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ABSTRACT -
’ ‘ . ' L}
The purpose of this study is to develo? an analytaical

a

-

teb@nique&For predlcting the response of a deep snow layer
. ! ‘

» .

under a rigid strip footing. The study is limited in scope

to the verlfléatlon of the validity of the application of an

analytical/computer model to simulate the process of footing
' o

. . . ¢
penetration intg a deqoslt of deep snow. Lo , !@}

The model 1s based on the finite element technique
“suitably Bdapted to take 1nto éon81de;at10n +the high

compfessiblllty of the material and the progressive shear
Ty

Faildre mechanism developed during the Fdotlng.penetratlon
+ \’ o

process._  The solution obtalned*ﬁ%ﬁng this model provides
f v A

‘dlsplacément fields -and density distribution beneath the

footing, the depth of ‘shear along failure planes as well.'as

[

4

4 §

‘ K ' the st{esé—31qiag€,gelationship of the footing.

The valﬁdlty,of the proposed model 1s veglfled through
\ . - - .
a comparison gbf predicted and experimentally obtained
oat

[&]

results. M results obtained from the .finite/ element

z
mode 1l arikfound to be in reasonably good agregment with the

‘experimental data while some \disérepanqges are und to
exist between specific tyges of results. .
® ; ‘ -
. -

0 . '
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A} wowe 2
gL L'objectif de” cette 'étude est de trouver wun

b}

—_— - L, -

analytique tathnnel pour prédiré le comportement d'un

' de neige profondegsoumis a une charge. La portée de

i J

étude(\se limite & la vérification d'un modele analytique

—

adapté pour 1l'ordinateur et wutilisé pour , l'analyse d'un Q

gsocle rigide pénétrant le dépdt de neige.
! s

N hd ’r“’r
Le modele est basé’' sur la technigué€ des éléments
o -

-

o

Moyen .

dépdt

cette
)

finis

laquel;e esth adaptée pour le~" chs’ présent afin d'inclure
| " l'effet de la grande. compressibi1lité de cette substance et

du‘hécanisme deycisaillemenf progressif, qui se déveloﬁpe

. sur deux plans verticaux pendént Jla pénétration du socle.

\ . La solution ainsi obtenue prédit les champs de déformation
et la *distribution de densité sous le'§ocLe, la profondeur

du mécanisme de cisaillement vertical et enfin, la rTelation ,

&+

IS N , . ® ' -
) pression-pénétration du socle. s °
T o
’ . La Vvalidité du)modé%e proposé est vérifiée a travers

d'une comparalson en général favorable des valeurs

expérimentales et prédites par 16 modele des parametres

. <3 .
mentionnés *ci-haut.. . . J

.
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. : . EHAPTER 1

“

¢ .
! INTRODUCTION - .u;g \

1.1 Naturel of Snow ' ' o S
The "mechanics of snow.formation and precipitation is a
complex subject, involving many’ factors and is géverned by
. , .
. \ , A / N
the laws of physics, ‘chemistry, thermedynamics as well as by

meteorological conditions. In 'general, snow precipitation

-

occurs provided sufficiént atmospheric moisture is preg@ft-
r

’ O

in the arr and that the climatic environment®is suitable to
] < . " »
initiate and 'maintain mechanisms by which this moisture 1s

converted into snowfall. " Condensation of water ﬁﬁqpodr in

4
]

the atmospﬁqpe results into the formétion of a clJUG within

s

which, provided the temperature drops befow Fréezing,'

droplets joint to &enerate ice crystals. Continued growth-

of an ice Erystal—leads to the Formatig; of a snow crystal,

b

which «is a particle sufficiently large to be visible to the

nakeq' eye. ° A ;nowflake is produced *as a resylt of

aggregation of segeral huridreds’ of snow crystals.

©

S .
Snowflake sizes vary from a’ fraction of a,6 millimeter t0O

seyeral centimeters. Normally, larger snowflakes are

L
generated when the ambient temperature is near’ 0° C ard size

+

decreases with decreasing temperature (Hobbs, 1973).
L 4 . 5

k]
\

L] , - [y
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,den51t9, are hiéhly controlled by the type of weather during

-and are 7likely to change with time. accprding to tﬁe'

«Mstudy addresses thais gQroblem an is a humble attempt to

density are of" particular interest to 'traﬁsport2?$agﬁ

. o \?\\\ , 2

‘countries. Transportatioh of supplies and goods to rémoée’

1

The accumulation of snow flskes on the grouﬁd leads to
the generation of '‘the snowcover. Evidently, characteristics
of the snow-covery; such (as crystalline structure and -

s

preclpltaflon (1.e, teﬁperature, wind speed, humidity, etc)

meteorological: cqndltions prevailing “after dep051lién.
’ v \

-

Properties of the snow-cover:such as strength, stiffness and

engineers, concerned with travel over snow in northern
‘ -

communities, mines, construction sites, etc, is heavily

dependent on the efficiency of oversnow vehicles. Proper

design of such vehicles requires not only a sound mechanical

enginéering basis but adequate understanding of ghe response

b

of snow under loading. Sirce pnginéering design essentially l rc

‘

» « 4

and inqvitably involves a mathematical :dealization of the ©

real problem at hand, the problem of énalytlcally desc?iblhg

-

the behaviour 0% snow uﬁder loading carfges. The present .

)

-

develop  a.  technique for thes, 'mathemasical/numerlcal

v -

simulation of the response of snow wunder ‘set ®loading

conditions. o

> Je ' .
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1.2 Summary of the General Problem’

[

;
1.2.1. The Scientific Problem s L

g ¢
¢ k N

. . ] .
The scientific problem: addressed in the present

-

study consistgs 1in g'the%pred‘iction of the load-penetration

£

response of a rigid footing penetrating into a deep’ sno%

deposit.? The term "deep snow" genefally applies when the
thickness of the snow layer ls greateru Fhanc ghe larg;gt
dimension of the loaded area af the surfaée. The material *
is assumed to. be a cbﬁt}nuum exhibltiag the following .

characterjstlcé: - N o
» . .o . . * % . f >
a) ‘large deformation behaviour : ,
b) highly compressible K .
c) weightless T o

-

d) the material Faiis'accordihg to the so-called local

shear failuré mode rather than the general, éﬁeér\
4 ° - ° ’
failure mode o e Y

.. \ . -
i {e) stress path dependent
f4» ‘strarn rate dependent '
o , ) . .~ \ 6!
;g) compressibility 1s inversely proportional to density
. R . - R 2
(1.e, stiffening type of stress-strain curve undeT "

/

[

«~ - purely axial compression loading)
- 5\ . . ’ ° ° , <'1

L]




- - .

[ h) negligible lateral expansion wunder purely axial

- . compression loading (i.e, Poisson's ‘rati; 18

\ - <
ap%roximately zero).' i

. i) shear strength is g%yernea by the‘strengfh of bonds

A . . IS
bgtween particles. ¢

1.2.2. The Engineerlﬁg Problem and 1ts Complexity.
Yo - >

»~ B ~

h,g ‘A LI ' '

over the years in oTder to develop a methodology to analyze

- \ o and predict the stability of a snow mags and its response’

< / 1
when subjeécted to external loading. Respective examples ate
N - 4

v
> v

~avalanche prediction, which has been studied by Perla and

Martinelli (1976) and Fraser (1978), amd over-snow travel
§

5 (1979) have proposed approaé%es and solution techniques.
! Strength ‘analyses of snow are difficult berause of the

has been propoéed by Ballard and McGraw (1965).

In the proposed study, the problem is éoncerned with’

the evaluation oFethe respoﬁse’of relatively loose material
; which, when loaded by a rigid footing, fails according to a
-punching shear type. of mechanism. The difficulties

. “A
associated ewith such anglysis pertdin to both obtaining
< -

useful and reliable experimental. dafa'euﬁjgell as to the

,ﬁ@: . .theoretical formulation of the problem. Non<homogeneity 1s
<5 2
more severe for snow than for most soils due to the high

- ! ™y
]
-

&

©

", Various subjects: on snow.mechanics have been studied,

problems for which Harrisen (1975), Yong (1979) and Brown
. 8 JA .

nature. of the material at hand but a theoretical evéluatioh '

e




| * '
i' . - 5
| : | o ’
| . ) .
i (: thérmodynamic activity of snow~particles. Non-uniforfity of |
| © - 4 )
grain Packing and’ hence density complicates
. characterizdtion. ~ Ex{er1mentql~ data, such as

compresslbility and shear strength, must be obtained from

- s » 3 -
tests on samples whose replication is complicated by the
<

\jariable nature of the material. Engineering propertleggof
sampfes prepared for £§he different tests varied somewhsat
according to the ambient tempefature, humidity and other

Factors\}hat can potentially affect the Formation,ofi the
material: In add&ﬁlon,‘non—uniform density distribution in
the sno& boxes aris:ng érom s;lF;weigHE'of the material may
hayg been a Factog agéinst any kizd of idealization of the

& -
' S

problems . p ‘ ,

As can be expected, the mathematical 1dealization of

9

the:problmm is complicatted by the fact that the desiredj

&

objective is not %i calculate a limit state condition, such

& ¢ .as the bearing capacity -failure of soil under a footing, but
° P % ¢ b B
e
- rather to simulate the entire process of penetration of the
footing into the snow. A lack of information,

.

-

dvantitatively descraibing the kinematics of the proble&,
ex1gts and, althoﬁgh a qualitative description oF the

penetration mechanism is available from past experience,
*
this is not sufficient to develop mathematical expressions

4
representing the progess from beginning to end. The

¢ apprbach adapted in this study was oriented 1in such a way

s




P s

4

\ 6
)
5
.
4 © ’

§
o

that dhe kinematics of the problem would be a result (rather

"than an  input) of a 'procedure developed “to  predict

displacement fields, densaity dlstrigytlon etc, as a Function

of feooting penetration. Simikarly, reaction forces on the

footing and stress fields within the snow mass aould also be
y {‘ - -
quantified. The success of the analytical formulation used

to represent-the problem at hand would also heavily depend

<
on the incorpogation of appropriate material. properties 1in
the above hrocedure. i
o

-

The step by step approach of the problem thus

B LS

implied the reed to adbpt some kind of numerical simulation_

; )
scheme designed to be easily handled by a computer. Some of

7 - . ?

the work accomplished in the present study was thus devoted

to investigate possible variations of existing numerical

methods that required 1inpyt  parameters which could be

'obtalned through experimentg specifically designed for the

probieh at hand but easily jimplemented in practice.

L 4

1.3 Purpose of the Study

Increasing 1interest in “the evaluation of wvehicle

flotation capability and performance on snow tovered terrain

constitutes the main—motivation for the present study. The.

behaviour of the snow material under static loading and
transient vehicle tractive loads is the subject of study .of
-a research program currently in operation at’ the

/A

$
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-

Geotechnical Research Centre of McGill University.\l The
) )

present work can thus be considered as the first step in the

. . Q ,(

deve lopment of a rational method of analysis for assessing -

N

. . vehicle performance of snow. Its specific purpose is to.

predict the load-deformafion behaviour of a snow deposit
~ )

loaded by a 'rigid strip footing and to identify _the

engingering properties required for the analysis.

In addition, .the value  of the developed

i

[

analyticsl/computer model can he further appreciated if oné-
realizes

at the applic%bi ity of the proposed generél
solution technique .canp be, in theory, extended to soil
materials

such as certain <types of unsaturatgg..clays,

slurries, etc., exhibiting a significant degree of

compreg6Sibility and a low value of P01s§on's ratio.

urthermore, it becomes obvious from the arguhents
presen{qd 1 Chapter‘z‘that thé present study considers a
problem . »€semblant to that of the analysis of a footing
failing by the 1local o; "puchigg shear" mechanism (Fig.
l.1a) rather than by the general shear failure mode (Fig.
1.1b) proposed by %erzagh{ which assumes the material t% be

incompressible, The solution scheme- developed in the

'bresent work may therefore provide useful guidance on how to

attack such a'problem. ’ \ .
- ° & 2
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1.4 Scope of the Study . §

t
”

e Co
The scope of this study extends to the development and
* ;

‘validation of a ‘computerized mathematical model predicting

the lggd-31nkage yelationship af a *rigid strap footing on
deép snow. The creation of such a moael'FJ;used on the
volume change and shear characterlstic:)of the material anq
their reiatlonsh;p hto the overall behaviour énder ‘plate

-loading conditions.+ As shawn in Fig. 1.2, it therefore

" became necessary to obtain information on the response of,
¥ ) M,

snow under the following’ conditions:

. = [

¢
a) volume change only

1

b) shear only

. ¢

c) combination: of -both _volume .change and shear

S

s sccurring simultaneously. ,
o -
oo
The. confined compression test Was the obvious choice
for investigating the volume change behaviour or

-~

compressibility 6F the snow (condition a above) whereas the

direct shear test was selected to characterize the material

’ , 1
response 1n pure .shear (condition b abowve). the rigad

'plate, or footing test, was performed in order to assess the

-

validity of the‘model\thréugh élcomparison of experimentally

obtained curves and those’predicted'by the computer model

g A

based on the propert:ies of tHe snow material in compression
< -

and shear. The schematic diagram in Fig. 1.2 illustrates
v

the relqtlon between "the . method of analysis and the

experimental pragram adopted in thas study.

\
R

.

g
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“Fig. 1.2 BAnalytical and Experimental Programs in Present Study
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For purposes bfuraiionélization of the analysis as well
as for minimization of nown factors entering the‘problem,
plate penetration tests were perfomed using a narrow box %so

" thdt plane strain conditions could be assumed 1in the
analysis and, consequentiy; to allow the de&elobmeni of the
analytical/computer formulation and solulion on ba two
dlmensionalbbasis. In %ddition, all tests were perfor@ed at
the same (constant) rate so that a relatlonship getween the
three types of tests could be established.‘ The strain rate
selected for the tests was sufficiently ;;gh to cause the
so-called brittle behaviour of snow _descrlbed by Fukue
(1277) andrschematically represqhted in Fig. 1l.1la.

The paraweters pertinent to™ plate pgnetrafion
performance in the presené study solely concern ;noﬁ
material 're @dse; ;geing time,, de651ty, stress—sérain
responie in confined compressioﬁ‘ and shear. Rigid plate
parameters such as size and penetration speed are kept
canstant. |

A ¢

1.5 Analysis of the Problem

P4

~ The analytical predlctlon of the locad-penetration curve

of a rigid footing on snow is a complex problem involving, a
) a

.

.|y series of stress analyses of a highly compressible material

\endeT a given set of ‘boundary conditions. The determination

of stresses and deformations within a mass of material is a

~



QA

L e

‘dictated by basic mechanics og/;;?;rlgla:

- ‘ o012

- ¢ ' Py ,
highly statically in;;perminate‘ problem, the solution of
, ! / ° B BN
which require's statisfying the gollowing conditions as

’

"

1) Equilibrium of the mass is maintained.

2) Compatibilify of deformations (i.e, deformation

field. 1is continuous within the mags and is

geometrically consistent with the imposed boundar
s RY_boundary

L4

4 - conditions).

N 3) The constitutive relgtionship (or equations of
material behaviour) s respected at any point
within the mass. A , <

. <;:K\ ' In so far as the material is assumed to be a continuum,

g L o
the solution of the probl%p can be investigated throudh

continuum mechanics. The cl gs1cal theory of lineag\§7
~ o
elasticity censtitutes a poWerij\%ﬁpl for solving many of

- / o

such problems. The method 1s purely analytical and consists ’

a

in /éolv1ng equations ofostress with ,a particular set of
: .

boundary conditions. The above theory 1nvolves many

v

assumptions . regarding the behaviour aof the material under

]
study. .TH% most sigpificant are: . ,

)

a) the materaial 1s 1sot§9plc and homogeneous
. A
b) « the material. is linear elastic

c) small stralQ theory applies

L]

d) the deformatidn field is continuocus such that no

gaps or relative displacements between parts of the
¥ , e

body occur.
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The analytical solution of continuum mechanics problems
is only possi@le for simple casqé of lqading and bodndary
conditions. The phloblem of determining the load-sinkage
response of a footing in the type of deep sno& considered in.
this study {g alreédy complicated by the presence oF shear
stressesg. along the sides of the pressure bulb generated by
the p%ate penetration process. 'Moreover, the deformation
field -along the sides¢of the bulb is.not continup&s due_to
the differential vertical displacement of points on either
side of tgz planes of shear.‘«Assumption‘"d" abovéﬂtherefgre
automat1cail§ rules out the possibility of using classical
elasticity 'as a solutio; procedure. The. ffact ihat the
QateriéL:is hié%fy compressible and that&léfge deformatidns

occur during the plate penetration process also "opposes

assumption "c". In addition, snow is a non-linear materia

whose stiffness increases -~with volupetric‘ strain and

therefore, in this «case, assumption "b" is violated.

Finally, it 1s also evident that no material is. perfectly
e . :

-
lsotropic and hémogeneous but | assumption "a" is a

]

justi?ication always applied for 1dealization for these

-

- 53 v
types of problems. -
YP ’P v 3

In'light of the above, 1t is' obvious that simulation of

-

9

the plate penetration process cannot be performed by purely
analytical means. The method required should be able #o

easily handle material non-linearity, as well as large and

-

‘discontinuaus deformations. The finite element metRod was

thus judged -best .suited for the present problem. An
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incremental.qppgagch, according to which tHe rigic& late 1s o

.

displaced downwards in steps for each of ,which mpatérial
properties arid deformations are updatéd, 1s selécteq,

~Accordiﬁgly, the prob;em is)divided into a series of linear

1 ad <

5
elasticity problems (the materwal is not elastic but a%%Q-

elements are essentlially wundergoing loading "“such that
- rebound of the material is not allowed) for which a finite

élemga} solution is obtained. The method is elegant due to
-— w ' .

that the body analyzed “(i.e, the snow beneath the

penetrating plate) is assumed to be' composed gﬁ series of
\ .
triangular«plate% of material or elements for each of which

3

stresses, straiqs, vertex displacements, 'etc, corresponding
to® each of the"plate dlspiacement ‘increments 1ntrqduced
above, are .known. -~ Similarly, ome-dimensibnal elements
rep;¢§enting the s?eaglng mechanisms develope along tgé

LY .
vertical sides~gQf the pressure bulb are also incorporated

~

into the analysis. Stresseg and displacements for fhese

@?émenﬂ%ﬁare also updated with plate displacement.

@

-

1.6 0sgahization of the Thesis

[N

The present thesis is divided .into two main parts:

1) 'The first part dealing with the statement of the

=~

problem,-éhe development of the model u;ed in the solution
of the problem, the experimental program, a d1scussion

anélyziné and comparing experimental and predicted results

Ay " f

y

24

©
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.

4 . 3 :
and, finally, conclusioﬁg. This part is subdivided into

five chapters:

o

GO

~

4

Chhpter. 1 - of which this section-1s a part, is an

' ° — M

introductory ¢hapter discussing the’ nature, scope and

~

“need for .the sélution of the problem ‘at hand and

presenting the adopted selution téqhniqge 1n a general

way.

[

v - .
Chapter 2 - describes in detail the proposed

4
L3

analytical/computer model and corresponding algorithm

developeds

' Chapter 3 - describes the bxperimentgl work performed

during the course of the study incfﬁalng a description

of equipment, test proeedure and results.
. :

‘Chapter 4 - 1nvolves a presentation and discussion of

the edicted rigid plate load-penetration behaviour

L]

Versus the correspoﬁding e}perlmentally cbtained

§

relationships. . .
Chapter 5 - contains cpnclusions and )hcommendations
for further work. . " -

i

"A list of referendes to prevdous work related to the

-presenf studx'is includqd at the end of thig first part.

-

2) The second paff consists of appendlce% and provides

'additional .anformation wuseful to ‘'the reader for a more

complete~ understanQ}Q@ of the techniques involved in the
. .

pre’sent study: ~

\
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Appéndig A - Photographs of experimental riéld platel

penetration tests.

Agbendix'ﬁ - Computer Probram Flowcharts.

Appendix Program input d%ga. .

Appefdix D - P;hgram output information

AppendixaE Program listing. .

o

fThe organization of the thesis is schematfcally

described in the block diagram shown in Fig. 1.3.
Y s 3
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CHAPTER 2 v

-

GENERAL PROBLEM DEVELOPMENT AND APPLICATION OF THE FINITE

ELEMENT METHOD

2.1 Introduction -
a

ﬁ‘ \ . 'l;" e
The finite element method is a powerful numerical

v

-
/fprocedure for solving continuum me¢hagics problems.

riginally developed for structural mechanics applications,’

'3 .
the method has been extended to handle a great variety of
problems often t%g camplicated for a closed form

F

mathematical soiution. With . the development of  new

algorithms _and techniques designed to treat materlgi
non-linear stress-strain behavigur (material non-linearity)
as well as la;ge deformation‘problems (geometrical non-
"linearity), interest and confidence in using fanite elements
have grpwn amondst geotechnical engineets so t?at today,
manngeotééhnlcal problems are sol;ed by this tool rather

than by converftional claésical so1l mechanics theories. In

the present study, a special algorithm, based on the finite

.

element metﬁod of analysis and designed to model the beha-

viour of snow material, 1s presented and discussed. The

appllcablllfy of the finite element method to analyze a snow

mechanics problem may, at first glance, appear questionable

n
because aof the nature of the material itself and 1ts

-

inelastic and large deformation behavViour. In the solution

g,
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<

m%§hod, however, finite %lgment analysis }s gimply a
computational steg in\an algorithm specifically. developped
for the numerical simulgtion of the materiél\at hand and
emphasizing its characteristic non-linearity, high
compreésibility and stiffening behaviour. Evidently,
success in brop%r modelling the respongéw of snow to the
loading conditions considered 1in thi; studyllargely depended
on the memory space and speed of the computing machine used.
Fortunately, the availabaility gnd time efficienéy of the

computer utilized during the course of the present study

confirmed the feasibility of the pgoject. w

2.2 Analytical Model Adopted In The Present Study

4

2.2.1 General Considerations 5

¢

As the first step i1n the development of an analytical
model for the prediction of snow behaviour under controlled
rate plate penetrétion conditions, it is essential to
identify the stress transFerh;;bifnisms occurring within the
snow mass and to approximately d&fine the dimensions and
shape of the pressure Eulb generafed by penetration of the
plate 1in the material. Photographs taken during 'platé
penetratiqp tests showed the basic dlvferegce between the
behaviour of snow and most soi1l materials (Fig. 2.1) when
subjected to such loading zondltions. As 1llustrated in

Fig. 2.1, the deformation pattern 1n snow is characterized

1%
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Fig. 2.1 Typical Photograph of a Plate Penetraiton Test
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< by the cutting effect of the edges of the penetrating plate

causing the development of a pair of vertical shear planes
which, WitH the plate-snow ’ in;erface, define three
boyndaries EF the pressurg bulb induced by the penetration
process. Furthermore, 1t can also be obsegrved from the
tyﬂlcal test photograph in Fig. 2.1 (also see Appendix A for
_more photographs) that snow material on the outside oF'the
shear planes remains essentially unaffected by the pene-
tration of the plate thus implying negllg;ble laFeral'
expansion oFche snow as 1t deforms yertically. This, 'of
course, is typical of a material wpth a low Poisson's ratio.
The depth of thenpresburé bulb, implyiﬁg a fourth boundary
(the bulbois pFactically rectangular), is a functiop of the-
penetration of the plate and 1s mainly governed by the
2flat1ve values of compressive and shear stresses deveioped
Jlthin and alopag the sides of the pressure bulb,
respectlv?ly (wélch 1A turn depend on the reiatkgi
stiffnesses of the snow in compré951bh and shear) and the
shear strength. For a qiven pléte éénetratién, a relatively

- :

high shear stiffness and snow strength caulses'a more shallow
préssure bulb as a greater portion ofuthe reaction load on
the plate 1s carried by~ the shear stressés acting along both
sides of the pressure bulb. Conversely, a decreaé;'in shear
stiffness and snow strength 1mplies a deegfr pregsure bulb.
The 1influence of the .properties in shear of the material ais

analyzed through " both * experimental and predicted plate

load-penetratioh‘beh§v1our and discussed 1n Chapter 4.

S
.
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v

The/simultaneous shear\and volume change mechanisms
that otcur during plate penetration are Bcﬁematlcally
i¥lustrated in Fig. 2.2 showing the~shear and compres&lgn
actions wundergone by elements A‘ and B, respectively. As
mengloned earlier, the stresses associated with these
actions ar; controlled—by the stiffness and strength of tpe
snowhmaterial which, in general and as-proved by éonflned
Chap¥er Bj, are a function of density. The success of the'
solutfon procedure thus relies on the ability to determine
the deRShty distribution beneath :the plate, from which

stiffness and strength vadues can be correcfly assigned to

any given point<within and aloﬁg the sides of:.the pressure

"bulb as a function of pldte penetration. The khowledge of

-

the resulting system stiffness at a given plate sinkage then
o .

-permits the calculation of 1incremental reaction forces “on

the plate from which a load-penetration ‘curve jcan bel
*>

constructed. sThe resulilng pre31cted curve can then be

compared to experimental vs ts for verification pyrposes

of the proposed model.

The problem thus,lnvolves.the determlnatioﬁ of the
loéd-deFlection relatiomship of a non-linear systeﬁ in which
the total stiffness K 1s a function of deflection and
deflection rate. As discussed earlier, he mechanics of the
system suggest that the %eactlon force on the#plate at a

penetration 2z 1s composed ‘basicalag of two parts (Ffig.

2.3a): N ¢

.
4
A
- El

compreisgion and vane shear .test resultsg (presented 1n.

-

r
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a) a force P, due to the volume change resistance of

B

‘the snow within the pressure bulb.
'

b) a force Pg resulting from the resistance of the

<]

snow to shear along the failure planes.

The nature of thé Nprob%em' thus 1mplleécfhatg in fact,
these forces are also a Funct{on of the plate penetration z,
as a result of the v;rlatlon oFapropertles of the'material
(1.e, stiffening effect due to snow densification and
saftening ef;ect due to local shear failures along' the
pianesrof cutting shear) as plate penetration progresses.
In éddition, the penetratidn speed of the plate u constitutes
another parameter to consider since, for a viscous material
such as énéw, the velocity faield genefated has a direct
effect on material properties and hence, on the reaction

force. The total system st1ffness can thus be expressed 1n

terms af t%e volume change and, shear components as follows:

n

P(z,u) = Py(z,u) + Pg(z,u) . (2.1)
[ e .
where P(z,u) = total reaction force on the plate as a
¥ \ Kl
be T function of plate *penetration z and plate
‘penetratign rate u. ﬂ 3
=

Py(z,u)= reaction force on the plate due to volume

*

‘change resistance of snow.
Pg(z,u)= reaction force. on the pldte due to shear

resistance of snow.:

aps
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Differentiating the above expression with respect to plate

penetration z and rewraiting it 1n differential form:

— S,

N

dP(z,u) = 8P,(z,u) dz + 3Pg(z,u) dz (2.2)
az 4
© dP(z,u) = (Ky(z,u) + Kglz,u)) dz (2.3
where K, (z,u) = tangent - volumetric stif fness funct ion
(Fig. 2.3b)

Kg(z,u) = tangent shear stLFFne%E fFunctian (Fi1g. 2.3b)

Equation (2.3%>1s the b331c‘relat10nsh1p that mathematically
: /

reprgsents the process of a rigaid blate penetrating 1nto a
4

-

snow mass, at a constant Eate. .

The solutléﬁ\of the problem tHus requires knowledge-~
of the volumetraic and'shear st1ffness functirons Ky(z,u) and
Ksé;,u) both of which are esseptlélby dependent on the plate

penetration z and. the penetration rate u. The

load-penetration relationship can then be determined by

integration of equation (2.3):
N

P(z,u) = [ [(Ky(z,u) + Kg(z,u)) dz ‘ (2.4)

b
i

The Fgllowing two sections discuss the above
functions in more detail. » $ o

¢
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{ ¢ rs -
2.2.2 Volumetric Stiffness Function Ky (z,u)

o

’

- "For s given plgte penet}ation rate, the vBlumetric
sti1ffness” .function 1n\thé present model 1s controlled by

JEn31ty distribution within the stress bulb due to the

» 3

@ariétionﬂnf the—~cempressibility of the snow material with
density. Prior&toﬁany penetration of the -plate,.. the snow
deposit in the situation under gtudy has a more or ‘less

uniform density. As penetration proceeds, thé snow directly

‘ I .
below the plate compregses somewhat more than that further

1
N ~
below due 'td the simultaneous action of shear 'stresses along

the pair of planes of cuttina @shear. A given plate
penetration therefore yields a density profile in which
density 1s highest near the'plafe and decreases with depth

2 v
until the original wvalue corresponding to the wunloaded

*

state. Therefore prior tovany’plate penetration, the snow
b 4

pxhlpifs uniform volumetric. stiffness properties but as

penetration increases, the stiffness at a given point in the

1

snow mass‘ changes and °therefofe‘ affects the subsequent

density distributions which, as a result, causes change in -

/7

the volumetric stiffness function K, (z,u)/ with plate

penetration. .

