

InChapter4 we introduced the conceptofdominance frontier intervals. Let y -+ Z

be a J edge in gO, and let w = idom(z). By the definition of dominance frontiers

(Definition 2.4), we know thaty -+ z willbe in the dominance frontiers ofail nodes



on the reverse dominator tree path y .::. 11", exc1uding 11' (see also Chapter 4). In

Chapter 4 wc called the path y .::. 10 the Dominance Frontier Interval path of the J

cdgc y ~ :. In that chapter, wealso gave a simple algorithm forcomputing eTop

for ail the J edges in linear time. We will use these two concepts in this chapter.

(For example, in Figure 10.4, we have shown the eTop for each J edge as < x >,
for the example DJ graph shown in Figure 10.1.)

•
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Figure 10.4: The DJ graph of Figure 10.1 annotated with cTop nodes.

10.6.2 Derived Edges

Next we introduce the concept of "derived edges". Recall that when an E2b rule

is applied te an edge y --> Zin gi, we replace y --> Zby idom(y) --> z in gi+1. Here

we "derive" the edge idom(y) --> Z from y --> z. More formally, the notion of

derived edge is given below.

Definition 10.5 (derived edge> An edge in x --> z in gi is called a derived edge of

an edge y --> z in go ifeither x = y or x --> Z is created in gi and x dom y in gO•.



For example, consider Figure 10.3. Wc can sec that the edge 6 -. 9 in Fig

ure lO.3(b) is a derived edge of ï ~ 9 in Figure 10.3(a). The edge 2 ~ 1 in

Figure 10.3(k) is again derived from the edge S - 1 in Figure 10.3(j).
•
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10.6.3 Worst-Case Quadratic Complexity of Eager Elimination

Method

ln this section we will examine why eager elimination exhibits quadratic behavior.

First let us examine the &-rulcs. Each application of El or E2a rule eliminates one

edge from g; to produce gi+1. Therefore we will apply these two rules at most

O(IE\) times. What about E2b rule? This rule, when applied to an edge y ..... ::

in gi, merely transforrns y ..... :: to its derived edge idom(y) :: in g;+I. This

can cause an efficiency problem, because for each edge y :: in go, we may

potentially create O(\N\) derived edges for y ..... :: in the reduction sequence

go~ Gk (for sorne k) before eliminating il. ln total, the E2b rule can be applied

O(IEI x IN\) times. Thus we can sec that the E2b rule is a bottle-neck that makes

eager elimination method to have worst-case quadratic time complexity. ldeally,

we want to be able to apply the E2b mie at most O(IE\) times, so that we can

reduce a DJ graph to a trivial node in O(\E\) reduction steps. We introduce a new

rule, the D2b rule, in place of the E2b rule, that will do the job for us. We will

show later that the D2b rule will be applied at most O(IE\) times.

With the D2b rule we must also modify how variables in flow equations are

eliminated. We will introduce the concept of delayed variable elimination that

enable us te solve a system of data flow equations in O(IEI x 10g(\N\) function

operations.

10.6.4 &-rules Revisited: The 'D-rules

Recall that when an E2b rule is applied to an edge y ..... z in go, we replace it

by idmn(y) -+ z in gl. Therefore the derived edge of y -+ Z moves up the DJ

graph until its source and destination nodes are at the same level. When this

(eventually) happens we will remove it by applying either El or E2a rule. An

astute reader will immediate1y observe that the source node x of the derived edge

of y -+ z (when the source and the destination node are at the same level) is the

same as cTopy_= for the closed interval [y, x] in go. Therefore, rather than moving



up the derived edge of y -> =one step at a time (by applying the E2b ruie), we

will move it in one shot using the D2b fuIe. The complete definitioll of the D2b

rule is given below.
•

CHAPTER JO. EXHAUSTIVE DATA FLOW ANALYSIS 181

•

e·

Definition 10.6 (D2b rule) Let g; = (N, E) be tlleith reduced DJgraph. Let y bea non

joïn node, let y -> =bean outgoïngedge, and let x = cTopy_:' Ifidom(y) =? idom(=)

tlzen

. J ·1 J J 5
D'2b(< g" N, E, y -> =, X » =* < g'+ ,N, (E - {y -> =}) u x -> :: > .

We will carry over the definition ofEl and ma rules to our delayed elimination

method and cali their corresponding rules as the Dl and the D2a rule. There is

no difference between Dl and El, and between D2a and ma as far as the graph

reduction is concemed, but the two sets of rules are completely different for

variable elimination. In the rest of the chapter we will use V-rules to mean Dl,

D2a, and D2b collectively. With the definition of V-rules, we will next focus on

variable elimination.

10.6.5 Delaying Variable Elimination

The key intuitionbehind delayed eliminationis to delay the eliminationofvariable

Oy in equation H. until the source and the destination node of the derived edge

of y -+ :: are at the same level. Before presenting this method we need to describe

the concept of path compression on a dominator tree.

The path compression on a dominator tree is performed whenever we invoke

the procedure CompPath(x, y), where x and y are nodes on the (compressed)

dominator tree such that x is an ancestor of y. CompPath(x,y) performs the

folIowing operations on a dominator tree:

1. Delayed Substitution: For each node tu on the (compressed) dominator path

x .:!+ y, excluding x, express variable 0.. as a linear function of 0"" by

top-down traversai of the path.

2. Path Compression: Make all the nodes on the path x .:!+ y, the children of x.

5Agam we will not insert '" - :: in gi+I if it is already present in gi.
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These two operations are performed in the path order, that is for an:; two nodes Il

and v in the patl-j, if 1t is an ancestor of,. in the tree then we processll earlier than

v. It is important to note that ",hen anode lI' on the path ;r .2:. !I is made a child

of x, all children of 10 except the one on the path, are still ",'s children. In other

words, only one of te'S children (i.e., the one on the path ;r ..:!:. !I) will change its

parent from te te ..:.

Procedure CompPath(x.y)

{

255: foreach node 10 # x in the path from x .±. y and in the path order do

256: Express 0", as a linear function of Or'

257: Make 10 a child of x.

258: enG.for

}

Given the operation CompPath(), we will next discuss how 10 delay the

elimination of variables. The key point in delayed elimination is 10 eliminate

variables only when applying DIor D2a mIe, but not when applying D2b mIe.

We will revise the NodeStructure of Algorithm 10.1 as follows:

struct NodeStructure {

int indegree; /- as defined in Algorithm 10.1 -:

intlevel; /- as defined in Algorithm 10.1 -/

Struct ListStructure *jedges; /- List of J edges y - z for which -/

/- this node is the cTop. This list is initially ernpty -/

}

This Structure is the same as in Algorithm 10.1, but with an additional attribute

*jedges, which is nothing but a pointer to a list of J edges. Po!> we will show

shortly, this list is built during D2b rules and consumed during either DIor D2a

rules.

Algorithm 10.2 The algorithm MainElimQ with 'D-rules and delayed elimination can

be usedfor salving asystem ofdata flow equations.

In Algorithm 10.2 we will use the main procedure of Algorithm 10.1 for re

ducing the DJ graph in a bottom-up fashion. The only difference between Al

gorithm 10.1 and Algorithm 102 is that we caU procedures Delayedl(y -+ Y),



Delnyed2a(y ~ z) and Delayed2b(y -> z), instead of Eagerl(y -> y),

J<~ngcr2a(!I~ z) and Eager2b(y --> z), respectively.

In the dclayed elimination, variables are eliminated only when Delayedl (y ->

!I) and Delayed2a(y ..... z) are invoked. We do not eliminate variables when

Delayed2b(y ..... z) is invoked. When Delayed2b(y --> z) is invok':ld we keep

track of Bottom node y in x = cTopy_, in the list x->jedges (step 1276 D. In

Delayed2b(y ..... z) we also delete the edge y ..... z and insert x ..... z (if it does not

alreadyexist). When Delayedl(x ..... x) or Delayed2a(x ..... z) is later invoked,

we first perform the path expression by invoking CompPath(x,y) (step 12601 or

step [266 ~ respectively). Asexplained earIier, foreach node w on the (compressed)

dominator tree path x .:t. y, excluding x, this procedure first expresses variable

0", as a linear function of 0:, by going down the tree path. Tt also compresses

the path by making every w a chiId of x. We will illustrate the path compression

through an example later in Section 10.6.7.

In the procedure Delayedl(y ..... y), the function GetJedge(y) retums a J
edge u ..... w from the list y->jedges (step 1259 p. For each such edge we invoke

CompPath(y, u) to perform path compression and delayed variable substitution

(step 1260 b. Finally, we compute the closure of the recursive equation Hy to breal<

the loop (step 1263 p. At step 12641 we eliminate the edge (as in Eager2a()). Tt is

important to remember that the destination node w of theJedge u ..... w, returned

by GetJedge(y), will not necessarily be the same as y. This is because the y can

be a cTop node for many different J edges that were inserted in ~'->jedge3 by

sorne previous invocations of Delayed2bO. We will eliminate aIl such J edges

from y->jedge3 the first time the procedure Delayedl(y -> y) is invoked ony.

Procedure Delayedl(y ..... y)

{

259: while«(u ..... w = GetJedge(y» oF NULL» do

/* Get the next J edge for which this ~ode is a top. */

260: CompPath(y,u) ; /* Replace node equations on the path * /

/* y.± u as a function of Oy */

261: Eliminate 0.. on the RHS of Hy by replacing it

with a linear function of Oy computed in the previous step.

262: endwhile

263: Compute r(Oy). /* Compute the closure. * /

•

•

•
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•
Figure 105: A trace of the DJ graph reduction using 'D-rules.
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264: Delete the edge il -, il ;

185

The steps in Delnyed2a() are similar to Delnyedl() except that we do not

compute closure (since thereare noself-Ioops). The function GetJedge(y) retums

J edge IL ~ TV for which y is the cTop node. The function CompPath(y, u) then

performs delayed variable substitution and compress the path. At step 12671 we

replace 0" in equation Hw with the linear function of Oy computed in step \2661.

After the while loop, we replace Oy in Hw by the RHS of IIy (step \269 D. Again,

as in Delayecil(), the destination node w of the J edge u --> W will not necessarily

be the same as =. Finally, note that w can never be same as y, if it were then we

should have invoked Delayedl() prior to invoking Delayed2a().

The operations from step 12701 to step 12741 are the same as in Eager2a(), and

essentially perform a DJ graph reduction.

Procedure Delayed2a(y --> =)

{

265: while«(u --> W = GetJedge(y))"# NULL» do

/* Get the next J edge for which this node is a top. */• 266:

*/

CompPath(y,u) ; /* Express the node equations on the path

•

/* y.:!:.u as a function of Oy */

267: Eliminate Ou on the RHS of Hw by replacing it

with the linear function of Oy computed in the previous step.

268: endwhile

269: Finally elùninate Oy in H= by replacing it with a linear function of 0""
where x = parent(y) on the compressed dominator tree.

270: Delete the edge y -> Z ;

271: z.indegree = z.indegree -1;

272: if(z.indegree S 1) then /* z becomes a non-join node */

273: Put z at the head of OrderedBuckets[z.leveij list;

274: endif

}

In the procedure Delayed2b(y -> z) we do not eliminate variables. At

step 12761we save the Jedge y -> Z in x->jedges,where x =cTopy_= (step 1276D.
These J edges (returned by the function GetJedge(» will be processed later in



retumNULL

endif

if the list w->jedges is not empty then

Remove the first edge from the tail of list and return it.

l'Ise

•

•
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the procedure for Dl and D2a mIe" at "tep~I and "tep [265 t r"Spl'ctiVL'h·. 1'11<'

operations from step 12771 to step 12821 are tl'lc saml' as in E:lger2b\), and l'SSl'n

tially do DJ graph reduction. Again, notice that .r l'an be a l'Top nodc lor many

different J edges, all such J edges were inserted in the list .1·->j ... lYI'., when D2b

rule was applied to these edges. To ensure constant time operation for inscrting,

we insert the J edge y -; :: at the head of the list J·->jl'cly<'.,.

Procedure Delayed2b(y -+ ::)

{

275: x = cTopy_: ;

276: Insert node y -+ :: in the list x ->j"dgc$.

277: Delete the edge y -+ :: ;

278: if(x -+ :: exists) then

279: ::.indegrcc = ::.indcgrcc - 1 ;

280: eise

281: Insert a new Jedge x -+ :: ;

282: endif

}

The function GetJedge(w) removes the first Jedge from node tv's Jedges list

w ->jedges (if one exists) and retums it. This function is invoked by Delayedl()

and DeIayed2a(). For reasons explained later (Section 10.7.3), we will operate

the list w->jedges as a queue structure. Therefore we aiways return Jedges from

the tail of the list.

Function GetJedge(w)

{
283:

284:

285:

286:

287:

}
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10.6.6 Top-Down Propagation
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The top-down propagation phase in the delayed elimination method is simi

lar to the propagation phase in the eager elimination method, except that we

propagate the data flow information on the compressed dominator tree. When

Algorithm 10.2 terminates, every node's equativll depends only on the flow vari

able of ils parent in the compressed dominator tree. In other words, the flow

equation at each node y is a linear function of 0"" where x = Parcnt(y) in the

compressed dominator tree. We will prove this formally later in Section 10.7.

To propagate the data flow information on the compressed dominator tree, we

invoke cDomTDPropagateO at step 12u 1instead of DomTDPropagateO. The

procedure cDomTDPropagateO is defined beiow:

cDomTDPropagateO

{

288: Solve the data flow equation of the 5TART node.

289: Propagate the solution on the compressed dominator tree in a top-down

fashion, using the solution at node x = Parent(y) to substitute variable 0",

on the RES of equation Oy = f(O",), to compute the solution at y.

}

10.6.7 An Example

H~~we illustrate the delayed elimination method for our example DJ s;raph. The

complete DJ graph reduction process is shown in Figure 10.5.

1. For the DJ graph in Figure 10.5(a) we apply D2b rule, and 50 we invoke

Delayed2b(7 --+ 9). Since variables are not eliminated during D2b reduc

tion, no flow equation changes in response to the graph reduction from

Figure 10.5(a) to Figure 10.5(c). But we insert the J edge 7 --+ 9 in the list

3->jedges (since node 3 is the cTop of the J edge 7 --+ 9). For the DJ graph in

Figure 10.5(b) we again apply D2b rule, invoking Delayed2b(4 --+ 9). Once

again weinsert theJ edge4 --+ 9 in the 1ist 3->jedges).
.

2. For the DJ graph in Figure 10.5(c) we apply D2a rule, invoking

Delayed2a(4 --+ 6). At node 4, we have 4->jedges = 0; therefore the

procedure GetJedge(4) would return NULL (step 1265D. At step \2691we



eliminate 0 4 on the RH5 of Ho by replacing it with a linear function of O~.