Consider an infinitesilpal element 0€7snow,'of type
"B" in Fig. 2.2, within the~ pressure bulb, after a¢plate
penetration Zp and having a w&iume dV 1n which the density
is v aqd the instantardeous strair rate is. ¢ (Fig. 2.4).
Also let® the compressive modulus,v defined hef@in as the

‘ration of stress to strain undeg pure axial deformation

- &
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conditions, be Ec(y,u) for the density vy and the strain rate
b

u. Upon an additlonél increment of plate displacement AZp,

-

both axial and stawearing gtrains ey , - €y s Exy develop, the
later *due to the distortion effect of shearing stresses
3\ generated along the planes of cutting shear. These strains

dre then 'relat;eg'd&o stresses through the compressive modulus

5 3 ‘?‘
de?ﬁ above and-the Poisson's ratio of the material. The

work done 1n deforming the given snow element 1s then:

. du(: (O €+ OyE, + OyyEyy) dV (2.5)
/_\ AN YUy Xy -xy

.
“

_Intqdr’atlon of the above Ex;ﬁression over the enti‘re pressure
bulb yields the total ener;g,y spent in compressing and
dist»(;rtiA'g/ the snow for the "~given plate incremental
displacement. Due toTthe particular boundary conditions of

the present problem and the 1low Poisson's ratio-of the

mzerial, the energy involved 1in the distortion of the snow
mass within the pressure bulb is small relative_ to the

volume change )e,nergy. It can there fore safely be stated

that evaluation of the integral of eqﬁatiéxn (2.5) over the

volume of the pressure bulb is basgically equal to the:.volume

change energy component, dug” to an ‘increment -of plate

_penetration Z : . o X
(2.8)

_37 ‘ D .PW.PL
AEy = volume change energy = IUIO J'O OxEx + Oy ey_ +0xy Exy dx dy dz

FREY [

Assuming plane strain conditions. and realllzing that ~ the
. ] R . '
pressure bulb depth 1is, in general, a function of plate
-~ " u

penetration Zp: ’

©
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(2.7)

w»

{

AE, = owg(? )fgLoxex-+c e, + O dxdz

yEy xyExy

= .

The above \xy¢aLtity is equal to th% work done by the

incremental force ﬁv-. Therefore; / -

b \ z:{ { (2.8)

AE,, = APVAZP

from which the volume ch nge-stiffness function evaluated at

a plate penetration Zp cah be obtained:
' > S (2.9)

’l’ Kv(zpvu) = _A.f_‘i = A_E..___V . . .
. Aze//(azp) |

Substituting for E, (eq. 2.6) in equation (2.9), the

£
-

volumetric épi@fness function®is thus:

J~ ‘ ! -~

Pu D(Z,) .PL

‘(‘E‘Z——S—; fo p J-O OxEx + UyEy + ny€xy dxdz
p

T -

(2.10)

Ky(z,u) =

he key 1n the determination of the function KV(Zp,u)

thus f defining the following functignal

1) pistribution of incremental? sé;esses and _strains,
4]
density, strain rate and pressure bulb deptg a;T\a

relationships:

&}

hd o

functlon‘of plate penetration Zp:
, (2.11)
icey oy(x,2,2p) , ex(x,z,2p) - .
oy(x,z,zp) , ey(x,z}if)’ﬁ\\_J/) o -
oxy(x,i;zpj ,exy(x,z,zp)\ .

Y(X:Zrz‘p) ’ ﬂé(X,;,Zp> 1D(Zp) ' .

-

b
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These functions can be determined from the- proposed

fFinite element model and are thus obtained.by numerical

Z ‘<
computation.

"2) Compressive modulus of sndw as a function of density and

>

plate penetration u:?
(2.12).

i.e, Ec(Y,U) %

Thii;>function 1s a characteristic describing the
compressibility of the material and therefore.neéds to
be obtained throggh tests. Confined compreésibn tests
(see Chapter 3) wergéarriamoutfof such a purpose.

. .

‘It should be noted éhat the apove relationship allows
the 1ntroduction of @‘materiéi parameter in the stiffness
matrix of elements {2/ the, finite element analysis and
therefore contfﬁls the yalué§ of the ahove functions (i.e,

eqs. 2.11). s

»

2.2.3 Shear Stiffness Function Kg(z,u)

' The shear 'stiffness function is linked with the
eFFecF of shear stresses supporti;g\the stress bulb along
thk gwo plares of‘cutting shear described in section 2.2.1.
As for the_volume change compoqent, the shear stiffness of
5

tHe system is dependent on the amount of plate penetration,

density distribution and penetration rate.
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When the plate penetratian process is initiated, high

;

¢

« "vertical shear stressesﬂ develop below both edges of the
blate so that the sheag streng f  the snowematerial at
these points 1is 1likely to be exfeeded thus starting the
cutting shear mechanism. At th point, 1t should be noted
that the main difference between the proposed analytical

modél and the real situation 1s the question of the

[ o

—

predeterminatibn of the planes of cutting shear. The
kinematics of the problem, as observed during actual plate

penetration tests, imply a progressive velopment of the

¢ L -

shearing- planes™. In the present finité element idealizatian

(see section 2.3), these p}anes are defined prior to any

penetration of the plate. However, it can be argued that

since shear displacements further down the shearing planes,

as combuted by the.moéel for a given plate penetratiom,_ may

) ' be very small then the difference between 1dealized and
actual shear mechanisms becomes academic.

Inwahy case, 1f one considers that the two planes of

sheqr/}%? composed of a series of elements of the "A" type

_;n Fig., 2.2, 1t 1s clear that, as the plate begins to

penetrate into the snow mass, such an element located

immediately below one oF'the edges of the plate eventually

undergoes a shear dgformation suffycrent to cause a\shear

stress build up and consequently fairlure of the element.

Other elements Furtber below a to smaller

displacements which, depending on the stiffness\and strength

of the material in shear at the density across plane of

Fa

deformation,amay also imply failure. However, at azcertain

Y
'
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distance below the edges of the plate, these dfsplacements

and stresses are eventda}ly insignifrﬂant so that failure

°

SN
does not occur. Upon aa additional increment of plate
AN

penetration, the shear eleme&ts may or may not fail
depending aon the respective cumulative shear stress ?nd
shear strength associated with them. The failege condition
for snow in shear is therefore defined by consideration of
the cumulative shear stress in a given element and the value™ °
corfrespanding to failure, determined by the shear resistance
of the snow material at a dénsity equal to that along the

plane of shear:

-

i'e, failure dccurs if T.>1p(Y), where To = cumulative *
shear stress in the given shear element.
Yy = snow density along the shear plane of the

element.

i

tr(Y) shear resistance of the snow at a density

equal to that across the plarp of'shear.

?

Failure in the present context refers to the point of

breakage of bonds between snow particles, correspondind to

¢

. the maximum or peak shear stress that the snow material can

resist at a given density. At larger étrains, the behaviour
of the material 1s somewhat questionable. In the case of a

relatively rapid shearing action (i.e, higHh strain rate) the

material exhibits a str%in softening behaviour with a
N t

steadily decreasing residual shear strength due to the
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self-polishing action (heat g;nerated due to friction melts
down particles) of the two surfaces rubbing against ‘one
5ho§£er. Such post peak shear stress-strain behaviour of
, snow has been prev1éusly discussed by Yong and Muro (1981)

who proposed a . mathematical re)éilonship. describing the

falling portion of the %Btress-strain curve, as obtained from

vane shear fests. Such experiments were conducted on
artificial snow at a rotationag speed of 1.75 r.?.h., which
for the diameter of the vane used, cgfresponds to a shearing 1

velocity of 0.95 mm/sec. The proposed analytical expressioﬁ

“1s: / ‘
¢ (2.13)

T = Tge "% '

q T = shear stress for a given aﬁgular displacement of

~ the vane. .
T, = Ppeak shear stress or shear strength of snow. , D
y =‘ angular displacement of the vane (in radians),
/
T

Results fromi controlled rate vane. shear tests were made
available by other researchers (Yong (1985)) during the N

course of this study and proved to be wseful guidance in

L

modelling. A typical curve From/a vane shear test conducted -

4

op-_artificial snow at a ro}giional speed corresponding to a
/£:earing velocity of 0.0073 mm/sec 1s shown in ?1g. 2.5. It

)\Should be noted that in this case, the curve 1s
characterized by a decrease in stiffness (probably due to

L)

bond breaking) at a vane rgtation of approximately 2 d gre&s
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e iad

but that torque, and hence shear stress, increases, rather

than decteases, as suggested in the previous case, with vane 2ﬂ

1 [
rotation. The difference between the two

types of respanse

seems to beadue to thre difference in shearing rate. A
relatively rapid shear test yields a strain softening

type of curve whereas for a slower test, a strain hardening
L

—

behaviour 1s observed. In the light of this, the choice of
f

the appropriate response for the purpose of| modelling a:

\
plate penetration test is somewhat arbitrary and sshould be

b,
g
;I ‘ﬂ

governed by the shearing velocity along the planes of ’
v * ’ € ¢

cutting shear. Since, throughout the course of the study, a

p v £

plate penetration speed of 0.58 mm/sec was used, whxch is
) - -

not too dissimilar to the average of the shearing rates

considered above, an intermediate condition, i.e, a constant

stress post peak' response (Fig. 2.6) was aaopted. The

author, felt that [this 1dealization is not unrealistic and is
both~practical and expedient to implement in the developed °

L'y
model since thé.type of vane shear tests performed to obtain
A

shear strength-density curves (see Chapter 3) excluded any
type‘of post peak |analysis.

Having established the basic parameter;"-describing
- " !’ ’ ' ’
the response_of snxw in shear, the shear stiffness function
Kg(z,u) is sglerml ed by the following analysis. Consider a
)

shear element of surface area dA, as shown 1in Faig. 2.4, in

l

which the snow dengity and i1nstantaneous strain rate at 1its

center are Y and é, respectively, when the total penetrétion
v \ v . B
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_ig a function of density y, strain £ and strain rate &:

h .
~ “

” 5 | ‘ » h | 3 8

. -

of the -plate is Z,. “If the plate is further displaced

.

downwards by 'an amohnt-AZpy.a shegr s aln'develops; whg;e~\\ ﬁ)y

QD

value 1s related to a corresponding ghear stress 7. through

the siiffnesé of the material in shéar, which, 1n general,

i
«

(2.1&)7
T K = 6y A \ - ‘
!
The total shear force d;Vel;ped in the proFeQE is:
‘ ’ ] (2.15)

dPg = TdA = Tdydz

F

5=l
» 1

AN \ )

The, total area of shearing-consists of the two vertical

planzg\\pf cutting shear passing through the edges of the
N ’ .

penetrating plate. Therefore, integration of the above

equation ‘over thais area yields the shear force dye to an
incremental plate displacement AZp:

-

»

(2.16)

D .PW
APy = 2f0f0rdydz
- %

For plane strain’ conditions and setting the sgress bulb

f

"

depth D to be a function of the plate penetration Zp:
* oot e
’jj ¥ ‘ ! (2017)

D(Zg)
AP, = 2 PwJ’D P’rdz
The shear stiffness function evéluateiﬂ at a plate
penetration Z, is then: o ' v
. - . (2.18)
: ‘ 2PW (D(Z,) _- ) ‘
Kg(zpa‘ff = APs/AZp =-A—Z';J‘D P" T dz ,"’
- ‘ | f\“\\ .

\\\) Q;




) - : ‘ 39
(? Again, as for the volume change stiffness function, the
determination of the shear stiffness function thus requ1res,fﬁ\
invesg:;atlon of two types of functions: '
o L 4 . v ’

1) Distribution of shear stresses along the planes

‘of cutting shear as a function of plate

- ' penetration Z;:

(2.19)

1.e, (Z,2,) 1 N

This .function 1s obtainable through Q finite

element form of analysis proposed 1in, thishstudy.

2) Parameters deSCPlbng the shear stress-strain
- ) behaviour as a function of dt;n81ty Y , stra\&n £
and strain rate é:

(2.20)
i.e,. a) shear strength : Tr(y,u)

b) shear modulus : G(y,E,E)

These functions are material properties requiring
testing (1.e, shear tests) for their identification (see

Chapter 3)° and govern the above shear stress distribution

function (eq. 2.19).
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2.3 Finite Element Formulation and Solution in the Present Study

The mathematical relationships developed .in the

preceding sections cénstitute the basis for the solution of
v . B

the plate penetration problem. ihe complek nature gof the

equations developed 1n the Erécedlng section and the

3

particular nature of the boundary conditions involved
discourage a pyrely analytical solution. The finite element
method of analysis not only provides a solution to then
problem but the similarity betw;en the actual physical
process and the corresponding numerical simulation renders
1t atéractive and gustifies 1ts choice as a _ solution
technique.

r

2.3.1. Idealization of the Problem

The solution of engineering problemsalways impllés a
certain degree of idealization of the material considered.

In the present study, snow 1s assumed to have the following

e

properties:

a) The material is homogeneous and 1sotropic.

b) The material is weightless. .

c) Poisson's.ratiom is O.

d) ﬁhe material e%hiblts a linear-plastic behaviour

“

im  pure shear ,such that stress increases
u B3

linearly with . B strain until_ failure and remains

' constant af&érﬁards.

[ A
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7

e) The material is non-frictional (1.e, shear

stresses and strength are independent of normal

%
stresses). . ’ -

‘

In additién, the material 1s known to exhibat the

following characteristics: P
A R fv
a) +The material 1s nan-linear and highly
. -
com3$%881ble thus -~ 1mplying large strainmn

&
° ¥

behaviour.
b) The material exhibits a stiffening type of
stress-strain curve 1n compression such that its

stiffnesg increases with strain.

2 4

having

c) The shear strength aof the- material depends on

density and sHearing velocity.
, )

Techniques for modelling the 1dealized material

the properties described above are discussed 1n later

sections of this chapter.

itself:

Further assumptions concern the solution scheme

a? The plate penetration problem caﬁ be tre;ted on a
plane strain basis. This seems reasonable in the
light of the loading conditions 1mgosed during
testing 1n_whfch the snow deposit is constrained
to dpform in basically two directions (see

Chapter 3 for details on experimentation).

o !
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b)

c)

d)

P 2
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S

Body forces due to 'gravity are neglected since °

Y

stresses, strains, reactions, etc., due to external
v

loading only are of interest.
The material fails 1in shear when the cumulative
shear stress at a given point along tﬁe sheari{g

planes exceeds the shear strength corresponding Eo

A

-

»th density at that same point.

The stiffness of snow 1n campression 1s directly

-

dependent on accumulated volume change and, hence on

density (details_ on how this 1is aincluded in the

finite element analysis is aiscuseed in the next _

. 5
el
&

section).

Ve

\The planes of -cutting shear passing through the

_edges of the plate are vertical and symmetrical with

3

regpecthto the plate.

The effect of strain rate 1s 1ncluded in the ana-
lysis only through the use -of material propertiés in
.compression and shear corresponding to a deformation
velocity equal to that of the pegetrat;ng plate. In

4

so d019 , the effect of a non:hnlfqrm strain rate
distribuklon througaout the snow mass and along the
planes. of shear is thus ignored:a Although it 1is
recognlze% that the 1inclusion &f strain rate distri-
bution if’ an addi'tional pafameter deszribing

material response results into a\more precise and

realistic analysis, the author felt that the extra

!\/ -
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computer time required for convergence f an
additional non-linear type of analys1s wo not

. 14
justify the additional degree of accuracy obtained.

i
g) The shear stiffness: parameter K 1s kept constant

throughout the analysis althougﬁ it 1s recoghized.
that, as outlineg,earlier in section 2.2.3, Kg, is in
general a function of density, strain and strain

4 .

rate.

+

2.3.2 Finite Element Mesh’and Boundary Conditions

<

The initial step in the ﬁinlte element solution of a
given problem is the design of a mesh physicallyatreprew
gsenkbing thé body under study with pTfoper consideration of
boundary conditions. In the presentjﬁcase, the body in
question is °*the snow mass extend;ng sufficiently far from
ther platé to cover the maximum pressure buib depth and
contained between the two shearing planes pas%ing through
the edges of the plagé. In addition,' a layér of snow just

N
outside the .shear planes 1s included for a more realistié
representation. - Th%s bo%y is davided iﬁ%o constant plate
strain triangular elements and joint elements (Goodman et al
(1966)) are used to model the effect of .vertical shear
stresses supporting the pressure bulb alang its wal}s. Due
to the symmetrical nature of .the problem, only one half of
the_bulb i§ considered 15 the finjite élement analysis. The

mesh used in this study is snown 1in Figs. 2.7 and 2.8

displaying node and element numbers respectively.
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The choice of |displacement boundary conditions,
rather than load boundary 6ondit10ns, for the finite element
analysis is motivated byutwo_main factors pertaining to the
nature of the problem at hand: -

a) Q!‘In the plate penetration tests, displacement of
the plate }s controlled by the consiant
penetration raté and the corresponding
reaction force on the plate is measured. The

¢ wuse of displacement boundary conditions combined
with the incremental finite element technique

used in lhiS’ study, 1in which the biate 18

progressively displaced into the snow‘materiaf

and corresponding reactions are computed from
nodal displacements, therefore renders the
numerical simulation that much more realistic.

b) A better control on the large strain bahavighr
of the material 1s achieved with the
displacement boundary conditi%n approah which,

QB in addition, favourizes the constant ypdating of

material properties (both in compression and

fshear) as plate penetration progresseé.

4

As outlined in sectihns 2.2.2 and 2.2.3% point b)

1s a basic réquiremen of the sdlgtlon techmmque used if a
realistic analysis %} to be performed. Furthermore, the
selection of relatively small increments of displacement not
only enablés the handling of the britth{ behaviour of the

material in shear but also preserves the validity of the

small straip assumption induced 1i1n the stiffness matrix
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formulation of the constant | stgain triangular elements.,

\ ,
‘; - Consequently, the detrimental effect of geometric

v

~non-llnearity Jds also diminished by the use pf such an

1

incremental procedure. |

Q

The boundary conditlons\assumed for the solution of
the present ~preblem are schemattcally described in Fig. 2.9.

The top of the mesh, representing the snow surface, rigidly

" |

moves géwnwards, thus simulating penetration of the plate in
the snow, Thes® surface nodes are howeverufree to displace
horizontally thus implying a sﬁooth plate. , The left-hand-
side bodndary, bounding one of the layers just outside the

planes of cutting shear is fixed. Joi}t‘element nodes are
c

allowed * to- move freely in the} vertical direction while
\
horizontal motion is prevented. The bottom boundary, which

1s located sufficiently far away from the Blate in order to
minimize bottom boundary effects, is also fully restrained.

Motion of the nodes along the right-hand side (i.e, the
9 v
lane of symmetry) is constrained to-be vertical only due to

p
/’—N\Nﬁ\\qugideratlons of symmetmy of the problem. @

t

.

2.3.3 Solution Procedure ’

* <

The finite element algorithm used in the solution of
the problem is derived from a computer program developed by
Hanna (1975) and begins with the initialization of material

properties according to the_ initial density of the snow,

( ?
> g . o
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e ‘
i.éTabefore any _plate penetration occurs. As outlined in

-

>
sections 2.2.2 and 2.2.3, the “stress-strain properties of

P

snow in compression and shear are functfons of density and

plate” penetrailon speed so that the ,correéponding
, Pparameters; - {
s Ec(y,u) (compressibilaty) ’

fr(f,u) (shear strength)
‘obtained from confined compression and vane shear tests

respectively, are all initially defined according to the
® ” , ) ( -
. résq}t§ from tests performed on snow at the initial density.

e

specifically, the Value. of modulus of elasticity
iditially assigned to the triangﬁlagﬁcontinuum elements is

“"equal to the tangent modulus of the stress-strain curve in

o

.confined compression at zeTto strain. The value of Poisson's
° /‘\.4\ @
L ratio is set to zero and is kept constant throughout the-

entire analysis. ’Similarly, the shear stiffnéss of joint

°* eldments is initiall& assigmed a value whggh as outlined in

4 B
- section 2,3.1, is assumed to remain constant and the maximum

o,

stress tolerated by these elements corresponds to the shear
strength of the snow at the in%tlal density.3 The normal
st1ffnese 1s irrelevant in the present analysis, since the

a N ’ ¢ R
normal displacement of joint elements is prevented according

to the speciF;ed//boundary corrditions, but is arbftrarily
T
given a value of 100000.
The " size of the spegifiéd incremental plate

1

displacement (i.e, 2 mm) used in the finite element analysis

( is determined simply by Lodividing the [naqxlmum plate

S @y
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pepetration (approximately 70 pm) by the total number of

°

increments, which, in thfe program presented in thig study,
1s set to pB5.

Th ﬁﬁbposed method of éblutlon thus consists of a

series of finite element analyses,. each applying to an

£
incremeni = of plate displacement, for which. material
LY \ )
properties / 1n .the form of sti1ffness parame%;ré, are
- .

. obtained (from characteristics derived from tests results.

°

The no;-linearlty ,of the ﬁaterial' i?plies the use of an -
itérative techﬂlque, ;eveloped for thevtr}angular el;ment?;'
whlch‘ls‘discussed in section 2.3.4.

Following ‘ a particul§r: increment of plate
displacement, stresses and strains 16 triangular elements
are computed from thé . resulting 4incrémental nodal
displacements and the. non-linear anaiysaseu procedure

°
e

4 D
mentioned above is undertaken,and is carried through for a

maximum_ of twelve itgfations. Upon completion of the
2 . ' Iy
algorithm for materials non-linearity, stresses in ' joint

eleménts dre examined. Failure In shear aé ¥arious points
alqu t&? vertical cutting‘shear'Slanes 1s reflected, 1n the
propoigd model,‘b; a total qf»cumulatlve shear stress in a
given j01n£ elemen$ greater than that tolerated by the snéw
material atda density equals to that across the plane of
sHearIn&. Wheg failure does occur, a very small value.(i.e.
0.0001) of shear stiffness is 4931gqed to the element’ anJ

shear stresses subsequently remain constant at the failure

value according to the 1dealized stress-strain curve 1in
9 e
hY
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shear 1ntroduced in section 2.2.3. As a result, after

failure of a given jJoint element, the difference between the

cumulative shear stress and the stress corresponding to
S

fallure-;ust be "released" back into the snow mass on both

sides of the plane of shear. JThis 1s done by convertipg the

wxcess shear stress 1nto an eguivalent system of wvertical °

forces (secthn 2.3.55 which are then applied on nodes on
either side of the plane(s) of shear. A finite element
analysis also including the non-linearity algorithm, 1s then
per formed for this loading situation while keeping the plate
stationary. The resulting reactions on the platelprove to
be opposite to those generated during increments of plate
penetration. Ideallx, the stress release cyc}e”should be
repeated until the excess shear stress 1n any joint element
1s zero but, because of computer time césts, additional

analyses are undertaken only 1f the last 1incremental

(negative) reaction load on the plate 1s 0F81gn1¢umnt magnitude

with respect to the value corresponding to the ‘previous stress release d
' P 3 B

cycle. Incremental reactions due to either plate penetration
' <

»

shear stress release are defermlned by summation

¢

of the individual vertical reactions exerted on the nodes

or exces

representiing the plate-snow interface and multiplication of
the result\ by the plate width PW (F1g.2.4) as a result of
the assumed ane strain condition. The resultggg value is

then doubled since, as it cef be récalled, the fanite.

element analysis performed applies to oply half of the

0>
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plate. The equation for reaction load dn the plate is thus:
|

1 . (2.21)

RL = 2PW(RY(3) + RY(4) + RY(S) + RY(6) + RY(7)

where PW = platé width

Vertical regction for nodes °3,4,5,6,7
éi.e, the snow_platelinterface nodes for
either a plate displacément increment Br
exceés she;r stress analysis,l

where RL = 1ncremental reaction load on

plate.

e 5

The total updated load on the plate .is then comguted‘by
summation of the 1incremental reaction loads on the plate

computed for each plate displacement increment or excess

p
shear stress analysis.

<

‘At the end of every 11n¢crement of either plate

displacement or shear stress release chcle, the nodal
codordinates are then updated simply by adding the

increme%tal hofizontal and vertical displacements to the

¢
E

coordinates at the of the previous increment. The density

PN °

distraibution beneath the plate can thus be obtéined. The
basis for computing denéity is the change in a}ea of the
triangular eiements as deformations occur. The area of
these elements atﬁany stageojof plate penetration is cal-

”

colated from the updated coordinates of the nodes as

schematically described in Fig. 2.10. Since the initial”

f
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Vectors V1 = (AJ,BJ) / » -~
V2 = (AK,BK)
Cross product :
} } k
AJ BJ o0
AK BK ©
AJ*BK-AK*BJ
‘V1' IV2| gln® = 2A

A = AJ'BK-AK-BJ

4

Fig. 2.10 Computation of Area of Triangular Elements
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ar é of each element in the original, undeformed finite
element mesh is&computed ana s}oré{ in the finite element
mesh geherating subroutine INMESH, the ratio of deformed to
unde formed element areas can be determined. Due Eo the
plane strain condition thosed to the problem, these ratlff
are also the volume ratios from which density is ob alneJ
through the following expresséon: y
%a

Y = (AQ/A) X YO

-(2.22)
where Yo = updated density 1n‘given element.
A, = initial drea of undeformed element (l.e;
» ) area computed from initial undeformed mesh
coordinates).
A = area of déformed element (1.e, area

computed from updated 'nodal coordinates)
(Fig. 2.10)
AN
Yo = initial snow density (snow density prior

to plate penetration) °

B From the resQlting density distribution within the

snow mass, an equivalent average strain in each triangular
element is fhen determined in order to prepare the non-linear
analysis in the next increment. The corresponding
computational procedure and the motives. justifying 1ts
incorporation in che proposed model are discussed in the

&

next section.




. The shear stress in falled. Joint elements is then
reporded in order to maintaif% the book keeping on the
updated state of s%ear stress in joint elements subjected to
subsequent excéss stresses which must :then be removed

¢ i

leading to the stress release effect discussed earlier in

this section.

The finite glement algorithm then proceeds to anofher
increment of plate displacement 3nd‘the ;ntire analysis is
repeated, each time with proper/(?onsideration‘ of the
variation of material properties wi
which is dependent on the total plate penetration. The
procedure 1s terminated whgn the plate penetration equals a

value selected aé&ording to the maximum plate penetration

achieved 1n the experiments (about 70mm.).

2.3.4 Technique for Non-Linear Analysis - Triangular Elements

{ K
thyvdensity dis&ributlon,

©

In the incremental type of finpite element analysis of
g non-linear material, the level of stress and strain of the
material must be known at the beginning of each increment.

¢

Fop a non-linear "elastic" material undergoing relatiJely
small vo;ume change, such as saturated clayey soil,
incremental stresses and strains are added to obtain
cumulative values from which principal stéesses and §1rains

can be obtained at a particular stage of loading. . These

stresses and strains are then compared to a reference

v

S——
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a5 . 1

i

stress-strain curve obtained from tests on the material
] A

..

(e.g. triaxial texts) and an iterative non-linear analysis

e
based on tangent elastic modulus can thus be performed.

N}

_Examples of technigues for non-lirear analysis which can be

a

used Qith such'an incremental proéedure ére 1llustrated in
Fig. 2.11.
For a compressible inelastaic mater1sl such as snow and
¢ ° for the type of test performed to determine its response to
compression (i.e. con?i{fd compression test), the above
procedure 1s not applicable because of the following
arguments. The aﬂ;llcatlon of the finite element prqcedure
using the small strain formulation and nodal coordinate
updating approach implies the use of a true' stress-strain
turve as opposed to an ordinary énglnegring stress-strain
curve. In obtaining a true stress-true strain curve from a
given test, streésses and strains are calculated on the basis
of constantly channgQ ‘sample dimensions caused by the
loading process whereas f;Q an ordinary‘stress-strain curve,
the values are .calculated from original sample dimensions.
Since, in the present incremental finite element procedure,
‘strains in a gi&en increment are computed'on the basis of
the deforméd‘mesh corresponding to the end of the preceding
increment, these values may be ’ considered to b%
appraoximately true strains. ‘For a material such as snow,
tested in confined compression, true straing can be computed

%

-
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from ordinary strains from the following equation:

e = 1n (% <~ / 2) . (2.23)

where L

original sample height

=g
"

total sample compression

>

Slm}larly, true stresses. are calculated from the original
cross-sectional area and the lateral deformations occurring
during the test. Since, 1in the presen%&éase, the cross-

sectional area of the sample remains unchanged during the

test, true stresses are .thus equal to ‘ordinary engineering '

7

stresses. The shape of the resulting true stress-true
strain curve, as obtained from a confined compression test
and shown in Fig. 2.12, exhibaits an 1nflection point and
thus ﬁisrepresents the actual stiffening behaviour of the

snow material  under these particular loading conditions.
N
A -simple different procedure, combining incremental

and direct iteration techniques and based on the volume
™

change of the ﬁ%terlal, is adopted_in the present model. As
\&' -
mentioned in the previous section, the wupdated density

aésociated with each triangular element at the end of each

o
plate displacement or shear stress release increment 1is

> -

calculated and recorded. Since, in a confined compression

kd

test, volume change can be directly related to axial strain,

»

an "equivalent" axial strain for a given element can

therefore be obtained (Fig. 2.13):

Y AN o
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Fig. 2.13 Updating of State of Strain of Continuum Elements
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€eq = 1 - Yo/ ¥ * C o (2.24)
where eéqz "equivalent'" axial strain .
y = hpdated snow density‘for a given element
Yo = initial snow density prior to\ plate
i L]

penetration.

The corresponding stress value, 0Og , can be obtained
by interpolation from the confined comprbkssion curve. The
quantities e€eq and gegy " are thus assumed to represent the

-

average state of stress and strain within a given element at’
the beginning of a particular increment. ’

In :the technique for the analysis of non-linearity
adopted in the present model, the strain level (or
"equivalent" axial strain éiscussed above) for each
triangular element is first checked against a value of 0.1.
If it is found that the strain level in all eleﬁents is less
than this value, the iterative non-linear analysais procedure’

is omitted simply on account of the fact that for strains up

toe 0.1, the confined compression curve was found to be linear

for the types of snow tested and for the loading rate used.

-

When the non-linear analysis is required, an equivalent
stress-strain curve is generated for every element and
eséentially depends on the state of strain within each-

element. The resulting curve represents the stress-strain

behaviour at a particular "level of strain of the snow (Fig.

“

“
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-

2.14). Given the average state of strain and stress in a

A &

given element to be (Eeq , oeq), the equivalent

©

E

stress-strain curve is generated by taking the point

-

ieeq: oeq)%as the origin. points describing, the new

curve for the given increment are thus|: .
€j = STRAIN j - |eeql (2.25)
. 0j = STRESS j.- |oeql B

where N = number of points Jéscribing the digitized

confined compression stress-strajm curve.

STRAIN z strainj(computed as the ratio of sqmple
. ~ deformation to original s;mple height)
. coordinate. of poin£ i aof the confined
| compressiaon curve.
e STRESS § "= stress cooniEatp of point i of the
B compression curve. - -
€i, 0j = strain ;nd stress coordinates of point i
RS of the new equivaient gstresg-sttrain
N
- cufve:j
€eq, 9eq = "equivalent" strain and stféss vakues of

snow at the start of a given 1increment,

as discussed earlier.

-
The non-linear analysis procedure is'then based on the
tomparison between the value of  stress corresponding to the

maximum principal stress computed for the Lncrement and that
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obtained by interpolation, at the same strain, of the new
equivalent stress-strain cuFve derived ras described aboves
For a given* element, the discrepancy ERROR between these’

stress values can be expressed as a percent errer:-

\
13

ERROR = "| 100 x (9cgle=- Tint). / Ojnt | (2.26)

-

" o - &
where OC?LC = calculated stress value corresponding
< ) . v

. L

°

ay N . 1
to the maximum principal stress for a

.particular increment.

ki
° 'y

cigt = interpolated value of stress from the
new equivalent stress-strain curve
corresponding to the average strain

, . level or "equivalent" strain at “the
L.

start o% the paréicular increment.

« 9

0

) . LI '
The maximum error so ,caomputed for all rranqular
‘elements is’' taken as the degree of convergence associated

with the proposed non-lingar analysis. technique. In the

o

case when the rror exceeds % for any element, the

: \ 3 .
convergence 1s judged inadequate and a new value ofvelastic

‘modulus is calculated and used in the next iteration: n

5
”
e,

E = oint / &calc (2.27)

where E = glastic ﬁodulus used 1n the next
& @ .
, .iteration.
gint = same as previougly\deF}?ed.
ééalc = maximum princip;l nstrasn co%puted for
‘ . - .

s}

the particular increment.
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The procedure 18 repeated until the maximum error

value ERROR for any element 1s less than or equal to 5% or,

2

in order to malntaln'a reasonable computer cost for a given

program run, until twelvé itterations have been performgd.

Convergence of the proposed téchnldué for a glvén element -
1s guaranteed, as schematrcally described 1in Flg.,2.15; but

may sometimes be very slow particularly in the case where

there 1is an abrupt change 1in SlPPe of the confined

compression stress;strain curve.

Once the d831redﬁﬁdegree of convergence has been
achieved for a given 1increment, the non-linear analysis
technique 'for the mnext increment bégins ,with' values of
elastic modulus fsr each element equal to those used in the
last 1terat15n of the preceding increment.

The procedure developed for the non-linear bnalysfé‘
described in this section is approximate but gonsidering the
high compreséibllity of the material, its inelastic
behaviour and'lthe strong” dependence of 1ts stiffness
properties on voiume ‘change, the author felt that ~thg
apgllcation of such a method was appropriate for such a

material under the 1loading gonditions imposed during- the

plate penetration tests.
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en

E, glastic modulus used in iteration n
© stress-strain point from FEM analysis

L]

® stress-strain point from confined compression test

STRESS
(maximum compressive stress)

< . f

Fig. 2.15 Iterative Procedure for Non-Linear Analysis of Continuum Elements

t
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2.3.5 Analysis For Failure In Shear Of Joint Elemerits

~

The analysis for failure of ‘j01nt _élements is
performed for every increment of plate displacement. First,
the average den81£y across the plane of shearing of a given
Joint eiement is compugéd based on the area of the adjacent.
triangular e%ément inside the pressure bulb. Area is
computed from the ' resultang updated coordinates, as

« % ,
discussed in section 2.3.3 and shown schematically in Fig.

-

2.10. The shear strength of the snoWw material at that

density is then computed By interpolation of the shear
strength-density curve obtained from vane shear tests and
inputted inl the computer ﬂmodel as. a mgterial
chaFacteristfc. The cumulative shear stress in. a joant
eiemént resulting from the superpositionm of stresses from
‘the present and previous ipcrements is then compute?. Shear
stress in joint elements is obtained as the producl of the

shear stiffness per: - unit length .and the average shear

displacement, calculated as the - averagé relative

@

.displacement of each pair of nodes.
As introduced in section 2.2.3, failure at any point

along the planes of cutting shear occurs when the cumulative

Pl

-shear stress in the . joint element representing a series of

such points exceeds the shear strength of -the snow at a

density)equal to that across’the planeg, of shearing:

¥
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1.e. failure if 15 > 1, (Y)

- +
where T, = cumulative shear stress in joint element.

shear strengfh of snow at dén51ty Y acrofs

1 (v)
3 the plane of shgaring. >

Therefore, since the shear resistance of snow at any
point along the planes of cutting shear varies with density

and therefore is a function of the plate penetration (i.e,

‘density distributﬁén aléng the planes of shear changes with

I's

plate penetrazipn), the analysis for failure consists in

comparing the shear resistance function at any point and the

corresponding cumulative shear stress function for *the same.

point. Fasilure thus occurs when these two functions
intersect as |[graphically described in Faig. é.lé.

After failure of a givem jJjoint element, the®-shear
stress 1s assumed to remain constanth according to‘ the
idealization: introduced 1n section %.2.3'and excess ;hear
stresées must  therefore be eliminated for a proper
élmulatibn. The proceaure Foradoing so is 1nspired from
finite element analysis of strain softgning materials. The
method of stress release and transfer was first used by

Zienkiewicz et al*(l9%§) for stress analysis in a no-tensian

ot
materaial. Lo and Lee (1973) later addressed the problem of

slope stability analysis in strain softening materials via a

similar approach. Accord&%g to this method, the difference

: y d
between the maximum shear.stress in a given element and-the
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Fig. 2.14 Iinalysi\s for Failure of Joint Elements
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o .
shear st%éngth of the mateglal 1s taken as an exce;s sheah
stress Ei‘e, the material cannot tolerate a shear stress
greater than its shear strength) and must be thus releasea

back into the assumed continuum. This is done by generating

a set -of equivalent nodal .forces using the principle of

virtual work. Equal and opposite forces are then applied at

the element nodes so that the net effect is to transfer the
excess shear stress to neighbour;ng elements. O

In the present case, applicatlon‘of the above method
consists of generating four nodal forces, equxval;nt to the
difference Atj (Fig.2:17) between the ‘cumulatipe shear
stress T in a gaven joint elemént at the end oF*ﬁ given
increment i and the applicable shear streb@“ﬁ T (Y) along
its plane of shear. These nodal forceg are actually equal
to one half of the laad obtained fromgthe product of the
above excess shear stress and the shearing af;a of the
element since it can be assumed that each node belonging to

one side of the joint element carries an equal share of

load.

-

Therefore *consider a joint element for which an excess

shear stress AT; has been calculated and whoée removal will

subsequently lawer ‘the cumu&ative shear stress to the

failure value TF(TJ. The exces$ shear load is thus:™

.

LAY
-

N
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e = AT; x area of shear (2.28)

P'e:A'tle,wa
2 = length of joint element
PW = plate width.

e

The equivalent forces to be ;pplied at the four nodes of the

element are thus equal to:

(2.29)

PN

(AT x & x PW) /2

and their direction is opposite to those developed»duringda‘

plate penetration increment, i.e. as shown in Fig. 2.18.

Such a calculation 1s performed/ for every failing joint
'‘element and the excess shear stress analysis consisting of a.

finite element analysis with all appropriate vertical loads

Iy
1

on Jjoint element nodes 1s undertaken for every required
cycle as outlined 1in the solution procedure described in
section 2.3.3.
v
%
B P .
i s’ : ’ @

e

bm
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Flg. 2. l.8 Analysis for Excess Shear Stress Removal in Failed

Joint Elements
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CHAPTER 3

EXPERIMENTAL PROGRAM AND RESULTS

3.1 Introduction

The proposed method of analysis described in the.
ppevious chapter implies assumptions and approximations
necessary to the formulation and solution of the presen?
problem. In addition, the components of the.proposed model
require the following dharacterispics og the snow material:

1) compressibiiity. aé'a function of density (axial

stress-strain relationship for fully confined
conditions), ‘

2) shear stress-strain response as a Fuqction nf

density. ’

In view of| the above, the experimental program carried
out during the cowrsp of this study was designed to pfovigg\
required material input parameters as well as for
verification purposes of the proposed model and, by the game
token, of the assumptions and approximations introduced in

the so¥®ution procedure. As kentioned earlier, the objective

of the present .work 1is the numerical simulation of the load-

~deformation, response of snow to rigid plate penetration with

proper consideration of the: dependence of material response
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on density distribution within the pressure bulb beneath the

plate. Consequently, the experimental pr&gram consisted of

r
1

three types of test: )

} 1), p%gte penetration tests performed on snow of two
diffefent ages.(i.e, different bonding strengths)
at a given deformation rate. Results from these
tests could then be compared to corresponding
predicted value;.

2) confined compression tests performed on the same

types of snow at the same déformation rate as for

plate penetration tests. )

3) vane shear tésts performed on the same types of
.snow and at approximately the same deformation rate
as for plate penetratlon-and confiﬁed compression
tests. These\test& were carried out for snow of
different density‘ S0 that rgsults could then be

- used to represent the ‘snow- /behaviour in shear for

the range of densities considered.-

3.2 Experimental Progrém

The three different types of tests and typical results

are discussed in the following sections.
- et

"
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3.2.1 Preparation of Snow Samples

Artificial .snow material was used in this study because
of the critical need to replicate tesg samples of snow. It
was felt that better control on snow properties would be
achieved by generating snow in the labaoratory. Snow was
produced by crushing 3:day old i;e with a pulverizing
machine {Fig. 3.1) im a <cold room oé inside average
temperature -13°C 'gith fluctuations of +3°C due to
defrosting cycles. . The ice crushing process was repeated
three~ times %n order to achieve a snow density of
approximately 0.35 Mg/m’.

5

I »

‘

In all, two types of-.snow, distinguished by the
number of ageing days in the cold room, were used:
1) 4 day old snow (Age 4 days)

2) 30 day old snow (Age 30 days) .

Snow samples were aged in the same cold room inside
which t?elsnow was produced. Ageing was observed to cause a
density 1ncrease of the snow as shown in Figx 3.2,
Correspondingly, grain size distribution alse varied with

ageing time as depicted in Fig. 3.3.
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Cnﬂfined compression tests basically c;n51g.ed in
compresaing; at a speélfiéd _igformétlon rate, cylindrical
sam&ges of snow from its inltial‘ densgity to § final
spécifxeq density of approximatel; 0.60 Mg/m’ while

-

recording the load-deformation response. "The rate of

J
deformation used was 0.58 mm/sec.

The basic «experimentai apparatus for confined
o
compression testing consistcd of & compression testing
b

machine driven by" a 1/4 HP electric motcr as shpwn in Fig.
3.4. A Kulite TC 2000 temperature domp?ﬂsated 500 1b (2224
N) load cell, having a calibration factor of 3.66 N/mV
output and receiving input from a 10 V power scurce }opated
outside the cold room, measured the. load amplied by the

&
driving piston. Displagélent of the piston was measured

with a Pickering LVDT 7312-V2 displacement transducer having
” \ '

& calibration factor of 0.1 mm/mV output and being
T ~
powered by a 6 V source. Both load and displacement were

recorded on a two;channel Sanborn 320 chart recorder located

1

outside the cold room. . Tests. were ‘conducted using

plexiglas cylinders of 38 mm inner diameter, € mm wall

.

thickness "and 178 mm height, perforated by small holes to

t
P

- i
allow for air extrusion during compression of snow sampies.

- Artificially prepared snow was deposited into the

lcylinders with a 2.4 mm size sieve from a height of 100 mm.

4
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o - 1. load cell ) ‘ - ) .
. o ‘ 2. displacement transducer .o SRR C
>, 3. casing . : = :
4. Snow Sample . . )
5. driving pistom3 > ’
6. driving motor ¢ ‘ ) -
o ; 7. recording .system te .
3 : U . ’
Fig. 3.4 Apparatus Used for ConfinedtCompress%ém Test ) . e
< < v N N
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Thé initial density of snowﬁ\determined using a Ohads triﬁle

L . co. ) . '
beam balance with a precision of 0.1 g , was more or less
*

-

.constant and equal to 0.35 Mg{m®> + 1.2%. Ageing of samples
’ ———— “ G ~
took -place inside the cold room, as mentipned earlier, 1in

i thermall}‘ insulated boxes to aQoid temperature chanbe

.

effects due to defrosting cycles. These boxes provided,

. »

protéction to the samples from air mcvement, hymidity, light

[N

. - .
and other factors posEEpdy influeﬁcing the ageing process. -
o Each ihdividual test began by placing a. cylinder \ = g

—~— .

£

containing a snew sample on the compression machine piston,
J

just small enough to- fit fiqfide the cylinder. Friction

between the piston and e interior wall of the cylinder was

thus minimal. -The ‘compression machine was then started

N

moving the piston upwards at a cpnstapt‘gpecified raté, thus
compressing the sngw. Frlct%on betwgén snow and cthe
cylinder wall wa negligibly ém;ll_ due to' both. the
selF—lubriéating p?oﬁerti;é of the snow and the-smo&thne§s

A} 4 t;
of the plexiglas material. As the piston wmoved, the,
. A\ ’ )
load-displacement response was recorded on the chart

v - ’ . A . .-
‘recorder. The- compression machine was stopped. at piston

a

]

penetration of approximately 76 mm, corfesponding to 4 '
* a

density of about 0.60 Mg/m>. R@r the 30 déy old snow

samples, the machine was stoppfd someghat before a piston
] (N v\

:

pene&ration'df 76 mm so as to allow an adequate marggé}of‘\

) - &
!

safety n reference to” load cell capacity. Confined ‘
. A

v ¢ 1 *
compression tesls were repeated three times in erder to .
- . . . . .o~y
. check the reproduteability- of results. . s e
‘d v . . 2 9 - N . *

v . .. 9

-

¥
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The shear strength of .snow was investigated through
& e . . ‘ \
vane shear tests on snow compressed to a given density.

More specifically, these tests- ‘were perfo?med on the snepw
cgﬁﬁrebsed’duriﬁg\tha plate penetration p}oce§é. Once the

&>
desirged maximum plate penetration was achleved,@- the

- plexiglas boxes were turned on their s1de arid the front saide

'
wall removed. Samples were then extruded Frbm\%he snow mass

I

using thin "walled aluminum_ .tubes " for determination of 2

density. DensityN was calculated from gﬁé weight of the
\ " I
samples and the volume of the” ftubes. A portable hand vane
. : 4 v & ) ‘
was' then utilized to determine "the shear strength of 'the
1

snow at approx1ﬁabelf the same location from which the snow

¥
3

samples were <:men (Fig..3.5). The vane was inserted into

the snow and Yturned very slowly (in orde32&Q approximately
. TN

match the§HeFormat10n rate selected for confined Ttompression

T

testing) wunfil failure was observed. By repeating this
2 .
procedure for many points inside and outside of\ the pressure

- L

bulb (highest dersity 'occurred near the plate and then

decreased with _dlsggnbe), a brelatignship Bet een - shear -

1 vl \ - ,‘
strength and aensity could then be generated for snow of a

given, age. ,

o ,Il should be noted that during vane shear testing of

snow, no stress, normal to the ® surface %f shearﬁ was,
. { -

externally "applied. This 1is apn81stent with the real

>
[4
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Flg 3.5 Vane—Shear Test on Snow Prevmusly Compressed by Plate
- Penetratlon
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a

N

» contained the snow samples for ‘plate penet?étiorf“testing.

- ' o 87
.
. ‘ ,
! o

o

*” “situation found during plate penetration tests during which

no significant stresses normal ~to the planes of cutting :

' Q
shear are likely to ‘develop due to the low Poisson's ratio
L3 z . N

of the material. ' ‘ ot

Cl
- &

?.2.4, Plate Penetration Jesting , ‘ ' ' .

“ Speed controlled, plate penetration. iests, were

performed on'deeg snow oF.a‘broximate_initial densit; D.3%

1

Mg/m> and aged for a specified number wof days in the cold.

raom. Dne.of the objectives being to rela@é-the beﬁaviour

of snow . subjectéd to'diFFerént loadlng'tonditions; it was
» thus necessary to test the same ;now’types at a deFormathB /
rate indentical’ to ?hat used 1n confibed compression and
vane shear tests (i.e, 0,58 mm/gec).. - . .

o !

L The experimental appératus. He81gned'and'utileed in .

-~

2

<

this series of tests is shown in Fig. 3.6, The loading

system consisted of a moveaple plqtfo;m driven by a 3/4 HP

~

P ‘ . 7 '
60 motor located at the bottom of an aluyminim frame of 1.75

! /

m height, 0.90 m width and 0.46 m depth, A switch box
enabled to pave contrdlngf the deformation rate (i.e, the

vertical speednof the platform) which could reach up to 30

Al . *
mm/sec. ' ' ’ :

5

’ Plexiglas boxes, mgﬁeur;ng 054 m - in length, D.79 Poe

‘m in dgpth and 0.1 m . in widtf (outside dimensions),

3

a

© - v . -
’_"D -
-
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. i - o
‘Q load-penetrattion relationship was the same as. that used “for

L . . ) 89

.- -

The length and depth of the boxes were chosen 1in relation io" ,

the loading plate length and maximum penetration depth so as

“to avoid side and bottom effects, é@spectiyéﬁy. In
. -

additiqn,‘§he:widtb of ‘the boxes\kgg“suéh that Fhe“dlsta;ce *
betweeq/the wall§ was just lérge enouéh to allgw passage of
"tge loading'plat;. A 71 mm x 71 mm ﬁhdare plate of 13 mm
éhicknéss was used. . ' \ )
The instrumeqtﬁﬁion (load dellv displacement

o s

1
'

transducer and chart recorder) 'which recorded the

- B B

-

“the confined compression tests.
- . —_

Test“began by placing a given Snow box ‘on ‘the

@

platform and setting the deFormati@n rate control switch to

the position corresponding to the » specified value of d
§ L . . v
‘platfoom sqged. . Another switch started the moving“platform

1
upwards.- The load cell and dialeEemant tr'ansducer recorded

the. reacgion" force on the plate and the platform

~

. . , Q-
displacement (corresponding to thg:plate pFnetration in the

.

snow), respectiueln, whosé'magnltudes appeared *graphically .
y .

on the\bhébt recorder. Simultaneously, ‘photographs of a
. & * .
grid, drawﬁ'oﬁ&thé'show dqriﬁq sample preparation using fine
black sand; were taken at given time . 1ntervals thus 7 -

recording the deformation patterns below the.p}iégwinduced ' v
' N L

by the loading process.
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Experaimental Results and Discussion ' \

N A Y

Typical resullts from the three types of tests deséribed

in séhtlon 3.2 a shown andPdiscusged 1n ’tHe- following

sections.

B ] -
Co ok

»

r3.3.l'\gonfined Compression Response and Results )

>
R L L
Ve

In a confined compression test , the material

uhdergoés an axial d@ﬁormatlon while lateral displacements

- are prevented. For a @aterlal with ; relatlvely high

Poisson's ratio, a lateTal pressure develops and theréfore

the éonflning stress on the sample increases due to the

4

restriction of lateral “mgvement by the rigid wall of the

+ . 4 . s -
-plexiglag contalnersquor soi1ls, stress-strain behavioug is

R

dependent on‘con%inlng pressure and consequently, %Nconfined

compreésion test yields information of questionable value

since thg sconfining pressure varies throughout ‘the test.
. % . .
However, when a material with a low Poisson's ratio, such-as

T

the snow types used 1in the -present study, 1is tested in,

similar cenditions, lateral, , deformations are minimal and

.thus lateral pressure is small in relation to the axial

2
pressure. It can therefore be deduced that for such a

material, the effect of confining pressure is insignificant.

Stress-strain relationships under confined

b
compression conditions were obtained from test results

. -/

Q ' 090

-

A
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Ly

simply tf){?rdi‘vmlng ‘the recorded load and piston displacement
values by the cross-sectional area and original _height -of.

the sample, _r'espectflvel.)'. An example «of g typical curve 1s

1flustrate>d\\*n__LLg. 3.7, showing a generally i’ncreasmg

'élope, i.e. characteristic of a stlffenlnc; mnat1erial, ‘and the

o .
presence of microfractures also referred to as the

L

. "saw-tooth" effect and previously reported by Yong and Fukue

)

(1977). This, micfofracturing Behaviour is ‘reflective of

et

16841 failures causgd by fracture off/bonds~ between snow

particles due to local stresses exceeding f:he bond strenntnh.
A resulting load trane;feI: to” other bon‘d.s oceurs until-sthezr
strength 1s in turn excieded, due to stress superposition.
A stress release 1s'exhibited .whenever bonds are broken a:d
a :subseq&:ent stress build-up occurs as other bBonds accept a
%hane of the load transferred to them. Th;e processy- h'owever,

~

also'causes. packing of ‘the snow partlcl'ez(vm'lch then offer

. more and more reslstance to further cbmpression. ¢ This

effect seems to be dominant as the ghape of the

strewss—straln curve, 1ncluding both the bond Fractu‘re and

densrfication mechanisms, 1s typically concave up thuss

implying that the material becomes stronger as load 1is

increased, 1n spite of the 1increasing number of broken

bonds. It can ,alsc be seen from the streds-strain cutye
that continued compression eventually produces a conditiong in
v

bl

which microfracturing eventually stops thus ~seeming to

indicate that bpnd breakage becomes negligible after a

N 4
<q

N

bl
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certain point. This condition arises when the snow
- - k] N ®

n

N . ‘ .
. material, having undergone a given volumetric strain,.- g

Al

reaches the'%hreshjld density", alsao dlscussea Hnyong and
Fukue (1977). Threshold de%élty can be formally deflﬁeh as
«the -~ snow density at whaich no microfracturing w1l
subsequently develop when the snow 1s subjected to 'speed

controlled confined compression }estlng cdnditions and
hA -
depends on the deformation rate. Beyond the volumetric

>

strain corresponding to the threshold density, stress
. y

-
increases rapidly with respect to straimn as microfracturing

>

no longer occurs and as the degree of particle packing

increases. Ultimatelyw fprther-compressfon would__produce a

<

high density snow (O.éd‘Mg/ m’> and greater) with a higher
Poisson's -ratio and thus for which the confrning stress
durlngv confined compression testing .can no_. longer be
d%sregarded. Tée analysis of the behav1ou§§of sucﬁ ty pe of
snow is however beyond the scaope aof. the present study.

‘In tﬁe present work, results fram ~ confined

, =N . 4
compression tests are viewed simply as a characteristic to
] e

.

be inputted 1in the developed finite element:model. The data
descrlbes the stress-strain behaviour 1n compression or
’compresélbillty of the snow material. THe amplitude of the
stress releases observed during tests weré seep to be sm{ll
with respect to the stress values themselves so that,

'Qonsequently, the "saw-tooth" effect due to microfracturing

1s 1ignored as a parameter descrlbfhg the stress-strain
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response. An éverage curve was thus fi%;ed through ?he
center of the recorded'peaks and troughs, as shown in Fig.:
3.7. " The resulting stress-strain relationships ébtained for
the two snow types (i.e, age 4 and 30 days) are shown in
ngs. 3.8 an% }.9 respectively. "The same .stress-strain
data, presented differently in Fig. 3.10, schematically
describes the effect of age on stress-strain rgsponsé.

. . . <)
Ageing of . snow increas§§ the degree of bonding and, as

> rd

expected, the stress corresponding to a particula; value of
strain increases with the number of ageing 'days, thus

démonstratlng the higher resistance of older snow.

3.2,2 Résponse in Shear andjbesults

>

In "a vané shear test, 1t is assumed that the snow 1s
)

tested at essentially constant density. The fact that the

L4

failure plane 1s predeEermined’ is consistent with the

idealized version of the real situation of plate penetration.

in which the 1location of the shear plane is known (Iﬁel\:::jp

vertical planes through the edges of the plate). Although,

- 0

in reality, the failure plane deveiops paogr8531vely as"a\\
oﬁposed to being established qompletely prior to loadlng«aé '
in the analytical model,'it,was felt that results from vane
shear tests could bé) useful 1n the description - of
characteristics representing the behaviour of snow at poiQ}s
where the'material is acting principally ‘in pure- shear *(i.e.

» L
along the failure planes). T

4]




) -

4“':&: »
Y CONFINED COMPRESSION
1908.0 =
. N 1O A )
S & TEST #1
. sgp.p| ... - &  TEST #=. o -
: -
. , o) PesT w3 -
700.8+ - : -
_ ~
25l 600. 0
X A
A4
. 5088 —
01]
. 1]
\ f_g 400. 9 A
n
302: @
200. 8 |
100. 8 < -
» ‘“ rd
é.ﬂ . - 1 : . i 1
. @d.4@ .B85.°.18° .15 .20 -.25 .38 .35 .48 .45
STRAIN ’ ’
Fig. 3.‘8 Confined Compression Test Results - Age 4 Days X
“ ) j L) ~ [
:?% . ‘ / 1Y ) B »
. wE . o




-9

(kPa) «

STRESS

| 2000

1800
1600
1;00
1200
1000

800

600

i

I -

1,
.

TEST #1
TEST %2

TEST #3

¢

CONF IN

Y

ED

96

COMPRESSION

A
0 -

“w

<
v



Y
A
-,
A& B
£y,
‘l
v =
¥
1))
93]
- w
18
l_..
§)]
3 1}
L
¢
«

(vkPa)

7 . \
1000 .
v .
S AGE 4' DAYS ‘- -
900 - -
BO0F . o AGE 30 DAYS

700
600 -
500
400
300
200

100

STRAIN .

Fig. 3.10 Confined CompressiogiTest Results - Age Effect

1

97




/ S
Results from wahe shear tests essentially consisted

-

of shear s(fength-dens;ty relationships, corﬁesponding to
the given deformation rate, for the ﬁwo'tfpes of snow used.

Shear strength of snow was computed from the vane regaing

. $

and a calibration factor. _Results, illustrating the effect

of age, are graphically displayed on Fig. 3.1l. A general

¥ s

pattern is observed- according to which, as expected, shear

strehgth of snow increases with density. as well as with the

9 - hJ !

number of ageing days. _During the vane sﬁ%ar tests

performed du%ing the study, it was not possible to gggsure -
1 - M - - A

the shearﬂresistancé as. a function~of vane rotation since
the recorded vane.readin@‘morresponaed to the maximum shear
stress developed (i.e, the shear strength). lgis, however,

did hot cause. many problems. in the formulafion of the

present model as the post-peak behaviour in  shear was-

- N
actually idealized in this study, and was discussed 1n more

_detail . in Chapter 2 (settion Z.Z.P). Since the proposed

. ) '
model . does require a stiffness parameter for snow in shear,

,wh}ch can only. be obtained from a shear stresshdeforﬁatlon

curve, such a number was thus assumed and considered as an
\

additional parameEOr in the present study. .