Once this is done, the flow equation at node 6 becomcs•
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3. For the DJ graph in Figure lO.5(d) we apply D2a rule, invoking

Delayed2a(5 -> 6). At node 5, we again have 5->juig<'.' = Il; thercfore

the procedure GetJedge(5) would retum NU LL (step 1265 D. At slep 12691

we eliminate 05 on the RH5 of H6 by replacing il with a linear function of

0 3• Once this is done, the flow equation at node 6 becomes

0 6 - P6(P403 +G4+ Ps03 + Gs) +G6

= (P6P4+ P6Ps)03 + P6G4+ P6GS +G6

Notice that at this point 0 6 depends only on 03 (where nodc 3 is a parent of

6 on the dominator tree).

4. Next we apply D2b rule to the edge 6 -> 2, transforming the DJ graph of

Figure lO.5(e) to Figure lO.5(f). We invoke Delayed2b(6 -> 2), in which we

store 6 -> 2 in 2->jedges (step 1276 D.

5. Next we apply D2a rule to the edge 3 -> 9, transforming the DJ graph of

f'.'gure lO.5(f) to Figure lO.5(g). We invoke Delayed2a(3 -> 9). At this point

3->jedges contains edges 4 -> 9 and 7 .... 9. 50 at step 1265\ the procedure

GetJedge(y) retums these two edges, one after another. Let 4 .... 9 be the

first edge retumed, and 50 at step 12661 we invoke CompPath(3,4). In the

procedure CompPathO we express the flow equation at every node on the

path 3 .±. 4, excluding 3, as a function of 03. 5ince 4 is the only node on this

path, and its equation is already in the required form we retum from the

procedure CompPath(3,4). Atstep I25Slwereplace 0 4 on the RHS of H9

as a lin~ function of 0 3• The resulting equation of node 9 is

Next GetJedge(Oy) would retum the J edge 7 .... 9 from the list 3->jedges.

Therefore we invoke CompPath(3, 7). Within the procedure CompPathO

wefirstexpresstheflowequationofeverynodeonthepath3.:t. 7,excluding



3, as a function 0 3 in a top-down fashion. The path 3 .:!:, 7 contains nodes

6 and 7 (excluding 3). The equation at node 6 is already expressed as a

function of 03. But the equation at node 7 is expressed in terms of 0 6 •

Therefore we replace 0 6 in H7 by a linear function of 03. By doing so the

new equation at node 7 becomes

•
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07 = P706+ G7

= P7«P6P4+ P6PS)03 + P6G4+ P6Gs +G6) + G7

- (~~~+~~~)~+~~~+~~~+~~+~

At step 12571 we a\so make node 7 a child of node 3, resulting in the com

pressed dominator tree shown in Figure lO.5(g).

Next, at step 12671 we eliminate 0 7 on the RHS of H9 by replacing it with a

\inear function 03. By doing 50 the new equation at node 9 beeomes

0 9 - P9(P403 + G4+07 + Os) + G9

- P9P403 + P907 + P90S+ P9G4+ G9

- P9P403 + P9«~P6P4 + P7P6PS)03 +P7P6G4+

P7P6Gs + ~G6 +~) + P90S + P9G4+ G9

- P9P403 + (P9P7P6P4+ P9~P6PS)03+ P9P7P6G4 +

~~~~+~~~+~~+~~+~~+~

- (P9P4+ P9~P6P4 + P9~P6PS)03 + P90S + P9P7P6G4+
~~~~+~~~+~~+~~+~

Finally at step 12671 we eliminate 0 3 on the RHS of H9 by replacing it with a

\inear function of 02. By doing 50 the equation at node 9 beeomes

- (P9P4+ P9~P6P4 + P9~P6P5)(P302 + G3) + P90s + P9~P6G4 +
~~~~+~~~+~~+~~+~

6. We can continue to eliminate variables as desaibed above at other nodes.

We encourage interested readers to do 50.



10.7 Correctness and Complexity of Delayed Elimina

tion Method•
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ln this section we prove the correctness of Aigorithm 10.2 and analyzc ils corn

plexity. We use sorne of the resulls of the eager elirnination rnethod.

10.7.1 Correctness

We prove the correctness of the delayed elirnination rnethod along the sarne line

as in the eager elimination rnethod. We will focus on showing (1) that V-ru/c$

whe... applied in a bottorn-up fashion eliminate all the J edges (Lemma 10.10),

and (2) that variable elimination is properly performed in the bottorn-up phase

(Lemma 10.11). First note that Lemma 10.1 also holds for the delayed elirnination

method. As in the eager elimination method we always apply V-ru/es to a non

joinnode.

ln the following lemma, we prove that the application of V-ru/cs will not

introduce irreduClbility into a reducible DJ graph.

Lemma 10.7 Let g be a reducib/e Dfgraph. Let one ofV-ru/es be applied to g, resulting
in gl. Then gl is a/so reducible.

Pruof:

Recall that, in terms of graph reduction, the E2b rule is the only dif
ference between &-rules and X>-rules. When E2b rule is applied to

an edge y -> z, we first delete y -> Z and then insert x -> z, where

x = cTop~=. We use the results from Lemma 102 and will only need

to prove that the insertion of x -> Z will not introduce irreduClbility.

We complete our proof is by case analysis.

Case 1: y -> z is a back edge. 50 z will dominate y. By definition

of cTop, x dominates y and x.level = z.level. Therefore x is the

same as z, and x -> z is a self-loop, which is a back edge.

Case 2: y -> z is a forward edge. By definition of cTop, x dominates

y and x.level = z.level. But in this case x :f: z; otherwise, y -> Z

would be a back edge. Given the faet that y -> Z is a forward
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edge and x domina tes y, we conclude that x -> ;; is also a forward

edge.

•
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To show that 'V-ru/es eliminate aIl the Jedges in a bottom-up fashion, we will

first prove a result similar to Lemma 10.3.

Lemma 10.8 In de/ayed e/imination,

1. at the time when ReduceLevel(i) is invoked at step 1207 ~ all the Jedges whose

source nodes are at /evels greater than i are either eliminated or properly deposited

in their corresponding cTop nodes.

2. at the time when the calI to ReduceLevel(i) terminates, eliminated are all the J
edges whose source nodes are at level i, and those that were previously deposited in

the corresponding cTop nodes at leveZ i.

Proof:

We will prove this lemma by induction on the loop index i at step1206 ~

Base case: (i = NumLevel- 1). The first assertion is trivial since

there are no nodes at level NumLeveI or beyond. For the second

assertion, it is also obvious to sec that Delayed2bO IUle will properly

deposit Jedges in their corresponding cTop nodes, and the other two

procedures (Delayedl0 and Delayed2aO) will properly eiiminate J
edges whose source and destination nodes bothat level N umLevel-1.

Induction hypothesis: Assume that both assertions of the lemma are

true fori = k+ 1.

Induction step: We will show that both assertions are true for i = k.

The first assertion follows immediately from the induction hypothesis.

Now we are te show that the second assertion holds. Let e be a Jedge

withits sourceand/or destination node atlevel k. Thereare two cases:

Case 1: The source node of e is at this level. Then this edge will be

either deposited in its correspondingcTop nodeby applyingD2b

IUle, or eliminated by applying DIor D2a IUle.
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Case 2: The destination node of c is at this level, and c was previously

deposited in the corresponding cTop at this level. DIor D2a rule

will discard c and eliminate its derived edge.
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Notice the difference between Lemma 10.3 and Lemma 10.8. In Lemma 10.8,

we do not daim the following: If the flow equation of any node at a level less

than i contains, on its RHS, the flow variable of anode at level i, this variable

will be eliminated and substituted by the flow variable of its parent (as we did in

Lemma 10.3). This is because we are delaying the substitution of sorne variables

in the delayed elimination method.

Next, we will prove the correetness of delayed variable elimination

(Lemma 10.9). First of ail observe that variable eliminations are delayed only

by D2b rule. In other words, when D2b rule in applied to u -+ w, the elimination

of variable 0" in equation Hw is delayed until DIor D2a rule is applied to the

derived edge y -+ w, where y =cTop,,_w' But we will apply the DIor D2a rule

only when we are proeessing nodes at level w.levd (i.e., loop index i =w.level in

the for loop at step (206l

Lemma 10.9 At the time when ReduceLeveI(i) terminates, alilhe variables 0" that
are associated with nodes u at level greater than i but still exist in the equation Hw for

nodes w at level i are eliminated. Furthermore, any of these equations Hw will become

dependent only on variable OpA....I(W).

Proof:

We prove this by induction on the Ioop index i of step 1206 ~

Base case: Loop index i = NumLevel - 1. Our claim is obviously

true in this case since there are no nodes at levels greater than

NumLevel-1.

Induction hypothesis: Assume that the assertion is true for i = k +1.

Induction step: Loop index i =k. From our induction hypothesis we

know thatfor i > k, the assertionof the lemma is true. This means

that all the variables 0", with u.level > k, that exists in equations

Hw at levels i > k are eliminated, and these equations become
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dependent only on the output variable of their parent node. Now

we have to show that the assertion of the lernma is true for i = k.

Now let Ou be a variable such that (1) it exists in equation Hw,

(2) "./cvcl > k, and (3) w./evcl = k. Then Delayed2b() must

have deposited " -+ W in y->jedges. This edge will now be

processed by either Delayedl() or Delayed2a(). Ir. either case,

CompPath(y, ,,) will be invoked. When CompPath(y, ,,) ter

minates, the equation Hr for every node x on the path y ..:t. u

(excluding y) will depend only on variable 0Y' In particular, Hu

now depends only on 0Y' By substituting variable Ou on the RH5

ofequation Hw with the current RH5 of Hu, we eliminate Ou from

Hw, and 50 the RHS of Hw will contain 0Y' Now if w = y (i.e.,

Delayedl0 is invoked), a closure operation will be performed.

Otherwise (i.e., Delayed2aO is invoked), Oy is furthereliminated

from Hw by substituting it with the RHS of Hw. In either case,

equation H., will now depend only on variable Op.ren'(w)' Hence

th~ validity of the lem."Ila.

•
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The next two lemmas state that at the end of the bottom-up elimination phase,

(1) ail the Jedges are eliminated, and (2) the flow equation of every node (except

for the root) depends only on the :variable associated with the node's parent.

These two lernmas are corresponding to Lernmas 10.4 and 10.5, respectively.

Lemma 10.10 When Aigorithm 10.2 begins at step \2121 all the J edges have been
eliminated.

Proof:

This lernma follows from (1) Lernma 10.8 and (2) the fact that the call

to ReduceLevel(l) hascompleted beforestepl212~ •

Lemma 10.11 When cDomTDPropagateO is inooTœd at step \212 ~ the jlqw equation
at each node depends only on the fiOUl variable of its parent on the final compressed
dominator tree.
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Proof:

Follows from Lemma 10.9 since cDomTDPropagate{) is invoked only

after ReduceLevel(O) has completed. •

194

Theorem 10.3 Aigorithm 10.2 correctly computt's tlze solutions to a set of data po,!'

equntions for a reducible flowgrnplz.

Proof:

Follows from Lemmas 10.7, 10.10, and 10.11.

10.7.2 Complexity

•

•

•

In fuis section we will analyze the complexity of the delayed elimination method,

Recall that in the eager elimination m~thod, E2b rule was the bottleneck. Here

we will first show that we can reduce the DJ graph to a compressed dominator

tree in linear time using V-ru/es. Next we will analyze the total cost of variable

elimination.

Lemma 10.12 The V-ru/es wil! be applied nt most O(iE\) times.

Proof:

Firstof ail observe thateach application ofDl or D2a rule will eliminate

one edge. 5ince there are lEI edges, these two rules can applied at most

O(IE\) times.

Now when we apply D2b rule to an edge y -+ Z we remove fuis edge

and introduce x -+ z, where x is the cTop~_= of y -+ z. Once fuis is

done we will never apply D2b rule to the derived edge x -+ z, since

idom(x) = idom(z) andsowecould only applyD1 orD2a rule for fuis

edge. Also, for every J edge there is a unique elosed Top node. 5ince

there are 1El edges in the original DJ graph, we will apply D2b rule at

most O(IE\) times. •

Even though it takes only linear time to reduce a DJ graph into a oompressed

dominator tree, the total oost of variable elimination is worse than linear because

ofpathcompressions performed during the invocation of procedures Delayed10

and Delayed2bO. First observe that the number of path compressions, denoted



t:, pcrformed in the entire climination phase is equal to the number of 02b rules

applied. In the following we will show that the total cost for e path compressions

is bounded by O(c x log INI). We mainly use the results from Lucas [Luc90] and

Tarjan and van Leeuwen [TvL84].

If a node x is a cTop in a path compression, then x is called the root of the

compression. We define a sequence of path compressions on an initial tree T = TO

to be a sequence (Cl, ... , Cc), such that it transforms Tinto the final compressed

tree TC (with Ci transforming 7;-1 into 7;). Lucas introduces the notion of Rising
Roots Condition as follows:

•
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Definition 10.7 A sequence of path compressions (Cl, ... , Cm) satisftes the Rising

Roots Condition (RRC) if and only if for every node x, if x appears as a non-root
node i;: !!ny compression Cù then for every j > i, x appears as a non-root node in Ci if
Ci is acompression from y and y is a descendant ofx in Ti- l .

Lucas shows that a sequence of path compressions on a tree that satisfies the RRC

corresponds to sorne sequence of interrnixed union andftnd operations used in the

disjoint set union problem; and conversely, a sequence of intermixed union and

ftnd corresponds to sorne sequence of path compressions satisfying the RRC.

Tarjan and van Leeuwe.'1., in a previous work [TvL84], showed that the time

complexity for a sequence of e interrnixed union and ftnd operations is O(e x

10g(\NI)). Therefore, if we can show that the sequence of path compressions

does satisfy the RCC, it will immediate1y follow that the total cost of our e path

compressions is also O(e x 10g(\N!)).

Lemma 10.13 The sequence of path compressions peifonned during our bottom-up re
duction satisjies the RRC

Pro!>f:

O.J.r path compressions are ordered by the levels of their roots (i.e., the

cTop nodes). Therefore, once anode has been a non-root node in a

compression, it will never be a rocit node in any future compression. •

Theorem lQ.4 The time complexity of the delayed elimination method is O(IEI x

log(IN\)).

• Proof:

The number e of path compressions is bounded by lEI. •



Buchsbaum et al. have recently established the lower bound e(c x log(11)) for

a sequence of e (order-preserving) path compressions satisfying the RRC on an

initial tree of n nodes. For most flowgraphs, 1El = O(\N 1), so the above bounà is

tight.

•
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10.7.3 Discussion

Before c10sing this section, we want to point out sorne int~resting features of our

delayed elimination method.

• Our Dl rule is similar to Hecht-Ullman's Tl rule and Graham-Wegman's

Tl' rule. Our D2a rule is similar to Hecht-Ullman's n rule and Graham

Wegman'sn' rule. However, our D2b rule is unique. We exploit the prop

erties of DJ graphs during the preprocessing step to identify the cTop nodes.

We can think of the cTop nodes as marking points where the appropriate

delayed variables are to be eliminated.

• Although not detailed in our algorithm descriptions, we will use a queue to

store the list of J edges deposited in a cTop node. Consequently, when we

start a sequence of path compressions aU with the node as the root, we will

compress longer paths before shorter ones. This does not change the time

complexity of our method, but it is a pragmatic choice.

• Another interesting property te note is that the number of dominance fron

tier interval paths that can pass anode is less than or equal to the number

of edges in ilS dominance frontier set. Therefore the total length of the

dominance frontier interval paths can be no more than the size of the domi

nance frontier relation. Cytron et al. have shown that the size of dominance

frontiers is linear in practice, and 50 we expect the time complexity of the

delayed elimination method also te be linear in practice. In Section 10.9 we

provide measurements which support this cIaim.

.. We showed that the time complexity of our delayed approach is O(IEI x

log(lN\). An interesting open problem to pose here is: Is there a linear

time algorithm for data flow analysis? We conjecture that it is possible to

find a linear time algorithm for data flow analysis, at least for reduo"ble

flowgraphs.
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In this section we will show hJW to handle irreducibility in flowgraphs with

delaycd elimination.6 Recall that a flowgraph is irreducible if we cannot partition

the edges into forward edges and back edges such that the destination nodes

of the back edges dominate the source nodes. Figure 10.6(a) gives an example

of an irreducible flowgraph, and its DJ graph is given in Figure 10.6(b). In our

elimination method we detect irreducibility if during the bottom-up reduction

GetNJNode(i) retums NU LL but there are more J edges to be processed at

this level. At step 12081 if OrderedBuckets[i].head is not NULL then there are

more nodes to be processed at t.'Us level, but none of them are non-join nodes.

This condition is sufficient to signal irreducibility, and we invoke the procedure

ColJapseIrreducible(i) to handle irreducibility at level i.

The first step in handling irreduoble graph is to apply D2b rule to all J edges

whose source nodes are at level i and destination nodes are at levels less than i

(step 1293 p. This will eliminate aIl such J edges that leave level i. The next step

is to compress the dominator tree; for each node y at level i, and for each Jedge

u -t w in y->jedges we invoke CompPath(y, u) (step1 297D·

The next step is to evaluate the equations of all nodes in level i. For this we

first apply Tarjan's Strongly Connected Component (SCC) algorithm on nodes at

level i (step! 301 b. This will generate dag(s) of SCCS. It is important to remember

there can be more than one disjoint dag at level i. We process each SCC in each

dag in topological order (step1302 p. We compute closure ofequations of all nodes

in S, ifneeded (step 1303 p. We aL"O express the flow equations at all nodes at level

i in terms of flow variable of their immediate dominator node (step 1304b. This is

possible because we are eliminating the flow variables in the topological order of

the SCc. Finally, we eliminate aIl the Jedges at level i (step 1305 p.
Procedure CollapseIrreducible(i)

{ /* See aiso the description in the main text */

290: foreach node y at level i do

291: foreach z E Succ(y) do

292: if«y -t z == Jedge) and (z.le'lle/ < il)

293: Delayed2b(y -t z)•

6We can simi1arly hanclle irreducibility with eager elimination.
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Figure 10.6: An irreduClble flowgraph and its DJ graph.



294: endif

295: endfor

296: while(((u -> lU = GetJedge(y)) f. NULL)) do

297: CompPath(y,u) ;

298: Eliminate Ou on the right-hand side of Ow by replacing it

with the function of Oy computed in the previous step.

299: endwhile

300: endfor

301: Determine the SCCS of the nodes at level i, and construct dag(s) of seCs;
302: Process each sec S in each dag in the topological order as follows:

303: If the nodes in S induces a cycle then compute the closure of all

equations of the nodes in the cycle. Also express the equation at

each node in terms of its immediate dominator node.

304: If anode sES has an edge s -> t to node t ~ S then

replace O. on the right hand side of Ot by the linear function

of the input to O•. Remember that O. is expressed in terms of only

the flow variable of its immediate dominator

/* After processing each sec, the flow equation of */

/ * each node at level i are expressed in terms of * /
/* its immediate dominator. */

•

•
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305: Finally remove all J edges at level i.

}
The complete trace of the DJ graph reduction for the irreduoble DJ graph is

shownin Figure 10.7. During the reduction when we reach to the DJgraphshown

in Figure 10.7(g), we can notice that all nodes at level2 are join nodes, and 50 we

cannotapply any ofthe 'D-rules. At this point we invoke CollapseIrreducible(2).

In the procedure CollapseIrreducibleO we first apply D2b rule by invoking

Delayed2b(9 ..... 0). Next we compress the path 2 ..... 3 ..... 4, expressing the flow

equations at these nodes in terms of 2, and finaUy making all the nodes on this

path children of 2.

Next we determine the sec and process the nodes in the topological order.

The processing steps consists ofcomputing the closure whenever we have cycles,

and expressing the flow equations of all the riodes in terms of their immediate



dominator. Finally we will eliminate all the J edges at this level. ..\fter the (ail tn

Collapselrreducible(i) terminates we get the DJ graph shown in Figure 10.7(h).•
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10.9 Experiments and Empirical Results

In this section we present empirical results for both eager and delayed elimination

methods. To demonstrate the effectiveness ofour approach, we implemented both

the methods for solving the intraprocedural reaching definitions problem. For

the purpose of comparison, we also implemented the iterative method that uses

a reverse postorder for iteration. Hecht and Ullman show that this ordering can

be very efficient, especially for reducible flowgraphs, and can exhibit linear time

complexity in practice [HU77].

For efficient set manipulation we implemented the Briggs-Torczon sparse

sets [BT93]. We found that this representation to be more time efficient than

the bit-vector representation. For this chapter we carried out our experiments on

a 5PARC-2D workstation.

We will fust summarize the major results of our experiments.

• Of the 40 procedures we tested, five procedures have irreducible loops.

Three of these five procedures have only one irreducible loop.

• The maximum size of sec, found when Tarjan's sec algorithm is applied

during CollapseIrreducibleO, is 4 (found in procedure coef). This sug

gests that our approach is indeed very efficient in practice for handling

irreducible loops.

• As discussed in Chapter 7 the size of the dominance frontier relation is

linear in practice. Using Definition 2.4 for dominance frontiers, we found

the average ratio 'îli" = 1.09. This ratio suggests that the average size of

dominance frontiers (represented as a set of edges) is about 1'~091 = 8.23%

more than the size of the flowgraph. This confirms to the daim made by

Cytron et al. that size of dominance frontiers is proportional to the size of

the flowgraph.

• As expected, the number of &-rules rules applied is bounded by the size

of the dominance frontier relation. We found the avarage ratio 1$.1 of the
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Figure 10.7: A trace of DJ graph reduetion for the irreducible flowgraph.



numberof &-rulc$ applied nE to the size of dominance frontiers IDJ;~I to be

0.76. This suggests that eager elimination is expected to behave linearly in

practice.
•
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• As expected the number of 'D-rulc$ rules nD is less than the size of the

flowgraph IE!I. The average ratio I~I = 0.52.

• We found that the average ratio of the totallength of the dominance fron

tier interval path without path compression C' to the total length of the

dominance frontier interval path with path compression C to be 128 (i.e,

~ =1.28). This ratio indicates that ail the dominance frontier interval paths

have about l~;;.O =21.8% of their edges overlapped.

• Thevalue of ~ = 1.28 also suggests that, in an ideal situation, delayed elimi

nation method canbe about 128 times faster than eagerelimination method.

In practice, delayed method ineurs overhead from bookkeeping and non

profitable path compressions. This is evidenced by the data reported in

Table 10.2, where we can see that, on average, delayed elimination method

is about 1.15 times faster than its eager counterpart.

• AIl three algorithms (iterative, eager, and delayed) are very efficient in

practice. The average number of iterations (performed during fixed-point

calculation) in iterative method is 4, suggesting that iterative method is

indeed very efficient (at least for solving reaching definitions problem).

• We find that delayed elimination method is on average about 1.45 times

faster than iterative method, and eager elimination method is on average

1.27 times faster than iterative method.

• Finally, we find that eagerelimination is almost as fast as the delayed elimi

nation method. On average delayed method is only about 1.15 times faster

than the eager elimination method.

In the following subsections, we will further elaborate on these results in two

aspects: (1) the struetural charaeteristics of our approadt, and (2) the execution

performance of our approach. Table 10.1 and Table 102 give a summary of our

empirical results:-The not:1tion used in these tables are given be1ow:
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INI
lEI
IGI
Ir

S

EDl

ED2a

E2b

nE

D2b

nD

C'
C
c'
ë
IDF.I

• nI

Ti

T.

Td

Sil.

Sild

Sdl.

Notation used in Table 10.1 and Table 10.2

Names of procedures.

Number of flowgraph nodes.

Number of flowgraph edges.

Size of GEN set (i.e., total number of downward exposed definitions)

Number of times the procedure CollapseIrreducibleO is called

Maximum size of SCCS detccted during CollapseIrreducibleO

N=ber of times El (or Dl) rule applied

Number of times E2a (or D2a) rule applied

Number of times E2b rule applied

Total number of &-rules applied

Number of times D2b rule applied

Total number ofV-rules applied

Totallength of the dominance frontier interval paths w / 0 path compression

Totallength of the dominance frontier interval paths with path compression

Ratio of C' to C
Size of dominance frontiers in the flowgraph

Number of iterations for the iterative method to converge

Execution time in seconds for iterative method

Execution time in seconds for eager elimination method

Execution time in seconds for delay elimination method

~
:r.r.
~

•

10.9.1 Structural Characteristics

Table 10.1 shows the structural characteristics ofour elimination methods for

our test procedures. The second and third columns give the number of nodes

(basic blacks) and the number of edges in the flowgraph for each procedure,

respectively. The column IGI gives the total number of downward exposed defi

nitions in a procedure?

The column Ir shows the number of times the procedure CollapseIrreducibleO

is invoked. Recall that CollapseIrreducibleO is invoked only if irreducibility is

7We only consider scalar variables in our experiments.
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1AVerage~ 62116712581 721163 0 229116411.2811 3411

Name INI !EI ICI Ir S ED1 ED2a E2b nE D2b nD C' cl ~ \DF,I
aerset 329 460 166 a a 44 i9 200 323 81 204 232 213 1.09 3il
aqset 189 25S i4 a a 24 42 118 184 48 114 12i 116 1.09 202
bjt 135 18i 213 a a 1 62 114 Iii 50 113 132 95 1.39 211
card 150 216 63 2 3 11 43 lia 224 58 112 230 165 1.39 316
chemset 229 320 94 a a 23 68 191 282 Si 148 198 166 1.19 300
chgeqz 174 248 115 a a 13 58 142 213 61 132 203 141 1.44 298
clatrs 214 308 160 a a 17 79 129 225 76 172 152 142 Lai 276
coef 95 137 117 1 4 11 32 69 112 32 75 82 59 1.39 142
comIr 69 91 63 1 3 11 13 47 il 20 44 49 49 1.00 78
dbdsqr 228 327 144 a a 19 74 176 269 75 168 275 188 1.46 391
dcdonp 137 187 75 1 2 14 35 127 176 50 99 176 127 1.39 245
dcop 186 261 127 a a la 87 143 240 69 166 182 154 1.18 295
dctran 326 458 151 a a la 119 27S 407 93 222 5ïï 273 2.11 745
deseco 175 236 240 a a 18 54 107 179 47 119 135 114 1.18 220
dgegv 160 232 108 0 0 11 51 102 164 55 117 200 120 1.67 287
dgesvd 321 470 405 0 0 6 102 206 314 111 219 406 257 1.58 585
dhgeqz 2S5 408 261 0 a 32 92 23S 362 94 218 33S 221 1.52 484
clisto 133 191 183 0 0 7 53 98 158 58 118 107 102 1.05 186
cIlatbs 167 23S 134 0 0 12 60 102 174 57 129 127 113 1.12 220
dtgevc 321 459 257 0 0 50 93 213 356 114 257 274 230 1.19 439
dtrevc 248 353 148 a 0 21 85 157 263 75 181 192 173 1.11 318
e\pmt 162 227 138 0 0 18 59 99 176 44 Ul 99 96 1.03 183
equilset 327 451 179 0 0 55 74 205 334 93 222 212 202 1.05 353
errchk 346 482 154 0 0 40 99 267 406 102 241 358 27S 1.29 528
iniset 333 486 280 0 0 154 0 154 308 154 308 154 154 1.00 308
irùt 122 175 129 0 0 17 35 66 118 31 83 70 68 1.03 125
irùtgas 189 263 114 0 0 40 37 126 203 52 129 126 126 1.00 205
jsp:use 281 403 214 0 0 52 70 185 307 76 198 185 183 1.01 313
modchk 306 419 '137 0 0 25 111 205 341 74 210 240 213 1.13 390
moseq2 161 217 248 0 0 2 67 137 206 50 119 181 122 1.48 267
mosfet 214 295 263 a 0 1 91 231 323 76 168 307 184 1.67 427
noise 115 159 135 0 0 7 57 72 136 43 107 ii 76 1.01 147
out 403 589 404 0 0 92 92 306 490 136 320 330 313 1.05 525
reader 182 23S 159 0 0 8 53 28 89 15 76 28 28 1.00 89
readin 406 611 240 2 2 29 84 685 798 174 2S5 1457 574 2.54 1675
selupgeo 188 275 195 0 0 44 37 112 193 61 142 127 118 1.08 218
seluprad 195 286 223 0 0 55 38 124 217 68 161 124 124 1.00 220
smvgear 212 310 224 0 0 66 23 248 337 91 180 363 203 L79 46S
solveq 196 289 186 0 0 72 28 160 260 93 193 162 162 1.00 265
twldrv 168 243 594 0 0 16 59 127 202 49 124 189 133 1.42 280

•

•
Table 10.1: Structural characteristics.



dctccted at a particular level. The column 5 shows the maximum size of non

trivial strongly connected components detected and processed by the procedure

Collapselrreducible(). This column quantifies the number of nodes whose data

flow equations are involved in fixed-point iteration. Our results indicate that the

maximum size ofSCCs is4 for one procedure (coef),3 for two procedures (card

and comlr), and 2 for two procedures (dcdcmp and readin). This suggests that

our approach is very efficient in practice for handling irreducible flowgraphs.8

Previous approaches perform Iteration over a normally much larger region when

an irreducible region is encountered [Bur90, 5579]. Oneclassical approach for han

dling irreduo'ble regions consists of identifying the smallest single entry strongly

connected region that encloses the irreduo'ble region [5579]. Using this method we

found the sizes of the single entry regions enclosing tl,e irreduo'ble regions to be

25 for coef, 33 for colmr 78 for card, and 28 for dcdcmp.9 In [Bur90] proposes

a method that is similar to Schwartz and 5harir's method, except that the single

entry region need not be strongly connected. Burke's method, although improves

upon Schwartz and Sharir's method, still identifies a much larger region than our

method. We counted manually using Burke's method for the procedure comlr

and found the size of the single entry region that encloses the irreducbile region

to be31.

The columns EDI and ED2a indicate the number of times El (Dl) and E2a

(D2a) rules were invoked during the eager (the delayed) elimination method. The

number of El (Dl) rules give the number of single-entry loops in a procedure.

The column E2b shows the number of E2b rules applied in eager elimination,

whereas D2b shows the number of D2b rules applied in delayed elimination. The