Shear tests thus provided means to determine the

shear resistance of snow at a given density but other

parameters describing the shear _stress-deformatzon curves

(required in,the model as outlined in Chapter 2) had to be
?

obt%}ned from other sources due to limitations of the
P ]

L)

experimental facility. \\
3 ' ' \

o
’
.
° ' v
o2
- . ’
. .
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3.3.3 Plate Penetration Response and Results

’

¢
As mentlaned earlier, a pléte‘ Eeﬁetratlon t;st
represents a &oading 31tuaéfon in whicéh both volume change
and shear mechanisfis occur 51mL1taneously. As penetrafio%,
of the plate 1n “the<snow.sample progresse;, a reaction load

. N “ 0
on the plate develops because- of the resistance of the snow

beneath the' plate to undergo volume change and shear along
‘ - ] . . "
the vertical plangs of cutting shear passing through the
.- e &
edges of the plate. The recorded load-penetration response
’ " Y

of a given snow t;pe corresponding to a given penetration
rate {5 thérefore the result of théwcqmbined action of the

two mechanisms mentioned above. . o el ' .

13

The-lﬁad—penetratlon'curves for ages 4, and 30 days

are shown in Figs., 3.12 and 3.13. The !saw-tooth" effect,
L] .

observed 1n confined compre551on)tests, is also exhibited

due ‘to elements of snow within the stress bulb beneath the
-plate being%subjgczed to a loading cgndition sxmllarﬁ£o"tﬁat
.0f confined compression as a result of the low Poassog's

? ratio ;F\the %ateflal. .hs th; plate pénetréfes.deeper inte
the, snow, . more and more of these elemgnts are involved 1n

the volume - change process, 1i.e the stress bulb extefhds

deeper ds penetration progresses. This reasoning seems to
he suppofted‘ by the fact that the amplitudes of stress
releases 1ncreases with platé sinkage, due to a greateg.

amount of snow "material undergoing‘ the bond breaking

mechanism described in section 3.3.1.
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As mentioned earlier, a''‘plate load-penetration curve

reflects the combined action of volume change and shearing
’ <
yechanisms and, therefore,51t can be expected that its shape

1 AS

1s governed by the ;nd1v1duél characteflﬁtlcs, describing

« the behaviour 1n volume change and pure shear, as obtained

>

from confined compression and shear tests, respectively.
The hypothesis discussed 1in ChaptefZ suggested that'durlng
Q >

plate penetration in deep snow, the depth of the pressure

a

“ ) ’ s '
- bulb beneath the plate is controlled by the magnitude of:

shear stresses supporting it along 1t§ si1des. As the plate
L9

sinks i1nto the snow, the ghear strength of snow at any point
along = the plangs “of cutting shear —could be exceeded

depending on’th?,denSbty of the snow- and cumulative shear

stress at that point. It is therefore obvious that maximum

Y
Y -
stress bulb support in terms of side shear action occurs at

_the beginning of the plate penetration process and decreases
as more snow material is stressed‘beyond its shear strength.
Since the stiffness in shear of snow elementsalocated along
‘the planes of cdtting shear 1s‘reducéd to a negligible value
after shear failure occursy 1t thus becomes evident that the
total stiffness aof the syétem in shear decreaéeg with

increasing plate penetration. On the other hand, the volume

change mechanlism occurs —simultaneously during which the

- [l

density of snow within the stress bulb generally 1increases.

4
As a result, and referring back to the sﬁiFFenlng behaviour

!

of snow under compression loading, the resistance’ cf ¢the

P . . .
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system to volume change increases (i.e, compressibility
decreases). Thg;shapé of a given plate penetration curve
therefore dependg on’tw% mechanisms with opposite effectgs,
i.e softening’ effect in shear and stlgfening effect in
volume change. A plaEe load-penetration curve qF~ the
so?tening type (i.e, tangent slbp; décfeases with ;ncgfasiné
pLgte penptratiod) éherefore represents a situation 1in which
the ,cut£ing; shear mechanfsm along’® the failure planes is
donminant over .the yolume“chanée action of the snow within
the stress bulb beneath t plate. Simllgrly, a curve of
the stiffening xype.(l.e, tangent slope increases with plate

. ?

penetration) indicates that the volume change effect is,more

v

significant than the cutting shear effect. It 1s suspected
thatvthe first case applies to reIatlvely old snow hith a
high degree of bondipng (high shear strength) and log
coﬁﬁressibrllty whereas .the second case is typical o% fr?sh
or law age snow, chardcterized by a low sheér strength and a
hign compressibility. “Following the same type of reasoning,-
a relatively linear piate loa Tpenétratlon curve r?flects
the situation in which both volume change aqd( shear
mechanisms participate gqually in the vertical support of
the préssure bulb and thus te&d,to.counf@ract one ancther.
The ;alfﬂiﬁy of lhe‘abovgtstatements 1s demonstrated by the
results of the piate ﬁpenetrat?ﬁn tests. " The

load-pe#étratlon curves from a test performed on 4 day old

snow (Fig. 3.12)show that the response is essentially linear
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2

whereas)resurés from the tests performed on older snbw, aged
30 daysz shows a strain softening behaviour ’(Fig. 3.13).
The plate penetration behaviour faor the two snow types
considered 1s f%us as expected. The curves fitted through
tHe_ experimental plots in Figs. .3.12 and 3.13 serve as
reFereéce for comparafive purposes with analytical

predictions, as discussed in sect®on 4.2.3+—
’ Q

.

"
s e
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{* \ : ) CHAPTER 4
oo : ! s

ANALYTICAL PREDICTION AND COMPARISON WITH EXPERIMENTAL .RESULTS

&

4.1 " General o S

This chapter 1is concerned with the results.of the’
. finite elemegt model and its :-capacity to correctly simulate

a conetant rate rigid. plate -penetration process 1in deqp
o ( show. Results from confined compression and Vvane she;r
2 tests_we;e used to defaine the compressibility ang shear
strepgth,respectively,of“the mapegiél. The resulting curves
defining material charatteristics served as 1input to the
model Whigh prédicted ~the plate stfess-penetration
rélétiohship, °dlsplaqement profiles, Bensity‘ profiles and
depth ?F shear along ghe failure Planes.'

Thenvalidlty of the proposed computer model relied on a
favourable éomparlson between the experimentally observed
anaoanalytlcally predicted behaviour of the sys?em. Thas
involves 51multaneouély satisfying conditions of similarity

o

between parameters describing the response of the real and

'simulated systems. . Evidently, the list of such parameters
* hay be very long and therefore a perfect simulation implies

t

an exhaustive comparison of all the variables describing the

13

behaviour of the system at anytime in addition to a' flawless

analytical formulation of the problem. Due to limitations

( ‘ ' : »
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s, .
of time and scope of the_ presept study,"~qpnly parameters

\
judged most important and relatively easy to obtain through

ot

experiments are considered. As schematically described in
Fig. 1.2 1in the introductory chapter, the performance ofnthe
proposed model is evaluat?d in terms of the following

descriptors of the behaviour of the system:

1]

<

a) Pplate stress-penetration response

b) displacement profile

\
Y c) depth of shear

a8

"d) density profile

In the next section, an experimental vs preQicted

comparison is established for each of the above four items.
) &

The capability of the model to predict the load distributuion
beneath the rigid plate and the density at failure of shear
elemgnts along the Fgllure planes- is dlscdséed in the
subsequent section..

. . “
4.2- Comparison of Analytical and Experimental Results

w
The first subsection deals with the various techniques

of data reduction which had to be de@eloped during the
course of the present study in order to obtain the feqqlred

experimental data.




4.2.1, Dqta Reduction Technigues

¢] .

Photographs of the distorting black sand grid

TN

‘(applied to the snod\ prior to loading) during plate

penetration tests were the basis of .analysis for generating
displacement and "density profiles as well as depth of shear
as a function of plate penetration. The intersection of the

grid lines of "nodes" were digitized wusing a plotter
. ¢ @«

equipped with an eye piece which could be’ focused exactly on.

“

the' node. A separate program was developed for the
digitizing process and nodal coordinates, in terms of

photograph dimeqsloﬁs, were thus obtained and stored in

81

computer files. The measurement of thé plate length on the.

photograph and a éomparlson toc its real length allowed the
computation of/Ai'scale factor so that the stored nodal
coordinates could be translated to wvalues describing actual

Ly o
dimensions. An additional Fortran program was wraitten to

a

treat the nodal coordinate files to obtain displacement and

derrsity profiles. N «

a

Displacement  profile were obtained from the

difference in nodal coordinates between .a photograph

corresgondind:to a given plate penetration and that of the

.Anitial undeformed grid. In the output of the program and
& 3

in the analysis ‘of results, the-position of the nodesgwas
\l\ ' , N -
always defined with respect to a point located at tgé center

.

of - the plate, along its bottom surface, before any

T
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. elements bounded by the grad 1lines. Division of these
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J

penetration had ocqprred%;f.e,'on the original snow surface

\
since the plate is just/in contatt with ,the snow\‘gt the

v

beginning of the test. Displacement. profiles, whether -

-~

obtained exper;gentélly of through analytical prédictions;

were always along vertical columns of nodes originally (ﬁrior,

to any platé penetration) located a - given horizontal

.

distance away from the plate center. In the kase of
profiles obtalngp from photographs, the gr\d lines Qsii not

ofiginal}y'exactly vertical and therefore an average of the

- 3
horizontal coordingtes of the nodes along a given column was

e

used to. define iﬁs originaf position with respect to the

center of the plate. \ )

. Density profiles weére generated using the same

P

program from consideration of "the change. in area of square °
*
N ( ' ™
square elements into triangles+ facilitated the computation '

of area which was carried out as for the density calculation s
in the finite element mgdel (Fig. 2.10). As  for

' -
displacement, - density profiles are also computed along

vertical llneéypeflned by the average horizontal coordinates

of the cen!ro@ds of thp;square elements. ,

> The depth of full shear is defined hereafter as the
(o]

depth beneath Fhe plate.(along the plg;es of cutting shear

through the ‘'edges of Bhe plate) at which the normalized

3

shear deformation (1.e¢, rafio of shear deformation per unit’ .

'length) is at least equal to 1 or, in other words, the depth

0 P /
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[

until which ‘an element of snow has sheared completely. In
the illustra%iye example shown in Fig. 4.1, el;ménts l to 3
have sheared completgly whereas elements 4 to 7 have nat.

The depth of full shear deflned above is thus referred as

Dg .- on the same figungﬁwd??Ta value ' is another basis for

AN ] '
comparisgn between experimentally observed and analytically

predicted plate penetration behaviour and pfqves to  be

useful _as a of the suitability of the inptt shear

[ 4

check

strength-density gugbe. The experimental values of Dg were °

!
obtained Ffrom the plate péngtration test photdﬁqaphs %o

e—— a -

horizental grid line deformations é}gng the “planes of cutting

shear. The, number of horizontal grid lines op eitﬁer side

.

of the fairlure plane(s) were counted and‘pumbered followapg

the example 1n Fig. 4.1. It was then possible to determine

which shear elements, représented by pairs of verticalgrxg

bounded by podes, completely as

segments failed

described earlier. Both planes of shear in the "photograph

were considered from which an average value of depth of
v Y

B

shea?® was obtained.

technique, elements for which the difference in eleyatlon’of .

the center of fhe two sides ofsthe €lement was greater than

9

the original length (obtained from the wundeformed graid

photograph) were considered kompletely failed. The distance
from the center of the inner side (1.e, on the inside of the

failure plane(s)) of the lowest completely failed element to

:the plate was taken as the depth of full shearDg “ a{isﬁown

S

in Fig. 4.1.

In terms aof the present data reduction.

A Y )
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4.2\3 The‘Role of Shear Stiffness

.-

AS\ introduced

{
modulus 1n shear Ks

1

per formed set of ‘experiments.

earlier in chapter 2& the stiffness

1s unavailable from the results of the

¥

This quantity 1s required in

v &y
the model to characterize thé behav1oyr of the snow as it

~
- ’

plate penetration progresses.

a

L)

fails along the two_planes“‘of cutting shear developed as

Essentiéiiy, the wvariable

! Kg defines the degree of shear deformation at which_sndw

4

2? - fails and thus can no longer‘ accumulate additional shear

stress. .

Due to

A}

stiffness, the degree of sensitivity of the Tinate element

v

model to .this parameter was investlgated.

the

about shear

absence of inform&tlon

The developed

e

3 . R
computer program was run several times with different values

of shear stiffness,

The reaction of the model to a change

in Kg . }nk terms' oﬁ the four descriptorg of .plate \
- penetra§1on behaviour considered in this study anﬁ .
o introduged in section” 4.1, " 1s discussed in the next few *
seétibns along with the comparison between éﬁperimental,and t

predicted response.

™

4 rgy
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4.213 Comparisoﬁ of Experimental and Predicted Plate

°

Penétration Curves

4

[}

LA ]

The p%ate pené\ratlon curves %re expressed in terms

of stress on the platé as a function of‘penetrézion. Piate
streés is obtained by dividing the reaction load by the_ area
of the plate. ‘The stress-penetration relatlonshipé for 4
day old snow obtained from the plate test.and predicted by
the(Finipe element model ar; depicted on the plot in Fig.
4.? for comp;rison purposes. ,The experimental curve shown

in the- same figure is the same as that fitted through the
< ,

experimeﬁtal graph (section 3.3.3) wh1§h passes

[

approximately half-w between the mean of the band of the

test curve (Fig. 3.12) and the lower boundary of the same

- v
‘curve. The 're§§on for the selection of such a reference

curve is due to the Ffact that the finite element model

predicts the plate load afﬁerﬂ stress releasesy caused by
failing shear elements. In the actual case, the 'stress
vibrations observed arihprgduced by“both—the mlcrofgacturing
of snow while compressed (discussed 1n Chapter 3) and the
stréSS .release e%Fectb mentioned above. }t 1s -therefore
diffic,ult6 to affldrm° that ﬂtheo lowest boundary of the p{ate
penetration curve represents _the behaviour after shgar
elemés& stress releases since the microfracturing eFFer‘lS

also. incorporated into the response with the result thﬁg\ig‘

is 1mpossible to separate the two components. Similarly,

8
L
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the mean of the same curve does not necessarily represent
. . l
the response that can be compared to the finite element

prediction because of the stress release effect although the
latter is not suspected to ~cause large drops in plate
stress. Therefore, due to the above arguments, a:curve in
the middle of the mean of the band and tHe lower boundary

a B
was selected as the reference experimental cyrve.

I

‘In the predicted response, the effect of shear

-

stiffness is included. For the wvalues o Ksg considéred,

the agreement between experimental and finite elemeat

|

expérimental and %;edlcted curves 1is similar in that the

relationships are characterized by a bi-linear type of

t

such that the response 1s essentially linear,
i

starting at a given slope, and then followed by a decrease

behaviour

%

Q.

results is reasonable (see Fig. 4.2). The shape of both,

in slope. It should also be noted that the Eredlcteﬁ‘

stress-penetration response is somewhat sensitive to .the
value pof shear stiffness Kg and. thus that different values
of ,Kg °~ generate different cprvés. In the set of curves
shown in Figl 4.2, the rélatlonshiﬁs pertalningmlo Kg=4500
and Kg=6000 seem -to give the best results or clogest

agreement with the. experimental —curve. "The curve

‘corresponding to ° Kg =3000, overestimates the response

whereas that for Kg=15000 tends to underestimate it. In

general, the plot on fFig. 4.2 1mplies that an increase in Kg
" . ‘ :

lowers the predicted curve whereas a decregse 1n Kg tends to

. b . -
raise it.
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( ‘ The reaction of the curve to a change in shear
stiffness .can be“explained as follows; a low value of Kg
; 5 /
implies a '"ductile" behaviour of snow in shear so that

elements of the material along the failure planes,and “thus

shear, tolerate relatively large

Ry
displacements before mob1lizing the full shear strength.

ac%ing principally in

In

such a case, if the value of Ks. 1s too low 1in the model,

the total shear stiffness of the system (1.e, the stiffness

contributed to by the shear elements along the planes of

real
e

situation, since less elements have failed for a given plate

shear) decreases too slowly, as‘ compared to the

penetration. Conversely, a high value of shear stiffness

"brittle" behaviour in shear such that

¥ 4
failure occurs at a small shear deformation.

results into a

A high value

of Kg in the model causes a rapid prdgressive failure of

shear elements resulting into a 1low wvalue of the shear

stiffness of the system starting at a small‘vélue of plate

¥ >
penetration and thus applying for most of the penetration

process.

curves

The corresponding plate stress-penetration

for 30 day old snow are shown .in Fig. 4.3. The agreement

between experimental and predicted curves is not as' good- as
o=
7

for the & day old snow especially for the higher values of K

15000) but the curve corresponding to

(i.e, 9000 and

Kg =4500 yields relatively good results. Again, the

' predicted curves are bi-linear, but to a lesser degree than

\‘
~ L4
v

S
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Q ’v ~
‘: those for 4 day old snow. The analytical model is
consistent in that its sensitivityf parameter is similar

to that for &4 'day old snow; an increase in Kg results into

¥ 8 lower plate stress-penetration response and viceversa. It
’ is also interesting to note that, as for 4 day old,
. pfedictioﬁs are quite good when the shear stiffnéss
pa;ameter Kg 1s 4500.° ' ¢
/
' & \
4.2.4 Predicted Distribution of Components of Total Plate
) Resistance e |
Jn the Flnite‘ element model, érovisions were made
§ ! for determining the individual components of platé
penetration resistance:
) a) resistance due to shear along ‘tﬁe .planes of
shear. °
‘ 'b) resistance due to eombrp;sion of snow'inside thé
) . pressure bulb, i.e, snow beneath‘the plate and
‘ bounded by the shearing planes. ‘
4 c c) resbstancelaue to compression of snow outside the

£ S e

o
shearing planes. ‘ e

&

‘ The predicted distribution of the three components of

>

. ¥
plate penetration resistance for both types of snow f&
braphicallyﬁ displayed, in Figs. 4.4 and 4.5 for the best

o

predicted cUrvesnB For both types of snow,’ the greatest

W
» a
. y N
\ .
>,
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Wy
component of plate resistance [i¢ that of compression beneath

=}

the' plate followed by that du%ﬁﬁb shear along the failure
VU e s—‘ ‘ < .
planes. Compression outside of the shearing planes stays'’

practically constant and coqﬁributes Qery “little to the
R total plate resistance in  both cases. The relative
magnitudes pertaining to compressionand shear vary with the ‘age
, - of the snow and with plate penetration. For 4 day old snow, -
 the plate resistance due to shear 1s approxima@ely half of
’ ' that due to compressioﬁ beneath the platg"fbr low

penetration walues and decreases toc about 20% of the latter
\ . =

vaigf’jg;—tﬁﬁ’Thgﬂ?esl penetration. This 1s a result of less

load being carried in shear as more shear elements have
/f failed at higher plate penetration. In the case of 30 day
g old snoﬁ, the shear strength of the snow 1s higher and plate

resistance due to shear contributes a greater percentage of
b 4
the total response as .shown 1n fig. 4.5.

i

¥ The above relative amounts of plate resistance due to

1
compression and shear are  consistent with results obtained

, . o ]
by'Mefgxas (1984).

)\ § . L
4.2.5 Comparison of Experimental and Predicted Digplacement

vy [

Fields
N - . =, ¢ . N \
4 : ° - ) -
, P . °

. in this study, the similarity between experimentaldy

i

. obtained a@d predlctea displacement field@%ls established 1n
. N 4 )

. s i
terms 9f-ver%ical displacement profiles only. Observations

; \ ~~ -~
é‘ﬂ 7 N 1 )
b - . - - o

v

. a2
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during plate tests and grid’ line photographs showed that, by

and .large, horizontal displacements 1n the snow mass were

‘negligible and could therefore be omitted from the

comparative study.

v

The experimental and predicted cumulative vertacal
displacements under two points below the plate genter for &

day old snow at penetrations of 36 mm ahd 64 mm are shown in
o

Figs: 4.6 and 4.7 respectively. "~ Predicted . vertical

-

displacement profiles -were obtained from the displacement of

selected nodes originally located a given distance away ‘from

] s

the plategaccordlng to the structure of the finite element
. - \

mesh shown. in Fig."' 2.7. For both plate poéitions, the

<

'agreement between experimental and analytical values 1s good

especially for points originally less than 1.5 plate lengths

away from the original snow surface. Experimental  and
predicted values diverge from each other for some distance
below and then seem to converge again. A similar°comparison
between  vertical displaceqentgfwofiles under a point some

distsance . away fgom the plate .center for the same plate

e
-

penetrations 1s 1llustrated in Figsy 4.8 and 4.9
respectaively. For a plate displacement of 36 mm, the

agreement *between experimental and predicted values is again

very good far pointsaoriginall;\locateg less thag 1.5 plate

lengths from the original snow surface. = The_ above

dlverge-concerge effect between experiMental?ﬁnd predicted

-

o
displacement values is also observed in-this case. For a ..
N v

)
9

o~




or

44l

- ™

NORMALIZED DISTANCE FROM ORIGINAL SNOW SURFACE (PLATE LENGTHS)

VERTICAL DISPLACEMENT (mm)

20.8 25.82 38.8

.5@
~
}. 2a
1.25
1.58

1.75

2.75

3.08

3.25

i v : BRI

1

T

&  EXPERIMENTAL - PLATE DISP. = 36.8 mm
> FEM PREDICTION - KS=30@@ — PLATE DISP. = 36 mm

©® ' FEM PREDICTION - KS=45@8 - PLATE DISP. = 36 mm
a FEM PREDICTION - KS=6000 - PL.‘\TE DISP. = 38 mm
0] FEM PREDICTION \_KS=15008 - PLATE OISP. = 36 mm

’

b

3.50

VERTICAL DISPLACEMENT UNDER PLATE CENTER - AGE OF SNOW i+ 4 DAYS

~

o

e ] v \

+

Under Plate Center - Age 4 Days (Plate Pen. = 36 nm) o

1

* 123

&

- Fig. 4.6 Experimentaily Obtained and Predicted Displaceme;xt Profiles
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Experimentally Obtained apd Predicted Displacement Profiles
Under Plate Center - Age 4 Days (Plate Pen. = 64 mm)
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plate peﬁetratioﬁ of 64 mm, the discrepancy is more uniform
aLllalonQ\EBJ cGrveés{L%‘ ' ~\ (

. It should - be inoted that for a - given plate
penefratlon, both experimental and predicted displacement
profilés are essentially linear up to a certain depth, thus
implying an wuniform Yertical strqin distribution, and are
cha&%gtgpized by a chanlige 1n gradient below that depth. The

.

change in slope of the displacement progile is mainly due to
y »

the wvarxation in stiffness of the system 1n  shear. A%
4 .

discussed earlier, shear elements along the planes of

cutting shear fail progressively so that for a given plate

R
penetration, snow has failed aboye a certain point and has

4 . i
not below .that same point. The stiffness of the system 1s
gﬁds low abevie the given point anmd higher below so that

displacements are also expected to be higher for the region

. ) ower stiffness. . As a result, the gradient of Lhe
]
displa ent rofile, or strain, 1is also expected to be

higher for the less stiff snow and lower for the stiffer
snow. -~ The change of displacement gradleAE 1s particularly
obvious 1n the profiles shown 1n R@gs. 4,6 and 4.8. The

’ P
above arguments thus asem to imply a relationship bé?\een

-the point of change 1n displacement gradient and ﬂhe point

above which the snow has failed completely, 1.e, depth of

F{;l shear, introduced 1in section 4,2.1. This relationéhlp

is discussed 1n more detail VA section 4.2.6.
L&
The predicted displacem®n ofiles in Fi1gs. 4.6 to

)
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‘4.9 also show their sensitivity to the shear stiffness

pargmetef Kg, which in all Eases, proves to be relatively,

small and, 1n any case, lower than that " observed for the

plate stress-penetration curves.

The displacement profiles oétained for 30 day old
gnow below two different p01nt; on the plate and for two
plate penétrations are shown 1n Figs. 4.10 to i@.lS. The
agriiéent between experimental and predicted ;alues can be
seeu to.very good. As for 4 day old snow, the displacement
prgfiles are linear for some depth and"then feature a change

in slope, the redﬁon@ §or which have 'already been discussed

2

in this section. Also, as for 4 day old snow, it appears®
St
that the shear stiffness parameter Kg has less effectan the

resulting displacement profile .thad on plate pepetratlon
- o - ' -

response. . <y
e g

1

4.2.6 Depth of Full Shear :
/

{

o

The‘depth of full shear Ds(intrOQUced in section 4.2.1)
is a descriptor of the plate-snow system which quantifies

the proéressive shear failure mechanism generated by the

[}

plate penetration process. Thespfedicted values of depth of
+ \

full shear Dg are obtained from the finite element analysis

which, for each increment, updates the values of total shear

deformation for each joint eIemgﬁt along the plane of shear.

The depth of full shear value D; is obtained by searching
[: '

/
f

m—

)
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' s

the deepest element for which the total shear deformation iszﬂ
greater or equal‘to the origiégl depth: ' ‘.

Fﬁr 4 day odd énow, a comparison between experjimental
and predicted valﬁes of Dg for' various values of tH; shear
stiffness parameter Kg is bresented id’Table 4.,1. The
tabulated figures are consistent with the 38281€ivity

analysis Rerformeg for the plate penetration response of the

4 day old snow in that there exfists an optimum value of

-

,Kg which generates a shear depth value quite close to the,

4

T om
experimen%al one obtained from plate penetration test .
¢ “

‘2
pho@ographs.’ As for the blate stressjpenetration response,

reasanable agreement « between “experimental and ‘predicted

values 1s obtained for the range of Kg values considered.

Best results \%fe obtained for values of K g =4500 and
~ .
Ks =3000. For the lower value of shear stiffness, the

predicted shear depth implies ‘that the failing ‘mechanism

along the planes of shear does not extend as deep as for the
A}

actual plate penetratidgn test whereas the opposite applies
for the higher Kg value thus 1indicatang that the best

prediction of Dg would be using a Kg wvalué in between the

¢

aboye two valués.
Deptkh of full shear values for 30 day old snow are
shown 1n Table 4.2. For a plate penetration of 24 %hm, the

discrepancy between Experimental and predicted values 18
considerable for both values of shear stiffness (
’ N e .
dered whereas much better agreement 1s obtained for a plate

|
o

3 consl -

, ' v

L]
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peﬁetration equal to 36 mm. Note that for 30 daydlold snow,
. ) @ . .
the sensitivity analysis 1intentionally involves (E?s values

3 e :
of the shear stiffness Kg since information about realistic.

%

values of Kg was already available from the computer runs

- - i ~
I3

for 4 day old snow. ' 5 R

{

“The relationship between the point of change in

gFadient of the displacement profile and tde depth of full

shear, introduced 1n section 4.2.5, can now be verified.

k (8

For the 4 day old sffow, inspection of Figs. 4.6 'and 4.8 show

that for a platé displacement of 36 mm, the point of change

oP displacement gradient 1in the case of the actual
4

experiment occurs at a depth, of approfimatély 1.9 plate

lengths whereas for the preéictlon, this,value 1s about 1.5
P \

plat® lengths. From Table 4.1, %the experimental vafge of .
_depth of shear is BIHm to which the plate penetration

valug of 37 mm must be added for a proper comparison with

the wvalues obtained from displacement. profiless The

4 : .
res?lting value 1s therefore 118 mm gr 1.67 plate lengths.

/

. Predicted values of depth, of full shear from fdable &.1

-
corresponding to /a plate displacement of 36 mm 1s” about 9%

[ .

mm which when added to* the plate penetration value yields a

vald@ of 131 mm- or lF%é ,plate lengths. For a plate

7 0 e .
#gdlsplacemept of 64 mm, Figs. 4.7 and 4.9 indicate that the

change tﬂ_slope of the dlsplacemenbyproflle,°althoggh not as

obvious, occurs at a distance betweén 2.0 and 2.25 plate

. » .

lengfhs for both the.actual case and the prediction. ,

©
&
S

~
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Table 4.1 shows .experimental and predicted* values’ of.ﬁ;g{t
s & v

of full shear of 135 mm and gbout 165 mm respectively

~which, when adjusted fof plate penetration, yield values of

199 mm (2.82 plate ‘lengths) and 229.0 mm (3.24 plate

»
lengths). ' J
/! * i .
-, Similarly, ain the case of 30 day old snow and for a
[ .

Q . [ .
plate penetration of 36 mm, Figs. 4.11 and 4.13 shaow that

the change ﬁw gradient of the displacement, profile occurs

at a depth of approximately 1.75-2.0 platé lengkhs below

, the original snow surface. Consultation gf Table 4.2

‘indicatesexperlmental and predicted values of shear depth of

98 mm and approximately 90 mﬁ, which when carrected for
plate displacement, correspand to 134 mm (1.9 plate
lengths) and 126 mm (1.8. plate lengths). For a plate

displacement of 24 'mm, the agreement between depth of Fu{l

shear and point of change of dléplacement gradient is quite

2
, s
v

poor. .