column nE represents the sum of the three columns EDl, ED2a, and E2b, and

nD represents the sum of EDl, ED2a, and D2b. Figure 10.8 and Figure 10.9,

respectively, gives a profile of the number of E-rules and V-rules applied during

the DJ graph reduetion. We cansee from these plots that the number of E2b rules

applied dominates in the eager °elimination method, that the number of D2a and

D2b rules applied are not very different.

•

•
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8For backwani flow problems, such as live uses of variables, we expect ~ see much more

irreducible regions, sirice the analysis is pexformed on the reverse flowgraph.
9These numbers were generated using Sparse compiler being developed at the Department

of Computer Science and Engineering, Oregon Graduate Institute of Science and Tec:hnology. 1
sincerely thank Priyadarshan Kolte for providing me with these results.
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The column C' gives the totallength of ail the domillallce fnmtia illtl'rmI l'atlzs

when no path compressions are performed. In comparison, the column C gives

a similar number, but when path compressions are performed. Recall that the

length of a dominance frontier interval path can progressively decrease after its

overlapped paths are compressed. As we can see from the table that there is

not much difference between C' and C. The ratio ~: gives an indication on how

much improvement delayed elimination can achieve over eager elimination. The

average ratio is 1.28, indicating that delayed elimination mcthod should, idcally,

be faster than eager elimination by a factor of 1.28 (if we ignore the overhead of

bookkeeping and nonprofitable path compressions in delayed elimination).

In Figure 10.10 we plotted the size of dominance frontiers IDF.I along with

C and C'. From the plot and the table we can that the length of the dominance

frontier interval without compression, C', is less than the size of the dominance

frontier relation, IDF.I. In the plot we have a150 shown the sizes of dominance

frontiers IDF.I. As we can see from Table 10.1 and from the plot shown in

Figure 10.10, the lengths C and C' are less than IDF.I. From this result we can

conclude that the time complexity of delayed elimination can be expected to be

linear in practice. A15o, from the table we can see that the number of e-~iLlcs

applied (i.e., nE) is less than IDF.I. From this, we can again conclude that the

time complexity of eager elimination should a150 be lincar in practice (since the

size of dominance frontier is linear in practice). Finally, as expeeted, we can

see that the total number of V-rules nD applied is bounded by the number of

flowgraphedges IE!I.
In delayed elimination, although each D2b rule takes only constant time, the

costof applying Dl orD2a rule includes thecost of the pathcompression incurred.

The total number ofpath compressions performed is equal to the number of D2b

rules applied, but each compression can take O(log(N» time (in the worst case).

Therefore delayed elimination can suffer from the 10g(N) overhead factor due to

a path compression. For the benefi.t of path compressions to be fully exploited,

there mustbe enough overlapping paths, 50 that future path compressions could

take less time. The number of dominance frontier interval paths passing through

anode is bounded by the number of nodes in its dominance frontier. In other

words, anode can participate in path compressions only as many times as the

size of its dominance frontier set, which is a small constant in practice (we can use

•

•
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use IDFel and IE!I from Table 10.1 to calculate I~il as an estimate). Therefore,

we believe the benefit of path compressions will normally not be fully utilized for

real programs.

As a final remark, we want to emphasize that the above observations are

restricted to the tontext of intraprocedural analysis. We did not empirically

investigate our approach for interprocedural analysis to quantitatively argue its

behavior in practice.

•
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10.9.2 Execution Performance

Table 10.2 gives the timïnt; data from our experiments. The columns Ti, Tc, and Td

give the execution times in seconds for the iterative method, the eager elimination

method, and the delayed elimination method, respectively. The columns Sile

and Si/d gives the speedups of eager method over iterative method and delayed

method over iterative method, respectively.

For the data given in Table 10.2, we observed the following characteristics.

• For iteration method we observed that the execution time is linearly propor

tional to the product lE! x IGI x nI, where lEI is the number of flowgraph

edge, IGI is the total number of downward exposed definitions, and nI is

the number iteration required for convergence of the iteration algorithm

(Figure 10.11).

• For both eager and delayed elimination methods we observed that the exe

cution time is linearlyproportional to theproduct O(IE\ x IGD (Figure 10.12.

From the execution characteristics we can see that the eager elimination

method is competitive with the delayed elimination method. Eager elimina

tion can even out perform delayed elimination in some cases: nus is because

there are not many overlapping paths in our test programs for delayed method

to benefit from path compressions. Recall that each path compression takes time

proportional to the path length. nus cost is unneœssarily spent if there are no

overlapping paths.

Theoretically, the eager elimination method is worse than the delayed e1ïm
ination method in terms of time complexity. However, OUI empirical results

demonstrate that eager method is very competitive when compared with delayed
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method. From a pragmatic point view, we thus recommend that one implement

the eager method. Not only is it simple and easy to implement, but also it is

amenable to incremental data flow analysis (Chapter 11 and [SG95aJ).

We found several "outstanding" procedures when we examined the data re

ported in Table 10.1 and 102. The first one is the procedure iniset: The sum

of its EDl and ED2b numbers is equal to its IDFel number. For this procedure

154 El (Dl) rules were applied, suggesting that iniset contains 154 loops. We

examined the procedure and found this to be true: It consists of 154 simple 00

loops for initializing arrays. From Table 10.2, we can see that iterative method

takes only t'.'IIO iterations to converge. By contrast, both eager and delayed elim

ination methods perform poody for this procedure. Another interesting aspect

for this procedure is that the ratio ~ is one, suggesting that CompPathO is never

called for this procedure.

At the other extreme is procedure twldrv. This procedure is well-known for

its complex control flow (although it does not have irreduoble loops). As we

can see, iterative method takes 9 iterations for solving the data flow equations.

Bath eager and delayed elimination methods perform much better than iterative

method.

Another interesting procedure is readin. This procedure also has complex

control structure and, as expected, both eager and delayed elimination methods

perform better than iterative methocl. The size of dominance frontiers is quite

large compared ta the number of flowgraph nodes or edges. The ratio ~ for

this procedure is the largest among all the procedure, suggesting that delayed

elimination method should perform better than eager elimination method. From

the speedup measure, we can see that this is indeed true.

•

•
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10.10 Discussion and Related Work

In this section we compare our work with other related work. Our work is Te

lated ta all of the four classical elimination methods (the AlIen-eocke method, the

Hecht-Ullman method, the Graham-Wegman method, and the Tarjan method),

but with a number of significant differences. In [RP86] Ryder and Paull present

a unified model ta characterize a family of data flow analysis algorithms

elimination methods. The mode! is based on systems of data flow equations.
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IName~• , ., • ,
aerset 460 6 1.02 0.41 0.38 2.49 2.68 1.08
aqset 258 4 0.23 0.11 0.10 2.09 2.30 1.10
bjt 187 3 0.36 0.38 0.31 0.95 1.16 1.23
card 216 5 0.31 0.26 0.20 1.19 1.55 1.30
chemset 320 4 0.29 0.24 0.21 1.21 1.38 1.14
chgeqz 248 4 0.27 0.23 0.18 1.17 1.50 1.28
clatrs 308 3 0.32 0.36 0.33 0.89 0.97 1.09
coef 137 6 0.35 0.25 0.22 1.40 1.59 1.14
comlr 91 5 0.15 0.12 0.11 1.25 1.36 1.09
dbdsor 327 4 0.47 0.40 0.31 1.17 1.52 1.29
dcdanp 187 5 0.25 0.20 0.15 1.25 1.67 1.33
dcop 261 3 0.21 0.25 0.22 0.84 0.95 1.14
dctran 458 4 0.71 0.54 0.26 1.31 2.73 2.08
deseco 236 4 0.53 0.39 0.42 1.36 1.26 0.93
d2e2V 232 3 0.14 0.22 0.16 0.64 0.88 1.38
dgesvd 470 2 0.53 1.20 1.06 0.44 0.50 1.13
dhgeqz 408 4 0.91 0.79 0.53 1.15 1.72 1.49
disto 191 4 0.43 0.39 0.34 1.10 1.26 1.15
dlatbs 238 3 0.23 0.31 0.31 0.74 0.74 1.00
dtgevc 459 6 1.57 0.96 0.86 1.64 1.83 1.12
dtrevc 353 4 0.53 0.46 0.40 1.15 1.32 1.15
elpmt W 4 0.26 0.27 0.24 0.96 1.08 1.13
equilset 451 5 0.89 0.58 0.55 1.53 1.62 1.05
errchk 482 4 0.51 0.59 0.52 0.86 0.98 1.13
iniset 486 2 0.55 0.87 0.97 0.63 0.57 0.90
init 175 5 0.27 0.17 0.20 1.59 1.35 0.85
initgas 263 4 0.32 0.27 0.29 1.19 1.10 0.93
jsparse 403 5 0.72 0.63 0.65 1.14 1.11 0.97
modchk 419 5 0.60 0.48 0.42 1.25 1.43 1.14
m05eCl2 217 3 0.38 0.45 0.30 0.84 1.27 1.50
mosfet 295 3 0.74 0.79 0.50 0.94 1.48 1.58
noise 160 3 0.15 0.19 0.22 0.79 0.68 0.86
out 590 6 2.54 1.49 1.43 1.70 1.78 1.04
reader 235 5 0.44 0.23 0.51 1.91 0.86 0.45
readin 611 4 1.51 1.46 1.00 1.03 1.51 1.46
setupgeo 275 4 0.39 0.37 0.41 1.05 0.95 0.90
setuprad 286 5 0.69 0.45 0.42 1.53 1.64 1.07
smvgear 310 6 1.35 0.70 0.48 1.93 2.81 1.46
solveq 289 7 0.82 0.49 0.53 1.67 1.55 0.92
twldrv 243 9 3.50 1.22 1.05 2.87 3.33 1.16

•

1 Average "3U 1 4 10.66 Il 0.50 10.44 11.27 Il 1.45 1 1.15 1

Table 102: Tmùngs and speedups.



They compare and contrast the four elimination methods. We encourage readers

to consult this article for a comprehensive treatment of elimination methods.

Except for Graham-Wegman's analysis, these elimination methods are appli

cable only to reducible flow graphs. They mainly use two approaches to handle

irreducible flow graphs. One is node splitting, which replicates certain nodes in

a flow graph and generates an "equivalent," reducible flow graph [Hec77]. The

other approach is to form improper regions to accommodate irreducibility and

use fixed-point iteration in those regions [Bur9D). Our elimination method takes

the second approach but can utilize the strength of elimination methods within

the reducible portions of an improper region. Consequent1y, fixed-point iteration

is performed on a normally much smaller set of equations.

Allen-Cocke's interval analysis was the first elimination method [AC76). The

Allen-Cocke method for forward data flow problems has two phases: elimination

and propagation. In the elimination phase, it partitions the flow graph into

intervals, summarizes data flow effects local to each interval on the global data

flow solution, and collapses each interval into a single node.10 It repeats the

proeess until there is only one node left, and thèn easily solves the data flow

problem on this node. In the propagation phase, it expands anode into an

interval, and propagates global data flow information from the head node ta

internai nodes in the interval.

Any Allen-Cocke interval is a single-entry region; its head node dominates aIl

the internai nodes in the intervaI. Thus, the data flow solution at each internai

node can be expressed solely in terms of the solution at its head node. The worst

case time complexity for the Allen-Cocke method can be quadratic, and so is our

eager substitution method.

In Tarjan's interval ana1ysis [Tar74), an interval is a single-entry, strongly

connected subgraph; by contrast, an Allen-Cocke interval need not be strongly

connected. The Tarjan intervals, therefore, can refleet the loop structure of a

program. His method carefully orders variable substitutions in a system of data

flow equations. It delays some substitutions until a later time when common

factors can be detected, calculated only once, and used. In [Tar81] Tarjan proposes

two implementations for his approach. An almost linear time algorithm needs ta

lOFor backward data flow problems, the flow graph partitioning will be performed on the
reverse flow graph.

•

•

CHAPTER 10. EXHAUSTIVE DATA FLOW ANA LYSIS 215



use the balanced, path compressed trees. By contrast, our delayed substitution

method is linear and performs compression on the dominator tree.

Hecht-Ullman's Tl-TI analysis uses single-entry regions to direct its c1imina

tion phase [Hec77]. Two transformations, Tl and TI, are repeatedly applied to a

reducible flow graph until it is collapsed into one single node. The sequence ofTl

and TI operations applied is called a parse of the flow graph. The Hecht-Ullman

method uses this parse to guide the elimination phase. Data flow information is

summarized in sorne region at each step of the parse. In the propagation phase,

the reverse order of the parse is used and data flow information is propagated

within some region.

Our Dl rule is exactly the same as Tl; our D2 rules are similar to TI. However,

our D2b rule is equivalent to a sequence ofTI rules. To achieve the O(1Ellog( IN!))

time bound, the Hecht-Ullman method uses a height-balanced 2-3 tree to assist

delayed substitutions of variables in data flow equations. This data structure is

more complicated than our compressed dominator tree. In addition, the Hecht

Ullman method needs an explicit parse to guide its elimination and propagation.

By contrast, we do not need to keep track of the order in which our reduction

rules are applied, since our approach does its propagation on the dominator tree

(which may be compressed) in a top-down manner.

Graham-Wegman's analysis uses graph reduction rules similar to those in the

Hecht-Ullman method, whereas its groupings of data flow equations are similar

to those in Tarjan's interval analysis [GW76). It partitions the flow graph nodes

into non-disjoint sets called 5-sets, which are analogous to the Tarjan intervals.

However, not ail the nodes in an 5-set are collapsed into the 5-setentry node. The

variables representing solutions at the remaining nodes, therefore, still exist in a

reduced system of equations after the 5-set is proœssed, thereby making explicit

the delayed substitutions of variables. These substitutions are remembered in a

reduced flow graph. Our path compression is comparable to that in Graham

Wegman method. During their TI' rule they have to inspect which outgoing

edges of a node are within the current 5-set (in Graham-Wegman method, the

5-set is a strongly connected region). Therefore the time c6mplexity of their TI'

rule depends on the number of loap exit and so is non-lïnear. In our case, D2b

rule eliminates such edges so we never need to 'inspect' any J edges during

path compression (in Graham-Wegman method TI' does path compression on

•
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the depth first spanning tree).

For reducible flow graphs, the Graham-Wegman method uses graph reduction

ru les 51 and 52 to coHapse nodes within an 5-set. If necessary, 53 is used to reduce

the final graph to one node. 51 is the same as our Dl; 52 is similar to our D2 rules;

and 53 is similar to our D3. Thesc operations can be generalized to G51, G52,

and G53 to handIe irreducibility caused by multiple-entry regions. For reducible

flow graphs, the worst-case time complexity of Graham-Wegman's analysis is

O(lEllog(lEI)).

Elimination methods are general-purpose data flow solution procedures

[MarS9, Bur90, RosSI, TarSI]. AU the above dassical elimination methods are

formulated and dlScussed with fast problems. In [Bur90] Burke refonnulates

Tarjan's interval analysis 50 that it can be applied to any monotone data flow

problem. The loop-breaking rule used by Ryder and PauU in [RP86] is only valid

for fast problems. Burke proposes to use the dosure of an interval in order to

summarize local data flow information for monotone prob1ems. Inour approach,

we similarly define a dosure operation for a recursive data flow equation.

In Section 5 of [Tar8I], Tarjan defines a derived graph G' of a flow graph G

in order to solve path problems on both reducible and irreducible graphs. Using

our terms, we observe that aU the D edges in G also appear in G'. On the other

hand, for eachJedge in G, the corresponding edge in G' is exact1y the same as the

new J edge we would create in our D2'b rule. We suspect that this coincidence

may partially explain why our method can handle irreduobility gracefully.

•
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Chapter 11

A New Framework for

Elimination-Based Data Flow

Analysis: IncrementaI Analysis

One ofmyfavorite philosophical tenets is that people will agree with you
only if they already agree with you. You do not change people's minds.

-Frank VlI\cent Zappa

In this chapter we present a new approach for incremental data flow analysis

based on elimination methods. Our approach is based on incrementalizing our

eagerelimination method (Chapter 10). Compared to previouselimination-based

incremental data flow analyses, our approach canhandle arbitrary non-structural

and structural changes, including irreduClbility. To inaementally update data

flow solutions we use properties of dominance frontiers and iterated dominance

frontiers, and these properties are valid for both reduClble and irreduClble flow

graphs. In the next section we introduce and motivate the problem of inaemen

tal data flow analysis. In Section 11.2, we brief1y review our eager elimination

method. In Section 11.3, we introduce the concept of initial and final data flow

equations, which arecentral te ourapproach. InSection 11.4andSection 11.5,we

give algorithms for updating the final flowequations for non-structural changes

and for structural changes, respectively. Once the final flow equations have been

updated, we next show how te update the final data flow solutions for both

structural and non-structural changes, in Section 11.6. In Section 11.7, we prove

the correctness of our approach and also analyze its time complexity. Finally, in

218
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Section 11.8, we compare our work with other related work.

11.1 Introduction and Motivation

219
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There are two classical approaches to incremental data f10w analysis: one

based on iteration methods [PS89], and ancther based on e1imination meth

ods [RP88, CR88]. Marlowe and others have extensively studied the rela

tive merits of one approach over the other [Mar89, RMP88, MR90b, BR90].

Marlowe has also proposed a hybrid scheme that combines the two ap

proaches [MR90b, Mar89].

In this chapter we present a new approach for incremental data f10w analysis

that isbasedonoureagere1iminationmethod. Compared to previous elimination

based incremental data f10w analyses, our approach can handle arbitrary non

structural and structural program changes, including irreduClbility. A nove!

aspect ofour approach is that we use simple properties of dominance frontiers and

iterated dominance frontiers for updating the data f10w solutions. In Chapter 8

we showed how to use such properties in the context of incremental dominator

tree update problem. In this chapter we will go one step further and show how

10 exploit them in the context of incremental data flow analysis.

In Chapter 10 we proposed a new approach for elimination-based data flow

analysis that uses DJ graphs for reduction and variable elimination. We proposed

two variations of our approach: (1) eager elimination method, and (2) delayed

elimination method. Bath approaches perform reduction and variable elimina

tion on DJ graphs in a bottom-up fashion, ordered by the levels of the nodes on

the dominator tree. Unlike the eager elimination method, the delayed elimina

tion method also compresses the dominator tree 10 improve the worst-ease time

complexity of the eager elimination method (Chapter 10 and see also [SGL95]).

In this chapter we show how 10 incrementalize our eager elimination method.

Incrementalizing the delayed elimination method involves incrementally main

taining the compressed dominator tree, and doing this is a complex process and

may not be worth the effort. Ryder and Paull have similarly shown that in

crementalizing other delayed approaches, such as the Hecht-Ullman algorithm,

also involves maintaining auxiliary structures (e.g., 2-3 tree) while updating the

data flow solutions. Maintaining such structures may out-weigh the benefits of
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incremental data flow analysis [RP88].

The major features of our algorithm are as foUows:
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• Unlike many of the previous incremental elimination algorithms, our algo

rithm can handle arbitrary non-structural and structural program changes,

ineluding irreducibility.

• We use simple properties of dominance frontiers and iterated dominance

frontiers for updating the data flow solutions. These properties were intro

duced for constructingStaticSingleAssignment form and other otherSparse

Evaluation Graphs [CFR+91, CCF91]. In this chapter we will show how to

exploit such properties in the context of incremental data flow analysis.

11.2 Exhaustive Eager Elimination Method: An

Overview

In this section we briefly review our exhaustive eager elimination method (Chap

ter 10). Recall that our exhaustive eager elimination method consists of three

phases:

1. Reduce the DJ graph te its dominator tree in a bottom-up fashion using

E-rules.

2. Reduce the system of data flow equations by eliminating variables.

3. Propagate the final data flow solutions in a top-down manner on the domi

nator tree.

Rather than reducing a DJ graph to a single node we only eliminate J edges in

a bottom-up fashion, preserving the structure of the dominator tree for the entire

duration of the algorithm. During the bottom-up reduction we apply the E-rules

for eliminating flow variables and reducing the DJ graph to its dominator tree.

The E-rules are always applied to a Jedge y ...... z such that y is a non-joïn node,

and there are no otherJedges whose source node is greater than y.level, the level

number ofnode y. Eachapplication of E-rules transforms SOrne reduced DJ graph

gi to gi+1, until the DJ graph reduces to its dominator tree.



The El rule eliminates a self-Ioop, and computes c10sure of its recursive equa

tion.•
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Definition 11.1 (El rulel Let gi = (N, E) be the ith reduced DJ graph. Let y be a

non-join node such that y contains aself-Ioop. Let Hy : Oy = J(Oy) be theflow equation

at node y. The El rule is given below:

• (i) Graph reduction:
El« gi,N,E,y l.. y » = < g(i+ll,N,E - {y l.. y} >

• (ii) Variable elimination:

El« Hy: Oy = J(Oy) » = < Oy = r(Oy) >

E2 rule is applied to a Jedge y -> ::, if y is a non-join node and it do not contain

a self-loop. We distinguish between two types of E2 rules depending on the Ievels

of y and::. If y.leveZ = ::.leveZ we apply E2a rule; otherwise we apply E2b.

Definition 11.2 (E2 rules) Let gi = (N, E) be the ith reduced DJgraph. Let y be anon

join node such y do not contain aseIf-Ioop. Let y -> :: be aJedge, and let x = idom(y).

Let Hy : Oy = kO", +m be the equation at node y, such that the parameters k and m

does not contain any variables. Finally, let H= : 0= =aOy+ bbe the equation at node z,

where a and bdoes not contain the vanilble 0Y' There are two cases:
Œ2a rule) Ify.level = z.level then

• (i) Graphreduction:
. J . 1 J

E2a«g',N,E,y -+ Z » =<g'+ ,N,E- {y -+ z} >

• (ii) Variable elimination:

E2a« H.: O. = aOy+b» = < H.: O. = a(kO",+m) + b>
Œ2b rule) Ify.level"f: z.level then

• (i) Graph reduction:
• 0 J 01 {J {J 1E2b«g"N,E,y-+z» =<g'+,N,(E- y-+z})U x-+z}>

• (ii)Variable elimination:

E2a(< H. : O. =aOy+ b» =< H. : O. =a(kO", +m) + b>

The newly inserted edge idom(y) -+ z in E2b is called the derived edge of

y -+ ::. An important point to note heœ is that before an E2 rule is applied to an

edge y -+ ::, we first eliminate the self-loop y -+ y, if it exists, using an El rule.

lWe do not insert % - =in yi+! if it is already present in yi.
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Handling Irreducibility
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In our exhaustive eager elimination method irreducibility is detected whenever

we cannot apply any of the E-rules, although there are Jedges that originate at the

current leve1. If this is the case, we apply Tarjan's Strongly Connected Component

(SCC) algorithm and collapse every non-trivial component to a single node. In

applying the Tarjan's algorithm to the reduced DJ graph, we visits only the nodes

via Jedges whose source and destination nodes are at the current leve1. This will

generate dag(s) of SCCS. lt is important to remember there can be more than one

disjoint dag at level i. We process each sec in each dag in topological order. We

compute closure of equations of all nodes in S, if needed. We also express the

flow equations at all nodes at level i in terms of flow variable of their inlmediate

dominator node. This is possible because we are eliminating the flow variables in

the topological order of the SCc. Next we eliminate a11 Jedges whose source and

destination nodes are at level i. Finally we apply E2b rule to a11 J edges whose

source nodes are at level i and destination nodes are at levels less i. Once this is

done, all the J edges whose source nodes are at this level are eliminated, and so

we can continue to apply E-rules to nodes at levcls less than i.

11.3 Problem Formulation

In the next severa! sections we present our approach for incremental data flaw

analysis. In this section we will set the stage for our approach. Specifically we

will introduce the concept of initial andfinal flow equations in Section 11.3.1, and

introduce the steps involved in the updating the final data flow solutions in Sec

tion 11.3.2. We will also show how OF graphs, introduced in Chapter 9, is related

to the concept of "derived edges" introduced in Chapter 10 (Section 11.3.3). In

this chapter we will use OF graphs for updating data flow solutions.

11.3.1 Initial and Final Flow Equations

Our exhaustive eager elimination method consists of three steps: (1) reduce the

DJ graph to its dominator tree in a bottom-up fashion, (2) eliminate the variables

by substitution, and (3) propagate the solution of root node to ail other nodes,

determining their corresponding solution. In Chapter 10 we showed that at the



end of elimination phase (step 2), the flow equation at each node depends only

on the output flow variable of its immediate dominator node. In other words,

let y be a node and let x = idom(y), the flow equation at node y, at the end of

elimination phase, would resemble:

•
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(11.1)

where p{ and a: are final parameters of the equation at node y. We will cail the

set of equations at the end of elirnination phase as the final flow equations. In

contrast, we will cail the set of flow equations prior to DJ graph reduction and

variable elirninatioT·...... the initial flow equations. We will denote the initial flow

equation at a node y as foilows:

H~ : .fU.) =O. =P~( 1\ 0=) +~
=ePred/(.l

(11.2)

•
where~ and~ are initial parameters of the initial flow equation at node y, Ais

merge (union) operator, and PredJ(Y) is a set of predecessors in the corresponding

flowgraph.

Example 11.1

Consider a forward data flow problem with union as the merge op

eration (e.g., Reaching Definitions). The initial flow equation at each

node for the example flowgraph shown in Figure 11.1 is as follows:

Os - ~
01 - P~Os+~

02 - P~Ol+ag

03 - ~(01 +Os) +ag
04 - Pf(Od 03+ 07)+~
Os - P304+~

06 - .Pg04+G2

07 - ~(05+06)+~

Os - Pj07+ag
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• OE = Pg(Os + O2 + OS) + cee

The corresponding final flow equation at each node would resemble:

Hf: Os - ~

H{:OI = pIOOs + Cf
II[: O2 - pfOI +Gg

Hf: 0 3 - pfol + (pfp~p~p~ + pfp~p~p2)04 + pfp~p~dt, +

pfP~P~~ + pfP~~+ pfag + ag
H[:04 - p2pfo l + (p2pfp~p~p~ + p2Pfp~p~p2)04 +

~~~~~+~~~~dt,+~~~~+~~ag+

p2ag+~

Hf:os - P~04+~

H[:06 - P204 + dt,
H{:07 - (P~P~ + P~P2)04 + P~~ + P~dt,• H[:Os - P~07+~

In the above system of equations, Hf and H[ are mutually recursive,

and the final equations at nodes 3 and 4 is the closure of the two

equations. Once the closure is determined, the final flow equations at

these nodes are expressed in terms of their immediate dominator node

(see Chapter 10).

11.3.2 Basic Steps

Given the notion of initial and final flow equations we are ready to lay the foun

dation of our approach for incremental data flow analysis. The problem of incre

mental data flowanalysis can he concisely stated as follows [PS89]:

Given a program and a correct solution ta a data flow problem over

that program, update the affected parts of the current solution ta re

flect a changein theprogram without UMeœssalYreinitialization and

recaIculation of the entire data flow solution.



To simplify the presentation, we will consider only the following two types of

incremental changes:•
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• Non-structural change: The parameters of the initial flow equation Il~ at a

node y are modified.

• Structural change: A flowgraph edge x --> y is either inserted or deleted in

the flowgraph.

One caneasilyextend and implementother types of incrementalchanges using the

results of tJ1!s chapter. It is important to remember that aIl incremental algorithms

rely on having correct solutions at aIl nodes prior to incremental changes. Once

a..'1 incremental change is effected, incremental algorithms will update (ideaIly)

only those solutions that are affected due to the incremental change [Mar89]. Let

us denote the data flow solution at each node y, prior to incremental change, as

Ct:' We will calI Ctf as the final flow solution at anode y. Let x = idom(y), then

one can easily show the following input-output relation will hold at node y prior

to an incremental change.

(11.3)

•

The firststep inourapproachis to associatewitheach node y: (1) the initial flow

equation H~, (2) the final flowequation Ht', and (3) the final flow solutionCtf. Now

supposing we induce an incremental change (such as updating the parameter of

the initial flowequations, inserting a new flowgraph edge, or de1eting an existing

flowgraph edge), our incremental data flow analysis will update the data flow

solutions in two steps:

• Update the final data flow equations; and

• Update the final data flow solutions.

Wewillhand1estructuralandnon-structural changesseparate1y. Thecomplete

algorithm for incremental data flow analysis is given be1ow:

Algorithm 11.1 The following algorithm updates the datafluw solution when the corre
spondingflowgraph is subjected to structural and non-structural incremental changes.