The above- tomparison between the point of change of

L

\disblacement ‘gradient and the depth of full shear 1s

Y

summarized in Table 4.3 ,and shows that in general there
» L) 9
seems to exist a relatignship between the two parameters.
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e P]a:; Pen. K A D,
mm
Experimental 36.8 . - 80.6
Predicted 36.0° 15000 97.4
36.0 | 5 9000 93.3
" 36.0 6000 93.1
" 36.0 4500 92.8
" 36.0 3000 73.7
Experimental 63.7 - 135.2
Predicted 64.0 15000 166&\
" 64.0 9000 166.4
" 64.0 6000 162.2
" 64.0 4500 158.2
" 64.0 3000 124.1

v

TABLE 4.1 Experimental and Predicted Depth of

Full Shear - Age 4 Days
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Plate Pen.’ K, o,

mm, mm

Experimenta-l 23.8 - 34.5
Predicted " 24,0 9000 "52.7
" 24.0 4500 60.9
Experimental 36.5 ° - - 97.8
Predicted 36.0 9000 88.9
" 36.0 " 4500 93.2

S
=,

3

TABLE 4.2 Experimental and Predicted Depthof -
7 ~

' Full Shear - Age 30 Days

/ -
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Age . Plate * Depth of Full Shear _  Point of Change of
of snow Penetratiaon DS“”“ . Displacement Profile
(days) (mm) ' (Plate Lengths) (Plate Lengths)
EXP. PRED., EXP. sPRED.
4 36 1.67 1.86 1.9 1.5
4 T 2.82 3,24 2.0 - 2.25| 3.0 - 2.25
.30 2 0.5 0.9 1.5 - 1.75] 1.5 - 1.75
30 36 1.9. 1.8 1.75 = 2.0 | 1.75 - 2.0

%

Table 4.3 Depth of Full Shear vs Point of
Change of Displacement Gradient
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- 4.2.7 Comparison between Experimental and Predicted Density Profiles
1%
U «

Density profiles derived from the change 1in area of

square elements of the grid photographed during plate

e
penetration tests and those predicted by the finite element

-

: model arfe displayed in Figs. 4.14 to 4.21 for both types ?;f o

v

snow Used. ®Hs shown in the plots, the experimental profiles

feature-a considerable scattering of the points although

7,

following more or less the same pattern™» as the predicted

@ ©

ones, 1i.e, density decrease with depth. The predicted

density profiles are, of course, more clearly defined and in

3
~

. -
all cases, are characterized by a more or less constant
~a &

value for some depth below the platge fallowed by a decrease

\ \ o)
to the initial density (prior to loading). This is

’

.therefore Fongistént with the predicted (and experimental)
displacement. profiles (section 4.2.5) which followed a

similar pattern by which a linmear displacement profile

implied a constang/g;greq of strain. Since, 1in the present:

s ~
loadaing situation, a relationship between vertical strain

<

and density clearly exaists, it 1s hence not osurprlsing to

observe a uniform density for some depth below the plate. g
co - The agreement between experimental and density

profiles can be said to be satisfactory in so far as the

1

é&j trends are similar on both cases. The scattering of
' A
! » experimental valué;, mainly due to -the probably non-uniform

dengiky distribution of the snow deposild\ prior to loading,

3 -
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7 /

¢ ’ ‘ I3 - ’ 13 -
does not allow an accurate comparisgn between 1ng1v1dua1,

¢

experimental and predicted density values along the
3

~ profiles.

o

3
-

' ¢
° 4.2.8(‘ Predicted Load Distribution en the Plate

4 ¢

[
. The developed model has the capability of predicting

the load distribution on the plate as a function of hlate

penetration. Load at a given .point glong the plate is

::ﬂﬁut%d as the produFt of the reaction on a given node

representing the plate-snow interface in the finite element

mesh "a Jate width since the”%roblem is analyzed 1in

°©

terms [of pla strainncondifions.

The load distribution onethe plate “for sever%} levéls
of plate penetration and for bofh types of snow used are
shawn in Figs. 4.22 and 4.23. In both cases’, the
digtributlons Follow;ﬁhe s;ge trend.in that the portion of
load carried increase; from the center to the edges of the
plate. Points near the plate coenter are sbbjected to
reactions resulting from the gesistancg oéw ghe snpow to
undergo Cplume change. At or neap the edges, the snoQ tends
to simultaneously compress and shear aléng the failure
planes so that" an additional resisting force is- q¢nvolved.

‘The predicted behavidur is therefpre as expected. .

@

» : Q
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4.2.9 Predicted Density. at Failure of Shear Eulements

13

As discu‘ssed‘ in Chapter 2, joint or shear elements
fail when the ‘cumulative shear .stress exceeds the shear

strength at the density across the plane of shear of the

B

.element . Such density values’“are unknown quantities prior

to any plate penetration and are generated by the model from

* the predicted displacement fields.

4

- expected since at the beginning: of thle ‘plate penetrati()an,

4

The density at failure of each joint element in “Ehe

model and the corresponding distance from the original snow-

surface (i.e, original plate position) at which the failure
process occurs is plotted in Figs. 4.24 and 4.2_5 for both

types of snow. It can be ‘observed that joint elements near

the-plate fail at a higher density than the rest especially

in the case of the a(day old-snow (pi'ig. 4).24). Tﬁis can be
process, support along the Fai_lurea‘ pﬂ}ane‘S“is highér due to
that ‘thel failure process has not ,deveiop'ed appr;emably.
Higher den‘sity‘ in triangular élements.near the failure
planes can.thu,s result. u

For joint elements originally located at depths of
0.5 plate lengths‘ and greai‘.er, density at failure stays
practically constant and even more so for 4 dz_ay old snow.
Compeaqrison of Figs. 4.24 anci a.‘zs shows - that the densif_iés

at , failure for 30 day old snow are in general higher than

those for 4 day old snow thus implying that the l’attélr type of
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snowg fails earlier in the plate penetration process. This
is to be expected since the shear strength of the lower age

2
snow is lower as shown by the vane shegr‘strength results

presented 1n Chapter 3. . ‘
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CHAPTER 5

CONCLUSTIONS AND‘RECO“MENDALIONS’FDR FURTHER RESEARCH

5.1 Tonclusions

' On the basis of the.tests performed and the results of

the developed predictive analytical model, the following

conclusions may be drawn:

1. The compressibilit of snow, a&s shgwn~ by cﬁﬁfined
compression tests, increased with density. A stiffening
type of curve was obtained for all tests on both £ypes of
snow used. As expected, the response for 30 day old snow

was stiffer due to the higher degree of sintefing.

- 4

2. The shear strength‘of snow 1ncreased with age, due to

the - greater strength of bonds between particles, and with

‘ density, as demonstrdted by results of vane shear tests.

3. The experimental plate stress-penetration curves were
essentially bi-linear with a change of slope occurring
relatively early in the penetration procéss. Significant

stress vibration due to microfracturing was observed.
: L .

4. A method to mode 1 a highly compressible

non-linear materisa which failed according to a punching
shear type of

%chanism was developed. The mode 1

¢
includes the effect. of non-linearity and strain hardening

behaviour in compression as well as the effect of
\ /

arn
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shear stresses generated along the vertical sides of the

pressgie bulb.  The maximum shear stress tolerated by a

shear element was limited by? ity shear strength which 1n

turn depended on density. Provigions were made to simulate
f

this effect so that the fodel includes an algorithm by

¥

whi excess shear s in failing joint elements are

ss
redistributed within the snow mass. In so doing, the shear
stress in any ‘shear element never exceeds the value
corresponding Eb the saear strength.

5. The plate resistan;e—penetration curves as predicteH by
the analytical model compared rather well with the
experimentélly obtained ones. The predicted response was

.

somewhat sensitive to the single ‘value of shear stiffness
employed in the model but a value.of 4500 for this parameter
gave satisfactory results for both typeslof snow used, As

expected, the predicted value for 30 "day old.snow 1s higher

than-that for 4 day old snow. ey

The good agreement between predicted and experimental
plate stress-penetration curves demonstrates the ability of
the proposeh\\model to simulate - the plate penef%atlon
mechanism. The success of the finite element method of
analysis as a solutiop technique is indicative fhat the
energy balance of the system is preserv;ﬁ In termg of an
energetics a;proach to the problem, the governing)}

relationship describing the plate penetration proceés is”
) -
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that the work done on the system is equal to the total of
the deformation energy of the snow, enérgy losses due to
snow-plexialas Frict%g:f stréln energy of the plexiglas box
which is not entirelyrrigﬁd, etc. Comparison of experi-
mental and predicted results based on the energy balance
concept would simply involve 1integrating thé experimental
plate stress-penetration curve to obtain the total energy

input and comparing the latter quantity to the strain energy

associated the above process requires summation of the

‘strain energy developed in each triangular and joint element’

in the finite element mesh over the number of plate

¥

displacement increments and excess shear stress analyses

per formed when applicable. Each increment of plate

-

displacement or excess shear stress analysis 1s treated as a

linear elastic problem in which, by the . theorem of minimum

potential energl used in the finite element formulation, the
product of the . reactions “on tﬁe nodes representing the
plate-snow ingerface, the incrementél plate displagement ahd
the xglate width is equal to the stress-strain integration
obep the entire volume of snow considered. An experimental
vs prediction comparison of the plate penetration energy
balance is therefore superfluous since the coméqred values
of eneég& are derived from results already available from i)
the experimental plate st;;ss—penetration curve, when

computing the real energy input and ii) the finite element

analysis performed for each plate displacement increment or
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excessf shear stress analysis, when computing the total

. » @ .
strain energy associated with snow deformation.

6. The predicted displacement depth profiles below the
plate were, in general, in good agreement with the ones
derived from -experimental data. In both cases, ¢the
di%placemeﬁt profiles were found to be linear with a change
of slope occurring at some depth more or léss rplated‘to the
degree of failure exhibited ~élong the planes of tting
sheér. dDisplacements and strains were found to be gfeater
in:the snow above the point of displacement gradient change.
The'displacement profile'preéiction was less sensitive than

the plate penetration response to a change in 6 shear

stiffness.

7. The predicted values of depth of full shear, which are

. representative of the degree of failure along the planes of

cutting shear were, in general, in relatively good agreement
with those obtained from analysis of qxperlmental data. The
propogbd relationships between these values and the point of

7/

displacement gradient change was established.

f W

8. Density profiles as obtained experimentally ‘yielded
scatkered resultgd probably due to the initial non-uniform
density distribution with depth and the non-homogeneity of
the material. Predicted density profilges were smooth
eontinuoqs curves whose shape was consistent with the

predicted displacement profiles. Cbmparison of experimental
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and predicted results was difficult due to the de'gree of

scattering of experimental points but predicted curves, in

)

: deneral, fitted the points reasonably well.

9. The predicted load distribution on the plate was such
tha?-‘a greater portion of the reaction load was carried by
the edges - of the plate. This is mainly due to the
additional resistance of the snow to shear along the failure
planes. The effect was more pronounced for 4 day old sn(;w.
Due to technical difficulties, ‘no experimental valuesg dere

available for compaTrison purposes. ) :

10. Densities at which she\ar elements failed along the
planes’of cutting shear conve;rged to a practically constant
value at a short distance from the plate. Agdin, no
experimental L6 data was available for comparison "due to

experimental difficulties.

11. Discrepancies between predicted and experimental values
of parameters describing the platé penetration mechanism

were due to combined effects of thE\following_: _

A

a) Deposition of snow i1n the deep boxes was rformed with
care but nevertheless  resulted in a-“non-homogeneous
layer of non-unifarm density. In addition, snow is not

7

isotropic in reality.s

b) The presence of some friction between the snow and

the sides of the plexiglas boxes and that existing
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between the snow sample and the walls of the confined

,
7 compression test cylinders.

c) The problem is not exacfly plane strain since‘ in

reality, stresses, strains, displacements, etc., also

- vary across the width of the plate.

d) The behaviour of snow in shear ﬁs possibly quch that

shear stiffness is "not constant and may actually wvary

with density. The stress-deformation curve in shear may
thus be non-linear. - Also, dufing vane shear testé, snow
is not sheared at an /absdlutely constant value of
dens}ty due to the compfessing action of the blades on

¢ ) the snow upon rotation of the vane.

é) The viscous naturé of the material’ is such that

response is quite sensitive to strain rate, particularly

)

in the case of shear. An implicitly assumed uniform

“strain rate f1eld . generated in the snow may be ap

n

addition source of error.
¥ .

f) The algorithm developed on the basis of the finite
element method involves assumptions and idealizations,
> such as the handling of the large volume change

behaviour of the material by a stress-strain curve

- 'updaiing procedure.

g) Good replication of snow samples is very difficult

due to the thermodyn}mic activity of the material and

C e ,
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-

its sensitivity to variation in surrounding conditions
=d ‘

©

such as® temperature, humidity, wind and light. 0

h) Similarly, the correspondence of snow produced for
confined- compression and plate penetration tests is
questionable due to ‘the different thermal isolation

.conditions.

k4 -

lZ.~TBe analysis of the presentiproﬁlem emphasizes on th;
prediction of the stress-penetratjon behaviour 6Fﬂg‘rigid
plate in deep snow and, consequently on an inyesti@at&on of
tﬁe required maéerial characteristics and parameters
'iﬁtroduced in thq soluggon procedure. Confined compTession
and 'vane test results proved to be iegitimate and practical
tesks tp obtain the cgmpré;sibility and shear strength data
demanded by th developed model. As menlioned in Chapter 2,
the shear gtiFFness pafameter is not optalned efperiﬁentally_
but raéher* is the focus of a sensitivity analysis of the
model. Success in the modelling- procedure lies 1n the
selection of a narrow range of shear stiffness values such
that experimental and’ predicted plate stress-penetration
curves, 1displacemqnt and density profiles, and ‘depth of
shear along the pair of planes of cutting shear agree

Y )

Qrelatively as well as can be expected considering the nature

of the material itself and the assumptionshand idealizations
introduced in the developed predictive model. In the light

of this, it <can be said’' that the proposed model has

N
satisfied the objectives of the study. .

u
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( 52 Recommendations For Further Research A
Tl ~The stress-deformation behaviour of snow .in shear
~requires further investigation. The _development of a

constitutive law describing the stress-deformation response

of snow under vane testing conditions appears ta be an

immediate priority. :

PR
[ I'4

“ ‘.. 2. A similar set of vﬁn; tests should be performed but
using a rate controlled ‘vane and recording the
’ (. "torque—rotéﬁion respgnse. Values of shear stiffness woul&"
thus be obtained through an independent fexperiment. The
resuitlng values, Eor different den;ities, could then be

used in the ‘present model and the effect on the predicted

plate penetration responses could be investigated.

I3

3. Further research is required to relate the plate
stress-penetration response under plane sftain conditions to

that in three dimensions.

’

4. The-present computer model can be extended to -handle %he
dependence of shear stiffness on density\simp}} by supplying

an extra input curve and slightly modifying the main program

P A

i .
and same subroutines.
4 . P

5. The effect of plate dimensions should also be
. investigated. ‘ A different plate sdize implies a different
distribution of compressive stresses within the pressure

bulb and shear §tresées along the failure planes. o

a
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APPENDIX B - Program Flowcharts

2.1 Main Progtam

-—

-

START

AW

READ PLATE DIMENSIONS

CALL INMESH

~ form finite element mesh

- calculate and store initial
area of continuum elelements

- set boundary conditions

DETERMINE BAND WIDTH AND TOTAL
NUMBER OF EQUATIONS IN THE SYSTEM

¢

4

N CALL SNMAPR

- read show material properties




INITIALIZE VARIABLES

-~ gtresses,strains,initial

W stiffnesses of continuum

' and joint elements,Poisson's'’

¥ ratio ’

- array of failure indicator of . \
joint elements

- nodal displacements :

- - reactions

COMPUTE INCREMEﬁTAL DISPLACEMENT
TO BE USED AS BOUNDARY CONDITION
IN MAIN LOOP

——o——3— LOOP ON NUMBER OF INCREMENTS

——

RECORD STATE OF STRESS AND
STRAIN IN CONTINUUM ELEMENTS
AT END OF PREVIOUS INCREMENT

—— g -

CALL FORMK

- form global stiffness matrix

CALL SOLVE

- solve linear system of equations




EN
e

‘.

COMPUTE CUMULATIVE DISPLACEMENTS

CALL CSTRES

- calculate stresses and strains
in continuum elements

ITERATEFOR MATERIAL NON-LINEARITY

TEMPORARILY UPDATE NODAL COORDINATES

»

o CALL JSTRES

. — calculate stresses in joint elements
L

. ’
o
&

CALL SHDJNT ' ‘

- analyze for state of shear stress
and failure of joint elements

COMPUTE REACTIONS

e



[ LOAD ON PLATE AND LOAD DISTRIBUTION

L

COMPUTE PLATE DISPLACEMENT, REACTION

ON PLATE AND PRINT

e

COMPUTE INDIVIDUAL COMPONENTS OF PLATB
RESISTANCE AND PRINT ;

COMPUTE VERTICAL FORCES TO BE APPLIED ON
NODES OF FAILING JOINT ELEMENTS DUE TO
EXCESS SHEAR STRESS

COMPUTE TOTAL PLATE STRESS AND INDIVIDUAL
PLATE STRESS COMPONENTS AND PRINT

CALL UPDATE

- update nodal coordinates and
material properties

o

yes |
‘ . DECIDE TO PERFORM SHEAR STRESS
' RELEASE ANALYSIS .

no

B-4

)




PRINT QI NCREMENTAL AND TOTAL_
~ NODAL DISPLACEMENTS o

o

END LOOP ON NUMBER OF INCREMENTS-

2

END




e

(i

ey

. 2.2 Subroutine INMESH . b

- a

3

. START 1

, ASSIGN : i
,— number of degrees of freedom
per node
~ - number of elements
- number of nodes
' - number of boundary nodes
. - number of incréments
- number of iterations

: S

GENERATE FINITE ELEMENT MESH
IN TERMS OF PLATE LENGTH

’

~ . "

~

I"“\CALCULATE INITIAL AREA OF CONTINUUM
ELEMENTS AND LENGTH OF JOINT ELEMENTS
AND STORE

SPECIFY BOUNDARY CONDITIONS )

\.
RETURN
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2.3°

)

Subroutine SNMAPR

START

- ‘”“

READ CONFINED COMPRESSION
STRESS—STRAIN CURVE

oA

RéAD SHEAR STRENGTH-DENSITY
CURVE

READ SHEAR STIFFNESS

/.

END

wE
BEH
L




¢

*
: -
2.4 Subroutine FORMK . -
* S
START
INITIALI ZE° GLOBAL STIFFNESS
MATRIX TO ZIERO
- > LOOP ON NUMBER OF ELEMENTS|®
@
CONTINUUM JOINT
ELEMENT
TYPE
CALL CSTK . / CALL JOINTK

- form stiffness - - form stiffness
matrix of conti- matrix of joint
nuum element ’ element

STORE ELEMENT STIFFNESS
MATRIX IN GLOBAL STIFFNESS
MATRIX

¥

—= END LOOP ON NUMBER OF ELEMENTS

®

>

B-8

4




;ﬁ&%.

%

"' F————>—1 NODES

=

FORM ARRAY OF NODAL LOADS(FOR
LOAD BOUNDARY CONDITION PROBLEM)

. AND STORE IN GLOBAL STIFFNESS |\

MATRIX

i

LOOP ON NUMBER OF BOUNDARY
Ve

CALL MODIFY

- alter global stiffness
matrix to take into account
specifi displacement of
nodet(f§§ displacement
boundy:y condition problem) !

END LOOP ON NUMBER OF BOUNDARY
NODES

RETURN




\

¢

s
B

-~

3
2.5 Subroutine CSTK -

START

DETERMINE ELEMENT
CENTROIDS

COMPUTE AREA OF ELEMEMT

AREA ZERO OR |
NEGATIVE

<’ NO

~

FORM STRAIN-DISPLACEMENT
MATRIX !

FORM STRESS~STRAIN
MATRIX AND ELEMENT
STIFFNESS MATRIX

!
RETURN

YES

"PRINT
ERROR
MESSAGE

STQP

B-10

B
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2.6 Subroutine JOINTK . &

-
“3
~ ¢

COMPUTE INCLINATION/,
LENGTH AND CENTROID
OF JOINT ELEMENT

\- FORM LOGAL ELEMENT
STIFFNESS MATRIX

b

~| FORM ROTATION OF AXES
MATRIX

GENERATE STIFFNESS MATRIX OF
ELEMENT IN TERMS OF GLOBAL
COORDINATES

RETURN




X

¢

-

2.7 Subroutine MODIFY .

P

START

MODIFY LOAD VECTOR
ACCORDING TO SPECIFIED
NODAL DISPLACEMENT

SET ALL OFF-DIAGONAL
ELEMENTS OF GLOBAL
STIFFNESS MATRIX

TO ZERO

.
A

SET DIAGONAL ELEMENT
OF GLOBAL STIFFNESS
MATRIX TO UNITY

INCLUDE DISPLACEMENT
CORRESPONDING TO DISPLACEMENT
BOUNDARY CONDITION IN SYSTEM
MATRIX

RETURN

&




2.8 Subroutine SOLVE

START

S

PRrernemehi

LOOP ON NUMBER OF EQUATIONS
IN SYSTEM

COMPUTE MODIFICATIONS TO TERMS
WITHIN BAND

, MODIFY LOAD VECTOR

Vi )

{

END LOOP ON NUMBER OF EQUATIONS
IN SYSTEM

BACK -SUBSTITUTION

.

_RETURN

S\




¢

2.9 Subroutine CSTRES

(———3m— LOOP ON NUMBER OF CONTINUUM

S ey
R

3
./
—

START -

ELEMENTS .

"COMPUTE* ELEMENT STRAINS AND
STRESSES FROM NODAL DISPLA-
CEMENTS AND ELEMENT STIFFNESS
MATRICES

END LOOP ON NUMBER OF CONTINUUM
"ELEMENTS

LOOP ON NUMBER ON NUMBER OF CONTINUUM
ELEMENTS f

COMPUTE ELEMENT CUMULATIVE STRESSE
AND ,STRAINS (EQUAL TO INCREMENTAL
VALUES BECAUSE OF ZEROING IN EACH
INCREMENT)




ELEMENTS —_—

- END LOOP ON NUMBER OF CONTINUUM

LOOP ON NUMBER OF CONTINUUM
ELEMENTS

COMPUTE PRINCIPAL STRESSES
AND STRAINS .

¥

YES

END LOOP ON NUMBER OF CONTINUUM

ELEMENTS ] .

CALL CSTNL

- perform non-linear
analysis for continuum
elements

NON~LINEAR

ANALYSIS
COMPLETE

NO




3K

1

g , &

B-16.

: ’ . YES
NUMBER OF ITERATIONS
COMPLETED LESS THAN P —
SPECIFIED MAXIMUM RETURN

NO

)1-1

LOOP ON NUMBER OF CONTINUUM
ELEMENTS

[}

PRINT STRESSES AND STRAINS
IN CONTINUUM ELEMENTS

END LOOP ON NUMBER OF
CONTINUUM ELEMENTS

LOOP ON NUMBER OF CONTINUUM
ELEMENTS

PRINT PRINCIPAL STRESSES
AND STRAINS
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&
END LOOP ON NUMBER OF ‘CONTINUUM
ELEMENTS .
o .-
‘ j I
4 RETURN\\\ !
L 3 . o ‘ »
. . L3
‘ 1]
4
\ ' t %
. e
\ L 4
f »
-t
’ F)
. . .
]
C L o
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2.10 Subroutine CSTNL

af

= .

START

d

L

LOOP ON NUMBER OF CONTINUUM

-ELEMENTS

ELEMENT STRAIN SIGNIFICANT
FOR NON-LINEAR ANALYSIS

NO

[ia)

\/

YES

COMPUTE EQUIVALENT STRESS-STRAIN
CURVE CORRESPONDING TO STATE OF
STRAIN AFTER PREVIOUS INCREMENT

INTERPOLATE FOR S5TRESS,GIVEN .. §
STRAIN IN PRESENT INCREMENT,
FROM STRESS-STRAIN CURVE IN
CONFINED COMPRESSION

COMPUTE DISCREPANCY BETWEEN
INTERPOLATED AND COMPUTED

STRESS VALUES




SET DISCREPANCY EQUAL TO

DISCREPANCY COMPUTED FOR
PREVIOUS ELEMENTS

MAXIMUM ERROR IF GREATER THAN

\ YES
DISCREPANCY

b A’CCEPTABLE

N

0
ITERATION NUMBE\

YES

EQUAL TO MAXIMUM
SPECIFIED /

NO

v

COMPUTE ELASTIC MODULUS
FOR NEXT ITERATION

-

<

RECORD THAT DISCREPANCY
IS NOT ACCEPTABLE

"

END LOOP ON NUMBER OF CONTINUUM ]

ELEMENTS

<




(-

~

YES

DISCREPANCY IN NON-LINEAR
ANALYSIS NOT ACCEPTABLE
AND- I TERATION,NUMBER NOT
~EQUAL TO MAXIMUM SPECIFIED

A RETURN

NO
PRINT RESULTS FROM NON-LINEAR
ANALYSIS

\
Y
RETURN
e
]
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START -" ‘ \\

r——~——-—g-—- LLOOP ON NUMBER OF JOINT ELEMENTS

’ 2.11 Subroutine SHDJNT

CALL INTERP

\
- interpolate for shear strength
from shear strength-density curve

yes

CUMULATIVE SHEAR STRESS LESS THAN
{jﬁ SHEAR STRENGTH AND ELEMENT HAS NOT - i

FAILED
no : \
no
—< ELEMENT HAS JUST FAILED>
yes ' '*
. * RECORD :

~ shear stress and strain at failure

- density at failure ’

- distance from original snow surface
to centroid of element

—>—




td

® | ' (-?
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- | @

< COMPUTE EXCESS SHEAR STRESS IN JOINT ELEMENT >

-

PRINT INFORMATION ABOUT STATE OF SHEAR STRESS
AND SHEAR STRAIN IN ELEMENT

END LOQP ON NUMBER OF JOINT ELEMENTS

END

Ve




2.12 Subroutine REAC

{

L f
START ° . »
by
CONTINUUM JOINT
ELEMENT
\\\\\ TYPE
.
CALL CSTK CALL JOINTK1
- recalculate stiffnegs . - recalculate stiff-
matrix of continuum ness matrix of
element joint element

LOCATE NODAL DISPLACEMENTS | -
OF NODE§, BELONGING TO
ELEMENT

COMPUTE REACTIONS CONTRIBUTION
FOR NODE FROM THE ELEMENT NODAL
DISPLACEMENT VECTOR AND THE
NODAL STIFFNESS

RETURN




2.13 Subroutine DENSIT

Lt 3
= b

START

COMPUTE AREA OF CONTINUUM
ELEMENT FROM ITS PRESENT
NODAL COORDINATES

COMPUTE DENSITY OF SNOW
IN CONTINUUM ELEMENT

NO
© IN
UPDATING

PROCESS
(in subroutine
UPDATE )

YES

UPDATE STATE OF
STRAIN IN CONTINUUOM
ELEMENT AND PRINT
A UPDATED DENSITY

ZTURN

.




wgi"

2.14 Subroutine UPDATE

. "START

+

UPDATE AND RECORD
NODAL COORDINATES

LOOP ON NUMBER OF CONTINUUM
ELEMENTS

|4
C

CALL DENSIT

— compute updated snow
density in continuum
element and print

- update state of strain
in continuum element

END LOOP ON NUMBER OF CONTINUUM

ELEMENTS

®

B-25
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®

LOQOP ON NUMBER OF JOINT ELEMENTS

-
NG

JOINT ELEMENT HAS FAILED>

yes

ASSIGN A VERY SMALL SHEAR . -
SHEAR STIFFNESS VALUE

1

—>

END

LOOP ON NUMBER OF JOINT ELEMENTS

PRINT INFORMATION

END




£

2.15 Subroutine INTERP

START

GIVEN A FUNCTION IN DIGITIZED
FORM,THE NUMBER OF POINTS
USED TO DESCRIBE IT AND A-
CERTAIN VALUE OF ABCISSA,

INTERPOLATE FOR THE CORRESPONDING
ORDINATE

RETURN
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APPENDIX C

I3

PROGRAM INPUT DATA

The input data to the finite element program develope&f—\
during the course of this study is described below. All input

is in S.I. units and must be entered using free format:

~

-

LINE 1 : Number of increments for which detailed output -
information

is provided

LINE 2 : Array containing numbers of increments for which

detailed

information is provided
LINE 3 : Plate length (m) and width (m)
LINE 4 : Initial density of snow (Mg/m3)

LINE 5 : Number of points describing compressibility of the

Snow,

i.e, stress—strain curve from a confined compression

test !




order)

the

curve.

curve).