MainIDFAO

{

306: if (lncrementalChange == Non-Structural) then

307: Update final f10w equations for non-structural changes (Section 11.4)

308: else

309: Update final f10w equations for structural changes (Section 11.5)

310: endif

311: Update final data f10w solutions (Section 11.6).

}

•
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To effectively handle the incremental changeswe will use Dominance Frontier

(DF) graph introduced in Chapter 9 (Section 9.5). Recall that a DF graph is

nothing but the dominator tree ofa flowgraph augmented with edges x ... y such

that y E DF(x). Wewill use DF graph for updating the final flow equations.

11.3.3 DF Graphs Revîsited

In our exhaustive eager e1imination method when we apply the E2b rule to an

edge y ... z, we eliminate y ... z and insert x z, where x = idom(y). In other

words we "derive" the edge x ... z from y z by applying the E2b rule, and

so we call x ... z as a derived edge of y ... z. Now if x.Level > z.level, we will
(subsequently) apply E2b rule to x ... z to derive another edge w ... z, where

w = idom(x). We will continue to apply E2b rule to the "derived edges" as long

as its source and destination nodes are at the same level, at which point we either

apply an El rule or an E2a rule, eliminating the derived edge.

An astute reader may observe the relation between derived edges and dom

inance frontiers. To see this let y ... z be the original J edge in the initial DJ

graph, then x ... z will be a derived edge if z E DF(x). This is interesting

because given a dominator tree we cm augment the dominator tree with edges
x'" y such thaty E DF(x). Theresulting graphisthe Dominance Fl'Ontier (DF)

graph. Figure 11.2(b) gives the DF graph for our example flowgraph shown in

Figure 11.1.
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Figure 112: A flowgraph and its DF graph.

11.4 Updating Final Data Flow Equations: Non

Structural Changes

In this section we will show how to update the final data flow equations for a

non-structural change at a node y in a flowgraph. An exampleof a non-structural

change at a node y is addition or deletion of a new definition. Because of this

update, the reaching definition information at other nodes may be affected. By

adding or deleting a definition, we are essentially changing the parameters~

and~ of the initial flow equation at node y.

Given an incremental change at a node y, the first step is to determine the set

of nodes whose final flow equations is affected. To determine the set of :iliected

nodes we made one key observation. Consider the final flpw equation of node 7

of the example flowgraph shown in Figure 11.1.

Hf: 0 7 - (P~.P3 +P~.P2)Od ~ag +P~G2

- p!04+Gf



We notice that the final parameters P.J and Gf on the RHS of the equation are

made up of the initial parameters Pg, ag, Pg, and G2 of nodes 5 and 6, respectively.

It is important to remember that the parameters of both the initial flowequation

and the final flow equation at a node are constant values. We will use the term

appears to mean that the parameters of the final flow equations are computed

from the parameters of initial flow equations during the reduction and variable

elimination phase of the eager elimination algorithm. Given this notion, the key

question to ask is: how are the parameters of the initial flow equations related

to the parameters of the final flow equations? We found a surprisingly simple

relation between the initial and the final parameters of flow equations.

•
CHAPTER 11. !NCREMENTAL DATA FLOW ANALYSIS 229

•

•

craim 11.1 Let pt and G~ be the parameters ofthe final fIow equations at node w. P2
and~ will appear in pt and G~ ifand only ifeitherw =u orw E 1DF(u).

We will prove this claim later in Section 11.7. The above daim has an im

portant implication in our ineremental algorithm. Supposing we make a non

structural change to a node y; thereby affecting P~ and a::. From Claim 11.1 we

should update the final flow equation of all nodes that are in the IDF(y). Now

since we are changing P~ and a::, the final flow equation Hi at node y should

also be updated. Let FEqAffected(y) be the set of all nodes whose final flowequa

tion change due te a non-structural change at y (Le., FEqAffected(y) is the set of

"affected" nodes). To determine the set nodes whose final flow equations have te

be updated, we will use the following key result

craim 11.2 Let theparameters~ and a:: ofthe initiaIJIow equation at nodey beupdated.
Then thefinal JIow equation at anode w is affected (i.e., w is in FEqAffected(y) ifand

only ifw E {y} U IDF(y).

Therefore, from the above key result, we can see that the first step in updating

the final flow equations is te compute the set IDF(y). Compuiing IDF(y) is

muchsimpler using DF graphs than DJ graphs. We can easily show that anode w

is in IDF(y) if and only if there exists a path P from y te w in DF graph that does

not contain D edges. Therefore te compute the IDF(y) we determine all nodes

that are reachable from y without visiting a.'1.y D edges.
Once we compute the 1DF(y), we next construct a Projection Graph Proj(y)

of the DF graph with respect te the nodes in {y} U IDF(y). The projection graph



Proj (y) consists of nodes in set {y} u 1DF(y), and we insert an edgc l' -> 'i

between any two nodes in Proj(y) if and only if q E DF(p) in OF graph.~ For

example, let us construct theprvjection graph Proj(S). Firstwecomputc 1DF(S),

which consists of nodes {3,4, 7, END}. The next step is to insert edges u -> '"

from the OF graph, such that w E DF(u) and both u and w are in Proj(S). The

resulting projection graph Proj(S) is shown in Figure ll.3(a).

•
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Figure 11.3: The projection graph Proj(S) graph, and its dag.

Given the projection graph we will next show how to update the final fiow

equations of the affected nodes. It is important te remember that anode w is

affected (because of a non-structural change at node y) if and oruy if w is in

Proj(y). It is a1so important te note that Proj(y) need not be acyclic. 50 the

first step is te apply Tarjan's Strongly Conneeted Component (SCC) algorithm

and process each component in the topologica1 order of the dag of SCCS. For

example, the Proj(S) in Figure l1.3(a) is not acyclic, and 50 we determine its dag

of SCCS, which is shown in Figure l1.3(b). Now if a SCC in the dag of Proj(yj

contains a cycle, we compute the closure of the equations of the nodes in the SCC

(as in the exhaustive case). We can easily show that if an SCC contains more

than one node, then ail the nodes will be at the same level in the OF graph (sec

Chapter 6). Now given the dag of SCCS of Proj(y), we process each sec in the

2Note that the set DF(P) is same in both the original f10wgraph and ils DF graph.



dag in topological order. It is important to remember that the only variable on the

RHS of the final flcw equation at anode should be the output flow variable of its

immediate dominator. Given this we next show how to construct the final flow

equations of ail the affected nodes. The projection graph Praj(y ) helps provide an

ordering in which we can update the final flow equations at the affected nodes. As

discussed above, we first apply Tarjan's Strongly Connected Component (SCC)

algorithm to the projection graph. Then we determine a topological ordering on

the strong components. Finally, we visit the strong components S in topological

order to update their final flow equations. There are three cases to consider:

Case 1: Sis a single node and bas no self-Ioop. Let PredJ(S) be the set of pre

decessor of node 5 in the corresponding flowgraph. Assume that the final

flow equation at every predecessor p E PrcdJ(S) is correct (either previ

ously updated or unaffected by the incremental change). To updated final

flow equation Hf at node S, we start with its initial flow equation. That is,

we first construct the following equation at node S:

•

•
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Hs : Os = P~( 1\ 01) +~,
IEPTedJ(S)
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(11.4)

•

Starting from this equation, we.e1iminate variables from it in a bottom-up

fashion, as in our exhaustive eagerelimination, until the only variable in Hs

is that of its immediate dominator node. Recall that during the elimination

proœss we createand delete derived edges. The topological ordering of the

SCCS ensures that the final equation at source nodes of these derived edges

are in its final fOIm. At the end of the elimination proœss the equation

at node S will be in its final fOIm. Notice that the above (incremental)

update is nothing but a "selective" exhaustive eager elimination proœss,

but restricted to the equation at node S.

~ Case 2: S is a single node and bas a self-loop. Here we assume that the final
flow equation at every predecessor of node S, excluding S itself, is cor

rect. We next perfOIm a "selective" exhaustive variable e1imination starting

from the initial flow equation Hs ofnode S. At the end of this selective vari

able e1imination, the only variable that will remain in Hs is Os and Oiclom(S)'



At this point we compute the closure of the recursive equation to break the

dependency of Os on itself (6 la El rule) and obtain the updated final flow

equation Hf.•
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Case 3: S contains more than one node. In this case we have irreducibility, and

50 we have to simultaneously determine the final flow equation of ail nodes

in S. These nodes have the same immediate dominator. In this case we

will assume that the final flow equation at all nodes in N - S are correct

(where N is a set of all nodes in the DF graph). As before, we again perform

"selective" variable elimination, for each equation at w nodes in S, until

the only variables remaining in the system of equations are those of nodes

in S and the output variable their immediate dominator node. Finally we

perform fixed-point iterations over ail the mutually recursive equation and

determine their C!osure.

Compute IDF(y)

Determine Proj(y)

Apply Tarjan's SCC algorithm determine the SCCS in Proj(y).

For each SCC S in topological order do

Switch(S)

Case 1: S is a single node and does not contain a self-loop.

Compute the final flow equation as descnbed in the main text.

Case 2: S is a single node and contain a self-loop.

Compute the final flow equation as descnbed in the main text.

Case 3: S contains more than one node.

Compute the final flow equation as descnbed in the main text.

EndSwitch320:

}

319:

318:

The complete algorithm is given below.

UpdateFlowEq(y)

{
312:

313:

314:

315:

316:

317:

•

•
Example 11.2

Consider the previous example where we induce a non-struetural

change to node 5. The corresponding Proj(5) and its dag is shown in



•

•

•
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Figure 11.3. We will process the nodes in the dag order. 50 we will

first process node 5. Node 5 is a single node with no self-loop, and 50

corresponds to case 1 (step 1317 D. The only predecessor of node 5 (on

the flowgraph) is node 4. The new final flow equation of node 5 is

HSF = PS004 +G"0,

where the superscript n means new equation (or parameters).

Next we process node 7, and this also corresponds to case 1 in the

algorithm (step 1317 D. The two predecessor nodes of node 7 are 5 and

6. The initial flow equation of node 7 depends only on equations at

node 5 and node 6, and is given below:

07 = P~(Os+ 0 6) +~
Note that the equationatnode 6 isunaffected, butatnode 5 it is affected

(and updated). After eliminating 05 and 06 in above equation we get

the new final flow equation for node 7:

H7F
: 0 7 - (P~PSO +P~Pg)04 +P~G5° +P~02

= P;F04+Gt'

Next we process the non-trivial sec 3, which corresponds to case 3 in

the algorithm (step 1319 b. The sec 3 consists of nodes 3 and 4. We

first set up the intial flow equations for these two nodes:

03 - P~(Ol +Os) +ag

04 - Pf(02+0J+07)+~

Next we perform variable elimination, and reduce the equation te the

following forro:

st": 03 - P~Ol +(p~p3p~pr +P~P3P~pg)04 +P~P3P~02 +

p~p3p~G5° +p~p3~ +P~~+ag

st": 0 4 - P~P~Ot+ (pfp~p3p~psO + pfp~P3p~pg)04+

pfP~p3P~G50 + pfJ1P31'#02 +1'2J1P3~ +

P~p~~+p~ag+~

233
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Notice that the only variables in the above two equations are those of

the nodes in the SCC 3 and their immediate dominator node. Next we

compute the closure of the two equations using fixed-point iterations,

and express them only in terms of 0 4, the immediate dominator of the

nodes in SCC 3.
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11.5 Updating Final Data Flow Equations: Structural

Changes

Next we will show how to update the final flow equations for structural changes

(i.e, insertion and deletion of a flowgraph edge). Our algorithm for structural

changes consists of the follo~ingsteps:

• Update the dominator tree of the flowgraph.

• Update the dominance frontier relation of the flowgraph.

• Update the final flow equations.

In Chapter 8 we gave a simple algorithm for updating the dominater tree of a

flowgraph, and in Chapter 9 we gave a simple algorithm for updating dominance

frontiers of a flowgraph. We will use these two results in this chapter. Recall that

p -> q is a OF edge in OF graphiff q E DF(p). Thereforetheproblemofupdating

OF graphs is isomorphic te the problem of updating dominance frontiers.

Once we have updated the dominance frontier relation, we will next show

how te update the final flow equations at ail the 'affected' nodes. Again, let the

edge x -> y be the structural updJ.te (either inserted or deleted). Now the key

question te ask is: at which nodes are the final data flow equations affected when

a new edge x -> y is updated. The answer te the above question is given in the

following claim:

Oaim11.3 Let x -> y r'e the edge that is updated in theJWwgraph. The final data jIqw
equation at a node tu is ajfected ifand only if tu E {y} U IDF(y).

This is very interesting. Recall in Section 11.4 we made a similar daim

(Oairn 11.2) for non-structural updates. This means that we can essentially use



the same algorithm as given in Section 11.4 for updating the final data f10w

equations even for structural changes. But rather than using the 'old' OF graph

we will have to use the updated OF graph, to compute the new set of final f10w

equations. ln other words we first compute the IDF(y) on the new OF graph

and, as before, construct the projected graph Proj(y). Once the projected graph

is constructed, we update the final f10w equations at aU nodes in Proj(y), using

the same strategy described in Section 11.4.

•
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11.6 Updating Final Data Flow Solutions

In this section we will show how to update the final data f10w sobtions c?, once

the final data f10w equations have been updated. The first key ;:;uestion to ask is:

at which nodes the final data f10w solutions are affected because ofan incremental

change. As before let Proj(y) be the set of nodes where data f10w equations have

been updated. Once the data flow equations have been updated at these nodes,

we may have to update their final data flow solutions. It is important to remember

that the final data flow equation at each node will depend onlyon the output flow

variable of its immediate dominator node.

Letw be a node in Proj(y) whosenew final data flow equation is f!new(I..). Let

~0/d be the old final solution at this node (which may not be a correct solution).

Let u = idom(w) whose data flow solution ~eor is a 'correct" solution.3 If the

following relation holds at node w

then we need not update t.~e fina1 solutions ofthe children nodes of w. Otherwise,

we have to compute ~cor and mark the immediate dominee of w (ie., clùIdren
of w on the dominator tree) as potentia1ly being affected, and repeat the process

for each child node. 5ince the flow equation at node w is depends only on its

immediate dominator node, and since the solution of its immediate dominator is

correct, we can compute the new correct fir.al solution at w as follows:

~cor = f!.....'(~cor)

---::----------3By correct solution we mean that either its original solution was unaffected because of the
inaemental change, orsome how basbeen correctly updated.



Old solution is the correct solution */

The function IdfaGetNode(i) returns a node x if one exists in the ith bucket,
}
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while«u = IdfaGetNode(i)) '" NULL) do

w = idom(u)

if(~oId .". f!,new(a~=)) then

~= =f!'new(~=)

Insert the children nodes of u in the OrderedBuckets.

else

oE= =oEoId / .... ..

endif

endwhile

endfor

Insert the set of nodes Proi(y) in the OrderedBuckets

foreach i = 1 to N umLevel - 1 do

It is important to observe that before we can update the final solution at a

node w, we have to ensure that the final solution of its immediate dominator node

is correct. AIso, once (and if) we update tL' final solution we have to mark all

its children nodes to be potentially affected, and so their final solutions have to

be updated. Therefore we order the nodes in Proj(y) in terms of the levels of

the nodes on the dominator tree, and process the nodes in a top-down fashion.

We will use a data structure akin to OrdercdBuckets to keep track nodes where

the final solutions are possibly affected. OrdercdBuckcts is an array of buckets

ordered by levels of the nodes on the dominator tree. When a node x is inserted

in the bucket, it will be inserted at the bucket OrderedBuckcts[x.lcvdJ. We will

initiaIly insert aIl the nodes whose final flow equation was updated into the

OrderedBuckets. We then iterate by picking out one node at a lime in a top-down

fashion and updating its solution. We check if the old solution at the node is

consistent with the final data flow equation at the node, if so we pick the next

node from the OrderedBuckets. Otherwise we compute the new final solution

and insert aIl its chi1dren nodes into the OrderedBuckets. The complete algorithm

is given below.

UpdateFIowSolO

{
321:

322:

323:

324:

325:

326:

327:

328:

329:

330:

331:

332:
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othcrwisc it rcturns NU LI,. Notice at step \3291 if the old solution is "cor

rect" then the children nodes are not affected (unless they are already in the

Or",,,·,,"il lLch ts).•
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11.7 Correctness and Complexity

ln this section we prove the correctness of our incremental algorithm and ana

lyze its lime complexity. The main theorem which establishes the correctness of

Aigorithm 11.1 is Theorem 11.1. The proof of Theorem 11.1 relies on Lemma 11.6

and Lemma 11.5. Lemma 11.5 establishes the correctness of updating final flow

equations for both structural and non-structural changes. To update the final

flow equalion of anode we must fust know that it is affected. Lemma 11.3 and

Lemma 11.4 gives the necessary and sufficient condition to determine the exact
set of nodes whose final flow equations have to be updated for non-structural

and structural changes, respectively. The validity of these two lemmas is based

on another key lemma, Lemma 11.2, which establishes a relation between the pa

rameters of initial flow equations and the parameters of the final flow equations.

To prove Lemma 11.2 we will use another lemma, Lemma 11.1, which relates the

concept of dominance frontiers and derived edges (sec Definition 10.5).

The validity of Lemma 11.5 for structural changes relies on the correctness

of dominance frontier update algorithm (Theorem 9.1). Finally, Lemma 11.6

establishes the correctness of updating final flow solutions once the final flow

equations have been updated.

In our chain of proofs, we begin with Lemma ILl, that relates the concept of

dominance frontiers and derived edges.

Lemma 11.1 In the exhaustive eager eIimination method, aderived edge u _ w will be

created and processed at sorne stage in the eIimination phase if!w E DF(u).

Proof:

The "if" part: From Lemma4.1 weknowthatifw E DF(u) then there

exists a J edge t - w such that u dom t and w.level ~ u.level.

Now if t - w is a Jedge then this edge will be proœssed during
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sorne stage in the elimination phase (i.e. one of ~~-l'lLk., will be

applied to this edge and the edge will be eliminated). Now if

t = u, then we are done (i.e, u --> tV is a derived edge). Otherwisc

we will apply one or more E2b rules to the derived edges of t --> '"

until the source node of the derived edge is at the same levcl as

the destination. 5ince u dom t, and tu./cvd ~ u.lcvcl, eventually

a derived edge u --> tV will created and proce.;sed.

The "only if" part: Ifu --> tV is a derived edge then by De5nition 10.5

u -+ 10 was ereated and processed at sorne stage during the eli

mation phase. In other words, it was derived from sorne Jedge

t -+ 10 such that u dom t, and the level of u is greater than orequal

to the level of tV. But from Lemma 4.1 we know that if t --> 10 is

a Jedge such that u dom t and u.level:::: tV.level, the tU E DF(u).

Hence the result.
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Nextwe prove Lemma 11.2 This lemma is exactly the samc as Claim 11.1. This

lemma states that the parameter p2 and~ in the initial flow equation of node u

willappearinP~ andG~ ifandonlyifeither1O =uor1O E l DF(u). Hisimportant

te remember that the parameters of both the initial flow equation and the final

flow equation at a node are constant values. We use the term appears to mean that

the parameters of the final flow equations are computed from the parameters of

the initial flow equations during the reduction and variable substitution phase of

the eager elimination algorithm.

Lemma 11.2 Let p! and G~ be the parameters ofthefinal fluw equations at node 1O. P2
and~ will appear in p! and G~ ifand only ifeither 10 =U or 10 E IDF(u).

Praof:

It is obvious to sec that if 10 =u then p2 and~ will appear in P! and

G~, and vice versa. 50 let us assume that 10 #: u.

The "if" part: We want to show that if 10 E IDF(u), then P2 and~

will appear in p! and G~.

Firstwewillshowthatif1O E DF(u)thenP2and~will appear in

p! and G~. UsingLemma lU wecanseethatif10 E DF(u) then
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u -> W is a derived edge. When this edge is processed during the

elimination phase, we will eliminate Ou in the flow equation Hw

at node w, by substituting it with Pt'Or +G~, where r = idom(u).

The parameters Pt' and G~ will contain P~ and G~ and so will

appear in Hw, and hence H;:, the final flow equation ofnode w.

Now to show that if wEIDF(u), then P~ and ~ will appear in

pt and G~,we can use inductive definition ofiterativedominance

frontiers. Now, if wEIDF(u), then there exist nodes to, ... , tk

such that w = to, u = tk, and ti = DF(ti+l), where 0 ~ i ~ k -1.

We can use induction on i to show the result.

The "only if" part: We want to show that if p~ and ~ appear in pt
and G~, then wEIDF(u).

Now assume te the contrary that w ~ l DF(u). Then either w is

not reachable from u or there exists anode s thatstrictly dominates

w and sE IDF(u). But if w is not reachable then p2 and~ will

not appear in p! and G~ contradicting our assumpt::on. Assume

that w is reachable from u but is not in l DF(u). Now we know

that there exists anode s closest te w that strictly dominates w and

sEIDF(u) (follows from Lemma 8.3). Therefore all paths from

u te w must pass through s. Now if s stdom w then a derived

edge will never be created between s and w (since s can never

be in DF(w», and 50 1'2 and ~ will never propagate te w via

node s, and since all paths from u te w must pass through s, p2
and~ can never appear in P! and G~, contradicting our initial

assumption. Therefore w must be in JDF(u).

•
Next we will prove Lemma 11.3, which is same as the Oairn 11.2.
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Lemma 11.3 Letanon-structuralchange he induced at Q node y. ThefinaIjlqw equation

ata nodew is affected (i.e., w is in FEqAffected(y» ifandonly ifw E {y} U IDF(y).

Proof:

First of all observe that when we induce a non-struetura1 change at

a node y, we are essentially changing the parameters P~ and ~ of
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the initial flow equation at y. From Lemma 11.2 we know that if

WEID F(y) then P~ and C~ will appear in p.~ and C;;;, and vice-versa.

Therefore if p~ and C~ are updated we have to update the parameters

P!: and C~ of ail final flow equations that appear in y U 1DF(y). The

converse is also true i.e., if anode is in {y} U 1DF(y) then its final flow

equation is affected. 1
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Next we will establish the correctness of Lemma Il.4, which which is same as

the Claim 11.3.

Lemma 11.4 Let x -+ y be the edge that is updated in theflowgraph. The final data flow

equation at anode w is affected ifand only ifw E y U IDF(y).

Proof:

First of all notice that insertion and/or deletion of an edge does not

affect the set of initial flowequations. Given this, the rest of the proof

is based on the following observation. When x -+ y is updated we are

essentially changing the input flow information of node y. Therefore

the parameters of the final flow equation at node y is affected. This

situation exactly corresponds to non-structural updates, except that

we do not change the parameters of the initial flow equation of node

y. The rest of the proof is exactly same as in the proofof Lemma 11.3.

Recall that once we identify the set of nodes whose final flow equations are

affected we need to proceed to re-evaluate their new final flow equation. Next

wewill show that steps13141to 1320 1correctly re-evaluates the final flow equation

for both structural and non-structural changes.

Lemma 11.5 The steps !3141 to 1320 1correctly updates thefinal flow equations for both
structural and non-structural changes.

Proof:

From Lemmas 11.3 and 11.4 we know exactly at which nodes the final

flow equations are affected. For non-structural updates we do not

change the structure of the DF graph. For structural changes we first

update the DF graph, and then update the final flowequations. From

Theorem 9.1 we know that DF graph is correctly updated. Therefore
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in the rest of the lemma we will not distinguish between the two

incremental changes.

First of ail observe that we are processing SCCs in topological order

of the dag obtained by collapsing the non-trivial SCCs in Proj(y)

(step 1315 p. Therefore when processing an sec S we are ensured that

final flow equations at ail the nodes u such that u -, w is an edge in

DF graph, u rt S, and w E S are correct (either previously updated or

is unaffected). This topological order a150 ensures that the algorithm

will terminate in finite time.
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Given this it is enough to show that the final flow equation at affected

node that is derived by eliminating variables from the corresponding

initial equation is the correct final flow equation. The derivation of the

final equation depends on the type ofsec S, and we will handle them

seperately.

Case 1: S is a single node and does not contain a self-loop. Its initial

equation is given by• H~ : Os = p2( /\ 0,) +~,
'ET

(11.5)

•

where T = {tlt E Pred/(S)}. To eliminate variables from the

above equation we perform selective exhaustive eager elimina

tion. Since we are processing the nodes in the topological order,

we are ensured that the final flow equation at the destination

node of every derived edge (generated and processed during the

selective eager elimination process) is correct (either updated or

unaffected). Since we showed the correctness of the exhaustive

eager elimination (Theorem 11.1), the COrIeL-mess of the selective

elimination directly follows from it.

Case 2: S is a single node and contains a se1f-loop The only difference

between this case and Case 1 is that we also compute closure of

the recursive equation. In the El rule we also compute closure .

whenever there is a se1f-loop at a non-join node. Once the closure

is computed, the equation at node s is the final flow equation.
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Case 3: S contains more than one node. In this case we first form a

set of mutua11y recursive equation by eliminating 0111 output flow

variables Op such that l' is not in ,. This situation corresponds to

the irreducible case in our exhaustive elimination method. As in

the exhaustive case we determine the c10sure of 0111 the mutually

dependent equations, and then express the final flow equation Olt

0111 nodes in s in terms of their immediate dominator.

In each case we have established the correctness of the derivation of

the final flow equations. •
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Next we will show that the algorithm for updating final flow solution is

correct. First of ail observe that the data flow solutions Olt a11 nodes whose final

flow equation is updated is potentia11y affected. 50 we mOlY have to update their

solution. Now let Q~old be the old solution Olt anode u, i.e., solution of node u

prior to ineremental change. Let w = idom(u), and assume that its solution Q~cor

iscorreet. IfQ~old = f:'new(Q~cor)) then weneed not update the solution atnode u.

Otherwise we have to update its solution and mark the solutions of a11 its children

node as being affeeted.

Lemma 11.6 The procedure UpdateFlowSolO correctly updates thefinalflow solutions

at all the nodes whosefinal solutions are incorrect.

Proof:

First of all notice that if anode u is returned by IdfaGetNodeO then

it is possibly affeeted. Anode u is returned by IdfaGetNodeO if and

only if it was previously inserted in OrderedBuckets; and anode u is

inserted in OrderedBuckets if it either in Proj(y) (step (321b or the

solution of its parent node was previously updated (step 1327b. Since

we are processing the nodes in a top-down manner we will eventually

update the final flow solutions at all the affeeted nodes.

•
Finally we prove the correct1less of our incremental data flow analysis.

Theorem 11.1 The Algorithm 11.1 correctly updates the data flow solutions for both

structural and non-structural changes to flowgraphs.



•
CI-IAJ'TER 11. INCREMENTAL DATA FLOW ANALYSIS

Proof:

Follows from Theorem 9.1, Lemma 115, and Lemma 11.6.

Next we will analyze the time complexity of our approach.

•
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Theorem 11.2 The worst case time comp/exity ofA/gorithm 11.1 is 0UEI x Il''\).

Proof:

(1) For both structural and non-structural updates selective eagerelim

ination could, in the worst case, be performed over aIl nodes. And so

the worst case time complexity for selective elimination is O(IEI x IN\)

(follows from Theorem 102).

(2) the worst case time complexity of updating both dominance fron

tiers and dominator trees is bounded by O(IEI x IN\) (see Chapter 8

and Chapter 9).

(3) Theworst-case time for updating the final solution is O(IN\), since

we are propagating the solution on the dominator tree.

Combining (1), (2), and (3) we can see that the worst case time com

plexity of Algorithm 11.1 is O(IEI x IN\). •

For both non-structura1 changes and for insertion of an edge our algorithm is

expected to behave linearly in practice since the size of the dominance frontier

is linear in practice [CFR+91]. The cost for updating the data flow solution for

deletion case is dominated by the cost for updating the dominator tree. 5ince we

use Purdom and Moore algorithm for this step, the time complexity is quadratic

in the worst-case for the deletion.

11.8 Discussion and Related Work

In this chapter we proposed a new approach for incremental data flow analysis

based on elimination methods. Previous work most relevant to ours is due

to Carroll and Ryder [CR88]. We will first give a detailed comparison of our

approach with theirs, and then compare with other related work.

Carroll and Ryder's algorithm is based on the notion of reduce and borrow

concept for updating the data flow solutions [CR88}. They reduce a monotone
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data flow problem to an attributed (dominator) tree problem, and then borroll'

the well-known Reps's attribute update algorithm for upd:lting the data flow

solutions [Rep82, RTD83]. They use Graham-Wegman elimination algorithm as

a starting point for mapping data flow problems to attributed dominator tree

problems [GWï6]. They decorate cach node in the dominator tree with ils (1)

initial flow equation (2) final flow equation, and (3) the correct solution. These

decorations are treated as attributes of the dominator tree. Once they construct

an attributed dominator tree, they modify the well-known Reps's algoritlun for

updating the attributed dominator tree [Rep82, RTD83]. Reps's original algo

rithm can only handle updateS to attributed parse tree, which are derived from

attributed grammars. Since dominator trees are not parse trees, Carroll and Ryder

generalize Reps's algorithm for handling updates to arbitrary trees.