4 o
LINE (6+NC) : Number of points describing the shear strength-

9

density

LINE 6 TO line (6+NC-1) :

J

Stress (kPa) and

corresponding to a

above described-

-

given point

compressibility

(NC=number of points

-

curve obtained from vane shear tests

1

-

LINE (6+NC+l) to LINE (6+NC+NS) :

corresponding

above curve.

curve)

LINE (6+NC+NS+1)

Shear strength (kPa)

Density (Mg/m3)

to a given point

(NS=number of points

: Shear stiffness parameter Ks (kN/m3)

describing the

and
valdes
the

on

on the

on

=2

strain values (in




]
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APPENDIX D

PROGRAM OUTPUT
AN ~ )
The output information produced by the program developed ,

7/ -
“is summarized in the following lines:
a) dimensions of rigid plate

b) finite element mesh specifications
- horizontal and vertical coordinates of the nodes
- triangular and jqint element connection array (i:é,
nodes
pertaining to each element)
- boundary conditions assigned to the mesh : s
- type of nodal restriction (numerical code)
- horizontal displacement or force on node
- vertical displacement or force on node
(Note: finite element mesh specifications are an output of the
prggram
due to that the mesh is generated inside the program)
~E) input snow properties :
- compressibility curve
- shear strength—density curve

- shear stiffness paramater

X,




ige

’ &;w | D-2

‘' d) finite element results: For each increment (plate

displacement or excess shear stress analysis):

©

- number of performed iterations in non-linear analysis

shear depth to plate sinkage ratio

- load distribution on plate

density at failure for® joint ‘elements and corresponding

distance from original snow surface (detailed

2

information) /

) .
- results of stress analysis of joint elements (detailed

information)

- = plate load, stress and penetration coordinates and

distribution
of various components of plate resistance ~

- density distribution within snow mass (detaileF

information) ¢

- incremental and cumulative nodal displacements ,
& . , o
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MODEWL )

( THESIS )

MAIN PROGRAM . ‘

.

COMMON/CONTR/NP ,NE ,NB ,NDF ,NCN,NSZF  ITITL(50),IPRIN,SFLAG,FPL DELPL

COMMON /DATA/CORD(580,2) ,NOP(999,4),IMAT(1100),NBC(580) ,CODE(700),
+UX{700),U¥(700),T(1100) ,0RX(1100) ,0RY(1100),PRCORD(580,2)

CQMMON/STIFF/ESTIFM(12,“2).A(3.6).8(3.6),SK(I!OO.Q?).AREA(\!OO):‘
+G(|{Qp),R(8),H(8),D(I100).AR(2000),AS(999.3.5).BS(929.3.6).NBAND

COMMON/STRES/DISTO(2,580),SIGT0(999,4),STRT0(999,3) ,SMAXTO(1100),
+SMINTO(1100),ANGTO(1100) ,EANGTO(1100),EMAXTO(1100),EMINTO(1100), |
+FORCE(999,4),STR(999,3) ,PSIGT0(999,4),PSTRT0(999,3) ,PDISTO(2,580),
+PEMINT (1100) ,PSMINT(1100),EXSH(1100)

!

1

COMMON /ANAL/NOINC,KOUNT ,NITER,NOITER,CORDI(580,2) ‘
!

i

{

1

'

COMMON/JOINT/T1(8,8),8L(8,8),AL{1100),ANG(1100),DKS(1100),DKN(100Q
+),SD(2,2),w(999,2),P(999,2),Vv(999,2),AVvP(999,2),CVv(999,2),
+CAVP(999,2),PCV(999,2),PCAVP(999,2),81(8,8),IFAIL(1100),ALO(1100) ¢

COMMON/SNDATA/STRESS(40) ,STRAIN(40),SHEAR(40),DENSSH(40), ;
+GAMMAO ,NPTSCC,NPTSSH,STIFFS ”
COMMON/ELAS/EE(1100),ENL(1100)

-

EQUIVALENCE (DIS,C) ) ‘ '
DIMENSION DIS(2,580),AREAO(1100),PAREA(1100),TCORD{580,2),UYR(700) P
+,FSHSTE(1100), IAINCP(30),PLR(10)

READ(5,*) NINCP

READ(5,*) (IAINCP(I),I=1,NINCP) !

WRITE(6,*) (IAINCP(I),I=1,NINCP)

..READ AND PRINT PLATE LENGTH AND WIDTH ;

READ(5,*) FPL,FPW h

WRITE(6,9) FPL,FPW A

FORMAT(’1',///,10X, 'MODEL - RIGID PLATE PENETRATION IN SNOW'/) 3
+9('~')///77//5X, ' PLATE. LENGTH (M)'.ﬁJS.G//SX,‘PLATE WIDTH (M) 7, :

+F15.6)
PREPL=0 O
EC=0 O
SUMPCS=0 0
SUMPC=0.0

FORM FINITE ELEMENT MESH

CALL INMESH(AREAO,YCTOP) .

TQTAL NUMBER OF EQUATIONS IN SYSTEM -

NSZF=NP*NDF




C
c

c
c

’

c

@t

C.

c
C

DETERMINE BAND WIOTH

FIND LARGEST DIFFERENCE IN NODAL NUMBERS IN ANY ELEMENT

JJ=0
DO 350 N=1,NE
D0 350 I=1,4_
D0 360 L=1.4
KK=1LABS(NOP(N,I)~NOP(N,L))
IF(KK~JJ) 360,360,365
365 JJ=KK
360 CONTINUE
350 CONTINUE

COMPUTE AND PRINT BAND WIDTH AS 2%JJ+NO. OF DEGREES OF

¢ NBAND=2%JU+2
WRITE(6,1000) NBAND

1000 FORMAT(’ *,///,5X, BAND WIDTH’,110,///)

READ SNOW MATERIAL PROPERTIES
CALL SNMAPR

INITIALIZE STRESSES,STRAINS AND STIFFNESSES

DO 20@7 N=1 NE
DO 0 I=t1,4
SIGTO(N,I)=0 ;
PSIGTO(N,1)=0

500 CONTINUE
D0 499 1=1,2
PCV(N,I)=0
PCAVP(N,I)=0
CV(N,I)=0
CAVP(N,I)=0

499 CONTINUE
00 301 I=1,3
STRTO(N,I)=0
PSTRTO(N,1)=0

301 CONTINUE
SMAXTO(N)=0
SMINTO(N)=0
PSMINT(N)=0
EMAXTQ(N)=0
EMINTO(N)=0 -
PEMINT(N)=0
EE{N)=STRESS(2)/STRAIN(2)
ENU(N)=0.0
DKN(N)=100000.
DKS{N)=STIFFS

200 CONTINUE

» DO 759 IKK=3,7
759 PLR{IKK)=0.

DO 202 II=1,NE
IFAIL(II)=0
202 CONTINUE

INITIALIZE ALL NODAL DISPLACEMENTS

DO 600 M=1 NP
DO 600 J=1,2
DISTO(u,M)=0

.

. INITIALIZE ARRAY OF INDICATORS OF

FREEDOM



-

(’\\

"Q

-

600 CONTINUE :
¢ . .
C INITIALIZE ALL REACTIONS TO 0 _
DO 437 J=1,NB : ’
M=NBC (J)
N=2*M~1
L=2+*M
AR(N)=0
AR(L)=0 .
437 CONTINUE '
C .
C COMPUTE INCREMENTAL DISPLACEMENT TO BE USED AS BOUNDARY CONDITION
c
DO 800 K=1,NB .
NN=NBC (K) \
UXENN) =UX(NN) /NOINC ,
UY(NN)=UY(NN) /NOINC -
UYR(NN)=UY(NN)

800 CONTINUE
DISING=ABS(UY(6)) -
c s
C LOOP ON NUMBER OF INCREMENTS v
o
DO 700 IK=1,NOINC
SFLAG=0. i
LCSRA=0
DO 8000 K=1,NB
NN=NBC (K)
8000 UY(NN)=UYR(NN) . ——
IPRIN=0
DO S47 ITINC=1,NINCP °
547 IF(IK.EQ IAINCP(IINC)) IPRIN=1

WRITE(6,*) IPRIN
IPUP=0
C...PRINT DISPLACEMENT INCREMENT NUMBER

WRITE(6.991) IK .
991 FORMAT (1 /,// , = o o e e e e e e e e e e e
+==="//5X, INCR. NO *,110,/) -

C...DETERMINE STATE OF STRESS AND STRAIN OF CONTINUUM ELEMENTS
711 IF(SFLAG.EQ.1.) WRITE(6,6258) LCSRA

6258 FORMAT(' ',//,T10,'STRESS RELEASE CYCLE #'
DO 333 IPSS=1,NE

IF(IMAT(IPSS).EQ 2) GO TO 333
EQEMIN=PEMINT (IPSS)

CALL INTERP(NPTSCC,EQEMIN,STRAIN,STRESS, SINT)
PSMINT (IPSS)=SINT

CONTINUE

JI8,77)

333
c
C ,FORM STIFFNESS MATRIX THEN SOLVE SIMULTANEQUS EQUATIONS

NITER=0 : ,
NITER=NITER+1

IF(IPRIN.NE.1) GO TQO 844

C DO BOO3 K=1,NB

o NN=NBC (K) .

C WRITE(6B,*) NN,CODE{NN) ,UX(NN),UY(NN) -

CONTINUE

CALL FORMK

. 1




o

CALL SOLVE

C COMPUTE TOTAL DISPLACEMENTS .
C NODAL DISPLACEMENTS DUE TO INCREMENT ARE ADDED TO THOSE EXISTING
C BEFORE TO OBTAIN TOTAL DISPLACEMENTS
c

0O 280 M=), NP

00 280 J=1,2

IF(NITER.NE.1) GO TO 60t

PDISTO(J,M)=DISTO(J M)
601 DISTO(J,M)=PDISTO(J,M)+DIS(J M)
280 CONTINUE

C .

C — ——

C CALCULATE STRESSES IN CONTINUUM ELEMENTS

c

612 CALL CSTRES(NLFLAG)

C ITERATE FOR NONLINEARITY
IF(NLFLAG.EQ.1.AND.NITER.NE.NOITER) GO TO 701
WRITE(6,995) NITER .-

995 FORMAT(’ ‘,//,5X,’NUMBER OF ITERATIONS’,I110,///)

C

C. .TEMPORARILY UPDATE NODAL CORDINATES
DO 606 N=1 NP
TCORD(N, 1)=CORD(N, 1)+DIS(!,N) >
TCORD(N,2)=CORD(N, 2)+DIS(2,N) c

606 CONTINUE

.COMPUTE STRESSES IN JOINT ELEMENTS

CALL JSTRES

CHECK STATE OF SHEAR STRESS IN JOINT ELEMENTS AND COMPARE WITH SHEAR
STRENGTH OF SNOW .

CALL SHOJUNT (IMAT ,NOP,TCORD,AREAQ,DIS,IPUP,FSHSTE,QORY)

DETERMINE REACTIONS

oonoan o000 on

8004 DO 436 I=1,NSZF
AR(1)=0
436 CONTINUE
DO 438 L=1,NB
M=NBC(L)
DO 901 Ni=1 NE
IF(IMAT(N1) .EQ 1) NCN=3
IF(IMAT(N1) . EQ.2) NCN=4
DO 901 I=1,NCN
IF (NOP(N1,1)-M) 901,705,901
705 N=N1 .
J=1
fIF(CODE(M)) 438,438,422
422 CALL REAC(J,M,N)
901 CONTINUE .
438 CONTINUE

2

C IF(IPRIN EQ.V) WRITE(S,203)
C203 FORMAT(' *“,/7///,5X, 'REACTIONS AND LOAD-DISPLACEMENT COORDINATES OF
C + PLATE'//5X, T2, NODE" ,7X, ‘X—-REACTION", 11X, *Y-REACTION’,/T17, “ (KN}’




c +,T37,°(KN) ", //)
SRX=0
SRY=0
DO 439 K=1,NB
M=NBC(K) . !
Nz 2*M=
. L=2*M
IF(CODE(M).NE 1) GO TO 501
AR(N)=AR(N)=D(N)
GO TO 503
501 IF(CODE(M) EQ 2) GO TO 502
AR(N)=AR(N)~-D(N)
502 AR(L)=AR(L)-D(L)
503 CONTINUE
C .. PRINT INCREMENT REACTIONS .
o IF(IPRIN EQ.1) WRITE(6,201) M,AR(N),AR(L)
201 FORMAT(IS5,F16 6,5X,F16 6)
SRX=SRX+AR(N)
SRY=SRY+AR(L)
439 CONTINUE
IF(IPRIN EQ 1) WRITE(6,440) SRX,SRY .
440 FORMAT(' “,///,1%, 'TOTAL’,2X,F15.8,5X,F15.8)

PDIS=DISINC*IK
WRITE(6,*) AR(6),AR(8),AR(10),AR(12),AR(14)}
...LOAD DISTRIBUTION ON PLATE
SUMPLN=0 0 N
DO 458 111=3,7 '
11=2*111
PLR(III)=PLR(III)+FPW*AR(II)
SUMPLN=SUMPLN+PLR(III)
WRITE(6,459) III,PLR(III)
459  FORMAT(’' ‘.,/,'REACTION ON NODE (KN)‘,110,5X,'=’,5%,F15,8)
458 CONTINUE (
SUMPLN=2000 *SUMPLN
WRITE(6,460) SUMPLN

c

C

C. COMPUTE PLATE DISPLACEMENT AND REACTION LOAD ON PLATE
c !

C

C

460 FORMAT(’' *,///,"TOTAL REACTION LOAD ON PLATE (N)’,F15 6,///)
C... .
DELPL=2000.*FPW* (AR(6)+AR(8)+AR(10)+AR(12)+AR(14))
IF(SFLAG EQ.1 ) DELPL=DELPL+UY3J
PLOAD=PREPL+DELPL "
C EC=EC+0 5% (PLOAD+PREPL)*DISINC : ‘
WRITE(6,961) DELPL .
961 ‘FORMAT(* ‘,///,5X,  INCREMENTAL REACTION LOAD ON PLATE (N)',F15.86)
- WRITE(6,960) PLOAD,PDIS
960 FORMAT(' °,///,5%X, TOTAL REACTION LOAD ON PLATE (N)’,F15 6//5X,'PL

|
l

+ATE DISPLACEMENT (M)’ ,F15.6,///)
C...SEPARATE LOAD COMPONENTS INTO COMPRESSION AND SHEAR

SUMES=0 0O

SUMEC=0 0

N=0

DO 512 1=1,70

DO 512 J=1,11

N=N+1 -

IF(IMAT(N) EQ 2) GO TO 512
DO = 00

~a




5

g

C
C

c

c

C4444 FORMAT(’

C
C

204

12

08

222

223

. COMPUTE

DO 204 12 = 1,3

00 = DO + ( SIGTO(N,12) * STRTO(N,I2) )

DD = DD * AREA(N)
[F(J LT 3) SUMES=SUMES+DD
IF(J.GE.4) SUMEC=SUMEC+DD
CONTINUE |

IF(SFLAG.EQ.0.) GO TO 508
SUME S=~SUMES

SUMECe— SUMEC
DPCS=2000.*SUMES*FPW/DISINC
DPC=2000 *SUMEC*FPW/DISINC
DS=DELPL-DPC-DPCS
WRITE(6,222) DS,DPCS,DPC,DELPL

FORMAT (' *,//7/,T10, '  INCREMENTAL LOAD DUE TO SHEAR (N)’ ,F15.6/,

+T10, " INCREMENTAL LOAD DUE TO COMPRESSION OUTSIDE PRESSURE BULB (N)
+' ,F15.6/T10, ' INCREMENTAL LOAD DUE TO COMPRESSION INSIDE PRESSURE B
+UL8  (N)‘,F15.6/T10, ' INCREMENTAL LOAD ON PLATE (N)}’',F15.6,7/)

SUMPCS=SUMPCS+DPCS
SUMPC=SUMPC+DPC
SUMS=PLOAD-SUMPCS-SUMPC

WRITE(6,223) SUMS,SUMPCS, SUMPC,PLOAD )
FORMAT(* ',///////,T10, TOTAL LOAD DUE TO SHEAR (N)',F15.6/,

+T10, 'TOTAL LOAD DUE TO COMPRESSION QUTSIDE PRESSURE BULB (N)

+' F15 6/T10, ‘TOTAL LOAD DUE TO COMPRESSION INSIDE PRESSURE B

+ULB  (N)’,F15.6/T10, ' TOTAL LOAD ON PLATE (N)‘',F15 6,//)

OVERSTRESSED JOINT ELEMENTS

555

4445

510

8001

SLOAD=0 0
DO 555 N=1,NP
UY(N)=0.0

DO 510 N=1,NE
IF{IMAT(N).EQ.1) GO TO 510 .
IF(IFAIL(N) EQ.0) GO TO 510
RSREL=EXSH(N)*AL(N)*FPW*1000
N1=NOP(N,1)

N2=NOP(N,2)

N3=NOP(N,3)

N4=NOP(N,4)

uvY(3)=0.0

UY(N1)=UY(N1)+RSREL/ (2 *FPW*1000.)
IF(N.EQ.3) UY3=-UY(N1)*2000.%FPW
WRITE(6,4445) UVY3

FORMAT(* ',/,TS,'UY¥Y3',F15 6)
UY(N2)=UY(N2)+RSREL/(2.*FPW*1000.)
UY(N3)=UY(N3)~-RSREL/(2.*FPW*1000.)
UY(NA)=UVY(NA)-RSREL/ (2 *FPW*1000.)
SFLAG=1.

CAVP(N, 1)=CAVP(N,1)+EXSH(N) R

STRESS RELEASE FORCES DUE TO STRESS RELEASE IN

IF(IPRIN.EQ.1) WRITE(6,4444) N,EXSH(N),AL(N),FPW,RSREL,PPLOAD

LN I5,BX, EXSH(N) ' ,F15.6,5X, "AL(N) "’ ,F10.6,5X, 'FPW’',

+F10.6,5X, 'RSREL" ,F15.6,5X, *PPLOAD’ ,F15.6,/)
IF(IPRIN.EQ.1) WRITE(6,*)N,NVT ,UY(NT),N2,UY(N2},N3,UY(N3),N4,UY(N4)

CONTINUE -
(s]0] EOSQ N=3,7

UY(N)=0.0

CONTINUE
CLOAD=PLOAD-SLOAD
FACTOR=1000 *FPL*FPW

-\



PSTRES=PLOAD/FACTOR
— PS1=SUMS/FACTOR .
PS2=SUMPCS/FAGIOR
PS3=SUMPC/FACTO
WRITE(6,521) PS1,ps2, pPS3,PSTRES
§21 FORMAT(' *,///,5X,'PLATE STRESS CARRIED IN SHEAR (KPA)‘,F15.6/
+ . B5X, 'PLATE STRESS CARRIED IN COMPRESSION QUTSIDE PRESSURE BULB (kP )
+A)‘,F15.6/6X, 'PLATE STRESS CARRIED IN COMPRESSION INSIDE PRESSURE
+BULB (KPA)' ,F15,6/5X, PLATE STRESS (KPA)' . F15.6,///)
PREPL=PLOAD
C UPDATE NODAL COORDINATES AND MATERIAL PROPERTIES
CALL UPDATE(AREAQ,PAREA,PDIS,YCTOP)
LCSRA=LCSRA+1
WRITE(6,9000) SFLAG,LCSRA,DELPL,PLOAD
9000 FORMAT(' ‘,/5X, SFLAG’,F6.3/5X, 'LCSRA’,I8/5X, ‘DELPL’',F10 3/8X,
+*PLOAD’ ,F10.3) .
IF{SFLAG.EQ.1 AND LCSRA EQ.1) GO TO 711
| IF(SFLAG.EQ.1.0.AND.LCSRA LE.3,AND.DELPL.LT O.AND ABS(DELPL).GT.OD.
- +05*PLOAD) GO TO 711
C. .PRINT NODAL DISPLACEMENTS
IF(IPRIN.NE.1) GO TO 700 ~ .
WRITE(6,603) ,
603 FORMAT(///,5X,  NODAL' DISPLACEMENTS',///7X, 'NODE',T23,'X’' T38, V",
: +TS0, XTOTAL ' ,TBS, 'YTOTAL' ,T81, 'ORIG HOR.DISTANCE',T106, ‘ORIG.VERT,
. +DISTANCE ")
WRITE(6,710)
710 FORMAT(’ *,T22,°(M)’,T37,° (M)’ ,T52, (M) ,T67,' (M)’ ,T81, FROM PLATE
+ CENTER’,T106,'FROM PLATE CENTER'/T87, (PL#S)’,T113,'(PL#S)"',//)
DO 604 M=) ,NP
RX=(CORDI(7,1)-CORDI(M,1))/FPL
RY=CORDI (M, 2)/FPL
WRITE(6,605) M, (DIS(J,M),J=1,2),(DISTO(J,M), J=1,2) RK, RY
605 FORMAT(’ *,I19,1X,4(5X,F10,6),T85,F9.6,Ti111,F10.3) .
604 CONTINUE
700 CONTINUE

STQe
ENOD
¥
C
c
SUBROUTINE INMESH({AREAQ,VYCTOPR)
C
COMMON/CONTR/NP NE NB,NDF ,NCN NSZF , ITITL(S50),IPRIN,SFLAG,FPL ,DELPL
c

COMMON/DATA/CORD (580,2) ,NOP(999,4) ,IMAT(1100) ,NBC(580),CODE(700),
+UX(700),UY(700),T{1100),0RX{1100),0RY(1100),PRCORD(580,2)

COMMON/STIFF/ESTIFM({12,12),A(3,6),B(3,6),SK(1100,92),AREA(1100),
+C(1100),R(8).H(8),D(1100),AR(2000),A5(999,3,6),B5(999,3,6) ,NBAND

C
COMMON/ANAL/NOINC,KOUNT NITER,NOITER,CORDI(580,2) .

C

w COMMON/STRES/DISTQ(2,5B0),S1GT0(999,4) ,STRTO(999,3) ,SMAXTO(11Q0),

+SMINTO(1100) ,ANGTO(1100) ,EANGTO(1100) ,EMAXTO(Y100),EMINTO(1100),
+FORCE(999,4) ,STR(999,3),PSIGTO(999,4),PSTRTO(999,3) ,PDISTO(2,580),
+PEMINT(1100) ,PSMINT(1100) ,EXSH(1100)

c

COMMON/JOINT/T1(8,8),BL(8,8),AL(1100) ,ANG(1100),DKS(1100),DKN(1000
+),50(2,2),w(999,2),P(999,2),v(999,2),AVP(999,2),CVv(999,2),




-

+CAVP(999,2),PCV(999,2),PCAVP(999,2),B1(8,8) ,IFAIL(1100),ALO(1100)

COMMON/SNDATA/STRESS€40) ,STRAIN(40) ,SHEAR(40) ,DENSSH(40), -
+GAMMAQ ,NPTSCC ,NPTSSH,STIFFS(40) ,NPTSDK,DENSK(40) '

COMMON/ELAS/EE(1100),ENU(1100)

~

DIMENSION AREAO(1100),NFR1(180) ,NFR2(180),NBBN(4)

DATA NFR1/1,1,9,8,8,2,1,2,9,9,3,3,10,9,2,4,3,4,10,10,5,4,11,10,10,
+6,4,12,11,11,7,4,5,12,12,8,5,6,12,12,9,6,13,12,12,10,6,14,13,13,
+11,6,7,14,14/

DATA NFR2/12,8,9,15,15,13,9,16,16,15,14,10,17,16,9,15,10,18,17,17,
+16,10,11,18,18,17,11,12,18,18,18,12,19,18,18,19,12,20,19,19,20,12,
+13,20,20,21,13,14,20,20,22,14,21,20,20/

DATA NBBN/1,2,3,7/

C. ASSIGN NUMBER OF DEGREES OF FREEDOM PER NQODE

C ASSIGN MAXIMUM NUMBER OF INCREMENTS AND ITERATIONS

NDF =2
NOINC=38
NOITER=12
POMAX=0.072 ’
NP=0 .
Covivn. .GENERATE MESH IN TERMS OF PLATE LENGTH
C. NODES
DO 10 J=1,71
DO 10 1=1,7
NP=NP+1 »
CORD(NP,1)=(I~-1)*FPL/8.
CORD(NP,2)=(J-1)*FPL/16.
CORDI(NP,1)=CORD(NP,1)
CORDI(NP,2)=CORD(NP,2)
WRITE(6,222) NP,CORD{NP,1),CORD(NP,2)
222  FORMAT(’ *,T2,13,T10,F15.6,T26,F15.6)
10 CONTINUE n

YCTOP=CORD(1,2) |

C...ELEMENTS

300

860
21
200

888

DO 200 1=1,35

DO 21 II=1,2

IK=0

DO 21 J=1, 1)

IK=IK+1 .

IF(IT EQ.1) N=NFRI(IK)+(I-1)#*22 ’ ¥
IF(II EQ.2) N=NFR2(IK)+(I-1)*22

DO 300 K=1,4

IK=IK+1

IF(IT.EQ.1) NOP(N,K)=NFRI(IK)+(I-1)*14 ’

IF(IT.EQ 2) NOP(N,K)=NFR2(IK)+(I~1)*14

CONTINUE

IMAT(N)=1 .
IF(J.EQ.3) IMAT(N)=2 _

FORMAT(* *,T11,6110) -

CONTINUE

CONTINUE

NE=N

DO 888 N=1,NE

WRITE(6,860) N,(NOP(N,KKK) , KKK=1,4), IMAT(N)
CONTINUE

C...CALCULATE INITIAL AREA OF ELEMENTS , INITAL LENGTH OF JOINT ELEMENTS

!

-

e e e — s e o e e e



)

¢

C

c

41

400
C..

806

807

810
809

811

AND STORE
DO 400 N=1,NE
IF(IMAT(N).EQ.2) GO TO 41
I1sNOP (N, 1)
J=NOP (N, 2)
K=NOP (N, 3)
AJ=CORD(J,1)—=CORD(I, 1)
AK=CORD(K,1)-CORD(I,1)
8J=CORD(J,2)-CORD(I, 2)
BK=CORD(K,2)-CORD(I,2)
AREAQO(N)=(AJ*BK~AK*BJ)/2,
WRITE(6,*) N,AREAO(N)
GO TO 400 N
I=NOP (N, 1) /
J=NOP (N, 2)
ALO(N)=SQRT( (CORD{J,2)~CORD(I,2))**2+(CORD(J,1)-CORD(I,1))**2)
CONTINUE
BOUNDARY CONDITIONS
DO B0O6 I=1,NP
CODE(I)=0
ux(1)=0
uY(I)=0

D0 807 N=4,6 ,
NB=NB+1 .

NBC (NB)=N .
CODE(N)=2.0 -
UY(N)=PDMAX

CONTINUE

NB=NB+ 1

CODE(7)=3.0 ¥
UY(7)=PDMAX

NBC(NB)=7

DO BOS I=1,69

DO 810 J=1,4

NB=NB+1

NBC(NB)=NBBN(J)+I1*7

NN=NBC (NB)

CODE(NN)=1.0

IF(J.EQ.1) CODE(NN)=3.0 .
CONT INUE

CONTINUE

DO 811 K=1,7

NB=NB+1

NBC(NB)=NBC(NB-1)+1 &
NN=NBC (NB)

CODE(NN)=3.0

CONT INUE

DO 812 I=1,NB_

NN=NBC(I)

wommm_
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.

WRITE(6,*) NN,CODE(NN),UX(NN),UY(NN)

B12 CONTINUE v
RETURN
END
c
SUBROUTINE SNMAPR
¢
COMMON/CONTR/NP ,NE ,NB,NDF ,NCN,NSZF , ITITL(50),IPRIN, SFLAG,FPL,DELPL
c .
COMMON/DATA/CORD(580,2) ,NOP(999,4),IMAT(1100) ,NBC(580),CODE(700),
+UX(700),UY(700),T(1100),0RX(1100),0RY(1100) ,PRCORD(580,2)
c
COMMON/STIFF/ESTIFM(12,12),A(3,6),B(3,6),SK(1100,92),AREA(1100),
+C(1100),R(8),H(8).0(1100),AR(2000),A5(999,3,6),B5(999,3,86) ,NBAND
c
COMMON/ANAL/NOINC,K?UNT,NITER,NOITER,CORDI(580.2) -
c :
COMMON/STRES/DISTO(2,580),SIGT0(999,4),STRT0O(999,3),SMAXTO(1100),
+SMINTO(1100) ,ANGTO(1100) , EANGTO(1100),EMAXTO(1100),EMINTO(1100),
+FORCE(999,4),STR(999,3),PSIGT0(999,4) ,PSTRTO(999,3) ,PDISTO(2,580),
+PEMINT(1100Q) ,PSMINT (1100} ,EXSH(1100)
c
COMMON/JOINT/T1(8,8),8L(8,8),AL(1100),ANG(1100),DKS(1100),DKN(1000
+),80(2,2),w(999,2),P(999,2),V(999,2),AVP(999,2),CV(999,2),
+CAVP(999,2),PCV(999,2),PCAVP(999,2),B1(8,8) ,IFAIL(1100),AL0(1100)
€.
c ;
COMMON/SNDATA/STRESS(40) ,STRAIN(40),SHEAR(40),DENSSH(40),
+GAMMAQ ,NPTSCC,NPTSSH,STIFFS
COMMON/ELAS/EE(1100),ENU(1100)
c
C B
C SUBROUTINE TO ENTER SNOW PROPERTIES
c
C
C READ AND PRINT INPUT DATA
¢ .
WRITE(6,20)
20  FORMAT(' *,//////,5X,’SNOW PROPERTIES'/SX,15(‘~"),///)
C READ INITIAL SNOW DENSITY
READ(5,*) GAMMAO
WRITE(6,10) GAMMAO
10 FORMAT(' *,///,5%, INITIAL SNOW DENSITY (MG/M3)’,F15.8){

C...CONFINED COMPRESSION DATA

[

2

31
30

READ(5,*) NPTSCC

WRITE(6,2)

FORMAT(// .5X, 'CONFINED COMPRESSION STRESS~STRAIN',///,T15,’'STRES
+S*,T30, 'STRAIN'/T16, ' (KPA) ' ,///) . -

DO 30 I=1,NPTSCC

READ(5.*) STRESS(I),STRAIN(I)

WRITE(B,31) STRESS(I),STRAIN(I)

FORMAT(’ *,5X,2F15.6)

CONTINUE

.OIRECT SHEAR DATA

READ(S5,*) NPTSSH

WRITE(6,5) .
FORMAT(/// ,5X,’SHEAR STRENGTH-DENSITY',///T10,'SHEAR STRENGTH’,T29
+,'DENSITY " /T15,  (KPA) ', T29, ' (MG/M3)',///)

E-10




C

a

OO0 0

SO0

C
C
c

OO0

50

' E-11

LN

DO S0 I=1,NPTSSH
READ(S,*) SHEAR(I),DENSSH(I)
WRITE(6,31) SHEAR(1),DENSSH(I)
CONTINUE

SHEAR STIFFNESS
READ(S,*) STIFFS
WRITE(6,12) STIFFS :
FORMAT(//,1X, ' SHEAR STIFFNESS/UNIT LENGTH (KN/M3)',F15.6,//7/)
RETURN )
END .

SUBROUTINE FORMK

COMMON/CONTR/NP ,NE,NB ,NDF ,NCN ,NSZF ,ITITL(50),IPRIN,SFLAG,FPL,DELPL

COMMON/DATA/CORD(580,2) ,NOP(999,4) ,IMAT(1100) ,NBC(580),CODE(700),
+UX(700),UvY(700),T(1100),0RX(1100),0RY(1100),PRCORD(580,2)

COMMON/STIFF/ESTIFM(12,12),A(3,6},8(3,6),5K(1100,92),AREA(1100),
+C(1100),.R(B),H(B),D(1100),AR(2000) ,AS5(999,3,6),B5(999,3,6) ,NBAND

COMMbN/ANAL/NOINC,KOUNT.NITER,NOITER,CORDX(580,2)
COMMON/STRES/DISTO0(2,580),5IGT0(999,4),STRTO(999,3),SMAXTO(1100),
+SMINTO(1100),ANGTO(1100),EANGTO(1100),EMAXTO(1100),EMINTO(1100),
+F0RCE(999.4),STR(999.3).PSIGT0(999,4),psrnro(ggg,a).PDISTO({,SBO).
+PEMINT(1100),PSMINT(1100) ,EXSH(1100)
COMMON/JOINT/T1(8,8),BL(8,8),AL(1100),ANG(1100),DKS(1100),DKN(1000
+),50(2,2),wW(999,2),P(999,2),v(999,2),AVvP(999,2),CVv(999,2),
+CAVP(999,2),PCV(999,2),PCAVP(999,2),81(8,8),IFAIL(1100),.ALO(1100)

COMMON/ELAS/EE(1100),ENU(1100) :

/
FORMS STIFFNESS MATRIX
DIMENSION XE(3,2) |
ZERO STIFFNESS MATRIX
00 300 N=
C(N)=0 O
0

D(N)=0
DO 300 M = 1,NBAND .

1 .NSZF .

300 SK(N,M)=0. -

SCAN ELEMENTS
™
DO 400 N=1,NE
JIF(IMAT(N) EQ 1) CALL CSTK(N)
IF(IMAT(N) EQ.2) CALL JOINTK(N)

. RETURNS ESTIFM AS STIFFNESS MATREX ’ !

STORE ESTIFM IN SK
FIRST ROWS
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( ¢
o [F(IMAT(N).EQ.1) NCN=3 .
IF(IMAT(N).EQ.2) NCN=4
DO 360 JJ=1,NCN
NROWB= (NOP (N, JJ) - 1) *NDF
IF(NROWB) 360,305,305
‘ . 305 00 350 J=1,NDF
NROWB=NROWB+ 1
I={JJ=1)*NDF+J )

|
/ Ty, €
|/ L c THEN COLUMNS
C
D0330 KK=1,NCN
NCOLB= (NOP{N,KK)~1)*NOF
DO 320 K=1,NDF —
L = (KK-1)*NDF + K
NCOL = NCOLB + K + 1 ~NROWB
C ‘ SKIP STORING IF BELOW BAND
C . .
IF(NCOL)320,320,310
310 SK(NROWB,NCOL)=SK(NROWB,NCOL)+ESTIFM(I,L) )
320 CONTINUE
330 CONTINUE
350 CONTINUE
360 CONTINUE
‘ 400 CONTINUE '
C ADDITION OF CONCENTRATED FORCES
00 297 I=1,NB
N=NBC (1)
K=2¥N
IF(CODE(N)-1.) 295,295,296
o 296 IF(CODE(N) EQ 2.) GO TO 301
298 IF(CODE(N)~-3 ) 425,297,425
295 C(K)=C(K)+UY(N) ‘
IF(CODE(N) NE.0.0) GO TO 297
301 C(K=1)=C(K=1)+UX(N) o
\‘ GO TO 297
425 WRITE(6,426) N
STOP . )
426 FORMAT(5X, 'ERROR IN CODE NUMBER-NODE-EXECUTION TERMINATED’,I4)
297 CONTINUE ‘e
c
C '
c TRANSFER LOAD VECTOR TO D
o
|
| DO 601 1=1,NSZF
| D(1)=C(1)
601 CONTINUE
602 CONTINUE -
C DISPLACEMENT BOUNDARY CONDITIONS
C
DO 401 J=1,NB
M=NBC(J) .
U=UX (M) .
N=2*M-1

IF(CODE(M)) 401,401,31
311 IF(CODE(M)-1 0) 401,325,331 .
331 IF(CODE(M) EQ.2")* GO TO 335 .




)

4

[

IF(CODE(M)-3.) 401,340,401
325 CALL MODIFY(SK,C,NSZF ,NBAND,N,U)
GO TO 401
340 CALL MODIFY(SK,C,NSZF,NBAND,N,U)
335 U=UY (M)

N=N+1
CALL MODIFY(SK,C,NSZF,NBAND,N,U)

401 CONTINUE

RETURN :

END
c .
C =
SUBROUTINE CSTK(N)
(o} o -
COMMON/CONTR/NP ,NE ,NB ,NDF ,NCN,NSZF, ITITL(50), IPRIN, SFLAG,FPL ,DELPL
c
COMMON/DATA/CORD(580,2),NOP(999,4) , IMAD(1100) ,NBC(580),CODE(700),"
+ux(7oo).uv(700).T(1100),0Rx(1100).ORv(f\OO),PRCORD(SBo,z)
C
COMMON/STIFF/ESTIFM{12,12),A(3,6),B8(3,6),SK(1100,92),AREA(1100),
+C(1100),R(8),H(8),D(1100) ,AR(2000),AS(999,3,6),85(999,3,6),NBAND
[«
COMMON/ANAL/NOINC,KOUNTNITER,NOITER,CORDI(580,2)
o .
COMMON/STRES/DISTO(2,580),SIGT0(999,4),STRTO(999,3),5MAXTO(1100),
+SMINTO(1100) ,ANGTO(1100) ,EANGTO(1100),EMAXTO(1100),EMINTO(1100),
+FORCE(999,4),STR(999,3),PSIGT0(999,4),PSTRTO(999,3) ,PDISTO(2,580),
+PEMINT(1400),PSMINT(1100),EXSH(1100)
C
COMMON/JOINT/T1(8,8),BL(8,8) ,AL(1100),ANG(1100),DKS(1100),DKN(1000
+),50(2,2),W(999,2),P(999,2),v(999,2) ,AVP(999,2),CV(999,2),
+CAVP(999,2),PCV(999,2),PCAVP(999,2),81(8,8),IFAIL(1100),ALO0(1100)
c
COMMON/ELAS/EE(1100),ENU(1100)
; ‘ :
c CONTINUUM ELEMENT STIFFNESS MATRIX
C ]
C
c DETERMINE ELEMENT CONNECTIONS —
C
I=NOP(N, 1)
J=NOP(N, 2)
K=NOP(N,3) -
ORX(N)=(CORD(I,1)+CORD(J,1)+CORD(K,1))*0 333333
- ORY(N)=(CORD(I,2)+CORD(J,2)+CORD(K,2))*0.333333
c
c - SET UP LOCAL CODRDINATE SYSTEM
c
AJ=CORD(J,1)-CORD(I,1)?
AK=CORD(K,1)~CORD(I,1)
B8J=CORD(J,2)-CORD(I,2) .
BK=CORD(K,2)-CORD(1,2)
AREA(N)=(AJ*BK-AK*BJ) /2 -
221 IF(AREA(N).LE 0.) GO TO 220
c
C FORM STRAIN DISP MATRIX )
c <> -
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A(3,8)=-BJ
D0 10 I =1,3
00O 10 J = 1,6 N
AS(N,I,J) = A(I,J)
10 CONTINUE

c

c FORM STRESS STAIN MATRIX

C )
COMM=EE{N)/((1.+ENU(N))*(1.~-ENU(N)*2.)*AREA(N))
ESTIFM(!,1)=COMM'(1.—ENP(N))
ESTIFM(1,2)=COMM*ENU(N)
ESTIFM(3,1)=0.
ESTIFM(3,2)=0.
ESTIFM(3,3)=EE(N)/(2.*(1.+ENU{(N))*AREA(N))
ESTIFM(1,3)=0.
ESTIFM(2,1)=ESTIFM(1,2)
ESTIFM(2,2)=ESTIFM(1,1)
ESTIFM(2,3)=0.

c

[« B IS THE STRESS BACKSUBSTITUTION

[o

4 00 205 1 = 1,3

D0 205 J=1,6
8(1,J4)=0. - ] N

00 205 K=1,3 .
205 B(1,J9#=8(1,J)+ESTIFM(I,K)/2" *A(K,J)

D0 20 I = 1,3

DO 20 J = 1,8

BS(N,I,J) = B(I,J)
20 CONTINUE

aooo

ESTIFM IS STIFFNESS MATRIX

00 210 I=1,6
DO 210 J=1,86
. ESTIFM(I,J)=0.
D0 210 K=1,3 .
210 ESTIFM(I,J)=ESTIFM(I,J)+B(K,I)/2.%A(K,J)
RETURN

C ERROR EXIT FOR BAD CONNECTIONS
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- s »} '
o * .
i 220 WRITE(6,100) N
100 FORMAT(*ZERO OR NEGATIVE AREA ELEMENT NO’,I4/'EXECUTION TERMINATED

0 : 1) . o
sest WRITE(6,*) AJ,BK,AK,BJ
. . STOoP

END

P

L4

SUBROUTINE JOINTK(N) , ~

JOINT ELEMENT STIFFNESS MATRIX

o o000 00

COMMON/CONTR/NP,NE.NB.NDF.NCN,NSZF.ITITL(SO).IPRIY.SFLAG,FPL.DELPL

COMMON/DATA/CORD (580,2) ,NOP(999,4),IMAT(1100),NBC(580),CODE(700),

+UX(700),UVv(700),T(1100) ,0RX(1100) ,0RY(1100),PRCORD(580,2) ]
o
. - COMMON/STIFF/ESTIFM(12,12),A(3,6),8(3,6),SK(%100,92),AREA(1100), =¥
+C€1)00) ,R(B1,H(8),D(1100),AR(2000),A5(999,3,6).85(999,3,6) ,NBAND
c .
" COMMON/ANAL/NOINC , KOUNT,NITER,NOITER,CORDI(580,2)
o
COMMON/STRES/DISTO(2,580),SIGT0(999,4),STRT0(999,3),SMAXTO(1100),
+SMINTO(1100),ANGTO(1100) , EANGTO(.1100),EMAXTO(1100) ,EMINTO(1100),
+FORCE(999,4),STR(999,3) ,PSIGTO(999,4),PSTRT0O(999,3) ,POISTO(2,580),
+PEMINT(1100) ,PSMINT(1100) ,EXSH(1100)
o
; COMMON/JOINT/T1(B,8),BL(8,8),AL(1100),ANG(1100),DKS(1100),DKN{1000
. +),5D(2,2),w(999,2),P(999,2),V(999,2) ,AVP(999,2),CV(999,2),
+CAVP(999,2),PCV(999,2),PCAVP(999,2),B1(8,8),IFAIL(1100),ALO(1100)
c . .
COMMON/ELAS/EE(1100),ENU(1100)
¢ o
\c
I=NOP(N, 1) ;
\ J=NOP(N, 2)
: K=NOP(N, 3)
L=NOP(Ns 4) '
IF(CORD(I,1).EQ.CCRD(J,1)) GO TO 11 - .
ANG(N)=ATAN((CORD(J,2)~CORD(I,2))/(CORD(J, 1)~CORD(I,1)}) .
GO TO 12
11° ANG(N)=90.0/57.29578
12 CONTINUE : -
AL(N)=SQRT((CORD(J,2)-CORD(I,2))*%2+(CORD(J,1)~-CORD(I 1)) **2)
ORX(N)=(CORD(I, 1)+GORD(J, 1)+CORD(K,1)+CORD(L,1))/4.
ORY(N)=(CORD(I,2)+CORD(J,2)+CORD{K,2)FCORD(L,2))/4.
¢ ) ‘ #
C ESTIFM IS STIFFNESS MATRIX
C. -V 4
00 3 I=1,8 )
00 3 J=1,8 i
3 ESTIFM(I,J)=0.0
ESTIFM(1,1)=0KS(N)*AL(N) /3"
ESTIFM(1,3)=ESTIFM(1,1)/2.
ESTIFM(1,5)=-ESTIFM(1,3)
ESTIFM(1,7)=-ESTIFM(1,1)
ESTIFM(2,2)=DKN(N)*AL(N)/3.
e
i ' ) -
%‘ ‘ 3 i




ESTIFM(2,4)=ESTIFM(2,2)/2.
ESTIFM(2,6)=~ESTIFM(2,4) r
ESTIFM(2,8)=~ESTIFM(2,2)

- ESTIFM(3,3)=ESTIFM(1,1)
ESTIFM(3,5)=~ESTIFM(1,1)
ESTIFM(3,7)=-ESTIFM(1,1)/2,
ESTIFM(4,4)=ESTIFM(2,2)
ESTIFM(4,6)=-ESTIFM(2,2)
ESTIFM(4,8)=~ESTIFM(2,2)/2.
ESTIFM(5,5)=ESTIFM(1,1)
ESTIFM(5,7)=ESTIFM(1,1)/2, ,
ESTIFM(6,6)=ESTIFM{(2,2)
ESTIFM(6,8)=ESTIFM(2,2)/2. :
ESTIFM(7,7)=ESTIFM(1,1)
ESTIFM(8,8)=ESTIFM(2,2)

Cc WRITE(6,40) B
DO 4 K=1,7 N\
K1=Ke 1 ’ -
DO 4 J=K),8

4 ESTIFM(J,K)=ESTIFM(K,J)

[o}

C DETERMINE TRANSFORMATION MATRIXU

C

E=COS (ANG(N))
S=SIN(ANG(N))
Do 5 I=1,8
' DO 5 J=1,8
5 T1(1,J)=0.0
po 8 [=1,8 . ‘-
J=1
6 T1(I,J)=E .
oo 7 I1=1,7,2 -
J=1+1 .
7 TI(I,J)=S
0o 8 1=2,8,2
J=I1-1 .
8 TI(I,J)=28
c o
C TRANSFORM STIFFNESS TO GLOBAL AXES ‘

00 .
1,J)+ESTIFM(I,L)*TI(L,J) .

00 10 J .
=0.0 . .

.

10 ESTIFM( =ESTIFM(I,J)+BL(L,I)*T1(L,J)

SUBROUTINE MODIFY(SK,B,NUEQ,NBAND,N,U)
SUBROUTINE MODIFY MOOIFIES THE STIFFNESS MATRIX
SO AS TO ACCOUNT FOR THE SPECIFIED DISPLACEMENTS

o000 ao

2T~
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OO0O00O000000 (o]

220
210
230

240

4

240

DIMENSION B(1100),SK(1100,92) .
DO 240 M = 2,NBAND ~
K=N=M+ 1 .

IF(K) 210,210,220 N ‘
B(K)=B (K)~SK(K,M)*y

SK(K,M)=0.0

K=N+M=1 s

IF(NUEQ - K)240,230,230 s
B(K)=B(K)=SK(N,M)*U

SK(N.M)=0.0 - - ¥ '
CONTINUE

SK(N,1)=1.0 )
B(N)=yU

RETURN

END

SUBROUT INE SOLVE
COMMON/ CONTR/NP ,NE ,NB,NDF ,NCN,NSZF ,ITITL(50),IPRIN, SFLAG,FPL,DELPL

COMMON/DATA/CORD(580,2) ,NOP(999,4) ,IMAT(1100),NBC(580),CODE(700),
+UX(700) ,UY(700),T(1100) ,0RX(1100) ,0RY{(1100),PRCORD(580,2)

COMMON/ STIFF/ESTIFM(12,12),A(3,6),B(3.6),SK(1100,92),AREA(1100),
+C(1100) ,R(8),H(8),D(1100) ,AR(2000),A5(999,3,6),8S5(999,3,6) ,NBAND

COMMON/ ANAL/NOINC ,KOUNT NITER,NOITER,CORDI(580,2)

COMMON/ STRES/DISTO(2,580),SIGTO(Q99,4),STRTO(999,3), SMAXTO( 1100),
+SMINTO( 1100),ANGTO(1100), EANGTO(1100),EMAXTO(1100) . EMINTO(1100),
+FORCE{999,4),5TR(999,3),PSIGTO(999,4) ,PSTRTO(999,3),PDISTO(2,580),
+PEMINT(1100),PSMINT(1100) ,EXSH(1100)

COMMON/ JOINT/T1(8,8B),BL(8B,8),AL(1100),ANG(1100) ,DKS(1100),DKN(1000
+),50(2,2),w(999,2),P(999,2),v(999,2) ,AVP(999,2),CV(999,2),
+CAVP(999,2),PCV(999,2),PCAVP(999,2),B1(8,8), IFAIL(1100),ALO(1100)

COMMON/ELAS/EE(1100) ,ENU(1100) ’

ol
SPECIFICATION STATMENTS

REDUC{E MATRIX 3
DO 90Q I=1,40 .
WRITE(6,700) (SK(I,J),d=1,40)

FORMAT(* ' ,10E10.6,/)

CONTINUE .

DO 300 N = 1,NSZF .

I =N

DO 290 L = 2,NBAND : bd
I =1 + 1

IF(SK(N,L))240,290,240
G =SK(N,L)/SK(N,1)

J =0

DO 270 K = L,NBAND

e

P
- —— e e
e~




O0nan

.

a0n

nnnn

(2]

00N

I .
IF(SK(N.K))260.270.260 .

260 sk(r

)=SK(I.J)

~ G‘SK(N,K)

270 CONTINye -
280‘§K(N.L) =G

C(I)=C(
290 CONT I Ny

AND LOAD vecToR
FOR“EACH EQuaTI O

1)-Gs¢ N)
E

300 C(~)=c(~)/SK(NL1) .

N=NSZF

350 N =y
- IF(N)5Q
= N

360

LF{SKk(N
C(N)=c¢

370
400

RETURN
END

BACK-SUBST[TUTION

, +
0,500,360 -d

,K))370.400,370
N)-SK(N,K)'C(L)

Go 350 -
500 CONTINUE

SUBROUTINE CSTRES(NLFLAG) -——

COMMON /

GOMMON /
*UX(700)

Common /
*C(1100)

COommon /
COommonN /
*SMINTO(
*FORCE(g
+PEMINT(
COMMON
*).sD(2,
9
COMmon,

DIMENST

E-18

CONTR/NP.NE,NB.NDF.NCN,NSZF.ITITL(SO).fPRIN.SFLAG.FPL.DELPL

-

DATA/CORD(SSb,Z),NOP(999,4).IMAT(I100),NBC(580).CODE(7003,
) 0,2)

.UV(700).T(!100),ORX(I|00

STTFF/ESTIFM(!Z.)2),A(3.6),
,R(BJ,H(B),D(IIOO).AR(ZOOO).AS(999.3,6),

ANAL/NOINC.KOUNT,NITER.NOITER.CORDI(580.2

.ORY(I)OO).PRCORD(SG

B(3,6),SK(I100.92),AREA(?POO),
BS(999.3,6).NBAND

STRES/DISTO(2,SBO).SIGTO(999.4).STRTO(999.3).SMAXTO(IIOD),

I!OO),ANGTO(!IOQO.EANGTO(IIOO)
99,4).STR(999.3),PSIGTO(999,4),PS
l!OO).PSMINT(fIOO),EXSH(!!OO)

JOINT/TI(B,B).BL(B.B).AL(IIOO).ANG(IIOOJ.DKS(IIOO),DKN(IOOO

2).W(999,2),P(999.2
9.2).PCV(QQQ.Z),PCAVP(999.2

).V(999.2).AV

ELAS/EE(IIOO),ENU(I!OO)

ON DIS(Z.SBO)

EOUIVALENCE(DIS.C)

CALCULATE ELEMENT STRA?NS

).Cv(9gg, '
),BI(B.B).IFAIL(IIOOJ,ALO(IIOO)




¢ -3

e XeXel

OO0

240
260

500

DO 200 N =1,NE
IF(IMAT(N) EQ.2) GO TO 200
00 260 I =1,3 - R

M=NOP (N, 1)

IF(M.EQ 0)GO TO 260

K= (I - 1)*NDF

DO 240 J =1,NDF

1 = U +K

R(1J) = DIS(J.M) ’ .
CONTINUE -

IA = K + NDF
D0 500 I=1,4- :
FORCE (N, 1)=0.

. D0 300 I = 1,3 ‘

300

200

802
290

BO3
304
801

701
702

>

STR(N, 1)=0,

DO 300 J = 1,IA

STR(N,I) = STR(N,I) + (AS(N,I,J)%R(J))/ (2, %AREA(N))
FORCE(N,I) = FORCE(N,I) + BS(N.I,J)*R(J) '
FORCE (N,4)=FORCE(N,4 ) +ENU(N)* (FORCE(N, 1) +FORCE(N,2))
CONTINUE

K

CUMULATIVE STRESSES AND STRAINS

DO 801 N=1,NE
IF(IMAT(N).EQ.2) GO TO 8041

D0 290 1=1,3 /
IF(NITER.NE 1) GO TO 802
PSTRTO(N,I)=STRTO(N, 1)
PSTRTO(N,I)=0
STRTO(N,I)=PSTRTO(N, I }+STR(N,I)
CONTINUE

DO 304 I=1,4

IF(NITER.NE 1) GO TO 803
PSIGTO(N,I1)=SIGTOIN, 1)
PSIGTO(N,1)=0
SIGTO(N,I1)=PSIGTO(N, I)+FORCE(N,I)
CONTINUE

CONTINUE

f

TOTAL PRINCIPAL STRESSES AND STRAINS AND

DO 301 N=1,NE
IF(IMAT(N) EQ.2) GO TO 30!
C1=(SIGTO(N,1)+SIGTO(N.2))/2.

D1=SQRT(((SIGTO(N,2)~SIGTO(N,1))/2 )**2+SIGTO(N,3)%*2)

SMAXTO(N)=C1+D1
SMINTO(N)=C1-D1
IF(SIGTO(N,2) EQ.SMINTO(N)) GO TO 701

4‘(&‘1 .

DIRECTIONS

ANGTO(N)=251J 29578%ATAN(SIGTO(N,3)/(SIGTO(N,2)-SMINTO(N))})
2

G0 7O 70

ANGTO(N)=90 0 R
CONTINUE

E1=(STRTO(N,1)+STRTO(N,2))/2.

v

F1=SQRT(({STRTO(N,2) ~STRTO(N,1))/2 )**2+(STRTO(N,3)/2.)**2) ,

EMAXTO(N)=ET1+F1
EMINTO(N)=E1-~-F1
IF(STRTO(N,2) .EQ.EMINTO(N)) GO 70 703

S

EANGTO(N)=57.29578*ATAN((STRTO{(N,3)/2.)/(STRTO(N,2)~EMINTO(N)))

E-19
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-

GO T0 704

703 EANGTO(N)=90.0
704 CONTINUE }

C
C
C
301

ca0
C299
C
€298

o000 0

€303
€302
C
C3o
C
c
C
C
€305
C
€307
C
€308
C

C
o
C
C )
C
c
C

C309
C311

PERFORM NON-LINEAR ANALYSIS

N

CONTINUE .
CALL CSTHNL(NLFLAG) .
IF(NLFLAG EQ.1.AND NITER.NE.NOITER) RETURN .
WRITE(6,299)
FORMAT(“ 1’ ,5X, 'STRESSES AND STRAINS IN CST ELEMENTS',///)
WRITE(6, 298) :
FORMAT(’ ‘,T2,°ELEM',T14,'SIG 1',729,'SIG 3',T44, " TXY',T59, \
+*'S16 2*,T75,’€E 1°,7T90, € 3',T104, ‘EXY’',//) T

SLIM=0.01*FORCE(NE,2)
00 302 N=1,NE
IF(IMAT(N) EQ.2) GO TO 302
IF(ABS(FORCE(N,2)).GT.SLIM)
+WRITE(6,303) N, (FORCE(N,I),I=1,4),(STR(N,I1),I=1,3)

FORMAT ("’ *,15,7(5X,F10.5))

CONTINUE

WRITE(6,310)

FORMAT (1 ,5X, ' TOTAL STRESSES AND STRAINS IN CST ELEMENTS’,///) ’

WRITE(6, 298)
DO 305 N=1,NE
IF(IMAT(N).EQ 2) GO TO 305

WRITE(6.,303) N, (SIGTO(N,I),I=1,4), (STRTO(N,I1),I1=1,3)
CONTINUE
WRITE(6,307)
FORMAT( ' 1 ,5X, PRINCIPAL STRESSES,AND STRAINS’,///)

WRITE(6, 308)

FORMAT(’ ' ,T4, ELEM’,T16, SIGMAX’ ,T31, SIGMIN’,T47, ‘EMAX’ ,T62,
+ EMIN'/T17, (KPA) " ,T32, " (KPA)',//)

SLIM=0 O 1%ABS(SMINTO(NE))

DO 309 N=1,NE .
IF(IMAT(N).EQ.2) GO TO 309

SHMAX=( SMAXTO(N)-SMINTO(N))/2

IF(ABS(SMLNTO(N)) GT.SLIM) .
+WRITE(6, 303) N,SMAXTO(N) , SMINTO(N), EMAXTO(N) EMINTO(N) M
TSTRO(N) = TSTRO(N)+EMINTO(N) :
CONTINUE ¢ ) .
CONTINUE
RETURN .
END

1

SUBROUTINE REAC({J,M,N)
COMMON/CONTR/NP,NE ,NB,NDF ,NCN,NSZF ,ITITL(50),IPRIN,SFLAG, FPL,DELPL

COMMON/DATA/CORD(580,2) ,NOP(999,4),IMAT(1100),.NBC(580),CODE(700),
+UX(700),UY(700),T(1100) ,0RX(1100) ,0RY(1100),PRCORD(580,2)

COMMON/STIFF/ESTIFM(12,12),A(3,6),8(3,6),SK(1100,92) ,AREA(1100),
+C(1100),R(8),H(8),D(1100) ,AR(2000),AS5(999,3,6},85(999,3,6) ,NBAND

COMMON/ANAL/NOINC, KOUNT ,NITER,NOITER,CORDI (580,2) Q, ’



~

(]

oo

425

501

426

502

427

503

504

7 /

COMMON/STRES/DISTE)%Z.580) .SIGTO(999,4) ,STRTO(999,3), SMAXTO(1100),
+SMINTO(1100),ANGTO(1100), EANGTO(1100) ,EMAXTO(1100) ,EMINTO( 1100),
+FORCE(999,4),STR(999,3),PSIGT0(999,4),PSTRTO(999,3) ,PDISTO(2,580),
+PEMINT(1100),PSMINT(1100) ,EXSH(1100)

COMMON/JOINT/T1(8,8),BL(8,8),AL(1100),ANG(1100),DKS(1100),DKN(1000
+),SD0(2,2),W(999,2),P(999, 2),v(999,2) ,AVP(999,2),CV(999,2),
+CAVP(999,2),PCV(999,2),PCAVP(999,2) ,81(8,8) , IFAIL(1100) ,ALO(1100)

DIMENSION U(10),.TEMP(10)
RECALCULATE STIFFNESS MATRIX FOR ELEMENT N

IF(IMAT(N) .EQ.2) GO TO 504
CALL CSTK(N)
J1=2*NOP(N, 1)1
J2=2%NOP(N, 1)
K1=2*NOP(N,2)-1
K2=2%NOP(N,2)
L1=2*NOP(N,3)~1
L2=2*NOP(N,3)

u(1)=c(y1)

u(2)=Cc(J42)

U(3)=C(K1)

u(4)=C(K2) b
u(s)=C(L1)

u(s)=Cc(L2)

IF(CODE(M) .NE 1.) GO TO 501 ’
I=2%J-1

K=2%*NOP(N, J)-1

AR (K)=0 . b
SuM=0.0 ‘ !
DO 425 L=1,6 j

SUM=SUM+ESTIFM(T,L)*U(L)

AR (K)=AR (K ) +SUM

GO TO 503 . .
IF(CODE(M) .EQ 2.),.GO TO 502

I=2%J-1 y )

K=2*NOP(N, J)-1

SUM=0 0

DO 426 L=1,6
SUM=SUM+ESTIFM(I , L) *uU(L)
AR (K)=AR(K)+SUM

I=2%J

K=2*NOP(N, J) .
SumM=0.0

DO 427 L=1.,6

SUM=SUM+ESTIFM(I,L)*uU(L) | .