In an attributed parse tree probler.'l, we associate with each node a semantic

function which defines the value of that attribute in terms of values of other

attributes [ASU86]. Given an attnbuted parse tree, if the attribute at node y uses

the value of attribute node at x, then we say that node (attribute) !! depends on

node (attrib~te) x. The dependency graph of a set of attributes A is a graph whose

nodes are the elements of A, and there is an edge u -> tu if tu depends on u. The

value of an attribute is consistent if it equaIs the value retumed by the attribute's

semantic function. A soiution to an attributed parse tree is a set of consistent

values for ail its attributes [ASU86].

Reps's original algorithm can handle updates only if the dependence graph

of the attributed tree is acyclic [Rep82, RTD83]. Carroll and Ryder show that if

the original flowgraph is reduClble then the dependence graph of the attributed

dominator tree is aIso acyclic. Presence of irreducibility in the original flowgraph

introduces cycles in the dependence graph of the attributed dominator tree, and

so we cannot use Reps's algorithm for updating such trees.

Reps's algorithm basica11y consists of replacing the affeeted sub-parse tree

with a corree:: sub-parse tree and propagating the attnbute values of the new sub

tree to ail ether nodes that depend on il. To ensure optimality the attnbutes are

propagated on a projected graph of the dependence graph, called the sub-ordinate

and superior characteristic graph [Rep82, Rm83). Carroll and Ryder show how to

construct these characteristic graphs for attnbuted dominator problem, and use

them for updating and propagating final data flow solutions.



The sub-parse tree replacement in Reps's algorithm corresponds to restructur

ing of the dominator tree in Carroll and Ryder's algorithm. Carroll and Ryder aIso

propose an algorithm for updating th~ dominator tree of the flowgraph. While

updating the dominator tree they compute, what they cali as representative edges,

which are central to their update algorithm. These representative edges are then

used for updating both the dominator tree and the attributes of the dominator

tree. Projection of these representative edges with respect to the 'Coot of the af

fected sub-tree corresponds to the characteristic graphs in Reps's algorithm. For

redudble flow graphs the projection of the representative edges form a dag, and

so they can update the attributes of the dominator tree in the dag order of the

projection graph.

In our algorithm too we "reduce" the problem to an attributed tree problem

(since we are annotating the DJ graph with initial flow equation, final flow equa

tion, and the final flow solution). But, unlike Carroll and Ryder's approach, we

use simple properties of dominar.:::e frontiers and iterated dominance frontiers

for updating the final data flow solution, and these properties are valid for both

redudble and irredudble flowgraphs.

Although we do not use Reps's update algorithm for updating data flow

solutions, we will show how the notion of dominance frontiers and iterated dom

inance frontiers are tied to the notion of dependence graphs and characteristic

graphs used in Reps's algorithm. As in Carroll and Ryder's algorithm the dom

inator tree in our algorithm corresponds to the parse tree in Reps's a1gorithm.

The OF graph in our algorithm correspond to the dependence graph in Reps's

algorithm. Interestingly enough, the representative edges used in Carroll and

Ryder's algorithm are nothing but OF edges in our DF graph. The superior

characteristic graphs in Reps's and Carroll and Ryder's algorithm correspond

to the projection gr~·.ph Proj(y} in our algorithm, although Proj(y) can contain

cycles.4 Recall that Proj(y) is derived from IDF(y), the iterated dominance

frontiers cf y. This suggests that the concept of iterated dominance frontiers is

deeply related to the concept of superior characteristic graphs used in Reps's

algorithm. These two concepts were developed independently, and for different

problems-dependency graphs and the characteristic graphs were introduced in

tè-e context of attnbu~ grammars, whereas dominance frontiers and iterated

•Assuming that a non-structural change is induced at node y orwe update an edge '" _ y.

•

•

•
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dominance frontiers were introduced in the context of Static Single Assignment

form [CFR+91]. An. interesting direction for future research wou'd be to further

explore the possible relation between these two concepts.

Burke proposes an algorithm for elimination-based incremental data flo\\'

analysis that use interval graphs for updaang and propagating data flow solu

tions [Bur90]. His algorithm can only handle structural changes (to flowgraphs)

that does- not change the depth-first spanning tr~ of the flowgraph. Marlowe and

Ryder propose a hybrid incremental algorithm that combines iteration and elim

ination methods [MR90bl. They first identify strongly connected components in

the flowgraph, and they use iteration method within each component, but propa

gate the solutions to other components using elimination-like method. Although

they can handle program arbitrary updates, their incremental algorithm is more

coarse-grained; they update and propagate solutions to a much larger setof nodes

than our algorithm or Carroll and Ryder's algorithm.

•

•

•
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Chapter12

Conclusions and Future Work

One of the symptoms ofan approaching nervous breakdown is tr.e belief

that oue's work is terribly important.

-Bertrand Russell

As stated in the introduction, the goal of this dissertation was to demonstrate

the effectiveness of using DJ graphs for program analysis. To this end, we have

presented a number of algorithms for solving simple problems such as loop

detection to sophisticatedanalysis techniques, suchas exhaustive and increxnental

analysis, including construction of sparse evaluation graphs. In this dissertation

we have demcnstrated that how a simple representation like DJ graphs can be

used for solving sophisticated problems. We have also demonstrated that our

solution methods are simple, efficient, and general (i.e., can handle arbitrary

program structures). We have provided empirical results for many algorithms

and compared them withexistingones forsimilar problems. Ourempiricalresults

show that the algorithms presented here are indeed efficient and practical, and

can be easily incorporated in a production compiler.

There are other interesting and important open problems that can be solved

using DJ graphs. Here we will highlight sorne of them.

Incrementai Computation of Static Single Assignment Form and Spar.;e Eval

uation Graphs

Static Single Assignment (SSA) form and Sparse Evaluation Graphs (SEGs) are

intermediate representations that are well suited for solving many data flow and
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optimization problems [CLZ86, RWZS8, AWZSS, WZS5, Bri92, CBC93]. ln Chap

ter 7 we gave a simple algorithm for constructing a single SEG in !inear time.

Although we now have a linear time algorithm, maintaining correct SEGs and

SSA form can be expensive throughout a muiti-pass compilation process. ln a

recent report Choi et al. proposed an algorithm for incrementally maintaining the

correct SSA form for restricted types of program changes [CSS94]. ln particular

they do not allow arbitrary insertion and deletion of edges in the corresponding

flowgraph. ln [CG93], Cytron and Garbshbein show how to effiàently accommo

date may alias information in the SSA form. Their algorithm consists of iteratively

refining both the alias information and SSA form in a round robin fashion until

the two information are suffiàently accurate. The refinement process consists

of incrementally updating the SSA form and alias information. The incremental

algorithm proposed in the paper does not allcw structural changes to flowgraphs.

In this dissertation we proposed effiàent a1gorithms for maintaining domi

nator trees and dominance frontiers, both of which are fundamental to the con

struction of the SSA form and SEGs. An interesting and important future work

would be to come up with an incremental algorithm for maintaining these sparse

representations for arbitrary program changes. Based on our experience with DJ

graphs, we believe that DJ graphs are weil suited for solving this problem.

•

•
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Improving the Dominator Update Algorithm for the Deletion of an Edge

In Chapter 8 we gave an a1gorithm for updating the dominator tree when the

corresponding flowgraph was subjected to inerementa! changes. Although our

a1gorithm for insertion of an edge achieves !inear time complexity, the ineremen

ta! a1gorithm for the deletion case is quadratic in the worst-ease. For the deletion

case we modified the Purdom and Moore a1gorithm to first compute the domi

nance relation for all (possibly) affected nodes, and then updated the dominator

tree using that information. The worst-ease quadratic time complexity for the

deletion case is because of the quadratic time complexity of Purdom and Moore's

a1gorithm. Now the open question is: Can we compute the exact set of affected
nodes and the corresponding new immediate dominators in !inear time, even for

the deletion case?



Empirical Study of Elimination Methods in the Contextof Interprocedural Data
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In this dissertation we gave empirical results of our elimination methods for

solving the intraprocedural reaching definition problem. An interesting fu

ture work would to study our approach in the context of interprocedural

data flow analysis. Tarjan, Rosen, Burke, and others have shown that elim

ination methods can be used for solving general monotone data flow prob

lems [TarS1, Bur90, RosSO, RosS2, MarS9]. We are not aware of any empirical

results on how elimination methods perform compared to iteration methods on

real programs for interprocedural analysis. Itwould be an interesting and worth

while exercise to implement elimination algoritluns for sclving interprocedural

data flow analysis and quantitatively study them on real benchmark programs.

Empirica1 Study of incrementai Algorithms in the Context of a Real Compiler

In this dissertation we proposed a number of algorithms for incremental analysis.

We are not aware of any publis.1led literature that quantitatively evaluates the

benefits of incremental analysis in the context of a real optimizing compiler. An.

interesting and important direction for future workwould be te empirically study

the benefits ofincremental analysis in the contextofan optimizing compiler. Most

optimizing compilers perform aggressive program transformation, and sc it is

important that data flow information and other program properties are correctly

maintained throughout the entire compilation process. Current methods in most

optimizing compilers recompute the data flow information airer every change

in the program, even within a single optimization phase of the compiler. We

expect that incremental ar.alysis would speed-up the compilation process of an

aggressive optimizing compiler.

Parallel Data Flow Analysis Using DJ Graphs

In this dissertation we proposed two approaches for elimination based data flow

analysis using DJ graphs. An. interesting direction for future research would be

te parallelize our elimination algorithm. Lee et al proposed a region partition

scheme for parallel data flow analysis (LRF94]. Lee et al. define a region to a

connected subgraph of a flowgraph such that aU the incoming edges from other



parts of the flowgraph to the region enter into its head nodc. Incidcntally, rcgion

head nodes are join nodes in our DJ graphs. An interesting future work would

be to use their region partition algorithm to partition DJ graphs for parallclizing

our elimination algorithms.

•
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Thy right is to work only; but nt:<ler to its fruits; let not thefruit ofaction

be thy motive, nor let thy attacJznzent be to inaction.

-Bhagavad Gita
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AppendixA

A Data Flow Analysis Framework

Recall that algorithms for data flow analysis take a program and estimate proper

ties of the program statically. The nature of these properties depends on the data

flow problem being solved. Most interesting daté:. flow problems can beexpressed

within a framework called the monotone data flow jramework. In this appendix we

will briefly discuss this framework. This framework was first introduced by I<il
dall, and subsequently revised and redefined by others [KU77, Tar81, Mar89].

Here we will essentially follow the notation given by Marlowe [Mar89].

The data flow information in a data flow problem is represented by elements

of a lattice 1:., having a commutative, associative, and idempotent meet operation

A. Intuitively, the operation 1A m, for l, m E 1:., represents information common

to both 1and m. Given 1:., we can define a relation !:; on 1:. such that 1 !:; m iff

1Am = 1. In other words, !:; defines a partial order on elements of 1:.. Intuitively,

the relation 1 !:; m means that 1 contains less information than m. Oually, we

also define ;) relation; if 1 !:; m then m ;) 1. If 1 !:; m and 1 1: m then 1 C m.

We can similarly define the dual ::J relation. Finally, the lattiœ also contains two

distinguished elements T and J., called the top al'l.d bottom elements, satisfying

the following relation:

lA T - 1

lAJ. - J.

Typically the A operation is used for merging information at join nodes. Let

X ={Xl, X2, •••} bea subsetof1:.. We will use the notation AX to meanXl AX2 A....

We will impose another restriction on 1:. called the descending chain condition,
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11 :J 12 :J ...

is finite. Most data flow problems have this property.2 An important consequence

of the descending chain condition is that every meet 1\ X can be computed using

meet of a finite subset. Note that t:. or X ç t:. need not be finite. ln other words

even an infinite lattice can h;;ve finite height. Throughout thi:; dissertation we

will assume lattices that satisfy descending chain condition.

Next we will discuss the effects of a node (a sequence of instructions) on flow

information. These effects are modeled by flow functions :F ç {J : t:. -. t:.}. For

most interesting data flow problems the flow functions are monotone.3 ln this

dissertation we will assume flow functions to be monotone. A function 1 E :F

is monotone if for any two elements I,m E t:. such that 1ç m, then 1(1) ç l(m).

Let 1 and 9 be any two functions in :F we will use the notation 1 A 9 to mean

(J Ag)(I) =1(1) Ag(I). Wewill aIso assume that:F contains an identity function L.

Let1and 9 be any two functions in:F, we will use the notations Jo 9 to denote

function composition, and 1"(1) = {I\~o {ji(l)li;:: O}, the iterated composition of

1 and JO = L, te denote the reflexive transitive closure of 1(1).
One can define classes of data flow problems depending on the finiteness

properties of flow functions and lattices. We will define a few of them (for a

detailed discussion please see [Mar89}).

•
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in which every chain1
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k-Boundedness: Let Ik(l) ;! A{ji(I)IO ~ i ~ k} for ail 1 E :F and 1 E /:'. In this

case, we can compute I k using only k - 1 meet iterations. An example of a

k-bounded problem is the Formai Bound Set problem.

Rapidity and Fastness: Many ofthe classica1bit-vectorproblems havenicer fune

tion properties. Let1 E :F, ifloi;! 1A t then1 is fast. Notice that F..stness is

equiva1ent te 2-boundedness. An important consequence of fastness is that

we need at most two iterations for fixed-point coinputation in a locp. Also,

the notion of "locp breaking" in [RP86] is applicable only for fast problems.

1Le., a Iinear order
2Two classic:al examples that do not possess this PIOperty are pointer anaIysis for rec:ursive

datl structures and type checking [Mar89].
3There are ptaclic:al data flow pIOblemsinwhich flow funclionsare notmonotone; forexample,

the GeneraIized Common Sub-Expression Elimination due to Fong [Fon77, Tar81]. Ar.other
example where flow funclions are not monotone is alias anaIysis in the presence ofdynamic data
structures that do not use k-Iimited gtaph for appIOximation [LH88].



A function J E Fis rapid if f(l) ~ 1/\ m 11 J(m) for alll, m E L One can

easily show that if a function is rapià it is also fast, but not the converse.

Another interesting property to observe is that rapiàity implies separability.

An example of a data flow problem that is rapid is reaching definition. An

example of a problem t1-}at is fast but not rapid is constant propagation.

•
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Distributive: A function J E Fis distributive if J(I /\ m) = J(I) /\ J(m). An

example of a problem that is distributive is copy constant propagation; and

example of a problem that is not distributive is constant propagation.

Given the previous background we are ready to define monotone data flow

framework. A data flow framework is a tuple (G, 1:-, F, M), where

• G =< N, E, START > is a flowgraph,

• 1:- =< S, .1.., T, ç, /\ > is a lattice,

• F ç {f : 1:- -> I:-} is a set of monotone functions.

• M ç {e -> fie E E, f E F} is a set of functions mapping edges to flow

functions. Sometimes it is convenient to map nodes, rather than edges, to

flow functions.

Depending on the nature of F and 1:- we can define various classes of the

monotone data flow framework, such as bounded monotone framework, distnbu

tive framework, etc. [Mar89].
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