AR (K)=AR(K)+5UM

CONTINUE

GO TO 3

CALL JOINTK(N)

I1=2*NOP(N, 1)1

12=2*NOP(N, 1)

JI=2*NOP(N,2)-1

J2=2*NOP(N, 2)

K1=2*NOP(N,3)-1

K2=2#¢NOP(N,3)




O

L1=24NOP(N,4)-1
L2=2*NOR(N,4)

u(r)=Cc(I)

u(2)=Cc(12)

U(3)=C(J1)

u(a)=Cc(Jy2)

U(5)=C(K1)

u(6)=C(K2)

u(z)=Cc(Lt)

u(B)=Cc(L2)

IF(CODE(M) .NE.1) GO TO 1

I1=2*%J-1

K=2%NOP(N,J) -1

SuM=0.,0

DO 2 L=1,8 -
SUM=SUM+ESTIFM(I,L)*U(L)

AR{K)=AR(K) +SUM

GO TO 3

IF(CODE(M).EQ 2 ) GO TO 4

[=2+J-1

K=2%*NOP(N,J) -1

SUM=0 0

b0 5 L=1,8

SUM=SUM+*ESTIFM(IL,L)*U(L)

AR(K)=AR(K)+SUM

[=2%J ‘
K=2*NOP(N,J)

SumM=0 0

DO 6 L=1.,8 .
SUM=SUM+ESTIFM(I,L)*U(L)

AR(K)=AR(K) +SUM

CONTINUE

RETURN

END .

f

SUBROUTINE UPDATE(AREAO,PAREA,PDIS,YCTOP)
COMMON/CONTR/NP,NE ,NB ,NDF , NCN,NSZF, ITITL(50) , IPRIN,SFLAG,FPL ,DELPL
COMMON/DATA /CORD(580,2) ,NOP(999,4), IMAT(1100) ,NBC(580) ,CODE(700),
+UX(700),UY(700),T(1100),0RX(1100),0RY(1100),PRCORD(580,2)
COMMON/STIFF/ESTIFM(12,12) ,A(3,6),8(3,6),5K{1100,92),AREA(1100),
+C(1100),R(8),H(8B)Y,D(1100),AR(2000),AS5(999,3,6),85(999,3,6), NBAND
COMMON/ANAL /NOINC , KOUNT ,NITER,NOITER, CORDI(580,2)
COMMON/STRES/DIST0(2,580),SIGT0O(999,4),STRTO(999,3),SMAXTO(1100),
+SMINTO(1100) ,ANGTO(1100),EANGTO(1100),EMAXTO(1100),EMINTO(1100),
+FORCE(999,4),STR(999,3),PSIGT0(999,4),PSTRTO(999,3),PDISTO(2,580),
+PEMINT(1100) ,PSMINT(1100), EXSH(1100)
COMMON/JOINT/T1(8/8),BL(8,B);AL(11GQ) ,ANG(1100),DKS(1100),DKN(1000
+).SD(2,2),w(999,2),P(999,2),Vv(999,2) ,AVP(999,2),Cv(999,2),
+CAVP(999,2) ,PCV(999,2),PCAVP(999,2),81(8,8), IFAIL(1100),ALO(1100)
COMMON/SNDATA/STRESS(40),STRAIN(40), SHEAR(40) ,DENSSH(40),

+GAMMAO ,NPTSCC ,NPTSSH, STIFFS

COMMON/ELAS /EE(1100), ENU(Y 100)

DIMENSION DIS(2,580),AREAQ(1100),PAREA(1100)
EQUIVALENCE(DIS,C) -

UPDATE AND RECORD NODAL COORDINATES

E-22
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DO 100 N=1,NP
CORD(N,1)=CORD(N,1)+DIS(1,N)
CORD(N,2)=CORD(N,2)+DIS(2,N)
PRCORD(N, 1)=CORD(N, 1)
PRCORD(N,2)=CORD(N,2)

100 CONTINUE

c COMPUTE NEW DENSITY FOR CONTINUUM ELEMENTS AND

c UPDATED SHEAR STRESS AND STIFFNESS IN JOINT ELEMENTS
IF(IPRIN.EQ 1) WRITE(6,610)

610 FORMAT(' *,////,T5, 'DENSITY AND STATE OF STRAIN IN CONTINUUM ELEME
+NTS’,///T14, "ELEM’ [ T22,"INITIAL AREA’,T37, *PRESENT AREA’,T55, ‘DENS
+ITY ,T66, "EQUIV AX.STRAIN’ ,T86, ' SHEAR STIFFNESS',T106, 'SHEAR STRES
+S7/728,°(M2),T42, " (M2)’ , TS5, ' (MG/M3) ', T8, * (KN/M3) "’ ,T111, " {(KPA)",
+//7)

IPUP=]

DO 200 J=1,NE

IF(IMAT(J) .EQ 2) GO 70 201

CALL DENSIT(CORD,J,AREAQ,PAREA,DENS, IPUP)
GO TO 200

200 IF(IFAIL(J).LT.1) GO TO 200
DKS(J)=0.0001
IF(IPRIN EQ.1) WRITE(6,202) J,DKS(J),CAVP(J,1)

i

202 FORMAT(’' ' ,T6,110,T88,F9.3,7T108,Ff9.4)
200 CONTINUE

RETURN

END

SUBROUTINE DENSIT(SCORD,N, AREAOD,PAREA,DENS, IPUP)
COMMON/CONTR/NP,NE ,NB,NDF , NCN,NSZF,ITITL(50) ,IPRIN,SFLAG,FPL,DELPL
COMMON/DATA /CORD(S80,2) ,NOP(999,4),IMAT(1100) ,NBC(580),CODE (700),
+UX (700),uy(700),T(1100),0RX(1100),0RY(1100),PRCORD(580,2)
COMMON/SNDATA/STRESS (40), STRAIN(40), SHEAR(40) ,DENSSH(40),
+GAMMAQ,NPTSCC,NPTSSH,STIFFS
COMMON/STRES/DISTO(2,580),SIGT0(999,4),5TRT0O(999,3),SMAXTO( 1100},
+SMINTO(1100) ,ANGTO( 1100), EANGTO(1100) ,EMAXTO(1100),EMINTO(1100)
+FORCE(999,4) ,STR(999,3),PSIGT0(999,4) ,PSTRTO(999,3),PDISTO(2,580),
+PEMINT(1100) ,PSMINT(1100), EXSH(1100)
COMMON/ANAL /NOINC, KOUNT,NITER,NOITER,CORDI(580,2)
DIMENSION SCORD(580,2),AREAQ(1100),PAREA(1100)
C. COMPUTE PRESENT AREA OF CST ELEMENT
I=NOP(N,1)
J=NOP(N,2)
K=NOP(N,3)
AJ=SCORD(J, 1)=SCORD(I,1)
AK=SCORD{K, 1)-SCORD(I,1)
BJ=SCORD(J, 2)~SCORD(T1,2)
BK=SCORD(K, 2)-SCORD(TI, 2)
OX=(SCORD(I,1)+SCORD(J,1)+SCORD(K,1))*0 333333
Ov=(SCORD(I,2)+SCORD(J,2)+SCORD(K,2))*0 333333
XRAT=(CORD(7,1)-0X)/FPL
YRAT=0V/FPL
PAREA(N)=(AJ*BK-AK*BJ) /2.
C. COMPUTE DENSITY IN CST ELEMENT
DENS=(AREAO(N)/PAREA(N))*GAMMAQ
C. COMPUTE EQUIVALENT TOTAL AXIAL STRAIN
IF(IPUP EQ.OQ) RETURN
PEMINT(N)=1-GAMMAO/DENS
IF(DENS.LT GAMMAO) PEMINT(N)=0
LIF (IPRIN EQ. 1)
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C..

3

e N e}

[%

60

*WRITE(6, 1) N,AREAO(N) ,PAREA(N) ,DENS REMINT(N) XRAT,YRAT

FORMAT ( * 5)( 110,4F15.6,5X, ‘X.DIST (PL#S)’,F10.6,5X,’V DIST (PL#S

+)}',F10 8B)

RETURN

END

SUBROUTINE SHDJUNT(IMAT ,NOP,TCORO,AREAD,DIS,IPUP, FSHSTE,ORY)

COMMON/CONTR/NP ,NE NB,NDF ,NCN,NSZF ,ITITL(50),IPRIN,SFLAG,FPL,DELPL

COMMON/ SNDATA/STRESS(40) ,STRAIN(40),SHEAR(40) ,DENSSH(407,
+GAMMAO , NPTSCC ,NPTSSH,STIFFS
COMMON/STRES/DISTO(2,580),SIGT0O(999,4),STRT0(999,3, ,.SMAXTO(1100),
+SMINTO(1100),ANGTO(1100) ,EANGTO(1100),EMAXTO(1100),SMINTO(1100),
+FORCE(999,4) ,STR(999,3) ,PSIGTO(999,4),PSTRTO(999, ",,PDISTO(Z 580),
+PEMINT(1100),PSMINT(1 1'00) EXSH( 1 100)

COMMON/JOINT/T1(8 8),BL(8,8),AL(1100),ANG(1100), DKS(HDO) DKN(1000

+),80(2,2),w(999,2),P(999,2), v(999 2),AVP (999,2),CV(999,2),
*CAVP(QQQ 2) PCV(999 2), PCAVP(Q 9,2),81(8,8), IFAIL(HOO) ALO(HOO)
DIMENSION IMAT(F100) TCORD(SBO ) FSHSTA(IIOO)

DIMENSION NOP(999,4),0RYT1100), DENSF(HOO) DISTF{1100)

DIMENSION AREAO(1100)~.PAREA(1100).DIS(Z.SBO),FSHSTE(HOO)

.COMPUTE DENSITY ACROSS JOINT ELEMENTS

IF(IPRIN EQ.1) WRITE(6,3)

FORMAT (' *,////,T5,'CHECK FAILURE OF JOINT ELEMENTS'///T3,°J.EL",
+T8,'T.EL’,T16, L’ , T2, UPDT AV.DS’,T33,'SH.RES. " ,T42,'SH.STIF. ",

+752, "PREV STRE' ,T64,'SH STRE',T75,'TOT.STRE’,T86, 'FAILURE STRAIN’,

+T110,°'TOT STRAIN:/

+T15,' (M)’ ,T22, *{MG/M3) ", T34, (KPA)’,T43, * (KN/M3) "’ ,T53, (KPA)',TB3,

+'(KPA) " , T77, " (KPA)Y',//7)

DO 20 N"l NE

IF(IMAT(N) EQ 1) G0 TO “Jo

IA=N+1

IB=N-1
. COMPUTE AVERAGE DENSITY ACROSS PLANE OF SHEAR OF JOINT ELEMENT
FROM DEFORMATIONS QF PRESENT INCREMENT

CALL DENSIT(TCORD,IA,AREAOQ, PAREA.DENS!,IPUP) N
CALL DENSIT(TCORD,IB,AREAQ,PAREA,DENS2,IPUP)
D2=DENS

IF(D2 L.T.GAMMAO) DZ2=GAMMAO

. INTERPOLATE FROM SHEAR STRENGTH-DENSITY CURVE TO GET SHEAR STRENGTH
CALL INTERP(NPTSSH,D2,DENSSH, SHEAR, SHINT)

. IS5 JOINT ELEMENT SHEARING ?

SHSTRA=V (N, 1) /ALO(N)

SHSTRE=AVP(N, 1)

PRESTA=PCV(N, 1) .
PRESTE=PCAVP(N, 1)

STRTO(N, 1)=CV(N, 1)/ALO(N)

. COMPARE CUMULATIVE SHEAR STRESS TO SHEAR STRENGTH AND PRINT INFO
[F(ABS(CAVP(N, 1)) LE SHINT.AND.IFAIL{(N).LT.1) GO TO 50
IFAIL(N)=IFAIL(N)+1
IF(IFAIL(N).NE.1) GO TO 60
FSHSTA(MN)=SHINT/DKS({N)/ALO(N)

FSHSTE(N)=SHINT
DENSF(N) =D2
DISTF(N)=0RY{(N) /FPL

COMPUTE EXCESS SHEAR STRESS IN JOINT ELEMENT

I=NOP(N, 1)
JENOP(N, 2)
K=NOP(N, 3)

L=NOP (N, 4)
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CENT=(TCORD(1,2)+TCORD(J,2)+TCORD(K,2)+TCORD(L,
SRAT=(CENT-0ISTO(2,6))/DISTO(2,6)
WRITE(6,*) N,CENT,DISTO(2,5),SRAT

2))/4, *

ARG=-4.0%3.14159265*(ABS(STRTO(N, 1))=FSHSTA(N))
EXSH(N)=ABS(CAVP(N,1))~FSHSTE(N) (
IF(CAVRP(N,1).GT.0) EXSH(N)=-EXSHI(N)

i
1),CAVP(N, 1), \

IF(IPRIN.EQ.Y)
+WRITE(6,5) N,IA,AL(N),D2,SHINT, DKS(N),PRESTE,AVP(N,
+FSHSTA(N) ,STRTO(N, 1)

IF(IFAIL(N).GE.1) WRITE(6,666) N,DENSF(N),DISTF(N)

FORMAT (* “,/, ' JOINT ELEMENT NO~,110,10X, ‘DENSITY AT FAILURE (MG/M3
+)',Fi5.6, 10X, "DISTANCE FROM PLATE (PL 5)',F15.6)
GQ TO 20

IF(IPRIN.EQ.1)
+WRITE(S6, 4) N,IA,AL(N),D2,SHINT , DKS(N) ,PRESTE ,AVP(N, 1) CAVP(N,
, 215, F7 4,F10.6,F11.4 F10 4,F11.,6,F10.86, FIZ%“

FORMAT ( *
FORMAT(* ' .215.F7.4,F10.6,F1d.4 ,F10 4,F11.6.F10.6.F12.6, SH', ax
+,F12.6,T113,F10.6)
IF(IFAIL(N).GE.1) WRITE(6,666) N,DENSF(N),DISTF(N) .
CONTINUE
WRITE(6, 100) SRAT
FORMAT(* *,///.5X, SHEAR DEPTH TO PLATE SINKAGE RATIO',F15 6)
RETURN
END
SUBROUTINE INTERP(NPTS,X,XX,YY, K VY)
DIMENSION XX(40),YY(4Q),SL(40)
. INTERPOLATION SUBROUTINE .
WRITE(6,*) NPTS ' p

DO 2 I=2,NPTS

SLLI=1)=(YY(I)-=YY(I-1))/(XX(I)=XX{1-1))

WRITE(6,*) SL(I~1),vW(I),¥YY(I-1) XX(I) ,XX(I=1)

CONTINUE

IF(X NE XX(NPTS)) GO TO 5

Y=YY(NPTS)

RETURN

DO 3 I=2,NPTS

IF(X.GE. xX(I-l) AND,.X.LT. xx(I)) GO TO 4

CONTINUE

Y=YY(I=1)+SL{I-1)*(X-XX(I=1))

WRITE(6,*) Y,YY{I~1),SL(I),X,XX(I-1)

RETURN . ’

END

SUBROUTINE CSTNL (NLFLAG)

COMMON/CONTR/NP ,NE ,NB ,NDF ,NCN,NSZF,ITITL(S0),IPRIN,SFLAG,FPL,DELPL

COMMON/STRES/DISTO(2,580),51GT0(999,4),5TRT0(999,3) ,SMAXTO(1100),
+SMINTO(1100),ANGTO(1100) , EANGTO ( 1100) ,EMAXTO(1100) ,EMINTO(1100),
+FORCE(999,4),STR(999,3), PSIGTO(999 4) ,PSTRTO(999, 3) PDISTO(2,580) ,
+PEMINT (1100),PSMINT(1100) , EXSH( 1100)

COMMON/SNDATA/STRESS(40) , STRAIN(AO) SHEAR(AO),DENSSH(AO),
+GAMMAO , NPTSCC,NPTSSH, STIFES

COMMON/DATA/CORD (580,2) ,NOP(999,4),IMAT(1100),NBC(580),CODE(700),
+UX(700) ,UY(700) ,T(1100),0RX(1100),0RY(1100),PRCORD(580,2)

COMMON/ANAL/NOINC KOUNT ,NITER,NOI1TER, conox(sea 2)

COMMON/ELAS/EE(IlOO) ENU(IIOO)

DIMENSION STRE(40), STRA(40) PRE(QQQ).ERRMAX(QQQ).ERRORP(QQQ),
+SRSIP(999) s

NLFLAG=0 .

TOLERR=5.0

’




ERROR=0.0 -
ERRHI=0, 0
0O 200 N=1,
ERRMAX(N) =0
ERRORP(N) =0
200 CONTINUE

DO 1 N=1,NE

IF(IMAT(N).EQ.2) GO TO 1
PRE(N)=EE(N)
STRINT=ABS (EMINTO(N))
TF(ABS(PEMINT(N)).LT.0 1.0R.ABS(EMINTO(N)).LT 0.0001) GO 100
C ..COMPUTE STRESS~STRAIN CURVE WITH RESPECT TO PREVIOUS EQUIVALENT
c PRINCIPAL STRESS ‘AND STRAIN
DO 11 I=1,NPTSCC
STRE(I)=STRESS(I)-ABS(PSMINT(N))
STRA(I)=STRAIN(I)~ABS(PEMINT(N))
1 CONTINUE
‘ C...CHECK FOR NON-LINEARITY
CALL INTERP(NPTSCC,STRINT,STRA,STRE,SIGINT)
ERRORP(N)=100%( (ABS(SMINTO(N))}-ABS(SIGINT))/ABS(SIGINT))
ERROR=ABS (ERRORP(N))
IF(ERROR.GT ERRHI) ERRHI=ERROR
’ ERRMAX (N)=ERRHI
SRSIP(N)=SIGINT
IF(ERRHI LE.TOLERR) GO TO 1
C. .COMPUTE ELASTIC MQOULUS FOR NEXT ITERATION
IF(NITER NE NOITER) EE{N)=SIGINT/STRINT N
NLFLAG=1
GO T0 1
100 ERRORP(N)=0 O
! ERRMAX(N)=ERRHI
1 CONTINUE
IF(NLFLAG.EQ.1 AND NITER.NE NOITER) RETURN
IF(IPRIN.EQ.0.OR SFLAG.EQ.1.) RETURN
WRITE(6,10)

10 FORMAT(’ *,////,T22,'NON LINEAR ANALYSIS',///,T6, N’ ,T10, PEMINTO’
+,T20,'PSMINTO’ ,T31, "EMINTO " ,T41, ' SMINTO',T48, ‘SIGINT',TS8, ‘ERROR",
+TGH, 'MAX,ERROR’,TB0, ‘'E USED’,T92, "E NEW’,T104, EMAXTO',T114,
+ ' SMAXTO' /T21,’' (KPA)“ ,T42, * (KPA) ' ,T49,/(KPA) " ,T81, ' (KPA)',TO2,
+(KPA)',T106, (KPA) ' ,TV1S, “(KPA) ' ,///) '

DO 300 N=1,NE . +7
IF(IMAT(N).EQ.2) GO TO 300 )
IF(ABS(PEMINT(N)).GE.O 1)
, +WRITE(6,20) N,PEMINT(N},PSMINT(N) ,EMINTO(N) ,6 SMINTO(N),
+SRSIP(N), ERRORP(N) , ERRMAX (N) ,PRE(N),EE(N), EMAXTO(N) , SMAXTO (N)
v IF(ABS(PEMINT(N)).LT 0 1)
+WRITE(6,22) N,PEMINT(N),PSMINT(N) , EMINTO(N) .,SMINTO(N),
+ERRORP(N) , ERRMAX{N) ,PRE{(N) ,EE(N), EMAXTO(N) , SMAXTO(N)

NE
0
0

20 FORMAT(* ' ,I5,11F10.5)
22 FORMAT(' ’,I5,4F10.5,10X,6F10.5)
300 CONTINUE
RETURN
s END

SUBROUTINE JSTRES
COMMON/CONTR/NP ,NE ,NB ,NDF ,NCN,NSZF | ITITL(5Q),IPRIN,SFLAG,FPL,DELPL

COMMON/DATA/CORD(580,2),NOP(999,4) ,IMAT(1100) ,NBC(580),CODE(700),
+UX{700),UY(700),T(1100),0RX(1100),0RY(1100),PRCORD(580,2)

., </
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- COMMON/STIFF/ESTIFM(IZ 12),A(3,6),8(3,6),5K(1100,92),AREA(1100),
+C(1100) ,R(B),H(8),D(110Q), AR(ZOOO) AS(999 3.6), 85(999 3,6) ,NBAND

COMMON/ANAL/NOINC ,KOUNT ,NITER,NOITER,CORDI(580,2)
A COMMON/ JOINT/T1(8,8),BL(B,8),AL{1100),ANG{1100),DKS(1100) ,DKN{(1000
+).SD(2.2) . W(999,2).P(999,2),V(999,2),AVP(999,2).CV(999,2)
, +CAVP(999.2) ,PCV(999,2) , PCAVP(999,2).B1(8.8) ,IFAIL(1100),ALO(1100)
DIMENSION DIS(2,580) : /
EQUIVALENCE (DIS,C)
. C IF(IPRIN.EQ.1) WRITE(6,6000)
C IF(IPRIN.EQ.1) WRITE(6,604)
00 301 N=1,NE
IIF(I:JOP(N.3).EQ.NOP(N.4)) GO TO 301

. c
c FORM STRESS-STRAIN MATRIX i
[od (;:f" 14
DOV I=1,2
DO 1 J=1,2 )
! so(I, J)=O 0
SD(1,1)=DKS(N)
SD(2,2) =DKN(N)
PO 7 1=1,2
) 7 V(N,1)=0:0

cl DETERMINE NSFORMATION MATRIX
- E=C0S (ANG(N)) %
)

S=SIN(ANG(N
o 00 43 1=1,8 .

DO 13 J=1,8
T1(1,4)=0.0 .
DO 14 I=1,8
J=1

14 TI(1,4)=E
00 15 I1=1,7,2

~ J=1+1 .o

15 TI(1,J)=S

DO 16 1=2,8,2

J=1-1
- 16 TI(l,J)=-
C .
C ELEMENT NODAL DISPLACEMENTS

DO 260 I=1,4 ' -
M=NOP{N,6I)
IF(M EQ.0) GO TO 260 .
K=(I-1)*NDF
DO 240 J=1 NDF &
TJ=J+K
240 R(1J)=DIS(J,M) '
260 CONTINUE

C
. C DISPLACEMENTS WITH RESPECT TO ELEMENT LOCAL AXES
C

*DO 12 I=1,8

H(1)=0.0 .

DO 12 1J=1,8 ’
12 H(I)=H(I)+T1(I, uitn(u)




%

Oonn

(s XaXs!

amo

11
C

Xs-AL(N)/2.
00 1QQ00 It=1,2
(.

FORM STRAIN-DISPLACEMENT MATRI

F=1 -2 *X/AL(N) '
G=1.+2 *X/AL(N)

‘DO 2 1=1,2

po 2 J=1.,8
B1(I1,J)=0.0
B1{1,1)=~F/2
81(1,3)=-G/2.
B8t1{1,5)=G/2
B1(1,7)=F/2.
B1(2,2)=-F/2 F=)
B1(2,4)=-6/2
B1(2,6)=G/2.
B1(2,8)=F/2.

FORM RELATIVE DISPLACEMENT VE
Do 3 1
W(N,T)
0o 3 J
W(N, I)

TR [
£ -0 -

—
ZMON

LI)+B1 (I, J)*H{Y)
AVERAGE RELATIVE DISPLACEMENT

po v 1 =1,2 .
VIN, 1)=V(N, I)+W(N,T)

€ FIND SHEAR AND NORMAL STRESSES

C

4
1000
o
C
c

10

Do 4
P(N, I

1 2 ¥
)

DO 4 J
)
L

1,
0 L
2

P(N, T N,I)+SD(I,J) *W(N,J)

X=X+A

CTOR

FIND AVERAGE SHEAR AND NORMAL STRESSES ACROSS THE ELEMENT

00 10 I=1
V(N, 1)=V(
DO 6 I=1,
AVP(N,I)
DO 6 J=t,
AVP(N,I) = AVP(N,I) + SD(I,J) * VIN,J)
ANG(N)=ANG(N)*(360 /(2.0*3.141593))

- N

1)/2

BRnNNZ-
o
o

4

IF(IPRIN.EQ.1) WRITE(6,4000) N,ANG(N),AL(N),ORX(N),ORY(N) V(N, 1),
+V(N,2),AVP(N, 1) ,AVP(N,2)
301 CONTINUE

CUMULATIVE&AVERAGE STRESSES AND DISPLACEMENTS

IF(IPRIN EQ 1) WRITE(6,5000)

IF(IPRIN.EQ 1) WRITE(6,605)

DO 2000 N=1,NE .
IF(NOP(N,3) EQ NOP(N,4)) GO TO 2000

afnNOo 00



5

-~
D0 9 I=1,2
PCV(N,I)=CV(N,I)
PCAVP(N,1)=CAVP(N,I)
CV(N,I) = CV(N,I) + V(N,I) -
CAVP(N,I) = CAVP(N,I) + AVP(N,I)
9 CONTINUE
601 DO 17 I=142
CV(N,I) = PCV(N,I) + V(N,I) 4’ .
CAVP(N,T)=PCAVP(N,I)+AVP(N,1)
17 CONTINUE ’ N .
IF(IPRIN.EQ.1) WRITE(6,300) N,CV(N,1),CV(N,2),CAVP{N,1),CAVP(N,2),
+DKS(N) , DKN(N) g
4000 FORMAT(‘0’,15,4F10.3,2F15.7,2F14.6)
300 FORMAT(‘0°’,I5,4F15.7,F15.7,E15.5)
2000 CONTINUE
6000 FORMAT( “1’,5X, TABLE 9 - STRESSES AND DISPLACEMENTS IN JOINT ELEME
+NTS*/) '
5000 FORMAT(//,5X, TABLE 10 - CUMULATIVE STRESSES AND DISPLACEMENTS IN
+ JOINT ELEMENTS*/) - '
604 FORMAT(’°0’,5X,‘N’,4X,’ANGLE’,4X, 'LENGTH' ,6X, 'CENTROID"’, 12X, 'AVERAG
+E DISPLACEMENT ', 13X, ’AVERAGE STRESS'/32X,*X*,9X, ‘Y’ ,9X, 'SHEAR',9X,
+NORMAL * , 10X, ‘SHEAR' ,9X, * NORMAL )
605 FORMAT( ‘0’ ,4X,’N’,.5X, CUMULATIVE DISPLACEMENTS’,4X, ' CUMULATIVE STR
,  +ESSES', 10X, 'STIFFNESS VALUES'/12X, "SHEAR’ , 10X, ‘NORMAL',9X, 'SHEAR",
+10X, ‘NORMAL‘,8X, “SHEAR' , 11X, ‘NORMAL ")
RETURN .
END
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